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Message from the General Chair

It is an honor to write the initial words of this proceedings as General Chair of the 56th Annual Meeting
of the Association for Computational Linguistics! This is only the second time that an ACL conference
has been held in Australia — the first time was for the joint COLING/ACL conference in June of 2006
in Sydney, and I was one of its Program Chairs. For ACL 2018 we have tried to maintain the welcoming
and intimate spirit and the relaxed and genial character of the much smaller ACL conferences of the past
in spite of the ever-growing number of researchers in the field and participants in our conferences.

It is my pleasure here to express gratitude to all those without whom this conference would not exist.
My biggest thanks go to the Program Chairs Iryna Gurevych and Yusuke Miyao, as well as to Local
Chairs Tim Baldwin, Trevor Cohn and Karin Verspoor. They have done a tremendous job to manage the
submission and review process, and the local arrangement details, respectively.

I also want to thank all of the other chairs for their very hard work: Workshops Chairs Brendan O’Connor
and Eva Maria Vecchi; Tutorials Chairs Yoav Artzi and Jacob Eisenstein; Demo Chairs Fei Liu and
Thamar Solorio; Student Research Workshop Organizers Vered Shwartz, Jeniya Tabassum and Rob
Voigt; Faculty Advisors to the Student Research Workshop Marie-Catherine de Marneffe, Wanxiang Che
and Malvina Nissim; Publications Chairs Shay Cohen, Kevin Gimpel and Wei Lu; Exhibits Coordinator
Karin Vespoor; Student Volunteer Coordinator Karin Vespoor; Conference Handbook Chairs Jey Han
Lau and Trevor Cohn; Publicity Chair Sarvnaz Karimi; Local Sponsorship Chair Cecile Paris; Webmaster
Andrew MacKinlay; and Priscilla Rasmussen, giver of advice and wisdom to all of us as ACL Business
Manager.

I also warmly thank the ACL Executive Committee for its guidance and advice on many important issues
and concerns as they arose.

I am also extremely grateful to all the sponsors for their great support to the conference.

Many thanks to the area chairs, the reviewers, the invited speakers, the authors of the various papers,
posters and presentations.

And, finally, many many thanks to all the participants who will put the final touches on making ACL
2018 an exciting, stimulating and inspiring event!

Claire Cardie
ACL 2018 General Chair
July 2018
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Message from the Program Committee Co-Chairs

Welcome to the 56th Annual Meeting of the Association for Computational Linguistics 2018 – or ACL
2018 for short.

In September 2017, Program Committee Co-Chairs (PCs) posted the call for nominations of Area Chairs
(AC), Reviewers and Invited Speakers. We received 752 responses in total. Overall, out of 388 valid
nominations for area chairs, 299 unique persons were suggested; 110 persons were self-nominations.
About 70% of the 56 selected area chairs (later expanded to 61 area chairs due to the high number of
submissions) were nominated by the community. For the reviewers, we collected 936 valid nominations.
At the PhD level, 139 persons were self-nominations and 129 were nominated by others. At the
Postdoc/Ass.Prof. level, 160 were self-nominated, 112 nominated by others. At the Prof. level, 221
persons were self-nominated, 175 nominated by others.

We received 138 unique nominations for invited speakers, from which two invited speakers of the
conference were selected:

• Carolyn Penstein Rosé, Language Technologies Institute at Carnegie Mellon University, USA

• Anton van den Hengel, Australian Centre for Visual Technologies at University of Adelaide,
Australia

Our community is steadily growing: in total, 1621 submissions were received right after the submission
deadline: 1045 long, 576 short papers. 13 erroneous submissions were deleted or withdrawn in the
preliminary checks by PCs. 25 papers were rejected without review (16 long, 9 short); the reasons are
the violation of the ACL 2018 style and dual submission guidelines. 32 papers were withdrawn before
the review period started; the main reason was that the papers have been accepted as the short papers at
NAACL HLT 2018. In total, 1551 papers went into the reviewing phase: 1021 long, 530 short papers.
1610 reviewers (1473 primary and 137 secondary reviewers) were involved in the reviewing process;
each reviewer has reviewed about 3 papers on average. 3 long and 4 short papers were withdrawn during
the reviewing period, and finally 1018 long and 526 short papers were considered during the acceptance
decision phase.

The assignment of papers to areas and reviewers has been done in multiple rounds. First round: Initial
assignments of papers to areas were determined automatically with the help of the authors’ input, while
PCs went through all submissions and moved papers to other areas, considering COI and the topical
fit. PCs assigned one AC as a meta-reviewer to each paper using Toronto Paper Matching System
(TPMS) scores. Second round: ACs looked into the papers in their area, and adjusted meta-reviewer
assignments. ACs sent a report to PCs if they found any problems. Third round: PCs made the final
decision, considering the workload balance, possible COIs and the topical fit. Fourth round: ACs decided
which reviewers would review each paper, based on AC’s knowledge about the reviewers, TPMS scores,
reviewers’ bids, and COI.

We have introduced several innovations to the reviewing process. One of them is an argument-based
review form. The reviewers were asked to provide arguments for and against the paper. This has been
tremendously helpful for ACs and PCs to analyze the reviews and come up with final recommendations.
The authors were asked to respond to the con arguments during the rebuttal. In coordination with the
NAACL HLT 2018 PCs, we plan to do some analytics on anonymized reviews and rebuttal statements,
with the consent of the reviewers and authors. Our purpose is to improve the quality of the review
process. The data will be compiled into a unique corpus for NLP, and will be made available to the
research community after appropriate anonymization checks, at the earliest in 2 years after ACL 2018.
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We hope to provide data on how to review to younger researchers, and to improve the transparency of the
reviewing process in general.

The ACL 2018 conference is super-competitive: We accepted 256 out of 1018 submitted long papers and
125 out of 526 short papers, with an overall acceptance rate of 24.7%. The details of the review process
are available at the conference homepage. Criteria of acceptance were mainly:

• strengths/weaknesses raised by reviewers and their significance;

• the result of discussions and author responses;

• contribution to CL as the science of language: whether the paper advances (or contributes to) our
understanding of language in any way;

• diversity: we do not want to fill ACL with similar papers like achieving 1% improvement on a
well-known task.

We also considered the balance of paper types, topics and contributions and re-considered the acceptance
when reviewers reported any problem in preliminary checks (Appropriateness to Handling of Human
Participants).

Continuing the tradition, ACL 2018 will feature 20 papers which were accepted for publication in the
Transactions of the Association for Computational Linguistics (TACL). The TACL papers were split into
10 oral presentations and 10 poster presentations.

There are many people to thank for who have worked diligently to make ACL 2018 possible. All names
are listed in the Program Committee section of the Front Matter.

Since the conference size continues to grow and the organizational complexity increases, we have
introduced the role of Program Committee Co-Chair Assistants. In total, 5 senior researchers have
supported the PCs during most intensive work phases to handle the communication in a timely manner,
draft various documents and effectively prepare decisions.

Thanks to our area chairs for their hard work on recruiting reviewers, managing reviews, leading
discussions, and making recommendations.

This program certainly would not be possible without the help of the 1610 reviewers. In particular, 192
reviewers from this list were recognized by the area chairs as outstanding reviewers who have turned
in exceptionally well-written and constructive reviews and who have actively engaged themselves in the
post-rebuttal discussions.

We are also deeply indebted to the best paper selection committee which consists of 22 members. They
had to additionally review 6-8 papers according to the best paper criteria on short notice. Their time and
effort in recommending the best paper awards is much appreciated.

We also would like to thank many colleagues for generously sharing their experience in organizing
prior ACL conferences and for their advice. We are grateful for the guidance and the support of the
ACL presidents Joakim Nivre and Marti Hearst, and the ACL board. We also would like to thank the
publication co-chairs Shay Cohen, Kevin Gimpel and Wei Lu (Advisory) and the handbook chair Jey Han
Lau for putting together the proceedings and the conference handbook; and Rich Gerber from Softconf
for always being responsive to our requests. We would like to thank the ACL Business Manager Priscilla
Rasmussen for helping us to sort important things out. Finally, this conference could not have happened
without the efforts of the general chair, Claire Cardie. We thank her for the leadership and advice,
especially when matters got complicated.
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We hope you will enjoy ACL 2018 and contribute to the future success of our community!

ACL 2018 Program Committee Co-Chairs
Iryna Gurevych, TU Darmstadt, Germany
Yusuke Miyao, National Institute of Informatics, Japan
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The process for selecting best papers and honourable mentions

The Program Committee Co-Chairs (PCs) have defined a multi-step process. Area Chairs (ACs) were
asked to select a number of top papers in their areas satisfying as many as possible of the following
criteria:

• high quality

• nominated for the award by at least one primary reviewer

• bringing disruptive ground-breaking innovation as compared to the current mainstream

ACs re-read their finalists and discussed among themselves the merits of the nominee’s work with the
help of the primary reviews. ACs then submitted the papers to the PCs along with their selection
decisions. PCs balanced ACs’ nominations for diversity and representativeness among areas and the
review consistency. They prepared the papers in Softconf for best-paper reviewing and selection. There
were 52 best paper candidates.

In parallel, PCs formed the best paper selection committee (BPC) from 22 experts in the field with a
mix of expertise and backgrounds and at a good seniority level. In case of COIs, the BPC member was
excluded from the further evaluation process. BPC members reviewed 6-8 papers each and provided a
short review with respect to the best paper criteria.

Based on BPC recommendations, there were about 20 papers left in the pool. PCs then re-read those
papers and discussed their particular merits. Finally, 6 long papers and 2 short papers were selected as
honourable mentions. For the best papers, 3 long papers and 2 short papers were selected for presentation
in the closing conference session.

The selected honourable mentions and best papers emphasize the diversity of the ACL in terms of
research questions, methods, and interdisciplinarity.

Best Long Papers

• Finding syntax in human encephalography with beam search. John Hale, Chris Dyer, Adhiguna
Kuncoro and Jonathan Brennan.

• Learning to Ask Good Questions: Ranking Clarification Questions using Neural Expected Value
of Perfect Information. Sudha Rao and Hal Daumé III.

• Let’s do it “again”: A First Computational Approach to Detecting Adverbial Presupposition
Triggers. Andre Cianflone, Yulan Feng, Jad Kabbara and Jackie Chi Kit Cheung.

Best Short Papers

• Know What You Don’t Know: Unanswerable Questions for SQuAD. Pranav Rajpurkar, Robin Jia
and Percy Liang.

• ‘Lighter’ Can Still Be Dark: Modeling Comparative Color Descriptions. Olivia Winn and
Smaranda Muresan.
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Invited Talk: Deep Neural Networks, and what they’re not very good at
Anton van den Hengel

Professor, School of Computer Science, University of Adelaide

Abstract: Deep Neural Networks have had an incredible impact in a variety of areas within machine
learning, including computer vision and natural language processing. Deep Neural Networks use implicit
representations that are very high-dimensional, however, and are thus particularly well suited to problems
that can be solved by associative recall of previous solutions. They are ill-suited to problems that require
human-interpretable representations, explicit manipulation of symbols, or reasoning. The dependency
of Deep Neural Networks on large volumes of training data, also means that they are typically only
applicable when the problem itself, and the nature of the test data, are predictable long in advance.

The application of Deep Neural Networks to Visual Question Answering has achieved results that would
have been thought impossible only a few years ago. It has also thrown a spotlight on the shortcomings
of current Deep Nets in solving problems that require explicit reasoning, the use of a knowledge base, or
the ability to learn on the fly. In this talk I will illustrate some of the steps being taken to address these
problems, and a new learning-to-learn approach that we hope will combine the power of Deep Learning
with the significant benefits of explicit-reasoning-based methods.

Bio: Anton van den Hengel is a Professor in the School of Computer Science at the University of
Adelaide, the Director of the Australian Institute for Machine Learning, and a Chief Investigator of the
Australian Centre for Robotic Vision. Prof. van den Hengel has been a CI on over $60m in external
research funding from sources including Google, Canon, BHP Billiton and the ARC, and has won a
number of awards, including the Pearcey Foundation Entrepreneur Award, the SA Science Excellence
Award for Research Collaboration, and the CVPR Best Paper prize in 2010. He has authored over
300 publications, had 8 patents commercialised, formed 2 start-ups, and has recently had a medical
technology achieve first-in-class FDA approval. Current research interests include Deep Learning, vison
and language problems, interactive image-based modelling, large-scale video surveillance, and learning
from large image databases.
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Invited Talk: Who is the Bridge Between the What and the How
Carolyn Penstein Rosé

Professor, School of Computer Science, Carnegie Mellon University

Abstract: This talk reports on over a decade of research where theoretical foundations motivate
computational models that produce real world impact in online spaces. Both the earliest philosophers of
language and the most recent researchers in computational approaches to social media analysis have
acknowledged the distinction between the what of language, namely its propositional content, and
the how of language, or its form, style, or framing. What bridges between these realms are social
processes that motivate the linguistic choices that result in specific realizations of propositional content
situated within social interactions, designed to achieve social goals. These insights allow researchers
to make sense of the connection between discussion processes and outcomes from those discussions.
These findings motivate on the one hand design of computational approaches to real time monitoring of
discussion processes and on the other hand the design of interventions that support interactions in online
spaces with the goal of increasing desired outcomes, including learning, health, and wellbeing.

As an example, in this talk we probe into a specific quality of discussion referred to as Transactivity.
Transactivity is the extent to which a contribution articulates the reasoning of the speaker, that of an
interlocutor, and the relation between them. In different contexts, and within very distinct theoretical
frameworks, this construct has been associated with solidarity, influence, expertise transfer, and learning.
Within the construct of Transactivity, the cognitive and social underpinnings are inextricably linked such
that modeling the who enables prediction of the connection between the what and the how.

Bio: Dr. Carolyn Rosé is a Professor of Language Technologies and Human-Computer Interaction in the
School of Computer Science at Carnegie Mellon University. Her research program is focused on better
understanding the social and pragmatic nature of conversation, and using this understanding to build
computational systems that can improve the efficacy of conversation between people, and between people
and computers. In order to pursue these goals, she invokes approaches from computational discourse
analysis and text mining, conversational agents, and computer supported collaborative learning.
Her research group’s highly interdisciplinary work, published in 200 peer reviewed publications, is
represented in the top venues in 5 fields: namely, Language Technologies, Learning Sciences, Cognitive
Science, Educational Technology, and Human-Computer Interaction, with awards in 3 of these fields.
She serves as Past President and Inaugural Fellow of the International Society of the Learning Sciences,
Chair of the International Alliance to Advance Learning in the Digital Era, and Executive Editor of the
International Journal of Computer-Supported Collaborative Learning.
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Ondřej Cífka and Ondřej Bojar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1362

Automatic Metric Validation for Grammatical Error Correction
Leshem Choshen and Omri Abend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1372

The Hitchhiker’s Guide to Testing Statistical Significance in Natural Language Processing
Rotem Dror, Gili Baumer, Segev Shlomov and Roi Reichart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1383

Distilling Knowledge for Search-based Structured Prediction
Yijia Liu, Wanxiang Che, Huaipeng Zhao, Bing Qin and Ting Liu . . . . . . . . . . . . . . . . . . . . . . . . . 1393

Stack-Pointer Networks for Dependency Parsing
Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng, Graham Neubig and Eduard Hovy . . . . 1403

Twitter Universal Dependency Parsing for African-American and Mainstream American English
Su Lin Blodgett, Johnny Wei and Brendan O’Connor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1415

LSTMs Can Learn Syntax-Sensitive Dependencies Well, But Modeling Structure Makes Them Better
Adhiguna Kuncoro, Chris Dyer, John Hale, Dani Yogatama, Stephen Clark and Phil Blunsom1426

Sequicity: Simplifying Task-oriented Dialogue Systems with Single Sequence-to-Sequence Architectures
Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun Ren, Xiangnan He and Dawei Yin . . . . . . . 1437

An End-to-end Approach for Handling Unknown Slot Values in Dialogue State Tracking
Puyang Xu and Qi Hu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1448

Global-Locally Self-Attentive Encoder for Dialogue State Tracking
Victor Zhong, Caiming Xiong and Richard Socher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1458

Mem2Seq: Effectively Incorporating Knowledge Bases into End-to-End Task-Oriented Dialog Systems
Andrea Madotto, Chien-Sheng Wu and Pascale Fung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1468

Tailored Sequence to Sequence Models to Different Conversation Scenarios
Hainan Zhang, Yanyan Lan, Jiafeng Guo, Jun Xu and Xueqi Cheng . . . . . . . . . . . . . . . . . . . . . . . 1479

Knowledge Diffusion for Neural Dialogue Generation
Shuman Liu, Hongshen Chen, Zhaochun Ren, Yang Feng, Qun Liu and Dawei Yin. . . . . . . . . .1489

Generating Informative Responses with Controlled Sentence Function
Pei Ke, Jian Guan, Minlie Huang and xiaoyan zhu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1499

xxxii



Sentiment Adaptive End-to-End Dialog Systems
Weiyan Shi and Zhou Yu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1509

Embedding Learning Through Multilingual Concept Induction
Philipp Dufter, Mengjie Zhao, Martin Schmitt, Alexander Fraser and Hinrich Schütze . . . . . . . 1520

Isomorphic Transfer of Syntactic Structures in Cross-Lingual NLP
Edoardo Maria Ponti, Roi Reichart, Anna Korhonen and Ivan Vulić . . . . . . . . . . . . . . . . . . . . . . . .1531
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Session 1B: Machine Translation 1

10:30–10:55 Unsupervised Neural Machine Translation with Weight Sharing
Zhen Yang, Wei Chen, Feng Wang and Bo Xu

10:55–11:20 Triangular Architecture for Rare Language Translation
Shuo Ren, Wenhu Chen, Shujie Liu, Mu Li, Ming Zhou and Shuai Ma

11:20–11:45 Subword Regularization: Improving Neural Network Translation Models with Mul-
tiple Subword Candidates
Taku Kudo

11:45–12:10 The Best of Both Worlds: Combining Recent Advances in Neural Machine Transla-
tion
Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang Macherey,
George Foster, Llion Jones, Mike Schuster, Noam Shazeer, Niki Parmar, Ashish
Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Zhifeng Chen, Yonghui Wu and Macduff
Hughes

xli



Monday, July 16, 2018 (continued)

Session 1C: Information Extraction 1

10:30–10:55 Ultra-Fine Entity Typing
Eunsol Choi, Omer Levy, Yejin Choi and Luke Zettlemoyer

10:55–11:20 Hierarchical Losses and New Resources for Fine-grained Entity Typing and Linking
Shikhar Murty, Patrick Verga, Luke Vilnis, Irena Radovanovic and Andrew McCal-
lum

11:20–11:45 Improving Knowledge Graph Embedding Using Simple Constraints
Boyang Ding, Quan Wang, Bin Wang and Li Guo

11:45–12:10 Towards Understanding the Geometry of Knowledge Graph Embeddings
Chandrahas -, Aditya Sharma and Partha Talukdar

Session 1D: Summarization

10:30–10:55 A Unified Model for Extractive and Abstractive Summarization using Inconsistency
Loss
Wan-Ting Hsu, Chieh-Kai Lin, Ming-Ying Lee, Kerui Min, Jing Tang and Min Sun

10:55–11:20 Extractive Summarization with SWAP-NET: Sentences and Words from Alternating
Pointer Networks
Aishwarya Jadhav and Vaibhav Rajan

11:20–11:45 Retrieve, Rerank and Rewrite: Soft Template Based Neural Summarization
Ziqiang Cao, Wenjie Li, Sujian Li and Furu Wei

11:45–12:10 Simple and Effective Text Simplification Using Semantic and Neural Methods
Elior Sulem, Omri Abend and Ari Rappoport

xlii



Monday, July 16, 2018 (continued)

Session 1E: Resource, Annotation

10:30–10:55 Obtaining Reliable Human Ratings of Valence, Arousal, and Dominance for 20,000
English Words
Saif Mohammad

10:55–11:20 Comprehensive Supersense Disambiguation of English Prepositions and Posses-
sives
Nathan Schneider, Jena D. Hwang, Vivek Srikumar, Jakob Prange, Austin Blodgett,
Sarah R. Moeller, Aviram Stern, Adi Bitan and Omri Abend

11:20–11:45 A Corpus with Multi-Level Annotations of Patients, Interventions and Outcomes to
Support Language Processing for Medical Literature
Benjamin Nye, Junyi Jessy Li, Roma Patel, Yinfei Yang, Iain Marshall, Ani
Nenkova and Byron Wallace

11:45–12:10 Efficient Online Scalar Annotation with Bounded Support
Keisuke Sakaguchi and Benjamin Van Durme

Session 1F: Argument Mining

10:30–10:55 Neural Argument Generation Augmented with Externally Retrieved Evidence
Xinyu Hua and Lu Wang

10:55–11:20 A Stylometric Inquiry into Hyperpartisan and Fake News
Martin Potthast, Johannes Kiesel, Kevin Reinartz, Janek Bevendorff and Benno
Stein

11:20–11:45 Retrieval of the Best Counterargument without Prior Topic Knowledge
Henning Wachsmuth, Shahbaz Syed and Benno Stein

12:10–12:30 Short Break

12:30–14:00 Poster Session 1A: Machine Learning

LinkNBed: Multi-Graph Representation Learning with Entity Linkage
Rakshit Trivedi, Bunyamin Sisman, Xin Luna Dong, Christos Faloutsos, Jun Ma
and Hongyuan Zha

xliii



Monday, July 16, 2018 (continued)

Probabilistic Embedding of Knowledge Graphs with Box Lattice Measures
Luke Vilnis, Xiang Li, Shikhar Murty and Andrew McCallum

Graph-to-Sequence Learning using Gated Graph Neural Networks
Daniel Beck, Gholamreza Haffari and Trevor Cohn

Sharp Nearby, Fuzzy Far Away: How Neural Language Models Use Context
Urvashi Khandelwal, He He, Peng Qi and Dan Jurafsky

Bridging CNNs, RNNs, and Weighted Finite-State Machines
Roy Schwartz, Sam Thomson and Noah A. Smith

Zero-shot Learning of Classifiers from Natural Language Quantification
Shashank Srivastava, Igor Labutov and Tom Mitchell

Sentence-State LSTM for Text Representation
Yue Zhang, Qi Liu and Linfeng Song

Universal Language Model Fine-tuning for Text Classification
Jeremy Howard and Sebastian Ruder

Evaluating neural network explanation methods using hybrid documents and mor-
phosyntactic agreement
Nina Poerner, Hinrich Schütze and Benjamin Roth

12:30–14:00 Poster Session 1B: Semantics

Improving Text-to-SQL Evaluation Methodology
Catherine Finegan-Dollak, Jonathan K. Kummerfeld, Li Zhang, Karthik Ra-
manathan, Sesh Sadasivam, Rui Zhang and Dragomir Radev

Semantic Parsing with Syntax- and Table-Aware SQL Generation
Yibo Sun, Duyu Tang, Nan Duan, Jianshu Ji, Guihong Cao, Xiaocheng Feng, Bing
Qin, Ting Liu and Ming Zhou

Multitask Parsing Across Semantic Representations
Daniel Hershcovich, Omri Abend and Ari Rappoport

xliv



Monday, July 16, 2018 (continued)

Character-Level Models versus Morphology in Semantic Role Labeling
Gozde Gul Sahin and Mark Steedman

AMR Parsing as Graph Prediction with Latent Alignment
Chunchuan Lyu and Ivan Titov

Accurate SHRG-Based Semantic Parsing
Yufei Chen, Weiwei Sun and Xiaojun Wan

Using Intermediate Representations to Solve Math Word Problems
Danqing Huang, Jin-Ge Yao, Chin-Yew Lin, Qingyu Zhou and Jian Yin

Discourse Representation Structure Parsing
Jiangming Liu, Shay B. Cohen and Mirella Lapata

Baseline Needs More Love: On Simple Word-Embedding-Based Models and Asso-
ciated Pooling Mechanisms
Dinghan Shen, Guoyin Wang, Wenlin Wang, Martin Renqiang Min, Qinliang Su,
Yizhe Zhang, Chunyuan Li, Ricardo Henao and Lawrence Carin

ParaNMT-50M: Pushing the Limits of Paraphrastic Sentence Embeddings with Mil-
lions of Machine Translations
John Wieting and Kevin Gimpel

Event2Mind: Commonsense Inference on Events, Intents, and Reactions
Hannah Rashkin, Maarten Sap, Emily Allaway, Noah A. Smith and Yejin Choi

Neural Adversarial Training for Semi-supervised Japanese Predicate-argument
Structure Analysis
Shuhei Kurita, Daisuke Kawahara and Sadao Kurohashi

12:30–14:00 Poster Session 1C: Information Extraction, Text Mining

Improving Event Coreference Resolution by Modeling Correlations between Event
Coreference Chains and Document Topic Structures
Prafulla Kumar Choubey and Ruihong Huang

DSGAN: Generative Adversarial Training for Distant Supervision Relation Extrac-
tion
Pengda Qin, Weiran XU and William Yang Wang

xlv



Monday, July 16, 2018 (continued)

Extracting Relational Facts by an End-to-End Neural Model with Copy Mechanism
Xiangrong Zeng, Daojian Zeng, Shizhu He, Kang Liu and Jun Zhao

Self-regulation: Employing a Generative Adversarial Network to Improve Event
Detection
Yu Hong, Wenxuan Zhou, jingli zhang, Guodong Zhou and Qiaoming Zhu

Context-Aware Neural Model for Temporal Information Extraction
Yuanliang Meng and Anna Rumshisky

Temporal Event Knowledge Acquisition via Identifying Narratives
Wenlin Yao and Ruihong Huang

Textual Deconvolution Saliency (TDS) : a deep tool box for linguistic analysis
Laurent Vanni, Mélanie Ducoffe, Carlos Aguilar, Frederic Precioso and Damon
Mayaffre

12:30–14:00 Poster Session 1D: Discourse, Linguistics, Cognitive Modeling

Coherence Modeling of Asynchronous Conversations: A Neural Entity Grid Ap-
proach
Shafiq Joty, Muhammad Tasnim Mohiuddin and Dat Tien Nguyen

Deep Reinforcement Learning for Chinese Zero Pronoun Resolution
Qingyu Yin, Yu Zhang, Wei-Nan Zhang, Ting Liu and William Yang Wang

Entity-Centric Joint Modeling of Japanese Coreference Resolution and Predicate
Argument Structure Analysis
Tomohide Shibata and Sadao Kurohashi

Constraining MGbank: Agreement, L-Selection and Supertagging in Minimalist
Grammars
John Torr

Not that much power: Linguistic alignment is influenced more by low-level linguis-
tic features rather than social power
Yang Xu, Jeremy Cole and David Reitter

12:30–14:00 Poster Session 1E: Resources and Evaluation

xlvi



Monday, July 16, 2018 (continued)

TutorialBank: A Manually-Collected Corpus for Prerequisite Chains, Survey Ex-
traction and Resource Recommendation
Alexander Fabbri, Irene Li, Prawat Trairatvorakul, Yijiao He, Weitai Ting, Robert
Tung, Caitlin Westerfield and Dragomir Radev

Give Me More Feedback: Annotating Argument Persuasiveness and Related At-
tributes in Student Essays
Winston Carlile, Nishant Gurrapadi, Zixuan Ke and Vincent Ng

Inherent Biases in Reference-based Evaluation for Grammatical Error Correction
Leshem Choshen and Omri Abend

The price of debiasing automatic metrics in natural language evalaution
Arun Chaganty, Stephen Mussmann and Percy Liang

12:30–14:00 Poster Session 1F: Summarization, Social Media

Neural Document Summarization by Jointly Learning to Score and Select Sentences
Qingyu Zhou, Nan Yang, Furu Wei, Shaohan Huang, Ming Zhou and Tiejun Zhao

Unsupervised Abstractive Meeting Summarization with Multi-Sentence Compres-
sion and Budgeted Submodular Maximization
Guokan Shang, Wensi Ding, Zekun Zhang, Antoine Tixier, Polykarpos Meladianos,
Michalis Vazirgiannis and Jean-Pierre Lorré

Fast Abstractive Summarization with Reinforce-Selected Sentence Rewriting
Yen-Chun Chen and Mohit Bansal

Soft Layer-Specific Multi-Task Summarization with Entailment and Question Gen-
eration
Han Guo, Ramakanth Pasunuru and Mohit Bansal

Modeling and Prediction of Online Product Review Helpfulness: A Survey
Gerardo Ocampo Diaz and Vincent Ng

Mining Cross-Cultural Differences and Similarities in Social Media
Bill Yuchen Lin, Frank F. Xu, Kenny Zhu and Seung-won Hwang

Classification of Moral Foundations in Microblog Political Discourse
Kristen Johnson and Dan Goldwasser

xlvii



Monday, July 16, 2018 (continued)

Session 2A: Semantic Parsing 1

14:00–14:25 Coarse-to-Fine Decoding for Neural Semantic Parsing
Li Dong and Mirella Lapata

14:25–14:50 Confidence Modeling for Neural Semantic Parsing
Li Dong, Chris Quirk and Mirella Lapata

14:50–15:15 StructVAE: Tree-structured Latent Variable Models for Semi-supervised Semantic
Parsing
Pengcheng Yin, Chunting Zhou, Junxian He and Graham Neubig

15:15–15:40 Sequence-to-Action: End-to-End Semantic Graph Generation for Semantic Parsing
Bo Chen, Le Sun and Xianpei Han

Session 2B: Multilinguality

14:00–14:25 On the Limitations of Unsupervised Bilingual Dictionary Induction
Anders Søgaard, Sebastian Ruder and Ivan Vulić
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Abstract

We introduce Probabilistic FastText, a new
model for word embeddings that can cap-
ture multiple word senses, sub-word struc-
ture, and uncertainty information. In
particular, we represent each word with
a Gaussian mixture density, where the
mean of a mixture component is given
by the sum of n-grams. This represen-
tation allows the model to share statis-
tical strength across sub-word structures
(e.g. Latin roots), producing accurate rep-
resentations of rare, misspelt, or even un-
seen words. Moreover, each component
of the mixture can capture a different
word sense. Probabilistic FastText out-
performs both FASTTEXT, which has no
probabilistic model, and dictionary-level
probabilistic embeddings, which do not
incorporate subword structures, on sev-
eral word-similarity benchmarks, includ-
ing English RareWord and foreign lan-
guage datasets. We also achieve state-of-
art performance on benchmarks that mea-
sure ability to discern different meanings.
Thus, the proposed model is the first to
achieve multi-sense representations while
having enriched semantics on rare words.

1 Introduction

Word embeddings are foundational to natural
language processing. In order to model lan-
guage, we need word representations to contain as
much semantic information as possible. Most re-
search has focused on vector word embeddings,
such as WORD2VEC (Mikolov et al., 2013a),
where words with similar meanings are mapped
to nearby points in a vector space. Following the
∗Work done partly during internship at Amazon.

seminal work of Mikolov et al. (2013a), there have
been numerous works looking to learn efficient
word embeddings.

One shortcoming with the above approaches
to word embedding that are based on a prede-
fined dictionary (termed as dictionary-based em-
beddings) is their inability to learn representa-
tions of rare words. To overcome this limitation,
character-level word embeddings have been pro-
posed. FASTTEXT (Bojanowski et al., 2016) is
the state-of-the-art character-level approach to em-
beddings. In FASTTEXT, each word is modeled
by a sum of vectors, with each vector represent-
ing an n-gram. The benefit of this approach is that
the training process can then share strength across
words composed of common roots. For exam-
ple, with individual representations for “circum”
and “navigation”, we can construct an informa-
tive representation for “circumnavigation”, which
would otherwise appear too infrequently to learn a
dictionary-level embedding. In addition to effec-
tively modelling rare words, character-level em-
beddings can also represent slang or misspelled
words, such as “dogz”, and can share strength
across different languages that share roots, e.g.
Romance languages share latent roots.

A different promising direction involves repre-
senting words with probability distributions, in-
stead of point vectors. For example, Vilnis and
McCallum (2014) represents words with Gaussian
distributions, which can capture uncertainty infor-
mation. Athiwaratkun and Wilson (2017) gen-
eralizes this approach to multimodal probability
distributions, which can naturally represent words
with different meanings. For example, the distri-
bution for “rock” could have mass near the word
“jazz” and “pop”, but also “stone” and “basalt”.
Athiwaratkun and Wilson (2018) further devel-
oped this approach to learn hierarchical word rep-
resentations: for example, the word “music” can
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be learned to have a broad distribution, which en-
capsulates the distributions for “jazz” and “rock”.

In this paper, we propose Probabilistic Fast-
Text (PFT), which provides probabilistic character-
level representations of words. The resulting word
embeddings are highly expressive, yet straightfor-
ward and interpretable, with simple, efficient, and
intuitive training procedures. PFT can model rare
words, uncertainty information, hierarchical rep-
resentations, and multiple word senses. In partic-
ular, we represent each word with a Gaussian or a
Gaussian mixture density, which we name PFT-G

and PFT-GM respectively. Each component of the
mixture can represent different word senses, and
the mean vectors of each component decompose
into vectors of n-grams, to capture character-level
information. We also derive an efficient energy-
based max-margin training procedure for PFT.

We perform comparison with FASTTEXT as
well as existing density word embeddings W2G

(Gaussian) and W2GM (Gaussian mixture). Our
models extract high-quality semantics based on
multiple word-similarity benchmarks, including
the rare word dataset. We obtain an average
weighted improvement of 3.7% over FASTTEXT

(Bojanowski et al., 2016) and 3.1% over the
dictionary-level density-based models. We also
observe meaningful nearest neighbors, particu-
larly in the multimodal density case, where each
mode captures a distinct meaning. Our models are
also directly portable to foreign languages with-
out any hyperparameter modification, where we
observe strong performance, outperforming FAST-
TEXT on many foreign word similarity datasets.
Our multimodal word representation can also dis-
entangle meanings, and is able to separate differ-
ent senses in foreign polysemies. In particular,
our models attain state-of-the-art performance on
SCWS, a benchmark to measure the ability to sep-
arate different word meanings, achieving 1.0% im-
provement over a recent density embedding model
W2GM (Athiwaratkun and Wilson, 2017).

To the best of our knowledge, we are the first
to develop multi-sense embeddings with high se-
mantic quality for rare words. Our code and em-
beddings are publicly available. 1

2 Related Work

Early word embeddings which capture semantic
information include Bengio et al. (2003), Col-

1https://github.com/benathi/multisense-prob-fasttext

lobert and Weston (2008), and Mikolov et al.
(2011). Later, Mikolov et al. (2013a) developed
the popular WORD2VEC method, which proposes
a log-linear model and negative sampling ap-
proach that efficiently extracts rich semantics from
text. Another popular approach GLOVE learns
word embeddings by factorizing co-occurrence
matrices (Pennington et al., 2014).

Recently there has been a surge of interest in
making dictionary-based word embeddings more
flexible. This flexibility has valuable applica-
tions in many end-tasks such as language mod-
eling (Kim et al., 2016), named entity recogni-
tion (Kuru et al., 2016), and machine translation
(Zhao and Zhang, 2016; Lee et al., 2017), where
unseen words are frequent and proper handling of
these words can greatly improve the performance.
These works focus on modeling subword informa-
tion in neural networks for tasks such as language
modeling.

Besides vector embeddings, there is recent work
on multi-prototype embeddings where each word
is represented by multiple vectors. The learn-
ing approach involves using a cluster centroid of
context vectors (Huang et al., 2012), or adapt-
ing the skip-gram model to learn multiple latent
representations (Tian et al., 2014). Neelakan-
tan et al. (2014) furthers adapts skip-gram with
a non-parametric approach to learn the embed-
dings with an arbitrary number of senses per word.
Chen et al. (2014) incorporates an external dataset
WORDNET to learn sense vectors. We compare
these models with our multimodal embeddings in
Section 4.

3 Probabilistic FastText

We introduce Probabilistic FastText, which com-
bines a probabilistic word representation with the
ability to capture subword structure. We describe
the probabilistic subword representation in Sec-
tion 3.1. We then describe the similarity measure
and the loss function used to train the embeddings
in Sections 3.2 and 3.3. We conclude by briefly
presenting a simplified version of the energy func-
tion for isotropic Gaussian representations (Sec-
tion 3.4), and the negative sampling scheme we
use in training (Section 3.5).

3.1 Probabilistic Subword Representation

We represent each word with a Gaussian mixture
with K Gaussian components. That is, a word
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beauiful
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(a)
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river
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Figure 1: (1a) a Gaussian component and its sub-
word structure. The bold arrow represents the final
mean vector, estimated from averaging the grey
n-gram vectors. (1b) PFT-G model: Each Gaus-
sian component’s mean vector is a subword vector.
(1c) PFT-GM model: For each Gaussian mixture
distribution, one component’s mean vector is esti-
mated by a subword structure whereas other com-
ponents are dictionary-based vectors.

w is associated with a density function f(x) =∑K
i=1 pw,iN (x; ~µw,i,Σw,i) where {µw,i}Kk=1 are

the mean vectors and {Σw,i} are the covariance
matrices, and {pw,i}Kk=1 are the component prob-
abilities which sum to 1.

The mean vectors of Gaussian components hold
much of the semantic information in density em-
beddings. While these models are successful
based on word similarity and entailment bench-
marks (Vilnis and McCallum, 2014; Athiwaratkun
and Wilson, 2017), the mean vectors are often
dictionary-level, which can lead to poor semantic
estimates for rare words, or the inability to handle
words outside the training corpus. We propose us-
ing subword structures to estimate the mean vec-
tors. We outline the formulation below.

For word w, we estimate the mean vector µw
with the average over n-gram vectors and its
dictionary-level vector. That is,

µw =
1

|NGw|+ 1


vw +

∑

g∈NGw

zg


 (1)

where zg is a vector associated with an n-gram g,
vw is the dictionary representation of word w, and
NGw is a set of n-grams of word w. Examples
of 3,4-grams for a word “beautiful”, including the

beginning-of-word character ‘〈’ and end-of-word
character ‘〉’, are:

• 3-grams: 〈be, bea, eau, aut, uti, tif, ful, ul〉

• 4-grams: 〈bea, beau .., iful ,ful〉

This structure is similar to that of FASTTEXT

(Bojanowski et al., 2016); however, we note
that FASTTEXT uses single-prototype determinis-
tic embeddings as well as a training approach that
maximizes the negative log-likelihood, whereas
we use a multi-prototype probabilistic embedding
and for training we maximize the similarity be-
tween the words’ probability densities, as de-
scribed in Sections 3.2 and 3.3

Figure 1a depicts the subword structure for
the mean vector. Figure 1b and 1c depict our
models, Gaussian probabilistic FASTTEXT (PFT-
G) and Gaussian mixture probabilistic FASTTEXT

(PFT-GM). In the Gaussian case, we represent each
mean vector with a subword estimation. For the
Gaussian mixture case, we represent one Gaus-
sian component’s mean vector with the subword
structure whereas other components’ mean vec-
tors are dictionary-based. This model choice to
use dictionary-based mean vectors for other com-
ponents is to reduce to constraint imposed by the
subword structure and promote independence for
meaning discovery.

3.2 Similarity Measure between Words

Traditionally, if words are represented by vec-
tors, a common similarity metric is a dot prod-
uct. In the case where words are represented
by distribution functions, we use the general-
ized dot product in Hilbert space 〈·, ·〉L2 , which
is called the expected likelihood kernel (Jebara
et al., 2004). We define the energy E(f, g)
between two words f and g to be E(f, g) =
log〈f, g〉L2 = log

∫
f(x)g(x) dx. With Gaussian

mixtures f(x) =
∑K

i=1 piN (x; ~µf,i,Σf,i) and
g(x) =

∑K
i=1 qiN (x; ~µg,i,Σg,i),

∑K
i=1 pi = 1,

and
∑K

i=1 qi = 1, the energy has a closed form:

E(f, g) = log

K∑

j=1

K∑

i=1

piqje
ξi,j (2)

where ξj,j is the partial energy which corresponds
to the similarity between component i of the first
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word f and component j of the second word g.2

ξi,j ≡ logN (0; ~µf,i − ~µg,j ,Σf,i + Σg,j)

= −1

2
log det(Σf,i + Σg,j)−

D

2
log(2π)

−1

2
(~µf,i − ~µg,j)>(Σf,i + Σg,j)

−1(~µf,i − ~µg,j)
(3)

Figure 2 demonstrates the partial energies among
the Gaussian components of two words.

Interaction between GM 
components

rock:0 pop:0

pop:1rock:1

⇠0,1

⇠0,0

⇠1,1

⇠1,0

bang, 
crack, snap

basalt, 
boulder, sand

jazz, punk, 
indie

funk, 
pop-rock, 

band

Figure 2: The interactions among Gaussian com-
ponents of word rock and word pop. The par-
tial energy is the highest for the pair rock:0
(the zeroth component of rock) and pop:1 (the
first component of pop), reflecting the similarity
in meanings.

3.3 Loss Function

The model parameters that we seek to learn are vw
for each word w and zg for each n-gram g. We
train the model by pushing the energy of a true
context pair w and c to be higher than the nega-
tive context pair w and n by a margin m. We use
Adagrad (Duchi et al., 2011) to minimize the fol-
lowing loss to achieve this outcome:

L(f, g) = max [0,m− E(f, g) + E(f, n)] . (4)

We describe how to sample words as well as its
positive and negative contexts in Section 3.5.

This loss function together with the Gaussian
mixture model with K > 1 has the ability to
extract multiple senses of words. That is, for
a word with multiple meanings, we can observe
each mode to represent a distinct meaning. For in-
stance, one density mode of “star” is close to the
densities of “celebrity” and “hollywood” whereas
another mode of “star” is near the densities of
“constellation” and “galaxy”.

2The orderings of indices of the components for each word are arbitrary.

3.4 Energy Simplification

In theory, it can be beneficial to have covari-
ance matrices as learnable parameters. In prac-
tice, Athiwaratkun and Wilson (2017) observe that
spherical covariances often perform on par with
diagonal covariances with much less computa-
tional resources. Using spherical covariances for
each component, we can further simplify the en-
ergy function as follows:

ξi,j = −α
2
· ||µf,i − µg,j ||2 , (5)

where the hyperparameter α is the scale of the in-
verse covariance term in Equation 3. We note that
Equation 5 is equivalent to Equation 3 up to an ad-
ditive constant given that the covariance matrices
are spherical and the same for all components.

3.5 Word Sampling

To generate a context word c of a given word w,
we pick a nearby word within a context window
of a fixed length `. We also use a word sampling
technique similar to Mikolov et al. (2013b). This
subsampling procedure selects words for training
with lower probabilities if they appear frequently.
This technique has an effect of reducing the impor-
tance of words such as ‘the’, ‘a’, ‘to’ which can be
predominant in a text corpus but are not as mean-
ingful as other less frequent words such as ‘city’,
‘capital’, ‘animal’, etc. In particular, word w has
probability P (w) = 1−

√
t/f(w) where f(w) is

the frequency of word w in the corpus and t is the
frequency threshold.

A negative context word is selected using a dis-
tribution Pn(w) ∝ U(w)3/4 where U(w) is a un-
igram probability of word w. The exponent 3/4
also diminishes the importance of frequent words
and shifts the training focus to other less frequent
words.

4 Experiments

We have proposed a probabilistic FASTTEXT

model which combines the flexibility of subword
structure with the density embedding approach.
In this section, we show that our probabilistic
representation with subword mean vectors with
the simplified energy function outperforms many
word similarity baselines and provides disentan-
gled meanings for polysemies.

First, we describe the training details in Section
4.1. We provide qualitative evaluation in Section
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4.2, showing meaningful nearest neighbors for the
Gaussian embeddings, as well as the ability to
capture multiple meanings by Gaussian mixtures.
Our quantitative evaluation in Section 4.3 demon-
strates strong performance against the baseline
models FASTTEXT (Bojanowski et al., 2016) and
the dictionary-level Gaussian (W2G) (Vilnis and
McCallum, 2014) and Gaussian mixture embed-
dings (Athiwaratkun and Wilson, 2017) (W2GM).
We train our models on foreign language corpuses
and show competitive results on foreign word sim-
ilarity benchmarks in Section 4.4. Finally, we ex-
plain the importance of the n-gram structures for
semantic sharing in Section 4.5.

4.1 Training Details

We train our models on both English and for-
eign language datasets. For English, we use the
concatenation of UKWAC and WACKYPEDIA (Ba-
roni et al., 2009) which consists of 3.376 billion
words. We filter out word types that occur fewer
than 5 times which results in a vocabulary size of
2,677,466.

For foreign languages, we demonstrate the
training of our model on French, German, and Ital-
ian text corpuses. We note that our model should
be applicable for other languages as well. We
use FRWAC (French), DEWAC (German), ITWAC

(Italian) datasets (Baroni et al., 2009) for text cor-
puses, consisting of 1.634, 1.716 and 1.955 billion
words respectively. We use the same threshold,
filtering out words that occur less than 5 times in
each corpus. We have dictionary sizes of 1.3, 2.7,
and 1.4 million words for FRWAC, DEWAC, and
ITWAC.

We adjust the hyperparameters on the English
corpus and use them for foreign languages. Note
that the adjustable parameters for our models are
the loss margin m in Equation 4 and the scale α
in Equation 5. We search for the optimal hyperpa-
rameters in a grid m ∈ {0.01, 0.1, 1, 10, 100} and
α ∈ { 1

5×10−3 ,
1

10−3 ,
1

2×10−4 ,
1

1×10−4 } on our En-
glish corpus. The hyperpameter α affects the scale
of the loss function; therefore, we adjust the learn-
ing rate appropriately for each α. In particular, the
learning rates used are γ = {10−4, 10−5, 10−6}
for the respective α values.

Other fixed hyperparameters include the num-
ber of Gaussian components K = 2, the con-
text window length ` = 10 and the subsampling
threshold t = 10−5. Similar to the setup in FAST-

TEXT, we use n-grams where n = 3, 4, 5, 6 to es-
timate the mean vectors.

4.2 Qualitative Evaluation - Nearest
neighbors

We show that our embeddings learn the word se-
mantics well by demonstrating meaningful nearest
neighbors. Table 1 shows examples of polysemous
words such as rock, star, and cell.

Table 1 shows the nearest neighbors of polyse-
mous words. We note that subword embeddings
prefer words with overlapping characters as near-
est neighbors. For instance, “rock-y”, “rockn”,
and “rock” are both close to the word “rock”. For
the purpose of demonstration, we only show words
with meaningful variations and omit words with
small character-based variations previously men-
tioned. However, all words shown are in the top-
100 nearest words.

We observe the separation in meanings for the
multi-component case; for instance, one compo-
nent of the word “bank” corresponds to a financial
bank whereas the other component corresponds to
a river bank. The single-component case also has
interesting behavior. We observe that the subword
embeddings of polysemous words can represent
both meanings. For instance, both “lava-rock” and
“rock-pop” are among the closest words to “rock”.

4.3 Word Similarity Evaluation
We evaluate our embeddings on several standard
word similarity datasets, namely, SL-999 (Hill
et al., 2014), WS-353 (Finkelstein et al., 2002),
MEN-3k (Bruni et al., 2014), MC-30 (Miller and
Charles, 1991), RG-65 (Rubenstein and Goode-
nough, 1965), YP-130 (Yang and Powers, 2006),
MTurk(-287,-771) (Radinsky et al., 2011; Halawi
et al., 2012), and RW-2k (Luong et al., 2013).
Each dataset contains a list of word pairs with a
human score of how related or similar the two
words are. We use the notation DATASET-NUM

to denote the number of word pairs NUM in each
evaluation set. We note that the dataset RW fo-
cuses more on infrequent words and SimLex-999
focuses on the similarity of words rather than re-
latedness. We also compare PFT-GM with other
multi-prototype embeddings in the literature us-
ing SCWS (Huang et al., 2012), a word similar-
ity dataset that is aimed to measure the ability of
embeddings to discern multiple meanings.

We calculate the Spearman correlation (Spear-
man, 1904) between the labels and our scores gen-
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Word Co. Nearest Neighbors

rock 0 rock:0, rocks:0, rocky:0, mudrock:0, rockscape:0, boulders:0 , coutcrops:0,
rock 1 rock:1, punk:0, punk-rock:0, indie:0, pop-rock:0, pop-punk:0, indie-rock:0, band:1
bank 0 bank:0, banks:0, banker:0, bankers:0, bankcard:0, Citibank:0, debits:0
bank 1 bank:1, banks:1, river:0, riverbank:0, embanking:0, banks:0, confluence:1
star 0 stars:0, stellar:0, nebula:0, starspot:0, stars.:0, stellas:0, constellation:1
star 1 star:1, stars:1, star-star:0, 5-stars:0, movie-star:0, mega-star:0, super-star:0
cell 0 cell:0, cellular:0, acellular:0, lymphocytes:0, T-cells:0, cytes:0, leukocytes:0
cell 1 cell:1, cells:1, cellular:0, cellular-phone:0, cellphone:0, transcellular:0
left 0 left:0, right:1, left-hand:0, right-left:0, left-right-left:0, right-hand:0, leftwards:0
left 1 left:1, leaving:0, leavings:0, remained:0, leave:1, enmained:0, leaving-age:0, sadly-departed:0

Word Nearest Neighbors

rock rock, rock-y, rockn, rock-, rock-funk, rock/, lava-rock, nu-rock, rock-pop, rock/ice, coral-rock
bank bank-, bank/, bank-account, bank., banky, bank-to-bank, banking, Bank, bank/cash, banks.**
star movie-stars, star-planet, G-star, star-dust, big-star, starsailor, 31-star, star-lit, Star, starsign, pop-stars
cell cellular, tumour-cell, in-cell, cell/tumour, 11-cell, T-cell, sperm-cell, 2-cells, Cell-to-cell
left left, left/joined, leaving, left,right, right, left)and, leftsided, lefted, leftside

Table 1: Nearest neighbors of PFT-GM (top) and PFT-G (bottom). The notation w:i denotes the ith

mixture component of the word w.

D 50 300
W2G W2GM PFT-G PFT-GM FASTTEXT W2G W2GM PFT-G PFT-GM

SL-999 29.35 29.31 27.34 34.13 38.03 38.84 39.62 35.85 39.60
WS-353 71.53 73.47 67.17 71.10 73.88 78.25 79.38 73.75 76.11
MEN-3K 72.58 73.55 70.61 73.90 76.37 78.40 78.76 77.78 79.65
MC-30 76.48 79.08 73.54 79.75 81.20 82.42 84.58 81.90 80.93
RG-65 73.30 74.51 70.43 78.19 79.98 80.34 80.95 77.57 79.81
YP-130 41.96 45.07 37.10 40.91 53.33 46.40 47.12 48.52 54.93
MT-287 64.79 66.60 63.96 67.65 67.93 67.74 69.65 66.41 69.44
MT-771 60.86 60.82 60.40 63.86 66.89 70.10 70.36 67.18 69.68
RW-2K 28.78 28.62 44.05 42.78 48.09 35.49 42.73 50.37 49.36

AVG. 42.32 42.76 44.35 46.47 49.28 47.71 49.54 49.86 51.10

Table 2: Spearman’s Correlation ρ× 100 on Word Similarity Datasets.

erated by the embeddings. The Spearman corre-
lation is a rank-based correlation measure that as-
sesses how well the scores describe the true labels.
The scores we use are cosine-similarity scores be-
tween the mean vectors. In the case of Gaussian
mixtures, we use the pairwise maximum score:

s(f, g) = max
i∈1,...,K

max
j∈1,...,K

µf,i · µg,j
||µf,i|| · ||µg,j ||

. (6)

The pair (i, j) that achieves the maximum cosine
similarity corresponds to the Gaussian component
pair that is the closest in meanings. Therefore, this
similarity score yields the most related senses of a
given word pair. This score reduces to a cosine
similarity in the Gaussian case (K = 1).

4.3.1 Comparison Against Dictionary-Level
Density Embeddings and FASTTEXT

We compare our models against the dictionary-
level Gaussian and Gaussian mixture embed-
dings in Table 2, with 50-dimensional and 300-
dimensional mean vectors. The 50-dimensional
results for W2G and W2GM are obtained directly
from Athiwaratkun and Wilson (2017). For com-
parison, we use the public code3 to train the 300-
dimensional W2G and W2GM models and the pub-
licly available FASTTEXT model4.

We calculate Spearman’s correlations for each
of the word similarity datasets. These datasets
vary greatly in the number of word pairs; there-
fore, we mark each dataset with its size for visibil-

3https://github.com/benathi/word2gm
4https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.

en.zip
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ity. For a fair and objective comparison, we cal-
culate a weighted average of the correlation scores
for each model.

Our PFT-GM achieves the highest average score
among all competing models, outperforming both
FASTTEXT and the dictionary-level embeddings
W2G and W2GM. Our unimodal model PFT-G also
outperforms the dictionary-level counterpart W2G

and FASTTEXT. We note that the model W2GM

appears quite strong according to Table 2, beating
PFT-GM on many word similarity datasets. How-
ever, the datasets that W2GM performs better than
PFT-GM often have small sizes such as MC-30
or RG-65, where the Spearman’s correlations are
more subject to noise. Overall, PFT-GM outper-
forms W2GM by 3.1% and 8.7% in 300 and 50 di-
mensional models. In addition, PFT-G and PFT-GM

also outperform FASTTEXT by 1.2% and 3.7% re-
spectively.

4.3.2 Comparison Against Multi-Prototype
Models

In Table 3, we compare 50 and 300 dimensional
PFT-GM models against the multi-prototype em-
beddings described in Section 2 and the existing
multimodal density embeddings W2GM. We use
the word similarity dataset SCWS (Huang et al.,
2012) which contains words with potentially many
meanings, and is a benchmark for distinguishing
senses. We use the maximum similarity score
(Equation 6), denoted as MAXSIM. AVESIM de-
notes the average of the similarity scores, rather
than the maximum.

We outperform the dictionary-based density
embeddings W2GM in both 50 and 300 dimen-
sions, demonstrating the benefits of subword in-
formation. Our model achieves state-of-the-art re-
sults, similar to that of Neelakantan et al. (2014).

4.4 Evaluation on Foreign Language
Embeddings

We evaluate the foreign-language embeddings
on word similarity datasets in respective lan-
guages. We use Italian WORDSIM353 and Ital-
ian SIMLEX-999 (Leviant and Reichart, 2015) for
Italian models, GUR350 and GUR65 (Gurevych,
2005) for German models, and French WORD-
SIM353 (Finkelstein et al., 2002) for French mod-
els. For datasets GUR350 and GUR65, we use
the results reported in the FASTTEXT publication
(Bojanowski et al., 2016). For other datasets, we
train FASTTEXT models for comparison using the

Model Dim ρ× 100

HUANG AVGSIM 50 62.8
TIAN MAXSIM 50 63.6
W2GM MAXSIM 50 62.7
NEELAKANTAN AVGSIM 50 64.2
PFT-GM MAXSIM 50 63.7

CHEN-M AVGSIM 200 66.2
W2GM MAXSIM 200 65.5

NEELAKANTAN AVGSIM 300 67.2
W2GM MAXSIM 300 66.5
PFT-GM MAXSIM 300 67.2

Table 3: Spearman’s Correlation ρ× 100 on word
similarity dataset SCWS.

public code5 on our text corpuses. We also train
dictionary-level models W2G, and W2GM for com-
parison.

Table 4 shows the Spearman’s correlation re-
sults of our models. We outperform FASTTEXT on
many word similarity benchmarks. Our results are
also significantly better than the dictionary-based
models, W2G and W2GM. We hypothesize that
W2G and W2GM can perform better than the cur-
rent reported results given proper pre-processing
of words due to special characters such as accents.

We investigate the nearest neighbors of poly-
semies in foreign languages and also observe clear
sense separation. For example, piano in Italian
can mean “floor” or “slow”. These two meanings
are reflected in the nearest neighbors where one
component is close to piano-piano, pianod which
mean “slowly” whereas the other component is
close to piani (floors), istrutturazione (renovation)
or infrastruttre (infrastructure). Table 5 shows ad-
ditional results, demonstrating that the disentan-
gled semantics can be observed in multiple lan-
guages.

4.5 Qualitative Evaluation - Subword
Decomposition

One of the motivations for using subword infor-
mation is the ability to handle out-of-vocabulary
words. Another benefit is the ability to help im-
prove the semantics of rare words via subword
sharing. Due to an observation that text corpuses
follow Zipf’s power law (Zipf, 1949), words at the
tail of the occurrence distribution appears much

5https://github.com/facebookresearch/fastText.git
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Lang. Evaluation FASTTEXT w2g w2gm pft-g pft-gm
FR WS353 38.2 16.73 20.09 41.0 41.3

DE
GUR350 70 65.01 69.26 77.6 78.2

GUR65 81 74.94 76.89 81.8 85.2

IT
WS353 57.1 56.02 61.09 60.2 62.5
SL-999 29.3 29.44 34.91 29.3 33.7

Table 4: Word similarity evaluation on foreign languages.

Word Meaning Nearest Neighbors

(IT) secondo 2nd Secondo (2nd), terzo (3rd) , quinto (5th), primo (first), quarto (4th), ultimo (last)
(IT) secondo according to conformit (compliance), attenendosi (following), cui (which), conformemente (accordance with)
(IT) porta lead, bring portano (lead), conduce (leads), portano, porter, portando (bring), costringe (forces)
(IT) porta door porte (doors), finestrella (window), finestra (window), portone (doorway), serratura (door lock)
(FR) voile veil voiles (veil), voiler (veil), voilent (veil), voilement, foulard (scarf), voils (veils), voilant (veiling)
(FR) voile sail catamaran (catamaran), driveur (driver), nautiques (water), Voile (sail), driveurs (drivers)
(FR) temps weather brouillard (fog), orageuses (stormy), nuageux (cloudy)
(FR) temps time mi-temps (half-time), partiel (partial), Temps (time), annualis (annualized), horaires (schedule)
(FR) voler steal envoler (fly), voleuse (thief), cambrioler (burgle), voleur (thief), violer (violate), picoler (tipple)
(FR) voler fly airs (air), vol (flight), volent (fly), envoler (flying), atterrir (land)

Table 5: Nearest neighbors of polysemies based on our foreign language PFT-GM models.

less frequently. Training these words to have
a good semantic representation is challenging if
done at the word level alone. However, an n-
gram such as ‘abnorm’ is trained during both oc-
currences of “abnormal” and “abnormality” in the
corpus, hence further augments both words’s se-
mantics.

Figure 3 shows the contribution of n-grams to
the final representation. We filter out to show only
the n-grams with the top-5 and bottom-5 similarity
scores. We observe that the final representations
of both words align with n-grams “abno”, “bnor”,
“abnorm”, “anbnor”, “<abn”. In fact, both “ab-
normal” and “abnormality” share the same top-5
n-grams. Due to the fact that many rare words
such as “autobiographer”, “circumnavigations”, or
“hypersensitivity” are composed from many com-
mon sub-words, the n-gram structure can help im-
prove the representation quality.

5 Numbers of Components

It is possible to train our approach with K > 2
mixture components; however, Athiwaratkun and
Wilson (2017) observe that dictionary-level Gaus-
sian mixtures with K = 3 do not overall im-
prove word similarity results, even though these
mixtures can discover 3 distinct senses for certain
words. Indeed, while K > 2 in principle allows
for greater flexibility than K = 2, most words can
be very flexibly modelled with a mixture of two

Figure 3: Contribution of each n-gram vector to
the final representation for word “abnormal” (top)
and “abnormality” (bottom). The x-axis is the co-
sine similarity between each n-gram vector z(w)g

and the final vector µw.

Gaussians, leading to K = 2 representing a good
balance between flexibility and Occam’s razor.

Even for words with single meanings, our
PFT model with K = 2 often learns richer repre-
sentations than a K = 1 model. For example, the
two mixture components can learn to cluster to-
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gether to form a more heavy tailed unimodal distri-
bution which captures a word with one dominant
meaning but with close relationships to a wide
range of other words.

In addition, we observe that our model with K
components can capture more than K meanings.
For instance, in K = 1 model, the word pairs
(“cell”, “jail”) and (“cell”, “biology”) and (“cell”,
“phone”) will all have positive similarity scores
based on K = 1 model. In general, if a word
has multiple meanings, these meanings are usually
compressed into the linear substructure of the em-
beddings (Arora et al., 2016). However, the pairs
of non-dominant words often have lower similar-
ity scores, which might not accurately reflect their
true similarities.

6 Conclusion and Future Work

We have proposed models for probabilistic word
representations equipped with flexible sub-word
structures, suitable for rare and out-of-vocabulary
words. The proposed probabilistic formulation in-
corporates uncertainty information and naturally
allows one to uncover multiple meanings with
multimodal density representations. Our models
offer better semantic quality, outperforming com-
peting models on word similarity benchmarks.
Moreover, our multimodal density models can
provide interpretable and disentangled representa-
tions, and are the first multi-prototype embeddings
that can handle rare words.

Future work includes an investigation into the
trade-off between learning full covariance ma-
trices for each word distribution, computational
complexity, and performance. This direction can
potentially have a great impact on tasks where
the variance information is crucial, such as for hi-
erarchical modeling with probability distributions
(Athiwaratkun and Wilson, 2018).

Other future work involves co-training PFT on
many languages. Currently, existing work on
multi-lingual embeddings align the word seman-
tics on pre-trained vectors (Smith et al., 2017),
which can be suboptimal due to polysemies. We
envision that the multi-prototype nature can help
disambiguate words with multiple meanings and
facilitate semantic alignment.
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Abstract

Motivations like domain adaptation, trans-
fer learning, and feature learning have fu-
eled interest in inducing embeddings for
rare or unseen words, n-grams, synsets,
and other textual features. This paper
introduces à la carte embedding, a sim-
ple and general alternative to the usual
word2vec-based approaches for building
such representations that is based upon re-
cent theoretical results for GloVe-like em-
beddings. Our method relies mainly on
a linear transformation that is efficiently
learnable using pretrained word vectors
and linear regression. This transform is
applicable “on the fly” in the future when
a new text feature or rare word is en-
countered, even if only a single usage
example is available. We introduce a
new dataset showing how the à la carte
method requires fewer examples of words
in context to learn high-quality embed-
dings and we obtain state-of-the-art results
on a nonce task and some unsupervised
document classification tasks.

1 Introduction

Distributional word embeddings, which represent
the “meaning” of a word via a low-dimensional
vector, have been widely applied by many natu-
ral language processing (NLP) pipelines and algo-
rithms (Goldberg, 2016). Following the success of
recent neural (Mikolov et al., 2013) and matrix-
factorization (Pennington et al., 2014) methods,
researchers have sought to extend the approach
to other text features, from subword elements to

n-grams to sentences (Bojanowski et al., 2016;
Poliak et al., 2017; Kiros et al., 2015). How-
ever, the performance of both word embeddings
and their extensions is known to degrade in small
corpus settings (Adams et al., 2017) or when em-
bedding sparse, low-frequency features (Lazari-
dou et al., 2017). Attempts to address these is-
sues often involve task-specific approaches (Rothe
and Schütze, 2015; Iacobacci et al., 2015; Pagliar-
dini et al., 2018) or extensively tuning existing ar-
chitectures such as skip-gram (Poliak et al., 2017;
Herbelot and Baroni, 2017).

For computational efficiency it is desirable that
methods be able to induce embeddings for only
those features (e.g. bigrams or synsets) needed
by the downstream task, rather than having to pay
a computational prix fixe to learn embeddings for
all features occurring frequently-enough in a cor-
pus. We propose an alternative, novel solution via
à la carte embedding, a method which bootstraps
existing high-quality word vectors to learn a fea-
ture representation in the same semantic space via
a linear transformation of the average word em-
beddings in the feature’s available contexts. This
can be seen as a shallow extension of the distribu-
tional hypothesis (Harris, 1954), “a feature is char-
acterized by the words in its context,” rather than
the computationally more-expensive “a feature is
characterized by the features in its context” that
has been used implicitly by past work (Rothe and
Schütze, 2015; Logeswaran and Lee, 2018).

Despite its elementary formulation, we demon-
strate that the à la carte method can learn faithful
word embeddings from single examples and fea-
ture vectors improving performance on important
downstream tasks. Furthermore, the approach is
resource-efficient, needing only pretrained embed-
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dings of common words and the text corpus used
to train them, and easy to implement and compute
via vector addition and linear regression. After
motivating and specifying the method, we illus-
trate these benefits through several applications:

• Embeddings of rare words: we introduce a
dataset1 for few-shot learning of word vectors
and achieve state-of-the-art results on the task
of representing unseen words using only the
definition (Herbelot and Baroni, 2017).

• Synset embeddings: we show how the
method can be applied to learn more fine-
grained lexico-semantic representations and
give evidence of its usefulness for stan-
dard word-sense disambiguation tasks (Nav-
igli et al., 2013; Moro and Navigli, 2015).

• n-gram embeddings: we build seven mil-
lion n-gram embeddings from large text cor-
pora and use them to construct document em-
beddings that are competitive with unsuper-
vised deep learning approaches when evalu-
ated on linear text classification.

Our experimental results2 clearly demonstrate the
advantages of à la carte embedding. For word
embeddings, the approach is an easy way to get
a good vector for a new word from its definition
or a few examples in context. For feature embed-
dings, the method can embed anything that does
not need labeling (such as a bigram) or occurs in
an annotated corpus (such as a word-sense). Our
document embeddings, constructed directly using
à la carte n-gram vectors, compete well with re-
cent deep neural representations; this provides fur-
ther evidence that simple methods can outperform
modern deep learning on many NLP benchmarks
(Arora et al., 2017; Mu and Viswanath, 2018;
Arora et al., 2018a,b; Pagliardini et al., 2018).

2 Related Work

Many methods have been proposed for extend-
ing word embeddings to semantic feature vectors,
with the aim of using them as interpretable and
structure-aware building blocks of NLP pipelines
(Kiros et al., 2015; Yamada et al., 2016). Many
exploit the structure and resources available for
specific feature types, such as methods for sense,
synsets, and lexemes (Rothe and Schütze, 2015;
1Dataset: nlp.cs.princeton.edu/CRW
2Code: www.github.com/NLPrinceton/ALaCarte

Iacobacci et al., 2015) that make heavy use of the
graph structure of the Princeton WordNet (PWN)
and similar resources (Fellbaum, 1998). By con-
trast, our work is more general, with incorporation
of structure left as an open problem. Embeddings
of n-grams are of special interest because they
do not need annotation or expert knowledge and
can often be effective on downstream tasks. Their
computation has been studied both explicitly (Yin
and Schutze, 2014; Poliak et al., 2017) and as an
implicit part of models for document embeddings
(Hill et al., 2016; Pagliardini et al., 2018), which
we use for comparison. Supervised and multi-
task learning of text embeddings has also been at-
tempted (Wang et al., 2017; Wu et al., 2017).

A main motivation of our work is to learn good
embeddings, of both words and features, from
only one or a few examples. Efforts in this area
can in many cases be split into contextual ap-
proaches (Lazaridou et al., 2017; Herbelot and Ba-
roni, 2017) and morphological methods (Luong
et al., 2013; Bojanowski et al., 2016; Pado et al.,
2016). The current paper provides a more ef-
fective formulation for context-based embeddings,
which are often simpler to implement, can im-
prove with more context information, and do not
require morphological annotation. Subword ap-
proaches, on the other hand, are often more com-
positional and flexible, and we leave the extension
of our method to handle subword information to
future work. Our work is also related to some
methods in domain adaptation and multi-lingual
correlation, such as that of Bollegala et al. (2014).

Mathematically, this work builds upon the lin-
ear algebraic understanding of modern word em-
beddings developed by Arora et al. (2018b) via an
extension to the latent-variable embedding model
of Arora et al. (2016). Although there have been
several other applications of this model for natu-
ral language representation (Arora et al., 2017; Mu
and Viswanath, 2018), ours is the first to provide
a general approach for learning semantic features
using corpus context.

3 Method Specification

We begin by assuming a large text corpus CV con-
sisting of contexts c of words w in a vocabulary V ,
with the contexts themselves being sequences of
words in V (e.g. a fixed-size window around the
word or feature). We further assume that we have
trained word embeddings vw ∈ Rd on this collo-
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cation information using a standard algorithm (e.g.
word2vec / GloVe). Our goal is to construct a good
embedding vf ∈ Rd of a text feature f given a set
Cf of contexts it occurs in. Both f and its contexts
are assumed to arise via the same process that gen-
erates the large corpus CV . In many settings below,
the number |Cf | of contexts available for a feature
f of interest is much smaller than the number |Cw|
of contexts that the typical word w ∈ V occurs
in. This could be because the feature is rare (e.g.
unseen words, n-grams) or due to limited human
annotation (e.g. word senses, named entities).

3.1 A Linear Approach

A naive first approach to construct feature embed-
dings using context is additive, i.e. taking the av-
erage over all contexts of a feature f of the average
word vector in each context:

vadditive
f =

1

|Cf |
∑

c∈Cf

1

|c|
∑

w∈c
vw (1)

This formulation reflects the training of commonly
used embeddings, which employs additive com-
position to represent the context (Mikolov et al.,
2013; Pennington et al., 2014). It has proved suc-
cessful in the bag-of-embeddings approach to sen-
tence representation (Wieting et al., 2016; Arora
et al., 2017), which can compete with LSTM rep-
resentations, and has also been given theoretical
justification as the maximum a posteriori (MAP)
context vector under a generative model related to
popular embedding objectives (Arora et al., 2016).
Lazaridou et al. (2017) use this approach to learn
embeddings of unknown word amalgamations, or
chimeras, given a few context examples.

The additive approach has some limitations be-
cause the set of all word vectors is seen to share
a few common directions. Simple addition ampli-
fies the component in these directions, at the ex-
pense of less common directions that presumably
carry more “signal.” Stop-word removal can help
to ameliorate this (Lazaridou et al., 2017; Herbelot
and Baroni, 2017), but does not deal with the fact
that content-words also have significant compo-
nents in the same direction as these deleted words.
Another mathematical framework to address this
lacuna is to remove the top one or top few prin-
cipal components, either from the word embed-
dings themselves (Mu and Viswanath, 2018) or
from their summations (Arora et al., 2017). How-
ever, this approach is liable to either not remove

Change in Embedding Norm under Transform

Figure 1: Plot of the ratio of embedding norms
after transformation as a function of word count.
While All-but-the-Top tends to affect only very
frequent words, à la carte learns to remove com-
ponents even from less common words.

enough noise or cause too much information loss
without careful tuning (c.f. Figure 1).

We now note that removing the component
along the top few principal directions is tanta-
mount to multiplying the additive composition by
a fixed (but data-dependent) matrix. Thus a natu-
ral extension is to use an arbitrary linear transfor-
mation which will be learned from the data, and
hence guaranteed to do at least as well as any of
the above ideas. Specifically, we find the trans-
form that can best recover existing word vectors
vw —which are presumed to be of high quality—
from their additive context embeddings vadditive

w .
This can be posed as the following linear regres-
sion problem

vw ≈ Avadditive
w = A

(
1

|Cw|
∑

c∈Cw

∑

w′∈c
vw′

)
(2)

where A ∈ Rd×d is learned and we assume for
simplicity that 1

|c| is constant (e.g. if c has a fixed
window size) and is thus subsumed by the trans-
form. After learning the matrix, we can embed
any text feature in the same semantic space as the
word embeddings via the following expression:

vf = Avadditive
f = A


 1

|Cf |
∑

c∈Cf

∑

w∈c
vw


 (3)

Note that A is fixed for a given corpus and set of
pretrained word embeddings and so does not need
to be re-computed to embed different features or
feature types.
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Algorithm 1: The basic à la carte feature embedding induction method. All contexts c consist
of sequences of words drawn from the vocabulary V .

Data: vocabulary V , corpus CV , vectors vw ∈ Rd ∀ w ∈ V , feature f , corpus Cf of contexts of f
Result: feature embedding vf ∈ Rd

1 for w ∈ V do
2 let Cw ⊂ CV be the subcorpus of contexts of w
3 uw ← 1

|Cw|
∑
c∈Cw

∑
w′∈c

vw′ // compute each word’s context embedding uw

4 A← argmin
A∈Rd×d

∑
w∈V
‖vw −Auw‖22 // compute context-to-feature transform A

5 uf ← 1
|Cf |

∑
c∈Cf

∑
w∈c

vw // compute feature’s context embedding uf

6 vf ← Auf // transform feature’s context embedding

Theoretical Justification: As shown by Arora
et al. (2018b, Theorem 1), the approximation (2)
holds exactly in expectation for some matrix A
when contexts c ∈ C are generated by sampling
a context vector vc ∈ Rd from a zero-mean Gaus-
sian with fixed covariance and drawing |c| words
using P(w|vc) ∝ exp〈vc,vw〉. The correctness
(again in expectation) of (3) under this model is a
direct extension. Arora et al. (2018b) use large text
corpora to verify their model assumptions, provid-
ing theoretical justification for our approach. We
observe that the best linear transform A can re-
cover vectors with mean cosine similarity as high
as 0.9 or more with the embeddings used to learn
it, thus also justifying the method empirically.

3.2 Practical Details
The basic à la carte method, as motivated in Sec-
tion 3.1 and specified in Algorithm 1, is straight-
forward and parameter-free (the dimension d is as-
sumed to have been chosen beforehand, along with
the other parameters of the original word embed-
dings). In practice we may wish to modify the re-
gression step in an attempt to learn a better trans-
formation matrix A. However, the standard first
approach of using `2-regularized (Ridge) regres-
sion instead of simple linear regression gives little
benefit, even when we have more parameters than
word embeddings (i.e. when d2 > |V|).

A more useful modification is to weight each
point by some non-decreasing function α of each
word’s corpus count cw, i.e. to solve

A = argmin
A∈Rd×d

∑

w∈V
α(cw)‖vw −Auw‖22 (4)

where uw is the additive context embedding. This
reflects the fact that more frequent words likely

have better pretrained embeddings. In settings
where |V| is large we find that a hard threshold
(α(c) = 1c≥τ for some τ ≥ 1) is often useful.
When we do not have many embeddings we can
still give more importance to words with better
embeddings via a function such as α(c) = log c,
which we use in Section 5.1.

4 One-Shot and Few-Shot Learning of
Word Embeddings

While we can use our method to embed any type
of text feature, its simplicity and effectiveness is
rooted in word-level semantics: the approach as-
sumes pre-existing high quality word embeddings
and only considers collocations of features with
words rather than with other features. Thus to ver-
ify that our approach is reasonable we first check
how it performs on word representation tasks,
specifically those where word embeddings need to
be learned from very few examples. In this sec-
tion we first investigate how representation quality
varies with number of occurrences, as measured
by performance on a similarity task that we intro-
duce. We then apply the à la carte method to two
tasks measuring the ability to learn new or syn-
thetic words from context, achieving strong results
on the nonce task of Herbelot and Baroni (2017).

4.1 Similarity Correlation vs. Sample Size
Performance on pairwise word similarity tasks is
a standard way to evaluate word embeddings, with
success measured via the Spearman correlation
between a human score and the cosine similarity
between word vectors. An overview of widely
used datasets is given by Faruqui and Dyer (2014).
However, none of these datasets can be used di-
rectly to measure the effect of word frequency on
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embedding quality, which would help us under-
stand the data requirements of our approach. We
address this issue by introducing the Contextual
Rare Words (CRW) dataset, a subset of 562 pairs
from the Rare Word (RW) dataset (Luong et al.,
2013) supplemented by 255 sentences (contexts)
for each rare word sampled from the Westbury
Wikipedia Corpus (WWC) (Shaoul and Westbury,
2010). In addition we provide a subset of the
WWC from which all sentences containing these
rare words have been removed. The task is to use
embeddings trained on this subcorpus to induce
rare word embeddings from the sampled contexts.

More specifically, the CRW dataset is con-
structed using all pairs from the RW dataset where
the rarer word occurs between 512 and 10000
times in WWC; this yields a set of 455 distinct
rare words. The lower bound ensures that we have
a sufficient number of rare word contexts, while
the upper bound ensures that a significant fraction
of the sentences from the original WWC remain in
the subcorpus we provide. In CRW, the first word
in every pair is the more frequent word and occurs
in the subcorpus, while the second word occurs in
the 255 sampled contexts but not in the subcorpus.
We provide word2vec embeddings trained on all
words occurring at least 100 times in the WWC
subcorpus; these vectors include those assigned to
the first (non-rare) words in the evaluation pairs.

Evaluation: For every rare word the method un-
der consideration is given eight disjoint subsets
containing 1, 2, 4, . . . , 128 example contexts. The
method induces an embedding of the rare word for
each subset, letting us track how the quality of rare
word vectors changes with more examples. We re-
port the Spearman ρ (as described above) at each
sample size, averaged over 100 trials obtained by
shuffling each rare word’s 255 contexts.

The results in Figure 2 show that our à la
carte method significantly outperforms the addi-
tive baseline (1) and its variants, including stop-
word removal, SIF-weighting (Arora et al., 2017),
and top principal component removal (Mu and
Viswanath, 2018). We find that combining SIF-
weighting and top component removal also beats
these baselines, but still does worse than our
method. These experiments consolidate our in-
tuitions from Section 3 that removing common
components and frequent words is important and
that learning a data-dependent transformation is
an effective way to do this. However, if we train
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Figure 2: Spearman correlation between cosine
similarity and human scores for pairs of words in
the CRW dataset given an increasing number of
contexts per rare word. Our à la carte method out-
performs all previous approaches, even when re-
stricted to only eight example contexts.

word2vec embeddings from scratch on the subcor-
pus together with the sampled contexts we achieve
a Spearman correlation of 0.45; this gap between
word2vec and our method shows that there re-
mains room for even better approaches for few-
shot learning of word embeddings.

4.2 Learning Embeddings of New Concepts:
Nonces and Chimeras

We now evaluate our work directly on the tasks
posed by Herbelot and Baroni (2017), who devel-
oped simple datasets and methods to “simulate the
process by which a competent speaker encounters
a new word in known contexts.” The general goal
will be to construct embeddings of new concepts
in the same semantic space as a known embedding
vocabulary using contextual information consist-
ing of definitions or example sentences.

Nonces: We first discuss the definitional nonce
dataset made by the authors themselves, which has
a test-set consisting of 300 single-word concepts
and their definitions. The task of learning each
concept’s embedding is simulated by removing or
randomly re-initializing its vector and requiring
the system to use the remaining embeddings and
the definition to make a new vector that is close to
the original. Because the embeddings were con-
structed using data that includes these concepts,
an implicit assumption is made that including or
excluding one word does not greatly affect the se-
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Nonce (Herbelot and Baroni, 2017) Chimera (Lazaridou et al., 2017)
Method Mean Recip. Rank Med. Rank 2 Sent. 4 Sent. 6 Sent.

word2vec 0.00007 111012 0.1459 0.2457 0.2498
additive 0.00945 3381 0.3627 0.3701 0.3595
additive, no stop words 0.03686 861 0.3376 0.3624 0.4080
nonce2vec 0.04907 623 0.3320 0.3668 0.3890
à la carte 0.07058 165.5 0.3634 0.3844 0.3941

Table 1: Comparison with baselines and nonce2vec (Herbelot and Baroni, 2017) on few-shot embedding
tasks. Performance on the chimeras task is measured using the Spearman correlation with human ratings.
Note that the additive baseline requires removing stop-words in order to improve with more data.

mantic space; this assumption is necessary in or-
der to have a good target vector for the system to
be evaluated against.

Using 259,376 word2vec embeddings trained
on Wikipedia as the base vectors, Herbelot and
Baroni (2017) heavily modify the skip-gram algo-
rithm to successfully learn on one definition, cre-
ating the nonce2vec system. The original skip-
gram algorithm and vadditive

w are used as baselines,
with performance measured as the mean recipro-
cal rank and median rank of the concept’s original
vector among the nearest neighbors of the output.

To compare directly to their approach, we use
their word2vec embeddings along with contexts
from the Wikipedia corpus to construct context
vectors uw for all words w apart from the 300
nonces. We then learn the à la carte transform A,
weighting the data points in the regression (4) us-
ing a hard threshold of at least 1000 occurrences in
Wikipedia. An embedding for each nonce can then
be constructed by multiplying A by the sum over
all word embeddings in the nonce’s definition. As
can be seen in Table 1, this approach significantly
improves over both baselines and nonce2vec; the
median rank of 165.5 of the original embedding
among the nearest neighbors of the nonce vector is
very low considering the vocabulary size is more
than 250,000, and is also significantly lower than
that of all previous methods.

Chimeras: The second dataset Herbelot and Ba-
roni (2017) consider is that of Lazaridou et al.
(2017), who construct unseen concepts by com-
bining two related words into a fake nonce word
(the “chimera”) and provide two, four, or six
example sentences for this nonce drawn from
sentences containing one of the two component
words. The desired nonce embeddings is then
evaluated via the correlation of its cosine similar-

ity with the embeddings of several other words,
with ratings provided by human judges.

We use the same approach as in the nonce task,
except that the chimera embedding is the result of
summing over multiple sentences. From Table 1
we see that, while our method is consistently bet-
ter than both the additive baseline and nonce2vec,
removing stop-words from the additive baseline
leads to stronger performance for more sentences.
Since the à la carte algorithm explicitly trains
the transform to match the true word embedding
rather than human similarity measures, it is per-
haps not surprising that our approach is much
more dominant on the definitional nonce task.

5 Building Feature Embeddings using
Large Corpora

Having witnessed its success at representing un-
seen words, we now apply the à la carte method
to two types of feature embeddings: synset em-
beddings and n-gram embeddings. Using these
two examples we demonstrate the flexibility and
adaptability of our approach when handling dif-
ferent corpora, base word embeddings, and down-
stream applications.

5.1 Supervised Synset Embeddings for
Word-Sense Disambiguation

Embeddings of synsets, or sets of cognitive syn-
onyms, and related entities such as senses and
lexemes have been widely studied, often due to
the desire to account for polysemy (Rothe and
Schütze, 2015; Iacobacci et al., 2015). Such rep-
resentations can be evaluated in several ways, in-
cluding via their use for word-sense disambigua-
tion (WSD), the task of determining a word’s
sense from context. While current state-of-the-
art methods often use powerful recurrent models
(Raganato et al., 2017), we will instead use a sim-
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SemEval-2013 Task 12 SemEval-2015 Task 13
Method nouns adj. nouns adv. verbs comb.

à la carte (SemCor) 60.0 72.2 67.7 85.2 60.6 68.1
à la carte (glosses) 51.8 75.3 62.5 79.0 55.8 64.2
à la carte (combined) 60.5 74.1 70.3 86.4 59.4 69.6

MFS (SemCor) 58.8 79.5 60.0 87.6 66.7 66.8
Raganato et al. (2017) 66.9 72.4

Table 2: Application of à la carte synset embeddings to two standard WSD tasks. As all systems always
return exactly one answer, performance is measured in terms of accuracy. Results due to Raganato et al.
(2017), who use a bi-LSTM for this task, are given as the recent state-of-the-art result.

ple similarity-based approach that heavily depends
on the synset embedding itself and thus serves as
a more useful indicator of representation quality.
A major target for our simple systems is to beat
the most-frequent sense (MFS) method, which re-
turns for each word the sense that occurs most fre-
quently in a corpus such as SemCor. This base-
line is “notoriously hard-to-beat,” routinely best-
ing many systems in SemEval WSD competitions
(Navigli et al., 2013).

Synset Embeddings: We use SemCor (Langone
et al., 2004), a subset of the Brown Corpus (BC)
(Francis and Kucera, 1979) annotated using PWN
synsets. However, because the corpus is quite
small we use GloVe trained on Wikipedia instead
of on BC itself. The transform A is learned using
context embeddings uw computed with windows
of size ten around occurrences of w in BC and
weighting each word by the log of its count during
the regression stage (4). Then we set the context
embedding us of each synset s to be the average
sum of word embeddings representation over all
sentences in SemCor containing s. Finally, we ap-
ply the à la carte transform to get the synset em-
bedding vs = Aus.

Sense Disambiguation: To determine the sense
of a word w given its context c, we convert c into
a vector using the à la carte transform A on the
sum of its word embeddings and return the synset
s of w whose embedding vs is most similar to this
vector. We try two different synset embeddings:
those induced from SemCor as above and those
obtained by embedding a synset using its gloss,
or PWN-provided definition, in the same way as a
nonce in Section 4.2. We also consider a combined
approach in which we fall back on the gloss vector
if the synset does not appear in SemCor and thus
has no induced embedding.

As shown in Table 2, synset embeddings in-
duced from SemCor alone beat MFS overall,
largely due to good noun results. The method im-
proves further when combined with the gloss ap-
proach. While we do not match the state-of-the-
art, our success in besting a difficult baseline using
very little fine-tuning and exploiting none of the
underlying graph structure suggests that the à la
carte method can learn useful synset embeddings,
even from relatively small data.

5.2 N-Gram Embeddings for Classification
As some of the simplest and most useful linguistic
features, n-grams have long been a focus of em-
bedding studies. Compositional approaches, such
as sums and products of unigram vectors, are often
used and work well on some evaluations, but are
often order-insensitive or very high-dimensional
(Mitchell and Lapata, 2010). Recent work by Po-
liak et al. (2017) works around this while staying
compositional; however, as we will see their ap-
proach does not seem to capture a bigram’s mean-
ing much better than the sum of its word vec-
tors. n-grams embeddings have also gained in-
terest for low-dimensional document representa-
tion schemes (Hill et al., 2016; Pagliardini et al.,
2018; Arora et al., 2018a), largely due to the suc-
cess of their sparse high-dimensional Bag-of-n-
Grams (BonG) counterparts (Wang and Manning,
2012). This setting of document embeddings de-
rived from n-gram features will be used for quan-
titative evaluation in this section.

We build n-gram embeddings using two cor-
pora: 300-dimensional Wikipedia embeddings,
which we evaluate qualitatively, and 1600-
dimensional embeddings on the Amazon Product
Corpus (McAuley et al., 2015), which we use for
document classification. For both we use as source
embeddings GloVe vectors trained on the respec-
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Method beef up cutting edge harry potter tight lipped

vw1 + vw2 meat, out cut, edges deathly, azkaban loose, fitting
vadditive
(w1,w2)

but, however which, both which, but but, however
ECO meats, meat weft, edges robards, keach scaly, bristly
Sent2Vec add, reallocate science, multidisciplinary naruto, pokemon wintel, codebase
à la carte need, improve innovative, technology deathly, hallows worried, very

Table 3: Closest word embeddings (measured via cosine similarity) to the embeddings of four idiomatic
or entity-associated bigrams. From these examples we see that purely compositional methods may strug-
gle to construct context-aware bigram embeddings, even when the features are present in the corpus.
On the other hand, adding up corpus contexts (1) is dominated by stop-word information. Sent2Vec is
successful on half the examples, reflecting its focus on good sentence, not bigram, embeddings.

tive corpora over words occurring at least a hun-
dred times. Context embeddings are constructed
using a window of size ten and a hard threshold
at 1000 occurrences is used as the word-weighting
function in the regression (4). Unlike Poliak et al.
(2017), who can construct arbitrary embeddings
but need to train at least two sets of vectors of di-
mension at least 2d to do so, and Yin and Schutze
(2014), who determine which n-grams to repre-
sent via corpus counts, our à la carte approach
allows us to train exactly those embeddings that
we need for downstream tasks. This, combined
with our method’s efficiency, allows us to con-
struct more than two million bigram embeddings
and more than five million trigram embeddings,
constrained only by their presence in the large
source corpus.

Qualitative Evaluation: We first compare bi-
gram embedding methods by picking some id-
iomatic and entity-related bigrams and examining
the closest word vectors to their representations.
These word-pairs are picked because we expect
sophisticated feature embedding methods to en-
code a better vector than the sum of the two em-
beddings, which we use as a baseline. From Ta-
ble 3 we see that embeddings based on corpora
rather than composition are better able to embed
these bigrams to be close to concepts that are se-
mantically similar. On the other hand, as discussed
in Section 3 and evident from these results, the
additive context approach is liable to emphasize
stop-word directions due to their high frequency.

Document Embedding: Our main application
and quantitative evaluation of n-gram vectors is
to use them to construct document embeddings.
Given a length L document D = {w1, . . . , wL},
we define its embedding vD as a weighted con-

catenation over sums of our induced n-gram em-
beddings, i.e.

vTD =

(
L∑
t=1

vTwt
· · · 1

n

L−n+1∑
t=1

vT(wt,...,wt+n−1)

)

where v(wt,...,wt+n−1) is the embedding of the n-
gram (wt, . . . , wt+n−1). Following Arora et al.
(2018a), we weight each n-gram component by 1

n
to reflect the fact that higher-order n-grams have
lower quality embeddings because they occur less
often in the source corpus. While we concatenate
across unigram, bigram, and trigram embeddings
to construct our text representations, separate ex-
periments show that simply adding up the vec-
tors of all features also yields a smaller but still
substantial improvement over the unigram perfor-
mance. The higher embedding dimension due to
concatenation is in line with previous methods and
can also be theoretically supported as yielding a
less lossy compression of the n-gram information
(Arora et al., 2018a).

In Table 4 we display the result of running
cross-validated, `2-regularized logistic regression
on documents from MR movie reviews (Pang and
Lee, 2005), CR customer reviews (Hu and Liu,
2004), SUBJ subjectivity dataset (Pang and Lee,
2004), MPQA opinion polarity subtask (Wiebe
et al., 2005), TREC question classification (Li and
Roth, 2002), SST sentiment classification (binary
and fine-grained) (Socher et al., 2013), and IMDB
movie reviews (Maas et al., 2011). The first four
are evaluated using tenfold cross-validation, while
the others have train-test splits.

Despite the simplicity of our embeddings (a
concatenation over sums of à la carte n-gram vec-
tors), we find that our results are very competitive
with many recent unsupervised methods, achiev-
ing the best word-level results on two of the tested
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Representation n d∗ MR CR SUBJ MPQA TREC SST (±1) SST IMDB

BonG
1 V1 77.1 77.0 91.0 85.1 86.8 80.7 36.8 88.3
2 V1 + V2 77.8 78.1 91.8 85.8 90.0 80.9 39.0 90.0
3 V1 + V2 + V3 77.8 78.3 91.4 85.6 89.8 80.1 42.3 89.8

à la carte
1 1600 79.8 81.3 92.6 87.4 85.6 84.1 46.7 89.0
2 3200 81.3 83.7 93.5 87.6 89.0 85.8 47.8 90.3
3 4800 81.8 84.3 93.8 87.6 89.0 86.7 48.1 90.9

Sent2Vec1 1-2 700 76.3 79.1 91.2 87.2 85.8 80.2 31.0 85.5
DisC2 2-3 3200-4800 80.1 81.5 92.6 87.9 90.0 85.5 46.7 89.6

skip-thoughts3 4800 80.3 83.8 94.2 88.9 93.0 85.1 45.8
SDAE4 2400 74.6 78.0 90.8 86.9 78.4
CNN-LSTM5 4800 77.8 82.0 93.6 89.4 92.6
MC-QT6 4800 82.4 86.0 94.8 90.2 92.4 87.6

byte mLSTM7 4096 86.8 90.6 94.7 88.8 90.4 91.7 54.6 92.2
∗ Vocabulary sizes (i.e. BonG dimensions) vary by task; usually 10K-100K.
1,3,7 (Pagliardini et al., 2018; Kiros et al., 2015; Radford et al., 2017) Evaluation conducted using latest pretrained models.

Note that the latest available skip-thoughts implementation returns an error on the IMDB task.
2,4,5,6 (Arora et al., 2018a; Hill et al., 2016; Gan et al., 2017; Logeswaran and Lee, 2018) Best results from publication.

Table 4: Performance of document embeddings built using à la carte n-gram vectors and recent unsu-
pervised word-level approaches on classification tasks, with the character LSTM of (Radford et al., 2017)
shown for comparison. Top three results are bolded and the best word-level performance is underlined.

datasets. The fact that we do especially well on
the sentiment tasks indicates strong exploitation of
the Amazon review corpus, which was also used
by DisC, CNN-LSTM, and byte mLSTM. At the
same time, the fact that our results are compara-
ble to neural approaches indicates that local word-
order may contain much of the information needed
to do well on these tasks. On the other hand, sep-
arate experiments do not show a substantial im-
provement from our approach over unigram meth-
ods such as SIF (Arora et al., 2017) on sentence
similarity tasks such as STS (Cer et al., 2017).
This could reflect either noise in the n-gram em-
beddings themselves or the comparative lower im-
portance of local word-order for textual similarity
compared to classification.

6 Conclusion

We have introduced à la carte embedding, a sim-
ple method for representing semantic features us-
ing unsupervised context information. A natu-
ral and principled integration of recent ideas for
composing word vectors, the approach achieves
strong performance on several tasks and promises
to be useful in many linguistic settings and to
yield many further research directions. Of partic-
ular interest is the replacement of simple window
contexts by other structures, such as dependency
parses, that could yield results in domains such as
question answering or semantic role labeling. Ex-

tensions of the mathematical formulation, such as
the use of word weighting when building context
vectors as in Arora et al. (2018b) or of spectral
information along the lines of Mu and Viswanath
(2018), are also worthy of further study.

More practically, the Contextual Rare Words
(CRW) dataset we provide will support research
on few-shot learning of word embeddings. Both
in this area and for n-grams there is great scope
for combining our approach with compositional
approaches (Bojanowski et al., 2016; Poliak et al.,
2017) that can handle settings such as zero-shot
learning. More work is needed to understand the
usefulness of our method for representing (po-
tentially cross-lingual) entities such as synsets,
whose embeddings have found use in enhancing
WordNet and related knowledge bases (Camacho-
Collados et al., 2016; Khodak et al., 2017). Fi-
nally, there remain many language features, such
as named entities and morphological forms, whose
representation by our method remains unexplored.
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Abstract

Word embedding models such as GloVe
rely on co-occurrence statistics to learn
vector representations of word meaning.
While we may similarly expect that co-
occurrence statistics can be used to cap-
ture rich information about the relation-
ships between different words, existing ap-
proaches for modeling such relationships
are based on manipulating pre-trained
word vectors. In this paper, we introduce
a novel method which directly learns re-
lation vectors from co-occurrence statis-
tics. To this end, we first introduce a vari-
ant of GloVe, in which there is an explicit
connection between word vectors and PMI
weighted co-occurrence vectors. We then
show how relation vectors can be naturally
embedded into the resulting vector space.

1 Introduction

Word embeddings are vector space representations
of word meaning (Mikolov et al., 2013b; Penning-
ton et al., 2014). A remarkable property of these
models is that they capture various lexical rela-
tionships, beyond mere similarity. For example,
(Mikolov et al., 2013b) found that analogy ques-
tions of the form “a is to b what c is to ?” can
often be answered by finding the word d that max-
imizes cos(wb−wa+wc, wd), where we write wx
for the vector representation of a word x.

Intuitively, the word vector wa represents a in
terms of its most salient features. For example,
wparis implicitly encodes that Paris is located in
France and that it is a capital city, which is intu-
itively why the ‘capital of’ relation can be mod-
eled in terms of a vector difference. Other rela-
tionships, however, such as the fact that Macron
succeeded Hollande as president of France, are un-

likely to be captured by word embeddings. Rela-
tion extraction methods can discover such infor-
mation by analyzing sentences that contain both of
the words or entities involved (Mintz et al., 2009;
Riedel et al., 2010; dos Santos et al., 2015), but
they typically need a large number of training ex-
amples to be effective.

A third alternative, which we consider in this
paper, is to characterize the relatedness between
two words s and t by learning a relation vector
rst in an unsupervised way from corpus statistics.
Among others, such vectors can be used to find
word pairs that are similar to a given word pair
(i.e. finding analogies), or to find the most pro-
totypical examples among a given set of relation
instances. They can also be used as an alternative
to the aforementioned relation extraction methods,
by subsequently training a classifier that uses the
relation vectors as input, which might be particu-
larly effective in cases where only limited amounts
of training data are available (with the case of anal-
ogy finding from a single instance being an ex-
treme example).

The most common unsupervised approach for
learning relation vectors consists of averaging the
embeddings of the words that occur in between s
and t, in sentences that contain both (Weston et al.,
2013; Fan et al., 2015; Hashimoto et al., 2015).
While this strategy is often surprisingly effective
(Hill et al., 2016), it is sub-optimal for two rea-
sons. First, many of the words co-occurring with
s and t will be semantically related to s or to t, but
will not actually be descriptive for the relationship
between s and t; e.g. the vector describing the re-
lation between Paris and France should not be af-
fected by words such as eiffel (which only relates
to Paris). Second, it gives too much weight to stop-
words, which cannot be addressed in a straightfor-
ward way as some stop-words are actually crucial
for modeling relationships (e.g. prepositions such
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as ‘in’ or ‘of’ or Hearst patterns (Indurkhya and
Damerau, 2010)).

In this paper, we propose a method for learn-
ing relation vectors directly from co-occurrence
statistics. We first introduce a variant of GloVe, in
which word vectors can be directly interpreted as
smoothed PMI-weighted bag-of-words represen-
tations. We then represent relationships between
words as weighted bag-of-words representations,
using generalizations of PMI to three arguments,
and learn vectors that correspond to smoothed ver-
sions of these representations.

As far as the possible applications of our
methodology is concerned, we imagine that rela-
tion vectors can be used in various ways to enrich
the input to neural network models. As a sim-
ple example, in a question answering system, we
could “annotate” mentions of entities with relation
vectors encoding their relationship to the differ-
ent words from the question. As another exam-
ple, we could consider a recommendation system
which takes advantage of vectors expressing the
relationship between items that have been bought
(or viewed) by a customer and other items from
the catalogue. Finally, relation vectors should also
be useful for knowledge completion, especially
in cases where few training examples per relation
type are given (meaning that neural network mod-
els could not be used) and where relations cannot
be predicted from the already available knowledge
(meaning that knowledge graph embedding meth-
ods could not be used, or are at least not sufficient).

2 Related Work

The problem of characterizing the relationship be-
tween two words has been studied in various set-
tings. From a learning point of view, the most
straightforward setting is where we are given la-
beled training sentences, with each label explic-
itly indicating what relationship is expressed in
the sentence. This fully supervised setting has
been the focus of several evaluation campaigns, in-
cluding as part of ACE (Doddington et al., 2004)
and at SemEval 2010 (Hendrickx et al., 2010). A
key problem with this setting, however, is that la-
beled training data is hard to obtain. A popular
alternative is to use known instances of the rela-
tions of interest as a form of distant supervision
(Mintz et al., 2009; Riedel et al., 2010). Some au-
thors have also considered unsupervised relation
extraction methods (Shinyama and Sekine, 2006;

Banko et al., 2007), in which case the aim is es-
sentially to find clusters of patterns that express
similar relationships, although these relationships
may not correspond to the ones that are needed for
the considered application. Finally, several sys-
tems have also used bootstrapping strategies (Brin,
1998; Agichtein and Gravano, 2000; Carlson et al.,
2010), where a small set of instances are used to
find extraction patterns, which are used to find
more instances, which can in turn be used to find
better extraction patterns, etc.

Traditionally, relation extraction systems have
relied on a variety of linguistic features, such as
lexical patterns, part-of-speech tags and depen-
dency parsers. More recently, several neural net-
work architectures have been proposed for the re-
lation extraction problem. These architectures rely
on word embeddings to represent the words in the
input sentence, and manipulate these word vectors
to construct a relation vector. Some approaches
simply represent the sentence (or the phrase con-
necting the entities whose relationship we want to
determine) as a sequence of words, and use e.g.
convolutional networks to aggregate the vectors of
the words in this sequence (Zeng et al., 2014; dos
Santos et al., 2015). Another possibility, explored
in (Socher et al., 2012), is to use parse trees to cap-
ture the structure of the sentence, and to use re-
cursive neural networks (RNNs) to aggregate the
word vectors in a way which respects this struc-
ture. A similar approach is taken in (Xu et al.,
2015), where LSTMs are applied to the shortest
path between the two target words in a depen-
dency parser. A straightforward baseline method
is to simply take the average of the word vec-
tors (Mitchell and Lapata, 2010). While conceptu-
ally much simpler, variants of this approach have
obtained state-of-the-art performance for relation
classification (Hashimoto et al., 2015) and a va-
riety of tasks that require sentences to be repre-
sented as a vector (Hill et al., 2016).

Given the effectiveness of word vector averag-
ing, in (Kenter et al., 2016) a model was proposed
that explicitly tries to learn word vectors that gen-
eralize well when being averaged. Similarly, the
model proposed in (Hashimoto et al., 2015) aims
to produce word vectors that perform well for the
specific task of relation classification. The Para-
graphVector method from (Le and Mikolov, 2014)
is related to the aformentioned approaches, but it
explicitly learns a vector representation for each
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paragraph along with the word embeddings. How-
ever, this method is computationally expensive,
and often fails to outperform simpler approaches
(Hill et al., 2016).

To the best of our knowledge, existing methods
for learning relation vectors are all based on ma-
nipulating pre-trained word vectors. In contrast,
we will directly learn relation vectors from cor-
pus statistics, which will have the important ad-
vantage that we can focus on words that describe
the interaction between the two words s and t, i.e.
words that commonly occur in sentences that con-
tain both s and t, but are comparatively rare in sen-
tences that only contain s or only contain t.

Finally, note that our work is fundamentally dif-
ferent from Knowledge Graph Embedding (KGE)
(Wang et al., 2014b), (Wang et al., 2014a), (Bor-
des et al., 2011) in at least two ways: (i) KGE
models start from a structured knowledge graph
whereas we only take a text corpus as input, and
(ii) KGE models represent relations as geometric
objects in the “entity embedding” itself (e.g. as
translations, linear maps, combinations of projec-
tions and translations, etc), whereas we represent
words and relations in different vector spaces.

3 Word Vectors as PMI Encodings

Our approach to relation embedding is based on
a variant of the GloVe word embedding model
(Pennington et al., 2014). In this section, we first
briefly recall the GloVe model itself, after which
we discuss our proposed variant. A key advantage
of this variant is that it allows us to directly inter-
pret word vectors in terms of the Pointwise Mu-
tual Information (PMI), which will be central to
the way in which we learn relation vectors.

3.1 Background

The GloVe model (Pennington et al., 2014) learns
a vector wi for each word i in the vocabulary,
based on a matrix of co-occurrence counts, en-
coding how often two words appear within a given
window. Let us write xij for the number of times
word j appears in the context of word i in some
text corpus. More precisely, assume that there are
m sentences in the corpus, and letP li ⊆ {1, ..., nl}
be the set of positions from the lth sentence where
the word i can be found (with nl the length of the

sentence). Then xij is defined as follows:

m∑

l=1

∑

p∈Pl
i

∑

q∈Pl
j

weight(p, q)

where weight(p, q) = 1
|p−q| if 0 < |p − q| ≤ W ,

and weight(p, q) = 0 otherwise, where the win-
dow size W is usually set to 5 or 10.

The GloVe model learns for each word i two
vectors wi and w̃i by optimizing the following ob-
jective:
∑

i

∑

j:xij 6=0

f(xij)(wi·w̃j + bi + b̃j − log xij)
2

where f is a weighting function, aimed at re-
ducing the impact of rare terms, and bi and b̃j
are bias terms. The GloVe model is closely re-
lated to the notion of pointwise mutual informa-
tion (PMI), which is defined for two words i and j
as PMI(i, j) = log

( P (i,j)
P (i)P (j)

)
, where P (i, j) is the

probability of seeing the words i and j if we ran-
domly pick a word position from the corpus and a
second word position within distance W from the
first position. The PMI between i and j is usually
estimated as follows:

PMIX(i, j) = log

(
xijx∗∗
xi∗x∗j

)

where xi∗ =
∑

j xij , x∗j =
∑

i xij and x∗∗ =∑
i

∑
j xij . In particular, it is straightforward to

see that after the reparameterization given by bi 7→
bi + log xi∗ − log x∗∗ and bj 7→ bj + log x∗j , the
GloVe model is equivalent to
∑

i

∑

j
xij 6=0

f(xij)(wi·w̃j + bi + b̃j − PMIX(i, j))2

(1)

3.2 A Variant of GloVe
In this paper, we will use the following variant of
the formulation in (1):
∑

i

∑

j∈Ji

1

σ2j
(wi·w̃j + b̃j − PMIS(i, j))2 (2)

Despite its similarity, this formulation differs from
the GloVe model in a number of important ways.
First, we use smoothed frequency counts instead
of the observed frequency counts xij . In particu-
lar, the PMI between words i and j is given as:

PMIS(i, j) = log

(
P (i, j)

P (i)P (j)

)
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where the probabilities are estimated as follows:

P (i) =
xi∗ + α

x∗∗ + nα
P (j) =

x∗j + α

x∗∗ + nα

P (i, j) =
xij + α

x∗∗ + n2α

where α ≥ 0 is a parameter controlling the amount
of smoothing and n is the size of the vocabulary.
This ensures that the estimation of PMI(i, j) is
well-defined even in cases where xij = 0, mean-
ing that we no longer have to restrict the inner
summation to those j for which xij > 0. For
efficiency reasons, in practice, we only consider
a small subset of all context words j for which
xij = 0, which is similar in spirit to the use of
negative sampling in Skip-gram (Mikolov et al.,
2013b). In particular, the set Ji contains each j
such that xij > 0 as well as M uniformly1 sam-
pled context words j for which xij = 0, where we
choose M = 2 · |{j : xij > 0}|.

Second, following (Jameel and Schockaert,
2016), the weighting function f(xij) has been re-
placed by 1

σ2
j

, where σ2j is the residual variance of

the regression problem for context word j, esti-
mated follows:

σ2j =
1

|J−1j |
∑

i∈J−1
j

(wi · w̃j + b̃j − PMIS(i, j))2

with J−1j = {i : j ∈ Ji}. Since we need the word
vectors to estimate this residual variance, we re-
estimate σ2j after every five iterations of the SGD
optimization. For the first 5 iterations, where no
estimation for σ2j is available, we use the GloVe
weighting function.

The use of smoothed frequency counts and
residual variance based weighting make the word
embedding model more robust for rare words. For
instance, if w only co-occurs with a handful of
other terms, it is important to prioritize the most
informative context words, which is exactly what
the use of the residual variance achieves, i.e. σ2j
is small for informative terms and large for stop
words; see (Jameel and Schockaert, 2016). This
will be important for modeling relations, as the re-
lation vectors will often have to be estimated from
very sparse co-occurrence counts.

1While the negative sampling method used in Skip-gram
favors more frequent words, initial experiments suggested
that deviating from a uniform distribution almost had no im-
pact in our setting.

Finally, the bias term bi has been omitted from
the model in (2). We have empirically found that
omitting this bias term does not affect the perfor-
mance of the model, while it allows us to have a
more direct connection between the vector wi and
the corresponding PMI scores.

3.3 Word Vectors and PMI
Let us define PMIW as follows:

PMIW (i, j) = wi·w̃j + b̃j

Clearly, when the word vectors are trained accord-
ing to (2), it holds that PMIW (i, j) ≈ PMIS(i, j).
In other words, we can think of the word vector
wi as a low-dimensional encoding of the vector
(PMIS(i, 1), ...,PMIS(i, n)), with n the number
of words in the vocabulary. This view allows us to
assign a natural interpretation to some word vec-
tor operations. In particular, the vector difference
wi−wk is commonly used as a model for the rela-
tionship between words i and k. For a given con-
text word j, we have

(wi − wk) · w̃j = PMIW (i, j)− PMIW (k, j)

The latter is an estimation of log
(

P (i,j)
P (i)P (j)

)
−

log
(

P (k,j)
P (k)P (j)

)
= log

(
P (j|i)
P (j|k)

)
. In other words,

the vector translation wi − wk encodes for each
context word j the (log) ratio of the probability of
seeing j in the context of i and in the context of k,
which is in line with the original motivation under-
lying the GloVe model (Pennington et al., 2014).
In the following section, we will propose a num-
ber of alternative vector representations for the re-
lationship between two words, based on general-
izations of PMI to three arguments.

4 Learning Global Relation Vectors

We now turn to the problem of learning a vector
rik that encodes how the source word i and tar-
get word k are related. The main underlying idea
is that rik will capture which context words j are
most closely associated with the word pair (i, k).
Whereas the GloVe model is based on statistics
about (main word, context word) pairs, here we
will need statistics on (source word, context word,
target word) triples. First, we discuss how co-
occurrence statistics among three words can be ex-
pressed using generalizations of PMI to three ar-
guments. Then we explain how this can be used to
learn relation vectors in natural way.
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4.1 Co-occurrence Statistics for Triples
Let P li ⊆ {1, ..., nl} again be the set of positions
from the lth sentence corresponding to word i. We
define:

yijk =

m∑

l=1

∑

p∈Pl
i

∑

q∈Pl
j

∑

r∈Pl
k

weight(p, q, r)

where weight(p, q, r) = max( 1
q−p ,

1
r−q ) if p <

q < r and r−p ≤W , and weight(p, q, r) = 0 oth-
erwise. In other words, yijk reflects the (weighted)
number of times word j appears between words i
and k in a sentence in which i and k occur suffi-
ciently close to each other, in that order. Note that
by taking word order into account in this way, we
will be able to model asymmetric relationships.

To model how strongly a context word j is asso-
ciated with the word pair (i, k), we will consider
the following two well-known generalizations of
PMI to three arguments (Van de Cruys, 2011):

SI1(i, j, k) = log

(
P (i, j)P (i, k)P (j, k)

P (i)P (j)P (k)P (i, j, k)

)

SI2(i, j, k) = log

(
P (i, j, k)

P (i)P (j)P (k)

)

where P (i, j, k) is the probability of seeing the
word triple (i, j, k) when randomly choosing a
sentence and three (ordered) word positions in that
sentence within a window size of W . In addition
we will also consider two ways in which PMI can
be used more directly:

SI3(i, j, k) = log

(
P (i, j, k)

P (i, k)P (j)

)

SI4(i, j, k) = log

(
P (i, k|j)

P (i|j)P (k|j)

)

Note that SI3(i, j, k) corresponds to the PMI be-
tween (i, k) and j, whereas SI4(i, j, k) is the PMI
between i and k conditioned on the fact that j oc-
curs. The measures SI3 and SI4 are closely related
to SI1 and SI2 respectively2. In particular, the fol-
lowing identities are easy to show:

PMI(i, j) + PMI(j, k)− SI1(i, j, k) = SI3(i, j, k)

SI2(i, j, k)− PMI(i, j)− PMI(j, k) = SI4(i, j, k)

2Note that probabilities of the form P (i, j) or P (i) here
refer to marginal probabilities over ordered triples. In con-
trast, the PMI scores from the word embedding model are
based on probabilities over unordered word pairs, as is com-
mon for word embeddings.

Using smoothed versions of the counts yijk, we
can use the following probability estimates for
SI1(i, j, k)–SI4(i, j, k):

P (i, j, k) =
yijk + α

y∗∗∗ + n3α
P (i, j) =

yij∗ + α

y∗∗∗ + n2α

P (i, k) =
yi∗k + α

y∗∗∗ + n2α
P (j, k) =

y∗jk + α

y∗∗∗ + n2α

P (i) =
yi∗∗ + α

y∗∗∗ + nα
P (j) =

y∗j∗ + α

y∗∗∗ + nα

P (k) =
y∗∗k + α

y∗∗∗ + nα

where yij∗ =
∑

k yijk, and similar for the other
counts. For efficiency reasons, the counts of the
form yij∗, yi∗k and y∗jk are pre-computed for all
word pairs, which can be done efficiently due to
the sparsity of co-occurrence counts (i.e. these
counts will be 0 for most pairs of words), sim-
ilarly to how to the counts xij are computed in
GloVe. From these counts, we can also efficiently
pre-compute the counts yi∗∗, y∗j∗, y∗∗k and y∗∗∗.
On the other hand, the counts yijk cannot be pre-
computed, since the total number of triples for
which yijk 6= 0 is prohibitively high in a typi-
cal corpus. However, using an inverted index, we
can efficiently retrieve the sentences that contain
the words i and k, and since this number of sen-
tences is typically small, we can efficiently obtain
the counts yijk corresponding to a given pair (i, k)
whenever they are needed.

4.2 Relation Vectors
Our aim is to learn a vector rik that models the
relationship between i and k. Computing such a
vector for each pair of words (which co-occur at
least once) is not feasible, given the number of
triples (i, j, k) that would need to be considered.
Instead, we first learn a word embedding, by op-
timizing (2). Then, fixing the context vectors w̃j
and bias terms bj , we learn a vector representation
for a given pair (i, k) of interest by solving the fol-
lowing objective:

∑

j∈Ji,k
(rik·w̃j + b̃j − SI(i, j, k))2 (3)

where SI refers to one of SI1S , SI2S , SI3S , SI4S . Note
that (3) is essentially the counterpart of (1), where
we have replaced the role of the PMI measure by
SI. In this way, we can exploit the representations
of the context words from the word embedding
model for learning relation vectors. Note that the
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factor 1
σ2
j

has been omitted. This is because words

j that are normally relatively uninformative (e.g.
stop words), for which σ2j would be high, can actu-
ally be very important for characterizing the rela-
tionship between i and k. For instance, the phrase
“X such as Y ” clearly suggests a hyponomy re-
lationship between X and Y , but both ‘such’ and
‘as’ would be associated with a high residual vari-
ance σ2j . The set Ji,k contains every j for which
yijk > 0 as well as a random sample of m words
for which yijk = 0, where m = 2 · |{j : yijk > 0|.
Note that because w̃j is now fixed, (3) is a lin-
ear least squares regression problem, which can be
solved exactly and efficiently.

The vector rik is based on words that appear
between i and k. In the same way, we can learn
a vector sik based on the words that appear be-
fore i and a vector tik based on the words that
appear after k, in sentences where i occurs be-
fore k. Furthermore, we also learn vectors rki, ski
and tki from the sentences where k occurs before
i. As the final representation Rik of the relation-
ship between i and k, we concatenate the vectors
rik, rki, sik, ski, tik, tki as well as the word vectors
wi and wk. We write Rlik to denote the vector that
results from using measure SIl (l ∈ {1, 2, 3, 4}).

5 Experimental Results

In our experiments, we have used the Wikipedia
dump from November 2nd, 2015, which consists
of 1,335,766,618 tokens. We have removed punc-
tuations and HTML/XML tags, and we have low-
ercased all tokens. Words with fewer than 10
occurrences have been removed from the corpus.
To detect sentence boundaries, we have used the
Apache sentence segmentation tool. In all our
experiments, we have set the number of dimen-
sions to 300, which was found to be a good choice
in previous work, e.g. (Pennington et al., 2014).
We use a context window size W of 10 words.
The number of iterations for SGD was set to
50. For our model, we have tuned the smooth-
ing parameter α based on held-out tuning data,
considering values from {0.1, 0.01, 0.001, 0.0001,
0.00001, 0.000001}. We have noticed that in most
of the cases the value of α was automatically se-
lected as 0.00001. To efficiently compute the
triples, we have used the Zettair3 retrieval engine.

As our main baselines, we use three popular un-
supervised methods for constructing relation vec-

3http://www.seg.rmit.edu.au/zettair/

Table 1: Results for the relation induction task.

Google Analogy
Diff Conc Avg R1

ik R2
ik R3

ik R4
ik

Acc 90.0 89.0 89.9 90.0 92.3 90.9 90.4
Pre 81.6 78.7 80.8 79.9 87.1 83.2 81.1
Rec 82.6 83.9 83.9 86.0 84.8 84.8 85.5
F1 82.1 81.2 82.3 82.8 85.9 84.0 83.3

DiffVec
Diff Conc Avg R1

ik R2
ik R3

ik R4
ik

Acc 29.5 28.9 29.7 29.7 31.3 30.4 30.1
Pre 19.6 18.7 20.4 21.5 22.9 21.9 22.3
Rec 23.8 22.9 23.7 24.5 25.7 25.3 22.9
F1 21.5 20.6 21.9 22.4 24.2 23.5 22.6

tors. First, Diff uses the vector difference wk−wi,
following the common strategy of modeling rela-
tions as vector differences, as e.g. in (Vylomova
et al., 2016). Second, Conc uses the concatenation
ofwi andwk. This model is more general than Diff
but it uses twice as many dimensions, which may
make it harder to learn a good classifier from few
examples. The use of concatenations is popular
e.g. in the context of hypernym detection (Baroni
et al., 2012). Finally, Avg averages the vector rep-
resentations of the words occurring in sentences
that Diff, contain i and k. In particular, let ravg

ik be
obtained by averaging the word vectors of the con-
text words appearing between i and k for each sen-
tence containing i and k (in that order), and then
averaging the vectors obtained from each of these
sentences. Let savg

ik and tavg
ik be similarly obtained

from the words occurring before i and the words
occurring after k respectively. The considered re-
lation vector is then defined as the concatenation
of ravg

ik , ravg
ki , savg

ik , savg
ki , tavg

ik , tavg
ki , wi and wk. The

Avg will allow us to directly compare how much
we can improve relation vectors by deviating from
the common strategy of averaging word vectors.

5.1 Relation Induction

In the relation induction task, we are given word
pairs (s1, t1), ..., (sk, tk) that are related in some
way, and the task is to decide for a number of test
examples (s, t) whether they also have this rela-
tionship. Among others, this task was considered
in (Vylomova et al., 2016), and a ranking version
of this task was studied in (Drozd et al., 2016).
As test sets we use the Google Analogy Test Set
(Mikolov et al., 2013a), which contains instances
of 14 different types of relations, and the DiffVec
dataset, which was introduced in (Vylomova et al.,
2016). This dataset contains instances of 36 dif-
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Table 2: Results for the relation induction task using alternative word embedding models.

GloVe SkipGram CBOW
Google DiffVec Google DiffVec Google DiffVec

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
Diff 90.0 81.9 21.2 13.9 89.8 81.9 21.7 14.5 89.9 82.1 17.4 9.7
Conc 88.9 80.4 20.2 11.9 89.2 81.6 20.5 12.0 89.1 81.1 16.4 7.7
Avg 89.8 82.1 21.4 13.9 90.2 82.4 21.8 14.4 89.8 82.2 17.5 10.0
R1

ik 89.7 81.7 20.9 12.5 89.4 81.2 21.1 12.3 89.8 81.9 17.2 9.2
R2

ik 90.0 82.8 21.2 13.4 89.1 81.3 21.1 12.9 90.2 82.4 17.7 10.0
R3

ik 90.0 82.3 20.0 11.2 89.5 81.1 20.5 12.3 89.5 81.1 17.2 9.6
R4

ik 90.0 82.5 20.0 11.4 88.9 80.8 20.6 12.1 90.5 82.2 17.1 8.4

ferent types of relations4. Note that both datasets
contain a mix of semantic and syntactic relations.

In our evaluation, we have used 10-fold cross-
validation (or leave-one-out for relations with
fewer than 10 instances). In the experiments, we
consider for each relation in the test set a separate
binary classification task, which was found to be
considerably more challenging than a multi-class
classification setting in (Vylomova et al., 2016).
To generate negative examples in the training data
(resp. test data), we have used three strategies, fol-
lowing (Vylomova et al., 2016). First, for a given
positive example (s, t) of the considered relation,
we add (t, s) as a negative example. Second, for
each positive example (s, t), we generate two neg-
ative examples (s, t1) and (s, t2) by randomly se-
lecting two tail words t1, t2 from the other training
(resp. test) examples of the same relation. Finally,
for each positive example, we also generate a neg-
ative example by randomly selecting two words
from the vocabulary. For each relation, we then
train a linear SVM classifier. To set the parameters
of the SVM, we initially use 25% of the training
data for tuning, and then retrain the SVM with the
optimal parameters on the full training data.

The results are summarized in Table 1 in terms
of accuracy and (macro-averaged) precision, recall
and F1 score. As can be observed, our model out-
performs the baselines on both datasets, with the
R2
ik variant outperforming the others.
To analyze the benefit of our proposed word

embedding variant, Table 2 shows the results that
were obtained when we use standard word embed-
ding models. In particular, we show results for the
standard GloVe model, SkipGram and the Contin-
uous Bag of Words (CBOW) model. As can be
observed, our variant leads to better results than
the original GloVe model, even for the baselines.

4Note that in contrast to (Vylomova et al., 2016) we use
all 36 relations from this dataset, including those with very
few instances.

Table 3: Relation induction without position
weighting (left) and without the relation vectors
sik and tik (right).

Google DiffVec
Acc F1 Acc F1

R1
ik 89.7 82.4 30.2 22.2

R2
ik 91.0 83.4 30.8 24.1

R3
ik 90.4 83.2 30.1 22.3

R4
ik 90.2 82.9 29.1 21.2

Google DiffVec
Acc F1 Acc F1

R1
ik 90.0 82.5 29.9 22.3

R2
ik 92.3 85.8 31.2 24.2

R3
ik 90.5 83.2 30.2 23.0

R4
ik 90.3 83.1 29.8 22.3

The difference is particularly noticeable for Diff-
Vec. The difference is also larger for our relation
vectors than for the baselines, which is expected as
our method is based on the assumption that con-
text word vectors can be interpreted in terms of
PMI scores, which is only true for our variant.

Similar as in the GloVe model, the context
words in our model are weighted based on their
distance to the nearest target word. Table 3 shows
the results of our model without this weighting, for
the relation induction task. Comparing these re-
sults with those in Table 1 shows that the weight-
ing scheme indeed leads to a small improvement
(except for the accuracy of R1

ik for DiffVec). Sim-
ilarly, in Table 3, we show what happens if the re-
lation vectors sik, ski, tik and tki are omitted. In
other words, for the results in Table 3, we only
use context words that appear between the two
target words. Again, the results are worse than
those in Table 1 (with the accuracy ofR1

ik for Diff-
Vec again being an exception), although the dif-
ferences are very small in this case. While includ-
ing the vectors sik, ski, tik, tki should be helpful,
it also significantly increases the dimensionality
of the vectors Rlik. Given that the number of in-
stances per relation is typically quite small for this

29



Table 4: Results for measuring degrees of proto-
typicality (Spearman ρ× 100).

Diff Conc Avg R1
ik R2

ik R3
ik R4

ik

17.3 16.7 21.1 22.7 23.9 21.8 22.2

task, this can also make it harder to learn a suitable
classifier.

5.2 Measuring Degrees of Prototypicality

Instances of relations can often have different de-
grees of prototypicality. For example, for the rela-
tion “X characteristically makes the sound Y ”, the
pair (dog,bark) should be considered more proto-
typical than the pair (floor,squeak), even though
both pairs might be considered to be instances
of the relation (Jurgens et al., 2012). A suit-
able relation vector should allow us to rank word
pairs according to how prototypical they are as
instances of that relation. We evaluate this abil-
ity using a dataset that was produced in the after-
math of SemEval 2012 Task 2. In particular, we
have used the “Phase2AnswerScaled” data from
the platinum rankings dataset, which is available
from the SemEval 2012 Task 2 website5. In this
dataset, 79 ranked list of word pairs are provided,
each of which corresponds to a particular relation.
For each relation, we first split the associated rank-
ing into 60% training, 20% tuning, and 20% test-
ing (i.e. we randomly select 60% of the word pairs
and use their ranking as training data, and similar
for tuning and test data). We then train a linear
SVM regression model on the ranked word pairs.
Note that this task slightly differs from the task
that was considered at SemEval 2012, to allow us
to use an SVM based model for consistency with
the rest of the paper.

We report results using Spearman’s ρ in Table
4. Our model again outperforms the baselines,
with R2

ik again being the best variant. Interest-
ingly, in this case, the Avg baseline is consider-
ably stronger than Diff and Conc. Intuitively, we
might indeed expect that this ranking problem re-
quires a more fine-grained representation than the
relation induction setting. Note that the Diff repre-
sentations were found to achieve near state-of-the-
art performance on a closely related task in (Zhila
et al., 2013). The only model that was found to
perform (slightly) better was a hybrid model, com-
bining Diff representations with linguistic patterns

5https://sites.google.com/site/semeval2012task2/download
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Figure 1: Results for the relation extraction from
the NYT corpus: comparison with the main base-
lines.

(inspired by (Rink and Harabagiu, 2012)) and lex-
ical databases, among others.

5.3 Relation Extraction

Finally, we consider the problem of relation ex-
traction from a text corpus. Specifically, we con-
sider the task proposed in (Riedel et al., 2010),
which is to extract (subject,predicate,object)
triples from the New York Times (NYT) corpus.
Rather than having labelled sentences as training
data, the task requires using the existing triples
from Freebase as a form of distant supervision, i.e.
for some pairs of entities we know some of the
relations that hold between them, but not which
sentences assert these relationships (if any). To be
consistent with published results for this task, we
have used a word embedding that was trained from
the NYT corpus6, rather than Wikipedia (using the
same preprocessing and set-up). We have used the
training and test data that was shared publicly for
this task7, which consist of sentences from arti-
cles published in 2005-2006 and in 2007, respec-
tively. Each of these sentences contains two en-
tities, which are already linked to Freebase. We
learn relation vectors from the sentences in the
training and test sets, and learn a linear SVM clas-
sifier based on the Freebase triples that are avail-
able in the training set. Initially, we split the train-
ing data into 75% training and 25% tuning to find
the optimal parameters of the linear SVM model.
We tuned the parameters for each test fold sepa-

6https://catalog.ldc.upenn.edu/LDC2008T19
7http://iesl.cs.umass.edu/riedel/ecml/
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Figure 2: Results for the relation extraction from
the NYT corpus: comparison with state-of-the-art
neural network models.

rately. For each test fold, we used 25% of the 9
training folds as tuning data. After the optimal
parameters have been determined, we retrain the
model on the full training data, and apply it on
the test fold. We used this approach (rather than
e.g. fixing a train/tune/test split) because the to-
tal number of examples for some of the relations
is very small. After tuning, we re-train the SVM
models on the full training data. As the number
of training examples is larger for this task, we also
consider SVMs with a quadratic kernel.

Following earlier work on this task, we re-
port our results on the test set as a precision-
recall graph in Figure 1. This shows that the
best performance is again achieved by R2

ik, espe-
cially for larger recall values. Furthermore, us-
ing a quadratic kernel (only shown for R2

ik) out-
performs the linear SVM models. Note that the
differences between the baselines are more pro-
nounced in this task, with Avg being clearly bet-
ter than Diff, which is in turn better than Conc.
For this relation extraction task, a large number
of methods have already been proposed in the lit-
erature, with variants of convolutional neural net-
work models with attention mechanisms achiev-
ing state-of-the-art performance8. A comparison
with these models9 is shown in Figure 2. The per-
formance of R2

ik is comparable with the state-of-

8Note that such models would not be suitable for the eval-
uation tasks in Sections 5.1 and 5.2, due to the very limited
number of training examples.

9Results for the neural network models have been
obtained from https://github.com/thunlp/
TensorFlow-NRE/tree/master/data.

the-art PCNN+ATT model (Lin et al., 2016), out-
performing it for larger recall values. This is re-
markable, as our model is conceptually much sim-
pler, and has not been specifically tuned for this
task. For instance, it could easily be improved by
incorporating the attention mechanism from the
PCNN+ATT model to focus the relation vectors
on the considered task. Similarly, we could con-
sider a supervised variant of (3), in which a learned
relation-specific weight is added to each term.

6 Conclusions

We have proposed an unsupervised method which
uses co-occurrences statistics to represent the re-
lationship between a given pair of words as a vec-
tor. In contrast to neural network models for rela-
tion extraction, our model learns relation vectors
in an unsupervised way, which means that it can
be used for measuring relational similarities and
related tasks. Moreover, even in (distantly) super-
vised tasks (where we need to learn a classifier
on top of the unsupervised relation vectors), our
model has proven competitive with state-of-the-art
neural network models. Compared to approaches
that rely on averaging word vectors, our method is
able to learn more faithful representations by fo-
cusing on the words that are most strongly related
to the considered relationship.
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Abstract

Semantic specialization of distributional
word vectors, referred to as retrofitting, is
a process of fine-tuning word vectors us-
ing external lexical knowledge in order to
better embed some semantic relation. Ex-
isting retrofitting models integrate linguis-
tic constraints directly into learning objec-
tives and, consequently, specialize only the
vectors of words from the constraints. In
this work, in contrast, we transform ex-
ternal lexico-semantic relations into train-
ing examples which we use to learn an
explicit retrofitting model (ER). The ER
model allows us to learn a global special-
ization function and specialize the vectors
of words unobserved in the training data as
well. We report large gains over original
distributional vector spaces in (1) intrin-
sic word similarity evaluation and on (2)
two downstream tasks – lexical simplifica-
tion and dialog state tracking. Finally, we
also successfully specialize vector spaces
of new languages (i.e., unseen in the train-
ing data) by coupling ER with shared mul-
tilingual distributional vector spaces.

1 Introduction

Algebraic modeling of word vector spaces is one
of the core research areas in modern Natural Lan-
guage Processing (NLP) and its usefulness has been
shown across a wide variety of NLP tasks (Col-
lobert et al., 2011; Chen and Manning, 2014; Mela-
mud et al., 2016). Commonly employed distribu-
tional models for word vector induction are based
on the distributional hypothesis (Harris, 1954), i.e.,
they rely on word co-occurrences obtained from
large text corpora (Mikolov et al., 2013b; Penning-
ton et al., 2014; Levy and Goldberg, 2014a; Levy

et al., 2015; Bojanowski et al., 2017).
The dependence on purely distributional knowl-

edge results in a well-known tendency of fusing
semantic similarity with other types of semantic
relatedness (Hill et al., 2015; Schwartz et al., 2015)
in the induced vector spaces. Consequently, the
similarity between distributional vectors indicates
just an abstract semantic association and not a pre-
cise semantic relation (Yih et al., 2012; Mohammad
et al., 2013). For example, it is difficult to discern
synonyms from antonyms in distributional spaces.
This property has a particularly negative effect on
NLP applications like text simplification and statis-
tical dialog modeling, in which discerning semantic
similarity from other types of semantic relatedness
is pivotal to the system performance (Glavaš and
Štajner, 2015; Faruqui et al., 2015; Mrkšić et al.,
2016; Kim et al., 2016b).

A standard solution is to move beyond purely
unsupervised learning of word representations, in
a process referred to as word vector space spe-
cialization or retrofitting. Specialization models
leverage external lexical knowledge from lexical
resources, such as WordNet (Fellbaum, 1998), the
Paraphrase Database (Ganitkevitch et al., 2013), or
BabelNet (Navigli and Ponzetto, 2012), to special-
ize distributional spaces for a particular lexical rela-
tion, e.g., synonymy (Faruqui et al., 2015; Mrkšić
et al., 2017) or hypernymy (Glavaš and Ponzetto,
2017). External constraints are commonly pairs of
words between which a particular relation holds.

Existing specialization methods exploit the ex-
ternal linguistic constraints in two prominent ways:
(1) joint specialization models modify the learning
objective of the original distributional model by
integrating the constraints into it (Yu and Dredze,
2014; Kiela et al., 2015; Nguyen et al., 2016, inter
alia); (2) post-processing models fine-tune distri-
butional vectors retroactively after training to sat-
isfy the external constraints (Faruqui et al., 2015;
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Mrkšić et al., 2017, inter alia). The latter, in gen-
eral, outperform the former (Mrkšić et al., 2016).
Retrofitting models can be applied to arbitrary dis-
tributional spaces but they suffer from a major lim-
itation – they locally update only vectors of words
present in the external constraints, whereas vec-
tors of all other (unseen) words remain intact. In
contrast, joint specialization models propagate the
external signal to all words via the joint objective.

In this paper, we propose a new approach for
specializing word vectors that unifies the strengths
of both prior strategies, while mitigating their lim-
itations. Same as retrofitting models, our novel
framework, termed explicit retrofitting (ER), is ap-
plicable to arbitrary distributional spaces. At the
same time, the method learns an explicit global
specialization function that can specialize vectors
for all vocabulary words, similar as in joint models.
Yet, unlike the joint models, ER does not require
expensive re-training on large text corpora, but is
directly applied on top of any pre-trained vector
space. The key idea of ER is to directly learn a spe-
cialization function in a supervised setting, using
lexical constraints as training instances. In other
words, our model, implemented as a deep feed-
forward neural architecture, learns a (non-linear)
function which “translates” word vectors from the
distributional space into the specialized space.

We show that the proposed ER approach yields
considerable gains over distributional spaces in
word similarity evaluation on standard benchmarks
(Hill et al., 2015; Gerz et al., 2016), as well as in
two downstream tasks – lexical simplification and
dialog state tracking. Furthermore, we show that,
by coupling the ER model with shared multilingual
embedding spaces (Mikolov et al., 2013a; Smith
et al., 2017), we can also specialize distributional
spaces for languages unseen in the training data in
a zero-shot language transfer setup. In other words,
we show that an explicit retrofitting model trained
with external constraints from one language can
be successfully used to specialize the distributional
space of another language.

2 Related Work

The importance of vector space specialization for
downstream tasks has been observed, inter alia,
for dialog state tracking (Mrkšić et al., 2017; Vulić
et al., 2017b), spoken language understanding (Kim
et al., 2016b,a), judging lexical entailment (Nguyen
et al., 2017; Glavaš and Ponzetto, 2017; Vulić and

Mrkšić, 2017), lexical contrast modeling (Nguyen
et al., 2016), and cross-lingual transfer of lexical
resources (Vulić et al., 2017a). A common goal
pertaining to all retrofitting models is to pull the
vectors of similar words (e.g., synonyms) closer
together, while some models also push the vec-
tors of dissimilar words (e.g., antonyms) further
apart. The specialization methods fall into two cat-
egories: (1) joint specialization methods, and (2)
post-processing (i.e., retrofitting) methods. Meth-
ods from both categories make use of similar lex-
ical resources – they typically leverage WordNet
(Fellbaum, 1998), FrameNet (Baker et al., 1998),
the Paraphrase Database (PPDB) (Ganitkevitch
et al., 2013; Pavlick et al., 2015), morphological
lexicons (Cotterell et al., 2016), or simple hand-
crafted linguistic rules (Vulić et al., 2017b). In
what follows, we discuss the two model categories.

Joint Specialization Models. These models in-
tegrate external constraints into the distributional
training procedure of general word embedding al-
gorithms such as CBOW, Skip-Gram (Mikolov
et al., 2013b), or Canonical Correlation Analysis
(Dhillon et al., 2015). They modify the prior or
the regularization of the original objective (Yu and
Dredze, 2014; Xu et al., 2014; Bian et al., 2014;
Kiela et al., 2015) or integrate the constraints di-
rectly into the, e.g., an SGNS- or CBOW-style ob-
jective (Liu et al., 2015; Ono et al., 2015; Bolle-
gala et al., 2016; Osborne et al., 2016; Nguyen
et al., 2016, 2017). Besides generally displaying
lower performance compared to retrofitting meth-
ods (Mrkšić et al., 2016), these models are also
tied to the distributional objective and any change
of the underlying distributional model induces a
change of the entire joint model. This makes them
less versatile than the retrofitting methods.

Post-Processing Models. Models from the popu-
larly termed retrofitting family inject lexical knowl-
edge from external resources into arbitrary pre-
trained word vectors (Faruqui et al., 2015; Jauhar
et al., 2015; Rothe and Schütze, 2015; Wieting
et al., 2015; Nguyen et al., 2016; Mrkšić et al.,
2016). These models fine-tune the vectors of words
present in the linguistic constraints to reflect the
ground-truth lexical knowledge. While the large
majority of specialization models from both classes
operate only with similarity constraints, a line of re-
cent work (Mrkšić et al., 2016; Mrkšić et al., 2017;
Vulić et al., 2017b) demonstrates that knowledge
about both similar and dissimilar words leads to
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improved performance in downstream tasks. The
main shortcoming of the existing retrofitting mod-
els is their inability to specialize vectors of words
unseen in external lexical resources.

Our explicit retrofitting framework brings to-
gether desirable properties of both model classes:
(1) unlike joint models, it does not require adap-
tation to the underlying distributional model and
expensive re-training, i.e., it is applicable to any
pre-trained distributional space; (2) it allows for
easy integration of both similarity and dissimilarity
constraints into the specialization process; and (3)
unlike post-processors, it specializes the full vocab-
ulary of the original distributional space and not
only vectors of words from external constraints.

3 Explicit Retrofitting

Our explicit retrofitting (ER) approach, illustrated
by Figure 1a, consists of two major components:
(1) an algorithm for preparing training instances
from external lexical constraints, and (2) a super-
vised specialization model, based on a deep feed-
forward neural network. This network, shown in
Figure 1b learns a non-linear global specialization
function from the training instances.

3.1 From Constraints to Training Instances

Let X = {xi}Ni=1, xi ∈ Rd be the d-dimensional
distributional vector space that we want to spe-
cialize (with V = {wi}Ni=1 referring to the as-
sociated vocabulary) and let X′ = {x′i}Ni=1 be
the corresponding specialized vector space that we
seek to obtain through explicit retrofitting. Let
C = {(wi, wj , r)l}Ll=1 be the set of L linguistic
constraints from an external lexical resource, each
consisting of a pair of vocabulary words wi and
wj and a semantic relation r that holds between
them. The most recent state-of-the-art retrofitting
work (Mrkšić et al., 2017; Vulić et al., 2017b) sug-
gests that using both similarity and dissimilarity
constraints leads to better performance compared
to using only similarity constraints. Therefore, we
use synonymy and antonymy relations from exter-
nal resources, i.e., rl ∈ {ant , syn}. Let g be the
function measuring the distance between words wi
and wj based on their vector representations. The
algorithm for preparing training instances from con-
straints is guided by the following assumptions:

1. All synonymy pairs (wi, wj , syn) should have
a minimal possible distance score in the spe-

cialized space, i.e., g(x′i,x′j) = gmin ;1

2. All antonymy pairs (wi, wj , ant) should have
a maximal distance in the specialized space,
i.e., g(x′i,x′j) = gmax ;2

3. The distances g(x′i,x′k) in the specialized
space between some word wi and all other
words wk that are not synonyms or antonyms
of wi should be in the interval (gmin , gmax ).

Our goal is to discern semantic similarity from
semantic relatedness by comparing, in the spe-
cialized space, the distances between word pairs
(wi, wj , r) ∈ C with distances that words wi and
wj from those pairs have with other vocabulary
words wm. It is intuitive to enforce that the syn-
onyms are as close as possible and antonyms as
far as possible. However, we do not know what
the distances between non-synonymous and non-
antonymous words g(x′i,xm) in the specialized
space should look like. This is why, for all other
words, similar to (Faruqui et al., 2016; Mrkšić et al.,
2017), we assume that the distances in the spe-
cialized space for all word pairs not found in C
should stay the same as in the distributional space:
g(x′i,x′m) = g(xi,xm). This way we preserve
the useful semantic content available in the original
distributional space.

In downstream tasks most errors stem from
vectors of semantically related words (e.g., car
– driver) being as similar as vectors of seman-
tically similar words (e.g., car – automobile).
To anticipate this, we compare the distances of
pairs (wi, wj , r) ∈ C with the distances for pairs
(wi, wm) and (wj , wn), where wm and wn are neg-
ative examples: the vocabulary words that are most
similar to wi and wj , respectively, in the original
distributional space X. Concretely, for each con-
straint (wi, wj , r) ∈ C we retrieve (1) K vocabu-
lary words {wkm}Kk=1 that are closest in the input
distributional space (according to the distance func-
tion g) to the word wi and (2) K vocabulary words
{wkn}Kk=1 that are closest to the word wj . We then
create, for each constraint (wi, wj , r) ∈ C, a cor-
responding set M (termed micro-batch) of 2K + 1
embedding pairs coupled with a corresponding dis-
tance in the input distributional space:

1The minimal distance value is gmin = 0 for, e.g., cosine
distance or Euclidean distance.

2While some distance functions do have a theoretical max-
imum (e.g., gmax = 2 for cosine distance), others (e.g., Eu-
clidean distance) may be theoretically unbounded. For un-
bounded distance measures, we propose using the maximal
distance between any two words from the vocabulary as gmax .
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(a) Illustration of the explicit retrofitting approach
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Figure 1: (a) High-level illustration of the explicit retrofitting approach: lexical constraints, i.e., pairs of
synonyms and antonyms, are transformed into respective micro-batches, which are then used to train the
supervised specialization model. (b) The low-level implementation of the specialization model, combining
the non-linear embedding specialization function f , defined as the deep fully-connected feed-forward
network, with the distance metric g, measuring the distance between word vectors after their specialization.

M (wi, wj , r) = {(xi,xj , gr)} ∪
{(xi,x

k
m, g(xi,x

k
m))}Kk=1 ∪

{(xj ,x
k
n, g(xj ,x

k
n))}Kk=1 (1)

with gr = gmin if r = syn; gr = gmax if r = ant .

3.2 Non-Linear Specialization Function

Our retrofitting framework learns a global explicit
specialization function which, when applied on
a distributional vector space, transforms it into a
space that better captures semantic similarity, i.e.,
discerns similarity from all other types of semantic
relatedness. We seek the optimal parameters θ
of the parametrized function f(x; θ) : Rd → Rd
(where d is the dimensionality of the input space).
The specialized embedding x′i of the word wi is
then obtained as x′i = f(xi; θ). The specialized
space X′ is obtained by transforming distributional
vectors of all vocabulary words, X′ = f(X; θ).

We define the specialization function f to be a
multi-layer fully-connected feed-forward network
with H hidden layers and non-linear activations
φ. The illustration of this network is given in Fig-
ure 1b. The i-th hidden layer is defined with a
weight matrix Wi and a bias vector bi:

hi(x; θi) = φ
(
hi−1(x; θi−1)W

i + bi
)

(2)

where θi is the subset of network’s parameters
up to the i-th layer. Note that in this notation,
x = h0(x; ∅) and x′ = f(x, θ) = hH(x; θ). Let
dh be the size of the hidden layers. The network’s
parameters are then as follows: W1 ∈ Rd×dh ;

Wi ∈ Rdh×dh , i ∈ {2, . . . ,H − 1}; WH ∈
Rdh×d; bi ∈ Rdh , i ∈ {1, . . . ,H − 1}; bH ∈ Rd.

3.3 Optimization Objectives
We feed the micro-batches consisting of 2K + 1
training instances to the specialization model (see
Section 3.1). Each training instance consists of a
pair of distributional (i.e., unspecialized) embed-
ding vectors xi and xj and a score g denoting the
desired distance between the specialized vectors
x′i and x′j of corresponding words wi and wj .

Mean Square Distance Objective (ER-MSD).
Let our training batch consist of N training in-
stances, {(xi1,xi2, gi)}Ni=1. The simplest objective
function is then the difference between the desired
and obtained distances of specialized vectors:

JMSD =

N∑

i=1

(
g(f(xi

1), f(x
i
2))− gi

)2
(3)

By minimizing the MSD objective we simply force
the specialization model to produce a specialized
embedding space X′ in which distances between all
synonyms amount to gmin , distances between all
antonyms amount to gmax and distances between
all other word pairs remain the same as in the orig-
inal space. The MSD objective does not lever-
age negative examples: it only indirectly enforces
that synonym (or antonym) pairs (wi, wj) have
smaller (or larger) distances than corresponding
non-constraint word pairs (wi, wk) and (wj , wk).

Contrastive Objective (ER-CNT). An alterna-
tive to MSD is to directly contrast the distances
of constraint pairs (i.e., antonyms and synonyms)
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with the distances of their corresponding negative
examples, i.e., the pairs from their respective micro-
batch (cf. Eq. (1) in Section 3.1). Such an ob-
jective should directly enforce that the similarity
scores for synonyms (antonyms) (wi, wj) are larger
(or smaller, for antonyms) than for pairs (wi, wk)
and (wj , wk) involving the same words wi and wj ,
respectively. Let S and A be the sets of micro-
batches created from synonymy and antonymy con-
straints. Let Ms = {(xi1,xi2, gi)}2K+1

i=1 be one
micro-batch created from one synonymy constraint
and let Ma be the analogous micro-batch created
from one antonymy constraint. Let us then assume
that the first triple (i.e., for i = 1) in every micro-
batch corresponds to the constraint pair and the re-
maining 2K triples (i.e., for i ∈ {2, . . . , 2K + 1})
to respective non-constraint word pairs. We then
define the contrastive objective as follows:

JCNT =
∑

Ms∈S

2K+1∑

i=2

(
(gi − gmin)− (g′

i − g′1)
)2

+
∑

Ma∈A

2K+1∑

i=2

(
(gmax − gi)− (g′

1 − g′i)
)2

where g′ is a short-hand notation for the dis-
tance between vectors in the specialized space, i.e.,
g′(x1,x2) = g(x′1,x

′
2) = g(f(x1), f(x2)).

Topological Regularization. Because the distri-
butional space X already contains useful semantic
information, we want our specialized space X′ to
move similar words closer together and dissimi-
lar words further apart, but without disrupting the
overall topology of X. To this end, we define an
additional regularization objective that measures
the distance between the original vectors x1 and x2

and their specialized counterparts x′1 = f(x1) and
x′2 = f(x2), for all examples in the training set:

JREG =

N∑

i=1

g(xi
1, f(x

i
1)) + g(xi

2, f(x
i
2)) (4)

We minimize the final objective function J ′ = J +
λJREG . J is either JMSD or JCNT and λ is the
regularization factor which determines how strictly
we retain the topology of the original space.

4 Experimental Setup

Distributional Vectors. In order to estimate the
robustness of the proposed explicit retrofitting pro-
cedure, we experiment with three different publicly
available and widely used collections of pre-trained

distributional vectors for English: (1) SGNS-W2
– vectors trained on the Wikipedia dump from
the Polyglot project (Al-Rfou et al., 2013) using
the Skip-Gram algorithm with Negative Sampling
(SGNS) (Mikolov et al., 2013b) by Levy and Gold-
berg (2014b), using the context windows of size 2;
(2) GLOVE-CC – vectors trained with the GloVe
(Pennington et al., 2014) model on the Common
Crawl; and (3) FASTTEXT – vectors trained on
Wikipedia with a variant of SGNS that builds word
vectors by summing the vectors of their constituent
character n-grams (Bojanowski et al., 2017).

Linguistic Constraints. We experiment with the
sets of linguistic constraints used in prior work
(Zhang et al., 2014; Ono et al., 2015). These
constraints, extracted from WordNet (Fellbaum,
1998) and Roget’s Thesaurus (Kipfer, 2009), com-
prise a total of 1,023,082 synonymy word pairs and
380,873 antonymy word pairs.

Although this seems like a large number of lin-
guistic constraints, there is only 57,320 unique
words in all synonymy and antonymy constraints
combined, and not all of these words are found in
the dictionary of the pre-trained distributional vec-
tor space. For example, only 15.3% of the words
from constraints are found in the whole vocabu-
lary of SGNS-W2 embeddings. Similarly, we find
only 13.3% and 14.6% constraint words among the
200K most frequent words from the GLOVE-CC
and FASTTEXT vocabularies, respectively. This
low coverage emphasizes the core limitation of cur-
rent retrofitting methods, being able to specialize
only the vectors of words seen in the external con-
straints, and the need for our global ER method
which can specialize all word vectors from the dis-
tributional space.

ER Model Configuration. In all experiments,
we set the distance function g to cosine distance:
g(x1,x2) = 1− (x1 ·x2/(‖x1‖‖x2‖)) and use the
hyperbolic tangent as activation, φ = tanh. For
each constraint (wi, wj), we create K = 4 corre-
sponding negative examples for both wi and wj ,
resulting in micro-batches with 2K + 1 = 9 train-
ing instances.3 We separate 10% of the created
micro-batches as the validation set. We then tune
the hyper-parameter values, the number of hidden
layers H = 5 and their size dh = 1000, and the

3For K < 4 we observed significant performance drop.
Setting K > 4 resulted in negligible performance gains but
significantly increased the model training time.
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topological regularization factor λ = 0.3 by mini-
mizing the model’s objective J ′ on the validation
set. We train the model in mini-batches, each con-
taining Nb = 100 constraints (i.e., 900 training
instances, see above), using the Adam optimizer
(Kingma and Ba, 2015) with initial learning rate
set to 10−4. We use the loss on the validation set
as the early stopping criteria.

5 Results and Discussion

5.1 Word Similarity

Evaluation Setup. We first evaluate the quality
of the explicitly retrofitted embedding spaces in-
trinsically, on two word similarity benchmarks:
SimLex-999 dataset (Hill et al., 2015) and SimVerb-
3500 (Gerz et al., 2016), a recent dataset contain-
ing human similarity ratings for 3,500 verb pairs.4

We use Spearman’s ρ rank correlation between
gold and predicted word pair scores as the eval-
uation metric. We evaluate the specialized embed-
ding spaces in two settings. In the first setting,
termed lexically disjoint, we remove from our train-
ing set all linguistic constraints that contain any
of the words found in SimLex or SimVerb. This
way, we effectively evaluate the model’s ability
to generalize the specialization function to unseen
words. In the second setting (lexical overlap) we re-
tain the constraints containing SimLex or SimVerb
words in the training set. For comparison, we
also report performance of the state-of-the-art local
retrofitting model ATTRACT-REPEL (Mrkšić et al.,
2017), which is able to specialize only the words
from the linguistic constraints.

Results. The results with our ER model applied
to three distributional spaces are shown in Table 1.
The scores suggest that the proposed ER model is
universally useful and robust. The ER-specialized
spaces outperform original distributional spaces
across the board, for both objective functions. The
results in the lexically disjoint setting are especially
indicative of the improvements achieved by the ER.
For example, we achieve a correlation gain of 18%
for the GLOVE-CC vectors on SimLex using a
specialization function learned without seeing a
single constraint with any SimLex word.

4Other word similarity datasets such as MEN (Bruni et al.,
2014) or WordSim-353 (Finkelstein et al., 2002) conflate the
concepts of true semantic similarity and semantic relatedness
in a broader sense. In contrast, SimLex and SimVerb explicitly
discern between the two, with pairs of semantically related
but not similar words (e.g. car and wheel) having low ratings.

In the lexical overlap setting, we observe sub-
stantial gains only for GLOVE-CC. The modest
gains in this setting with FASTTEXT and SGNS-
W2 in fact strengthen the impression that the ER
model learns a general specialization function, i.e.,
it does not “overfit” to words from linguistic con-
straints. The ER model with the contrastive ob-
jective (ER-CNT) yields better performance on
average than the one using the simpler square dis-
tance objective (ER-MSD). This is expected, given
that the contrastive objective enforces the model to
distinguish pairs of semantically (dis)similar words
from pairs of semantically related words.

Finally, the post-processing ATTRACT-REPEL

model based on local vector updates seems to sub-
stantially outperform the ER method in this task.
The gap is especially visible for FASTTEXT and
SGNS-W2 vectors. However, since ATTRACT-
REPEL specializes only words seen in linguistic
constraints,5 its performance crucially depends on
the coverage of test set words in the constraints.
ATTRACT-REPEL excels on the intrinsic evaluation
as the constraints cover 99.2% of SimLex words
and 99.9% of SimVerb words. However, its use-
fulness is less pronounced in real-life downstream
scenarios in which such high coverage cannot be
guaranteed, as demonstrated in Section 5.3.

Analysis. We examine in more detail the perfor-
mance of the ER model with respect to (1) the
type of constraints used for training the model:
synonyms and antonyms, only synonyms, or only
antonyms and (2) the extent to which we retain
the topology of the original distributional space
(i.e., with respect to the value of the topological
regularization factor λ). All reported results were
obtained by specializing the GLOVE-CC distribu-
tional space in the lexically disjoint setting (i.e.,
employed constraints did not contain any of the
SimLex or SimVerb words).

In Table 2 we show the specialization perfor-
mance of the ER-CNT models (H = 5, λ = 0.3),
using different types of constraints on SimLex-
999 (SL) and SimVerb-3500 (SV). We compare
the standard model, which exploits both synonym
and antonym pairs for creating training instances,
with the models employing only synonym and only
antonym constraints, respectively. Clearly, we
obtain the best specialization when combining syn-
onyms and antonyms. Note, however, that using

5This is why ATTRACT-REPEL cannot be applied in the
lexically disjoint setting: the scores simply stay the same.
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Setting: lexically disjoint Setting: lexical overlap

GLOVE-CC FASTTEXT SGNS-W2 GLOVE-CC FASTTEXT SGNS-W2

SL SV SL SV SL SV SL SV SL SV SL SV

Distributional (X) .407 .280 .383 .247 .414 .272 .407 .280 .383 .247 .414 .272
ATTRACT-REPEL .407 .280 .383 .247 .414 .272 .690 .578 .629 .502 .658 .544
ER-Specialized (X′ = f(X))
ER-MSD .483 .345 .429 .275 .445 .302 .500 .358 .445 .284 .469 .323
ER-CNT .582 .439 .433 .272 .435 .329 .623 .519 .419 .335 .449 .355

Table 1: Spearman’s ρ correlation scores for three standard English distributional vectors spaces on
English SimLex-999 (SL) and SimVerb-3500 (SV), using explicit retrofitting models with two different
objective functions (ER-MSD and ER-CNT, cf. Section 3.3).

Constraints (ER-CNT model) SL SV

Synonyms only .465 .339
Antonyms only .451 .317
Synonyms + Antonyms .582 .439

Table 2: Performance (ρ) on SL and SV for ER-
CNT models trained with different constraints.

Figure 2: Specialization performance on SimLex-
999 (blue line) and SimVerb-3500 (red line) for
ER models with different topology regularization
factors λ. Dashed lines indicate performance levels
of the distributional (i.e., unspecialized) space.

only synonyms or only antonyms also improves
over the original distributional space.

Next, in Figure 2 we depict the specialization
performance (on SimLex and SimVerb) of the ER
models with different values of the topology reg-
ularization factor λ (H fixed to 5). The best per-
formance for is obtained for λ = 0.3. Smaller
lambda values overly distort the original distribu-
tional space, whereas larger lambda values dampen
the specialization effects of linguistic constraints.

5.2 Language Transfer

Readily available large collections of synonymy
and antonymy word pairs do not exist for many
languages. This is why we also investigate zero-
shot specialization: we test if it is possible, with the
help of cross-lingual word embeddings, to transfer
the specialization knowledge learned from English
constraints to languages without any training data.

Evaluation Setup. We use the mapping model
of Smith et al. (2017) to induce a multilingual vec-

Model German Italian Croatian

Distributional (X) .407 .360 .249
ER-Specialized (X′)
ER-MSD .415 .406 .287
ER-CNT .533 .448 .315

Table 3: Spearman’s ρ correlation scores for Ger-
man, Italian, and Croatian embeddings in the trans-
fer setup: the vectors are specialized using the mod-
els trained on English constraints and evaluated on
respective language-specific SimLex-999 variants.

tor space6 containing word vectors of three other
languages – German, Italian, and Croatian – along
with the English vectors.7 Concretely, we map the
Italian CBOW vectors (Dinu et al., 2015), German
FastText vectors trained on German Wikipedia (Bo-
janowski et al., 2017), and Croatian Skip-Gram
vectors trained on HrWaC corpus (Ljubešić and
Erjavec, 2011) to the GLOVE-CC English space.
We create the translation pairs needed to learn the
projections by automatically translating 4,000 most
frequent English words to all three other languages
with Google Translate. We then employ the ER
model trained to specialize the GLOVE-CC space
using the full set of English constraints, to special-
ize the distributional spaces of other languages. We
evaluate the quality of the specialized spaces on the
respective SimLex-999 dataset for each language
(Leviant and Reichart, 2015; Mrkšić et al., 2017).

Results. The results are provided in Table 3.
They indicate that the ER models can substan-
tially improve (e.g., by 13% for German vector
space) over distributional spaces also in the lan-
guage transfer setup without seeing a single con-
straint in the target language. These transfer results
hold promise to support vector space specialization

6This model was chosen for its ease of use, readily avail-
able implementation, and strong comparative results (see
(Ruder et al., 2017)). For more details we refer the reader
to the original paper and the survey.

7The choice of languages was determined by the availabil-
ity of the language-specific SimLex-999 variants.
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even for resource-lean languages. The more sophis-
ticated contrastive ER-CNT model variant again
outperforms the simpler ER-MSD variant, and it
does so for all three languages, which is consistent
with the findings from the monolingual English
experiments (see Table 1).

5.3 Downstream Tasks
We now evaluate the impact of our global ER
method on two downstream tasks in which differ-
entiating semantic similarity from semantic relat-
edness is particularly important: lexical text sim-
plification (LS) and dialog state tracking (DST).

5.3.1 Lexical Text Simplification
Lexical simplification aims to replace complex
words – used less frequently and known to fewer
speakers – with their simpler synonyms that fit into
the context, that is, without changing the meaning
of the original text. Because retaining the meaning
of the original text is a strict requirement, complex
words need to be replaced with semantically similar
words, whereas replacements with semantically re-
lated words (e.g., replacing “pilot” with “airplane”
in “Ferrari’s pilot won the race”) produce incor-
rect text which is more difficult to comprehend.

Simplification Using Distributional Vectors.
We use the LIGHT-LS lexical simplification algo-
rithm of Glavaš and Štajner (2015) which makes
the word replacement decisions primarily based on
semantic similarities between words in a distribu-
tional vector space.8 For each word in the input
text LIGHT-LS retrieves most similar replacement
candidates from the vector space. The candidates
are then ranked according to several measures of
simplicity and fitness for the context. Finally, the
replacement is made if the top-ranked candidate is
estimated to be simpler than the original word. By
plugging-in vector spaces specialized by the ER
model into LIGHT-LS, we hope to generate true
synonymous candidates more frequently than with
the unspecialized distributional space.

Evaluation Setup. We evaluate LIGHT-LS on
the LS dataset crowdsourced by Horn et al. (2014).
For each indicated complex word Horn et al. (2014)
collected 50 manual simplifications. We use two
evaluation metrics from prior work (Horn et al.,
2014; Glavaš and Štajner, 2015) to quantify the
quality and frequency of word replacements: (1)

8The Light-LS implementation is available at:
https://bitbucket.org/gg42554/embesimp

GLOVE-CC FASTTEXT SGNS-W2

Emb. space A C A C A C

Distributional 66.0 94.0 57.8 84.0 56.0 79.1
Specialized
ATTRACT-REPEL 67.6 87.0 69.8 89.4 64.4 86.7
ER-CNT 73.8 93.0 71.2 93.2 68.4 92.3

Table 4: Lexical simplification performance with
explicit retrofitting applied on three input spaces.

accurracy (A) is the number of correct simplifica-
tions made (i.e., when the replacement made by
the system is found in the list of manual replace-
ments) divided by the total number of indicated
complex words; and (2) change (C) is the percent-
age of indicated complex words that were replaced
by the system (regardless of whether the replace-
ment was correct). We plug into LIGHT-LS both
unspecialized and specialized variants of three pre-
viously used English embedding spaces: GLOVE-
CC, FASTTEXT, and SGNS-W2. Additionally, we
again evaluate specializations of the same spaces
produced by the state-of-the-art local retrofitting
model ATTRACT-REPEL (Mrkšić et al., 2017).

Results and Analysis. The results with LIGHT-
LS are summarized in Table 4. ER-CNT
model yields considerable gains over unspecial-
ized spaces for both metrics. This suggests that the
ER-specialized embedding spaces allow LIGHT-
LS to generate true synonymous candidate replace-
ments more often than with unspecialized spaces,
and also verifies the importance of specialization
for the LS task. Our ER-CNT model now also
yields better results than ATTRACT-REPEL in a
real-world downstream task. Only 59.6 % of all
indicated complex words and manual replacement
candidates from the LS dataset are now covered by
the linguistic constraints. This accentuates the need
to specialize the full distributional space in down-
stream applications as done by the ER model, while
ATTRACT-REPEL is limited to local vector updates
only of words seen in the constraints. By learning
a global specialization function the proposed ER
models seem more resilient to the observed drop
in coverage of test words by linguistic constraints.
Table 5 shows example substitutions of LIGHT-LS
when using different embedding spaces: original
GLOVE-CC space and its specializations obtained
with ER-CNT and ATTRACT-REPEL.

5.3.2 Dialog State Tracking
Finally, we also evaluate the importance of explicit
retrofitting in a downstream language understand-
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Text GLOVE-CC ATTRACT-REPEL ER-CNT

Wrestlers portrayed a villain or a hero as they followed a series of events
that built tension

character protagonist demon

This large version number jump was due to a feeling that a version 1.0 with
no major missing pieces was imminent.

ones songs parts

The storm continued, crossing North Carolina , and retained its strength until
June 20 when it became extratropical near Newfoundland

lost preserved preserved

Tibooburra has an arid, desert climate with temperatures soaring above 40
Celsius in summer, often reaching as high as 47 degrees Celsius.

subtropical humid dry

Table 5: Examples of lexical simplifications performed with the Light-LS tool when using different
embedding spaces. The target word to be simplified is in bold.

GLOVE-CC embedding vectors JGA

Distributional (X) .797
Specialized (X′ = f(X))
ATTRACT-REPEL .817
ER-CNT .816

Table 6: DST performance of GLOVE-CC embed-
dings specialized using explicit retrofitting.

ing task, namely dialog state tracking (DST) (Hen-
derson et al., 2014; Williams et al., 2016). A DST
model is typically the first component of a dialog
system pipeline (Young, 2010), tasked with cap-
turing user’s goals and updating the dialog state
at each dialog turn. Similarly as in lexical simpli-
fication, discerning similarity from relatedness is
crucial in DST (e.g., a dialog system should not
recommend an “expensive pub in the south” when
asked for a “cheap bar in the east”).

Evaluation Setup. To evaluate the impact of spe-
cialized word vectors on DST, we employ the Neu-
ral Belief Tracker (NBT), a DST model that makes
inferences purely based on pre-trained word vec-
tors (Mrkšić et al., 2017).9 NBT composes word
embeddings into intermediate utterance and context
representations. For full model details, we refer the
reader to the original paper. Following prior work,
our DST evaluation is based on the Wizard-of-Oz
(WOZ) v2.0 dataset (Wen et al., 2017; Mrkšić et al.,
2017) which contains 1,200 dialogs (600 training,
200 validation, and 400 test dialogs). We evaluate
performance of the distributional and specialized
GLOVE-CC embeddings and report it in terms of
joint goal accuracy (JGA), a standard DST evalua-
tion metric. All reported results are averages over
5 runs of the NBT model.

Results. We show DST performance in Table 6.
The DST results tell a similar story like word simi-
larity and lexical simplification results – the ER

9https://github.com/nmrksic/neural-belief-tracker

model substantially improves over the distribu-
tional space. With linguistic specialization con-
straints covering 57% of words from the WOZ
dataset, ER model’s performance is on a par with
the ATTRACT-REPEL specialization. This further
confirms our hypothesis that the importance of
learning a global specialization for the full vocabu-
lary in downstream tasks grows with the drop of the
test word coverage by specialization constraints.

6 Conclusion

We presented a novel method for specializing word
embeddings to better discern similarity from other
types of semantic relatedness. Unlike existing
retrofitting models, which directly update vectors
of words from external constraints, we use the con-
straints as training examples to learn an explicit spe-
cialization function, implemented as a deep feed-
forward neural network. Our global specializa-
tion approach resolves the well-known inability of
retrofitting models to specialize vectors of words
unseen in the constraints. We demonstrated the
effectiveness of the proposed model on word sim-
ilarity benchmarks, and in two downstream tasks:
lexical simplification and dialog state tracking. We
also showed that it is possible to transfer the special-
ization to languages without linguistic constraints.

In future work, we will investigate explicit
retrofitting methods for asymmetric relations like
hypernymy and meronymy. We also intend to ap-
ply the method to other downstream tasks and to
investigate the zero-shot language transfer of the
specialization function for more language pairs.

ER code is publicly available at: https://
github.com/codogogo/explirefit.
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Ivan Vulić, Nikola Mrkšić, and Anna Korhonen. 2017a.
Cross-lingual induction and transfer of verb classes
based on word vector space specialisation. In Pro-
ceedings of EMNLP, pages 2536–2548.
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Abstract

Unsupervised neural machine translation
(NMT) is a recently proposed approach for
machine translation which aims to train
the model without using any labeled da-
ta. The models proposed for unsuper-
vised NMT often use only one shared en-
coder to map the pairs of sentences from
different languages to a shared-latent s-
pace, which is weak in keeping the u-
nique and internal characteristics of each
language, such as the style, terminology,
and sentence structure. To address this
issue, we introduce an extension by uti-
lizing two independent encoders but shar-
ing some partial weights which are re-
sponsible for extracting high-level repre-
sentations of the input sentences. Be-
sides, two different generative adversarial
networks (GANs), namely the local GAN
and global GAN, are proposed to enhance
the cross-language translation. With this
new approach, we achieve significant im-
provements on English-German, English-
French and Chinese-to-English translation
tasks.

1 Introduction

Neural machine translation (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014; Cho et al.,
2014; Bahdanau et al., 2014), directly applying a
single neural network to transform the source sen-
tence into the target sentence, has now reached im-
pressive performance (Shen et al., 2015; Wu et al.,
2016; Johnson et al., 2016; Gehring et al., 2017;
Vaswani et al., 2017). The NMT typically consist-
s of two sub neural networks. The encoder net-
work reads and encodes the source sentence into a

1Feng Wang is the corresponding author of this paper

context vector, and the decoder network generates
the target sentence iteratively based on the contex-
t vector. NMT can be studied in supervised and
unsupervised learning settings. In the supervised
setting, bilingual corpora is available for training
the NMT model. In the unsupervised setting, we
only have two independent monolingual corpora
with one for each language and there is no bilin-
gual training example to provide alignment infor-
mation for the two languages. Due to lack of align-
ment information, the unsupervised NMT is con-
sidered more challenging. However, this task is
very promising, since the monolingual corpora is
usually easy to be collected.

Motivated by recent success in unsupervised
cross-lingual embeddings (Artetxe et al., 2016;
Zhang et al., 2017b; Conneau et al., 2017), the
models proposed for unsupervised NMT often as-
sume that a pair of sentences from two different
languages can be mapped to a same latent repre-
sentation in a shared-latent space (Lample et al.,
2017; Artetxe et al., 2017b). Following this as-
sumption, Lample et al. (2017) use a single en-
coder and a single decoder for both the source and
target languages. The encoder and decoder, act-
ing as a standard auto-encoder (AE), are trained to
reconstruct the inputs. And Artetxe et al. (2017b)
utilize a shared encoder but two independent de-
coders. With some good performance, they share
a glaring defect, i.e., only one encoder is shared
by the source and target languages. Although
the shared encoder is vital for mapping sentences
from different languages into the shared-latent s-
pace, it is weak in keeping the uniqueness and
internal characteristics of each language, such as
the style, terminology and sentence structure. S-
ince each language has its own characteristics, the
source and target languages should be encoded
and learned independently. Therefore, we conjec-
ture that the shared encoder may be a factor limit-
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ing the potential translation performance.
In order to address this issue, we extend the

encoder-shared model, i.e., the model with one
shared encoder, by leveraging two independent en-
coders with each for one language. Similarly, t-
wo independent decoders are utilized. For each
language, the encoder and its corresponding de-
coder perform an AE, where the encoder gener-
ates the latent representations from the perturbed
input sentences and the decoder reconstructs the
sentences from the latent representations. To map
the latent representations from different languages
to a shared-latent space, we propose the weight-
sharing constraint to the two AEs. Specifically,
we share the weights of the last few layers of two
encoders that are responsible for extracting high-
level representations of input sentences. Similar-
ly, we share the weights of the first few layer-
s of two decoders. To enforce the shared-latent
space, the word embeddings are used as a rein-
forced encoding component in our encoders. For
cross-language translation, we utilize the back-
translation following (Lample et al., 2017). Ad-
ditionally, two different generative adversarial net-
works (GAN) (Yang et al., 2017), namely the local
and global GAN, are proposed to further improve
the cross-language translation. We utilize the local
GAN to constrain the source and target latent rep-
resentations to have the same distribution, where-
by the encoder tries to fool a local discriminator
which is simultaneously trained to distinguish the
language of a given latent representation. We ap-
ply the global GAN to finetune the corresponding
generator, i.e., the composition of the encoder and
decoder of the other language, where a global dis-
criminator is leveraged to guide the training of the
generator by assessing how far the generated sen-
tence is from the true data distribution 1. In sum-
mary, we mainly make the following contribution-
s:

• We propose the weight-sharing constraint to
unsupervised NMT, enabling the model to u-
tilize an independent encoder for each lan-
guage. To enforce the shared-latent space, we
also propose the embedding-reinforced en-
coders and two different GANs for our mod-
el.

• We conduct extensive experiments on
1The code that we utilized to train

and evaluate our models can be found at
https://github.com/ZhenYangIACAS/unsupervised-NMT

English-German, English-French and
Chinese-to-English translation tasks. Ex-
perimental results show that the proposed
approach consistently achieves great success.

• Last but not least, we introduce the direction-
al self-attention to model temporal order in-
formation for the proposed model. Exper-
imental results reveal that it deserves more
efforts for researchers to investigate the tem-
poral order information within self-attention
layers of NMT.

2 Related Work

Several approaches have been proposed to train N-
MT models without direct parallel corpora. The
scenario that has been widely investigated is one
where two languages have little parallel data be-
tween them but are well connected by one pivot
language. The most typical approach in this sce-
nario is to independently translate from the source
language to the pivot language and from the piv-
ot language to the target language (Saha et al.,
2016; Cheng et al., 2017). To improve the transla-
tion performance, Johnson et al. (2016) propose a
multilingual extension of a standard NMT model
and they achieve substantial improvement for lan-
guage pairs without direct parallel training data.

Recently, motivated by the success of cross-
lingual embeddings, researchers begin to show in-
terests in exploring the more ambitious scenario
where an NMT model is trained from monolingual
corpora only. Lample et al. (2017) and Artetxe
et al. (2017b) simultaneously propose an approach
for this scenario, which is based on pre-trained
cross lingual embeddings. Lample et al. (2017)
utilizes a single encoder and a single decoder for
both languages. The entire system is trained to
reconstruct its perturbed input. For cross-lingual
translation, they incorporate back-translation into
the training procedure. Different from (Lample
et al., 2017), Artetxe et al. (2017b) use two in-
dependent decoders with each for one language.
The two works mentioned above both use a sin-
gle shared encoder to guarantee the shared latent
space. However, a concomitant defect is that the
shared encoder is weak in keeping the uniqueness
of each language. Our work also belongs to this
more ambitious scenario, and to the best of our
knowledge, we are one among the first endeav-
ors to investigate how to train an NMT model with
monolingual corpora only.
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Figure 1: The architecture of the proposed model. We implement the shared-latent space assumption
using a weight sharing constraint where the connection of the last few layers in Encs and Enct are
tied (illustrated with dashed lines) and the connection of the first few layers in Decs and Dect are
tied. x̃Encs−Decs

s and x̃Enct−Dect
t are self-reconstructed sentences in each language. x̃Encs−Dect

s is
the translated sentence from source to target and x̃Enct−Decs

t is the translation in reversed direction.
Dl is utilized to assess whether the hidden representation of the encoder is from the source or target
language. Dg1 and Dg2 are used to evaluate whether the translated sentences are realistic for each
language respectively. Z represents the shared-latent space.

3 The Approach

3.1 Model Architecture
The model architecture, as illustrated in figure 1,
is based on the AE and GAN. It consists of sev-
en sub networks: including two encoders Encs

and Enct, two decoders Decs and Dect, the lo-
cal discriminator Dl, and the global discriminators
Dg1 and Dg2. For the encoder and decoder, we
follow the newly emerged Transformer (Vaswani
et al., 2017). Specifically, the encoder is com-
posed of a stack of four identical layers 2. Each
layer consists of a multi-head self-attention and a
simple position-wise fully connected feed-forward
network. The decoder is also composed of four i-
dentical layers. In addition to the two sub-layers in
each encoder layer, the decoder inserts a third sub-
layer, which performs multi-head attention over
the output of the encoder stack. For more details
about the multi-head self-attention layer, we refer
the reader to (Vaswani et al., 2017). We implement
the local discriminator as a multi-layer perceptron
and implement the global discriminator based on
the convolutional neural network (CNN). Several
ways exist to interpret the roles of the sub network-
s are summarised in table 1. The proposed system
has several striking components , which are criti-
cal either for the system to be trained in an unsu-

2The layer number is selected according to our prelimi-
nary experiment, which is presented in appendix ??.

pervised manner or for improving the translation
performance.

Networks Roles

{Encs, Decs} AE for source language
{Enct, Dect} AE for target language
{Encs, Dect} translation source → target
{Enct, Decs} translation target → source
{Encs, Dl} 1st local GAN (GANl1)
{Enct, Dl} 2nd local GAN (GANl2)

{Enct, Decs, Dg1} 1st global GAN (GANg1)
{Encs, Dect, Dg2} 2nd global GAN (GANg2)

Table 1: Interpretation of the roles for the subnet-
works in the proposed system.

Directional self-attention Compared to recur-
rent neural network, a disadvantage of the simple
self-attention mechanism is that the temporal or-
der information is lost. Although the Transformer
applies the positional encoding to the sequence be-
fore processed by the self-attention, how to mod-
el temporal order information within an attention
is still an open question. Following (Shen et al.,
2017), we build the encoders in our model on the
directional self-attention which utilizes the posi-
tional masks to encode temporal order information
into attention output. More concretely, two posi-
tional masks, namely the forward mask Mf and
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backward mask M b, are calculated as:

Mf
ij =

{
0 i < j

−∞ otherwise
(1)

M b
ij =

{
0 i > j

−∞ otherwise
(2)

With the forward mask Mf , the later token on-
ly makes attention connections to the early token-
s in the sequence, and vice versa with the back-
ward mask. Similar to (Zhou et al., 2016; Wang
et al., 2017), we utilize a self-attention network
to process the input sequence in forward direc-
tion. The output of this layer is taken by an upper
self-attention network as input, processed in the
reverse direction.

Weight sharing Based on the shared-latent s-
pace assumption, we apply the weight sharing
constraint to relate the two AEs. Specifically, we
share the weights of the last few layers of the Encs

and Enct, which are responsible for extracting
high-level representations of the input sentences.
Similarly, we also share the first few layers of
the Decs and Dect, which are expected to decode
high-level representations that are vital for recon-
structing the input sentences. Compared to (Cheng
et al., 2016; Saha et al., 2016) which use the fully
shared encoder, we only share partial weights for
the encoders and decoders. In the proposed mod-
el, the independent weights of the two encoders
are expected to learn and encode the hidden fea-
tures about the internal characteristics of each lan-
guage, such as the terminology, style, and sentence
structure. The shared weights are utilized to map
the hidden features extracted by the independent
weights to the shared-latent space.

Embedding reinforced encoder We use pre-
trained cross-lingual embeddings in the encoder-
s that are kept fixed during training. And the
fixed embeddings are used as a reinforced encod-
ing component in our encoder. Formally, giv-
en the input sequence embedding vectors E =
{e1, . . . , et} and the initial output sequence of the
encoder stack H = {h1, . . . , ht}, we compute Hr

as:
Hr = g � H + (1 − g) � E (3)

where Hr is the final output sequence of the en-
coder which will be attended by the decoder (In
Transformer, H is the final output of the encoder),
g is a gate unit and computed as:

g = σ(W1E + W2H + b) (4)

where W1, W2 and b are trainable parameters
and they are shared by the two encoders. The
motivation behind is twofold. Firstly, taking the
fixed cross-lingual embedding as the other encod-
ing component is helpful to reinforce the shared-
latent space. Additionally, from the point of multi-
channel encoders (Xiong et al., 2017), provid-
ing encoding components with different levels of
composition enables the decoder to take pieces of
source sentence at varying composition levels suit-
ing its own linguistic structure.

3.2 Unsupervised Training
Based on the architecture proposed above, we train
the NMT model with the monolingual corpora on-
ly using the following four strategies:

Denoising auto-encoding Firstly, we train the
two AEs to reconstruct their inputs respective-
ly. In this form, each encoder should learn to
compose the embeddings of its corresponding lan-
guage and each decoder is expected to learn to de-
compose this representation into its corresponding
language. Nevertheless, without any constraint,
the AE quickly learns to merely copy every word
one by one, without capturing any internal struc-
ture of the language involved. To address this
problem, we utilize the same strategy of denois-
ing AE (Vincent et al., 2008) and add some noise
to the input sentences (Hill et al., 2016; Artetxe
et al., 2017b). To this end, we shuffle the input
sentences randomly. Specifically, we apply a ran-
dom permutation ε to the input sentence, verifying
the condition:

|ε(i) − i| ≤ min(k([
steps

s
] + 1), n), ∀i ∈ {1, n}

(5)
where n is the length of the input sentence, steps
is the global steps the model has been updated, k
and s are the tunable parameters which can be set
by users beforehand. This way, the system needs
to learn some useful structure of the involved lan-
guages to be able to recover the correct word order.
In practice, we set k = 2 and s = 100000.

Back-translation In spite of denoising auto-
encoding, the training procedure still involves a s-
ingle language at each time, without considering
our final goal of mapping an input sentence from
the source/target language to the target/source lan-
guage. For the cross language training, we uti-
lize the back-translation approach for our unsu-
pervised training procedure. Back-translation has
shown its great effectiveness on improving NMT
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model with monolingual data and has been wide-
ly investigated by (Sennrich et al., 2015a; Zhang
and Zong, 2016). In our approach, given an input
sentence in a given language, we apply the cor-
responding encoder and the decoder of the other
language to translate it to the other language 3.
By combining the translation with its original sen-
tence, we get a pseudo-parallel corpus which is u-
tilized to train the model to reconstruct the original
sentence from its translation.

Local GAN Although the weight sharing con-
straint is vital for the shared-latent space assump-
tion, it alone does not guarantee that the corre-
sponding sentences in two languages will have the
same or similar latent code. To further enforce
the shared-latent space, we train a discriminative
neural network, referred to as the local discrimi-
nator, to classify between the encoding of source
sentences and the encoding of target sentences.
The local discriminator, implemented as a multi-
layer perceptron with two hidden layers of size
256, takes the output of the encoder, i.e., Hr calcu-
lated as equation 3, as input, and produces a bina-
ry prediction about the language of the input sen-
tence. The local discriminator is trained to predict
the language by minimizing the following cross-
entropy loss:

LDl
(θDl

) =

− Ex∈xs [log p(f = s|Encs(x))]

− Ex∈xt [log p(f = t|Enct(x))]

(6)

where θDl
represents the parameters of the local

discriminator and f ∈ {s, t}. The encoders are
trained to fool the local discriminator:

LEncs(θEncs) =

− Ex∈xs [log p(f = t|Encs(x))]
(7)

LEnct(θEnct) =

− Ex∈xt [log p(f = s|Enct(x))]
(8)

where θEncs and θEnct are the parameters of the
two encoders.

Global GAN We apply the global GANs to fine
tune the whole model so that the model is able to
generate sentences undistinguishable from the true
data, i.e., sentences in the training corpus. Differ-
ent from the local GANs which updates the param-
eters of the encoders locally, the global GANs are

3Since the quality of the translation shows little effect on
the performance of the model (Sennrich et al., 2015a), we
simply use greedy decoding for speed.

utilized to update the whole parameters of the pro-
posed model, including the parameters of encoder-
s and decoders. The proposed model has two glob-
al GANs: GANg1 and GANg2. In GANg1, the
Enct and Decs act as the generator, which gener-
ates the sentence x̃t

4 from xt. The Dg1, imple-
mented based on CNN, assesses whether the gen-
erated sentence x̃t is the true target-language sen-
tence or the generated sentence. The global dis-
criminator aims to distinguish among the true sen-
tences and generated sentences, and it is trained
to minimize its classification error rate. During
training, the Dg1 feeds back its assessment to fine-
tune the encoder Enct and decoder Decs. S-
ince the machine translation is a sequence gener-
ation problem, following (Yang et al., 2017), we
leverage policy gradient reinforcement training to
back-propagate the assessment. We apply a simi-
lar processing to GANg2 (The details about the ar-
chitecture of the global discriminator and the train-
ing procedure of the global GANs can be seen in
appendix ?? and ??).

There are two stages in the proposed unsuper-
vised training. In the first stage, we train the pro-
posed model with denoising auto-encoding, back-
translation and the local GANs, until no improve-
ment is achieved on the development set. Specif-
ically, we perform one batch of denoising auto-
encoding for the source and target languages, one
batch of back-translation for the two languages,
and another batch of local GAN for the two lan-
guages. In the second stage, we fine tune the pro-
posed model with the global GANs.

4 Experiments and Results

We evaluate the proposed approach on English-
German, English-French and Chinese-to-English
translation tasks 5. We firstly describe the dataset-
s, pre-processing and model hyper-parameters we
used, then we introduce the baseline systems, and
finally we present our experimental results.

4.1 Data Sets and Preprocessing

In English-German and English-French transla-
tion, we make our experiments comparable with
previous work by using the datasets from the

4The x̃t is x̃Enct−Decs
t in figure 1. We omit the super-

script for simplicity.
5The reason that we do not conduct experiments on

English-to-Chinese translation is that we do not get public
test sets for English-to-Chinese.
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WMT 2014 and WMT 2016 shared tasks respec-
tively. For Chinese-to-English translation, we use
the datasets from LDC, which has been widely u-
tilized by previous works (Tu et al., 2017; Zhang
et al., 2017a).

WMT14 English-French Similar to (Lample
et al., 2017), we use the full training set of 36M
sentence pairs and we lower-case them and re-
move sentences longer than 50 words, resulting
in a parallel corpus of about 30M pairs of sen-
tences. To guarantee no exact correspondence be-
tween the source and target monolingual sets, we
build monolingual corpora by selecting English
sentences from 15M random pairs, and selecting
the French sentences from the complementary set.
Sentences are encoded with byte-pair encoding
(Sennrich et al., 2015b), which has an English vo-
cabulary of about 32000 tokens, and French vo-
cabulary of about 33000 tokens. We report results
on newstest2014.

WMT16 English-German We follow the same
procedure mentioned above to create monolingual
training corpora for English-German translation,
and we get two monolingual training data of 1.8M
sentences each. The two languages share a vocab-
ulary of about 32000 tokens. We report results on
newstest2016.

LDC Chinese-English For Chinese-to-English
translation, our training data consists of 1.6M sen-
tence pairs randomly extracted from LDC corpora
6. Since the data set is not big enough, we just
build the monolingual data set by randomly shuf-
fling the Chinese and English sentences respec-
tively. In spite of the fact that some correspon-
dence between examples in these two monolingual
sets may exist, we never utilize this alignment in-
formation in our training procedure (see Section
3.2). Both the Chinese and English sentences are
encoded with byte-pair encoding. We get an En-
glish vocabulary of about 34000 tokens, and Chi-
nese vocabulary of about 38000 tokens. The re-
sults are reported on NIST02.

Since the proposed system relies on the pre-
trained cross-lingual embeddings, we utilize the
monolingual corpora described above to train the
embeddings for each language independently by
using word2vec (Mikolov et al., 2013). We then
apply the public implementation 7 of the method
proposed by (Artetxe et al., 2017a) to map these

6LDC2002L27, LDC2002T01, LDC2002E18, LD-
C2003E07, LDC2004T08, LDC2004E12, LDC2005T10

7https://github.com/artetxem/vecmap

embeddings to a shared-latent space 8.

4.2 Model Hyper-parameters and Evaluation

Following the base model in (Vaswani et al.,
2017), we set the dimension of word embedding
as 512, dropout rate as 0.1 and the head number
as 8. We use beam search with a beam size of 4
and length penalty α = 0.6. The model is im-
plemented in TensorFlow (Abadi et al., 2015) and
trained on up to four K80 GPUs synchronously in
a multi-GPU setup on a single machine.

For model selection, we stop training when the
model achieves no improvement for the tenth e-
valuation on the development set, which is com-
prised of 3000 source and target sentences extract-
ed randomly from the monolingual training cor-
pora. Following (Lample et al., 2017), we trans-
late the source sentences to the target language,
and then translate the resulting sentences back to
the source language. The quality of the model
is then evaluated by computing the BLEU score
over the original inputs and their reconstruction-
s via this two-step translation process. The per-
formance is finally averaged over two direction-
s, i.e., from source to target and from target to
source. BLEU (Papineni et al., 2002) is utilized
as the evaluation metric. For Chinese-to-English,
we apply the script mteval-v11b.pl to evaluate the
translation performance. For English-German and
English-French, we evaluate the translation per-
formance with the script multi-belu.pl 9.

4.3 Baseline Systems

Word-by-word translation (WBW) The first
baseline we consider is a system that perform-
s word-by-word translations using the inferred
bilingual dictionary. Specifically, it translates a
sentence word-by-word, replacing each word with
its nearest neighbor in the other language.

Lample et al. (2017) The second baseline is a
previous work that uses the same training and test-
ing sets with this paper. Their model belongs to the
standard attention-based encoder-decoder frame-
work, which implements the encoder using a bidi-
rectional long short term memory network (LST-
M) and implements the decoder using a simple for-
ward LSTM. They apply one single encoder and

8The configuration we used to run these open-source
toolkits can be found in appendix ??

9https://github.com/moses-
smt/mosesdecoder/blob/617e8c8/scripts/generic/multi-
bleu.perl;mteval-v11b.pl
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en-de de-en en-fr fr-en zh-en

Supervised 24.07 26.99 30.50 30.21 40.02
Word-by-word 5.85 9.34 3.60 6.80 5.09

Lample et al. (2017) 9.64 13.33 15.05 14.31 -

The proposed approach 10.86 14.62 16.97 15.58 14.52

Table 2: The translation performance on English-German, English-French and Chinese-to-English test
sets. The results of (Lample et al., 2017) are copied directly from their paper. We do not present the
results of (Artetxe et al., 2017b) since we use different training sets.

decoder for the source and target languages.
Supervised training We finally consider exact-

ly the same model as ours, but trained using the
standard cross-entropy loss on the original parallel
sentences. This model can be viewed as an upper
bound for the proposed unsupervised model.

4.4 Results and Analysis

4.4.1 Number of weight-sharing layers
We firstly investigate how the number of weight-
sharing layers affects the translation performance.
In this experiment, we vary the number of weight-
sharing layers in the AEs from 0 to 4. Shar-
ing one layer in AEs means sharing one lay-
er for the encoders and in the meanwhile, shar-
ing one layer for the decoders. The BLEU s-
cores of English-to-German, English-to-French
and Chinese-to-English translation tasks are re-
ported in figure 2. Each curve corresponds to a
different translation task and the x-axis denotes
the number of weight-sharing layers for the AEs.
We find that the number of weight-sharing layers
shows much effect on the translation performance.
And the best translation performance is achieved
when only one layer is shared in our system. When
all of the four layers are shared, i.e., only one
shared encoder is utilized, we get poor translation
performance in all of the three translation tasks.
This verifies our conjecture that the shared en-
coder is detrimental to the performance of unsu-
pervised NMT especially for the translation tasks
on distant language pairs. More concretely, for the
related language pair translation, i.e., English-to-
French, the encoder-shared model achieves -0.53
BLEU points decline than the best model where
only one layer is shared. For the more distant lan-
guage pair English-to-German, the encoder-shared
model achieves more significant decline, i.e., -0.85
BLEU points decline. And for the most distan-
t language pair Chinese-to-English, the decline is

as large as -1.66 BLEU points. We explain this as
that the more distant the language pair is, the more
different characteristics they have. And the shared
encoder is weak in keeping the unique characteris-
tic of each language. Additionally, we also notice
that using two completely independent encoders,
i.e., setting the number of weight-sharing layers
as 0, results in poor translation performance too.
This confirms our intuition that the shared layers
are vital to map the source and target latent rep-
resentations to a shared-latent space. In the rest
of our experiments, we set the number of weight-
sharing layer as 1.
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Figure 2: The effects of the weight-sharing layer
number on English-to-German, English-to-French
and Chinese-to-English translation tasks.

4.4.2 Translation results
Table 2 shows the BLEU scores on English-
German, English-French and English-to-Chinese
test sets. As it can be seen, the proposed ap-
proach obtains significant improvements than the
word-by-word baseline system, with at least +5.01
BLEU points in English-to-German translation
and up to +13.37 BLEU points in English-to-
French translation. This shows that the proposed
model only trained with monolingual data effec-
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en-de de-en en-fr fr-en zh-en

Without weight sharing 10.23 13.84 16.02 14.82 13.75
Without embedding-reinforced encoder 10.45 14.17 16.55 15.27 14.10

Without directional self-attention 10.60 14.21 16.82 15.30 14.29
Without local GANs 10.51 14.35 16.40 15.07 14.12

Without Global GANs 10.34 14.05 16.19 15.21 14.09
Full model 10.86 14.62 16.97 15.58 14.52

Table 3: Ablation study on English-German, English-French and Chinese-to-English translation tasks.
Without weight sharing means no layers are shared in the two AEs.

tively learns to use the context information and
the internal structure of each language. Compared
to the work of (Lample et al., 2017), our mod-
el also achieves up to +1.92 BLEU points im-
provement on English-to-French translation task.
We believe that the unsupervised NMT is very
promising. However, there is still a large room
for improvement compared to the supervised up-
per bound. The gap between the supervised and
unsupervised model is as large as 12.3-25.5 BLEU
points depending on the language pair and transla-
tion direction.

4.4.3 Ablation study
To understand the importance of different com-
ponents of the proposed system, we perform an
ablation study by training multiple versions of
our model with some missing components: the
local GANs, the global GANs, the directional
self-attention, the weight-sharing, the embedding-
reinforced encoders, etc. Results are reported in
table 3. We do not test the the importance of
the auto-encoding, back-translation and the pre-
trained embeddings because they have been wide-
ly tested in (Lample et al., 2017; Artetxe et al.,
2017b). Table 3 shows that the best performance is
obtained with the simultaneous use of all the test-
ed elements. The most critical component is the
weight-sharing constraint, which is vital to map
sentences of different languages to the shared-
latent space. The embedding-reinforced encoder
also brings some improvement on all of the trans-
lation tasks. When we remove the directional self-
attention, we get up to -0.3 BLEU points decline.
This indicates that it deserves more efforts to in-
vestigate the temporal order information in self-
attention mechanism. The GANs also significant-
ly improve the translation performance of our sys-
tem. Specifically, the global GANs achieve im-
provement up to +0.78 BLEU points on English-

to-French translation and the local GANs also ob-
tain improvement up to +0.57 BLEU points on
English-to-French translation. This reveals that
the proposed model benefits a lot from the cross-
domain loss defined by GANs.

5 Conclusion and Future work

The models proposed recently for unsupervised N-
MT use a single encoder to map sentences from
different languages to a shared-latent space. We
conjecture that the shared encoder is problem-
atic for keeping the unique and inherent char-
acteristic of each language. In this paper, we
propose the weight-sharing constraint in unsuper-
vised NMT to address this issue. To enhance the
cross-language translation performance, we also
propose the embedding-reinforced encoders, local
GAN and global GAN into the proposed system.
Additionally, the directional self-attention is intro-
duced to model the temporal order information for
our system.

We test the proposed model on English-
German, English-French and Chinese-to-English
translation tasks. The experimental results reveal
that our approach achieves significant improve-
ment and verify our conjecture that the shared en-
coder is really a bottleneck for improving the un-
supervised NMT. The ablation study shows that
each component of our system achieves some im-
provement for the final translation performance.

Unsupervised NMT opens exciting opportuni-
ties for the future research. However, there is
still a large room for improvement compared to
the supervised NMT. In the future, we would like
to investigate how to utilize the monolingual da-
ta more effectively, such as incorporating the lan-
guage model and syntactic information into unsu-
pervised NMT. Besides, we decide to make more
efforts to explore how to reinforce the temporal or-
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der information for the proposed model.
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Abstract

Neural Machine Translation (NMT) per-
forms poor on the low-resource language
pair (X,Z), especially when Z is a rare
language. By introducing another rich
language Y , we propose a novel trian-
gular training architecture (TA-NMT) to
leverage bilingual data (Y,Z) (may be
small) and (X,Y ) (can be rich) to im-
prove the translation performance of low-
resource pairs. In this triangular archi-
tecture, Z is taken as the intermediate la-
tent variable, and translation models of Z
are jointly optimized with a unified bidi-
rectional EM algorithm under the goal of
maximizing the translation likelihood of
(X,Y ). Empirical results demonstrate
that our method significantly improves the
translation quality of rare languages on
MultiUN and IWSLT2012 datasets, and
achieves even better performance combin-
ing back-translation methods.

1 Introduction

In recent years, Neural Machine Translation
(NMT) (Kalchbrenner and Blunsom, 2013;
Sutskever et al., 2014; Bahdanau et al., 2014)
has achieved remarkable performance on many
translation tasks (Jean et al., 2015; Sennrich
et al., 2016; Wu et al., 2016; Sennrich et al.,
2017). Being an end-to-end architecture, an NMT
system first encodes the input sentence into a
sequence of real vectors, based on which the
decoder generates the target sequence word by
word with the attention mechanism (Bahdanau
et al., 2014; Luong et al., 2015). During training,
NMT systems are optimized to maximize the
translation probability of a given language pair

∗Contribution during internship at MSRA.

with the Maximum Likelihood Estimation (MLE)
method, which requires large bilingual data to
fit the large parameter space. Without adequate
data, which is common especially when it comes
to a rare language, NMT usually falls short on
low-resource language pairs (Zoph et al., 2016).

In order to deal with the data sparsity problem
for NMT, exploiting monolingual data (Sennrich
et al., 2015; Zhang and Zong, 2016; Cheng et al.,
2016; Zhang et al., 2018; He et al., 2016) is the
most common method. With monolingual data,
the back-translation method (Sennrich et al., 2015)
generates pseudo bilingual sentences with a target-
to-source translation model to train the source-to-
target one. By extending back-translation, source-
to-target and target-to-source translation models
can be jointly trained and boost each other (Cheng
et al., 2016; Zhang et al., 2018). Similar to joint
training (Cheng et al., 2016; Zhang et al., 2018),
dual learning (He et al., 2016) designs a reinforce-
ment learning framework to better capitalize on
monolingual data and jointly train two models.

Instead of leveraging monolingual data (X
or Z) to enrich the low-resource bilingual pair
(X,Z), in this paper, we are motivated to intro-
duce another rich language Y , by which addi-
tionally acquired bilingual data (Y,Z) and (X,Y )
can be exploited to improve the translation per-
formance of (X,Z). This requirement is easy to
satisfy, especially when Z is a rare language but
X is not. Under this scenario, (X,Y ) can be
a rich-resource pair and provide much bilingual
data, while (Y,Z) would also be a low-resource
pair mostly because Z is rare. For example, in the
dataset IWSLT2012, there are only 112.6K bilin-
gual sentence pairs of English-Hebrew, since He-
brew is a rare language. If French is introduced
as the third language, we can have another low-
resource bilingual data of French-Hebrew (116.3K
sentence pairs), and easily-acquired bilingual data
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of the rich-resource pair English-French.

Figure 1: Triangular architecture for rare language
translation. The solid lines mean rich-resource and
the dash lines mean low-resource. X , Y and Z are
three different languages.

With the introduced rich language Y , in this
paper, we propose a novel triangular architec-
ture (TA-NMT) to exploit the additional bilingual
data of (Y, Z) and (X,Y ), in order to get better
translation performance on the low-resource pair
(X,Z), as shown in Figure 1. In this architec-
ture, (Y,Z) is used for training another translation
model to score the translation model of (X,Z),
while (X,Y ) is used to provide large bilingual
data with favorable alignment information.

Under the motivation to exploit the rich-
resource pair (X,Y ), instead of modeling X ⇒
Z directly, our method starts from modeling the
translation task X ⇒ Y while taking Z as a la-
tent variable. Then, we decompose X ⇒ Y
into two phases for training two translation mod-
els of low-resource pairs ((X,Z) and (Y,Z)) re-
spectively. The first translation model generates a
sequence in the hidden space of Z from X , based
on which the second one generates the translation
in Y . These two models can be optimized jointly
with an Expectation Maximization (EM) frame-
work with the goal of maximizing the translation
probability p(y|x). In this framework, the two
models can boost each other by generating pseudo
bilingual data for model training with the weights
scored from the other. By reversing the transla-
tion direction of X ⇒ Y , our method can be
used to train another two translation models p(z|y)
and p(x|z). Therefore, the four translation mod-
els (p(z|x), p(x|z), p(z|y) and p(y|z)) of the rare
language Z can be optimized jointly with our pro-
posed unified bidirectional EM algorithm.

Experimental results on the MultiUN and
IWSLT2012 datasets demonstrate that our method
can achieve significant improvements for rare
languages translation. By incorporating back-
translation (a method leveraging more monolin-
gual data) into our method, TA-NMT can achieve
even further improvements.

Our contributions are listed as follows:

• We propose a novel triangular training archi-
tecture (TA-NMT) to effectively tackle the
data sparsity problem for rare languages in
NMT with an EM framework.

• Our method can exploit two additional bilin-
gual datasets at both the model and data lev-
els by introducing another rich language.

• Our method is a unified bidirectional EM al-
gorithm, in which four translation models on
two low-resource pairs are trained jointly and
boost each other.

2 Method

As shown in Figure 1, our method tries to lever-
age (X,Y ) (a rich-resource pair) and (Y, Z) to im-
prove the translation performance of low-resource
pair (X,Z), during which translation models of
(X,Z) and (Y, Z) can be improved jointly.

Instead of directly modeling the translation
probabilities of low-resource pairs, we model the
rich-resource pair translation X ⇒ Y , with the
language Z acting as a bridge to connect X and
Y . We decompose X ⇒ Y into two phases for
training two translation models. The first model
p(z|x) generates the latent translation in Z from
the input sentence in X , based on which the sec-
ond one p(y|z) generate the final translation in lan-
guage Y . Following the standard EM procedure
(Borman, 2004) and Jensen’s inequality, we derive
the lower bound of p(y|x) over the whole training
data D as follows:

L(Θ;D)

=
∑

(x,y)∈D
log p(y|x)

=
∑

(x,y)∈D
log
∑

z

p(z|x)p(y|z)

=
∑

(x,y)∈D
log
∑

z

Q(z)
p(z|x)p(y|z)

Q(z)

≥
∑

(x,y)∈D

∑

z

Q(z) log
p(z|x)p(y|z)

Q(z)

.
= L(Q)

(1)

where Θ is the model parameters set of p(z|x) and
p(y|z), and Q(z) is an arbitrary posterior distri-
bution of z. We denote the lower-bound in the last
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but one line as L(Q). Note that we use an approxi-
mation that p(y|x, z) ≈ p(y|z) due to the semantic
equivalence of parallel sentences x and y.

In the following subsections, we will first pro-
pose our EM method in subsection 2.1 based on
the lower-bound derived above. Next, we will
extend our method to two directions and give
our unified bidirectional EM training in subsec-
tion 2.2. Then, in subsection 2.3, we will discuss
more training details of our method and present
our algorithm in the form of pseudo codes.

2.1 EM Training

To maximize L(Θ;D), the EM algorithm can be
leveraged to maximize its lower bound L(Q). In
the E-step, we calculate the expectation of the
variable z using current estimate for the model,
namely find the posterior distribution Q(z). In
the M-step, with the expectation Q(z), we max-
imize the lower bound L(Q). Note that condi-
tioned on the observed data and current model, the
calculation of Q(z) is intractable, so we choose
Q(z) = p(z|x) approximately.

M-step: In the M-step, we maximize the lower
bound L(Q) w.r.t model parameters given Q(z).
By substituting Q(z) = p(z|x) into L(Q), we can
get the M-step as follows:

Θy|z = arg max
Θy|z

L(Q)

= arg max
Θy|z

∑

(x,y)∈D

∑

z

p(z|x) log p(y|z)

= arg max
Θy|z

∑

(x,y)∈D
Ez∼p(z|x) log p(y|z)

(2)
E-step: The approximate choice ofQ(z) brings

in a gap between L(Q) and L(Θ;D), which can
be minimized in the E-step with Generalized EM
method (McLachlan and Krishnan, 2007). Ac-
cording to Bishop (2006), we can write this gap
explicitly as follows:

L(Θ;D)− L(Q) =
∑

z

Q(z) log
Q(z)

p(z|y)

= KL(Q(z)||p(z|y))

= KL(p(z|x)||p(z|y))

(3)

where KL(·) is the KullbackLeibler divergence,
and the approximation that p(z|x, y) ≈ p(z|y) is
also used above.

In the E-step, we minimize the gap between
L(Q) and L(Θ;D) as follows:

Θz|x = arg min
Θz|x

KL(p(z|x)||p(z|y)) (4)

To sum it up, the E-step optimizes the model
p(z|x) by minimizing the gap between L(Q) and
L(Θ;D) to get a better lower bound L(Q). This
lower bound is then maximized in the M-step to
optimize the model p(y|z). Given the new model
p(y|z), the E-step tries to optimize p(z|x) again
to find a new lower bound, with which the M-step
is re-performed. This iteration process continues
until the models converge, which is guaranteed by
the convergence of the EM algorithm.

2.2 Unified Bidirectional Training
The model p(z|y) is used as an approximation of
p(z|x, y) in the E-step optimization (Equation 3).
Due to the low resource property of the language
pair (Y, Z), p(z|y) cannot be well trained. To
solve this problem, we can jointly optimize p(x|z)
and p(z|y) similarly by maximizing the reverse
translation probability p(x|y).

We now give our unified bidirectional general-
ized EM procedures as follows:

• Direction of X ⇒ Y

E: Optimize Θz|x.

arg min
Θz|x

KL(p(z|x)||p(z|y)) (5)

M: Optimize Θy|z .

arg max
Θy|z

∑

(x,y)∈D
Ez∼p(z|x) log p(y|z) (6)

• Direction of Y ⇒ X

E: Optimize Θz|y.

arg min
Θz|y

KL(p(z|y)||p(z|x)) (7)

M: Optimize Θx|z .

arg max
Θx|z

∑

(x,y)∈D
Ez∼p(z|y) log p(x|z) (8)

Based on the above derivation, the whole archi-
tecture of our method can be illustrated in Fig-
ure 2, where the dash arrows denote the direction
of p(y|x), in which p(z|x) and p(y|z) are trained
jointly with the help of p(z|y), while the solid ones
denote the direction of p(x|y), in which p(z|y) and
p(x|z) are trained jointly with the help of p(z|x).
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Figure 2: Triangular Learning Architecture for
Low-Resource NMT

2.3 Training Details
A major difficulty in our unified bidirectional
training is the exponential search space of the
translation candidates, which could be addressed
by either sampling (Shen et al., 2015; Cheng et al.,
2016) or mode approximation (Kim and Rush,
2016). In our experiments, we leverage the sam-
pling method and simply generate the top target
sentence for approximation.

In order to perform gradient descend training,
the parameter gradients for Equations 5 and 7 are
formulated as follows:

∇Θz|xKL(p(z|x)||p(z|y))

= Ez∼p(z|x) log
p(z|x)

p(z|y)
∇Θz|x log p(z|x)

∇Θz|yKL(p(z|y)||p(z|x))

= Ez∼p(z|y) log
p(z|y)

p(z|x)
∇Θz|y log p(z|y)

(9)

Similar to reinforcement learning, models
p(z|x) and p(z|y) are trained using samples gen-
erated by the models themselves. According to
our observation, some samples are noisy and detri-
mental to the training process. One way to tackle
this is to filter out the bad ones using some addi-
tional metrics (BLEU, etc.). Nevertheless, in our
settings, BLEU scores cannot be calculated dur-
ing training due to the absence of the golden tar-
gets (z is generated based on x or y from the rich-
resource pair (x, y)). Therefore we choose IBM
model1 scores to weight the generated translation
candidates, with the word translation probabilities
calculated based on the given bilingual data (the
low-resource pair (x, z) or (y, z)). Additionally, to
stabilize the training process, the pseudo samples
generated by model p(z|x) or p(z|y) are mixed
with true bilingual samples in the same mini-batch
with the ratio of 1-1. The whole training procedure
is described in the following Algorithm 1, where
the 5th and 9th steps are generating pseudo data.

Algorithm 1 Training low-resource translation
models with the triangular architecture
Input: Rich-resource bilingual data (x, y); low-

resource bilingual data (x, z) and (y, z)
Output: Parameters Θz|x, Θy|z , Θz|y and Θx|z

1: Pre-train p(z|x), p(z|y), p(x|z), p(y|z)
2: while not convergence do
3: Sample (x, y), (x∗, z∗), (y∗, z∗) ∈ D
4: . X ⇒ Y : Optimize Θz|x and Θy|z
5: Generate z′ from p(z′|x) and build the

training batchesB1 = (x, z′)∪(x∗, z∗),B2 =
(y, z′) ∪ (y∗, z∗)

6: E-step: update Θz|x with B1 (Equation 5)
7: M-step: update Θy|z with B2 (Equation 6)
8: . Y ⇒ X: Optimize Θz|y and Θx|z
9: Generate z′ from p(z′|y) and build the

training batchesB3 = (y, z′)∪(y∗, z∗),B4 =
(x, z′) ∪ (x∗, z∗)

10: E-step: update Θz|y with B3 (Equation 7)
11: M-step: update Θx|z withB4 (Equation 8)
12: end while
13: return Θz|x, Θy|z , Θz|y and Θx|z

3 Experiments

3.1 Datasets

In order to verify our method, we conduct exper-
iments on two multilingual datasets. The one is
MultiUN (Eisele and Chen, 2010), which is a col-
lection of translated documents from the United
Nations, and the other is IWSLT2012 (Cettolo
et al., 2012), which is a set of multilingual tran-
scriptions of TED talks. As is mentioned in sec-
tion 1, our method is compatible with methods ex-
ploiting monolingual data. So we also find some
extra monolingual data of rare languages in both
datasets and conduct experiments incorporating
back-translation into our method.

MultiUN: English-French (EN-FR) bilingual
data are used as the rich-resource pair (X,Y ).
Arabic (AR) and Spanish (ES) are used as two
simulated rare languages Z. We randomly choose
subsets of bilingual data of (X,Z) and (Y, Z) in
the original dataset to simulate low-resource sit-
uations, and make sure there is no overlap in Z
between chosen data of (X,Z) and (Y,Z).

IWSLT20121: English-French is used as the
rich-resource pair (X,Y ), and two rare languages
Z are Hebrew (HE) and Romanian (RO) in our

1https://wit3.fbk.eu/mt.php?release=2012-02-plain
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Pair
MultiUN IWSLT2012

Lang Size Lang Size
(X,Y ) EN-FR 9.9 M EN-FR 3 7.9 M
(X,Z) EN-AR 116 K EN-HE 112.6 K
(Y, Z) FR-AR 116 K FR-HE 116.3 K

mono Z AR 3 M HE 512.5 K
(X,Z) EN-ES 116 K EN-RO 4 467.3 K
(Y, Z) FR-ES 116 K FR-RO 111.6 K

mono Z ES 3 M RO 885.0 K

Table 1: training data size of each language pair.

choice. Note that in this dataset, low-resource
pairs (X,Z) and (Y,Z) are severely overlapped
in Z. In addition, English-French bilingual data
from WMT2014 dataset are also used to enrich the
rich-resource pair. We also use additional English-
Romanian bilingual data from Europarlv7 dataset
(Koehn, 2005). The monolingual data of Z (HE
and RO) are taken from the web2.

In both datasets, all sentences are filtered within
the length of 5 to 50 after tokenization. Both the
validation and the test sets are 2,000 parallel sen-
tences sampled from the bilingual data, with the
left as training data. The size of training data of
all language pairs are shown in Table 1.

3.2 Baselines
We compare our method with four baseline sys-
tems. The first baseline is the RNNSearch model
(Bahdanau et al., 2014), which is a sequence-to-
sequence model with attention mechanism trained
with given small-scale bilingual data. The trained
translation models are also used as pre-trained
models for our subsequent training processes.

The second baseline is PBSMT (Koehn et al.,
2003), which is a phrase-based statistical machine
translation system. PBSMT is known to perform
well on low-resource language pairs, so we want
to compare it with our proposed method. And we
use the public available implementation of Moses5

for training and test in our experiments.
The third baseline is a teacher-student alike

method (Chen et al., 2017). For the sake of brevity,
we will denote it as T-S. The process is illus-
trated in Figure 3. We treat this method as a sec-
ond baseline because it can also be regarded as a
method exploiting (Y, Z) and (X,Y ) to improve

2https://github.com/ajinkyakulkarni14/TED-
Multilingual-Parallel-Corpus

3together with WMT2014
4together with Europarlv7
5http://www.statmt.org/moses/

Method Resources
PBSMT (X,Z), (Y,Z)

RNNSearch (X,Z), (Y,Z)

T-S (X,Z), (Y,Z), (X,Y )

BackTrans (X,Z), (Y,Z), (X,Y ), mono Z
TA-NMT (X,Z), (Y,Z), (X,Y )

TA-NMT(GI) (X,Z), (Y,Z), (X,Y ), mono Z

Table 2: Resources that different methods use

the translation of (X,Z) if we regard (X,Z) as
the zero-resource pair and p(x|y) as the teacher
model when training p(z|x) and p(x|z).

The fourth baseline is back-translation (Sen-
nrich et al., 2015). We will denote it as Back-
Trans. More concretely, to train the model p(z|x),
we use extra monolingual Z described in Table 1
to do back-translation; to train the model p(x|z),
we use monolingual X taken from (X,Y ). Pro-
cedures for training p(z|y) and p(y|z) are simi-
lar. This method use extra monolingual data of Z
compared with our TA-NMT method. But we can
incorporate it into our method.

Figure 3: A teacher-student alike method for
low-resource translation. For training p(z|x) and
p(x|z), we mix the true pair (y∗, z∗) ∈ D with the
pseudo pair (x′, z∗) generated by teacher model
p (x′|y∗) in the same mini-batch. The training pro-
cedure of p(z|y) and p(y|z) is similar.

3.3 Overall Results

Experimental results on both datasets are shown in
Table 3 and 4 respectively, in which RNNSearch,
PBSMT, T-S and BackTrans are four base-
lines. TA-NMT is our proposed method, and
TA-NMT(GI) is our method incorporating back-
translation as good initialization. For the purpose
of clarity and a fair comparison, we list the re-
sources that different methods exploit in Table 2.

From Table 3 on MultiUN, the performance
of RNNSearch is relatively poor. As is expected,
PBSMT performs better than RNNSearch on low-
resource pairs by the average of 1.78 BLEU. The
T-S method which can doubling the training data
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Method
EN2AR AR2EN FR2AR AR2FR

Ave
EN2ES ES2EN FR2ES ES2FR

Ave
(X⇒Z) (Z⇒X) (Y⇒Z) (Z⇒Y) (X⇒Z) (Z⇒X) (Y⇒Z) (Z⇒Y)

RNNSearch 18.03 31.40 13.42 22.04 21.22 38.77 36.51 32.92 33.05 35.31
PBSMT 19.44 30.81 15.27 23.65 22.29 38.47 36.64 34.99 33.98 36.02
T-S 19.02 32.47 14.59 23.53 22.40 39.75 38.02 33.67 34.04 36.57
BackTrans 22.19 32.02 15.85 23.57 23.73 42.27 38.42 35.81 34.25 37.76
TA-NMT 20.59 33.22 14.64 24.45 23.23 40.85 39.06 34.52 34.39 37.21
TA-NMT(GI) 23.16 33.64 16.50 25.07 24.59 42.63 39.53 35.87 35.21 38.31

Table 3: Test BLEU on MultiUN Dataset.

Method
EN2HE HE2EN FR2HE HE2FR

Ave
EN2RO RO2EN FR2RO RO2FR

Ave
(X⇒Z) (Z⇒X) (Y⇒Z) (Z⇒Y) (X⇒Z) (Z⇒X) (Y⇒Z) (Z⇒Y)

RNNSearch 17.94 28.32 11.86 21.67 19.95 31.44 40.63 17.34 25.20 28.65
PBSMT 17.39 28.05 12.77 21.87 20.02 31.51 39.98 18.13 25.47 28.77
T-S 17.97 28.42 12.04 21.99 20.11 31.80 40.86 17.94 25.69 29.07
BackTrans 18.69 28.55 12.31 21.63 20.20 32.18 41.03 18.19 25.30 29.18
TA-NMT 19.19 29.28 12.76 22.62 20.96 33.65 41.93 18.53 26.35 30.12
TA-NMT(GI) 19.90 29.94 13.54 23.25 21.66 34.41 42.61 19.30 26.53 30.71

Table 4: Test BLEU on IWSLT Dataset.

for both (X,Z) and (Y, Z) by generating pseudo
data from each other, leads up to 1.1 BLEU points
improvement on average over RNNSearch. Com-
pared with T-S, our method gains a further im-
provement of about 0.9 BLEU on average, because
our method can better leverage the rich-resource
pair (X,Y ). With extra large monolingual Z in-
troduced, BackTrans can improve the performance
of p(z|x) and p(z|y) significantly compared with
all the methods without monolingual Z. How-
ever TA-NMT is comparable with or even bet-
ter than BackTrans for p(x|z) and p(y|z) because
both of the methods leverage resources from rich-
resource pair (X,Y ), but BackTrans does not use
the alignment information it provides. Moreover,
with back-translation as good initialization, fur-
ther improvement is achieved by TA-NMT(GI) of
about 0.7 BLEU on average over BackTrans.

In Table 4, we can draw the similar conclu-
sion. However, different from MultiUN, in the
EN-FR-HE group of IWSLT, (X,Z) and (Y,Z)
are severely overlapped in Z. Therefore, T-S
cannot improve the performance obviously (only
about 0.2 BLEU) on RNNSearch because it fails
to essentially double training data via the teacher
model. As for EN-FR-RO, with the additionally
introduced EN-RO data from Europarlv7, which
has no overlap in RO with FR-RO, T-S can im-
prove the average performance more than the EN-
FR-HE group. TA-NMT outperforms T-S by 0.93
BLEU on average. Note that even though Back-

Trans uses extra monolingual Z, the improve-
ments are not so obvious as the former dataset,
the reason for which we will delve into in the next
subsection. Again, with back-translation as good
initialization, TA-NMT(GI) can get the best result.

Note that BLEU scores of TA-NMT are lower
than BackTrans in the directions of X⇒Z and
Y⇒Z. The reason is that the resources used by
these two methods are different, as shown in Table
2. To do back translation in two directions (e.g.,
X⇒Z and Z⇒X), we need monolingual data from
both sides (e.g., X and Z), however, in TA-NMT,
the monolingual data of Z is not necessary. There-
fore, in the translation of X⇒Z or Y⇒Z, Back-
Trans uses additional monolingual data of Z while
TA-NMT does not, that is why BackTrans outper-
forms TA-NMT in these directions. Our method
can leverage back translation as a good initializa-
tion, aka TA-NMT(GI) , and outperforms Back-
Trans on all translation directions.

The average test BLEU scores of different
methods in each data group (EN-FR-AR, EN-FR-
ES, EN-FR-HE, and EN-FR-RO) are listed in the
column Ave of the tables for clear comparison.

3.4 The Effect of Extra Monolingual Data

Comparing the results of BackTrans and TA-
NMT(GI) on both datasets, we notice the improve-
ments of both methods on IWSLT are not as signif-
icant as MultiUN. We speculate the reason is the
relatively less amount of monolingual Z we use in
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the experiments on IWSLT as shown in Table 1.
So we conduct the following experiment to verify
the conjecture by changing the scale of monolin-
gual Arabic data in the MultiUN dataset, of which
the data utilization rates are set to 0%, 10%, 30%,
60% and 100% respectively. Then we compare
the performance of BackTrans and TA-NMT(GI)
in the EN-FR-AR group. As Figure 4 shows, the
amount of monolingual Z actually has a big effect
on the results, which can also verify our conjec-
ture above upon the less significant improvement
of BackTrans and TA-NMT(GI) on IWSLT. In ad-
dition, even with poor ”good-initialization”, TA-
NMT(GI) still get the best results.

Figure 4: Test BLEU of the EN-FR-AR group per-
formed by BackTrans and TA-NMT(GI) with dif-
ferent amount of monolingual Arabic data.

3.5 EM Training Curves

To better illustrate the behavior of our method, we
print the training curves in both the M-steps and E-
steps of TA-NMT and TA-NMT(GI) in Figure 5
above. The chosen models printed in this figure
are EN2AR and AR2FR on MultiUN, and EN2RO
and RO2FR on IWLST.

From Figure 5, we can see that the two low-
resource translation models are improved nearly
simultaneously along with the training process,
which verifies our point that two weak models
could boost each other in our EM framework. No-
tice that at the early stage, the performance of all
models stagnates for several iterations, especially
of TA-NMT. The reason could be that the pseudo
bilingual data and the true training data are hetero-
geneous, and it may take some time for the mod-
els to adapt to a new distribution which both mod-
els agree. Compared with TA-NMT, TA-NMT(GI)
are more stable, because the models may have

Figure 5: BLEU curves on validation sets dur-
ing the training processes of TA-NMT and TA-
NMT(GI). (Top: EN2AR (the E-step) and AR2FR
(the M-step); Bottom: EN2RO (the E-step) and
RO2FR (the M-step))

adapted to a mixed distribution of heterogeneous
data in the preceding back-translation phase.

3.6 Reinforcement Learning Mechanism in
Our Method

As shown in Equation 9, the E-step actually
works as a reinforcement learning (RL) mecha-
nism. Models p(z|x) and p(z|y) generate samples
by themselves and receive rewards to update their
parameters. Note that the reward here is described
by the log terms in Equation 9, which is derived
from our EM algorithm rather than defined arti-
ficially. In Table 5, we do a case study of the
EN2ES translation sampled by p(z|x) as well as
its time-step rewards during the E-step.

In the first case, the best translation of ”politi-
cal” is ”polı́ticos”. When the model p(z|x) gen-
erates an inaccurate one ”polı́ticas”, it receives a
negative reward (-0.01), with which the model pa-
rameters will be updated accordingly. In the sec-
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Source in concluding , poverty eradication requires political will and commitment .

Output
en (0.66) conclusión (0.80) , (0.14) la (0.00) erradicación (1.00) de (0.40) la (0.00) pobreza

(0.90) requiere (0.10) voluntad (1.00) y (0.46) compromiso (0.90) polı́ticas (-0.01) . (1.00)

Reference en conclusión , la erradicación de la pobreza necesita la voluntad y compromiso polı́ticos .

Source visit us and get to know and love berlin !

Output visita (0.00) y (0.05) se (0.00) a (0.17) saber (0.00) y (0.04) a (0.01) berlı́n (0.00) ! (0.00)

Reference visı́tanos y llegar a saber y amar a berlı́n .

Source
legislation also provides an important means of recognizing economic , social and cultural

rights at the domestic level .

Output

la (1.00) legislación (0.34) tambin (1.00) constituye (0.60) un (1.00) medio (0.22) importante

(0.74) de (0.63) reconocer (0.21) los (0.01) derechos (0.01) econmicos (0.03) , (0.01) sociales

(0.02) y (0.01) culturales (1.00) a (0.00) nivel (0.40) nacional (1.00) . (0.03)

Reference
la legislación también constituye un medio importante de reconocer los derechos económicos ,

iales y culturales a nivel nacional .

Table 5: English to Spanish translation sampled in the E-step as well as its time-step rewards.

ond case, the output misses important words and is
not fluent. Rewards received by the model p(z|x)
are zero for nearly all tokens in the output, leading
to an invalid updating. In the last case, the output
sentence is identical to the human reference. The
rewards received are nearly all positive and mean-
ingful, thus the RL rule will update the parameters
to encourage this translation candidate.

4 Related Work

NMT systems, relying heavily on the availabil-
ity of large bilingual data, result in poor transla-
tion quality for low-resource pairs (Zoph et al.,
2016). This low-resource phenomenon has been
observed in much preceding work. A very com-
mon approach is exploiting monolingual data of
both source and target languages (Sennrich et al.,
2015; Zhang and Zong, 2016; Cheng et al., 2016;
Zhang et al., 2018; He et al., 2016).

As a kind of data augmentation technique, ex-
ploiting monolingual data can enrich the training
data for low-resource pairs. Sennrich et al. (2015)
propose back-translation, exploits the monolin-
gual data of the target side, which is then used
to generate pseudo bilingual data via an additional
target-to-source translation model. Different from
back-translation, Zhang and Zong (2016) propose
two approaches to use source-side monolingual
data, of which the first is employing a self-learning
algorithm to generate pseudo data, while the sec-
ond is using two NMT models to predict the trans-
lation and to reorder the source-side monolingual

sentences. As an extension to these two meth-
ods, Cheng et al. (2016) and Zhang et al. (2018)
combine two translation directions and propose a
training framework to jointly optimize the source-
to-target and target-to-source translation models.
Similar to joint training, He et al. (2016) propose
a dual learning framework with a reinforcement
learning mechanism to better leverage monolin-
gual data and make two translation models pro-
mote each other. All of these methods are concen-
trated on exploiting either the monolingual data of
the source and target language or both of them.

Our method takes a different angle but is com-
patible with existing approaches, we propose a
novel triangular architecture to leverage two ad-
ditional language pairs by introducing a third rich
language. By combining our method with existing
approaches such as back-translation, we can make
a further improvement.

Another approach for tackling the low-resource
translation problem is multilingual neural machine
translation (Firat et al., 2016), where different
encoders and decoders for all languages with a
shared attention mechanism are trained. This
method tends to exploit the network architecture
to relate low-resource pairs. Our method is differ-
ent from it, which is more like a training method
rather than network modification.

5 Conclusion

In this paper, we propose a triangular architec-
ture (TA-NMT) to effectively tackle the problem
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of low-resource pairs translation with a unified
bidirectional EM framework. By introducing an-
other rich language, our method can better ex-
ploit the additional language pairs to enrich the
original low-resource pair. Compared with the
RNNSearch (Bahdanau et al., 2014), a teacher-
student alike method (Chen et al., 2017) and the
back-translation (Sennrich et al., 2015) on the
same data level, our method achieves significant
improvement on the MutiUN and IWSLT2012
datasets. Note that our method can be com-
bined with methods exploiting monolingual data
for NMT low-resource problem such as back-
translation and make further improvements.

In the future, we may extend our architecture to
other scenarios, such as totally unsupervised train-
ing with no bilingual data for the rare language.
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Abstract

Subword units are an effective way to
alleviate the open vocabulary problems
in neural machine translation (NMT).
While sentences are usually converted into
unique subword sequences, subword seg-
mentation is potentially ambiguous and
multiple segmentations are possible even
with the same vocabulary. The question
addressed in this paper is whether it is
possible to harness the segmentation am-
biguity as a noise to improve the robust-
ness of NMT. We present a simple regu-
larization method, subword regularization,
which trains the model with multiple sub-
word segmentations probabilistically sam-
pled during training. In addition, for better
subword sampling, we propose a new sub-
word segmentation algorithm based on a
unigram language model. We experiment
with multiple corpora and report consis-
tent improvements especially on low re-
source and out-of-domain settings.

1 Introduction

Neural Machine Translation (NMT) models
(Bahdanau et al., 2014; Luong et al., 2015;
Wu et al., 2016; Vaswani et al., 2017) often oper-
ate with fixed word vocabularies, as their training
and inference depend heavily on the vocabulary
size. However, limiting vocabulary size increases
the amount of unknown words, which makes
the translation inaccurate especially in an open
vocabulary setting.

A common approach for dealing with the
open vocabulary issue is to break up rare
words into subword units (Schuster and Nakajima,
2012; Chitnis and DeNero, 2015; Sennrich et al.,
2016; Wu et al., 2016). Byte-Pair-Encoding

Subwords ( means spaces) Vocabulary id sequence
Hell/o/ world 13586 137 255
H/ello/ world 320 7363 255
He/llo/ world 579 10115 255
/He/l/l/o/ world 7 18085 356 356 137 255
H/el/l/o/ /world 320 585 356 137 7 12295

Table 1: Multiple subword sequences encoding
the same sentence “Hello World”

(BPE) (Sennrich et al., 2016) is a de facto
standard subword segmentation algorithm ap-
plied to many NMT systems and achieving
top translation quality in several shared tasks
(Denkowski and Neubig, 2017; Nakazawa et al.,
2017). BPE segmentation gives a good balance
between the vocabulary size and the decoding ef-
ficiency, and also sidesteps the need for a special
treatment of unknown words.

BPE encodes a sentence into a unique subword
sequence. However, a sentence can be repre-
sented in multiple subword sequences even with
the same vocabulary. Table 1 illustrates an exam-
ple. While these sequences encode the same input
“Hello World”, NMT handles them as completely
different inputs. This observation becomes more
apparent when converting subword sequences into
id sequences (right column in Table 1). These vari-
ants can be viewed as a spurious ambiguity, which
might not always be resolved in decoding process.
At training time of NMT, multiple segmentation
candidates will make the model robust to noise and
segmentation errors, as they can indirectly help the
model to learn the compositionality of words, e.g.,
“books” can be decomposed into “book” + “s”.

In this study, we propose a new regulariza-
tion method for open-vocabulary NMT, called
subword regularization, which employs multiple
subword segmentations to make the NMT model
accurate and robust. Subword regularization con-
sists of the following two sub-contributions:
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• We propose a simple NMT training algo-
rithm to integrate multiple segmentation can-
didates. Our approach is implemented as an
on-the-fly data sampling, which is not spe-
cific to NMT architecture. Subword regular-
ization can be applied to any NMT system
without changing the model structure.

• We also propose a new subword segmenta-
tion algorithm based on a language model,
which provides multiple segmentations with
probabilities. The language model allows to
emulate the noise generated during the seg-
mentation of actual data.

Empirical experiments using multiple corpora
with different sizes and languages show that
subword regularization achieves significant im-
provements over the method using a single sub-
word sequence. In addition, through experiments
with out-of-domain corpora, we show that sub-
word regularization improves the robustness of the
NMT model.

2 Neural Machine Translation with
multiple subword segmentations

2.1 NMT training with on-the-fly subword
sampling

Given a source sentence X and a target sentence
Y , let x = (x1, . . . , xM ) and y = (y1, . . . , yN )
be the corresponding subword sequences seg-
mented with an underlying subword segmenter,
e.g., BPE. NMT models the translation probability
P (Y |X) = P (y|x) as a target language sequence
model that generates target subword yn condition-
ing on the target history y<n and source input se-
quence x:

P (y|x; θ) =

N∏

n=1

P (yn|x, y<n; θ), (1)

where θ is a set of model parameters. A com-
mon choice to predict the subword yn is to use
a recurrent neural network (RNN) architecture.
However, note that subword regularization is not
specific to this architecture and can be applica-
ble to other NMT architectures without RNN, e.g.,
(Vaswani et al., 2017; Gehring et al., 2017).

NMT is trained using the standard maximum
likelihood estimation, i.e., maximizing the log-
likelihood L(θ) of a given parallel corpus D =

{⟨X(s), Y (s)⟩}|D|
s=1 = {⟨x(s),y(s)⟩}|D|

s=1,

θMLE = arg max
θ

L(θ)

where, L(θ) =

|D|∑

s=1

log P (y(s)|x(s); θ). (2)

We here assume that the source and target sen-
tences X and Y can be segmented into multiple
subword sequences with the segmentation proba-
bilities P (x|X) and P (y|Y ) respectively. In sub-
word regularization, we optimize the parameter set
θ with the marginalized likelihood as (3).

Lmarginal(θ) =

|D|∑

s=1

Ex∼P (x|X(s))

y∼P (y|Y (s))

[log P (y|x; θ)] (3)

Exact optimization of (3) is not feasible as the
number of possible segmentations increases expo-
nentially with respect to the sentence length. We
approximate (3) with finite k sequences sampled
from P (x|X) and P (y|Y ) respectively.

Lmarginal(θ) ∼= 1

k2

|D|∑

s=1

k∑

i=1

k∑

j=1

log P (yj |xi; θ)

xi ∼ P (x|X(s)), yj ∼ P (y|Y (s)).

(4)

For the sake of simplicity, we use k = 1. Train-
ing of NMT usually uses an online training for
efficiency, in which the parameter θ is iteratively
optimized with respect to the smaller subset of D
(mini-batch). When we have a sufficient number
of iterations, subword sampling is executed via the
data sampling of online training, which yields a
good approximation of (3) even if k = 1. It should
be noted, however, that the subword sequence is
sampled on-the-fly for each parameter update.

2.2 Decoding
In the decoding of NMT, we only have a raw
source sentence X . A straightforward approach
for decoding is to translate from the best segmen-
tation x∗ that maximizes the probability P (x|X),
i.e., x∗ = argmaxxP (x|X). Additionally,
we can use the n-best segmentations of P (x|X)
to incorporate multiple segmentation candidates.
More specifically, given n-best segmentations
(x1, . . . ,xn), we choose the best translation y∗

that maximizes the following score.

score(x,y) = log P (y|x)/|y|λ, (5)
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where |y| is the number of subwords in y and λ ∈
R+ is the parameter to penalize shorter sentences.
λ is optimized with the development data.

In this paper, we call these two algorithms one-
best decoding and n-best decoding respectively.

3 Subword segmentations with language
model

3.1 Byte-Pair-Encoding (BPE)

Byte-Pair-Encoding (BPE) (Sennrich et al., 2016;
Schuster and Nakajima, 2012) is a subword seg-
mentation algorithm widely used in many NMT
systems1. BPE first splits the whole sentence into
individual characters. The most frequent2 adjacent
pairs of characters are then consecutively merged
until reaching a desired vocabulary size. Subword
segmentation is performed by applying the same
merge operations to the test sentence.

An advantage of BPE segmentation is that it
can effectively balance the vocabulary size and the
step size (the number of tokens required to encode
the sentence). BPE trains the merged operations
only with a frequency of characters. Frequent sub-
strings will be joined early, resulting in common
words remaining as one unique symbol. Words
consisting of rare character combinations will be
split into smaller units, e.g., substrings or charac-
ters. Therefore, only with a small fixed size of
vocabulary (usually 16k to 32k), the number of re-
quired symbols to encode a sentence will not sig-
nificantly increase, which is an important feature
for an efficient decoding.

One downside is, however, that BPE is based
on a greedy and deterministic symbol replace-
ment, which can not provide multiple segmenta-
tions with probabilities. It is not trivial to apply
BPE to the subword regularization that depends on
segmentation probabilities P (x|X).

3.2 Unigram language model

In this paper, we propose a new subword seg-
mentation algorithm based on a unigram language
model, which is capable of outputing multiple sub-
word segmentations with probabilities. The uni-
gram language model makes an assumption that

1Strictly speaking, wordpiece model
(Schuster and Nakajima, 2012) is different from BPE.
We consider wordpiece as a variant of BPE, as it also uses
an incremental vocabulary generation with a different loss
function.

2Wordpiece model uses a likelihood instead of frequency.

each subword occurs independently, and conse-
quently, the probability of a subword sequence
x = (x1, . . . , xM ) is formulated as the product
of the subword occurrence probabilities p(xi)

3:

P (x) =
M∏

i=1

p(xi), (6)

∀i xi ∈ V,
∑

x∈V
p(x) = 1,

where V is a pre-determined vocabulary. The most
probable segmentation x∗ for the input sentence X
is then given by

x∗ = arg max
x∈S(X)

P (x), (7)

where S(X) is a set of segmentation candidates
built from the input sentence X . x∗ is obtained
with the Viterbi algorithm (Viterbi, 1967).

If the vocabulary V is given, subword occur-
rence probabilities p(xi) are estimated via the EM
algorithm that maximizes the following marginal
likelihood L assuming that p(xi) are hidden vari-
ables.

L =

|D|∑

s=1

log(P (X(s))) =

|D|∑

s=1

log
( ∑

x∈S(X(s))

P (x)
)

In the real setting, however, the vocabulary set
V is also unknown. Because the joint optimization
of vocabulary set and their occurrence probabili-
ties is intractable, we here seek to find them with
the following iterative algorithm.

1. Heuristically make a reasonably big seed vo-
cabulary from the training corpus.

2. Repeat the following steps until |V| reaches a
desired vocabulary size.

(a) Fixing the set of vocabulary, optimize
p(x) with the EM algorithm.

(b) Compute the lossi for each subword xi,
where lossi represents how likely the
likelihood L is reduced when the sub-
word xi is removed from the current vo-
cabulary.

(c) Sort the symbols by lossi and keep top
η % of subwords (η is 80, for example).
Note that we always keep the subwords
consisting of a single character to avoid
out-of-vocabulary.

3Target sequence y = (y1, . . . , yN ) can also be modeled
similarly.
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There are several ways to prepare the seed vo-
cabulary. The natural choice is to use the union
of all characters and the most frequent substrings
in the corpus4. Frequent substrings can be enu-
merated in O(T ) time and O(20T ) space with
the Enhanced Suffix Array algorithm (Nong et al.,
2009), where T is the size of the corpus. Simi-
lar to (Sennrich et al., 2016), we do not consider
subwords that cross word boundaries.

As the final vocabulary V contains all individual
characters in the corpus, character-based segmen-
tation is also included in the set of segmentation
candidates S(X). In other words, subword seg-
mentation with the unigram language model can
be seen as a probabilsitic mixture of characters,
subwords and word segmentations.

3.3 Subword sampling

Subword regularization samples one subword seg-
mentation from the distribution P (x|X) for each
parameter update. A straightforward approach
for an approximate sampling is to use the l-best
segmentations. More specifically, we first obtain
l-best segmentations according to the probabil-
ity P (x|X). l-best search is performed in lin-
ear time with the Forward-DP Backward-A* al-
gorithm (Nagata, 1994). One segmentation xi is
then sampled from the multinomial distribution
P (xi|X) ∼= P (xi)

α/
∑l

i=1 P (xi)
α, where α ∈

R+ is the hyperparameter to control the smooth-
ness of the distribution. A smaller α leads to sam-
ple xi from a more uniform distribution. A larger
α tends to select the Viterbi segmentation.

Setting l → ∞, in theory, allows to take all pos-
sible segmentations into account. However, it is
not feasible to increase l explicitly as the num-
ber of candidates increases exponentially with re-
spect to the sentence length. In order to exactly
sample from all possible segmentations, we use
the Forward-Filtering and Backward-Sampling al-
gorithm (FFBS) (Scott, 2002), a variant of the
dynamic programming originally introduced by
Bayesian hidden Markov model training. In
FFBS, all segmentation candidates are represented
in a compact lattice structure, where each node de-
notes a subword. In the first pass, FFBS computes
a set of forward probabilities for all subwords in
the lattice, which provide the probability of end-
ing up in any particular subword w. In the second

4It is also possible to run BPE with a sufficient number of
merge operations.

pass, traversing the nodes in the lattice from the
end of the sentence to the beginning of the sen-
tence, subwords are recursively sampled for each
branch according to the forward probabilities.

3.4 BPE vs. Unigram language model

BPE was originally introduced in the data com-
pression literature (Gage, 1994). BPE is a vari-
ant of dictionary (substitution) encoder that incre-
mentally finds a set of symbols such that the total
number of symbols for encoding the text is mini-
mized. On the other hand, the unigram language
model is reformulated as an entropy encoder that
minimizes the total code length for the text. Ac-
cording to Shannon’s coding theorem, the optimal
code length for a symbol s is − log ps, where ps

is the occurrence probability of s. This is essen-
tially the same as the segmentation strategy of the
unigram language model described as (7).

BPE and the unigram language model share the
same idea that they encode a text using fewer bits
with a certain data compression principle (dictio-
nary vs. entropy). Therefore, we expect to see the
same benefit as BPE with the unigram language
model. However, the unigram language model is
more flexible as it is based on a probabilistic lan-
guage model and can output multiple segmenta-
tions with their probabilities, which is an essential
requirement for subword regularization.

4 Related Work

Regularization by noise is a well studied tech-
nique in deep neural networks. A well-known ex-
ample is dropout (Srivastava et al., 2014), which
randomly turns off a subset of hidden units dur-
ing training. Dropout is analyzed as an ensemble
training, where many different models are trained
on different subsets of the data. Subword regu-
larization trains the model on different data inputs
randomly sampled from the original input sen-
tences, and thus is regarded as a variant of ensem-
ble training.

The idea of noise injection has previously been
used in the context of Denoising Auto-Encoders
(DAEs) (Vincent et al., 2008), where noise is
added to the inputs and the model is trained to re-
construct the original inputs. There are a couple
of studies that employ DAEs in natural language
processing.

(Lample et al., 2017; Artetxe et al., 2017) in-
dependently propose DAEs in the context of
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sequence-to-sequence learning, where they ran-
domly alter the word order of the input sentence
and the model is trained to reconstruct the original
sentence. Their technique is applied to an unsu-
pervised machine translation to make the encoder
truly learn the compositionality of input sentences.

Word dropout (Iyyer et al., 2015) is a simple ap-
proach for a bag-of-words representation, in which
the embedding of a certain word sequence is sim-
ply calculated by averaging the word embeddings.
Word dropout randomly drops words from the bag
before averaging word embeddings, and conse-
quently can see 2|X| different token sequences for
each input X .

(Belinkov and Bisk, 2017) explore the training
of character-based NMT with a synthetic noise
that randomly changes the order of characters in
a word. (Xie et al., 2017) also proposes a robust
RNN language model that interpolates random un-
igram language model.

The basic idea and motivation behind subword
regularization are similar to those of previous
work. In order to increase the robustness, they in-
ject noise to input sentences by randomly chang-
ing the internal representation of sentences. How-
ever, these previous approaches often depend on
heuristics to generate synthetic noises, which do
not always reflect the real noises on training and
inference. In addition, these approaches can only
be applied to source sentences (encoder), as they
irreversibly rewrite the surface of sentences. Sub-
word regularization, on the other hand, generates
synthetic subword sequences with an underlying
language model to better emulate the noises and
segmentation errors. As subword regularization is
based on an invertible conversion, we can safely
apply it both to source and target sentences.

Subword regularization can also be viewed as a
data augmentation. In subword regularization, an
input sentence is converted into multiple invariant
sequences, which is similar to the data augmen-
tation for image classification tasks, for example,
random flipping, distorting, or cropping.

There are several studies focusing on segmen-
tation ambiguities in language modeling. Latent
Sequence Decompositions (LSDs) (Chan et al.,
2016) learns the mapping from the input and the
output by marginalizing over all possible segmen-
tations. LSDs and subword regularization do not
assume a predetermined segmentation for a sen-
tence, and take multiple segmentations by a sim-

ilar marginalization technique. The difference
is that subword regularization injects the multi-
ple segmentations with a separate language model
through an on-the-fly subword sampling. This ap-
proach makes the model simple and independent
from NMT architectures.

Lattice-to-sequence models (Su et al., 2017;
Sperber et al., 2017) are natural extension of
sequence-to-sequence models, which represent in-
puts uncertainty through lattices. Lattice is en-
coded with a variant of TreeLSTM (Tai et al.,
2015), which requires changing the model archi-
tecture. In addition, while subword regulariza-
tion is applied both to source and target sentences,
lattice-to-sequence models do not handle target
side ambiguities.

A mixed word/character model (Wu et al.,
2016) addresses the out-of-vocabulary problem
with a fixed vocabulary. In this model, out-of-
vocabulary words are not collapsed into a single
UNK symbol, but converted into the sequence of
characters with special prefixes representing the
positions in the word. Similar to BPE, this model
also encodes a sentence into a unique fixed se-
quence, thus multiple segmentations are not taken
into account.

5 Experiments

5.1 Setting
We conducted experiments using multiple corpora
with different sizes and languages. Table 2 sum-
marizes the evaluation data we used 5 6 7 8 9 10.
IWSLT15/17 and KFTT are relatively small cor-
pora, which include a wider spectrum of languages
with different linguistic properties. They can eval-
uate the language-agnostic property of subword
regularization. ASPEC and WMT14 (en↔de) are
medium-sized corpora. WMT14 (en↔cs) is a
rather big corpus consisting of more than 10M par-
allel sentences.

We used GNMT (Wu et al., 2016) as the im-
plementation of the NMT system for all exper-
iments. We generally followed the settings and
training procedure described in (Wu et al., 2016),
however, we changed the settings according to the

5IWSLT15: http://workshop2015.iwslt.org/
6IWSLT17: http://workshop2017.iwslt.org/
7KFTT: http://www.phontron.com/kftt/
8ASPEC: http://lotus.kuee.kyoto-u.ac.jp/ASPEC/
9WMT14: http://statmt.org/wmt14/

10WMT14(en↔de) uses the same setting as (Wu et al.,
2016).
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corpus size. Table 2 shows the hyperparameters
we used in each experiment. As common set-
tings, we set the dropout probability to be 0.2. For
parameter estimation, we used a combination of
Adam (Kingma and Adam, 2014) and SGD algo-
rithms. Both length normalization and converge
penalty parameters are set to 0.2 (see section 7 in
(Wu et al., 2016)). We set the decoding beam size
to 4.

The data was preprocessed with Moses tok-
enizer before training subword models. It should
be noted, however, that Chinese and Japanese have
no explicit word boundaries and Moses tokenizer
does not segment sentences into words, and hence
subword segmentations are trained almost from
unsegmented raw sentences in these languages.

We used the case sensitive BLEU score
(Papineni et al., 2002) as an evaluation metric. As
the output sentences are not segmented in Chi-
nese and Japanese, we segment them with char-
acters and KyTea11 for Chinese and Japanese re-
spectively before calculating BLEU scores.

BPE segmentation is used as a baseline sys-
tem. We evaluate three test systems with dif-
ferent sampling strategies: (1) Unigram language
model-based subword segmentation without sub-
word regularization (l =1), (2) with subword reg-
ularization (l =64, α=0.1) and (3) (l =∞, α=
0.2/0.5) 0.2: IWSLT, 0.5: others. These sam-
pling parameters were determined with prelimi-
nary experiments. l = 1 is aimed at a pure com-
parison between BPE and the unigram language
model. In addition, we compare one-best decod-
ing and n-best decoding (See section 2.2). Be-
cause BPE is not able to provide multiple segmen-
tations, we only evaluate one-best decoding for
BPE. Consequently, we compare 7 systems (1 +
3 × 2) for each language pair.

5.2 Main Results

Table 3 shows the translation experiment results.
First, as can be seen in the table, BPE and un-

igram language model without subword regular-
ization (l = 1) show almost comparable BLEU
scores. This is not surprising, given that both BPE
and the unigram language model are based on data
compression algorithms.

We can see that subword regularization (l > 1)
boosted BLEU scores quite impressively (+1 to 2
points) in all language pairs except for WMT14

11http://www.phontron.com/kytea

(en→cs) dataset. The gains are larger especially
in lower resource settings (IWSLT and KFTT). It
can be considered that the positive effects of data
augmentation with subword regularization worked
better in lower resource settings, which is a com-
mon property of other regularization techniques.

As for the sampling algorithm, (l = ∞ α =
0.2/0.5) slightly outperforms (l = 64, α = 0.1)
on IWSLT corpus, but they show almost compara-
ble results on larger data set. Detailed analysis is
described in Section 5.5.

On top of the gains with subword regulariza-
tion, n-best decoding yields further improvements
in many language pairs. However, we should note
that the subword regularization is mandatory for
n-best decoding and the BLEU score is degraded
in some language pairs without subword regular-
ization (l = 1). This result indicates that the de-
coder is more confused for multiple segmentations
when they are not explored at training time.

5.3 Results with out-of-domain corpus
To see the effect of subword regularization on a
more open-domain setting, we evaluate the sys-
tems with out-of-domain in-house data consisting
of multiple genres: Web, patents and query logs.
Note that we did not conduct the comparison with
KFTT and ASPEC corpora, as we found that the
domains of these corpora are too specific12, and
preliminary evaluations showed extremely poor
BLEU scores (less than 5) on out-of-domain cor-
pora.

Table 4 shows the results. Compared to the
gains obtained with the standard in-domain evalu-
ations in Table 3, subword regularization achieves
significantly larger improvements (+2 points) in
every domain of corpus. An interesting observa-
tion is that we have the same level of improve-
ments even on large training data sets (WMT14),
which showed marginal or small gains with the
in-domain data. This result strongly supports our
claim that subword regularization is more useful
for open-domain settings.

5.4 Comparison with other segmentation
algorithms

Table 5 shows the comparison on different
segmentation algorithms: word, character,
mixed word/character (Wu et al., 2016), BPE

12KFTT focuses on Wikipedia articles related to Kyoto,
and ASPEC is a corpus of scientific paper domain. There-
fore, it is hard to translate out-of-domain texts.
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Size of sentences Parameters

Corpus
Language

pair train dev test
#vocab

(Enc/Dec shared)
#dim of LSTM，

embedding
#layers of LSTM

(Enc+Dec)

IWSLT15 en ↔ vi 133k 1553 1268 16k 512 2+2
en ↔ zh 209k 887 1261 16k 512 2+2

IWSLT17 en ↔ fr 232k 890 1210 16k 512 2+2
en ↔ ar 231k 888 1205 16k 512 2+2

KFTT en ↔ ja 440k 1166 1160 8k 512 6+6
ASPEC en ↔ ja 2M 1790 1812 16k 512 6+6
WMT14 en ↔ de 4.5M 3000 3003 32k 1024 8+8

en ↔ cs 15M 3000 3003 32k 1024 8+8
Table 2: Details of evaluation data set

Proposed (one-best decoding) Proposed (n-best decoding, n=64)

Corpus
Language

pair
baseline
(BPE) l = 1

l = 64
α = 0.1

l = ∞
α=0.2/0.5 l = 1

l = 64
α = 0.1

l = ∞
α=0.2/0.5

IWSLT15 en → vi 25.61 25.49 27.68* 27.71* 25.33 28.18* 28.48*
vi → en 22.48 22.32 24.73* 26.15* 22.04 24.66* 26.31*
en → zh 16.70 16.90 19.36* 20.33* 16.73 20.14* 21.30*
zh → en 15.76 15.88 17.79* 16.95* 16.23 17.75* 17.29*

IWSLT17 en → fr 35.53 35.39 36.70* 36.36* 35.16 37.60* 37.01*
fr → en 33.81 33.74 35.57* 35.54* 33.69 36.07* 36.06*
en → ar 13.01 13.04 14.92* 15.55* 12.29 14.90* 15.36*
ar → en 25.98 27.09* 28.47* 29.22* 27.08* 29.05* 29.29*

KFTT en → ja 27.85 28.92* 30.37* 30.01* 28.55* 31.46* 31.43*
ja → en 21.37 21.46 22.33* 22.04* 21.37 22.47* 22.64*

ASPEC en → ja 40.62 40.66 41.24* 41.23* 40.86 41.55* 41.87*
ja → en 26.51 26.76 27.08* 27.14* 27.49* 27.75* 27.89*

WMT14 en → de 24.53 24.50 25.04* 24.74 22.73 25.00* 24.57
de → en 28.01 28.65* 28.83* 29.39* 28.24 29.13* 29.97*
en → cs 25.25 25.54 25.41 25.26 24.88 25.49 25.38
cs → en 28.78 28.84 29.64* 29.41* 25.77 29.23* 29.15*

Table 3: Main Results (BLEU(%)) (l: sampling size in SR, α: smoothing parameter). * indicates statistically significant
difference (p < 0.05) from baselines with bootstrap resampling (Koehn, 2004). The same mark is used in Table 4 and 6.

(Sennrich et al., 2016) and our unigram model
with or without subword regularization. The
BLEU scores of word, character and mixed
word/character models are cited from (Wu et al.,
2016). As German is a morphologically rich
language and needs a huge vocabulary for word
models, subword-based algorithms perform a
gain of more than 1 BLEU point than word
model. Among subword-based algorithms, the
unigram language model with subword regular-
ization achieved the best BLEU score (25.04),
which demonstrates the effectiveness of multiple
subword segmentations.

5.5 Impact of sampling hyperparameters
Subword regularization has two hyperparameters:
l: size of sampling candidates, α: smoothing con-
stant. Figure 1 shows the BLEU scores of various
hyperparameters on IWSLT15 (en → vi) dataset.

First, we can find that the peaks of BLEU scores
against smoothing parameter α are different de-

pending on the sampling size l. This is expected,
because l = ∞ has larger search space than l =
64, and needs to set α larger to sample sequences
close to the Viterbi sequence x∗.

Another interesting observation is that α = 0.0
leads to performance drops especially on l = ∞.
When α = 0.0, the segmentation probability
P (x|X) is virtually ignored and one segmentation
is uniformly sampled. This result suggests that bi-
ased sampling with a language model is helpful to
emulate the real noise in the actual translation.

In general, larger l allows a more aggressive
regularization and is more effective for low re-
source settings such as IWSLT. However, the es-
timation of α is more sensitive and performance
becomes even worse than baseline when α is ex-
tremely small. To weaken the effect of regular-
ization and avoid selecting invalid parameters, it
might be more reasonable to use l = 64 for high
resource languages.

72



Domain
(size) Corpus

Language
pair

Baseline
(BPE)

Proposed
(SR)

Web IWSLT15 en → vi 13.86 17.36*
(5k) vi → en 7.83 11.69*

en → zh 9.71 13.85*
zh → en 5.93 8.13*

IWSLT17 en → fr 16.09 20.04*
fr → en 14.77 19.99*

WMT14 en → de 22.71 26.02*
de → en 26.42 29.63*
en → cs 19.53 21.41*
cs → en 25.94 27.86*

Patent WMT14 en → de 15.63 25.76*
(2k) de → en 22.74 32.66*

en → cs 16.70 19.38*
cs → en 23.20 25.30*

Query IWSLT15 en → zh 9.30 12.47*
(2k) zh → en 14.94 19.99*

IWSLT17 en → fr 10.79 10.99
fr → en 19.01 23.96*

WMT14 en → de 25.93 29.82*
de → en 26.24 30.90*

Table 4: Results with out-of-domain corpus
(l = ∞, α = 0.2: IWSLT15/17, l = 64, α = 0.1: others,
one-best decding)

Model BLEU
Word 23.12
Character (512 nodes) 22.62
Mixed Word/Character 24.17
BPE 24.53
Unigram w/o SR (l = 1) 24.50
Unigram w/ SR (l = 64, α = 0.1) 25.04

Table 5: Comparison of different segmentation al-
gorithms (WMT14 en→de)

Although we can see in general that the opti-
mal hyperparameters are roughly predicted with
the held-out estimation, it is still an open question
how to choose the optimal size l in subword sam-
pling.

5.6 Results with single side regularization

Table 6 summarizes the BLEU scores with sub-
word regularization either on source or target sen-
tence to figure out which components (encoder or
decoder) are more affected. As expected, we can
see that the BLEU scores with single side regular-
ization are worse than full regularization. How-
ever, it should be noted that single side regular-
ization still has positive effects. This result im-
plies that subword regularization is not only help-
ful for encoder-decoder architectures, but appli-
cable to other NLP tasks that only use an either
encoder or decoder, including text classification
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Figure 1: Effect of sampling hyperparameters

Regularization type en→vi vi→en en→ar ar→en
No reg. (baseline) 25.49 22.32 13.04 27.09
Source only 26.00 23.09* 13.46 28.16*
Target only 26.10 23.62* 14.34* 27.89*
Source and target 27.68* 24.73* 14.92* 28.47*

Table 6: Comparison on different regularization
strategies (IWSLT15/17, l = 64, α = 0.1)

(Iyyer et al., 2015) and image caption generation
(Vinyals et al., 2015).

6 Conclusions

In this paper, we presented a simple regularization
method, subword regularization13, for NMT,
with no change to the network architecture. The
central idea is to virtually augment training data
with on-the-fly subword sampling, which helps
to improve the accuracy as well as robustness of
NMT models. In addition, for better subword sam-
pling, we propose a new subword segmentation
algorithm based on the unigram language model.
Experiments on multiple corpora with different
sizes and languages show that subword regulariza-
tion leads to significant improvements especially
on low resource and open-domain settings.

Promising avenues for future work are to ap-
ply subword regularization to other NLP tasks
based on encoder-decoder architectures, e.g., di-
alog generation (Vinyals and Le, 2015) and auto-
matic summarization (Rush et al., 2015). Com-
pared to machine translation, these tasks do not
have enough training data, and thus there could
be a large room for improvement with subword
regularization. Additionally, we would like to ex-
plore the application of subword regularization for
machine learning, including Denoising Auto En-
coder (Vincent et al., 2008) and Adversarial Train-
ing (Goodfellow et al., 2015).

13Implementation is available at
https://github.com/google/sentencepiece
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Abstract

The past year has witnessed rapid ad-
vances in sequence-to-sequence (seq2seq)
modeling for Machine Translation (MT).
The classic RNN-based approaches to MT
were first out-performed by the convolu-
tional seq2seq model, which was then out-
performed by the more recent Transformer
model. Each of these new approaches con-
sists of a fundamental architecture accom-
panied by a set of modeling and training
techniques that are in principle applicable
to other seq2seq architectures. In this pa-
per, we tease apart the new architectures
and their accompanying techniques in two
ways. First, we identify several key mod-
eling and training techniques, and apply
them to the RNN architecture, yielding a
new RNMT+ model that outperforms all
of the three fundamental architectures on
the benchmark WMT’14 English→French
and English→German tasks. Second, we
analyze the properties of each fundamen-
tal seq2seq architecture and devise new
hybrid architectures intended to combine
their strengths. Our hybrid models ob-
tain further improvements, outperforming
the RNMT+ model on both benchmark
datasets.

1 Introduction

In recent years, the emergence of seq2seq mod-
els (Kalchbrenner and Blunsom, 2013; Sutskever
et al., 2014; Cho et al., 2014) has revolutionized
the field of MT by replacing traditional phrase-
based approaches with neural machine transla-
tion (NMT) systems based on the encoder-decoder
paradigm. In the first architectures that surpassed

∗ Equal contribution.

the quality of phrase-based MT, both the en-
coder and decoder were implemented as Recur-
rent Neural Networks (RNNs), interacting via a
soft-attention mechanism (Bahdanau et al., 2015).
The RNN-based NMT approach, or RNMT, was
quickly established as the de-facto standard for
NMT, and gained rapid adoption into large-scale
systems in industry, e.g. Baidu (Zhou et al., 2016),
Google (Wu et al., 2016), and Systran (Crego
et al., 2016).

Following RNMT, convolutional neural net-
work based approaches (LeCun and Bengio, 1998)
to NMT have recently drawn research attention
due to their ability to fully parallelize training to
take advantage of modern fast computing devices.
such as GPUs and Tensor Processing Units (TPUs)
(Jouppi et al., 2017). Well known examples are
ByteNet (Kalchbrenner et al., 2016) and ConvS2S
(Gehring et al., 2017). The ConvS2S model was
shown to outperform the original RNMT archi-
tecture in terms of quality, while also providing
greater training speed.

Most recently, the Transformer model (Vaswani
et al., 2017), which is based solely on a self-
attention mechanism (Parikh et al., 2016) and
feed-forward connections, has further advanced
the field of NMT, both in terms of translation qual-
ity and speed of convergence.

In many instances, new architectures are ac-
companied by a novel set of techniques for per-
forming training and inference that have been
carefully optimized to work in concert. This
‘bag of tricks’ can be crucial to the performance
of a proposed architecture, yet it is typically
under-documented and left for the enterprising re-
searcher to discover in publicly released code (if
any) or through anecdotal evidence. This is not
simply a problem for reproducibility; it obscures
the central scientific question of how much of the
observed gains come from the new architecture

76



and how much can be attributed to the associated
training and inference techniques. In some cases,
these new techniques may be broadly applicable
to other architectures and thus constitute a major,
though implicit, contribution of an architecture pa-
per. Clearly, they need to be considered in order
to ensure a fair comparison across different model
architectures.

In this paper, we therefore take a step back and
look at which techniques and methods contribute
significantly to the success of recent architectures,
namely ConvS2S and Transformer, and explore
applying these methods to other architectures, in-
cluding RNMT models. In doing so, we come up
with an enhanced version of RNMT, referred to
as RNMT+, that significantly outperforms all in-
dividual architectures in our setup. We further in-
troduce new architectures built with different com-
ponents borrowed from RNMT+, ConvS2S and
Transformer. In order to ensure a fair setting for
comparison, all architectures were implemented in
the same framework, use the same pre-processed
data and apply no further post-processing as this
may confound bare model performance.

Our contributions are three-fold:

1. In ablation studies, we quantify the effect
of several modeling improvements (includ-
ing multi-head attention and layer normaliza-
tion) as well as optimization techniques (such
as synchronous replica training and label-
smoothing), which are used in recent archi-
tectures. We demonstrate that these tech-
niques are applicable across different model
architectures.

2. Combining these improvements with the
RNMT model, we propose the new RNMT+
model, which significantly outperforms all
fundamental architectures on the widely-used
WMT’14 En→Fr and En→De benchmark
datasets. We provide a detailed model anal-
ysis and comparison of RNMT+, ConvS2S
and Transformer in terms of model quality,
model size, and training and inference speed.

3. Inspired by our understanding of the rela-
tive strengths and weaknesses of individual
model architectures, we propose new model
architectures that combine components from
the RNMT+ and the Transformer model, and
achieve better results than both individual ar-
chitectures.

We quickly note two prior works that pro-
vided empirical solutions to the difficulty of train-
ing NMT architectures (specifically RNMT). In
(Britz et al., 2017) the authors systematically ex-
plore which elements of NMT architectures have
a significant impact on translation quality. In
(Denkowski and Neubig, 2017) the authors recom-
mend three specific techniques for strengthening
NMT systems and empirically demonstrated how
incorporating those techniques improves the relia-
bility of the experimental results.

2 Background

In this section, we briefly discuss the commmonly
used NMT architectures.

2.1 RNN-based NMT Models - RNMT

RNMT models are composed of an encoder RNN
and a decoder RNN, coupled with an attention
network. The encoder summarizes the input se-
quence into a set of vectors while the decoder con-
ditions on the encoded input sequence through an
attention mechanism, and generates the output se-
quence one token at a time.

The most successful RNMT models consist of
stacked RNN encoders with one or more bidirec-
tional RNNs (Schuster and Paliwal, 1997; Graves
and Schmidhuber, 2005), and stacked decoders
with unidirectional RNNs. Both encoder and de-
coder RNNs consist of either LSTM (Hochreiter
and Schmidhuber, 1997; Gers et al., 2000) or GRU
units (Cho et al., 2014), and make extensive use of
residual (He et al., 2015) or highway (Srivastava
et al., 2015) connections.

In Google-NMT (GNMT) (Wu et al., 2016),
the best performing RNMT model on the datasets
we consider, the encoder network consists of
one bi-directional LSTM layer, followed by 7
uni-directional LSTM layers. The decoder is
equipped with a single attention network and 8
uni-directional LSTM layers. Both the encoder
and the decoder use residual skip connections be-
tween consecutive layers.

In this paper, we adopt GNMT as the starting
point for our proposed RNMT+ architecture.

2.2 Convolutional NMT Models - ConvS2S

In the most successful convolutional sequence-to-
sequence model (Gehring et al., 2017), both the
encoder and decoder are constructed by stacking
multiple convolutional layers, where each layer
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contains 1-dimensional convolutions followed by
a gated linear units (GLU) (Dauphin et al., 2016).
Each decoder layer computes a separate dot-
product attention by using the current decoder
layer output and the final encoder layer outputs.
Positional embeddings are used to provide explicit
positional information to the model. Following the
practice in (Gehring et al., 2017), we scale the gra-
dients of the encoder layers to stabilize training.
We also use residual connections across each con-
volutional layer and apply weight normalization
(Salimans and Kingma, 2016) to speed up conver-
gence. We follow the public ConvS2S codebase1

in our experiments.

2.3 Conditional Transformation-based NMT
Models - Transformer

The Transformer model (Vaswani et al., 2017) is
motivated by two major design choices that aim
to address deficiencies in the former two model
families: (1) Unlike RNMT, but similar to the
ConvS2S, the Transformer model avoids any se-
quential dependencies in both the encoder and
decoder networks to maximally parallelize train-
ing. (2) To address the limited context problem
(limited receptive field) present in ConvS2S, the
Transformer model makes pervasive use of self-
attention networks (Parikh et al., 2016) so that
each position in the current layer has access to in-
formation from all other positions in the previous
layer.

The Transformer model still follows the
encoder-decoder paradigm. Encoder transformer
layers are built with two sub-modules: (1) a self-
attention network and (2) a feed-forward network.
Decoder transformer layers have an additional
cross-attention layer sandwiched between the self-
attention and feed-forward layers to attend to the
encoder outputs.

There are two details which we found very im-
portant to the model’s performance: (1) Each sub-
layer in the transformer (i.e. self-attention, cross-
attention, and the feed-forward sub-layer) follows
a strict computation sequence: normalize→ trans-
form→ dropout→ residual-add. (2) In addition to
per-layer normalization, the final encoder output is
again normalized to prevent a blow up after con-
secutive residual additions.

In this paper, we follow the latest version of the

1https://github.com/facebookresearch/fairseq-py

Transformer model in the Tensor2Tensor2 code-
base.

2.4 A Theory-Based Characterization of
NMT Architectures

From a theoretical point of view, RNNs belong
to the most expressive members of the neural
network family (Siegelmann and Sontag, 1995)3.
Possessing an infinite Markovian structure (and
thus an infinite receptive fields) equips them to
model sequential data (Elman, 1990), especially
natural language (Grefenstette et al., 2015) ef-
fectively. In practice, RNNs are notoriously
hard to train (Hochreiter, 1991; Bengio et al.,
1994; Hochreiter et al., 2001), confirming the well
known dilemma of trainability versus expressivity.

Convolutional layers are adept at capturing lo-
cal context and local correlations by design. A
fixed and narrow receptive field for each convo-
lutional layer limits their capacity when the ar-
chitecture is shallow. In practice, this weakness
is mitigated by stacking more convolutional lay-
ers (e.g. 15 layers as in the ConvS2S model),
which makes the model harder to train and de-
mands meticulous initialization schemes and care-
fully designed regularization techniques.

The transformer network is capable of ap-
proximating arbitrary squashing functions (Hornik
et al., 1989), and can be considered a strong fea-
ture extractor with extended receptive fields capa-
ble of linking salient features from the entire se-
quence. On the other hand, lacking a memory
component (as present in the RNN models) pre-
vents the network from modeling a state space,
reducing its theoretical strength as a sequence
model, thus it requires additional positional infor-
mation (e.g. sinusoidal positional encodings).

Above theoretical characterizations will drive
our explorations in the following sections.

3 Experiment Setup
We train our models on the standard WMT’14
En→Fr and En→De datasets that comprise 36.3M
and 4.5M sentence pairs, respectively. Each sen-
tence was encoded into a sequence of sub-word
units obtained by first tokenizing the sentence with
the Moses tokenizer, then splitting tokens into sub-
word units (also known as “wordpieces”) using
the approach described in (Schuster and Nakajima,
2012).

2https://github.com/tensorflow/tensor2tensor
3Assuming that data complexity is satisfied.
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Figure 1: Model architecture of RNMT+. On the left side, the encoder network has 6 bidirectional LSTM
layers. At the end of each bidirectional layer, the outputs of the forward layer and the backward layer
are concatenated. On the right side, the decoder network has 8 unidirectional LSTM layers, with the first
layer used for obtaining the attention context vector through multi-head additive attention. The attention
context vector is then fed directly into the rest of the decoder layers as well as the softmax layer.

We use a shared vocabulary of 32K sub-word
units for each source-target language pair. No fur-
ther manual or rule-based post processing of the
output was performed beyond combining the sub-
word units to generate the targets. We report all
our results on newstest 2014, which serves as the
test set. A combination of newstest 2012 and new-
stest 2013 is used for validation.

To evaluate the models, we compute the BLEU
metric on tokenized, true-case output.4 For each
training run, we evaluate the model every 30 min-
utes on the dev set. Once the model converges, we
determine the best window based on the average
dev-set BLEU score over 21 consecutive evalua-
tions. We report the mean test score and standard
deviation over the selected window. This allows
us to compare model architectures based on their
mean performance after convergence rather than
individual checkpoint evaluations, as the latter can
be quite noisy for some models.

To enable a fair comparison of architectures,
we use the same pre-processing and evaluation
methodology for all our experiments. We re-
frain from using checkpoint averaging (exponen-
tial moving averages of parameters) (Junczys-
Dowmunt et al., 2016) or checkpoint ensembles
(Jean et al., 2015; Chen et al., 2017) to focus on

4This procedure is used in the literature to which we com-
pare (Gehring et al., 2017; Wu et al., 2016).

evaluating the performance of individual models.

4 RNMT+

4.1 Model Architecture of RNMT+

The newly proposed RNMT+ model architecture
is shown in Figure 1. Here we highlight the key
architectural choices that are different between the
RNMT+ model and the GNMT model. There are
6 bidirectional LSTM layers in the encoder instead
of 1 bidirectional LSTM layer followed by 7 uni-
directional layers as in GNMT. For each bidirec-
tional layer, the outputs of the forward layer and
the backward layer are concatenated before being
fed into the next layer. The decoder network con-
sists of 8 unidirectional LSTM layers similar to the
GNMT model. Residual connections are added to
the third layer and above for both the encoder and
decoder. Inspired by the Transformer model, per-
gate layer normalization (Ba et al., 2016) is ap-
plied within each LSTM cell. Our empirical re-
sults show that layer normalization greatly stabi-
lizes training. No non-linearity is applied to the
LSTM output. A projection layer is added to the
encoder final output.5 Multi-head additive atten-
tion is used instead of the single-head attention in
the GNMT model. Similar to GNMT, we use the

5Additional projection aims to reduce the dimensionality
of the encoder output representations to match the decoder
stack dimension.
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bottom decoder layer and the final encoder layer
output after projection for obtaining the recurrent
attention context. In addition to feeding the atten-
tion context to all decoder LSTM layers, we also
feed it to the softmax by concatenating it with the
layer input. This is important for both the quality
of the models with multi-head attention and the
stability of the training process.

Since the encoder network in RNMT+ consists
solely of bi-directional LSTM layers, model par-
allelism is not used during training. We com-
pensate for the resulting longer per-step time with
increased data parallelism (more model replicas),
so that the overall time to reach convergence of
the RNMT+ model is still comparable to that of
GNMT.

We apply the following regularization tech-
niques during training.

• Dropout: We apply dropout to both embed-
ding layers and each LSTM layer output before
it is added to the next layer’s input. Attention
dropout is also applied.

• Label Smoothing: We use uniform label
smoothing with an uncertainty=0.1 (Szegedy
et al., 2015). Label smoothing was shown to
have a positive impact on both Transformer
and RNMT+ models, especially in the case
of RNMT+ with multi-head attention. Similar
to the observations in (Chorowski and Jaitly,
2016), we found it beneficial to use a larger
beam size (e.g. 16, 20, etc.) during decoding
when models are trained with label smoothing.

• Weight Decay: For the WMT’14 En→De task,
we apply L2 regularization to the weights with
λ = 10−5. Weight decay is only applied to the
En→De task as the corpus is smaller and thus
more regularization is required.

We use the Adam optimizer (Kingma and Ba,
2014) with β1 = 0.9, β2 = 0.999, ε = 10−6 and
vary the learning rate according to this schedule:

lr = 10−4 ·min
(
1+

t · (n− 1)

np
, n, n · (2n)

s−nt
e−s

)

(1)
Here, t is the current step, n is the number of con-
current model replicas used in training, p is the
number of warmup steps, s is the start step of the
exponential decay, and e is the end step of the de-
cay. Specifically, we first increase the learning rate
linearly during the number of warmup steps, keep

it a constant until the decay start step s, then ex-
ponentially decay until the decay end step e, and
keep it at 5 · 10−5 after the decay ends. This
learning rate schedule is motivated by a similar
schedule that was successfully applied in training
the Resnet-50 model with a very large batch size
(Goyal et al., 2017).

In contrast to the asynchronous training used
for GNMT (Dean et al., 2012), we train RNMT+
models with synchronous training (Chen et al.,
2016). Our empirical results suggest that when
hyper-parameters are tuned properly, synchronous
training often leads to improved convergence
speed and superior model quality.

To further stabilize training, we also use adap-
tive gradient clipping. We discard a training step
completely if an anomaly in the gradient norm
value is detected, which is usually an indication
of an imminent gradient explosion. More specif-
ically, we keep track of a moving average and a
moving standard deviation of the log of the gradi-
ent norm values, and we abort a step if the norm
of the gradient exceeds four standard deviations of
the moving average.

4.2 Model Analysis and Comparison

In this section, we compare the results of RNMT+
with ConvS2S and Transformer.

All models were trained with synchronous
training. RNMT+ and ConvS2S were trained with
32 NVIDIA P100 GPUs while the Transformer
Base and Big models were trained using 16 GPUs.

For RNMT+, we use sentence-level cross-
entropy loss. Each training batch contained 4096
sentence pairs (4096 source sequences and 4096
target sequences). For ConvS2S and Transformer
models, we use token-level cross-entropy loss.
Each training batch contained 65536 source to-
kens and 65536 target tokens. For the GNMT
baselines on both tasks, we cite the largest BLEU
score reported in (Wu et al., 2016) without rein-
forcement learning.

Table 1 shows our results on the WMT’14
En→Fr task. Both the Transformer Big model
and RNMT+ outperform GNMT and ConvS2S by
about 2 BLEU points. RNMT+ is slightly better
than the Transformer Big model in terms of its
mean BLEU score. RNMT+ also yields a much
lower standard deviation, and hence we observed
much less fluctuation in the training curve. It
takes approximately 3 days for the Transformer
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Base model to converge, while both RNMT+ and
the Transformer Big model require about 5 days
to converge. Although the batching schemes are
quite different between the Transformer Big and
the RNMT+ model, they have processed about
the same amount of training samples upon conver-
gence.

Model Test BLEU Epochs
Training
Time

GNMT 38.95 - -
ConvS2S 7 39.49 ± 0.11 62.2 438h
Trans. Base 39.43 ± 0.17 20.7 90h
Trans. Big 8 40.73 ± 0.19 8.3 120h

RNMT+ 41.00 ± 0.05 8.5 120h

Table 1: Results on WMT14 En→Fr. The num-
bers before and after ‘±’ are the mean and stan-
dard deviation of test BLEU score over an eval-
uation window. Note that Transformer models
are trained using 16 GPUs, while ConvS2S and
RNMT+ are trained using 32 GPUs.

Table 2 shows our results on the WMT’14
En→De task. The Transformer Base model im-
proves over GNMT and ConvS2S by more than
2 BLEU points while the Big model improves by
over 3 BLEU points. RNMT+ further outperforms
the Transformer Big model and establishes a new
state of the art with an averaged value of 28.49. In
this case, RNMT+ converged slightly faster than
the Transformer Big model and maintained much
more stable performance after convergence with a
very small standard deviation, which is similar to
what we observed on the En-Fr task.

Table 3 summarizes training performance and
model statistics. The Transformer Base model

6Since the ConvS2S model convergence is very slow we
did not explore further tuning on En→Fr, and validated our
implementation on En→De.

7The BLEU scores for Transformer model are slightly
lower than those reported in (Vaswani et al., 2017) due to
four differences:

1) We report the mean test BLEU score using the strategy
described in section 3.

2) We did not perform checkpoint averaging since it would
be inconsistent with our evaluation for other models.

3) We avoided any manual post-processing, like unicode
normalization using Moses replace-unicode-punctuation.perl
or output tokenization using Moses tokenizer.perl, to rule out
its effect on the evaluation. We observed a significant BLEU
increase (about 0.6) on applying these post processing tech-
niques.

4) In (Vaswani et al., 2017), reported BLEU scores are cal-
culated using mteval-v13a.pl from Moses, which re-tokenizes
its input.

Model Test BLEU Epochs
Training
Time

GNMT 24.67 - -
ConvS2S 25.01 ±0.17 38 20h

Trans. Base 27.26 ± 0.15 38 17h
Trans. Big 27.94 ± 0.18 26.9 48h
RNMT+ 28.49 ± 0.05 24.6 40h

Table 2: Results on WMT14 En→De. Note that
Transformer models are trained using 16 GPUs,
while ConvS2S and RNMT+ are trained using 32
GPUs.

is the fastest model in terms of training speed.
RNMT+ is slower to train than the Transformer
Big model on a per-GPU basis. However, since
the RNMT+ model is quite stable, we were able to
offset the lower per-GPU throughput with higher
concurrency by increasing the number of model
replicas, and hence the overall time to convergence
was not slowed down much. We also computed
the number of floating point operations (FLOPs)
in the model’s forward path as well as the num-
ber of total parameters for all architectures (cf. Ta-
ble 3). RNMT+ requires fewer FLOPs than the
Transformer Big model, even though both models
have a comparable number of parameters.

Model Examples/s FLOPs Params
ConvS2S 80 15.7B 263.4M

Trans. Base 160 6.2B 93.3M
Trans. Big 50 31.2B 375.4M
RNMT+ 30 28.1B 378.9M

Table 3: Performance comparison. Examples/s are
normalized by the number of GPUs used in the
training job. FLOPs are computed assuming that
source and target sequence length are both 50.

5 Ablation Experiments

In this section, we evaluate the importance of four
main techniques for both the RNMT+ and the
Transformer Big models. We believe that these
techniques are universally applicable across dif-
ferent model architectures, and should always be
employed by NMT practitioners for best perfor-
mance.

We take our best RNMT+ and Transformer Big
models and remove each one of these techniques
independently. By doing this we hope to learn two
things about each technique: (1) How much does
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it affect the model performance? (2) How useful is
it for stable training of other techniques and hence
the final model?

Model RNMT+ Trans. Big
Baseline 41.00 40.73

- Label Smoothing 40.33 40.49
- Multi-head Attention 40.44 39.83

- Layer Norm. * *
- Sync. Training 39.68 *

Table 4: Ablation results of RNMT+ and the
Transformer Big model on WMT’14 En→ Fr. We
report average BLEU scores on the test set. An as-
terisk ’*’ indicates an unstable training run (train-
ing halts due to non-finite elements).

From Table 4 we draw the following conclu-
sions about the four techniques:

• Label Smoothing We observed that label
smoothing improves both models, leading to an
average increase of 0.7 BLEU for RNMT+ and
0.2 BLEU for Transformer Big models.

• Multi-head Attention Multi-head attention
contributes significantly to the quality of both
models, resulting in an average increase of 0.6
BLEU for RNMT+ and 0.9 BLEU for Trans-
former Big models.

• Layer Normalization Layer normalization is
most critical to stabilize the training process of
either model, especially when multi-head atten-
tion is used. Removing layer normalization re-
sults in unstable training runs for both models.
Since by design, we remove one technique at a
time in our ablation experiments, we were un-
able to quantify how much layer normalization
helped in either case. To be able to successfully
train a model without layer normalization, we
would have to adjust other parts of the model
and retune its hyper-parameters.

• Synchronous training Removing synchronous
training has different effects on RNMT+ and
Transformer. For RNMT+, it results in a sig-
nificant quality drop, while for the Transformer
Big model, it causes the model to become un-
stable. We also notice that synchronous train-
ing is only successful when coupled with a tai-
lored learning rate schedule that has a warmup
stage at the beginning (cf. Eq. 1 for RNMT+ and

Eq. 2 for Transformer). For RNMT+, removing
this warmup stage during synchronous training
causes the model to become unstable.

6 Hybrid NMT Models
In this section, we explore hybrid architectures
that shed some light on the salient behavior of
each model family. These hybrid models outper-
form the individual architectures on both bench-
mark datasets and provide a better understanding
of the capabilities and limitations of each model
family.

6.1 Assessing Individual Encoders and
Decoders

In an encoder-decoder architecture, a natural as-
sumption is that the role of an encoder is to build
feature representations that can best encode the
meaning of the source sequence, while a decoder
should be able to process and interpret the repre-
sentations from the encoder and, at the same time,
track the current target history. Decoding is in-
herently auto-regressive, and keeping track of the
state information should therefore be intuitively
beneficial for conditional generation.

We set out to study which family of encoders is
more suitable to extract rich representations from
a given input sequence, and which family of de-
coders can make the best of such rich representa-
tions. We start by combining the encoder and de-
coder from different model families. Since it takes
a significant amount of time for a ConvS2S model
to converge, and because the final translation qual-
ity was not on par with the other models, we fo-
cus on two types of hybrids only: Transformer en-
coder with RNMT+ decoder and RNMT+ encoder
with Transformer decoder.

Encoder Decoder En→Fr Test BLEU
Trans. Big Trans. Big 40.73 ± 0.19
RNMT+ RNMT+ 41.00 ± 0.05

Trans. Big RNMT+ 41.12 ± 0.16
RNMT+ Trans. Big 39.92 ± 0.21

Table 5: Results for encoder-decoder hybrids.

From Table 5, it is clear that the Transformer
encoder is better at encoding or feature extrac-
tion than the RNMT+ encoder, whereas RNMT+
is better at decoding or conditional language mod-
eling, confirming our intuition that a stateful de-
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coder is beneficial for conditional language gener-
ation.

6.2 Assessing Encoder Combinations

Next, we explore how the features extracted by
an encoder can be further enhanced by incorpo-
rating additional information. Specifically, we in-
vestigate the combination of transformer layers
with RNMT+ layers in the same encoder block to
build even richer feature representations. We ex-
clusively use RNMT+ decoders in the following
architectures since stateful decoders show better
performance according to Table 5.

We study two mixing schemes in the encoder
(see Fig. 2):

(1) Cascaded Encoder: The cascaded encoder
aims at combining the representational power of
RNNs and self-attention. The idea is to enrich a
set of stateful representations by cascading a fea-
ture extractor with a focus on vertical mapping,
similar to (Pascanu et al., 2013; Devlin, 2017).
Our best performing cascaded encoder involves
fine tuning transformer layers stacked on top of
a pre-trained frozen RNMT+ encoder. Using a
pre-trained encoder avoids optimization difficul-
ties while significantly enhancing encoder capac-
ity. As shown in Table 6, the cascaded encoder
improves over the Transformer encoder by more
than 0.5 BLEU points on the WMT’14 En→Fr
task. This suggests that the Transformer encoder
is able to extract richer representations if the input
is augmented with sequential context.

(2) Multi-Column Encoder: As illustrated in
Fig. 2b, a multi-column encoder merges the out-
puts of several independent encoders into a sin-
gle combined representation. Unlike a cascaded
encoder, the multi-column encoder enables us to
investigate whether an RNMT+ decoder can dis-
tinguish information received from two different
channels and benefit from its combination. A
crucial operation in a multi-column encoder is
therefore how different sources of information are
merged into a unified representation. Our best
multi-column encoder performs a simple concate-
nation of individual column outputs.

The model details and hyperparameters of the
above two encoders are described in Appendix A.5
and A.6. As shown in Table 6, the multi-column
encoder followed by an RNMT+ decoder achieves
better results than the Transformer and the RNMT
model on both WMT’14 benchmark tasks.

Model En→Fr BLEU En→De BLEU
Trans. Big 40.73 ± 0.19 27.94 ± 0.18
RNMT+ 41.00 ± 0.05 28.49 ± 0.05
Cascaded 41.67 ± 0.11 28.62 ± 0.06
MultiCol 41.66 ± 0.11 28.84 ± 0.06

Table 6: Results for hybrids with cascaded en-
coder and multi-column encoder.

(a) Cascaded Encoder (b) Multi-Column Encoder

Figure 2: Vertical and horizontal mixing of Trans-
former and RNMT+ components in an encoder.

7 Conclusion
In this work we explored the efficacy of sev-
eral architectural and training techniques proposed
in recent studies on seq2seq models for NMT.
We demonstrated that many of these techniques
are broadly applicable to multiple model architec-
tures. Applying these new techniques to RNMT
models yields RNMT+, an enhanced RNMT
model that significantly outperforms the three fun-
damental architectures on WMT’14 En→Fr and
En→De tasks. We further presented several hy-
brid models developed by combining encoders and
decoders from the Transformer and RNMT+ mod-
els, and empirically demonstrated the superiority
of the Transformer encoder and the RNMT+ de-
coder in comparison with their counterparts. We
then enhanced the encoder architecture by hori-
zontally and vertically mixing components bor-
rowed from these architectures, leading to hy-
brid architectures that obtain further improve-
ments over RNMT+.

We hope that our work will motivate NMT re-
searchers to further investigate generally applica-
ble training and optimization techniques, and that
our exploration of hybrid architectures will open
paths for new architecture search efforts for NMT.
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Our focus on a standard single-language-pair
translation task leaves important open questions
to be answered: How do our new architectures
compare in multilingual settings, i.e., modeling
an interlingua? Which architecture is more effi-
cient and powerful in processing finer grained in-
puts and outputs, e.g., characters or bytes? How
transferable are the representations learned by the
different architectures to other tasks? And what
are the characteristic errors that each architecture
makes, e.g., linguistic plausibility?
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Abstract

We introduce a new entity typing task:
given a sentence with an entity mention,
the goal is to predict a set of free-form
phrases (e.g. skyscraper, songwriter, or
criminal) that describe appropriate types
for the target entity. This formulation al-
lows us to use a new type of distant super-
vision at large scale: head words, which
indicate the type of the noun phrases they
appear in. We show that these ultra-fine
types can be crowd-sourced, and intro-
duce new evaluation sets that are much
more diverse and fine-grained than exist-
ing benchmarks. We present a model that
can predict open types, and is trained using
a multitask objective that pools our new
head-word supervision with prior supervi-
sion from entity linking. Experimental re-
sults demonstrate that our model is effec-
tive in predicting entity types at varying
granularity; it achieves state of the art per-
formance on an existing fine-grained en-
tity typing benchmark, and sets baselines
for our newly-introduced datasets.1

1 Introduction

Entities can often be described by very fine
grained types. Consider the sentences “Bill robbed
John. He was arrested.” The noun phrases “John,”
“Bill,” and “he” have very specific types that
can be inferred from the text. This includes the
facts that “Bill” and “he” are both likely “crimi-
nal” due to the “robbing” and “arresting,” while
“John” is more likely a “victim” because he was
“robbed.” Such fine-grained types (victim, crimi-
nal) are important for context-sensitive tasks such

1Our data and model can be downloaded from:
http://nlp.cs.washington.edu/entity_type

Sentence with Target Entity Entity Types

During the Inca Empire, {the Inti
Raymi} was the most important
of four ceremonies celebrated in
Cusco.

event, festival, rit-
ual, custom, cere-
mony, party, cele-
bration

{They} have been asked to appear
in court to face the charge.

person, accused,
suspect, defendant

Ban praised Rwanda’s commit-
ment to the UN and its role in
{peacemaking operations}.

event, plan, mis-
sion, action

Table 1: Examples of entity mentions and their an-
notated types, as annotated in our dataset. The en-
tity mentions are bold faced and in the curly brack-
ets. The bold blue types do not appear in existing
fine-grained type ontologies.

as coreference resolution and question answering
(e.g. “Who was the victim?”). Inferring such types
for each mention (John, he) is not possible given
current typing models that only predict relatively
coarse types and only consider named entities.

To address this challenge, we present a new
task: given a sentence with a target entity men-
tion, predict free-form noun phrases that describe
appropriate types for the role the target entity plays
in the sentence. Table 1 shows three examples that
exhibit a rich variety of types at different granular-
ities. Our task effectively subsumes existing fine-
grained named entity typing formulations due to
the use of a very large type vocabulary and the fact
that we predict types for all noun phrases, includ-
ing named entities, nominals, and pronouns.

Incorporating fine-grained entity types has im-
proved entity-focused downstream tasks, such as
relation extraction (Yaghoobzadeh et al., 2017a),
question answering (Yavuz et al., 2016), query
analysis (Balog and Neumayer, 2012), and coref-
erence resolution (Durrett and Klein, 2014). These
systems used a relatively coarse type ontology.
However, manually designing the ontology is a
challenging task, and it is difficult to cover all pos-
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Figure 1: A visualization of all the labels that cover 90% of the data, where a bubble’s size is proportional
to the label’s frequency. Our dataset is much more diverse and fine grained when compared to existing
datasets (OntoNotes and FIGER), in which the top 5 types cover 70-80% of the data.

sible concepts even within a limited domain. This
can be seen empirically in existing datasets, where
the label distribution of fine-grained entity typing
datasets is heavily skewed toward coarse-grained
types. For instance, annotators of the OntoNotes
dataset (Gillick et al., 2014) marked about half of
the mentions as “other,” because they could not
find a suitable type in their ontology (see Figure 1
for a visualization and Section 2.2 for details).

Our more open, ultra-fine vocabulary, where
types are free-form noun phrases, alleviates the
need for hand-crafted ontologies, thereby greatly
increasing overall type coverage. To better un-
derstand entity types in an unrestricted setting,
we crowdsource a new dataset of 6,000 examples.
Compared to previous fine-grained entity typing
datasets, the label distribution in our data is sub-
stantially more diverse and fine-grained. Annota-
tors easily generate a wide range of types and can
determine with 85% agreement if a type generated
by another annotator is appropriate. Our evalu-
ation data has over 2,500 unique types, posing a
challenging learning problem.

While our types are harder to predict, they also
allow for a new form of contextual distant super-
vision. We observe that text often contains cues
that explicitly match a mention to its type, in the
form of the mention’s head word. For example,
“the incumbent chairman of the African Union”
is a type of “chairman.” This signal comple-
ments the supervision derived from linking entities
to knowledge bases, which is context-oblivious.
For example, “Clint Eastwood” can be described

with dozens of types, but context-sensitive typing
would prefer “director” instead of “mayor” for the
sentence “Clint Eastwood won ‘Best Director’ for
Million Dollar Baby.”

We combine head-word supervision, which pro-
vides ultra-fine type labels, with traditional sig-
nals from entity linking. Although the problem is
more challenging at finer granularity, we find that
mixing fine and coarse-grained supervision helps
significantly, and that our proposed model with
a multitask objective exceeds the performance of
existing entity typing models. Lastly, we show
that head-word supervision can be used for previ-
ous formulations of entity typing, setting the new
state-of-the-art performance on an existing fine-
grained NER benchmark.

2 Task and Data

Given a sentence and an entity mention e within
it, the task is to predict a set of natural-language
phrases T that describe the type of e. The selec-
tion of T is context sensitive; for example, in “Bill
Gates has donated billions to eradicate malaria,”
Bill Gates should be typed as “philanthropist” and
not “inventor.” This distinction is important for
context-sensitive tasks such as coreference resolu-
tion and question answering (e.g. “Which philan-
thropist is trying to prevent malaria?”).

We annotate a dataset of about 6,000 mentions
via crowdsourcing (Section 2.1), and demonstrate
that using an large type vocabulary substantially
increases annotation coverage and diversity over
existing approaches (Section 2.2).
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2.1 Crowdsourcing Entity Types

To capture multiple domains, we sample sentences
from Gigaword (Parker et al., 2011), OntoNotes
(Hovy et al., 2006), and web articles (Singh et al.,
2012). We select entity mentions by taking max-
imal noun phrases from a constituency parser
(Manning et al., 2014) and mentions from a coref-
erence resolution system (Lee et al., 2017).

We provide the sentence and the target entity
mention to five crowd workers on Mechanical
Turk, and ask them to annotate the entity’s type.
To encourage annotators to generate fine-grained
types, we require at least one general type (e.g.
person, organization, location) and two specific
types (e.g. doctor, fish, religious institute), from
a type vocabulary of about 10K frequent noun
phrases. We use WordNet (Miller, 1995) to ex-
pand these types automatically by generating all
their synonyms and hypernyms based on the most
common sense, and ask five different annotators to
validate the generated types. Each pair of annota-
tors agreed on 85% of the binary validation deci-
sions (i.e. whether a type is suitable or not) and
0.47 in Fleiss’s κ. To further improve consistency,
the final type set contained only types selected by
at least 3/5 annotators. Further crowdsourcing de-
tails are available in the supplementary material.

Our collection process focuses on precision.
Thus, the final set is diverse but not comprehen-
sive, making evaluation non-trivial (see Section 5).

2.2 Data Analysis

We collected about 6,000 examples. For analysis,
we classified each type into three disjoint bins:
• 9 general types: person, location, object, orga-

nization, place, entity, object, time, event
• 121 fine-grained types, mapped to fine-grained

entity labels from prior work (Ling and Weld,
2012; Gillick et al., 2014) (e.g. film, athlete)
• 10,201 ultra-fine types, encompassing every

other label in the type space (e.g. detective, law-
suit, temple, weapon, composer)

On average, each example has 5 labels: 0.9 gen-
eral, 0.6 fine-grained, and 3.9 ultra-fine types.
Among the 10,000 ultra-fine types, 2,300 unique
types were actually found in the 6,000 crowd-
sourced examples. Nevertheless, our distant su-
pervision data (Section 3) provides positive train-
ing examples for every type in the entire vocabu-
lary, and our model (Section 4) can and does pre-
dict from a 10K type vocabulary. For example,

Figure 2: The label distribution across different
evaluation datasets. In existing datasets, the top
4 or 7 labels cover over 80% of the labels. In ours,
the top 50 labels cover less than 50% of the data.

the model correctly predicts “television network”
and “archipelago” for some mentions, even though
that type never appears in the 6,000 crowdsourced
examples.

Improving Type Coverage We observe that
prior fine-grained entity typing datasets are heav-
ily focused on coarse-grained types. To quan-
tify our observation, we calculate the distribu-
tion of types in FIGER (Ling and Weld, 2012),
OntoNotes (Gillick et al., 2014), and our data.
For examples with multiple types (|T | > 1), we
counted each type 1/|T | times.

Figure 2 shows the percentage of labels covered
by the top N labels in each dataset. In previous
enitity typing datasets, the distribution of labels
is highly skewed towards the top few labels. To
cover 80% of the examples, FIGER requires only
the top 7 types, while OntoNotes needs only 4; our
dataset requires 429 different types.

Figure 1 takes a deeper look by visualizing the
types that cover 90% of the data, demonstrating
the diversity of our dataset. It is also striking that
more than half of the examples in OntoNotes are
classified as “other,” perhaps because of the limi-
tation of its predefined ontology.

Improving Mention Coverage Existing
datasets focus mostly on named entity mentions,
with the exception of OntoNotes, which contained
nominal expressions. This has implications on
the transferability of FIGER/OntoNotes-based
models to tasks such as coreference resolution,
which need to analyze all types of entity mentions
(pronouns, nominal expressions, and named entity
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Source Example Sentence Labels Size Prec.

Head Words Western powers that brokered the proposed deal in Vi-
enna are likely to balk, said Valerie Lincy, a researcher
with the Wisconsin Project.

power

20M 80.4%
Alexis Kaniaris, CEO of the organizing company Eu-
ropartners, explained, speaking in a radio program in na-
tional radio station NET.

radio, station, ra-
dio station

Entity Linking
+ Definitions

Toyota recalled more than 8 million vehicles globally over
sticky pedals that can become entrapped in floor mats.

manufacturer 2.7M 77.7%

Entity Linking
+ KB

Iced Earth’s musical style is influenced by many traditional
heavy metal groups such as Black Sabbath.

person, artist, actor,
author, musician

2.5M 77.6%

Table 2: Distant supervision examples and statistics. We extracted the headword and Wikipedia def-
inition supervision from Gigaword and Wikilink corpora. KB-based supervision is mapped from prior
work, which used Wikipedia and news corpora.

mentions). Our new dataset provides a well-
rounded benchmark with roughly 40% pronouns,
38% nominal expressions, and 22% named entity
mentions. The case of pronouns is particularly
interesting, since the mention itself provides little
information.

3 Distant Supervision

Training data for fine-grained NER systems is
typically obtained by linking entity mentions and
drawing their types from knowledge bases (KBs).
This approach has two limitations: recall can suf-
fer due to KB incompleteness (West et al., 2014),
and precision can suffer when the selected types
do not fit the context (Ritter et al., 2011). We al-
leviate the recall problem by mining entity men-
tions that were linked to Wikipedia in HTML,
and extract relevant types from their encyclope-
dic definitions (Section 3.1). To address the pre-
cision issue (context-insensitive labeling), we pro-
pose a new source of distant supervision: auto-
matically extracted nominal head words from raw
text (Section 3.2). Using head words as a form
of distant supervision provides fine-grained infor-
mation about named entities and nominal men-
tions. While a KB may link “the 44th president
of the United States” to many types such as author,
lawyer, and professor, head words provide only the
type “president”, which is relevant in the context.

We experiment with the new distant supervi-
sion sources as well as the traditional KB super-
vision. Table 2 shows examples and statistics for
each source of supervision. We annotate 100 ex-
amples from each source to estimate the noise and
usefulness in each signal (precision in Table 2).

3.1 Entity Linking

For KB supervision, we leveraged training data
from prior work (Ling and Weld, 2012; Gillick
et al., 2014) by manually mapping their ontology
to our 10,000 noun type vocabulary, which cov-
ers 130 of our labels (general and fine-grained).2

Section 6 defines this mapping in more detail.

To improve both entity and type coverage of KB
supervision, we use definitions from Wikipedia.
We follow Shnarch et al. () who observed that the
first sentence of a Wikipedia article often states
the entity’s type via an “is a” relation; for exam-
ple, “Roger Federer is a Swiss professional tennis
player.” Since we are using a large type vocabu-
lary, we can now mine this typing information.3

We extracted descriptions for 3.1M entities which
contain 4,600 unique type labels such as “compe-
tition,” “movement,” and “village.”

We bypass the challenge of automatically link-
ing entities to Wikipedia by exploiting existing hy-
perlinks in web pages (Singh et al., 2012), fol-
lowing prior work (Ling and Weld, 2012; Yosef
et al., 2012). Since our heuristic extraction of
types from the definition sentence is somewhat
noisy, we use a more conservative entity linking
policy4 that yields a signal with similar overall ac-
curacy to KB-linked data.

2Data from: https://github.com/
shimaokasonse/NFGEC

3We extract types by applying a dependency parser (Man-
ning et al., 2014) to the definition sentence, and taking nouns
that are dependents of a copular edge or connected to nouns
linked to copulars via appositive or conjunctive edges.

4Only link if the mention contains the Wikipedia entity’s
name and the entity’s name contains the mention’s head.
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3.2 Contextualized Supervision
Many nominal entity mentions include detailed
type information within the mention itself. For
example, when describing Titan V as “the newly-
released graphics card”, the head words and
phrases of this mention (“graphics card” and
“card”) provide a somewhat noisy, but very easy
to gather, context-sensitive type signal.

We extract nominal head words with a depen-
dency parser (Manning et al., 2014) from the Gi-
gaword corpus as well as the Wikilink dataset.
To support multiword expressions, we included
nouns that appear next to the head if they form a
phrase in our type vocabulary. Finally, we lower-
case all words and convert plural to singular.

Our analysis reveals that this signal has a com-
parable accuracy to the types extracted from en-
tity linking (around 80%). Many errors are from
the parser, and some errors stem from idioms and
transparent heads (e.g. “parts of capital” labeled as
“part”). While the headword is given as an input
to the model, with heavy regularization and multi-
tasking with other supervision sources, this super-
vision helps encode the context.

4 Model

We design a model for predicting sets of types
given a mention in context. The architec-
ture resembles the recent neural AttentiveNER
model (Shimaoka et al., 2017), while improving
the sentence and mention representations, and in-
troducing a new multitask objective to handle mul-
tiple sources of supervision. The hyperparameter
settings are listed in the supplementary material.

Context Representation Given a sentence
x1, . . . , xn, we represent each token xi using a
pre-trained word embedding wi. We concate-
nate an additional location embedding li which
indicates whether xi is before, inside, or after
the mention. We then use [xi; li] as an input to a
bidirectional LSTM, producing a contextualized
representation hi for each token; this is different
from the architecture of Shimaoka et al. 2017,
who used two separate bidirectional LSTMs on
each side of the mention. Finally, we represent the
context c as a weighted sum of the contextualized
token representations using MLP-based attention:

ai = SoftMaxi(va · relu(Wahi))

Where Wa and va are the parameters of the atten-
tion mechanism’s MLP, which allows interaction

between the forward and backward directions of
the LSTM before computing the weight factors.

Mention Representation We represent the
mention m as the concatenation of two items:
(a) a character-based representation produced
by a CNN on the entire mention span, and (b) a
weighted sum of the pre-trained word embeddings
in the mention span computed by attention,
similar to the mention representation in a recent
coreference resolution model (Lee et al., 2017).
The final representation is the concatenation of the
context and mention representations: r = [c;m].

Label Prediction We learn a type label embed-
ding matrix Wt ∈ Rn×d where n is the number of
labels in the prediction space and d is the dimen-
sion of r. This matrix can be seen as a combination
of three sub matrices, Wgeneral,Wfine,Wultra,
each of which contains the representations of the
general, fine, and ultra-fine types respectively. We
predict each type’s probability via the sigmoid of
its inner product with r: y = σ(Wtr). We predict
every type t for which yt > 0.5, or argmax yt if
there is no such type.

Multitask Objective The distant supervision
sources provide partial supervision for ultra-fine
types; KBs often provide more general types,
while head words usually provide only ultra-fine
types, without their generalizations. In other
words, the absence of a type at a different level
of abstraction does not imply a negative signal;
e.g. when the head word is “inventor”, the model
should not be discouraged to predict “person”.

Prior work used a customized hinge loss (Ab-
hishek et al., 2017) or max margin loss (Ren et al.,
2016a) to improve robustness to noisy or incom-
plete supervision. We propose a multitask objec-
tive that reflects the characteristic of our training
dataset. Instead of updating all labels for each ex-
ample, we divide labels into three bins (general,
fine, and ultra-fine), and update labels only in bin
containing at least one positive label. Specifically,
the training objective is to minimize J where t is
the target vector at each granularity:

Jall = Jgeneral · 1general(t)

+ Jfine · 1fine(t)

+ Jultra · 1ultra(t)

Where 1category(t) is an indicator function that
checks if t contains a type in the category, and
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Model Dev Test
MRR P R F1 MRR P R F1

AttentiveNER 0.221 53.7 15.0 23.5 0.223 54.2 15.2 23.7
Our Model 0.229 48.1 23.2 31.3 0.234 47.1 24.2 32.0

Table 3: Performance of our model and AttentiveNER (Shimaoka et al., 2017) on the new entity typing
benchmark, using same training data. We show results for both development and test sets.

Train Data Total General (1918) Fine (1289) Ultra-Fine (7594)
MRR P R F1 P R F1 P R F1 P R F1

All 0.229 48.1 23.2 31.3 60.3 61.6 61.0 40.4 38.4 39.4 42.8 8.8 14.6
– Crowd 0.173 40.1 14.8 21.6 53.7 45.6 49.3 20.8 18.5 19.6 54.4 4.6 8.4
– Head 0.220 50.3 19.6 28.2 58.8 62.8 60.7 44.4 29.8 35.6 46.2 4.7 8.5
– EL 0.225 48.4 22.3 30.6 62.2 60.1 61.2 40.3 26.1 31.7 41.4 9.9 16.0

Table 4: Results on the development set for different type granularity and for different supervision data
with our model. In each row, we remove a single source of supervision. Entity linking (EL) includes
supervision from both KB and Wikipedia definitions. The numbers in the first row are example counts
for each type granularity.

Jcategory is the category-specific logistic regression
objective:

J = −
∑

i

ti · log(yi) + (1− ti) · log(1− yi)

5 Evaluation

Experiment Setup The crowdsourced dataset
(Section 2.1) was randomly split into train, devel-
opment, and test sets, each with about 2,000 ex-
amples. We use this relatively small manually-
annotated training set (Crowd in Table 4) along-
side the two distant supervision sources: entity
linking (KB and Wikipedia definitions) and head
words. To combine supervision sources of differ-
ent magnitudes (2K crowdsourced data, 4.7M en-
tity linking data, and 20M head words), we sample
a batch of equal size from each source at each it-
eration. We reimplement the recent AttentiveNER
model (Shimaoka et al., 2017) for reference.5

We report macro-averaged precision, recall, and
F1, and the average mean reciprocal rank (MRR).

Results Table 3 shows the performance of
our model and our reimplementation of Atten-
tiveNER. Our model, which uses a multitask ob-
jective to learn finer types without punishing more
general types, shows recall gains at the cost of
drop in precision. The MRR score shows that our

5We use the AttentiveNER model with no engineered fea-
tures or hierarchical label encoding (as a hierarchy is not clear
in our label setting) and let it predict from the same label
space, training with the same supervision data.

model is slightly better than the baseline at ranking
correct types above incorrect ones.

Table 4 shows the performance breakdown for
different type granularity and different supervi-
sion. Overall, as seen in previous work on fine-
grained NER literature (Gillick et al., 2014; Ren
et al., 2016a), finer labels were more challenging
to predict than coarse grained labels, and this is-
sue is exacerbated when dealing with ultra-fine
types. All sources of supervision appear to be
useful, with crowdsourced examples making the
biggest impact. Head word supervision is par-
ticularly helpful for predicting ultra-fine labels,
while entity linking improves fine label prediction.
The low general type performance is partially be-
cause of nominal/pronoun mentions (e.g. “it”),
and because of the large type inventory (some-
times “location” and “place” are annotated inter-
changeably).

Analysis We manually analyzed 50 examples
from the development set, four of which we
present in Table 5. Overall, the model was able to
generate accurate general types and a diverse set of
type labels. Despite our efforts to annotate a com-
prehensive type set, the gold labels still miss many
potentially correct labels (example (a): “man” is
reasonable but counted as incorrect). This makes
the precision estimates lower than the actual per-
formance level, with about half the precision er-
rors belonging to this category. Real precision
errors include predicting co-hyponyms (example
(b): “accident” instead of “attack”), and types that

92



Example Bruguera said {he} had problems with his left leg and had grown tired early during the match .
(a) Annotation person, athlete, player, adult, male, contestant

Prediction person, athlete, player, adult, male, contestant, defendant, man

Example {The explosions} occurred on the night of October 7 , against the Hilton Taba and campsites used by
Israelis in Ras al-Shitan.

(b) Annotation event calamity, attack, disaster

Prediction event, accident

Example Similarly , Enterprise was considered for refit to replace Challenger after {the latter} was destroyed ,
but Endeavour was built from structural spares instead .

(c) Annotation object, spacecraft, rocket, thing, vehicle, shuttle

Prediction event

Context “ There is a wealth of good news in this report , and I ’m particularly encouraged by the progress {we}
are making against AIDS , ” HHS Secretary Donna Shalala said in a statement.

(d) Annotation government, group, organization,hospital,administration,socialist

Prediction government, group, person

Table 5: Example and predictions from our best model on the development set. Entity mentions are
marked with curly brackets, the correct predictions are boldfaced, and the missing labels are italicized
and written in red.

may be true, but are not supported by the context.
We found that the model often abstained from

predicting any fine-grained types. Especially in
challenging cases as in example (c), the model
predicts only general types, explaining the low re-
call numbers (28% of examples belong to this cat-
egory). Even when the model generated correct
fine-grained types as in example (d), the recall was
often fairly low since it did not generate a com-
plete set of related fine-grained labels.

Estimating the performance of a model in an in-
complete label setting and expanding label cover-
age are interesting areas for future work. Our task
also poses a potential modeling challenge; some-
times, the model predicts two incongruous types
(e.g. “location” and “person”), which points to-
wards modeling the task as a joint set prediction
task, rather than predicting labels individually. We
provide sample outputs on the project website.

6 Improving Existing Fine-Grained NER
with Better Distant Supervision

We show that our model and distant supervision
can improve performance on an existing fine-
grained NER task. We chose the widely-used
OntoNotes (Gillick et al., 2014) dataset which in-
cludes nominal and named entity mentions.6

6While we were inspired by FIGER (Ling and Weld,
2012), the dataset presents technical difficulties. The test set
has only 600 examples, and the development set was labeled
with distant supervision, not manual annotation. We there-
fore focus our evaluation on OntoNotes.

Augmenting the Training Data The original
OntoNotes training set (ONTO in Tables 6 and 7)
is extracted by linking entities to a KB. We supple-
ment this dataset with our two new sources of dis-
tant supervision: Wikipedia definition sentences
(WIKI) and head word supervision (HEAD) (see
Section 3). To convert the label space, we manu-
ally map a single noun from our natural-language
vocabulary to each formal-language type in the
OntoNotes ontology. 77% of OntoNote’s types
directly correspond to suitable noun labels (e.g.
“doctor” to “/person/doctor”), whereas the other
cases were mapped with minimal manual effort
(e.g. “musician” to “person/artist/music”, “politi-
cian” to “/person/political figure”). We then ex-
pand these labels according to the ontology to in-
clude their hypernyms (“/person/political figure”
will also generate “/person”). Lastly, we create
negative examples by assigning the “/other” label
to examples that are not mapped to the ontology.
The augmented dataset contains 2.5M/0.6M new
positive/negative examples, of which 0.9M/0.1M
are from Wikipedia definition sentences and
1.6M/0.5M from head words.

Experiment Setup We compare performance to
other published results and to our reimplemen-
tation of AttentiveNER (Shimaoka et al., 2017).
We also compare models trained with different
sources of supervision. For this dataset, we did not
use our multitask objective (Section 4), since ex-
panding types to include their ontological hyper-
nyms largely eliminates the partial supervision as-
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Acc. Ma-F1 Mi-F1

AttentiveNER++ 51.7 70.9 64.9
AFET (Ren et al., 2016a) 55.1 71.1 64.7

LNR (Ren et al., 2016b) 57.2 71.5 66.1
Ours (ONTO+WIKI+HEAD) 59.5 76.8 71.8

Table 6: Results on the OntoNotes fine-grained
entity typing test set. The first two models (At-
tentiveNER++ and AFET) use only KB-based su-
pervision. LNR uses a filtered version of the KB-
based training set. Our model uses all our distant
supervision sources.

Model Training Data Performance
ONTO WIKI HEAD Acc. MaF1 MiF1

Attn. 3 46.5 63.3 58.3
NER 3 3 3 53.7 72.8 68.0

3 41.7 64.2 59.5
3 3 48.5 67.6 63.6

Ours 3 3 57.9 73.0 66.9
3 3 60.1 75.0 68.7

3 3 3 61.6 77.3 71.8

Table 7: Ablation study on the OntoNotes fine-
grained entity typing development. The second
row isolates dataset improvements, while the third
row isolates the model.

sumption. Following prior work, we report macro-
and micro-averaged F1 score, as well as accuracy
(exact set match).

Results Table 6 shows the overall performance
on the test set. Our combination of model and
training data shows a clear improvement from
prior work, setting a new state-of-the art result.7

In Table 7, we show an ablation study. Our new
supervision sources improve the performance of
both the AttentiveNER model and our own. We
observe that every supervision source improves
performance in its own right. Particularly, the
naturally-occurring head-word supervision seems
to be the prime source of improvement, increasing
performance by about 10% across all metrics.

Predicting Miscellaneous Types While analyz-
ing the data, we observed that over half of the men-
tions in OntoNotes’ development set were anno-
tated only with the miscellaneous type (“/other”).
For both models in our evaluation, detecting the
miscellaneous category is substantially easier than

7We did not compare to a system from (Yogatama et al.,
2015), which reports slightly higher test number (72.98 micro
F1) as they used a different, unreleased test set.

producing real types (94% F1 vs. 58% F1 with
our best model). We provide further details of this
analysis in the supplementary material.

7 Related Work

Fine-grained NER has received growing atten-
tion, and is used in many applications (Gupta
et al., 2017; Ren et al., 2017; Yaghoobzadeh et al.,
2017b; Raiman and Raiman, 2018). Researchers
studied typing in varied contexts, including men-
tions in specific sentences (as we consider) (Ling
and Weld, 2012; Gillick et al., 2014; Yogatama
et al., 2015; Dong et al., 2015; Schutze et al.,
2017), corpus-level prediction (Yaghoobzadeh and
Schütze, 2016), and lexicon level (given only a
noun phrase with no context) (Yao et al., 2013).

Recent work introduced fine-grained type on-
tologies (Rabinovich and Klein, 2017; Murty
et al., 2017; Corro et al., 2015), defined using
Wikipedia categories (100), Freebase types (1K)
and WordNet senses (16K). However, they focus
on named entities, and data has been challeng-
ing to gather, often approximating gold annota-
tions with distant supervision. In contrast, (1) our
ontology contains any frequent noun phrases that
depicts a type, (2) our task goes beyond named
entities, covering every noun phrase (even pro-
nouns), and (3) we provide crowdsourced annota-
tions which provide context-sensitive, fine grained
type labels.

Contextualized fine-grained entity typing is re-
lated to selectional preference (Resnik, 1996; Pan-
tel et al., 2007; Zapirain et al., 2013; de Cruys,
2014), where the goal is to induce semantic gen-
eralizations on the type of arguments a predicate
prefers. Rather than focusing on predicates, we
condition on the entire sentence to deduce the ar-
guments’ types, which allows us to capture more
nuanced types. For example, not every type that
fits “He played the violin in his room” is also
suitable for “He played the violin in the Carnegie
Hall”. Entity typing here can be connected to ar-
gument finding in semantic role labeling.

To deal with noisy distant supervision for
KB population and entity typing, researchers
used multi-instance multi-label learning (Sur-
deanu et al., 2012; Yaghoobzadeh et al., 2017b) or
custom losses (Abhishek et al., 2017; Ren et al.,
2016a). Our multitask objective handles noisy su-
pervision by pooling different distant supervision
sources across different levels of granularity.
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8 Conclusion

Using virtually unrestricted types allows us to ex-
pand the standard KB-based training methodol-
ogy with typing information from Wikipedia defi-
nitions and naturally-occurring head-word super-
vision. These new forms of distant supervision
boost performance on our new dataset as well as
on an existing fine-grained entity typing bench-
mark. These results set the first performance lev-
els for our evaluation dataset, and suggest that the
data will support significant future work.
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Abstract

Extraction from raw text to a knowledge
base of entities and fine-grained types is
often cast as prediction into a flat set of
entity and type labels, neglecting the rich
hierarchies over types and entities con-
tained in curated ontologies. Previous at-
tempts to incorporate hierarchical struc-
ture have yielded little benefit and are re-
stricted to shallow ontologies. This paper
presents new methods using real and com-
plex bilinear mappings for integrating hi-
erarchical information, yielding substan-
tial improvement over flat predictions in
entity linking and fine-grained entity typ-
ing, and achieving new state-of-the-art re-
sults for end-to-end models on the bench-
mark FIGER dataset. We also present two
new human-annotated datasets containing
wide and deep hierarchies which we will
release to the community to encourage fur-
ther research in this direction: MedMen-
tions, a collection of PubMed abstracts in
which 246k mentions have been mapped
to the massive UMLS ontology; and Type-
Net, which aligns Freebase types with the
WordNet hierarchy to obtain nearly 2k en-
tity types. In experiments on all three
datasets we show substantial gains from
hierarchy-aware training.

1 Introduction

Identifying and understanding entities is a cen-
tral component in knowledge base construction
(Roth et al., 2015) and essential for enhanc-
ing downstream tasks such as relation extraction

*equal contribution
Data and code for experiments: https://github.

com/MurtyShikhar/Hierarchical-Typing

(Yaghoobzadeh et al., 2017b), question answering
(Das et al., 2017; Welbl et al., 2017) and search
(Dalton et al., 2014). This has led to consider-
able research in automatically identifying entities
in text, predicting their types, and linking them to
existing structured knowledge sources.

Current state-of-the-art models encode a textual
mention with a neural network and classify the
mention as being an instance of a fine grained type
or entity in a knowledge base. Although in many
cases the types and their entities are arranged in a
hierarchical ontology, most approaches ignore this
structure, and previous attempts to incorporate hi-
erarchical information yielded little improvement
in performance (Shimaoka et al., 2017). Addi-
tionally, existing benchmark entity typing datasets
only consider small label sets arranged in very
shallow hierarchies. For example, FIGER (Ling
and Weld, 2012), the de facto standard fine grained
entity type dataset, contains only 113 types in a hi-
erarchy only two levels deep.

In this paper we investigate models that ex-
plicitly integrate hierarchical information into the
embedding space of entities and types, using a
hierarchy-aware loss on top of a deep neural net-
work classifier over textual mentions. By using
this additional information, we learn a richer, more
robust representation, gaining statistical efficiency
when predicting similar concepts and aiding the
classification of rarer types. We first validate
our methods on the narrow, shallow type system
of FIGER, out-performing state-of-the-art meth-
ods not incorporating hand-crafted features and
matching those that do.

To evaluate on richer datasets and stimulate fur-
ther research into hierarchical entity/typing pre-
diction with larger and deeper ontologies, we in-
troduce two new human annotated datasets. The
first is MedMentions, a collection of PubMed ab-
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stracts in which 246k concept mentions have been
annotated with links to the Unified Medical Lan-
guage System (UMLS) ontology (Bodenreider,
2004), an order of magnitude more annotations
than comparable datasets. UMLS contains over
3.5 million concepts in a hierarchy having average
depth 14.4. Interestingly, UMLS does not distin-
guish between types and entities (an approach we
heartily endorse), and the technical details of link-
ing to such a massive ontology lead us to refer to
our MedMentions experiments as entity linking.
Second, we present TypeNet, a curated mapping
from the Freebase type system into the WordNet
hierarchy. TypeNet contains over 1900 types with
an average depth of 7.8.

In experimental results, we show improvements
with a hierarchically-aware training loss on each
of the three datasets. In entity-linking MedMen-
tions to UMLS, we observe a 6% relative increase
in accuracy over the base model. In experiments
on entity-typing from Wikipedia into TypeNet, we
show that incorporating the hierarchy of types and
including a hierarchical loss provides a dramatic
29% relative increase in MAP. Our models even
provide benefits for shallow hierarchies allowing
us to match the state-of-art results of Shimaoka
et al. (2017) on the FIGER (GOLD) dataset with-
out requiring hand-crafted features.

We will publicly release the TypeNet and Med-
Mentions datasets to the community to encourage
further research in truly fine-grained, hierarchical
entity-typing and linking.

2 New Corpora and Ontologies

2.1 MedMentions

Over the years researchers have constructed many
large knowledge bases in the biomedical domain
(Apweiler et al., 2004; Davis et al., 2008; Chatr-
aryamontri et al., 2017). Many of these knowl-
edge bases are specific to a particular sub-domain
encompassing a few particular types such as genes
and diseases (Piñero et al., 2017).

UMLS (Bodenreider, 2004) is particularly com-
prehensive, containing over 3.5 million concepts
(UMLS does not distinguish between entities and
types) defining their relationships and a curated hi-
erarchical ontology. For example LETM1 Protein
IS-A Calcium Binding Protein IS-A Binding Pro-
tein IS-A Protein IS-A Genome Encoded Entity.
This fact makes UMLS particularly well suited for
methods explicitly exploiting hierarchical struc-

ture.
Accurately linking textual biological entity

mentions to an existing knowledge base is ex-
tremely important but few richly annotated re-
sources are available. Even when resources do ex-
ist, they often contain no more than a few thou-
sand annotated entity mentions which is insuffi-
cient for training state-of-the-art neural network
entity linkers. State-of-the-art methods must in-
stead rely on string matching between entity men-
tions and canonical entity names (Leaman et al.,
2013; Wei et al., 2015; Leaman and Lu, 2016). To
address this, we constructed MedMentions, a new,
large dataset identifying and linking entity men-
tions in PubMed abstracts to specific UMLS con-
cepts. Professional annotators exhaustively anno-
tated UMLS entity mentions from 3704 PubMed
abstracts, resulting in 246,000 linked mention
spans. The average depth in the hierarchy of a con-
cept from our annotated set is 14.4 and the maxi-
mum depth is 43.

MedMentions contains an order of magnitude
more annotations than similar biological entity
linking PubMed datasets (Doğan et al., 2014; Wei
et al., 2015; Li et al., 2016). Additionally, these
datasets contain annotations for only one or two
entity types (genes or chemicals and disease etc.).
MedMentions instead contains annotations for a
wide diversity of entities linking to UMLS. Statis-
tics for several other datasets are in Table 1 and
further statistics are in 2.

Dataset mentions unique entities
MedMentions 246,144 25,507
BCV-CDR 28,797 2,356
NCBI Disease 6,892 753
BCII-GN Train 6,252 1,411
NLM Citation GIA 1,205 310

Table 1: Statistics from various biological entity
linking data sets from scientific articles. NCBI
Disease (Doğan et al., 2014) focuses exclusively
on disease entities. BCV-CDR (Li et al., 2016)
contains both chemicals and diseases. BCII-GN
and NLM (Wei et al., 2015) both contain genes.

Statistic Train Dev Test
#Abstracts 2,964 370 370
#Sentences 28,457 3,497 3,268
#Mentions 199,977 24,026 22,141
#Entities 22,416 5,934 5,521

Table 2: MedMentions statistics.
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2.2 TypeNet

TypeNet is a new dataset of hierarchical entity
types for extremely fine-grained entity typing.
TypeNet was created by manually aligning Free-
base types (Bollacker et al., 2008) to noun synsets
from the WordNet hierarchy (Fellbaum, 1998),
naturally producing a hierarchical type set.

To construct TypeNet, we first consider all Free-
base types that were linked to more than 20 enti-
ties. This is done to eliminate types that are ei-
ther very specific or very rare. We also remove
all Freebase API types, e.g. the [/freebase, /data-
world, /schema, /atom, /scheme, and /topics] do-
mains.

For each remaining Freebase type, we generate
a list of candidate WordNet synsets through a sub-
string match. An expert annotator then attempted
to map the Freebase type to one or more synsets
in the candidate list with a parent-of, child-of or
equivalence link by comparing the definitions of
each synset with example entities of the Freebase
type. If no match was found, the annotator man-
ually formulated queries for the online WordNet
API until an appropriate synset was found. See
Table 9 for an example annotation.

Two expert annotators independently aligned
each Freebase type before meeting to resolve any
conflicts. The annotators were conservative with
assigning equivalence links resulting in a greater
number of child-of links. The final dataset con-
tained 13 parent-of, 727 child-of, and 380 equiv-
alence links. Note that some Freebase types have
multiple child-of links to WordNet, making Type-
Net, like WordNet, a directed acyclic graph. We
then took the union of each of our annotated Free-
base types, the synset that they linked to, and any
ancestors of that synset.

Typeset Count Depth Gold KB links
CoNLL-YAGO 4 1 Yes
OntoNotes 5.0 19 1 No
Gillick et al. (2014) 88 3 Yes
Figer 112 2 Yes
Hyena 505 9 No
Freebase 2k 2 Yes
WordNet 16k 14 No
TypeNet* 1,941 14 Yes

Table 3: Statistics from various type sets. Type-
Net is the largest type hierarchy with a gold map-
ping to KB entities. *The entire WordNet could be
added to TypeNet increasing the total size to 17k
types.

We also added an additional set of 614 FB
→ FB links 4. This was done by computing
conditional probabilities of Freebase types given
other Freebase types from a collection of 5 mil-
lion randomly chosen Freebase entities. The con-
ditional probability P(t2 | t1) of a Freebase type
t2 given another Freebase type t1 was calculated
as #(t1,t2)

#t1
. Links with a conditional probability

less than or equal to 0.7 were discarded. The re-
maining links were manually verified by an expert
annotator and valid links were added to the final
dataset, preserving acyclicity.

Freebase Types 1081
WordNet Synsets 860
child-of links 727
equivalence links 380
parent-of links 13
Freebase-Freebase links 614

Table 4: Stats for the final TypeNet dataset. child-
of, parent-of, and equivalence links are from Free-
base types→WordNet synsets.

3 Model

3.1 Background: Entity Typing and Linking

We define a textual mention m as a sentence with
an identified entity. The goal is then to classify m
with one or more labels. For example, we could
take the sentence m = “Barack Obama is the
President of the United States.” with the identified
entity string Barack Obama. In the task of entity
linking, we want to map m to a specific entity in
a knowledge base such as “m/02mjmr” in Free-
base. In mention-level typing, we label m with
one or more types from our type system T such
as tm = {president, leader, politician} (Ling and
Weld, 2012; Gillick et al., 2014; Shimaoka et al.,
2017). In entity-level typing, we instead consider
a bag of mentions Be which are all linked to the
same entity. We label Be with te, the set of all
types expressed in all m ∈ Be (Yao et al., 2013;
Neelakantan and Chang, 2015; Verga et al., 2017;
Yaghoobzadeh et al., 2017a).

3.2 Mention Encoder

Our model converts each mention m to a d dimen-
sional vector. This vector is used to classify the
type or entity of the mention. The basic model de-
picted in Figure 1 concatenates the averaged word
embeddings of the mention string with the out-
put of a convolutional neural network (CNN). The
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Barack
Obama
is the

president
of the USA

Mean Max Pool

MLP

                       CNN 

Figure 1: Sentence encoder for all our models.
The input to the CNN consists of the concatena-
tion of position embeddings with word embed-
dings. The output of the CNN is concatenated
with the mean of mention surface form embed-
dings, and then passed through a 2 layer MLP.

word embeddings of the mention string capture
global, context independent semantics while the
CNN encodes a context dependent representation.

3.2.1 Token Representation

Each sentence is made up of s tokens which are
mapped to dw dimensional word embeddings. Be-
cause sentences may contain mentions of more
than one entity, we explicitly encode a distin-
guished mention in the text using position embed-
dings which have been shown to be useful in state
of the art relation extraction models (dos Santos
et al., 2015; Lin et al., 2016) and machine trans-
lation (Vaswani et al., 2017). Each word embed-
ding is concatenated with a dp dimensional learned
position embedding encoding the token’s relative
distance to the target entity. Each token within the
distinguished mention span has position 0, tokens
to the left have a negative distance from [−s, 0),
and tokens to the right of the mention span have a
positive distance from (0, s]. We denote the final
sequence of token representations as M .

3.2.2 Sentence Representation

The embedded sequence M is then fed into our
context encoder. Our context encoder is a single
layer CNN followed by a tanh non-linearity to
produce C. The outputs are max pooled across

time to get a final context embedding, mCNN.

ci = tanh(b+
w∑

j=0

W [j]M [i− bw
2
c+ j])

mCNN = max
0≤i≤n−w+1

ci

Each W [j] ∈ Rd×d is a CNN filter, the bias b ∈
Rd, M [i] ∈ Rd is a token representation, and the
max is taken pointwise. In all of our experiments
we set w = 5.

In addition to the contextually encoded men-
tion, we create a global mention encoding, mG,
by averaging the word embeddings of the tokens
within the mention span.

The final mention representation mF is con-
structed by concatenating mCNN and mG and ap-
plying a two layer feed-forward network with
tanh non-linearity (see Figure 1):

mF = W2 tanh(W1

[
mSFM
mCNN

]
+ b1) + b2

4 Training

4.1 Mention-Level Typing
Mention level entity typing is treated as multi-
label prediction. Given the sentence vector mF,
we compute a score for each type in typeset T as:

yj = tj
>mF

where tj is the embedding for the jth type in T
and yj is its corresponding score. The mention is
labeled with tm, a binary vector of all types where
tmj = 1 if the jth type is in the set of gold types
for m and 0 otherwise. We optimize a multi-label
binary cross entropy objective:

Ltype(m) = −
∑

j

tmj log yj + (1− tmj ) log(1− yj)

4.2 Entity-Level Typing
In the absence of mention-level annotations, we
instead must rely on distant supervision (Mintz
et al., 2009) to noisily label all mentions of entity
e with all types belonging to e. This procedure in-
evitably leads to noise as not all mentions of an
entity express each of its known types. To allevi-
ate this noise, we use multi-instance multi-label
learning (MIML) (Surdeanu et al., 2012) which
operates over bags rather than mentions. A bag
of mentions Be = {m1,m2, . . . ,mn} is the set of
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all mentions belonging to entity e. The bag is la-
beled with te, a binary vector of all types where
tej = 1 if the jth type is in the set of gold types for
e and 0 otherwise.

For every entity, we subsample k mentions from
its bag of mentions. Each mention is then encoded
independently using the model described in Sec-
tion 3.2 resulting in a bag of vectors. Each of the
k sentence vectors mi

F is used to compute a score
for each type in te:

yij = tj
>mi

F

where tj is the embedding for the jth type in te

and yi is a vector of logits corresponding to the ith

mention. The final bag predictions are obtained
using element-wise LogSumExp pooling across
the k logit vectors in the bag to produce entity level
logits y:

y = log
∑

i

exp(yi)

We use these final bag level predictions to opti-
mize a multi-label binary cross entropy objective:

Ltype(Be) = −
∑

j

tej log yj + (1− tej) log(1− yj)

4.3 Entity Linking
Entity linking is similar to mention-level entity
typing with a single correct class per mention. Be-
cause the set of possible entities is in the mil-
lions, linking models typically integrate an alias
table mapping entity mentions to a set of possible
candidate entities. Given a large corpus of entity
linked data, one can compute conditional probabil-
ities from mention strings to entities (Spitkovsky
and Chang, 2012). In many scenarios this data is
unavailable. However, knowledge bases such as
UMLS contain a canonical string name for each
of its curated entities. State-of-the-art biologi-
cal entity linking systems tend to operate on vari-
ous string edit metrics between the entity mention
string and the set of canonical entity strings in the
existing structured knowledge base (Leaman et al.,
2013; Wei et al., 2015).

For each mention in our dataset, we generate
100 candidate entities ec = (e1, e2, . . . , e100) each
with an associated string similarity score csim.
See Appendix A.5.1 for more details on candidate
generation. We generate the sentence representa-
tion mF using our encoder and compute a similar-
ity score between mF and the learned embedding

e of each of the candidate entities. This score and
string cosine similarity csim are combined via a
learned linear combination to generate our final
score. The final prediction at test time ê is the
maximally similar entity to the mention.

φ(m, e) = α e>mF + β csim(m, e)

ê = argmax
e∈ec

φ(m, e)

We optimize this model by multinomial cross en-
tropy over the set of candidate entities and correct
entity e.

Llink(m, ec) = − φ(m, e) + log
∑

e′∈ec
expφ(m, e′)

5 Encoding Hierarchies

Both entity typing and entity linking treat the label
space as prediction into a flat set. To explicitly in-
corporate the structure between types/entities into
our training, we add an additional loss. We con-
sider two methods for modeling the hierarchy of
the embedding space: real and complex bilinear
maps, which are two of the state-of-the-art knowl-
edge graph embedding models.

5.1 Hierarchical Structure Models
Bilinear: Our standard bilinear model scores a hy-
pernym link between (c1, c2) as:

s(c1, c2) = c1
>Ac2

where A ∈ Rd×d is a learned real-valued non-
diagonal matrix and c1 is the child of c2 in the
hierarchy. This model is equivalent to RESCAL
(Nickel et al., 2011) with a single IS-A relation
type. The type embeddings are the same whether
used on the left or right side of the relation. We
merge this with the base model by using the pa-
rameter A as an additional map before type/entity
scoring.
Complex Bilinear: We also experiment with
a complex bilinear map based on the ComplEx
model (Trouillon et al., 2016), which was shown
to have strong performance predicting the hyper-
nym relation in WordNet, suggesting suitability
for asymmetric, transitive relations such as those
in our type hierarchy. ComplEx uses complex val-
ued vectors for types, and diagonal complex ma-
trices for relations, using Hermitian inner products
(taking the complex conjugate of the second ar-
gument, equivalent to treating the right-hand-side
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type embedding to be the complex conjugate of the
left hand side), and finally taking the real part of
the score1. The score of a hypernym link between
(c1, c2) in the ComplEx model is defined as:

s(c1, c2) = Re(< c1, rIS-A, c2 >)

= Re(
∑

k

c1krk c̄2k)

= 〈Re(c1),Re(rIS-A),Re(c2)〉
+ 〈Re(c1), Im(rIS-A), Im(c2)〉
+ 〈Im(c1),Re(rIS-A), Im(c2)〉
− 〈Im(c1), Im(rIS-A),Re(c2)〉

where c1, c2 and rIS-A are complex valued vectors
representing c1, c2 and the IS-A relation respec-
tively. Re(z) represents the real component of z
and Im(z) is the imaginary component. As noted
in Trouillon et al. (2016), the above function is an-
tisymmetric when rIS-A is purely imaginary.

Since entity/type embeddings are complex vec-
tors, in order to combine it with our base model,
we also need to represent mentions with complex
vectors for scoring. To do this, we pass the out-
put of the mention encoder through two different
affine transformations to generate a real and imag-
inary component:

Re(mF) = WrealmF + breal

Im(mF) = WimgmF + bimg

where mF is the output of the mention encoder,
and Wreal, Wimg ∈ Rd×d and breal, bimg ∈ Rd .

5.2 Training with Hierarchies
Learning a hierarchy is analogous to learning em-
beddings for nodes of a knowledge graph with a
single hypernym/IS-A relation. To train these em-
beddings, we sample (c1, c2) pairs, where each
pair is a positive link in our hierarchy. For each
positive link, we sample a set N of n negative
links. We encourage the model to output high
scores for positive links, and low scores for neg-
ative links via a binary cross entropy (BCE) loss:

Lstruct = − log σ(s(c1i, c2i))

+
∑

N

log(1− σ(s(c1i, c
′
2i)))

L = Ltype/link + γLstruct

1This step makes the scoring function technically not bi-
linear, as it commutes with addition but not complex multi-
plication, but we term it bilinear for ease of exposition.

where s(c1, c2) is the score of a link (c1, c2), and
σ(·) is the logistic sigmoid. The weighting param-
eter γ is ∈ {0.1, 0.5, 0.8, 1, 2.0, 4.0}. The final
loss function that we optimize is L.

6 Experiments

We perform three sets of experiments: mention-
level entity typing on the benchmark dataset
FIGER, entity-level typing using Wikipedia and
TypeNet, and entity linking using MedMentions.

6.1 Models
CNN: Each mention is encoded using the model
described in Section 3.2. The resulting embedding
is used for classification into a flat set labels. Spe-
cific implementation details can be found in Ap-
pendix A.2.
CNN+Complex: The CNN+Complex model is
equivalent to the CNN model but uses complex
embeddings and Hermitian dot products.
Transitive: This model does not add an additional
hierarchical loss to the training objective (unless
otherwise stated). We add additional labels to
each entity corresponding to the transitive closure,
or the union of all ancestors of its known types.
This provides a rich additional learning signal that
greatly improves classification of specific types.
Hierarchy: These models add an explicit hierar-
chical loss to the training objective, as described
in Section 5, using either complex or real-valued
bilinear mappings, and the associated parameter
sharing.

6.2 Mention-Level Typing in FIGER
To evaluate the efficacy of our methods we first
compare against the current state-of-art models of
Shimaoka et al. (2017). The most widely used type
system for fine-grained entity typing is FIGER
which consists of 113 types organized in a 2 level
hierarchy. For training, we use the publicly avail-
able W2M data (Ren et al., 2016) and optimize the
mention typing loss function defined in Section-
4.1 with the additional hierarchical loss where
specified. For evaluation, we use the manually an-
notated FIGER (GOLD) data by Ling and Weld
(2012). See Appendix A.2 and A.3 for specific
implementation details.

6.2.1 Results
In Table 5 we see that our base CNN models (CNN
and CNN+Complex) match LSTM models of Shi-
maoka et al. (2017) and Gupta et al. (2017), the
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Model Acc Macro F1 Micro F1
Ling and Weld (2012) 47.4 69.2 65.5
Shimaoka et al. (2017) † 55.6 75.1 71.7
Gupta et al. (2017)† 57.7 72.8 72.1
Shimaoka et al. (2017)‡ 59.6 78.9 75.3
CNN 57.0 75.0 72.2
+ hierarchy 58.4 76.3 73.6
CNN+Complex 57.2 75.3 72.9
+ hierarchy 59.7 78.3 75.4

Table 5: Accuracy and Macro/Micro F1 on FIGER
(GOLD). † is an LSTM model. ‡ is an attentive
LSTM along with additional hand crafted features.

previous state-of-the-art for models without hand-
crafted features. When incorporating structure
into our models, we gain 2.5 points of accuracy in
our CNN+Complex model, matching the overall
state of the art attentive LSTM that relied on hand-
crafted features from syntactic parses, topic mod-
els, and character n-grams. The structure can help
our model predict lower frequency types which is
a similar role played by hand-crafted features.

6.3 Entity-Level Typing in TypeNet

Next we evaluate our models on entity-level typ-
ing in TypeNet using Wikipedia. For each en-
tity, we follow the procedure outlined in Section
4.2. We predict labels for each instance in the en-
tity’s bag and aggregate them into entity-level pre-
dictions using LogSumExp pooling. Each type
is assigned a predicted score by the model. We
then rank these scores and calculate average pre-
cision for each of the types in the test set, and use
these scores to calculate mean average precision
(MAP). We evaluate using MAP instead of accu-
racy which is standard in large knowledge base
link prediction tasks (Verga et al., 2017; Trouil-
lon et al., 2016). These scores are calculated only
over Freebase types, which tend to be lower in the
hierarchy. This is to avoid artificial score inflation
caused by trivial predictions such as ‘entity.’ See
Appendix A.4 for more implementation details.

6.3.1 Results
Table 6 shows the results for entity level typ-
ing on our Wikipedia TypeNet dataset. We see
that both the basic CNN and the CNN+Complex
models perform similarly with the CNN+Complex
model doing slightly better on the full data regime.
We also see that both models get an improvement
when adding an explicit hierarchy loss, even be-
fore adding in the transitive closure. The tran-
sitive closure itself gives an additional increase

Model Low Data Full Data
CNN 51.72 68.15
+ hierarchy 54.82 75.56
+ transitive 57.68 77.21
+ hierarchy + transitive 58.74 78.59
CNN+Complex 50.51 69.83
+ hierarchy 55.30 72.86
+ transitive 53.71 72.18
+ hierarchy + transitive 58.81 77.21

Table 6: MAP of entity-level typing in Wikipedia
data using TypeNet. The second column shows
results using 5% of the total data. The last column
shows results using the full set of 344,246 entities.

Model original normalized
mention tfidf 61.09 74.66
CNN 67.42 82.40
+ hierarchy 67.73 82.77
CNN+Complex 67.23 82.17
+ hierarchy 68.34 83.52

Table 7: Accuracy on entity linking in MedMen-
tions. Maximum recall is 81.82% because we use
an imperfect alias table to generate candidates.
Normalized scores consider only mentions which
contain the gold entity in the candidate set. Men-
tion tfidf is csim from Section 4.3.

in performance to both models. In both of these
cases, the basic CNN model improves by a greater
amount than CNN+Complex. This could be a re-
sult of the complex embeddings being more dif-
ficult to optimize and therefore more susceptible
to variations in hyperparameters. When adding in
both the transitive closure and the explicit hierar-
chy loss, the performance improves further. We
observe similar trends when training our models
in a lower data regime with ~150,000 examples,
or about 5% of the total data.

In all cases, we note that the baseline models
that do not incorporate any hierarchical informa-
tion (neither the transitive closure nor the hierar-
chy loss) perform ~9 MAP worse, demonstrating
the benefits of incorporating structure information.

6.4 MedMentions Entity Linking with UMLS

In addition to entity typing, we evaluate our
model’s performance on an entity linking task
using MedMentions, our new PubMed / UMLS
dataset described in Section 2.1.

6.4.1 Results
Table 7 shows results for baselines and our pro-
posed variant with additional hierarchical loss.
None of these models incorporate transitive clo-
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Tips and Pitfalls in Direct Ligation of Large Spontaneous Splenorenal Shunt during Liver Transplantation Patients with large
spontaneous splenorenal shunt . . .
baseline: Direct [Direct→ General Modifier→ Qualifier→ Property or Attribute]
+hierarchy: Ligature (correct) [Ligature→ Surgical Procedures→ medical treatment approach ]
A novel approach for selective chemical functionalization and localized assembly of one-dimensional nanostructures.
baseline: Structure [Structure→ order or structure→ general epistemology]
+hierarchy: Nanomaterials (correct) [Nanomaterials→ Nanoparticle Complex→ Drug or Chemical by Structure]
Gcn5 is recruited onto the il-2 promoter by interacting with the NFAT in T cells upon TCR stimulation .
baseline: Interleukin-27 [Interleukin-27→ IL2→ Interleukin Gene]
+hierarchy: IL2 Gene (correct) [IL2 Gene→ Interleukin Gene]

Table 8: Example predictions from MedMentions. Each example shows the sentence with entity mention
span in bold. Baseline, shows the predicted entity and its ancestors of a model not incorporating struc-
ture. Finally, +hierarchy shows the prediction and ancestors for a model which explicitly incorporates
the hierarchical structure information.

sure information, due to difficulty incorporating it
in our candidate generation, which we leave to fu-
ture work. The Normalized metric considers per-
formance only on mentions with an alias table hit;
all models have 0 accuracy for mentions other-
wise. We also report the overall score for com-
parison in future work with improved candidate
generation. We see that incorporating structure in-
formation results in a 1.1% reduction in absolute
error, corresponding to a ~6% reduction in relative
error on this large-scale dataset.

Table 8 shows qualitative predictions for mod-
els with and without hierarchy information incor-
porated. Each example contains the sentence (with
target entity in bold), predictions for the baseline
and hierarchy aware models, and the ancestors of
the predicted entity. In the first and second exam-
ple, the baseline model becomes extremely depen-
dent on TFIDF string similarities when the gold
candidate is rare (≤ 10 occurrences). This shows
that modeling the structure of the entity hierar-
chy helps the model disambiguate rare entities. In
the third example, structure helps the model un-
derstand the hierarchical nature of the labels and
prevents it from predicting an entity that is overly
specific (e.g predicting Interleukin-27 rather than
the correct and more general entity IL2 Gene).

Note that, in contrast with the previous tasks,
the complex hierarchical loss provides a signifi-
cant boost, while the real-valued bilinear model
does not. A possible explanation is that UMLS
is a far larger/deeper ontology than even TypeNet,
and the additional ability of complex embeddings
to model intricate graph structure is key to realiz-
ing gains from hierarchical modeling.

7 Related Work

By directly linking a large set of mentions and typ-
ing a large set of entities with respect to a new on-
tology and corpus, and our incorporation of struc-
tural learning between the many entities and types
in our ontologies of interest, our work draws on
many different but complementary threads of re-
search in information extraction, knowledge base
population, and completion.

Our structural, hierarchy-aware loss between
types and entities draws on research in Knowledge
Base Inference such as Jain et al. (2018), Trouil-
lon et al. (2016) and Nickel et al. (2011). Com-
bining KB completion with hierarchical structure
in knowledge bases has been explored in (Dalvi
et al., 2015; Xie et al., 2016). Recently, Wu et al.
(2017) proposed a hierarchical loss for text classi-
fication.

Linking mentions to a flat set of entities, of-
ten in Freebase or Wikipedia, is a long-standing
task in NLP (Bunescu and Pasca, 2006; Cucerzan,
2007; Durrett and Klein, 2014; Francis-Landau
et al., 2016). Typing of mentions at varying lev-
els of granularity, from CoNLL-style named en-
tity recognition (Tjong Kim Sang and De Meulder,
2003), to the more fine-grained recent approaches
(Ling and Weld, 2012; Gillick et al., 2014; Shi-
maoka et al., 2017), is also related to our task.
A few prior attempts to incorporate a very shal-
low hierarchy into fine-grained entity typing have
not lead to significant or consistent improvements
(Gillick et al., 2014; Shimaoka et al., 2017).

The knowledge base Yago (Suchanek et al.,
2007) includes integration with WordNet and type
hierarchies have been derived from its type system
(Yosef et al., 2012). Del Corro et al. (2015) use
manually crafted rules and patterns (Hearst pat-
terns (Hearst, 1992), appositives, etc) to automati-

104



cally match entity types to Wordnet synsets.
Recent work has moved towards unifying these

two highly related tasks by improving entity link-
ing by simultaneously learning a fine grained en-
tity type predictor (Gupta et al., 2017). Learning
hierarchical structures or transitive relations be-
tween concepts has been the subject of much re-
cent work (Vilnis and McCallum, 2015; Vendrov
et al., 2016; Nickel and Kiela, 2017)

We draw inspiration from all of this prior work,
and contribute datasets and models to address pre-
vious challenges in jointly modeling the structure
of large-scale hierarchical ontologies and mapping
textual mentions into an extremely fine-grained
space of entities and types.

8 Conclusion

We demonstrate that explicitly incorporating and
modeling hierarchical information leads to in-
creased performance in experiments on entity typ-
ing and linking across three challenging datasets.
Additionally, we introduce two new human-
annotated datasets: MedMentions, a corpus of
246k mentions from PubMed abstracts linked to
the UMLS knowledge base, and TypeNet, a new
hierarchical fine-grained entity typeset an order
of magnitude larger and deeper than previous
datasets.

While this work already demonstrates consid-
erable improvement over non-hierarchical model-
ing, future work will explore techniques such as
Box embeddings (Vilnis et al., 2018) and Poincaré
embeddings (Nickel and Kiela, 2017) to represent
the hierarchical embedding space, as well as meth-
ods to improve recall in the candidate generation
process for entity linking. Most of all, we are ex-
cited to see new techniques from the NLP commu-
nity using the resources we have presented.
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A Supplementary Materials

A.1 TypeNet Construction

Freebase type: musical chord
Example entities: psalms chord, power chord

harmonic seventh chord
chord.n.01: a straight line connecting two points on a curve
chord.n.02: a combination of three or more
notes that blend harmoniously when sounded together
musical.n.01: a play or film whose action and dialogue is
interspersed with singing and dancing

Table 9: Example given to TypeNet annota-
tors. Here, the Freebase type to be linked is
musical chord. This type is annotated in Free-
base belonging to the entities psalms chord, har-
monic seventh chord, and power chord. Below
the list of example entities are candidate Word-
Net synsets obtained by substring matching be-
tween the Freebase type and all WordNet synsets.
The correctly aligned synset is chord.n.02 shown
in bold.

A.2 Model Implementation Details
For all of our experiments, we use pretrained 300
dimensional word vectors from Pennington et al.
(2014). These embeddings are fixed during train-
ing. The type vectors and entity vectors are all 300
dimensional vectors initialized using Glorot ini-
tialization (Glorot and Bengio, 2010). The num-
ber of negative links for hierarchical training n ∈
{16, 32, 64, 128, 256}.

For regularization, we use dropout (Srivastava
et al., 2014) with p ∈ {0.5, 0.75, 0.8} on the sen-
tence encoder output and L2 regularize all learned
parameters with λ ∈ {1e-5, 5e-5, 1e-4}. All our
parameters are optimized using Adam (Kingma
and Ba, 2014) with a learning rate of 0.001. We
tune our hyper-parameters via grid search and
early stopping on the development set.

A.3 FIGER Implementation Details
To train our models, we use the mention typing
loss function defined in Section-5. For models
with structure training, we additionally add in the
hierarchical loss, along with a weight that is ob-
tained by tuning on the dev set. We follow the
same inference time procedure as Shimaoka et al.
(2017) For each mention, we first assign the type
with the largest probability according to the log-
its, and then assign additional types based on the
condition that their corresponding probability be
greater than 0.5.

A.4 Wikipedia Data and Implementation
Details

At train time, each training example randomly
samples an entity bag of 10 mentions. At test time
we classify bags of 20 mentions of an entity. The
dataset contains a total of 344,246 entities mapped
to the 1081 Freebase types from TypeNet. We con-
sider all sentences in Wikipedia between 10 and
50 tokens long. Tokenization and sentence split-
ting was performed using NLTK (Loper and Bird,
2002). From these sentences, we considered all
entities annotated with a cross-link in Wikipedia
that we could link to Freebase and assign types in
TypeNet. We then split the data by entities into a
90-5-5 train, dev, test split.

A.5 UMLS Implementation details
We pre-process each string by lowercasing and re-
moving stop words. We consider ngrams from size
1 to 5 and keep the top 100,000 features and the fi-
nal vectors are L2 normalized. For each mention,
In our experiments we consider the top 100 most
similar entities as the candidate set.

A.5.1 Candidate Generation Details
Each mention and each canonical entity string in
UMLS are mapped to TFIDF character ngram vec-
tors. We pre-process each string by lowercasing
and removing stop words. We consider ngrams
from size 1 to 5 and keep the top 100,000 features
and the final vectors are L2 normalized. For each
mention, we calculate the cosine similarity, csim,
between the mention string and each canonical en-
tity string. In our experiments we consider the top
100 most similar entities as the candidate set.
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Abstract

Embedding knowledge graphs (KGs) into
continuous vector spaces is a focus of cur-
rent research. Early works performed this
task via simple models developed over KG
triples. Recent attempts focused on either
designing more complicated triple scoring
models, or incorporating extra information
beyond triples. This paper, by contrast, in-
vestigates the potential of using very sim-
ple constraints to improve KG embedding.
We examine non-negativity constraints on
entity representations and approximate en-
tailment constraints on relation represen-
tations. The former help to learn compact
and interpretable representations for enti-
ties. The latter further encode regularities
of logical entailment between relations in-
to their distributed representations. These
constraints impose prior beliefs upon the
structure of the embedding space, without
negative impacts on efficiency or scalabil-
ity. Evaluation on WordNet, Freebase, and
DBpedia shows that our approach is sim-
ple yet surprisingly effective, significantly
and consistently outperforming competi-
tive baselines. The constraints imposed in-
deed improve model interpretability, lead-
ing to a substantially increased structuring
of the embedding space. Code and data are
available at https://github.com/i
ieir-km/ComplEx-NNE_AER.

1 Introduction

The past decade has witnessed great achievements
in building web-scale knowledge graphs (KGs),
e.g., Freebase (Bollacker et al., 2008), DBpedia
(Lehmann et al., 2015), and Google’s Knowledge

∗Corresponding author: Quan Wang.

Vault (Dong et al., 2014). A typical KG is a multi-
relational graph composed of entities as nodes and
relations as different types of edges, where each
edge is represented as a triple of the form (head
entity, relation, tail entity). Such KGs contain rich
structured knowledge, and have proven useful for
many NLP tasks (Wasserman-Pritsker et al., 2015;
Hoffmann et al., 2011; Yang and Mitchell, 2017).

Recently, the concept of knowledge graph em-
bedding has been presented and quickly become a
hot research topic. The key idea there is to embed
components of a KG (i.e., entities and relations)
into a continuous vector space, so as to simplify
manipulation while preserving the inherent struc-
ture of the KG. Early works on this topic learned
such vectorial representations (i.e., embeddings)
via just simple models developed over KG triples
(Bordes et al., 2011, 2013; Jenatton et al., 2012;
Nickel et al., 2011). Recent attempts focused on
either designing more complicated triple scoring
models (Socher et al., 2013; Bordes et al., 2014;
Wang et al., 2014; Lin et al., 2015b; Xiao et al.,
2016; Nickel et al., 2016b; Trouillon et al., 2016;
Liu et al., 2017), or incorporating extra informa-
tion beyond KG triples (Chang et al., 2014; Zhong
et al., 2015; Lin et al., 2015a; Neelakantan et al.,
2015; Guo et al., 2015; Luo et al., 2015b; Xie
et al., 2016a,b; Xiao et al., 2017). See (Wang et al.,
2017) for a thorough review.

This paper, by contrast, investigates the poten-
tial of using very simple constraints to improve the
KG embedding task. Specifically, we examine two
types of constraints: (i) non-negativity constraints
on entity representations and (ii) approximate en-
tailment constraints over relation representations.
By using the former, we learn compact represen-
tations for entities, which would naturally induce
sparsity and interpretability (Murphy et al., 2012).
By using the latter, we further encode regularities
of logical entailment between relations into their
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distributed representations, which might be advan-
tageous to downstream tasks like link prediction
and relation extraction (Rocktäschel et al., 2015;
Guo et al., 2016). These constraints impose prior
beliefs upon the structure of the embedding space,
and will help us to learn more predictive embed-
dings, without significantly increasing the space
or time complexity.

Our work has some similarities to those which
integrate logical background knowledge into KG
embedding (Rocktäschel et al., 2015; Wang et al.,
2015; Guo et al., 2016, 2018). Most of such works,
however, need grounding of first-order logic rules.
The grounding process could be time and space in-
efficient especially for complicated rules. To avoid
grounding, Demeester et al. (2016) tried to model
rules using only relation representations. But their
work creates vector representations for entity pairs
rather than individual entities, and hence fails to
handle unpaired entities. Moreover, it can only in-
corporate strict, hard rules which usually require
extensive manual effort to create. Minervini et al.
(2017b) proposed adversarial training which can
integrate first-order logic rules without grounding.
But their work, again, focuses on strict, hard rules.
Minervini et al. (2017a) tried to handle uncertainty
of rules. But their work assigns to different rules a
same confidence level, and considers only equiva-
lence and inversion of relations, which might not
always be available in a given KG.

Our approach differs from the aforementioned
works in that: (i) it imposes constraints directly on
entity and relation representations without ground-
ing, and can easily scale up to large KGs; (ii) the
constraints, i.e., non-negativity and approximate
entailment derived automatically from statistical
properties, are quite universal, requiring no man-
ual effort and applicable to almost all KGs; (iii) it
learns an individual representation for each enti-
ty, and can successfully make predictions between
unpaired entities.

We evaluate our approach on publicly available
KGs of WordNet, Freebase, and DBpedia as well.
Experimental results indicate that our approach is
simple yet surprisingly effective, achieving signif-
icant and consistent improvements over competi-
tive baselines, but without negative impacts on ef-
ficiency or scalability. The non-negativity and ap-
proximate entailment constraints indeed improve
model interpretability, resulting in a substantially
increased structuring of the embedding space.

The remainder of this paper is organized as fol-
lows. We first review related work in Section 2,
and then detail our approach in Section 3. Exper-
iments and results are reported in Section 4, fol-
lowed by concluding remarks in Section 5.

2 Related Work

Recent years have seen growing interest in learn-
ing distributed representations for entities and re-
lations in KGs, a.k.a. KG embedding. Early works
on this topic devised very simple models to learn
such distributed representations, solely on the ba-
sis of triples observed in a given KG, e.g., TransE
which takes relations as translating operations be-
tween head and tail entities (Bordes et al., 2013),
and RESCAL which models triples through bilin-
ear operations over entity and relation representa-
tions (Nickel et al., 2011). Later attempts roughly
fell into two groups: (i) those which tried to design
more complicated triple scoring models, e.g., the
TransE extensions (Wang et al., 2014; Lin et al.,
2015b; Ji et al., 2015), the RESCAL extensions
(Yang et al., 2015; Nickel et al., 2016b; Trouillon
et al., 2016; Liu et al., 2017), and the (deep) neural
network models (Socher et al., 2013; Bordes et al.,
2014; Shi and Weninger, 2017; Schlichtkrull et al.,
2017; Dettmers et al., 2018); (ii) those which tried
to integrate extra information beyond triples, e.g.,
entity types (Guo et al., 2015; Xie et al., 2016b),
relation paths (Neelakantan et al., 2015; Lin et al.,
2015a), and textual descriptions (Xie et al., 2016a;
Xiao et al., 2017). Please refer to (Nickel et al.,
2016a; Wang et al., 2017) for a thorough review
of these techniques. In this paper, we show the po-
tential of using very simple constraints (i.e., non-
negativity constraints and approximate entailmen-
t constraints) to improve KG embedding, without
significantly increasing the model complexity.

A line of research related to ours is KG embed-
ding with logical background knowledge incorpo-
rated (Rocktäschel et al., 2015; Wang et al., 2015;
Guo et al., 2016, 2018). But most of such works
require grounding of first-order logic rules, which
is time and space inefficient especially for compli-
cated rules. To avoid grounding, Demeester et al.
(2016) proposed lifted rule injection, and Minervi-
ni et al. (2017b) investigated adversarial training.
Both works, however, can only handle strict, hard
rules which usually require extensive effort to cre-
ate. Minervini et al. (2017a) tried to handle uncer-
tainty of background knowledge. But their work
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considers only equivalence and inversion between
relations, which might not always be available in a
given KG. Our approach, in contrast, imposes con-
straints directly on entity and relation representa-
tions without grounding. And the constraints used
are quite universal, requiring no manual effort and
applicable to almost all KGs.

Non-negativity has long been a subject studied
in various research fields. Previous studies reveal
that non-negativity could naturally induce sparsity
and, in most cases, better interpretability (Lee and
Seung, 1999). In many NLP-related tasks, non-
negativity constraints are introduced to learn more
interpretable word representations, which capture
the notion of semantic composition (Murphy et al.,
2012; Luo et al., 2015a; Fyshe et al., 2015). In this
paper, we investigate the ability of non-negativity
constraints to learn more accurate KG embeddings
with good interpretability.

3 Our Approach

This section presents our approach. We first intro-
duce a basic embedding technique to model triples
in a given KG (§ 3.1). Then we discuss the non-
negativity constraints over entity representations
(§ 3.2) and the approximate entailment constraints
over relation representations (§ 3.3). And finally
we present the overall model (§ 3.4).

3.1 A Basic Embedding Model
We choose ComplEx (Trouillon et al., 2016) as our
basic embedding model, since it is simple and effi-
cient, achieving state-of-the-art predictive perfor-
mance. Specifically, suppose we are given a KG
containing a set of triples O = {(ei, rk, ej)}, with
each triple composed of two entities ei, ej ∈ E and
their relation rk ∈ R. Here E is the set of entities
and R the set of relations. ComplEx then repre-
sents each entity e ∈ E as a complex-valued vector
e∈ Cd, and each relation r ∈ R a complex-valued
vector r ∈ Cd, where d is the dimensionality of the
embedding space. Each x ∈ Cd consists of a real
vector component Re(x) and an imaginary vector
component Im(x), i.e., x = Re(x) + iIm(x). For
any given triple (ei, rk, ej) ∈ E ×R× E , a multi-
linear dot product is used to score that triple, i.e.,

φ(ei, rk, ej) , Re(〈ei, rk, ēj〉)
, Re(

∑
`
[ei]`[rk]`[ēj ]`), (1)

where ei, rk, ej ∈ Cd are the vectorial representa-
tions associated with ei, rk, ej , respectively; ēj is

the conjugate of ej ; [·]` is the `-th entry of a vector;
and Re(·) means taking the real part of a complex
value. Triples with higher φ(·, ·, ·) scores are more
likely to be true. Owing to the asymmetry of this
scoring function, i.e., φ(ei, rk, ej) 6= φ(ej , rk, ei),
ComplEx can effectively handle asymmetric rela-
tions (Trouillon et al., 2016).

3.2 Non-negativity of Entity Representations

On top of the basic ComplEx model, we further re-
quire entities to have non-negative (and bounded)
vectorial representations. In fact, these distributed
representations can be taken as feature vectors for
entities, with latent semantics encoded in different
dimensions. In ComplEx, as well as most (if not
all) previous approaches, there is no limitation on
the range of such feature values, which means that
both positive and negative properties of an entity
can be encoded in its representation. However, as
pointed out by Murphy et al. (2012), it would be
uneconomical to store all negative properties of an
entity or a concept. For instance, to describe cats
(a concept), people usually use positive properties
such as cats are mammals, cats eat fishes, and cats
have four legs, but hardly ever negative properties
like cats are not vehicles, cats do not have wheels,
or cats are not used for communication.

Based on such intuition, this paper proposes to
impose non-negativity constraints on entity repre-
sentations, by using which only positive properties
will be stored in these representations. To better
compare different entities on the same scale, we
further require entity representations to stay within
the hypercube of [0, 1]d, as approximately Boolean
embeddings (Kruszewski et al., 2015), i.e.,

0 ≤ Re(e), Im(e) ≤ 1, ∀e ∈ E , (2)

where e ∈ Cd is the representation for entity e ∈
E , with its real and imaginary components denoted
by Re(e), Im(e) ∈ Rd; 0 and 1 are d-dimensional
vectors with all their entries being 0 or 1; and≥,≤
,= denote the entry-wise comparisons throughout
the paper whenever applicable. As shown by Lee
and Seung (1999), non-negativity, in most cases,
will further induce sparsity and interpretability.

3.3 Approximate Entailment for Relations

Besides the non-negativity constraints over entity
representations, we also study approximate entail-
ment constraints over relation representations. By
approximate entailment, we mean an ordered pair
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of relations that the former approximately entails
the latter, e.g., BornInCountry and Nationality,
stating that a person born in a country is very like-
ly, but not necessarily, to have a nationality of that
country. Each such relation pair is associated with
a weight to indicate the confidence level of entail-
ment. A larger weight stands for a higher level of
confidence. We denote by rp

λ−→ rq the approxi-
mate entailment between relations rp and rq, with
confidence level λ. This kind of entailment can be
derived automatically from a KG by modern rule
mining systems (Galárraga et al., 2015). Let T
denote the set of all such approximate entailments
derived beforehand.

Before diving into approximate entailment, we
first explore the modeling of strict entailment, i.e.,
entailment with infinite confidence level λ = +∞.
The strict entailment rp → rq states that if relation
rp holds then relation rq must also hold. This en-
tailment can be roughly modelled by requiring

φ(ei, rp, ej) ≤ φ(ei, rq, ej), ∀ei, ej ∈ E , (3)

where φ(·, ·, ·) is the score for a triple predicted by
the embedding model, defined by Eq. (1). Eq. (3)
can be interpreted as follows: for any two entities
ei and ej , if (ei, rp, ej) is a true fact with a high
score φ(ei, rp, ej), then the triple (ei, rq, ej) with
an even higher score should also be predicted as a
true fact by the embedding model. Note that given
the non-negativity constraints defined by Eq. (2), a
sufficient condition for Eq. (3) to hold, is to further
impose

Re(rp) ≤ Re(rq), Im(rp) = Im(rq), (4)

where rp and rq are the complex-valued represen-
tations for rp and rq respectively, with the real and
imaginary components denoted by Re(·), Im(·) ∈
Rd. That means, when the constraints of Eq. (4)
(along with those of Eq. (2)) are satisfied, the re-
quirement of Eq. (3) (or in other words rp → rq)
will always hold. We provide a proof of sufficien-
cy as supplementary material.

Next we examine the modeling of approximate
entailment. To this end, we further introduce the
confidence level λ and allow slackness in Eq. (4),
which yields

λ
(
Re(rp)− Re(rq)

)
≤ α, (5)

λ
(
Im(rp)− Im(rq)

)2 ≤ β. (6)

Here α,β ≥ 0 are slack variables, and (·)2 means
an entry-wise operation. Entailments with higher

confidence levels show less tolerance for violating
the constraints. When λ = +∞, Eqs. (5) – (6)
degenerate to Eq. (4). The above analysis indicates
that our approach can model entailment simply by
imposing constraints over relation representations,
without traversing all possible (ei, ej) entity pairs
(i.e., grounding). In addition, different confidence
levels are encoded in the constraints, making our
approach moderately tolerant of uncertainty.

3.4 The Overall Model

Finally, we combine together the basic embedding
model of ComplEx, the non-negativity constraints
on entity representations, and the approximate en-
tailment constraints over relation representations.
The overall model is presented as follows:

min
Θ,{α,β}

∑

D+∪D−
log
(
1 + exp(−yijkφ(ei, rk, ej))

)

+ µ
∑
T
1>(α+ β) + η‖Θ‖22,

s.t. λ
(
Re(rp)− Re(rq)

)
≤ α,

λ
(
Im(rp)− Im(rq)

)2 ≤ β,
α,β ≥ 0, ∀rp λ−→ rq ∈ T ,
0 ≤ Re(e), Im(e) ≤ 1, ∀e ∈ E . (7)

Here, Θ , {e : e ∈ E} ∪ {r : r ∈ R} is the set of
all entity and relation representations;D+ andD−
are the sets of positive and negative training triples
respectively; a positive triple is directly observed
in the KG, i.e., (ei, rk, ej) ∈ O; a negative triple
can be generated by randomly corrupting the head
or the tail entity of a positive triple, i.e., (e′i, rk, ej)
or (ei, rk, e

′
j); yijk = ±1 is the label (positive or

negative) of triple (ei, rk, ej). In this optimization,
the first term of the objective function is a typical
logistic loss, which enforces triples to have scores
close to their labels. The second term is the sum of
slack variables in the approximate entailment con-
straints, with a penalty coefficient µ ≥ 0. The mo-
tivation is, although we allow slackness in those
constraints we hope the total slackness to be smal-
l, so that the constraints can be better satisfied. The
last term is L2 regularization to avoid over-fitting,
and η ≥ 0 is the regularization coefficient.

To solve this optimization problem, the approx-
imate entailment constraints (as well as the corre-
sponding slack variables) are converted into penal-
ty terms and added to the objective function, while
the non-negativity constraints remain as they are.
As such, the optimization problem of Eq. (7) can
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be rewritten as:

min
Θ

∑

D+∪D−
log
(
1 + exp(−yijkφ(ei, rk, ej))

)

+ µ
∑
T
λ1>

[
Re(rp)−Re(rq)

]
+

+ µ
∑
T
λ1>

(
Im(rp)−Im(rq)

)2
+ η‖Θ‖22,

s.t. 0 ≤ Re(e), Im(e) ≤ 1, ∀e ∈ E , (8)

where [x]+ = max(0,x) with max(·, ·) being an
entry-wise operation. The equivalence between E-
q. (7) and Eq. (8) is shown in the supplementary
material. We use SGD in mini-batch mode as our
optimizer, with AdaGrad (Duchi et al., 2011) to
tune the learning rate. After each gradient descen-
t step, we project (by truncation) real and imagi-
nary components of entity representations into the
hypercube of [0, 1]d, to satisfy the non-negativity
constraints.

While favouring a better structuring of the em-
bedding space, imposing the additional constraints
will not substantially increase model complexity.
Our approach has a space complexity of O(nd +
md), which is the same as that of ComplEx. Here,
n is the number of entities, m the number of re-
lations, and O(nd+md) to store a d-dimensional
complex-valued vector for each entity and each re-
lation. The time complexity (per iteration) of our
approach isO(sd+td+n̄d), where s is the average
number of triples in a mini-batch, n̄ the average
number of entities in a mini-batch, and t the total
number of approximate entailments in T . O(sd)
is to handle triples in a mini-batch, O(td) penalty
terms introduced by the approximate entailments,
and O(n̄d) further the non-negativity constraints
on entity representations. Usually there are much
fewer entailments than triples, i.e., t� s, and also
n̄ ≤ 2s.1 So the time complexity of our approach
is on a par withO(sd), i.e., the time complexity of
ComplEx.

4 Experiments and Results

This section presents our experiments and results.
We first introduce the datasets used in our exper-
iments (§ 4.1). Then we empirically evaluate our
approach in the link prediction task (§ 4.2). After
that, we conduct extensive analysis on both entity
representations (§ 4.3) and relation representation-
s (§ 4.4) to show the interpretability of our model.

1There will be at most 2s entities contained in s triples.

Code and data used in the experiments are avail-
able at https://github.com/iieir-km/
ComplEx-NNE_AER.

4.1 Datasets

The first two datasets we used are WN18 and F-
B15K, released by Bordes et al. (2013).2 WN18
is a subset of WordNet containing 18 relations and
40,943 entities, and FB15K a subset of Freebase
containing 1,345 relations and 14,951 entities. We
create our third dataset from the mapping-based
objects of core DBpedia.3 We eliminate relations
not included within the DBpedia ontology such as
HomePage and Logo, and discard entities appearing
less than 20 times. The final dataset, referred to as
DB100K, is composed of 470 relations and 99,604
entities. Triples on each datasets are further divid-
ed into training, validation, and test sets, used for
model training, hyperparameter tuning, and evalu-
ation respectively. We follow the original split for
WN18 and FB15K, and draw a split of 597,572/
50,000/50,000 triples for DB100K.

We further use AMIE+ (Galárraga et al., 2015)4

to extract approximate entailments automatically
from the training set of each dataset. As suggested
by Guo et al. (2018), we consider entailments with
PCA confidence higher than 0.8.5 As such, we ex-
tract 17 approximate entailments from WN18, 535
from FB15K, and 56 from DB100K. Table 1 gives
some examples of these approximate entailments,
along with their confidence levels. Table 2 further
summarizes the statistics of the datasets.

4.2 Link Prediction

We first evaluate our approach in the link predic-
tion task, which aims to predict a triple (ei, rk, ej)
with ei or ej missing, i.e., predict ei given (rk, ej)
or predict ej given (ei, rk).

Evaluation Protocol: We follow the protocol
introduced by Bordes et al. (2013). For each test
triple (ei, rk, ej), we replace its head entity ei with
every entity e′i ∈ E , and calculate a score for the
corrupted triple (e′i, rk, ej), e.g., φ(e′i, rk, ej) de-
fined by Eq. (1). Then we sort these scores in de-

2https://everest.hds.utc.fr/doku.php?
id=en:smemlj12

3http://downloads.dbpedia.org/2016-10/
core/

4https://www.mpi-inf.mpg.de/departmen
ts/databases-and-information-systems/res
earch/yago-naga/amie/

5PCA confidence is the confidence under the partial com-
pleteness assumption. See (Galárraga et al., 2015) for details.
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hypernym−1 1.00−−→ hyponym
synset domain topic of−1 0.99−−→ member of domain topic
instance hypernym−1 0.98−−→ instance hyponym

/people/place of birth−1 1.00−−→ /location/people born here
/film/directed by−1 0.98−−→ /director/film
/country/admin divisions 0.91−−→ /country/1st level divisions

owner 0.95−−→ owning company
child−1 0.92−−→ parent
distributing company 0.92−−→ distributing label

Table 1: Approximate entailments extracted from
WN18 (top), FB15K (middle), and DB100K (bot-
tom), where r−1 means the inverse of relation r.

Dataset # Ent # Rel # Train/Valid/Test # Cons

WN18 40,943 18 141,442 5,000 5,000 17
FB15K 14,951 1,345 483,142 50,000 59,071 535
DB100K 99,604 470 597,572 50,000 50,000 56

Table 2: Statistics of datasets, where the columns
respectively indicate the number of entities, rela-
tions, training/validation/test triples, and approxi-
mate entailments.

scending order, and get the rank of the correct enti-
ty ei. During ranking, we remove corrupted triples
that already exist in either the training, validation,
or test set, i.e., the filtered setting as described in
(Bordes et al., 2013). This whole procedure is re-
peated while replacing the tail entity ej . We report
on the test set the mean reciprocal rank (MRR) and
the proportion of correct entities ranked in the top
n (HITS@N), with n = 1, 3, 10.

Comparison Settings: We compare the perfor-
mance of our approach against a variety of KG em-
bedding models developed in recent years. These
models can be categorized into three groups:

• Simple embedding models that utilize triples
alone without integrating extra information,
including TransE (Bordes et al., 2013), Dist-
Mult (Yang et al., 2015), HolE (Nickel et al.,
2016b), ComplEx (Trouillon et al., 2016),
and ANALOGY (Liu et al., 2017). Our ap-
proach is developed on the basis of ComplEx.

• Other extensions of ComplEx that integrate
logical background knowledge in addition to
triples, including RUGE (Guo et al., 2018)
and ComplExR (Minervini et al., 2017a). The
former requires grounding of first-order logic
rules. The latter is restricted to relation equiv-

alence and inversion, and assigns an identical
confidence level to all different rules.

• Latest developments or implementations that
achieve current state-of-the-art performance
reported on the benchmarks of WN18 and F-
B15K, including R-GCN (Schlichtkrull et al.,
2017), ConvE (Dettmers et al., 2018), and S-
ingle DistMult (Kadlec et al., 2017).6 The
first two are built based on neural network ar-
chitectures, which are, by nature, more com-
plicated than the simple models. The last one
is a re-implementation of DistMult, generat-
ing 1000 to 2000 negative training examples
per positive one, which leads to better perfor-
mance but requires significantly longer train-
ing time.

We further evaluate our approach in two differ-
ent settings: (i) ComplEx-NNE that imposes only
the Non-Negativity constraints on Entity represen-
tations, i.e., optimization Eq. (8) with µ = 0; and
(ii) ComplEx-NNE+AER that further imposes the
Approximate Entailment constraints over Relation
representations besides those non-negativity ones,
i.e., optimization Eq. (8) with µ > 0.

Implementation Details: We compare our ap-
proach against all the three groups of baselines on
the benchmarks of WN18 and FB15K. We direct-
ly report their original results on these two datasets
to avoid re-implementation bias. On DB100K, the
newly created dataset, we take the first two groups
of baselines, i.e., those simple embedding models
and ComplEx extensions with logical background
knowledge incorporated. We do not use the third
group of baselines due to efficiency and complex-
ity issues. We use the code provided by Trouillon
et al. (2016)7 for TransE, DistMult, and ComplEx,
and the code released by their authors for ANAL-
OGY8 and RUGE9. We re-implement HolE and
ComplExR so that all the baselines (as well as our
approach) share the same optimization mode, i.e.,
SGD with AdaGrad and gradient normalization, to
facilitate a fair comparison.10 We follow Trouillon
et al. (2016) to adopt a ranking loss for TransE and
a logistic loss for all the other methods.

6We do not consider Ensemble DistMult (Dettmers et al.,
2018) which combines several different models together, to
facilitate a fair comparison.

7https://github.com/ttrouill/complex
8https://github.com/quark0/ANALOGY
9https://github.com/iieir-km/RUGE

10An exception here is that ANALOGY uses asynchronous
SGD with AdaGrad (Liu et al., 2017).

115



WN18 FB15K

HITS@N HITS@N

MRR 1 3 10 MRR 1 3 10

TransE (Bordes et al., 2013) 0.454 0.089 0.823 0.934 0.380 0.231 0.472 0.641
DistMult (Yang et al., 2015) 0.822 0.728 0.914 0.936 0.654 0.546 0.733 0.824
HolE (Nickel et al., 2016b) 0.938 0.930 0.945 0.949 0.524 0.402 0.613 0.739
ComplEx (Trouillon et al., 2016) 0.941 0.936 0.945 0.947 0.692 0.599 0.759 0.840
ANALOGY (Liu et al., 2017) 0.942 0.939 0.944 0.947 0.725 0.646 0.785 0.854

RUGE (Guo et al., 2018) — — — — 0.768 0.703 0.815 0.865
ComplExR (Minervini et al., 2017a) 0.940 — 0.943 0.947 — — — —

R-GCN (Schlichtkrull et al., 2017) 0.814 0.686 0.928 0.955 0.651 0.541 0.736 0.825
R-GCN+ (Schlichtkrull et al., 2017) 0.819 0.697 0.929 0.964 0.696 0.601 0.760 0.842
ConvE (Dettmers et al., 2018) 0.942 0.935 0.947 0.955 0.745 0.670 0.801 0.873
Single DistMult (Kadlec et al., 2017) 0.797 — — 0.946 0.798 — — 0.893

ComplEx-NNE (this work) 0.941 0.937 0.944 0.948 0.727∗ 0.659∗ 0.772∗ 0.845∗

ComplEx-NNE+AER (this work) 0.943 0.940 0.945 0.948 0.803∗ 0.761∗ 0.831∗ 0.874∗

Table 3: Link prediction results on the test sets of WN18 and FB15K. Results for TransE and DistMult
are taken from (Trouillon et al., 2016). Results for the other baselines are taken from the original papers.
Missing scores not reported in the literature are indicated by “—”. Best scores are highlighted in bold,
and “∗” indicates statistically significant improvements over ComplEx.

HITS@N

MRR 1 3 10

TransE 0.111 0.016 0.164 0.270
DistMult 0.233 0.115 0.301 0.448
HolE 0.260 0.182 0.309 0.411
ComplEx 0.242 0.126 0.312 0.440
ANALOGY 0.252 0.143 0.323 0.427

RUGE 0.246 0.129 0.325 0.433
ComplExR 0.253 0.167 0.294 0.420

ComplEx-NNE 0.298∗ 0.229∗ 0.330∗ 0.426
ComplEx-NNE+AER 0.306∗ 0.244∗ 0.334∗ 0.418

Table 4: Link prediction results on the test set of
DB100K, with best scores highlighted in bold, sta-
tistically significant improvements marked by “∗”.

Among those baselines, RUGE and ComplExR

require additional logical background knowledge.
RUGE makes use of soft rules, which are extracted
by AMIE+ from the training sets. As suggested by
Guo et al. (2018), length-1 and length-2 rules with
PCA confidence higher than 0.8 are utilized. Note
that our approach also makes use of AMIE+ rules
with PCA confidence higher than 0.8. But it only
considers entailments between a pair of relations,
i.e., length-1 rules. ComplExR takes into account
equivalence and inversion between relations. We
derive such axioms directly from our approximate
entailments. If rp

λ1−→ rq and rq
λ2−→ rp with λ1, λ2

> 0.8, we think relations rp and rq are equivalent.

And similarly, if r−1
p

λ1−→ rq and r−1
q

λ2−→ rp with

λ1, λ2 > 0.8, we consider rp as an inverse of rq.
For all the methods, we create 100 mini-batches

on each dataset, and conduct a grid search to find
hyperparameters that maximize MRR on the val-
idation set, with at most 1000 iterations over the
training set. Specifically, we tune the embedding
size d ∈ {100, 150, 200}, the L2 regularization
coefficient η ∈ {0.001, 0.003, 0.01, 0.03, 0.1}, the
ratio of negative over positive training examples α
∈ {2, 10}, and the initial learning rate γ ∈ {0.01,
0.05, 0.1, 0.5, 1.0}. For TransE, we tune the mar-
gin of the ranking loss δ ∈ {0.1, 0.2, 0.5, 1, 2, 5,
10}. Other hyperparameters of ANALOGY and
RUGE are set or tuned according to the default set-
tings suggested by their authors (Liu et al., 2017;
Guo et al., 2018). After getting the best ComplEx
model, we tune the relation constraint penalty of
our approach ComplEx-NNE+AER (µ in Eq. (8))
in the range of {10−5, 10−4, · · · , 104, 105}, with
all its other hyperparameters fixed to their optimal
configurations. We then directly set µ = 0 to get
the optimal ComplEx-NNE model. The weight of
soft constraints in ComplExR is tuned in the same
range as µ. The optimal configurations for our ap-
proach are: d = 200, η = 0.03, α = 10, γ = 1.0,
µ = 10 on WN18; d = 200, η=0.01, α=10, γ =
0.5, µ = 10−3 on FB15K; and d = 150, η = 0.03,
α = 10, γ = 0.1, µ = 10−5 on DB100K.

Experimental Results: Table 3 presents the re-
sults on the test sets of WN18 and FB15K, where
the results for the baselines are taken directly from
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previous literature. Table 4 further provides the re-
sults on the test set of DB100K, with all the meth-
ods tuned and tested in (almost) the same setting.
On all the datasets, we test statistical significance
of the improvements achieved by ComplEx-NNE/
ComplEx-NNE+AER over ComplEx, by using a
paired t-test. The reciprocal rank or HITS@N val-
ue with n = 1, 3, 10 for each test triple is used as
paired data. The symbol “∗” indicates a signifi-
cance level of p < 0.05.

The results demonstrate that imposing the non-
negativity and approximate entailment constraints
indeed improves KG embedding. ComplEx-NNE
and ComplEx-NNE+AER perform better than (or
at least equally well as) ComplEx in almost all the
metrics on all the three datasets, and most of the
improvements are statistically significant (except
those on WN18). More interestingly, just by intro-
ducing these simple constraints, ComplEx-NNE+
AER can beat very strong baselines, including the
best performing basic models like ANALOGY,
those previous extensions of ComplEx like RUGE
or ComplExR, and even the complicated develop-
ments or implementations like ConvE or Single
DistMult. This demonstrates the superiority of our
approach.

4.3 Analysis on Entity Representations

This section inspects how the structure of the enti-
ty embedding space changes when the constraints
are imposed. We first provide the visualization of
entity representations on DB100K. On this dataset
each entity is associated with a single type label.11

We pick 4 types reptile, wine region, species,
and programming language, and randomly select
30 entities from each type. Figure 1 visualizes the
representations of these entities learned by Com-
plEx and ComplEx-NNE+AER (real components
only), with the optimal configurations determined
by link prediction (see § 4.2 for details, applicable
to all analysis hereafter). During the visualization,
we normalize the real component of each entity by
[x̃]`= [x]`−min(x)

max(x)−min(x) , where min(x) or max(x) is
the minimum or maximum entry of x respectively.
We observe that after imposing the non-negativity
constraints, ComplEx-NNE+AER indeed obtains
compact and interpretable representations for enti-
ties. Each entity is represented by only a relatively
small number of “active” dimensions. And entities

11http://downloads.dbpedia.org/2016-10/
core-i18n/en/instance_types_wkd_uris_en.
ttl.bz2

0 50 100 150 0 50 100 150

ComplEx-NNE+AER ComplEx

Figure 1: Visualization of real components of en-
tity representations (rows) learned by ComplEx-
NNE+AER (left) and ComplEx (right). From top
to bottom, entities belong to type reptile, wine
region, species, and programming language in
turn. Values range from 0 (white) via 0.5 (orange)
to 1 (black). Best viewed in color.
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Figure 2: Average entropy over all dimensions of
real components of entity representations learned
by ComplEx (circles), ComplEx-NNE (squares),
and ComplEx-NNE+AER (triangles) as K varies.

with the same type tend to activate the same set of
dimensions, while entities with different types of-
ten get clearly different dimensions activated.

Then we investigate the semantic purity of these
dimensions. Specifically, we collect the represen-
tations of all the entities on DB100K (real compo-
nents only). For each dimension of these represen-
tations, top K percent of entities with the highest
activation values on this dimension are picked. We
can calculate the entropy of the type distribution of
the entities selected. This entropy reflects diversity
of entity types, or in other words, semantic purity.
If all the K percent of entities have the same type,
we will get the lowest entropy of zero (the high-
est semantic purity). On the contrary, if each of
them has a distinct type, we will get the highest en-
tropy (the lowest semantic purity). Figure 2 shows
the average entropy over all dimensions of entity
representations (real components only) learned by
ComplEx, ComplEx-NNE, and ComplEx-NNE+
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-0.81 -0.11 -0.39 -1.01 -0.09 -0.21 -0.01 0.23 0.16 -0.34
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Real Component Imaginary Component

Figure 3: Visualization of relation representations
learned by ComplEx-NNE+AER, with the top 4
relations from the equivalence class, the middle 4
the inversion class, and the bottom 4 others.

AER, as K varies. We can see that after impos-
ing the non-negativity constraints, ComplEx-NNE
and ComplEx-NNE+AER can learn entity repre-
sentations with latent dimensions of consistently
higher semantic purity. We have conducted the
same analyses on imaginary components of entity
representations, and observed similar phenomena.
The results are given as supplementary material.

4.4 Analysis on Relation Representations
This section further provides a visual inspection of
the relation embedding space when the constraints
are imposed. To this end, we group relation pairs
involved in the DB100K entailment constraints in-
to 3 classes: equivalence, inversion, and others.12

We choose 2 pairs of relations from each class, and
visualize these relation representations learned by
ComplEx-NNE+AER in Figure 3, where for each
relation we randomly pick 5 dimensions from both
its real and imaginary components. By imposing
the approximate entailment constraints, these rela-
tion representations can encode logical regularities
quite well. Pairs of relations from the first class (e-
quivalence) tend to have identical representations
rp ≈ rq, those from the second class (inversion)
complex conjugate representations rp ≈ r̄q; and
the others representations that Re(rp) ≤ Re(rq)
and Im(rp) ≈ Im(rq).

12Equivalence and inversion are detected using heuristics
introduced in § 4.2 (implementation details). See the supple-
mentary material for detailed properties of these three classes.

5 Conclusion

This paper investigates the potential of using very
simple constraints to improve KG embedding. T-
wo types of constraints have been studied: (i) the
non-negativity constraints to learn compact, inter-
pretable entity representations, and (ii) the approx-
imate entailment constraints to further encode log-
ical regularities into relation representations. Such
constraints impose prior beliefs upon the structure
of the embedding space, and will not significantly
increase the space or time complexity. Experimen-
tal results on benchmark KGs demonstrate that our
method is simple yet surprisingly effective, show-
ing significant and consistent improvements over
strong baselines. The constraints indeed improve
model interpretability, yielding a substantially in-
creased structuring of the embedding space.
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Abstract

Knowledge Graph (KG) embedding has
emerged as a very active area of research
over the last few years, resulting in the
development of several embedding meth-
ods. These KG embedding methods rep-
resent KG entities and relations as vectors
in a high-dimensional space. Despite this
popularity and effectiveness of KG em-
beddings in various tasks (e.g., link pre-
diction), geometric understanding of such
embeddings (i.e., arrangement of entity
and relation vectors in vector space) is un-
explored – we fill this gap in the paper.
We initiate a study to analyze the geome-
try of KG embeddings and correlate it with
task performance and other hyperparame-
ters. To the best of our knowledge, this is
the first study of its kind. Through exten-
sive experiments on real-world datasets,
we discover several insights. For example,
we find that there are sharp differences be-
tween the geometry of embeddings learnt
by different classes of KG embeddings
methods. We hope that this initial study
will inspire other follow-up research on
this important but unexplored problem.

1 Introduction

Knowledge Graphs (KGs) are multi-relational
graphs where nodes represent entities and typed-
edges represent relationships among entities. Re-
cent research in this area has resulted in the de-
velopment of several large KGs, such as NELL
(Mitchell et al., 2015), YAGO (Suchanek et al.,
2007), and Freebase (Bollacker et al., 2008),
among others. These KGs contain thousands of
predicates (e.g., person, city, mayorOf(person,
city), etc.), and millions of triples involving such

predicates, e.g., (Bill de Blasio, mayorOf, New
York City).

The problem of learning embeddings for
Knowledge Graphs has received significant atten-
tion in recent years, with several methods being
proposed (Bordes et al., 2013; Lin et al., 2015;
Nguyen et al., 2016; Nickel et al., 2016; Trouil-
lon et al., 2016). These methods represent enti-
ties and relations in a KG as vectors in high di-
mensional space. These vectors can then be used
for various tasks, such as, link prediction, entity
classification etc. Starting with TransE (Bordes
et al., 2013), there have been many KG embed-
ding methods such as TransH (Wang et al., 2014),
TransR (Lin et al., 2015) and STransE (Nguyen
et al., 2016) which represent relations as trans-
lation vectors from head entities to tail entities.
These are additive models, as the vectors interact
via addition and subtraction. Other KG embed-
ding models, such as, DistMult (Yang et al., 2014),
HolE (Nickel et al., 2016), and ComplEx (Trouil-
lon et al., 2016) are multiplicative where entity-
relation-entity triple likelihood is quantified by a
multiplicative score function. All these methods
employ a score function for distinguishing correct
triples from incorrect ones.

In spite of the existence of many KG embed-
ding methods, our understanding of the geometry
and structure of such embeddings is very shallow.
A recent work (Mimno and Thompson, 2017) an-
alyzed the geometry of word embeddings. How-
ever, the problem of analyzing geometry of KG
embeddings is still unexplored – we fill this impor-
tant gap. In this paper, we analyze the geometry of
such vectors in terms of their lengths and conicity,
which, as defined in Section 4, describes their po-
sitions and orientations in the vector space. We
later study the effects of model type and training
hyperparameters on the geometry of KG embed-
dings and correlate geometry with performance.
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We make the following contributions:

• We initiate a study to analyze the geometry of
various Knowledge Graph (KG) embeddings.
To the best of our knowledge, this is the first
study of its kind. We also formalize various
metrics which can be used to study geometry
of a set of vectors.

• Through extensive analysis, we discover sev-
eral interesting insights about the geometry
of KG embeddings. For example, we find
systematic differences between the geome-
tries of embeddings learned by additive and
multiplicative KG embedding methods.

• We also study the relationship between geo-
metric attributes and predictive performance
of the embeddings, resulting in several new
insights. For example, in case of multiplica-
tive models, we observe that for entity vec-
tors generated with a fixed number of neg-
ative samples, lower conicity (as defined in
Section 4) or higher average vector length
lead to higher performance.

Source code of all the analysis tools de-
veloped as part of this paper is available
at https://github.com/malllabiisc/
kg-geometry. We are hoping that these re-
sources will enable one to quickly analyze the
geometry of any KG embedding, and potentially
other embeddings as well.

2 Related Work

In spite of the extensive and growing literature on
both KG and non-KG embedding methods, very
little attention has been paid towards understand-
ing the geometry of the learned embeddings. A re-
cent work (Mimno and Thompson, 2017) is an ex-
ception to this which addresses this problem in the
context of word vectors. This work revealed a sur-
prising correlation between word vector geometry
and the number of negative samples used during
training. Instead of word vectors, in this paper we
focus on understanding the geometry of KG em-
beddings. In spite of this difference, the insights
we discover in this paper generalizes some of the
observations in the work of (Mimno and Thomp-
son, 2017). Please see Section 6.2 for more details.

Since KGs contain only positive triples, nega-
tive sampling has been used for training KG em-
beddings. Effect of the number of negative sam-
ples in KG embedding performance was studied

by (Toutanova et al., 2015). In this paper, we study
the effect of the number of negative samples on
KG embedding geometry as well as performance.

In addition to the additive and multiplicative
KG embedding methods already mentioned in
Section 1, there is another set of methods where
the entity and relation vectors interact via a neu-
ral network. Examples of methods in this cate-
gory include NTN (Socher et al., 2013), CONV
(Toutanova et al., 2015), ConvE (Dettmers et al.,
2017), R-GCN (Schlichtkrull et al., 2017), ER-
MLP (Dong et al., 2014) and ER-MLP-2n (Rav-
ishankar et al., 2017). Due to space limitations,
in this paper we restrict our scope to the analysis
of the geometry of additive and multiplicative KG
embedding models only, and leave the analysis of
the geometry of neural network-based methods as
part of future work.

3 Overview of KG Embedding Methods

For our analysis, we consider six representative
KG embedding methods: TransE (Bordes et al.,
2013), TransR (Lin et al., 2015), STransE (Nguyen
et al., 2016), DistMult (Yang et al., 2014), HolE
(Nickel et al., 2016) and ComplEx (Trouillon
et al., 2016). We refer to TransE, TransR and
STransE as additive methods because they learn
embeddings by modeling relations as translation
vectors from one entity to another, which results in
vectors interacting via the addition operation dur-
ing training. On the other hand, we refer to Dist-
Mult, HolE and ComplEx as multiplicative meth-
ods as they quantify the likelihood of a triple be-
longing to the KG through a multiplicative score
function. The score functions optimized by these
methods are summarized in Table 1.
Notation: Let G = (E ,R, T ) be a Knowledge
Graph (KG) where E is the set of entities, R is
the set of relations and T ⊂ E × R × E is the set
of triples stored in the graph. Most of the KG em-
bedding methods learn vectors e ∈ Rde for e ∈ E ,
and r ∈ Rdr for r ∈ R. Some methods also
learn projection matrices Mr ∈ Rdr×de for rela-
tions. The correctness of a triple is evaluated using
a model specific score function σ : E × R× E →
R. For learning the embeddings, a loss function
L(T , T ′; θ), defined over a set of positive triples
T , set of (sampled) negative triples T ′, and the
parameters θ is optimized.

We use small italics characters (e.g., h, r) to
represent entities and relations, and correspond-
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Type Model Score Function σ(h, r, t)

Additive
TransE (Bordes et al., 2013) −‖h + r− t‖1

TransR (Lin et al., 2015) −‖Mrh + r−Mrt‖1
STransE (Nguyen et al., 2016) −

∥∥M1
rh + r−M2

r t
∥∥
1

Multiplicative
DistMult (Yang et al., 2014) r>(h� t)

HolE (Nickel et al., 2016) r>(h ? t)

ComplEx (Trouillon et al., 2016) Re(r>(h� t̄))

Table 1: Summary of various Knowledge Graph (KG) embedding methods used in the paper. Please see
Section 3 for more details.

ing bold characters to represent their vector em-
beddings (e.g., h, r). We use bold capitalization
(e.g., V) to represent a set of vectors. Matrices are
represented by capital italics characters (e.g., M ).

3.1 Additive KG Embedding Methods
This is the set of methods where entity and rela-
tion vectors interact via additive operations. The
score function for these models can be expressed
as below

σ(h, r, t) = −
∥∥M1

r h + r−M2
r t
∥∥
1

(1)

where h, t ∈ Rde and r ∈ Rdr are vectors for
head entity, tail entity and relation respectively.
M1
r ,M

2
r ∈ Rdr×de are projection matrices from

entity space Rde to relation space Rdr .
TransE (Bordes et al., 2013) is the simplest addi-
tive model where the entity and relation vectors lie
in same d−dimensional space, i.e., de = dr = d.
The projection matricesM1

r = M2
r = Id are iden-

tity matrices. The relation vectors are modeled as
translation vectors from head entity vectors to tail
entity vectors. Pairwise ranking loss is then used
to learn these vectors. Since the model is simple,
it has limited capability in capturing many-to-one,
one-to-many and many-to-many relations.
TransR (Lin et al., 2015) is another translation-
based model which uses separate spaces for en-
tity and relation vectors allowing it to address the
shortcomings of TransE. Entity vectors are pro-
jected into a relation specific space using the cor-
responding projection matrix M1

r = M2
r = Mr.

The training is similar to TransE.
STransE (Nguyen et al., 2016) is a generalization
of TransR and uses different projection matrices
for head and tail entity vectors. The training is
similar to TransE. STransE achieves better perfor-
mance than the previous methods but at the cost of
more number of parameters.

Equation 1 is the score function used in
STransE. TransE and TransR are special cases of

STransE with M1
r = M2

r = Id and M1
r = M2

r =
Mr, respectively.

3.2 Multiplicative KG Embedding Methods

This is the set of methods where the vectors inter-
act via multiplicative operations (usually dot prod-
uct). The score function for these models can be
expressed as

σ(h, r, t) = r>f(h, t) (2)

where h, t, r ∈ Fd are vectors for head entity, tail
entity and relation respectively. f(h, t) ∈ Fd mea-
sures compatibility of head and tail entities and
is specific to the model. F is either real space R
or complex space C. Detailed descriptions of the
models we consider are as follows.
DistMult (Yang et al., 2014) models entities and
relations as vectors in Rd. It uses an entry-wise
product (�) to measure compatibility between
head and tail entities, while using logistic loss for
training the model.

σDistMult(h, r, t) = r>(h� t) (3)

Since the entry-wise product in (3) is symmetric,
DistMult is not suitable for asymmetric and anti-
symmetric relations.
HolE (Nickel et al., 2016) also models entities and
relations as vectors in Rd. It uses circular correla-
tion operator (?) as compatibility function defined
as

[h ? t]k =

d−1∑

i=0

hit(k+i) mod d

The score function is given as

σHolE(h, r, t) = r>(h ? t) (4)

The circular correlation operator being asymmet-
ric, can capture asymmetric and anti-symmetric
relations, but at the cost of higher time complexity
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Figure 1: Comparison of high vs low Conicity. Randomly generated vectors are shown in blue with
their sample mean vector M in black. Figure on the left shows the case when vectors lie in narrow cone
resulting in high Conicity value. Figure on the right shows the case when vectors are spread out having
relatively lower Conicity value. We skipped very low values of Conicity as it was difficult to visualize.
The points are sampled from 3d Spherical Gaussian with mean (1,1,1) and standard deviation 0.1 (left)
and 1.3 (right). Please refer to Section 4 for more details.

(O(d log d)). For training, we use pairwise rank-
ing loss.
ComplEx (Trouillon et al., 2016) represents enti-
ties and relations as vectors in Cd. The compati-
bility of entity pairs is measured using entry-wise
product between head and complex conjugate of
tail entity vectors.

σComplEx(h, r, t) = Re(r>(h� t̄)) (5)

In contrast to (3), using complex vectors in (5) al-
lows ComplEx to handle symmetric, asymmetric
and anti-symmetric relations using the same score
function. Similar to DistMult, logistic loss is used
for training the model.

4 Metrics

For our geometrical analysis, we first define a term
‘alignment to mean’ (ATM) of a vector v belong-
ing to a set of vectors V, as the cosine similarity1

between v and the mean of all vectors in V.

ATM(v,V) = cosine

(
v,

1

|V|
∑

x∈V
x

)

We also define ‘conicity’ of a set V as the mean
ATM of all vectors in V.

Conicity(V) =
1

|V|
∑

v∈V
ATM(v,V)

1cosine(u, v) = u>v
‖u‖‖v‖

Dataset FB15k WN18
#Relations 1,345 18
#Entities 14,541 40,943

#Triples
Train 483,142 141,440

Validation 50,000 5,000
Test 59,071 5,000

Table 2: Summary of datasets used in the paper.

By this definition, a high value of Conicity(V)
would imply that the vectors in V lie in a nar-
row cone centered at origin. In other words, the
vectors in the set V are highly aligned with each
other. In addition to that, we define the variance
of ATM across all vectors in V, as the ‘vector
spread’(VS) of set V,

VS(V) =
1

|V|
∑

v∈V

(
ATM(v,V)−Conicity(V)

)2

Figure 1 visually demonstrates these metrics for
randomly generated 3-dimensional points. The
left figure shows high Conicity and low vector
spread while the right figure shows low Conicity
and high vector spread.

We define the length of a vector v as L2-norm
of the vector ‖v‖2 and ‘average vector length’
(AVL) for the set of vectors V as

AVL(V) =
1

|V|
∑

v∈V
‖v‖2
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(a) Additive Models

(b) Multiplicative Models

Figure 2: Alignment to Mean (ATM) vs Density plots for entity embeddings learned by various additive
(top row) and multiplicative (bottom row) KG embedding methods. For each method, a plot averaged
across entity frequency bins is shown. From these plots, we conclude that entity embeddings from
additive models tend to have low (positive as well as negative) ATM and thereby low Conicity and high
vector spread. Interestingly, this is reversed in case of multiplicative methods. Please see Section 6.1 for
more details.

5 Experimental Setup

Datasets: We run our experiments on subsets of
two widely used datasets, viz., Freebase (Bol-
lacker et al., 2008) and WordNet (Miller, 1995),
called FB15k and WN18 (Bordes et al., 2013), re-
spectively. We detail the characteristics of these
datasets in Table 2.

Please note that while the results presented in
Section 6 are on the FB15K dataset, we reach the
same conclusions on WN18. The plots for our ex-
periments on WN18 can be found in the Supple-
mentary Section.
Hyperparameters: We experiment with multiple
values of hyperparameters to understand their ef-
fect on the geometry of KG embeddings. Specif-
ically, we vary the dimension of the generated
vectors between {50, 100, 200} and the number
of negative samples used during training between
{1, 50, 100}. For more details on algorithm spe-
cific hyperparameters, we refer the reader to the
Supplementary Section.2

2For training, we used codes from https://github.

Frequency Bins: We follow (Mimno and Thomp-
son, 2017) for entity and relation samples used in
the analysis. Multiple bins of entities and relations
are created based on their frequencies and 100 ran-
domly sampled vectors are taken from each bin.
These set of sampled vectors are then used for our
analysis. For more information about sampling
vectors, please refer to (Mimno and Thompson,
2017).

6 Results and Analysis

In this section, we evaluate the following ques-
tions.

• Does model type (e.g., additive vs multiplica-
tive) have any effect on the geometry of em-
beddings? (Section 6.1)

com/Mrlyk423/Relation_Extraction (TransE,
TransR), https://github.com/datquocnguyen/
STransE (STransE), https://github.com/
mnick/holographic-embeddings (HolE) and
https://github.com/ttrouill/complex (Com-
plEx and DistMult).
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(a) Additive Models

(b) Multiplicative Models

Figure 3: Alignment to Mean (ATM) vs Density plots for relation embeddings learned by various additive
(top row) and multiplicative (bottom row) KG embedding methods. For each method, a plot averaged
across entity frequency bins is shown. Trends in these plots are similar to those in Figure 2. Main
findings from these plots are summarized in Section 6.1.

• Does negative sampling have any effect on
the embedding geometry? (Section 6.2)

• Does the dimension of embedding have any
effect on its geometry? (Section 6.3)

• How is task performance related to embed-
ding geometry? (Section 6.4)

In each subsection, we summarize the main
findings at the beginning, followed by evidence
supporting those findings.

6.1 Effect of Model Type on Geometry

Summary of Findings:
Additive: Low conicity and high vector spread.
Multiplicative: High conicity and low vector
spread.

In this section, we explore whether the type of
the score function optimized during the training
has any effect on the geometry of the resulting em-
bedding. For this experiment, we set the number
of negative samples to 1 and the vector dimension
to 100 (we got similar results for 50-dimensional
vectors). Figure 2 and Figure 3 show the distribu-
tion of ATMs of these sampled entity and relation

vectors, respectively.3

Entity Embeddings: As seen in Figure 2, there
is a stark difference between the geometries of en-
tity vectors produced by additive and multiplica-
tive models. The ATMs of all entity vectors pro-
duced by multiplicative models are positive with
very low vector spread. Their high conicity sug-
gests that they are not uniformly dispersed in the
vector space, but lie in a narrow cone along the
mean vector. This is in contrast to the entity vec-
tors obtained from additive models which are both
positive and negative with higher vector spread.
From the lower values of conicity, we conclude
that entity vectors from additive models are evenly
dispersed in the vector space. This observation
is also reinforced by looking at the high vector
spread of additive models in comparison to that of
multiplicative models. We also observed that addi-
tive models are sensitive to the frequency of enti-
ties, with high frequency bins having higher conic-
ity than low frequency bins. However, no such pat-
tern was observed for multiplicative models and

3We also tried using the global mean instead of mean of
the sampled set for calculating cosine similarity in ATM, and
got very similar results.
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Figure 4: Conicity (left) and Average Vector Length (right) vs Number of negative samples for entity
vectors learned using various KG embedding methods. In each bar group, first three models are additive,
while the last three are multiplicative. Main findings from these plots are summarized in Section 6.2

conicity was consistently similar across frequency
bins. For clarity, we have not shown different plots
for individual frequency bins.
Relation Embeddings: As in entity embeddings,
we observe a similar trend when we look at the
distribution of ATMs for relation vectors in Fig-
ure 3. The conicity of relation vectors generated
using additive models is almost zero across fre-
quency bands. This coupled with the high vec-
tor spread observed, suggests that these vectors
are scattered throughout the vector space. Re-
lation vectors from multiplicative models exhibit
high conicity and low vector spread, suggesting
that they lie in a narrow cone centered at origin,
like their entity counterparts.

6.2 Effect of Number of Negative Samples on
Geometry

Summary of Findings:
Additive: Conicity and average length are in-
variant to changes in #NegativeSamples for
both entities and relations.
Multiplicative: Conicity increases while av-
erage vector length decrease with increasing
#NegativeSamples for entities. Conicity de-
creases, while average vector length remains
constant (except HolE) for relations.

For experiments in this section, we keep the
vector dimension constant at 100.
Entity Embeddings: As seen in Figure 4 (left),
the conicity of entity vectors increases as the num-
ber of negative samples is increased for multi-
plicative models. In contrast, conicity of the en-
tity vectors generated by additive models is unaf-
fected by change in number of negative samples
and they continue to be dispersed throughout the

vector space. From Figure 4 (right), we observe
that the average length of entity vectors produced
by additive models is also invariant of any changes
in number of negative samples. On the other hand,
increase in negative sampling decreases the aver-
age entity vector length for all multiplicative mod-
els except HolE. The average entity vector length
for HolE is nearly 1 for any number of negative
samples, which is understandable considering it
constrains the entity vectors to lie inside a unit
ball (Nickel et al., 2016). This constraint is also
enforced by the additive models: TransE, TransR,
and STransE.
Relation Embeddings: Similar to entity embed-
dings, in case of relation vectors trained using ad-
ditive models, the average length and conicity do
not change while varying the number of negative
samples. However, the conicity of relation vec-
tors from multiplicative models decreases with in-
crease in negative sampling. The average rela-
tion vector length is invariant for all multiplica-
tive methods, except for HolE. We see a surpris-
ingly big jump in average relation vector length
for HolE going from 1 to 50 negative samples, but
it does not change after that. Due to space con-
straints in the paper, we refer the reader to the Sup-
plementary Section for plots discussing the effect
of number of negative samples on geometry of re-
lation vectors.

We note that the multiplicative score between
two vectors may be increased by either increas-
ing the alignment between the two vectors (i.e., in-
creasing Conicity and reducing vector spread be-
tween them), or by increasing their lengths. It is
interesting to note that we see exactly these ef-
fects in the geometry of multiplicative methods
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Figure 5: Conicity (left) and Average Vector Length (right) vs Number of Dimensions for entity vectors
learned using various KG embedding methods. In each bar group, first three models are additive, while
the last three are multiplicative. Main findings from these plots are summarized in Section 6.3.

analyzed above.

6.2.1 Correlation with Geometry of Word
Embeddings

Our conclusions from the geometrical analysis of
entity vectors produced by multiplicative mod-
els are similar to the results in (Mimno and
Thompson, 2017), where increase in negative
sampling leads to increased conicity of word vec-
tors trained using the skip-gram with negative
sampling (SGNS) method. On the other hand, ad-
ditive models remain unaffected by these changes.

SGNS tries to maximize a score function of the
form wT ·c for positive word context pairs, where
w is the word vector and c is the context vector
(Mikolov et al., 2013). This is very similar to the
score function of multiplicative models as seen in
Table 1. Hence, SGNS can be considered as a mul-
tiplicative model in the word domain.

Hence, we argue that our result on the increase
in negative samples increasing the conicity of vec-
tors trained using a multiplicative score function
can be considered as a generalization of the one in
(Mimno and Thompson, 2017).

6.3 Effect of Vector Dimension on Geometry

Summary of Findings:
Additive: Conicity and average length are in-
variant to changes in dimension for both entities
and relations.
Multiplicative: Conicity decreases for both en-
tities and relations with increasing dimension.
Average vector length increases for both entities
and relations, except for HolE entities.

Entity Embeddings: To study the effect of vec-

tor dimension on conicity and length, we set the
number of negative samples to 1, while varying
the vector dimension. From Figure 5 (left), we
observe that the conicity for entity vectors gen-
erated by any additive model is almost invariant
of increase in dimension, though STransE exhibits
a slight decrease. In contrast, entity vector from
multiplicative models show a clear decreasing pat-
tern with increasing dimension.

As seen in Figure 5 (right), the average lengths
of entity vectors from multiplicative models in-
crease sharply with increasing vector dimension,
except for HolE. In case of HolE, the average vec-
tor length remains constant at one. Deviation in-
volving HolE is expected as it enforces entity vec-
tors to fall within a unit ball. Similar constraints
are enforced on entity vectors for additive models
as well. Thus, the average entity vector lengths are
not affected by increasing vector dimension for all
additive models.

Relation Embeddings: We reach similar conclu-
sion when analyzing against increasing dimension
the change in geometry of relation vectors pro-
duced using these KG embedding methods. In
this setting, the average length of relation vectors
learned by HolE also increases as dimension is in-
creased. This is consistent with the other meth-
ods in the multiplicative family. This is because,
unlike entity vectors, the lengths of relation vec-
tors of HolE are not constrained to be less than
unit length. Due to lack of space, we are unable to
show plots for relation vectors here, but the same
can be found in the Supplementary Section.
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Figure 6: Relationship between Performance (HITS@10) on a link prediction task vs Conicity (left) and
Avg. Vector Length (right). For each point, N represents the number of negative samples used. Main
findings are summarized in Section 6.4.

6.4 Relating Geometry to Performance

Summary of Findings:
Additive: Neither entites nor relations exhibit
correlation between geometry and performance.
Multiplicative: Keeping negative samples fixed,
lower conicity or higher average vector length
for entities leads to improved performance. No
relationship for relations.

In this section, we analyze the relationship be-
tween geometry and performance on the Link pre-
diction task, using the same setting as in (Bordes
et al., 2013). Figure 6 (left) presents the effects of
conicity of entity vectors on performance, while
Figure 6 (right) shows the effects of average entity
vector length.4

As we see from Figure 6 (left), for fixed num-
ber of negative samples, the multiplicative model
with lower conicity of entity vectors achieves bet-
ter performance. This performance gain is larger
for higher numbers of negative samples (N). Addi-
tive models don’t exhibit any relationship between
performance and conicity, as they are all clustered
around zero conicity, which is in-line with our ob-
servations in previous sections. In Figure 6 (right),
for all multiplicative models except HolE, a higher
average entity vector length translates to better
performance, while the number of negative sam-
ples is kept fixed. Additive models and HolE don’t
exhibit any such patterns, as they are all clustered
just below unit average entity vector length.

The above two observations for multiplicative
models make intuitive sense, as lower conicity and
higher average vector length would both translate

4A more focused analysis for multiplicative models is pre-
sented in Section 3 of Supplementary material.

to vectors being more dispersed in the space.
We see another interesting observation regard-

ing the high sensitivity of HolE to the number of
negative samples used during training. Using a
large number of negative examples (e.g., N = 50
or 100) leads to very high conicity in case of HolE.
Figure 6 (right) shows that average entity vector
length of HolE is always one. These two obser-
vations point towards HolE’s entity vectors lying
in a tiny part of the space. This translates to HolE
performing poorer than all other models in case of
high numbers of negative sampling.

We also did a similar study for relation vectors,
but did not see any discernible patterns.

7 Conclusion

In this paper, we have initiated a systematic study
into the important but unexplored problem of an-
alyzing geometry of various Knowledge Graph
(KG) embedding methods. To the best of our
knowledge, this is the first study of its kind.
Through extensive experiments on multiple real-
world datasets, we are able to identify several in-
sights into the geometry of KG embeddings. We
have also explored the relationship between KG
embedding geometry and its task performance.
We have shared all our source code to foster fur-
ther research in this area.
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Abstract

We propose a unified model combining the
strength of extractive and abstractive sum-
marization. On the one hand, a simple
extractive model can obtain sentence-level
attention with high ROUGE scores but
less readable. On the other hand, a more
complicated abstractive model can obtain
word-level dynamic attention to generate
a more readable paragraph. In our model,
sentence-level attention is used to mod-
ulate the word-level attention such that
words in less attended sentences are less
likely to be generated. Moreover, a novel
inconsistency loss function is introduced
to penalize the inconsistency between two
levels of attentions. By end-to-end train-
ing our model with the inconsistency loss
and original losses of extractive and ab-
stractive models, we achieve state-of-the-
art ROUGE scores while being the most
informative and readable summarization
on the CNN/Daily Mail dataset in a solid
human evaluation.

1 Introduction

Text summarization is the task of automatically
condensing a piece of text to a shorter version
while maintaining the important points. The abil-
ity to condense text information can aid many ap-
plications such as creating news digests, present-
ing search results, and generating reports. There
are mainly two types of approaches: extractive
and abstractive. Extractive approaches assemble
summaries directly from the source text typically
selecting one whole sentence at a time. In con-
trast, abstractive approaches can generate novel
words and phrases not copied from the source text.

Original Article: McDonald’s says...... The company says it expects the new
‘Artisan Grilled Chicken’ to be in its more than 14,300 U.S. stores by the end
of next week, in products including a new sandwich, as well as existing sand-
wiches, wraps and salads. It says the biggest change is the removal of sodium
phosphates, which it said was used to keep the chicken moist, in favor of
vegetable starch. The new recipe also does not use maltodextrin, which Mc-
Donald’s said is generally used as a sugar to increase browning or as a carrier
for seasoning. Jessica Foust, director of culinary innovation at McDonald’s,
said the changes were made because customers said they want ‘simple, clean
ingredients’ they are familiar with...... And Panera Bread has said it plans to
purge artificial colors, flavors and preservatives from its food by 2016......

Extractive Approach: The company says it expects the new ‘Artisan
Grilled Chicken’ to be in its more than 14,300 U.S. stores by the end of
next week, in products including a new sandwich, as well as existing sand-
wiches, wraps and salads. It says the biggest change is the removal of sodium
phosphates, which it said was used to keep the chicken moist, in favor of
vegetable starch. The new recipe also does not use maltodextrin, which Mc-
Donald’s said is generally used as a sugar to increase browning or as a carrier
for seasoning.

Abstractive Approach: McDonald’s says it expects the new ‘Artisan Grilled
Chicken’ to be in its more than 14,300 U.S. stores by the end of next week.
The company says the changes were made because customers said they want
‘simple, clean ingredients’ they are familiar with. McDonald’s said it plans
to purge artificial colors, flavors and preservatives from its food by 2016.

Unified Approach: McDonald’s says it expects the new ‘Artisan Grilled
Chicken’ to be in its more than 14,300 U.S. stores by the end of next week,
in products including a new sandwich, as well as existing sandwiches, wraps
and salads. It says the biggest change is the removal of sodium phosphates.
The new recipe also does not use maltodextrin, which McDonald’s said is
generally used as a sugar to increase browning or as a carrier for seasoning.

Figure 1: Comparison of extractive, abstractive,
and our unified summaries on a news article. The
extractive model picks most important but inco-
herent or not concise (see blue bold font) sen-
tences. The abstractive summary is readable, con-
cise but still loses or mistakes some facts (see red
italics font). The final summary rewritten from
fragments (see underline font) has the advantages
from both extractive (importance) and abstractive
advantage (coherence (see green bold font)).

Hence, abstractive summaries can be more coher-
ent and concise than extractive summaries.

Extractive approaches are typically simpler.
They output the probability of each sentence
to be selected into the summary. Many ear-
lier works on summarization (Cheng and Lapata,
2016; Nallapati et al., 2016a, 2017; Narayan et al.,
2017; Yasunaga et al., 2017) focus on extractive
summarization. Among them, Nallapati et al.
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(2017) have achieved high ROUGE scores. On
the other hand, abstractive approaches (Nallapati
et al., 2016b; See et al., 2017; Paulus et al., 2017;
Fan et al., 2017; Liu et al., 2017) typically in-
volve sophisticated mechanism in order to para-
phrase, generate unseen words in the source text,
or even incorporate external knowledge. Neu-
ral networks (Nallapati et al., 2017; See et al.,
2017) based on the attentional encoder-decoder
model (Bahdanau et al., 2014) were able to gen-
erate abstractive summaries with high ROUGE
scores but suffer from inaccurately reproducing
factual details and an inability to deal with out-
of-vocabulary (OOV) words. Recently, See et al.
(2017) propose a pointer-generator model which
has the abilities to copy words from source text
as well as generate unseen words. Despite recent
progress in abstractive summarization, extractive
approaches (Nallapati et al., 2017; Yasunaga et al.,
2017) and lead-3 baseline (i.e., selecting the first
3 sentences) still achieve strong performance in
ROUGE scores.

We propose to explicitly take advantage of the
strength of state-of-the-art extractive and abstrac-
tive summarization and introduced the following
unified model. Firstly, we treat the probabil-
ity output of each sentence from the extractive
model (Nallapati et al., 2017) as sentence-level at-
tention. Then, we modulate the word-level dy-
namic attention from the abstractive model (See
et al., 2017) with sentence-level attention such that
words in less attended sentences are less likely
to be generated. In this way, extractive summa-
rization mostly benefits abstractive summarization
by mitigating spurious word-level attention. Sec-
ondly, we introduce a novel inconsistency loss
function to encourage the consistency between
two levels of attentions. The loss function can
be computed without additional human annota-
tion and has shown to ensure our unified model
to be mutually beneficial to both extractive and
abstractive summarization. On CNN/Daily Mail
dataset, our unified model achieves state-of-the-
art ROUGE scores and outperforms a strong ex-
tractive baseline (i.e., lead-3). Finally, to en-
sure the quality of our unified model, we con-
duct a solid human evaluation and confirm that our
method significantly outperforms recent state-of-
the-art methods in informativity and readability.

To summarize, our contributions are twofold:

• We propose a unified model combining

sentence-level and word-level attentions to
take advantage of both extractive and abstrac-
tive summarization approaches.

• We propose a novel inconsistency loss func-
tion to ensure our unified model to be mutu-
ally beneficial to both extractive and abstrac-
tive summarization. The unified model with
inconsistency loss achieves the best ROUGE
scores on CNN/Daily Mail dataset and out-
performs recent state-of-the-art methods in
informativity and readability on human eval-
uation.

2 Related Work

Text summarization has been widely studied in re-
cent years. We first introduce the related works
of neural-network-based extractive and abstrac-
tive summarization. Finally, we introduce a few
related works with hierarchical attention mecha-
nism.
Extractive summarization. Kågebäck et al.
(2014) and Yin and Pei (2015) use neural networks
to map sentences into vectors and select sentences
based on those vectors. Cheng and Lapata (2016),
Nallapati et al. (2016a) and Nallapati et al. (2017)
use recurrent neural networks to read the article
and get the representations of the sentences and
article to select sentences. Narayan et al. (2017)
utilize side information (i.e., image captions and
titles) to help the sentence classifier choose sen-
tences. Yasunaga et al. (2017) combine recur-
rent neural networks with graph convolutional net-
works to compute the salience (or importance) of
each sentence. While some extractive summariza-
tion methods obtain high ROUGE scores, they all
suffer from low readability.
Abstractive summarization. Rush et al. (2015)
first bring up the abstractive summarization task
and use attention-based encoder to read the in-
put text and generate the summary. Based on
them, Miao and Blunsom (2016) use a variational
auto-encoder and Nallapati et al. (2016b) use a
more powerful sequence-to-sequence model. Be-
sides, Nallapati et al. (2016b) create a new article-
level summarization dataset called CNN/Daily
Mail by adapting DeepMind question-answering
dataset (Hermann et al., 2015). Ranzato et al.
(2015) change the traditional training method to
directly optimize evaluation metrics (e.g., BLEU
and ROUGE). Gu et al. (2016), See et al. (2017)
and Paulus et al. (2017) combine pointer networks
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Figure 2: Our unified model combines the word-level and sentence-level attentions. Inconsistency occurs
when word attention is high but sentence attention is low (see red arrow).

(Vinyals et al., 2015) into their models to deal
with out-of-vocabulary (OOV) words. Chen et al.
(2016) and See et al. (2017) restrain their models
from attending to the same word to decrease re-
peated phrases in the generated summary. Paulus
et al. (2017) use policy gradient on summariza-
tion and state out the fact that high ROUGE scores
might still lead to low human evaluation scores.
Fan et al. (2017) apply convolutional sequence-
to-sequence model and design several new tasks
for summarization. Liu et al. (2017) achieve high
readability score on human evaluation using gen-
erative adversarial networks.
Hierarchical attention. Attention mechanism
was first proposed by Bahdanau et al. (2014).
Yang et al. (2016) proposed a hierarchical atten-
tion mechanism for document classification. We
adopt the method of combining sentence-level and
word-level attention in Nallapati et al. (2016b).
However, their sentence attention is dynamic,
which means it will be different for each generated
word. Whereas our sentence attention is fixed for
all generated words. Inspired by the high perfor-
mance of extractive summarization, we propose to
use fixed sentence attention.

Our model combines state-of-the-art extractive
model (Nallapati et al., 2017) and abstractive
model (See et al., 2017) by combining sentence-
level attention from the former and word-level at-
tention from the latter. Furthermore, we design an
inconsistency loss to enhance the cooperation be-
tween the extractive and abstractive models.

3 Our Unified Model

We propose a unified model to combine the
strength of both state-of-the-art extractor (Nalla-
pati et al., 2017) and abstracter (See et al., 2017).
Before going into details of our model, we first de-
fine the tasks of the extractor and abstracter.
Problem definition. The input of both extrac-

tor and abstracter is a sequence of words w =
[w1, w2, ..., wm, ...], where m is the word index.
The sequence of words also forms a sequence of
sentences s = [s1, s2, ..., sn, ...], where n is the
sentence index. The mth word is mapped into the
n(m)th sentence, where n(·) is the mapping func-
tion. The output of the extractor is the sentence-
level attention β = [β1, β2, ..., βn, ...], where βn
is the probability of the nth sentence been ex-
tracted into the summary. On the other hand, our
attention-based abstractor computes word-level at-
tention αt =

[
αt1, α

t
2, ..., α

t
m, ...

]
dynamically

while generating the tth word in the summary.
The output of the abstracter is the summary text
y =

[
y1, y2, ..., yt, ...

]
, where yt is tth word in the

summary.
In the following, we introduce the mechanism

to combine sentence-level and word-level atten-
tions in Sec. 3.1. Next, we define the novel incon-
sistency loss that ensures extractor and abstracter
to be mutually beneficial in Sec. 3.2. We also give
the details of our extractor in Sec. 3.3 and our ab-
stracter in Sec. 3.4. Finally, our training procedure
is described in Sec. 3.5.

3.1 Combining Attentions

Pieces of evidence (e.g., Vaswani et al. (2017))
show that attention mechanism is very important
for NLP tasks. Hence, we propose to explic-
itly combine the sentence-level βn and word-level
αtm attentions by simple scalar multiplication and
renormalization. The updated word attention α̂tm
is

α̂tm =
αtm × βn(m)∑
m α

t
m × βn(m)

. (1)

The multiplication ensures that only when both
word-level αtm and sentence-level βn attentions
are high, the updated word attention α̂tm can
be high. Since the sentence-level attention βn
from the extractor already achieves high ROUGE
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Figure 3: Architecture of the extractor. We treat
the sigmoid output of each sentence as sentence-
level attention ∈ [0, 1].

scores, βn intuitively modulates the word-level at-
tention αtm to mitigate spurious word-level atten-
tion such that words in less attended sentences are
less likely to be generated (see Fig. 2). As high-
lighted in Sec. 3.4, the word-level attention α̂tm
significantly affects the decoding process of the
abstracter. Hence, an updated word-level attention
is our key to improve abstractive summarization.

3.2 Inconsistency Loss

Instead of only leveraging the complementary na-
ture between sentence-level and word-level atten-
tions, we would like to encourage these two-levels
of attentions to be mostly consistent to each other
during training as an intrinsic learning target for
free (i.e., without additional human annotation).
Explicitly, we would like the sentence-level atten-
tion to be high when the word-level attention is
high. Hence, we design the following inconsis-
tency loss,

Linc = −
1

T

T∑

t=1

log(
1

|K|
∑

m∈K
αtm × βn(m)), (2)

where K is the set of top K attended words and
T is the number of words in the summary. This
implicitly encourages the distribution of the word-
level attentions to be sharp and sentence-level at-
tention to be high. To avoid the degenerated so-
lution for the distribution of word attention to be
one-hot and sentence attention to be high, we in-
clude the original loss functions for training the
extractor ( Lext in Sec. 3.3) and abstracter (Labs
and Lcov in Sec. 3.4). Note that Eq. 1 is the only
part that the extractor is interacting with the ab-
stracter. Our proposed inconsistency loss facili-
tates our end-to-end trained unified model to be
mutually beneficial to both the extractor and ab-
stracter.

3.3 Extractor
Our extractor is inspired by Nallapati et al. (2017).
The main difference is that our extractor does not
need to obtain the final summary. It mainly needs
to obtain a short list of important sentences with
a high recall to further facilitate the abstractor.
We first introduce the network architecture and the
loss function. Finally, we define our ground truth
important sentences to encourage high recall.
Architecture. The model consists of a hierar-
chical bidirectional GRU which extracts sentence
representations and a classification layer for pre-
dicting the sentence-level attention βn for each
sentence (see Fig. 3).
Extractor loss. The following sigmoid cross en-
tropy loss is used,

Lext = −
1

N

N∑

n=1

(gn log βn + (1− gn) log(1− βn)),

(3)
where gn ∈ {0, 1} is the ground-truth label for the
nth sentence and N is the number of sentences.
When gn = 1, it indicates that the nth sentence
should be attended to facilitate abstractive summa-
rization.
Ground-truth label. The goal of our extractor is
to extract sentences with high informativity, which
means the extracted sentences should contain in-
formation that is needed to generate an abstrac-
tive summary as much as possible. To obtain the
ground-truth labels g = {gn}n, first, we measure
the informativity of each sentence sn in the arti-
cle by computing the ROUGE-L recall score (Lin,
2004) between the sentence sn and the reference
abstractive summary ŷ = {ŷt}t. Second, we sort
the sentences by their informativity and select the
sentence in the order of high to low informativity.
We add one sentence at a time if the new sentence
can increase the informativity of all the selected
sentences. Finally, we obtain the ground-truth la-
bels g and train our extractor by minimizing Eq. 3.
Note that our method is different from Nallapati
et al. (2017) who aim to extract a final summary
for an article so they use ROUGE F-1 score to
select ground-truth sentences; while we focus on
high informativity, hence, we use ROUGE recall
score to obtain as much information as possible
with respect to the reference summary ŷ.

3.4 Abstracter
The second part of our model is an abstracter
that reads the article; then, generate a summary
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Figure 4: Decoding mechanism in the abstracter.
In the decoder step t, our updated word at-
tention α̂t is used to generate context vector
h∗(α̂t). Hence, it updates the final word distri-
bution Pfinal.

word-by-word. We use the pointer-generator net-
work proposed by See et al. (2017) and combine
it with the extractor by combining sentence-level
and word-level attentions (Sec. 3.1).
Pointer-generator network. The pointer-
generator network (See et al., 2017) is a specially
designed sequence-to-sequence attentional model
that can generate the summary by copying words
in the article or generating words from a fixed vo-
cabulary at the same time. The model contains
a bidirectional LSTM which serves as an encoder
to encode the input words w and a unidirectional
LSTM which serves as a decoder to generate the
summary y. For details of the network architec-
ture, please refer to See et al. (2017). In the fol-
lowing, we describe how the updated word atten-
tion α̂t affects the decoding process.
Notations. We first define some notations. hem
is the encoder hidden state for the mth word. hdt
is the decoder hidden state in step t. h∗(α̂t) =∑M

m α̂tm × hem is the context vector which is
a function of the updated word attention α̂t.
Pvocab(h∗(α̂t)) is the probability distribution over
the fixed vocabulary before applying the copying
mechanism.

Pvocab(h∗(α̂t)) (4)

= softmax(W2(W1[h
d
t , h
∗(α̂t)] + b1) + b2),

where W1, W2, b1 and b2 are learnable parame-
ters. Pvocab = {P vocabw }w where P vocabw (h∗(α̂t))
is the probability of word w being decoded.
pgen(h∗(α̂t)) ∈ [0, 1] is the generating proba-
bility (see Eq.8 in See et al. (2017)) and 1 −
pgen(h∗(α̂t)) is the copying probability.
Final word distribution. P finalw (α̂t) is the final
probability of word w being decoded (i.e., yt =
w). It is related to the updated word attention α̂t

as follows (see Fig. 4),

P finalw (α̂t) = pgen(h∗(α̂t))P vocabw (h∗(α̂t)) (5)

+ (1− pgen(h∗(α̂t)))
∑

m:wm=w

α̂tm.

Note that Pfinal = {P finalw }w is the probability
distribution over the fixed vocabulary and out-of-
vocabulary (OOV) words. Hence, OOV words can
be decoded. Most importantly, it is clear from
Eq. 5 that P finalw (α̂t) is a function of the updated
word attention α̂t. Finally, we train the abstracter
to minimize the negative log-likelihood:

Labs = −
1

T

T∑

t=1

logP finalŷt (α̂t) , (6)

where ŷt is the tth token in the reference abstrac-
tive summary.
Coverage mechanism. We also apply cover-
age mechanism (See et al., 2017) to prevent the
abstracter from repeatedly attending to the same
place. In each decoder step t, we calculate the
coverage vector ct =

∑t−1
t′=0 α̂

t′ which indicates
so far how much attention has been paid to every
input word. The coverage vector ct will be used to
calculate word attention α̂t (see Eq.11 in See et al.
(2017)). Moreover, coverage loss Lcov is calcu-
lated to directly penalize the repetition in updated
word attention α̂t:

Lcov =
1

T

T∑

t=1

M∑

m=1

min(α̂tm, c
t
m) . (7)

The objective function for training the abstracter
with coverage mechanism is the weighted sum of
negative log-likelihood and coverage loss.

3.5 Training Procedure
We first pre-train the extractor by minimizing Lext
in Eq. 3 and the abstracter by minimizing Labs
and Lcov in Eq. 6 and Eq. 7, respectively. When
pre-training, the abstracter takes ground-truth ex-
tracted sentences (i.e., sentences with gn = 1) as
input. To combine the extractor and abstracter,
we proposed two training settings : (1) two-stages
training and (2) end-to-end training.
Two-stages training. In this setting, we view the
sentence-level attention β from the pre-trained ex-
tractor as hard attention. The extractor becomes
a classifier to select sentences with high attention
(i.e., βn > threshold). We simply combine the
extractor and abstracter by feeding the extracted
sentences to the abstracter. Note that we finetune
the abstracter since the input text becomes extrac-
tive summary which is obtained from the extractor.
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End-to-end training. For end-to-end training, the
sentence-level attention β is soft attention and will
be combined with the word-level attention αt as
described in Sec. 3.1. We end-to-end train the
extractor and abstracter by minimizing four loss
functions: Lext, Labs, Lcov, as well as Linc in
Eq. 2. The final loss is as below:

Le2e = λ1Lext + λ2Labs + λ3Lcov + λ4Linc,
(8)

where λ1, λ2, λ3, λ4 are hyper-parameters. In our
experiment, we give Lext a bigger weight (e.g.,
λ1 = 5) when end-to-end training with Linc since
we found that Linc is relatively large such that the
extractor tends to ignore Lext.

4 Experiments

We introduce the dataset and implementation de-
tails of our method evaluated in our experiments.

4.1 Dataset

We evaluate our models on the CNN/Daily Mail
dataset (Hermann et al., 2015; Nallapati et al.,
2016b; See et al., 2017) which contains news sto-
ries in CNN and Daily Mail websites. Each ar-
ticle in this dataset is paired with one human-
written multi-sentence summary. This dataset has
two versions: anonymized and non-anonymized.
The former contains the news stories with all the
named entities replaced by special tokens (e.g.,
@entity2); while the latter contains the raw text
of each news story. We follow See et al. (2017)
and obtain the non-anonymized version of this
dataset which has 287,113 training pairs, 13,368
validation pairs and 11,490 test pairs.

4.2 Implementation Details

We train our extractor and abstracter with 128-
dimension word embeddings and set the vocabu-
lary size to 50k for both source and target text. We
follow Nallapati et al. (2017) and See et al. (2017)
and set the hidden dimension to 200 and 256 for
the extractor and abstracter, respectively. We use
Adagrad optimizer (Duchi et al., 2011) and apply
early stopping based on the validation set. In the
testing phase, we limit the length of the summary
to 120.
Pre-training. We use learning rate 0.15 when pre-
training the extractor and abstracter. For the ex-
tractor, we limit both the maximum number of
sentences per article and the maximum number
of tokens per sentence to 50 and train the model

for 27k iterations with the batch size of 64. For
the abstracter, it takes ground-truth extracted sen-
tences (i.e., sentences with gn = 1) as input. We
limit the length of the source text to 400 and the
length of the summary to 100 and use the batch
size of 16. We train the abstracter without cov-
erage mechanism for 88k iterations and continue
training for 1k iterations with coverage mecha-
nism (Labs : Lcov = 1 : 1).
Two-stages training. The abstracter takes ex-
tracted sentences with βn > 0.5, where β is ob-
tained from the pre-trained extractor, as input dur-
ing two-stages training. We finetune the abstracter
for 10k iterations.
End-to-end training. During end-to-end training,
we will minimize four loss functions (Eq. 8) with
λ1 = 5 and λ2 = λ3 = λ4 = 1. We set K to
3 for computing Linc. Due to the limitation of the
memory, we reduce the batch size to 8 and thus use
a smaller learning rate 0.01 for stability. The ab-
stracter here reads the whole article. Hence, we in-
crease the maximum length of source text to 600.
We end-to-end train the model for 50k iterations.

5 Results

Our unified model not only generates an abstrac-
tive summary but also extracts the important sen-
tences in an article. Our goal is that both of the
two types of outputs can help people to read and
understand an article faster. Hence, in this sec-
tion, we evaluate the results of our extractor in
Sec. 5.1 and unified model in Sec. 5.2. Further-
more, in Sec. 5.3, we perform human evaluation
and show that our model can provide a better ab-
stractive summary than other baselines.

5.1 Results of Extracted Sentences

To evaluate whether our extractor obtains enough
information for the abstracter, we use full-length
ROUGE recall scores1 between the extracted sen-
tences and reference abstractive summary. High
ROUGE recall scores can be obtained if the
extracted sentences include more words or se-
quences overlapping with the reference abstrac-
tive summary. For each article, we select sen-
tences with the sentence probabilities β greater
than 0.5. We show the results of the ground-truth
sentence labels (Sec. 3.3) and our models on the

1All our ROUGE scores are reported by the official
ROUGE script. We use the pyrouge package.
https://pypi.org/project/pyrouge/0.1.3/
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Method ROUGE-1 ROUGE-2 ROUGE-L
pre-trained 73.50 35.55 68.57
end2end w/o inconsistency loss 72.97 35.11 67.99
end2end w/ inconsistency loss 78.40 39.45 73.83
ground-truth labels 89.23 49.36 85.46

Table 1: ROUGE recall scores of the extracted sentences. pre-trained indicates the extractor trained on
the ground-truth labels. end2end indicates the extractor after end-to-end training with the abstracter. Note
that ground-truth labels show the upper-bound performance since the reference summary to calculate
ROUGE-recall is abstractive. All our ROUGE scores have a 95% confidence interval with at most
±0.33.

Method ROUGE-1 ROUGE-2 ROUGE-L
HierAttn (Nallapati et al., 2016b)∗ 32.75 12.21 29.01
DeepRL (Paulus et al., 2017)∗ 39.87 15.82 36.90
pointer-generator (See et al., 2017) 39.53 17.28 36.38
GAN (Liu et al., 2017) 39.92 17.65 36.71
two-stage (ours) 39.97 17.43 36.34
end2end w/o inconsistency loss (ours) 40.19 17.67 36.68
end2end w/ inconsistency loss (ours) 40.68 17.97 37.13
lead-3 (See et al., 2017) 40.34 17.70 36.57

Table 2: ROUGE F-1 scores of the generated abstractive summaries on the CNN/Daily Mail test set. Our
two-stages model outperforms pointer-generator model on ROUGE-1 and ROUGE-2. In addition, our
model trained end-to-end with inconsistency loss exceeds the lead-3 baseline. All our ROUGE scores
have a 95% confidence interval with at most ±0.24. ‘∗’ indicates the model is trained and evaluated on
the anonymized dataset and thus is not strictly comparable with ours.

test set of the CNN/Daily Mail dataset in Table
1. Note that the ground-truth extracted sentences
can’t get ROUGE recall scores of 100 because ref-
erence summary is abstractive and may contain
some words and sequences that are not in the arti-
cle. Our extractor performs the best when end-to-
end trained with inconsistency loss.

5.2 Results of Abstractive Summarization

We use full-length ROUGE-1, ROUGE-2 and
ROUGE-L F-1 scores to evaluate the generated
summaries. We compare our models (two-stage
and end-to-end) with state-of-the-art abstractive
summarization models (Nallapati et al., 2016b;
Paulus et al., 2017; See et al., 2017; Liu et al.,
2017) and a strong lead-3 baseline which directly
uses the first three article sentences as the sum-
mary. Due to the writing style of news articles,
the most important information is often written
at the beginning of an article which makes lead-
3 a strong baseline. The results of ROUGE F-1
scores are shown in Table 2. We prove that with
help of the extractor, our unified model can outper-
form pointer-generator (the third row in Table 2)

even with two-stages training (the fifth row in Ta-
ble 2). After end-to-end training without incon-
sistency loss, our method already achieves better
ROUGE scores by cooperating with each other.
Moreover, our model end-to-end trained with in-
consistency loss achieves state-of-the-art ROUGE
scores and exceeds lead-3 baseline.

In order to quantify the effect of inconsistency
loss, we design a metric – inconsistency rate Rinc
– to measure the inconsistency for each generated
summary. For each decoder step t, if the word with
maximum attention belongs to a sentence with low
attention (i.e., βn(argmax(αt)) < mean(β)), we de-
fine this step as an inconsistent step tinc. The in-
consistency rate Rinc is then defined as the per-
centage of the inconsistent steps in the summary.

Rinc =
Count(tinc)

T
, (9)

where T is the length of the summary. The av-
erage inconsistency rates on test set are shown in
Table 4. Our inconsistency loss significantly de-
crease Rinc from about 20% to 4%. An example
of inconsistency improvement is shown in Fig. 5.
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Method informativity conciseness readability
DeepRL (Paulus et al., 2017) 3.23 2.97 2.85
pointer-generator (See et al., 2017) 3.18 3.36 3.47
GAN (Liu et al., 2017) 3.22 3.52 3.51
Ours 3.58 3.40 3.70
reference 3.43 3.61 3.62

Table 3: Comparing human evaluation results with state-of-the-art methods.

Method avg. Rinc
w/o incon. loss 0.198
w/ incon. loss 0.042

Table 4: Inconsistency rate of our end-to-end
trained model with and without inconsistency loss.

Without inconsistency loss:
If that was a tornado, it was one monster of one. Luckily, so far it looks
like no one was hurt. With tornadoes touching down near Dallas on Sun-
day, Ryan Shepard snapped a photo of a black cloud formation reach-
ing down to the ground. He said it was a tornado. It wouldn’t be an
exaggeration to say it looked half a mile wide. More like a mile, said
Jamie Moore, head of emergency management in Johnson County, Texas.
It could have been one the National Weather Service warned about in a
tweet as severe thunderstorms drenched the area, causing street flooding.
(...)

With inconsistency loss:
If that was a tornado, it was one monster of one. Luckily, so far it looks
like no one was hurt. With tornadoes touching down near Dallas on
Sunday, Ryan Shepard snapped a photo of a black cloud formation
reaching down to the ground. He said it was a tornado. It wouldn’t be
an exaggeration to say it looked half a mile wide. More like a mile, said
Jamie Moore, head of emergency management in Johnson County, Texas.
It could have been one the National Weather Service warned about in
a tweet as severe thunderstorms drenched the area, causing street flood-
ing. (...)

Figure 5: Visualizing the consistency between
sentence and word attentions on the original ar-
ticle. We highlight word (bold font) and sentence
(underline font) attentions. We compare our meth-
ods trained with and without inconsistency loss.
Inconsistent fragments (see red bold font) occur
when trained without the inconsistency loss.

5.3 Human Evaluation

We perform human evaluation on Amazon Me-
chanical Turk (MTurk)2 to evaluate the informa-
tivity, conciseness and readability of the sum-
maries. We compare our best model (end2end
with inconsistency loss) with pointer-generator
(See et al., 2017), generative adversarial network
(Liu et al., 2017) and deep reinforcement model
(Paulus et al., 2017). For these three models, we
use the test set outputs provided by the authors3.

2https://www.mturk.com/
3https://github.com/abisee/

pointer-generator and https://likicode.com
for the first two. For DeepRL, we asked through email.

We randomly pick 100 examples in the test set.
All generated summaries are re-capitalized and
de-tokenized. Since Paulus et al. (2017) trained
their model on anonymized data, we also recover
the anonymized entities and numbers of their out-
puts.

We show the article and 6 summaries (reference
summary, 4 generated summaries and a random
summary) to each human evaluator. The random
summary is a reference summary randomly picked
from other articles and is used as a trap. We show
the instructions of three different aspects as: (1)
Informativity: how well does the summary cap-
ture the important parts of the article? (2) Con-
ciseness: is the summary clear enough to explain
everything without being redundant? (3) Read-
ability: how well-written (fluent and grammatical)
the summary is? The user interface of our human
evaluation is shown in the supplementary material.

We ask the human evaluator to evaluate each
summary by scoring the three aspects with 1 to
5 score (higher the better). We reject all the eval-
uations that score the informativity of the random
summary as 3, 4 and 5. By using this trap mech-
anism, we can ensure a much better quality of
our human evaluation. For each example, we first
ask 5 human evaluators to evaluate. However, for
those articles that are too long, which are always
skipped by the evaluators, it is hard to collect 5
reliable evaluations. Hence, we collect at least 3
evaluations for every example. For each summary,
we average the scores over different human evalu-
ators.

The results are shown in Table 3. The reference
summaries get the best score on conciseness since
the recent abstractive models tend to copy sen-
tences from the input articles. However, our model
learns well to select important information and
form complete sentences so we even get slightly
better scores on informativity and readability than
the reference summaries. We show a typical ex-
ample of our model comparing with other state-of-
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Original article (truncated):
A chameleon balances carefully on a branch, waiting calmly for its prey... except that if you look closely, you will see that this picture is not all that it seems.
For the ‘creature’ poised to pounce is not a colourful species of lizard but something altogether more human. Featuring two carefully painted female models,
it is a clever piece of sculpture designed to create an amazing illusion. It is the work of Italian artist Johannes Stoetter. Scroll down for video. Can you see us?
Italian artist Johannes Stoetter has painted two naked women to look like a chameleon. The 37-year-old has previously transformed his models into
frogs and parrots but this may be his most intricate and impressive piece to date. Stoetter daubed water-based body paint on the naked models to create
the multicoloured effect, then intertwined them to form the shape of a chameleon. To complete the deception, the models rested on a bench painted to
match their skin and held the green branch in the air beneath them. Stoetter can take weeks to plan one of his pieces and hours to paint it. Speaking about The
Chameleon, he said: ‘I worked about four days to design the motif bigger and paint it with colours. The body painting took me about six hours with the help
of an assistant. I covered the hair with natural clay to make the heads look bald.’ Camouflage job: A few finishing touches are applied to the two naked models
to complete the transformation. ‘There are different difficulties on different levels as in every work, but I think that my passion and love to my work is so big,
that I figure out a way to deal with difficulties. My main inspirations are nature, my personal life-philosophy, every-day-life and people themselves.’ However,
the finished result existed only briefly before the models were able to get up and wash the paint off with just a video and some photographs to record it. (...)

Reference summary:
Johannes Stoetter’s artwork features two carefully painted female models. The 37-year-old has previously transformed models into frogs and parrots. Daubed
water-based body paint on naked models to create the effect. Completing the deception, models rested on bench painted to match skin.

DeepRL:
Italian artist Johannes Stoetter has painted female models to look like a chameleon. The 37-year-old has previously transformed his models into frogs and
parrots but this may be the work of Italian artist. He has painted nude models and it is a clever piece of sculpture designed to create an amazing illusion. It is
work of artist Johannes Stoetter.

GAN:
Italian artist Johannes Stoetter has painted two naked women to look like a chameleon. The 37-year-old has previously transformed his models into frogs and
parrots but this may be his most intricate and impressive piece to date.

Pointer-generator:
Italian artist Johannes Stoetter has painted two naked women to look like a chameleon. It is the work of Italian artist Johannes Stoetter. Stoetter daubed
water-based body paint on the naked models to create the multicoloured effect, then intertwined them to form the shape of a chameleon.

Our unified model (with inconsistency loss):
Johannes Stoetter has painted two naked women to look like a chameleon. The 37-year-old has previously transformed his models into frogs and parrots.
Stoetter daubed water-based body paint on the naked models to create the multicoloured effect, then intertwined them to form the shape of a chameleon.

Figure 6: Typical Comparison. Our model attended at the most important information (blue bold font)
matching well with the reference summary; while other state-of-the-art methods generate repeated or
less important information (red italic font).

the-art methods in Fig. 6. More examples (5 using
CNN/Daily Mail news articles and 3 using non-
news articles as inputs) are provided in the supple-
mentary material.

6 Conclusion

We propose a unified model combining the
strength of extractive and abstractive summariza-
tion. Most importantly, a novel inconsistency loss
function is introduced to penalize the inconsis-
tency between two levels of attentions. The in-
consistency loss enables extractive and abstrac-
tive summarization to be mutually beneficial. By
end-to-end training of our model, we achieve the
best ROUGE-recall and ROUGE while being the
most informative and readable summarization on
the CNN/Daily Mail dataset in a solid human eval-
uation.
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Abstract

We present a new neural sequence-to-
sequence model for extractive summa-
rization called SWAP-NET (Sentences
and Words from Alternating Pointer Net-
works). Extractive summaries comprising
a salient subset of input sentences, often
also contain important key words. Guided
by this principle, we design SWAP-NET
that models the interaction of key words
and salient sentences using a new two-
level pointer network based architecture.
SWAP-NET identifies both salient sen-
tences and key words in an input docu-
ment, and then combines them to form the
extractive summary. Experiments on large
scale benchmark corpora demonstrate the
efficacy of SWAP-NET that outperforms
state-of-the-art extractive summarizers.

1 Introduction

Automatic summarization aims to shorten a text
document while maintaining the salient informa-
tion of the original text. The practical need for
such systems is growing with the rapid and con-
tinuous increase in textual information sources in
multiple domains.

Summarization tools can be broadly classified
into two categories: extractive and abstractive.
Extractive summarization selects parts of the in-
put document to create its summary while ab-
stractive summarization generates summaries that
may have words or phrases not present in the
input document. Abstractive summarization is
clearly harder as methods have to address fac-
tual and grammatical errors that may be intro-
duced and problems in utilizing external knowl-
edge sources to obtain paraphrasing or generaliza-
tion. Extractive summarizers obviate the need to

solve these problems by selecting the most salient
textual units (usually sentences) from the input
documents. As a result, they generate summaries
that are grammatically and semantically more ac-
curate than those from abstractive methods. While
they may have problems like incorrect or unclear
referring expressions or lack of coherence, they
are computationally simpler and more efficient to
generate. Indeed, state-of-the-art extractive sum-
marizers are comparable or often better in per-
formance to competitive abstractive summarizers
(see (Nallapati et al., 2017) for a recent empirical
comparison).

Classical approaches to extractive summariza-
tion have relied on human-engineered features
from the text that are used to score sentences
in the input document and select the highest-
scoring sentences. These include graph or
constraint-optimization based approaches as well
as classifier-based methods. A review of these ap-
proaches can be found in Nenkova et al. (2011).
Some of these methods generate summaries from
multiple documents. In this paper, we focus on
single document summarization.

Modern approaches that show the best per-
formance are based on end-to-end deep learning
models that do not require human-crafted fea-
tures. Neural models have tremendously improved
performance in several difficult problems in NLP
such as machine translation (Chen et al., 2017) and
question-answering (Hao et al., 2017). Deep mod-
els with thousands of parameters require large,
labeled datasets and for summarization this hur-
dle of labeled data was surmounted by Cheng
and Lapata (2016), through the creation of a la-
beled dataset of news stories from CNN and Daily
Mail consisting of around 280,000 documents and
human-generated summaries.

Recurrent neural networks with encoder-
decoder architecture (Sutskever et al., 2014) have
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been successful in a variety of NLP tasks where an
encoder obtains representations of input sequences
and a decoder generates target sequences. At-
tention mechanisms (Bahdanau et al., 2015) are
used to model the effects of different loci in the
input sequence during decoding. Pointer net-
works (Vinyals et al., 2015) use this mechanism
to obtain target sequences wherein each decoding
step is used to point to elements of the input se-
quence. This pointing ability has been effectively
utilized by state-of-the-art extractive and abstrac-
tive summarizers (Cheng and Lapata, 2016; Nalla-
pati et al., 2016; See et al., 2017).

In this work, we design SWAP-NET a new
deep learning model for extractive summarization.
Similar to previous models, we use an encoder-
decoder architecture with attention mechanism to
select important sentences. Our key contribution is
to design an architecture that utilizes key words in
the selection process. Salient sentences of a doc-
ument, that are useful in summaries, often con-
tain key words and, to our knowledge, none of
the previous models have explicitly modeled this
interaction. We model this interaction through a
two-level encoder and decoder, one for words and
the other for sentences. An attention-based mech-
anism, similar to that of Pointer Networks, is used
to learn important words and sentences from la-
beled data. A switch mechanism is used to select
between words and sentences during decoding and
the final summary is generated using a combina-
tion of selected sentences and words. We demon-
strate the efficacy of our model on the CNN/Daily
Mail corpus where it outperforms state-of-the-art
extractive summarizers. Our experiments also
suggest that the semantic redundancy in SWAP-
NET generated summaries is comparable to that
of human-generated summaries.

2 Problem Formulation

Let D denote an input document, comprising of
a sequence of N sentences: s1, . . . , sN . Ignor-
ing sentence boundaries, let w1, . . . , wn be the se-
quence of n words in document D. An extractive
summary aims to obtain a subset of the input sen-
tences that forms a salient summary.

We use the interaction between words and sen-
tences in a document to predict important words
and sentences. Let the target sequence of in-
dices of important words and sentences be V =
v1, . . . , vm, where each index vj can point to ei-

ther a sentence or a word in an input document.
We design a supervised sequence-to-sequence
recurrent neural network model, SWAP-NET,
that uses these target sequences (of sentences
and words) to learn salient sentences and key
words. Our objective is to find SWAP-NET model
parameters M that maximize the probability
p(V |M,D) =

∏
j p(vj |v1, . . . , vj−1,M,D) =∏

j p(vj |v<j ,M,D). We omit M in the following
to simplify notation. SWAP-NET predicts both
key words and salient sentences, that are subse-
quently used for extractive summary generation.

3 Background

We briefly describe Pointer Networks (Vinyals
et al., 2015). Our approach, detailed in the follow-
ing sections, uses a similar attention mechanism.

Given a sequence of n vectors X = x1, ....xn
and a sequence of indices R = r1, ....rm, each
between 1 and n, the Pointer Network is an
encoder-decoder architecture trained to maximize
p(R|X; θ) =

∏m
j=1 pθ(rj |r1, ....rj−1,X; θ), where

θ denotes the model parameters. Let the en-
coder and decoder hidden states be (e1, ...., en)
and (d1, ...., dm) respectively. The attention vec-
tor at each output step j is computed as follows:

uji = vT tanh(Weei +Wddj), i ∈ (1, . . . , n)

αji = softmax(uji ), i ∈ (1, . . . , n)

The softmax normalizes vector uj to be an atten-
tion mask over inputs. In a pointer network, the
same attention mechanism is used to select one of
the n input vectors with the highest probability, at
each decoding step, thus effectively pointing to an
input:

p(rj |r1, ....rj−1,X) = softmax(uj)

Here, v,Wd, and We are learnable parameters of
the model.

4 SWAP-NET

We use an encoder-decoder architecture with an
attention mechanism similar to that of Pointer Net-
works. To model the interaction between words
and sentences in a document we use two encoders
and decoders, one at the word level and the other
at the sentence level. The sentence-level decoder
learns to point to important sentences while the
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Figure 1: SWAP-NET architecture. EW: word encoder, ES: sentence encoder, DW: word decoder, DS:
sentence decoder, Q: switch. Input document has words [w1, . . . , w5] and sentences [s1, s2]. Target
sequence shown: v1 = w2, v2 = s1, v3 = w5. Best viewed in color.

word-level decoder learns to point to important
words. A switch mechanism is trained to select ei-
ther a word or a sentence at each decoding step.
The final summary is created using the output
words and sentences. We now describe the details
of the architecture.

4.1 Encoder

We use two encoders: a bi-directional LSTM at
the word level and a LSTM at the sentence level.
Each word wi is represented by a K-dimensional
embedding (e.g., via word2vec), denoted by xi.
The word embedding xi is encoded as ei using
bi-directional LSTM for i = 1, . . . , n. The vec-
tor output of BiLSTM at the end of a sentence
is used to represent that entire sentence, which is
further encoded by the sentence-level LSTM as
Ek = LSTM(ekl , Ek−1), where kl is the index
of the last word in the kth sentence in D and Ek
is the hidden state at the kth step of LSTM, for
k = 1, . . . , N . See figure 1.

4.2 Decoder

We use two decoders – a sentence-level and a
word-level decoder, that are both LSTMs, with
each decoder pointing to sentences and words re-

spectively (similar to a pointer network). Thus, we
can consider the output of each decoder step to be
an index in the input sequence to the encoder. Let
m be the number of steps in each decoder. Let
T1, . . . , Tm be the sequence of indices generated
by the sentence-level decoder, where each index
Tj ∈ {1, . . . , N}; and let t1, . . . , tm be the se-
quence of indices generated by the word-level de-
coder, where each index tj ∈ {1, . . . , n}.

4.3 Network Details
At the jth decoding step, we have to select a
sentence or a word which is done through a bi-
nary switch Qj that has two states Qj = 0 and
Qj = 1 to denote word and sentence selection re-
spectively. So, we first determine the switch prob-
ability p(Qj |v<j , D). Let αskj denote the proba-
bility of selecting the kth input sentence at the jth

decoding step of sentence decoder:

αskj = p(Tj = k|v<j , Qj = 1, D),

and let αwij denote the probability of selecting the
ith input word at the jth decoding step of word
decoder:

αwij = p(tj = i|v<j , Qj = 0, D),
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Figure 2: Illustration of word and sentence level attention in the second decoder step (Eq. 1 and Eq. 2).
Purple: attention on words, Orange: attention on sentences, Unidirectional dotted arrows: attention from
previous step, Bidirectional arrows: attention from previous and to present step. Best viewed in color.

both conditional on the corresponding switch
selection. We set vj based on the probability
values:

vj =

{
k = argmaxk p

s
kj if maxk p

s
kj > maxi p

w
ij

i = argmaxi p
w
ij if maxi p

w
ij > maxk p

s
kj

pskj = αskjp(Qj = 1|v<j , D),

pwij = αwijp(Qj = 0|v<j , D).

These probabilities are obtained through the at-
tention weight vectors at the word and sentence
levels and the switch probabilities:

αwij = softmax(vTt φ(whhj + wtei)),

αskj = softmax(V T
T φ(WHHj +WTEk)).

Parameters vt, wh, wt, VT ,WH and WT are
trainable parameters. Parameters hj and Hj are
the hidden vectors at the jth step of the word-
level and sentence-level decoder respectively de-
fined as:

hj = LSTM(hj−1, aj−1, φ(Aj−1)) (1)

Hj = LSTM(Hj−1, Aj−1, φ(aj−1)) (2)

where aj =
∑n

i=0 α
w
ijei, Aj =

∑N
k=0 α

s
kjEk.

The non-linear transformation, φ (we choose
tanh), is used to connect the word-level encod-
ings to the sentence decoder and the sentence-level
encodings to the word decoder. Specifically, the
word-level decoder updates its state by consider-
ing a sum of sentence encodings, weighted by the
attentions from the previous state and mutatis mu-
tandis for the sentence-level decoder.

The switch probability p(Qj |v<j , D) at the jth

decoding step is given by:

p(Qj = 1|v<j , D) =

σ(wTQ(Hj−1, Aj−1, φ(hj−1, aj−1)))

p(Qj = 0|v<j , D) = 1− p(Qj = 1|v<j , D)

where wQ is a trainable parameter and σ denotes
the sigmoid function and φ is the chosen non-
linear transformation (tanh).

During training the loss function lj at jth

step is set to lj = − log(pskjq
s
j + pwijq

w
j ) −

log p(Qj |v<j , D). Note that at each decoding
step, switch is either qwj = 1, qsj = 0 if the jth

output is a word or qwj = 0, qsj = 1 if the jth out-
put is a sentence. The switch probability is also
considered in the loss function.
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4.4 Summary Generation

Given a document whose summary is to be gen-
erated, its sentences and words are given as input
to the trained encoder. At the jth decoding step,
either a sentence or a word is chosen based on
the probability values αskj and αwij and the switch
probability p(Qj |v<j , D). We assign importance
scores to the selected sentences based on their
probability values during decoding as well as the
probabilities of the selected words that are present
in the selected sentences. Thus sentences with
words selected by the decoder are given higher im-
portance. Let the kth input sentence sk be selected
at the jth decoding step and ith input word wi be
selected at the lth decoding step. Then the impor-
tance of sk is defined as

I(sk) = αskj + λ
∑

wi∈sk
αwil (3)

In our experiments we choose λ = 1. The final
summary consists of three sentences with the high-
est importance scores.

5 Related Work

Traditional approaches to extractive summariza-
tion rely on human-engineered features based on,
for example, part of speech (Erkan and Radev,
2004) and term frequency (Nenkova et al., 2006).
Sentences in the input document are scored us-
ing these features, ranked and then selected for
the final summary. Methods used for extractive
summarization include graph-based approaches
(Mihalcea, 2005) and Integer Linear Program-
ming (Gillick and Favre, 2009). There are many
classifier-based approaches that select sentences
for the extractive summary using methods such
as Conditional Random Fields (Shen et al., 2007)
and Hidden Markov models (Conroy and O’leary,
2001). A review of these classical approaches can
be found in Nenkova et al. (2011).

End-to-end deep learning based neural models
that can effectively learn from text data, without
human-crafted features, have witnessed rapid de-
velopment, resulting in improved performance in
multiple areas such as machine translation (Chen
et al., 2017) and question-answering (Hao et al.,
2017), to name a few. Large labelled corpora
based on news stories from CNN and Daily Mail,
with human generated summaries have become
available (Cheng and Lapata, 2016), that have

spurred the use of deep learning models in sum-
marization. Recurrent neural network based ar-
chitectures have been designed for both extractive
(Cheng and Lapata, 2016; Nallapati et al., 2017)
and abstractive (See et al., 2017; Tan et al., 2017)
summarization problems. Among these, the work
of Cheng and Lapata (2016) and Nallapati et al.
(2017) are closest to our work on extractive single-
document summarization.

An encoder-decoder architecture with an atten-
tion mechanism similar to that of a pointer net-
work is used by Cheng and Lapata (2016). Their
hierarchical encoder uses a CNN at the word level
leading to sentence representations that are used in
an RNN to obtain document representations. They
use a hierarchical attention model where the first
level decoder predicts salient sentences used for
an extractive summary and based on this output,
the second step predicts keywords which are used
for abstractive summarization. Thus they do not
use key words for extractive summarization and
for abstractive summarization they generate key
words based on sentences predicted independently
of key words. SWAP-NET, in contrast, is simpler
using only two-level RNNs for word and sentence
level representations in both the encoder and de-
coder. In our model we predict both words and
sentences in such a way that their attentions inter-
act with each other and generate extractive sum-
maries considering both the attentions. By model-
ing the interaction between these key words and
important sentences in our decoder architecture,
we are able to extract sentences that are closer to
the gold summaries.

SummaRuNNer, the method developed by Nal-
lapati et al. (2017) is not similar to our method in
its architecture but only in the aim of extractive
summary generation. It does not use an encoder-
decoder architecture; instead it is an RNN based
binary classifier that decides whether or not to
include a sentence in the summary. The RNN
is multi-layered representing inputs, words, sen-
tences and the final sentence labels. The decision
of selecting a sentence at each step of the RNN
is based on the content of the sentence, salience
in the document, novelty with respect to previ-
ously selected sentences and other positional fea-
tures. Their approach is considerably simpler than
that of Cheng and Lapata (2016) but obtains sum-
maries closer to the gold summaries, and addi-
tionally, facilitates interpretable visualization and
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training from abstractive summaries. Their exper-
iments show improved performance over both ab-
stractive and extractive summarizers from several
previous models (Nallapati et al., 2017).

We note that several elements of our architec-
ture have been introduced and used in earlier work.
Pointer networks (Vinyals et al., 2015) used the at-
tention mechanism of (Bahdanau et al., 2015) to
solve combinatorial optimization problems. They
have also been used to point to sentences in ex-
tractive (Cheng and Lapata, 2016) and abstractive
(Nallapati et al., 2016; See et al., 2017) summa-
rizers. The switch mechanism was introduced to
incorporate rare or out-of-vocabulary words (Gul-
cehre et al., 2016) and are used in several summa-
rizers (e.g. (Nallapati et al., 2016)). However, we
use it to select between word and sentence level
decoders in our model.

The importance of all the three interactions:
(i) sentence-sentence, (ii) word-word and (iii)
sentence-word, for summarization, have been
studied by Wan et al. (2007) using graph-based
approaches. In particular, they show that meth-
ods that account for saliency using both the fol-
lowing considerations perform better than meth-
ods that consider either one of them alone, and
SWAP-NET is based on the same principles.

• A sentence should be salient if it is heav-
ily linked with other salient sentences, and a
word should be salient if it is heavily linked
with other salient words.

• A sentence should be salient if it contains
many salient words, and a word should be
salient if it appears in many salient sentences.

6 Data and Experiments

6.1 Experimental Settings
In our experiments the maximum number of words
per document is limited to 800, and the maximum
number of sentences per document to 50 (padding
is used to maintain the length of word sequences).
We also use the symbols <GO> and <EOS> to
indicate start and end of prediction by decoders.
The total vocabulary size is 150,000 words.

We use word embeddings of dimension 100 pre-
trained using word2vec (Mikolov et al., 2013) on
the training dataset. We fix the LSTM hidden state
size at 200. We use a batch size of 16 and the
ADAM optimizer (Kingma and Ba, 2015) with pa-
rameters: learning rate = 0.001, β1 = 0.9, β2 =

0.999 to train SWAP-NET. We employ gradient
clipping to regularize our model and an early stop-
ping criterion based on the validation loss.

During training we find that SWAP-NET learns
to predict important sentences faster than to pre-
dict words. To speed up learning of word proba-
bilities, we add the term− logαwij to our loss func-
tion lj in the final iterations of training. It is pos-
sible to get the same sentence or word in multi-
ple (usually consecutive) decoding steps. In that
case, in Eq. 3 we consider the maximum value
of alpha obtained across these steps and calculate
maximum scores of distinct sentences and words.

We select 3 top scoring sentences for the sum-
mary, as there are 3.11 sentences on average in the
gold summary of the training set (similar to set-
tings used by others, e.g., (Narayan et al., 2017)).

6.2 Baselines
Two state-of-the-art methods for extractive sum-
marization are SummaRuNNer (Nallapati et al.,
2017) and NN, the neural summarizer of Cheng
and Lapata (2016). SummaRuNNer can also pro-
vide extractive summaries while being trained ab-
stractively (Nallapati et al., 2017); we denote this
method by SummaRuNNer-abs. In addition, we
compare our method with the Lead-3 summary
which consists of the first three sentences from
each document. We also compare our method
with an abstractive summarizer that uses a sim-
ilar attention-based encoder-decoder architecture
(Nallapati et al., 2016), denoted by ABS.

6.3 Benchmark Datasets
For our experiments, we use the CNN/DailyMail
corpus (Hermann et al., 2015). We use the
anonymized version of this dataset, from Cheng
and Lapata (2016), which has labels for important
sentences, that are used for training. To obtain
labels for words, we extract keywords from each
gold summary using RAKE, an unsupervised key-
word extraction method (Rose et al., 2010). These
keywords are used to label words in the corre-
sponding input document during training. We re-
place numerical values in the documents by zeros
to limit the vocabulary size.

We have 193,986 training documents, 12,147
validation documents and 10,346 test documents
from the DailyMail corpus and 83,568 training
documents, 1,220 validation documents and 1,093
test documents from CNN subset with labels for
sentences and words.
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6.4 Evaluation Metrics
We use the ROUGE toolkit (Lin and Hovy, 2003)
for evaluation of the generated summaries in com-
parison to the gold summaries. We use three vari-
ants of this metric: ROUGE-1 (R1), ROUGE-2
(R2) and ROUGE-L (RL) that are computed by
matching unigrams, bigrams and longest common
subsequences respectively between the two sum-
maries. To compare with (Cheng and Lapata,
2016) and (Nallapati et al., 2017) we use limited
length ROUGE recall at 75 and 275 bytes for the
Daily-Mail test set, and full length ROUGE-F1
score, as reported by them.

6.5 Results on Benchmark Datasets
Performance on Daily Mail Data

Models R1 R2 RL
Lead-3 21.9 7.2 11.6

NN 22.7 8.5 12.5
SummaRuNNner-abs 23.8 9.6 13.3

SummaRuNNner 26.2 10.8 14.4
SWAP-NET 26.4 10.7 14.4

Table 1: Performance on Daily-Mail test set using
the limited length recall of Rouge at 75 bytes.

Models R1 R2 RL
Lead-3 40.5 14.9 32.6

NN 42.2 17.3 34.8
SummaRuNNner-abs 40.4 15.5 32.0

SummaRuNNner 42.0 16.9 34.1
SWAP-NET 43.6 17.7 35.5

Table 2: Performance on Daily-Mail test set using
the limited length recall of Rouge at 275 bytes.

Table 1 shows the performance of SWAP-NET,
state-of-the-art baselines NN and SummaRuNNer
and other baselines, using ROUGE recall with
summary length of 75 bytes, on the entire Daily
Mail test set. The performance of SWAP-NET is
comparable to that of SummaRuNNer and better
than NN and other baselines. Table 2 compares
the same algorithms using ROUGE recall with
summary length of 275 bytes. SWAP-NET out-
performs both state-of-the-art summarizers Sum-
maRuNNer as well as NN.

Performance on CNN/DailyMail Data
SWAP-NET has the best performance on the com-
bined CNN and Daily Mail corpus, outperforming

Models R1 R2 RL
Lead-3 39.2 15.7 35.5
ABS 35.4 13.3 32.6

SummaRuNNer-abs 37.5 14.5 33.4
SummaRuNNer 39.6 16.2 35.3

SWAP-NET 41.6 18.3 37.7

Table 3: Performance on CNN and Daily-Mail test
set using the full length Rouge F score.

the previous best reported F-score by SummaRuN-
Ner, as seen in table 3, with a consistent improve-
ment of over 2 ROUGE points in all three metrics.

6.6 Discussion

SWAP-NET outperforms state-of-the-art extrac-
tive summarizers SummaRuNNer (Nallapati et al.,
2017) and NN (Cheng and Lapata, 2016) on
benchmark datasets. Our model is similar, al-
though simpler, than that of NN and the main dif-
ference between SWAP-NET and these baselines
is its explicit modeling of the interaction between
key words and salient sentences.

Automatic keyword extraction has been studied
extensively (Hasan and Ng, 2014). We use a pop-
ular and well tested method, RAKE (Rose et al.,
2010) to obtain key words in the training docu-
ments. A disadvantage with such methods is that
they do not guarantee representation, via extracted
keywords, of all the topics in the text (Hasan and
Ng, 2014). So, if RAKE key words are directly
applied to the input test document (without using
word decoder trained on RAKE words, obtained
from gold summary as done in SWAP-NET), then
there is a possibility of missing sentences from the
missed topics. So, we train SWAP-NET to predict
key words and also model their interactions with
sentences.

Statistics Lead-3 SWAP-NET
KW coverage 61.6% 73.8%

Sentences with KW 92.2% 98%

Table 4: Key word (KW) statistics per summary
(average percentage) from 500 documents in Daily
Mail test set. See text for definitions.

We investigate the importance of modeling this
interaction and the role of key words in the final
summary. Table 4 shows statistics that reflect the
importance of key words in extractive summaries.
Key word coverage measures the proportion of key
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Title:
@entity19 vet surprised reason license plate denial

Gold Summary:
@entity9 of @entity10 , @entity1 , wanted to get ’ @entity11 - 0 ’ put on a license plate . that would have
commemorated both @entity9 getting the @entity8 in 0 and his @entity16 . the @entity1 @entity21
denied his request , citing state regulations prohibiting the use of the number 0 because of its indecent
connotations .
SWAP-NET Summary:
@entity9 of @entity10 wanted to get ’ @entity11 ’ put on a license plate , the @entity14

newspaper of @entity10 reported . that would have commemorated both @entity9 getting the
@entity8 in 0 and his @entity16 , according to the newspaper . the @entity1 @entity21
denied his request , citing state regulations prohibiting the use of the number 0 because of its
indecent connotations @entity9 had been an armored personnel carrier ’s gunner during his time in

the @entity29 .

SWAP-NET Key words:
@entity1, @entity9, @entity8, citing, number, year, indecent, personalized, war, surprised, plate, @en-
tity14, @entity11, @entity10, regulations, reported, wanted, connotations, license, request, accord-
ing,@entity21, armored, @entity16

Lead 3 Summary:
a @entity19 war veteran in @entity1 has said he ’s surprised over the reason for the denial of his request
for a personalized license plate commemorating the year he was wounded and awarded a @entity8
. @entity9 of @entity10 wanted to get ’ @entity11 ’ put on a license plate , the @entity14

newspaper of @entity10 reported . that would have commemorated both @entity9 getting the
@entity8 in 0 and his @entity16 , according to the newspaper .

Table 5: Sample gold summary and summaries generated by SWAP-NET and Lead-3. Key words are
highlighted, bold font indicates overlap with gold summary.

words from those in the gold summary present
in the generated summary. SWAP-NET obtains
nearly 74% of the key words. In comparison Lead-
3 has only about 62% of the key words from the
gold summary.

Sentences with key words measures the propor-
tion of sentences containing at least one key word.
It is not surprising that in SWAP-NET summaries
98% of the sentences, on average, contain at least
one key word: this is by design of SWAP-NET.
However, note that Lead-3 which has poorer per-
formance in all the benchmark datasets has much
fewer sentences with key words. This highlights
the importance of key words in finding salient sen-
tences for extractive summaries.

Gold summary Lead-3 SWAP-NET
0.81 0.553 0.8

Table 6: Average pairwise cosine distance be-
tween paragraph vector representations of sen-
tences in summaries.

We also find the SWAP-NET obtains summaries
that have less semantic redundancy. Table 6 shows
the average distance between pairs of sentences
from the gold summary, and summaries generated
from SWAP-NET and Lead-3. Distances are mea-
sured using cosine distance of paragraph vectors
of each sentence (Le and Mikolov, 2014) from
randomly selected 500 documents of the Daily
Mail test set. Paragraph vectors have been found
to be effective semantic representations of sen-
tences (Le and Mikolov, 2014) and experiments in
(Dai et al., 2015) also show that paragraph vectors
can be effectively used to measure semantic sim-
ilarity using cosine distance. For training we use
GENSIM (Řehůřek and Sojka, 2010) with embed-
ding size 200 and initial learning rate 0.025. The
model is trained on 500 documents from Daily-
Mail dataset for 10 epochs and learning rate is de-
creased by 0.002 at each epoch.

The average pair-wise distance of SWAP-NET
is very close to that of the gold summary, both
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nearly 0.8. In contrast, the average pairwise dis-
tance in Lead-3 summaries is 0.553 indicating
higher redundancy. This highly desirable feature
of SWAP-NET is likely due to use of of key words,
that is affecting the choice of sentences in the final
summary.

Table 5 shows a sample gold summary from
the Daily Mail dataset and the generated sum-
mary from SWAP-NET and, for comparison, from
Lead-3. We observe the presence of key words in
all the overlapping segments of text with the gold
summary indicating the importance of key words
in finding salient sentences. Modeling this inter-
action, we believe, is the reason for the superior
performance of SWAP-NET in our experiments.

An implementation of SWAP-NET and all the
generated summaries from the test sets are avail-
able online in a github repository1.

7 Conclusion

We present SWAP-NET, a neural sequence-to-
sequence model for extractive summarization that
outperforms state-of-the-art extractive summariz-
ers SummaRuNNer (Nallapati et al., 2017) and
NN (Cheng and Lapata, 2016) on large scale
benchmark datasets. The architecture of SWAP-
NET is simpler than that of NN but due to its
effective modeling of interaction between salient
sentences and key words in a document, SWAP-
NET achieves superior performance. SWAP-NET
models this interaction using a new two-level
pointer network based architecture with a switch-
ing mechanism. Our experiments also suggest
that modeling sentence-keyword interaction has
the desirable property of less semantic redundancy
in summaries generated by SWAP-NET.
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Abstract

Most previous seq2seq summarization sy-
stems purely depend on the source text
to generate summaries, which tends to
work unstably. Inspired by the traditio-
nal template-based summarization appro-
aches, this paper proposes to use existing
summaries as soft templates to guide the
seq2seq model. To this end, we use a po-
pular IR platform to Retrieve proper sum-
maries as candidate templates. Then, we
extend the seq2seq framework to jointly
conduct template Reranking and template-
aware summary generation (Rewriting).
Experiments show that, in terms of infor-
mativeness, our model significantly out-
performs the state-of-the-art methods, and
even soft templates themselves demon-
strate high competitiveness. In addition,
the import of high-quality external sum-
maries improves the stability and readabi-
lity of generated summaries.

1 Introduction

The exponentially growing online information has
necessitated the development of effective automa-
tic summarization systems. In this paper, we fo-
cus on an increasingly intriguing task, i.e., ab-
stractive sentence summarization (Rush et al.,
2015a), which generates a shorter version of a
given sentence while attempting to preserve its
original meaning. It can be used to design or
refine appealing headlines. Recently, the ap-
plication of the attentional sequence-to-sequence
(seq2seq) framework has attracted growing atten-
tion and achieved state-of-the-art performance on
this task (Rush et al., 2015a; Chopra et al., 2016;
Nallapati et al., 2016).

Most previous seq2seq models purely depend
on the source text to generate summaries. Howe-
ver, as reported in many studies (Koehn and Kno-
wles, 2017), the performance of a seq2seq model
deteriorates quickly with the increase of the length
of generation. Our experiments also show that
seq2seq models tend to “lose control” sometimes.
For example, 3% of summaries contain less than
3 words, while there are 4 summaries repeating a
word for even 99 times. These results largely re-
duce the informativeness and readability of the ge-
nerated summaries. In addition, we find seq2seq
models usually focus on copying source words in
order, without any actual “summarization”. The-
refore, we argue that, the free generation based on
the source sentence is not enough for a seq2seq
model.

Template based summarization (e.g., Zhou and
Hovy (2004)) is a traditional approach to ab-
stractive summarization. In general, a template
is an incomplete sentence which can be filled
with the input text using the manually defined ru-
les. For instance, a concise template to conclude
the stock market quotation is: [REGION] shares
[open/close] [NUMBER] percent [lower/higher],
e.g., “hong kong shares close #.# percent lower”.
Since the templates are written by humans, the
produced summaries are usually fluent and infor-
mative. However, the construction of templates is
extremely time-consuming and requires a plenty
of domain knowledge. Moreover, it is impossible
to develop all templates for summaries in various
domains.

Inspired by retrieve-based conversation sys-
tems (Ji et al., 2014), we assume the golden sum-
maries of the similar sentences can provide a re-
ference point to guide the input sentence summa-
rization process. We call these existing summa-
ries soft templates since no actual rules are nee-
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ded to build new summaries from them. Due to
the strong rewriting ability of the seq2seq frame-
work (Cao et al., 2017a), in this paper, we pro-
pose to combine the seq2seq and template based
summarization approaches. We call our summa-
rization system Re3Sum, which consists of three
modules: Retrieve, Rerank and Rewrite. We uti-
lize a widely-used Information Retrieval (IR) plat-
form to find out candidate soft templates from the
training corpus. Then, we extend the seq2seq mo-
del to jointly learn template saliency measurement
(Rerank) and final summary generation (Rewrite).
Specifically, a Recurrent Neural Network (RNN)
encoder is applied to convert the input sentence
and each candidate template into hidden states. In
Rerank, we measure the informativeness of a can-
didate template according to its hidden state rele-
vance to the input sentence. The candidate tem-
plate with the highest predicted informativeness is
regarded as the actual soft template. In Rewrite,
the summary is generated according to the hidden
states of both the sentence and template.

We conduct extensive experiments on the po-
pular Gigaword dataset (Rush et al., 2015b). Ex-
periments show that, in terms of informativeness,
Re3Sum significantly outperforms the state-of-
the-art seq2seq models, and even soft templates
themselves demonstrate high competitiveness. In
addition, the import of high-quality external sum-
maries improves the stability and readability of ge-
nerated summaries.

The contributions of this work are summarized
as follows:

• We propose to introduce soft templates as
additional input to improve the readabi-
lity and stability of seq2seq summariza-
tion systems. Code and results can be
found at http://www4.comp.polyu.
edu.hk/˜cszqcao/

• We extend the seq2seq framework to conduct
template reranking and template-aware sum-
mary generation simultaneously.

• We fuse the popular IR-based and seq2seq-
based summarization systems, which fully
utilize the supervisions from both sides.

2 Method

As shown in Fig. 1, our summarization system
consists of three modules, i.e., Retrieve, Rerank

and Rewrite. Given the input sentence x, the
Retrieve module filters candidate soft templates
C = {ri} from the training corpus. For validation
and test, we regard the candidate template with the
highest predicted saliency (a.k.a informativeness)
score as the actual soft template r. For training,
we choose the one with the maximal actual sa-
liency score in C, which speeds up convergence
and shows no obvious side effect in the experi-
ments.

Then, we jointly conduct reranking and rewri-
ting through a shared encoder. Specifically, both
the sentence x and the soft template r are con-
verted into hidden states with a RNN encoder. In
the Rerank module, we measure the saliency of r
according to its hidden state relevance to x. In
the Rewrite module, a RNN decoder combines the
hidden states of x and r to generate a summary y.
More details will be described in the rest of this
section

2.1 Retrieve

The purpose of this module is to find out candidate
templates from the training corpus. We assume
that similar sentences should hold similar sum-
mary patterns. Therefore, given a sentence x, we
find out its analogies in the corpus and pick their
summaries as the candidate templates. Since the
size of our dataset is quite large (over 3M), we le-
verage the widely-used Information Retrieve (IR)
system Lucene1 to index and search efficiently.
We keep the default settings of Lucene2 to build
the IR system. For each input sentence, we select
top 30 searching results as candidate templates.

2.2 Jointly Rerank and Rewrite

To conduct template-aware seq2seq generation
(rewriting), it is a necessary step to encode both
the source sentence x and soft template r into hid-
den states. Considering that the matching net-
works based on hidden states have demonstrated
the strong ability to measure the relevance of two
pieces of texts (e.g., Chen et al. (2016)), we pro-
pose to jointly conduct reranking and rewriting
through a shared encoding step. Specifically, we
employ a bidirectional Recurrent Neural Network
(BiRNN) encoder (Cho et al., 2014) to read x and
r. Take the sentence x as an example. Its hidden
state of the forward RNN at timestamp i can be

1https://lucene.apache.org/
2TextField with EnglishAnalyzer
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Figure 1: Flow chat of the proposed method. We use the dashed line for Retrieve since there is an IR
system embedded.

represented by:

−→
h x
i = RNN(xi,

−→
h x
i−1) (1)

The BiRNN consists of a forward RNN and a
backward RNN. Suppose the corresponding out-
puts are [

−→
h x

1 ; · · · ;
−→
h x
−1] and [

←−
h x

1 ; · · · ;
←−
h x
−1], re-

spectively, where the index “−1” stands for the
last element. Then, the composite hidden state of
a word is the concatenation of the two RNN repre-
sentations, i.e., hxi = [

−→
h x
i ;
←−
h x
i ]. The entire repre-

sentation for the source sentence is [hx1 ; · · · ;hx−1].
Since a soft template r can also be regarded as
a readable concise sentence, we use the same
BiRNN encoder to convert it into hidden states
[hr1; · · · ;hr−1].
2.2.1 Rerank
In Retrieve, the template candidates are ranked
according to the text similarity between the cor-
responding indexed sentences and the input sen-
tence. However, for the summarization task, we
expect the soft template r resembles the actual
summary y∗ as much as possible. Here we use
the widely-used summarization evaluation metrics
ROUGE (Lin, 2004) to measure the actual sa-
liency s∗(r,y∗) (see Section 3.2). We utilize the
hidden states of x and r to predict the saliency s
of the template. Specifically, we regard the output
of the BiRNN as the representation of the sentence
or template:

hx = [
←−
h x

1 ;
−→
h x
−1] (2)

hr = [
←−
h r

1;
−→
h r
−1] (3)

Next, we use Bilinear network to predict the sa-
liency of the template for the input sentence.

s(r,x) = sigmoid(hrWsh
T
x + bs), (4)

where Ws and bs are parameters of the Bili-
near network, and we add the sigmoid activation
function to make the range of s consistent with
the actual saliency s∗. According to Chen et al.
(2016), Bilinear outperforms multi-layer forward

neural networks in relevance measurement. As
shown later, the difference of s and s∗ will pro-
vide additional supervisions for the seq2seq fra-
mework.

2.2.2 Rewrite
The soft template r selected by the Rerank mo-
dule has already competed with the state-of-the-art
method in terms of ROUGE evaluation (see Ta-
ble 4). However, r usually contains a lot of named
entities that does not appear in the source (see Ta-
ble 5). Consequently, it is hard to ensure that the
soft templates are faithful to the input sentences.
Therefore, we leverage the strong rewriting ability
of the seq2seq model to generate more faithful and
informative summaries. Specifically, since the in-
put of our system consists of both the sentence and
soft template, we use the concatenation function3

to combine the hidden states of the sentence and
template:

Hc = [hx1 ; · · · ;hx−1;hr1; · · · ;hr−1] (5)

The combined hidden states are fed into the pre-
vailing attentional RNN decoder (Bahdanau et al.,
2014) to generate the decoding hidden state at the
position t:

st = Att-RNN(st−1, yt−1,Hc), (6)

where yt−1 is the previous output summary word.
Finally, a softmax layer is introduced to predict
the current summary word:

ot = softmax(stWo), (7)

where Wo is a parameter matrix.

2.3 Learning
There are two types of costs in our system. For
Rerank, we expect the predicted saliency s(r,x)
close to the actual saliency s∗(r,y∗). Therefore,

3We also attempted complex combination approaches
such as the gate network Cao et al. (2017b) but failed to
achieve obvious improvement. We assume the Rerank mo-
dule has partially played the role of the gate network.
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Figure 2: Jointly Rerank and Rewrite

we use the cross entropy (CE) between s and s∗ as
the loss function:

JR(θ) = CE(s(r,x), s∗(r,y∗)) (8)

= −s∗ log s− (1− s∗) log(1− s),

where θ stands for the model parameters. For Re-
write, the learning goal is to maximize the esti-
mated probability of the actual summary y∗. We
adopt the common negative log-likelihood (NLL)
as the loss function:

JG(θ) = − log(p(y∗|x, r)) (9)

= −
∑

t
log(ot[y

∗
t ])

To make full use of supervisions from both sides,
we combine the above two costs as the final loss
function:

J(θ) = JR(θ) + JG(θ) (10)

We use mini-batch Stochastic Gradient Descent
(SGD) to tune model parameters. The batch size
is 64. To enhance generalization, we introduce
dropout (Srivastava et al., 2014) with probability
p = 0.3 for the RNN layers. The initial learning
rate is 1, and it will decay by 50% if the generation
loss does not decrease on the validation set.

3 Experiments

3.1 Datasets
We conduct experiments on the Annotated En-
glish Gigaword corpus, as with (Rush et al.,
2015b). This parallel corpus is produced by pai-
ring the first sentence in the news article and
its headline as the summary with heuristic ru-
les. All the training, development and test data-
sets can be downloaded at https://github.
com/harvardnlp/sent-summary. The sta-
tistics of the Gigaword corpus is presented in Ta-
ble 1.

Dataset Train Dev. Test
Count 3.8M 189k 1951
AvgSourceLen 31.4 31.7 29.7
AvgTargetLen 8.3 8.3 8.8
COPY(%) 45 46 36

Table 1: Data statistics for English Gigaword.
AvgSourceLen is the average input sentence
length and AvgTargetLen is the average summary
length. COPY means the copy ratio in the summa-
ries (without stopwords).

3.2 Evaluation Metrics
We adopt ROUGE (Lin, 2004) for automatic eva-
luation. ROUGE has been the standard evalua-
tion metric for DUC shared tasks since 2004. It
measures the quality of summary by computing
the overlapping lexical units between the candi-
date summary and actual summaries, such as uni-
gram, bi-gram and longest common subsequence
(LCS). Following the common practice, we report
ROUGE-1 (uni-gram), ROUGE-2 (bi-gram) and
ROUGE-L (LCS) F1 scores4 in the following ex-
periments. We also measure the actual saliency of
a candidate template r with its combined ROUGE
scores given the actual summary y∗:

s∗(r,y∗) = RG(r,y∗) + RG(r,y∗), (11)

where “RG” stands for ROUGE for short.
ROUGE mainly evaluates informativeness. We

also introduce a series of metrics to measure the
summary quality from the following aspects:
LEN DIF The absolute value of the length diffe-

rence between the generated summaries and
the actual summaries. We use mean value ±
standard deviation to illustrate this item. The
average value partially reflects the readability
and informativeness, while the standard devi-
ation links to stability.

4We use the ROUGE evaluation option: -m -n 2 -w 1.2
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LESS 3 The number of the generated summaries,
which contains less than three tokens. These
extremely short summaries are usually unre-
adable.

COPY The proportion of the summary words
(without stopwords) copied from the source
sentence. A seriously large copy ratio indica-
tes that the summarization system pays more
attention to compression rather than required
abstraction.

NEW NE The number of the named entities that
do not appear in the source sentence or ac-
tual summary. Intuitively, the appearance of
new named entities in the summary is likely
to bring unfaithfulness. We use Stanford Co-
reNLP (Manning et al., 2014) to recognize
named entities.

3.3 Implementation Details

We use the popular seq2seq framework Open-
NMT5 as the starting point. To make our mo-
del more general, we retain the default settings
of OpenNMT to build the network architecture.
Specifically, the dimensions of word embeddings
and RNN are both 500, and the encoder and de-
coder structures are two-layer bidirectional Long
Short Term Memory Networks (LSTMs). The
only difference is that we add the argument “-
share embeddings” to share the word embeddings
between the encoder and decoder. This practice
largely reduces model parameters for the mo-
nolingual task. On our computer (GPU: GTX
1080, Memory: 16G, CPU: i7-7700K), the trai-
ning spends about 2 days.

During test, we use beam search of size 5 to
generate summaries. We add the argument “-
replace unk” to replace the generated unknown
words with the source word that holds the hig-
hest attention weight. Since the generated sum-
maries are often shorter than the actual ones, we
introduce an additional length penalty argument “-
alpha 1” to encourage longer generation, like Wu
et al. (2016).

3.4 Baselines

We compare our proposed model with the fol-
lowing state-of-the-art neural summarization sys-
tems:
ABS Rush et al. (2015a) used an attentive CNN

encoder and a NNLM decoder to summarize
5https://github.com/OpenNMT/OpenNMT-py

the sentence.
ABS+ Rush et al. (2015a) further tuned the ABS

model with additional hand-crafted featu-
res to balance between abstraction and ex-
traction.

RAS-Elman As the extension of the ABS model,
it used a convolutional attention-based enco-
der and a RNN decoder (Chopra et al., 2016).

Featseq2seq Nallapati et al. (2016) used a com-
plete seq2seq RNN model and added the
hand-crafted features such as POS tag and
NER, to enhance the encoder representation.

Luong-NMT Chopra et al. (2016) implemented
the neural machine translation model of Lu-
ong et al. (2015) for summarization. This
model contained two-layer LSTMs with 500
hidden units in each layer.

OpenNMT We also implement the standard at-
tentional seq2seq model with OpenNMT. All
the settings are the same as our system. It is
noted that OpenNMT officially examined the
Gigaword dataset. We distinguish the official
result6 and our experimental result with suf-
fixes “O” and “I” respectively.

FTSum Cao et al. (2017b) encoded the facts ex-
tracted from the source sentence to improve
both the faithfulness and informativeness of
generated summaries.

In addition, to evaluate the effectiveness of our
joint learning framework, we develop a baseline
named “PIPELINE”. Its architecture is identical to
Re3Sum. However, it trains the Rerank module
and Rewrite module in pipeline.

3.5 Informativeness Evaluation

Model Perplexity
ABS† 27.1
RAS-Elman† 18.9
FTSum† 16.4
OpenNMTI 13.2
PIPELINE 12.5
Re3Sum 12.9

Table 2: Final perplexity on the development set. †

indicates the value is cited from the corresponding
paper. ABS+, Featseq2seq and Luong-NMT do
not provide this value.

Let’s first look at the final cost values (Eq. 9)
on the development set. From Table 2, we can

6http://opennmt.net/Models/

156



Model RG-1 RG-2 RG-L
ABS† 29.55∗ 11.32∗ 26.42∗

ABS+† 29.78∗ 11.89∗ 26.97∗

Featseq2seq† 32.67∗ 15.59∗ 30.64∗

RAS-Elman† 33.78∗ 15.97∗ 31.15∗

Luong-NMT† 33.10∗ 14.45∗ 30.71∗

FTSum† 37.27 17.65∗ 34.24
OpenNMT†O 33.13∗ 16.09∗ 31.00∗

OpenNMTI 35.01∗ 16.55∗ 32.42∗

PIPELINE 36.49 17.48∗ 33.90
Re3Sum 37.04 19.03 34.46

Table 3: ROUGE F1 (%) performance. “RG” re-
presents “ROUGE” for short. “∗” indicates statis-
tical significance of the corresponding model with
respect to the baseline model on the 95% confi-
dence interval in the official ROUGE script.

Type RG-1 RG-2 RG-L
Random 2.81 0.00 2.72
First 24.44 9.63 22.05
Max 38.90 19.22 35.54
Optimal 52.91 31.92 48.63
Rerank 28.77 12.49 26.40

Table 4: ROUGE F1 (%) performance of different
types of soft templates.

see that our model achieves much lower perplexity
compared against the state-of-the-art systems. It
is also noted that PIPELINE slightly outperforms
Re3Sum. One possible reason is that Re3Sum ad-
ditionally considers the cost derived from the Re-
rank module.

The ROUGE F1 scores of different methods are
then reported in Table 3. As can be seen, our mo-
del significantly outperforms most other approa-
ches. Note that, ABS+ and Featseq2seq have uti-
lized a series of hand-crafted features, but our mo-
del is completely data-driven. Even though, our
model surpasses Featseq2seq by 22% and ABS+
by 60% on ROUGE-2. When soft templates are
ignored, our model is equivalent to the standard at-

Item Template OpenNMT Re3Sum
LEN DIF 2.6±2.6 3.0±4.4 2.7±2.6
LESS 3 0 53 1
COPY(%) 31 80 74
NEW NE 0.51 0.34 0.30

Table 5: Statistics of different types of summaries.

Type RG-1 RG-2 RG-L
+Random 32.60 14.31 30.19
+First 36.01 17.06 33.21
+Max 41.50 21.97 38.80
+Optimal 46.21 26.71 43.19
+Rerank(Re3Sum) 37.04 19.03 34.46

Table 6: ROUGE F1 (%) performance of Re3Sum
generated with different soft templates.

tentional seq2seq model OpenNMTI . Therefore,
it is safe to conclude that soft templates have great
contribute to guide the generation of summaries.

We also examine the performance of directly re-
garding soft templates as output summaries. We
introduce five types of different soft templates:
Random An existing summary randomly se-

lected from the training corpus.
First The top-ranked candidate template given by

the Retrieve module.
Max The template with the maximal actual

ROUGE scores among the 30 candidate tem-
plates.

Optimal An existing summary in the training cor-
pus which holds the maximal ROUGE sco-
res.

Rerank The template with the maximal predicted
ROUGE scores among the 30 candidate tem-
plates. It is the actual soft template we adopt.

As shown in Table 4, the performance of Random
is terrible, indicating it is impossible to use one
summary template to fit various actual summaries.
Rerank largely outperforms First, which verifies
the effectiveness of the Rerank module. However,
according to Max and Rerank, we find the Rerank
performance of Re3Sum is far from perfect. Like-
wise, comparing Max and First, we observe that
the improving capacity of the Retrieve module is
high. Notice that Optimal greatly exceeds all the
state-of-the-art approaches. This finding strongly
supports our practice of using existing summaries
to guide the seq2seq models.

3.6 Linguistic Quality Evaluation

We also measure the linguistic quality of genera-
ted summaries from various aspects, and the re-
sults are present in Table 5. As can be seen from
the rows “LEN DIF” and “LESS 3”, the perfor-
mance of Re3Sum is almost the same as that of
soft templates. The soft templates indeed well
guide the summary generation. Compared with
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Source grid positions after the final qualifying session in the indonesian motorcycle grand prix
at the sentul circuit , west java , saturday : UNK

Target indonesian motorcycle grand prix grid positions
Template grid positions for british grand prix
OpenNMT circuit
Re3Sum grid positions for indonesian grand prix
Source india ’s children are getting increasingly overweight and unhealthy and the government

is asking schools to ban junk food , officials said thursday .
Target indian government asks schools to ban junk food
Template skorean schools to ban soda junk food
OpenNMT india ’s children getting fatter
Re3Sum indian schools to ban junk food

Table 7: Examples of generated summaries. We use Bold font to indicate the crucial rewriting behavior
from the templates to generated summaries.

Re3Sum, the standard deviation of LEN DF is 0.7
times larger in OpenNMT, indicating that Open-
NMT works quite unstably. Moreover, OpenNMT
generates 53 extreme short summaries, which se-
riously reduces readability. Meanwhile, the copy
ratio of actual summaries is 36%. Therefore,
the copy mechanism is severely overweighted in
OpenNMT. Our model is encouraged to generate
according to human-written soft templates, which
relatively diminishes copying from the source sen-
tences. Look at the last row “NEW NE”. A
number of new named entities appear in the soft
templates, which makes them quite unfaithful to
source sentences. By contrast, this index in
Re3Sum is close to the OpenNMT’s. It highlights
the rewriting ability of our seq2seq framework.

3.7 Effect of Templates

In this section, we investigate how soft templates
affect our model. At the beginning, we feed diffe-
rent types of soft templates (refer to Table 4) into
the Rewriting module of Re3Sum. As illustrated in
Table 6, the more high-quality templates are pro-
vided, the higher ROUGE scores are achieved. It
is interesting to see that,while the ROUGE-2 score
of Random templates is zero, our model can still
generate acceptable summaries with Random tem-
plates. It seems that Re3Sum can automatically
judge whether the soft templates are trustworthy
and ignore the seriously irrelevant ones. We be-
lieve that the joint learning with the Rerank model
plays a vital role here.

Next, we manually inspect the summaries ge-
nerated by different methods. We find the out-
puts of Re3Sum are usually longer and more flu-

ent than the outputs of OpenNMT. Some illustra-
tive examples are shown in Table 7. In Example 1,
there is no predicate in the source sentence. Since
OpenNMT prefers selecting source words around
the predicate to form the summary, it fails on this
sentence. By contract, Re3Sum rewrites the tem-
plate and produces an informative summary. In
Example 2, OpenNMT deems the starting part of
the sentences are more important, while our mo-
del, guided by the template, focuses on the second
part to generate the summary.

In the end, we test the ability of our model to
generate diverse summaries. In practice, a system
that can provide various candidate summaries is
probably more welcome. Specifically, two can-
didate templates with large text dissimilarity are
manually fed into the Rewriting module. The cor-
responding generated summaries are shown in Ta-
ble 8. For the sake of comparison, we also present
the 2-best results of OpenNMT with beam search.
As can be seen, with different templates given, our
model is likely to generate dissimilar summaries.
In contrast, the 2-best results of OpenNMT is al-
most the same, and often a shorter summary is
only a piece of the other one. To sum up, our mo-
del demonstrates promising prospect in generation
diversity.

4 Related Work

Abstractive sentence summarization aims to pro-
duce a shorter version of a given sentence while
preserving its meaning (Chopra et al., 2016).
This task is similar to text simplification (Sag-
gion, 2017) and facilitates headline design and
refine. Early studies on sentence summariza-
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Source anny ainge said thursday he had two one-hour meetings with the new owners of the
boston celtics but no deal has been completed for him to return to the franchise .

Target ainge says no deal completed with celtics

Templates
major says no deal with spain on gibraltar
roush racing completes deal with red sox owner

Re3Sum
ainge says no deal done with celtics
ainge talks with new owners

OpenNMT
ainge talks with celtics owners
ainge talks with new owners

Source european stock markets advanced strongly thursday on some bargain-hunting and gains
by wall street and japanese shares ahead of an expected hike in us interest rates .

Target european stocks bounce back UNK UNK with closing levels

Templates
european stocks bounce back strongly
european shares sharply lower on us interest rate fears

Re3Sum
european stocks bounce back strongly
european shares rise strongly on bargain-hunting

OpenNMT
european stocks rise ahead of expected us rate hike hike
european stocks rise ahead of us rate hike

Table 8: Examples of generation with diversity. We use Bold font to indicate the difference between two
summaries

tion include template-based methods (Zhou and
Hovy, 2004), syntactic tree pruning (Knight and
Marcu, 2002; Clarke and Lapata, 2008) and statis-
tical machine translation techniques (Banko et al.,
2000). Recently, the application of the attentional
seq2seq framework has attracted growing atten-
tion and achieved state-of-the-art performance on
this task (Rush et al., 2015a; Chopra et al., 2016;
Nallapati et al., 2016).

In addition to the direct application of the ge-
neral seq2seq framework, researchers attempted
to integrate various properties of summarization.
For example, Nallapati et al. (2016) enriched the
encoder with hand-crafted features such as na-
med entities and POS tags. These features have
played important roles in traditional feature based
summarization systems. Gu et al. (2016) found
that a large proportion of the words in the sum-
mary were copied from the source text. There-
fore, they proposed CopyNet which considered the
copying mechanism during generation. Recently,
See et al. (2017) used the coverage mechanism to
discourage repetition. Cao et al. (2017b) enco-
ded facts extracted from the source sentence to en-
hance the summary faithfulness. There were also
studies to modify the loss function to fit the evalu-
ation metrics. For instance, Ayana et al. (2016)
applied the Minimum Risk Training strategy to
maximize the ROUGE scores of generated sum-

maries. Paulus et al. (2017) used the reinforce-
ment learning algorithm to optimize a mixed ob-
jective function of likelihood and ROUGE scores.

Guu et al. (2017) also proposed to encode
human-written sentences to improvement the per-
formance of neural text generation. However, they
handled the task of Language Modeling and rand-
omly picked an existing sentence in the training
corpus. In comparison, we develop an IR sy-
stem to find proper existing summaries as soft
templates. Moreover, Guu et al. (2017) used a
general seq2seq framework while we extend the
seq2seq framework to conduct template reranking
and template-aware summary generation simulta-
neously.

5 Conclusion and Future Work

This paper proposes to introduce soft templates
as additional input to guide the seq2seq summa-
rization. We use the popular IR platform Lucene
to retrieve proper existing summaries as candi-
date soft templates. Then we extend the seq2seq
framework to jointly conduct template reranking
and template-aware summary generation. Experi-
ments show that our model can generate informa-
tive, readable and stable summaries. In addition,
our model demonstrates promising prospect in ge-
neration diversity.

We believe our work can be extended in vari-
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ous aspects. On the one hand, since the candidate
templates are far inferior to the optimal ones, we
intend to improve the Retrieve module, e.g., by in-
dexing both the sentence and summary fields. On
the other hand, we plan to test our system on the
other tasks such as document-level summarization
and short text conversation.
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Abstract

Sentence splitting is a major simplification
operator. Here we present a simple and ef-
ficient splitting algorithm based on an au-
tomatic semantic parser. After splitting,
the text is amenable for further fine-tuned
simplification operations. In particular, we
show that neural Machine Translation can
be effectively used in this situation. Pre-
vious application of Machine Translation
for simplification suffers from a consid-
erable disadvantage in that they are over-
conservative, often failing to modify the
source in any way. Splitting based on se-
mantic parsing, as proposed here, allevi-
ates this issue. Extensive automatic and
human evaluation shows that the proposed
method compares favorably to the state-
of-the-art in combined lexical and struc-
tural simplification.

1 Introduction

Text Simplification (TS) is generally defined as the
conversion of a sentence into one or more sim-
pler sentences. It has been shown useful both as
a preprocessing step for tasks such as Machine
Translation (MT; Mishra et al., 2014; Štajner and
Popović, 2016) and relation extraction (Niklaus
et al., 2016), as well as for developing reading
aids, e.g. for people with dyslexia (Rello et al.,
2013) or non-native speakers (Siddharthan, 2002).

TS includes both structural and lexical opera-
tions. The main structural simplification opera-
tion is sentence splitting, namely rewriting a single
sentence into multiple sentences while preserving
its meaning. While recent improvement in TS has
been achieved by the use of neural MT (NMT) ap-
proaches (Nisioi et al., 2017; Zhang et al., 2017;
Zhang and Lapata, 2017), where TS is consid-

ered a case of monolingual translation, the sen-
tence splitting operation has not been addressed
by these systems, potentially due to the rareness
of this operation in the training corpora (Narayan
and Gardent, 2014; Xu et al., 2015).

We show that the explicit integration of sen-
tence splitting in the simplification system could
also reduce conservatism, which is a grave limita-
tion of NMT-based TS systems (Alva-Manchego
et al., 2017). Indeed, experimenting with a state-
of-the-art neural system (Nisioi et al., 2017), we
find that 66% of the input sentences remain un-
changed, while none of the corresponding refer-
ences is identical to the source. Human and au-
tomatic evaluation of the references (against other
references), confirm that the references are indeed
simpler than the source, indicating that the ob-
served conservatism is excessive. Our methods for
performing sentence splitting as pre-processing al-
lows the TS system to perform other structural
(e.g. deletions) and lexical (e.g. word substitu-
tions) operations, thus increasing both structural
and lexical simplicity.

For combining linguistically informed sentence
splitting with data-driven TS, two main methods
have been proposed. The first involves hand-
crafted syntactic rules, whose compilation and val-
idation are laborious (Shardlow, 2014). For ex-
ample, Siddharthan and Angrosh (2014) used 111
rules for relative clauses, appositions, subordina-
tion and coordination. Moreover, syntactic split-
ting rules, which form a substantial part of the
rules, are usually language specific, requiring the
development of new rules when ported to other
languages (Aluı́sio and Gasperin, 2010; Seretan,
2012; Hung et al., 2012; Barlacchi and Tonelli,
2013, for Portuguese, French, Vietnamese, and
Italian respectively). The second method uses lin-
guistic information for detecting potential splitting
points, while splitting probabilities are learned us-
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ing a parallel corpus. For example, in the sys-
tem of Narayan and Gardent (2014) (henceforth,
HYBRID), the state-of-the-art for joint structural
and lexical TS, potential splitting points are deter-
mined by event boundaries.

In this work, which is the first to combine struc-
tural semantics and neural methods for TS, we
propose an intermediate way for performing sen-
tence splitting, presenting Direct Semantic Split-
ting (DSS), a simple and efficient algorithm based
on a semantic parser which supports the direct de-
composition of the sentence into its main semantic
constituents. After splitting, NMT-based simplifi-
cation is performed, using the NTS system. We
show that the resulting system outperforms HY-
BRID in both automatic and human evaluation.

We use the UCCA scheme for semantic repre-
sentation (Abend and Rappoport, 2013), where the
semantic units are anchored in the text, which sim-
plifies the splitting operation. We further leverage
the explicit distinction in UCCA between types of
Scenes (events), applying a specific rule for each
of the cases. Nevertheless, the DSS approach can
be adapted to other semantic schemes, like AMR
(Banarescu et al., 2013).

We collect human judgments for multiple vari-
ants of our system, its sub-components, HYBRID

and similar systems that use phrase-based MT.
This results in a sizable human evaluation bench-
mark, which includes 28 systems, totaling at 1960
complex-simple sentence pairs, each annotated by
three annotators using four criteria.1 This bench-
mark will support the future analysis of TS sys-
tems, and evaluation practices.

Previous work is discussed in §2, the semantic
and NMT components we use in §3 and §4 re-
spectively. The experimental setup is detailed in
§5. Our main results are presented in §6, while §7
presents a more detailed analysis of the system’s
sub-components and related settings.

2 Related Work

MT-based sentence simplification. Phrase-
based Machine Translation (PBMT; Koehn et al.,
2003) was first used for TS by Specia (2010), who
showed good performance on lexical simplifica-
tion and simple rewriting, but under-prediction
of other operations. Štajner et al. (2015) took
a similar approach, finding that it is beneficial
to use training data where the source side is

1The benchmark can be found in https://github.
com/eliorsulem/simplification-acl2018.

highly similar to the target. Other PBMT for TS
systems include the work of Coster and Kauchak
(2011b), which uses Moses (Koehn et al., 2007),
the work of Coster and Kauchak (2011a), where
the model is extended to include deletion, and
PBMT-R (Wubben et al., 2012), where Leven-
shtein distance to the source is used for re-ranking
to overcome conservatism.

The NTS NMT-based system (Nisioi et al.,
2017) (henceforth, N17) reported superior perfor-
mance over PBMT in terms of BLEU and human
evaluation scores, and serves as a component in
our system (see Section 4). Zhang et al. (2017)
took a similar approach, adding lexical constraints
to an NMT model. Zhang and Lapata (2017) com-
bined NMT with reinforcement learning, using
SARI (Xu et al., 2016), BLEU, and cosine simi-
larity to the source as the reward. None of these
models explicitly addresses sentence splitting.

Alva-Manchego et al. (2017) proposed to re-
duce conservatism, observed in PBMT and NMT
systems, by first identifying simplification opera-
tions in a parallel corpus and then using sequence-
labeling to perform the simplification. However,
they did not address common structural opera-
tions, such as sentence splitting, and claimed that
their method is not applicable to them.

Xu et al. (2016) used Syntax-based Machine
Translation (SBMT) for sentence simplification,
using a large scale paraphrase dataset (Gan-
itketitch et al., 2013) for training. While it does
not target structural simplification, we include it
in our evaluation for completeness.

Structural sentence simplification. Syntactic
hand-crafted sentence splitting rules were pro-
posed by Chandrasekar et al. (1996), Siddharthan
(2002), Siddhathan (2011) in the context of rule-
based TS. The rules separate relative clauses and
coordinated clauses and un-embed appositives. In
our method, the use of semantic distinctions in-
stead of syntactic ones reduces the number of
rules. For example, relative clauses and appos-
itives can correspond to the same semantic cat-
egory. In syntax-based splitting, a generation
module is sometimes added after the split (Sid-
dharthan, 2004), addressing issues such as re-
ordering and determiner selection. In our model,
no explicit regeneration is applied to the split sen-
tences, which are fed directly to an NMT system.

Glavaš and Štajner (2013) used a rule-based
system conditioned on event extraction and syntax
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for defining two simplification models. The event-
wise simplification one, which separates events to
separate output sentences, is similar to our seman-
tic component. Differences are in that we use
a single semantic representation for defining the
rules (rather than a combination of semantic and
syntactic criteria), and avoid the need for complex
rules for retaining grammaticality by using a sub-
sequent neural component.

Combined structural and lexical TS. Earlier
TS models used syntactic information for splitting.
Zhu et al. (2010) used syntactic information on the
source side, based on the SBMT model of Yamada
and Knight (2001). Syntactic structures were used
on both sides in the model of Woodsend and La-
pata (2011), based on a quasi-synchronous gram-
mar (Smith and Eisner, 2006), which resulted in
438 learned splitting rules.

The model of Siddharthan and Angrosh (2014)
is similar to ours in that it combines linguistic rules
for structural simplification and statistical methods
for lexical simplification. However, we use 2 se-
mantic splitting rules instead of their 26 syntactic
rules for relative clauses and appositions, and 85
syntactic rules for subordination and coordination.

Narayan and Gardent (2014) argued that syntac-
tic structures do not always capture the semantic
arguments of a frame, which may result in wrong
splitting boundaries. Consequently, they proposed
a supervised system (HYBRID) that uses semantic
structures (Discourse Semantic Representations,
(Kamp, 1981)) for sentence splitting and deletion.
Splitting candidates are pairs of event variables as-
sociated with at least one core thematic role (e.g.,
agent or patient). Semantic annotation is used on
the source side in both training and test. Lexical
simplification is performed using the Moses sys-
tem. HYBRID is the most similar system to ours
architecturally, in that it uses a combination of a
semantic structural component and an MT com-
ponent. Narayan and Gardent (2016) proposed in-
stead an unsupervised pipeline, where sentences
are split based on a probabilistic model trained
on the semantic structures of Simple Wikipedia as
well as a language model trained on the same cor-
pus. Lexical simplification is there performed us-
ing the unsupervised model of Biran et al. (2011).
As their BLEU and adequacy scores are lower than
HYBRID’s, we use the latter for comparison.

Štajner and Glavaš (2017) combined rule-based
simplification conditioned on event extraction, to-

gether with an unsupervised lexical simplifier.
They tackle a different setting, and aim to simplify
texts (rather than sentences), by allowing the dele-
tion of entire input sentences.

Split and Rephrase. Narayan et al. (2017) re-
cently proposed the Split and Rephrase task, fo-
cusing on sentence splitting. For this purpose
they presented a specialized parallel corpus, de-
rived from the WebNLG dataset (Gardent et al.,
2017). The latter is obtained from the DBPedia
knowledge base (Mendes et al., 2012) using con-
tent selection and crowdsourcing, and is annotated
with semantic triplets of subject-relation-object,
obtained semi-automatically. They experimented
with five systems, including one similar to HY-
BRID, as well as sequence-to-sequence methods
for generating sentences from the source text and
its semantic forms.

The present paper tackles both structural and
lexical simplification, and examines the effect of
sentence splitting on the subsequent application
of a neural system, in terms of its tendency to
perform other simplification operations. For this
purpose, we adopt a semantic corpus-independent
approach for sentence splitting that can be easily
integrated in any simplification system. Another
difference is that the semantic forms in Split and
Rephrase are derived semi-automatically (during
corpus compilation), while we automatically ex-
tract the semantic form, using a UCCA parser.

3 Direct Semantic Splitting

3.1 Semantic Representation

UCCA (Universal Cognitive Conceptual Annota-
tion; Abend and Rappoport, 2013) is a seman-
tic annotation scheme rooted in typological and
cognitive linguistic theory (Dixon, 2010b,a, 2012;
Langacker, 2008). It aims to represent the main
semantic phenomena in the text, abstracting away
from syntactic forms. UCCA has been shown to
be preserved remarkably well across translations
(Sulem et al., 2015) and has also been success-
fully used for the evaluation of machine transla-
tion (Birch et al., 2016) and, recently, for the eval-
uation of TS (Sulem et al., 2018) and grammatical
error correction (Choshen and Abend, 2018).

Formally, UCCA structures are directed acyclic
graphs whose nodes (or units) correspond either
to the leaves of the graph or to several elements
viewed as a single entity according to some se-
mantic or cognitive consideration.
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Figure 1: Example applications of rules 1 (Figure 1a) and 2 (Figure 1b). In both cases, the original sentence, the semantic
parse, the extracted Scenes with the required modifications, and the output of the rules are presented top to bottom. The UCCA
categories used are: Parallel Scene (H), Linker (L), Participant (A), Process/State (P/S), Center (C), Elaborator (E), Relator (R).

A Scene is UCCA’s notion of an event or a
frame, and is a unit that corresponds to a move-
ment, an action or a state which persists in time.
Every Scene contains one main relation, which
can be either a Process or a State. Scenes contain
one or more Participants, interpreted in a broad
sense to include locations and destinations. For
example, the sentence “He went to school” has a
single Scene whose Process is “went”. The two
Participants are “He” and “to school”.

Scenes can have several roles in the text. First,
they can provide additional information about
an established entity (Elaborator Scenes), com-
monly participles or relative clauses. For exam-
ple, “(child) who went to school” is an Elaborator
Scene in “The child who went to school is John”
(“child” serves both as an argument in the Elabora-
tor Scene and as the Center). A Scene may also be
a Participant in another Scene. For example, “John
went to school” in the sentence: “He said John
went to school”. In other cases, Scenes are anno-
tated as Parallel Scenes (H), which are flat struc-
tures and may include a Linker (L), as in: “WhenL
[he arrives]H , [he will call them]H”.

With respect to units which are not Scenes, the
category Center denotes the semantic head. For
example, “dogs” is the Center of the expression
“big brown dogs”, and “box” is the center of “in
the box”. There could be more than one Center
in a unit, for example in the case of coordination,
where all conjuncts are Centers. We define the

minimal center of a UCCA unit u to be the UCCA
graph’s leaf reached by starting from u and itera-
tively selecting the child tagged as Center.

For generating UCCA’s structures we use
TUPA, a transition-based parser (Hershcovich
et al., 2017) (specifically, the TUPABiLSTM

model). TUPA uses an expressive set of transi-
tions, able to support all structural properties re-
quired by the UCCA scheme. Its transition classi-
fier is based on an MLP that receives a BiLSTM
encoding of elements in the parser state (buffer,
stack and intermediate graph), given word embed-
dings and other features.

3.2 The Semantic Rules

For performing DSS, we define two simple split-
ting rules, conditioned on UCCA’s categories. We
currently only consider Parallel Scenes and Elabo-
rator Scenes, not separating Participant Scenes, in
order to avoid splitting in cases of nominalizations
or indirect speech. For example, the sentence “His
arrival surprised everyone”, which has, in addition
to the Scene evoked by “surprised”, a Participant
Scene evoked by “arrival”, is not split here.

Rule #1. Parallel Scenes of a given sentence are
extracted, separated in different sentences, and
concatenated according to the order of appearance.
More formally, given a decomposition of a sen-
tence S into parallel Scenes Sc1, Sc2, · · ·Scn (in-
dexed by the order of the first token), we obtain the
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following rule, where “|” is the sentence delimiter:

S −→ Sc1|Sc2| · · · |Scn

As UCCA allows argument sharing between
Scenes, the rule may duplicate the same sub-span
of S across sentences. For example, the rule will
convert “He came back home and played piano”
into “He came back home”|“He played piano.”

Rule #2. Given a sentence S, the second rule ex-
tracts Elaborator Scenes and corresponding mini-
mal centers. Elaborator Scenes are then concate-
nated to the original sentence, where the Elabo-
rator Scenes, except for the minimal center they
elaborate, are removed. Pronouns such as “who”,
“which” and “that” are also removed.

Formally, if {(Sc1, C1) · · · (Scn, Cn)} are the
Elaborator Scenes of S and their corresponding
minimal centers, the rewrite is:

S −→ S −
n⋃

i=1

(Sci − Ci)|Sc1| · · · |Scn

where S−A is S without the unitA. For example,
this rule converts the sentence “He observed the
planet which has 14 known satellites” to “He ob-
served the planet| Planet has 14 known satellites.”.
Article regeneration is not covered by the rule, as
its output is directly fed into the NMT component.

After the extraction of Parallel Scenes and Elab-
orator Scenes, the resulting simplified Parallel
Scenes are placed before the Elaborator Scenes.
See Figure 1.

4 Neural Component

The split sentences are run through the NTS state-
of-the-art neural TS system (Nisioi et al., 2017),
built using the OpenNMT neural machine transla-
tion framework (Klein et al., 2017). The archi-
tecture includes two LSTM layers, with hidden
states of 500 units in each, as well as global at-
tention combined with input feeding (Luong et al.,
2015). Training is done with a 0.3 dropout prob-
ability (Srivastava et al., 2014). This model uses
alignment probabilities between the predictions
and the original sentences, rather than character-
based models, to retrieve the original words.

We here consider the w2v initialization for
NTS (N17), where word2vec embeddings of
size 300 are trained on Google News (Mikolov
et al., 2013a) and local embeddings of size 200
are trained on the training simplification corpus
(Řehůřek and Sojka, 2010; Mikolov et al., 2013b).
Local embeddings for the encoder are trained on

the source side of the training corpus, while those
for the decoder are trained on the simplified side.

For sampling multiple outputs from the system,
beam search is performed during decoding by gen-
erating the first 5 hypotheses at each step ordered
by the log-likelihood of the target sentence given
the input sentence. We here explore both the high-
est (h1) and fourth-ranked (h4) hypotheses, which
we show to increase the SARI score and to be
much less conservative.2 We thus experiment with
two variants of the neural component, denoted by
NTS-h1 and NTS-h4. The pipeline application of
the rules and the neural system results in two cor-
responding models: SENTS-h1 and SENTS-h4.

5 Experimental Setup

Corpus All systems are tested on the test cor-
pus of Xu et al. (2016),3 comprising 359 sentences
from the PWKP corpus (Zhu et al., 2010) with 8
references collected by crowdsourcing for each of
the sentences.
Semantic component. The TUPA parser4 is
trained on the UCCA-annotated Wiki corpus.5

Neural component. We use the NTS-w2v
model6 provided by N17, obtained by training on
the corpus of Hwang et al. (2015) and tuning on
the corpus of Xu et al. (2016). The training set
is based on manual and automatic alignments be-
tween standard English Wikipedia and Simple En-
glish Wikipedia, including both good matches and
partial matches whose similarity score is above
the 0.45 scale threshold (Hwang et al., 2015).
The total size of the training set is about 280K
aligned sentences, of which 150K sentences are
full matches and 130K are partial matches.7

Comparison systems. We compare our findings
to HYBRID, which is the state of the art for
joint structural and lexical simplification, imple-

2Similarly, N17 considered the first two hypotheses and
showed that h2 has an higher SARI score and is less conser-
vative than h1.

3https://github.com/cocoxu/
simplification (This also includes SARI tools
and the SBMT-SARI system.)

4https://github.com/danielhers/tupa
5http://www.cs.huji.ac.il/˜oabend/

ucca.html
6https://github.com/senisioi/

NeuralTextSimplification
7We also considered the default initialization for the neu-

ral component, using the NTS model without word embed-
dings. Experimenting on the tuning set, the w2v approach got
higher BLEU and SARI scores (for h1 and h4 respectively)
than the default approach.
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mented by Zhang and Lapata (2017).8 We use
the released output of HYBRID, trained on a cor-
pus extracted from Wikipedia, which includes the
aligned sentence pairs from Kauchak (2013), the
aligned revision sentence pairs in Woodsend and
Lapata (2011), and the PWKP corpus, totaling
about 296K sentence pairs. The tuning set is the
same as for the above systems.

In order to isolate the effect of NMT, we
also implement SEMoses, where the neural-based
component is replaced by the phrase-based MT
system Moses,9 which is also used in HYBRID.
The training, tuning and test sets are the same as
in the case of SENTS. MGIZA10 is used for word
alignment. The KenLM language model is trained
using the target side of the training corpus.

Additional baselines. We report human and
automatic evaluation scores for Identity (where
the output is identical to the input), for Simple
Wikipedia where the output is the corresponding
aligned sentence in the PWKP corpus, and for
the SBMT-SARI system, tuned against SARI (Xu
et al., 2016), which maximized the SARI score on
this test set in previous works (Nisioi et al., 2017;
Zhang and Lapata, 2017).

Automatic evaluation. The automatic metrics
used for the evaluation are: (1) BLEU (Papineni
et al., 2002) (2) SARI (System output Against Ref-
erences and against the Input sentence; Xu et al.,
2016), which compares the n-grams of the system
output with those of the input and the human ref-
erences, separately evaluating the quality of words
that are added, deleted and kept by the systems.
(3) Fadd: the addition component of the SARI
score (F-score); (4) Fkeep: the keeping component
of the SARI score (F-score); (5) Pdel: the dele-
tion component of the SARI score (precision).11

Each metric is computed against the 8 available
references. We also assess system conservatism,
reporting the percentage of sentences copied from
the input (%Same), the averaged Levenshtein dis-
tance from the source (LDSC, which considers ad-
ditions, deletions, and substitutions), and the num-
ber of source sentences that are split (#Split).12

8https://github.com/XingxingZhang/
dress

9http://www.statmt.org/moses/
10https://github.com/moses-smt/mgiza
11Uniform tokenization and truecasing styles for all sys-

tems are obtained using the Moses toolkit.
12We used the NLTK package (Loper and Bird, 2002) for

these computations.

Human evaluation. Human evaluation is car-
ried out by 3 in-house native English annota-
tors, who rated the different input-output pairs for
the different systems according to 4 parameters:
Grammaticality (G), Meaning preservation (M),
Simplicity (S) and Structural Simplicity (StS).
Each input-output pair is rated by all 3 annotators.
Elicitation questions are given in Table 1.

As the selection process of the input-output
pairs in the test corpus of Xu et al. (2016), as well
as their crowdsourced references, are explicitly bi-
ased towards lexical simplification, the use of hu-
man evaluation permits us to evaluate the struc-
tural aspects of the system outputs, even where
structural operations are not attested in the refer-
ences. Indeed, we show that system outputs may
receive considerably higher structural simplicity
scores than the source, in spite of the sample se-
lection bias.

Following previous work (e.g., Narayan and
Gardent, 2014; Xu et al., 2016; Nisioi et al.,
2017), Grammaticality (G) and Meaning preser-
vation (M) are measured using a 1 to 5 scale. Note
that in the first question, the input sentence is not
taken into account. The grammaticality of the in-
put is assessed by evaluating the Identity transfor-
mation (see Table 2), providing a baseline for the
grammaticality scores of the other systems.

Following N17, a -2 to +2 scale is used for mea-
suring simplicity, where a 0 score indicates that
the input and the output are equally complex. This
scale, compared to the standard 1 to 5 scale, per-
mits a better differentiation between cases where
simplicity is hurt (the output is more complex than
the original) and between cases where the output
is as simple as the original, for example in the case
of the identity transformation. Structural simplic-
ity is also evaluated with a -2 to +2 scale. The
question for eliciting StS is accompanied with a
negative example, showing a case of lexical sim-
plification, where a complex word is replaced by a
simple one (the other questions appear without ex-
amples). A positive example is not included so as
not to bias the annotators by revealing the nature of
the operations we focus on (splitting and deletion).
We follow N17 in applying human evaluation on
the first 70 sentences of the test corpus.13

The resulting corpus, totaling 1960 sentence
pairs, each annotated by 3 annotators, also include

13We do not exclude system outputs identical to the source,
as done by N17.
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the additional experiments described in Section 7
as well as the outputs of the NTS and SENTS sys-
tems used with the default initialization.

The inter-annotator agreement, using Cohen’s
quadratic weighted κ (Cohen, 1968), is computed
as the average agreement of the 3 annotator pairs.
The obtained rates are 0.56, 0.75, 0.47 and 0.48
for G, M, S and StS respectively.

System scores are computed by averaging over
the 3 annotators and the 70 sentences.

G Is the output fluent and grammatical?

M Does the output preserve the meaning of the
input?

S Is the output simpler than the input?

StS Is the output simpler than the input, ignoring
the complexity of the words?

Table 1: Questions for the human evaluation.

G M S StS
Identity 4.80 5.00 0.00 0.00

Simple Wikipedia 4.60 4.21 0.83 0.38

Only MT-Based Simplification
SBMT-SARI 3.71 3.96 0.14 -0.15

NTS-h1 4.56 4.48 0.22 0.15
NTS-h4 4.29 3.90 0.31 0.19

Only Structural Simplification
DSS 3.42 4.15 0.16 0.16

Structural+MT-based Simplification
Hybrid 2.96 2.46 0.43 0.43

SEMoses 3.27 3.98 0.16 0.13
SENTS-h1 3.98 3.33 0.68 0.63
SENTS-h4 3.54 2.98 0.50 0.36

Table 2: Human evaluation of the different NMT-based sys-
tems. Grammaticality (G) and Meaning preservation (M) are
measured using a 1 to 5 scale. A -2 to +2 scale is used for
measuring simplicity (S) and structural simplicity (StS) of
the output relative to the input sentence. The highest score in
each column appears in bold. Structural simplification sys-
tems are those that explicitly model structural operations.

6 Results

Human evaluation. Results are presented in Ta-
ble 2. First, we can see that the two SENTS sys-
tems outperform HYBRID in terms of G, M, and
S. SENTS-h1 is the best scoring system, under all
human measures.

In comparison to NTS, SENTS scores markedly
higher on the simplicity judgments. Meaning
preservation and grammaticality are lower for
SENTS, which is likely due to the more conserva-
tive nature of NTS. Interestingly, the application
of the splitting rules by themselves does not yield
a considerably simpler sentence. This likely stems
from the rules not necessarily yielding grammati-
cal sentences (NTS often serves as a grammatical
error corrector over it), and from the incorporation
of deletions, which are also structural operations,
and are performed by the neural system.

An example of high structural simplicity scores
for SENTS resulting from deletions is presented
in Table 5, together with the outputs of the other
systems and the corresponding human evaluation
scores. NTS here performs lexical simplification,
replacing the word “incursions” by “raids” or “at-
tacks”’. On the other hand, the high StS scores
obtained by DSS and SEMoses are due to sentence
splittings.

Automatic evaluation. Results are presented in
Table 3. Identity obtains much higher BLEU
scores than any other system, suggesting that
BLEU may not be informative in this setting.
SARI seems more informative, and assigns the
lowest score to Identity and the second highest to
the reference.

Both SENTS systems outperform HYBRID in
terms of SARI and all its 3 sub-components. The
h4 setting (hypothesis #4 in the beam) is generally
best, both with and without the splitting rules.

Comparing SENTS to using NTS alone (with-
out splitting), we see that SENTS obtains higher
SARI scores when hypothesis #1 is used and that
NTS obtains higher scores when hypothesis #4 is
used. This may result from NTS being more con-
servative than SENTS (and HYBRID), which is re-
warded by SARI (conservatism is indicated by the
%Same column). Indeed for h1, %Same is re-
duced from around 66% for NTS, to around 7%
for SENTS. Conservatism further decreases when
h4 is used (for both NTS and SENTS). Examining
SARI’s components, we find that SENTS outper-
forms NTS on Fadd, and is comparable (or even
superior for h1 setting) to NTS on Pdel. The su-
perior SARI score of NTS over SENTS is thus en-
tirely a result of a superior Fkeep, which is easier
for a conservative system to maximize.

Comparing HYBRID with SEMoses, both of
which use Moses, we find that SEMoses obtains
higher BLEU and SARI scores, as well as G and
M human scores, and splits many more sentences.
HYBRID scores higher on the human simplicity
measures. We note, however, that applying NTS
alone is inferior to HYBRID in terms of simplicity,
and that both components are required to obtain
high simplicity scores (with SENTS).

We also compare the sentence splitting compo-
nent used in our systems (namely DSS) to that
used in HYBRID, abstracting away from deletion-
based and lexical simplification. We therefore ap-
ply DSS to the test set (554 sentences) of the

168



BLEU SARI Fadd Fkeep Pdel % Same LDSC #Split

Identity 94.93 25.44 0.00 76.31 0.00 100 0.00 0
Simple Wikipedia 69.58 39.50 8.46 61.71 48.32 0.00 33.34 0

Only MT-Based Simplification
SBMT-SARI 74.44 41.46 6.77 69.92 47.68 4.18 23.31 0

NTS-h1 88.67 28.73 0.80 70.95 14.45 66.02 17.13 0
NTS-h4 79.88 36.55 2.59 65.93 41.13 2.79 24.18 1

Only Structural Simplification
DSS 76.57 36.76 3.82 68.45 38.01 8.64 25.03 208

Structural+MT-Based Simplification
HYBRID 52.82 27.40 2.41 43.09 36.69 1.39 61.53 3
SEMoses 74.45 36.68 3.77 67.66 38.62 7.52 27.44 208

SENTS-h1 58.94 30.27 3.01 51.52 36.28 6.69 59.18 0
SENTS-h4 57.71 31.90 3.95 51.86 39.90 0.28 54.47 17

Table 3: The left-hand side of the table presents BLEU and SARI scores for the combinations of NTS and DSS, as well as for
the baselines. The highest score in each column appears in bold. The right hand side presents lexical and structural properties
of the outputs. %Same: proportion of sentences copied from the input; LDSC: Averaged Levenshtein distance from the source;
#Split: number of split sentences. Structural simplification systems are those that explicitly model structural operations.

BLEU SARI Fadd Fkeep Pdel % Same LDSC #Split G M S StS
Moses 92.58 28.19 0.16 75.73 8.70 79.67 3.22 0 4.25 4.78 0 0.04

SEMoses 74.45 36.68 3.77 67.66 38.62 7.52 27.44 208 3.27 3.98 0.16 0.13
SETrain1-Moses 91.24 33.06 0.41 76.07 22.69 60.72 4.47 1 4.23 4.54 -0.12 -0.13
SETrain2-Moses 94.31 26.71 0.07 76.20 3.85 92.76 1.45 0 4.73 4.99 0.01 -0.005

MosesLM 92.66 28.19 0.18 75.68 8.71 79.39 3.43 0 4.55 4.82 -0.01 -0.04
SEMosesLM 74.49 36.70 3.79 67.67 38.65 7.52 27.45 208 3.32 4.08 0.15 0.14

SETrain1-MosesLM 85.68 36.52 2.34 72.85 34.37 27.30 6.71 33 4.03 4.63 -0.11 -0.12
SETrain2-MosesLM 94.22 26.66 0.10 76.19 3.69 92.20 1.43 0 4.75 4.99 0.01 -0.01

Table 4: Automatic and human evaluation for the different combinations of Moses and DSS. The automatic metrics as well
as the lexical and structural properties reported (%Same: proportion of sentences copied from the input; LDSC: Averaged
Levenshtein distance from the source; #Split: number of split sentences) concern the 359 sentences of the test corpus. Human
evaluation, with the G, M, S, and StS parameters, is applied to the first 70 sentences of the corpus. The highest score in each
column appears in bold.

WEB-SPLIT corpus (Narayan et al., 2017) (See
Section 2), which focuses on sentence splitting.
We compare our results to those reported for a
variant of HYBRID used without the deletion mod-
ule, and trained on WEB-SPLIT (Narayan et al.,
2017). DSS gets a higher BLEU score (46.45
vs. 39.97) and performs more splittings (number
of output sentences per input sentence of 1.73 vs.
1.26).

7 Additional Experiments

Replacing the parser by manual annotation.
In order to isolate the influence of the parser on the
results, we implement a semi-automatic version
of the semantic component, which uses manual
UCCA annotation instead of the parser, focusing
of the first 70 sentences of the test corpus. We em-
ploy a single expert UCCA annotator and use the
UCCAApp annotation tool (Abend et al., 2017).

Results are presented in Table 6, for both
SENTS and SEMoses. In the case of SEMoses,
meaning preservation is improved when manual
UCCA annotation is used. On the other hand, sim-
plicity degrades, possibly due to the larger number
of Scenes marked by the human annotator (TUPA
tends to under-predict Scenes). This effect doesn’t

show with SENTS, where trends are similar to the
automatic parses case, and high simplicity scores
are obtained. This demonstrates that UCCA pars-
ing technology is sufficiently mature to be used to
carry out structural simplification.

We also directly evaluate the performance of
the parser by computing F1, Recall and Precision
DAG scores (Hershcovich et al., 2017), against the
manual UCCA annotation.14 We obtain for pri-
mary edges (i.e. edges that form a tree structure)
scores of 68.9 %, 70.5%, and 67.4% for F1, Recall
and Precision respectively. For remotes edges (i.e.
additional edges, forming a DAG), the scores are
45.3%, 40.5%, and 51.5%. These results are com-
parable with the out-of-domain results reported by
Hershcovich et al. (2017).
Experiments on Moses. We test other variants
of SEMoses, where phrase-based MT is used in-
stead of NMT. Specifically, we incorporate se-
mantic information in a different manner by im-
plementing two additional models: (1) SETrain1-
Moses, where a new training corpus is obtained by
applying the splitting rules to the target side of the

14We use the evaluation tools provided in https://
github.com/danielhers/ucca, ignoring 9 sentences
for which different tokenizations of proper nouns are used in
the automatic and manual parsing.
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G M S StS

Identity
In return, Rollo swore fealty to Charles, converted to Christianity, and undertook to defend the northern region of France
against the incursions of other Viking groups. 5.00 5.00 0.00 0.00

Simple Wikipedia
In return, Rollo swore fealty to Charles, converted to Christianity, and swore to defend the northern region of France against
raids by other Viking groups. 4.67 5.00 1.00 0.00

SBMT-SARI
In return, Rollo swore fealty to Charles, converted to Christianity, and set out to defend the north of France from the raids
of other viking groups. 4.67 4.67 0.67 0.00

NTS-h1
In return, Rollo swore fealty to Charles, converted to Christianity, and undertook to defend the northern region of France
against the raids of other Viking groups. 5.00 5.00 1.00 0.00

NTS-h4
In return, Rollo swore fealty to Charles, converted to Christianity, and undertook to defend the northern region of France
against the attacks of other Viking groups. 4.67 5.00 1.00 0.00

DSS
Rollo swore fealty to Charles. Rollo converted to Christianity. Rollo undertook to defend the northern region of France
against the incursions of other viking groups. 4.00 4.33 1.33 1.33

HYBRID In return Rollo swore, and undertook to defend the region of France., Charles, converted 2.33 2.00 0.33 0.33

SEMoses
Rollo swore put his seal to Charles. Rollo converted to Christianity. Rollo undertook to defend the northern region of
France against the incursions of other viking groups. 3.33 4.00 1.33 1.33

SENTS-h1 Rollo swore fealty to Charles. 5.00 2.00 2.00 2.00
SENTS-h4 Rollo swore fealty to Charles and converted to Christianity. 5.00 2.67 1.33 1.33

Table 5: System outputs for one of the test sentences with the corresponding human evaluation scores (averaged over the 3
annotators). Grammaticality (G) and Meaning preservation (M) are measured using a 1 to 5 scale. A -2 to +2 scale is used for
measuring simplicity (S) and structural simplicity (StS) of the output relative to the input sentence.

G M S StS
DSSm 3.38 3.91 -0.16 -0.16

SENTSm-h1 4.12 3.34 0.61 0.58
SENTSm-h4 3.60 3.24 0.26 0.12
SEMosesm 3.32 4.27 -0.25 -0.25

SEMosesmLM 3.43 4.28 -0.18 -0.19

Table 6: Human evaluation using manual UCCA annota-
tion. Grammaticality (G) and Meaning preservation (M) are
measured using a 1 to 5 scale. A -2 to +2 scale is used for
measuring simplicity (S) and structural simplicity (StS) of
the output relative to the input sentence. Xm refers to the
semi-automatic version of the system X.

training corpus; (2) SETrain2-Moses, where the
rules are applied to the source side. The result-
ing parallel corpus is concatenated to the original
training corpus. We also examine whether train-
ing a language model (LM) on split sentences has
a positive effect, and train the LM on the split tar-
get side. For each system X , the version with the
LM trained on split sentences is denoted by XLM .

We repeat the same human and automatic evalu-
ation protocol as in §6, presenting results in Table
4. Simplicity scores are much higher in the case
of SENTS (that uses NMT), than with Moses. The
two best systems according to SARI are SEMoses
and SEMosesLM which use DSS. In fact, they
resemble the performance of DSS applied alone
(Tables 2 and 3), which confirms the high degree
of conservatism observed by Moses in simplifi-
cation (Alva-Manchego et al., 2017). Indeed, all
Moses-based systems that don’t apply DSS as pre-
processing are conservative, obtaining high scores
for BLEU, grammaticality and meaning preserva-
tion, but low scores for simplicity. Training the
LM on split sentences shows little improvement.

8 Conclusion

We presented the first simplification system com-
bining semantic structures and neural machine
translation, showing that it outperforms existing
lexical and structural systems. The proposed ap-
proach addresses the over-conservatism of MT-
based systems for TS, which often fail to mod-
ify the source in any way. The semantic com-
ponent performs sentence splitting without rely-
ing on a specialized corpus, but only an off-the-
shelf semantic parser. The consideration of sen-
tence splitting as a decomposition of a sentence
into its Scenes is further supported by recent work
on structural TS evaluation (Sulem et al., 2018),
which proposes the SAMSA metric. The two
works, which apply this assumption to different
ends (TS system construction, and TS evaluation),
confirm its validity. Future work will leverage
UCCA’s cross-linguistic applicability to support
multi-lingual TS and TS pre-processing for MT.
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Abstract

Words play a central role in language
and thought. Factor analysis studies have
shown that the primary dimensions of
meaning are valence, arousal, and domi-
nance (VAD). We present the NRC VAD
Lexicon, which has human ratings of va-
lence, arousal, and dominance for more
than 20,000 English words. We use
Best–Worst Scaling to obtain fine-grained
scores and address issues of annotation
consistency that plague traditional rating
scale methods of annotation. We show that
the ratings obtained are vastly more reli-
able than those in existing lexicons. We
also show that there exist statistically sig-
nificant differences in the shared under-
standing of valence, arousal, and domi-
nance across demographic variables such
as age, gender, and personality.

1 Introduction

Words are the smallest meaningful utterances in
language. They play a central role in our un-
derstanding and descriptions of the world around
us. Some believe that the structure of a lan-
guage even affects how we think (principle of
linguistic relativity aka the SapirWhorf hypoth-
esis). Several influential factor analysis stud-
ies have shown that the three most important,
largely independent, dimensions of word meaning
are valence (positiveness–negativeness/pleasure–
displeasure), arousal (active–passive), and dom-
inance (dominant–submissive) (Osgood et al.,
1957; Russell, 1980, 2003).1 Thus, when com-
paring the meanings of two words, we can com-
pare their degrees of valence, arousal, or domi-

1We will refer to the three dimensions individually as V,
A, and D, and together as VAD.

nance. For example, the word banquet indicates
more positiveness than the word funeral; nervous
indicates more arousal than lazy; and fight indi-
cates more dominance than delicate.

Access to these degrees of valence, arousal, and
dominance of words is beneficial for a number of
applications, including those in natural language
processing (e.g., automatic sentiment and emo-
tion analysis of text), in cognitive science (e.g.,
for understanding how humans represent and use
language), in psychology (e.g., for understanding
how people view the world around them), in so-
cial sciences (e.g., for understanding relationships
between people), and even in evolutionary linguis-
tics (e.g., for understanding how language and be-
haviour inter-relate to give us an advantage).

Existing VAD lexicons (Bradley and Lang,
1999; Warriner et al., 2013) were created using
rating scales and thus suffer from limitations as-
sociated with the method (Presser and Schuman,
1996; Baumgartner and Steenkamp, 2001). These
include: inconsistencies in annotations by differ-
ent annotators, inconsistencies in annotations by
the same annotator, scale region bias (annotators
often have a bias towards a portion of the scale),
and problems associated with a fixed granularity.

In this paper, we describe how we obtained hu-
man ratings of valence, arousal, and dominance
for more than 20,000 commonly used English
words by crowdsourcing. Notably, we use a com-
parative annotation technique called Best-Worst
Scaling (BWS) that addresses the limitations of
traditional rating scales (Louviere, 1991; Cohen,
2003; Louviere et al., 2015). The scores are fine-
grained real-valued numbers in the interval from 0
(lowest V, A, or D) to 1 (highest V, A, or D). We
will refer to this new lexicon as the NRC Valence,
Arousal, and Dominance (VAD) Lexicon.2

2NRC refers to National Research Council Canada.
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Correlations (r) between repeated annotations,
through metrics such as split-half reliability
(SHR), are a common way to evaluate the relia-
bilities of ordinal and rank annotations. We show
that our annotations have SHR scores of r = 0.95
for valence, r = 0.90 for arousal, and r = 0.91 for
dominance. These scores are well above the SHR
scores obtained by Warriner et al. (2013), and in-
dicate high reliability.

Respondents who provided valence, arousal,
and dominance annotations, were given the op-
tion of additionally filling out a brief demographic
questionnaire to provide details of their age, gen-
der, and personality traits. This demographic in-
formation along with the VAD annotations allows
us to determine whether attributes such as age,
gender, and personality impact our understanding
of the valence, arousal, and dominance of words.
We show that even though overall the annotations
are consistent (as seen from the high SHR scores),
people aged over 35 are significantly more con-
sistent in their annotations than people aged 35 or
less. We show for the first time that men have a
significantly higher shared understanding of dom-
inance and valence of words, whereas women have
a higher shared understanding of the degree of
arousal of words. We find that some personal-
ity traits significantly impact a person’s annota-
tions of one or more of valence, arousal, and dom-
inance. We hope that these and other findings de-
scribed in the paper foster further research into
how we use language, how we represent concepts
in our minds, and how certain aspects of the world
are more important to certain demographic groups
leading to higher degrees of shared representations
of those concepts within those groups.

All of the annotation tasks described in this
paper were approved by our institution’s review
board, which examined the methods to ensure that
they were ethical. Special attention was paid to
obtaining informed consent and protecting partic-
ipant anonymity. The NRC VAD Lexicon is made
freely available for research and non-commercial
use through our project webpage.3

2 Related Work

Primary Dimensions of Meaning: Osgood et al.
(1957) asked human participants to rate words
along dimensions of opposites such as heavy–
light, good–bad, strong–weak, etc. Factor analysis

3http://saifmohammad.com/WebPages/nrc-vad.html

of these judgments revealed that the three most
prominent dimensions of meaning are evaluation
(good–bad), potency (strong–weak), and activity
(active–passive). Russell (1980, 2003) showed
through similar analyses of emotion words that
the three primary independent dimensions of
emotions are valence or pleasure (positiveness–
negativeness/pleasure–displeasure), arousal
(active–passive), and dominance (dominant–
submissive). He argues that individual emotions
such as joy, anger, and fear are points in a
three-dimensional space of valence, arousal, and
dominance. It is worth noting that even though
the names given by Osgood et al. (1957) and
Russell (1980) are different, they describe similar
dimensions (Bakker et al., 2014).

Existing Affect Lexicons: Bradley and Lang
(1999) asked annotators to rate valence, arousal,
and dominance—for more than 1,000 words—on
a 9-point rating scale. The ratings from multiple
annotators were averaged to obtain a score be-
tween 1 (lowest V, A, or D) to 9 (highest V, A,
or D). Their lexicon, called the Affective Norms
of English Words (ANEW), has since been widely
used across many different fields of study. More
than a decade later, Warriner et al. (2013) created
a similar lexicon for more than 13,000 words,
using a similar annotation method. There exist
a small number of VAD lexicons in non-English
languages as well, such as the ones created by
Moors et al. (2013) for Dutch, by Võ et al. (2009)
for German, and by Redondo et al. (2007) for
Spanish. The NRC VAD lexicon is the largest
manually created VAD lexicon (in any language),
and the only one that was created via comparative
annotations (instead of rating scales).

Best-Worst Scaling: Best-Worst Scaling (BWS)
was developed by (Louviere, 1991), building on
work in the 1960’s in mathematical psychology
and psychophysics. Annotators are given n items
(an n-tuple, where n > 1 and commonly n = 4).4

They are asked which item is the best (highest
in terms of the property of interest) and which is
the worst (least in terms of the property of inter-
est). When working on 4-tuples, best–worst anno-
tations are particularly efficient because each best
and worst annotation will reveal the order of five
of the six item pairs (e.g., for a 4-tuple with items

4At its limit, when n = 2, BWS becomes a paired com-
parison (Thurstone, 1927; David, 1963), but then a much
larger set of tuples need to be annotated (closer to N2).
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A, B, C, and D, if A is the best, and D is the
worst, then A > B, A > C, A > D, B > D, and C
> D). Real-valued scores of association between
the items and the property of interest can be de-
termined using simple arithmetic on the number
of times an item was chosen best and number of
times it was chosen worst (as described in Section
3) (Orme, 2009; Flynn and Marley, 2014).

It has been empirically shown that three anno-
tations each for 2N 4-tuples is sufficient for ob-
taining reliable scores (where N is the number of
items) (Louviere, 1991; Kiritchenko and Moham-
mad, 2016). Kiritchenko and Mohammad (2017)
showed through empirical experiments that BWS
produces more reliable and more discriminating
scores than those obtained using rating scales.
(See Kiritchenko and Mohammad (2016, 2017)
for further details on BWS.)

Within the NLP community, BWS has been
used for creating datasets for relational similarity
(Jurgens et al., 2012), word-sense disambiguation
(Jurgens, 2013), word–sentiment intensity (Kir-
itchenko and Mohammad, 2016), word–emotion
intensity (Mohammad, 2018), and tweet–emotion
intensity (Mohammad and Bravo-Marquez, 2017;
Mohammad et al., 2018; Mohammad and Kir-
itchenko, 2018).
Automatically Creating Affect Lexicons: There
is growing work on automatically determining
word–sentiment and word–emotion associations
(Yang et al., 2007; Mohammad and Kiritchenko,
2015; Yu et al., 2015; Staiano and Guerini, 2014).
The VAD Lexicon can be used to evaluate how
accurately the automatic methods capture valence,
arousal, and dominance.

3 Obtaining Human Ratings of Valence,
Arousal, and Dominance

We now describe how we selected the terms to be
annotated and how we crowdsourced the annota-
tion of the terms using best–worst scaling.

3.1 Term Selection

We chose to annotate commonly used English
terms. We especially wanted to include terms
that denotate or connotate emotions. We also
include terms common in tweets.5 Specifically,
we include terms from the following sources:

5Tweets include non-standard language such as emoti-
cons, emojis, creatively spelled words (happee), hashtags
(#takingastand, #lonely) and conjoined words (loveumom).

• All terms in the NRC Emotion Lexicon (Mo-
hammad and Turney, 2013). It has about 14,000
words with labels indicating whether they are
associated with any of the eight basic emotions:
anger, anticipation, disgust, fear, joy, sadness,
surprise, and trust (Plutchik, 1980).

• All 4,206 terms in the positive and negative lists
of the General Inquirer (Stone et al., 1966).

• All 1,061 terms listed in ANEW (Bradley and
Lang, 1999).

• All 13,915 terms listed in the Warriner et al.
(2013) lexicon.

• 520 words from the Roget’s Thesaurus cate-
gories corresponding to the eight basic Plutchik
emotions.6

• About 1000 high-frequency content terms, in-
cluding emoticons, from the Hashtag Emotion
Corpus (HEC) (Mohammad, 2012).7

The union of the above sets resulted in 20,007
terms that were then annotated for valence,
arousal, and dominance.

3.2 Annotating VAD via Best–Worst Scaling
We describe below how we annotated words for
valence. The same approach is followed for
arousal and dominance. The annotators were pre-
sented with four words at a time (4-tuples) and
asked to select the word with the highest valence
and the word with the lowest valence. The ques-
tionnaire uses a set of paradigm words that sig-
nify the two ends of the valence dimension. The
paradigm words were taken from past literature
on VAD (Bradley and Lang, 1999; Osgood et al.,
1957; Russell, 1980). The questions used for va-
lence are shown below.

Q1. Which of the four words below is associated with the

MOST happiness / pleasure / positiveness / satisfaction / con-

tentedness / hopefulness OR LEAST unhappiness / annoy-

ance / negativeness / dissatisfaction / melancholy / despair?

(Four words listed as options.)

Q2. Which of the four words below is associated with the

LEAST happiness / pleasure / positiveness / satisfaction /

contentedness / hopefulness OR MOST unhappiness / annoy-

ance / negativeness / dissatisfaction / melancholy / despair?

(Four words listed as options.)

6http://www.gutenberg.org/ebooks/10681
7All tweets in the HEC include at least one of the eight

basic emotion words as a hashtag word (#anger, #sadness,
etc.).
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Location of Annotation #Best–Worst
Dataset #words Annotators Item #Items #Annotators MAI #Q/Item Annotations
valence 20,007 worldwide 4-tuple of words 40,014 1,020 6 2 243,295
arousal 20,007 worldwide 4-tuple of words 40,014 1,081 6 2 258,620
dominance 20,007 worldwide 4-tuple of words 40,014 965 6 2 276,170
Total 778,085

Table 1: A summary of the annotations for valence, arousal, and dominance. MAI = minimum number
of annotations per item. Q = questions. A total of 778,085 pairs of best–worst responses were obtained.

Questions for arousal and dominance are similar.8

Detailed directions and example questions
(with suitable responses) were provided in ad-
vance. 2 × N distinct 4-tuples were randomly
generated in such a manner that each word is seen
in eight different 4-tuples and no two 4-tuples
have more than two items in common (where N
is the number of words to be annotated).9

Crowdsourcing: We setup three separate crowd-
sourcing tasks corresponding to valence, arousal,
and dominance. The 4-tuples of words were up-
loaded for annotation on the crowdsourcing plat-
form, CrowdFlower.10 We obtained annotations
from native speakers of English residing around
the world. Annotators were free to provide re-
sponses to as many 4-tuples as they wished. The
annotation tasks were approved by our institu-
tion’s review board.

About 2% of the data was annotated before-
hand by the authors. These questions are referred
to as gold questions. CrowdFlower interspersed
the gold questions with the other questions. If
a crowd worker answered a gold question incor-
rectly, then they were immediately notified, the
annotation was discarded, and an additional anno-
tation was requested from a different annotator. If
an annotator’s accuracy on the gold questions fell
below 80%, then they were refused further anno-
tation, and all of their annotations were discarded.
This served as a mechanism to avoid malicious
and random annotations. The gold questions also
served as examples to guide the annotators.

8The two ends of the arousal dimension were described
with the words: arousal, activeness, stimulation, frenzy, jit-
teriness, alertness AND unarousal, passiveness, relaxation,
calmness, sluggishness, dullness, sleepiness. The two ends
of the dominance dimension were described with the words:
dominant, in control of the situation, powerful, influential,
important, autonomous AND submissive, controlled by out-
side factors, weak, influenced, cared-for, guided.

9We used the script provided by Kiritchenko and Moham-
mad (2016) to generate the 4-tuples from the list of terms:
http://saifmohammad.com/WebPages/BestWorst.html

10CrowdFlower later changed its name to Figure Eight:
https://www.figure-eight.com

Dimension Word Score↑ Word Score↓
valence love 1.000 toxic 0.008

happy 1.000 nightmare 0.005
happily 1.000 shit 0.000

arousal abduction 0.990 mellow 0.069
exorcism 0.980 siesta 0.046
homicide 0.973 napping 0.046

dominance powerful 0.991 empty 0.081
leadership 0.983 frail 0.069
success 0.981 weak 0.045

Table 2: The terms with the highest (↑) and lowest
(↓) valence (V), arousal (A), and dominance (D)
scores in the VAD Lexicon.

In the task settings for CrowdFlower, we
specified that we needed annotations from six
people for each word.11 However, because of the
way the gold questions work in CrowdFlower,
they were annotated by more than six people.
Both the minimum and the median number of
annotations per item was six. See Table 1 for
summary statistics on the annotations.12

Annotation Aggregation: The final VAD scores
were calculated from the BWS responses using
a simple counting procedure (Orme, 2009; Flynn
and Marley, 2014): For each item, the score is the
proportion of times the item was chosen as the best
(highest V/A/D) minus the proportion of times the
item was chosen as the worst (lowest V/A/D). The
scores were linearly transformed to the interval:
0 (lowest V/A/D) to 1 (the highest V/A/D). We
refer to the list of words along with their scores
for valence, arousal, and dominance as the NRC
Valence, Arousal, and Dominance Lexicon, or the
NRC VAD Lexicon for short. Table 2 shows en-
tries from the lexicon with the highest and lowest
scores for V, A, and D.

11Note that since each word occurs in eight different 4-
tuples, it is involved in 8× 6 = 48 best–worst judgments.

12In a post-annotation survey, the respondents gave the task
high scores for clarity of instruction (an average of 4.5 out of
5) and overall satisfaction (an average of 4.3 out of 5).
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Attribute Value % Value %
Gender f 37 m 63
Age ≤35 70 >35 30
Personality Ag 69 Di 31

Co 52 Ea 48
Ex 52 In 48
Ne 40 Se 60
Op 50 Cl 50

Table 3: Summary of the demographic informa-
tion provided by the annotators.

4 Demographic Survey

Respondents who annotated our VAD question-
naires were given a special code through which
they could then optionally respond to a separate
CrowdFlower survey asking for their demographic
information: age, gender, country they live in,
and personality traits. For the latter, we asked
how they viewed themselves across the big five
(Barrick and Mount, 1991) personality traits:

• Agreeableness (Ag) – Disagreeableness (Di):
friendly and compassionate or careful in whom
to trust, argumentative

• Conscientiousness (Co) – Easygoing (Ea):
efficient and organized (prefer planned and
self-disciplined behaviour) or easy-going and
carefree (prefer flexibility and spontaneity)

• Extrovert (Ex) – Introvert (In): outgoing, ener-
getic, seek the company of others or solitary,
reserved, meeting many people causes anxiety

• Neurotic (Ne) – Secure (Se): sensitive and
nervous (often feel anger, anxiety, depression,
and vulnerability) or secure and confident
(rarely feel anger, anxiety, depression, and
vulnerability)

• Open to experiences (Op) – Closed to expe-
riences (Cl): inventive and curious (seek out
new experiences) or consistent and cautious
(anxious about new experiences)

The questionnaire described the two sides of the
dimension using only the texts after the colons
above.13 The questionnaire did not ask for iden-
tifying information such as name or date of birth.

In total, 991 people (55% of the VAD annota-
tors) chose to provide their demographic informa-
tion. Table 3 shows the details.

V A D
Ours–Warriner 0.814 0.615 0.326

Table 4: Pearson correlations between our V, A,
and D scores and the Warriner scores.

Lexicon V–A A–D V–D
Ours -0.268 0.302 0.488
Ours (Warriner subset) -0.287 0.322 0.463
Warriner -0.185 -0.180 0.717

Table 5: Pearson correlations between various
pair-wise combinations of V, A, and D.

5 Examining of the NRC VAD Lexicon

5.1 A Comparsion of the NRC VAD Lexicon
and the Warriner et al. Lexicon Scores

We calculated the Pearson correlations r between
the NRC VAD Lexicon scores and the Warriner
et al. Lexicon scores. Table 4 shows the results.
(These numbers were calculated for the 13,915
common terms across the two lexicons.) Observe
that the especially low correlations for dominance
and arousal indicate that our lexicon has substan-
tially different scores and rankings of terms by
these dimensions. Even for valence, a correlation
of 0.81 indicates a marked amount of differences
in scores.

5.2 Independence of Dimensions

Russell (1980) found through his factor analysis
work that valence, arousal, and dominance are
nearly independent dimensions. However, War-
riner et al. (2013) report that their scores for va-
lence and dominance have substantial correlation
(r = 0.717). Given that the split-half reliabil-
ity score for their dominance annotations is only
0.77, the high V–D correlations raises the sus-
picion whether annotators sufficiently understood
the difference between dominance and valence.
Table 5 shows the correlations between various
pair-wise combinations of valence, arousal, and
dominance for both our lexicon and the Warriner
lexicon. Observe that unlike the Warriner anno-
tations where V and D are highly correlated, our
annotations show that V and D are only slightly
correlated. The correlations for V–A and A–D are
low in both our and Warriner annotations, albeit
slightly higher in magnitude in our annotations.

13How people view themselves may be different from what
they truly are. The conclusions in this paper apply to groups
that view themselves to be a certain personality type.
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Annotations #Terms #Annotations V A D
a. Ours (on all terms) 20,007 6 per tuple 0.950 0.899 0.902
b. Ours (on only those terms also in Warriner) 13,915 6 per tuple 0.952 0.905 0.906
c. Warriner et al. (2013) 13,915 20 per term 0.914 0.689 0.770

Table 6: Split-half reliabilities (as measured by Pearson correlation) for valence, arousal, and dominance
scores obtained from our annotations and the Warriner et al. annotations.

5.3 Reliability of the Annotations

A useful measure of quality is reproducibility of
the end result—repeated independent manual an-
notations from multiple respondents should result
in similar scores. To assess this reproducibility,
we calculate average split-half reliability (SHR)
over 100 trials. All annotations for an item (in
our case, 4-tuples) are randomly split into two
halves. Two sets of scores are produced indepen-
dently from the two halves. Then the correlation
between the two sets of scores is calculated.
If the annotations are of good quality, then the
correlation between the two halves will be high.
Table 6 shows the split-half reliabilities (SHR)
for valence, arousal, and dominance annotations.
Row a. shows the SHR on the full set of terms in
the VAD lexicon. Row b. shows the SHR on just
the Warriner subset of terms in the VAD lexicon.
Row c. shows the SHR reported by Warriner
et al. (2013) on their annotations. Observe that
the SHR scores for our annotations are markedly
higher than those reported by Warriner et al.
(2013), especially for arousal and dominance. All
differences in SHR scores between rows b and c
are statistically significant.

Summary of Main Results: The low correlations
between the scores in our lexicon and the Warriner
lexicon (especially for D and A) show that the
scores in the two lexicons are substantially differ-
ent. The scores for correlations across all pairs of
dimensions in our lexicon are low (r < 0.5). SHR
scores of 0.95 for valence, 0.9 for arousal, and 0.9
for dominance show for the first time that highly
reliable fine-grained ratings can be obtained for
valence, arousal, and dominance.

6 Shared Understanding of VAD Within
and Across Demographic Groups

Human cognition and behaviour is impacted by
evolutionary and socio-cultural factors. These fac-
tors are known to impact different groups of peo-
ple differently (men vs. women, young vs. old,
etc.). Thus it is not surprising that our under-
standing of the world may be slightly different de-

pending on our demographic attributes. Consider
gender—a key demographic attribute.14 Men,
women, and other genders are substantially more
alike than they are different. However, they have
encountered different socio-cultural influences for
thousands of years. Often these disparities have
been a means to exert unequal status and asym-
metric power relations. Thus a crucial area in gen-
der studies is to examine both the overt and subtle
impacts of these socio-cultural influences, as well
as ways to mitigate the inequity. Understanding
how different genders perceive and use language
is an important component of that research. Lan-
guage use is also relevant to the understanding and
treatment of neuropsychiatric disorders, such as
sleep, mood, and anxiety disorders, which have
been shown to occur more frequently in women
than men (Bao and Swaab, 2011; Lewinsohn et al.,
1998; McLean et al., 2011; Johnson et al., 2006;
Chmielewski et al., 1995).

In addition to the VAD Lexicon (created by ag-
gregating human judgments), we also make avail-
able the demographic information of the annota-
tors. This demographic information along with
the individual judgments on the best–worst tuples
forms a significant resource in the study of how
demographic attributes are correlated with our un-
derstanding of language. The data can be used to
shed light on research questions such as: ‘are there
significant differences in the shared understand-
ing of word meanings in men and women?’, ‘how
is the social construct of gender reflected in lan-
guage, especially in socio-political interactions?’,
‘does age impact our view of the valence, arousal,
and dominance of concepts?’, ‘do people that view
themselves as conscientious have slightly differ-
ent judgments of valence, arousal, and dominance,
than people who view themselves as easy going?’,
and so on.

14Note that the term sex refers to a biological attribute
pertaining to the anatomy of one’s reproductive system and
sex chromosomes, whereas gender refers to a psycho-socio-
cultural construct based on a person’s sex or a person’s self
identification of levels of masculinity and femininity. One
may identify their gender as female, male, agender, trans,
queer, etc.

179



V A D
f–f pairs 56.55 44.15 42.55
m–m pairs 56.88 43.80 43.55
f–m pairs 56.41 43.65 43.03

Table 7: Gender: Average agreement % on best–
worst responses.

V A D
f–f pairs vs. m–m pairs y y y
f–f pairs vs. f–m pairs - y y
m–m pairs vs. f–m pairs y - y

Table 8: Gender: Significance of difference in
average agreement scores (p = 0.05). ‘y’ = yes
significant. ‘-’ = not significant.

6.1 Experiments

We now describe experiments we conducted to
determine whether demographic attributes impact
how we judge words for valence, arousal, and
dominance. For each demographic attribute, we
partitioned the annotators into two groups: male
(m) and female (f), ages 18 to 35 (≤35) and ages
over 35 (>35), and so on.15 For each of the five
personality traits, annotators are partitioned into
the two groups shown in the bullet list of Section
4. We then calculated the extent to which people
within the same group agreed with each other, and
the extent to which people across groups agreed
with each other on the VAD annotations (as de-
scribed in the paragraph below). We also deter-
mined if the differences in agreement were statis-
tically significant.

For each dimension (V, A, and D), we first col-
lected only those 4-tuples where at least two fe-
male and at least two male responses were avail-
able. We will refer to this set as the base set.
For each of the base set 4-tuples, we calculated
three agreement percentages: 1. the percentage
of all female–female best–worst responses where
the two agreed with each other, 2. the percent-
age of all male–male responses where the two
agreed with each other, and 3. the percentage of all
female–male responses where the two agreed with
each other. We then calculated the averages of the
agreement percentages across all the 4-tuples in
the base set. We conducted similar experiments
for age groups and personality traits.

15For age, we chose 35 to create the two groups because
several psychology and medical studies report changes in
health and well-being at this age. Nonetheless, other parti-
tions of age are also worth exploring.

V A D
≤35–≤35 pairs 56.10 43.84 43.81
>35–>35 pairs 57.56 44.10 42.49
≤35–>35 pairs 56.40 43.58 43.07

Table 9: Age: Average agreement % on best–
worst responses.

V A D
≤35–≤35 pairs vs. >35–>35 pairs y y y
≤35–≤35 pairs vs. ≤35–>35 pairs y y y
>35–>35 pairs vs. ≤35–>35 pairs y y y

Table 10: Age: Significance of difference in av-
erage agreement scores (p = 0.05).

6.2 Results

Table 7 shows the results for gender. Note that
the average agreement numbers are not expected
to be high because often a 4-tuple may include two
words that are close to each other in terms of the
property of interest (V/A/D).16 However, the rela-
tive values of the agreement percentages indicate
the relative levels of agreements within groups and
across groups.

Table 7 numbers indicate that women have
a higher shared understanding of the degree of
arousal of words (higher f–f average agreement
scores on A), whereas men have a higher shared
understanding of dominance and valence of words
(higher m–m average agreement scores on V and
D). The table also shows the cross-group (f–m) av-
erage agreements are the lowest for valence and
arousal, but higher than f–f pairs for dominance.
(Each of these agreements was determined from 1
to 1.5 million judgment pairs.)

Table 8 shows which of the Table 7 average
agreements are statistically significantly different
(shown with a ‘y’). Significance values were cal-
culated using the chi-square test for independence
and significance level of 0.05. Observe that all
score differences are statistically significant ex-
cept for between f–f and f–m scores for V and m–
m and f–m scores for A.

Tables 9 through 12 are similar to Tables 7 and
8, but for age groups and personality traits. Tables
9 and 10 show that respondents over the age of 35
obtain significantly higher agreements with each
other on valence and arousal and lower agreements
on dominance, than respondents aged 35 and un-
der (with each other). Tables 11 and 12 show that

16Such disagreements are useful as they cause the two
words to obtain scores close to each other.
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V A D
Agreeable (Ag) – Disagreeable (Di)

# pairs 1.0M 1.8M 1.7M
Ag–Ag pairs 56.54 43.89 42.39
Di–Di pairs 55.76 43.63 43.61
Ag–Di pairs 56.28 43.57 43.01

Conscientious (Co) – Easygoing (Ea)
# pairs 0.9M 1.9M 1.5M
Co–Co pairs 56.34 44.60 44.38
Ea–Ea pairs 56.39 43.15 41.36
Co–Ea pairs 56.39 43.77 42.52

Extrovert (Ex) – Introvert (In)
# pairs 0.9M 2.0M 1.6M
Ex–Ex pairs 58.00 44.16 43.43
In–In pairs 56.49 43.78 42.16
Ex–In pairs 57.00 43.85 42.89

Neurotic (Ne) – Secure (Se)
# pairs 1.0M 1.8M 1.5M
Ne–Ne pairs 56.33 43.78 41.98
Se–Se pairs 57.97 43.90 43.65
Ne–Se pairs 56.93 43.97 42.93

Open (Op) – Closed (Cl)
# pairs 0.8M 1.8M 1.3M
Op–Op pairs 57.65 44.19 43.51
Cl–Cl pairs 56.39 43.52 43.23
Op–Cl pairs 56.90 44.03 43.36

Table 11: Personality Trait: Average agreement
% on best–worst responses.

some personality traits significantly impact a per-
son’s annotations of one or more of V, A, and D.
Notably, those who view themselves as conscien-
tious have a particularly higher shared understand-
ing of the dominance of words, as compared to
those who view themselves as easy going. They
also have higher in-group agreement for arousal,
than those who view themselves as easy going,
but the difference for valence is not statistically
significant. Also notable, is that those who view
themselves as extroverts have a particularly higher
shared understanding of the valence, arousal, and
dominance of words, as compared to those who
view themselves as introverts.

Finally, as a sanity check, we divided respon-
dents into those whose CrowdFlower worker ids
are odd and those whose worker ids are even.
We then determined average agreements for
even–even, odd-odd, and even–odd groups just
as we did for the demographic variables. We
found that, as expected, there were no significant
differences in average agreements.

Summary of Main Results: We showed that sev-
eral demographic attributes such as age, gender,
and personality traits impact how we judge words
for valence, arousal, and dominance. Further,

V A D
Agreeable (Ag) – Disagreeable (Di)

Ag–Ag vs. Di–Di y y y
Ag–Ag vs. Ag–Di y y y
Di–Di vs. Ag–Di y - y

Conscientious (Co) – Easygoing (Ea)
Co–Co vs. Ea–Ea - y y
Co–Co vs. Co–Ea - y y
Ea–Ea vs. Co–Ea - y y

Extrovert (Ex) – Introvert (In)
Ex–Ex vs. In–In y y y
Ex–Ex vs. Ex–In y - y
In–In vs. Ex–In y y y

Neurotic (Ne) – Secure (Se)
Ne–Ne vs. Se–Se y - y
Ne–Ne vs. Ne–Se y - y
Se–Se vs. Ne–Se y - y

Open (Op) – Closed (Cl)
Op–Op vs. Cl–Cl y y y
Op–Op vs. Op–Cl y - -
Cl–Cl vs. Op–Cl y y -

Table 12: Personality Trait: Significance of dif-
ference in average agreement scores (p = 0.05).

people that share certain demographic attributes
show a higher shared understanding of the relative
rankings of words by (one or more of) V, A, or D
than others. However, this raises new questions:
why do certain demographic attributes impact our
judgments of V, A, and D? Are there evolutionary
forces that caused some groups such as women
to develop a higher shared understanding or the
arousal, whereas different evolutionary forces
caused some groups, such as men, to have a higher
shared understanding of dominance? We hope
that the data collected as part of this project will
spur further inquiry into these and other questions.

7 Applications and Future Work

The large number of entries in the VAD Lexicon
and the high reliability of the scores make it
useful for a number of research projects and
applications. We list a few below:

• To provide features for sentiment or emotion
detection systems. They can also be used to
obtain sentiment-aware word embeddings and
sentiment-aware sentence representations.

• To study the interplay between the basic emo-
tion model and the VAD model of affect. The
VAD lexicon can be used along with lists of
words associated with emotions such as joy,
sadness, fear, etc. to study the correlation of V,
A, and D, with those emotions.
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• To study the role emotion words play in high
emotion intensity sentences or tweets. The
Tweet Emotion Intensity Dataset has emotion
intensity and valence scores for whole tweets
(Mohammad and Bravo-Marquez, 2017). We
will use the VAD lexicon to determine the
extent to which high intensity and high valence
tweets consist of high V, A, and D words, and to
identify sentences that express high emotional
intensity without using high V, A, and D words.

• To identify syllables that tend to occur in words
with high VAD scores, which in turn can be
used to generate names for literary characters
and commercial products that have the desired
affectual response.

• To identify high V, A, and D words in books
and literature. To facilitate research in digital
humanities. To facilitate work on literary
analysis.

• As a source of gold (reference) scores, the
entries in the VAD lexicon can be used in the
evaluation of automatic methods of determining
V, A, and D.

• To analyze V, A, ad D annotations for different
groups of words, such as: hashtag words and
emojis common in tweets, emotion denotating
words, emotion associated words, neutral
terms, words belonging to particular parts of
speech such as nouns, verbs, and adjectives, etc.

• To analyze interactions between demographic
groups and specific groups of words, for
example, whether younger annotators have a
higher shared understanding of tweet terms,
whether a certain gender is associated with
a higher shared understanding of adjectives, etc.

• To analyze the shared understanding of V,
A, and D within and across geographic and
language groups. We are interested in creating
VAD lexicons for other languages. We can
then explore characteristics of valence, arousal,
and dominance that are common across cul-
tures. We can also test whether some of the
conclusions reached in this work apply only to
English, or more broadly to multiple languages.

• The dataset is of use to psychologists and
evolutionary linguists interested in determining
how evolution shaped our representation of the
world around us, and why certain personality
traits are associated with higher or lower shared
understanding of V, A, and D.

8 Conclusions

We obtained reliable human ratings of valence,
arousal, and dominance for more than 20,000 En-
glish words. (It has about 40% more words than
the largest existing manually created VAD lexi-
con). We used best–worst scaling to obtain fine-
grained scores (and word rankings) and addressed
issues of annotation consistency that plague tra-
ditional rating scale methods of annotation. We
showed that the lexicon has split-half reliability
scores of 0.95 for valence, 0.90 for arousal, and
0.90 for dominance. These scores are markedly
higher than that of existing lexicons.

We analyzed demographic information to show
that even though the annotations overall lead to
consistent scores in repeated annotations, there
exist statistically significant differences in agree-
ments across demographic groups such as males
and females, those above the age of 35 and those
that are 35 or under, and across personality dimen-
sions (extroverts and introverts, neurotic and se-
cure, etc.). These results show that certain demo-
graphic attributes impact how we view the world
around us in terms of the relative valence, arousal,
and dominance of the concepts in it.

The NRC Valence, Arousal, and Dominance
Lexicon is made available.17 It can be used in
combination with other manually created affect
lexicons such as the NRC Word–Emotion Asso-
ciation Lexicon (Mohammad and Turney, 2013)18

and the NRC Affect Intensity Lexicon (Moham-
mad, 2018).19
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17The NRC Valence, Arousal, and Dominance Lexicon
provides human ratings of valence, arousal, and dominance
for more than 20,000 English words:
http://saifmohammad.com/WebPages/nrc-vad.html

18The NRC Emotion Lexicon includes about 14,000
words annotated to indicate whether they are associated with
any of the eight basic emotions (anger, anticipation, disgust,
fear, joy, sadness, surprise, and trust):
http://saifmohammad.com/WebPages/NRC-Emotion-
Lexicon.htm

19The NRC Affect Intensity Lexicon provides real-
valued affect intensity scores for four basic emotions (anger,
fear, sadness, joy):
http://saifmohammad.com/WebPages/AffectIntensity.htm
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Abstract

Semantic relations are often signaled with
prepositional or possessive marking—but
extreme polysemy bedevils their analysis
and automatic interpretation. We introduce
a new annotation scheme, corpus, and task
for the disambiguation of prepositions and
possessives in English. Unlike previous
approaches, our annotations are compre-
hensive with respect to types and tokens
of these markers; use broadly applicable
supersense classes rather than fine-grained
dictionary definitions; unite prepositions
and possessives under the same class inven-
tory; and distinguish between a marker’s
lexical contribution and the role it marks in
the context of a predicate or scene. Strong
interannotator agreement rates, as well as
encouraging disambiguation results with
established supervised methods, speak to
the viability of the scheme and task.

1 Introduction

Grammar, as per a common metaphor, gives speak-
ers of a language a shared toolbox to construct and
deconstruct meaningful and fluent utterances. Be-
ing highly analytic, English relies heavily on word
order and closed-class function words like prepo-
sitions, determiners, and conjunctions. Though
function words bear little semantic content, they
are nevertheless crucial to the meaning. Consider
prepositions: they serve, for example, to convey
place and time (We met at/in/outside the restaurant
for/after an hour), to express configurational rela-
tionships like quantity, possession, part/whole, and
membership (the coats of dozens of children in the
class), and to indicate semantic roles in argument
structure (Grandma cooked dinner for the children

∗nathan.schneider@georgetown.edu

(1) I was booked for/DURATION 2 nights at/LOCUS this
hotel in/TIME Oct 2007 .

(2) I went to/GOAL ohm after/EXPLANATION;TIME
reading some of/QUANTITY;WHOLE the reviews .

(3) It was very upsetting to see this kind of/SPECIES
behavior especially in_front_of/LOCUS
my/SOCIALREL;GESTALT four year_old .

Figure 1: Annotated sentences from our corpus.

vs. Grandma cooked the children for dinner). Fre-
quent prepositions like for are maddeningly poly-
semous, their interpretation depending especially
on the object of the preposition—I rode the bus
for 5 dollars/minutes—and the governor of the
prepositional phrase (PP): I Ubered/asked for $5.
Possessives are similarly ambiguous: Whistler’s
mother/painting/hat/death. Semantic interpretation
requires some form of sense disambiguation, but
arriving at a linguistic representation that is flexible
enough to generalize across usages and types, yet
simple enough to support reliable annotation, has
been a daunting challenge (§2).

This work represents a new attempt to strike that
balance. Building on prior work, we argue for an
approach to describing English preposition and pos-
sessive semantics with broad coverage. Given the
semantic overlap between prepositions and posses-
sives (the hood of the car vs. the car’s hood or its
hood), we analyze them using the same inventory
of semantic labels.1 Our contributions include:

• a new hierarchical inventory (“SNACS”)
of 50 supersense classes, extensively docu-
mented in guidelines for English (§3);

• a gold-standard corpus with comprehensive
annotations: all types and tokens of preposi-
tions and possessives are disambiguated (§4;
example sentences appear in figure 1);

• an interannotator agreement study that

1Some uses of certain other closed-class markers—
intransitive particles, subordinators, infinitive to—are also
included (§3.1).
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shows the scheme is reliable and generalizes
across genres—and for the first time demon-
strating empirically that the lexical semantics
of a preposition can sometimes be detached
from the PP’s semantic role (§5);

• disambiguation experiments with two super-
vised classification architectures to establish
the difficulty of the task (§6).

2 Background: Disambiguation of
Prepositions and Possessives

Studies of preposition semantics in linguistics
and cognitive science have generally focused on
the domains of space and time (e.g., Herskovits,
1986; Bowerman and Choi, 2001; Regier, 1996;
Khetarpal et al., 2009; Xu and Kemp, 2010; Zwarts
and Winter, 2000) or on motivated polysemy struc-
tures that cover additional meanings beyond core
spatial senses (Brugman, 1981; Lakoff, 1987; Tyler
and Evans, 2003; Lindstromberg, 2010). Posses-
sive constructions can likewise denote a number of
semantic relations, and various factors—including
semantics—influence whether attributive posses-
sion in English will be expressed with of, or with ’s
and possessive pronouns (the ‘genitive alternation’;
Taylor, 1996; Nikiforidou, 1991; Rosenbach, 2002;
Heine, 2006; Wolk et al., 2013; Shih et al., 2015).

Corpus-based computational work on semantic
disambiguation specifically of prepositions and
possessives2 falls into two categories: the lexi-
cographic/word sense disambiguation approach
(Litkowski and Hargraves, 2005, 2007; Litkowski,
2014; Ye and Baldwin, 2007; Saint-Dizier, 2006;
Dahlmeier et al., 2009; Tratz and Hovy, 2009;
Hovy et al., 2010, 2011; Tratz and Hovy, 2013),
and the semantic class approach (Moldovan et al.,
2004; Badulescu and Moldovan, 2009; O’Hara
and Wiebe, 2009; Srikumar and Roth, 2011, 2013;
Schneider et al., 2015, 2016; Hwang et al., 2017,
see also Müller et al., 2012 for German). The
lexicographic approach can capture finer-grained
meaning distinctions, at a risk of relying upon id-
iosyncratic and potentially incomplete dictionary
definitions. The semantic class approach, which we
follow here, focuses on commonalities in meaning
across multiple lexical items, and aims to general-

2Of course, meanings marked by prepositions/possessives
are to some extent captured in predicate-argument or graph-
based meaning representations (e.g., Palmer et al., 2005; Fill-
more and Baker, 2009; Oepen et al., 2016; Banarescu et al.,
2013) and domain-centric representations like TimeML and
ISO-Space (Pustejovsky et al., 2003, 2012).

ize more easily to new types and usages.
The most recent class-based approach to preposi-

tions was our initial framework of 75 preposition
supersenses arranged in a multiple inheritance tax-
onomy (Schneider et al., 2015, 2016). It was based
largely on relation/role inventories of Srikumar
and Roth (2013) and VerbNet (Bonial et al., 2011;
Palmer et al., 2017). The framework was realized in
version 3.0 of our comprehensively annotated cor-
pus, STREUSLE3 (Schneider et al., 2016). How-
ever, several limitations of our approach became
clear to us over time.

First, as pointed out by Hwang et al. (2017), the
one-label-per-token assumption in STREUSLE is
flawed because it in some cases puts into conflict
the semantic role of the PP with respect to a pred-
icate, and the lexical semantics of the preposition
itself. Hwang et al. (2017) suggested a solution,
discussed in §3.3, but did not conduct an annotation
study or release a corpus to establish its feasibility
empirically. We address that gap here.

Second, 75 categories is an unwieldy number
for both annotators and disambiguation systems.
Some are quite specialized and extremely rare in
STREUSLE 3.0, which causes data sparseness is-
sues for supervised learning. In fact, the only pub-
lished disambiguation system for preposition super-
senses collapsed the distinctions to just 12 labels
(Gonen and Goldberg, 2016). Hwang et al. (2017)
remarked that solving the aforementioned problem
could remove the need for many of the specialized
categories and make the taxonomy more tractable
for annotators and systems. We substantiate this
here, defining a new hierarchy with just 50 cate-
gories (SNACS, §3) and providing disambiguation
results for the full set of distinctions.

Finally, given the semantic overlap of posses-
sive case and the preposition of, we saw an op-
portunity to broaden the application of the scheme
to include possessives. Our reannotated corpus,
STREUSLE 4.0, thus has supersense annotations
for over 1000 possessive tokens that were not se-
mantically annotated in version 3.0. We include
these in our annotation and disambiguation experi-
ments alongside reannotated preposition tokens.

3 Annotation Scheme

3.1 Lexical Categories of Interest
Apart from canonical prepositions and possessives,
there are many lexically and semantically overlap-

3https://github.com/nert-gu/streusle/
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ping closed-class items which are sometimes clas-
sified as other parts of speech, such as adverbs, par-
ticles, and subordinating conjunctions. The Cam-
bridge Grammar of the English Language (Huddle-
ston and Pullum, 2002) argues for an expansive
definition of ‘preposition’ that would encompass
these other categories. As a practical measure, we
decided to encourage annotators to focus on the se-
mantics of these functional items rather than their
syntax, so we take an inclusive stance.

Another consideration is developing annotation
guidelines that can be adapted for other languages.
This includes languages which have postpositions,
circumpositions, or inpositions rather than prepo-
sitions; the general term for such items is
adpositions.4 English possessive marking (via ’s or
possessive pronouns like my) is more generally an
example of case marking. Note that prepositions
(4a–4c) differ in word order from possessives (4d),
though semantically the object of the preposition
and the possessive nominal pattern together:

(4) a. eat in a restaurant

b. the man in a blue shirt

c. the wife of the ambassador

d. the ambassador’s wife

Cross-linguistically, adpositions and case mark-
ing are closely related, and in general both gram-
matical strategies can express similar kinds of se-
mantic relations. This motivates a common seman-
tic inventory for adpositions and case.

We also cover multiword prepositions (e.g.,
out_of, in_front_of), intransitive particles (He flew
away), purpose infinitive clauses (Open the door
to let in some air5), prepositions with clausal com-
plements (It rained before the party started), and
idiomatic prepositional phrases (at_large). Our an-
notation guidelines give further details.

3.2 The SNACS Hierarchy

The hierarchy of preposition and possessive super-
senses, which we call Semantic Network of Adpo-
sition and Case Supersenses (SNACS), is shown
in figure 2. It is simpler than its predecessor—
Schneider et al.’s (2016) preposition supersense
hierarchy—in both size and structural complexity.

4In English, ago is arguably a postposition because it fol-
lows rather than precedes its complement: five minutes ago,
not *ago five minutes.

5To can be rephrased as in_order_to and have prepositional
counterparts like in Open the door for some air.

Circumstance 77

Temporal 0

Time 371

StartTime 28

EndTime 31

Frequency 9

Duration 91

Interval 35

Locus 846

Source 189

Goal 419

Path 49

Direction 161

Extent 42

Means 17

Manner 140

Explanation 123

Purpose 401

Participant 0

Causer 15

Agent 170

Co-Agent 65

Theme 238

Co-Theme 14

Topic 296

Stimulus 123

Experiencer 107

Originator 134

Recipient 122

Cost 48

Beneficiary 110

Instrument 30

Configuration 0

Identity 85

Species 39

Gestalt 709

Possessor 492

Whole 250

Characteristic 140

Possession 21

PartPortion 57

Stuff 25

Accompanier 49

InsteadOf 10

ComparisonRef 215

RateUnit 5

Quantity 191

Approximator 76

SocialRel 240

OrgRole 103

Figure 2: SNACS hierarchy of 50 supersenses and their token
counts in the annotated corpus described in §4. Counts are of
direct uses of labels, excluding uses of subcategories. Role
and function positions are not distinguished (so if a token has
different role and function labels, it will count toward two
supersense frequencies).

SNACS has 50 supersenses at 4 levels of depth; the
previous hierarchy had 75 supersenses at 7 levels.
The top-level categories are the same:

• CIRCUMSTANCE: Circumstantial informa-
tion, usually non-core properties of events
(e.g., location, time, means, purpose)

• PARTICIPANT: Entity playing a role in an
event

• CONFIGURATION: Thing, usually an entity or
property, involved in a static relationship to
some other entity

The 3 subtrees loosely parallel adverbial adjuncts,
event arguments, and adnominal complements,
respectively. The PARTICIPANT and CIRCUM-
STANCE subtrees primarily reflect semantic rela-
tionships prototypical to verbal arguments/adjuncts
and were inspired by VerbNet’s thematic role hi-
erarchy (Palmer et al., 2017; Bonial et al., 2011).
Many CIRCUMSTANCE subtypes, like LOCUS (the
concrete or abstract location of something), can be
governed by eventive and non-eventive nominals
as well as verbs: eat in the restaurant, a party in
the restaurant, a table in the restaurant. CONFIGU-
RATION mainly encompasses non-spatiotemporal
relations holding between entities, such as quantity,
possession, and part/whole. Unlike the previous hi-
erarchy, SNACS does not use multiple inheritance,
so there is no overlap between the 3 regions.

The supersenses can be understood as roles
in fundamental types of scenes (or schemas)
such as: LOCATION—THEME is located at LO-

187



CUS; MOTION—THEME moves from SOURCE

along PATH to GOAL; TRANSITIVE ACTION—
AGENT acts on THEME, perhaps using an IN-
STRUMENT; POSSESSION—POSSESSION belongs
to POSSESSOR; TRANSFER—THEME changes pos-
session from ORIGINATOR to RECIPIENT, per-
haps with COST; PERCEPTION—EXPERIENCER

is mentally affected by STIMULUS; COGNITION—
EXPERIENCER contemplates TOPIC; COMMUNI-
CATION—information (TOPIC) flows from ORIG-
INATOR to RECIPIENT, perhaps via an INSTRU-
MENT. For AGENT, CO-AGENT, EXPERIENCER,
ORIGINATOR, RECIPIENT, BENEFICIARY, POS-
SESSOR, and SOCIALREL, the object of the prepo-
sition is prototypically animate.

Because prepositions and possessives cover a
vast swath of semantic space, limiting ourselves
to 50 categories means we need to address a
great many nonprototypical, borderline, and special
cases. We have done so in a 75-page annotation
manual with over 400 example sentences (Schnei-
der et al., 2018).

Finally, we note that the Universal Semantic
Tagset (Abzianidze and Bos, 2017) defines a cross-
linguistic inventory of semantic classes for content
and function words. SNACS takes a similar ap-
proach to prepositions and possessives, which in
Abzianidze and Bos’s (2017) specification are sim-
ply tagged REL, which does not disambiguate the
nature of the relational meaning. Our categories
can thus be understood as refinements to REL.

3.3 Adopting the Construal Analysis
Hwang et al. (2017) have pointed out the perils of
teasing apart and generalizing preposition seman-
tics so that each use has a clear supersense label.
One key challenge they identified is that the prepo-
sition itself and the situation as established by the
verb may suggest different labels. For instance:

(5) a. Vernon works at Grunnings.
b. Vernon works for Grunnings.

The semantics of the scene in (5a, 5b) is the same: it
is an employment relationship, and the PP contains
the employer. SNACS has the label ORGROLE for
this purpose.6 At the same time, at in (5a) strongly
suggests a locational relationship, which would cor-
respond to the label LOCUS; consistent with this

6ORGROLE is defined as “Either a party in a relation be-
tween an organization/institution and an individual who has a
stable affiliation with that organization, such as membership
or a business relationship.”

hypothesis, Where does Vernon work? is a perfectly
good way to ask a question that could be answered
by the PP. In this example, then, there is overlap
between locational meaning and organizational-
belonging meaning. (5b) is similar except the for
suggests a notion of BENEFICIARY: the employee
is working on behalf of the employer. Annotators
would face a conundrum if forced to pick a sin-
gle label when multiple ones appear to be relevant.
Schneider et al. (2016) handled overlap via mul-
tiple inheritance, but entertaining a new label for
every possible case of overlap is impractical, as this
would result in a proliferation of supersenses.

Instead, Hwang et al. (2017) suggest a construal
analysis in which the lexical semantic contribution,
or henceforth the function, of the preposition itself
may be distinct from the semantic role or relation
mediated by the preposition in a given sentence,
called the scene role. The notion of scene role is
a widely accepted idea that underpins the use of
semantic or thematic roles: semantics licensed by
the governor7 of the prepositional phrase dictates
its relationship to the prepositional phrase. The
innovative claim is that, in addition to a preposi-
tion’s relationship with its head, the prepositional
choice introduces another layer of meaning or con-
strual that brings additional nuance, creating the
difficulty we see in the annotation of (5a, 5b). Con-
strual is notated by ROLE;FUNCTION. Thus, (5a)
would be annotated ORGROLE;LOCUS and (5b)
as ORGROLE;BENEFICIARY to expose their com-
mon truth-semantic meaning but slightly different
portrayals owing to the different prepositions.

Another useful application of the construal an-
alysis is with the verb put, which can combine with
any locative PP to express a destination:

(6) Put it on/by/behind/on_top_of/. . . the door.
GOAL;LOCUS

I.e., the preposition signals a LOCUS, but the door
serves as the GOAL with respect to the scene. This
approach also allows for resolution of various se-

7By “governor” of the preposition or prepositional phrase,
we mean the head of the phrase to which the PP attaches in a
constituency representation. In a dependency representation,
this would be the head of the preposition itself or of the object
of the preposition depending on which convention is used for
PP headedness: e.g., the preposition heads the PP in CoNLL
and Stanford Dependencies whereas the object is the head in
Universal Dependencies. The governor is most often a verb or
noun. Where the PP is a predicate complement (e.g. Vernon
is with Grunnings), there is no governor to specify the nature
of the scene, so annotators must rely on world knowledge and
context to determine the scene.
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Train Dev Test Total
Documents 347 192 184 723
Sentences 2,723 554 535 3,812
Tokens 44,804 5,394 5,381 55,579

Annotated targets 4,522 453 480 5,455
Role = function 3,101 291 310 3,702
P or PP 3,397 341 366 4,104

Multiword unit 256 25 24 305
Infinitive to 201 26 20 247
Genitive clitic (’s) 52 6 1 59
Possessive pronoun 872 80 93 1,045

Attested SNACS labels 47 46 44 47
Unique scene roles 46 43 41 47
Unique functions 41 38 37 41
Unique pairs 167 79 87 177

Role = function 41 33 34 41

Table 1: Counts for the data splits used in our experiments.

mantic phenomena including perceptual scenes
(e.g., I care about education, where about is both
the topic of cogitation and perceptual stimulus of
caring: STIMULUS;TOPIC), and fictive motion
(Talmy, 1996), where static location is described
using motion verbiage (as in The road runs through
the forest: LOCUS;PATH).

Both role and function slots are filled by super-
senses from the SNACS hierarchy. Annotators have
the option of using distinct supersenses for the role
and function; in general it is not a requirement
(though we stipulate that certain SNACS super-
senses can only be used as the role). When the
same label captures both role and function, we do
not repeat it: Vernon lives in/LOCUS England. Fig-
ure 1 shows some real examples from our corpus.

We apply the construal analysis in SNACS an-
notation of our corpus to test its feasibility. It
has proved useful not only for prepositions, but
also possessives, where the general sense of pos-
session may overlap with other scene relations,
like creator/initial-possessor (ORIGINATOR): Da
Vinci’s/ORIGINATOR;POSSESSOR sculptures.

4 Annotated Reviews Corpus

We applied the SNACS annotation scheme (§3) to
prepositions and possessives in the STREUSLE
corpus (§2), a collection of online consumer re-
views taken from the English Web Treebank (Bies
et al., 2012). The sentences from the English Web
Treebank also comprise the primary reference tree-
bank for English Universal Dependencies (UD;
Nivre et al., 2016), and we bundle the UD ver-
sion 2 syntax alongside our annotations. Table 1
shows the total number of tokens present and those
that we annotated. Altogether, 5,455 tokens were
annotated for scene role and function.

Rank Role Function

1 LOCUS 636 LOCUS 780
2 POSSESSOR 381 GESTALT 699⋮ ⋮ ⋮

last DIRECTION 1 POSSESSION 2

Table 2: Most and least frequent role and function labels.

The new hierarchy and annotation guidelines
were developed by consensus. The original preposi-
tion supersense annotations were placed in a spread-
sheet and discussed. While most tokens were un-
ambiguously annotated, some cases required a new
analysis throughout the corpus. For example, the
functions of for were so broad that they needed to
be (manually) clustered before mapping clusters
onto hierarchy labels. Unusual or rare contexts
also presented difficulties. Where the correct super-
sense remained unclear, specific instructions and
examples were included in the guidelines. Pos-
sessives were not covered by the original preposi-
tion supersense annotations, and thus were anno-
tated from scratch.8 Special labels were applied
to tokens deemed not to be prepositions or posses-
sives evoking semantic relations, including uses
of the infinitive marker that do not fall within the
scope of SNACS (487 tokens: a majority of in-
finitives) and preposition-initial discourse expres-
sions (e.g. after_all) and coordinating conjunctions
(as_well_as).9 Other tokens requiring special la-
bels are the opaque possessive slot in a multiword
idiom (12 tokens), and tokens where unintelligble,
incomplete, marginal, or nonnative usage made it
impossible to assign a supersense (48 tokens).

Table 2 shows the most and least common labels
occurring as scene role and function. Three labels
never appear in the annotated corpus: TEMPORAL

from the CIRCUMSTANCE hierarchy, and PARTI-
CIPANT and CONFIGURATION which are both the
highest supersense in their respective hierarchies.
While all remaining supersenses are attested as
scene roles, there are some that never occur as func-
tions, such as ORIGINATOR, which is most often
realized as POSSESSOR or SOURCE, and EXPERI-
ENCER. It is interesting to note that every subtype
of CIRCUMSTANCE (except TEMPORAL) appears
as both scene role and function, whereas many of
the subtypes of the other two hierarchies are lim-

8Blodgett and Schneider (2018) detail the extension of the
scheme to possessives.

9In the corpus, lexical expression tokens appear alongside
a lexical category indicating which inventory of supersenses,
if any, applies. SNACS-annotated units are those with ADP (ad-
position), PP, PRON.POSS (possessive pronoun), etc., whereas
DISC (discourse) and CCONJ expressions do not receive any
supersense. Refer to the STREUSLE README for details.
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ited to either role or function. This reflects our
view that prepositions primarily capture circum-
stantial notions such as space and time, but have
been extended to cover other semantic relations.10

5 Interannotator Agreement Study

Because the online reviews corpus was so central
to the development of our guidelines, we sought
to estimate the reliability of the annotation scheme
on a new corpus in a new genre. We chose Saint-
Exupéry’s novella The Little Prince, which is read-
ily available in many languages and has been anno-
tated with semantic representations such as AMR
(Banarescu et al., 2013). The genre is markedly
different from online reviews—it is quite literary,
and employs archaic or poetic figures of speech. It
is also a translation from French, contributing to
the markedness of the language. This text is there-
fore a challenge for an annotation scheme based
on colloquial contemporary English. We addressed
this issue by running 3 practice rounds of anno-
tation on small passages from The Little Prince,
both to assess whether the scheme was applicable
without major guidelines changes and to prepare
the annotators for this genre. For the final anno-
tation study, we chose chapters 4 and 5, in which
242 markables of 52 types were identified heuristi-
cally (§6.2). The types of, to, in, as, from, and for,
as well as possessives, occurred at least 10 times.
Annotators had the option to mark units as false
positives using special labels (see §4) in addition
to expressing uncertainty about the unit.

For the annotation process, we adapted the
open source web-based annotation tool UCCAApp
(Abend et al., 2017) to our workflow, by extending
it with a type-sensitive ranking module for the list
of categories presented to the annotators.
Annotators. Five annotators (A, B, C, D, E), all
authors of this paper, took part in this study. All
are computational linguistics researchers with ad-
vanced training in linguistics. Their involvement in
the development of the scheme falls on a spectrum,
with annotator A being the most active figure in
guidelines development, and annotator E not being

10All told, 41 supersenses are attested as both role and
function for the same token, and there are 136 unique construal
combinations where the role differs from the function. Only
four supersenses are never found in such a divergent construal:
EXPLANATION, SPECIES, STARTTIME, RATEUNIT. Except
for RATEUNIT which occurs only 5 times, their narrow use
does not arise because they are rare. EXPLANATION, for
example, occurs over 100 times, more than many labels which
often appear in construal.

Labels Role Function

Exact 47 74.4% 81.3%
Depth-3 43 75.0% 81.8%
Depth-2 26 79.9% 87.4%
Depth-1 3 92.6% 93.9%

Table 3: Interannotator agreement rates (pairwise averages)
on Little Prince sample (216 tokens) with different levels of
hierarchy coarsening according to figure 2 (“Exact” means no
coarsening). “Labels” refers to the number of distinct labels
that annotators could have provided at that level of coarsening.
Excludes tokens where at least one annotator assigned a non-
semantic label.

involved in developing the guidelines and learning
the scheme solely from reading the manual. Anno-
tators A, B, and C are native speakers of English,
while Annotators D and E are nonnative but highly
fluent speakers.

Results. In the Little Prince sample, 40 out of 47
possible supersenses were applied at least once by
some annotator; 36 were applied at least once by
a majority of annotators; and 33 were applied at
least once by all annotators. APPROXIMATOR, CO-
THEME, COST, INSTEADOF, INTERVAL, RATEU-
NIT, and SPECIES were not used by any annotator.

To evaluate interannotator agreement, we ex-
cluded 26 tokens for which at least one annota-
tor has assigned a non-semantic label, considering
only the 216 tokens that were identified correctly
as SNACS targets and were clear to all annotators.
Despite varying exposure to the scheme, there is
no obvious relationship between annotators’ back-
grounds and their agreement rates.11

Table 3 shows the interannotator agreement rates,
averaged across all pairs of annotators. Average
agreement is 74.4% on the scene role and 81.3%
on the function (row 1).12 All annotators agree on
the role for 119, and on the function for 139 tokens.
Agreement is higher on the function slot than on
the scene role slot, which implies that the former
is an easier task than the latter. This is expected
considering the definition of construal: the function
of an adposition is more lexical and less context-
dependent, whereas the role depends on the context
(the scene) and can be highly idiomatic (§3.3).

The supersense hierarchy allows us to analyze
agreement at different levels of granularity (rows

11See table 7 in appendix A for a more detailed description
of the annotators’ backgrounds and pairwise IAA results.

12Average of pairwise Cohen’s k is 0.733 and 0.799 on,
respectively, role and function, suggesting strong agreement.
However, it is worth noting that annotators selected labels
from a ranked list, with the ranking determined by preposition
type. The model of chance agreement underlying k does not
take the identity of the preposition into account, and thus likely
underestimates the probability of chance agreement.
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2–4 in table 3; see also confusion matrix in sup-
plement). Coarser-grained analyses naturally give
better agreement, with depth-1 coarsening into only
3 categories. Results show that most confusions
are local with respect to the hierarchy.

6 Disambiguation Systems

We now describe systems that identify and disam-
biguate SNACS-annotated prepositions and posses-
sives in two steps. Target identification heuristics
(§6.2) first determine which tokens (single-word
or multiword) should receive a SNACS supersense.
A supervised classifier then predicts a supersense
analysis for each identified target. The research
objectives are (a) to study the ability of statistical
models to learn roles and functions of prepositions
and possessives, and (b) to compare two different
modeling strategies (feature-rich and neural), and
the impact of syntactic parsing.

6.1 Experimental Setup

Our experiments use the reviews corpus described
in §4. We adopt the official training/development/
test splits of the Universal Dependencies (UD)
project; their sizes are presented in table 1. All
systems are trained on the training set only and eval-
uated on the test set; the development set was used
for tuning hyperparameters. Gold tokenization was
used throughout. Only targets with a semantic su-
persense analysis involving labels from figure 2
were included in training and evaluation—i.e., to-
kens with special labels (see §4) were excluded.

To test the impact of automatic syntactic parsing,
models in the auto syntax condition were trained
and evaluated on automatic lemmas, POS tags, and
Basic Universal Dependencies (according to the
v1 standard) produced by Stanford CoreNLP ver-
sion 3.8.0 (Manning et al., 2014).13 Named en-
tity tags from the default 12-class CoreNLP model
were used in all conditions.

6.2 Target Identification

§3.1 explains that the categories in our scheme ap-
ply not only to (transitive) adpositions in a very
narrow definition of the term, but also to lexical
items that traditionally belong to variety of syn-
tactic classes (such as adverbs and particles), as

13The CoreNLP parser was trained on all 5 genres of the
English Web Treebank—i.e., a superset of our training set.
Gold syntax follows the UDv2 standard, whereas the classi-
fiers in the auto syntax conditions are trained and tested with
UDv1 parses produced by CoreNLP.

well as possessive case markers and multiword ex-
pressions. 61.2% of the units annotated in our
corpus are adpositions according to gold POS an-
notation, 20.2% are possessives, and 18.6% belong
to other POS classes. Furthermore, 14.1% of to-
kens labeled as adpositions or possessives are not
annotated because they are part of a multiword ex-
pression (MWE). It is therefore neither obvious
nor trivial to decide which tokens and groups of
tokens should be selected as targets for SNACS
annotation.

To facilitate both manual annotation and auto-
matic classification, we developed heuristics for
identifying annotation targets. The algorithm first
scans the sentence for known multiword expres-
sions, using a blacklist of non-prepositional MWEs
that contain preposition tokens (e.g., take_care_of )
and a whitelist of prepositional MWEs (multi-
word prepositions like out_of and PP idioms like
in_town). Both lists were constructed from the
training data. From segments unaffected by the
MWE heuristics, single-word candidates are identi-
fied by matching a high-recall set of parts of speech,
then filtered through 5 different heuristics for ad-
positions, possessives, subordinating conjunctions,
adverbs, and infinitivals. Most of these filters are
based on lexical lists learned from the training
portion of the STREUSLE corpus, but there are
some specific rules for infinitivals that handle for-
subjects (I opened the door for Steve to take out the
trash—to, but not for, should receive a supersense)
and comparative constructions with too and enough
(too short to ride).

6.3 Classification
The next step of disambiguation is predicting the
role and function labels. We explore two different
modeling strategies.
Feature-rich Model. Our first model is based on
the features for preposition relation classification
developed by Srikumar and Roth (2013), which
were themselves extended from the preposition
sense disambiguation features of Hovy et al. (2010).
We briefly describe the feature set here, and refer
the reader to the original work for further details.
At a high level, it consists of features extracted
from selected neighboring words in the dependency
tree (i.e., heuristically identified governor and ob-
ject) and in the sentence (previous verb, noun and
adjective, and next noun). In addition, all these
features are also conjoined with the lemma of the
rightmost word in the preposition token to capture

191



target-specific interactions with the labels. The
features extracted from each neighboring word are
listed in the supplementary material.

Using these features extracted from targets, we
trained two multi-class SVM classifiers to predict
the role and function labels using the LIBLINEAR

library (Fan et al., 2008).

Neural Model. Our second classifier is a multi-
layer perceptron (MLP) stacked on top of a BiL-
STM. For every sentence, tokens are first em-
bedded using a concatenation of fixed pre-trained
word2vec (Mikolov et al., 2013) embeddings of the
word and the lemma, and an internal embedding
vector, which is updated during training.14 Token
embeddings are then fed into a 2-layer BiLSTM
encoder, yielding a list of token representations.

For each identified target unit u, we extract its
first token, and its governor and object headword.
For each of these tokens, we construct a feature vec-
tor by concatenating its token representation with
embeddings of its (1) language-specific POS tag,
(2) UD dependency label, and (3) NER label. We
additionally concatenate embeddings of u’s lexical
category, a syntactic label indicating whether u is
predicative/stranded/subordinating/none of these,
and an indicator of whether either of the two tokens
following the unit is capitalized. All these embed-
dings, as well as internal token embedding vectors,
are considered part of the model parameters and are
initialized randomly using the Xavier initialization
(Glorot and Bengio, 2010). A NONE label is used
when the corresponding feature is not given, both
in training and at test time. The concatenated fea-
ture vector for u is fed into two separate 2-layered
MLPs, followed by a separate softmax layer that
yields the predicted probabilities for the role and
function labels.

We tuned hyperparameters on the development
set to maximize F-score (see supplementary mate-
rial). We used the cross-entropy loss function, opti-
mizing with simple gradient ascent for 80 epochs
with minibatches of size 20. Inverted dropout was
used during training. The model is implemented
with the DyNet library (Neubig et al., 2017).

The model architecture is largely compara-
ble to that of Gonen and Goldberg (2016),
who experimented with a coarsened version of
STREUSLE 3.0. The main difference is their use
of unlabeled multilingual datasets to improve pre-

14Word2vec is pre-trained on the Google News corpus. Zero
vectors are used where vectors are not available.

Syntax P R F

gold 88.8 89.6 89.2
auto 86.0 85.8 85.9

Table 4: Target identification results for disambiguation.

diction by exploiting the differences in preposition
ambiguities across languages.

6.4 Results & Analysis

Following the two-stage disambiguation pipeline
(i.e. target identification and classification), we sep-
arate the evaluation across the phases. Table 4
reports the precision, recall, and F-score (P/R/F) of
the target identification heuristics. Table 5 reports
the disambiguation performance of both classifiers
with gold (left) and automatic target identification
(right). We evaluate each classifier along three
dimensions—role and function independently, and
full (i.e. both role and function together). When
we have the gold targets, we only report accuracy
because precision and recall are equal. With au-
tomatically identified targets, we report P/R/F for
each dimension. Both tables show the impact of
syntactic parsing on quality. The rest of this section
presents analyses of the results along various axes.

Target identification. The identification heuris-
tics described in §6.2 achieve an F1 score of 89.2%
on the test set using gold syntax.15 Most false
positives (47/54=87%) can be ascribed to tokens
that are part of a (non-adpositional or larger adpo-
sitional) multiword expression. 9 of the 50 false
negatives (18%) are rare multiword expressions not
occurring in the training data and there are 7 par-
tially identified ones, which are counted as both
false positives and false negatives.

Automatically generated parse trees slightly de-
crease quality (table 4). Target identification, be-
ing the first step in the pipeline, imposes an upper
bound on disambiguation scores. We observe this
degradation when we compare the Gold ID and
the Auto ID blocks of table 5, where automati-
cally identified targets decrease F-score by about
10 points in all settings.16

Classification. Along with the statistical classi-
fier results in table 5, we also report performance

15Our evaluation script counts tokens that received special
labels in the gold standard (see §4) as negative examples of
SNACS targets, with the exception of the tokens labeled as
unintelligible/nonnative/etc., which are not counted toward or
against target ID performance.

16A variant of the target ID module, optimized for recall, is
used as preprocessing for the agreement study discussed in §5.
With this setting, the heuristic achieves an F1 score of 90.2%
(P=85.3%, R=95.6%) on the test set.
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Gold ID Auto ID

Role Func. Full Role Func. Full
Syntax Acc. Acc. Acc. P R F P R F P R F

Most frequent N/A 40.6 53.3 37.9 37.0 37.3 37.1 49.8 50.2 50.0 34.3 34.6 34.4
Neural gold 71.7 82.5 67.5 62.0 62.5 62.2 73.1 73.8 73.4 58.7 59.2 58.9
Feature-rich gold 73.5 81.0 70.0 62.0 62.5 62.2 70.7 71.2 71.0 59.3 59.8 59.5

Neural auto 67.7 78.5 64.4 56.4 56.2 56.3 66.8 66.7 66.7 53.7 53.5 53.6
Feature-rich auto 67.9 79.4 65.2 58.2 58.1 58.2 66.8 66.7 66.7 55.7 55.6 55.7

Table 5: Overall performance of SNACS disambiguation systems on the test set. Results are reported for the role supersense
(Role), the function supersense (Func.), and their conjunction (Full). All figures are percentages. Left: Accuracies with gold
standard target identification (480 targets). Right: Precision, recall, and F1 with automatic target identification (§6.2 and table 4).

for the most frequent baseline, which selects the
most frequent role–function label pair given the
(gold) lemma according to the training data. Note
that all learned classifiers, across all settings, out-
perform the most frequent baseline for both role
and function prediction. The feature-rich and the
neural models perform roughly equivalently despite
the significantly different modeling strategies.

Function and scene role performance. Func-
tion prediction is consistently more accurate than
role prediction, with roughly a 10-point gap across
all systems. This mirrors a similar effect in the
interannotator agreement scores (see §5), and may
be due to the reduced ambiguity of functions com-
pared to roles (as attested by the baseline’s higher
accuracy for functions than roles), and by the more
literal nature of function labels, as opposed to role
labels that often require more context to determine.

Impact of automatic syntax. Automatic syntac-
tic analysis decreases scores by 4 to 7 points, most
likely due to parsing errors which affect the iden-
tification of the preposition’s object and governor.
In the auto ID/auto syntax condition, the worse tar-
get ID performance with automatic parses (noted
above) contributes to lower classification scores.

6.5 Errors & Confusions

We can use the structure of the SNACS hierarchy to
probe classifier performance. As with the interan-
notator study, we evaluate the accuracy of predicted
labels when they are coarsened post hoc by mov-
ing up the hierarchy to a specific depth. Table 6
shows this for the feature-rich classifier for differ-
ent depths, with depth-1 representing the coarsen-
ing of the labels into the 3 root labels. Depth-4
(Exact) represents the full results in table 5. These
results show that the classifiers often mistake a
label for another that is nearby in the hierarchy.
Examining the most frequent confusions of both
models, we observe that LOCUS is overpredicted

Labels Role Function

Exact 47 67.9% 79.4%
Depth-3 43 67.9% 79.6%
Depth-2 26 76.2% 86.2%
Depth-1 3 86.0% 93.8%

Table 6: Accuracy of the feature-rich model (gold identifi-
cation and syntax) on the test set (480 tokens) with different
levels of hierarchy coarsening of its output. “Labels” refers to
the number of labels in the training set after coarsening.

(which makes sense as it is most frequent over-
all), and SOCIALROLE–ORGROLE and GESTALT–
POSSESSOR are often confused (they are close in
the hierarchy: one inherits from the other).

7 Conclusion

This paper introduced a new approach to com-
prehensive analysis of the semantics of preposi-
tions and possessives in English, backed by a thor-
oughly documented hierarchy and annotated cor-
pus. We found good interannotator agreement and
provided initial supervised disambiguation results.
We expect that future work will develop methods
to scale the annotation process beyond requiring
highly trained experts; bring this scheme to bear
on other languages; and investigate the relationship
of our scheme to more structured semantic repre-
sentations, which could lead to more robust mod-
els. Our guidelines, corpus, and software are avail-
able at https://github.com/nert-gu/streusle/
blob/master/ACL2018.md.
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Abstract

We present a corpus of 5,000 richly anno-
tated abstracts of medical articles describ-
ing clinical randomized controlled trials.
Annotations include demarcations of text
spans that describe the Patient population
enrolled, the Interventions studied and to
what they were Compared, and the Out-
comes measured (the ‘PICO’ elements).
These spans are further annotated at a
more granular level, e.g., individual in-
terventions within them are marked and
mapped onto a structured medical vocab-
ulary. We acquired annotations from a di-
verse set of workers with varying levels of
expertise and cost. We describe our data
collection process and the corpus itself in
detail. We then outline a set of challeng-
ing NLP tasks that would aid searching of
the medical literature and the practice of
evidence-based medicine.

1 Introduction

In 2015 alone, about 100 manuscripts describ-
ing randomized controlled trials (RCTs) for med-
ical interventions were published every day. It is
thus practically impossible for physicians to know
which is the best medical intervention for a given
patient group and condition (Borah et al., 2017;
Fraser and Dunstan, 2010; Bastian et al., 2010).
This inability to easily search and organize the
published literature impedes the aims of evidence
based medicine (EBM), which aspires to inform
patient care using the totality of relevant evidence.

∗* now at Google Inc.

Computational methods could expedite biomedi-
cal evidence synthesis (Tsafnat et al., 2013; Wal-
lace et al., 2013) and natural language processing
(NLP) in particular can play a key role in the task.

Prior work has explored the use of NLP meth-
ods to automate biomedical evidence extraction
and synthesis (Boudin et al., 2010; Marshall et al.,
2017; Ferracane et al., 2016; Verbeke et al.,
2012).1 But the area has attracted less attention
than it might from the NLP community, due pri-
marily to a dearth of publicly available, annotated
corpora with which to train and evaluate models.

Here we address this gap by introducing EBM-
NLP, a new corpus to power NLP models in sup-
port of EBM. The corpus, accompanying doc-
umentation, baseline model implementations for
the proposed tasks, and all code are publicly avail-
able.2 EBM-NLP comprises ∼5,000 medical ab-
stracts describing clinical trials, multiply anno-
tated in detail with respect to characteristics of the
underlying trial Populations (e.g., diabetics), In-
terventions (insulin), Comparators (placebo) and
Outcomes (blood glucose levels). Collectively,
these key informational pieces are referred to as
PICO elements; they form the basis for well-
formed clinical questions (Huang et al., 2006).

We adopt a hybrid crowdsourced labeling strat-
egy using heterogeneous annotators with vary-
ing expertise and cost, from laypersons to MDs.
Annotators were first tasked with marking text
spans that described the respective PICO ele-
ments. Identified spans were subsequently anno-

1There is even, perhaps inevitably, a systematic review of
such approaches (Jonnalagadda et al., 2015).

2http://www.ccs.neu.edu/home/bennye/
EBM-NLP
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tated in greater detail: this entailed finer-grained
labeling of PICO elements and mapping these onto
a normalized vocabulary, and indicating redun-
dancy in the mentions of PICO elements.

In addition, we outline several NLP tasks that
would directly support the practice of EBM and
that may be explored using the introduced re-
source. We present baseline models and associ-
ated results for these tasks.

2 Related Work

We briefly review two lines of research relevant to
the current effort: work on NLP to facilitate EBM,
and research in crowdsourcing for NLP.

2.1 NLP for EBM

Prior work on NLP for EBM has been limited
by the availability of only small corpora, which
have typically provided on the order of a cou-
ple hundred annotated abstracts or articles for
very complex information extraction tasks. For
example, the ExaCT system (Kiritchenko et al.,
2010) applies rules to extract 21 aspects of the
reported trial. It was developed and validated on
a dataset of 182 marked full-text articles. The
ACRES system (Summerscales et al., 2011) pro-
duces summaries of several trial characteristic,
and was trained on 263 annotated abstracts. Hint-
ing at more challenging tasks that can build upon
foundational information extraction, Alamri and
Stevenson (2015) developed methods for detecting
contradictory claims in biomedical papers. Their
corpus of annotated claims contains 259 sentences
(Alamri and Stevenson, 2016).

Larger corpora for EBM tasks have been de-
rived using (noisy) automated annotation ap-
proaches. This approach has been used to build,
e.g., datasets to facilitate work on Information Re-
trieval (IR) models for biomedical texts (Scells
et al., 2017; Chung, 2009; Boudin et al., 2010).
Similar approaches have been used to ‘distantly
supervise’ annotation of full-text articles describ-
ing clinical trials (Wallace et al., 2016). In contrast
to the corpora discussed above, these automati-
cally derived datasets tend to be relatively large,
but they include only shallow annotations.

Other work attempts to bypass basic extraction
tasks and address more complex biomedical QA
and (multi-document) summarization problems to
support EBM (Demner-Fushman and Lin, 2007;
Mollá and Santiago-Martinez, 2011; Abacha and

Zweigenbaum, 2015). Such systems would di-
rectly benefit from more accurate extraction of the
types codified in the corpus we present here.

2.2 Crowdsourcing
Crowdsourcing, which we here define opera-
tionally as the use of distributed lay annotators,
has shown encouraging results in NLP (Novot-
ney and Callison-Burch, 2010; Sabou et al., 2012).
Such annotations are typically imperfect, but
methods that aggregate redundant annotations can
mitigate this problem (Dalvi et al., 2013; Hovy
et al., 2014; Nguyen et al., 2017).

Medical articles contain relatively technical
content, which intuitively may be difficult for per-
sons without domain expertise to annotate. How-
ever, recent promising preliminary work has found
that crowdsourced approaches can yield surpris-
ingly high-quality annotations in the domain of
EBM specifically (Mortensen et al., 2017; Thomas
et al., 2017; Wallace et al., 2017).

3 Data Collection

PubMed provides access to the MEDLINE
database3 which indexes titles, abstracts and meta-
data for articles from selected medical journals
dating back to the 1970s. MEDLINE indexes over
24 million abstracts; the majority of these have
been manually assigned metadata which we used
to retrieved a set of 5,000 articles describing RCTs
with an emphasis on cardiovascular diseases, can-
cer, and autism. These particular topics were se-
lected to cover a range of common conditions.

We decomposed the annotation process into
two steps, performed in sequence. First, we ac-
quired labels demarcating spans in the text de-
scribing the clinically salient abstract elements
mentioned above: the trial Population, the Inter-
ventions and Comparators studied, and the Out-
comes measured. We collapse Interventions and
Comparators into a single category (I). In the sec-
ond annotation step, we tasked workers with pro-
viding more granular (sub-span) annotations on
these spans.

For each PIO element, all abstracts were anno-
tated with the following four types of information.

1. Spans exhaustive marking of text spans con-
taining information relevant to the respective
PIO categories (Stage 1 annotation).

3https://www.nlm.nih.gov/bsd/
pmresources.html
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Figure 1: Annotation interface for assigning MeSH terms to snippets.

2. Hierarchical labels assignment of more spe-
cific labels to subsequences comprising the
marked relevant spans (Stage 2 annotation).

3. Repetition grouping of labeled tokens to in-
dicate repeated occurrences of the same in-
formation (Stage 2 annotation).

4. MeSH terms assignment of the metadata
MeSH terms associated with the abstract to
labeled subsequences (Stage 2 annotation).4

We collected annotations for each P, I and O
element individually to avoid the cognitive load
imposed by switching between label sets, and to
reduce the amount of instruction required to be-
gin the task. All annotation was performed using
a modified version of the Brat Rapid Annotation
Tool (BRAT) (Stenetorp et al., 2012). We include
all annotation instructions provided to workers for
all tasks in the Appendix.

3.1 Non-Expert (Layperson) Workers
For large scale crowdsourcing via recruitment of
layperson annotators, we used Amazon Mechan-
ical Turk (AMT). All workers were required to
have an overall job approval rate of at least 90%.
Each job presented to the workers required the an-
notation of three randomly selected abstracts from
our pool of documents. As we received initial re-
sults, we blocked workers who were clearly not
following instructions, and we actively recruited
the best workers to continue working on our task
at a higher pay rate.

4MeSH is a controlled, structured medical vocabulary
maintained by the National Library of Medicine.

We began by collecting the least technical an-
notations, moving on to more difficult tasks only
after restricting our pool of workers to those with
a demonstrated aptitude for the jobs. We obtained
annotations from ≥ 3 different workers for each
of the 5,000 abstracts to enable robust inference of
reliable labels from noisy data. After performing
filtering passes to remove non-RCT documents or
those missing relevant data for the second annota-
tion task, we are left with between 4,000 and 5,000
sets of annotations for each PIO element after the
second phase of annotation.

3.2 Expert Workers

To supplement our larger-scale data collection via
AMT, we collected annotations for 200 abstracts
for each PIO element from workers with advanced
medical training. The idea is for these to serve as
reference annotations, i.e., a test set with which
to evaluate developed NLP systems. We plan to
enlarge this test set in the near future, at which
point we will update the website accordingly.

For the initial span labeling task, two medi-
cal students from the University of Pennsylvania
and Drexel University provided the reference la-
bels. In addition, for both stages of annotation
and for the detailed subspan annotation in Stage
2, we hired three medical professionals via Up-
work,5 an online platform for hiring skilled free-
lancers. After reviewing several dozen suggested
profiles, we selected three workers that had the fol-
lowing characteristics: Advanced medical training
(the majority of hired workers were Medical Doc-

5http://www.upwork.com
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tors, the one exception being a fourth-year medi-
cal student); Strong technical reading and writing
skills; And an interest in medical research. In ad-
dition to providing high-quality annotations, indi-
viduals hired via Upwork also provided feedback
regarding the instructions to help make the task as
clear as possible for the AMT workers.

4 The Corpus

We now present corpus details, paying special at-
tention to worker performance and agreement. We
discuss and present statistics for acquired annota-
tions on spans, tokens, repetition and MeSH terms
in Sections 4.1, 4.2, 4.3, and 4.4, respectively.

4.1 Spans

For each P, I and O element, workers were asked
to read the abstract and highlight all spans of
text including any pertinent information. Annota-
tions for 5,000 articles were collected from a total
of 579 AMT workers across the three annotation
types, and expert annotations were collected for
200 articles from two medical students.

We first evaluate the quality of the annota-
tions by calculating token-wise label agreement
between the expert annotators; this is reported in
Table 2. Due to the difficulty and technicality of
the material, agreement between even well-trained
domain experts is imperfect. The effect is magni-
fied by the unreliability of AMT workers, moti-
vating our strategy of collecting several noisy an-
notations and aggregating over them to produce a
single cleaner annotation. We tested three differ-
ent aggregation strategies: a simple majority vote,
the Dawid-Skene model (Dawid and Skene, 1979)
which estimates worker reliability, and HMM-
Crowd, a recent extension to Dawid-Skene that in-
cludes a HMM component, thus explicitly lever-
aging the sequential structure of contiguous spans
of words (Nguyen et al., 2017).

For each aggregation strategy, we compute the
token-wise precision and recall of the output la-
bels against the unioned expert labels. As shown
in Table 3, the HMMCrowd model afforded mod-
est improvement in F-1 scores over the standard
Dawid-Skene model, and was thus used to gener-
ate the inputs for the second annotation phase.

The limited overlap in the document subsets an-
notated by any given pair of workers, and wide
variation in the number of annotations per worker
make interpretation of standard agreement statis-

Outcomes

Physical Health

Pain

Adverse Effects

Mortality

Mental/Behavioral Impact

Mental Health

Participant Behavior

Satisfaction With Care

Non-health Outcome

Quality of Intervention

Resource Use

Withdrawals from Study

Figure 2: Outcome task label hierarchy

tics tricky. We quantify the centrality of the AMT
span annotations by calculating token-wise preci-
sion and recall for each annotation against the ag-
gregated version of the labels (Table 4).

When comparing the average precision and re-
call for individual crowdworkers against the ag-
gregated labels in Table 4, scores are poor show-
ing very low agreement between the workers. De-
spite this, the aggregated labels compare favorably
against the expert labels. This further supports the
intuition that it is feasible to collect multiple low-
quality annotations for a document and synthesize
them to extract the signal from the noise.

On the dataset website, we provide a variant
of the corpus that includes all individual worker
span annotations (e.g., for researchers interested in
crowd annotation aggregated methods), and also a
version with pre-aggregated annotations for con-
venience.

4.2 Hierarchical Labels

For each P, I, and O category we developed a hier-
archy of labels intended to capture important sub
categories within these. Our labels are aligned
to (and thus compatible with) the concepts codi-
fied by the Medical Subject Headings (MeSH) vo-
cabulary of medical terms maintained by the Na-
tional Library of Medicine (NLM).6 In consulta-

6https://www.nlm.nih.gov/mesh/
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P Fourteen children (12 infantile autism full syndrome present, 2 atypical pervasive developmental disorder) between 5 and
13 years of age

Text Label MeSH terms
– Fourteen SAMPLE SIZE (FULL)
– children AGE (YOUNG)
– 12 SAMPLE SIZE (PARTIAL)
– autism CONDITION (DISEASE) Autistic Disorder, Child Development Disorders Pervasive
– 2 SAMPLE SIZE (PARTIAL)
– 5 and 13 AGE (YOUNG)

I 20 mg Org 2766 (synthetic analog of ACTH 4-9)/day during 4 weeks, or placebo in a randomly assigned sequence.
Text Label MeSH terms
– 20 mg Org 2766 PHARMACOLOGICAL Adrenocorticotropic Hormone, Double-Blind Method, Child

Development Disorders Pervasive
– placebo CONTROL Double-Blind Method

O Drug effects and Aberrant Behavior Checklist ratings
Text Label MeSH terms
– Drug effects QUALITY OF INTERVENTION
– Aberrant Behavior
Checklist ratings MENTAL (BEHAVIOR) Attention, Stereotyped Behavior

Table 1: Partial example annotation for Participants, Interventions, and Outcomes. The full annotation
includes multiple top-level spans for each PIO element as well as labels for repetition.

Agreement
Participants 0.71
Interventions 0.69
Outcomes 0.62

Table 2: Cohen’s κ between medical students for
the 200 reference documents.

Participants Precision Recall F-1
Majority Vote 0.903 0.507 0.604
Dawid Skene 0.840 0.641 0.686
HMMCrowd 0.719 0.761 0.698
Interventions Precision Recall F-1
Majority Vote 0.843 0.432 0.519
Dawid Skene 0.755 0.623 0.650
HMMCrowd 0.644 0.800 0.683
Outcomes Precision Recall F-1
Majority Vote 0.711 0.577 0.623
Dawid Skene 0.652 0.648 0.629
HMMCrowd 0.498 0.807 0.593

Table 3: Precision, recall and F-1 for aggregated
AMT spans evaluated against the union of expert
span labels, for all three P, I, and O elements.

tion with domain experts, we selected subsets of
MeSH terms for each PIO category that captured
relatively precise information without being over-
whelming. For illustration, we show the outcomes
label hierarchy we used in Figure 2. We reproduce
the label hierarchies used for all PIO categories in
the Appendix.

At this stage, workers were presented with ab-
stracts in which relevant spans were highlighted,
based on the annotations collected in the first an-
notation phase (and aggregated via the HMM-

Precision Recall F-1
Participants 0.34 0.29 0.30
Interventions 0.20 0.16 0.18
Outcomes 0.11 0.10 0.10

Table 4: Token-wise statistics for individual AMT
annotations evaluated against the aggregated ver-
sions.

Span frequency
AMT Experts

Participants 34.5 21.4
Interventions 26.5 14.3
Outcomes 33.0 26.9

Table 5: Average per-document frequency of dif-
ferent token labels.

Crowd model). This two-step approach served
dual purposes: (i) increasing the rate at which
workers could complete tasks, and (ii) improving
recall by directing workers to all areas in abstracts
where they might find the structured information
of interest. Our choice of a high recall aggrega-
tion strategy for the starting spans ensured that the
large majority of relevant sections of the article
were available as inputs to this task.

The three trained medical personnel hired via
Upwork each annotated 200 documents and re-
ported that spans sufficiently captured the tar-
get information. These domain experts received
feedback and additional training after labeling an
initial round of documents, and all annotations
were reviewed for compliance. The average inter-
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annotator agreement is reported in Table 6.

Agreement
Participants 0.50
Interventions 0.59
Outcomes 0.51

Table 6: Average pair-wise Cohen’s κ between
three medical experts for the 200 reference doc-
uments.

With respect to crowdsourcing on AMT, the
task for Participants was published first, allowing
us to target higher quality workers for the more
technical Interventions and Outcomes annotations.
We retained labels from 118 workers for Partici-
pants, the top 67 of whom were invited to continue
on to the following tasks. Of these, 37 continued
to contribute to the project. Several workers pro-
vided ≥ 1,000 annotations and continued to work
on the task over a period of several months.

To produce final per-token labels, we again
turned to aggregation. The subspans annotated
in this second pass were by construction shorter
than the starting spans, and (perhaps as a result)
informal experiments revealed little benefit from
HMMCrowd’s sequential modeling aspect. The
introduction of many label types significantly in-
creased the complexity of the task, resulting in
both lower expert inter-annotator agreement (Ta-
ble 6 and decreased performance when comparing
the crowdsourced labels against those of the ex-
perts (Table 7.

Participants Precision Recall F-1
Majority Vote 0.46 0.58 0.51
Dawid Skene 0.66 0.60 0.63
Interventions Precision Recall F-1
Majority Vote 0.56 0.49 0.52
Dawid Skene 0.56 0.52 0.54
Outcomes Precision Recall F-1
Majority Vote 0.73 0.69 0.71
Dawid Skene 0.73 0.80 0.76

Table 7: Precision, recall, and F-1 for AMT la-
bels against expert labels using different aggrega-
tion strategies.

Most observed token-level disagreements (and
errors, with respect to reference annotations) in-
volve differences in the span lengths demarcated
by individuals. For example, many abstracts con-
tain an information-dense description of the pa-
tient population, focusing on their medical con-
dition but also including information about their
sex and/or age. Workers would also sometimes fail

Figure 3: Confusion matrix for token-level labels
provided by experts.

to capture repeated mentions of the same informa-
tion, producing Type 2 errors more frequently than
Type 1. This tendency can be seen in the overall
token-level confusion matrix for AMT workers on
the Participants task, shown in Figure 3.

In a similar though more benign category of er-
ror, workers differed in the amount of context they
included surrounding each subspan. Although the
instructions asked workers to highlight minimal
subspans, there was variance in what workers con-
sidered relevant.

Precision Recall F-1
Participants 0.39 0.71 0.50
Interventions 0.59 0.60 0.60
Outcomes 0.70 0.68 0.69

Table 8: Statistics for individual AMT annotations
evaluated against the aggregated versions, macro-
averaged over different labels.

For the same reasons mentioned above (lit-
tle pairwise overlap in annotations, high variance
with respect to annotations per worker), quantify-
ing agreement between AMT workers is again dif-
ficult using traditional measures. We thus again
take as a measure of agreement the precision, re-
call, and F-1 of the individual annotations against
the aggregated labels and present the results in Ta-
ble 8.

4.3 Repetition

Medical abstracts often mention the same infor-
mation in multiple places. In particular, interven-
tions and outcomes are typically described at the
beginning of an abstract when introducing the pur-
pose of the underlying study, and then again when
discussing methods and results. It is important to
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Span frequency
Participants AMT Experts
TOTAL 3.45 6.25
Age 0.49 0.66
Condition 1.77 3.69
Gender 0.36 0.34
Sample Size 0.83 1.55
Interventions AMT Experts
TOTAL 6.11 9.31
Behavioral 0.22 0.37
Control 0.83 0.94
Educational 0.04 0.07
No Label 0.00 0.00
Other 0.23 1.12
Pharmacological 3.37 5.19
Physical 0.87 0.88
Psychological 0.29 0.19
Surgical 0.24 0.62
Outcomes AMT Experts
TOTAL 6.36 10.00
Adverse effects 0.45 0.66
Mental 0.69 0.79
Mortality 0.23 0.33
Other 1.77 3.70
Pain 0.18 0.27
Physical 3.03 4.25

Table 9: Average per-document frequency of dif-
ferent label types.

be able to differentiate between novel and reiter-
ated information, especially in cases such as com-
plex interventions, distinct measured outcomes, or
multi-armed trials. Merely identifying all occur-
rences of, for example, a pharmacological inter-
vention leaves ambiguity as to how many distinct
interventions were applied.

Workers identified repeated information as fol-
lows. After completing detailed labeling of ab-
stract spans, they were asked to group together
subspans that were instances of the same informa-
tion (for example, redundant mentions of a partic-
ular drug evaluated as one of the interventions in
the trial). This process produces labels for repeti-
tion between short spans of tokens. Due to the dif-
ferences in the lengths of annotated subspans dis-
cussed in the preceding section, the labels are not
naturally comparable between workers without di-
rectly modeling the entities contained in each sub-
span. The labels assigned by workers produce rep-
etition labels between sets of tokens but a more
sophisticated notion of co-reference is required to
identify which tokens correctly represent the en-
tity contained in the span, and which tokens are
superfluous noise.

As a proxy for formally enumerating these en-
tities, we observe that a large majority of start-

Precision Recall F-1
Participants 0.40 0.77 0.53
Interventions 0.63 0.90 0.74
Outcomes 0.47 0.73 0.57

Table 10: Comparison against the majority vote
for span-level repetition labels.

ing spans only contain a single target relevant
to the subspan labeling task, and so identifying
repetition between the starting spans is sufficient.
For example, consider the starting intervention
span ”underwent conventional total knee arthro-
plasty”; there is only one intervention in the span
but some annotators assigned the SURGICAL label
to all five tokens while others opted for only ”total
knee arthroplasty.” By analyzing repetition at the
level of the starting spans, we can compute agree-
ment without concern for the confounds of slight
misalignments or differences in length of the sub-
spans.

Overall agreement between AMT workers for
span-level repetition, measured by computing pre-
cision and recall against the majority vote for each
pair of spans, is reported in Table 10.

4.4 MeSH Terms

The National Library of Medicine maintains an
extensive hierarchical ontology of medical con-
cepts called Medical Subject Headings (MeSH
terms); this is part of the overarching Metathe-
saurus of the Unified Medical Language System
(UMLS). Personnel at the NLM manually assign
citations (article titles, abstracts and meta-data) in-
dexed in MEDLINE relevant MeSH terms. These
terms have been used extensively to evaluate the
content of articles, and are frequently used to fa-
cilitate document retrieval (Lu et al., 2009; Lowe
and Barnett, 1994).

In the case of randomized controlled trials,
MeSH terms provide structured information re-
garding key aspects of the underlying studies,
ranging from participant demographics to method-
ologies to co-morbidities. A drawback to these an-
notations, however, is that they are applied at the
document (rather than snippet or token) level. To
capture where MeSH terms are instantiated within
a given abstract text, we provided a list of all terms
associated with said article and instructed workers
to select the subset of these that applied to each set
of token labels that they annotated.

MeSH terms are domain specific and many re-
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Figure 4: Histogram of the number of documents
containing each MeSH term.

Inst. Freq 10% 25% 50%
Participants 65 24 7
Interventions 106 68 32
Outcomes 118 108 75

Table 11: The number of common MeSH terms
(out of 135) that were assigned to a span of text in
at least 10%, 25%, and 50% of the possible docu-
ments.

quire a medical background to understand, thus
rendering this facet of the annotation process par-
ticularly difficult for untrained (lay) workers. Per-
haps surprisingly, several AMT workers voluntar-
ily mentioned relevant background training; our
pool of workers included (self-identified) nurses
and other trained medical professionals. A few
workers with such training stated this background
as a reason for their interest in our tasks.

The technical specificity of the more obscure
MeSH terms is also exacerbated by their sparsity.
Of the 6,963 unique MeSH terms occurring in our
set of abstracts, 87% of them are only found in
10 documents or fewer and only 2.0% occur in at
least 1% of the total documents. The full distri-
bution of document frequency for MeSH terms is
show in Figure 4.

To evaluate how often salient MeSH terms were
instantiated in the text by annotators we consider
only the 135 MeSH terms that occur in at least
1% of abstracts (we list these in the supplementary
material). For each term, we calculate its ”instan-
tiation frequency” as the percentage of abstracts
containing the term in which at least one annotator
assigned it to a span of text. The total numbers of
MeSH terms with an instantiation rate above dif-
ferent thresholds for the respective PIO elements
are shown in Table 11.

5 Tasks & Baselines

We outline a few NLP tasks that are central to the
aim of processing medical literature generally and

to aiding practitioners of EBM specifically. First,
we consider the task of identifying spans in ab-
stracts that describe the respective PICO elements
(Section 5.1). This would, e.g., improve medical
literature search and retrieval systems. Next, we
outline the problem of extracting structured infor-
mation from abstracts (Section 5.2). Such mod-
els would further aid search, and might eventually
facilitate automated knowledge-base construction
for the clinical trials literature. Furthermore, au-
tomatic extraction of structured data would enable
automation of the manual evidence synthesis pro-
cess (Marshall et al., 2017).

Finally, we consider the challenging task of
identifying redundant mentions of the same PICO
element (Section 5.3). This happens, e.g., when
an intervention is mentioned by the authors re-
peatedly in an abstract, potentially with different
terms. Achieving such disambiguation is impor-
tant for systems aiming to induce structured repre-
sentations of trials and their results, as this would
require recognizing and normalizing the unique
interventions and outcomes studied in a trial.

For each of these tasks we present baseline
models and corresponding results. Note that we
have pre-defined train, development and test sets
across PIO elements for this corpus, comprising
4300, 500 and 200 abstracts, respectively. The lat-
ter set is annotated by domain experts (i.e., per-
sons with medical training). These splits will, of
course, be distributed along with the dataset to fa-
cilitate model comparisons.

5.1 Identifying P, I and O Spans

We consider two baseline models: a linear Condi-
tional Random Field (CRF) (Lafferty et al., 2001)
and a Long Short-Term Memory (LSTM) neu-
ral tagging model, an LSTM-CRF (Lample et al.,
2016; Ma and Hovy, 2016). In both models, we
treat tokens as being either Inside (I) or Outside
(O) of spans.

For the CRF, features include: indicators for the
current, previous and next words; part of speech
tags inferred using the Stanford CoreNLP tagger
(Manning et al., 2014); and character information,
e.g., whether a token contains digits, uppercase
letters, symbols and so on.

For the neural model, the model induces fea-
tures via a bi-directional LSTM that consumes dis-
tributed vector representations of input tokens se-
quentially. The bi-LSTM yields a hidden vector at
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CRF Precision Recall F-1
Participants 0.55 0.51 0.53
Interventions 0.65 0.21 0.32
Outcomes 0.83 0.17 0.29
LSTM-CRF Precision Recall F-1
Participants 0.78 0.66 0.71
Interventions 0.61 0.70 0.65
Outcomes 0.69 0.58 0.63

Table 12: Baseline models (on the test set) for the
PIO span tagging task.

LogReg Precision Recall F-1
Participants 0.41 0.20 0.26
Interventions 0.79 0.44 0.57
Outcomes 0.24 0.21 0.22
CRF Precision Recall F-1
Participants 0.41 0.25 0.31
Interventions 0.59 0.15 0.21
Outcomes 0.60 0.51 0.55

Table 13: Baseline models for the token-level, de-
tailed labeling task.

each token index, which is then passed to a CRF
layer for prediction. We also exploit character-
level information by passing a bi-LSTM over the
characters comprising each word (Lample et al.,
2016); these are appended to the word embedding
representations before being passed through the
bi-LSTM.

5.2 Extracting Structured Information

Beyond identifying the spans of text containing in-
formation pertinent to each of the PIO elements,
we consider the task of predicting which of the
detailed labels occur in each span, and where they
are located. Specifically, we begin with the start-
ing spans and predict a single label from the cor-
responding PIO hierarchy for each token, evaluat-
ing against the test set of 200 documents. Initial
experiments with neural models proved unfruitful
but bear further investigation.

For the CRF model we include the same fea-
tures as in the previous model, supplemented with
additional features encoding if the adjacent tokens
include any parenthesis or mathematical operators
(specifically: %,+,−). For the logistic regression
model, we use a one-vs-rest approach. Features
include token n-grams, part of speech indicators,
and the same character-level information as in the
CRF model.

5.3 Detecting Repetition

To formalize repetition, we consider every pair of
starting PIO spans from each abstract, and assign

Precision Recall F-1
Participants 0.39 0.52 0.44
Interventions 0.41 0.50 0.45
Outcomes 0.10 0.16 0.12

Table 14: Baseline model for predicting whether
pairs of spans contain redundant information.

binary labels that indicate whether they share at
least one instance of the same information. Al-
though this makes prediction easier for long and
information-dense spans, a large enough majority
of the spans contain only a single instance of rel-
evant information that the task serves as a reason-
able baseline. Again, the model is trained on the
aggregated labels collected from AMT and evalu-
ated against the high-quality test set.

We train a logistic regression model that op-
erates over standard features, including bag-of-
words representations and sentence-level features
such as length and position in the document. All
baseline model implementations are available on
the corpus website.

6 Conclusions

We have presented EBM-NLP: a new, publicly
available corpus comprising 5,000 richly anno-
tated abstracts of articles describing clinical ran-
domized controlled trials. This dataset fills a need
for larger scale corpora to facilitate research on
NLP methods for processing the biomedical liter-
ature, which have the potential to aid the conduct
of EBM. The need for such technologies will only
become more pressing as the literature continues
its torrential growth.

The EBM-NLP corpus, accompanying docu-
mentation, code for working with the data, and
baseline models presented in this work are all
publicly available at: http://www.ccs.neu.
edu/home/bennye/EBM-NLP.
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Abstract

We describe a novel method for efficiently
eliciting scalar annotations for dataset
construction and system quality estima-
tion by human judgments. We contrast di-
rect assessment (annotators assign scores
to items directly), online pairwise rank-
ing aggregation (scores derive from anno-
tator comparison of items), and a hybrid
approach (EASL: Efficient Annotation of
Scalar Labels) proposed here. Our pro-
posal leads to increased correlation with
ground truth, at far greater annotator ef-
ficiency, suggesting this strategy as an im-
proved mechanism for dataset creation and
manual system evaluation.

1 Introduction
We are concerned here with the construction of
datasets and evaluation of systems within natural
language processing (NLP). Specifically, humans
providing responses that are used to derive graded
values on natural language contexts, or in the or-
dering of systems corresponding to their perceived
performance on some task.

Many NLP datasets involve eliciting from an-
notators some graded response. The most pop-
ular annotation scheme is the n-ary ordinal ap-
proach as illustrated in Figure 1(a). For example,
text may be labeled for sentiment as positive, neu-
tral or negative (Wiebe et al., 1999; Pang et al.,
2002; Turney, 2002, inter alia); or under politi-
cal spectrum analysis as liberal, neutral, or con-
servative (O’Connor et al., 2010; Bamman and
Smith, 2015). A response may correspond to a
likelihood judgment, e.g., how likely a predicate
is factive (Lee et al., 2015), or that some natural
language inference may hold (Zhang et al., 2017).
Responses may correspond to a notion of semantic

Direct Assessment

(a) Ordinal

0 0.5 1.0

(b) Scalar

(c) Unbounded
(Gaussian)

(d) Bounded
(Beta)

Online Pairwise Comparison

very 
rare

very
frequent

“dog”
<latexit sha1_base64="Nx3bknXj7znj2B7V4nfpFXhDlAs="></latexit><latexit sha1_base64="Nx3bknXj7znj2B7V4nfpFXhDlAs="></latexit><latexit sha1_base64="Nx3bknXj7znj2B7V4nfpFXhDlAs="></latexit><latexit sha1_base64="C39OhB+IczRcjLNINXH29e9lt8M=">AAAB2HicbZDNSgMxFIXv1L86Vq1rN8EiuCpTN+pOcOOygmML7VAymTttaCYzJHeEMvQFXLhRfDB3vo3pz0KtBwIf5yTk3hMXSloKgi+vtrW9s7tX3/cPGv7h0XGz8WTz0ggMRa5y04+5RSU1hiRJYb8wyLNYYS+e3i3y3jMaK3P9SLMCo4yPtUyl4OSs7qjZCtrBUmwTOmtowVqj5ucwyUWZoSahuLWDTlBQVHFDUiic+8PSYsHFlI9x4FDzDG1ULcecs3PnJCzNjTua2NL9+aLimbWzLHY3M04T+zdbmP9lg5LS66iSuigJtVh9lJaKUc4WO7NEGhSkZg64MNLNysSEGy7INeO7Djp/N96E8LJ90w4eAqjDKZzBBXTgCm7hHroQgoAEXuDNm3iv3vuqqpq37uwEfsn7+Aap5IoM</latexit><latexit sha1_base64="69vOBm8DWjWWG8/c53xOXJRCWfg=">AAACZnicdVHLSgMxFM2Mr1qrVsGNgoYWqQspM4KP7gQ3Lis4tjAd2kyatqGZB8kdsQzzAf6eO7/CjR9g+gJt7YXAybknJzcnfiy4Asv6NMy19Y3Nrdx2fqewu7dfPCi8qCiRlDk0EpFs+kQxwUPmAAfBmrFkJPAFa/jDh3G/8cqk4lH4DKOYeQHph7zHKQFNtYvvLWBvkKatiZUr+76XWlVrUpdLIOt0slXSa8uu3diX9lzajfortYu2lUqWtYvl+R4vg7ltGc2q3i5+tLoRTQIWAhVEKde2YvBSIoFTwbJ8K1EsJnRI+szVMCQBU146GSjD55rp4l4k9QoBT9jfJ1ISKDUKfK0MCAzUYm9M/tdzE+jdeSkP4wRYSKcX9RKBIcLj/HGXS0ZBjDQgVHI9K6YDIgkF/Ut5HYK9+ORl4FxVa1XryUI5dIJK6ALZ6Bbdo0dURw6i6Ms4Mk6NM+PbPDbxNC3TmMV2iP6UWfoBX6SxCg==</latexit><latexit sha1_base64="RX5eSgWIzgnSv7H1r5GjfsuxnLc=">AAACZnicdVHLSgMxFM2Mr1qrjoIbBQ0tUhelzAg+uhPcuKxgbaEd2kyatqGZB8kdsQzzAf6eO7/CjR9g+hJt7YXAybknJzcnXiS4Atv+MMy19Y3Nrcx2die3u7dvHeSeVRhLymo0FKFseEQxwQNWAw6CNSLJiO8JVveG9+N+/YVJxcPgCUYRc33SD3iPUwKaaltvLWCvkCStiVVT9j03scv2pEpLIO100lXSK9upXDslZy7thv2V2kXbYjFN21ZhvsdzNzx3+wEFNKtq23pvdUMa+ywAKohSTceOwE2IBE4FS7OtWLGI0CHps6aGAfGZcpPJQCk+10wX90KpVwB4wv4+kRBfqZHvaaVPYKAWe2Pyv14zht6tm/AgioEFdHpRLxYYQjzOH3e5ZBTESANCJdezYjogklDQv5TVISw9eRnULsuVsv1ooww6QXl0gRx0g+7QA6qiGqLo0zgyTo0z48s8NvE0LdOYxXaI/pSZ/wZ/0rEh</latexit><latexit sha1_base64="S/Z6MZq2Ggn5hi3PzLBOBAJe+Q8="></latexit><latexit sha1_base64="Nx3bknXj7znj2B7V4nfpFXhDlAs="></latexit><latexit sha1_base64="Nx3bknXj7znj2B7V4nfpFXhDlAs="></latexit><latexit sha1_base64="Nx3bknXj7znj2B7V4nfpFXhDlAs="></latexit><latexit sha1_base64="Nx3bknXj7znj2B7V4nfpFXhDlAs="></latexit><latexit sha1_base64="Nx3bknXj7znj2B7V4nfpFXhDlAs="></latexit>

�1
<latexit sha1_base64="W3FOctKGhzom8KqPhzefcKqeing=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQb0VvXisYGyhDWWz3bRLN5uwOxFK6I/w4kHFq//Hm//GbZuDtj4YeLw3w8y8MJXCoOt+O6WV1bX1jfJmZWt7Z3evun/waJJMM+6zRCa6HVLDpVDcR4GSt1PNaRxK3gpHt1O/9cS1EYl6wHHKg5gOlIgEo2il1llXqAjHvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGfnTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugpyodIMuWLzRVEmCSZk+jvpC80ZyrEllGlhbyVsSDVlaBOq2BC8xZeXiX9ev6679xe1xk2RRhmO4BhOwYNLaMAdNMEHBiN4hld4c1LnxXl3PuatJaeYOYQ/cD5/AJgyj0Y=</latexit><latexit sha1_base64="W3FOctKGhzom8KqPhzefcKqeing=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQb0VvXisYGyhDWWz3bRLN5uwOxFK6I/w4kHFq//Hm//GbZuDtj4YeLw3w8y8MJXCoOt+O6WV1bX1jfJmZWt7Z3evun/waJJMM+6zRCa6HVLDpVDcR4GSt1PNaRxK3gpHt1O/9cS1EYl6wHHKg5gOlIgEo2il1llXqAjHvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGfnTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugpyodIMuWLzRVEmCSZk+jvpC80ZyrEllGlhbyVsSDVlaBOq2BC8xZeXiX9ev6679xe1xk2RRhmO4BhOwYNLaMAdNMEHBiN4hld4c1LnxXl3PuatJaeYOYQ/cD5/AJgyj0Y=</latexit><latexit sha1_base64="W3FOctKGhzom8KqPhzefcKqeing=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQb0VvXisYGyhDWWz3bRLN5uwOxFK6I/w4kHFq//Hm//GbZuDtj4YeLw3w8y8MJXCoOt+O6WV1bX1jfJmZWt7Z3evun/waJJMM+6zRCa6HVLDpVDcR4GSt1PNaRxK3gpHt1O/9cS1EYl6wHHKg5gOlIgEo2il1llXqAjHvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGfnTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugpyodIMuWLzRVEmCSZk+jvpC80ZyrEllGlhbyVsSDVlaBOq2BC8xZeXiX9ev6679xe1xk2RRhmO4BhOwYNLaMAdNMEHBiN4hld4c1LnxXl3PuatJaeYOYQ/cD5/AJgyj0Y=</latexit>

1
<latexit sha1_base64="LzzEZ9jowvLSL2VWrVwNnoLZ648=">AAAB7HicbVBNS8NAEJ34WetX1aOXYBE8lUQE9Vb04rGCaQttKJvtpl272Q27E6GE/gcvHlS8+oO8+W/ctjlo64OBx3szzMyLUsENet63s7K6tr6xWdoqb+/s7u1XDg6bRmWasoAqoXQ7IoYJLlmAHAVrp5qRJBKsFY1up37riWnDlXzAccrChAwkjzklaKVml8sYx71K1at5M7jLxC9IFQo0epWvbl/RLGESqSDGdHwvxTAnGjkVbFLuZoalhI7IgHUslSRhJsxn107cU6v03VhpWxLdmfp7IieJMeMksp0JwaFZ9Kbif14nw/gqzLlMM2SSzhfFmXBRudPX3T7XjKIYW0Ko5vZWlw6JJhRtQGUbgr/48jIJzmvXNe/+olq/KdIowTGcwBn4cAl1uIMGBEDhEZ7hFd4c5bw4787HvHXFKWaO4A+czx8uMI8P</latexit><latexit sha1_base64="LzzEZ9jowvLSL2VWrVwNnoLZ648=">AAAB7HicbVBNS8NAEJ34WetX1aOXYBE8lUQE9Vb04rGCaQttKJvtpl272Q27E6GE/gcvHlS8+oO8+W/ctjlo64OBx3szzMyLUsENet63s7K6tr6xWdoqb+/s7u1XDg6bRmWasoAqoXQ7IoYJLlmAHAVrp5qRJBKsFY1up37riWnDlXzAccrChAwkjzklaKVml8sYx71K1at5M7jLxC9IFQo0epWvbl/RLGESqSDGdHwvxTAnGjkVbFLuZoalhI7IgHUslSRhJsxn107cU6v03VhpWxLdmfp7IieJMeMksp0JwaFZ9Kbif14nw/gqzLlMM2SSzhfFmXBRudPX3T7XjKIYW0Ko5vZWlw6JJhRtQGUbgr/48jIJzmvXNe/+olq/KdIowTGcwBn4cAl1uIMGBEDhEZ7hFd4c5bw4787HvHXFKWaO4A+czx8uMI8P</latexit><latexit sha1_base64="LzzEZ9jowvLSL2VWrVwNnoLZ648=">AAAB7HicbVBNS8NAEJ34WetX1aOXYBE8lUQE9Vb04rGCaQttKJvtpl272Q27E6GE/gcvHlS8+oO8+W/ctjlo64OBx3szzMyLUsENet63s7K6tr6xWdoqb+/s7u1XDg6bRmWasoAqoXQ7IoYJLlmAHAVrp5qRJBKsFY1up37riWnDlXzAccrChAwkjzklaKVml8sYx71K1at5M7jLxC9IFQo0epWvbl/RLGESqSDGdHwvxTAnGjkVbFLuZoalhI7IgHUslSRhJsxn107cU6v03VhpWxLdmfp7IieJMeMksp0JwaFZ9Kbif14nw/gqzLlMM2SSzhfFmXBRudPX3T7XjKIYW0Ko5vZWlw6JJhRtQGUbgr/48jIJzmvXNe/+olq/KdIowTGcwBn4cAl1uIMGBEDhEZ7hFd4c5bw4787HvHXFKWaO4A+czx8uMI8P</latexit>

“burrito” � “dog”
<latexit sha1_base64="iw3k6BTFNkiPgEA5tkYxe6F9ki8="></latexit><latexit sha1_base64="iw3k6BTFNkiPgEA5tkYxe6F9ki8="></latexit><latexit sha1_base64="iw3k6BTFNkiPgEA5tkYxe6F9ki8="></latexit>

Figure 1: Elicitation strategies for graded response include
direct assessment via ordinal or scalar judgments, and pair-
wise comparisons aggregated via an assumption of latent dis-
tributions such as Gaussians, or novel here: Beta distribu-
tions, providing bounded support. The example concerns
subjective assessments of the lexical frequency of dog. In
pairwise comparison, we assess it by comparison such as
“burrito” is less frequent (≺) than “dog”.

similarity, e.g., whether one word can be substi-
tuted for another in context (Pavlick et al., 2015),
or whether an entire sentence is more or less simi-
lar than another (Marelli et al., 2014), and so on.

Less common in NLP are system comparisons
based on direct human ratings, but an exception
includes the annual shared task evaluations of
the Conference on Machine Translation (WMT).
There, MT practitioners submit system outputs
based on a shared set of source sentences, which
are then judged relative to other system out-
puts. Various aggregation strategies have been em-
ployed over the years to take these relative com-
parisons and derive competitive rankings between
shared task entrants (Callison-Burch et al., 2012;
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Bojar et al., 2013, 2014, 2015, 2016, 2017).
Inspired by prior work in MT system evalua-

tion, we propose a procedure for eliciting graded
responses that we demonstrate to be more efficient
than prior work. While remaining applicable to
system evaluation, our experimental results sug-
gest our approach as a more general framework
for a variety of future data creation tasks, allowing
for higher quality data in less time and cost.

We consider three different approaches for
scalar annotation: direct assessment (DA), online
pairwise ranking aggregation (RA), and a hybrid
method which we call EASL (Efficient Annotation
of Scalar Labels).1 DA scalar annotation, shown
in Figure 1(b), directly annotates absolute judg-
ments on some scale (e.g., 0 to 100), indepen-
dently per item (§2). As an RA approach (§3), we
start with conventional unbounded models, where
each instance is parameterized as a Gaussian dis-
tribution, as shown in Figure 1(c). Since bounded-
ness is essential for the scalar annotation we aim
to model, we propose a bounded variant which pa-
rameterizes each instance by a beta distribution
as illustrated in Figure 1(d). Finally, we propose
EASL (§4) that combines benefits of DA and RA.

We illustrate the improvements enabled by our
proposal on three example tasks (§5): lexical fre-
quency inference, political spectrum inference and
machine translation system ranking.2 For exam-
ple, we find that in the commonly employed condi-
tion of 3-way redundant annotation, our approach
on multiple tasks gives similar quality with just 2-
way redundancy: this translates to a potential 50%
increase in dataset size for the same cost.

2 Direct Assessment
Direct assessment or direct annotation (DA) is a
straightforward method for collecting graded re-
sponse from annotators. The most popular scheme
is n-ary ordinal labeling, as illustrated in Fig-
ure 1(a), where annotators are shown one instance
(i.e., sample point) and asked to label one of the
n-ary ordered classes.

According to the level of measurement in psy-
chometrics (Stevens, 1946, inter alia), which clas-
sifies the numerals based on certain properties
(e.g., identity, order, quantity), ordinal data do not
allow for degree of difference. Namely, there is
no guarantee that the distance between each label

1Pronounced as “easel”.
2We release the code at http://decomp.net/.

is equal, and instances in the same class are not
discriminated. For example, in a typical five-level
Likert scale (Likert, 1932) of likelihood – very un-
likely, unlikely, unsure, likely, very likely – we
cannot conclude that very likely instances are ex-
actly twice as likely those marked likely, nor can
we assume two instances with the same label have
exactly the same likelihood.

The issue of distance between ordinals is per-
haps obviated by using scalar annotations (i.e.,
ratio scale in Stevens’s terminology), which di-
rectly correspond to continuous quantities (Fig-
ure 1(b)). In scalar DA,3 each instance in the col-
lection (Si ∈ SN1 ) is annotated with values (e.g.,
on the range 0 to 100) often by several annota-
tors. The notion of quantitative difference is en-
abled by the property of absolute zero: the scale
is bounded. For example, distance, length, mass,
size etc. are represented by this scale. In the an-
nual shared task evaluation of the WMT, DA has
been used for scoring adequacy and fluency of ma-
chine learning system outputs with human evalua-
tion (Graham et al., 2013, 2014; Bojar et al., 2016,
2017), and has separately been used in creating
datasets such as for factuality (Lee et al., 2015).

Why perhaps obviated? Because of two con-
cerns: (1) annotators may not have a pre-existing,
well-calibrated scale for performing DA on a par-
ticular collection according to a particular task;4

and (2) it is known that people may be biased
in their scalar estimates (Tversky and Kahneman,
1974). Regarding (1), this motivates us to consider
RA on the intuition that annotators may give more
calibrated responses when performed in the con-
text of other elements. Regarding (2), our goal is
not to correct for human bias, but simply to more
efficiently converge to the same consensus judg-
ments already being pursued by the community in
their annotation protocols, biased or otherwise.5

3 Online Pairwise Ranking Aggregation

3.1 Unbounded Model
Pairwise ranking aggregation (Thurstone, 1927) is
a method to obtain a total ranking on instances,

3In the rest of the paper, we take DA to mean scalar an-
notation rather than ordinals.

4E.g., try to imagine your level of calibration to a hypo-
thetical task described as ”On a scale of 1 to 100, label this
tweet according to a conservative / liberal political spectrum.”

5There has been a line of work on relative weighting of
annotators, based on their agreement with others (Whitehill
et al., 2009; Welinder et al., 2010; Hovy et al., 2013). In this
paper, however, we do not perform such annotator weighting.
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assuming that scalar value for each sample point
follows a Gaussian distribution, N (µi, σ

2). The
parameters {µi} are interpreted as mean scalar an-
notation.6

Given the parameters, the probability that Si is
preferred (�) over Sj is defined as

p(Si � Sj) = Φ

(
µi − µj√

2σ

)
, (1)

where Φ(·) is the cumulative distribution function
of the standard normal distribution. The objective
of pairwise ranking aggregation (including all the
following models) is formulated as a maximum
log-likelihood estimation:

max
{SN1 }

∑

Si,Sj∈{SN1 }
log p(Si � Sj). (2)

TrueSkillTM (Herbrich et al., 2006) extends the
Thurstone model by applying a Bayesian online
and active learning framework, allowing for ties.
TrueSkill has been used in the Xbox Live online
gaming community,7 and has been applied for var-
ious NLP tasks, such as question difficulty esti-
mation (Liu et al., 2013), ranking speech qual-
ity (Baumann, 2017), and ranking machine trans-
lation and grammatical error correction systems
with human evaluation (Bojar et al., 2014, 2015;
Sakaguchi et al., 2014, 2016)

In the same way as the Thurstone model,
TrueSkill assumes that scalar values for each in-
stance Si (i.e., skill level for each player in the
context of TrueSkill) follow a Gaussian distribu-
tion N (µi, σ

2
i ), where σi is also parameterized as

the uncertainty of the scalar value for each in-
stance. Importantly, TrueSkill uses a Bayesian on-
line learning scheme, and the parameters are iter-
atively updated after each observation of pairwise
comparison (i.e., game result: win (�), tie (≡), or
loss (≺)) in proportion to how surprising the out-
come is. Let ti�j = µi − µj , the difference in
scalar responses (skill levels) when we observe i
wins j, and ε > 0 be a parameter to specify the
tie rate. The update functions are formulated as
follows:

µi = µi +
σ2i
c
· v
(
t

c
,
ε

c

)
(3)

µj = µj −
σ2j
c
· v
(
t

c
,
ε

c

)
, (4)

6Thurstone and another popular ranking method by Elo
(1978) use a fixed σ for all instances.

7www.xbox.com/live/
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Figure 2: Surprisal of the outcome for µ and σ2 (ε = 0.5).

where c2 = 2γ2+σ2i +σ2j , and v are multiplicative
factors that affect the amount of change (surprisal
of the outcome) in µ. In the accumulation of the
variances (c2), another free parameter called “skill
chain”, γ, indicates the width (or difference) of
skill levels that two given players have 0.8 (80%)
probability of win/lose. The multiplicative factor
depends on the observation (wins or ties):

vi�j(t, ε) =
ϕ(−ε+ t)

Φ(−ε+ t)
, (5)

vi≡j(t, ε) =
ϕ(−ε− t)− ϕ(ε− t)
Φ(ε− t)− Φ(−ε− t) , (6)

where ϕ(·) is the probability density function of
the standard normal distribution. As shown in Fig-
ure 2 (a) and (b), vi�j increases exponentially as
t becomes smaller (i.e., the observation is unex-
pected), whereas vi≡j becomes close to zero when
|t| is close to zero. In short, v becomes larger as
the outcome is more surprising.

In order to update variance (σ2), another set of
update functions is used:

σ2i = σ2i ·
[
1− σ2i

c2
· w
(
t

c
,
ε

c

)]
(7)

σ2j = σ2j ·
[

1−
σ2j
c2
· w
(
t

c
,
ε

c

)]
, (8)
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where w serve as multiplicative factors that affect
the amount of change in σ2.

wi�j(t, ε) = vi�j · (vi�j + t− ε) (9)

wi≡j(t, ε) = v2i≡j +
(ε− t) · ϕ(ε− t) + (ε+ t) · ϕ(ε+ t)

Φ(ε− t)− Φ(−ε− t) .

(10)

As shown in Figure 2 (c) and (d), the value of w is
between 0 and 1. The underlying idea for the vari-
ance updates is that these updates always decrease
the size of the variances σ2, which means uncer-
tainty of the instances (Si, Sj) always decreases as
we observe more pairwise comparisons. In other
words, TrueSkill becomes more confident in the
current estimate of µi and µj . Further details are
provided by Herbrich et al. (2006).8

Another important property of TrueSkill is
“match quality (chance to draw)”. The match
quality helps selecting competitive players to
make games more interesting. More broadly, the
match quality enables us to choose similar in-
stances to be compared to maximize the informa-
tion gain from pairwise comparisons, as in the ac-
tive learning literature (Settles et al., 2008). The
match quality between two instances (players) is
computed as follows:

q(γ, Si, Sj) :=

√
2γ2

c2
exp

(
− (µi − µj)

2

2c2

)
(11)

Intuitively, the match quality is based on the differ-
ence µi − µj . As the difference becomes smaller,
the match quality goes higher, and vice versa.

As mentioned, TrueSkill has been used for NLP
tasks to infer continuous values for instances.
However, it is important to note that the support
of a Gaussian distribution is unbounded, namely
R = (−∞,∞). This does not satisfy the property
of absolute zero of scalar annotation in the level of
measurement (§2). It becomes problematic when
it comes to annotating a scalar (continuous) value
for extremes such as extremely positive or nega-
tive sentiments. We address this issue by propos-
ing a novel variant of TrueSkill in the next section.

3.2 Bounded Variant

TrueSkill can induce a continuous spectrum of in-
stances (such as skill level of game players) by

8The following material is also useful to understand
the math behind TrueSkill (http://www.moserware.
com/assets/computing-your-skill/The%
20Math%20Behind%20TrueSkill.pdf).

assuming that each instance is represented as a
Gaussian distribution. However, the Gaussian dis-
tribution has unbounded support, namely R =
(−∞,∞), which does not satisfy the property of
absolute bounds for appropriate scalar annotation
(i.e., ratio scale in the level of measurement).

Thus, we propose a variant of TrueSkill by
changing the latent distribution from a Gaussian
to a beta, using a heuristic algorithm based on
TrueSkill for inference. The Beta distribution has
natural [0, 1] upper and lower bounds and a simple
parameterization: Si ∼ Bi(αi, βi). We choose the
scalar response as the mode M[Si] of the distribu-
tion and the variance as uncertainty:9

Mi =
αi − 1

αi + βi − 2
(12)

Vari = σ2i =
αiβi

(αi + βi)2(αi + βi + 1)
(13)

As in TrueSkill, we iteratively update param-
eters of instances B(α, β) according to each ob-
servation and how it is surprising. Similarly to
Eqns. (3) and (4), we choose the update functions
as follows;10 first, in case that an annotator judged
that Si is preferred to Sj (Si � Sj),

αi = αi +
σ2i
c
· (1− pi�j) (14)

βj = βj +
σ2j
c
· (1− pj≺i) (15)

in case of ties with |D| > ε and Mi >Mj ,

αj = αj +
σ2j
c
· (1− pi≡j) (16)

βi = βi +
σ2i
c
· (1− pi≡j) (17)

and in case of ties with |D| 6 ε, for both Si, Sj ,

αi,j = αi,j +
σ2i,j
c
· (1− pi≡j) (18)

βi,j = βi,j +
σ2i,j
c
· (1− pi≡j). (19)

9We may have instead used the mean (E[Si] = αi
αi+βi

)
of the distribution, where in a beta (α, β > 1) the mean is
always closer to 0.5 than the mode, whereas mean and mode
are always the same in a Gaussian distribution. The mode
was selected owing to better performance in development.

10There may be other potential update (and surprisal) func-
tions such as − log p, instead of 1 − p. As in our use of the
mode rather than mean as scalar response, we empirically de-
veloped our update functions with respect to annotation effi-
ciency observed through experimentation (§ 5).
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Figure 3: Surprisal of the outcome for the bounded variant
(ε = 0.5).

Regarding the probability of pairwise comparison
between instances, we follow Bradley and Terry
(1952) and Rao and Kupper (1967) to describe the
chance of win, tie, or loss, as follows:

p(Si � Sj) = p(D > ε) =
πi

πi + θπj
(20)

p(Si ≺ Sj) = p(D < −ε) =
πj

θπi + πj
(21)

p(Si ≡ Sj) = p(|D| 6 ε) =
(θ2 − 1)πiπj

(πi + θπj)(θπi + πj)

(22)

where D = Mi − Mj , ε > 0 is a parameter to
specify the tie rate, θ = exp (ε), and π is an expo-
nential score function of S; πi = exp(Mi).

It is important to note that α and β never de-
crease (because 1 − p ≥ 0 as shown Figure 3),
which satisfies the property that variance (uncer-
tainty) always decreases as we observe more judg-
ments, as seen in TrueSkill (§3.1). In addition,
we do not need individual update functions for µ
and σ2, since the mode and variance in beta dis-
tribution depend on two shared parameters α, β
(Eqns. 12 and 13).

Regarding match quality, we use the same for-
mulation as the TrueSkill (Eqn. 11), except that the
bounded model uses M instead of µ:

q(γ, Si, Sj) =

√
2γ2

c2
exp

(
− (Mi −Mj)

2

2c2

)
(23)

4 Efficient Annotation of Scalar Labels

In the previous section, we propose a bounded
online ranking aggregation model for scalar an-
notation. However, the amount of update by a
pairwise judgment depends only on the distance
between instances, not on the distance from the
bounds (i.e., 0 and 1). To integrate this prop-
erty into the online ranking aggregation model,

Select Update
0 0.5 1.0

Si
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si
<latexit sha1_base64="SvlfVCVJhDjhE9FQnoYm58bFYww=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpwfRF3616NW8Oskr8glShQKPvfvUGCctirpBJakzX91IMcqpRMMmnlV5meErZmA5511JFY26CfH7qlJxZZUCiRNtSSObq74mcxsZM4tB2xhRHZtmbif953Qyj6yAXKs2QK7ZYFGWSYEJmf5OB0JyhnFhCmRb2VsJGVFOGNp2KDcFffnmVtC5qvlfz7y+r9ZsijjKcwCmcgw9XUIc7aEATGAzhGV7hzZHOi/PufCxaS04xcwx/4Hz+AFjyjdM=</latexit><latexit sha1_base64="SvlfVCVJhDjhE9FQnoYm58bFYww=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpwfRF3616NW8Oskr8glShQKPvfvUGCctirpBJakzX91IMcqpRMMmnlV5meErZmA5511JFY26CfH7qlJxZZUCiRNtSSObq74mcxsZM4tB2xhRHZtmbif953Qyj6yAXKs2QK7ZYFGWSYEJmf5OB0JyhnFhCmRb2VsJGVFOGNp2KDcFffnmVtC5qvlfz7y+r9ZsijjKcwCmcgw9XUIc7aEATGAzhGV7hzZHOi/PufCxaS04xcwx/4Hz+AFjyjdM=</latexit><latexit sha1_base64="SvlfVCVJhDjhE9FQnoYm58bFYww=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpwfRF3616NW8Oskr8glShQKPvfvUGCctirpBJakzX91IMcqpRMMmnlV5meErZmA5511JFY26CfH7qlJxZZUCiRNtSSObq74mcxsZM4tB2xhRHZtmbif953Qyj6yAXKs2QK7ZYFGWSYEJmf5OB0JyhnFhCmRb2VsJGVFOGNp2KDcFffnmVtC5qvlfz7y+r9ZsijjKcwCmcgw9XUIc7aEATGAzhGV7hzZHOi/PufCxaS04xcwx/4Hz+AFjyjdM=</latexit><latexit sha1_base64="SvlfVCVJhDjhE9FQnoYm58bFYww=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpwfRF3616NW8Oskr8glShQKPvfvUGCctirpBJakzX91IMcqpRMMmnlV5meErZmA5511JFY26CfH7qlJxZZUCiRNtSSObq74mcxsZM4tB2xhRHZtmbif953Qyj6yAXKs2QK7ZYFGWSYEJmf5OB0JyhnFhCmRb2VsJGVFOGNp2KDcFffnmVtC5qvlfz7y+r9ZsijjKcwCmcgw9XUIc7aEATGAzhGV7hzZHOi/PufCxaS04xcwx/4Hz+AFjyjdM=</latexit>

sj
<latexit sha1_base64="Jptagc36AA9ZYk3FYwVaai8xTh4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3btZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3n1BpHssHM0nQj+hQ8pAzaqx0r/uP/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeOVnXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVc+teneXlfp1HkcRTuAUzsGDGtThFhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP1p2jdQ=</latexit><latexit sha1_base64="Jptagc36AA9ZYk3FYwVaai8xTh4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3btZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3n1BpHssHM0nQj+hQ8pAzaqx0r/uP/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeOVnXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVc+teneXlfp1HkcRTuAUzsGDGtThFhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP1p2jdQ=</latexit><latexit sha1_base64="Jptagc36AA9ZYk3FYwVaai8xTh4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3btZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3n1BpHssHM0nQj+hQ8pAzaqx0r/uP/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeOVnXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVc+teneXlfp1HkcRTuAUzsGDGtThFhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP1p2jdQ=</latexit><latexit sha1_base64="Jptagc36AA9ZYk3FYwVaai8xTh4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3btZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3n1BpHssHM0nQj+hQ8pAzaqx0r/uP/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeOVnXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVc+teneXlfp1HkcRTuAUzsGDGtThFhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP1p2jdQ=</latexit>

: 0
<latexit sha1_base64="D0FGQE6FBQJNuSufyG9qkORfjp0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWerh2++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH/YfjPg=</latexit><latexit sha1_base64="D0FGQE6FBQJNuSufyG9qkORfjp0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWerh2++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH/YfjPg=</latexit><latexit sha1_base64="D0FGQE6FBQJNuSufyG9qkORfjp0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWerh2++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH/YfjPg=</latexit><latexit sha1_base64="D0FGQE6FBQJNuSufyG9qkORfjp0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWerh2++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH/YfjPg=</latexit>

: 0
<latexit sha1_base64="D0FGQE6FBQJNuSufyG9qkORfjp0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWerh2++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH/YfjPg=</latexit><latexit sha1_base64="D0FGQE6FBQJNuSufyG9qkORfjp0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWerh2++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH/YfjPg=</latexit><latexit sha1_base64="D0FGQE6FBQJNuSufyG9qkORfjp0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWerh2++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH/YfjPg=</latexit><latexit sha1_base64="D0FGQE6FBQJNuSufyG9qkORfjp0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWerh2++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH/YfjPg=</latexit>

1<latexit sha1_base64="l9eImvYcFOKpzEDji/n9jPDeWb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8Aep2MtQ==</latexit><latexit sha1_base64="l9eImvYcFOKpzEDji/n9jPDeWb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8Aep2MtQ==</latexit><latexit sha1_base64="l9eImvYcFOKpzEDji/n9jPDeWb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8Aep2MtQ==</latexit><latexit sha1_base64="l9eImvYcFOKpzEDji/n9jPDeWb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8Aep2MtQ==</latexit>
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Figure 4: Illustrative example of the EASL protocol. Each
instance is represented as a beta distribution. Instances are
chosen to annotate according to the variance and match qual-
ity, and the parameters are updated iteratively.

we propose EASL (Efficient Annotation of Scalar
Labels) that combines benefits from both direct as-
sessment (DA) and bounded online ranking aggre-
gation model (RA).11

Similarly to RA, EASL parameterizes each in-
stance by a beta distribution (Eqns. 12 and 13),
and the parameters are inferred using a compu-
tationally efficient and easy-to-implement heuris-
tic. The difference from RA is the type of annota-
tion. While we ask for discrete pairwise judgment
(�,≺,≡) between Si and Sj in RA, here we di-
rectly ask for scalar values for them (denoted as si
and sj) as in DA. Thus, given an annotated score
si which is normalized between [0,1], we change
the update functions as follows:

αi = αi + si (24)

βi = βi + (1− si) (25)

This procedure may look similar to DA, where
si is simply accumulated and averaged at the end.
However, there are two differences. First, as illus-
trated in Figure 4, EASL parameterizes each in-
stance as a probability distribution while DA does
not. Second, DA elicits annotations independently
per element, whereas EASL elicits annotations on
elements in the context of other elements selected
jointly according to match quality.

Further, DA generally uses a batch style annota-
tion scheme, where the number of annotations per
instance is independent from the latent scalar val-
ues. On the other hand, EASL uses online learn-
ing, which impacts the calculation of match qual-
ity. This allows us to choose instances to annotate

11 Novikova et al. (2018) recently proposed a similar ap-
proach named RankME, which is a variant of DA with com-
paring multiple instances at a time. It can also be regarded
as a batch-learning variant of EASL without probabilistic pa-
rameterization.
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Figure 5: Example of partial ranking with scalars (HITS)

by order of uncertainty for each instance, and as
in RA, the match quality (Eqn. 23) enables us to
consider similar instances in the same context.

5 Experiments

To compare different annotation methods, we con-
duct three experiments: (1) lexical frequency in-
ference, (2) political spectrum inference, and (3)
human evaluation for machine translation systems.

In all experiments, data collection is conducted
through Amazon Mechanical Turk (AMT). We ask
annotators who meet the following minimum re-
quirements:12 living in the US, overall approval
rate > 98%, and number of tasks approved > 500.

The experimental setting for DA is straightfor-
ward. We ask annotators to annotate a scalar value
for each instance, one item at a time. We collect
ten annotations for each instance to see the relation
between the number of annotations and accuracy
(i.e., correlation).

To set up the online update in RA and EASL,
we use a partial ranking framework with scalars,
where annotators are asked to rank and score n
instances at one time as illustrated in Figure 5. In
all three experiments, we fix n = 5. The partial
ranking yields

(
n
2

)
pairwise comparisons for RA

and n scalar values for EASL.13 It is important to
note that we can simultaneously retrieve pairwise

12In all experiments, we set the reward of single instance
to be $0.01 (i.e., $0.05 in RA and EASL). This is $8/hour, as-
suming that annotating one instance takes five seconds. Prior
to annotation, we run a pilot to make sure that the participants
understand the task correctly and the instructions are clear.

13The partial ranking can be regarded as mini-batching.

Algorithm 1: Online pairwise ranking aggre-
gation with bounded support.

Input: Instances {SN1 }
Output: Updated instances {SN1 }
/* Initialize params */

1 (αi, βi)∈S = (αinit
i , β

init
i )

/* Update S over iterations */
2 foreach iteration do
3 HITS = SampleByMatchQuality(S,N, n)
4 A = Annotate(HITS)
5 for obs ∈ A do // Update S
6 i, j, d = parseObservation(obs)
7 αi,j , βi,j = update(i, j, d)
8 return S
9 Function SampleByMatchQuality(S,N, n)

10 k = N/n
11 descendingSort(S, key=Var[S])
12 S′ = top-k instances of S
13 HITS = []
14 foreach Si ∈ S′ do
15 m = []
16 foreach Sj ∈ S/S′ do
17 m.append([matchQuality(Si, Sj), j])
18 p = normalize(m)
19 S̃ = sampling n-1 items by p
20 HITS.append([Si, S̃])
21 return HITS

judgments (�,≺,≡) as well as scalar values from
this format.

In each iteration, n instances are selected by
variance and match quality. We first select top
k (= N/n) instances according to the variance,
and for each selected instance we choose the other
n − 1 instances to be compared based on match
quality. This approach has been used in the NLP
community in tasks such as for assessing machine
translation quality (Bojar et al., 2014; Sakaguchi
et al., 2014; Bojar et al., 2015, 2016) to collect
pairwise judgments efficiently. The detailed pro-
cedure of iterative parameter updates in the RA
and EASL is described in Algorithm 1. As men-
tioned in Section 4, the main difference between
RA and EASL is the update functions (line 7).

Model hyper-parameters in RA and EASL are
set as follows; each instance is initialized as
αinit
i = 1.0, βinit

i = 1.0. The skill chain param-
eter γ and tie-rate parameter ε are set to be 0.1.14

5.1 Lexical Frequency Inference

In the first experiment, we compare the three
scalar annotation approaches on lexical frequency
inference, in which we ask annotators to judge fre-
quency (from very rare to very frequent) of verbs

14We explored the hyper-parameters γ, ε in a pilot task.
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Figure 6: Spearman’s (top) and Pearson’s (bottom) correla-
tions with three difference methods on lexical frequency in-
ference annotation: direct assessment (DA), online ranking
aggregation (RA), and EASL. The shade for each line indi-
cates 95% confidence intervals by bootstrap resampling (run-
ning 100 times).

that are randomly selected from the corpus of Con-
temporary American English (COCA)15. We in-
clude this task for evaluation owing to its non-
subjective ground truth (relative corpus frequency)
which can be used as an oracle response we would
like to maximally correlate with.16

We randomly select 150 verbs from COCA; the
log frequency (log10) is regarded as the oracle.
In DA, each instance is annotated by 10 differ-
ent annotators.17 In the RA and EASL, annota-
tors are asked to rank/score five verbs for each HIT
(n = 5). Each iteration contains 20 HITS and we
run 10 iterations, which means that total number of
annotations is the same in DA, RA, and EASL.18

Figure 6 presents Spearman’s and Pearson’s
correlations, indicating how accurately each an-
notation method obtains scalar values for each in-
stance. Overall, in all three methods, the correla-
tions are increased as more annotations are made.
The result also shows that RA and EASL ap-

15https://www.wordfrequency.info/
16Lexical frequency inference is an established experiment

in (computational) psycholinguistics. E.g., human behavioral
measures have been compared with predictability and bias in
various corpora (Balota et al., 1999; Fine et al., 2014).

17The agreement rate in DA (10 annotators) is 0.37 in
Spearman’s ρ. Considering the difficulty of ranking 150
verbs, this rate is fair.

18Technically, the number of annotations per instance vary
in RA and EASL, because they choose instances by match
quality at each iteration.
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Figure 7: Histograms of scalar values on lexical frequency
obtained by each annotation scheme (direct assessment (DA),
online ranking aggregation (RA), and EASL), and the ora-
cle. The scalar annotations are put into five bins to see the
overall distribution. The scalar in the oracle is normalized as
log10(frequency(Si)) / max log10(frequency(S)).

(a) Iter 0 (b) Iter 3 (c) Iter 6 (d) Iter 9

Figure 8: Heatmaps of match quality distribution across
the cross-product of instances ordered by the oracle (i.e.,
log10(frequency)).

proaches achieve high correlation more efficiently
than DA. The gain of efficiency from DA to EASL
is about 50%; two iterations in EASL achieves a
close Spearman’s ρ to three annotators in DA.

Figure 7 presents the results of the final scalar
values that each method annotated. The distri-
bution of the histograms shows that overall three
methods successfully capture the latent distribu-
tion of scalar values in the data.

Figure 8 shows a dynamic change of match
quality. In the beginning (iteration 0), all the in-
stances are equally competitive because we have
no information about them and initialize them with
the same parameters. As iterations go on, the
instances along the diagonal have higher match
quality, indicating that competitive matches are
more likely to be selected for a next iteration. In
other words, match-quality helps to choose infor-
mative pairs to compare at each iteration, which
reduces the number of less informative annota-
tions (e.g., a pairwise comparison between the
highest and lowest instances).
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Figure 9: Spearman’s (top) and Pearson’s (bottom) correla-
tions with three difference methods on political spectrum an-
notation: direct assessment (DA), online ranking aggregation
(RA), and EASL

5.2 Political Spectrum Inference
In the second experiment, we compare the three
scalar annotation methods for political spectrum
inference. We use the Fine-Grained Political
Statements dataset (Bamman and Smith, 2015),
which consists of 766 propositions collected from
political blog comments, paired with judgments
about the political belief of the statement (or the
person who would say it) based on the five ordi-
nals: very conservative (-2), slightly conservative
(-1), neutral (0), slightly liberal (1), and very lib-
eral (2). We normalize the ordinal scores between
0 and 1. The dataset contains the mean scores by
aggregating 7 annotations for each proposition.19

We randomly choose 150 political propositions
from the dataset (see the histogram in Figure 10
oracle).20 The experimental setting (i.e., the num-
ber of annotations per instance, the number of iter-
ations, and the number of HITS in each iteration)
is the same as the lexical frequency inference ex-
periment (§5.1).

Figure 9 shows Spearman’s and Pearson’s cor-
relations to the oracle by each method. Overall, all
the three methods achieve strong correlation above

19We stress that the oracle here derives from subjective an-
notations: it does not necessarily reflect the true latent scalar
values for each instance. However, in this experiment, we use
them as a tentative oracle to compare three scalar annotation
methods objectively.

20The agreement rate in DA (among 10 annotators) is 0.67
in Spearman’s ρ. This is significantly high, considering the
difficulty of ranking 150 instances in order.
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Figure 10: Histograms of scalar values on political spectrum
obtained by each annotation scheme (DA, RA, EASL) and
the oracle. Scalars are put into five bins to see the overall
distribution.

Propositions Gold DA RA EASL

the republicans are useless 100 91.7 75.8 91.9
obama is right 92.9 90.1 74.6 90.0
hillary will win 78.6 86.3 72.9 86.4
aca is a success 75.0 78.2 68.3 77.3
harry reid is a democrat 53.6 55.5 55.8 55.9
ebola is a virus 50.0 53.0 53.8 53.5
cruz is eligible 32.2 31.0 44.0 31.4
global warming is a religion 28.6 22.4 37.3 23.0
bush kept us safe 10.7 9.6 31.5 9.6
democrats are corrupt 0.0 7.1 29.9 7.4

Table 1: Example propositions and the scalar political spec-
trum ranged between 0 (very conservative) and 100 (very lib-
eral) by each approach: direct assessment, online ranking ag-
gregation, and EASL. The dashed lines indicate a split by 5-
ary ordinal scale.

0.9. We also find that RA and EASL reach high
correlation more efficiently than DA as in the lex-
ical frequency inference experiment (§5.1). The
gain of efficiency from DA to EASL is about 50%;
4-way redundant annotation in EASL achieves a
close Spearman’s ρ to 6-way redundancy in DA.

Figure 10 presents the results of the annotated
scalar values by each method. The distribution of
the histograms shows that DA and EASL success-
fully fit to the distribution in the oracle, whereas
RA converges to a rather narrow range. This is
because of the “lack of distance from bounds” in
RA that is explained in §4. We note that renor-
malizing the distribution in RA will not address
the issue. For instance, when the dataset has only
liberal propositions, RA still fails to capture the
latent distribution because it looks only at rela-
tive distances between instances but not the dis-
tance from bounds. Table 1 shows the examples
of scalar annotations by each method. Again, we
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see that RA approach has a narrower range than
the oracle, DA, and EASL.

5.3 Ranking Machine Translation Systems
In the third experiment, we apply the scalar anno-
tation methods for evaluating machine translation
systems. This is different from two previous ex-
periments, because the main purpose is to rank the
MT systems (SN1 ) rather than the adequacy (q) of
each MT output for a given source sentence (m).
Namely, we want to rank Si by observing qi,m.

We use WMT16 German-English translation
dataset (Bojar et al., 2016), which consists of
2,999 test set sentences and the translations from
10 different systems with DA annotation. Each
sentence has its adequacy score annotation be-
tween 0 and 100, and the average adequacy scores
are computed for each system for ranking. In this
setting, annotators are asked to judge adequacy of
system output(s) with the reference being given.
The official scores (made by DA) and ranking in
WMT16 are used as the oracle in this experiment.

In this experiment, we replicate DA and run
EASL to compare the efficiency. We omit RA
in this experiment, because it does not necessarily
capture the distance from bounds as shown in the
previous experiment (§5.2). In DA, 33,760 trans-
lation outputs (3,376 sentences per system in av-
erage) are randomly sampled without replacement
to make sure that it reaches up to the same result
as oracle when the entire data are used.

In EASL, we assume that adequacy (q) of an
MT output by system (Si) for a given source sen-
tence (m) is drawn from beta distribution: qi,m ∼
B(αi, βi).21 Annotators are asked to judge ade-
quacy of system outputs by scoring 0 and 100.
Similarly to the previous experiments (§ 5.1 and
§ 5.2), we use the partial ranking strategy, where
we show n = 5 system outputs (for the same
source sentence l) to annotate at a time. The proce-
dure of parameter updates is the same as previous
experiments (Algorithm 1).

We compare the correlations (Spearman’s ρ) of
system ranking with respect to the number of an-
notations per system, and the result is shown in
Figure 11. As seen in the previous two exper-
iments, EASL achieves higher Spearmans corre-
lation on ranking MT systems with smaller num-
ber of annotations than the baseline method (DA),

21This is the same setting as WMT14, WMT15, and
WMT16 (Bojar et al., 2014, 2015), although they used
TrueSkill (Gaussian) instead of EASL to rank systems.

0 200 400 600 800 1000
Number of annotations per system

0.0

0.2

0.4

0.6

0.8

1.0

S
p

ea
rm

an
’s
ρ

DA

EASL

Figure 11: Spearman’s correlation on ranking machine trans-
lation systems on WMT16 German-English data: direct as-
sessment (DA), and EASL. The shade for each line indicates
95% confidence intervals by bootstrap resampling (running
100 times).

which means EASL is able to collect annotation
more efficiently. The result shows that EASL can
be applied for efficient system evaluation in addi-
tion to data curation.

6 Conclusions

We have presented an efficient, online model to
elicit scalar annotations for computational linguis-
tic datasets and system evaluations. The model
combines two approaches for scalar annotation:
direct assessment and online pairwise ranking ag-
gregation. We conducted three illustrative exper-
iments on lexical frequency inference, political
spectrum inference, and ranking machine transla-
tion systems. We have shown that our approach,
EASL (Efficient Annotation of Scalar Labels),
outperforms direct assessment in terms of annota-
tion efficiency and outperforms online ranking ag-
gregation in terms of accurately capturing the la-
tent distributions of scalar values. The significant
gains demonstrated suggests EASL as a promis-
ing approach for future dataset curation and sys-
tem evaluation in the community.
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Abstract

High quality arguments are essential elements
for human reasoning and decision-making
processes. However, effective argument con-
struction is a challenging task for both human
and machines. In this work, we study a novel
task on automatically generating arguments
of a different stance for a given statement.
We propose an encoder-decoder style neural
network-based argument generation model en-
riched with externally retrieved evidence from
Wikipedia. Our model first generates a set of
talking point phrases as intermediate represen-
tation, followed by a separate decoder produc-
ing the final argument based on both input and
the keyphrases. Experiments on a large-scale
dataset collected from Reddit show that our
model constructs arguments with more topic-
relevant content than a popular sequence-to-
sequence generation model according to both
automatic evaluation and human assessments.

1 Introduction

Generating high quality arguments plays a cru-
cial role in decision-making and reasoning pro-
cesses (Bonet and Geffner, 1996; Byrnes, 2013).
A multitude of arguments and counter-arguments
are constructed on a daily basis, both online and
offline, to persuade and inform us on a wide range
of issues. For instance, debates are often con-
ducted in legislative bodies to secure enough votes
for bills to pass. In another example, online de-
liberation has become a popular way of solic-
iting public opinions on new policies’ pros and
cons (Albrecht, 2006; Park et al., 2012). Nonethe-
less, constructing persuasive arguments is a daunt-
ing task, for both human and computers. We be-
lieve that developing effective argument genera-
tion models will enable a broad range of com-
pelling applications, including debate coaching,
improving students’ essay writing skills, and pro-

Figure 1: Sample user arguments from Reddit Change
My View subcommunity that argue against original
post’s thesis on “government should be allowed to view
private emails”. Both arguments leverage supporting
information from Wikipedia articles.

viding context of controversial issues from differ-
ent perspectives. As a consequence, there exists
a pressing need for automating the argument con-
struction process.

To date, progress made in argument genera-
tion has been limited to retrieval-based methods—
arguments are ranked based on relevance to a
given topic, then the top ones are selected for
inclusion in the output (Rinott et al., 2015;
Wachsmuth et al., 2017; Hua and Wang, 2017).
Although sentence ordering algorithms are devel-
oped for information structuring (Sato et al., 2015;
Reisert et al., 2015), existing methods lack the
ability of synthesizing information from different
resources, leading to redundancy and incoherence
in the output.

In general, the task of argument generation
presents numerous challenges, ranging from ag-
gregating supporting evidence to generating text
with coherent logical structure. One particular
hurdle comes from the underlying natural lan-
guage generation (NLG) stack, whose success has
been limited to a small set of domains. Espe-
cially, most previous NLG systems rely on tem-
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plates that are either constructed by rules (Hovy,
1993; Belz, 2008; Bouayad-Agha et al., 2011), or
acquired from a domain-specific corpus (Angeli
et al., 2010) to enhance grammaticality and coher-
ence. This makes them unwieldy to be adapted for
new domains.

In this work, we study the following novel
problem: given a statement on a controversial
issue, generate an argument of an alternative
stance. To address the above challenges, we
present a neural network-based argument gener-
ation framework augmented with externally re-
trieved evidence. Our model is inspired by the
observation that when humans construct argu-
ments, they often collect references from exter-
nal sources, e.g., Wikipedia or research papers,
and then write their own arguments by synthesiz-
ing talking points from the references. Figure 1
displays sample arguments by users from Reddit
subcommunity /r/ChangeMyView 1 who ar-
gue against the motion that “government should
be allowed to view private emails”. Both replies
leverage information drawn from Wikipedia, such
as “political corruption” and “Fourth Amendment
on protections of personal privacy”.

Concretely, our neural argument generation
model adopts the popular encoder-decoder-
based sequence-to-sequence (seq2seq) frame-
work (Sutskever et al., 2014), which has achieved
significant success in various text generation
tasks (Bahdanau et al., 2015; Wen et al., 2015;
Wang and Ling, 2016; Mei et al., 2016; Wiseman
et al., 2017). Our encoder takes as input a
statement on a disputed issue, and a set of relevant
evidence automatically retrieved from English
Wikipedia2. Our decoder consists of two separate
parts, one of which first generates keyphrases as
intermediate representation of “talking points”,
and the other then generates an argument based
on both input and keyphrases.

Automatic evaluation based on BLEU (Papineni
et al., 2002) shows that our framework generates
better arguments than directly using retrieved sen-
tences or popular seq2seq-based generation mod-
els (Bahdanau et al., 2015) that are also trained
with retrieved evidence. We further design a novel
evaluation procedure to measure whether the argu-
ments are on-topic by predicting their relevance to
the given statement based on a separately trained

1 https://www.reddit.com/r/changemyview
2 https://en.wikipedia.org/

relevance estimation model. Results suggest that
our model generated arguments are more likely
to be predicted as on-topic, compared to other
seq2seq-based generations models.

The rest of this paper is organized as follows.
Section 2 highlights the roadmap of our system.
The dataset used for our study is introduced in
Section 3. The model formulation and retrieval
methods are detailed in Sections 4 and 5. We then
describe the experimental setup and results in Sec-
tions 6 and 7, followed by further analysis and fu-
ture directions in Section 8. Related work is dis-
cussed in Section 9. Finally, we conclude in Sec-
tion 10.

2 Framework

Our argument generation pipeline, consisting of
evidence retrieval and argument construction, is
depicted in Figure 2. Given a statement, a set of
queries are constructed based on its topic signa-
ture words (e.g., “government” and “national se-
curity”) to retrieve a list of relevant articles from
Wikipedia. A reranking component further ex-
tracts sentences that may contain supporting ev-
idence, which are used as additional input infor-
mation for the neural argument generation model.

The generation model then encodes the state-
ment and the evidence with a shared encoder in se-
quence. Two decoders are designed: the keyphrase
decoder first generates an intermediate represen-
tation of talking points in the form of keyphrases
(e.g., “right to privacy”, “political corruption”),
followed by a separate argument decoder which
produces the final argument.

3 Data Collection and Processing

We draw data from Reddit subcommunity
/r/ChangeMyView (henceforth CMV), which
focuses on facilitating open discussions on a wide
range of disputed issues. Specifically, CMV is
structured as discussion threads, where the origi-
nal post (OP) starts with a viewpoint on a contro-
versial topic, followed with detailed reasons, then
other users reply with counter-arguments. Impor-
tantly, when a user believes his view has been
changed by an argument, a delta is often awarded
to the reply.

In total, 26,761 threads from CMV are down-
loaded, dating from January 2013 to June 20173.

3Dataset used in this paper is available at http://
xinyuhua.github.io/Resources/.
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Figure 2: Overview of our system pipeline (best viewed in color). Given a statement, relevant articles are retrieved
from Wikipedia with topic signatures from statement as queries (marked in red and boldface). A reranking module
then outputs top sentences as evidence. The statement and the evidence (encoder states in gray panel) are con-
catenated and encoded as input for our argument generation model. During decoding, the keyphrase decoder first
generates talking points as phrases, followed by the argument decoder which constructs the argument by attending
both input and keyphrases.

Only root replies (i.e., replies directly addressing
OP) that meet all of the following requirements are
included: (1) longer than 5 words, (2) without of-
fensive language4, (3) awarded with delta or with
more upvotes than downvotes, and (4) not gener-
ated by system moderators.

After filtering, the resultant dataset contains
26,525 OPs along with 305,475 relatively high
quality root replies. We treat each OP as the in-
put statement, and the corresponding root replies
as target arguments, on which our model is trained
and evaluated.
A Focused Domain Dataset. The current dataset
contains diverse domains with unbalanced num-
bers of arguments. We therefore choose samples
from the politics domain due to its large volume
of discussions and good coverage of popular argu-
ments in the domain.

However, topic labels are not available for the
discussions. We thus construct a domain classi-
fier for politics vs. non-politics posts based on a
logistic regression model with unigram features,
trained from our heuristically labeled Wikipedia
abstracts5. Concretely, we manually collect two
lists of keywords that are indicative of politics and
non-politics. Each abstract is labeled as politics

4 We use offensive words collected by Google’s What
Do You Love project: https://gist.github.com/
jamiew/1112488, last accessed on February 22nd, 2018.

5About 1.3 million English Wikipedia abstracts are down-
loaded from http://dbpedia.org/page/.

or non-politics if its title only matches keywords
from one category.6 In total, 264,670 politics ab-
stracts and 827,437 of non-politics are labeled.
Starting from this dataset, our domain classifier
is trained in a bootstrapping manner by gradually
adding OPs predicted as politics or non-politics.7

Finally, 12,549 OPs are labeled as politics, each of
which is paired with 9.4 high-quality target argu-
ments on average. The average length for OPs is
16.1 sentences of 356.4 words, and 7.7 sentences
of 161.1 words for arguments.

4 Model

In this section, we present our argument genera-
tion model, which jointly learns to generate talk-
ing points in the form of keyphrases and produce
arguments based on the input and keyphrases.
Extended from the successful seq2seq attentional
model (Bahdanau et al., 2015), our proposed
model is novel in the following ways. First, two
separate decoders are designed, one for generat-
ing keyphrases, the other for argument construc-
tion. By sharing the encoder with keyphrase gen-
eration, our argument decoder is better aware of
salient talking points in the input. Second, a novel

6Sample keywords for politics: “congress”, “election”,
“constitution”; for non-politics: “art”, “fashion”,“music”.
Full lists are provided in the supplementary material.

7More details about our domain classifier are provided in
the supplementary material.
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attention mechanism is designed for argument de-
coding by attending both input and the previously
generated keyphrases. Finally, a reranking-based
beam search decoder is introduced to promote
topic-relevant generations.

4.1 Model Formulation
Our model takes as input a sequence of tokens
x = {xO;xE}, where xO is the statement se-
quence and xE contains relevant evidence that is
extracted from Wikipedia based on a separate re-
trieval module. A special token <evd> is inserted
between xO and xE . Our model then first gener-
ates a set of keyphrases as a sequence yp = {ypl },
followed by an argument ya = {yat }, by maximiz-
ing logP (y|x), where y = {yp;ya}.

The objective is further decomposed into∑
t logP (yt|y1:t−1,x), with each term estimated

by a softmax function over a non-linear transfor-
mation of decoder hidden states sat and spt , for
argument decoder and keyphrase decoder, respec-
tively. The hidden states are computed as done in
Bahdanau et al. (2015) with attention:

st = g(st−1, ct, yt) (1)

ct =

T∑

j=1

αtjhj (2)

αtj =
exp(etj)∑T
k=1 exp(etk)

(3)

etj = v
T tanh(Whhj +Wsst + battn) (4)

Notice that two sets of parameters and different
state update functions g(·) are learned for sepa-
rate decoders: {W a

h ,W a
s , baattn, g

a(·)} for the ar-
gument decoder; {W p

h , W p
s , bpattn, g

p(·)} for the
keyphrase decoder.
Encoder. A two-layer bidirectional LSTM (bi-
LSTM) is used to obtain the encoder hidden states
hi for each time step i. For biLSTM, the hidden
state is the concatenation of forward and back-
ward hidden states: hi = [

−→
hi;
←−
hi]. Word rep-

resentations are initialized with 200-dimensional
pre-trained GloVe embeddings (Pennington et al.,
2014), and updated during training. The last hid-
den state of encoder is used to initialize both de-
coders. In our model the encoder is shared by ar-
gument and keyphrase decoders.
Decoders. Our model is equipped with two de-
coders: keyphrase decoder and argument decoder,
each is implemented with a separate two-layer uni-
directional LSTM, in a similar spirit with one-

to-many multi-task sequence-to-sequence learn-
ing (Luong et al., 2015). The distinction is that our
training objective is the sum of two loss functions:

L(θ) =− α

Tp

∑

(x,yp)∈D
logP (yp|x; θ)

− (1− α)
Ta

∑

(x,ya)∈D
logP (ya|x; θ)

(5)

where Tp and Ta denote the lengths of reference
keyphrase sequence and argument sequence. α is
a weighting parameter, and it is set as 0.5 in our
experiments.

Attention over Both Input and Keyphrases. In-
tuitively, the argument decoder should consider
the generated keyphrases as talking points during
the generation process. We therefore propose an
attention mechanism that can attend both encoder
hidden states and the keyphrase decoder hidden
states. Additional context vector c′t is then com-
puted over keyphrase decoder hidden states spj ,
which is used for computing the new argument de-
coder state:

sat = g′(sat−1, [ct; c
′
t], y

a
t ) (6)

c′t =
Tp∑

j=1

α′tjs
p
j (7)

α′tj =
exp(e′tj)∑Tp

k=1 exp(e′tk)
(8)

e′tj = v
′T tanh(W ′

ps
p
j +W

′
as

a
t + b

′
attn) (9)

where spj is the hidden state of keyphrase decoder
at position j, sat is the hidden state of argument
decoder at timestep t, and ct is computed in Eq. 2.

Decoder Sharing. We also experiment with a
shared decoder between keyphrase generation and
argument generation: the last hidden state of the
keyphrase decoder is used as the initial hidden
state for the argument decoder. A special token
<arg> is inserted between the two sequences, in-
dicating the start of argument generation.

4.2 Hybrid Beam Search Decoding
Here we describe our decoding strategy on the
argument decoder. We design a hybrid beam
expansion method combined with segment-based
reranking to promote diversity of beams and in-
formativeness of the generated arguments.

Hybrid Beam Expansion. In the standard beam
search, the top k words of highest probability are
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selected deterministically based on the softmax
output to expand each hypothesis. However, this
may lead to suboptimal output for text genera-
tion (Wiseman and Rush, 2016), e.g., one beam of-
ten dominates and thus inhibits hypothesis diver-
sity. Here we only pick the top n words (n < k),
and randomly draw another k− n words based on
the multinomial distribution after removing the n
expanded words from the candidates. This leads
to a more diverse set of hypotheses.
Segment-based Reranking. We also propose to
rerank the beams every p steps based on beam’s
coverage of content words from input. Based
on our observation that likelihood-based rerank-
ing often leads to overly generic arguments (e.g.,
“I don’t agree with you”), this operation has the
potential of encouraging more informative gener-
ation. k = 10, n = 3, and p = 10 are used for
experiments. The effect of parameter selection is
studied in Section 7.

5 Relevant Evidence Retrieval

5.1 Retrieval Methodology
We take a two-step approach for retrieving evi-
dence sentences: given a statement, (1) construct-
ing one query per sentence and retrieving relevant
articles from Wikipedia, and (2) reranking para-
graphs and then sentences to create the final set
of evidence sentences. Wikipedia is used as our
evidence source mainly due to its objective per-
spective and broad coverage of topics. A dump of
December 21, 2016 was downloaded. For train-
ing, evidence sentences are retrieved with queries
constructed from target user arguments. For test,
queries are constructed from OP.
Article Retrieval. We first create an inverted in-
dex lookup table for Wikipedia as done in Chen
et al. (2017). For a given statement, we construct
one query per sentence to broaden the diversity of
retrieved articles. Therefore, multiple passes of re-
trieval will be conducted if more than one query
is created. Specifically, we first collect topic sig-
nature words of the post. Topic signatures (Lin
and Hovy, 2000) are terms strongly correlated
with a given post, measured by log-likelihood ratio
against a background corpus. We treat posts from
other discussions in our dataset as background.
For each sentence, one query is constructed based
on the noun phrases and verbs containing at
least one topic signature word. For instance,
a query “the government, my e-mails,

Queries Constructed from
OP Argument

Avg # Topic Sig. 17.2 9.8
Avg # Query 6.7 1.9
Avg # Article Retrieved 26.1 8.0
Avg # Sent. Retrieved 67.3 8.5

Table 1: Statistics for evidence sentence retrieval from
Wikipedia. Considering query construction from either
OP or target user arguments, we show the average num-
bers of topic signatures collected, queries constructed,
and retrieved articles and sentences.

national security” is constructed for the
first sentence of OP in the motivating example
(Figure 2). Top five retrieved articles with high-
est TF-IDF similarity scores are kept per query.
Sentence Reranking. The retrieved articles
are first segmented into paragraphs, which are
reranked by TF-IDF similarity to the given state-
ment. Up to 100 top ranked paragraphs with posi-
tive scores are retained. These paragraphs are fur-
ther segmented into sentences, and reranked ac-
cording to TF-IDF similarity again. We only keep
up to 10 top sentences with positive scores for in-
clusion in the evidence set.

5.2 Gold-Standard Keyphrase Construction
To create training data for the keyphrase decoder,
we use the following rules to identify keyphrases
from evidence sentences that are reused by human
writers for argument construction:
• Extract noun phrases and verb phrases

from evidence sentences using Stanford
CoreNLP (Manning et al., 2014).
• Keep phrases of length between 2 and 10 that

overlap with content words in the argument.
• If there is span overlap between phrases, the

longer one is kept if it has more content
word coverage of the argument; otherwise the
shorter one is retained.

The resultant phrases are then concatenated
with a special delimiter <phrase> and used as
gold-standard generation for training.

6 Experimental Setup

6.1 Final Dataset Statistics
Encoding the full set of evidence by our cur-
rent decoder takes a huge amount of time. We
there propose a sampling strategy to allow the en-
coder to finish encoding within reasonable time
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by considering only a subset of the evidence: For
each sentence in the statement, up to three evi-
dence sentences are randomly sampled from the
retrieved set; then the sampled sentences are con-
catenated. This procedure is repeated three times
per statement, where a statement is an user argu-
ment for training data and an OP for test set. In our
experiments, we remove duplicates samples and
the ones without any retrieved evidence sentence.
Finally, we break down the augmented data into
a training set of 224,553 examples (9,737 unique
OPs), 13,911 for validation (640 OPs), and 30,417
retained for test (1,892 OPs).

6.2 Training Setup
For all models, we use a two-layer biLSTM as en-
coder and a two-layer unidirectional LSTM as de-
coder, with 200-dimensional hidden states in each
layer. We apply dropout (Gal and Ghahramani,
2016) on RNN cells with a keep probability of
0.8. We use Adam (Kingma and Ba, 2015) with
an initial learning rate of 0.001 to optimize the
cross-entropy loss. Gradient clipping is also ap-
plied with the maximum norm of 2. The input and
output vocabulary sizes are both 50k.
Curriculum Training. We train the models in
three stages where the truncated input and out-
put lengths are gradually increased. Details are
listed in Table 2. Importantly, this strategy al-
lows model training to make rapid progress dur-
ing early stages. Training each of our full models
takes about 4 days on a Quadro P5000 GPU card
with a batch size of 32. The model converges after
about 10 epochs in total with pre-training initial-
ization, which is described below.

Component Stage 1 Stage 2 Stage 3
Encoder

OP 50 150 400
Evidence 0 80 120

Decoder
Keyphrases 0 80 120
Target Argument 30 80 120

Table 2: Truncation size (i.e., number of tokens in-
cluding delimiters) for different stages during training.
Note that in the first stage we do not include evidence
and keyphrases.

Adding Pre-training. We pre-train a two-layer
seq2seq model with OP as input and target ar-
gument as output from our training set. After
20 epochs (before converging), parameters for the

first layer are used to initialize the first layer of all
comparison models and our models (except for the
keyphrase decoder). Experimental results show
that pre-training boosts all methods by roughly 2
METEOR (Denkowski and Lavie, 2014) points.
We describe more detailed results in the supple-
mentary material.

6.3 Baseline and Comparisons

We first consider a RETRIEVAL-based baseline,
which concatenates retrieved evidence sentences
to form the argument. We further compare
with three seq2seq-based generation models with
different training data: (1) SEQ2SEQ: training
with OP as input and the argument as output;
(2) SEQ2SEQ + encode evd: augmenting input
with evidence sentences as in our model; (3)
SEQ2SEQ + encode KP: augmenting input with
gold-standard keyphrases, which assumes some of
the talking points are known. All seq2seq models
use a regular beam search decoder with the same
beam size as ours.

Variants of Our Models. We experiment with
variants of our models based on the proposed sep-
arate decoder model (DEC-SEPARATE) or using a
shared decoder (DEC-SHARED). For each, we fur-
ther test whether adding keyphrase attention for ar-
gument decoding is helpful (+ attend KP).

System vs. Oracle Retrieval. For test time, ev-
idence sentences are retrieved with queries con-
structed from OP (System Retrieval). We also ex-
periment with an Oracle Retrieval setup, where
the evidence is retrieved based on user arguments,
to indicate how much gain can be expected with
better retrieval results.

7 Results

7.1 Automatic Evaluation

For automatic evaluation, we use BLEU (Pap-
ineni et al., 2002), an n-gram precision-based
metric (up to bigrams are considered), and ME-
TEOR (Denkowski and Lavie, 2014), measuring
unigram recall and precision by considering para-
phrases, synonyms, and stemming. Human ar-
guments are used as the gold-standard. Because
each OP may be paired with more than one high-
quality arguments, we compute BLEU and ME-
TEOR scores for the system argument compared
against all arguments, and report the best. We
do not use multiple reference evaluation because

224



w/ System Retrieval w/ Oracle Retrieval
BLEU MTR Len BLEU MTR Len

Baseline
RETRIEVAL 15.32 12.19 151.2 10.24 16.22 132.7
Comparisons
SEQ2SEQ 10.21 5.74 34.9 7.44 5.25 31.1

+ encode evd 18.03 7.32 67.0 13.79 10.06 68.1
+ encode KP 21.94 8.63 74.4 12.96 10.50 78.2

Our Models
DEC-SHARED 21.22 8.91 69.1 15.78 11.52 68.2

+ attend KP 24.71 10.05 74.8 11.48 10.08 40.5
DEC-SEPARATE 24.24 10.63 88.6 17.48 13.15 86.9

+ attend KP 24.52 11.27 88.3 17.80 13.67 86.8

Table 3: Results on argument generation by BLEU
and METEOR (MTR), with system retrieved evidence
and oracle retrieval. The best performing model is
highlighted in bold per metric. Our separate de-
coder models, with and without keyphrase attention,
statistically significantly outperform all seq2seq-based
models based on approximation randomization test-
ing (Noreen, 1989), p < 0.0001.

the arguments are often constructed from differ-
ent angles and cover distinct aspects of the issue.
For models that generate more than one arguments
based on different sets of sampled evidence, the
one with the highest score is considered.

As can be seen from Table 3, our models pro-
duce better BLEU scores than almost all the com-
parisons. Especially, our models with separate de-
coder yield significantly higher BLEU and ME-
TEOR scores than all seq2seq-based models (ap-
proximation randomization testing, p < 0.0001)
do. Better METEOR scores are achieved by the
RETRIEVAL baseline, mainly due to its signifi-
cantly longer arguments.

Moreover, utilizing attention over both input
and the generated keyphrases further boosts our
models’ performance. Interestingly, utilizing sys-
tem retrieved evidence yields better BLEU scores
than using oracle retrieval for testing. The rea-
son could be that arguments generated based on
system retrieval contain less topic-specific words
and more generic argumentative phrases. Since
the later is often observed in human written ar-
guments, it may lead to higher precision and thus
better BLEU scores.

Decoder Strategy Comparison. We also study
the effect of our reranking-based decoder by vary-
ing the reranking step size (p) and the number of
top words expanded to beam hypotheses determin-
istically (k). From the results in Figure 3, we
find that reranking with a smaller step size, e.g.,
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Figure 3: Effect of our reranking-based decoder.
Beams are reranked at every 5, 10, and 20 steps (p).
For each step size, we also show the effect of varying
k, where top-k words are selected deterministically for
beam expansion, with 10 − k randomly sampled over
multinomial distribution after removing the k words.
Reranking with smaller step size yields better results.

p = 5, can generally lead to better METEOR
scores. Although varying the number of top words
for beam expansion does not yield significant dif-
ference, we do observe more diverse beams from
the system output if more candidate words are se-
lected stochastically (i.e. with a smaller k).

7.2 Topic-Relevance Evaluation
During our pilot study, we observe that generic
arguments, such as “I don’t agree with you” or
“this is not true”, are prevalent among generations
by seq2seq models. We believe that good argu-
ments should include content that addresses the
given topic. Therefore, we design a novel eval-
uation method to measure whether the generated
arguments contain topic-relevant information.

To achieve the goal, we first train a topic-
relevance estimation model inspired by the latent
semantic model in Huang et al. (2013). A pair of
OP and argument, each represented as the average
of word embeddings, are separately fed into a two-
layer transformation model. A dot-product is com-
puted over the two projected low-dimensional vec-
tors, and then a sigmoid function outputs the rele-
vance score. For model learning, we further divide
our current training data into training, developing,
and test sets. For each OP and argument pair, we
first randomly sample 100 arguments from other
threads, and then pick the top 5 dissimilar ones,
measured by Jaccard distance, as negative training
samples. This model achieves a Mean Reciprocal
Rank (MRR) score of 0.95 on the test set. Descrip-
tions about model formulation and related training
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Standard Decoder Our Decoder
MRR P@1 MRR P@1

Baseline
RETRIEVAL 81.08 65.45 - -
Comparisons
SEQ2SEQ 75.29 58.85 74.46 57.06

+ encode evd 83.73 71.59 88.24 78.76
Our Models
DEC-SHARED 79.80 65.57 95.18 90.91

+ attend KP 94.33 89.76 93.48 87.91
DEC-SEPARATE 86.85 76.74 91.70 84.72

+ attend KP 88.53 79.05 92.77 86.46

Table 4: Evaluation on topic relevance—models that
generate arguments highly related with OP should be
ranked high by a separately trained relevance estima-
tion model, i.e., higher Mean Reciprocal Rank (MRR)
and Precision at 1 (P@1) scores. All models trained
with evidence significantly outperform seq2seq trained
without evidence (approximation randomization test-
ing, p < 0.0001).

details are included in the supplementary material.
We then take this trained model to evaluate

the relevance between OP and the correspond-
ing system arguments. Each system argument
is treated as positive sample; we then select five
negative samples from arguments generated for
other OPs whose evidence sentences most simi-
lar to that of the positive sample. Intuitively, if
an argument contains more topic relevant infor-
mation, then the relevance estimation model will
output a higher score for it; otherwise, the argu-
ment will receive a lower similarity score, and
thus cannot be easily distinguished from negative
samples. Ranking metrics of MRR and Preci-
sion at 1 (P@1) are utilized, with results reported
in Table 4. The ranker yields significantly bet-
ter scores over arguments generated from mod-
els trained with evidence, compared to arguments
generated by SEQ2SEQ model.

Moreover, we manually pick 29 commonly used
generic responses (e.g., “I don’t think so”) and
count their frequency in system outputs. For the
seq2seq model, more than 75% of its outputs con-
tain at least one generic argument, compared to
16.2% by our separate decoder model with atten-
tion over keyphrases. This further implies that our
model generates more topic-relevant content.

7.3 Human Evaluation

We also hire three trained human judges who are
fluent English speakers to rate system arguments
for the following three aspects on a scale of 1

System Gram Info Rel
RETRIEVAL 4.5 ± 0.6 3.7 ± 0.9 3.3 ± 1.1
SEQ2SEQ 3.3 ± 1.1 1.2 ± 0.5 1.4 ± 0.7
OUR MODEL 2.5 ± 0.8 1.6 ± 0.8 1.8 ± 0.8

Table 5: Human evaluation results on grammaticality
(Gram), informativeness (Info), and relevance (Rel)
of arguments. Our model with separate decoder and
attention over keyphrases receives significantly better
ratings in informativeness and relevance than seq2seq
(one-way ANOVA, p < 0.005).

to 5 (with 5 as best): Grammaticality—whether
an argument is fluent, informativeness—whether
the argument contains useful information and is
not generic, and relevance—whether the argument
contains information of a different stance or off-
topic. 30 CMV threads are randomly selected,
each of which is presented with randomly-shuffled
OP statement and four system arguments.

Table 5 shows that our model with separate
decoder and attention over keyphrases produce
significantly more informative and relevant ar-
guments than seq2seq trained without evidence.8

However, we also observe that human judges pre-
fer the retrieved arguments over generation-based
models, illustrating the gap between system argu-
ments and human edited text. Sample arguments
are displayed in Figure 4.

8 Further Discussion

Keyphrase Generation Analysis. Here we
provide further analysis over the generated
keyphrases by our separate decoder model. First,
about 10% of the keyphrases output by our model
also appear in the gold-standard (i.e., used by hu-
man arguments). Furthermore, 36% of gener-
ated keyphrases are reused by our system argu-
ments. With human inspection, we find that al-
though some keyphrases are not directly reused
by the argument decoder, they represent high level
talking points in the argument. For instance, in the
first sample argument by our model in Figure 4,
keyphrases “the motive” and “russian” are gener-
ated. Although not used, they suggest the topics
that the argument should stay on.

Sample Arguments and Future Directions. As
can be seen from the sample outputs in Fig-
ure 4, our model generally captures more rele-
vant concepts, e.g., “military army” and “wars

8Inter-rater agreement scores for these three aspects are
0.50, 0.60, and 0.48 by Krippendorff’s α.
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Input: Putin is trying to re-form a “Soviet Union” with his past ac-
tions in Georgia and current actions in Ukraine
Human: So far Putin has only really targeted areas where the local
population is majority russian (or historically majority russian) and
sympathetic to russia. That’s not to say that he wouldn’t go further, but
I don’t think there is yet any compelling reason to believe he would.
Retrieval: In 1968, the Soviet Union and Warsaw pact allies invaded
Czechoslovakia to halt the Prague spring reforms. It was this signifi-
cant lack of flexibility that was exploited by the US to undermine the
strength of the Soviet Union and thus foster its reform. In the summer
of 1991, the new union treaty, which would have turned the Soviet
Union into a much looser union, was agreed upon by eight republics.
Our Model: There are two reasons you are so far beyond. There is no
reason to see the military army. You can infer what they assume it, so
they tend to protect up. There. If we assume it were bad, they can not
be controlled. So we’re talking going to ignore the wars of the world.
The fact of the matter is not bad. I would also assume it. However,
the government can not be reminded of the world.
Seq2seq + evd: 1. The reason is that the government isn’t the power
of the war of Russia, at the time of the war of Russia. In Russia, there
is no way to continue to control the military.
Seq2seq + KP: I don’t think it’s a bit. I don’t think you’re forgetting.
I don’t want to see the Syrian American dream in the US. I don’t
see the Syrian American dream of American citizens. I don’t see the
Syrian American dream of American citizens. I don’t see the Syrian
American military in the world. I don’t think it wouldn’t be true.
Input: Voting for either Hillary or Trump is morally reprehensible.
Human: I don’t think a vote for either of them means ”I’m totally fine
with...” as you say. Why is it not acceptable to pick the option whose
platform most closely aligns to your values/beliefs/desires, while ac-
knowledging neither candidate is ideal?
Retrieval: Vote trading under a democratic, majority-rule institution
is sometimes considered morally reprehensible behavior.
Our Model: He’s going to happen. You’re overestimating the more
premise. He’s already overestimating to this hypothetical party. He’s
already killed over the supreme court positions. Looking for Bernie.
This is the same reasons: Clinton is not the supreme court presidency.
You’ve already sent Trump’s right to vote. The fact is that he’s going
to happen. He’s already going to notice. However, it’s a long way.
Seq2seq + evd: 1. If they don’t vote the vote, they would not be able
to vote for any candidate. They don’t have the same effect on their
political power. They are not voting for them.
Seq2seq + KP: I agree with your view. I don’t agree with you. I don’t
think it’s easy to appeal to the Clintons. If you don’t want to do this?

Figure 4: Sample arguments generated by human, our
system, and seq2seq trained with evidence. Only the
main thesis is shown for the input OP. System genera-
tions are manually detokenized and capitalized.

of the world”, as discussed in the first example.
Meanwhile, our model also acquires argumenta-
tive style language, though there is still a notice-
able gap between system arguments and human
constructed arguments. As discovered by our prior
work (Wang et al., 2017), both topical content
and language style are essential elements for high
quality arguments. For future work, generation
models with a better control on linguistic style
need to be designed. As for improving coherence,
we believe that discourse-aware generation mod-
els (Ji et al., 2016) should also be explored in the
future work to enhance text planning.

9 Related Work

There is a growing interest in argumentation min-
ing from the natural language processing research

community (Park and Cardie, 2014; Ghosh et al.,
2014; Palau and Moens, 2009; Niculae et al.,
2017; Eger et al., 2017). While argument under-
standing has received increasingly more attention,
the area of automatic argument generation is much
less studied. Early work on argument construction
investigates the design of argumentation strate-
gies (Reed et al., 1996; Carenini and Moore, 2000;
Zukerman et al., 2000). For instance, Reed (1999)
describes the first full natural language argument
generation system, called Rhetorica. It however
only outputs a text plan, mainly relying on heuris-
tic rules. Due to the difficulty of text generation,
none of the previous work represents a fully au-
tomated argument generation system. This work
aims to close the gap by proposing an end-to-end
trained argument construction framework.

Additionally, argument retrieval and extraction
are investigated (Rinott et al., 2015; Hua and
Wang, 2017) to deliver relevant arguments for
user-specified queries. Wachsmuth et al. (2017)
build a search engine from arguments collected
from various online debate portals. After the re-
trieval step, sentence ordering algorithms are often
applied to improve coherence (Sato et al., 2015;
Reisert et al., 2015). Nevertheless, simply merg-
ing arguments from different resources inevitably
introduces redundancy. To the best of our knowl-
edge, this is the first automatic argument genera-
tion system that can synthesize retrieved content
from different articles into fluent arguments.

10 Conclusion

We studied the novel problem of generating ar-
guments of a different stance for a given state-
ment. We presented a neural argument generation
framework enhanced with evidence retrieved from
Wikipedia. Separate decoders were designed to
first produce a set of keyphrases as talking points,
and then generate the final argument. Both au-
tomatic evaluation against human arguments and
human assessment showed that our model pro-
duced more informative arguments than popular
sequence-to-sequence-based generation models.
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Abstract

We report on a comparative style analy-
sis of hyperpartisan (extremely one-sided)
news and fake news. A corpus of 1,627 ar-
ticles from 9 political publishers, three
each from the mainstream, the hyperpar-
tisan left, and the hyperpartisan right, have
been fact-checked by professional journal-
ists at BuzzFeed: 97% of the 299 fake news
articles identified are also hyperpartisan.
We show how a style analysis can distin-
guish hyperpartisan news from the main-
stream (F1=0.78), and satire from both
(F1=0.81). But stylometry is no silver bul-
let as style-based fake news detection does
not work (F1=0.46). We further reveal
that left-wing and right-wing news share
significantly more stylistic similarities than
either does with the mainstream. This re-
sult is robust: it has been confirmed by
three different modeling approaches, one
of which employs Unmasking in a novel
way. Applications of our results include
partisanship detection and pre-screening
for semi-automatic fake news detection.

1 Introduction

The media and the public are currently discussing
the recent phenomenon of “fake news” and its po-
tential role in swaying elections, how it may af-
fect society, and what can and should be done
about it. Prone to misunderstanding and misue, the
term “fake news” arose from the observation that,
in social media, a certain kind of ‘news’ spreads
much more successfully than others, and this kind
of ‘news’ is typically extremely one-sided (hyper-
partisan), inflammatory, emotional, and often rid-
dled with untruths. Although traditional yellow
press has been spreading ‘news’ of varying de-

grees of truthfulness long before the digital revolu-
tion, its amplification over real news within social
media gives many people pause. The fake news
hype caused a widespread disillusionment about so-
cial media, and many politicians, news publishers,
IT companies, activists, and scientists concur that
this is where to draw the line. For all their good in-
tentions, however, it must be drawn very carefully
(if at all), since nothing less than free speech is at
stake—a fundamental right of every free society.

Many favor a two-step approach where fake
news items are detected and then countermeasures
are implemented to foreclose rumors and to dis-
courage repetition. While some countermeasures
are already tried in practice, such as displaying
warnings and withholding ad revenue, fake news
detection is still in its infancy. At any rate, a near-
real time reaction is crucial: once a fake news item
begins to spread virally, the damage is done and un-
doing it becomes arduous. Since knowledge-based
and context-based approaches to fake news detec-
tion can only be applied after publication, i.e., as
news events unfold and as social interactions occur,
they may not be fast enough.

We have identified style-based approaches as a
viable alternative, allowing for instantaneous re-
actions, albeit not to fake news, but to hyperpar-
tisanship. In this regard we contribute (1) a large
news corpus annotated by experts with respect to
veracity and hyperpartisanship, (2) extensive exper-
iments on discriminating fake news, hyperpartisan
news, and satire based solely on writing style, and
(3) validation experiments to verify our finding that
the writing style of the left and the right have more
in common than any of the two have with the main-
stream, applying Unmasking in a novel way.

After a review of related work, Section 3 details
the corpus and its construction, Section 4 intro-
duces our methodology, and Section 5 reports the
results of the aforementioned experiments.
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2 Related Work

Approaches to fake news detection divide into three
categories (Figure 1): they can be knowledge-based
(by relating to known facts), context-based (by an-
alyzing news spread in social media), and style-
based (by analyzing writing style).

Knowledge-based fake news detection. Methods
from information retrieval have been proposed
early on to determine the veracity of web docu-
ments. For example, Etzioni et al. (2008) propose
to identify inconsistencies by matching claims ex-
tracted from the web with those of a document
in question. Similarly, Magdy and Wanas (2010)
measure the frequency of documents that support a
claim. Both approaches face the challenges of web
data credibility, namely expertise, trustworthiness,
quality, and reliability (Ginsca et al., 2015).

Other approaches rely on knowledge bases, in-
cluding the semantic web and linked open data.
Wu et al. (2014) “perturb” a claim in question to
query knowledge bases, using the result variations
as indicator of the support a knowledge base of-
fers for the claim. Ciampaglia et al. (2015) use
the shortest path between concepts in a knowledge
graph, whereas Shi and Weninger (2016) use a link
prediction algorithm. However, these approaches
are unsuited for new claims without corresponding
entries in a knowledge base, whereas knowledge
bases can be manipulated (Heindorf et al., 2016).

Context-based fake news detection. Here, fake
news items are identified via meta information and
spread patterns. For example, Long et al. (2017)
show that author information can be a useful fea-
ture for fake news detection, and Derczynski et al.
(2017) attempt to determine the veracity of a claim
based on the conversation it sparks on Twitter as
one of the RumourEval tasks. The Facebook analy-
sis of Mocanu et al. (2015) shows that unsubstan-
tiated claims spread as widely as well-established
ones, and that user groups predisposed to conspir-
acy theories are more open to sharing the former.
Similarly, Acemoglu et al. (2010), Kwon et al.
(2013), Ma et al. (2017), and Volkova et al. (2017)
model the spread of (mis-)information, while Bu-
dak et al. (2011) and Nguyen et al. (2012) propose
algorithms to limit its spread. The efficacy of coun-
termeasures like debunking sites is studied by Tam-
buscio et al. (2015). While achieving good results,
context-based approaches suffer from working only
a posteriori, requiring large amounts of data, and
disregarding the actual news content.

Knowledge-based  (also called fact checking)

Style-based

Information retrieval

Semantic web / LOD 

Text categorization

Deception detection

Context-based

Social network analysis

Fake news detection

Long et al., 2017
Mocanu et al., 2015
Acemoglu et al., 2010
Kwon et al., 2013
Ma et al., 2017
Volkova et al., 2017
Budak et al., 2011
Nguyen et al. 2012
Derczynski et al., 2017
Tambuscio et al., 2015

Afroz et al., 2012
Badaskar et al., 2008
Rubin et al., 2016
Yang et al., 2017
Rashkin et al., 2017
Horne and Adali, 2017
Pérez-Rosas et al., 2017

Wei et al., 2013
Chen et al., 2015
Rubin et al., 2015
Wang et al., 2017
Bourgonje et al., 2017

Wu et al., 2014
Ciampaglia et al, 2015
Shi and Weninger, 2016

Etzioni et al., 2018
Magdy and Wanas, 2010
Ginsca et al., 2015

Figure 1: Taxonomy of paradigms for fake news detec-
tion alongside a selection of related work.

Style-based fake news detection. Deception detec-
tion originates from forensic linguistics and builds
on the Undeutsch hypothesis—a result from foren-
sic psychology which asserts that memories of real-
life, self-experienced events differ in content and
quality from imagined events (Undeutsch, 1967).
The hypothesis led to the development of forensic
tools to assess testimonies at the statement level.
Some approaches operationalize deception detec-
tion at scale to detect uncertainty in social media
posts, for example Wei et al. (2013) and Chen et al.
(2015). In this regard, Rubin et al. (2015) use
rhetorical structure theory as a measure of story
coherence and as an indicator for fake news. Re-
cently, Wang (2017) collected a large dataset con-
sisting of sentence-length statements along their
veracity from the fact-checking site PolitiFact.com,
and then used style features to detect false state-
ments. A related task is stance detection, where
the goal is to detect the relation between a claim
about an article, and the article itself (Bourgonje
et al., 2017). Most prominently, stance detection
was the task of the Fake News Challenge1 which
ran in 2017 and received 50 submissions, albeit
hardly any participants published their approach.
1http://www.fakenewschallenge.org/
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Where deception detection focuses on single
statements, style-based text categorization as pro-
posed by Argamon-Engelson et al. (1998) assesses
entire texts. Common applications are author pro-
filing (age, gender, etc.) and genre classification.
Though susceptible to authors who can modify
their writing style, such obfuscations may be de-
tectable (e.g., Afroz et al. (2012)). As an early
precursor to fake news detection, Badaskar et al.
(2008) train models to identify news items that
were automatically generated. Currently, text cate-
gorization methods for fake news detection focus
mostly on satire detection (e.g., Rubin et al. (2016),
Yang et al. (2017)). Rashkin et al. (2017) perform
a statistical analysis of the stylistic differences be-
tween real, satire, hoax, and propaganda news. We
make use of their results by incorporating the best-
performing style features identified.

Finally, two preprint papers have been recently
shared. Horne and Adali (2017) use style features
for fake news detection. However, the relatively
high accuracies reported must be taken with a grain
of salt: their two datasets comprise only 70 news ar-
ticles each, whose ground-truth is based on where
an article came from, instead of resulting from a
per-article expert review as in our case; their final
classifier uses only 4 features (number of nouns,
type-token ratio, word count, number of quotes),
which can be easily manipulated; and based on
their experimental setup, it cannot be ruled out
that the classifier simply differentiates news por-
tals rather than fake and real articles. We avoid
this problem by testing our classifiers on articles
from portals which were not represented in the
training data. Similarly, Pérez-Rosas et al. (2017)
also report on constructing two datasets compris-
ing around 240 and 200 news article excerpts (i.e.,
the 5-sentence lead) with a balanced distribution of
fake vs. real. The former was collected via crowd-
sourcing, asking workers to write a fake news item
based on a real news item, the latter was collected
from the web. For style analysis, the former dataset
may not be suitable, since the authors note them-
selves that “workers succeeded in mimicking the
reporting style from the original news”. The lat-
ter dataset encompasses only celebrity news (i.e.,
yellow press), which introduces a bias. Their fea-
ture selection follows that of Rubin et al. (2016),
which is covered by our experiments, but also in-
corporates topic features, rendering the resulting
classifier not generalizable.

3 The BuzzFeed-Webis Fake News Corpus

This section introduces the BuzzFeed-Webis Fake
News Corpus 2016, detailing its construction and
annotation by professional journalists employed at
BuzzFeed, as well as key figures and statistics.2

3.1 Corpus Construction
The corpus encompasses the output of 9 publish-
ers on 7 workdays close to the US presidential
elections 2016, namely September 19 to 23, 26,
and 27. Table 1 gives an overview. Among the
selected publishers are six prolific hyperpartisan
ones (three left-wing and three right-wing), and
three mainstream ones. All publishers earned Face-
book’s blue checkmark , indicating authenticity
and an elevated status within the network. Every
post and linked news article has been fact-checked
by 4 BuzzFeed journalists, including about 19% of
posts forwarded from third parties. Having checked
a total of 2,282 posts, 1,145 mainstream, 471 left-
wing, and 666 right-wing, Silverman et al. (2016)
reported key insights as a data journalism article.
The annotations were published alongside the ar-
ticle.3 However, this data only comprises URLs
to the original Facebook posts. To construct our
corpus, we archived the posts, the linked articles,
and attached media as well as relevant meta data to
ensure long-term availability. Due to the rapid pace
at which the publishers change their websites, we
were able to recover only 1,627 articles, 826 main-
stream, 256 left-wing, and 545 right-wing.

Manual fact-checking. A binary distinction be-
tween fake and real news turned out to be infeasi-
ble, since hardly any piece of fake news is entirely
false, and pieces of real news may not be flawless.
Therefore, posts were rated “mostly true,” “mixture
of true and false,” “mostly false,” or, if the post was
opinion-driven or otherwise lacked a factual claim,
“no factual content.” Four BuzzFeed journalists
worked on the manual fact-checks of the news arti-
cles: to minimize costs, each article was reviewed
only once and articles were assigned round robin.
The ratings “mixture of true and false” and “mostly
false” had to be justified, and, when in doubt about
a rating, a second opinion was collected, whereas
disagreements were resolved by a third one. Fi-
nally, all news rated “mostly false” underwent a
final check to ensure the rating was justified, lest
the respective publishers would contest it.
2Corpus download: https://doi.org/10.5281/zenodo.1239675
3http://github.com/BuzzFeedNews/2016-10-facebook-fact-check
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The journalists were given the following guidance:
Mostly true: The post and any related link or

image are based on factual information and por-
tray it accurately. The authors may interpret the
event/info in their own way, so long as they do not
misrepresent events, numbers, quotes, reactions,
etc., or make information up. This rating does not
allow for unsupported speculation or claims.

Mixture of true and false (mix, for short): Some
elements of the information are factually accurate,
but some elements or claims are not. This rating
should be used when speculation or unfounded
claims are mixed with real events, numbers, quotes,
etc., or when the headline of the link being shared
makes a false claim but the text of the story is
largely accurate. It should also only be used when
the unsupported or false information is roughly
equal to the accurate information in the post or link.
Finally, use this rating for news articles that are
based on unconfirmed information.

Mostly false: Most or all of the information in
the post or in the link being shared is inaccurate.
This should also be used when the central claim
being made is false.

No factual content (n/a, for short): This rating is
used for posts that are pure opinion, comics, satire,
or any other posts that do not make a factual claim.
This is also the category to use for posts that are of
the “Like this if you think...” variety.

3.2 Limitations
Given the significant workload (i.e., costs) required
to carry out the aforementioned annotations, the
corpus is restricted to the given temporal period
and biased toward the US culture and political land-
scape, comprising only English news articles from
a limited number of publishers. Annotations were
recorded at the article level, not at statement level.
For text categorization, this is sufficient. At the
time of writing, our corpus is the largest of its kind
that has been annotated by professional journalists.

3.3 Corpus Statistics
Table 1 shows the fact-checking results and some
key statistics per article. Unsurprisingly, none of
the mainstream articles are mostly false, whereas
8 across all three publishers are a mixture of true
and false. Disregarding non-factual articles, a little
more than a quarter of all hyperpartisan left-wing
articles were found faulty: 15 articles mostly false,
and 51 a mixture of true and false. Publisher “The
Other 98%” sticks out by achieving an almost per-

Orientation Fact-checking results Key statistics per article
Publisher

true mix false n/a Σ Paras. Links Words

extern all quoted all

Mainstream 806 8 0 12 826 20.1 2.2 3.7 18.1 692.0
ABC News 90 2 0 3 95 21.1 1.0 4.8 21.0 551.9
CNN 295 4 0 8 307 19.3 2.4 2.5 15.3 588.3
Politico 421 2 0 1 424 20.5 2.3 4.3 19.9 798.5

Left-wing 182 51 15 8 256 14.6 4.5 4.9 28.6 423.2
Addicting Info 95 25 8 7 135 15.9 4.4 4.5 30.5 430.5
Occupy Democrats 55 23 6 0 91 10.9 4.1 4.7 29.0 421.7
The Other 98% 32 3 1 1 30 20.2 6.4 7.2 21.2 394.5

Right-wing 276 153 72 44 545 14.1 2.5 3.1 24.6 397.4
Eagle Rising 107 47 25 36 214 12.9 2.6 2.8 17.3 388.3
Freedom Daily 48 24 22 4 99 14.6 2.2 2.3 23.5 419.3
Right Wing News 121 82 25 4 232 15.0 2.5 3.6 33.6 396.6

Σ 1264 212 87 64 1627 17.2 2.7 3.7 20.6 551.0

Table 1: The BuzzFeed-Webis Fake News Corpus 2016
at a glance (“Paras.” short for “paragraphs”).

fect score. By contrast, almost 45% of the right-
wing articles are a mixture of true and false (153)
or mostly false (72). Here, publisher “Right Wing
News” sticks out by supplying more than half of
mixtures of true and false alone, whereas mostly
false articles are equally distributed.

Regarding key statistics per article, it is interest-
ing that the articles from all mainstream publish-
ers are on average about 20 paragraphs long with
word counts ranging from 550 words on average at
ABC News to 800 at Politico. Except for one pub-
lisher, left-wing articles and right-wing articles are
shorter on average in terms of paragraphs as well as
word count, averaging at about 420 words and 400
words, respectively. Left-wing articles quote on
average about 10 words more than the mainstream,
and right-wing articles 6 words more. When arti-
cles comprise links, they are usually external ones,
whereas ABC News rather uses internal links, and
only half of the links found at Politico articles are
external. Left-wing news articles stick out by con-
taining almost double the amount of links across
publishers than mainstream and right-wing ones.

3.4 Operationalizing Fake News
In our experiments, we operationalize the category
of fake news by joining the articles that were rated
mostly false with those rated a mixture of true and
false. Arguably, the latter may not be exactly what
is deemed “fake news” (as in: a complete fabrica-
tion), however, practice shows fake news are hardly
ever devoid of truth. More often, true facts are mis-
construed or framed badly. In our experiments, we
hence call mostly true articles real news, mostly
false plus mixtures of true and false—except for
satire—fake news, and disregard all articles rated
non-factual.

234



4 Methodology

This section covers our methodology, including
our feature set to capture writing style, and a brief
recap of Unmasking by Koppel et al. (2007), which
we employ for the first time to distinguish genre
styles as opposed to author styles. For sake of
reproducibility, all our code has been published.4

4.1 Style Features and Feature Selection
Our writing style model incorporates common fea-
tures as well as ones specific to the news domain.
The former are n-grams, n in [1, 3], of characters,
stop words, and parts-of-speech. Further, we em-
ploy 10 readability scores5 and dictionary features,
each indicating the frequency of words from a
tailor-made dictionary in a document, using the
General Inquirer Dictionaries as a basis (Stone
et al., 1966). The domain-specific features include
ratios of quoted words and external links, the num-
ber of paragraphs, and their average length.

In each of our experiments, we carefully select
from the aforementioned features the ones worth-
while using: all features are discarded that are
hardly represented in our corpus, namely word to-
kens that occur in less than 2.5% of the documents,
and n-gram features that occur in less than 10%
of the documents. Discarding these features pre-
vents overfitting and improves the chances that our
model will generalize.

If not stated otherwise, our experiments share
a common setup. In order to avoid biases from
the respective training sets, we balance them us-
ing oversampling. Furthermore, we perform 3-fold
cross-validation where each fold comprises one
publisher from each orientation, so that the clas-
sifier does not learn a publisher’s style. For non-
Unmasking experiments we use WEKA’s random
forest implementation with default settings.

4.2 Unmasking Genre Styles
Unmasking, as proposed by Koppel et al. (2007),
is a meta learning approach for authorship verifi-
cation. We study for the first time whether it can
be used to assess the similarity of more broadly
defined style categories, such as left-wing vs. right-
wing vs. mainstream news. This way, we uncover
relations between the writing styles that people may
involuntarily adopt as per their political orientation.
4Code download: http://www.github.com/webis-de/ACL-18
5Automated Readability Index, Coleman Liau Index, Flesh Kin-
caid Grade Level and Reading Ease, Gunning Fog Index, LIX,
McAlpine EFLAW Score, RIX, SMOG Grade, Strain Index

Originally, Unmasking takes two documents as
input and outputs its confidence whether they have
been written by the same author. Three steps are
taken to accomplish this: first, each document is
chunked into a set of at least 500-word long chunks;
second, classification errors are measured while it-
eratively removing the most discriminative features
of a style model consisting of the 250 most fre-
quent words, separating the two chunk sets with a
linear classifier; and third, the resulting classifica-
tion accuracy curves are analyzed with regard to
their slope. A steep decrease is more likely than a
shallow decrease if the two documents have been
written by the same author, since there are pre-
sumably less discriminating features between docu-
ments written by the same author than between doc-
uments written by different authors. Training a clas-
sifier on many examples of error curves obtained
from same-author document pairs and different-
author document pairs yields an effective author-
ship verifier—at least for long documents that can
be split up into a sufficient number of chunks.

It turns out that what applies to the style of au-
thors also applies to genre styles. We adapt Un-
masking by skipping its first step and using two
sets of documents (e.g., left-wing articles and right-
wing articles) as input. When plotting classification
error curves for visual inspection, steeper decreases
in these plots, too, indicate higher style similarity
of the two input document sets, just as with chunk
sets of two documents written by the same author.

4.3 Baselines
We employ four baseline models: a topic-based bag
of words model, often used in the literature, but less
practical since news topics change frequently and
drastically; a model using only the domain-specific
news style features to check whether the differences
between categories measured as corpus statistics
play a significant role; and naive baselines that clas-
sify all items into one of the categories in question,
relating our results to the class distributions.

4.4 Performance Measures
Classification performance is measured as accuracy,
and class-wise precision, recall, and F1. We favor
these measures over, e.g., areas under the ROC
curve or the precision recall curve for simplicity
sake. Also, the tasks we are tackling are new, so
that little is known to date about user preferences.
This is also why we chose the evenly-balanced F1.
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5 Experiments

We report on the results of two series of experi-
ments that investigate style differences and similar-
ities between hyperpartisan and mainstream news,
and between fake, real, and satire news, shedding
light on the following questions:

1. Can (left/right) hyperpartisanship be distin-
guished from the mainstream?

2. Is style-based fake news detection feasible?
3. Can fake news be distinguished from satire?
Our first experiment addressing the first ques-

tion uncovered an odd behavior of our classifier:
it would often misjudge left-wing for right-wing
news, while being much better at distinguishing
both combined from the mainstream. To explain
this behavior, we hypothesized that maybe the writ-
ing style of the hyperpartisan left and right are
more similar to one another than to the mainstream.
To investigate this hypothesis, we devised two
additional validation experiments, yielding three
sources of evidence instead of just one.

5.1 Hyperpartisanship vs. Mainstream

A. Predicting orientation. Table 2 shows the classi-
fication performance of a ternary classifier trained
to discriminate left, right, and mainstream—an ob-
vious first experiment for our dataset. Separating
the left and right orientation from the mainstream
does not work too well: the topic baseline out-
performs the style-based models with regard to
accuracy, whereas the results for class-wise pre-
cision and recall are a mixed bag. The left-wing
articles are apparently significantly more difficult
to be identified compared to articles from the other
two orientations. When we inspected the confu-
sion matrix (not shown), it turned out that 66% of
misclassifications of left-wing articles are falsely
classified as right-wing articles, whereas 60% of
all misclassified right-wing articles are classified as
mainstream articles. Misclassified mainstream arti-
cles spread almost evenly across the other classes.

The poor performance of the domain-specific
news style features by themselves demonstrate that
orientation cannot be discriminated based on the
basic corpus characteristics observed with respect
to paragraphs, quotations, and hyperlinks. This
holds for all subsequent experiments.

B. Predicting hyperpartisanship. Given the appar-
ent difficulty of telling apart individual orientations,
we did not frantically add features or switch classi-
fiers to make it work. Rather, we trained a binary

Features Accuracy Precision Recall F1

all left right main. left right main. left right main.

Style 0.60 0.21 0.56 0.75 0.20 0.59 0.74 0.20 0.57 0.75
Topic 0.64 0.24 0.62 0.72 0.15 0.54 0.86 0.19 0.58 0.79
News style 0.39 0.09 0.35 0.59 0.14 0.36 0.49 0.11 0.36 0.53

All-left 0.16 0.16 - - 1.00 0.0 0.0 0.27 - -
All-right 0.33 - 0.33 - 0.0 1.00 0.0 - 0.50 -
All-main. 0.51 - - 0.51 0.0 0.0 1.00 - - 0.68

Table 2: Performance of predicting orientation.

Features Accuracy Precision Recall F1

all hyp. main. hyp. main. hyp. main.

Style 0.75 0.69 0.86 0.89 0.62 0.78 0.72
Topic 0.71 0.66 0.79 0.83 0.60 0.74 0.68
News style 0.56 0.54 0.58 0.65 0.47 0.59 0.52

All-hyp. 0.49 0.49 - 1.00 0.0 0.66 -
All-main. 0.51 - 0.51 0.0 1.00 - 0.68

Table 3: Performance of predicting hyperpartisanship.

Features Left Right

Trained on: right+main. all left+main. all

Style 0.74 0.90 0.66 0.89
Topic 0.68 0.79 0.48 0.85
News style 0.52 0.61 0.47 0.66

Table 4: Ratio of left articles misclassified right when
omitting left articles from training, and vice versa.

classifier to discriminate hyperpartisanship in gen-
eral from the mainstream. Table 3 shows the per-
formance values. This time, the best classification
accuracy of 0.75 at a remarkable 0.89 recall for the
hyperpartisan class is achieved by the style-based
classifier, outperforming the topic baseline.

Comparing Table 2 and Table 3, we were left
with a riddle: all other things being equal, how
could it be that hyperpartisanship in general can
be much better discriminated from the mainstream
than individual orientation? Attempts to answer
this question gave rise to our aforementioned hy-
pothesis that, perhaps, the writing style of hyper-
partisan left and right are not altogether different,
despite their opposing agendas. Or put another way,
if style and topic are orthogonal concepts, then be-
ing an extremist should not exert a different style
dependent on political orientation. Excited, we
sought ways to independently disprove the hypoth-
esis, and found two: Experiments C and D.

C. Validation using leave-out classification. If left-
wing and right-wing articles have a more similar
style than either of them compared to mainstream
articles, then what class would a binary classifier as-
sign to a left-wing article, if it were trained to distin-
guish only the right-wing from the mainstream, and
vice versa? Table 4 shows the results of this experi-
ment. As indicated by proportions well above 0.50,
full style-based classifiers have a tendency of clas-
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Figure 2: Unmasking applied to pairs of political ori-
entations. The steeper a curve, the more similar the
respective styles.

sifying left as right and right as left. The topic
baseline, though, gets confused especially when
omitting right articles from the training set with
performance close to random. The fact that the
topic baseline works better when omitting left from
the training set may be explainable: leading up
to the elections, the hyperpartisan left was often
merely reacting to topics prompted by the hyper-
partisan right, instead of bringing up their own.

D. Validation using Unmasking. Based on Kop-
pel et al.’s original approach in the context of au-
thorship verification, for the first time, we gener-
alize Unmasking to assess genre styles: just like
author style similarity, genre style similarity will
be characterized by the slope of a given Unmasking
curve, where a steeper decrease indicates higher
similarity. We apply Unmasking as described in
Section 4.2 onto pairs of sets of left, right, and
mainstream articles. Figure 2 shows the result-
ing Unmasking curves (Unmasking is symmetrical,
hence three curves). The curves are averaged over
5 runs, where each run comprised sets of 100 arti-
cles from each orientation. In case of the left-wing
orientation, where less than 500 articles are avail-
able in our corpus, once all of them had been used,
they were shuffled again to select articles for the
remainder of the runs. As can be seen, the curve
comparing left vs. right has a distinctly steeper
slope than either of the others. This result hence
matches the findings of the previous experiments.

With caution, we conclude that the evidence
gained from our three independent experimental
setups supports our hypothesis that the hyperparti-
san left and the hyperpartisan right have more in
common in terms of writing style than any of the
two have with the mainstream. Another more tangi-
ble (e.g., practical) outcome of Experiment B is the
finding that hyperpartisan news can apparently be

0.0

0.2

0.4

0.6

N
om

ra
liz

ed
 a

cc
ur

ac
y

0 3 6 9 12 15
Iterations

fake vs real

fake vs satire
real vs satire

Figure 3: Unmasking applied to pairs of sets of news
that are fake, real, and satire.

discriminated well from the mainstream: in particu-
lar the high recall of 0.89 at a reasonable precision
of 0.69 gives us confidence that, with some fur-
ther effort, a practical classifier can be built that
detects hyperpartisan news at scale and in real time,
since an article’s style can be assessed immediately
without referring to external information.

5.2 Fake vs. Real (vs. Satire)
This series of experiments targets research ques-
tions (2) and (3). Again, we conduct three experi-
ments, where the first is about predicting veracity,
and the last two about discriminating satire.

A. Predicting veracity. When taking into account
that the mainstream news publishers in our corpus
did not publish any news items that are mostly
false, and only very few instances that are mixtures
of true and false, we may safely disregard them
for the task of fake news detection. A reliable
classifier for hyperpartisan news can act as a pre-
filter for a subsequent, more in-depth fake news
detection approach, which may in turn be tailored
to a much more narrowly defined classification task.
We hence use only the left-wing articles and the
right-wing articles of our corpus for our attempt at
a style-based fake news classifier.

Table 5 shows the performance values for a
generic classifier that predicts fake news across ori-
entations, and orientation-specific classifiers that
have been individually trained on articles from ei-
ther orientation. Although all classifiers outper-
form the naive baselines of classifying everything
into one of the classes in terms of precision, the
slight increase comes at the cost of a large decrease
in recall. While the orientation-specific classifiers
are slightly better for most metrics, none of them
outperform the naive baselines regarding the F -
Measure. We conclude that style-based fake news
classification simply does not work in general.
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Features Accuracy Precision Recall F1

all fake real fake real fake real

Generic classifier
Style 0.55 0.42 0.62 0.41 0.64 0.41 0.63
Topic 0.52 0.41 0.62 0.48 0.55 0.44 0.58

Orientation-specific classifier
Style 0.55 0.43 0.64 0.49 0.59 0.46 0.61
Topic 0.58 0.46 0.65 0.45 0.66 0.46 0.66

All-fake 0.39 0.39 - 1.00 0.0 0.56 -
All-real 0.61 - 0.61 0.0 1.00 - 0.76

Table 5: Performance of predicting veracity.

Features Accuracy Precision Recall F1

all sat. real sat. real sat. real

Style 0.82 0.84 0.80 0.78 0.85 0.81 0.82
Topic 0.77 0.78 0.75 0.74 0.79 0.76 0.77

All-sat. 0.50 0.50 - 1.00 0.0 0.67 -
All-real 0.50 - 0.50 0.00 1.00 - 0.67

Rubin et al. n/a 0.90 n/a 0.84 n/a 0.87 n/a

Table 6: Performance of predicting satire (sat.).

B. Predicting satire. Yet, not all fake news are
the same. One should distinguish satire from the
rest, which takes the form of news but lies more
or less obviously to amuse its readers. Regardless
the problems that spreading fake news may cause,
satire should never be filtered, but be discriminated
from other fakes. Table 6 shows the performance
values of our classifier in the satire-detection set-
ting used by Rubin et al. (2016) (the S-n-L News
DB corpus), distinguishing satire from real news.
This setting uses a balanced 3:1 training-to-test
set split over 360 articles (180 per class). As can
be seen, our style-based model significantly out-
performs all baselines across the board, achieving
an accuracy of 0.82, and an F score of 0.81. It
clearly improves over topic classification, but does
not outperform Rubin et al.’s classifier, which in-
cludes features based on topic, absurdity, grammar,
and punctuation. We argue that incorporating topic
into satire detection is not appropriate, since the
topics of satire change along the topics of news.
A classifier with topic features therefore does not
generalize. Apparently, a style-based model is com-
petitive, and we believe that satire can be detected
at scale this way, so as to prevent other fake news
detection technology from falsely filtering it.

C. Unmasking satire. Given the above results on
stylistic similarities between left and right news,
the question remains how satire fits into the pic-
ture. We assess the style similarity of satire from
Rubin et al.’s corpus compared to fake news and
real news from ours, again applying Unmasking to
compare pairs of the three categories of news as
described above. Figure 3 shows the resulting Un-

masking curves. The curve for the pair of fake vs.
real news drops faster compared to the other two
pairs. Apparently, the style of fake news has more
in common with that of real news than either of the
two have with satire. These results are encouraging:
satire is distinct enough from fake and real news,
so that, just like with hyperpartisan news compared
to mainstream news, it can be discriminated with
reasonable accuracy.

6 Conclusion

Fact-checking for fake news detection poses an in-
terdisciplinary challenge: technology is required
to extract factual statements from text, to match
facts with a knowledge base, to dynamically re-
trieve and maintain knowledge bases from the web,
to reliably assess the overall veracity of an entire
article rather than individual statements, to do so
in real time as news events unfold, to monitor the
spread of fake news within and across social media,
to measure the reputation of information sources,
and to raise awareness in readers. These are only
the most salient things that need be done to tackle
the problem, and as our cross-section of related
work shows, a large body of work must be covered.
Notwithstanding the many attacks on fake news by
developing one way or another of fact-checking,
we believe it worthwhile to mount our attack from
another angle: writing style.

We show that news articles conveying a hyper-
partisan world view can be distinguished from
more balanced news by writing style alone. More-
over, for the first time, we found quantifiable ev-
idence that the writing styles of news of the two
opposing orientations are in fact very similar: there
appears to be a common writing style of left and
right extremism. We further show that satire can be
distinguished well from other news, ensuring that
humor will not be outcast by fake news detection
technology. All of these results offer new, tangible,
short-term avenues of development, lest large-scale
fact-checking is still far out of reach. Employed as
pre-filtering technologies to separate hyperpartisan
news from mainstream news, our approach allows
for directing the attention of human fact checkers
to the most likely sources of fake news.
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Abstract
Given any argument on any controversial
topic, how to counter it? This question im-
plies the challenging retrieval task of find-
ing the best counterargument. Since prior
knowledge of a topic cannot be expected in
general, we hypothesize the best counterar-
gument to invoke the same aspects as the
argument while having the opposite stance.
To operationalize our hypothesis, we simul-
taneously model the similarity and dissim-
ilarity of pairs of arguments, based on the
words and embeddings of the arguments’
premises and conclusions. A salient prop-
erty of our model is its independence from
the topic at hand, i.e., it applies to arbitrary
arguments. We evaluate different model
variations on millions of argument pairs de-
rived from the web portal idebate.org. Sys-
tematic ranking experiments suggest that
our hypothesis is true for many arguments:
For 7.6 candidates with opposing stance on
average, we rank the best counterargument
highest with 60% accuracy. Even among
all 2801 test set pairs as candidates, we still
find the best one about every third time.

1 Introduction
Many controversial topics in real life divide us into
opposing camps, such as whether to ban guns, who
should become president, or what phone to buy.
When being confronted with arguments against our
stance, but also when forming own arguments, we
need to think about how they could best be coun-
tered. Argumentation theory tells us that — aside
from ad-hominem attacks — a counterargument
denies either an argument’s premises, its conclu-
sion, or the reasoning between them (Walton, 2009).
Take the following argument in favor of the right
to bear arms from the web portal idebate.org:

Argument “Gun ownership is an integral aspect
of the right to self defence. (conclusion)
Law-abiding citizens deserve the right to protect
their families in their own homes, especially if the
police are judged incapable of dealing with the
threat of attack. [...]” (premise)
While the conclusion seems well-reasoned, the web
portal directly provides a counter to the argument:

Counterargument “Burglary should not be pun-
ished by vigilante killings of the offender. No
amount of property is worth a human life. Per-
versely, the danger of attack by homeowners may
make it more likely that criminals will carry their
own weapons. If a right to self-defence is granted
in this way, many accidental deaths are bound to
result. [...]”

As in this example, we observe that a counterargu-
ment often takes on the aspects of the topic invoked
by the argument, while adding a new perspective
to its conclusion and/or premises, conveying the
opposite stance. Research has tackled the stance of
argument units (Bar-Haim et al., 2017) as well as
the attack relations between arguments (Cabrio and
Villata, 2012). However, existing approaches learn
the interplay of aspects and topics on training data
or infer it from external knowledge bases (details
in Section 2). This does not work for topics unseen
before. Moreover, to our knowledge, no work so
far aims at actual counterarguments.

This paper studies the task of automatically find-
ing the best counterargument to any argument. In
the general case, we cannot expect prior knowledge
of an argument’s topic. Following the observation
above, we thus just hypothesize the best counterar-
gument to invoke the same aspects as the argument
while having the opposite stance. Figure 1 sketches
how we operationalize the hypothesis. In particular,
we simultaneously model the topic similarity and
stance dissimilarity of a candidate counterargument
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Figure 1: Modeling the simultaneous similarity and
dissimilarity of a counterargument to an argument.

to the argument. Both are inferred — in different
ways — from the similarities to the argument’s con-
clusion and premises, since it is unclear in advance,
whether either of these units or the reasoning be-
tween them is countered. Thereby, we find the most
dissimilar among the most similar arguments.

To study counteraguments, we provide a new
corpus with 6753 argument-counterargument pairs,
taken from 1069 debates on idebate.org, as well as
millions of false pairs derived from them. Given the
corpus, we define eight retrieval tasks that differ in
the types of candidate counterarguments. Based on
the words and embeddings of the arguments, we de-
velop similarity functions that realize the outlined
model as a ranking approach. In systematic experi-
ments, we evaluate the different building blocks of
our model on all defined tasks.

The results suggest that our hypothesis is true
for many arguments. The best model configuration
improves common word and embedding similarity
measures by eight to ten points accuracy in all tasks.
Inter alia, we rank 60.3% of the best counterargu-
ments highest when given all arguments with op-
posite stance (7.6 on average). Even with all 2801
test arguments as candidates, we still achieve 32.4%
(and a mean rank of 15), fitting the intuition that off-
topic arguments are easier to discard. Our analysis
reveals notable gaps across topical themes though.

Contributions We believe that our findings will
be important for applications such as automatic
debating technologies (Rinott et al., 2015) and ar-
gument search (Wachsmuth et al., 2017b). To sum-
marize, our main contributions are:

• A large corpus for studying multiple counter-
argument retrieval tasks (Sections 3 and 4).

• A topic-independent approach to find the best
counterargument to any argument (Section 5).

• Evidence that many counterarguments can be
found without topic knowledge (Section 6).

The corpus as well as the Java source code for
reproducing the experiments are available at http:
//www.arguana.com.

2 Related Work

Counterarguments rebut arguments. In the theoreti-
cal model of Toulmin (1958), a rebuttal in fact does
not attack the argument, but it merely shows excep-
tions to the argument’s reasoning. Govier (2010)
suggests to rather speak of counterconsiderations
in such cases. Unlike Damer (2009), who investi-
gates how to attack several kinds of fallacies, we
are interested in how to identify attacks. We focus
on those that target arguments, excluding personal
(ad-hominem) attacks (Habernal et al., 2018).

Following Walton (2006), an argument can be
attacked in two ways: one is to question its validity
— not meaning that its conclusion must be wrong.
The other is to rebut it with a counterargument that
entails the opposite conclusion, often by revisiting
aspects or introducing new ones. This is the type of
attack we study. As Walton (2009) details, rebuttals
may target an argument’s premises or conclusion,
or they may undercut the reasoning between them.

Recently, the computational analysis of natural
language argumentation is receiving much atten-
tion. Most research focuses on argument mining,
ranging from segmenting a text into argument units
(Ajjour et al., 2017), over identifying unit types
(Rinott et al., 2015) and roles (Niculae et al., 2017),
to classifying argument schemes (Feng and Hirst,
2011) and relations (Lawrence and Reed, 2017).
Some works detect counterconsiderations in a text
(Peldszus and Stede, 2015) or their absence (Stab
and Gurevych, 2016). Such considerations make
arguments more balanced (see above). In contrast,
we seek for arguments that defeat others.

Many approaches mine attack relations between
arguments. Some use deep learning to find attacks
in discussions (Cocarascu and Toni, 2017). Closer
to this paper, others determine them in a given set
of arguments, using textual entailment (Cabrio and
Villata, 2012) or a combination of markov logic and
stance classification (Hou and Jochim, 2017). In
principle, any attacking argument denotes a coun-
terargument. Unlike previous work, however, we
aim for the best counterargument to an argument.

Classifying the stance of a text towards a topic
(pro or con) generally defines an alternative way of
addressing counterarguments. Sobhani et al. (2015)
specifically classify health-related arguments using
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supervised learning, while we do not expect to have
prior topic knowledge. Bar-Haim et al. (2017) ap-
proach the stance of claims towards open-domain
topics. Their approach combines aspect-based sen-
timent with external relations between aspects and
topics from Wikipedia. As such, it is in fact limited
to the topics covered there. Our model applies to
arbitrary arguments and counterarguments.

We need to identify only whether arguments op-
pose each other, not their actual stance. Similarly,
Menini et al. (2017) classify only the disagreement
of political texts. Part of their approach is to de-
tect topical key aspects in an unsupervised manner,
which seems useful for our purposes. Analogously,
Beigman Klebanov et al. (2010) study differences
in vocabulary choice for the related task of per-
spective classification, and Tan et al. (2016) find
that the best way to persuade opinion holders in
the Change my view forum on reddit.com is to
use dissimilar words. As we report later, however,
our experiments did not show such results for the
argument-counterargument pairs we deal with.

The goal of persuasion reveals the association of
counterarguments to argumentation quality. Many
quality criteria have been assessed for arguments,
surveyed in (Wachsmuth et al., 2017a). In the study
of Habernal and Gurevych (2016), one reason an-
notators gave for why an argument was more con-
vincing than another was that it tackled flaws in the
opposing view. Zhang et al. (2016) even found that
debate winners tend to counter opposing arguments
rather than focusing on their own arguments.

Argument quality assessment is particularly im-
portant in retrieval scenarios. Existing approaches
aim to retrieve documents that contain many claims
(Roitman et al., 2016) or that provide most sup-
port for their claims (Braunstain et al., 2016). In
Wachsmuth et al. (2017c), we adapt PageRank to ar-
gumentative relations, in order to assess argument
relevance objectively. While our search engine args
for arguments on the web still uses content-based
relevance measures in its first version (Wachsmuth
et al., 2017b), its long-term idea is to rank the best
arguments highest.1 The model present in this work
finds the best counterarguments, but it is meant to
be integrated into args at some point.

Like here, args uses idebate.org arguments. Oth-
ers take data from that portal for studying support
(Boltužić and Šnajder, 2014) or for the distant su-
pervision of argument mining (Al-Khatib et al.,

1Argument search engine args: http://args.me

2016). Our corpus is not only larger, though, but it
is the first to utilize a unique feature of idebate.org:
the explicit specification of counterarguments.

3 The ArguAna Counterargs Corpus

This section introduces our ArguAna Counterargs
corpus with argument-counterargument pairs, cre-
ated automatically from the structure of idebate.org.
The corpus is freely available at http://www.
arguana.com/data. We also provide the code
to replicate the construction process.

3.1 The Web Portal idebate.org

On the portal idebate.org, diverse controversial top-
ics of usually rather general interest are discussed
in debates, subsumed under 15 themes, such as
“economy” and “health”. Each debate has a title
capturing a thesis on a topic, such as “This House
would limit the right to bear arms”, followed by an
introductory text, a set of mostly elaborated and
well-written points that have a pro or a con stance
towards the thesis, and a bibliography.

A specific feature of idebate.org is that virtually
every point comes along with a counter that imme-
diately attacks the point and its stance. Both points
and counters can be seen as arguments. While a
point consists of a one-sentence claim (the argu-
ment’s conclusion) and a few sentences justifying
the claim (the premise(s)), the counter’s (opposite)
conclusion remains implicit.

All arguments on the portal are established by
a community with the goal of showing both sides
of a topic in a balanced manner. We therefore as-
sume each counter to be the best counterargument
available for the respective point, and we use all
resulting true argument pairs as the basis of our
corpus. Figure 2 illustrates the italicized concepts,
showing the structure of idebate.org. An example
argument pair has been discussed in Section 1.

3.2 Corpus Construction

We crawled all debates from idebate.org that fol-
low the portal’s theme-guided folder structure (last
access: January 30, 2018). From each debate, we
extracted the thesis, the introductory text, all points
and counters, the bibliography, and some metadata.
Each was stored separately in one plain text file,
and we also created a file with the entire debate in
its original order. Only points and counters are used
in our experiments in Section 6. The underlying
experiment settings are described in Section 4.
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Figure 2: Structure of idebate.org for one true argument pair in our corpus. Colors denote matching stance;
we assume arguments from other debates to have no stance towards a point. Points have a conclusion and
premises, counters only premises. (a)–(i) are used in Section 4 to specify the candidates in different tasks.

Theme Debates Points Counters

Culture 46 278 278
Digital freedoms 48 341 341
Economy 95 590 588
Education 58 382 381
Environment 36 215 215

Free speech debate 43 274 273
Health 57 334 333
International 196 1315 1307
Law 116 732 730
Philosophy 50 320 320

Politics 155 982 978
Religion 30 179 179
Science 41 271 269
Society 75 436 431
Sport 23 130 130

Training set 644 4083 4065
Validation set 211 1290 1287
Test set 214 1406 1401

counterargs-18 1069 6779 6753

Table 1: Distribution of debates, points, and coun-
ters over the themes in the counterargs-18 corpus.
The bottom rows show the size of the datasets.

3.3 Corpus Statistics

Table 1 lists the number of debates crawled for each
theme, along with the numbers of points and coun-
ters in the debates. The 26 found points without a
counter are included in the corpus, but we do not
use them in our experiments.

In total, the ArguAna Counterargs corpus con-
sists of 1069 debates with 6753 points that have a
counter. The mean length of points is 196.3 words,
whereas counters span only 129.6 words, largely
due to the missing explicit conclusion. To avoid
exploiting this corpus bias, no approach in our ex-
periments captures length differences.

3.4 Datasets

We split the corpus into a training set, consisting of
the first 60% of all debates of each theme (ordered
by alphabet), as well as a validation set and a test
set, each covering 20%. The dataset sizes are found
at the bottom of Table 1. By putting all arguments
from a debate into a single dataset, no specific
topic knowledge can be gained from the training or
validation set. We include all themes in all datasets,
because we expect the set of themes to be stable.

We checked for duplicates. Among the 13 532
point and counters, 3407 appear twice, 723 three
times, 36 four times, and 1 five times. We ensure
that no true pair is used as a false pair in our tasks.

4 Counterargument Retrieval Tasks

Based on the new corpus, we define the following
eight counterargument retrieval tasks of different
complexity. All tasks consider all true argument-
counterargument pairs, while differing in terms
of what arguments (points and/or counters) from
which context (same debate, same theme, or entire
portal) are candidates for a given argument.

Same Debate: Opposing Counters All coun-
ters in the same debate with stance opposite to
the given argument are candidates (Figure 2: a, b).
The task is to find the best counterargument among
all counters to the argument’s stance.

Same Debate: Counters All counters in the
same debate irrespective of their stance are can-
didates (Figure 2: a–c). The task is to find the best
counterargument among all on-topic arguments
phrased as counters.
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Training Set Validation Set Test Set

Context Candidate Counterarg’s True False Ratio True False Ratio True False Ratio

Same debate Opposing counters 4 065 11 672 1:2.9 1 287 3 590 1:2.8 1 401 4 052 1:2.9
Counters 4 065 27 024 1:6.6 1 287 8 348 1:6.5 1 401 9 312 1:6.6
Opposing arguments 4 065 27 026 1:6.6 1 287 8 350 1:6.5 1 401 9 312 1:6.6
Arguments 4 065 54 070 1:13.3 1 287 16 700 1:13.0 1 401 18 630 1:13.3

Same theme Counters 4 065 1 616 000 1:398 1 287 176 266 1:137 1 401 189 870 1:136
Arguments 4 065 3 232 038 1:795 1 287 352 536 1:274 1 401 379 746 1:271

Entire portal Counters 4 065 16 517 994 1:4063 1 287 1 654 878 1:1286 1 401 1 961 182 1:1400
Arguments 4 065 33 038 154 1:8127 1 287 3 309 760 1:2572 1 401 3 922 582 1:2800

Table 2: Number of true and false argument-counterargument pairs as well as their ratio for each evaluated
context and type of candidate counterarguments in the three datasets. Each line defines one retrieval task.

Same Debate: Opposing Arguments All argu-
ments in the same debate with opposite stance are
candidates (Figure 2: a, b, d). The task is to find
the best among all on-topic counterarguments.

Same Debate: Arguments All arguments in the
same debate irrespective of their stance are candi-
dates (Figure 2: a–e). The task is to find the best
counterargument among all on-topic arguments.

Same Theme: Counters All counters from the
same theme are candidates (Figure 2: a–c, f). The
task is to find the best counterargument among all
on-theme arguments phrased as counters.

Same Theme: Arguments All arguments from
the same theme are candidates (Figure 2: a–g). The
task is to find the best counterargument among all
on-theme arguments.

Entire Portal: Counters All counters are candi-
dates (Figure 2: a–c, f, h). The task is to find the
best counterargument among all arguments phrased
as counters.

Entire Portal: Arguments All arguments are
candidates (Figure 2: a–i). The task is to find the
best counterargument among all arguments.

Table 2 lists the numbers of true and false pairs for
each task. Experiment files containing the file paths
of all candidate pairs are provided in our corpus.

5 Retrieval of the Best Counterargument
without Prior Topic Knowledge

The eight defined tasks indicate the subproblems
of retrieving the best counterargument to a given
argument: Finding all arguments that address the
same topic, filtering those arguments with an oppo-
site stance towards the topic, and identifying the
best counter among these arguments. This section

presents our approach to solving these problems
computationally without prior knowledge of the
argument’s topic, based on the simultaneous simi-
larity and dissimilarity of arguments.2

5.1 Topic as Word and Embedding Similarity

We do not reinvent the wheel to assess topical rel-
evance, but rather follow common practice. Con-
cretely, we hypothesize a candidate counterargu-
ment to be on-topic if it is similar to the argument in
terms of its words and its embedding. We capture
these two types of similarity as follows.

Word Argument Similarity To best represent
the words in arguments, we did initial counterargu-
ment retrieval tests with token, stem, and lemma
n-grams, n ∈ {1, 2, 3}. While the differences were
not large, stems worked best and stem 1-grams suf-
ficed. Both might be a consequence of the limited
data size. In our experiments in Section 6, we de-
termine the stem 1-grams to be considered on the
training set of each task.

For word similarity computation, we tested four
inverse vector-based distance measures: Cosine,
Euclidean, Manhattan, and, Jaccard similarity (Cha,
2007). On the validation sets, the Manhattan sim-
ilarity performed best, closely followed by the
Jaccard similarity. Both clearly outperformed Eu-
clidean and especially Cosine similarity. This sug-
gests that the presence and absence of words are
equally important and that outliers should not be
punished more. For brevity, we report only results
for the Manhattan similarity below.

2As indicated above, counters on idebate.org (including
all true counterarguments) may also differ linguistically from
points (all of which are false). However, we assume this to be
a specific corpus bias and hence do not explicitly account for it.
Section 6 will show whether having both points and counters
as candidates makes counterargument retrieval harder.
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Embedding Argument Similarity We evalu-
ated five pretrained word embedding models for
representing arguments in first tests: GoogleNews-
vectors (Mikolov et al., 2013), ConceptNet Num-
berbatch (Speer et al., 2017), wiki-news-300d-1M,
wiki-news-300d-1M-subword, and crawl-300d-2M
(Mikolov et al., 2017). The former two were com-
petitive, the others performed notably worse. Since
ConceptNet Numberbatch is smaller and supposed
to have less bias, we used it in all experiments.

To capture argument-level embedding similar-
ity, we compared the four inverse vector-based dis-
tance measures above on average word embeddings
against the inverse Word Mover’s distance, which
quantifies the optimum alignment of two word em-
bedding sequences (Kusner et al., 2015). This Word
Mover’s similarity consistently beat the others, so
we decided to restrict our view to it.

5.2 Stance as Topic Dissimilarity

Stance classification without prior topic knowledge
is challenging: While we can compare the topics
of any two arguments, it is impossible in general
to infer the stance of the specific aspects invoked
by one argument to those of the other. As sketched
in Section 2, related work employs external knowl-
edge to infer stance relations of aspects and topics
(Bar-Haim et al., 2017) or trains classifying attack
relations (Cabrio and Villata, 2012). Unfortunately,
both does not apply to topics unseen before.

For argument pairs invoking similar aspects, a
way to go is in principle to assess sentiment polar-
ity; intuitively, two arguments with the same topic
but opposite sentiment have opposing stance. How-
ever, we tested topic-agnostic sentiment lexicons
(Baccianella et al., 2010) and state-of-the-art sen-
timent classifiers, trained on large-scale multiple-
domain review data (Prettenhofer and Stein, 2010;
Joulin et al., 2017). The correlation between senti-
ment and stance differences of training arguments
was close to zero. A possible explanation is the lim-
ited explicitness of sentiment on idebate.org, mak-
ing the lexicons and classifiers fail there.

Other related work suggests that the vocabulary
of opposing sides differs (Beigman Klebanov et al.,
2010). We thus checked on the training set whether
counterarguments are similar in their embeddings
but dissimilar in their words. The measures above
did not support this hypothesis, i.e., both embed-
ding and word similarity increased the likelihood of
a candidate counterargument being the best. Still,

there must be a difference between an argument
and its counterargument by concept. As a solution,
we capture dissimilarity with the same similarity
functions as above, but we change the granularity
level on which we measure similarity.

5.3 Simultaneous Similarity and Dissimilarity
The arising question is how to assess similarity and
dissimilarity at the same time. We hypothesize the
best counterargument to be very similar in overall
terms, but very dissimilar in certain respects. To
capture this intuition, we rely on expert knowledge
from argumentation theory (see Section 2).

Word and Embedding Unit Similarities In par-
ticular, we follow the notion that a counterargument
attacks either the conclusion of an argument, the ar-
gument’s premises, or both. As a consequence, we
compute two word and two embedding similarities
as specified above for each candidate counterargu-
ment; once to the argument’s conclusion (called wc
and ec for words and embeddings respectively) and
once to the argument’s premises (wp and ep).

Now, to capture similarity and dissimilarity si-
multaneously, we need multiple ways to aggregate
conclusion and premise similarities. As we do not
generally know which argument unit is attacked,
we resort to four standard aggregation functions
that generalize over the unit similarities. For words,
these are the following word unit similarities:

w↓ := min{wc, wp} w× := wc · wp
w↑ := max{wc, wp} w+ := wc + wp

Accordingly, we define four respective embedding
unit similarities, e↓, e↑, e×, and e+.

As mentioned above, both word similarity and
embedding similarity positively affect the likeli-
hood that a candidate is the best counterargument.
Therefore, we combine each pair of similarities as
w↓ + e↓, w↑ + e↑, w× + e×, and w+ + e+, but we
also evaluate their impact in isolation below.3

Counterargument Scoring Model Based on
the unit similarities, we finally define a scoring
model for a given pair of argument and candidate
counterargument. The model includes two unit
similarity values, sim and dissim, but dissim is
subtracted from sim, such that it actually favors
dissimilarity. Thereby, we realize the topic and

3In principle, other unit similarities could be used for
words than for embeddings. However, we decided to cou-
ple them to maintain interpretability of our experiment results.
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stance similarity sketched in Figure 1. We weight
the two values with a damping factor α:

α · sim − (1− α) · dissim

where sim, dissim ∈ {w↓+e↓, w↑+e↑, w×+e×,
w+ + e+} and sim 6= dissim.

The general idea of the scoring model is that
sim rewards one type of similarity, whereas sub-
tracting dissim punishes another type. We seek to
thereby find the most dissimilar candidate among
the similar candidates. The model is meant to give
a higher score to a pair the more likely the candi-
date is the best counterargument to the argument,
so the scores can be used for ranking.

What combination of sim and dissim turns out
best, is hard to foresee and may depend on the
retrieval task at hand. We hence evaluate different
combinations empirically below. The same holds
for the damping factor α ∈ [0, 1]. If our hypothesis
on similarity and dissimilarity is true, then the best
α should be close to but lower than 1. Conversely,
if α = 1.0 achieves the best performance, then only
similarity would be captured by our model.

6 Evaluation

We now report on systematic ranking experiments
with our counterargument scoring model. The goal
is to evaluate on all eight retrieval tasks from Sec-
tion 4 to what extent our hypothesis holds that the
best counterargument to an argument invokes the
same aspects while having opposing stance. The
Java source code of the experiments is available at:
http://www.arguana.com/software

6.1 Experimental Set-up

We evaluated the following set-up of tasks, data,
measures, baselines, and approaches.

Tasks We tackled each of the eight retrieval tasks
as a ranking problem, i.e., we aimed to rank the best
counterargument to each argument highest, given
all candidates. Accordingly, only one candidate
counterargument per argument is correct.4

4One alternative would be to see each argument pair as
one instance of a classification problem. However, our pre-
liminary tests confirmed the intuition that identifying the best
counterargument is hard without knowing the other candidates,
i.e., there is no general (dis)similarity threshold that makes an
argument the best counterargument. Rather, how similar or
dissimilar a counterargument needs to be depends on the topic
and on the other candidates. Another alternative would be to
treat all candidates for an argument as one instance, but this
makes the experimental set-up very intricated.

Data Table 2 has shown the true and false argu-
ment pairs in all datasets. We undersampled each
training set, resulting in 4065 true and 4065 false
training pairs in all tasks.5 Our model does not do
any learning-to-rank on these pairs, but we derived
lexicons for the word similarities from them (all
stems included in at least 1% of all pairs). As de-
tailed below, we then determined the best model
configurations on the validation sets and evaluated
these configurations on the test sets.

Measures As only one candidate is true per argu-
ment, we report the accuracy@1 of each approach,
i.e., the percentage of arguments for which the true
counterargument was ranked highest. Besides, we
compute the rounded mean rank of the best coun-
terargument in all rankings, reflecting the average
performance of an approach. Exemplarily, we also
mention the mean reciprocal rank (MRR), which is
more sensitive to outliers.

Baselines A trivial way to address the given tasks
is to pick any candidate by chance for each argu-
ment. This random baseline allows quantifying the
impact of other approaches. As counterargument
retrieval has not been tackled yet, we do not use
any existing baseline.6 Instead, we evaluate the ef-
fects of the different building blocks of our scoring
model. On one hand, we check the need for distin-
guishing conclusions and premises by comparing
to the word argument similarity (w) and the embed-
ding argument similarity (e). On the other hand,
we consider all eight word and embedding unit sim-
ilarities (w↓, w↑, . . . , e+) as baselines, in order to
see whether and how to best aggregate them.

Approaches After initial tests, we reduced the
set of tested values of the damping factor α in our
scoring model to {0.8, 0.9, 1.0}. On the validation
sets of the first six tasks,7 we then analyzed all
possible combinations ofw↓+e↓,w↑+e↑,w×+e×,
w+ + e+, as well as w + e for sim and dissim.
Three configurations of the model turned out best:

we := 1.0 · (w× + e×)

we↓ := 0.9 · (w× + e×)− 0.1 · (w↓ + e↓)

we↑ := 0.9 · (w+ + e+)− 0.1 · (w↑ + e↑)

5Undersampling was done stratified, such that the same
number of false counterarguments was taken from each type,
b–i, in Figure 2 that is relevant in the respective task.

6Notice, though, that we tested a number of approaches to
identify opposing stance, as discussed in Section 5.

7We did not expect “game-changing” validation set results
for the last two tasks and, so, left them out for time reasons.
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Same Debate Same Theme Entire Portal
Opp. Ctr.’s Counters Opposing Arguments Counters Arguments Counters Arguments

# Baseline / Approach @1 R @1 R @1 R @1 R @1 R @1 R @1 R @1 R

w Word argument similarity 65.9 2 48.5 2 42.5 3 30.0 4 44.1 5 28.3 10 39.7 22 21.8 49
e Embedding argument similarity 62.9 2 44.6 2 51.6 2 36.8 4 38.8 7 32.9 10 34.2 39 23.9 55

w↓ Word unit similarity minimum 53.8 2 38.4 3 45.9 3 33.7 5 28.5 22 24.8 42 21.4 206 18.5 403
w↑ Word unit similarity maximum 66.1 2 48.0 2 44.0 3 30.2 4 44.0 5 28.3 9 38.0 21 21.2 44
w× Word unit similarity product 64.9 2 49.5 3 56.1 2 40.7 4 44.3 18 36.8 35 37.8 177 26.8 354
w+ Word unit similarity sum 71.5 1 53.7 2 54.1 2 39.1 4 49.0 4 36.8 7 44.7 17 28.6 33

e↓ Embedding unit sim. minimum 61.6 2 44.9 3 43.4 3 32.1 4 37.8 7 27.4 13 32.5 42 20.7 74
e↑ Embedding unit sim. maximum 63.4 2 44.5 2 47.5 2 33.2 4 39.8 5 29.8 8 32.1 20 20.1 33
e× Embedding unit sim. product 69.7 1 52.0 2 55.4 2 41.0 3 44.3 4 37.1 6 43.2 14 27.8 21
e+ Embedding unit sim. sum 69.7 1 51.8 2 55.4 2 40.5 3 47.5 4 36.8 6 43.0 13 27.6 21

we 1.0·(w×+e×) 72.1 1 55.2 2 ‡60.3 2 †44.9 3 50.4 4 40.9 7 46.0 19 32.2 34
we↓ 0.9·(w×+e×)−0.1·(w↓+e↓) 72.0 1 55.5 2 59.5 2 44.1 3 51.3 4 †41.0 7 46.3 19 31.7 35
we↑ 0.9·(w++e+)−0.1·(w↑+e↑)†74.5 1 †57.7 2 59.6 2 44.1 3 ‡54.2 3 40.8 5 ‡50.0 9 ‡32.4 15

r Random baseline 25.7 2 13.1 4 13.1 4 7.0 7 0.7 69 0.4 137 0.1 701 0.0 1401

Table 3: Test set accuracy of ranking the best counterargument highest (@1) and mean rank (R) for 14
baselines and approaches (w, e, w↓, . . . , r) in all eight tasks (given by Context and Candidates). Each best
accuracy value (bold) significantly outperforms the best baseline with 99% (†) or 99.9% (‡) confidence.

we was best on the validation set of Same Debate:
Opposing Arguments (accuracy@1: 62.1) and we↓
on the one of Same Debate: Arguments (49.0). All
other tasks were dominated by we↑. Especially,
we↑ was better than 1.0 · (w+ + e+) in all of them
with clear leads of up to 2.2 points. This underlines
the importance of modeling dissimilarity for coun-
terargument retrieval. We took we, we↓, and we↑
as our approaches for the test set.8

6.2 Results

Table 3 shows the accuracy@1 and the mean rank
of all baselines and approaches on each of the eight
given retrieval tasks.

Overall, the counter-only tasks seem slightly
harder within the same debate (comparing Coun-
ters to Opposing), i.e., stance is harder to assess
than topical relevance. Conversely, the other Coun-
ters tasks seem easier, suggesting that topically
close but false candidate counterarguments with
the same stance as the argument (which are not in-
cluded in any Counters task) are classified wrongly
most often. Besides, these results support that po-
tential differences in the phrasing of counters are
not exploited, as desired.

The accuracy of the standard similarity measures,
w and e, goes from 65.9 and 62.9 respectively in the
smallest task down to 21.8 and 23.9 in the largest.

8All validation set results are found in the supplemen-
tary material, which we provide at http://www.arguana.
com/publications

w is stronger when only counters are candidates, e
otherwise. This implies that words capture differ-
ences between the best and other counters, whereas
embeddings rather help discard false candidates
with the same stance as the argument.

From the eight unit similarity baselines, w+ per-
forms best on five tasks (e× twice, w× once). w+

finds 71.5% true counterarguments among all op-
posing counters in a debate, and 28.6% among all
test arguments from the entire portal. In that task,
however, the mean ranks of w+ (33) and particu-
larly of w× (354) are much worse than for e× (21),
meaning that words are insufficient to robustly find
counterarguments.
we, we↓, and we↑ outperform all baselines in all

tasks, improving the accuracy by 8.1 (Same Theme:
Arguments) to 10.3 points (Entire Portal: Counters)
over w and e, and at least 3.0 over the best baseline
in each task. Among all opposing arguments from
the same debate (true-to-false ratio 1:6.6), we finds
60.3% of the best counterarguments, 44.9% when
all arguments are given (1:13.3).

The winner in our evaluation is we↑, though,
being best in five of the eight tasks. It found the
true among all opposing counters in 74.5% of all
cases, and about every third time (32.4) among
all 2801 test set arguments; a setting where the
random baseline has virtually no chance. Given
all arguments from the same theme, we↑ puts the
best counterargument at a mean rank of 5 (MRR
0.58), and for the entire portal still at 15 (MRR 0.5).
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Entire Portal: Arguments Accuracy@1 Mean Rank

Theme Arguments w+ we↑ w+ we↑

Culture 69 31.9 36.2 12 9
Digital freedoms 61 37.7 44.3 58 20
Economy 125 27.2 25.6 21 10
Education 81 38.3 39.5 36 17
Environment 46 17.4 21.7 22 7

Free speech debate 58 10.3 12.1 130 55
Health 77 28.6 36.4 26 14
International 271 25.8 31.4 31 19
Law 134 38.8 38.1 16 8
Philosophy 85 34.1 38.8 29 14

Politics 202 28.7 33.2 28 11
Religion 45 24.4 33.3 58 8
Science 57 19.3 28.1 6 5
Society 60 16.7 20.0 45 22
Sport 30 43.3 46.7 35 9

All themes 1401 28.6 32.4 33 15

Table 4: Accuracy@1 and mean rank of the best
baseline (w+) and approach (we↑) on each theme
when all 2801 test set arguments are candidates.

Although our scoring model thus does not solve the
retrieval tasks, we conclude that it serves as a robust
approach to rank the best counterargument high.

To test significance, we separately computed the
accuracy@1 for the arguments from each theme.
The differences between the 15 values of the best
approach on each task and those of the best baseline
(w+, w×, or e×) were normally distributed. Since
the baselines and approaches are dependent, we
used a one-tailed dependent t-test with paired sam-
ples. As Table 3 specifies, our approaches are con-
sistently better, partly with at least 99% confidence,
partly even with 99.9% confidence.

In Table 4, we exemplarily detail the compari-
son of the best approach (we↑) to the best baseline
(w+) on Entire Portal: Arguments. The mean ranks
across themes underline the robustness of we↑, be-
ing in the top 10 for 7 and in the top 20 even for 13
themes. Still, the accuracy@1 of both w+ and we↑
varies notably, in case of we↑ from 12.1 for free
speech debate to 46.7 for sport. For free speech
debates (e.g., “This House would criminalise blas-
phemy”), we observed that their arguments tend
to be overproportionally long, which might lead to
deviating similarities. In case of sports, the topical
specificity (e.g., “This House would ban boxing”)
reduces the probability of mistakenly choosing can-
didates from other themes.

Free speech debate turned out the hardest theme
in seven tasks, health in the remaining one. Besides
sports, in some tasks the best results were obtained

for religion and science, both of which share the
characteristic of dealing with very specific topics.9

7 Conclusion

This paper has asked how to find the best counterar-
gument to any argument without prior knowledge
of the argument’s topic. We did not aim to engineer
the best approach to this retrieval task, but to study
whether we can model the simultaneous similarity
and dissimilarity of a counterargument to an argu-
ment computationally. For the restricted domain of
debate portal arguments, our main result is quite
intriguing: The best model (we↑) rewards a high
overall similarity to the argument’s conclusion and
premises while punishing a too high similarity to
either of them. Despite its simplicity, we↑ found
the best counterargument among 2801 candidates
in almost a third of all cases, and ranked it into the
top 15 on average. This speaks for our hypothesis
that the best counterargument often just addresses
the same topical aspects with opposite stance.

Of course, our hypothesis is simplifying, i.e.,
there are counterarguments that will not be found
based on aspect and stance similarity only. Apart
from some hyperparameters, however, our model
is unsupervised and it does not make any assump-
tion about an argument’s topic. Hence, it applies
to any argument, given a pool of candidate coun-
terarguments. While the model can be considered
open-topic, a next step will be to study counterar-
gument retrieval open-source.

We are confident that the modeled intuition gen-
eralizes beyond idebate.org. To obtain further in-
sights into the nature of counterarguments, deeper
linguistic analysis along with supervised learning
may be needed, though. We provide a corpus to
train respective approaches, but leave the according
research to future work.

The intended practical application of our model
is to retrieve counterarguments in automatic debat-
ing technologies (Rinott et al., 2015) and argument
search (Wachsmuth et al., 2017b). While debate
portal arguments are often suitable in this regard,
in general not always a real counterargument exists
to an argument. Still, returning one that addresses
similar aspects with opposite stance makes sense
then. An alternative would be to generate counter-
arguments, but we believe that humans are better
than machines in writing them — currently.

9The individual results of the best approach and baseline
on each theme are also found in the supplementary material.
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Abstract

Knowledge graphs have emerged as an im-
portant model for studying complex multi-
relational data. This has given rise to
the construction of numerous large scale
but incomplete knowledge graphs encod-
ing information extracted from various re-
sources. An effective and scalable ap-
proach to jointly learn over multiple graphs
and eventually construct a unified graph
is a crucial next step for the success of
knowledge-based inference for many down-
stream applications. To this end, we pro-
pose LinkNBed, a deep relational learning
framework that learns entity and relation-
ship representations across multiple graphs.
We identify entity linkage across graphs as
a vital component to achieve our goal. We
design a novel objective that leverage en-
tity linkage and build an efficient multi-task
training procedure. Experiments on link
prediction and entity linkage demonstrate
substantial improvements over the state-of-
the-art relational learning approaches.

1 Introduction

Reasoning over multi-relational data is a key con-
cept in Artificial Intelligence and knowledge graphs
have appeared at the forefront as an effective tool
to model such multi-relational data. Knowledge
graphs have found increasing importance due to
its wider range of important applications such as
information retrieval (Dalton et al., 2014), natural
language processing (Gabrilovich and Markovitch,
2009), recommender systems (Catherine and Co-
hen, 2016), question-answering (Cui et al., 2017)

∗Correspondence: rstrivedi@gatech.edu and
bunyamis@amazon.com. Work done when Rakshit
Trivedi interned at Amazon.

and many more. This has led to the increased ef-
forts in constructing numerous large-scale Knowl-
edge Bases (e.g. Freebase (Bollacker et al., 2008),
DBpedia (Auer et al., 2007), Google’s Knowledge
graph (Dong et al., 2014), Yago (Suchanek et al.,
2007) and NELL (Carlson et al., 2010)), that can
cater to these applications, by representing infor-
mation available on the web in relational format.

All knowledge graphs share common drawback
of incompleteness and sparsity and hence most ex-
isting relational learning techniques focus on using
observed triplets in an incomplete graph to infer
unobserved triplets for that graph (Nickel et al.,
2016a). Neural embedding techniques that learn
vector space representations of entities and relation-
ships have achieved remarkable success in this task.
However, these techniques only focus on learning
from a single graph. In addition to incompleteness
property, these knowledge graphs also share a set of
overlapping entities and relationships with varying
information about them. This makes a compelling
case to design a technique that can learn over mul-
tiple graphs and eventually aid in constructing a
unified giant graph out of them. While research on
learning representations over single graph has pro-
gressed rapidly in recent years (Nickel et al., 2011;
Dong et al., 2014; Trouillon et al., 2016; Bordes
et al., 2013; Xiao et al., 2016; Yang et al., 2015),
there is a conspicuous lack of principled approach
to tackle the unique challenges involved in learning
across multiple graphs.

One approach to multi-graph representation
learning could be to first solve graph alignment
problem to merge the graphs and then use exist-
ing relational learning methods on merged graph.
Unfortunately, graph alignment is an important but
still unsolved problem and there exist several tech-
niques addressing its challenges (Liu and Yang,
2016; Pershina et al., 2015; Koutra et al., 2013;
Buneman and Staworko, 2016) in limited settings.
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The key challenges for the graph alignment prob-
lem emanate from the fact that the real world data
are noisy and intricate in nature. The noisy or
sparse data make it difficult to learn robust align-
ment features, and data abundance leads to com-
putational challenges due to the combinatorial per-
mutations needed for alignment. These challenges
are compounded in multi-relational settings due to
heterogeneous nodes and edges in such graphs.

Recently, deep learning has shown significant
impact in learning useful information over noisy,
large-scale and heterogeneous graph data (Rossi
et al., 2017). We, therefore, posit that combin-
ing graph alignment task with deep representation
learning across multi-relational graphs has poten-
tial to induce a synergistic effect on both tasks.
Specifically, we identify that a key component
of graph alignment process—entity linkage—also
plays a vital role in learning across graphs. For
instance, the embeddings learned over two knowl-
edge graphs for an actor should be closer to one
another compared to the embeddings of all the
other entities. Similarly, the entities that are already
aligned together across the two graphs should pro-
duce better embeddings due to the shared context
and data. To model this phenomenon, we propose
LinkNBed, a novel deep learning framework that
jointly performs representation learning and graph
linkage task. To achieve this, we identify key chal-
lenges involved in the learning process and make
the following contributions to address them:

• We propose novel and principled approach to-
wards jointly learning entity representations
and entity linkage. The novelty of our frame-
work stems from its ability to support linkage
task across heterogeneous types of entities.

• We devise a graph-independent inductive
framework that learns functions to capture
contextual information for entities and rela-
tions. It combines the structural and semantic
information in individual graphs for joint in-
ference in a principled manner.

• Labeled instances (specifically positive in-
stances for linkage task) are typically very
sparse and hence we design a novel multi-task
loss function where entity linkage task is tack-
led in robust manner across various learning
scenarios such as learning only with unlabeled
instances or only with negative instances.

• We design an efficient training procedure to
perform joint training in linear time in the
number of triples. We demonstrate superior
performance of our method on two datasets cu-
rated from Freebase and IMDB against state-
of-the-art neural embedding methods.

2 Preliminaries

2.1 Knowledge Graph Representation
A knowledge graph G comprises of set of facts
represented as triplets (es, r, eo) denoting the re-
lationship r between subject entity es and object
entity eo. Associated to this knowledge graph, we
have a set of attributes that describe observed char-
acteristics of an entity. Attributes are represented
as set of key-value pairs for each entity and an at-
tribute can have null (missing) value for an entity.
We follow Open World Assumption - triplets not
observed in knowledge graph are considered to be
missing but not false. We assume that there are no
duplicate triplets or self-loops.

2.2 Multi-Graph Relational Learning
Definition. Given a collection of knowledge
graphs G, Multi-Graph Relational Learning refers
to the the task of learning information rich represen-
tations of entities and relationships across graphs.
The learned embeddings can further be used to in-
fer new knowledge in the form of link prediction or
learn new labels in the form of entity linkage. We
motivate our work with the setting of two knowl-
edge graphs where given two graphs G1, G2 ∈ G,
the task is to match an entity eG1 ∈ G1 to an entity
eG2 ∈ G2 if they represent the same real-world
entity. We discuss a straightforward extension of
this setting to more than two graphs in Section 7.

Notations. Let X and Y represent realization of
two such knowledge graphs extracted from two dif-
ferent sources. Let nXe and nYe represent number
of entities in X and Y respectively. Similarly, nXr
and nYr represent number of relations in X and Y .
We combine triplets from both X and Y to obtain
set of all observed triplets D = {(es, r, eo)p}Pp=1

where P is total number of available records across
from both graphs. Let E andR be the set of all enti-
ties and all relations in D respectively. Let |E| = n
and |R| = m. In addition to D, we also have set
of linkage labels L for entities between X and Y .
Each record in L is represented as triplet (eX ∈ X ,
eY ∈ Y , l ∈ {0, 1}) where l = 1 when the entities
are matched and l = 0 otherwise.
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3 Proposed Method: LinkNBed

We present a novel inductive multi-graph relational
learning framework that learns a set of aggregator
functions capable of ingesting various contextual
information for both entities and relationships in
multi-relational graph. These functions encode the
ingested structural and semantic information into
low-dimensional entity and relation embeddings.
Further, we use these representations to learn a
relational score function that computes how two
entities are likely to be connected in a particular
relationship. The key idea behind this formulation
is that when a triplet is observed, the relationship
between the two entities can be explained using
various contextual information such as local neigh-
borhood features of both entities, attribute features
of both entities and type information of the entities
which participate in that relationship.

We outline two key insights for establishing the
relationships between embeddings of the entities
over multiple graphs in our framework:
Insight 1 (Embedding Similarity): If the two en-
tities eX ∈ X and eY ∈ Y represent the same
real-world entity then their embeddings eX and eY

will be close to each other.
Insight 2 (Semantic Replacement): For a given
triplet t = (es, r, eo) ∈ X , denote g(t) as the func-
tion that computes a relational score for t using
entity and relation embeddings. If there exists
a matching entity es

′ ∈ Y for es ∈ X , denote
t′ = (es

′
, r, eo) obtained after replacing es with es

′
.

In this case, g(t) ∼ g(t′) i.e. score of triplets t and
t′ will be similar.

For a triplet (es, r, eo) ∈ D, we describe en-
coding mechanism of LinkNBed as three-layered
architecture that computes the final output represen-
tations of zr, ze

s
, ze

o
for the given triplet. Figure 1

provides an overview of LinkNBed architecture
and we describe the three steps below:

3.1 Atomic Layer
Entities, Relations, Types and Attributes are first
encoded in its basic vector representations. We use
these basic representations to derive more complex
contextual embeddings further.
Entities, Relations and Types. The embedding
vectors corresponding to these three components
are learned as follows:

ves = f(WEes) veo = f(WEeo) (1)

vr = f(WRr) vt = f(WTt) (2)

where ves ,veo ∈ Rd. es, eo ∈ Rn are “one-hot”
representations of es and eo respectively. vr ∈
Rk and r ∈ Rm is “one-hot” representation of r.
vt ∈ Rq and t ∈ Rz is ”one-hot” representation
of t . WE ∈ Rd×n, WR ∈ Rk×m and WT ∈
Rq×z are the entity, relation and type embedding
matrices respectively. f is a nonlinear activation
function (Relu in our case). WE, WR and WT

can be initialized randomly or using pre-trained
word embeddings or vector compositions based on
name phrases of components (Socher et al., 2013).
Attributes. For a given attribute a represented
as key-value pair, we use paragraph2vec (Le and
Mikolov, 2014) type of embedding network to learn
attribute embedding. Specifically, we represent
attribute embedding vector as:

a = f(Wkeyakey + Wvalaval) (3)

where a ∈ Ry, akey ∈ Ru and aval ∈ Rv.
Wkey ∈ Ry×u and Wval ∈ Ry×v. akey will be
“one-hot” vector and aval will be feature vector.
Note that the dimensions of the embedding vectors
do not necessarily need to be the same.

3.2 Contextual Layer

While the entity and relationship embeddings de-
scribed above help to capture very generic latent
features, embeddings can be further enriched to
capture structural information, attribute informa-
tion and type information to better explain the exis-
tence of a fact. Such information can be modeled
as context of nodes and edges in the graph. To this
end, we design the following canonical aggregator
function that learns various contextual information
by aggregating over relevant embedding vectors:

c(z) = AGG({z′,∀z′ ∈ C(z)}) (4)

where c(z) is the vector representation of the ag-
gregated contextual information for component z.
Here, component z can be either an entity or a rela-
tion. C(z) is the set of components in the context
of z and z′ correspond to the vector embeddings
of those components. AGG is the aggregator func-
tion which can take many forms such Mean, Max,
Pooling or more complex LSTM based aggrega-
tors. It is plausible that different components in
a context may have varied impact on the compo-
nent for which the embedding is being learned.
To account for this, we employ a soft attention
mechanism where we learn attention coefficients
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Figure 1: LinkNBed Architecture Overview - one step score computation for a given triplet (es, r, eo).
The Attribute embeddings are not simple lookups but they are learned as shown in Eq 3

to weight components based on their impact before
aggregating them. We modify Eq. 4 as:

c(z) = AGG(q(z) ∗ {z′, ∀z′ ∈ C(z)}) (5)

where

q(z) =
exp(θz)∑

z′∈C(z)

exp(θz′)
(6)

and θz’s are the parameters of attention model.
Following contextual information is modeled in
our framework:

Entity Neighborhood Context Nc(e) ∈ Rd.
Given a triplet (es, r, eo), the neighborhood
context for an entity es will be the nodes located
near es other than the node eo. This will capture
the effect of local neighborhood in the graph
surrounding es that drives es to participate in fact
(es, r, eo). We use Mean as aggregator function.
As there can be large number of neighbors, we
collect the neighborhood set for each entity as a
pre-processing step using a random walk method.
Specifically, given a node e, we run k rounds of
random-walks of length l following (Hamilton
et al., 2017) and create set N (e) by adding all
unique nodes visited across these walks. This
context can be similarly computed for object entity.

Entity Attribute Context Ac(e) ∈ Ry. For
an entity e, we collect all attribute embeddings
for e obtained from Atomic Layer and learn
aggregated information over them using Max
operator given in Eq. 4.

Relation Type Context Tc(r) ∈ Rq. We use type
context for relation embedding i.e. for a given
relationship r, this context aims at capturing the
effect of type of entities that have participated
in this relationship. For a given triplet (es, r, eo),
type context for relationship r is computed by
aggregation with mean over type embeddings
corresponding to the context of r. Appendix C
provides specific forms of contextual information.

3.3 Representation Layer

Having computed the atomic and contextual em-
beddings for a triplet (es, r, eo), we obtain the final
embedded representations of entities and relation
in the triplet using the following formulation:

ze
s
= σ( W1ves

︸ ︷︷ ︸
Subject Entity Embedding

+ W2Nc(e
s)︸ ︷︷ ︸

Neighborhood Context

+ W3Ac(e
s))︸ ︷︷ ︸

Subject Entity Attributes

(7)

ze
o
= σ( W1veo

︸ ︷︷ ︸
Object Entity Embedding

+ W2Nc(e
o)︸ ︷︷ ︸

Neighborhood Context

+ W3Ac(e
o))︸ ︷︷ ︸

Object Entity Attributes

(8)

zr = σ( W4vr

︸ ︷︷ ︸
Relation Embedding

+ W5Tc(r))︸ ︷︷ ︸
Entity Type Context

(9)

where W1,W2 ∈ Rd×d, W3 ∈ Rd×y, W4 ∈
Rd×k and W5 ∈ Rd×q. σ is nonlinear activation
function – generally Tanh or Relu.
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Following is the rationale for our formulation: An
entity’s representation can be enriched by encoding
information about the local neighborhood features
and attribute information associated with the en-
tity in addition to its own latent features. Parame-
ters W1,W2,W3 learn to capture these different
aspects and map them into the entity embedding
space. Similarly, a relation’s representation can
be enriched by encoding information about entity
types that participate in that relationship in addi-
tion to its own latent features. Parameters W4,W5

learn to capture these aspects and map them into
the relation embedding space. Further, as the ulti-
mate goal is to jointly learn over multiple graphs,
shared parameterization in our model facilitate the
propagation of information across graphs thereby
making it a graph-independent inductive model.
The flexibility of the model stems from the ability
to shrink it (to a very simple model considering
atomic entity and relation embeddings only) or ex-
pand it (to a complex model by adding different
contextual information) without affecting any other
step in the learning procedure.

3.4 Relational Score Function

Having observed a triplet (es, r, eo), we first use Eq.
7, 8 and 9 to compute entity and relation represen-
tations. We then use these embeddings to capture
relational interaction between two entities using
the following score function g(·):

g(es, r, eo) = σ(zr
T · (zes � ze

o
)) (10)

where zr, ze
s
, ze

o ∈ Rd are d-dimensional repre-
sentations of entity and relationships as described
below. σ is the nonlinear activation function and �
represent element-wise product.

4 Efficient Learning Procedure

4.1 Objective Function

The complete parameter space
of the model can be given by:
Ω = {{Wi}5i=1,W

E,WR,Wkey,Wval,Wt,Θ}.
To learn these parameters, we design a novel multi-
task objective function that jointly trains over two
graphs. As identified earlier, the goal of our model
is to leverage the available linkage information
across graphs for optimizing the entity and relation
embeddings such that they can explain the ob-
served triplets across the graphs. Further, we want
to leverage these optimized embeddings to match

entities across graphs and expand the available link-
age information. To achieve this goal, we define
following two different loss functions catering to
each learning task and jointly optimize over them
as a multi-task objective to learn model parameters:

Relational Learning Loss. This is conven-
tional loss function used to learn knowledge
graph embeddings. Specifically, given a p-th
triplet (es, r, eo)p from training set D, we sample
C negative samples by replacing either head or
tail entity and define a contrastive max margin
function as shown in (Socher et al., 2013):

Lrel =
C∑

c=1

max(0, γ − g(esp, rp, eop)

+ g′(esc, rp, e
o
p))

(11)

where, γ is margin, esc represent corrupted entity
and g′(esc, rp, e

o
p) represent corrupted triplet score.

Linkage Learning Loss: We design a novel
loss function to leverage pairwise label set L.
Given a triplet (esX , rX , e

o
X) from knowledge

graph X , we first find the entity e+Y from graph Y
that represent the same real-world entity as esX .
We then replace esX with e+Y and compute score
g(e+Y , rX , e

o
X). Next, we find set of all entities E−Y

from graph Y that has a negative label with entity
esX . We consider them analogous to the negative
samples we generated for Eq. 11. We then propose
the label learning loss function as:

Llab =
Z∑

z=1

max(0, γ − g(e+Y , rX , eoX)

+ (g′(e−Y , rX , e
o
X)z))

(12)

where, Z is the total number of negative labels
for eX . γ is margin which is usually set to 1
and e−Y ∈ E−Y represent entity from graph Y with
which entity esX had a negative label. Please note
that this applies symmetrically for the triplets that
originate from graph Y in the overall dataset. Note
that if both entities of a triplet have labels, we will
include both cases when computing the loss. Eq. 12
is inspired by Insight 1 and Insight 2 defined earlier
in Section 2. Given a set D of N observed triplets
across two graphs, we define complete multi-task
objective as:

L(Ω) =
N∑

i=1

[b·Lrel+(1−b)·Llab]+λ ‖Ω‖22 (13)
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Algorithm 1 LinkNBed mini-batch Training
Input: Mini-batch M, Negative Sample Size
C, Negative Label Size Z, Attribute data
att data, Neighborhood data nhbr data, Type
data type data, Positive Label Dict pos dict,
Negative Label Dict neg dict
Output: Mini-batch Loss LM.
LM = 0
score pos = []; score neg = []; score pos lab =
[]; score neg lab = []
for i = 0 to size(M) do

input tuple =M[i] = (es, r, eo)
sc = compute triplet score(es, r, eo) (Eq. 10)
score pos.append(sc)
for j = 0 to C do

Select esc from entity list such that esc 6= es

and esc 6= eo and (esc, r, e
o) /∈ D

sc neg = compute triplet score(esc, r, e
o)

score neg.append(sc neg)
end for
if es in pos dict then
es+ = positive label for es

sc pos l = compute triplet score(es+, r, eo)
score pos lab.append(sc pos l)

end if
for k = 0 to Z do

Select es− from neg dict
sc neg l = compute triplet score(es−, r, eo)
score neg lab.append(sc neg l)

end for
end for
LM += compute minibatch loss(score pos,
score neg, score pos lab, score neg lab)
(Eq. 13)
Back-propagate errors and update parameters Ω
return LM

where Ω is set of all model parameters and λ is
regularization hyper-parameter. b is weight hyper-
parameter used to attribute importance to each task.
We train with mini-batch SGD procedure (Algo-
rithm 1) using Adam Optimizer.
Missing Positive Labels. It is expensive to ob-
tain positive labels across multiple graphs and
hence it is highly likely that many entities will
not have positive labels available. For those en-
tities, we will modify Eq. 12 to use the original
triplet (esX , rX , e

o
X) in place of perturbed triplet

g(e+Y , rX , e
o
X) for the positive label. The rationale

here again arises from Insight 2 wherein embed-
dings of two duplicate entities should be able to

replace each other without affecting the score.
Training Time Complexity. Most contextual in-
formation is pre-computed and available to all train-
ing steps which leads to constant time embedding
lookup for those context. But for attribute network,
embedding needs to be computed for each attribute
separately and hence the complexity to compute
score for one triplet is O(2a) where a is number
of attributes. Also for training, we generate C
negative samples for relational loss function and
use Z negative labels for label loss function. Let
k = C + Z. Hence, the training time complexity
for a set of n triplets will be O(2ak ∗ n) which is
linear in number of triplets with a constant factor as
ak << n for real world knowledge graphs. This is
desirable as the number of triplets tend to be very
large per graph in multi-relational settings.
Memory Complexity. We borrow notations
from (Nickel et al., 2016a) and describe the pa-
rameter complexity of our model in terms of the
number of each component and corresponding
embedding dimension requirements. Let Ha =
2∗NeHe+NrHr+NtHt+NkHk+NvHv. The pa-
rameter complexity of our model is: Ha ∗ (Hb+1).
Here, Ne, Nr, Nt, Nk, Nv signify number of enti-
ties, relations, types, attribute keys and vocab size
of attribute values across both datasets. Here Hb is
the output dimension of the hidden layer.

5 Experiments

5.1 Datasets
We evaluate LinkNBed and baselines on two real
world knowledge graphs: D-IMDB (derived from
large scale IMDB data snapshot) and D-FB (de-
rived from large scale Freebase data snapshot). Ta-
ble 5.1 provides statistics for our final dataset used
in the experiments. Appendix B.1 provides com-
plete details about dataset processing.

Dataset # Entities # Relations # Attributes # Entity # Available
Name Types Triples

D-IMDB 378207 38 23 41 143928582
D-FB 39667 146 69 324 22140475

Table 1: Statistics for Datasets: D-IMDB and D-FB

5.2 Baselines
We compare the performance of our method
against state-of-the-art representation learning
baselines that use neural embedding techniques to
learn entity and relation representation. Specif-
ically, we consider compositional methods of
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RESCAL (Nickel et al., 2011) as basic matrix fac-
torization method, DISTMULT (Yang et al., 2015)
as simple multiplicative model good for capturing
symmetric relationships, and Complex (Trouillon
et al., 2016), an upgrade over DISTMULT that can
capture asymmetric relationships using complex
valued embeddings. We also compare against
translational model of STransE that combined
original structured embedding with TransE and has
shown state-of-art performance in benchmark test-
ing (Kadlec et al., 2017). Finally, we compare with
GAKE (Feng et al., 2016), a model that captures
context in entity and relationship representations.

In addition to the above state-of-art models,
we analyze the effectiveness of different compo-
nents of our model by comparing with various
versions that use partial information. Specifically,
we report results on following variants:
LinkNBed - Embed Only. Only use entity
embeddings, LinkNBed - Attr Only. Only use
Attribute Context, LinkNBed - Nhbr Only. Only
use Neighborhood Context, LinkNBed - Embed +
Attr. Use both Entity embeddings and Attribute
Context, LinkNBed - Embed + Nhbr. Use both
Entity embeddings and Neighbor Context and
LinkNBed - Embed All. Use all three Contexts.

5.3 Evaluation Scheme

We evaluate our model using two inference tasks:
Link Prediction. Given a test triplet (es, r, eo),
we first score this triplet using Eq. 10. We then
replace eo with all other entities in the dataset
and filter the resulting set of triplets as shown in
(Bordes et al., 2013). We score the remaining set
of perturbed triplets using Eq. 10. All the scored
triplets are sorted based on the scores and then
the rank of the ground truth triplet is used for the
evaluation. We use this ranking mechanism to
compute HITS@10 (predicted rank ≤ 10) and
reciprocal rank ( 1

rank ) of each test triplet. We
report the mean over all test samples.

Entity Linkage. In alignment with Insight
2, we pose a novel evaluation scheme to perform
entity linkage. Let there be two ground truth test
sample triplets: (eX , e+Y , 1) representing a positive
duplicate label and (eX , e

−
Y , 0) representing a

negative duplicate label. Algorithm 2 outlines
the procedure to compute linkage probability or
score q (∈ [0, 1]) for the pair (eX , eY ). We use
L1 distance between the two vectors analogous

Algorithm 2 Entity Linkage Score Computation
Input: Test pair – (eX ∈ X, eY ∈ Y ).
Output: Linkage Score – q.

1. Collect all triplets involving eX from graph
X and all triplets involving eY from graph Y
into a combined set O. Let |O| = k.
2. Construct Sorig ∈ Rk.
For each triplet o ∈ O, compute score g(o) using
Eq. 10 and store the score in Sorig.
3. Create triplet set O′ as following:
if o ∈ O contain eX ∈ X then

Replace eX with eY to create perturbed triplet
o′ and store it in O′

end if
if o ∈ O contain eY ∈ Y then

Replace eY with eX to create perturbed triplet
o′ and store it in O′

end if
4. Construct Srepl ∈ Rk.
For each triplet o′ ∈ O′, compute score g(o′)
using Eq. 10 and store the score in Srepl.
5. Compute q.
Elements in Sorig and Srepl have one-one corre-
spondence so take the mean absolute difference:
q = |Sorig - Srepl|1
return q

to Mean Absolute Error (MAE). In lieu of
hard-labeling test pairs, we use score q to compute
Area Under the Precision-Recall Curve (AUPRC).

For the baselines and the unsupervised version
(with no labels for entity linkage) of our model,
we use second stage multilayer Neural Network as
classifier for evaluating entity linkage. Appendix
B.2 provides training configuration details.

5.4 Predictive Analysis

Link Prediction Results. We train LinkNBed
model jointly across two knowledge graphs and
then perform inference over individual graphs to re-
port link prediction reports. For baselines, we train
each baseline on individual graphs and use parame-
ters specific to the graph to perform link prediction
inference over each individual graph. Table 5.4
shows link prediction performance for all meth-
ods. Our model variant with attention mechanism
outperforms all the baselines with 4.15% improve-
ment over single graph state-of-the-art Complex
model on D-IMDB and 8.23% improvement on D-
FB dataset. D-FB is more challenging dataset to
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Method D-IMDB-HITS10 D-IMDB-MRR D-FB-HITS10 D-FB-MRR

RESCAL 75.3 0.592 69.99 0.147
DISTMULT 79.5 0.691 72.34 0.556

Complex 83.2 0.752 75.67 0.629
STransE 80.7 0.421 69.87 0.397
GAKE 69.5 0.114 63.22 0.093

LinkNBed-Embed Only 79.9 0.612 73.2 0.519
LinkNBed-Attr Only 82.2 0.676 74.7 0.588
LinkNBed-Nhbr Only 80.1 0.577 73.4 0.572

LinkNBed-Embed + Attr 84.2 0.673 78.39 0.606
LinkNBed-Embed + Nhbr 81.7 0.544 73.45 0.563

LinkNBed-Embed All 84.3 0.725 80.2 0.632
LinkNBed-Embed All (Attention) 86.8 0.733 81.9 0.677

Improvement (%) 4.15 1.10 8.23 7.09

Table 2: Link Prediction Results on both datasets

learn as it has a large set of sparse relationships,
types and attributes and it has an order of magni-
tude lesser relational evidence (number of triplets)
compared to D-IMDB. Hence, LinkNBed’s pro-
nounced improvement on D-FB demonstrates the
effectiveness of the model. The simplest version of
LinkNBed with only entity embeddings resembles
DISTMULT model with different objective func-
tion. Hence closer performance of those two mod-
els aligns with expected outcome. We observed
that the Neighborhood context alone provides only
marginal improvements while the model benefits
more from the use of attributes. Despite being
marginal, attention mechanism also improves accu-
racy for both datasets. Compared to the baselines
which are obtained by trained and evaluated on in-
dividual graphs, our superior performance demon-
strates the effectiveness of multi-graph learning.

Entity Linkage Results. We report entity link-
age results for our method in two settings: a.) Su-
pervised case where we train using both the objec-
tive functions. b.) Unsupervised case where we
learn with only the relational loss function. The
latter case resembles the baseline training where
each model is trained separately on two graphs in
an unsupervised manner. For performing the entity
linkage in unsupervised case for all models, we
first train a second stage of simple neural network
classifier and then perform inference. In the super-
vised case, we use Algorithm 2 for performing the
inference. Table 5.4 demonstrates the performance
of all methods on this task. Our method signifi-
cantly outperforms all the baselines with 33.86%
over second best baseline in supervised case and
17.35% better performance in unsupervised case.
The difference in the performance of our method in
two cases demonstrate that the two training objec-
tives are helping one another by learning across the
graphs. GAKE’s superior performance on this task
compared to the other state-of-the-art relational
baselines shows the importance of using contex-

Method AUPRC (Supervised) AUPRC (Unsupervised)

RESCAL - 0.327
DISTMULT - 0.292

Complex - 0.359
STransE - 0.231
GAKE - 0.457

LinkNBed-Embed Only 0.376 0.304
LinkNBed-Attr Only 0.451 0.397
LinkNBed-Nhbr Only 0.388 0.322

LinkNBed-Embed + Attr 0.512 0.414
LinkNBed-Embed + Nhbr 0.429 0.356

LinkNBed-Embed All 0.686 0.512
LinkNBed-Embed All (Attention) 0.691 0.553

Improvement (%) 33.86 17.35

Table 3: Entity Linkage Results - Unsupervised
case uses classifier at second step

tual information for entity linkage. Performance of
other variants of our model again demonstrate that
attribute information is more helpful than neigh-
borhood context and attention provides marginal
improvements. We provide further insights with
examples and detailed discussion on entity linkage
task in Appendix A.

6 Related Work

6.1 Neural Embedding Methods for
Relational Learning

Compositional Models learn representations by
various composition operators on entity and rela-
tional embeddings. These models are multiplica-
tive in nature and highly expressive but often suf-
fer from scalability issues. Initial models include
RESCAL (Nickel et al., 2011) that uses a relation
specific weight matrix to explain triplets via pair-
wise interactions of latent features, Neural Tensor
Network (Socher et al., 2013), more expressive
model that combines a standard NN layer with a bi-
linear tensor layer and (Dong et al., 2014) that em-
ploys a concatenation-projection method to project
entities and relations to lower dimensional space.
Later, many sophisticated models (Neural Associa-
tion Model (Liu et al., 2016), HoLE (Nickel et al.,
2016b)) have been proposed. Path based composi-
tion models (Toutanova et al., 2016) and contextual
models GAKE (Feng et al., 2016) have been re-
cently studied to capture more information from
graphs. Recently, model like Complex (Trouil-
lon et al., 2016) and Analogy (Liu et al., 2017)
have demonstrated state-of-the art performance on
relational learning tasks. Translational Models
( (Bordes et al., 2014), (Bordes et al., 2011), (Bor-
des et al., 2013), (Wang et al., 2014), (Lin et al.,
2015), (Xiao et al., 2016)) learn representation by
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employing translational operators on the embed-
dings and optimizing based on their score. They of-
fer an additive and efficient alternative to expensive
multiplicative models. Due to their simplicity, they
often loose expressive power. For a comprehensive
survey of relational learning methods and empiri-
cal comparisons, we refer the readers to (Nickel
et al., 2016a), (Kadlec et al., 2017), (Toutanova and
Chen, 2015) and (Yang et al., 2015). None of these
methods address multi-graph relational learning
and cannot be adapted to tasks like entity linkage
in straightforward manner.

6.2 Entity Resolution in Relational Data

Entity Resolution refers to resolving entities avail-
able in knowledge graphs with entity mentions
in text. (Dredze et al., 2010) proposed entity
disambiguation method for KB population, (He
et al., 2013) learns entity embeddings for resolu-
tion, (Huang et al., 2015) propose a sophisticated
DNN architecture for resolution, (Campbell et al.,
2016) proposes entity resolution across multiple
social domains, (Fang et al., 2016) jointly embeds
text and knowledge graph to perform resolution
while (Globerson et al., 2016) proposes Attention
Mechanism for Collective Entity Resolution.

6.3 Learning across multiple graphs

Recently, learning over multiple graphs have
gained traction. (Liu and Yang, 2016) divides
a multi-relational graph into multiple homoge-
neous graphs and learns associations across them
by employing product operator. Unlike our work,
they do not learn across multiple multi-relational
graphs. (Pujara and Getoor, 2016) provides logic
based insights for cross learning, (Pershina et al.,
2015) does pairwise entity matching across multi-
relational graphs and is very expensive, (Chen et al.,
2017) learns embeddings to support multi-lingual
learning and Big-Align (Koutra et al., 2013) tackles
graph alignment problem efficiently for bipartite
graphs. None of these methods learn latent rep-
resentations or jointly train graph alignment and
learning which is the goal of our work.

7 Concluding Remarks and Future Work

We present a novel relational learning framework
that learns entity and relationship embeddings
across multiple graphs. The proposed representa-
tion learning framework leverage an efficient learn-
ing and inference procedure which takes into ac-
count the duplicate entities representing the same

real-world entity in a multi-graph setting. We
demonstrate superior accuracies on link predic-
tion and entity linkage tasks compared to the exist-
ing approaches that are trained only on individual
graphs. We believe that this work opens a new
research direction in joint representation learning
over multiple knowledge graphs.

Many data driven organizations such as Google
and Microsoft take the approach of constructing a
unified super-graph by integrating data from multi-
ple sources. Such unification has shown to signifi-
cantly help in various applications, such as search,
question answering, and personal assistance. To
this end, there exists a rich body of work on linking
entities and relations, and conflict resolution (e.g.,
knowledge fusion (Dong et al., 2014). Still, the
problem remains challenging for large scale knowl-
edge graphs and this paper proposes a deep learning
solution that can play a vital role in this construc-
tion process. In real-world setting, we envision
our method to be integrated in a large scale system
that would include various other components for
tasks like conflict resolution, active learning and
human-in-loop learning to ensure quality of con-
structed super-graph. However, we point out that
our method is not restricted to such use cases—one
can readily apply our method to directly make infer-
ence over multiple graphs to support applications
like question answering and conversations.

For future work, we would like to extend the
current evaluation of our work from a two-graph
setting to multiple graphs. A straightforward ap-
proach is to create a unified dataset out of more
than two graphs by combining set of triplets as
described in Section 2, and apply learning and in-
ference on the unified graph without any major
change in the methodology. Our inductive frame-
work learns functions to encode contextual informa-
tion and hence is graph independent. Alternatively,
one can develop sophisticated approaches with it-
erative merging and learning over pairs of graphs
until exhausting all graphs in an input collection.
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Abstract

Embedding methods which enforce a par-
tial order or lattice structure over the con-
cept space, such as Order Embeddings
(OE) (Vendrov et al., 2016), are a nat-
ural way to model transitive relational
data (e.g. entailment graphs). However,
OE learns a deterministic knowledge base,
limiting expressiveness of queries and the
ability to use uncertainty for both predic-
tion and learning (e.g. learning from ex-
pectations). Probabilistic extensions of
OE (Lai and Hockenmaier, 2017) have
provided the ability to somewhat calibrate
these denotational probabilities while re-
taining the consistency and inductive bias
of ordered models, but lack the ability to
model the negative correlations found in
real-world knowledge. In this work we
show that a broad class of models that as-
sign probability measures to OE can never
capture negative correlation, which moti-
vates our construction of a novel box lat-
tice and accompanying probability mea-
sure to capture anticorrelation and even
disjoint concepts, while still providing the
benefits of probabilistic modeling, such as
the ability to perform rich joint and con-
ditional queries over arbitrary sets of con-
cepts, and both learning from and predict-
ing calibrated uncertainty. We show im-
provements over previous approaches in
modeling the Flickr and WordNet entail-
ment graphs, and investigate the power of
the model.

* Equal contribution.

1 Introduction

Structured embeddings based on regions, densi-
ties, and orderings have gained popularity in re-
cent years for their inductive bias towards the
essential asymmetries inherent in problems such
as image captioning (Vendrov et al., 2016), lexi-
cal and textual entailment (Erk, 2009; Vilnis and
McCallum, 2015; Lai and Hockenmaier, 2017;
Athiwaratkun and Wilson, 2018), and knowledge
graph completion and reasoning (He et al., 2015;
Nickel and Kiela, 2017; Li et al., 2017).

Models that easily encode asymmetry, and re-
lated properties such as transitivity (the two com-
ponents of commonplace relations such as par-
tially ordered sets and lattices), have great utility
in these applications, leaving less to be learned
from the data than arbitrary relational models. At
their best, they resemble a hybrid between embed-
ding models and structured prediction. As noted
by Vendrov et al. (2016) and Li et al. (2017), while
the models learn sets of embeddings, these param-
eters obey rich structural constraints. The entire
set can be thought of as one, sometimes provably
consistent, structured prediction, such as an ontol-
ogy in the form of a single directed acyclic graph.

While the structured prediction analogy ap-
plies best to Order Embeddings (OE), which em-
beds consistent partial orders, other region- and
density-based representations have been proposed
for the express purpose of inducing a bias to-
wards asymmetric relationships. For example, the
Gaussian Embedding (GE) model (Vilnis and Mc-
Callum, 2015) aims to represent the asymmetry
and uncertainty in an object’s relations and at-
tributes by means of uncertainty in the represen-
tation. However, while the space of representa-
tions is a manifold of probability distributions, the
model is not truly probabilistic in that it does not
model asymmetries and relations in terms of prob-
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abilities, but in terms of asymmetric comparison
functions such as the originally proposed KL di-
vergence and the recently proposed thresholded
divergences (Athiwaratkun and Wilson, 2018).

Probabilistic models are especially compelling
for modeling ontologies, entailment graphs, and
knowledge graphs. Their desirable properties
include an ability to remain consistent in the
presence of noisy data, suitability towards semi-
supervised training using the expectations and un-
certain labels present in these large-scale applica-
tions, the naturality of representing the inherent
uncertainty of knowledge they store, and the abil-
ity to answer complex queries involving more than
2 variables. Note that the final one requires a true
joint probabilistic model with a tractable inference
procedure, not something provided by e.g. matrix
factorization.

We take the dual approach to density-based
embeddings and model uncertainty about rela-
tionships and attributes as explicitly probabilistic,
while basing the probability on a latent space of
geometric objects that obey natural structural bi-
ases for modeling transitive, asymmetric relations.
The most similar work are the probabilistic order
embeddings (POE) of Lai (Lai and Hockenmaier,
2017), which apply a probability measure to each
order embedding’s forward cone (the set of points
greater than the embedding in each dimension),
assigning a finite and normalized volume to the
unbounded space. However, POE suffers severe
limitations as a probabilistic model, including an
inability to model negative correlations between
concepts, which motivates the construction of our
box lattice model.

Our model represents objects, concepts, and
events as high-dimensional products-of-intervals
(hyperrectangles or boxes), with an event’s unary
probability coming from the box volume and joint
probabilities coming from overlaps. This contrasts
with POE’s approach of defining events as the for-
ward cones of vectors, extending to infinity, in-
tegrated under a probability measure that assigns
them finite volume.

One desirable property of a structured represen-
tation for ordered data, originally noted in (Ven-
drov et al., 2016) is a “slackness” shared by OE,
POE, and our model: when the model predicts
an “edge” or lack thereof (i.e. P (a|b) = 0 or 1,
or a zero constraint violation in the case of OE),
being exposed to that fact again will not update

the model. Moreover, there are large degrees of
freedom in parameter space that exhibit this slack-
ness, giving the model the ability to embed com-
plex structure with 0 loss when compared to mod-
els based on symmetric inner products or distances
between embeddings, e.g. bilinear GLMs (Collins
et al., 2002), Trans-E (Bordes et al., 2013), and
other embedding models which must always be
pushing and pulling parameters towards and away
from each other.

Our experiments demonstrate the power of our
approach to probabilistic ordering-biased rela-
tional modeling. First, we investigate an instruc-
tive 2-dimensional toy dataset that both demon-
strates the way the model self organizes its box
event space, and enables sensible answers to
queries involving arbitrary numbers of variables,
despite being trained on only pairwise data. We
achieve a new state of the art in denotational prob-
ability modeling on the Flickr entailment dataset
(Lai and Hockenmaier, 2017), and a matching
state-of-the-art on WordNet hypernymy (Vendrov
et al., 2016; Miller, 1995) with the concurrent
work on thresholded Gaussian embedding of Athi-
waratkun and Wilson (2018), achieving our best
results by training on additional co-occurrence ex-
pectations aggregated from leaf types.

We find that the strong empirical performance
of probabilistic ordering models, and our box lat-
tice model in particular, and their endowment of
new forms of training and querying, make them a
promising avenue for future research in represent-
ing structured knowledge.

2 Related Work

In addition to the related work in structured em-
beddings mentioned in the introduction, our focus
on directed, transitive relational modeling and on-
tology induction shares much with the rich field
of directed graphical models and causal model-
ing (Pearl, 1988), as well as learning the struc-
ture of those models (Heckerman et al., 1995).
Work in undirected structure learning such the
Graphical Lasso (Friedman et al., 2008) is also
relevant due to our desire to learn from pairwise
joint/conditional probabilities and moment matri-
ces, which are closely related in the setting of dis-
crete variables.

Especially relevant research in Bayesian net-
works are applications towards learning taxo-
nomic structure of relational data (Bansal et al.,
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2014), although this work is often restricted to-
wards tree-shaped ontologies, which allow effi-
cient inference by Chu-Liu-Edmonds’ algorithm
(Chu and Liu, 1995), while we focus on arbitrary
DAGs.

As our model is based on populating a latent
“event space” into boxes (products of intervals),
it is especially reminiscent of the Mondrian pro-
cess (Roy and Teh, 2009). However, the Mondrian
process partitions the space as a high dimensional
tree (a non-parametric kd-tree), while our model
allows the arbitrary box placement required for
DAG structure, and is much more tractable in high
dimensions compared to the Mondrian’s Bayesian
non-parametric inference.

Embedding applications to relational learning
constitute a huge field to which it is impossible
to do justice, but one general difference between
our approaches is that e.g. a matrix factorization
model treats the embeddings as objects to score re-
lation links with, as opposed to POE or our model
in which embeddings represent subsets of proba-
bilistic event space which are directly integrated.
They are full probabilistic models of the joint set
of variables, rather than embedding-based approx-
imations of only low-order joint and conditional
probabilities. That is, any set of our parame-
ters can answer any arbitrary probabilistic ques-
tion (possibly requiring intractable computation),
rather than being fixed to modeling only certain
subsets of the joint.

Embedding-based learning’s large advantage
over the combinatorial structure learning pre-
sented by classical PGM approaches is its applica-
bility to large-scale probability distributions con-
taining hundreds of thousands of events or more,
as in both our WordNet and Flickr experiments.

3 Background

3.1 Partial Orders and Lattices

A non-strict partial ordered set (poset) is a set P
equipped with a binary relation � such that for all
a, b, c 2 P ,

• a � a (reflexivity)

• a � b � a implies a = b (antisymmetry)

• a � b � c implies a � c (transitivity)

This is simply a generalization of a totally ordered
set that allows some elements to be incomparable,

and is a good model for the kind of acyclic directed
graph data found in knowledge bases.

A lattice is a poset where any subset has a
a unique least upper and greatest lower bound,
which will be true of all posets (lattices) consid-
ered in this paper. The least upper bound of two
elements a, b 2 P is called the join, denoted a_ b,
and the greatest lower bound is called the meet,
denoted a ^ b.

Additionally, in a bounded lattice we have two
extra elements, called top, denoted > and bot-
tom, denoted ?, which are respectively the least
upper bound and greatest lower bound of the en-
tire space. Using the extended real number line
(adding points at infinity), all lattices considered
in this paper are bounded lattices.

3.2 Order Embeddings (OE)

Vendrov et al. (2016) introduced a method for em-
bedding partially ordered sets and a task, partial
order completion, an abstract term for things like
hypernym or entailment prediction (learning tran-
sitive relations). The goal is to learn a mapping
from the partially-ordered data domain to some
other partially-ordered space that will enable gen-
eralization.

Definition 1. Vendrov et al. (2016)
A function f : (X,�X) ! (Y,�Y ) is an order-
embedding if for all u, v 2 X

u �X v () f(u) �Y f(v)

They choose Y to be a vector space, and the
order �Y to be based on the reverse product order
on Rn

+, which specifies

x � y () 8i 2 {1..n}, xi � yi

so an embedding is below another in the hierarchy
if all of the coordinates are larger, and 0 provides
a top element.

Although Vendrov et al. (2016) do not explic-
itly discuss it, their model does not just capture
partial orderings, but is a standard construction
of a vector (Hilbert) lattice, in which the opera-
tions of meet and join can be defined as taking the
pointwise maximum and minimum of two vectors,
respectively (Zaanen, 1997). This observation is
also used in (Li et al., 2017) to generate extra con-
straints for training order embeddings.

As noted in the original work, these single point
embeddings can be thought of as regions, i.e. the
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cone extending out from the vector towards infin-
ity. All concepts “entailed” by a given concept
must lie in this cone.

This ordering is optimized from examples of or-
dered elements and negative samples via a max-
margin loss.

3.3 Probabilistic Order Embeddings (POE)
Lai and Hockenmaier (2017) built on the “region”
idea to derive a probabilistic formulation (which
we will refer to as POE) to model entailment prob-
abilities in a consistent, hierarchical way.

Noting that all of OE’s regions obviously
have the same infinite area under the standard
(Lebesgue) measure of Rn

+, they propose a prob-
abilistic interpretation where the Bernoulli prob-
ability of each concept a or joint set of concepts
{a, b} with corresponding vectors {x, y} is given
by its volume under the exponential measure:

p(a) = exp(�
X

i

xi) =

Z

z�x

exp(�kzk1)dz

p(a, b) = p(x ^ y) = exp(�kmax(xi, yi)k1)

since the meet of two vectors is simply the in-
tersection of their area cones, and replacing sums
with `1 norms for brevity since all coordinates are
positive. While having the intuition of measuring
the areas of cones, this also automatically gives a
valid probability distribution over concepts since
this is just the product likelihood under a coordi-
natewise exponential distribution.

However, they note a deficiency of their model
— it can only model positive (Pearson) correla-
tions between concepts (Bernoulli variables).

Consider two Bernoulli variables a and b,
whose probabilities correspond to the areas of
cones x and y. Recall the Bernoulli covariance
formula (we will deal with covariances instead of
correlations when convenient, since they always
have the same sign):

cov(a, b) = p(a, b)� p(a)p(b) =

exp(�kmax(xi, yi)k1)� exp(�kxi + yik1)

Since the sum of two positive vectors can only
be greater than the sum of their pointwise max-
imum, this quantity will always be nonnegative.
This has real consequences for probabilistic mod-
eling in KBs: conditioning on more concepts will
only make probabilities higher (or unchanged),
e.g. p(dog|plant) � p(dog).

3.4 Probabilistic Asymmetric Transitive
Relations

Probabilistic models have pleasing consistency
properties for modeling asymmetric transitive re-
lations, in particular compared to density-based
embeddings — a pairwise conditional probability
table can almost always (in the technical sense) be
asymmetrized to produce a DAG by simply taking
an edge if P (a|b) > P (b|a). A matrix of pair-
wise Gaussian KL divergences cannot be consis-
tently asymmetrized in this manner. These claims
are proven in Appendix C. While a high P (a|b)
does not always indicate an edge in an ontology
due to confounding variables, existing graphical
model structure learning methods can be used to
further prune on the base graph without adding a
cycle, such as Graphical Lasso or simple thresh-
olding (Fattahi and Sojoudi, 2017).

4 Method

We develop a probabilistic model for lattices based
on hypercube embeddings that can model both
positive and negative correlations. Before describ-
ing this, we first motivate our choice to abandon
OE/POE type cone-based models for this purpose.

4.1 Correlations from Cone Measures

Claim. For a pair of Bernoulli variables p(a) and
p(b), cov(a, b) � 0 if the Bernoulli probabili-
ties come from the volume of a cone as measured
under any product (coordinate-wise) probability
measure p(x) =

Qn
i pi(xi) on Rn, where Fi, the

associated CDF for pi, is monotone increasing.

Proof. For any product measure we have

Z

z�x

p(z)dz =

nY

i

Z

xizi

pi(zi)dzi =

nY

i

1� Fi(xi)

This is just the area of the unique box correspond-
ing to

Qn
i [Fi(xi), 1] 2 [0, 1]n, under the uniform

measure. This box is unique as a monotone in-
creasing univariate CDF is bijective with (0, 1) —
cones in Rn can be invertibly mapped to boxes
of equivalent measure inside the unit hypercube
[0, 1]n. These boxes have only half their degrees
of freedom, as they have the form [Fi(xi), 1] per
dimension, (intuitively, they have one end ”stuck
at infinity” since the cone integrates to infinity.

So W.L.O.G. we can consider two transformed
cones x and y corresponding to our Bernoulli
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variables a and b, and letting Fi(xi) = ui and
Fi(yi) = vi, their intersection in the unit hyper-
cube is

Qn
i [max(ui, vi), 1].

Pairing terms in the right-hand product, we have

p(a, b)� p(a)p(b) =
nY

i

(1�max(ui, vi))�
nY

i

(1� ui)(1� vi) � 0

since the right contains all the terms of the left and
can only grow smaller. This argument is easily
modified to the case of the nonnegative orthant,
mutatis mutandis.

An open question for future work is what non-
product measures this claim also applies to. Note
that some non-product measures, such as multi-
variate Gaussian, can be transformed into product
measures easily (whitening) and the above proof
would still apply. It seems probable that some
measures, nonlinearly entangled across dimen-
sions, could encode negative correlations in cone
volumes. However, it is not generally tractable to
integrate high-dimensional cones under arbitrary
non-product measures.

4.2 Box Lattices

The above proof gives us intuition about the pos-
sible form of a better representation. Cones can
be mapped into boxes within the unit hypercube
while preserving their measure, and the lack of
negative correlation seems to come from the fact
that they always have an overly-large intersection
due to “pinning” the maximum in each dimension
to 1. To remedy this, we propose to learn repre-
sentations in the space of all boxes (axis-aligned
hyperrectangles), gaining back an extra degree of
freedom. These representations can be learned
with a suitable probability measure inRn, the non-
negative orthant Rn

+, or directly in the unit hyper-
cube with the uniform measure, which we elect.

We associate each concept with 2 vectors, the
minimum and maximum value of the box at each
dimension. Practically for numerical reasons these
are stored as a minimum, a positive offset plus an
✏ term to prevent boxes from becoming too small
and underflowing.

Let us define our box embeddings as a pair
of vectors in [0, 1]n, (xm, xM ), representing the
maximum and minimum at each coordinate.

Then we can define a partial ordering by inclu-
sion of boxes, and a lattice structure as

x ^ y = ? if x and y disjoint, else

x ^ y =
Y

i

[max(xm,i, ym,i), min(xM,i, yM,i)]

x _ y =
Y

i

[min(xm,i, ym,i), max(xM,i, yM,i)]

where the meet is the intersecting box, or bottom
(the empty set) where no intersection exists, and
join is the smallest enclosing box. This lattice,
considered on its own terms as a non-probabilistic
object, is strictly more general than the order em-
bedding lattice in any dimension, which is proven
in Appendix B.

However, the finite sizes of all the lattice el-
ements lead to a natural probabilistic interpre-
tation under the uniform measure. Joint and
marginal probabilities are given by the volume of
the (intersection) box. For concept a with associ-
ated box (xm, xM ), probability is simply p(a) =Qn

i (xM,i � xm,i) (under the uniform measure).
p(?) is of course zero since no probability mass
is assigned to the empty set.

It remains to show that this representation can
represent both positive and negative correlations.

Claim. For a pair of Bernoulli variables p(a) and
p(b), corr(a, b) can take on any value in [�1, 1] if
the probabilities come from the volume of associ-
ated boxes in [0, 1]n.

Proof. Boxes can clearly model disjointness (ex-
actly �1 correlation if the total volume of the
boxes equals 1). Two identical boxes give their
concepts exactly correlation 1. The area of the
meet is continuous with respect to translations of
intersecting boxes, and all other terms in correla-
tion stay constant, so by continuity of the corre-
lation function our model can achieve all possible
correlations for a pair of variables.

This proof can be extended to boxes in Rn with
product measures by the previous reduction.

Limitations: Note that this model cannot per-
fectly describe all possible probability distribu-
tions or concepts as embedded objects. For exam-
ple, the complement of a box is not a box. How-
ever, queries about complemented variables can
be calculated by the Inclusion-Exclusion princi-
ple, made more efficient by the fact that all non-
negated terms can be grouped and calculated ex-
actly. We show some toy exact calculations with
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negated variables in Appendix A. Also, note that
in a knowledge graph often true complements are
not required — for example mortal and immortal
are not actually complements, because the concept
color is neither.

Additionally, requiring the total probability
mass covered by boxes to equal 1, or exactly
matching marginal box probabilities while model-
ing all correlations is a difficult box-packing-type
problem and not generally possible. Modeling
limitations aside, the union of boxes having mass
< 1 can be seen as an open-world assumption on
our KB (not all points in space have corresponding
concepts, yet).

4.3 Learning

While inference (calculation of pairwise joint,
unary marginal, and pairwise conditional proba-
bilities) is quite straightforward by taking inter-
sections of boxes and computing volumes (and
their ratios), learning does not appear easy at first
glance. While the (sub)gradient of the joint prob-
ability is well defined when boxes intersect, it is
non-differentiable otherwise. Instead we optimize
a lower bound.

Clearly p(a _ b) � p(a [ b), with equality only
when a = b, so this can give us a lower bound:

p(a ^ b) = p(a) + p(b)� p(a [ b)

� p(a) + p(b)� p(a _ b)

Where probabilities are always given by the vol-
ume of the associated box. This lower bound al-
ways exists and is differentiable, even when the
joint is not. It is guaranteed to be nonpositive ex-
cept when a and b intersect, in which case the true
joint likelihood should be used.

While a negative bound on a probability is odd,
inspecting the bound we see that its gradient will
push the enclosing box to be smaller, while in-
creasing areas of the individual boxes, until they
intersect, which is a sensible learning strategy.

Since we are working with small probabilities it
is advisable to negate this term and maximize the
negative logarithm:

� log(p(a _ b)� p(a)� p(b))

This still has an unbounded gradient as the lower
bound approaches 0, so it is also useful to add a
constant within the logarithm function to avoid nu-
merical problems.

Since the likelihood of the full data is usu-
ally intractable to compute as a conjunction of
many negations, we optimize binary conditional
and unary marginal terms separately by maximum
likelihood.

In this work, we parametrize the boxes as
(min,� = max � min), with Euclidean pro-
jections after gradient steps to keep our parame-
ters in the unit hypercube and maintain the mini-
mum/delta constraints.

Now that we have the ability to compute prob-
abilities and (surrogate) gradients for arbitrary
marginals in the model, and by extension condi-
tionals, we will see specific examples in the ex-
periments.

5 Experiments

5.1 Warmup: 2D Embedding of a Toy Lattice

We begin by investigating properties of our model
in modeling a small toy problem, consisting of
a small hand constructed ontology over 19 con-
cepts, aggregated from atomic synthetic examples
first into a probabilistic lattice (e.g. some rabbits
are brown, some are white), and then a full CPD.
We model it using only 2 dimensions to enable
visualization of the way the model self-organizes
its “event space”, training the model by mini-
mize weighted cross-entropy with both the unary
marginals and pairwise conditional probabilities.
We also conduct a parallel experiment with POE
as embedded in the unit cube, where each repre-
sentation is constrained to touch the faces x =
1, y = 1. In Figure 2, we show the represen-
tation of lattice structures by POE and the box
lattice model as compared to the abstract proba-
bilistic lattice used to construct the data, shown in
Figure 1, and compare the conditional probabili-
ties produced by our model to the ground truth,
demonstrating the richer capacity of the box model
in capturing strong positive and negative correla-
tions. In Table 1, we perform a series of multivari-
able conditional queries and demonstrate intuitive
results on high-order queries containing up to 4
variables, despite the model being trained on only
2-way information.

5.2 WordNet

We experiment on WordNet hypernym prediction,
using the same train, development and test split
as Vendrov et al. (2016), created by randomly
taking 4,000 hypernym pairs from the 837,888-
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(a) Original lattice (b) Ground truth CPD

Figure 1: Representation of the toy probabilistic lattice used in Section 5.1. Darker color corresponds
to more unary marginal probability. The associated CPD is obtained by a weighted aggregation of leaf
elements.

(a) POE lattice (b) Box lattice

(c) POE CPD (d) Box CPD

Figure 2: Lattice representations and conditional probabilities from POE vs. box lattice. Note how the
box lattice model’s lack of “anchoring” to a corner allows it vastly more expressivity in matching the
ground truth CPD seen in Figure 1.
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P(grizzly bear | ... ) P(cactus | ... ) P(plant | ... )
P(grizzly bear) 0.12 P(cactus) 0.10 P(plant) 0.20
omnivore 0.29 green 0.16 green 0.37
white 0.00 plant 0.39 snake 0.00
brown 0.30 american, green 0.19 carnivore 0.00
omnivore, white 0.00 plant, green, american 0.40 cactus 0.78
omnivore, brown 0.38 american, carnivore 0.00 american, cactus 0.85

Table 1: Multi-way queries: conditional probabilities adjust when adding additional evidence or contra-
diction. In constrast, POE can only raise or preserve probability when conditioning.

term1 term2
craftsman.n.02 shark.n.03
homogenized milk.n.01 apple juice.n.01
tongue depresser.n.01 paintbrush.n.01
deerstalker.n.01 bathing cap.n.01
skywriting.n.01 transcript.n.01

Table 2: Negatively correlated variables produced
by the model.

Method Test Accuracy %
transitive 88.2
word2gauss 86.6
OE 90.6
Li et al. (2017) 91.3
DOE (KL) 92.3
POE 91.6
POE (100 dim) 91.7
Box 92.2
Box + CPD 92.3

Table 3: Classification accuracy on WordNet test
set.

edge transitive closure of the WordNet hypernym
hierarchy as positive training examples for the
development set, 4,000 for the test set, and us-
ing the rest as training data. Negative training
examples are created by randomly corrupting a
train/development/test edge (u, v) by replacing ei-
ther u or v with a randomly chosen negative node.
We use their specific train/dev/test split, while
Athiwaratkun and Wilson (2018) use a different
train/dev split with the same test set (personal
communication) to examine the effect of different
negative sampling techniques. We cite their best
performing model, called DOE (KL).

Since our model is probabilistic, we would like
a sensible value for P (n), where n is a node. We
assign these marginal probabilities by looking at

the number of descendants in the hierarchy un-
der a node, and normalizing over all nodes, taking
P (n) = | descendants(n) |

| nodes | .

Furthermore, we use the graph structure (only
of the subset of edges in the training set to
avoid leaking data) to augment the data with ap-
proximate conditional probabilities P (x|y). For
each leaf, we consider all of its ancestors as
pairwise co-occurences, then aggregate and di-
vide by the number of leaves to get an approx-
imate joint probability distribution, P (x, y) =
| x, y co-occur in ancestor set |

| leaves | . With this and the unary
marginals, we can create a conditional probabil-
ity table, which we prune based on the difference
of P (x|y) and P (y|x) and add cross entropy with
these conditional “soft edges” to the training data.
We refer to experiments using this additional data
as Box + CPD in Table 3.

We use 50 dimensions in our experiments.
Since our model has 2 parameters per dimension,
we also perform an apples-to-apples comparison
with a 100D POE model. As seen in Table 3,
we outperform POE significantly even with this
added representational power. We also observe
sensible negatively correlated examples, shown in
2, in the trained box model, while POE cannot
represent such relationships. We tune our mod-
els on the development set, with parameters docu-
mented in Appendix D.1. We observe that not only
does our model outperform POE, it beats all previ-
ous results on WordNet, aside from the concurrent
work of Athiwaratkun and Wilson (2018) (using
different train/dev negative examples), the base-
line POE model does as well. This indicates that
probabilistic embeddings for transitive relations
are a promising avenue for future work. Addition-
ally, the ability of the model to learn from the ex-
pected ”soft edges” improves it to state-of-the-art
level. We expect that co-occurrence counts gath-
ered from real textual corpora, rather than merely
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aggregating up the WordNet lattice, would further
strengthen this effect.

5.3 Flickr Entailment Graph

Figure 3: R between model and gold probabilities.

P (x|y)
Full test data KL Pearson R
POE 0.031 0.949
POE* 0.031 0.949
Box 0.020 0.967
Unseen pairs
POE 0.048 0.920
POE* 0.046 0.925
Box 0.025 0.957
Unseen words
POE 0.127 0.696
POE* 0.084 0.854
Box 0.050 0.900

Table 4: KL and Pearson correlation between
model and gold probability.

We conduct experiments on the large-scale
Flickr entailment dataset of 45 million image cap-
tion pairs. We use the exactly same train/dev/test
from Lai and Hockenmaier (2017). We use a
slightly different unseen word pairs and unseen
words test data, obtained from the author. We
include their published results and also use their
published code, marked ⇤, for comparison.

For these experiments, we relax our boxes
from the unit hypercube to the nonnegative or-
thant and obtain probabilities under the exponen-
tial measure, p(x) = exp(�x). We enforce the
nonnegativity constraints by clipping the LSTM-
generated embedding (Hochreiter and Schmidhu-
ber, 1997) for the box minimum with a ReLU,

and parametrize our � embeddings using a soft-
plus activation to prevent dead units. As in Lai
and Hockenmaier (2017), we use 512 hidden units
in our LSTM to compose sentence vectors. We
then apply two single-layer feed-forward networks
with 512 units applied to the final LSTM state to
produce the embeddings.

As we can see from Table 4, we note large im-
provements in KL and Pearson correlation to the
ground truth entailment probabilities. In further
analysis, Figure 3 demonstrates that while the box
model outperforms POE in nearly every regime,
the highest gains come from the comparatively dif-
ficult to calibrate small entailment probabilities,
indicating the greater capability of our model to
produce fine-grained distinctions.

6 Conclusion and Future Work

We have only scratched the surface of possible
applications. An exciting direction is the in-
corporation of multi-relational data for general
knowledge representation and inference. Sec-
ondly, more complex representations, such as
2n-dimensional products of 2-dimensional con-
vex polyhedra, would offer greater flexibility in
tiling event space. Improved inference of the la-
tent boxes, either through better optimization or
through Bayesian approaches is another natural
extension. Our greatest interest is in the applica-
tion of this powerful new tool to the many areas
where other structured embeddings have shown
promise.
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Abstract

Many NLP applications can be framed
as a graph-to-sequence learning problem.
Previous work proposing neural architec-
tures on this setting obtained promising
results compared to grammar-based ap-
proaches but still rely on linearisation
heuristics and/or standard recurrent net-
works to achieve the best performance.
In this work, we propose a new model
that encodes the full structural informa-
tion contained in the graph. Our ar-
chitecture couples the recently proposed
Gated Graph Neural Networks with an in-
put transformation that allows nodes and
edges to have their own hidden represen-
tations, while tackling the parameter ex-
plosion problem present in previous work.
Experimental results show that our model
outperforms strong baselines in generation
from AMR graphs and syntax-based neu-
ral machine translation.

1 Introduction

Graph structures are ubiquitous in representations
of natural language. In particular, many whole-
sentence semantic frameworks employ directed
acyclic graphs as the underlying formalism, while
most tree-based syntactic representations can also
be seen as graphs. A range of NLP applications
can be framed as the process of transducing a
graph structure into a sequence. For instance, lan-
guage generation may involve realising a semantic
graph into a surface form and syntactic machine
translation involves transforming a tree-annotated
source sentence to its translation.

Previous work in this setting rely on grammar-
based approaches such as tree transducers (Flani-
gan et al., 2016) and hyperedge replacement gram-

mars (Jones et al., 2012). A key limitation of
these approaches is that alignments between graph
nodes and surface tokens are required. These
alignments are usually automatically generated
so they can propagate errors when building the
grammar. More recent approaches transform the
graph into a linearised form and use off-the-shelf
methods such as phrase-based machine translation
(Pourdamghani et al., 2016) or neural sequence-
to-sequence (henceforth, s2s) models (Konstas
et al., 2017). Such approaches ignore the full
graph structure, discarding key information.

In this work we propose a model for graph-to-
sequence (henceforth, g2s) learning that lever-
ages recent advances in neural encoder-decoder
architectures. Specifically, we employ an encoder
based on Gated Graph Neural Networks (Li et al.,
2016, GGNNs), which can incorporate the full
graph structure without loss of information. Such
networks represent edge information as label-wise
parameters, which can be problematic even for
small sized label vocabularies (in the order of hun-
dreds). To address this limitation, we also intro-
duce a graph transformation that changes edges to
additional nodes, solving the parameter explosion
problem. This also ensures that edges have graph-
specific hidden vectors, which gives more infor-
mation to the attention and decoding modules in
the network.

We benchmark our model in two graph-to-
sequence problems, generation from Abstract
Meaning Representations (AMRs) and Neural
Machine Translation (NMT) with source depen-
dency information. Our approach outperforms
strong s2s baselines in both tasks without relying
on standard RNN encoders, in contrast with pre-
vious work. In particular, for NMT we show that
we avoid the need for RNNs by adding sequen-
tial edges between contiguous words in the depen-
dency tree. This illustrates the generality of our
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Figure 1: Left: the AMR graph representing the sentence “The boy wants the girl to believe him.”.
Right: Our proposed architecture using the same AMR graph as input and the surface form as output.
The first layer is a concatenation of node and positional embeddings, using distance from the root node
as the position. The GGNN encoder updates the embeddings using edge-wise parameters, represented by
different colors (in this example, ARG0 and ARG1). The encoder also add corresponding reverse edges
(dotted arrows) and self edges for each node (dashed arrows). All parameters are shared between layers.
Attention and decoder components are similar to standard s2s models. This is a pictorial representation:
in our experiments the graphs are transformed before being used as inputs (see §3).

approach: linguistic biases can be added to the in-
puts by simple graph transformations, without the
need for changes to the model architecture.

2 Neural Graph-to-Sequence Model

Our proposed architecture is shown in Figure 1,
with an example AMR graph and its transforma-
tion into its surface form. Compared to standard
s2s models, the main difference is in the encoder,
where we employ a GGNN to build a graph repre-
sentation. In the following we explain the compo-
nents of this architecture in detail.1

2.1 Gated Graph Neural Networks

Early approaches for recurrent networks on graphs
(Gori et al., 2005; Scarselli et al., 2009) assume
a fixed point representation of the parameters and
learn using contraction maps. Li et al. (2016) ar-
gues that this restricts the capacity of the model
and makes it harder to learn long distance rela-
tions between nodes. To tackle these issues, they
propose Gated Graph Neural Networks, which ex-
tend these architectures with gating mechanisms

1Our implementation uses MXNet (Chen et al., 2015) and
is based on the Sockeye toolkit (Hieber et al., 2017). Code
is available at github.com/beckdaniel/acl2018_
graph2seq.

in a similar fashion to Gated Recurrent Units (Cho
et al., 2014). This allows the network to be learnt
via modern backpropagation procedures.

In following, we formally define the version of
GGNNs we employ in this study. Assume a di-
rected graph G = {V, E , LV , LE}, where V is a
set of nodes (v, `v), E is a set of edges (vi, vj , `e)
and LV and LE are respectively vocabularies for
nodes and edges, from which node and edge la-
bels (`v and `e) are defined. Given an input graph
with nodes mapped to embeddings X, a GGNN is
defined as

h0
v = xv

rtv = σ

(
crv
∑

u∈Nv

Wr
`eh

(t−1)
u + br`e

)

ztv = σ

(
czv
∑

u∈Nv

Wz
`eh

(t−1)
u + bz`e

)

h̃tv = ρ

(
cv
∑

u∈Nv

W`e

(
rtu � h(t−1)

u

)
+ b`e

)

htv = (1− ztv)� h(i−1)
v + ztv � h̃tv

where e = (u, v, `e) is the edge between nodes u
and v, N (v) is the set of neighbour nodes for v, ρ
is a non-linear function, σ is the sigmoid function
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and cv = czv = crv = |Nv|−1 are normalisation
constants.

Our formulation differs from the original
GGNNs from Li et al. (2016) in some aspects:
1) we add bias vectors for the hidden state, re-
set gate and update gate computations; 2) label-
specific matrices do not share any components; 3)
reset gates are applied to all hidden states before
any computation and 4) we add normalisation con-
stants. These modifications were applied based on
preliminary experiments and ease of implementa-
tion.

An alternative to GGNNs is the model from
Marcheggiani and Titov (2017), which add edge
label information to Graph Convolutional Net-
works (GCNs). According to Li et al. (2016),
the main difference between GCNs and GGNNs
is analogous to the difference between convolu-
tional and recurrent networks. More specifically,
GGNNs can be seen as multi-layered GCNs where
layer-wise parameters are tied and gating mecha-
nisms are added. A large number of layers can
propagate node information between longer dis-
tances in the graph and, unlike GCNs, GGNNs
can have an arbitrary number of layers without in-
creasing the number of parameters. Nevertheless,
our architecture borrows ideas from GCNs as well,
such as normalising factors.

2.2 Using GGNNs in attentional
encoder-decoder models

In s2s models, inputs are sequences of tokens
where each token is represented by an embedding
vector. The encoder then transforms these vec-
tors into hidden states by incorporating context,
usually through a recurrent or a convolutional net-
work. These are fed into an attention mechanism,
generating a single context vector that informs de-
cisions in the decoder.

Our model follows a similar structure, where the
encoder is a GGNN that receives node embeddings
as inputs and generates node hidden states as out-
puts, using the graph structure as context. This
is shown in the example of Figure 1, where we
have 4 hidden vectors, one per node in the AMR
graph. The attention and decoder components fol-
low similar standard s2s models, where we use a
bilinear attention mechanism (Luong et al., 2015)
and a 2-layered LSTM (Hochreiter and Schmid-
huber, 1997) as the decoder. Note, however, that
other decoders and attention mechanisms can be

easily employed instead. Bastings et al. (2017)
employs a similar idea for syntax-based NMT, but
using GCNs instead.

2.3 Bidirectionality and positional
embeddings

While our architecture can in theory be used with
general graphs, rooted directed acyclic graphs
(DAGs) are arguably the most common kind in
the problems we are addressing. This means that
node embedding information is propagated in a
top down manner. However, it is desirable to
have information flow from the reverse direction
as well, in the same way RNN-based encoders
benefit from right-to-left propagation (as in bidi-
rectional RNNs). Marcheggiani and Titov (2017)
and Bastings et al. (2017) achieve this by adding
reverse edges to the graph, as well as self-loops
edges for each node. These extra edges have spe-
cific labels, hence their own parameters in the net-
work.

In this work, we also follow this procedure to
ensure information is evenly propagated in the
graph. However, this raises another limitation: be-
cause the graph becomes essentially undirected,
the encoder is now unaware of any intrinsic hier-
archy present in the input. Inspired by Gehring
et al. (2017) and Vaswani et al. (2017), we tackle
this problem by adding positional embeddings to
every node. These embeddings are indexed by in-
teger values representing the minimum distance
from the root node and are learned as model pa-
rameters.2 This kind of positional embedding is
restricted to rooted DAGs: for general graphs, dif-
ferent notions of distance could be employed.

3 Levi Graph Transformation

The g2s model proposed in §2 has two key defi-
ciencies. First, GGNNs have three linear transfor-
mations per edge type. This means that the num-
ber of parameters can explode: AMR, for instance,
has around 100 different predicates, which corre-
spond to edge labels. Previous work deal with this
problem by explicitly grouping edge labels into a
single one (Marcheggiani and Titov, 2017; Bast-
ings et al., 2017) but this is not an ideal solution
since it incurs in loss of information.

2Vaswani et al. (2017) also proposed fixed positional em-
beddings based on sine and cosine wavelengths. Preliminary
experiments showed that this approach did not work in our
case: we speculate this is because wavelengths are more suit-
able to sequential inputs.
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Figure 2: Top: the AMR graph from Figure 1
transformed into its corresponding Levi graph.
Bottom: Levi graph with added reverse and self
edges (colors represent different edge labels).

The second deficiency is that edge label in-
formation is encoded in the form of GGNN pa-
rameters in the network. This means that each
label will have the same “representation” across
all graphs. However, the latent information in
edges can depend on the content in which they
appear in a graph. Ideally, edges should have
instance-specific hidden states, in the same way
as nodes, and these should also inform decisions
made in the decoder through the attention mod-
ule. For instance, in the AMR graph shown in Fig-
ure 1, the ARG1 predicate between want-01 and
believe-01 can be interpreted as the prepo-
sition “to” in the surface form, while the ARG1
predicate connecting believe-01 and boy is
realised as a pronoun. Notice that edge hidden
vectors are already present in s2s networks that
use linearised graphs: we would like our architec-
ture to also have this benefit.

Instead of modifying the architecture, we pro-
pose to transform the input graph into its equiv-
alent Levi graph (Levi, 1942; Gross and Yellen,
2004, p. 765). Given a graph G = {V, E , LV , LE},

a Levi graph3 is defined as G = {V ′, E ′, LV ′ , LE ′},
where V ′ = V ∪ E , LV ′ = LV ∪ LE and LE ′ = ∅.
The new edge set E ′ contains a edge for every
(node, edge) pair that is present in the original
graph. By definition, the Levi graph is bipartite.

Intuitively, transforming a graph into its Levi
graph equivalent turns edges into additional nodes.
While simple in theory, this transformation ad-
dresses both modelling deficiencies mentioned
above in an elegant way. Since the Levi graph
has no labelled edges there is no risk of parame-
ter explosion: original edge labels are represented
as embeddings, in the same way as nodes. Further-
more, the encoder now naturally generates hidden
states for original edges as well.

In practice, we follow the procedure in §2.3
and add reverse and self-loop edges to the Levi
graph, so the practical edge label vocabulary is
LE ′ = {default, reverse, self}. This still keeps
the parameter space modest since we have only
three labels. Figure 2 shows the transformation
steps in detail, applied to the AMR graph shown
in Figure 1. Notice that the transformed graphs
are the ones fed into our architecture: we show the
original graph in Figure 1 for simplicity.

It is important to note that this transformation
can be applied to any graph and therefore is inde-
pendent of the model architecture. We speculate
this can be beneficial in other kinds of graph-based
encoder such as GCNs and leave further investiga-
tion to future work.

4 Generation from AMR Graphs

Our first g2s benchmark is language genera-
tion from AMR, a semantic formalism that repre-
sents sentences as rooted DAGs (Banarescu et al.,
2013). Because AMR abstracts away from syntax,
graphs do not have gold-standard alignment infor-
mation, so generation is not a trivial task. There-
fore, we hypothesize that our proposed model is
ideal for this problem.

4.1 Experimental setup

Data and preprocessing We use the latest AMR
corpus release (LDC2017T10) with the default
split of 36521/1368/1371 instances for training,

3Formally, a Levi graph is defined over any incidence
structure, which is a general concept usually considered in
a geometrical context. Graphs are an example of incidence
structures but so are points and lines in the Euclidean space,
for instance.
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development and test sets. Each graph is prepro-
cessed using a procedure similar to what is per-
formed by Konstas et al. (2017), which includes
entity simplification and anonymisation. This pre-
processing is done before transforming the graph
into its Levi graph equivalent. For the s2s base-
lines, we also add scope markers as in Konstas
et al. (2017). We detail these procedures in the
Supplementary Material.

Models Our baselines are attentional s2s mod-
els which take linearised graphs as inputs. The
architecture is similar to the one used in Konstas
et al. (2017) for AMR generation, where the en-
coder is a BiLSTM followed by a unidirectional
LSTM. All dimensionalities are fixed to 512.

For the g2smodels, we fix the number of layers
in the GGNN encoder to 8, as this gave the best
results on the development set. Dimensionalities
are also fixed at 512 except for the GGNN encoder
which uses 576. This is to ensure all models have
a comparable number of parameters and therefore
similar capacity.

Training for all models uses Adam (Kingma and
Ba, 2015) with 0.0003 initial learning rate and 16
as the batch size.4 To regularise our models we
perform early stopping on the dev set based on
perplexity and apply 0.5 dropout (Srivastava et al.,
2014) on the source embeddings. We detail addi-
tional model and training hyperparameters in the
Supplementary Material.

Evaluation Following previous work, we eval-
uate our models using BLEU (Papineni et al.,
2001) and perform bootstrap resampling to check
statistical significance. However, since re-
cent work has questioned the effectiveness of
BLEU with bootstrap resampling (Graham et al.,
2014), we also report results using sentence-level
CHRF++ (Popović, 2017), using the Wilcoxon
signed-rank test to check significance. Evaluation
is case-insensitive for both metrics.

Recent work has shown that evaluation in neu-
ral models can lead to wrong conclusions by
just changing the random seed (Reimers and
Gurevych, 2017). In an effort to make our con-
clusions more robust, we run each model 5 times
using different seeds. From each pool, we report

4Larger batch sizes hurt dev performance in our prelim-
inary experiments. There is evidence that small batches
can lead to better generalisation performance (Keskar et al.,
2017). While this can make training time slower, it was
doable in our case since the dataset is small.

BLEU CHRF++ #params

Single models
s2s 21.7 49.1 28.4M
s2s (-s) 18.4 46.3 28.4M
g2s 23.3 50.4 28.3M

Ensembles
s2s 26.6 52.5 142M
s2s (-s) 22.0 48.9 142M
g2s 27.5 53.5 141M

Previous work (early AMR treebank versions)
KIYCZ17 22.0 – –
Previous work (as above + unlabelled data)
KIYCZ17 33.8 – –
PKH16 26.9 – –
SPZWG17 25.6 – –
FDSC16 22.0 – –

Table 1: Results for AMR generation on the test
set. All score differences between our models and
the corresponding baselines are significantly dif-
ferent (p<0.05). “(-s)” means input without scope
marking. KIYCZ17, PKH16, SPZWG17 and
FDSC16 are respectively the results reported in
Konstas et al. (2017), Pourdamghani et al. (2016),
Song et al. (2017) and Flanigan et al. (2016).

results using the median model according to per-
formance on the dev set (simulating what is ex-
pected from a single run) and using an ensemble
of the 5 models.

Finally, we also report the number of parame-
ters used in each model. Since our encoder archi-
tectures are quite different, we try to match the
number of parameters between them by chang-
ing the dimensionality of the hidden layers (as ex-
plained above). We do this to minimise the effects
of model capacity as a confounder.

4.2 Results and analysis

Table 1 shows the results on the test set. For
the s2s models, we also report results without
the scope marking procedure of Konstas et al.
(2017). Our approach significantly outperforms
the s2s baselines both with individual models and
ensembles, while using a comparable number of
parameters. In particular, we obtain these results
without relying on scoping heuristics.

On Figure 3 we show an example where our
model outperforms the baseline. The AMR graph
contains four reentrancies, predicates that refer-
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Original AMR graph
(p / propose-01
:ARG0 (c / country
:wiki "Russia"
:name (n / name
:op1 "Russia"))

:ARG1 (c5 / cooperate-01
:ARG0 c
:ARG1 (a / and
:op1 (c2 / country
:wiki "India"
:name (n2 / name
:op1 "India"))

:op2 (c3 / country
:wiki "China"
:name (n3 / name
:op1 "China"))))

:purpose (i / increase-01
:ARG0 c5
:ARG1 (s / security)
:location (a2 / around
:op1 (c4 / country
:wiki "Afghanistan"
:name (n4 / name
:op1 "Afghanistan")))

:purpose (b / block-01
:ARG0 (a3 / and
:op1 c :op2 c2 :op3 c3

:ARG1 (s2 / supply-01
:ARG1 (d / drug)))))

Reference surface form
Russia proposes cooperation with India and China to in-
crease security around Afghanistan to block drug supplies.

s2s output (CHRF++ 61.8)
Russia proposed cooperation with India and China to in-
crease security around the Afghanistan to block security
around the Afghanistan , India and China.

g2s output (CHRF++ 78.2)
Russia proposed cooperation with India and China to in-
crease security around Afghanistan to block drug supplies.

Figure 3: Example showing overgeneration due to
reentrancies. Top: original AMR graph with key
reentrancies highlighted. Bottom: reference and
outputs generated by the s2s and g2s models,
highlighting the overgeneration phenomena.

ence previously defined concepts in the graph. In
the s2s models including Konstas et al. (2017),
reentrant nodes are copied in the linearised form,
while this is not necessary for our g2s models.
We can see that the s2s prediction overgenerates
the “India and China” phrase. The g2s predic-
tion avoids overgeneration, and almost perfectly
matches the reference. While this is only a sin-
gle example, it provides evidence that retaining the
full graphical structure is beneficial for this task,
which is corroborated by our quantitative results.

Table 1 also show BLEU scores reported in pre-
vious work. These results are not strictly com-
parable because they used different training set
versions and/or employ additional unlabelled cor-
pora; nonetheless some insights can be made. In
particular, our g2s ensemble performs better than
many previous models that combine a smaller
training set with a large unlabelled corpus. It is
also most informative to compare our s2s model
with Konstas et al. (2017), since this baseline is
very similar to theirs. We expected our single
model baseline to outperform theirs since we use
a larger training set but we obtained similar per-
formance. We speculate that better results could
be obtained by more careful tuning, but neverthe-
less we believe such tuning would also benefit our
proposed g2s architecture.

The best results with unlabelled data are ob-
tained by Konstas et al. (2017) using Gigaword
sentences as additional data and a paired trained
procedure with an AMR parser. It is important to
note that this procedure is orthogonal to the in-
dividual models used for generation and parsing.
Therefore, we hypothesise that our model can also
benefit from such techniques, an avenue that we
leave for future work.

5 Syntax-based Neural Machine
Translation

Our second evaluation is NMT, using as graphs
source language dependency syntax trees. We fo-
cus on a medium resource scenario where addi-
tional linguistic information tends to be more ben-
eficial. Our experiments comprise two language
pairs: English-German and English-Czech.

5.1 Experimental setup

Data and preprocessing We employ the same
data and settings from Bastings et al. (2017),5

which use the News Commentary V11 corpora
from the WMT16 translation task.6 English text
is tokenised and parsed using SyntaxNet7 while
German and Czech texts are tokenised and split
into subwords using byte-pair encodings (Sen-
nrich et al., 2016, BPE) (8000 merge operations).

5We obtained the data from the original authors to ensure
results are comparable without any influence from prepro-
cessing steps.

6http://www.statmt.org/wmt16/
translation-task.html

7https://github.com/tensorflow/models/
tree/master/syntaxnet
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We refer to Bastings et al. (2017) for further infor-
mation on the preprocessing steps.

Labelled dependency trees in the source side are
transformed into Levi graphs as a preprocessing
step. However, unlike AMR generation, in NMT
the inputs are originally surface forms that contain
important sequential information. This informa-
tion is lost when treating the input as dependency
trees, which might explain why Bastings et al.
(2017) obtain the best performance when using an
initial RNN layer in their encoder. To investigate
this phenomenon, we also perform experiments
adding sequential connections to each word in
the dependency tree, corresponding to their order
in the original surface form (henceforth, g2s+).
These connections are represented as edges with
specific left and right labels, which are added af-
ter the Levi graph transformation. Figure 4 shows
an example of an input graph for g2s+, with the
additional sequential edges connecting the words
(reverse and self edges are omitted for simplicity).

Models Our s2s and g2s models are almost
the same as in the AMR generation experiments
(§4.1). The only exception is the GGNN encoder
dimensionality, where we use 512 for the experi-
ments with dependency trees only and 448 when
the inputs have additional sequential connections.
As in the AMR generation setting, we do this to
ensure model capacity are comparable in the num-
ber of parameters. Another key difference is that
the s2s baselines do not use dependency trees:
they are trained on the sentences only.

In addition to neural models, we also report re-
sults for Phrase-Based Statistical MT (PB-SMT),
using Moses (Koehn et al., 2007). The PB-SMT
models are trained using the same data conditions
as s2s (no dependency trees) and use the standard
setup in Moses, except for the language model,
where we use a 5-gram LM trained on the target
side of the respective parallel corpus.8

Evaluation We report results in terms of BLEU
and CHRF++, using case-sensitive versions of both
metrics. Other settings are kept the same as in
the AMR generation experiments (§4.1). For PB-
SMT, we also report the median result of 5 runs,
obtained by tuning the model using MERT (Och
and Ney, 2002) 5 times.

8Note that target data is segmented using BPE, which is
not the usual setting for PB-SMT. We decided to keep the
segmentation to ensure data conditions are the same.
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Figure 4: Top: a sentence with its corresponding
dependency tree. Bottom: the transformed tree
into a Levi graph with additional sequential con-
nections between words (dashed lines). The full
graph also contains reverse and self edges, which
are omitted in the figure.

5.2 Results and analysis
Table 2 shows the results on the respective test set
for both language pairs. The g2s models, which
do not account for sequential information, lag be-
hind our baselines. This is in line with the findings
of Bastings et al. (2017), who found that having a
BiRNN layer was key to obtain the best results.
However, the g2s+ models outperform the base-
lines in terms of BLEU scores under the same pa-
rameter budget, in both single model and ensem-
ble scenarios. This result show that it is possible to
incorporate sequential biases in our model without
relying on RNNs or any other modification in the
architecture.
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English-German
BLEU CHRF++ #params

Single models
PB-SMT 12.8 43.2 –
s2s 15.5 40.8 41.4M
g2s 15.2 41.4 40.8M
g2s+ 16.7 42.4 41.2M

Ensembles
s2s 19.0 44.1 207M
g2s 17.7 43.5 204M
g2s+ 19.6 45.1 206M

Results from (Bastings et al., 2017)
BoW+GCN 12.2 – –
BiRNN 14.9 – –
BiRNN+GCN 16.1 – –

English-Czech
BLEU CHRF++ #params

Single models
PB-SMT 8.6 36.4 –
s2s 8.9 33.8 39.1M
g2s 8.7 32.3 38.4M
g2s+ 9.8 33.3 38.8M

Ensembles
s2s 11.3 36.4 195M
g2s 10.4 34.7 192M
g2s+ 11.7 35.9 194M

Results from (Bastings et al., 2017)
BoW+GCN 7.5 – –
BiRNN 8.9 – –
BiRNN+GCN 9.6 – –

Table 2: Results for syntax-based NMT on the test
sets. All score differences between our models and
the corresponding baselines are significantly dif-
ferent (p<0.05), including the negative CHRF++
result for En-Cs.

Interestingly, we found different trends when
analysing the CHRF++ numbers. In particular, this
metric favours the PB-SMT models for both lan-
guage pairs, while also showing improved perfor-
mance for s2s in En-Cs. CHRF++ has been shown
to better correlate with human judgments com-
pared to BLEU, both at system and sentence level
for both language pairs (Bojar et al., 2017), which
motivated our choice as an additional metric. We
leave further investigation of this phenomena for
future work.

We also show some of the results reported by
Bastings et al. (2017) in Table 2. Note that their
results were based on a different implementation,
which may explain some variation in performance.
Their BoW+GCN model is the most similar to
ours, as it uses only an embedding layer and a
GCN encoder. We can see that even our sim-
pler g2s model outperforms their results. A key
difference between their approach and ours is the
Levi graph transformation and the resulting hidden
vectors for edges. We believe their architecture
would also benefit from our proposed transforma-
tion. In terms of baselines, s2s performs better
than their BiRNN model for En-De and compara-
bly for En-Cs, which corroborates that our base-
lines are strong ones. Finally, our g2s+ single
models outperform their BiRNN+GCN results, in
particular for En-De, which is further evidence
that RNNs are not necessary for obtaining the best
performance in this setting.

An important point about these experiments is
that we did not tune the architecture: we simply
employed the same model we used in the AMR
generation experiments, only adjusting the dimen-
sionality of the encoder to match the capacity of
the baselines. We speculate that even better re-
sults would be obtained by tuning the architecture
to this task. Nevertheless, we still obtained im-
proved performance over our baselines and previ-
ous work, underlining the generality of our archi-
tecture.

6 Related work

Graph-to-sequence modelling Early NLP ap-
proaches for this problem were based on Hy-
peredge Replacement Grammars (Drewes et al.,
1997, HRGs). These grammars assume the trans-
duction problem can be split into rules that map
portions of a graph to a set of tokens in the out-
put sequence. In particular, Chiang et al. (2013)
defines a parsing algorithm, followed by a com-
plexity analysis, while Jones et al. (2012) report
experiments on semantic-based machine transla-
tion using HRGs. HRGs were also used in pre-
vious work on AMR parsing (Peng et al., 2015).
The main drawback of these grammar-based ap-
proaches though is the need for alignments be-
tween graph nodes and surface tokens, which are
usually not available in gold-standard form.

Neural networks for graphs Recurrent net-
works on general graphs were first proposed un-
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der the name Graph Neural Networks (Gori et al.,
2005; Scarselli et al., 2009). Our work is based
on the architecture proposed by Li et al. (2016),
which add gating mechanisms. The main differ-
ence between their work and ours is that they fo-
cus on problems that concern the input graph it-
self such as node classification or path finding
while we focus on generating strings. The main
alternative for neural-based graph representations
is Graph Convolutional Networks (Bruna et al.,
2014; Duvenaud et al., 2015; Kipf and Welling,
2017), which have been applied in a range of prob-
lems. In NLP, Marcheggiani and Titov (2017) use
a similar architecture for Semantic Role Labelling.
They use heuristics to mitigate the parameter ex-
plosion by grouping edge labels, while we keep
the original labels through our Levi graph trans-
formation. An interesting alternative is proposed
by Schlichtkrull et al. (2017), which uses tensor
factorisation to reduce the number of parameters.

Applications Early work on AMR generation
employs grammars and transducers (Flanigan
et al., 2016; Song et al., 2017). Linearisation ap-
proaches include (Pourdamghani et al., 2016) and
(Konstas et al., 2017), which showed that graph
simplification and anonymisation are key to good
performance, a procedure we also employ in our
work. However, compared to our approach, lin-
earisation incurs in loss of information. MT has a
long history of previous work that aims at incor-
porating syntax (Wu, 1997; Yamada and Knight,
2001; Galley et al., 2004; Liu et al., 2006, inter
alia). This idea has also been investigated in the
context of NMT. Bastings et al. (2017) is the most
similar work to ours, and we benchmark against
their approach in our NMT experiments. Eriguchi
et al. (2016) also employs source syntax, but us-
ing constituency trees instead. Other approaches
have investigated the use of syntax in the target
language (Aharoni and Goldberg, 2017; Eriguchi
et al., 2017). Finally, Hashimoto and Tsuruoka
(2017) treats source syntax as a latent variable,
which can be pretrained using annotated data.

7 Discussion and Conclusion

We proposed a novel encoder-decoder architec-
ture for graph-to-sequence learning, outperform-
ing baselines in two NLP tasks: generation
from AMR graphs and syntax-based NMT. Our
approach addresses shortcomings from previous
work, including loss of information from lineari-

sation and parameter explosion. In particular, we
showed how graph transformations can solve is-
sues with graph-based networks without chang-
ing the underlying architecture. This is the case
of the proposed Levi graph transformation, which
ensures the decoder can attend to edges as well
as nodes, but also to the sequential connections
added to the dependency trees in the case of NMT.
Overall, because our architecture can work with
general graphs, it is straightforward to add linguis-
tic biases in the form of extra node and/or edge
information. We believe this is an interesting re-
search direction in terms of applications.

Our architecture nevertheless has two major
limitations. The first one is that GGNNs have a
fixed number of layers, even though graphs can
vary in size in terms of number of nodes and
edges. A better approach would be to allow the
encoder to have a dynamic number of layers, pos-
sibly based on the diameter (longest path) in the
input graph. The second limitation comes from
the Levi graph transformation: because edge la-
bels are represented as nodes they end up shar-
ing the vocabulary and therefore, the same seman-
tic space. This is not ideal, as nodes and edges
are different entities. An interesting alternative is
Weave Module Networks (Kearnes et al., 2016),
which explicitly decouples node and edge repre-
sentations without incurring in parameter explo-
sion. Incorporating both ideas to our architecture
is an research direction we plan for future work.
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Abstract

We know very little about how neural lan-
guage models (LM) use prior linguistic
context. In this paper, we investigate the
role of context in an LSTM LM, through
ablation studies. Specifically, we ana-
lyze the increase in perplexity when prior
context words are shuffled, replaced, or
dropped. On two standard datasets, Penn
Treebank and WikiText-2, we find that the
model is capable of using about 200 to-
kens of context on average, but sharply
distinguishes nearby context (recent 50 to-
kens) from the distant history. The model
is highly sensitive to the order of words
within the most recent sentence, but ig-
nores word order in the long-range context
(beyond 50 tokens), suggesting the distant
past is modeled only as a rough seman-
tic field or topic. We further find that the
neural caching model (Grave et al., 2017b)
especially helps the LSTM to copy words
from within this distant context. Overall,
our analysis not only provides a better un-
derstanding of how neural LMs use their
context, but also sheds light on recent suc-
cess from cache-based models.

1 Introduction

Language models are an important component
of natural language generation tasks, such as
machine translation and summarization. They
use context (a sequence of words) to estimate
a probability distribution of the upcoming word.
For several years now, neural language models
(NLMs) (Graves, 2013; Jozefowicz et al., 2016;
Grave et al., 2017a; Dauphin et al., 2017; Melis
et al., 2018; Yang et al., 2018) have consistently
outperformed classical n-gram models, an im-

provement often attributed to their ability to model
long-range dependencies in faraway context. Yet,
how these NLMs use the context is largely unex-
plained.

Recent studies have begun to shed light on the
information encoded by Long Short-Term Mem-
ory (LSTM) networks. They can remember sen-
tence lengths, word identity, and word order (Adi
et al., 2017), can capture some syntactic structures
such as subject-verb agreement (Linzen et al.,
2016), and can model certain kinds of semantic
compositionality such as negation and intensifica-
tion (Li et al., 2016).

However, all of the previous work studies
LSTMs at the sentence level, even though they can
potentially encode longer context. Our goal is to
complement the prior work to provide a richer un-
derstanding of the role of context, in particular,
long-range context beyond a sentence. We aim
to answer the following questions: (i) How much
context is used by NLMs, in terms of the number
of tokens? (ii) Within this range, are nearby and
long-range contexts represented differently? (iii)
How do copy mechanisms help the model use dif-
ferent regions of context?

We investigate these questions via ablation stud-
ies on a standard LSTM language model (Merity
et al., 2018) on two benchmark language modeling
datasets: Penn Treebank and WikiText-2. Given a
pretrained language model, we perturb the prior
context in various ways at test time, to study how
much the perturbed information affects model per-
formance. Specifically, we alter the context length
to study how many tokens are used, permute to-
kens to see if LSTMs care about word order in
both local and global contexts, and drop and re-
place target words to test the copying abilities of
LSTMs with and without an external copy mech-
anism, such as the neural cache (Grave et al.,
2017b). The cache operates by first recording tar-
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get words and their context representations seen
in the history, and then encouraging the model to
copy a word from the past when the current con-
text representation matches that word’s recorded
context vector.

We find that the LSTM is capable of using about
200 tokens of context on average, with no observ-
able differences from changing the hyperparame-
ter settings. Within this context range, word or-
der is only relevant within the 20 most recent to-
kens or about a sentence. In the long-range con-
text, order has almost no effect on performance,
suggesting that the model maintains a high-level,
rough semantic representation of faraway words.
Finally, we find that LSTMs can regenerate some
words seen in the nearby context, but heavily rely
on the cache to help them copy words from the
long-range context.

2 Language Modeling

Language models assign probabilities to se-
quences of words. In practice, the probability can
be factorized using the chain rule

P (w1, . . . , wt) =
tY

i=1

P (wi|wi�1, . . . , w1),

and language models compute the conditional
probability of a target word wt given its preced-
ing context, w1, . . . , wt�1.

Language models are trained to minimize the
negative log likelihood of the training corpus:

NLL = � 1

T

TX

t=1

log P (wt|wt�1, . . . , w1),

and the model’s performance is usually evaluated
by perplexity (PP) on a held-out set:

PP = exp(NLL).

When testing the effect of ablations, we focus
on comparing differences in the language model’s
losses (NLL) on the dev set, which is equivalent to
relative improvements in perplexity.

3 Approach

Our goal is to investigate the effect of contextual
features such as the length of context, word or-
der and more, on LSTM performance. Thus, we
use ablation analysis, during evaluation, to mea-
sure changes in model performance in the absence
of certain contextual information.

PTB Wiki
Dev Test Dev Test

# Tokens 73,760 82,430 217,646 245,569
Perplexity (no cache) 59.07 56.89 67.29 64.51
Avg. Sent. Len. 20.9 20.9 23.7 22.6

Table 1: Dataset statistics and performance rele-
vant to our experiments.

Typically, when testing the language model on a
held-out sequence of words, all tokens prior to the
target word are fed to the model; we call this the
infinite-context setting. In this study, we observe
the change in perplexity or NLL when the model
is fed a perturbed context �(wt�1, . . . , w1), at test
time. � refers to the perturbation function, and we
experiment with perturbations such as dropping
tokens, shuffling/reversing tokens, and replacing
tokens with other words from the vocabulary.1 It
is important to note that we do not train the model
with these perturbations. This is because the aim is
to start with an LSTM that has been trained in the
standard fashion, and discover how much context
it uses and which features in nearby vs. long-range
context are important. Hence, the mismatch in
training and test is a necessary part of experiment
design, and all measured losses are upper bounds
which would likely be lower, were the model also
trained to handle such perturbations.

We use a standard LSTM language model,
trained and finetuned using the Averaging SGD
optimizer (Merity et al., 2018).2 We also augment
the model with a cache only for Section 6.2, in
order to investigate why an external copy mech-
anism is helpful. A short description of the ar-
chitecture and a detailed list of hyperparameters is
listed in Appendix A, and we refer the reader to
the original paper for additional details.

We analyze two datasets commonly used for
language modeling, Penn Treebank (PTB) (Mar-
cus et al., 1993; Mikolov et al., 2010) and
Wikitext-2 (Wiki) (Merity et al., 2017). PTB
consists of Wall Street Journal news articles with
0.9M tokens for training and a 10K vocabulary.
Wiki is a larger and more diverse dataset, con-
taining Wikipedia articles across many topics with
2.1M tokens for training and a 33K vocabulary.
Additional dataset statistics are provided in Ta-

1Code for our experiments available at https://
github.com/urvashik/lm-context-analysis

2Public release of their code at https://github.
com/salesforce/awd-lstm-lm
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ble 1.
In this paper, we present results only on the dev

sets, in order to avoid revealing details about the
test sets. However, we have confirmed that all re-
sults are consistent with those on the test sets. In
addition, for all experiments we report averaged
results from three models trained with different
random seeds. Some of the figures provided con-
tain trends from only one of the two datasets and
the corresponding figures for the other dataset are
provided in Appendix B.

4 How much context is used?

LSTMs are designed to capture long-range depen-
dencies in sequences (Hochreiter and Schmidhu-
ber, 1997). In practice, LSTM language models
are provided an infinite amount of prior context,
which is as long as the test sequence goes. How-
ever, it is unclear how much of this history has a
direct impact on model performance. In this sec-
tion, we investigate how many tokens of context
achieve a similar loss (or 1-2% difference in model
perplexity) to providing the model infinite context.
We consider this the effective context size.

LSTM language models have an effective con-
text size of about 200 tokens on average. We
determine the effective context size by varying the
number of tokens fed to the model. In particular,
at test time, we feed the model the most recent n
tokens:

�truncate(wt�1, . . . , w1) = (wt�1, . . . , wt�n), (1)

where n > 0 and all tokens farther away from
the target wt are dropped.3 We compare the dev
loss (NLL) from truncated context, to that of the
infinite-context setting where all previous words
are fed to the model. The resulting increase in loss
indicates how important the dropped tokens are for
the model.

Figure 1a shows that the difference in dev loss,
between truncated- and infinite-context variants of
the test setting, gradually diminishes as we in-
crease n from 5 tokens to 1000 tokens. In particu-
lar, we only see a 1% increase in perplexity as we
move beyond a context of 150 tokens on PTB and
250 tokens on Wiki. Hence, we provide empirical
evidence to show that LSTM language models do,
in fact, model long-range dependencies, without
help from extra context vectors or caches.

3Words at the beginning of the test sequence with fewer
than n tokens in the context are ignored for loss computation.

Changing hyperparameters does not change
the effective context size. NLM performance
has been shown to be sensitive to hyperparame-
ters such as the dropout rate and model size (Melis
et al., 2018). To investigate if these hyperpa-
rameters affect the effective context size as well,
we train separate models by varying the follow-
ing hyperparameters one at a time: (1) number
of timesteps for truncated back-propogation (2)
dropout rate, (3) model size (hidden state size,
number of layers, and word embedding size). In
Figure 1b, we show that while different hyperpa-
rameter settings result in different perplexities in
the infinite-context setting, the trend of how per-
plexity changes as we reduce the context size re-
mains the same.

4.1 Do different types of words need different
amounts of context?

The effective context size determined in the pre-
vious section is aggregated over the entire cor-
pus, which ignores the type of the upcoming word.
Boyd-Graber and Blei (2009) have previously in-
vestigated the differences in context used by dif-
ferent types of words and found that function
words rely on less context than content words.
We investigate whether the effective context size
varies across different types of words, by catego-
rizing them based on either frequency or parts-of-
speech. Specifically, we vary the number of con-
text tokens in the same way as the previous sec-
tion, and aggregate loss over words within each
class separately.

Infrequent words need more context than fre-
quent words. We categorize words that appear
at least 800 times in the training set as frequent,
and the rest as infrequent. Figure 1c shows that
the loss of frequent words is insensitive to missing
context beyond the 50 most recent tokens, which
holds across the two datasets. Infrequent words,
on the other hand, require more than 200 tokens.

Content words need more context than function
words. Given the parts-of-speech of each word,
we define content words as nouns, verbs and adjec-
tives, and function words as prepositions and de-
terminers.4 Figure 1d shows that the loss of nouns
and verbs is affected by distant context, whereas
when the target word is a determiner, the model
only relies on words within the last 10 tokens.

4We obtain part-of-speech tags using Stanford
CoreNLP (Manning et al., 2014).
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(a) Varying context size. (b) Changing model hyperparameters.

(c) Frequent vs. infrequent words. (d) Different parts-of-speech.

Figure 1: Effects of varying the number of tokens provided in the context, as compared to the same
model provided with infinite context. Increase in loss represents an absolute increase in NLL over the
entire corpus, due to restricted context. All curves are averaged over three random seeds, and error bars
represent the standard deviation. (a) The model has an effective context size of 150 on PTB and 250 on
Wiki. (b) Changing model hyperparameters does not change the context usage trend, but does change
model performance. We report perplexities to highlight the consistent trend. (c) Infrequent words need
more context than frequent words. (d) Content words need more context than function words.

Discussion. Overall, we find that the model’s ef-
fective context size is dynamic. It depends on
the target word, which is consistent with what we
know about language, e.g., determiners require
less context than nouns (Boyd-Graber and Blei,
2009). In addition, these findings are consistent
with those previously reported for different lan-
guage models and datasets (Hill et al., 2016; Wang
and Cho, 2016).

5 Nearby vs. long-range context

An effective context size of 200 tokens allows for
representing linguistic information at many lev-
els of abstraction, such as words, sentences, top-
ics, etc. In this section, we investigate the impor-
tance of contextual information such as word order
and word identity. Unlike prior work that studies
LSTM embeddings at the sentence level, we look
at both nearby and faraway context, and analyze

how the language model treats contextual informa-
tion presented in different regions of the context.

5.1 Does word order matter?
Adi et al. (2017) have shown that LSTMs are
aware of word order within a sentence. We investi-
gate whether LSTM language models are sensitive
to word order within a larger context window. To
determine the range in which word order affects
model performance, we permute substrings in the
context to observe their effect on dev loss com-
pared to the unperturbed baseline. In particular,
we perturb the context as follows,

�permute(wt�1, . . . , wt�n) =

(wt�1, .., ⇢(wt�s1�1, .., wt�s2), .., wt�n)
(2)

where ⇢ 2 {shu✏e, reverse} and (s1, s2] denotes
the range of the substring to be permuted. We re-
fer to this substring as the permutable span. For
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(a) Perturb order locally, within 20 tokens of each point. (b) Perturb global order, i.e. all tokens in the context before a
given point, in Wiki.

Figure 2: Effects of shuffling and reversing the order of words in 300 tokens of context, relative to an
unperturbed baseline. All curves are averages from three random seeds, where error bars represent the
standard deviation. (a) Changing the order of words within a 20-token window has negligible effect on
the loss after the first 20 tokens. (b) Changing the global order of words within the context does not
affect loss beyond 50 tokens.

the following analysis, we distinguish local word
order, within 20-token permutable spans which
are the length of an average sentence, from global
word order, which extends beyond local spans to
include all the farthest tokens in the history. We
consider selecting permutable spans within a con-
text of n = 300 tokens, which is greater than the
effective context size.

Local word order only matters for the most re-
cent 20 tokens. We can locate the region of con-
text beyond which the local word order has no rel-
evance, by permuting word order locally at various
points within the context. We accomplish this by
varying s1 and setting s2 = s1 + 20. Figure 2a
shows that local word order matters very much
within the most recent 20 tokens, and far less be-
yond that.

Global order of words only matters for the most
recent 50 tokens. Similar to the local word or-
der experiment, we locate the point beyond which
the general location of words within the context
is irrelevant, by permuting global word order. We
achieve this by varying s1 and fixing s2 = n. Fig-
ure 2b demonstrates that after 50 tokens, shuffling
or reversing the remaining words in the context has
no effect on the model performance.

In order to determine whether this is due to in-
sensitivity to word order or whether the language
model is simply not sensitive to any changes in

the long-range context, we further replace words
in the permutable span with a randomly sampled
sequence of the same length from the training set.
The gap between the permutation and replacement
curves in Figure 2b illustrates that the identity of
words in the far away context is still relevant, and
only the order of the words is not.

Discussion. These results suggest that word or-
der matters only within the most recent sentence,
beyond which the order of sentences matters for
2-3 sentences (determined by our experiments on
global word order). After 50 tokens, word or-
der has almost no effect, but the identity of those
words is still relevant, suggesting a high-level,
rough semantic representation for these faraway
words. In light of these observations, we define 50
tokens as the boundary between nearby and long-
range context, for the rest of this study. Next, we
investigate the importance of different word types
in the different regions of context.

5.2 Types of words and the region of context
Open-class or content words such as nouns, verbs,
adjectives and adverbs, contribute more to the
semantic context of natural language than func-
tion words such as determiners and prepositions.
Given our observation that the language model
represents long-range context as a rough seman-
tic representation, a natural question to ask is how
important are function words in the long-range
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Figure 3: Effect of dropping content and function
words from 300 tokens of context relative to an un-
perturbed baseline, on PTB. Error bars represent
95% confidence intervals. Dropping both content
and function words 5 tokens away from the target
results in a nontrivial increase in loss, whereas be-
yond 20 tokens, only content words are relevant.

context? Below, we study the effect of these
two classes of words on the model’s performance.
Function words are defined as all words that are
not nouns, verbs, adjectives or adverbs.

Content words matter more than function
words. To study the effect of content and func-
tion words on model perplexity, we drop them
from different regions of the context and compare
the resulting change in loss. Specifically, we per-
turb the context as follows,

�drop(wt�1, . . . , wt�n) =

(wt�1, .., wt�s1 , fpos(y, (wt�s1�1, .., wt�n)))

(3)

where fpos(y, span) is a function that drops all
words with POS tag y in a given span. s1 denotes
the starting offset of the perturbed subsequence.
For these experiments, we set s1 2 {5, 20, 100}.
On average, there are slightly more content words
than function words in any given text. As shown in
Section 4, dropping more words results in higher
loss. To eliminate the effect of dropping differ-
ent fractions of words, for each experiment where
we drop a specific word type, we add a control
experiment where the same number of tokens are
sampled randomly from the context, and dropped.

Figure 3 shows that dropping content words as
close as 5 tokens from the target word increases
model perplexity by about 65%, whereas dropping

the same proportion of tokens at random, results in
a much smaller 17% increase. Dropping all func-
tion words, on the other hand, is not very differ-
ent from dropping the same proportion of words
at random, but still increases loss by about 15%.
This suggests that within the most recent sentence,
content words are extremely important but func-
tion words are also relevant since they help main-
tain grammaticality and syntactic structure. On the
other hand, beyond a sentence, only content words
have a sizeable influence on model performance.

6 To cache or not to cache?

As shown in Section 5.1, LSTM language models
use a high-level, rough semantic representation for
long-range context, suggesting that they might not
be using information from any specific words lo-
cated far away. Adi et al. (2017) have also shown
that while LSTMs are aware of which words ap-
pear in their context, this awareness degrades with
increasing length of the sequence. However, the
success of copy mechanisms such as attention and
caching (Bahdanau et al., 2015; Hill et al., 2016;
Merity et al., 2017; Grave et al., 2017a,b) suggests
that information in the distant context is very use-
ful. Given this fact, can LSTMs copy any words
from context without relying on external copy
mechanisms? Do they copy words from nearby
and long-range context equally? How does the
caching model help? In this section, we investi-
gate these questions by studying how LSTMs copy
words from different regions of context. More
specifically, we look at two regions of context,
nearby (within 50 most recent tokens) and long-
range (beyond 50 tokens), and study three cate-
gories of target words: those that can be copied
from nearby context (Cnear), those that can only be
copied from long-range context (Cfar), and those
that cannot be copied at all given a limited context
(Cnone).

6.1 Can LSTMs copy words without caches?

Even without a cache, LSTMs often regenerate
words that have already appeared in prior context.
We investigate how much the model relies on the
previous occurrences of the upcoming target word,
by analyzing the change in loss after dropping and
replacing this target word in the context.

LSTMs can regenerate words seen in nearby
context. In order to demonstrate the usefulness
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(a) Dropping tokens (b) Perturbing occurrences of target word in context.

Figure 4: Effects of perturbing the target word in the context compared to dropping long-range context
altogether, on PTB. Error bars represent 95% confidence intervals. (a) Words that can only be copied
from long-range context are more sensitive to dropping all the distant words than to dropping the target.
For words that can be copied from nearby context, dropping only the target has a much larger effect
on loss compared to dropping the long-range context. (b) Replacing the target word with other tokens
from vocabulary hurts more than dropping it from the context, for words that can be copied from nearby
context, but has no effect on words that can only be copied from far away.

of target word occurrences in context, we experi-
ment with dropping all the distant context versus
dropping only occurrences of the target word from
the context. In particular, we compare removing
all tokens after the 50 most recent tokens, (Equa-
tion 1 with n = 50), versus removing only the
target word, in context of size n = 300:

�drop(wt�1, . . . , wt�n) =

fword(wt, (wt�1, . . . , wt�n)),
(4)

where fword(w, span) drops words equal to w in a
given span. We compare applying both perturba-
tions to a baseline model with unperturbed context
restricted to n = 300. We also include the target
words that never appear in the context (Cnone) as a
control set for this experiment.

The results show that LSTMs rely on the rough
semantic representation of the faraway context to
generate Cfar, but direclty copy Cnear from the
nearby context. In Figure 4a, the long-range con-
text bars show that for words that can only be
copied from long-range context (Cfar), removing
all distant context is far more disruptive than re-
moving only occurrences of the target word (12%
and 2% increase in perplexity, respectively). This
suggests that the model relies more on the rough
semantic representation of faraway context to pre-
dict these Cfar tokens, rather than directly copy-
ing them from the distant context. On the other
hand, for words that can be copied from nearby

context (Cnear), removing all long-range context
has a smaller effect (about 3.5% increase in per-
plexity) as seen in Figure 4a, compared to remov-
ing the target word which increases perplexity by
almost 9%. This suggests that these Cnear tokens
are more often copied from nearby context, than
inferred from information found in the rough se-
mantic representation of long-range context.

However, is it possible that dropping the tar-
get tokens altogether, hurts the model too much
by adversely affecting grammaticality of the con-
text? We test this theory by replacing target words
in the context with other words from the vocab-
ulary. This perturbation is similar to Equation 4,
except instead of dropping the token, we replace
it with a different one. In particular, we exper-
iment with replacing the target with <unk>, to
see if having the generic word is better than not
having any word. We also replace it with a word
that has the same part-of-speech tag and a simi-
lar frequency in the dataset, to observe how much
this change confuses the model. Figure 4b shows
that replacing the target with other words results
in up to a 14% increase in perplexity for Cnear,
which suggests that the replacement token seems
to confuse the model far more than when the to-
ken is simply dropped. However, the words that
rely on the long-range context, Cfar, are largely
unaffected by these changes, which confirms our
conclusion from dropping the target tokens: Cfar
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witnesses in the morris film </s> served up as a solo however the music lacks the UNK provided by a context within another
medium </s> UNK of mr. glass may agree with the critic richard UNK 's sense that the NUM music in twelve parts is as UNK and
UNK as the UNK UNK </s> but while making the obvious point that both UNK develop variations from themes this comparison
UNK the intensely UNK nature of mr. glass

</s> snack-food UNK increased a strong NUM NUM in the third quarter while domestic profit increased in double UNK mr.
calloway said </s> excluding the british snack-food business acquired in july snack-food international UNK jumped NUM NUM
with sales strong in spain mexico and brazil </s> total snack-food profit rose NUM NUM </s> led by pizza hut and UNK bell
restaurant earnings increased about NUM NUM in the third quarter on a NUM NUM sales increase </s> UNK sales for pizza hut
rose about NUM NUM while UNK bell 's increased NUM NUM as the chain continues to benefit from its UNK strategy </s> UNK
bell has turned around declining customer counts by permanently lowering the price of its UNK </s> same UNK for kentucky fried
chicken which has struggled with increased competition in the fast-food chicken market and a lack of new products rose only NUM
NUM </s> the operation which has been slow to respond to consumers ' shifting UNK away from fried foods has been developing a
UNK product that may be introduced nationally at the end of next year </s> the new product has performed well in a market test in
las vegas nev. mr. calloway

send a delegation of congressional staffers to poland to assist its legislature the UNK in democratic procedures </s> senator pete
UNK calls this effort the first gift of democracy </s> the poles might do better to view it as a UNK horse </s> it is the vast shadow
government of NUM congressional staffers that helps create such legislative UNK as the NUM page UNK reconciliation bill that
claimed to be the budget of the united states </s> maybe after the staffers explain their work to the poles they 'd be willing to come
back and do the same for the american people </s> UNK UNK plc a financially troubled irish maker of fine crystal and UNK china
reported that its pretax loss for the first six months widened to NUM million irish punts $ NUM million from NUM million irish
punts a year earlier </s> the results for the half were worse than market expectations which suggested an interim loss of around
NUM million irish punts </s> in a sharply weaker london market yesterday UNK shares were down NUM pence at NUM pence
NUM cents </s> the company reported a loss after taxation and minority interests of NUM million irish

sim has set a fresh target of $ NUM a share by the end of </s> reaching that goal says robert t. UNK applied 's chief financial officer
will require efficient reinvestment of cash by applied and UNK of its healthy NUM NUM rate of return on operating capital </s> in
barry wright mr. sim sees a situation very similar to the one he faced when he joined applied as president and chief operating officer
in NUM </s> applied then a closely held company was UNK under the management of its controlling family </s> while profitable it
was n't growing and was n't providing a satisfactory return on invested capital he says </s> mr. sim is confident that the drive to
dominate certain niche markets will work at barry wright as it has at applied </s> he also UNK an UNK UNK to develop a corporate
culture that rewards managers who produce and where UNK is shared </s> mr. sim considers the new unit 's operations
fundamentally sound and adds that barry wright has been fairly successful in moving into markets that have n't interested larger
competitors </s> with a little patience these businesses will perform very UNK mr. sim

was openly sympathetic to swapo </s> shortly after that mr. UNK had scott stanley arrested and his UNK confiscated </s> mr.
stanley is on trial over charges that he violated a UNK issued by the south african administrator general earlier this year which made
it a crime punishable by two years in prison for any person to UNK UNK or UNK the election commission </s> the stanley affair
does n't UNK well for the future of democracy or freedom of anything in namibia when swapo starts running the government </s> to
the extent mr. stanley has done anything wrong it may be that he is out of step with the consensus of world intellectuals that the
UNK guerrillas were above all else the victims of UNK by neighboring south africa </s> swapo has enjoyed favorable western
media treatment ever since the u.n. general assembly declared it the sole UNK representative of namibia 's people in </s> last year
the u.s. UNK a peace settlement to remove cuba 's UNK UNK from UNK and hold free and fair elections that would end south africa
's control of namibia </s> the elections are set for nov. NUM </s> in july mr. stanley

july snack-food international UNK jumped NUM NUM with sales strong in spain mexico and brazil </s> total snack-food profit rose
NUM NUM </s> led by pizza hut and UNK bell restaurant earnings increased about NUM NUM in the third quarter on a NUM
NUM sales increase </s> UNK sales for pizza hut rose about NUM NUM while UNK bell 's increased NUM NUM as the chain
continues to benefit from its UNK strategy </s> UNK bell has turned around declining customer counts by permanently lowering the
price of its UNK </s> same UNK for kentucky fried chicken which has struggled with increased competition in the fast-food
chicken market and a lack of new products rose only NUM NUM </s> the operation which has been slow to respond to consumers '
shifting UNK away from fried foods has been developing a UNK product that may be introduced nationally at the end of next year
</s> the new product has performed well in a market test in las vegas nev. mr. calloway said </s> after a four-year $ NUM billion
acquisition binge that brought a major soft-drink company soda UNK a fast-food chain and an overseas snack-food giant to pepsi mr.
calloway

of london 's securities traders it was a day that started nervously in the small hours </s> by UNK the selling was at UNK fever </s>
but as the day ended in a UNK wall UNK rally the city UNK a sigh of relief </s> so it went yesterday in the trading rooms of london
's financial district </s> in the wake of wall street 's plunge last friday the london market was considered especially vulnerable </s>
and before the opening of trading here yesterday all eyes were on early trading in tokyo for a clue as to how widespread the fallout

Figure 5: Success of neural cache on PTB. Brightly shaded region shows peaky distribution.

management equity participation </s> further many institutions today holding troubled retailers ' debt securities will be UNK to
consider additional retailing investments </s> it 's called bad money driving out good money said one retailing UNK </s>
institutions that usually buy retail paper have to be more concerned </s> however the lower prices these retail chains are now
expected to bring should make it easier for managers to raise the necessary capital and pay back the resulting debt </s> in addition
the fall selling season has generally been a good one especially for those retailers dependent on apparel sales for the majority of their
revenues </s> what 's encouraging about this is that retail chains will be sold on the basis of their sales and earnings not liquidation
values said joseph e. brooks chairman and chief

offerings outside the u.s. </s> goldman sachs & co. will manage the offering </s> macmillan said berlitz intends to pay quarterly
dividends on the stock </s> the company said it expects to pay the first dividend of NUM cents a share in the NUM first quarter </s>
berlitz will borrow an amount equal to its expected net proceeds from the offerings plus $ NUM million in connection with a credit
agreement with lenders </s> the total borrowing will be about $ NUM million the company said </s> proceeds from the borrowings
under the credit agreement will be used to pay an $ NUM million cash dividend to macmillan and to lend the remainder of about $
NUM million to maxwell communications in connection with a UNK note </s> proceeds from the offering will be used to repay
borrowings under the short-term parts of a credit agreement </s> berlitz which is based in princeton n.j. provides language
instruction and translation services through more than NUM language centers in NUM countries </s> in the past five years more
than NUM NUM of its sales have been outside the u.s. </s> macmillan has owned berlitz since NUM </s> in the first six months

said that despite losses on ual stock his firm 's health is excellent </s> the stock 's decline also has left the ual board in a UNK </s>
although it may not be legally obligated to sell the company if the buy-out group ca n't revive its bid it may have to explore
alternatives if the buyers come back with a bid much lower than the group 's original $ 300-a-share proposal </s> at a meeting sept.
NUM to consider the labor-management bid the board also was informed by its investment adviser first boston corp. of interest
expressed by buy-out funds including kohlberg kravis roberts & co. and UNK little & co. as well as by robert bass morgan stanley 's
buy-out fund and pan am corp </s> the takeover-stock traders were hoping that mr. davis or one of the other interested parties might
UNK with the situation in disarray or that the board might consider a recapitalization </s> meanwhile japanese bankers said they
were still UNK about accepting citicorp 's latest proposal </s> macmillan inc. said it plans a public offering of NUM million shares
of its berlitz international inc. unit at $ NUM to $ NUM a share

capital markets to sell its hertz equipment rental corp. unit </s> there is no pressing need to sell the unit but we are doing it so we
can concentrate on our core business UNK automobiles in the u.s. and abroad said william UNK hertz 's executive vice president
</s> we are only going to sell at the right price </s> hertz equipment had operating profit before depreciation of $ NUM million on
revenue of $ NUM million in NUM </s> the closely held hertz corp. had annual revenue of close to $ NUM billion in NUM of
which $ NUM billion was contributed by its hertz rent a car operations world-wide </s> hertz equipment is a major supplier of rental
equipment in the u.s. france spain and the UNK </s> it supplies commercial and industrial equipment including UNK UNK UNK
and electrical equipment UNK UNK UNK and trucks </s> UNK inc. reported a net loss of $ NUM million for the fiscal third quarter
ended aug. NUM </s> it said the loss resulted from UNK and introduction costs related to a new medical UNK equipment system
</s> in the year-earlier quarter the company reported net income of $ NUM or

acquisition of nine businesses that make up the group the biggest portion of which was related to the NUM purchase of a UNK co.
unit </s> among other things the restructured facilities will substantially reduce the group 's required amortization of the term loan
portion of the credit facilities through september NUM mlx said </s> certain details of the restructured facilities remain to be
negotiated </s> the agreement is subject to completion of a definitive amendment and appropriate approvals </s> william p. UNK
mlx chairman and chief executive said the pact will provide mlx with the additional time and flexibility necessary to complete the
restructuring of the company 's capital structure </s> mlx has filed a registration statement with the securities and exchange
commission covering a proposed offering of $ NUM million in long-term senior subordinated notes and warrants </s> dow jones &
co. said it acquired a NUM NUM interest in UNK corp. a subsidiary of oklahoma publishing co. oklahoma city that provides
electronic research services </s> terms were n't disclosed </s> customers of either UNK or dow jones UNK are able to access the
information on both services </s> dow jones is the publisher of the wall street

video games electronic information systems and playing cards posted a NUM NUM unconsolidated surge in pretax profit to NUM
billion yen $ NUM million from NUM billion yen $ NUM million for the fiscal year ended aug. NUM </s> sales surged NUM NUM
to NUM billion yen from NUM billion </s> net income rose NUM NUM to NUM billion yen from NUM billion </s> UNK net fell
to NUM yen from NUM yen because of expenses and capital adjustments </s> without detailing specific product UNK UNK
credited its bullish UNK in sales including advanced computer games and television entertainment systems to surging UNK sales in
foreign markets </s> export sales for leisure items alone for instance totaled NUM billion yen in the NUM months up from NUM
billion in the previous fiscal year </s> domestic leisure sales however were lower </s> hertz corp. of park UNK n.j. said it retained
merrill lynch capital markets to sell its hertz equipment rental corp. unit </s> there is no pressing need to sell the unit but we are
doing it so we can concentrate on our core business UNK automobiles in the u.s. and abroad said william UNK hertz 's executive
vice president

so-called road show to market the package around the world </s> an increasing number of banks appear to be considering the option

Figure 6: Failure of neural cache on PTB. Lightly shaded regions show flat distribution.

words are predicted from the rough representation
of faraway context instead of specific occurrences
of certain words.

6.2 How does the cache help?
If LSTMs can already regenerate words from
nearby context, how are copy mechanisms help-
ing the model? We answer this question by ana-
lyzing how the neural cache model (Grave et al.,
2017b) helps with improving model performance.
The cache records the hidden state ht at each
timestep t, and computes a cache distribution over
the words in the history as follows:

Pcache(wt|wt�1, . . . , w1; ht, . . . , h1)

/
t�1X

i=1

[wi = wt] exp(✓hT
i ht),

(5)

where ✓ controls the flatness of the distribution.
This cache distribution is then interpolated with
the model’s output distribution over the vocabu-
lary. Consequently, certain words from the history
are upweighted, encouraging the model to copy
them.

Caches help words that can be copied from
long-range context the most. In order to study
the effectiveness of the cache for the three
classes of words (Cnear, Cfar, Cnone), we evaluate
an LSTM language model with and without a
cache, and measure the difference in perplexity for
these words. In both settings, the model is pro-
vided all prior context (not just 300 tokens) in or-

Figure 7: Model performance relative to using a
cache. Error bars represent 95% confidence inter-
vals. Words that can only be copied from the dis-
tant context benefit the most from using a cache.

der to replicate the Grave et al. (2017b) setup. The
amount of history recorded, known as the cache
size, is a hyperparameter set to 500 past timesteps
for PTB and 3,875 for Wiki, both values very sim-
ilar to the average document lengths in the respec-
tive datasets.

We find that the cache helps words that can
only be copied from long-range context (Cfar)
more than words that can be copied from nearby
(Cnear). This is illustrated by Figure 7 where with-
out caching, Cnear words see a 22% increase in
perplexity for PTB, and a 32% increase for Wiki,
whereas Cfar see a 28% increase in perplexity
for PTB, and a whopping 53% increase for Wiki.
Thus, the cache is, in a sense, complementary to
the standard model, since it especially helps regen-
erate words from the long-range context where the
latter falls short.
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However, the cache also hurts about 36% of
the words in PTB and 20% in Wiki, which are
words that cannot be copied from context (Cnone),
as illustrated by bars for “none” in Figure 7. We
also provide some case studies showing success
(Fig. 5) and failure (Fig. 6) modes for the cache.
We find that for the successful case, the cache
distribution is concentrated on a single word that
it wants to copy. However, when the target is
not present in the history, the cache distribution
is more flat, illustrating the model’s confusion,
shown in Figure 6. This suggests that the neural
cache model might benefit from having the option
to ignore the cache when it cannot make a confi-
dent choice.

7 Discussion

The findings presented in this paper provide a
great deal of insight into how LSTMs model con-
text. This information can prove extremely use-
ful for improving language models. For instance,
the discovery that some word types are more im-
portant than others can help refine word dropout
strategies by making them adaptive to the different
word types. Results on the cache also show that
we can further improve performance by allowing
the model to ignore the cache distribution when it
is extremely uncertain, such as in Figure 6. Dif-
ferences in nearby vs. long-range context suggest
that memory models, which feed explicit context
representations to the LSTM (Ghosh et al., 2016;
Lau et al., 2017), could benefit from representa-
tions that specifically capture information orthog-
onal to that modeled by the LSTM.

In addition, the empirical methods used in this
study are model-agnostic and can generalize to
models other than the standard LSTM. This opens
the path to generating a stronger understanding of
model classes beyond test set perplexities, by com-
paring them across additional axes of information
such as how much context they use on average, or
how robust they are to shuffled contexts.

Given the empirical nature of this study and the
fact that the model and data are tightly coupled,
separating model behavior from language charac-
teristics, has proved challenging. More specifi-
cally, a number of confounding factors such as vo-
cabulary size, dataset size etc. make this separa-
tion difficult. In an attempt to address this, we
have chosen PTB and Wiki - two standard lan-
guage modeling datasets which are diverse in con-

tent (news vs. factual articles) and writing style,
and are structured differently (eg: Wiki articles are
4-6x longer on average and contain extra informa-
tion such as titles and paragraph/section markers).
Making the data sources diverse in nature, has pro-
vided the opportunity to somewhat isolate effects
of the model, while ensuring consistency in re-
sults. An interesting extension to further study this
separation would lie in experimenting with differ-
ent model classes and even different languages.

Recently, Chelba et al. (2017), in proposing a
new model, showed that on PTB, an LSTM lan-
guage model with 13 tokens of context is similar
to the infinite-context LSTM performance, with
close to an 8% 5 increase in perplexity. This is
compared to a 25% increase at 13 tokens of con-
text in our setup. We believe this difference is
attributed to the fact that their model was trained
with restricted context and a different error propa-
gation scheme, while ours is not. Further investi-
gation would be an interesting direction for future
work.

8 Conclusion

In this analytic study, we have empirically shown
that a standard LSTM language model can effec-
tively use about 200 tokens of context on two
benchmark datasets, regardless of hyperparame-
ter settings such as model size. It is sensitive to
word order in the nearby context, but less so in
the long-range context. In addition, the model is
able to regenerate words from nearby context, but
heavily relies on caches to copy words from far
away. These findings not only help us better un-
derstand these models but also suggest ways for
improving them, as discussed in Section 7. While
observations in this paper are reported at the to-
ken level, deeper understanding of sentence-level
interactions warrants further investigation, which
we leave to future work.
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Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
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Abstract

Recurrent and convolutional neural net-
works comprise two distinct families of
models that have proven to be useful
for encoding natural language utterances.
In this paper we present SoPa, a new
model that aims to bridge these two ap-
proaches. SoPa combines neural represen-
tation learning with weighted finite-state
automata (WFSAs) to learn a soft version
of traditional surface patterns. We show
that SoPa is an extension of a one-layer
CNN, and that such CNNs are equivalent
to a restricted version of SoPa, and accord-
ingly, to a restricted form of WFSA. Em-
pirically, on three text classification tasks,
SoPa is comparable or better than both
a BiLSTM (RNN) baseline and a CNN
baseline, and is particularly useful in small
data settings.

1 Introduction

Recurrent neural networks (RNNs; Elman, 1990)
and convolutional neural networks (CNNs; Le-
Cun, 1998) are two of the most useful text repre-
sentation learners in NLP (Goldberg, 2016). These
methods are generally considered to be quite dif-
ferent: the former encodes an arbitrarily long se-
quence of text, and is highly expressive (Siegel-
mann and Sontag, 1995). The latter is more local,
encoding fixed length windows, and accordingly
less expressive. In this paper, we seek to bridge the
gap between RNNs and CNNs, presenting SoPa
(for Soft Patterns), a model that lies in between
them.

SoPa is a neural version of a weighted finite-
state automaton (WFSA), with a restricted set of
transitions. Linguistically, SoPa is appealing as it

⇤The first two authors contributed equally.

START 1 2 3 4 END

What a great X !

funny,
magical

✏

Figure 1: A representation of a surface pattern as
a six-state automaton. Self-loops allow for repeat-
edly inserting words (e.g., “funny”). ✏-transitions
allow for dropping words (e.g., “a”).

is able to capture a soft notion of surface patterns
(e.g., “what a great X !”; Hearst, 1992), where
some words may be dropped, inserted, or replaced
with similar words (see Figure 1). From a model-
ing perspective, SoPa is interesting because WF-
SAs are well-studied and come with efficient and
flexible inference algorithms (Mohri, 1997; Eis-
ner, 2002) that SoPa can take advantage of.

SoPa defines a set of soft patterns of different
lengths, with each pattern represented as a WFSA
(Section 3). While the number and lengths of the
patterns are hyperparameters, the patterns them-
selves are learned end-to-end. SoPa then repre-
sents a document with a vector that is the aggre-
gate of the scores computed by matching each of
the patterns with each span in the document. Be-
cause SoPa defines a hidden state that depends on
the input token and the previous state, it can be
thought of as a simple type of RNN.

We show that SoPa is an extension of a one-
layer CNN (Section 4). Accordingly, one-layer
CNNs can be viewed as a collection of linear-
chain WFSAs, each of which can only match
fixed-length spans, while our extension allows
matches of flexible-length. As a simple type of
RNN that is more expressive than a CNN, SoPa
helps to link CNNs and RNNs.
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To test the utility of SoPa, we experiment with
three text classification tasks (Section 5). We
compare against four baselines, including both
a bidirectional LSTM and a CNN. Our model
performs on par with or better than all base-
lines on all tasks (Section 6). Moreover, when
training with smaller datasets, SoPa is particu-
larly useful, outperforming all models by sub-
stantial margins. Finally, building on the con-
nections discovered in this paper, we offer a
new, simple method to interpret SoPa (Section 7).
This method applies equally well to CNNs. We
release our code at https://github.com/
Noahs-ARK/soft_patterns.

2 Background

Surface patterns. Patterns (Hearst, 1992) are
particularly useful tool in NLP (Lin et al., 2003;
Etzioni et al., 2005; Schwartz et al., 2015). The
most basic definition of a pattern is a sequence
of words and wildcards (e.g., “X is a Y”), which
can either be manually defined or extracted from a
corpus using cooccurrence statistics. Patterns can
then be matched against a specific text span by re-
placing wildcards with concrete words.

Davidov et al. (2010) introduced a flexible no-
tion of patterns, which supports partial matching
of the pattern with a given text by skipping some
of the words in the pattern, or introducing new
words. In their framework, when a sequence of
text partially matches a pattern, hard-coded partial
scores are assigned to the pattern match. Here, we
represent patterns as WFSAs with neural weights,
and support these partial matches in a soft manner.

WFSAs. We review weighted finite-state au-
tomata with ✏-transitions before we move on to our
special case in Section 3. A WFSA-✏ with d states
over a vocabulary V is formally defined as a tu-
ple F = h⇡,T, ⌘i, where ⇡ 2 Rd is an initial
weight vector, T : (V [ {✏}) ! Rd⇥d is a transi-
tion weight function, and ⌘ 2 Rd is a final weight
vector. Given a sequence of words in the vocab-
ulary x = hx1, . . . , xni, the Forward algorithm
(Baum and Petrie, 1966) scores x with respect to
F . Without ✏-transitions, Forward can be written
as a series of matrix multiplications:

p0span(x) = ⇡>
 

nY

i=1

T(xi)

!
⌘ (1)

✏-transitions are followed without consuming a
word, so Equation 1 must be updated to reflect the

possibility of following any number (zero or more)
of ✏-transitions in between consuming each word:

pspan(x) = ⇡>T(✏)⇤
 

nY

i=1

T(xi)T(✏)⇤
!
⌘ (2)

where ⇤ is matrix asteration: A⇤ :=
P1

j=0 Aj . In
our experiments we use a first-order approxima-
tion, A⇤ ⇡ I + A, which corresponds to allow-
ing zero or one ✏-transition at a time. When the
FSA F is probabilistic, the result of the Forward
algorithm can be interpreted as the marginal prob-
ability of all paths through F while consuming x
(hence the symbol “p”).

The Forward algorithm can be generalized to
any semiring (Eisner, 2002), a fact that we make
use of in our experiments and analysis.1 The
vanilla version of Forward uses the sum-product
semiring: � is addition, ⌦ is multiplication. A
special case of Forward is the Viterbi algorithm
(Viterbi, 1967), which sets � to the max opera-
tor. Viterbi finds the highest scoring path through
F while consuming x. Both Forward and Viterbi
have runtime O(d3 + d2n), requiring just a sin-
gle linear pass through the phrase. Using first-
order approximate asteration, this runtime drops
to O(d2n).2

Finally, we note that Forward scores are for ex-
act matches—the entire phrase must be consumed.
We show in Section 3.2 how phrase-level scores
can be summarized into a document-level score.

3 SoPa: A Weighted Finite-State
Automaton RNN

We introduce SoPa, a WFSA-based RNN, which
is designed to represent text as collection of sur-
face pattern occurrences. We start by showing how
a single pattern can be represented as a WFSA-✏
(Section 3.1). Then we describe how to score a
complete document using a pattern (Section 3.2),
and how multiple patterns can be used to encode
a document (Section 3.3). Finally, we show that
SoPa can be seen as a simple variant of an RNN
(Section 3.4).

1The semiring parsing view (Goodman, 1999) has pro-
duced unexpected connections in the past (Eisner, 2016). We
experiment with max-product and max-sum semirings, but
note that our model could be easily updated to use any semir-
ing.

2In our case, we also use a sparse transition matrix (Sec-
tion 3.1), which further reduces our runtime to O(dn).

296



3.1 Patterns as WFSAs
We describe how a pattern can be represented as a
WFSA-✏. We first assume a single pattern. A pat-
tern is a WFSA-✏, but we impose hard constraints
on its shape, and its transition weights are given
by differentiable functions that have the power to
capture concrete words, wildcards, and everything
in between. Our model is designed to behave sim-
ilarly to flexible hard patterns (see Section 2), but
to be learnable directly and “end-to-end” through
backpropagation. Importantly, it will still be inter-
pretable as simple, almost linear-chain, WFSA-✏.

Each pattern has a sequence of d states (in our
experiments we use patterns of varying lengths be-
tween 2 and 7). Each state i has exactly three pos-
sible outgoing transitions: a self-loop, which al-
lows the pattern to consume a word without mov-
ing states, a main path transition to state i + 1
which allows the pattern to consume one token
and move forward one state, and an ✏-transition
to state i + 1, which allows the pattern to move
forward one state without consuming a token. All
other transitions are given score 0. When process-
ing a sequence of text with a pattern p, we start
with a special START state, and only move for-
ward (or stay put), until we reach the special END
state.3 A pattern with d states will tend to match
token spans of length d � 1 (but possibly shorter
spans due to ✏-transitions, or longer spans due to
self-loops). See Figure 1 for an illustration.

Our transition function, T, is a parameterized
function that returns a d⇥ d matrix. For a word x:

[T(x)]i,j =

8
><
>:

E(ui · vx + ai), if j = i (self-loop)
E(wi · vx + bi), if j = i + 1

0, otherwise,
(3)

where ui and wi are vectors of parameters, ai and
bi are scalar parameters, vx is a fixed pre-trained
word vector for x,4 and E is an encoding function,
typically the identity function or sigmoid. ✏-tran-
sitions are also parameterized, but don’t consume
a token and depend only on the current state:

[T(✏)]i,j =

(
E(ci), if j = i + 1

0, otherwise,
(4)

where ci is a scalar parameter.5 As we have only
3To ensure that we start in the START state and end in the

END state, we fix ⇡ = [1, 0, . . . , 0] and ⌘ = [0, . . . , 0, 1].
4We use GloVe 300d 840B (Pennington et al., 2014).
5Adding ✏-transitions to WFSAs does not increase their

three non-zero diagonals in total, the matrix multi-
plications in Equation 2 can be implemented using
vector operations, and the overall runtimes of For-
ward and Viterbi are reduced to O(dn).6

Words vs. wildcards. Traditional hard patterns
distinguish between words and wildcards. Our
model does not explicitly capture the notion of ei-
ther, but the transition weight function can be in-
terpreted in those terms. Each transition is a logis-
tic regression over the next word vector vx. For
example, for a main path out of state i, T has two
parameters, wi and bi. If wi has large magnitude
and is close to the word vector for some word y
(e.g., wi ⇡ 100vy), and bi is a large negative bias
(e.g., bi ⇡ �100), then the transition is essentially
matching the specific word y. Whereas if wi has
small magnitude (wi ⇡ 0) and bi is a large pos-
itive bias (e.g., bi ⇡ 100), then the transition is
ignoring the current token and matching a wild-
card.7 The transition could also be something in
between, for instance by focusing on specific di-
mensions of a word’s meaning encoded in the vec-
tor, such as POS or semantic features like animacy
or concreteness (Rubinstein et al., 2015; Tsvetkov
et al., 2015).

3.2 Scoring Documents

So far we described how to calculate how well a
pattern matches a token span exactly (consuming
the whole span). To score a complete document,
we prefer a score that aggregates over all matches
on subspans of the document (similar to “search”
instead of “match” in regular expression parlance).
We still assume a single pattern.

Either the Forward algorithm can be used to cal-
culate the expected count of the pattern in the doc-
ument,

P
1ijn pspan(xi:j), or Viterbi to calcu-

late sdoc(x) = max1ijn sspan(xi:j), the score
of the highest-scoring match. In short documents,
we expect patterns to typically occur at most once,
so in our experiments we choose the Viterbi algo-
rithm, i.e., the max-product semiring.

Implementation details. We give the specific
recurrences we use to score documents in a single

expressive power, and in fact slightly complicates the For-
ward equations. We use them as they require fewer parame-
ters, and make the modeling connection between (hard) flex-
ible patterns and our (soft) patterns more direct and intuitive.

6Our implementation is optimized to run on GPUs, so the
observed runtime is even sublinear in d.

7A large bias increases the eagerness to match any word.
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pass with this model. We define:

[maxmul(A,B)]i,j = max
k

Ai,kBk,j . (5)

We also define the following for taking zero or one
✏-transitions:

eps (h) = maxmul (h, max(I,T(✏))) (6)

where max is element-wise max. We maintain a
row vector ht at each token:8

h0 = eps(⇡>), (7a)

ht+1 = max (eps(maxmul (ht,T(xt+1))),h0),
(7b)

and then extract and aggregate END state values:

st = maxmul (ht, ⌘), (8a)

sdoc = max
1tn

st. (8b)

[ht]i represents the score of the best path through
the pattern that ends in state i after consuming t
tokens. By including h0 in Equation 7b, we are
accounting for spans that start at time t + 1. st

is the maximum of the exact match scores for all
spans ending at token t. And sdoc is the maximum
score of any subspan in the document.

3.3 Aggregating Multiple Patterns

We describe how k patterns are aggregated to
score a document. These k patterns give k dif-
ferent sdoc scores for the document, which are
stacked into a vector z 2 Rk and constitute the
final document representation of SoPa. This vec-
tor representation can be viewed as a feature vec-
tor. In this paper, we feed it into a multilayer per-
ceptron (MLP), culminating in a softmax to give a
probability distribution over document labels. We
minimize cross-entropy, allowing the SoPa and
MLP parameters to be learned end-to-end.

SoPa uses a total of (2e + 3)dk parameters,
where e is the word embedding dimension, d is the
number of states and k is the number of patterns.
For comparison, an LSTM with a hidden dimen-
sion of h has 4((e + 1)h + h2). In Section 6 we
show that SoPa consistently uses fewer parameters
than a BiLSTM baseline to achieve its best result.

8Here a row vector h of size n can also be viewed as a
1⇥ n matrix.

3.4 SoPa as an RNN
SoPa can be considered an RNN. As shown in Sec-
tion 3.2, a single pattern with d states has a hidden
state vector of size d. Stacking the k hidden state
vectors of k patterns into one vector of size k ⇥ d
can be thought of as the hidden state of our model.
This hidden state is, like in any other RNN, depen-
dent of the input and the previous state. Using self-
loops, the hidden state at time point i can in theory
depend on the entire history of tokens up to xi (see
Figure 2 for illustration). We do want to discour-
age the model from following too many self-loops,
only doing so if it results in a better fit with the
remainder of the pattern. To do this we use the
sigmoid function as our encoding function E (see
Equation 3), which means that all transitions have
scores strictly less than 1. This works to keep pat-
tern matches close to their intended length. Using
other encoders, such as the identity function, can
result in different dynamics, potentially encourag-
ing rather than discouraging self-loops.

Although even single-layer RNNs are Turing
complete (Siegelmann and Sontag, 1995), SoPa’s
expressive power depends on the semiring. When
a WFSA is thought of as a function from finite
sequences of tokens to semiring values, it is re-
stricted to the class of functions known as rational
series (Schützenberger, 1961; Droste and Gastin,
1999; Sakarovitch, 2009).9 It is unclear how lim-
iting this theoretical restriction is in practice, es-
pecially when SoPa is used as a component in a
larger network. We defer the investigation of the
exact computational properties of SoPa to future
work. In the next section, we show that SoPa is
an extension of a one-layer CNN, and hence more
expressive.

4 SoPa as a CNN Extension

A convolutional neural network (CNN; LeCun,
1998) moves a fixed-size sliding window over the
document, producing a vector representation for
each window. These representations are then of-
ten summed, averaged, or max-pooled to produce
a document-level representation (Kim, 2014; Yin
and Schütze, 2015). In this section, we show
that SoPa is an extension of one-layer, max-pooled
CNNs.

To recover a CNN from a soft pattern with d+1
states, we first remove self-loops and ✏-transitions,

9Rational series generalize recognizers of regular lan-
guages, which are the special case of the Boolean semiring.
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Fielding’s funniest and most likeable book in years

max-pooled
END states

pattern1 states

word vectors

pattern2 states

START
states

Figure 2: State activations of two patterns as they score a document. pattern1 (length three) matches
on “in years”. pattern2 (length five) matches on “funniest and most likeable book”, using a self-loop to
consume the token “most”. Active states in the best match are marked with arrow cursors.

retaining only the main path transitions. We also
use the identity function as our encoder E (Equa-
tion 3), and use the max-sum semiring. With only
main path transitions, the network will not match
any span that is not exactly d tokens long. Using
max-sum, spans of length d will be assigned the
score:

sspan(xi:i+d) =
d�1X

j=0

wj · vxi+j + bj , (9a)

=w0:d · vxi:i+d
+

d�1X

j=0

bj , (9b)

where w0:d = [w>0 ; . . . ;w>d�1]
>, vxi:i+d

=

[v>xi
; . . . ;v>xi+d�1

]>. Rearranged this way, we rec-
ognize the span score as an affine transformation
of the concatenated word vectors vxi:i+d

. If we
use k patterns, then together their span scores cor-
respond to a linear filter with window size d and
output dimension k.10 A single pattern’s score for
a document is:

sdoc(x) = max
1in�d+1

sspan(xi:i+d). (10)

The max in Equation 10 is calculated for each
pattern independently, corresponding exactly to
element-wise max-pooling of the CNN’s output
layer.

Based on the equivalence between this impov-
erished version of SoPa and CNNs, we conclude
that one-layer CNNs are learning an even more

10This variant of SoPa has d bias parameters, which cor-
respond to only a single bias parameter in a CNN. The re-
dundant biases may affect optimization but are an otherwise
unimportant difference.

restricted class of WFSAs (linear-chain WFSAs)
that capture only fixed-length patterns.

One notable difference between SoPa and arbi-
trary CNNs is that in general CNNs can use any
filter (like an MLP over vxi:i+d

, for example). In
contrast, in order to efficiently pool over flexible-
length spans, SoPa is restricted to operations that
follow the semiring laws.11

As a model that is more flexible than a one-layer
CNN, but (arguably) less expressive than many
RNNs, SoPa lies somewhere on the continuum be-
tween these two approaches. Continuing to study
the bridge between CNNs and RNNs is an exciting
direction for future research.

5 Experiments

To evaluate SoPa, we apply it to text classification
tasks. Below we describe our datasets and base-
lines. More details can be found in Appendix A.

Datasets. We experiment with three binary clas-
sification datasets.

• SST. The Stanford Sentiment Treebank (Socher
et al., 2013)12 contains roughly 10K movie re-
views from Rotten Tomatoes,13 labeled on a
scale of 1–5. We consider the binary task, which
considers 1 and 2 as negative, and 4 and 5 as
positive (ignoring 3s). It is worth noting that this
dataset also contains syntactic phrase level an-
notations, providing a sentiment label to parts of
11The max-sum semiring corresponds to a linear filter with

max-pooling. Other semirings could potentially model more
interesting interactions, but we leave this to future work.

12https://nlp.stanford.edu/sentiment/
index.html

13http://www.rottentomatoes.com
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sentences. In order to experiment in a realistic
setup, we only consider the complete sentences,
and ignore syntactic annotations at train or test
time. The number of training/development/test
sentences in the dataset is 6,920/872/1,821.

• Amazon. The Amazon Review Corpus
(McAuley and Leskovec, 2013)14 contains elec-
tronics product reviews, a subset of a larger re-
view dataset. Each document in the dataset con-
tains a review and a summary. Following Yo-
gatama et al. (2015), we only use the reviews
part, focusing on positive and negative reviews.
The number of training/development/test sam-
ples is 20K/5K/25K.

• ROC. The ROC story cloze task (Mostafazadeh
et al., 2016) is a story understanding task.15 The
task is composed of four-sentence story pre-
fixes, followed by two competing endings: one
that makes the joint five-sentence story coher-
ent, and another that makes it incoherent. Fol-
lowing Schwartz et al. (2017), we treat it as a
style detection task: we treat all “right” endings
as positive samples and all “wrong” ones as neg-
ative, and we ignore the story prefix. We split
the development set into train and development
(of sizes 3,366 and 374 sentences, respectively),
and take the test set as-is (3,742 sentences).

Reduced training data. In order to test our
model’s ability to learn from small datasets, we
also randomly sample 100, 500, 1,000 and 2,500
SST training instances and 100, 500, 1,000, 2,500,
5,000, and 10,000 Amazon training instances. De-
velopment and test sets remain the same.

Baselines. We compare to four baselines: a BiL-
STM, a one-layer CNN, DAN (a simple alterna-
tive to RNNs) and a feature-based classifier trained
with hard-pattern features.

• BiLSTM. Bidirectional LSTMs have been suc-
cessfully used in the past for text classification
tasks (Zhou et al., 2016). We learn a one-layer
BiLSTM representation of the document, and
feed the average of all hidden states to an MLP.

• CNN. CNNs are particularly useful for text
classification (Kim, 2014). We train a one-layer
CNN with max-pooling, and feed the resulting
representation to an MLP.

14http://riejohnson.com/cnn_data.html
15http://cs.rochester.edu/nlp/

rocstories/

• DAN. We learn a deep averaging network with
word dropout (Iyyer et al., 2015), a simple but
strong text-classification baseline.

• Hard. We train a logistic regression classifier
with hard-pattern features. Following Tsur et al.
(2010), we replace low frequency words with a
special wildcard symbol. We learn sequences of
1–6 concrete words, where any number of wild-
cards can come between two adjacent words.
We consider words occurring with frequency of
at least 0.01% of our training set as concrete
words, and words occurring in frequency 1% or
less as wildcards.16

Number of patterns. SoPa requires specifying
the number of patterns to be learned, and their
lengths. Preliminary experiments showed that the
model doesn’t benefit from more than a few dozen
patterns. We experiment with several configu-
rations of patterns of different lengths, generally
considering 0, 10 or 20 patterns of each pattern
length between 2–7. The total number of patterns
learned ranges between 30–70.17

6 Results

Table 1 shows our main experimental results. In
two of the cases (SST and ROC), SoPa outper-
forms all models. On Amazon, SoPa performs
within 0.3 points of CNN and BiLSTM, and out-
performs the other two baselines. The table also
shows the number of parameters used by each
model for each task. Given enough data, mod-
els with more parameters should be expected to
perform better. However, SoPa performs better or
roughly the same as a BiLSTM, which has 3–6
times as many parameters.

Figure 3 shows a comparison of all models on
the SST and Amazon datasets with varying train-
ing set sizes. SoPa is substantially outperform-
ing all baselines, in particular BiLSTM, on small
datasets (100 samples). This suggests that SoPa is
better fit to learn from small datasets.

Ablation analysis. Table 1 also shows an abla-
tion of the differences between SoPa and CNN:
max-product semiring with sigmoid vs. max-sum
semiring with identity, self-loops, and ✏-transi-
tions. The last line is equivalent to a CNN with

16Some words may serve as both words and wildcards. See
Davidov and Rappoport (2008) for discussion.

17The number of patterns and their length are hyperparam-
eters tuned on the development data (see Appendix A).
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Model ROC SST Amazon

Hard 62.2 (4K) 75.5 (6K) 88.5 (67K)
DAN 64.3 (91K) 83.1 (91K) 85.4 (91K)
BiLSTM 65.2 (844K) 84.8 (1.5M) 90.8 (844K)
CNN 64.3 (155K) 82.2 (62K) 90.2 (305K)

SoPa 66.5 (255K) 85.6 (255K) 90.5 (256K)

SoPams1 64.4 84.8 90.0
SoPams1\{sl} 63.2 84.6 89.8
SoPams1\{✏} 64.3 83.6 89.7
SoPams1\{sl, ✏} 64.0 85.0 89.5

Table 1: Test classification accuracy (and the
number of parameters used). The bottom part
shows our ablation results: SoPa: our full model.
SoPams1 : running with max-sum semiring (rather
than max-product), with the identity function as
our encoder E (see Equation 3). sl: self-loops,
✏: ✏ transitions. The final row is equivalent to a
one-layer CNN.
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Figure 3: Test accuracy on SST and Amazon with
varying number of training instances.

multiple window sizes. Interestingly, the most no-
table difference between SoPa and CNN is the
semiring and encoder function, while ✏ transitions
and self-loops have little effect on performance.18

7 Interpretability

We turn to another key aspect of SoPa—its inter-
pretability. We start by demonstrating how we in-
terpret a single pattern, and then describe how to
interpret the decisions made by downstream clas-
sifiers that rely on SoPa—in this case, a sentence
classifier. Importantly, these visualization tech-
niques are equally applicable to CNNs.

Interpreting a single pattern. In order to visu-
alize a pattern, we compute the pattern matching
scores with each phrase in our training dataset, and
select the k phrases with the highest scores. Ta-
ble 2 shows examples of six patterns learned us-
ing the best SoPa model on the SST dataset, as

18Although SoPa does make use of them—see Section 7.

Highest Scoring Phrases

Patt. 1

thoughtful , reverent portrait of
and astonishingly articulate cast of
entertaining , thought-provoking film with
gentle , mesmerizing portrait of
poignant and uplifting story in

Patt. 2

’s ✏ uninspired story .
this ✏ bad on purpose
this ✏ leaden comedy .
a ✏ half-assed film .
is ✏ clumsy ,SL the writing

Patt. 3

mesmerizing portrait of a
engrossing portrait of a
clear-eyed portrait of an
fascinating portrait of a
self-assured portrait of small

Patt. 4

honest , and enjoyable
soulful , scathingSL and joyous
unpretentious , charmingSL , quirky
forceful , and beautifully
energetic , and surprisingly

Patt. 5

is deadly dull
a numbingly dull
is remarkably dull
is a phlegmatic
an utterly incompetent

Patt. 6

five minutes
four minutes
final minutes
first half-hour
fifteen minutes

Table 2: Six patterns of different lengths learned
by SoPa on SST. Each group represents a single
pattern p, and shows the five phrases in the training
data that have the highest score for p. Columns
represent pattern states. Words marked with SL are
self-loops. ✏ symbols indicate ✏-transitions. All
other words are from main path transitions.

represented by their five highest scoring phrases
in the training set. A few interesting trends can
be observed from these examples. First, it seems
our patterns encode semantically coherent expres-
sions. A large portion of them correspond to senti-
ment (the five top examples in the table), but others
capture different semantics, e.g., time expressions.

Second, it seems our patterns are relatively soft,
and allow lexical flexibility. While some patterns
do seem to fix specific words, e.g., “of” in the first
example or “minutes” in the last one, even in those
cases some of the top matching spans replace these
words with other, similar words (“with” and “half-
hour”, respectively). Encouraging SoPa to have
more concrete words, e.g., by jointly learning the
word vectors, might make SoPa useful in other
contexts, particularly as a decoder. We defer this
direction to future work.

Finally, SoPa makes limited but non-negligible
use of self-loops and epsilon steps. Interestingly,
the second example shows that one of the pat-
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Analyzed Documents

it ’s dumb , but more importantly , it ’s just not scary

though moonlight mile is replete with acclaimed actors and
actresses and tackles a subject that ’s potentially moving ,
the movie is too predictable and too self-conscious to reach a
level of high drama

While its careful pace and seemingly opaque story may not
satisfy every moviegoer ’s appetite, the film ’s final scene is
soaringly , transparently moving

unlike the speedy wham-bam effect of most hollywood of-
ferings , character development – and more importantly,
character empathy – is at the heart of italian for beginners .

the band ’s courage in the face of official repression is in-
spiring , especially for aging hippies ( this one included ) .

Table 3: Documents from the SST training data.
Phrases with the largest contribution toward a pos-
itive sentiment classification are in bold green,
and the most negative phrases are in italic orange.

terns had an ✏-transition at the same place in every
phrase. This demonstrates a different function of
✏-transitions than originally designed—they allow
a pattern to effectively shorten itself, by learning a
high ✏-transition parameter for a certain state.

Interpreting a document. SoPa provides an in-
terpretable representation of a document—a vec-
tor of the maximal matching score of each pat-
tern with any span in the document. To visual-
ize the decisions of our model for a given docu-
ment, we can observe the patterns and correspond-
ing phrases that score highly within it.

To understand which of the k patterns con-
tributes most to the classification decision, we ap-
ply a leave-one-out method. We run the forward
method of the MLP layer in SoPa k times, each
time zeroing-out the score of a different pattern
p. The difference between the resulting score and
the original model score is considered p’s contri-
bution. We then consider the highest contributing
patterns, and attach each one with its highest scor-
ing phrase in that document. Table 3 shows exam-
ple texts along with their most positive and nega-
tive contributing phrases.

8 Related Work

Weighted finite-state automata. WFSAs and
hidden Markov models19 were once popular in au-
tomatic speech recognition (Hetherington, 2004;
Moore et al., 2006; Hoffmeister et al., 2012)

19HMMs are a special case of WFSAs (Mohri et al., 2002).

and remain popular in morphology (Dreyer, 2011;
Cotterell et al., 2015). Most closely related to this
work, neural networks have been combined with
weighted finite-state transducers to do morpholog-
ical reinflection (Rastogi et al., 2016). These prior
works learn a single FSA or FST, whereas our
model learns a collection of simple but comple-
mentary FSAs, together encoding a sequence. We
are the first to incorporate neural networks both
before WFSAs (in their transition scoring func-
tions), and after (in the function that turns their
vector of scores into a final prediction), to produce
an expressive model that remains interpretable.

Recurrent neural networks. The ability of
RNNs to represent arbitrarily long sequences of
embedded tokens has made them attractive to
NLP researchers. The most notable variants,
the long short-term memory (LSTM; Hochreiter
and Schmidhuber, 1997) and gated recurrent units
(GRU; Cho et al., 2014), have become ubiqui-
tous in NLP algorithms (Goldberg, 2016). Re-
cently, several works introduced simpler versions
of RNNs, such as recurrent additive networks (Lee
et al., 2017) and Quasi-RNNs (Bradbury et al.,
2017). Like SoPa, these models can be seen as
points along the bridge between RNNs and CNNs.

Other works have studied the expressive power
of RNNs, in particular in the context of WFSAs
or HMMs (Cleeremans et al., 1989; Giles et al.,
1992; Visser et al., 2001; Chen et al., 2018). In
this work we relate CNNs to WFSAs, showing that
a one-layer CNN with max-pooling can be simu-
lated by a collection of linear-chain WFSAs.

Convolutional neural networks. CNNs are
prominent feature extractors in NLP, both for gen-
erating character-based embeddings (Kim et al.,
2016), and as sentence encoders for tasks like
text classification (Yin and Schütze, 2015) and
machine translation (Gehring et al., 2017). Sim-
ilarly to SoPa, several recently introduced vari-
ants of CNNs support varying window sizes by ei-
ther allowing several fixed window sizes (Yin and
Schütze, 2015) or by supporting non-consecutive
n-gram matching (Lei et al., 2015; Nguyen and
Grishman, 2016).

Neural networks and patterns. Some works
used patterns as part of a neural network.
Schwartz et al. (2016) used pattern contexts for
estimating word embeddings, showing improved
word similarity results compared to bag-of-word
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contexts. Shwartz et al. (2016) designed an
LSTM representation for dependency patterns, us-
ing them to detect hypernymy relations. Here, we
learn patterns as a neural version of WFSAs.

Interpretability. There have been several ef-
forts to interpret neural models. The weights of the
attention mechanism (Bahdanau et al., 2015) are
often used to display the words that are most sig-
nificant for making a prediction. LIME (Ribeiro
et al., 2016) is another approach for visualizing
neural models (not necessarily textual). Yogatama
and Smith (2014) introduced structured sparsity,
which encodes linguistic information into the reg-
ularization of a model, thus allowing to visualize
the contribution of different bag-of-word features.

Other works jointly learned to encode text and
extract the span which best explains the model’s
prediction (Yessenalina et al., 2010; Lei et al.,
2016). Li et al. (2016) and Kádár et al. (2017) sug-
gested a method that erases pieces of the text in or-
der to analyze their effect on a neural model’s de-
cisions. Finally, several works presented methods
to visualize deep CNNs (Zeiler and Fergus, 2014;
Simonyan et al., 2014; Yosinski et al., 2015), fo-
cusing on visualizing the different layers of the
network, mainly in the context of image and video
understanding. We believe these two types of
research approaches are complementary: invent-
ing general purpose visualization tools for exist-
ing black-box models on the one hand, and on the
other, designing models like SoPa that are inter-
pretable by construction.

9 Conclusion

We introduced SoPa, a novel model that combines
neural representation learning with WFSAs. We
showed that SoPa is an extension of a one-layer
CNN. It naturally models flexible-length spans
with insertion and deletion, and it can be easily
customized by swapping in different semirings.
SoPa performs on par with or strictly better than
four baselines on three text classification tasks,
while requiring fewer parameters than the stronger
baselines. On smaller training sets, SoPa outper-
forms all four baselines. As a simple version of
an RNN, which is more expressive than one-layer
CNNs, we hope that SoPa will encourage future
research on the bridge between these two mecha-
nisms. To facilitate such research, we release our
implementation at https://github.com/
Noahs-ARK/soft_patterns.
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Abstract

Humans can efficiently learn new concepts
using language. We present a framework
through which a set of explanations of a
concept can be used to learn a classifier
without access to any labeled examples.
We use semantic parsing to map explana-
tions to probabilistic assertions grounded
in latent class labels and observed attributes
of unlabeled data, and leverage the differen-
tial semantics of linguistic quantifiers (e.g.,
‘usually’ vs ‘always’) to drive model train-
ing. Experiments on three domains show
that the learned classifiers outperform pre-
vious approaches for learning with limited
data, and are comparable with fully super-
vised classifiers trained from a small num-
ber of labeled examples.

1 Introduction

As computer systems that interact with us in nat-
ural language become pervasive (e.g., Siri, Alexa,
Google Home), they suggest the possibility of let-
ting users teach machines in language. The abil-
ity to learn from language can enable a paradigm
of ubiquitous machine learning, allowing users to
teach personalized concepts (e.g., identifying ‘im-
portant emails’ or ‘project-related emails’) when
limited or no training data is available.

In this paper, we take a step towards solving
this problem by exploring the use of quantifiers to
train classifiers from declarative language. For il-
lustration, consider the hypothetical example of
a user explaining the concept of an “important
email” through natural language statements (Fig-
ure 1). Our framework takes a set of such natural
language explanations describing a concept (e.g.,
“emails that I reply to are usually important”) and
a set of unlabeled instances as input, and produces

Figure 1: Supervision from language can enable
concept learning from limited or even no labeled
examples. Our approach assumes the learner has
sensors that can extract attributes from data, such
as those listed in the table, and language that can
refer to these sensors and their values.

a binary classifier (for important emails) as output.
Our hypothesis is that language describing con-
cepts encodes key properties that can aid statistical
learning. These include specification of relevant
attributes (e.g., whether an email was replied to),
relationships between such attributes and concept
labels (e.g., if a reply implies the class label of
that email is ‘important’), as well as the strength of
these relationships (e.g., via quantifiers like ‘often’,
‘sometimes’, ‘rarely’). We infer these properties
automatically, and use the semantics of linguis-
tic quantifiers to drive the training of classifiers
without labeled examples for any concept. This
is a novel scenario, where previous approaches in
semi-supervised and constraint-based learning are
not directly applicable. Those approaches require
manual pre-specification of expert knowledge for
model training. In our approach, this knowledge is
automatically inferred from noisy natural language
explanations from a user.

Our approach is summarized in the schematic
in Figure 2. First, we map the set of natural lan-
guage explanations of a concept to logical forms
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Figure 2: Our approach to Zero-shot learning from
Language. Natural language explanations on how
to classify concept examples are parsed into for-
mal constraints relating features to concept labels.
The constraints are combined with unlabeled data,
using posterior regularization to yield a classifier.

that identify the attributes mentioned in the explana-
tion, and describe the information conveyed about
the attribute and the concept label as a quantitative
constraint. This mapping is done through semantic
parsing. The logical forms denote quantitative con-
straints, which are probabilistic assertions about
observable attributes of the data and unobserved
concept labels. Here the strength of a constraint
is assumed to be specified by a linguistic quanti-
fier (such as ‘all’, ‘some’, ‘few’, etc., which reflect
degrees of generality of propositions). Next, we
train a classification model that can assimilate these
constraints by adapting the posterior regularization
framework (Ganchev et al., 2010).

Intuitively, this can be seen as defining an op-
timization problem, where the objective is to find
parameter estimates for the classifier that do not
simply fit the data, but also agree with the human
provided natural language advice to the greatest ex-
tent possible. Since logical forms can be grounded
in a variety of sensors and external resources, an
explicit model of semantic interpretation concep-
tually allows the framework to subsume a flexible
range of grounding behaviors. The main contribu-
tions of this work are:

1. We introduce the problem of zero-shot learn-
ing of classifiers from language, and present
an approach towards this.

2. We develop datasets for zero-shot classifi-
cation from natural descriptions, exhibiting

tasks with various levels of difficulty.
3. We empirically show that coarse probability

estimates to model linguistic quantifiers can
effectively supervise model training across
three domains of classification tasks.

2 Related Work

Many notable approaches have explored incorpo-
ration of background knowledge into the training
of learning algorithms. However, none of them ad-
dresses the issue of learning from natural language.
Prominent among these are the Constraint-driven
learning (Chang et al., 2007a), Generalized Expec-
tation (Mann and McCallum, 2010) and Posterior
Regularization (Ganchev et al., 2010) and Bayesian
Measurements (Liang et al., 2009) frameworks. All
of these require domain knowledge to be manually
programmed in before learning. Similarly, Prob-
abilistic Soft Logic (Kimmig et al., 2012) allows
users to specify rules in a logical language that can
be used for reasoning over graphical models. More
recently, multiple approaches have explored few-
shot learning from perspective of term or attribute-
based transfer (Lampert et al., 2014), or learning
representations of instances as probabilistic pro-
grams (Lake et al., 2015).

Other work (Lei Ba et al., 2015; Elhoseiny et al.,
2013) considers language terms such as colors and
textures that can be directly grounded in visual
meaning in images. Some previous work (Srivas-
tava et al., 2017) has explored using language ex-
planations for feature space construction in concept
learning tasks, where the problem of learning to in-
terpret language, and learning classifiers is treated
jointly. However, this approach assumes availabil-
ity of labeled data for learning classifiers. Also
notable is recent work by Andreas et al. (2017),
who propose using language descriptions as param-
eters to model structure in learning tasks in multiple
settings. More generally, learning from language
has also been previously explored in tasks such
as playing games (Branavan et al., 2012), robot
navigation (Karamcheti et al., 2017), etc.

Natural language quantification has been studied
from multiple perspectives in formal logic (Barwise
and Cooper, 1981), linguistics (Löbner, 1987; Bach
et al., 2013) and cognitive psychology (Kurtzman
and MacDonald, 1993). While quantification has
traditionally been defined in set-theoretic terms in
linguistic theories1, our approach joins alternative

1e.g., ‘some A are B’⇔ A ∩B 6= ∅
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perspectives that represent quantifiers probabilis-
tically (Moxey and Sanford, 1993; Yildirim et al.,
2013). To the best of our knowledge, this is the
first work to leverage the semantics of quantifiers
to guide statistical learning models.

3 Learning Classifiers from Language

Our approach relies on first mapping natural lan-
guage descriptions to quantitative constraints that
specify statistical relationships between observable
attributes of instances and their latent concept la-
bels (Step 1 in Figure 2). These quantitative con-
straints are then imbued into the training of a classi-
fier by guiding predictions from the learned models
to concur with them (Step 2). We use semantic
parsing to interpret sentences as quantitative con-
straints, and adapt the posterior regularization prin-
ciple for our setting to estimate the classifier param-
eters. Next, we describe these steps in detail. Since
learning in this work is largely driven by the seman-
tics of linguistic quantifiers, we call our approach
Learning from Natural Quantification, or LNQ.

3.1 Mapping language to constraints

A key challenge in learning from language is con-
verting free-form language to representations that
can be reasoned over, and grounded in data. For
example, a description such as ‘emails that I re-
ply to are usually important’ may be converted to
a mathematical assertion such as P (important |
replied : true) = 0.7’, which statistical methods
can reason with. Here, we argue that this process
can be automated for a large number of real-world
descriptions. In interpreting statements describing
concepts, we infer the following key elements:

1. Feature x, which is grounded in observed at-
tributes of the data. For our example, ‘emails
replied to’ can refer to a predicate such as
replied:true, which can be evaluated in con-
text of emails to indicate the whether an email
was replied to. Incorporating compositional rep-
resentations enables more complex reasoning.
e.g., ‘the subject of course-related emails usu-
ally mentions CS100’ can map to a composite
predicate like ‘isStringMatch(field:subject,

stringVal(‘CS100’))’ , which can be evaluated
for different emails to reflect whether their sub-
ject mentions ‘CS100’. Mapping language to ex-
ecutable feature functions has been shown to be
effective (Srivastava et al., 2017). For sake of sim-
plicity, here we assume that a statement refers to a

single feature, but the method can be extended to
handle more complex descriptions.
2. Concept label y, specifying the class of in-
stances a statement refers to. For binary classes,
this reduces to examples or non-examples of a con-
cept. For our running example, y corresponds to
the positive class of important emails.
3. Constraint-type asserted by the statement. We
argue that most concept descriptions belong to one
of three categories shown in Table 2, and these con-
stitute our vocabulary of constraint types for this
work. For our running example (‘emails that I reply
to are usually important’), the type corresponds to
P (y | x), since the syntax of the statement indi-
cates an assertion conditioned on the feature indi-
cating whether an email was replied to. On the
other hand, an assertion such as ‘I usually reply
to important emails’ indicates an assertion condi-
tioned on the set important emails, and therefore
corresponds to the type P (x | y).
4. Strength of the constraint. We assume this to
be specified by a quantifier. For our running ex-
ample, this corresponds to the adverb ‘usually’. In
this work, by quantifier we specifically refer to
frequency adverbs (‘usually’,‘rarely’, etc.) and fre-
quency determiners (‘few’, ‘all’, etc.).2 Our thesis
is that the semantics of quantifiers can be leveraged
to make statistical assertions about relationships
involving attributes and concept labels. One way
to do this might be to simply associate point esti-
mates of probability values, suggesting the fraction
of truth values for assertions described with these
quantifiers. Table 1 shows probability values we
assign to some common frequency quantifiers for
English. These values were set simply based on
the authors’ intuition about their semantics, and
do not reflect any empirical distributions. See Fig-
ure 8 for empirical distributions corresponding to
some linguistic quantifiers in our data. While these
probability values maybe inaccurate, and the se-
mantics of these quantifiers may also change based
on context and the speaker, they can still serve as
a strong signal for learning classifiers since they
are not used as hard constraints, but serve to bias
classifiers towards better generalization.

We use a semantic parsing model to map state-
ments to formal semantic representations that spec-
ify these aspects. For example, the statement
‘Emails that I reply to are usually important’ is

2This is a significantly restricted definition, and does not
address non-frequency determiners (e.g.,‘the’, ‘only’, etc. ) or
mass quantifiers (e.g. ‘a lot’, ‘little’), among other categories.
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Frequency quantifier Probability
all, always, certainly, definitely 0.95
usually, normally, generally,
likely, typically

0.70

most, majority 0.60
often, half 0.50
many 0.40
sometimes, frequently, some 0.30
few, occasionally 0.20
rarely, seldom 0.10
never 0.05

Table 1: Probability values we assign to com-
mon linguistic quantifiers (hyper-parameters for
method)

mapped to a logical form like (x→replied:true

y→positive type:y|x quant:usually).

3.1.1 Semantic Parser components
Given a descriptive statement s, the parsing prob-
lem consists of predicting a logical form l that best
represents its meaning. In turn, we formulate the
probability of the logical form l as decomposing
into three component factors: (i) probability of
observing a feature and concept labels lxy based
on the text of the sentence, (ii) probability of the
type of the assertion ltype based on the identified
feature, concept label and syntactic properties of
the sentence s, and (iii) identifying the linguistic
quantifier, lquant, in the sentence.

P (l | s) = P (lxy | s) P (ltype | lxy, s) P (lquant | s)

We model each of the three components as fol-
lows: by using a traditional semantic parser for the
first component, training a Max-Ent classifier for
the constraint-type for the second component, and
looking for an explicit string match to identify the
quantifier for the third component.
Identifying features and concept labels, lxy: For
identifying the feature and concept label men-
tioned in a sentence, we presume a linear score
S(s, lxy) = wTψ(s, lxy) indicating the goodness
of assigning a partial logical form, lxy, to a sen-
tence s. Here, ψ(s, lxy) ∈ Rn are features that can
depend on both the sentence and the partial logical
form, and w ∈ Rn is a parameter weight-vector for
this component. Following recent work in semantic
parsing (Liang et al., 2011), we assume a loglinear
distribution over interpretations of a sentence.

P (lxy | s) ∝ wTψ(s, lxy)
Provided data consisting of statements labeled
with logical forms, the model can be trained via
maximum likelihood estimation, and be used to
predict interpretations for new statements. For
training this component, we use a CCG semantic
parsing formalism, and follow the feature-set
from Zettlemoyer and Collins (2007), consisting
of simple indicator features for occurrences
of keywords and lexicon entries. This is also
compatible with the semantic parsing formalism in
Srivastava et al. (2017), whose data (and accom-
panying lexicon) are also used in our evaluation.
For other datasets with predefined features, this
component is learned easily from simple lexicons
consisting of trigger words for features and labels.3

This component is the only part of the parser
that is domain-specific. We note that while this
component assumes a domain-specific lexicon
(and possibly statement annotated with logical
forms), this effort is one-time-only, and will
find re-use across the possibly large number of
concepts in the domain (e.g., email categories).

Identifying assertion type, ltype: The principal
novelty in our semantic parsing model is in iden-
tifying the type of constraint asserted by a state-
ment. For this, we train a MaxEnt classifier, which
uses positional and syntactic features based on the
text-spans corresponding to feature and concept
mentions to predict the constraint type. We extract
the following features from a statement:
1. Boolean value indicating whether the text-span
corresponding to the feature x precedes the text
span for the concept label y.
2. Boolean value indicating if sentence is in pas-
sive (rather than active) voice, as identified by the
occurrence of nsubjpass dependency relation.
3. Boolean value indicating whether head of the
text-span for x is a noun, or a verb.
4. Features indicating the occurrence of condi-
tional tokens (‘if’, ‘then’ and ‘that’) preceding or
following text-spans for x and y.
5. Features indicating presence of a linguistic
quantifier in a det or an advmod relation with
syntactic head of x or y.

Since the constraint type is determined by
syntactic and dependency parse features, this

3We also identify whether a feature x is negated, through
the existence of a neg dependency relation with the head of
its text-span. e.g., Important emails are usually not deleted

309



Type Example description Conversion to Expectation Constraint
P (y | x) Emails that I reply to are usually important E[Iy=important,reply(x):true]− pusually × E[Ireply(x):true] = 0

P (x | y) I often reply to important emails E[Iy=important,reply(x):true]− poften × E[Iy=important] = 0

P (y) I rarely get important emails Same as P (y|x0), where x0 is a constant feature

Table 2: Common constraint-types, and their representation as expectations over feature values

component does not need to be retrained for
new domains. In this work, we trained this
classifier based on a manually annotated set of 80
sentences describing classes in the small UCI Zoo
dataset (Lichman, 2013), and used this model for
all experiments.

Identifying quantifiers, lquant: Multiple linguis-
tic quantifiers in a sentence are rare, and we simply
look for the first occurrence of a linguistic quanti-
fier in a sentence, i.e. P (lquant|s) is a deterministic
function. We note that many real world descrip-
tions of concepts lack an explicit quantifier. e.g.,
‘Emails from my boss are important’. In this work,
we ignore such statements for the purpose of train-
ing. Another treatment might be to models these
statements as reflecting a default quantifier, but
we do not explore this direction here. Finally, the
decoupling of quantification from logical represen-
tation is a key decision. At the cost of linguistic
coarseness, this allows modeling quantification ir-
respective of the logical representation (lambda
calculus, predicate-argument structures, etc.).

3.2 Classifier training from constraints
In the previous section, we described how indi-
vidual explanations can be mapped to probabilis-
tic assertions about observable attributes (e.g., the
statement ‘Emails that I reply to are usually impor-
tant’ may map to P (y = important | replied =
true) = pusually). Here, we describe how a set
of such assertions can be used in conjunction with
unlabeled data to train classification models.

Our approach relies on having predictions from
the classifier on a set of unlabeled examples (X =
{x1 . . . xn}) agree with human-provided advice (in
form of constraints). The unobserved concept la-
bels (Y = {y1 . . . yn}) for the unlabeled data con-
stitute latent variables for our method. The train-
ing procedure can be seen as iteratively inferring
the latent concept labels for unlabeled examples
so as to agree with the human advice, and updat-
ing the classification models by taking these labels
as given. While there are multiple approaches for
training statistical models with constraints on latent

variables, here we use the Posterior Regularization
(PR) framework. The PR objective can be used to
optimize a latent variable model subject to a set of
constraints, which specify preferences for values
of the posterior distributions pθ(Y | X).

JQ(θ) = L(θ)−minq∈QKL(q | pθ(Y |X))

Here, the set Q represents a set of preferred pos-
terior distributions over latent variables Y , and is
defined as Q := {qX(Y ) : Eq[φ(X,Y )] ≤ b}.
The overall objective consists of two components,
representing how well does a model θ explain the
data (likelihood term L(θ)), and how far it is from
the set Q (KL-divergence term).

In our case, each parsed statement defines a
probabilistic constraint. The conjunction of all
such constraints defines Q (representing models
that exactly agree with human-provided advice).
Thus, optimizing the objective reflects a tension
between choosing models that increase data
likelihood, and emulating language advice.

Converting to PR constraints: The set of con-
straints that PR can handle can be characterized
as bounds on expected values of functions (φ) of
X and Y (or equivalently, from linearity of expec-
tation, as linear inequalities over expected values
of functions of X and Y ). To use the framework,
we need to ensure that each constraint type in our
vocabulary can be expressed in such a form.

Following the plan in Table 2, each constraint
type can be converted in an equivalent form
Eq[φ(X,Y )] = b, compatible with PR. In partic-
ular, each of these constraint types in our vocab-
ulary can be expressed as equations about expec-
tation values of joint indicator functions of label
assignments to instances and their attributes. To ex-
plain, consider the assertion P (y = important |
replied : true) = pusually. The probability on
the LHS can be expressed as the empirical fraction∑

i E[Iyi=important,replied:true]∑
i E[Ireplied:true]

, which leads to the lin-
ear constraints seen in Table 2 (expected values
in the table hide summations over instances for
brevity). Here, I denote indicator functions. Thus,
we can incorporate probability constraints into our
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adaptation of the PR scheme.
Learning and Inference: We choose a loglinear
parameterization for the concept classifier.

pθ(yi | xi) ∝ exp(yθTx)

The training of the classifier follows the modified
EM procedure described in Ganchev et al. (2010).
As proposed in the original work, we solve a re-
laxed version of the optimization that allows slack
variables, and modifies the PR objective with a L2

regularizer. This allows solutions even when the
problem is over-constrained, and the setQ is empty
(e.g. due to contradictory advice).

J ′(θ, q) = L(θ)−KL(q|pθ(Y |X))

− λ ||Eq[φ(X,Y )]− b||2

The key step in the training is the computation of
the posterior regularizer in the E-step.
argmin

q
KL(q | pθ) + λ ||Eq[φ(X,Y )]− b||2

This objective is strictly convex, and all constraints
are linear in q. We follow the optimization proce-
dure from Bellare et al. (2009), whereby the min-
imization problem in the E-step can be efficiently
solved through gradient steps in the dual space. In
the M-step, we update the model parameters for the
classifier based on label distributions q estimated
in the E-step. This simply reduces to estimating the
parameters θ for the logistic regression classifier,
when class label probabilities are known. In all
experiments, we run EM for 20 iterations and use
a regularization coefficient of λ = 0.1.

4 Datasets

For evaluating our approach, we created datasets of
classification tasks paired with descriptions of the
classes, as well as used some existing resources. In
this section, we summarize these steps.
Shapes data: To experiment with our approach
in a wider range of controlled settings, part of our
evaluation focuses on synthetic concepts. For this,
we created a set of 50 shape classification tasks that
exhibit a range of difficulty, and elicited language
descriptions spanning a variety of quantifier ex-
pressions. The tasks require classifying geometric
shapes with a set of predefined attributes (fill color,
border, color, shape, size) into two concept-labels
(abstractly named ‘selected shape’, and ‘other’).
The datasets were created through a generative pro-
cess, where features xi are conditionally indepen-
dent given the concept-label. Each feature’s con-
ditional distribution is sampled from a symmetric

(a) Statement generation task

(b) Concept Quiz

Figure 3: Shapes data: Mechanical Turk tasks for
(a) collecting concept descriptions, and (b) human
evaluation from concept descriptions

Dirichlet distribution, and varying the concentra-
tion parameter α allows tuning the noise level of
the generated datasets (quantified via their Bayes
Optimal accuracy4). A dataset is then generated
by sampling from these conditional distributions.
We sample a total of 50 such datasets, consisting
of 100 training and 100 test examples each, where
each example is a shape and its assigned label.

For each dataset, we then collected statements
from Mechanical Turk workers that describe the
concept. The task required turkers to study a sam-
ple of shapes presented on the screen for each of
the two concept-labels (see Figure 3(a)). They were
then asked to write a set of statements that would
help others classify these shapes without seeing the
data. In total, 30 workers participated in this task,
generating a mean of 4.3 statements per dataset.
Email data: Srivastava et al. (2017) provide a
dataset of language explanations from human users
describing 7 categories of emails, as well as 1030
examples of emails belonging to those categories.
While this work uses labeled examples, and focuses

4This is the accuracy of a theoretically optimal classifier,
which knows the true distribution of the data and labels

311



Shapes:
If a shape doesn’t have a blue border, it is prob-
ably not a selected shape.
Selected shapes occasionally have a yellow fill.
Emails:
Emails that mention the word ’meet’ in the sub-
ject are usually meeting requests
Personal reminders almost always have the
same recipient and sender
Birds:
A specimen that has a striped crown is likely to
be a selected bird.
Birds in the other category rarely ever have
dagger-shaped beaks

Table 3: Examples of explanations for each domain

Figure 4: Statement generation task for Birds data

on mapping natural language explanations (∼30
explanations per email category) to compositional
feature functions, we can also use statements in
their data for evaluating our approach. While lan-
guage quantifiers were not studied in the original
work, we found about a third of the statements in
this data to mention a quantifier.
Birds data: The CUB-200 dataset (Wah et al.,
2011) contains images of birds annotated with
observable attributes such as size, primary color,
wing-patterns, etc. We selected a subset of the data
consisting of 10 species of birds and 53 attributes
(60 examples per species). Turkers were shown
examples of birds from a species, and negative
examples consisting of a mix of birds from other

Approach Avg Accuracy Labels Descriptions
LNQ 0.751 no yes
Bayes Optimal 0.831 – –
FLGE+ 0.659 no yes
FLGE 0.598 no yes
LR 0.737 yes no
Random 0.524 – –
Ablation:
LNQ (coarse quant) 0.679 no yes
LNQ (no quant) 0.545 no yes
Human:
Human teacher 0.802 yes writes
Human learner 0.734 no yes

Table 4: Classification performance on Shapes
datasets (averaged over 50 classification tasks).

species, and were asked to describe the classes
(similar to the Shapes data, see Figure 4). During
the task, users also had access to a table enumerat-
ing groundable attributes they could refer to. In all,
60 workers participated, generating 6.1 statements
on average.

5 Experiments

Incorporating constraints from language has not
been addressed before, and hence previous ap-
proaches for learning from limited data such as
Mann and McCallum (2010); Chang et al. (2007b)
would not directly work for this setting. Our base-
lines hence consist of extended versions of previous
approaches that incorporate output from the parser,
as well as fully supervised classifiers trained from
a small number of labeled examples.
Classification performance: The top section in
Table 4 summarizes performance of various clas-
sifiers on the Shape datasets, averaged over all 50
classification tasks. FLGE+ refers to a baseline

Figure 5: LNQ vs Bayes Optimal Classifier perfor-
mance for Shape datasets. Each dot represents a
dataset generated from a known distribution.
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that uses the Feature Labeling through General-
ized Expectation criterion, following the approach
in Druck et al. (2008); Mann and McCallum (2010).
The approach is based on labeling features are in-
dicating specific class-labels, which corresponds
to specifiying constraints of type P (y|x)5. While
the original approach (Druck et al., 2008) sets this
value to 0.9, we provide the method the quantita-
tive probabilities used by LNQ. Since the original
method cannot handle language descriptions, we
also provide the approach the concept label y and
feature x as identified by the parser. FLGE rep-
resents the version that is not provided quantifier
probabilities. LR refers to a supervised logistic re-
gression model trained on n = 8 randomly chosen
labeled instances.6 We note that LNQ performs
substantially better than both FLGE+ and LR on
average. This validates our modeling principle for
learning classifiers from explanations alone, and
also suggests value in our PR-based formulation,
which can handle multiple constraint types. We
further note that not using quantifier probabilities
significantly deteriorates FLGE’s performance.

Figure 5 provides a more detailed characteriza-
tion of LNQ’s performance. Each blue dot repre-
sents performance on a shape classification task.
The horizontal axis represents the accuracy of the
Bayes Optimal classifier, and the vertical repre-
sents accuracy of the LNQ approach. The blue line
represents the trajectory for x = y, representing a
perfect statistical classifier in the asymptotic case
of infinite samples. We note that LNQ is effective
in learning competent classifiers for all levels of
hardness. Secondly, except for a small number of
outliers, the approach works especially well for
learning easy concepts (towards the right). From
an error-analysis, we found that a majority of these
errors are due to problems in parsing (e.g., missed
negation, incorrect constraint type) or due to poor
explanations from the teacher (bad grammar, or
simply incorrect information).

Figure 6 shows results for email classification
tasks. In the figure, LN* refers to the approach
in Srivastava et al. (2017), which uses natural lan-
guage descriptions to define compositional features
for email classification, but does not incorporate

5In general, Generalized Expectation can also handle
broader constraint types, similar to Posterior Regularization

6LNQ models are indistinct from LR w.r.t. parametriza-
tion, but trained to maximize a different objective. The choice
of n here is arbitrary, but is roughly twice the number of
explanations for each task in this domain

Figure 6: Classification performance (F1) on Email
data. (LN* Results from Srivastava et al. (2017))

supervision from quantification. For this task, we
found very few of the natural language descriptions
to contain quantifiers for some of the individual
email categories, making a direct comparison im-
practical. Thus in this case, we evaluate methods
by combining supervision from descriptions in ad-
dition to 10 labeled examples (also in line with
evaluation in the original paper). We note that addi-
tionally incorporating quantification (LNQ) consis-
tently improves classification performance across
email categories. On this task, LNQ improves upon
FLGE+ and LN* for 6 of the 7 email categories.

Figure 7 shows classification results on the Birds
data. Here, LR refers to a logistic regression model
trained on n=10 examples. The trends in this case
are similar, where LNQ consistently outperforms
FLGE+, and is competitive with LR.
Ablating quantification: From Table 4, we
further observe that the differential associative
strengths of linguistic quantifiers are crucial for
our method’s classification performance. LNQ (no
quant) refers to a variant that assigns the same
probability value (average of values in Table 1),
irrespective of quantifier. This yields a near ran-
dom performance, which is what we’d expect if the
learning is being driven by the differential strengths
of quantifiers. LNQ (coarse quant) refers to a vari-
ant that rounds assigned quantifier probabilities in
Table 1 to 0 or 1. (i.e., quantifiers such are rarely
get mapped to 0, while always gets mapped to a
probability of 1). While its performance (0.679)
suggests that simple binary feedback is a substan-
tial signal, the difference from the full model in-
dicates value in using soft probabilities. On the
other hand, in a sensitivity study, we found the
performance of the approach to be robust to small
changes in the probability values of quantifiers.
Comparison with human performance: For the
Shapes data, we evaluated human teachers’ own
understanding of concepts they teach by evaluating
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Figure 7: Classification performance on Birds data

them on a quiz based on predicting labels for exam-
ples from the test set (see Figure 3(b)). Second, we
solicit additional workers that were not exposed to
examples from the dataset, and present them only
with the statements describing that data (created
by a teacher), which is comparable supervision to
what LNQ receives. We then evaluate their perfor-
mance at the same task. From Table 4, we note that
a human teacher’s average performance is signifi-
cantly worse (p < 0.05, Wilcoxon signed-rank test)
than the Bayes Optimal classifier indicating that the
teacher’s own synthesis of concepts is noisy. The
human learner performance is expectedly lower,
but interestingly is also significantly worse than
LNQ. While this might be potentially be caused by
factors such as user fatigue, this might also suggest
that automated methods can be better at reasoning
with constraints than humans in certain scenarios.
These results need to be validated through compre-
hensive experiments in more domains.
Empirical semantics of quantifiers: We can es-
timate the distributions of probability values for
different quantifiers from our labeled data. For this,
we aggregate sentences mentioning a quantifier,
and calculate the empirical value of the (condi-
tional) probability associated with the statement,
leading to a set of probability values for each quan-
tifier. Figure 8 shows empirical distributions of
probability values for six quantifiers. We note that
while a few estimates (e.g., ‘rarely’ and ‘often’)
roughly align with pre-registered beliefs, others are
somewhat off (e.g., ‘likely’ shows a much higher
value), and yet others (e.g., ‘sometimes’) show a
large spread of values to be meaningfully modeled
as point values. LNQ’s performance, inspite of
this, shows strong stability in the approach. We
don’t use these empirical probabilities in experi-
ments, (instead of pre-registered values), so as not
to tune the hyperparameters to a specific dataset.

Figure 8: Empirical probability distributions for
six quantifiers (Shapes data). Plots show Beta dis-
tributions with Method-of-Moment estimates. Red
bars correspond to values from Table 1

Such estimates would not be available for a new
task without labeled data. Further, using labeled
data for estimating these probabilities, and then us-
ing the learned model for predicting labels would
constitute overfitting, biasing evaluation.

6 Discussion and Future Work

Our approach is surprisingly effective in learning
from free-form language. However, it does not ad-
dress linguistic issues such as modifiers (e.g., very
likely), nested quantification, etc. On the other
hand, we found no instances of nested quantifi-
cation in the data, suggesting that people might
be primed to use simpler language when teaching.
While we approximate quantifier semantics as abso-
lute probability values, they may vary significantly
based on the context, as shown by cognitive studies
such as Newstead and Collis (1987). Future work
can model how these parameters can be adapted
in a task specific way (e.g., cases such as cancer
prediction where base rates are small), and pro-
vide better models of quantifier semantics. e.g., as
distributions, rather than point values.

Our approach is a step towards the idea of using
language to guide learning of statistical models.
This is an exciting direction, which contrasts with
the predominant theme of using statistical learning
methods to advance the field of NLP. We believe
that language may have as much to help learning,
as statistical learning has helped NLP.
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Abstract

Bi-directional LSTMs are a powerful tool
for text representation. On the other
hand, they have been shown to suffer var-
ious limitations due to their sequential na-
ture. We investigate an alternative LSTM
structure for encoding text, which consists
of a parallel state for each word. Re-
current steps are used to perform local
and global information exchange between
words simultaneously, rather than incre-
mental reading of a sequence of words.
Results on various classification and se-
quence labelling benchmarks show that
the proposed model has strong representa-
tion power, giving highly competitive per-
formances compared to stacked BiLSTM
models with similar parameter numbers.

1 Introduction

Neural models have become the dominant ap-
proach in the NLP literature. Compared to hand-
crafted indicator features, neural sentence repre-
sentations are less sparse, and more flexible in en-
coding intricate syntactic and semantic informa-
tion. Among various neural networks for encod-
ing sentences, bi-directional LSTMs (BiLSTM)
(Hochreiter and Schmidhuber, 1997) have been a
dominant method, giving state-of-the-art results in
language modelling (Sundermeyer et al., 2012),
machine translation (Bahdanau et al., 2015), syn-
tactic parsing (Dozat and Manning, 2017) and
question answering (Tan et al., 2015).

Despite their success, BiLSTMs have been
shown to suffer several limitations. For example,
their inherently sequential nature endows com-
putation non-parallel within the same sentence
(Vaswani et al., 2017), which can lead to a compu-
tational bottleneck, hindering their use in the in-
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Figure 1: Sentence-State LSTM

dustry. In addition, local ngrams, which have been
shown a highly useful source of contextual infor-
mation for NLP, are not explicitly modelled (Wang
et al., 2016). Finally, sequential information flow
leads to relatively weaker power in capturing long-
range dependencies, which results in lower perfor-
mance in encoding longer sentences (Koehn and
Knowles, 2017).

We investigate an alternative recurrent neural
network structure for addressing these issues. As
shown in Figure 1, the main idea is to model the
hidden states of all words simultaneously at each
recurrent step, rather than one word at a time. In
particular, we view the whole sentence as a sin-
gle state, which consists of sub-states for individ-
ual words and an overall sentence-level state. To
capture local and non-local contexts, states are up-
dated recurrently by exchanging information be-
tween each other. Consequently, we refer to our
model as sentence-state LSTM, or S-LSTM in
short. Empirically, S-LSTM can give effective
sentence encoding after 3 – 6 recurrent steps. In
contrast, the number of recurrent steps necessary
for BiLSTM scales with the size of the sentence.
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At each recurrent step, information exchange is
conducted between consecutive words in the sen-
tence, and between the sentence-level state and
each word. In particular, each word receives in-
formation from its predecessor and successor si-
multaneously. From an initial state without infor-
mation exchange, each word-level state can obtain
3-gram, 5-gram and 7-gram information after 1,
2 and 3 recurrent steps, respectively. Being con-
nected with every word, the sentence-level state
vector serves to exchange non-local information
with each word. In addition, it can also be used
as a global sentence-level representation for clas-
sification tasks.

Results on both classification and sequence la-
belling show that S-LSTM gives better accuracies
compared to BiLSTM using the same number of
parameters, while being faster. We release our
code and models at https://github.com/
leuchine/S-LSTM, which include all base-
lines and the final model.

2 Related Work

LSTM (Graves and Schmidhuber, 2005) showed
its early potentials in NLP when a neural machine
translation system that leverages LSTM source
encoding gave highly competitive results com-
pared to the best SMT models (Bahdanau et al.,
2015). LSTM encoders have since been explored
for other tasks, including syntactic parsing (Dyer
et al., 2015), text classification (Yang et al., 2016)
and machine reading (Hermann et al., 2015). Bi-
directional extensions have become a standard
configuration for achieving state-of-the-art accu-
racies among various tasks (Wen et al., 2015; Ma
and Hovy, 2016; Dozat and Manning, 2017). S-
LSTMs are similar to BiLSTMs in their recurrent
bi-directional message flow between words, but
different in the design of state transition.

CNNs (Krizhevsky et al., 2012) also allow bet-
ter parallelisation compared to LSTMs for sen-
tence encoding (Kim, 2014), thanks to parallelism
among convolution filters. On the other hand, con-
volution features embody only fix-sized local n-
gram information, whereas sentence-level feature
aggregation via pooling can lead to loss of infor-
mation (Sabour et al., 2017). In contrast, S-LSTM
uses a global sentence-level node to assemble and
back-distribute local information in the recurrent
state transition process, suffering less information
loss compared to pooling.

Attention (Bahdanau et al., 2015) has recently
been explored as a standalone method for sentence
encoding, giving competitive results compared to
Bi-LSTM encoders for neural machine translation
(Vaswani et al., 2017). The attention mechanism
allows parallelisation, and can play a similar role
to the sentence-level state in S-LSTMs, which uses
neural gates to integrate word-level information
compared to hierarchical attention. S-LSTM fur-
ther allows local communication between neigh-
bouring words.

Hierarchical stacking of CNN layers (LeCun
et al., 1995; Kalchbrenner et al., 2014; Papan-
dreou et al., 2015; Dauphin et al., 2017) allows
better interaction between non-local components
in a sentence via incremental levels of abstraction.
S-LSTM is similar to hierarchical attention and
stacked CNN in this respect, incrementally refin-
ing sentence representations. However, S-LSTM
models hierarchical encoding of sentence structure
as a recurrent state transition process. In nature,
our work belongs to the family of LSTM sentence
representations.

S-LSTM is inspired by message passing over
graphs (Murphy et al., 1999; Scarselli et al., 2009).
Graph-structure neural models have been used for
computer program verification (Li et al., 2016) and
image object detection (Liang et al., 2016). The
closest previous work in NLP includes the use
of convolutional neural networks (Bastings et al.,
2017; Marcheggiani and Titov, 2017) and DAG
LSTMs (Peng et al., 2017) for modelling syntactic
structures. Compared to our work, their motiva-
tions and network structures are highly different.
In particular, the DAG LSTM of Peng et al. (2017)
is a natural extension of tree LSTM (Tai et al.,
2015), and is sequential rather than parallel in na-
ture. To our knowledge, we are the first to investi-
gate a graph RNN for encoding sentences, propos-
ing parallel graph states for integrating word-level
and sentence-level information. In this perspec-
tive, our contribution is similar to that of Kim
(2014) and Bahdanau et al. (2015) in introducing
a neural representation to the NLP literature.

3 Model

Given a sentence s = w1, w2, . . . , wn, where
wi represents the ith word and n is the sentence
length, our goal is to find a neural representation
of s, which consists of a hidden vector hi for each
input word wi, and a global sentence-level hid-
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den vector g. Here hi represents syntactic and se-
mantic features forwi under the sentential context,
while g represents features for the whole sentence.
Following previous work, we additionally add 〈s〉
and 〈/s〉 to the two ends of the sentence as w0 and
wn+1, respectively.

3.1 Baseline BiLSTM

The baseline BiLSTM model consists of two
LSTM components, which process the input in
the forward left-to-right and the backward right-
to-left directions, respectively. In each direction,
the reading of input words is modelled as a recur-
rent process with a single hidden state. Given an
initial value, the state changes its value recurrently,
each time consuming an incoming word.

Take the forward LSTM component for exam-
ple. Denoting the initial state as

−→
h 0, which is

a model parameter, the recurrent state transition
step for calculating

−→
h 1, . . . ,

−→
h n+1 is defined as

follows (Graves and Schmidhuber, 2005):

ît = σ(Wixt +Ui
−→
h t−1 + bi)

f̂ t = σ(Wfxt +Uf
−→
h t−1 + bf )

ot = σ(Woxt +Uo
−→
h t−1 + bo)

ut = tanh(Wuxt +Uu
−→
h t−1 + bu)

it,f t = softmax (̂it, f̂ t)

ct = ct−1 � f t + ut � it
−→
h t = ot � tanh(ct)

(1)

where xt denotes the word representation of wt;
it, ot, f t and ut represent the values of an input
gate, an output gate, a forget gate and an actual in-
put at time step t, respectively, which controls the
information flow for a recurrent cell −→c t and the
state vector

−→
h t;Wx,Ux and bx (x ∈ {i, o, f, u})

are model parameters. σ is the sigmoid function.
The backward LSTM component follows the

same recurrent state transition process as de-
scribed in Eq 1. Starting from an initial statehn+1,
which is a model parameter, it reads the input xn,
xn−1, . . . , x0, changing its value to

←−
h n,
←−
h n−1,

. . . ,
←−
h 0, respectively. A separate set of parame-

ters Ŵx, Ûx and b̂x (x ∈ {i, o, f, u}) are used for
the backward component.

The BiLSTM model uses the concatenated
value of

−→
h t and

←−
h t as the hidden vector for wt:

ht = [
−→
h t;
←−
h t]

A single hidden vector representation g of the
whole input sentence can be obtained using the fi-
nal state values of the two LSTM components:

g = [
−→
h n+1;

←−
h 0]

Stacked BiLSTM Multiple layers of BiLTMs
can be stacked for increased representation power,
where the hidden vectors of a lower layer are used
as inputs for an upper layer. Different model pa-
rameters are used in each stacked BiLSTM layer.

3.2 Sentence-State LSTM
Formally, an S-LSTM state at time step t can be
denoted by:

Ht = 〈ht0,ht1, . . . ,htn+1, g
t〉,

which consists of a sub state hti for each word wi
and a sentence-level sub state gt.

S-LSTM uses a recurrent state transition pro-
cess to model information exchange between sub
states, which enriches state representations incre-
mentally. For the initial state H0, we set h0

i =
g0 = h0, where h0 is a parameter. The state
transition from Ht−1 to Ht consists of sub state
transitions from ht−1

i to hti and from gt−1 to gt.
We take an LSTM structure similar to the baseline
BiLSTM for modelling state transition, using a re-
current cell cti for each wi and a cell ctg for g.

As shown in Figure 1, the value of each hti is
computed based on the values of xi, ht−1

i−1, ht−1
i ,

ht−1
i+1 and gt−1, together with their corresponding

cell values:

ξti = [ht−1
i−1,h

t−1
i ,ht−1

i+1]

îti = σ(Wiξ
t
i +Uixi + Vig

t−1 + bi)

l̂ti = σ(Wlξ
t
i +Ulxi + Vlg

t−1 + bl)

r̂ti = σ(Wrξ
t
i +Urxi + Vrg

t−1 + br)

f̂ ti = σ(Wfξ
t
i +Ufxi + Vfg

t−1 + bf )

ŝti = σ(Wsξ
t
i +Usxi + Vsg

t−1 + bs)

oti = σ(Woξ
t
i +Uoxi + Vog

t−1 + bo)

uti = tanh(Wuξ
t
i +Uuxi + Vug

t−1 + bu)

iti, l
t
i, r

t
i ,f

t
i , s

t
i = softmax (̂iti, l̂

t
i, r̂

t
i , f̂

t
i , ŝ

t
i)

cti = lti � ct−1
i−1 + f ti � ct−1

i + rti � ct−1
i+1

+ sti � ct−1
g + iti � uti

hti = oit � tanh(cti)

(2)

where ξti is the concatenation of hidden vectors
of a context window, and lti, r

t
i , f

t
i , s

t
i and iti are
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gates that control information flow from ξti and xi
to cti. In particular, iti controls information from
the input xi; lti, r

t
i , f

t
i and sti control information

from the left context cell ct−1
i−1, the right context

cell ct−1
i+1, ct−1

i and the sentence context cell ct−1
g ,

respectively. The values of iti, l
t
i, r

t
i , f

t
i and sti are

normalised such that they sum to 1. oti is an out-
put gate from the cell state cti to the hidden state
hti. Wx, Ux, Vx and bx (x ∈ {i, o, l, r, f, s, u})
are model parameters. σ is the sigmoid function.

The value of gt is computed based on the values
of ht−1

i for all i ∈ [0..n+ 1]:

h̄ = avg(ht−1
0 ,ht−1

1 , . . . ,ht−1
n+1)

f̂ tg = σ(Wgg
t−1 +Ugh̄+ bg)

f̂ ti = σ(Wfg
t−1 +Ufh

t−1
i + bf )

ot = σ(Wog
t−1 +Uoh̄+ bo)

f t0, . . . ,f
t
n+1,f

t
g = softmax (f̂ t0, . . . , f̂

t
n+1, f̂

t
g)

ctg = f tg � ct−1
g +

∑

i

f ti � ct−1
i

gt = ot � tanh(ctg)
(3)

where f t0, . . . ,f
t
n+1 and f tg are gates controlling

information from ct−1
0 , . . . , ct−1

n+1 and ct−1
g , re-

spectively, which are normalised. ot is an output
gate from the recurrent cell ctg to gt. Wx, Ux and
bx (x ∈ {g, f, o}) are model parameters.

Contrast with BiLSTM The difference be-
tween S-LSTM and BiLSTM can be understood
with respect to their recurrent states. While BiL-
STM uses only one state in each direction to rep-
resent the subsequence from the beginning to a
certain word, S-LSTM uses a structural state to
represent the full sentence, which consists of a
sentence-level sub state and n + 2 word-level sub
states, simultaneously. Different from BiLSTMs,
for which ht at different time steps are used to rep-
resent w0, . . . , wn+1, respectively, the word-level
states hti and sentence-level state gt of S-LSTMs
directly correspond to the goal outputs hi and g,
as introduced in the beginning of this section. As
t increases from 0, hti and gt are enriched with
increasingly deeper context information.

From the perspective of information flow, BiL-
STM passes information from one end of the sen-
tence to the other. As a result, the number of time
steps scales with the size of the input. In con-
trast, S-LSTM allows bi-directional information
flow at each word simultaneously, and additionally

between the sentence-level state and every word-
level state. At each step, each hi captures an in-
creasing larger ngram context, while additionally
communicating globally to all other hj via g. The
optimal number of recurrent steps is decided by
the end-task performance, and does not necessar-
ily scale with the sentence size. As a result, S-
LSTM can potentially be both more efficient and
more accurate compared with BiLSTMs.

Increasing window size. By default S-LSTM
exchanges information only between neighbour-
ing words, which can be seen as adopting a 1-
word window on each side. The window size
can be extended to 2, 3 or more words in order
to allow more communication in a state transi-
tion, expediting information exchange. To this
end, we modify Eq 2, integrating additional con-
text words to ξti , with extended gates and cells.
For example, with a window size of 2, ξti =
[ht−1
i−2,h

t−1
i−1,h

t−1
i ,ht−1

i+1,h
t−1
i+2]. We study the ef-

fectiveness of window size in our experiments.
Additional sentence-level nodes. By default

S-LSTM uses one sentence-level node. One way
of enriching the parameter space is to add more
sentence-level nodes, each communicating with
word-level nodes in the same way as described
by Eq 3. In addition, different sentence-level
nodes can communicate with each other during
state transition. When one sentence-level node is
used for classification outputs, the other sentence-
level node can serve as hidden memory units, or
latent features. We study the effectiveness of mul-
tiple sentence-level nodes empirically.

3.3 Task settings
We consider two task settings, namely classifica-
tion and sequence labelling. For classification, g
is fed to a softmax classification layer:

y = softmax (Wcg + bc)

where y is the probability distribution of output
class labels and Wc and bc are model parameters.
For sequence labelling, eachhi can be used as fea-
ture representation for a corresponding word wi.

External attention It has been shown that
summation of hidden states using attention (Bah-
danau et al., 2015; Yang et al., 2016) give bet-
ter accuracies compared to using the end states
of BiLSTMs. We study the influence of atten-
tion on both S-LSTM and BiLSTM for classifi-
cation. In particular, additive attention (Bahdanau
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Dataset Training Development Test
#sent #words #sent #words #sent #words

Movie review (Pang and Lee, 2008) 8527 201137 1066 25026 1066 25260
Books 1400 297K 200 59K 400 68K

Electronics 1398 924K 200 184K 400 224K
DVD 1400 1,587K 200 317K 400 404K

Kitchen 1400 769K 200 153K 400 195K
Apparel 1400 525K 200 105K 400 128K
Camera 1397 1,084K 200 216K 400 260K

Text Health 1400 742K 200 148K 400 175K
Classification Music 1400 1,176K 200 235K 400 276K

(Liu et al., 2017) Toys 1400 792K 200 158K 400 196K
Video 1400 1,311K 200 262K 400 342K
Baby 1300 855K 200 171K 400 221K

Magazines 1370 1,033K 200 206K 400 264K
Software 1315 1,143K 200 228K 400 271K

Sports 1400 833K 200 183K 400 218K
IMDB 1400 2,205K 200 507K 400 475K

MR 1400 196K 200 41K 400 48K
POS tagging (Marcus et al., 1993) 39831 950011 1699 40068 2415 56671

NER (Sang et al., 2003) 14987 204567 3466 51578 3684 46666

Table 1: Dataset statistics

et al., 2015) is applied to the hidden states of input
words for both BiLSTMs and S-LSTMs calculat-
ing a weighted sum

g =
∑

t

αtht

where

αt =
expuT εt∑
i expuT εi

εt = tanh(Wαht + bα)

HereWα, u and bα are model parameters.

External CRF For sequential labelling, we
use a CRF layer on top of the hidden vec-
tors h1,h2, . . . ,hn for calculating the conditional
probabilities of label sequences (Huang et al.,
2015; Ma and Hovy, 2016):

P (Y n
1 |h,Ws, bs) =

∏n
i=1 ψi(yi−1, yi,h)∑

Y n′
1

∏n
i=1 ψi(y

′
i−1, y

′
i,h)

ψi(yi−1, yi,h) = exp(W
yi−1,yi
s hi + b

yi−1,yi
s )

where W yi−1,yi
s and byi−1,yi

s are parameters spe-
cific to two consecutive labels yi−1 and yi.

For training, standard log-likelihood loss is used
with L2 regularization given a set of gold-standard
instances.

4 Experiments

We empirically compare S-LSTMs and BiLSTMs
on different classification and sequence labelling
tasks. All experiments are conducted using a
GeForce GTX 1080 GPU with 8GB memory.

Model Time (s) Acc # Param
+0 dummy node 56 81.76 7,216K
+1 dummy node 65 82.64 8,768K
+2 dummy node 76 82.24 10,321K
Hidden size 100 42 81.75 4,891K
Hidden size 200 54 82.04 6,002K
Hidden size 300 65 82.64 8,768K
Hidden size 600 175 81.84 17,648K
Hidden size 900 235 81.66 33,942K
Without 〈s〉, 〈/s〉 63 82.36 8,768K

With 〈s〉, 〈/s〉 65 82.64 8,768K

Table 2: Movie review DEV results of S-LSTM

4.1 Experimental Settings

Datasets. We choose the movie review dataset
of Pang and Lee (2008), and additionally the
16 datasets of Liu et al. (2017) for classification
evaluation. We randomly split the movie review
dataset into training (80%), development (10%)
and test (10%) sections, and the original split of
Liu et al. (2017) for the 16 classification datasets.

For sequence labelling, we choose the Penn
Treebank (Marcus et al., 1993) POS tagging task
and the CoNLL (Sang et al., 2003) NER task as
our benchmarks. For POS tagging, we follow the
standard split (Manning, 2011), using sections 0 –
18 for training, 19 – 21 for development and 22
– 24 for test. For NER, we follow the standard
split, and use the BIOES tagging scheme (Ratinov
and Roth, 2009). Statistics of the four datasets are
shown in Table 1.

Hyperparameters. We initialise word embed-
dings using GloVe (Pennington et al., 2014) 300
dimensional embeddings.1 Embeddings are fine-
tuned during model training for all tasks. Dropout
(Srivastava et al., 2014) is applied to embedding
hidden states, with a rate of 0.5. All models are
optimised using the Adam optimizer (Kingma and
Ba, 2014), with an initial learning rate of 0.001
and a decay rate of 0.97. Gradients are clipped
at 3 and a batch size of 10 is adopted. Sentences
with similar lengths are batched together. The L2
regularization parameter is set to 0.001.

4.2 Development Experiments

We use the movie review development data to in-
vestigate different configurations of S-LSTMs and
BiLSTMs. For S-LSTMs, the default configura-
tion uses 〈s〉 and 〈/s〉words for augmenting words

1https://nlp.stanford.edu/projects/glove/
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Figure 2: Accuracies with various window sizes
and time steps on movie review development set

of a sentence. A hidden layer size of 300 and one
sentence-level node are used.

Hyperparameters: Table 2 shows the develop-
ment results of various S-LSTM settings, where
Time refers to training time per epoch. Without
the sentence-level node, the accuracy of S-LSTM
drops to 81.76%, demonstrating the necessity of
global information exchange. Adding one addi-
tional sentence-level node as described in Sec-
tion 3.2 does not lead to accuracy improvements,
although the number of parameters and decoding
time increase accordingly. As a result, we use only
1 sentence-level node for the remaining experi-
ments. The accuracies of S-LSTM increases as the
hidden layer size for each node increases from 100
to 300, but does not further increase when the size
increases beyond 300. We fix the hidden size to
300 accordingly. Without using 〈s〉 and 〈/s〉, the
performance of S-LSTM drops from 82.64% to
82.36%, showing the effectiveness of having these
additional nodes. Hyperparameters for BiLSTM
models are also set according to the development
data, which we omit here.

State transition. In Table 2, the number of re-
current state transition steps of S-LSTM is decided
according to the best development performance.
Figure 2 draws the development accuracies of S-
LSTMs with various window sizes against the
number of recurrent steps. As can be seen from the
figure, when the number of time steps increases
from 1 to 11, the accuracies generally increase,
before reaching a maximum value. This shows the
effectiveness of recurrent information exchange in
S-LSTM state transition.

On the other hand, no significant differences are
observed on the peak accuracies given by different
window sizes, although a larger window size (e.g.

Model Time (s) Acc # Param
LSTM 67 80.72 5,977K

BiLSTM 106 81.73 7,059K
2 stacked BiLSTM 207 81.97 9,221K
3 stacked BiLSTM 310 81.53 11,383K
4 stacked BiLSTM 411 81.37 13,546K

S-LSTM 65 82.64* 8,768K
CNN 34 80.35 5,637K

2 stacked CNN 40 80.97 5,717K
3 stacked CNN 47 81.46 5,808K
4 stacked CNN 51 81.39 5,855K

Transformer (N=6) 138 81.03 7,234K
Transformer (N=8) 174 81.86 7,615K

Transformer (N=10) 214 81.63 8,004K
BiLSTM+Attention 126 82.37 7,419K
S-LSTM+Attention 87 83.07* 8,858K

Table 3: Movie review development results

4) generally results in faster plateauing. This can
be be explained by the intuition that information
exchange between distant nodes can be achieved
using more recurrent steps under a smaller win-
dow size, as can be achieved using fewer steps un-
der a larger window size. Considering efficiency,
we choose a window size of 1 for the remaining
experiments, setting the number of recurrent steps
to 9 according to Figure 2.

S-LSTM vs BiLSTM: As shown in Table
3, BiLSTM gives significantly better accuracies
compared to uni-directional LSTM2, with the
training time per epoch growing from 67 seconds
to 106 seconds. Stacking 2 layers of BiLSTM
gives further improvements to development re-
sults, with a larger time of 207 seconds. 3 lay-
ers of stacked BiLSTM does not further improve
the results. In contrast, S-LSTM gives a develop-
ment result of 82.64%, which is significantly bet-
ter compared to 2-layer stacked BiLSTM, with a
smaller number of model parameters and a shorter
time of 65 seconds.

We additionally make comparisons with
stacked CNNs and hierarchical attention (Vaswani
et al., 2017), shown in Table 3 (the CNN and
Transformer rows), whereN indicates the number
of attention layers. CNN is the most efficient
among all models compared, with the smallest
model size. On the other hand, a 3-layer stacked
CNN gives an accuracy of 81.46%, which is also

2p < 0.01 using t-test. For the remaining of this paper,
we use the same measure for statistical significance.
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Model Accuracy Train (s) Test (s)
Socher et al. (2011) 77.70 – –
Socher et al. (2012) 79.00 – –
Kim (2014) 81.50 – –
Qian et al. (2016) 81.50 – –
BiLSTM 81.61 51 1.62
2 stacked BiLSTM 81.94 98 3.18
3 stacked BiLSTM 81.71 137 4.67
3 stacked CNN 81.59 31 1.04
Transformer (N=8) 81.97 89 2.75
S-LSTM 82.45* 41 1.53

Table 4: Test set results on movie review dataset
(* denotes significance in all tables).

the lowest compared with BiLSTM, hierarchical
attention and S-LSTM. The best performance of
hierarchical attention is between single-layer and
two-layer BiLSTMs in terms of both accuracy
and efficiency. S-LSTM gives significantly
better accuracies compared with both CNN and
hierarchical attention.

Influence of external attention mechanism.
Table 3 additionally shows the results of BiLSTM
and S-LSTM when external attention is used as
described in Section 3.3. Attention leads to im-
proved accuracies for both BiLSTM and S-LSTM
in classification, with S-LSTM still outperform-
ing BiLSTM significantly. The result suggests that
external techniques such as attention can play or-
thogonal roles compared with internal recurrent
structures, therefore benefiting both BiLSTMs and
S-LSTMs. Similar observations are found using
external CRF layers for sequence labelling.

4.3 Final Results for Classification

The final results on the movie review and rich text
classification datasets are shown in Tables 4 and
5, respectively. In addition to training time per
epoch, test times are additionally reported. We use
the best settings on the movie review development
dataset for both S-LSTMs and BiLSTMs. The step
number for S-LSTMs is set to 9.

As shown in Table 4, the final results on the
movie review dataset are consistent with the devel-
opment results, where S-LSTM outperforms BiL-
STM significantly, with a faster speed. Observa-
tions on CNN and hierarchical attention are con-
sistent with the development results. S-LSTM also
gives highly competitive results when compared
with existing methods in the literature.
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Figure 3: Sequence labelling development results.

As shown in Table 5, among the 16 datasets of
Liu et al. (2017), S-LSTM gives the best results
on 12, compared with BiLSTM and 2 layered BiL-
STM models. The average accuracy of S-LSTM is
85.6%, significantly higher compared with 84.9%
by 2-layer stacked BiLSTM. 3-layer stacked BiL-
STM gives an average accuracy of 84.57%, which
is lower compared to a 2-layer stacked BiLSTM,
with a training time per epoch of 423.6 seconds.
The relative speed advantage of S-LSTM over
BiLSTM is larger on the 16 datasets as compared
to the movie review test test. This is because the
average length of inputs is larger on the 16 datasets
(see Section 4.5).

4.4 Final Results for Sequence Labelling

Bi-directional RNN-CRF structures, and in partic-
ular BiLSTM-CRFs, have achieved the state of the
art in the literature for sequence labelling tasks,
including POS-tagging and NER. We compare S-
LSTM-CRF with BiLSTM-CRF for sequence la-
belling, using the same settings as decided on the
movie review development experiments for both
BiLSTMs and S-LSTMs. For the latter, we decide
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Dataset SLSTM Time (s) BiLSTM Time (s) 2 BiLSTM Time (s)
Camera 90.02* 50 (2.85) 87.05 115 (8.37) 88.07 221 (16.1)
Video 86.75* 55 (3.95) 84.73 140 (12.59) 85.23 268 (25.86)
Health 86.5 37 (2.17) 85.52 118 (6.38) 85.89 227 (11.16)
Music 82.04* 52 (3.44) 78.74 185 (12.27) 80.45 268 (23.46)

Kitchen 84.54* 40 (2.50) 82.22 118 (10.18) 83.77 225 (19.77)
DVD 85.52* 63 (5.29) 83.71 166 (15.42) 84.77 217 (28.31)
Toys 85.25 39 (2.42) 85.72 119 (7.58) 85.82 231 (14.83)
Baby 86.25* 40 (2.63) 84.51 125 (8.50) 85.45 238 (17.73)
Books 83.44* 64 (3.64) 82.12 240 (13.59) 82.77 458 (28.82)
IMDB 87.15* 67 (3.69) 86.02 248 (13.33) 86.55 486 (26.22)

MR 76.2 27 (1.25) 75.73 39 (2.27) 75.98 72 (4.63)
Appeal 85.75 35 (2.83) 86.05 119 (11.98) 86.35* 229 (22.76)

Magazines 93.75* 51 (2.93) 92.52 214 (11.06) 92.89 417 (22.77)
Electronics 83.25* 47 (2.55) 82.51 195 (10.14) 82.33 356 (19.77)

Sports 85.75* 44 (2.64) 84.04 172 (8.64) 84.78 328 (16.34)
Software 87.75* 54 (2.98) 86.73 245 (12.38) 86.97 459 (24.68)
Average 85.38* 47.30 (2.98) 84.01 153.48 (10.29) 84.64 282.24 (20.2)

Table 5: Results on the 16 datasets of Liu et al. (2017). Time format: train (test)

Model Accuracy Train (s) Test (s)
Manning (2011) 97.28 – –
Collobert et al. (2011) 97.29 – –
Sun (2014) 97.36 – –
Søgaard (2011) 97.50 – –
Huang et al. (2015) 97.55 – –
Ma and Hovy (2016) 97.55 – –
Yang et al. (2017) 97.55 – –
BiLSTM 97.35 254 22.50
2 stacked BiLSTM 97.41 501 43.99
3 stacked BiLSTM 97.40 746 64.96
S-LSTM 97.55 237 22.16

Table 6: Results on PTB (POS tagging)

the number of recurrent steps on the respective de-
velopment sets for sequence labelling. The POS
accuracies and NER F1-scores against the number
of recurrent steps are shown in Figure 3 (a) and
(b), respectively. For POS tagging, the best step
number is set to 7, with a development accuracy
of 97.58%. For NER, the step number is set to 9,
with a development F1-score of 94.98%.

As can be seen in Table 6, S-LSTM gives signif-
icantly better results compared with BiLSTM on
the WSJ dataset. It also gives competitive accu-
racies as compared with existing methods in the
literature. Stacking two layers of BiLSTMs leads
to improved results compared to one-layer BiL-
STM, but the accuracy does not further improve

Model F1 Train (s) Test (s)
Collobert et al. (2011) 89.59 – –
Passos et al. (2014) 90.90 – –
Luo et al. (2015) 91.20 – –
Huang et al. (2015) 90.10 – –
Lample et al. (2016) 90.94 – –
Ma and Hovy (2016) 91.21 – –
Yang et al. (2017) 91.26 – –
Rei (2017) 86.26 – –
Peters et al. (2017) 91.93 – –
BiLSTM 90.96 82 9.89
2 stacked BiLSTM 91.02 159 18.88
3 stacked BiLSTM 91.06 235 30.97
S-LSTM 91.57* 79 9.78

Table 7: Results on CoNLL03 (NER)

with three layers of stacked LSTMs.
For NER (Table 7), S-LSTM gives an F1-score

of 91.57% on the CoNLL test set, which is sig-
nificantly better compared with BiLSTMs. Stack-
ing more layers of BiLSTMs leads to slightly bet-
ter F1-scores compared with a single-layer BiL-
STM. Our BiLSTM results are comparable to the
results reported by Ma and Hovy (2016) and Lam-
ple et al. (2016), who also use bidirectional RNN-
CRF structures. In contrast, S-LSTM gives the
best reported results under the same settings.

In the second section of Table 7, Yang et al.
(2017) use cross-domain data, obtaining an F-
score of 91.26%; Rei (2017) perform multi-task
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Figure 4: Accuracies against sentence length.

learning using additional language model objec-
tives, obtaining an F-score of 86.26%; Peters et al.
(2017) leverage character-level language models,
obtaining an F-score of 91.93%, which is the cur-
rent best result on the dataset. All the three mod-
els are based on BiLSTM-CRF. On the other hand,
these semi-supervised learning techniques are or-
thogonal to our work, and can potentially be used
for S-LSTM also.

4.5 Analysis

Figure 4 (a) and (b) show the accuracies against
the sentence length on the movie review and
CoNLL datasets, respectively, where test samples
are binned in batches of 80. We find that the per-
formances of both S-LSTM and BiLSTM decrease
as the sentence length increases. On the other
hand, S-LSTM demonstrates relatively better ro-
bustness compared to BiLSTMs. This confirms
our intuition that a sentence-level node can facili-
tate better non-local communication.

Figure 5 shows the training time per epoch of
S-LSTM and BiLSTM on sentences with different
lengths on the 16 classification datasets. To make
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Figure 5: Time against sentence length.

these comparisons, we mix all training instances,
order them by the size, and put them into 10 equal
groups, the medium sentence lengths of which are
shown. As can be seen from the figure, the speed
advantage of S-LSTM is larger when the size of
the input text increases, thanks to a fixed number
of recurrent steps.

Similar to hierarchical attention (Vaswani et al.,
2017), there is a relative disadvantage of S-LSTM
in comparison with BiLSTM, which is that the
memory consumption is relatively larger. For ex-
ample, over the movie review development set, the
actual GPU memory consumption by S-LSTM,
BiLSTM, 2-layer stacked BiLSTM and 4-layer
stacked BiLSTM are 252M, 89M, 146M and
253M, respectively. This is due to the fact that
computation is performed in parallel by S-LSTM
and hierarchical attention.

5 Conclusion

We have investigated S-LSTM, a recurrent neu-
ral network for encoding sentences, which offers
richer contextual information exchange with more
parallelism compared to BiLSTMs. Results on
a range of classification and sequence labelling
tasks show that S-LSTM outperforms BiLSTMs
using the same number of parameters, demonstrat-
ing that S-LSTM can be a useful addition to the
neural toolbox for encoding sentences.

The structural nature in S-LSTM states allows
straightforward extension to tree structures, result-
ing in highly parallelisable tree LSTMs. We leave
such investigation to future work. Next directions
also include the investigation of S-LSTM to more
NLP tasks, such as machine translation.
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Abstract

Inductive transfer learning has greatly im-
pacted computer vision, but existing ap-
proaches in NLP still require task-specific
modifications and training from scratch.
We propose Universal Language Model
Fine-tuning (ULMFiT), an effective trans-
fer learning method that can be applied to
any task in NLP, and introduce techniques
that are key for fine-tuning a language
model. Our method significantly outper-
forms the state-of-the-art on six text clas-
sification tasks, reducing the error by 18-
24% on the majority of datasets. Further-
more, with only 100 labeled examples, it
matches the performance of training from
scratch on 100× more data. We open-
source our pretrained models and code1.

1 Introduction

Inductive transfer learning has had a large impact
on computer vision (CV). Applied CV models (in-
cluding object detection, classification, and seg-
mentation) are rarely trained from scratch, but in-
stead are fine-tuned from models that have been
pretrained on ImageNet, MS-COCO, and other
datasets (Sharif Razavian et al., 2014; Long et al.,
2015a; He et al., 2016; Huang et al., 2017).

Text classification is a category of Natural Lan-
guage Processing (NLP) tasks with real-world ap-
plications such as spam, fraud, and bot detection
(Jindal and Liu, 2007; Ngai et al., 2011; Chu et al.,
2012), emergency response (Caragea et al., 2011),
and commercial document classification, such as
for legal discovery (Roitblat et al., 2010).

1http://nlp.fast.ai/ulmfit.
?Equal contribution. Jeremy focused on the algorithm de-

velopment and implementation, Sebastian focused on the ex-
periments and writing.

While Deep Learning models have achieved
state-of-the-art on many NLP tasks, these models
are trained from scratch, requiring large datasets,
and days to converge. Research in NLP focused
mostly on transductive transfer (Blitzer et al.,
2007). For inductive transfer, fine-tuning pre-
trained word embeddings (Mikolov et al., 2013),
a simple transfer technique that only targets a
model’s first layer, has had a large impact in prac-
tice and is used in most state-of-the-art models.
Recent approaches that concatenate embeddings
derived from other tasks with the input at different
layers (Peters et al., 2017; McCann et al., 2017;
Peters et al., 2018) still train the main task model
from scratch and treat pretrained embeddings as
fixed parameters, limiting their usefulness.

In light of the benefits of pretraining (Erhan
et al., 2010), we should be able to do better than
randomly initializing the remaining parameters of
our models. However, inductive transfer via fine-
tuning has been unsuccessful for NLP (Mou et al.,
2016). Dai and Le (2015) first proposed fine-
tuning a language model (LM) but require millions
of in-domain documents to achieve good perfor-
mance, which severely limits its applicability.

We show that not the idea of LM fine-tuning but
our lack of knowledge of how to train them ef-
fectively has been hindering wider adoption. LMs
overfit to small datasets and suffered catastrophic
forgetting when fine-tuned with a classifier. Com-
pared to CV, NLP models are typically more shal-
low and thus require different fine-tuning methods.

We propose a new method, Universal Language
Model Fine-tuning (ULMFiT) that addresses these
issues and enables robust inductive transfer learn-
ing for any NLP task, akin to fine-tuning ImageNet
models: The same 3-layer LSTM architecture—
with the same hyperparameters and no addi-
tions other than tuned dropout hyperparameters—
outperforms highly engineered models and trans-
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fer learning approaches on six widely studied text
classification tasks. On IMDb, with 100 labeled
examples, ULMFiT matches the performance of
training from scratch with 10× and—given 50k
unlabeled examples—with 100× more data.

Contributions Our contributions are the follow-
ing: 1) We propose Universal Language Model
Fine-tuning (ULMFiT), a method that can be used
to achieve CV-like transfer learning for any task
for NLP. 2) We propose discriminative fine-tuning,
slanted triangular learning rates, and gradual
unfreezing, novel techniques to retain previous
knowledge and avoid catastrophic forgetting dur-
ing fine-tuning. 3) We significantly outperform the
state-of-the-art on six representative text classifi-
cation datasets, with an error reduction of 18-24%
on the majority of datasets. 4) We show that our
method enables extremely sample-efficient trans-
fer learning and perform an extensive ablation
analysis. 5) We make the pretrained models and
our code available to enable wider adoption.

2 Related work

Transfer learning in CV Features in deep neu-
ral networks in CV have been observed to tran-
sition from task-specific to general from the first
to the last layer (Yosinski et al., 2014). For this
reason, most work in CV focuses on transferring
the last layers of the model (Long et al., 2015b).
Sharif Razavian et al. (2014) achieve state-of-the-
art results using features of an ImageNet model as
input to a simple classifier. In recent years, this
approach has been superseded by fine-tuning ei-
ther the last (Donahue et al., 2014) or several of
the last layers of a pretrained model and leaving
the remaining layers frozen (Long et al., 2015a).

Hypercolumns In NLP, only recently have
methods been proposed that go beyond transfer-
ring word embeddings. The prevailing approach
is to pretrain embeddings that capture additional
context via other tasks. Embeddings at different
levels are then used as features, concatenated ei-
ther with the word embeddings or with the in-
puts at intermediate layers. This method is known
as hypercolumns (Hariharan et al., 2015) in CV2

and is used by Peters et al. (2017), Peters et al.
(2018), Wieting and Gimpel (2017), Conneau

2A hypercolumn at a pixel in CV is the vector of activa-
tions of all CNN units above that pixel. In analogy, a hyper-
column for a word or sentence in NLP is the concatenation of
embeddings at different layers in a pretrained model.

et al. (2017), and McCann et al. (2017) who use
language modeling, paraphrasing, entailment, and
Machine Translation (MT) respectively for pre-
training. Specifically, Peters et al. (2018) require
engineered custom architectures, while we show
state-of-the-art performance with the same basic
architecture across a range of tasks. In CV, hyper-
columns have been nearly entirely superseded by
end-to-end fine-tuning (Long et al., 2015a).

Multi-task learning A related direction is
multi-task learning (MTL) (Caruana, 1993). This
is the approach taken by Rei (2017) and Liu et al.
(2018) who add a language modeling objective
to the model that is trained jointly with the main
task model. MTL requires the tasks to be trained
from scratch every time, which makes it inefficient
and often requires careful weighting of the task-
specific objective functions (Chen et al., 2017).

Fine-tuning Fine-tuning has been used success-
fully to transfer between similar tasks, e.g. in QA
(Min et al., 2017), for distantly supervised senti-
ment analysis (Severyn and Moschitti, 2015), or
MT domains (Sennrich et al., 2015) but has been
shown to fail between unrelated ones (Mou et al.,
2016). Dai and Le (2015) also fine-tune a lan-
guage model, but overfit with 10k labeled exam-
ples and require millions of in-domain documents
for good performance. In contrast, ULMFiT lever-
ages general-domain pretraining and novel fine-
tuning techniques to prevent overfitting even with
only 100 labeled examples and achieves state-of-
the-art results also on small datasets.

3 Universal Language Model Fine-tuning

We are interested in the most general inductive
transfer learning setting for NLP (Pan and Yang,
2010): Given a static source task TS and any tar-
get task TT with TS 6= TT , we would like to im-
prove performance on TT . Language modeling
can be seen as the ideal source task and a counter-
part of ImageNet for NLP: It captures many facets
of language relevant for downstream tasks, such as
long-term dependencies (Linzen et al., 2016), hi-
erarchical relations (Gulordava et al., 2018), and
sentiment (Radford et al., 2017). In contrast to
tasks like MT (McCann et al., 2017) and entail-
ment (Conneau et al., 2017), it provides data in
near-unlimited quantities for most domains and
languages. Additionally, a pretrained LM can be
easily adapted to the idiosyncrasies of a target
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Figure 1: ULMFiT consists of three stages: a) The LM is trained on a general-domain corpus to capture
general features of the language in different layers. b) The full LM is fine-tuned on target task data using
discriminative fine-tuning (‘Discr’) and slanted triangular learning rates (STLR) to learn task-specific
features. c) The classifier is fine-tuned on the target task using gradual unfreezing, ‘Discr’, and STLR to
preserve low-level representations and adapt high-level ones (shaded: unfreezing stages; black: frozen).

task, which we show significantly improves per-
formance (see Section 5). Moreover, language
modeling already is a key component of existing
tasks such as MT and dialogue modeling. For-
mally, language modeling induces a hypothesis
spaceH that should be useful for many other NLP
tasks (Vapnik and Kotz, 1982; Baxter, 2000).

We propose Universal Language Model Fine-
tuning (ULMFiT), which pretrains a language
model (LM) on a large general-domain corpus and
fine-tunes it on the target task using novel tech-
niques. The method is universal in the sense that
it meets these practical criteria: 1) It works across
tasks varying in document size, number, and label
type; 2) it uses a single architecture and training
process; 3) it requires no custom feature engineer-
ing or preprocessing; and 4) it does not require ad-
ditional in-domain documents or labels.

In our experiments, we use the state-of-the-
art language model AWD-LSTM (Merity et al.,
2017a), a regular LSTM (with no attention,
short-cut connections, or other sophisticated ad-
ditions) with various tuned dropout hyperparame-
ters. Analogous to CV, we expect that downstream
performance can be improved by using higher-
performance language models in the future.

ULMFiT consists of the following steps, which
we show in Figure 1: a) General-domain LM
pretraining (§3.1); b) target task LM fine-tuning
(§3.2); and c) target task classifier fine-tuning
(§3.3). We discuss these in the following sections.

3.1 General-domain LM pretraining
An ImageNet-like corpus for language should be
large and capture general properties of language.
We pretrain the language model on Wikitext-103
(Merity et al., 2017b) consisting of 28,595 prepro-
cessed Wikipedia articles and 103 million words.
Pretraining is most beneficial for tasks with small
datasets and enables generalization even with 100
labeled examples. We leave the exploration of
more diverse pretraining corpora to future work,
but expect that they would boost performance.
While this stage is the most expensive, it only
needs to be performed once and improves perfor-
mance and convergence of downstream models.

3.2 Target task LM fine-tuning
No matter how diverse the general-domain data
used for pretraining is, the data of the target task
will likely come from a different distribution. We
thus fine-tune the LM on data of the target task.
Given a pretrained general-domain LM, this stage
converges faster as it only needs to adapt to the id-
iosyncrasies of the target data, and it allows us to
train a robust LM even for small datasets. We pro-
pose discriminative fine-tuning and slanted trian-
gular learning rates for fine-tuning the LM, which
we introduce in the following.

Discriminative fine-tuning As different layers
capture different types of information (Yosinski
et al., 2014), they should be fine-tuned to differ-
ent extents. To this end, we propose a novel fine-
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tuning method, discriminative fine-tuning3.
Instead of using the same learning rate for all

layers of the model, discriminative fine-tuning al-
lows us to tune each layer with different learning
rates. For context, the regular stochastic gradient
descent (SGD) update of a model’s parameters θ at
time step t looks like the following (Ruder, 2016):

θt = θt−1 − η · ∇θJ(θ) (1)

where η is the learning rate and∇θJ(θ) is the gra-
dient with regard to the model’s objective func-
tion. For discriminative fine-tuning, we split the
parameters θ into {θ1, . . . , θL} where θl contains
the parameters of the model at the l-th layer and
L is the number of layers of the model. Similarly,
we obtain {η1, . . . , ηL} where ηl is the learning
rate of the l-th layer.

The SGD update with discriminative fine-
tuning is then the following:

θlt = θlt−1 − ηl · ∇θlJ(θ) (2)

We empirically found it to work well to first
choose the learning rate ηL of the last layer by
fine-tuning only the last layer and using ηl−1 =
ηl/2.6 as the learning rate for lower layers.

Slanted triangular learning rates For adapting
its parameters to task-specific features, we would
like the model to quickly converge to a suitable
region of the parameter space in the beginning
of training and then refine its parameters. Using
the same learning rate (LR) or an annealed learn-
ing rate throughout training is not the best way
to achieve this behaviour. Instead, we propose
slanted triangular learning rates (STLR), which
first linearly increases the learning rate and then
linearly decays it according to the following up-
date schedule, which can be seen in Figure 2:

cut = bT · cut fracc

p =

{
t/cut, if t < cut

1− t−cut
cut·(ratio−1) , otherwise

ηt = ηmax ·
1 + p · (ratio− 1)

ratio

(3)

where T is the number of training iterations4,
cut frac is the fraction of iterations we increase

3 An unrelated method of the same name exists for deep
Boltzmann machines (Salakhutdinov and Hinton, 2009).

4In other words, the number of epochs times the number
of updates per epoch.

the LR, cut is the iteration when we switch from
increasing to decreasing the LR, p is the fraction of
the number of iterations we have increased or will
decrease the LR respectively, ratio specifies how
much smaller the lowest LR is from the maximum
LR ηmax, and ηt is the learning rate at iteration t.
We generally use cut frac = 0.1, ratio = 32 and
ηmax = 0.01.

STLR modifies triangular learning rates (Smith,
2017) with a short increase and a long decay pe-
riod, which we found key for good performance.5

In Section 5, we compare against aggressive co-
sine annealing, a similar schedule that has recently
been used to achieve state-of-the-art performance
in CV (Loshchilov and Hutter, 2017).6

Figure 2: The slanted triangular learning rate
schedule used for ULMFiT as a function of the
number of training iterations.

3.3 Target task classifier fine-tuning
Finally, for fine-tuning the classifier, we augment
the pretrained language model with two additional
linear blocks. Following standard practice for
CV classifiers, each block uses batch normaliza-
tion (Ioffe and Szegedy, 2015) and dropout, with
ReLU activations for the intermediate layer and a
softmax activation that outputs a probability dis-
tribution over target classes at the last layer. Note
that the parameters in these task-specific classi-
fier layers are the only ones that are learned from
scratch. The first linear layer takes as the input the
pooled last hidden layer states.

Concat pooling The signal in text classification
tasks is often contained in a few words, which may

5We also credit personal communication with the author.
6While Loshchilov and Hutter (2017) use multiple anneal-

ing cycles, we generally found one cycle to work best.
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occur anywhere in the document. As input docu-
ments can consist of hundreds of words, informa-
tion may get lost if we only consider the last hid-
den state of the model. For this reason, we con-
catenate the hidden state at the last time step hT
of the document with both the max-pooled and the
mean-pooled representation of the hidden states
over as many time steps as fit in GPU memory
H = {h1, . . . ,hT }:

hc = [hT , maxpool(H), meanpool(H)] (4)

where [] is concatenation.
Fine-tuning the target classifier is the most crit-

ical part of the transfer learning method. Overly
aggressive fine-tuning will cause catastrophic for-
getting, eliminating the benefit of the information
captured through language modeling; too cautious
fine-tuning will lead to slow convergence (and re-
sultant overfitting). Besides discriminative fine-
tuning and triangular learning rates, we propose
gradual unfreezing for fine-tuning the classifier.

Gradual unfreezing Rather than fine-tuning all
layers at once, which risks catastrophic forgetting,
we propose to gradually unfreeze the model start-
ing from the last layer as this contains the least
general knowledge (Yosinski et al., 2014): We
first unfreeze the last layer and fine-tune all un-
frozen layers for one epoch. We then unfreeze the
next lower frozen layer and repeat, until we fine-
tune all layers until convergence at the last itera-
tion. This is similar to ‘chain-thaw’ (Felbo et al.,
2017), except that we add a layer at a time to the
set of ‘thawed’ layers, rather than only training a
single layer at a time.

While discriminative fine-tuning, slanted trian-
gular learning rates, and gradual unfreezing all
are beneficial on their own, we show in Section
5 that they complement each other and enable our
method to perform well across diverse datasets.

BPTT for Text Classification (BPT3C) Lan-
guage models are trained with backpropagation
through time (BPTT) to enable gradient propa-
gation for large input sequences. In order to
make fine-tuning a classifier for large documents
feasible, we propose BPTT for Text Classifica-
tion (BPT3C): We divide the document into fixed-
length batches of size b. At the beginning of each
batch, the model is initialized with the final state
of the previous batch; we keep track of the hid-
den states for mean and max-pooling; gradients

Dataset Type # classes # examples

TREC-6 Question 6 5.5k
IMDb Sentiment 2 25k
Yelp-bi Sentiment 2 560k
Yelp-full Sentiment 5 650k
AG Topic 4 120k
DBpedia Topic 14 560k

Table 1: Text classification datasets and tasks with
number of classes and training examples.

are back-propagated to the batches whose hidden
states contributed to the final prediction. In prac-
tice, we use variable length backpropagation se-
quences (Merity et al., 2017a).

Bidirectional language model Similar to exist-
ing work (Peters et al., 2017, 2018), we are not
limited to fine-tuning a unidirectional language
model. For all our experiments, we pretrain both a
forward and a backward LM. We fine-tune a clas-
sifier for each LM independently using BPT3C
and average the classifier predictions.

4 Experiments

While our approach is equally applicable to se-
quence labeling tasks, we focus on text classifica-
tion tasks in this work due to their important real-
world applications.

4.1 Experimental setup
Datasets and tasks We evaluate our method on
six widely-studied datasets, with varying numbers
of documents and varying document length, used
by state-of-the-art text classification and transfer
learning approaches (Johnson and Zhang, 2017;
McCann et al., 2017) as instances of three com-
mon text classification tasks: sentiment analy-
sis, question classification, and topic classifica-
tion. We show the statistics for each dataset and
task in Table 1.

Sentiment Analysis For sentiment analysis, we
evaluate our approach on the binary movie review
IMDb dataset (Maas et al., 2011) and on the binary
and five-class version of the Yelp review dataset
compiled by Zhang et al. (2015).

Question Classification We use the six-class
version of the small TREC dataset (Voorhees and
Tice, 1999) dataset of open-domain, fact-based
questions divided into broad semantic categories.
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Model Test Model Test

IM
D

b
CoVe (McCann et al., 2017) 8.2

T
R

E
C

-6

CoVe (McCann et al., 2017) 4.2
oh-LSTM (Johnson and Zhang, 2016) 5.9 TBCNN (Mou et al., 2015) 4.0
Virtual (Miyato et al., 2016) 5.9 LSTM-CNN (Zhou et al., 2016) 3.9
ULMFiT (ours) 4.6 ULMFiT (ours) 3.6

Table 2: Test error rates (%) on two text classification datasets used by McCann et al. (2017).

AG DBpedia Yelp-bi Yelp-full

Char-level CNN (Zhang et al., 2015) 9.51 1.55 4.88 37.95
CNN (Johnson and Zhang, 2016) 6.57 0.84 2.90 32.39
DPCNN (Johnson and Zhang, 2017) 6.87 0.88 2.64 30.58
ULMFiT (ours) 5.01 0.80 2.16 29.98

Table 3: Test error rates (%) on text classification datasets used by Johnson and Zhang (2017).

Topic classification For topic classification, we
evaluate on the large-scale AG news and DBpedia
ontology datasets created by Zhang et al. (2015).

Pre-processing We use the same pre-processing
as in earlier work (Johnson and Zhang, 2017; Mc-
Cann et al., 2017). In addition, to allow the lan-
guage model to capture aspects that might be rel-
evant for classification, we add special tokens for
upper-case words, elongation, and repetition.

Hyperparameters We are interested in a model
that performs robustly across a diverse set of tasks.
To this end, if not mentioned otherwise, we use the
same set of hyperparameters across tasks, which
we tune on the IMDb validation set. We use
the AWD-LSTM language model (Merity et al.,
2017a) with an embedding size of 400, 3 layers,
1150 hidden activations per layer, and a BPTT
batch size of 70. We apply dropout of 0.4 to
layers, 0.3 to RNN layers, 0.4 to input embed-
ding layers, 0.05 to embedding layers, and weight
dropout of 0.5 to the RNN hidden-to-hidden ma-
trix. The classifier has a hidden layer of size 50.
We use Adam with β1 = 0.7 instead of the de-
fault β1 = 0.9 and β2 = 0.99, similar to (Dozat
and Manning, 2017). We use a batch size of 64,
a base learning rate of 0.004 and 0.01 for fine-
tuning the LM and the classifier respectively, and
tune the number of epochs on the validation set of
each task7. We otherwise use the same practices

7On small datasets such as TREC-6, we fine-tune the LM
only for 15 epochs without overfitting, while we can fine-tune
longer on larger datasets. We found 50 epochs to be a good
default for fine-tuning the classifier.

used in (Merity et al., 2017a).

Baselines and comparison models For each
task, we compare against the current state-of-the-
art. For the IMDb and TREC-6 datasets, we com-
pare against CoVe (McCann et al., 2017), a state-
of-the-art transfer learning method for NLP. For
the AG, Yelp, and DBpedia datasets, we com-
pare against the state-of-the-art text categorization
method by Johnson and Zhang (2017).

4.2 Results

For consistency, we report all results as error rates
(lower is better). We show the test error rates
on the IMDb and TREC-6 datasets used by Mc-
Cann et al. (2017) in Table 2. Our method outper-
forms both CoVe, a state-of-the-art transfer learn-
ing method based on hypercolumns, as well as the
state-of-the-art on both datasets. On IMDb, we
reduce the error dramatically by 43.9% and 22%
with regard to CoVe and the state-of-the-art re-
spectively. This is promising as the existing state-
of-the-art requires complex architectures (Peters
et al., 2018), multiple forms of attention (McCann
et al., 2017) and sophisticated embedding schemes
(Johnson and Zhang, 2016), while our method em-
ploys a regular LSTM with dropout. We note
that the language model fine-tuning approach of
Dai and Le (2015) only achieves an error of 7.64
vs. 4.6 for our method on IMDb, demonstrating
the benefit of transferring knowledge from a large
ImageNet-like corpus using our fine-tuning tech-
niques. IMDb in particular is reflective of real-
world datasets: Its documents are generally a few
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Figure 3: Validation error rates for supervised and semi-supervised ULMFiT vs. training from scratch
with different numbers of training examples on IMDb, TREC-6, and AG (from left to right).

paragraphs long—similar to emails (e.g for legal
discovery) and online comments (e.g for commu-
nity management); and sentiment analysis is simi-
lar to many commercial applications, e.g. product
response tracking and support email routing.

On TREC-6, our improvement—similar as the
improvements of state-of-the-art approaches—is
not statistically significant, due to the small size of
the 500-examples test set. Nevertheless, the com-
petitive performance on TREC-6 demonstrates
that our model performs well across different
dataset sizes and can deal with examples that range
from single sentences—in the case of TREC-6—
to several paragraphs for IMDb. Note that despite
pretraining on more than two orders of magnitude
less data than the 7 million sentence pairs used by
McCann et al. (2017), we consistently outperform
their approach on both datasets.

We show the test error rates on the larger AG,
DBpedia, Yelp-bi, and Yelp-full datasets in Table
3. Our method again outperforms the state-of-
the-art significantly. On AG, we observe a simi-
larly dramatic error reduction by 23.7% compared
to the state-of-the-art. On DBpedia, Yelp-bi, and
Yelp-full, we reduce the error by 4.8%, 18.2%,
2.0% respectively.

5 Analysis

In order to assess the impact of each contribution,
we perform a series of analyses and ablations. We
run experiments on three corpora, IMDb, TREC-
6, and AG that are representative of different tasks,
genres, and sizes. For all experiments, we split off
10% of the training set and report error rates on
this validation set with unidirectional LMs. We
fine-tune the classifier for 50 epochs and train all
methods but ULMFiT with early stopping.

Low-shot learning One of the main benefits of
transfer learning is being able to train a model for

Pretraining IMDb TREC-6 AG

Without pretraining 5.63 10.67 5.52
With pretraining 5.00 5.69 5.38

Table 4: Validation error rates for ULMFiT with
and without pretraining.

a task with a small number of labels. We evalu-
ate ULMFiT on different numbers of labeled ex-
amples in two settings: only labeled examples are
used for LM fine-tuning (‘supervised’); and all
task data is available and can be used to fine-tune
the LM (‘semi-supervised’). We compare ULM-
FiT to training from scratch—which is necessary
for hypercolumn-based approaches. We split off
balanced fractions of the training data, keep the
validation set fixed, and use the same hyperparam-
eters as before. We show the results in Figure 3.

On IMDb and AG, supervised ULMFiT with
only 100 labeled examples matches the perfor-
mance of training from scratch with 10× and 20×
more data respectively, clearly demonstrating the
benefit of general-domain LM pretraining. If we
allow ULMFiT to also utilize unlabeled exam-
ples (50k for IMDb, 100k for AG), at 100 labeled
examples, we match the performance of training
from scratch with 50× and 100×more data on AG
and IMDb respectively. On TREC-6, ULMFiT
significantly improves upon training from scratch;
as examples are shorter and fewer, supervised and
semi-supervised ULMFiT achieve similar results.

Impact of pretraining We compare using no
pretraining with pretraining on WikiText-103
(Merity et al., 2017b) in Table 4. Pretraining is
most useful for small and medium-sized datasets,
which are most common in commercial applica-
tions. However, even for large datasets, pretrain-
ing improves performance.
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LM IMDb TREC-6 AG

Vanilla LM 5.98 7.41 5.76
AWD-LSTM LM 5.00 5.69 5.38

Table 5: Validation error rates for ULMFiT with a
vanilla LM and the AWD-LSTM LM.

LM fine-tuning IMDb TREC-6 AG

No LM fine-tuning 6.99 6.38 6.09
Full 5.86 6.54 5.61
Full + discr 5.55 6.36 5.47
Full + discr + stlr 5.00 5.69 5.38

Table 6: Validation error rates for ULMFiT with
different variations of LM fine-tuning.

Impact of LM quality In order to gauge the im-
portance of choosing an appropriate LM, we com-
pare a vanilla LM with the same hyperparame-
ters without any dropout8 with the AWD-LSTM
LM with tuned dropout parameters in Table 5.
Using our fine-tuning techniques, even a regular
LM reaches surprisingly good performance on the
larger datasets. On the smaller TREC-6, a vanilla
LM without dropout runs the risk of overfitting,
which decreases performance.

Impact of LM fine-tuning We compare no fine-
tuning against fine-tuning the full model (Erhan
et al., 2010) (‘Full’), the most commonly used
fine-tuning method, with and without discrimi-
native fine-tuning (‘Discr’) and slanted triangular
learning rates (‘Stlr’) in Table 6. Fine-tuning the
LM is most beneficial for larger datasets. ‘Discr’
and ‘Stlr’ improve performance across all three
datasets and are necessary on the smaller TREC-6,
where regular fine-tuning is not beneficial.

Impact of classifier fine-tuning We compare
training from scratch, fine-tuning the full model
(‘Full’), only fine-tuning the last layer (‘Last’)
(Donahue et al., 2014), ‘Chain-thaw’ (Felbo et al.,
2017), and gradual unfreezing (‘Freez’). We fur-
thermore assess the importance of discriminative
fine-tuning (‘Discr’) and slanted triangular learn-
ing rates (‘Stlr’). We compare the latter to an
alternative, aggressive cosine annealing schedule
(‘Cos’) (Loshchilov and Hutter, 2017). We use a
learning rate ηL = 0.01 for ‘Discr’, learning rates

8To avoid overfitting, we only train the vanilla LM classi-
fier for 5 epochs and keep dropout of 0.4 in the classifier.

Classifier fine-tuning IMDb TREC-6 AG

From scratch 9.93 13.36 6.81
Full 6.87 6.86 5.81
Full + discr 4.57 6.21 5.62
Last 6.49 16.09 8.38
Chain-thaw 5.39 6.71 5.90
Freez 6.37 6.86 5.81
Freez + discr 5.39 5.86 6.04
Freez + stlr 5.04 6.02 5.35
Freez + cos 5.70 6.38 5.29
Freez + discr + stlr 5.00 5.69 5.38

Table 7: Validation error rates for ULMFiT with
different methods to fine-tune the classifier.

of 0.001 and 0.0001 for the last and all other layers
respectively for ‘Chain-thaw’ as in (Felbo et al.,
2017), and a learning rate of 0.001 otherwise. We
show the results in Table 7.

Fine-tuning the classifier significantly improves
over training from scratch, particularly on the
small TREC-6. ‘Last’, the standard fine-tuning
method in CV, severely underfits and is never
able to lower the training error to 0. ‘Chain-
thaw’ achieves competitive performance on the
smaller datasets, but is outperformed significantly
on the large AG. ‘Freez’ provides similar per-
formance as ‘Full’. ‘Discr’ consistently boosts
the performance of ‘Full’ and ‘Freez’, except
for the large AG. Cosine annealing is competi-
tive with slanted triangular learning rates on large
data, but under-performs on smaller datasets. Fi-
nally, full ULMFiT classifier fine-tuning (bottom
row) achieves the best performance on IMDB and
TREC-6 and competitive performance on AG. Im-
portantly, ULMFiT is the only method that shows
excellent performance across the board—and is
therefore the only universal method.

Classifier fine-tuning behavior While our re-
sults demonstrate that how we fine-tune the clas-
sifier makes a significant difference, fine-tuning
for inductive transfer is currently under-explored
in NLP as it mostly has been thought to be un-
helpful (Mou et al., 2016). To better understand
the fine-tuning behavior of our model, we compare
the validation error of the classifier fine-tuned with
ULMFiT and ‘Full’ during training in Figure 4.

On all datasets, fine-tuning the full model leads
to the lowest error comparatively early in train-
ing, e.g. already after the first epoch on IMDb.
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Figure 4: Validation error rate curves for fine-
tuning the classifier with ULMFiT and ‘Full’ on
IMDb, TREC-6, and AG (top to bottom).

The error then increases as the model starts to
overfit and knowledge captured through pretrain-
ing is lost. In contrast, ULMFiT is more sta-
ble and suffers from no such catastrophic forget-
ting; performance remains similar or improves un-
til late epochs, which shows the positive effect of
the learning rate schedule.

Impact of bidirectionality At the cost of train-
ing a second model, ensembling the predictions of
a forward and backwards LM-classifier brings a
performance boost of around 0.5–0.7. On IMDb
we lower the test error from 5.30 of a single model
to 4.58 for the bidirectional model.

6 Discussion and future directions

While we have shown that ULMFiT can achieve
state-of-the-art performance on widely used text
classification tasks, we believe that language
model fine-tuning will be particularly useful in the
following settings compared to existing transfer
learning approaches (Conneau et al., 2017; Mc-
Cann et al., 2017; Peters et al., 2018): a) NLP for
non-English languages, where training data for su-
pervised pretraining tasks is scarce; b) new NLP
tasks where no state-of-the-art architecture exists;
and c) tasks with limited amounts of labeled data
(and some amounts of unlabeled data).

Given that transfer learning and particularly
fine-tuning for NLP is under-explored, many fu-
ture directions are possible. One possible direc-
tion is to improve language model pretraining and
fine-tuning and make them more scalable: for
ImageNet, predicting far fewer classes only in-
curs a small performance drop (Huh et al., 2016),
while recent work shows that an alignment be-
tween source and target task label sets is impor-
tant (Mahajan et al., 2018)—focusing on predict-
ing a subset of words such as the most frequent
ones might retain most of the performance while
speeding up training. Language modeling can also
be augmented with additional tasks in a multi-task
learning fashion (Caruana, 1993) or enriched with
additional supervision, e.g. syntax-sensitive de-
pendencies (Linzen et al., 2016) to create a model
that is more general or better suited for certain
downstream tasks, ideally in a weakly-supervised
manner to retain its universal properties.

Another direction is to apply the method to
novel tasks and models. While an extension to
sequence labeling is straightforward, other tasks
with more complex interactions such as entailment
or question answering may require novel ways to
pretrain and fine-tune. Finally, while we have
provided a series of analyses and ablations, more
studies are required to better understand what
knowledge a pretrained language model captures,
how this changes during fine-tuning, and what in-
formation different tasks require.

7 Conclusion

We have proposed ULMFiT, an effective and ex-
tremely sample-efficient transfer learning method
that can be applied to any NLP task. We have also
proposed several novel fine-tuning techniques that
in conjunction prevent catastrophic forgetting and
enable robust learning across a diverse range of
tasks. Our method significantly outperformed ex-
isting transfer learning techniques and the state-
of-the-art on six representative text classification
tasks. We hope that our results will catalyze new
developments in transfer learning for NLP.
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Abstract

The behavior of deep neural networks
(DNNs) is hard to understand. This makes
it necessary to explore post hoc expla-
nation methods. We conduct the first
comprehensive evaluation of explanation
methods for NLP. To this end, we design
two novel evaluation paradigms that cover
two important classes of NLP problems:
small context and large context problems.
Both paradigms require no manual annota-
tion and are therefore broadly applicable.
We also introduce LIMSSE, an explana-
tion method inspired by LIME that is de-
signed for NLP. We show empirically that
LIMSSE, LRP and DeepLIFT are the most
effective explanation methods and recom-
mend them for explaining DNNs in NLP.

1 Introduction

DNNs are complex models that combine linear
transformations with different types of nonlinear-
ities. If the model is deep, i.e., has many layers,
then its behavior during training and inference is
notoriously hard to understand.

This is a problem for both scientific method-
ology and real-world deployment. Scientific
methodology demands that we understand our
models. In the real world, a decision (e.g., “your
blog post is offensive and has been removed”) by
itself is often insufficient; in addition, an expla-
nation of the decision may be required (e.g., “our
system flagged the following words as offensive”).
The European Union plans to mandate that intelli-
gent systems used for sensitive applications pro-
vide such explanations (European General Data
Protection Regulation, expected 2018, cf. Good-
man and Flaxman (2016)).

A number of post hoc explanation methods for
DNNs have been proposed. Due to the complexity
of the DNNs they explain, these methods are nec-
essarily approximations and come with their own
sources of error. At this point, it is not clear which
of these methods to use when reliable explanations
for a specific DNN architecture are needed.

Definitions. (i) A task method solves an NLP
problem, e.g., a GRU that predicts sentiment.

(ii) An explanation method explains the behav-
ior of a task method on a specific input. For our
purpose, it is a function φ(t, k,X) that assigns
real-valued relevance scores for a target class k
(e.g., positive) to positions t in an input text X
(e.g., “great food”). For this example, an ex-
planation method might assign: φ(1, k,X) >
φ(2, k,X).

(iii) An (explanation) evaluation paradigm
quantitatively evaluates explanation methods for a
task method, e.g., by assigning them accuracies.

Contributions. (i) We present novel evaluation
paradigms for explanation methods for two classes
of common NLP tasks (see §2). Crucially, nei-
ther paradigm requires manual annotations and
our methodology is therefore broadly applicable.

(ii) Using these paradigms, we perform a com-
prehensive evaluation of explanation methods for
NLP (§3). We cover the most important classes
of task methods, RNNs and CNNs, as well as the
recently proposed Quasi-RNNs.

(iii) We introduce LIMSSE (§3.6), an expla-
nation method inspired by LIME (Ribeiro et al.,

tasks sentiment analysis,
morphological prediction, . . .

task methods CNN, GRU, LSTM, . . .
explanation methods LIMSSE, LRP, DeepLIFT, . . .
evaluation paradigms hybrid document,

morphosyntactic agreement

Table 1: Terminology with examples.

340



lrp
From : kolstad @ cae.wisc.edu ( Joel Kolstad ) Subject : Re : Can Radio Freq . Be Used To Measure Distance ? [...] What is the difference
between vertical and horizontal ? Gravity ? Does n’t gravity pull down the photons and cause a doppler shift or something ? ( Just kidding ! )

gradL2
1p

If you find faith to be honest , show me how . David The whole denominational mindset only causes more problems , sadly . ( See section 7 for
details . ) Thank you . ’The Armenians just shot and shot . Maybe coz they ’re ’quality’ cars ; - ) 200 posts/day . [...]

limssems
s

If you find faith to be honest , show me how . David The whole denominational mindset only causes more problems , sadly . ( See section 7 for
details . ) Thank you . ’The Armenians just shot and shot . Maybe coz they ’re ’quality’ cars ; - ) 200 posts/day . [...]

Figure 1: Top: sci.electronics post (not hybrid). Underlined: Manual relevance ground truth.
Green: evidence for sci.electronics. Task method: CNN. Bottom: hybrid newsgroup post, classified
talk.politics.mideast. Green: evidence for talk.politics.mideast. Underlined: talk.politics.mideast frag-
ment. Task method: QGRU. Italics: OOV. Bold: rmax position. See supplementary for full texts.

2016) that is designed for word-order sensitive
task methods (e.g., RNNs, CNNs). We show em-
pirically that LIMSSE, LRP (Bach et al., 2015)
and DeepLIFT (Shrikumar et al., 2017) are the
most effective explanation methods (§4): LRP and
DeepLIFT are the most consistent methods, while
LIMSSE wins the hybrid document experiment.

2 Evaluation paradigms

In this section, we introduce two novel evalua-
tion paradigms for explanation methods on two
types of common NLP tasks, small context tasks
and large context tasks. Small context tasks are
defined as those that can be solved by finding
short, self-contained indicators, such as words and
phrases, and weighing them up (i.e., tasks where
CNNs with pooling can be expected to perform
well). We design the hybrid document paradigm
for evaluating explanation methods on small con-
text tasks. Large context tasks require the cor-
rect handling of long-distance dependencies, such
as subject-verb agreement.1 We design the mor-
phosyntactic agreement paradigm for evaluating
explanation methods on large context tasks.

We could also use human judgments for
evaluation. While we use Mohseni and Ragan
(2018)’s manual relevance benchmark for com-
parison, there are two issues with it: (i) Due to
the cost of human labor, it is limited in size and
domain. (ii) More importantly, a good explana-
tion method should not reflect what humans at-
tend to, but what task methods attend to. For in-
stance, the family name “Kolstad” has 11 out of
its 13 appearances in the 20 newsgroups corpus in
sci.electronics posts. Thus, task methods probably
learn it as a sci.electronics indicator. Indeed, the

1Consider deciding the number of [verb] in “the children
in the green house said that the big telescope [verb]” vs.
“the children in the green house who broke the big telescope
[verb]”. The local contexts of “children” or “[verb]” do not
suffice to solve this problem, instead, the large context of the
entire sentence has to be considered.

explanation method in Fig 1 (top) marks “Kolstad”
as relevant, but the human annotator does not.

2.1 Small context: Hybrid document
paradigm

Given a collection of documents, hybrid docu-
ments are created by randomly concatenating doc-
ument fragments. We assume that, on average, the
most relevant input for a class k in a hybrid doc-
ument is located in a fragment that stems from a
document with gold label k. Hence, an explana-
tion method succeeds if it places maximal rele-
vance for k inside the correct fragment.

Formally, let xt be a word inside hybrid docu-
ment X that originates from a document X′ with
gold label y(X′). xt’s gold label y(X, t) is set
to y(X′). Let f(X) be the class assigned to the
hybrid document by a task method, and let φ
be an explanation method as defined above. Let
rmax(X, φ) denote the position of the maximally
relevant word in X for the predicted class f(X).
If this maximally relevant word comes from a doc-
ument with the correct gold label, the explanation
method is awarded a hit:

hit(φ,X) = I[y
(
X, rmax(X, φ)

)
= f(X)] (1)

where I[P ] is 1 if P is true and 0 otherwise. In
Fig 1 (bottom), the explanation method gradL2

1p

places rmax outside the correct (underlined) frag-
ment. Therefore, it does not get a hit point, while
limssems

s does.
The pointing game accuracy of an explana-

tion method is calculated as its total number of
hit points divided by the number of possible hit
points. This is a form of the pointing game
paradigm from computer vision (Zhang et al.,
2016).

2.2 Large context: Morphosyntactic
agreement paradigm

Many natural languages display morphosyntactic
agreement between words v and w. A DNN that
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graddot∫
s the link provided by the editor above [encourages ...]

lrp the link provided by the editor above [encourages ...]
limssebb the link provided by the editor above [encourages ...]

gradL2∫
s few if any events in history [are ...]

occ1 few if any events in history [are ...]
limssems

s few if any events in history [are ...]

Figure 2: Top: verb context classified singular.
Green: evidence for singular. Task method: GRU.
Bottom: verb context classified plural. Green: ev-
idence for plural. Task method: LSTM. Under-
lined: subject. Bold: rmax position.

predicts the agreeing feature in w should pay at-
tention to v. For example, in the sentence “the
children with the telescope are home”, the num-
ber of the verb (plural for “are”) can be predicted
from the subject (“children”) without looking at
the verb. If the language allows for v and w to be
far apart (Fig 3, top), successful task methods have
to be able to handle large contexts.

Linzen et al. (2016) show that English verb
number can be predicted by a unidirectional
LSTM with accuracy> 99%, based on left context
alone. When a task method predicts the correct
number, we expect successful explanation meth-
ods to place maximal relevance on the subject:

hittarget(φ,X) = I[rmax(X, φ) = target(X)]

where target(X) is the location of the subject,
and rmax is calculated as above. Regardless of
whether the prediction is correct, we expect rmax
to fall onto a noun that has the predicted number:

hitfeat(φ,X) = I[feat
(
X, rmax(X, φ)

)
= f(X)]

where feat(X, t) is the morphological feature
(here: number) of xt. In Fig 2, rmax on “link”
gives a hittarget point (and a hitfeat point), rmax
on “editor” gives a hitfeat point. gradL2∫

s does not
get any points as “history” is not a plural noun.

Labels for this task can be automatically gen-
erated using part-of-speech taggers and parsers,
which are available for many languages.

3 Explanation methods

In this section, we define the explanation meth-
ods that will be evaluated. For our purpose, ex-
planation methods produce word relevance scores
φ(t, k,X), which are specific to a given class k
and a given input X. φ(t, k,X) > φ(t′, k,X)
means that xt contributed more than xt′ to the task
method’s (potential) decision to classify X as k.

3.1 Gradient-based explanation methods
Gradient-based explanation methods approximate
the contribution of some DNN input i to some out-
put owith o’s gradient with respect to i (Simonyan
et al., 2014). In the following, we consider two
output functions o(k,X), the unnormalized class
score s(k,X) and the class probability p(k|X):

s(k,X) = ~wk · ~h(X) + bk (2)

p(k|X) =
exp
(
s(k,X)

)
∑K

k′=1 exp
(
s(k′,X)

) (3)

where k is the target class, ~h(X) the document
representation (e.g., an RNN’s final hidden layer),
~wk (resp. bk) k’s weight vector (resp. bias).

The simple gradient of o(k,X) w.r.t. i is:

grad1(i, k,X) =
∂o(k,X)

∂i
(4)

grad1 underestimates the importance of inputs
that saturate a nonlinearity (Shrikumar et al.,
2017). To address this, Sundararajan et al. (2017)
integrate over all gradients on a linear interpola-
tion α ∈ [0, 1] between a baseline input X̄ (here:
all-zero embeddings) and X:

grad∫ (i, k,X) =
∫ 1
α=0

∂o(k,X̄+α(X−X̄))
∂i ∂α

≈ 1
M

∑M
m=1

∂o(k,X̄+m
M

(X−X̄))

∂i (5)

where M is a big enough constant (here: 50).
In NLP, symbolic inputs (e.g., words) are often

represented as one-hot vectors ~xt ∈ {1, 0}|V | and
embedded via a real-valued matrix: ~et = M~xt.
Gradients are computed with respect to individual
entries of E = [~e1 . . . ~e|X|]. Bansal et al. (2016)
and Hechtlinger (2016) use the L2 norm to reduce
vectors of gradients to single values:

φgradL2(t, k,X) = ||grad(~et, k,E)|| (6)

where grad(~et, k,E) is a vector of elementwise
gradients w.r.t. ~et. Denil et al. (2015) use the dot
product of the gradient vector and the embedding2,
i.e., the gradient of the “hot” entry in ~xt:

φgraddot(t, k,X) = ~et · grad(~et, k,E) (7)

We use “grad1” for Eq 4, “grad∫ ” for Eq 5, “p”
for Eq 3, “s” for Eq 2, “L2” for Eq 6 and “dot”
for Eq 7. This gives us eight explanation meth-
ods: gradL2

1s , gradL2
1p , graddot

1s , graddot
1p , gradL2∫

s,

gradL2∫
p, graddot∫

s , graddot∫
p .

2For graddot∫ , replace ~et with ~et − ~̄et. Since our baseline
embeddings are all-zeros, this is equivalent.
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3.2 Layer-wise relevance propagation
Layer-wise relevance propagation (LRP) is a
backpropagation-based explanation method devel-
oped for fully connected neural networks and
CNNs (Bach et al., 2015) and later extended to
LSTMs (Arras et al., 2017b). In this paper, we
use Epsilon LRP (Eq 58, Bach et al. (2015)). Re-
member that the activation of neuron j, aj , is the
sum of weighted upstream activations,

∑
i aiwi,j ,

plus bias bj , squeezed through some nonlinearity.
We denote the pre-nonlinearity activation of j as
a′j . The relevance of j, R(j), is distributed to up-
stream neurons i proportionally to the contribution
that i makes to a′j in the forward pass:

R(i) =
∑

j

R(j)
aiwi,j

a′j + esign(a′j)
(8)

This ensures that relevance is conserved between
layers, with the exception of relevance attributed
to bj . To prevent numerical instabilities, esign(a′)
returns −ε if a′ < 0 and ε otherwise. We set ε =
.001. The full algorithm is:

R(Lk′) = s(k,X)I[k′ = k]

... recursive application of Eq 8 ...

φlrp(t, k,X) =

dim(~et)∑

j=1

R(et,j)

where L is the final layer, k the target class and
R(et,j) the relevance of dimension j in the t’th
embedding vector. For ε→ 0 and provided that all
nonlinearities up to the unnormalized class score
are relu, Epsilon LRP is equivalent to the prod-
uct of input and raw score gradient (here: graddot

1s )
(Kindermans et al., 2016). In our experiments, the
second requirement holds only for CNNs.

Experiments by Ancona et al. (2017) (see §6)
suggest that LRP does not work well for LSTMs
if all neurons – including gates – participate in
backpropagation. We therefore use Arras et al.
(2017b)’s modification and treat sigmoid-activated
gates as time step-specific weights rather than neu-
rons. For instance, the relevance of LSTM candi-
date vector ~gt is calculated from memory vector ~ct
and input gate vector~it as

R(gt,d) = R(ct,d)
gt,d · it,d

ct,d + esign(ct,d)

This is equivalent to applying Eq 8 while treating
~it as a diagonal weight matrix. The gate neurons

in~it do not receive any relevance themselves. See
supplementary material for formal definitions of
Epsilon LRP for different architectures.

3.3 DeepLIFT
DeepLIFT (Shrikumar et al., 2017) is another
backpropagation-based explanation method. Un-
like LRP, it does not explain s(k,X), but
s(k,X)−s(k, X̄), where X̄ is some baseline input
(here: all-zero embeddings). Following Ancona
et al. (2018) (Eq 4), we use this backpropagation
rule:

R(i) =
∑

j

R(j)
aiwi,j − āiwi,j

a′j − ā′j + esign(a′j − ā′j)

where ā refers to the forward pass of the base-
line. Note that the original method has a dif-
ferent mechanism for avoiding small denomina-
tors; we use esign for compatibility with LRP.
The DeepLIFT algorithm is started withR(Lk′) =(
s(k,X)−s(k, X̄)

)
I[k′ = k]. On gated (Q)RNNs,

we proceed analogous to LRP and treat gates as
weights.

3.4 Cell decomposition for gated RNNs
The cell decomposition explanation method for
LSTMs (Murdoch and Szlam, 2017) decomposes
the unnormalized class score s(k,X) (Eq 2) into
additive contributions. For every time step t, we
compute how much of ~ct “survives” until the final
step T and contributes to s(k,X). This is achieved
by applying all future forget gates ~f , the final tanh
nonlinearity, the final output gate ~oT , as well as the
class weights of k to ~ct. We call this quantity “net
load of t for class k”:

nl(t, k,X) = ~wk ·
(
~oT � tanh

(
(

T∏

j=t+1

~fj)� ~ct
))

where � and
∏

are applied elementwise. The rel-
evance of t is its gain in net load relative to t − 1:
φdecomp(t, k,X) = nl(t, k,X) − nl(t − 1, k,X).
For GRU, we change the definition of net load:

nl(t, k,X) = ~wk ·
(
(

T∏

j=t+1

~zj)� ~ht
)

where ~z are GRU update gates.

3.5 Input perturbation methods
Input perturbation methods assume that the re-
moval or masking of relevant inputs changes the
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output (Zeiler and Fergus, 2014). Omission-
based methods remove inputs completely (Kádár
et al., 2017), while occlusion-based methods re-
place them with a baseline (Li et al., 2016b). In
computer vision, perturbations are usually applied
to patches, as neighboring pixels tend to correlate
(Zintgraf et al., 2017). To calculate the omitN
(resp. occN ) relevance of word xt, we delete (resp.
occlude), one at a time, all N -grams that contain
xt, and average the change in the unnormalized
class score from Eq 2:

φ[omit|occ]N (t, k,X) =
∑N

j=1

[
s(k, [~e1 . . . ~e|X|])

−s(k, [~e1 . . . ~et−N−1+j ]‖Ē‖[~et+j . . . ~e|X|])
]
1
N

where ~et are embedding vectors, ‖ denotes con-
catenation and Ē is either a sequence of length
zero (φomit) or a sequence of N baseline (here:
all-zero) embedding vectors (φocc).

3.6 LIMSSE: LIME for NLP
Local Interpretable Model-agnostic Explanations
(LIME) (Ribeiro et al., 2016) is a framework
for explaining predictions of complex classifiers.
LIME approximates the behavior of classifier f in
the neighborhood of input X with an interpretable
(here: linear) model. The interpretable model is
trained on samples Z1 . . .ZN (here: N = 3000),
which are randomly drawn from X, with “gold la-
bels” f(Z1) . . . f(ZN ).

Since RNNs and CNNs respect word or-
der, we cannot use the bag of words sam-
pling method from the original description
of LIME. Instead, we introduce Local Inter-
pretable Model-agnostic Substring-based Expla-
nations (LIMSSE). LIMSSE uniformly samples
a length ln (here: 1 ≤ ln ≤ 6) and a start-
ing point sn, which define the substring Zn =
[~xsn . . . ~xsn+ln−1]. To the linear model, Zn is rep-
resented by a binary vector ~zn ∈ {0, 1}|X|, where
zn,t = I[sn ≤ t < sn + ln].

We learn a linear weight vector ~̂vk ∈ R|X|,
whose entries are word relevances for k, i.e.,
φlimsse(t, k,X) = v̂k,t. To optimize it, we experi-
ment with three loss functions. The first, which we
will refer to as limssebb, assumes that our DNN is
a total black box that delivers only a classification:

~̂vk = argmin
~vk

∑

n

−
[
log
(
σ(~zn · ~vk)

)
I[f(Zn) = k]

+ log
(
1− σ(~zn · ~vk)

)
I[f(Zn) 6= k]

]

where f(Zn) = argmaxk′
(
p(k′|Zn)

)
. The black

box approach is maximally general, but insensitive
to the magnitude of evidence found in Zn. Hence,
we also test magnitude-sensitive loss functions:

~̂vk = argmin
~vk

∑

n

(
~zn · ~vk − o(k,Zn)

)2

where o(k,Zn) is one of s(k,Zn) or p(k|Zn). We
refer to these as limssems

s and limssems
p .

4 Experiments

4.1 Hybrid document experiment
For the hybrid document experiment, we use the
20 newsgroups corpus (topic classification) (Lang,
1995) and reviews from the 10th yelp dataset
challenge (binary sentiment analysis)3. We train
five DNNs per corpus: a bidirectional GRU (Cho
et al., 2014), a bidirectional LSTM (Hochreiter
and Schmidhuber, 1997), a 1D CNN with global
max pooling (Collobert et al., 2011), a bidirec-
tional Quasi-GRU (QGRU), and a bidirectional
Quasi-LSTM (QLSTM). The Quasi-RNNs are 1D
CNNs with a feature-wise gated recursive pooling
layer (Bradbury et al., 2017). Word embeddings
are R300 and initialized with pre-trained GloVe
embeddings (Pennington et al., 2014)4. The main
layer has a hidden size of 150 (bidirectional ar-
chitectures: 75 dimensions per direction). For the
QRNNs and CNN, we use a kernel width of 5. In
all five architectures, the resulting document rep-
resentation is projected to 20 (resp. two) dimen-
sions using a fully connected layer, followed by a
softmax. See supplementary material for details
on training and regularization.

After training, we sentence-tokenize the test
sets, shuffle the sentences, concatenate ten sen-
tences at a time and classify the resulting hybrid
documents. Documents that are assigned a class
that is not the gold label of at least one con-
stituent word are discarded (yelp: < 0.1%; 20
newsgroups: 14% - 20%). On the remaining docu-
ments, we use the explanation methods from §3 to
find the maximally relevant word for each predic-
tion. The random baseline samples the maximally
relevant word from a uniform distribution.

For reference, we also evaluate on a hu-
man judgment benchmark (Mohseni and Ra-
gan (2018), Table 2, C11-C15). It contains

3www.yelp.com/dataset_challenge
4http://nlp.stanford.edu/data/glove.

840B.300d.zip
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column C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27
hybrid document experiment man. groundtruth morphosyntactic agreement experiment

hittarget hitfeat
yelp 20 newsgroups 20 newsgroups f(X) = y(X) f(X) 6= y(X)
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gradL2
1s .61 .68 .67 .70 .68 .45 .47 .25 .33 .79 .26 .31 .07 .18 .74 .48 .23 .63 .19 .52 .27 .73 .22 .09 .11 .19 .19

gradL2
1p .57 .67 .67 .70 .74 .40 .43 .26 .34 .70 .18 .35 .07 .13 .66 .48 .22 .63 .18 .53 .26 .73 .21 .09 .09 .18 .11

gradL2∫
s .71 .66 .69 .71 .70 .58 .32 .26 .21 .82 .23 .15 .11 .08 .76 .69 .67 .68 .51 .73 .70 .75 .55 .19 .22 .20 .20

gradL2∫
p .71 .70 .72 .71 .77 .56 .34 .30 .23 .81 .13 .08 .14 .01 .78 .68 .77 .50 .70 .74 .82 .54 .78 .19 .21 .19 .30

graddot
1s .88 .85 .81 .77 .86 .79 .76 .59 .72 .89 .80 .70 .14 .47 .79 .81 .62 .73 .56 .85 .66 .81 .59 .42 .34 .46 .36

graddot
1p .92 .88 .84 .79 .95 .78 .72 .59 .72 .81 .71 .59 .20 .44 .69 .79 .58 .74 .54 .83 .61 .81 .56 .41 .33 .46 .35

graddot∫
s .84 .90 .85 .87 .87 .81 .68 .60 .68 .89 .82 .64 .21 .26 .80 .90 .87 .78 .84 .94 .92 .83 .89 .54 .51 .46 .52

graddot∫
p .86 .89 .84 .89 .96 .80 .69 .62 .73 .89 .80 .53 .40 .54 .78 .87 .85 .68 .84 .93 .92 .74 .93 .53 .48 .42 .51

omit1 .79 .82 .85 .87 .61 .78 .75 .54 .76 .82 .80 .48 .33 .48 .65 .81 .81 .79 .80 .86 .87 .86 .84 .43 .45 .44 .45
omit3 .89 .80 .89 .88 .59 .79 .71 .72 .81 .76 .77 .37 .36 .49 .61 .74 .77 .73 .73 .82 .84 .82 .79 .41 .45 .42 .46
omit7 .92 .88 .91 .91 .70 .79 .77 .77 .84 .84 .77 .49 .44 .55 .65 .76 .80 .66 .74 .85 .88 .78 .80 .40 .48 .43 .47
occ1 .80 .71 .74 .84 .61 .78 .73 .60 .77 .82 .77 .49 .19 .10 .65 .91 .85 .86 .86 .94 .88 .89 .88 .50 .44 .46 .47
occ3 .92 .61 .93 .85 .59 .78 .63 .74 .74 .76 .74 .37 .32 .35 .61 .74 .73 .71 .72 .78 .76 .76 .76 .43 .37 .41 .43
occ7 .92 .77 .93 .90 .70 .78 .62 .74 .77 .84 .74 .35 .43 .39 .65 .64 .65 .63 .65 .73 .73 .72 .73 .36 .35 .39 .43
decomp .79 .88 .92 .88 - .75 .79 .77 .80 - .54 .36 .72 .51 - .84 .87 .86 .90 .90 .93 .92 .96 .52 .58 .57 .63
lrp .92 .87 .91 .84 .86 .82 .83 .79 .85 .89 .85 .72 .74 .81 .79 .90 .90 .86 .91 .95 .95 .91 .95 .58 .60 .52 .63
deeplift .91 .89 .94 .85 .87 .82 .83 .78 .84 .89 .84 .72 .70 .81 .80 .91 .90 .85 .91 .95 .95 .90 .95 .59 .59 .52 .63
limssebb .81 .82 .83 .84 .78 .78 .81 .78 .80 .84 .52 .53 .53 .54 .57 .43 .41 .44 .42 .54 .51 .56 .52 .39 .43 .42 .41
limssems

s .94 .94 .93 .93 .91 .85 .87 .83 .86 .89 .85 .84 .76 .84 .82 .62 .62 .67 .63 .75 .74 .82 .75 .52 .53 .55 .53
limssems

p .87 .88 .85 .86 .94 .85 .86 .83 .86 .90 .81 .80 .74 .76 .76 .62 .62 .67 .63 .75 .74 .82 .75 .51 .53 .55 .53
random .69 .67 .70 .69 .66 .20 .19 .22 .22 .21 .09 .09 .06 .06 .08 .27 .27 .27 .27 .33 .33 .33 .33 .12 .13 .12 .12
last - - - - - - - - - - - - - - - .66 .67 .66 .67 .76 .77 .76 .77 .21 .27 .25 .26
N 7551 ≤ N ≤ 7554 3022 ≤ N ≤ 3230 137 ≤ N ≤ 150 N ≈ 1400000 N ≈ 20000

Table 2: Pointing game accuracies in hybrid document experiment (left), on manually annotated bench-
mark (middle) and in morphosyntactic agreement experiment (right). hittarget (resp. hitfeat): maximal
relevance on subject (resp. on noun with the predicted number feature). Bold: top explanation method.
Underlined: within 5 points of top explanation method.

188 documents from the 20 newsgroups test set
(classes sci.med and sci.electronics), with one
manually created list of relevant words per doc-
ument. We discard documents that are incorrectly
classified (20% - 27%) and define: hit(φ,X) =
I[rmax(X, φ) ∈ gt(X)], where gt(X) is the man-
ual ground truth.

4.2 Morphosyntactic agreement experiment

For the morphosyntactic agreement experiment,
we use automatically annotated English Wikipedia
sentences by Linzen et al. (2016)5. For our pur-
pose, a sample consists of: all words preceding the
verb: X = [x1 · · ·xT ]; part-of-speech (POS) tags:
pos(X, t) ∈ {VBZ, VBP, NN, NNS, . . .}; and the
position of the subject: target(X) ∈ [1, T ]. The
number feature is derived from the POS:

feat(X, t) =





Sg if pos(X, t) ∈ {VBZ, NN}
Pl if pos(X, t) ∈ {VBP, NNS}
n/a otherwise

The gold label of a sentence is the number of its
verb, i.e., y(X) = feat(X, T + 1).

5www.tallinzen.net/media/rnn_
agreement/agr_50_mostcommon_10K.tsv.gz

As task methods, we replicate Linzen et al.
(2016)’s unidirectional LSTM (R50 randomly
initialized word embeddings, hidden size 50).
We also train unidirectional GRU, QGRU and
QLSTM architectures with the same dimension-
ality. We use the explanation methods from §3 to
find the most relevant word for predictions on the
test set. As described in §2.2, explanation methods
are awarded a hittarget (resp. hitfeat) point if this
word is the subject (resp. a noun with the predicted
number feature). For reference, we use a random
baseline as well as a baseline that assumes that the
most relevant word directly precedes the verb.

5 Discussion

5.1 Explanation methods

Our experiments suggest that explanation methods
for neural NLP differ in quality.

As in previous work (see §6), gradient L2
norm (gradL2) performs poorly, especially on
RNNs. We assume that this is due to its inability
to distinguish relevances for and against k.

Gradient embedding dot product (graddot)
is competitive on CNN (Table 2, graddot

1p C05,
graddot

1s C10, C15), presumably because relu is
linear on positive inputs, so gradients are exact in-
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decomp initially a pagan culture , detailed information about the return of the christian religion to the islands during the norse-era [is ...]
deeplift initially a pagan culture , detailed information about the return of the christian religion to the islands during the norse-era [is ...]
limssems

p initially a pagan culture , detailed information about the return of the christian religion to the islands during the norse-era [is ...]

lrp
Your day is done . Definitely looking forward to going back . All three were outstanding ! I would highly recommend going here to anyone .
We will see if anyone returns the message my boyfriend left . The price is unbelievable ! And our guys are on lunch so we ca n’t fit you in . ” It
’s good , standard froyo . The pork shoulder was THAT tender . Try it with the Tomato Basil cram sauce .

limssems
p

Your day is done . Definitely looking forward to going back . All three were outstanding ! I would highly recommend going here to anyone .
We will see if anyone returns the message my boyfriend left . The price is unbelievable ! And our guys are on lunch so we ca n’t fit you in . ” It
’s good , standard froyo . The pork shoulder was THAT tender . Try it with the Tomato Basil cram sauce .

Figure 3: Top: verb context classified singular. Task method: LSTM. Bottom: hybrid yelp review,
classified positive. Task method: QLSTM.

stead of approximate. graddot also has decent per-
formance for GRU (graddot

1p C01, graddot∫
s C{06,

11, 16, 20, 24}), perhaps because GRU hidden ac-
tivations are always in [-1,1], where tanh and σ
are approximately linear.

Integrated gradient (grad∫ ) mostly outper-
forms simple gradient (grad1), though not consis-
tently (C01, C07). Contrary to expectation, in-
tegration did not help much with the failure of
the gradient method on LSTM on 20 newsgroups
(graddot

1 vs. graddot∫ in C08, C13), which we had
assumed to be due to saturation of tanh on large
absolute activations in ~c. Smaller intervals may be
needed to approximate the integration, however,
this means additional computational cost.

The gradient of s(k,X) performs better or sim-
ilar to the gradient of p(k|X). The main exception
is yelp (graddot

1s vs. graddot
1p , C01-C05). This is

probably due to conflation by p(k|X) of evidence
for k (numerator in Eq 3) and against competi-
tor classes (denominator). In a two-class scenario,
there is little incentive to keep classes separate,
leading to information flow through the denomi-
nator. In future work, we will replace the two-
way softmax with a one-way sigmoid such that
φ(t, 0,X) := −φ(t, 1,X).

LRP and DeepLIFT are the most consistent
explanation methods across evaluation paradigms
and task methods. (The comparatively low point-
ing game accuracies on the yelp QRNNs and CNN
(C02, C04, C05) are probably due to the fact
that they explain s(k, .) in a two-way softmax,
see above.) On CNN (C05, C10, C15), LRP
and graddot

1s perform almost identically, suggest-
ing that they are indeed quasi-equivalent on this ar-
chitecture (see §3.2). On (Q)RNNs, modified LRP
and DeepLIFT appear to be superior to the gradi-
ent method (lrp vs. graddot

1s , deeplift vs. graddot∫
s ,

C01-C04, C06-C09, C11-C14, C16-C27).
Decomposition performs well on LSTM, es-

pecially in the morphosyntactic agreement exper-

iment, but it is inconsistent on other architec-
tures. Gated RNNs have a long-term additive and
a multiplicative pathway, and the decomposition
method only detects information traveling via the
additive one. Miao et al. (2016) show qualita-
tively that GRUs often reorganize long-term mem-
ory abruptly, which might explain the difference
between LSTM and GRU. QRNNs only have ad-
ditive recurrent connections; however, given that
~ct (resp. ~ht) is calculated by convolution over sev-
eral time steps, decomposition relevance can be in-
correctly attributed inside that window. This likely
is the reason for the stark difference between the
performance of decomposition on QRNNs in the
hybrid document experiment and on the manually
labeled data (C07, C09 vs. C12, C14). Overall,
we do not recommend the decomposition method,
because it fails to take into account all routes by
which information can be propagated.

Omission and occlusion produce inconsis-
tent results in the hybrid document experiment.
Shrikumar et al. (2017) show that perturbation
methods can lack sensitivity when there are more
relevant inputs than the “perturbation window”
covers. In the morphosyntactic agreement experi-
ment, omission is not competitive; we assume that
this is because it interferes too much with syntactic
structure. occ1 does better (esp. C16-C19), possi-
bly because an all-zero “placeholder” is less dis-
ruptive than word removal. But despite some high
scores, it is less consistent than other explanation
methods.

Magnitude-sensitive LIMSSE (limssems)
consistently outperforms black-box LIMSSE
(limssebb), which suggests that numerical out-
puts should be used for approximation where
possible. In the hybrid document experiment,
magnitude-sensitive LIMSSE outperforms the
other explanation methods (exceptions: C03,
C05). However, it fails in the morphosyntactic
agreement experiment (C16-C27). In fact, we
expect LIMSSE to be unsuited for large context
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problems, as it cannot discover dependencies
whose range is bigger than a given text sample.
In Fig 3 (top), limssems

p highlights any singular
noun without taking into account how that noun
fits into the overall syntactic structure.

5.2 Evaluation paradigms

The assumptions made by our automatic evalua-
tion paradigms have exceptions: (i) the correlation
between fragment of origin and relevance does not
always hold (e.g., a positive review may contain
negative fragments, and will almost certainly con-
tain neutral fragments); (ii) in morphological pre-
diction, we cannot always expect the subject to be
the only predictor for number. In Fig 2 (bottom)
for example, “few” is a reasonable clue for plural
despite not being a noun. This imperfect ground
truth means that absolute pointing game accura-
cies should be taken with a grain of salt; but we
argue that this does not invalidate them for com-
parisons.

We also point out that there are characteristics
of explanations that may be desirable but are not
reflected by the pointing game. Consider Fig 3
(bottom). Both explanations get hit points, but the
lrp explanation appears “cleaner” than limssems

p ,
with relevance concentrated on fewer tokens.

6 Related work

6.1 Explanation methods

Explanation methods can be divided into local
and global methods (Doshi-Velez and Kim, 2017).
Global methods infer general statements about
what a DNN has learned, e.g., by clustering docu-
ments (Aubakirova and Bansal, 2016) or n-grams
(Kádár et al., 2017) according to the neurons that
they activate. Li et al. (2016a) compare embed-
dings of specific words with reference points to
measure how drastically they were changed dur-
ing training. In computer vision, Simonyan et al.
(2014) optimize the input space to maximize the
activation of a specific neuron. Global explanation
methods are of limited value for explaining a spe-
cific prediction as they represent average behavior.
Therefore, we focus on local methods.

Local explanation methods explain a decision
taken for one specific input at a time. We have
attempted to include all important local methods
for NLP in our experiments (see §3). We do
not address self-explanatory models (e.g., atten-
tion (Bahdanau et al., 2015) or rationale models

(Lei et al., 2016)), as these are very specific archi-
tectures that may not be not applicable to all tasks.

6.2 Explanation evaluation

According to Doshi-Velez and Kim (2017)’s
taxonomy of explanation evaluation paradigms,
application-grounded paradigms test how well an
explanation method helps real users solve real
tasks (e.g., doctors judge automatic diagnoses);
human-grounded paradigms rely on proxy tasks
(e.g., humans rank task methods based on expla-
nations); functionally-grounded paradigms work
without human input, like our approach.

Arras et al. (2016) (cf. Samek et al. (2016))
propose a functionally-grounded explanation eval-
uation paradigm for NLP where words in a cor-
rectly (resp. incorrectly) classified document are
deleted in descending (resp. ascending) order of
relevance. They assume that the fewer words must
be deleted to reduce (resp. increase) accuracy, the
better the explanations. According to this metric,
LRP (§3.2) outperforms gradL2 on CNNs (Arras
et al., 2016) and LSTMs (Arras et al., 2017b) on
20 newsgroups. Ancona et al. (2017) perform the
same experiment with a binary sentiment analy-
sis LSTM. Their graph shows occ1, graddot

1 and
graddot∫ tied in first place, while LRP, DeepLIFT
and the gradient L1 norm lag behind. Note that
their treatment of LSTM gates in LRP / DeepLIFT
differs from our implementation.

An issue with the word deletion paradigm is that
it uses syntactically broken inputs, which may in-
troduce artefacts (Sundararajan et al., 2017). In
our hybrid document paradigm, inputs are syntac-
tically intact (though semantically incoherent at
the document level); the morphosyntactic agree-
ment paradigm uses unmodified inputs.

Another class of functionally-grounded evalu-
ation paradigms interprets the performance of a
secondary task method, on inputs that are derived
from (or altered by) an explanation method, as a
proxy for the quality of that explanation method.
Murdoch and Szlam (2017) build a rule-based
classifier from the most relevant phrases in a cor-
pus (task method: LSTM). The classifier based
on decomp (§3.4) outperforms the gradient-based
classifier, which is in line with our results. Ar-
ras et al. (2017a) build document representations
by summing over word embeddings weighted by
relevance scores (task method: CNN). They show
that K-nearest neighbor performs better on doc-
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ument representations derived with LRP than on
those derived with gradL2, which also matches our
results. Denil et al. (2015) condense documents
by extracting top-K relevant sentences, and let the
original task method (CNN) classify them. The
accuracy loss, relative to uncondensed documents,
is smaller for graddot than for heuristic baselines.

In the domain of human-based evaluation
paradigms, Ribeiro et al. (2016) compare differ-
ent variants of LIME (§3.6) by how well they help
non-experts clean a corpus from words that lead
to overfitting. Selvaraju et al. (2017) assess how
well explanation methods help non-experts iden-
tify the more accurate out of two object recogni-
tion CNNs. These experiments come closer to real
use cases than functionally-grounded paradigms;
however, they are less scalable.

7 Summary

We conducted the first comprehensive evaluation
of explanation methods for NLP, an important un-
dertaking because there is a need for understand-
ing the behavior of DNNs.

To conduct this study, we introduced evalua-
tion paradigms for explanation methods for two
classes of NLP tasks, small context tasks (e.g.,
topic classification) and large context tasks (e.g.,
morphological prediction). Neither paradigm re-
quires manual annotations. We also introduced
LIMSSE, a substring-based explanation method
inspired by LIME and designed for NLP.

Based on our experimental results, we recom-
mend LRP, DeepLIFT and LIMSSE for small con-
text tasks and LRP and DeepLIFT for large con-
text tasks, on all five DNN architectures that we
tested. On CNNs and possibly GRUs, the (inte-
grated) gradient embedding dot product is a good
alternative to DeepLIFT and LRP.

8 Code

Our implementation of LIMSSE, the gradi-
ent, perturbation and decomposition meth-
ods can be found in our branch of the
keras package: www.github.com/
NPoe/keras. To re-run our experiments,
see scripts in www.github.com/NPoe/
neural-nlp-explanation-experiment.
Our LRP implementation (same repository) is
adapted from Arras et al. (2017b)6.

6https://github.com/ArrasL/LRP_for_
LSTM
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tavon, Sebastian Lapuschkin, and Klaus-Robert
Müller. 2016. Evaluating the visualization of what
a deep neural network has learned. IEEE trans-
actions on neural networks and learning systems,
28(11):2660–2673.

Ramprasaath R Selvaraju, Michael Cogswell, Ab-
hishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. 2017. Grad-cam: Visual expla-
nations from deep networks via gradient-based lo-
calization. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 618–626, Honolulu,
Hawaii.

Avanti Shrikumar, Peyton Greenside, and Anshul Kun-
daje. 2017. Learning important features through
propagating activation differences. In International
Conference on Machine Learning, pages 3145–
3153, Sydney, Australia.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. 2014. Deep inside convolutional networks: Vi-
sualising image classification models and saliency
maps. In International Conference on Learning
Representations, Banff, Canada.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan.
2017. Axiomatic attribution for deep networks.
In International Conference on Machine Learning,
Sydney, Australia.

Matthew D Zeiler and Rob Fergus. 2014. Visualizing
and understanding convolutional networks. In Eu-
ropean Conference on Computer Vision, pages 818–
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Abstract
To be informative, an evaluation must
measure how well systems generalize to
realistic unseen data. We identify limita-
tions of and propose improvements to cur-
rent evaluations of text-to-SQL systems.
First, we compare human-generated and
automatically generated questions, char-
acterizing properties of queries necessary
for real-world applications. To facilitate
evaluation on multiple datasets, we release
standardized and improved versions of
seven existing datasets and one new text-
to-SQL dataset. Second, we show that the
current division of data into training and
test sets measures robustness to variations
in the way questions are asked, but only
partially tests how well systems general-
ize to new queries; therefore, we propose a
complementary dataset split for evaluation
of future work. Finally, we demonstrate
how the common practice of anonymiz-
ing variables during evaluation removes an
important challenge of the task. Our ob-
servations highlight key difficulties, and
our methodology enables effective mea-
surement of future development.

1 Introduction

Effective natural language interfaces to databases
(NLIDB) would give lay people access to vast
amounts of data stored in relational databases.
This paper identifies key oversights in current
evaluation methodology for this task. In the pro-
cess, we (1) introduce a new, challenging dataset,
(2) standardize and fix many errors in existing
datasets, and (3) propose a simple yet effective
baseline system.1

∗The first two authors contributed equally to this work.
1Code and data is available at https://github.

com/jkkummerfeld/text2sql-data/

Figure 1: Traditional question-based splits allow
queries to appear in both train and test. Our query-
based split ensures each query is in only one.

First, we consider query complexity, showing
that human-written questions require more com-
plex queries than automatically generated ones. To
illustrate this challenge, we introduce Advising, a
dataset of questions from university students about
courses that lead to particularly complex queries.

Second, we identify an issue in the way exam-
ples are divided into training and test sets. The
standard approach, shown at the top of Fig. 1, di-
vides examples based on the text of each ques-
tion. As a result, many of the queries in the test
set are seen in training, albeit with different en-
tity names and with the question phrased differ-
ently. This means metrics are mainly measuring
robustness to the way a set of known SQL queries
can be expressed in English—still a difficult prob-
lem, but not a complete test of ability to compose
new queries in a familiar domain. We introduce
a template-based slot-filling baseline that cannot
generalize to new queries, and yet is competitive
with prior work on multiple datasets. To mea-
sure robustness to new queries, we propose split-
ting based on the SQL query. We show that state-
of-the-art systems with excellent performance on
traditional question-based splits struggle on query-
based splits. We also consider the common prac-
tice of variable anonymization, which removes a
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challenging form of ambiguity from the task. In
the process, we apply extensive effort to standard-
ize datasets and fix a range of errors.

Previous NLIDB work has led to impressive
systems, but current evaluations provide an incom-
plete picture of their strengths and weaknesses. In
this paper, we provide new and improved data, a
new baseline, and guidelines that complement ex-
isting metrics, supporting future work.

2 Related Work

The task of generating SQL representations from
English questions has been studied in the NLP and
DB communities since the 1970s (Androutsopou-
los et al., 1995). Our observations about evalu-
ation methodology apply broadly to the systems
cited below.

Within the DB community, systems commonly
use pattern matching, grammar-based techniques,
or intermediate representations of the query (Pa-
zos Rangel et al., 2013). Recent work has explored
incorporating user feedback to improve accuracy
(Li and Jagadish, 2014). Unfortunately, none of
these systems are publicly available, and many
rely on domain-specific resources.

In the NLP community, there has been exten-
sive work on semantic parsing to logical represen-
tations that query a knowledge base (Zettlemoyer
and Collins, 2005; Liang et al., 2011; Beltagy
et al., 2014; Berant and Liang, 2014), while work
on mapping to SQL has recently increased (Yih
et al., 2015; Iyer et al., 2017; Zhong et al., 2017).
One of the earliest statistical models for mapping
text to SQL was the PRECISE system (Popescu
et al., 2003, 2004), which achieved high precision
on queries that met constraints linking tokens and
database values, attributes, and relations, but did
not attempt to generate SQL for questions out-
side this class. Later work considered generat-
ing queries based on relations extracted by a syn-
tactic parser (Giordani and Moschitti, 2012) and
applying techniques from logical parsing research
(Poon, 2013). However, none of these earlier sys-
tems are publicly available, and some required ex-
tensive engineering effort for each domain, such
as the lexicon used by PRECISE.

More recent work has produced general purpose
systems that are competitive with previous results
and are also available, such as Iyer et al. (2017).
We also adapt a logical form parser with a se-
quence to tree approach that makes very few as-

sumptions about the output structure (Dong and
Lapata, 2016).

One challenge for applying neural models to
this task is annotating large enough datasets of
question-query pairs. Recent work (Cai et al.,
2017; Zhong et al., 2017) has automatically gen-
erated large datasets using templates to form ran-
dom queries and corresponding natural-language-
like questions, and then having humans rephrase
the question into English. Another option is to
use feedback-based learning, where the system al-
ternates between training and making predictions,
which a user rates as correct or not (Iyer et al.,
2017). Other work seeks to avoid the data bottle-
neck by using end-to-end approaches (Yin et al.,
2016; Neelakantan et al., 2017), which we do not
consider here. One key contribution of this paper
is standardization of a range of datasets, to help
address the challenge of limited data resources.

3 Data

For our analysis, we study a range of text-to-SQL
datasets, standardizing them to have a consistent
SQL style.

ATIS (Price, 1990; Dahl et al., 1994) User ques-
tions for a flight-booking task, manually anno-
tated. We use the modified SQL from Iyer et al.
(2017), which follows the data split from the logi-
cal form version (Zettlemoyer and Collins, 2007).

GeoQuery (Zelle and Mooney, 1996) User
questions about US geography, manually anno-
tated with Prolog. We use the SQL version
(Popescu et al., 2003; Giordani and Moschitti,
2012; Iyer et al., 2017), which follows the logical
form data split (Zettlemoyer and Collins, 2005).

Restaurants (Tang and Mooney, 2000; Popescu
et al., 2003) User questions about restaurants, their
food types, and locations.

Scholar (Iyer et al., 2017) User questions about
academic publications, with automatically gener-
ated SQL that was checked by asking the user if
the output was correct.

Academic (Li and Jagadish, 2014) Questions
about the Microsoft Academic Search (MAS)
database, derived by enumerating every logical
query that could be expressed using the search
page of the MAS website and writing sentences
to match them. The domain is similar to that of
Scholar, but their schemas differ.
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Yelp and IMDB (Yaghmazadeh et al., 2017)
Questions about the Yelp website and the Internet
Movie Database, collected from colleagues of the
authors who knew the type of information in each
database, but not their schemas.

WikiSQL (Zhong et al., 2017) A large collec-
tion of automatically generated questions about
individual tables from Wikipedia, paraphrased by
crowd workers to be fluent English.

Advising (This Work) Our dataset of questions
over a database of course information at the Uni-
versity of Michigan, but with fictional student
records. Some questions were collected from the
EECS department Facebook page and others were
written by CS students with knowledge of the
database who were instructed to write questions
they might ask in an academic advising appoint-
ment.

The authors manually labeled the initial set
of questions with SQL. To ensure high qual-
ity, at least two annotators scored each question-
query pair on a two-point scale for accuracy—
did the query generate an accurate answer
to the question?—and a three-point scale for
helpfulness—did the answer provide the informa-
tion the asker was probably seeking? Cases with
low scores were fixed or removed from the dataset.

We collected paraphrases using Jiang et al.
(2017)’s method, with manual inspection to en-
sure accuracy. For a given sentence, this produced
paraphrases with the same named entities (e.g.
course number EECS 123). To add variation, we
annotated entities in the questions and queries with
their types—such as course name, department,
or instructor—and substituted randomly-selected
values of each type into each paraphrase and its
corresponding query. This combination of para-
phrasing and entity replacement means an original
question of “For next semester, who is teaching
EECS 123?” can give rise to “Who teaches MATH
456 next semester?” as well as “Who’s the profes-
sor for next semester’s CHEM 789?”

3.1 SQL Canonicalization
SQL writing style varies. To enable consistent
training and evaluation across datasets, we canon-
icalized the queries: (1) we alphabetically ordered
fields in SELECT, tables in FROM, and constraints
in WHERE; (2) we standardized table aliases in the
form <TABLE NAME>alias<N> for the Nth use of the
same table in one query; and (3) we standardized

Sets Identified Affected Queries
ATIS 141 380
GeoQuery 17 39
Scholar 60 152

Table 1: Manually identified duplicate queries
(different SQL for equivalent questions).

capitalization and spaces between symbols. We
confirmed these changes do not alter the meaning
of the queries via unit tests of the canonicaliza-
tion code and manual inspection of the output. We
also manually fixed some errors, such as ambigu-
ous mixing of AND and OR (30 ATIS queries).

3.2 Variable Annotation

Existing SQL datasets do not explicitly identify
which words in the question are used in the SQL
query. Automatic methods to identify these vari-
ables, as used in prior work, do not account for
ambiguities, such as words that could be either a
city or an airport. To provide accurate anonymiza-
tion, we annotated query variables using a combi-
nation of automatic and manual processing.

Our automatic process extracted terms from
each side of comparison operations in SQL: one
side contains quoted text or numbers, and the other
provides a type for those literals. Often quoted
text in the query is a direct copy from the question,
while in some cases we constructed dictionaries to
map common acronyms, like american airlines–
AA, and times, like 2pm–1400. The process flagged
cases with ambiguous mappings, which we then
manually processed. Often these were mistakes,
which we corrected, such as missing constraints
(e.g., papers in 2015 with no date limit in the
query), extra constraints (e.g., limiting to a single
airline despite no mention in the question), inaccu-
rate constraints (e.g., more than 5 as > 4), and in-
consistent use of this year to mean different years
in different queries.

3.3 Query Deduplication

Three of the datasets had many duplicate queries
(i.e., semantically equivalent questions with dif-
ferent SQL). To avoid this spurious ambiguity we
manually grouped the data into sets of equivalent
questions (Table 1). A second person manually in-
spected every set and ran the queries. Where mul-
tiple queries are valid, we kept them all, though
only used the first for the rest of this work.
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Redundancy Measures Complexity Measures
Unique Queries Tables Unique tables SELECTs Nesting

Question query / pattern Pattern / query / query / query Depth
count count [1]/[2] µ Max count µ Max µ Max µ Max µ Max

Advising 4570 211 21.7 20.3 90 174 3.2 9 3.0 9 1.23 6 1.18 4
ATIS 5280 947 5.6 7.0 870 751 6.4 32 3.8 12 1.79 8 1.39 8
GeoQuery 877 246 3.6 8.9 327 98 1.4 5 1.1 4 1.77 8 2.03 7
Restaurants 378 23 16.4 22.2 81 17 2.6 5 2.3 4 1.17 2 1.17 2
Scholar 817 193 4.2 5.6 71 146 3.3 6 3.2 6 1.02 2 1.02 2
Academic 196 185 1.1 2.1 12 92 3.2 10 3 6 1.04 3 1.04 2
IMDB 131 89 1.5 2.5 21 52 1.9 5 1.9 5 1.01 2 1.01 2
Yelp 128 110 1.2 1.4 11 89 2.2 4 2 4 1 1 1 1
WikiSQL 80,654 77,840 1.0 165.3 42,816 488 1 1 1 1 1 1 1 1

Table 2: Descriptive statistics for text-to-SQL datasets. Datasets in the first group are human-generated
from the NLP community, in the second are human-generated from the DB community, and in the third
are automatically-generated. [1]/[2] is Question count / Unique query count.

4 Evaluating on Multiple Datasets Is
Necessary

For evaluation to be informative it must use data
that is representative of real-world queries. If
datasets have biases, robust comparisons of mod-
els will require evaluation on multiple datasets.
For example, some datasets, such as ATIS and Ad-
vising, were collected from users and are task-
oriented, while others, such as WikiSQL, were
produced by automatically generating queries and
engaging people to express the query in language.
If these two types of datasets differ systematically,
evaluation on one may not reflect performance on
the other. In this section, we provide descrip-
tive statistics aimed at understanding how several
datasets differ, especially with respect to query re-
dundancy and complexity.

4.1 Measures

We consider a range of measures that capture dif-
ferent aspects of data complexity and diversity:

Question / Unique Query Counts We measure
dataset size and how many distinct queries there
are when variables are anonymized. We also
present the mean number of questions per unique
query; a larger mean indicates greater redundancy.

SQL Patterns Complexity can be described as
the answer to the question, “How many query-
form patterns would be required to generate this
dataset?” Fig. 2 shows an example of a pattern,
which essentially abstracts away from the specific
table and field names. Some datasets were gener-
ated from patterns similar to these, including Wik-
iSQL and Cai et al. (2017). This enables the gen-
eration of large numbers of queries, but limits the

SELECT <table-alias>.<field>
FROM <table> AS <table-alias>
WHERE <table-alias>.<field> = <literal>

SELECT RIVERalias0.RIVER NAME
FROM RIVER AS RIVERalias0
WHERE RIVERalias0.TRAVERSE = "florida";

SELECT CITYalias0.CITY NAME
FROM CITY AS CITYalias0
WHERE CITYalias0.STATE NAME = "alabama";

Figure 2: An SQL pattern and example queries.

variation between them to only that encompassed
by their patterns. We count the number of pat-
terns needed to cover the full dataset, where larger
numbers indicate greater diversity. We also report
mean queries per pattern; here, larger numbers
indicate greater redundancy, showing that many
queries fit the same mold.

Counting Tables We consider the total number
of tables and the number of unique tables men-
tioned in a query. These numbers differ in the
event of self-joins. In both cases, higher values
imply greater complexity.

Nesting A query with nested subqueries may be
more complex than one without nesting. We count
SELECT statements within each query to deter-
mine the number of sub-queries. We also report
the depth of query nesting. In both cases, higher
values imply greater complexity.

4.2 Analysis

The statistics in Table 2 show several patterns.
First, dataset size is not the best indicator of

dataset diversity. Although WikiSQL contains fif-
teen times as many question-query pairs as ATIS,
ATIS contains significantly more patterns than
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WikiSQL; moreover, WikiSQL’s queries are dom-
inated by one pattern that is more than half of
the dataset (SELECT col AS result FROM table

WHERE col = value). The small, hand-curated
datasets developed by the database community—
Academic, IMDB, and Yelp—have noticeably less
redundancy as measured by questions per unique
query and queries per pattern than the datasets the
NLP community typically evaluates on.

Second, human-generated datasets exhibit
greater complexity than automatically generated
data. All of the human-generated datasets except
Yelp demonstrate at least some nesting. The
average query from any of the human-generated
datasets joins more than one table.

In particular, task-oriented datasets require joins
and nesting. ATIS and Advising, which were de-
veloped with air-travel and student-advising tasks
in mind, respectively, both score in the top three
for multiple complexity scores.

To accurately predict performance on human-
generated or task-oriented questions, it is thus nec-
essary to evaluate on datasets that test the ability
to handle nesting and joins. Training and test-
ing NLP systems, particularly deep learning-based
methods, benefits from large datasets. However, at
present, the largest dataset available does not pro-
vide the desired complexity.

Takeaway: Evaluate on multiple datasets, some
with nesting and joins, to provide a thorough pic-
ture of a system’s strengths and weaknesses.

5 Current Data Splits Only Partially
Probe Generalizability

It is standard best practice in machine learning
to divide data into disjoint training, development,
and test sets. Otherwise, evaluation on the test set
will not accurately measure how well a model gen-
eralizes to new examples. The standard splits of
GeoQuery, ATIS, and Scholar treat each pair of a
natural language question and its SQL query as a
single item. Thus, as long as each question-query
pair appears in only one set, the test set is not
tainted with training data. We call this a question-
based data split.

However, many English questions may corre-
spond to the same SQL query. If at least one copy
of every SQL query appears in training, then the
task evaluated is classification, not true semantic
parsing, of the English questions. We can increase
the number of distinct SQL queries by varying

what entities our questions ask about; the queries
for what states border Texas and what states bor-
der Massachusetts are not identical. Adding this
variation changes the task from pure classification
to classification plus slot-filling. Does this pro-
vide a true evaluation of the trained model’s per-
formance on unseen inputs?

It depends on what we wish to evaluate. If we
want a system that answers questions within a par-
ticular domain, and we have a dataset that we are
confident covers everything a user might want to
know about that domain, then evaluating on the
traditional question-based split tells us whether the
system is robust to variation in how a request is ex-
pressed. But compositionality is an essential part
of language, and a system that has trained on What
courses does Professor Smith teach? and What
courses meet on Fridays? should be prepared for
What courses that Professor Smith teaches meet
on Fridays? Evaluation on the question split does
not tell us about a model’s generalizable knowl-
edge of SQL, or even its generalizable knowledge
within the present domain.

To evaluate the latter, we propose a comple-
mentary new division, where no SQL query is al-
lowed to appear in more than one set; we call
this the query split. To generate a query split,
we substitute variables for entities in each query
in the dataset, as described in § 3.2. Queries that
are identical when thus anonymized are treated as
a single query and randomly assigned—with all
their accompanying questions—to train, dev, or
test. We include the original question split and
the new query split labeling for the new Advising
dataset, as well as ATIS, GeoQuery, and Scholar.
For the much smaller Academic, IMDB, Restau-
rant, and Yelp datasets, we include question- and
query- based buckets for cross validation.

5.1 Systems

Recently, a great deal of work has used variations
on the seq2seq model. We compare performance
of a basic seq2seq model (Sutskever et al., 2014),
and seq2seq with attention over the input (Bah-
danau et al., 2015), implemented with TensorFlow
seq2seq (Britz et al., 2017). We also extend that
model to include an attention-based copying op-
tion, similar to Jia and Liang (2016). Our output
vocabulary for the decoder includes a special to-
ken, COPY. If COPY has the highest probability at
step t, we replace it with the input token with the
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Flight from Denver to Boston

O O city0 O city1 Query Type 42

Figure 3: Baseline: blue boxes are LSTM cells
and the black box is a feed-forward network. Out-
puts are the query template to use (right) and
which tokens to fill it with (left).

max of the normalized attention scores. Our loss
function is the sum of two terms: first, the categor-
ical cross entropy for the model’s probability dis-
tribution over the output vocabulary tokens; and
second, the loss for word copying. When the cor-
rect output token is COPY, the second loss term is
the categorical cross entropy of the distribution of
attention scores at time t. Otherwise it is zero.

For comparison, we include systems from two
recent papers. Dong and Lapata (2016) used an
attention-based seq2tree model for semantic pars-
ing of logical forms; we apply their code here to
SQL datasets. Iyer et al. (2017) use a seq2seq
model with automatic dataset expansion through
paraphrasing and SQL templates.2

We could not find publicly available code for the
non-neural text-to-SQL systems discussed in Sec-
tion 2. Also, most of those approaches require de-
velopment of specialized grammars or templates
for each new dataset they are applied to, so we do
not compare such systems.

5.2 New Template Baseline
In addition to the seq2seq models, we develop
a new baseline system for text-to-SQL parsing
which exploits repetitiveness in data. First, we
automatically generate SQL templates from the
training set. The system then makes two predic-
tions: (1) which template to use, and (2) which
words in the sentence should fill slots in the tem-
plate. This system is not able to generalize beyond
the queries in the training set, so it will fail com-
pletely on the new query-split data setting.

Fig. 3 presents the overall architecture, which
we implemented in DyNet (Neubig et al., 2017). A

2 We enable Iyer et al. (2017)’s paraphrasing data aug-
mentation, but not their template-based augmentation be-
cause templates do not exist for most of the datasets (though
they also found it did not significantly improve performance).
Note, on ATIS and Geo their evaluation assumed no ambigu-
ity in entity identification, which is equivalent to our Oracle
Entities condition (§5.3).

bidirectional LSTM provides a prediction for each
word, either O if the word is not used in the fi-
nal query, or a symbol such as city1 to indicate
that it fills a slot. The hidden states of the LSTM
at each end of the sentence are passed through a
small feed-forward network to determine the SQL
template to use. This architecture is simple and
enables a joint choice of the tags and the template,
though we do not explicitly enforce agreement.

To train the model, we automatically construct
a set of templates and slots. Slots are determined
based on the variables in the dataset, with each
SQL variable that is explicitly given in the ques-
tion becoming a slot. We can construct these tem-
plates because our new version of the data explic-
itly defines all variables, their values, and where
they appear in both question and query.

For completeness, we also report on an ora-
cle version of the template-based system (perfor-
mance if it always chose the correct template from
the train set and filled all slots correctly).

5.3 Oracle Entity Condition
Some systems, such as Dong and Lapata’s model,
are explicitly designed to work on anonymized
data (i.e., data where entity names are replaced
with a variable indicating their type). Others, such
as attention-based copying models, treat identifi-
cation of entities as an inextricable component of
the text-to-SQL task. We therefore describe results
on both the actual datasets with entities in place
and a version anonymized using the variables de-
scribed in § 3.2. We refer to the latter as the oracle
entity condition.

5.4 Results and Analysis
We hypothesized that even a system unable to gen-
eralize can achieve good performance on question-
based splits of datasets, and the results in Ta-
ble 3 substantiate that for the NLP community’s
datasets. The template-based, slot-filling baseline
was competitive with state-of-the-art systems for
question split on the four datasets from the NLP
community. The template-based oracle perfor-
mance indicates that for these datasets anywhere
from 70-100% accuracy on question-based split
could be obtained by selecting a template from the
training set and filling in the right slots.

For the three datasets developed by the
databases community, the effect of question-query
split is far less pronounced. The small sizes of
these datasets cannot account for the difference,
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Advising ATIS GeoQuery Restaurants Scholar Academic IMDB Yelp
Model ? Q ? Q ? Q ? Q ? Q ? Q ? Q ? Q

No Variable Anonymization
Baseline 80 0 46 0 57 0 95 0 52 0 0 0 0 0 1 0
seq2seq 6 0 8 0 27 7 47 0 19 0 6 7 1 0 0 0

+ Attention 29 0 46 18 63 21 100 2 33 0 71 64 7 3 2 2
+ Copying 70 0 51 32 71 20 100 4 59 5 81 74 26 9 12 4

D&L seq2tree 46 2 46 23 62 31 100 11 44 6 63 54 6 2 1 2
Iyer et al. 41 1 45 17 66 40 100 8 44 3 76 70 10 4 6 6

With Oracle Entities
Baseline 89 0 56 0 56 0 95 0 66 0 0 0 7 0 8 0
seq2seq 21 0 14 0 49 14 71 6 23 0 10 9 6 0 12 9

+ Attention 88 0 57 23 73 31 100 32 71 4 77 74 44 17 33 28
D&L seq2tree 88 8 56 34 68 23 100 21 68 6 65 61 36 10 26 23
Iyer et al. 88 6 58 32 71 49 100 33 71 1 77 75 52 24 44 32
Baseline-Oracle 100 0 69 0 78 0 100 0 84 0 11 0 47 0 25 0

Table 3: Accuracy of neural text-to-SQL systems on English question splits (‘?’ columns) and SQL query
splits (‘Q’ columns). The vertical line separates datasets from the NLP (left) and DB (right) communities.
Results for Iyer et al. (2017) are slightly lower here than in the original paper because we evaluate on
SQL output, not the database response.

since even the oracle baseline did not have much
success on these question splits, and since the
baseline was able to handle the small Restaurants
dataset. Looking back at Section 4, however, we
see that these are the datasets with the least redun-
dancy in Table 2. Because their question:unique-
query ratios are nearly 1:1, the question splits and
query splits of these datasets were quite similar.

Reducing redundancy does not improve perfor-
mance on query split, though; at most, it reduces
the difference between performance on the two
splits. IMDB and Yelp both show weak results on
query split despite their low redundancy. Exper-
iments on a non-redundant version of query split
for Advising, ATIS, GeoQuery, and Restaurant
that contained only one question for each query
confirmed this: in each case, accuracy remained
the same or declined relative to regular query split.

Having ruled out redundancy as a cause for
the exceptional performance on Academic’s query
split, we suspect the simplicity of its questions
and the compositionality of its queries may be re-
sponsible. Every question in the dataset begins re-
turn me followed by a phrase indicating the de-
sired field, optionally followed by one or more
constraints; for instance, return me the papers by
‘author name0’ and return me the papers by ‘au-
thor name0’ on journal name0.

None of this, of course, is to suggest that
question-based split is an easy problem, even on
the NLP community’s datasets. Except for the
Advising and Restaurants datasets, even the or-
acle version of the template-based system is far

from perfect. Access to oracle entities helps per-
formance of non-copying systems substantially, as
we would expect. Entity matching is thus a non-
trivial component of the task.

But the query-based split is certainly more diffi-
cult than the question-based split. Across datasets
and systems, performance suffered on query split.
Access to oracle entities did not remove this effect.

Many of the seq2seq models do show some abil-
ity to generalize, though. Unlike the template-
based baseline, many were able to eek out some
performance on query split.

On question split, ATIS is the most difficult of
the NLP datasets, yet on query split, it is among
the easiest. To understand this apparent contradic-
tion, we must consider what kinds of mistakes sys-
tems make and the contexts in which they appear.
We therefore analyze the output of the attention-
based-copying model in greater detail.

We categorize each output as shown in column
one of Table 4. The “Correct” category is self-
explanatory. “Entity problem only” means that
the query would have been correct but for a mis-
take in one or more entity names. “Different tem-
plate” means that the system output was the same
as another query from the dataset but for the en-
tity names; however, it did not match the correct
query for this question. “No template match” con-
tains both the most mundane and the most inter-
esting errors. Here, the system output a query that
is not copied from training data. Sometimes, this
is a simple error, such as inserting an extra comma
in the WHERE clause. Other times, it is recombining
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Advising ATIS GeoQuery Scholar
Question Query Question Query Question Query Question Query

Correct Count 369 5 227 111 191 56 129 17
µ Length 83.8 165.8 55.1 69.2 19.6 21.5 38.0 30.2

Entity Count 10 0 1 6 5 0 5 0
problem µ Length 111.8 N/A 28.0 71.3 17.2 N/A 42.6 N/A
Different Count 43 675 94 68 53 84 40 94
template µ Length 69.8 68.4 85.8 72.1 25.6 18.0 43.9 39.8
No template Count 79 25 122 162 30 42 44 204
match µ Length 88.8 90.5 113.8 92.2 29.7 25.0 42.1 41.6

Table 4: Types of errors by the attention-based copying model for question and query splits, with
(Count)s of queries in each category, and the (µ Length) of gold queries in the category.

segments of queries it has seen into new queries.
This is necessary but not sufficient model behav-
ior in order to do well on the query split. In at
least one case, this category includes a semanti-
cally equivalent query marked as incorrect by the
exact-match accuracy metric.3 Table 4 shows the
number of examples from the test set that fell into
each category, as well as the mean length of gold
queries (“length”) for each category.

Short queries are easier than long ones in the
question-based condition. In most cases, length in
“correct” is shorter than length in either “different
template” or “no template match” categories.

In addition, for short queries, the model seems
to prefer to copy a query it has seen before; for
longer ones, it generates a new query. In every
case but one, mean length in “different template”
is less than in “No template match.”

Interestingly, in ATIS and GeoQuery, where the
model performs tolerably well on query split, the
length for correct queries in query split is higher
than the length for correct queries from the ques-
tion split. Since, as noted above, recombination of
template pieces (as we see in “no template match”)
is a necessary step for success on query split, it
may be that longer queries have a higher probabil-
ity of recombination, and therefore a better chance
of being correct in query split. The data from
Scholar does not support this position; however,
note that only 17 queries were correct in Scholar
query split, suggesting caution in making general-
izations from this set.

These results also seem to indicate that our
copying mechanism effectively deals with entity
identification. Across all datasets, we see only

3For the question which of the states bordering pennsyl-
vania has the largest population, the gold query ranked the
options by population and kept the top result, while the sys-
tem output used a subquery to find the max population then
selected states that had that population.

a small number of entity-problem-only examples.
However, comparing the rows from Table 3 for
seq2seq+Copy at the top and seq2seq+Attention
in the oracle entities condition, it is clear that hav-
ing oracle entities provides a useful signal, with
consistent gains in performance.

Takeaways: Evaluate on both question-based
and query-based dataset splits. Additionally, vari-
able anonymization noticeably decreases the diffi-
culty of the task; thus, thorough evaluations should
include results on datasets without anonymization.

5.5 Logic Variants

To see if our observations on query and question
split performance apply beyond SQL, we also con-
sidered the logical form annotations for ATIS and
GeoQuery (Zettlemoyer and Collins, 2005, 2007).
We retrained Jia and Liang (2016)’s baseline and
full system. Interestingly, we founnd limited im-
pact on performance, measured with either log-
ical forms or denotations. To understand why,
we inspected the logical form datasets. In both
ATIS and GeoQuery, the logical form version has
a larger set of queries after variable identification.
This seems to be because the logic abstracts away
from the surface form less than SQL does. For ex-
ample, these questions have the same SQL in our
data, but different logical forms:
what state has the largest capital
(A, (state(A), loc(B, A), largest(B, capital(B))))

which state ’s capital city is the largest
(A, largest(B, (state(A), capital(A, B), city(B))))

SELECT CITYalias0.STATE NAME
FROM CITY AS CITYalias0
WHERE CITYalias0.POPULATION = (
SELECT MAX( CITYalias1.POPULATION )
FROM CITY AS CITYalias1 ,

STATE AS STATEalias0
WHERE STATEalias0.CAPITAL =

CITYalias1.CITY NAME ) ;

Other examples include variation in the logical
form between sentences with largest and largest
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population even though the associated dataset only
has population figures for cities (not area or any
other measure of size). Similarly in ATIS, the
logical form will add (flight $0) if the ques-
tion mentions flights explicitly, making these two
queries different, even though they convey the
same user intent:
what flights do you have from bwi to sfo
i need a reservation from bwi to sfo

By being closer to a syntactic representation,
the queries end up being more compositional,
which encourages the model to learn more com-
positionality than the SQL models do.

6 Conclusion

In this work, we identify two issues in current
datasets for mapping questions to SQL queries.
First, by analyzing question and query complexity
we find that human-written datasets require prop-
erties that have not yet been included in large-scale
automatically generated query sets. Second, we
show that the generalizability of systems is over-
stated by the traditional data splits. In the pro-
cess we also identify and fix hundreds of mistakes
across multiple datasets and homogenize the SQL
query structures to enable effective multi-domain
experiments.

Our analysis has clear implications for future
work. Evaluating on multiple datasets is neces-
sary to ensure coverage of the types of questions
humans generate. Developers of future large-scale
datasets should incorporate joins and nesting to
create more human-like data. And new systems
should be evaluated on both question- and query-
based splits, guiding the development of truly
general systems for mapping natural language to
structured database queries.
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Abstract

We present a generative model to map nat-
ural language questions into SQL queries.
Existing neural network based approach-
es typically generate a SQL query word-
by-word, however, a large portion of the
generated results is incorrect or not exe-
cutable due to the mismatch between ques-
tion words and table contents. Our ap-
proach addresses this problem by consid-
ering the structure of table and the syn-
tax of SQL language. The quality of
the generated SQL query is significant-
ly improved through (1) learning to repli-
cate content from column names, cells
or SQL keywords; and (2) improving the
generation of WHERE clause by leverag-
ing the column-cell relation. Experiments
are conducted on WikiSQL, a recently re-
leased dataset with the largest question-
SQL pairs. Our approach significantly im-
proves the state-of-the-art execution accu-
racy from 69.0% to 74.4%.

1 Introduction

We focus on semantic parsing that maps natu-
ral language utterances to executable programs
(Zelle and Mooney, 1996; Wong and Mooney,
2007; Zettlemoyer and Collins, 2007; Kwiatkows-
ki et al., 2011; Pasupat and Liang, 2015; Iyer et al.,
2017; Iyyer et al., 2017). In this work, we regard
SQL as the programming language, which could
be executed on a table or a relational database to
obtain an outcome. Datasets are the main driv-
er of progress for statistical approaches in se-
mantic parsing (Liang, 2016). Recently, Zhong

∗Work is done during internship at Microsoft Research
Asia.

et al. (2017) release WikiSQL, the largest hand-
annotated semantic parsing dataset which is an
order of magnitude larger than other datasets in
terms of both the number of logical forms and the
number of tables. Pointer network (Vinyals et al.,
2015) based approach is developed, which gener-
ates a SQL query word-by-word through replicat-
ing from a word sequence consisting of question
words, column names and SQL keywords. How-
ever, a large portion of generated results is incor-
rect or not executable due to the mismatch be-
tween question words and column names (or cell-
s). This also reflects the real scenario where users
do not always use exactly the same column name
or cell content to express the question.

To address the aforementioned problem, we
present a generative semantic parser that consid-
ers the structure of table and the syntax of SQL
language. The approach is partly inspired by the
success of structure/grammar driven neural net-
work approaches in semantic parsing (Xiao et al.,
2016; Krishnamurthy et al., 2017). Our approach
is based on pointer networks, which encodes the
question into continuous vectors, and synthesizes
the SQL query with three channels. The model
learns when to generate a column name, a cell or
a SQL keyword. We further incorporate column-
cell relation to mitigate the ill-formed outcomes.

We conduct experiments on WikiSQL. Results
show that our approach outperforms existing sys-
tems, improving state-of-the-art execution accura-
cy to 74.4% and logical form accuracy to 60.7%.
An extensive analysis reveals the advantages and
limitations of our approach.

2 Task Formulation and Dataset

As shown in Figure 1, we focus on sequence-to-
SQL generation in this work. Formally, the task
takes a question q and a table t consisting of n col-
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Question： what 's the total number of songs 
originally performed by anna nalick ?

Sequence-to-SQL Generation 

𝑆𝐸𝐿𝐸𝐶𝑇 𝐶𝑂𝑈𝑁𝑇 𝑆𝑜𝑛𝑔 𝑐ℎ𝑜𝑖𝑐𝑒 𝑊𝐻𝐸𝑅𝐸 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑎𝑟𝑡𝑖𝑠𝑡 = 𝑎𝑛𝑛𝑎 𝑐ℎ𝑟𝑖𝑠𝑡𝑖𝑛𝑒 𝑛𝑎𝑙𝑖𝑐𝑘SQL：

SELECT aggregator

SELECT column

WHERE column

WHERE operator

WHERE value

1

Answer

Execution

Episode Song choice Original artist

Top 80 I Try Macy Gray

Top 40 Breathe (2 AM) Anna Christine Nalick

Top 22 Put Your Records On Corinne Bailey Rae

Top 18 Sweet Ones Sarah Slean

Top 10 Inside and Out Bee Gees

Table

SELECT clause WHERE clause

Figure 1: An brief illustration of the task. The focus of this work is sequence-to-SQL generation.

umn names and n×m cells as the input, and out-
puts a SQL query y. We do not consider the join
operation over multiple relational tables, which we
leave in the future work.

We use WikiSQL (Zhong et al., 2017), the
largest hand-annotated semantic parsing dataset
to date which consists of 87,726 questions and
SQL queries distributed across 26,375 tables from
Wikipedia.

3 Related Work

Semantic Parsing. Semantic parsing aims to
map natural language utterances to programs (e.g.,
logical forms), which will be executed to obtain
the answer (denotation) (Zettlemoyer and Collins,
2005; Liang et al., 2011; Berant et al., 2013; Poon,
2013; Krishnamurthy and Kollar, 2013; Pasupat
and Liang, 2016; Sun et al., 2016; Jia and Liang,
2016; Kočiský et al., 2016; Lin et al., 2017). Exist-
ing studies differ from (1) the form of the knowl-
edge base, e.g. facts from Freebase, a table (or
relational database), an image (Suhr et al., 2017;
Johnson et al., 2017; Hu et al., 2017; Goldman
et al., 2017) or a world state (Long et al., 2016);
(2) the programming language, e.g. first-order
logic, lambda calculus, lambda DCS, SQL, pa-
rameterized neural programmer (Yin et al., 2015;
Neelakantan et al., 2016), or coupled distribut-
ed and symbolic executors (Mou et al., 2017);
(3) the supervision used for learning the seman-
tic parser, e.g. question-denotation pairs, binary
correct/incorrect feedback (Artzi and Zettlemoy-
er, 2013), or richer supervision of question-logical
form pairs (Dong and Lapata, 2016). In this work,
we study semantic parsing over tables, which is
critical for users to access relational databases
with natural language, and could serve users’ in-

formation need for structured data on the web. We
use SQL as the programming language, which has
a broad acceptance to programmers.

Natural Language Interface for Databases.
Our work relates to the area of accessing database
with natural language interface (Dahl et al., 1994;
Brad et al., 2017). Popescu et al. (2003) use a
parser to parse the question, and then use lexi-
con matching between question and the table col-
umn names/cells. Giordani and Moschitti (2012)
parse the question with dependency parser, com-
pose candidate SQL queries with heuristic rules,
and use kernel based SVM ranker to rank the re-
sults. Li and Jagadish (2014) translate natural lan-
guage utterances into SQL queries based on de-
pendency parsing results, and interact with users
to ensure the correctness of the interpretation pro-
cess. Yaghmazadeh et al. (2017) build a semantic
parser on the top of SEMPRE (Pasupat and Liang,
2015) to get a SQL sketch, which only has the
SQL shape and will be subsequently completed
based on the table content. Iyer et al. (2017) map-
s utterances to SQL queries through sequence-to-
sequence learning. User feedbacks are incorporat-
ed to reduce the number of queries to be labeled.
Zhong et al. (2017) develop an augmented point-
er network, which is further improved with rein-
forcement learning for SQL sequence prediction.
Xu et al. (2017) adopts a sequence-to-set model to
predict WHERE columns, and uses an attentional
model to predict the slots in where clause.

Different from (Iyer et al., 2017; Zhong et al.,
2017), our approach leverages SQL syntax and ta-
ble structure. Compared to (Popescu et al., 2003;
Giordani and Moschitti, 2012; Yaghmazadeh
et al., 2017), our approach is end-to-end learning
and independent of a syntactic parser or manu-
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ally designed templates. We are aware of exist-
ing studies that combine reinforcement learning
and maximum likelihood estimation (MLE) (Guu
et al., 2017; Mou et al., 2017; Liang et al., 2017).
However, the focus of this work is the design of
the neural architecture, despite we also implement
an RL strategy (refer to §4.4).

Structure/Grammar Guided Neural Decoder
Our approach could be viewed as an extension
of the sequence-to-sequence learning (Sutskever
et al., 2014; Bahdanau et al., 2015) with a tai-
lored neural decoder driven by the characteristic
of the target language (Yin and Neubig, 2017; Ra-
binovich et al., 2017). Methods with similar in-
tuitions have been developed for language mod-
eling (Dyer et al., 2016), neural machine transla-
tion (Wu et al., 2017) and lambda calculus based
semantic parsing (Dong and Lapata, 2016; Krish-
namurthy et al., 2017). The difference is that our
model is developed for sequence-to-SQL genera-
tion, in which table structure and SQL syntax are
considered.

4 Methodology

We first describe the background on pointer net-
works, and then present our approach that consid-
ers the table structure and the SQL syntax.

4.1 Background: Pointer Networks
Pointer networks is originally introduced by
(Vinyals et al., 2015), which takes a sequence of
elements as the input and outputs a sequence of
discrete tokens corresponding to positions in the
input sequence. The approach has been success-
fully applied in reading comprehension (Kadlec
et al., 2016) for pointing to the positions of answer
span from the document, and also in sequence-
to-sequence based machine translation (Gulcehre
et al., 2016) and text summarization (Gu et al.,
2016) for replicating rare words from the source
sequence to the target sequence.

The approach of Zhong et al. (2017) is based
on pointer networks. The encoder is a recurrent
neural network (RNN) with gated recurrent unit
(GRU) (Cho et al., 2014), whose input is the con-
catenation of question words, words from column
names and SQL keywords. The decoder is anoth-
er GRU based RNN, which works in a sequential
way and generates a word at each time step. The
generation of a word is actually selectively repli-
cating a word from the input sequence, the prob-

ability distribution of which is calculated with an
attention mechanism (Bahdanau et al., 2015). The
probability of generating the i-th word xi in the in-
put sequence at the t-th time step is calculated as
Equation 1, where hdect is the decoder hidden state
at the t-th time step, henci is the encoder hidden
state of the word xi, Wa is the model parameter.

p(yt = xi|y<t, x) ∝ exp(Wa[h
dec
t ;henci ]) (1)

It is worth to note that if a column name con-
sists of multiple words (such as “original artist”
in Figure 1), these words are separated in the in-
put sequence. The approach has no guarantee that
a multi-word column name could be successively
generated, which would affect the executability of
the generated SQL query.

4.2 STAMP: Syntax- and Table- Aware
seMantic Parser

Figure 2 illustrates an overview of the proposed
model, which is abbreviated as STAMP. Different
from Zhong et al. (2017), the word is not the basic
unit to be generated in STAMP. As is shown, there
are three “channels” in STAMP, among which the
column channel predicts a column name, the value
channel predicts a table cell and the SQL channel
predicts a SQL keyword. Accordingly, the proba-
bility of generating a target token is formulated in
Equation 2, where zt stands for the channel select-
ed by the switching gate, pz(·) is the probability
to choose a channel, and pw(·) is similar to Equa-
tion 1 which is a probability distribution over the
tokens from one of the three channels.

p(yt|y<t, x) =
∑

zt

pw(yt|zt, y<t, x)pz(zt|y<t, x)

(2)
One advantage of this architecture is that it in-
herently addresses the problem of generating par-
tial column name/cell because an entire column
name/cell is the basic unit to be generated. Anoth-
er advantage is that the column-cell relation and
question-cell connection can be naturally integrat-
ed in the model, which will be described below.

Specifically, our encoder takes a question as the
input. Bidirectional RNN with GRU unit is ap-
plied to the question, and the concatenation of both
ends is used as the initial state of the decoder. An-
other bidirectional RNN is used to compute the
representation of a column name (or a cell), in
case that each unit contains multiple words (Dong

363



TableQuestion SQL

𝑆𝐸𝐿𝐸𝐶𝑇,𝑊𝐻𝐸𝑅𝐸, 𝐶𝑂𝑈𝑁𝑇,
𝑀𝐼𝑁,𝑀𝐴𝑋, 𝐴𝑁𝐷,>, <,=.

Pick # CFL Team Player Position College

27 Hamilton Tiger-Cats Connor Healy DB Wilfrid Laurier

28 Calgary Stampeders Anthony Forgone OL York

29 Toronto Argonauts Frank Hoffman DL York

linking

Decoder

Table Structure SQL Syntax

Encoder

<𝑆> 𝑆𝐸𝐿𝐸𝐶𝑇 𝐶𝑂𝑈𝑁𝑇 𝐶𝐹𝐿 𝑇𝑒𝑎𝑚 𝑊𝐻𝐸𝑅𝐸 𝐶𝑜𝑙𝑙𝑒𝑔𝑒 = “𝑌𝑜𝑟𝑘”
column valueSQL columnSQL SQL SQL

SQL SQL

value

column

SQL

value

column column

value

𝑆𝐸𝐿𝐸𝐶𝑇
𝑊𝐻𝐸𝑅𝐸

𝑀𝐼𝑁

𝐶𝑂𝑈𝑁𝑇

𝑀𝐴𝑋

𝐴𝑁𝐷
>

<

=

SQL

York

Wilfrid Laurier

York

𝒕 = 𝟎 𝒕 = 𝟐 𝒕 = 𝟔

Figure 2: An illustration of the proposed approach. At each time step, a switching gate selects a channel
to predict a column name (maybe composed of multiple words), a cell or a SQL keyword. The words in
green below the SQL tokens stand for the results of the switching gate at each time step.

et al., 2015). Essentially, each channel is an atten-
tional neural network. For cell and SQL channels,
the input of the attention module only contains the
decoder hidden state and the representation of the
token to be calculated as follows,

psqlw (i) ∝ exp(Wsql[h
dec
t ; esqli ]) (3)

where esqli stands for the representation of the i-
th SQL keyword. As suggested by (Zhong et al.,
2017), we also concatenate the question represen-
tation into the input of the column channel in or-
der to improve the accuracy of the SELECT col-
umn. We implement the switching gate with a
feed-forward neural network, in which the output
is a softmax function and the input is the decoder
hidden state hdect .

4.3 Improved with Column-Cell Relation
We further improve the STAMP model by consid-
ering the column-cell relation, which is important
for predicting the WHERE clause.

On one hand, the column-cell relation could im-
prove the prediction of SELECT column. We ob-
serve that a cell or a part of it typically appears at
the question acting as the WHERE value, such as
“anna nalick” for “anna christine nalick”). How-
ever, a column name might be represented with
a totally different utterance, which is a “seman-
tic gap”. Supposing the question is “How many
schools did player number 3 play at?” and the
SQL query is “Select count School

Club Team where No. = 3”. We could see that the
column names “School
Club Team” and “No.” are different from their
corresponding utterances “schools”, “number” in
natural language question. Thus, table cells could
be regarded as the pivot that connects the question
and column names (the “linking” component in
Figure 2). For instance, taking the question from
Figure 2, the word “York” would help to predict
the column name as “College” rather than “Play-
er”. There might be different possible ways to
implement this intuition. We use cell information
to enhance the column name representation in this
work. The vector of a column name is further con-
catenated with a question-aware cell vector, which
is weighted averaged over the cell vectors belong-
ing to the same column. The probability distribu-
tion in the column channel is calculated as Equa-
tion 4. We use the number of cell words occurring
in the question to measure the importance of a cel-
l, which is further normalized through a softmax
function to yield the final weight αcellj ∈ [0, 1]. An
alternative measurement is to use an additional at-
tention model whose input contains the question
vector and the cell vector. We favor to the intuitive
and efficient way in this work.

pcolw (i) ∝ exp(Wcol[h
dec
t ;hcoli ;

∑

j∈coli
αcellj hcellj ])

(4)
On the other hand, the column-cell relation

could improve the prediction of the WHERE val-
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ue. To yield an executable SQL, the WHERE
value should be a cell that belongs to the same
WHERE column1. Taking Figure 2 as an example,
it should be avoided to predict a where clause like
“Player = York” because the cell “York” does not
belong to the column name “Player”. To achieve
this, we incorporate a global variable to memorize
the last predicted column name. When the switch-
ing gate selects the value channel, the cell distri-
bution is only calculated over the cells belonging
to the last predicted column name. Furthermore,
we incorporate an additional probability distribu-
tion over cells based on the aforementioned word
co-occurrence between the question and cells, and
weighted average two cell distributions, which is
calculated as follows.

pcellw (j) = λp̂cellw (j) + (1− λ)αcellj (5)

where p̂cellw (j) is the standard probability distribu-
tion obtained from the attentional neural network,
and λ is a hyper parameter which is tuned on the
dev set.

4.4 Improved with Policy Gradient
The model described so far could be convention-
ally learned via cross-entropy loss over question-
SQL pairs. However, different SQL queries might
be executed to yield the same result, and possi-
ble SQL queries of different variations could not
be exhaustively covered in the training dataset.
Two possible ways to handle this are (1) shuf-
fling the WHERE clause to generate more SQL
queries, and (2) using reinforcement learning (RL)
which regards the correctness of the executed out-
put as the goodness (reward) of the generated SQL
query. We follow Zhong et al. (2017) and adopt
a policy gradient based approach. We use a base-
line strategy (Zaremba and Sutskever, 2015) to de-
crease the learning variance. The expected reward
(Williams, 1992) for an instance is calculated as
E(yg) =

∑k
j=1 logp(yj)R(yj , y

g), where yg is the
ground truth SQL query, yj is a generated SQL
query, p(yj) is the probability of yj being generat-
ed by our model, and k is the number of sampled
SQL queries. R(yj , yg) is the same reward func-
tion defined by Zhong et al. (2017), which is +1
if yj is executed to yield the correct answer; −1 if

1This constraint is suitable in this work as we do not con-
sider the nested query in the where clause, such as “where
College = select College from table”, which is also the case
not included in the WikiSQL dataset. We leave generating
nested SQL query in the future work.

yj is a valid SQL query and is executed to get an
incorrect answer; and −2 if yj is not a valid SQL
query. In this way, model parameters could be up-
dated with policy gradient over question-answer
pairs.

4.5 Training and Inference

As the WikiSQL data contains rich supervision of
question-SQL pairs, we use them to train model
parameters. The model has two cross-entropy loss
functions, as given below. One is for the switching
gate classifier (pz) and another is for the attention-
al probability distribution of a channel (pw).

l = −
∑

t

logpz(zt|y<t, x)−
∑

t

logpw(yt|zt, y<t, x)

(6)
Our parameter setting strictly follows Zhong et al.
(2017). We represent each word using word em-
bedding2 (Pennington et al., 2014) and the mean of
the sub-word embeddings of all the n-grams in the
word (Hashimoto et al., 2016)3. The dimension
of the concatenated word embedding is 400. We
clamp the embedding values to avoid over-fitting.
We set the dimension of encoder and decoder hid-
den state as 200. During training, we random-
ize model parameters from a uniform distribution
with fan-in and fan-out, set batch size as 64, set the
learning rate of SGD as 0.5, and update the model
with stochastic gradient descent. Greedy search is
used in the inference process. We use the model
trained from question-SQL pairs as initialization
and use RL strategy to fine-tune the model. SQL
queries used for training RL are sampled based on
the probability distribution of the model learned
from question-SQL pairs. We tune the best model
on the dev set and do inference on the test set for
only once. This protocol is used in model compar-
ison as well as in ablations.

5 Experiment

We conduct experiments on the WikiSQL dataset4,
which includes 61, 297/9, 145/17, 284 examples
in the training/dev/test sets. Each instance con-
sists of a question, a table, a SQL query and a re-
sult. Following Zhong et al. (2017), we use two

2http://nlp.stanford.edu/data/glove.
840B.300d.zip

3http://www.logos.t.u-tokyo.ac.jp/
˜hassy/publications/arxiv2016jmt/jmt_
pre-trained_embeddings.tar.gz

4https://github.com/salesforce/WikiSQL
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Methods
Dev Test

Acclf Accex Acclf Accex
Attentional Seq2Seq 23.3% 37.0% 23.4% 35.9%
Aug.PntNet (Zhong et al., 2017) 44.1% 53.8% 43.3% 53.3%
Aug.PntNet (re-implemented by us) 51.5% 58.9% 52.1% 59.2%
Seq2SQL (no RL) (Zhong et al., 2017) 48.2% 58.1% 47.4% 57.1%
Seq2SQL (Zhong et al., 2017) 49.5% 60.8% 48.3% 59.4%
SQLNet (Xu et al., 2017) – 69.8% – 68.0%
Guo and Gao (2018) – 71.1% – 69.0%
STAMP (w/o cell) 58.6% 67.8% 58.0% 67.4%
STAMP (w/o column-cell relation) 59.3% 71.8% 58.4% 70.6%
STAMP 61.5% 74.8% 60.7% 74.4%
STAMP+RL 61.7% 75.1% 61.0% 74.6%

Table 1: Performances of different approaches on the WikiSQL dataset. Two evaluation metrics are
logical form accuracy (Acclf ) and execution accuracy (Accex). Our model is abbreviated as (STAMP).

evaluation metrics. One metric is logical form ac-
curacy (Acclf ), which measures the percentage of
the generated SQL queries that have exact string
match with the ground truth SQL queries. Since
different SQL queries might obtain the same re-
sult, another metric is execution accuracy (Accex),
which measures the percentage of the generated
SQL queries that obtain the correct answer.

5.1 Model Comparisons

After released, WikiSQL dataset has attracted a
lot of attentions from both industry and research
communities. Zhong et al. (2017) develop follow-
ing methods, including (1) Aug.PntNet which is
an end-to-end learning pointer network approach;
(2) Seq2SQL (no RL), in which two separate clas-
sifiers are trained for SELECT aggregator and S-
ELECT column, separately; and (3) Seq2SQL, in
which reinforcement learning is further used for
model training. Results of tattentional sequence-
to-sequence learning baseline (Attentional Se-
q2Seq) are also reported in (Zhong et al., 2017).
Xu et al. (2017) develop SQLNet, which predict-
s SELECT clause and WHERE clause separate-
ly. Sequence-to-set neural architecture and col-
umn attention are adopted to predict the WHERE
clause. Similarly, Guo and Gao (2018) develop
tailored modules to handle three components of
SQL queries, respectively. A parallel work from
(Yu et al., 2018) obtains higher execution accuracy
(82.6%) on WikiSQL, however, its model is slot-
filling based which is designed specifically for the
“select-aggregator-where” type and utilizes exter-
nal knowledge base (such as Freebase) to tag the

question words. We believe this mechanism could
improve our model as well, we leave this as a po-
tential future work.

Our model is abbreviated as (STAMP), which
is short for Syntax- and Table- Aware seMan-
tic Parser. The STAMP model in Table 1 stand-
s for the model we describe in §4.2 plus §4.3.
STAMP+RL is the model that is fine-tuned with
the reinforcement learning strategy as described in
§4.4. We implement a simplified version of our ap-
proach (w/o cell), in which WHERE values come
from the question. Thus, this setting differs from
Aug.PntNet in the generation of WHERE column.
We also study the influence of the relation-cell re-
lation (w/o column-cell relation) through remov-
ing the enhanced column vector, which is calcu-
lated by weighted averaging cell vectors.

From Table 1, we can see that STAMP per-
forms better than existing systems on WikiSQL.
Incorporating RL strategy does not significantly
improve the performance. Our simplified model,
STAMP (w/o cell), achieves better accuracy than
Aug.PntNet, which further reveals the effects of
the column channel. Results also demonstrate the
effects of incorporating the column-cell relation,
removing which leads to about 4% performance
drop in terms of Accex.

5.2 Model Analysis: Fine-Grained Accuracy

We analyze the STAMP model from different per-
spectives in this part.

Firstly, since SQL queries in WikiSQL consists
of SELECT column, SELECT aggregator, and
WHERE clause, we report the results with regard
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Methods
Dev Test

Accsel Accagg Accwhere Accsel Accagg Accwhere
Aug.PntNet (reimplemented by us) 80.9% 89.3% 62.1% 81.3% 89.7% 62.1%
Seq2SQL (Zhong et al., 2017) 89.6% 90.0% 62.1% 88.9% 90.1% 60.2%
SQLNet (Xu et al., 2017) 91.5% 90.1% 74.1% 90.9% 90.3% 71.9%
Guo and Gao (2018) 92.5% 90.1% 74.7% 91.9% 90.3% 72.8%
STAMP (w/o cell) 89.9% 89.2% 72.1% 89.2% 89.3% 71.2%
STAMP (w/o column-cell relation) 89.3% 89.2% 73.2% 88.8% 89.2% 71.8%
STAMP 89.4% 89.5% 77.1% 88.9% 89.7% 76.0%
STAMP+RL 89.6% 89.7% 77.3% 90.0% 89.9% 76.3%

Table 2: Fine-grained accuracies on the WikiSQL dev and test sets. Accuracy (Acclf ) is evaluated on
SELECT column (Accsel) , SELECT aggregator (Accagg), and WHERE clause (Accwhere), respectively.

to more fine-grained evaluation metrics over these
aspects. Results are given in Table 2, in which
the numbers of Seq2SQL and SQLNet are report-
ed in (Xu et al., 2017). We can see that the main
improvement of STAMP comes from the WHERE
clause, which is also the key challenge of the Wik-
iSQL dataset. This is consistent with our primary
intuition on improving the prediction of WHERE
column and WHERE value. The accuracies of
STAMP on SELECT column and SELECT aggre-
gator are not as high as SQLNet. The main rea-
son is that these two approaches train the SELECT
clause separately while STAMP learns all these
components in a unified paradigm.

5.3 Model Analysis: Difficulty Analysis

We study the performance of STAMP on different
portions of the test set according to the difficulties
of examples. We compare between Aug.PntNet
(re-implemented by us) and STAMP. In this work,
the difficulty of an example is reflected by the
number of WHERE columns.

Method #where Dev Test

Aug.PntNet
= 1 63.4% 63.8%
= 2 51.0% 51.8%
≥ 3 38.5% 38.1%

STAMP
= 1 80.9% 80.2%
= 2 65.1% 65.4%
≥ 3 44.1% 48.2%

Table 3: Execution accuracy (Accex) on different
groups of WikiSQL dev and test sets.

From Table 3, we can see that STAMP outper-
forms Aug.PntNet in all these groups. The accu-
racy decreases with the increase of the number of
WHERE conditions.

5.4 Model Analysis: Executable Analysis

We study the percentage of executable SQL
queries in the generated results. As shown in Table
4, STAMP significantly outperforms Aug.PntNet.
Almost all the results of STAMP are executable.
This is because STAMP avoids generating in-
complete column names or cells, and guarantees
the correlation between WHERE conditions and
WHERE values in the table.

Dev Test
Aug.PntNet 77.9% 78.7%
STAMP 99.9% 99.9%

Table 4: Percentage of the executable SQL queries
on WikiSQL dev and test sets.

5.5 Model Analysis: Case Study

We give a case study to illustrate the gener-
ated results by STAMP, with a comparison to
Aug.PntNet. Results are given in Figure 3. In
the first example, Aug.PntNet generates incom-
plete column name (“style”), which is addressed
in STAMP through replicating an entire column
name. In the second example, the WHERE value
(“brazilian jiu-jitsu”) does not belong to the gener-
ated WHERE column (“Masters”) in Aug.PntNet.
This problem is avoided in STAMP through incor-
porating the table content.

5.6 Error Analysis

We conduct error analysis on the dev set of Wik-
iSQL to show the limitation of the STAMP model
and where is the room for making further improve-
ments. We analyze the 2,302 examples which are
executed to wrong answers by the STAMP mod-
el, and find that 33.6% of them have wrong SE-
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Episode # Country City Martial Art/Style Masters Original Airdate

1.1 China Dengfeng Kung Fu ( Wushu ; Sanda ) Shi De Yang, Shi De Cheng 28-Dec-07

1.2 Philippines Manila Kali Leo T. Gaje Jr. Cristino Vasquez 4-Jan-08

1.3 Japan Tokyo Kyokushin Karate Yuzo Goda, Isamu Fukuda 11-Jan-08

1.4 Mexico Mexico City Boxing
Ignacio "Nacho" Beristáin

Tiburcio Garcia
18-Jan-08

1.5 Indonesia Bandung Pencak Silat Rita Suwanda Dadang Gunawan 25-Jan-08

1.7 South Korea Seoul Hapkido
Kim Nam Je, Bae Sung Book Ju 

Soong Weo
8-Feb-08

1.8 Brazil
Rio de 

Janeiro
Brazilian Jiu-Jitsu

Breno Sivak, Renato Barreto 

Royler Gracie
15-Feb-08

1.9 Israel Netanya Krav Maga Ran Nakash Avivit Oftek Cohen 22-Feb-08

how many masters fought using a boxing style ?Question #1:

select count masters from table where style = boxingAug.PntNet:

STAMP: select count masters from table where martial art/style = boxing

when did the episode featuring a master using brazilian jiu-jitsu air ?Question #2:

select  original airdate from table where masters = brazilian jiu-jitsuAug.PntNet:

STAMP: select  original airdate from table where martial art/style = brazilian jiu-jitsu

Figure 3: Case study on the dev set between Aug.PntNet and STAMP. These two questions are based on
the same table. Each question is followed by the generated SQL queries from the two approaches.

LECT columns, 15.7% of them have a different
number of conditions in the WHERE clause, and
53.7% of them have a different WHERE colum-
n set compared to the ground truth. Afterward-
s, we analyze a portion of randomly sampled dis-
satisfied examples. Consistent with the qualitative
results, most problems come from column predic-
tion, including both SELECT clause and WHERE
clause. Even though the overall accuracy of the
SELECT column prediction is about 90% and we
also use cell information to enhance the column
representation, this semantic gap is still the main
bottleneck. Extracting and incorporating various
expressions for a table column (i.e. relation in a re-
lational database) might be a potential way to mit-
igate this problem. Compared to column predic-
tion, the quality of cell prediction is much better
because cell content typically (partially) appears
in the question.

5.7 Transfers to WikiTableQuestions

WikiTableQuestions (Pasupat and Liang, 2015) is
a widely used dataset for semantic parsing. To fur-
ther test the performance of our approach, we con-
duct an additional transfer learning experiment.
Firstly, we directly apply the STAMP mod-
el trained on WikiSQL to WikiTableQuestions,
which is an unsupervised learning setting for the
WikiTableQuestions dataset. Results show that the
test accuracy of STAMP in this setting is 14.5%,
which has a big gap between best systems on
WikiTableQuestions, where Zhang et al. (2017)

and Krishnamurthy et al. (2017) yield 43.3% and
43.7%, respectively. Furthermore, we apply the
learnt STAMP model to generate SQL queries on
natural language questions from WikiTableQues-
tions, and regard the generated SQL queries which
could be executed to correct answers as addi-
tional pseudo question-SQL pairs. In this way,
the STAMP model learnt from a combination of
WikiSQL and pseudo question-SQL pairs could
achieve 21.0% on the test set. We find that this
big gap is caused by the difference between the
two datasets. Among 8 types of questions in Wik-
iTableQuestions, half of them including {“Union”,
“Intersection”, “Reverse”, “Arithmetic”} are not
covered in the WikiSQL dataset. It is an inter-
esting direction to leverage algorithms developed
from two datasets to improve one another.

5.8 Discussion

Compared to slot-filling based models that restric-
t target SQL queries to fixed forms of “select-
aggregator-where”, our model is less tailored. We
believe that it is easy to expand our model to gen-
erate nested SQL queries or JOIN clauses, which
could also be easily trained with back-propagation
if enough training instances of these SQL types are
available. For example, we could incorporate a hi-
erarchical “value” channel to handle nest queries.
Let us suppose our decoder works horizontally
that next generated token is at the right hand of the
current token. Inspired by chunk-based decoder
for neural machine translation (Ishiwatari et al.,
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2017), we could increase the depth of the “value”
channel to generates tokens of a nested WHERE
value along the vertical axis. During inference, an
addition gating function might be necessary to de-
termine whether to generate a nested query, fol-
lowed by the generation of WHERE value. An in-
tuitive way that extends our model to handle JOIN
clauses is to add the 4th channel, which predict-
s a table from a collection of tables. Therefore,
the decoder should learn to select one of the four
channels at each time step. Accordingly, we need
to add “from” as a new SQL keyword in order to
generate SQL queries including “from xxxTable”.

In terms of the syntax of SQL, the grammar we
used in this work could be regarded as shallow
syntax, such as three channels and column-cell re-
lation. We do not use deep syntax, such as the s-
ketch of SQL language utilized in some slot-filling
models, because incorporating them would make
the model clumpy. Instead, we let the model to
learn the sequential and compositional relations of
SQL queries automatically from data. Empirical
results show that our model learns these patterns
well.

6 Conclusion and Future Work

In this work, we develop STAMP, a Syntax- and
Table- Aware seMantic Parser that automatically
maps natural language questions to SQL queries,
which could be executed on web table or relational
dataset to get the answer. STAMP has three chan-
nels, and it learns to switch to which channel at
each time step. STAMP considers cell information
and the relation between cell and column name
in the generation process. Experiments are con-
ducted on the WikiSQL dataset. Results show that
STAMP achieves the new state-of-the-art perfor-
mance on WikiSQL. We conduct extensive exper-
iment analysis to show advantages and limitations
of our approach, and where is the room for others
to make further improvements.

SQL language has more complicated queries
than the cases included in the WikiSQL dataset,
including (1) querying over multiple relational
databases, (2) nested SQL query as condition val-
ue, (3) more operations such as “group by” and
“order by”, etc. In this work, the STAMP model is
not designed for the first and second cases, but it
could be easily adapted to the third case through
incorporating additional SQL keywords and of
course the learning of which requires dataset of the

same type. In the future, we plan to improve the
accuracy of the column prediction component. We
also plan to build a large-scale dataset that consid-
ers more sophisticated SQL queries. We also plan
to extend the approach to low-resource scenarios
(Feng et al., 2018).

Acknowledgments

We thank Yaming Sun for her great help. We al-
so would like to thank three anonymous reviewers
for their valuable comments and suggestions. This
research was partly supported by National Natural
Science Foundation of China(No. 61632011 and
No.61772156, and No.61472107).

References
Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-

pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion for Computational Linguistics 1:49–62.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. Proceeding of ICLR
.

Jonathan Berant, Andrew Chou, Roy Frostig, and Per-
cy Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In EMNLP. 5, page 6.

Florin Brad, Radu Cristian Alexandru Iacob,
Ionel Alexandru Hosu, and Traian Rebedea.
2017. Dataset for a neural natural language in-
terface for databases (nnlidb). In Proceedings
of the Eighth International Joint Conference on
Natural Language Processing (Volume 1: Long
Papers). Asian Federation of Natural Language
Processing, Taipei, Taiwan, pages 906–914.
http://www.aclweb.org/anthology/I17-1091.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Association
for Computational Linguistics, Doha, Qatar, pages
1724–1734. http://www.aclweb.org/anthology/D14-
1179.

Deborah A Dahl, Madeleine Bates, Michael Brown,
William Fisher, Kate Hunicke-Smith, David Pallett,
Christine Pao, Alexander Rudnicky, and Elizabeth
Shriberg. 1994. Expanding the scope of the atis
task: The atis-3 corpus. In Proceedings of the work-
shop on Human Language Technology. Association
for Computational Linguistics, pages 43–48.

369



Li Dong and Mirella Lapata. 2016. Language
to logical form with neural attention. In Pro-
ceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers). Association for Computation-
al Linguistics, Berlin, Germany, pages 33–43.
http://www.aclweb.org/anthology/P16-1004.

Li Dong, Furu Wei, Hong Sun, Ming Zhou, and Ke Xu.
2015. A hybrid neural model for type classification
of entity mentions. In IJCAI. pages 1243–1249.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural net-
work grammars. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, San Diego, California, pages 199–209.
http://www.aclweb.org/anthology/N16-1024.

Xiaocheng Feng, Xiachong Feng, Bing Qin, Zhangyin
Feng, and Ting Liu. 2018. Improving low resource
named entity recognition using cross-lingual knowl-
edge transfer. In IJCAI.

Alessandra Giordani and Alessandro Moschitti. 2012.
Translating questions to sql queries with genera-
tive parsers discriminatively reranked. In COLING
(Posters). pages 401–410.

Omer Goldman, Veronica Latcinnik, Udi Nave-
h, Amir Globerson, and Jonathan Berant.
2017. Weakly-supervised semantic parsing
with abstract examples. CoRR abs/1711.05240.
http://arxiv.org/abs/1711.05240.

Jiatao Gu, Zhengdong Lu, Hang Li, and Vic-
tor O.K. Li. 2016. Incorporating copying mech-
anism in sequence-to-sequence learning. In Pro-
ceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers). Association for Computation-
al Linguistics, Berlin, Germany, pages 1631–1640.
http://www.aclweb.org/anthology/P16-1154.

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallap-
ati, Bowen Zhou, and Yoshua Bengio. 2016.
Pointing the unknown words. In Proceed-
ings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers). Association for Computation-
al Linguistics, Berlin, Germany, pages 140–149.
http://www.aclweb.org/anthology/P16-1014.

Tong Guo and Huilin Gao. 2018. Bidirectional atten-
tion for SQL generation. CoRR abs/1801.00076.
http://arxiv.org/abs/1801.00076.

Kelvin Guu, Panupong Pasupat, Evan Liu, and Percy
Liang. 2017. From language to programs: Bridg-
ing reinforcement learning and maximum marginal
likelihood. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistic-
s. pages 1051–1062.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2016. A joint many-task
model: Growing a neural network for multiple nlp
tasks. arXiv preprint arXiv:1611.01587 .

Ronghang Hu, Jacob Andreas, Marcus Rohrbach,
Trevor Darrell, and Kate Saenko. 2017. Learning
to reason: End-to-end module networks for visual
question answering. International Conference on
Computer Vision (ICCV). .

Shonosuke Ishiwatari, Jingtao Yao, Shujie Liu, Mu Li,
Ming Zhou, Naoki Yoshinaga, Masaru Kitsuregawa,
and Weijia Jia. 2017. Chunk-based decoder for neu-
ral machine translation. In Proceedings of the 55th
Annual Meeting of the Association for Computation-
al Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, Vancouver, Canada,
pages 1901–1912. http://aclweb.org/anthology/P17-
1174.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayan-
t Krishnamurthy, and Luke Zettlemoyer. 2017.
Learning a neural semantic parser from user feed-
back. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computation-
al Linguistics, Vancouver, Canada, pages 963–973.
http://aclweb.org/anthology/P17-1089.

Mohit Iyyer, Wen-tau Yih, and Ming-Wei Chang. 2017.
Search-based neural structured learning for sequen-
tial question answering. In Proceedings of the 55th
Annual Meeting of the Association for Computation-
al Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, Vancouver, Canada,
pages 1821–1831. http://aclweb.org/anthology/P17-
1167.

Robin Jia and Percy Liang. 2016. Data recom-
bination for neural semantic parsing. In Pro-
ceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers). Association for Computation-
al Linguistics, Berlin, Germany, pages 12–22.
http://www.aclweb.org/anthology/P16-1002.

Justin Johnson, Bharath Hariharan, Laurens van der
Maaten, Judy Hoffman, Li Fei-Fei, C Lawrence Z-
itnick, and Ross Girshick. 2017. Inferring and exe-
cuting programs for visual reasoning. International
Conference on Computer Vision (ICCV). .

Rudolf Kadlec, Martin Schmid, Ondřej Bajgar, and
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Abstract

The ability to consolidate information of
different types is at the core of intelli-
gence, and has tremendous practical value
in allowing learning for one task to benefit
from generalizations learned for others. In
this paper we tackle the challenging task of
improving semantic parsing performance,
taking UCCA parsing as a test case, and
AMR, SDP and Universal Dependencies
(UD) parsing as auxiliary tasks. We ex-
periment on three languages, using a uni-
form transition-based system and learning
architecture for all parsing tasks. Despite
notable conceptual, formal and domain
differences, we show that multitask learn-
ing significantly improves UCCA parsing
in both in-domain and out-of-domain set-
tings. Our code is publicly available.1

1 Introduction

Semantic parsing has arguably yet to reach its
full potential in terms of its contribution to down-
stream linguistic tasks, partially due to the limited
amount of semantically annotated training data.
This shortage is more pronounced in languages
other than English, and less researched domains.

Indeed, recent work in semantic parsing has tar-
geted, among others, Abstract Meaning Represen-
tation (AMR; Banarescu et al., 2013), bilexical Se-
mantic Dependencies (SDP; Oepen et al., 2016)
and Universal Conceptual Cognitive Annotation
(UCCA; Abend and Rappoport, 2013). While
these schemes are formally different and focus on
different distinctions, much of their semantic con-
tent is shared (Abend and Rappoport, 2017).

Multitask learning (MTL; Caruana, 1997) al-
lows exploiting the overlap between tasks to ef-

1http://github.com/danielhers/tupa

fectively extend the training data, and has greatly
advanced with neural networks and representation
learning (see §2). We build on these ideas and pro-
pose a general transition-based DAG parser, able
to parse UCCA, AMR, SDP and UD (Nivre et al.,
2016). We train the parser using MTL to obtain
significant improvements on UCCA parsing over
single-task training in (1) in-domain and (2) out-
of-domain settings in English; (3) an in-domain
setting in German; and (4) an in-domain setting in
French, where training data is scarce.

The novelty of this work is in proposing a gen-
eral parsing and learning architecture, able to ac-
commodate such widely different parsing tasks,
and in leveraging it to show benefits from learn-
ing them jointly.

2 Related Work

MTL has been used over the years for NLP tasks
with varying degrees of similarity, examples in-
cluding joint classification of different arguments
in semantic role labeling (Toutanova et al., 2005),
and joint parsing and named entity recognition
(Finkel and Manning, 2009). Similar ideas, of
parameter sharing across models trained with dif-
ferent datasets, can be found in studies of do-
main adaptation (Blitzer et al., 2006; Daume III,
2007; Ziser and Reichart, 2017). For parsing,
domain adaptation has been applied successfully
in parser combination and co-training (McClosky
et al., 2010; Baucom et al., 2013).

Neural MTL has mostly been effective in tack-
ling formally similar tasks (Søgaard and Gold-
berg, 2016), including multilingual syntactic de-
pendency parsing (Ammar et al., 2016; Guo et al.,
2016), as well as multilingual (Duong et al., 2017),
and cross-domain semantic parsing (Herzig and
Berant, 2017; Fan et al., 2017).

Sharing parameters with a low-level task has
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shown great benefit for transition-based syntactic
parsing, when jointly training with POS tagging
(Bohnet and Nivre, 2012; Zhang and Weiss, 2016),
and with lexical analysis (Constant and Nivre,
2016; More, 2016). Recent work has achieved
state-of-the-art results in multiple NLP tasks by
jointly learning the tasks forming the NLP stan-
dard pipeline using a single neural model (Col-
lobert et al., 2011; Hashimoto et al., 2017), thereby
avoiding cascading errors, common in pipelines.

Much effort has been devoted to joint learn-
ing of syntactic and semantic parsing, including
two CoNLL shared tasks (Surdeanu et al., 2008;
Hajič et al., 2009). Despite their conceptual and
practical appeal, such joint models rarely outper-
form the pipeline approach (Lluı́s and Màrquez,
2008; Henderson et al., 2013; Lewis et al., 2015;
Swayamdipta et al., 2016, 2017).

Peng et al. (2017a) performed MTL for SDP
in a closely related setting to ours. They tackled
three tasks, annotated over the same text and shar-
ing the same formal structures (bilexical DAGs),
with considerable edge overlap, but differing in
target representations (see §3). For all tasks, they
reported an increase of 0.5-1 labeled F1 points.
Recently, Peng et al. (2018) applied a similar ap-
proach to joint frame-semantic parsing and seman-
tic dependency parsing, using disjoint datasets,
and reported further improvements.

3 Tackled Parsing Tasks

In this section, we outline the parsing tasks we ad-
dress. We focus on representations that produce
full-sentence analyses, i.e., produce a graph cov-
ering all (content) words in the text, or the lexical
concepts they evoke. This contrasts with “shal-
low” semantic parsing, primarily semantic role la-
beling (SRL; Gildea and Jurafsky, 2002; Palmer
et al., 2005), which targets argument structure phe-
nomena using flat structures. We consider four
formalisms: UCCA, AMR, SDP and Universal
Dependencies. Figure 1 presents one sentence an-
notated in each scheme.

Universal Conceptual Cognitive Annotation.
UCCA (Abend and Rappoport, 2013) is a seman-
tic representation whose main design principles
are ease of annotation, cross-linguistic applicabil-
ity, and a modular architecture. UCCA represents
the semantics of linguistic utterances as directed
acyclic graphs (DAGs), where terminal (childless)
nodes correspond to the text tokens, and non-
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Figure 1: Example graph for each task. Figure 1a presents
a UCCA graph. The dashed edge is remote, while the blue
node and its outgoing edges represent inter-Scene linkage.
Pre-terminal nodes and edges are omitted for brevity. Fig-
ure 1b presents an AMR graph. Text tokens are not part of
the graph, and must be matched to concepts and constants by
alignment. Variables are represented by their concepts. Fig-
ure 1c presents a DM semantic dependency graph, containing
multiple roots: “After”, “moved” and “to”, of which “moved”
is marked as top. Punctuation tokens are excluded from SDP
graphs. Figure 1d presents a UD tree. Edge labels express
syntactic relations.

terminal nodes to semantic units that participate in
some super-ordinate relation. Edges are labeled,
indicating the role of a child in the relation the par-
ent represents. Nodes and edges belong to one of
several layers, each corresponding to a “module”
of semantic distinctions. UCCA’s foundational
layer (the only layer for which annotated data ex-
ists) mostly covers predicate-argument structure,
semantic heads and inter-Scene relations.

UCCA distinguishes primary edges, corre-
sponding to explicit relations, from remote edges
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(appear dashed in Figure 1a) that allow for a unit
to participate in several super-ordinate relations.
Primary edges form a tree in each layer, whereas
remote edges enable reentrancy, forming a DAG.

Abstract Meaning Representation. AMR (Ba-
narescu et al., 2013) is a semantic representation
that encodes information about named entities, ar-
gument structure, semantic roles, word sense and
co-reference. AMRs are rooted directed graphs,
in which both nodes and edges are labeled. Most
AMRs are DAGs, although cycles are permitted.

AMR differs from the other schemes we con-
sider in that it does not anchor its graphs in the
words of the sentence (Figure 1b). Instead, AMR
graphs connect variables, concepts (from a pre-
defined set) and constants (which may be strings
or numbers). Still, most AMR nodes are alignable
to text tokens, a tendency used by AMR parsers,
which align a subset of the graph nodes to a subset
of the text tokens (concept identification). In this
work, we use pre-aligned AMR graphs.

Despite the brief period since its inception,
AMR has been targeted by a number of works,
notably in two SemEval shared tasks (May, 2016;
May and Priyadarshi, 2017). To tackle its vari-
ety of distinctions and unrestricted graph struc-
ture, AMR parsers often use specialized meth-
ods. Graph-based parsers construct AMRs by
identifying concepts and scoring edges between
them, either in a pipeline fashion (Flanigan et al.,
2014; Artzi et al., 2015; Pust et al., 2015; Foland
and Martin, 2017), or jointly (Zhou et al., 2016).
Another line of work trains machine translation
models to convert strings into linearized AMRs
(Barzdins and Gosko, 2016; Peng et al., 2017b;
Konstas et al., 2017; Buys and Blunsom, 2017b).
Transition-based AMR parsers either use depen-
dency trees as pre-processing, then mapping them
into AMRs (Wang et al., 2015a,b, 2016; Goodman
et al., 2016), or use a transition system tailored to
AMR parsing (Damonte et al., 2017; Ballesteros
and Al-Onaizan, 2017). We differ from the above
approaches in addressing AMR parsing using the
same general DAG parser used for other schemes.

Semantic Dependency Parsing. SDP uses a set
of related representations, targeted in two recent
SemEval shared tasks (Oepen et al., 2014, 2015),
and extended by Oepen et al. (2016). They cor-
respond to four semantic representation schemes,
referred to as DM, PAS, PSD and CCD, represent-

ing predicate-argument relations between content
words in a sentence. All are based on semantic for-
malisms converted into bilexical dependencies—
directed graphs whose nodes are text tokens.
Edges are labeled, encoding semantic relations be-
tween the tokens. Non-content tokens, such as
punctuation, are left out of the analysis (see Fig-
ure 1c). Graphs containing cycles have been re-
moved from the SDP datasets.

We use one of the representations from the
SemEval shared tasks: DM (DELPH-IN MRS),
converted from DeepBank (Flickinger et al.,
2012), a corpus of hand-corrected parses from
LinGO ERG (Copestake and Flickinger, 2000), an
HPSG (Pollard and Sag, 1994) using Minimal Re-
cursion Semantics (Copestake et al., 2005).

Universal Dependencies. UD (Nivre et al.,
2016, 2017) has quickly become the dominant de-
pendency scheme for syntactic annotation in many
languages, aiming for cross-linguistically consis-
tent and coarse-grained treebank annotation. For-
mally, UD uses bilexical trees, with edge labels
representing syntactic relations between words.

We use UD as an auxiliary task, inspired by pre-
vious work on joint syntactic and semantic parsing
(see §2). In order to reach comparable analyses
cross-linguistically, UD often ends up in annota-
tion that is similar to the common practice in se-
mantic treebanks, such as linking content words to
content words wherever possible. Using UD fur-
ther allows conducting experiments on languages
other than English, for which AMR and SDP an-
notated data is not available (§7).

In addition to basic UD trees, we use the en-
hanced++ UD graphs available for English, which
are generated by the Stanford CoreNLP convert-
ers (Schuster and Manning, 2016).2 These include
additional and augmented relations between con-
tent words, partially overlapping with the notion
of remote edges in UCCA: in the case of control
verbs, for example, a direct relation is added in
enhanced++ UD between the subordinated verb
and its controller, which is similar to the seman-
tic schemes’ treatment of this construction.

4 General Transition-based DAG Parser

All schemes considered in this work exhibit reen-
trancy and discontinuity (or non-projectivity), to
varying degrees. In addition, UCCA and AMR

2http://github.com/stanfordnlp/CoreNLP
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contain non-terminal nodes. To parse these
graphs, we extend TUPA (Hershcovich et al.,
2017), a transition-based parser originally devel-
oped for UCCA, as it supports all these structural
properties. TUPA’s transition system can yield any
labeled DAG whose terminals are anchored in the
text tokens. To support parsing into AMR, which
uses graphs that are not anchored in the tokens,
we take advantage of existing alignments of the
graphs with the text tokens during training (§5).

First used for projective syntactic depen-
dency tree parsing (Nivre, 2003), transition-based
parsers have since been generalized to parse
into many other graph families, such as (dis-
continuous) constituency trees (e.g., Zhang and
Clark, 2009; Maier and Lichte, 2016), and DAGs
(e.g., Sagae and Tsujii, 2008; Du et al., 2015).
Transition-based parsers apply transitions incre-
mentally to an internal state defined by a buffer B
of remaining tokens and nodes, a stack S of unre-
solved nodes, and a labeled graphG of constructed
nodes and edges. When a terminal state is reached,
the graph G is the final output. A classifier is used
at each step to select the next transition, based on
features that encode the current state.

4.1 TUPA’s Transition Set

Given a sequence of tokens w1, . . . , wn, we pre-
dict a rooted graph G whose terminals are the to-
kens. Parsing starts with the root node on the
stack, and the input tokens in the buffer.

The TUPA transition set includes the standard
SHIFT and REDUCE operations, NODEX for cre-
ating a new non-terminal node and an X-labeled
edge, LEFT-EDGEX and RIGHT-EDGEX to create
a new primary X-labeled edge, LEFT-REMOTEX
and RIGHT-REMOTEX to create a new remote
X-labeled edge, SWAP to handle discontinuous
nodes, and FINISH to mark the state as terminal.

Although UCCA contains nodes without any
text tokens as descendants (called implicit units),
these nodes are infrequent and only cover 0.5% of
non-terminal nodes. For this reason we follow pre-
vious work (Hershcovich et al., 2017) and discard
implicit units from the training and evaluation, and
so do not include transitions for creating them.

In AMR, implicit units are considerably more
common, as any unaligned concept with no
aligned descendents is implicit (about 6% of the
nodes). Implicit AMR nodes usually result from
alignment errors, or from abstract concepts which
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Classifier
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After graduation to Paris. . .
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transition
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Figure 2: Illustration of the TUPA model, adapted from Her-
shcovich et al. (2017). Top: parser state. Bottom: BiLTSM
architecture.

have no explicit realization in the text (Buys and
Blunsom, 2017a). We ignore implicit nodes when
training on AMR as well. TUPA also does not sup-
port node labels, which are ubiquitous in AMR but
absent in UCCA structures (only edges are labeled
in UCCA). We therefore only produce edge labels
and not node labels when training on AMR.

4.2 Transition Classifier

To predict the next transition at each step, we use
a BiLSTM with embeddings as inputs, followed
by an MLP and a softmax layer for classification
(Kiperwasser and Goldberg, 2016). The model
is illustrated in Figure 2. Inference is performed
greedily, and training is done with an oracle that
yields the set of all optimal transitions at a given
state (those that lead to a state from which the gold
graph is still reachable). Out of this set, the ac-
tual transition performed in training is the one with
the highest score given by the classifier, which is
trained to maximize the sum of log-likelihoods of
all optimal transitions at each step.

Features. We use the original TUPA features,
representing the words, POS tags, syntactic depen-
dency relations, and previously predicted edge la-
bels for nodes in specific locations in the parser
state. In addition, for each token we use embed-
dings representing the one-character prefix, three-
character suffix, shape (capturing orthographic
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Figure 3: Graphs from Figure 1, after conversion to the uni-
fied DAG format (with pre-terminals omitted: each terminal
drawn in place of its parent). Figure 3a presents a converted
UCCA graph. Linkage nodes and edges are removed, but
the original graph is otherwise preserved. Figure 3b presents
a converted AMR graph, with text tokens added according
to the alignments. Numeric suffixes of op relations are re-
moved, and names collapsed. Figure 3c presents a converted
SDP graph (in the DM representation), with intermediate
non-terminal head nodes introduced. In case of reentrancy,
an arbitrary reentrant edge is marked as remote. Figure 3d
presents a converted UD graph. As in SDP, intermediate non-
terminals and head edges are introduced. While converted
UD graphs form trees, enhanced++ UD graphs may not.

features, e.g., “Xxxx”), and named entity type,3

all provided by spaCy (Honnibal and Montani,
2018).4 To the learned word vectors, we concate-
nate the 250K most frequent word vectors from

3See Supplementary Material for a full listing of features.
4http://spacy.io

fastText (Bojanowski et al., 2017),5 pre-trained
over Wikipedia and updated during training.

Constraints. As each annotation scheme has
different constraints on the allowed graph struc-
tures, we apply these constraints separately for
each task. During training and parsing, the rele-
vant constraint set rules out some of the transitions
according to the parser state. Some constraints
are task-specific, others are generic. For exam-
ple, in UCCA, a terminal may only have one par-
ent. In AMR, a concept corresponding to a Prop-
Bank frame may only have the core arguments de-
fined for the frame as children. An example of
a generic constraint is that stack nodes that have
been swapped should not be swapped again.6

5 Unified DAG Format

To apply our parser to the four target tasks (§3), we
convert them into a unified DAG format, which is
inclusive enough to allow representing any of the
schemes with very little loss of information.7

The format consists of a rooted DAG, where the
tokens are the terminal nodes. As in the UCCA
format, edges are labeled (but not nodes), and are
divided into primary and remote edges, where the
primary edges form a tree (all nodes have at most
one primary parent, and the root has none). Re-
mote edges enable reentrancy, and thus together
with primary edges form a DAG. Figure 3 shows
examples for converted graphs. Converting UCCA
into the unified format consists simply of remov-
ing linkage nodes and edges (see Figure 3a), which
were also discarded by Hershcovich et al. (2017).

Converting bilexical dependencies. To convert
DM and UD into the unified DAG format, we add
a pre-terminal for each token, and attach the pre-
terminals according to the original dependency
edges: traversing the tree from the root down, for
each head token we create a non-terminal parent
with the edge label head, and add the node’s de-
pendents as children of the created non-terminal
node (see Figures 3c and 3d). Since DM allows
multiple roots, we form a single root node, whose

5http://fasttext.cc
6 To implement this constraint, we define a swap index for

each node, assigned when the node is created. At initializa-
tion, only the root node and terminals exist. We assign the
root a swap index of 0, and for each terminal, its position in
the text (starting at 1). Whenever a node is created as a result
of a NODE transition, its swap index is the arithmetic mean
of the swap indices of the stack top and buffer head.

7See Supplementary Material for more conversion details.
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Figure 4: MTL model. Token representations are computed
both by a task-specific and a shared BiLSTM. Their outputs
are concatenated with the parser state embedding, identical to
Figure 2, and fed into the task-specific MLP for selecting the
next transition. Shared parameters are shown in blue.

children are the original roots. The added edges
are labeled root, where top nodes are labeled top
instead. In case of reentrancy, an arbitrary parent
is marked as primary, and the rest as remote (de-
noted as dashed edges in Figure 3).

Converting AMR. In the conversion from
AMR, node labels are dropped. Since alignments
are not part of the AMR graph (see Figure 3b), we
use automatic alignments (see §7), and attach each
node with an edge to each of its aligned terminals.

Named entities in AMR are represented as a
subgraph, whose name-labeled root has a child for
each token in the name (see the two name nodes in
Figure 1b). We collapse this subgraph into a single
node whose children are the name tokens.

6 Multitask Transition-based Parsing

Now that the same model can be applied to dif-
ferent tasks, we can train it in a multitask setting.
The fairly small training set available for UCCA
(see §7) makes MTL particularly appealing, and
we focus on it in this paper, treating AMR, DM
and UD parsing as auxiliary tasks.

Following previous work, we share only some
of the parameters (Klerke et al., 2016; Søgaard and
Goldberg, 2016; Bollmann and Søgaard, 2016;
Plank, 2016; Braud et al., 2016; Martı́nez Alonso
and Plank, 2017; Peng et al., 2017a, 2018), leaving
task-specific sub-networks as well. Concretely, we
keep the BiLSTM used by TUPA for the main task
(UCCA parsing), add a BiLSTM that is shared

across all tasks, and replicate the MLP (feedfor-
ward sub-network) for each task. The BiLSTM
outputs (concatenated for the main task) are fed
into the task-specific MLP (see Figure 4). Feature
embeddings are shared across tasks.

Unlabeled parsing for auxiliary tasks. To sim-
plify the auxiliary tasks and facilitate generaliza-
tion (Bingel and Søgaard, 2017), we perform un-
labeled parsing for AMR, DM and UD, while still
predicting edge labels in UCCA parsing. To sup-
port unlabeled parsing, we simply remove all la-
bels from the EDGE, REMOTE and NODE tran-
sitions output by the oracle. This results in a
much smaller number of transitions the classifier
has to select from (no more than 10, as opposed
to 45 in labeled UCCA parsing), allowing us to
use no BiLSTMs and fewer dimensions and layers
for task-specific MLPs of auxiliary tasks (see §7).
This limited capacity forces the network to use the
shared parameters for all tasks, increasing gener-
alization (Martı́nez Alonso and Plank, 2017).

7 Experimental Setup

We here detail a range of experiments to assess
the value of MTL to UCCA parsing, training the
parser in single-task and multitask settings, and
evaluating its performance on the UCCA test sets
in both in-domain and out-of-domain settings.

Data. For UCCA, we use v1.2 of the English
Wikipedia corpus (Wiki; Abend and Rappoport,
2013), with the standard train/dev/test split (see
Table 1), and the Twenty Thousand Leagues Under
the Sea corpora (20K; Sulem et al., 2015), anno-
tated in English, French and German.8 For English
and French we use 20K v1.0, a small parallel cor-
pus comprising the first five chapters of the book.
As in previous work (Hershcovich et al., 2017),
we use the English part only as an out-of-domain
test set. We train and test on the French part using
the standard split, as well as the German corpus
(v0.9), which is a pre-release and still contains a
considerable amount of noisy annotation. Tuning
is performed on the respective development sets.

For AMR, we use LDC2017T10, identical to
the dataset targeted in SemEval 2017 (May and
Priyadarshi, 2017).9 For SDP, we use the DM
representation from the SDP 2016 dataset (Oepen

8http://github.com/huji-nlp/ucca-corpora
9http://catalog.ldc.upenn.edu/LDC2017T10
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English French German
# tokens # sentences # tokens # sentences # tokens # sentences

train dev test train dev test train dev test train dev test train dev test train dev test
UCCA
Wiki 128444 14676 15313 4268 454 503
20K 12339 506 10047 1558 1324 413 67 67 79894 10059 42366 3429 561 2164
AMR 648950 36521
DM 765025 33964
UD 458277 17062 899163 32347 268145 13814

Table 1: Number of tokens and sentences in the training, development and test sets we use for each corpus and language.

et al., 2016).10 For Universal Dependencies,
we use all English, French and German tree-
banks from UD v2.1 (Nivre et al., 2017).11 We
use the enhanced++ UD representation (Schuster
and Manning, 2016) in our English experiments,
henceforth referred to as UD++. We use only the
AMR, DM and UD training sets from standard
splits.

While UCCA is annotated over Wikipedia and
over a literary corpus, the domains for AMR, DM
and UD are blogs, news, emails, reviews, and
Q&A. This domain difference between training
and test is particularly challenging (see §9). Un-
fortunately, none of the other schemes have avail-
able annotation over Wikipedia text.

Settings. We explore the following settings: (1)
in-domain setting in English, training and test-
ing on Wiki; (2) out-of-domain setting in English,
training on Wiki and testing on 20K; (3) French in-
domain setting, where available training dataset is
small, training and testing on 20K; (4) German in-
domain setting on 20K, with somewhat noisy an-
notation. For MTL experiments, we use unlabeled
AMR, DM and UD++ parsing as auxiliary tasks in
English, and unlabeled UD parsing in French and
German.12 We also report baseline results training
only the UCCA training sets.

Training. We create a unified corpus for each
setting, shuffling all sentences from relevant
datasets together, but using only the UCCA devel-
opment set F1 score as the early stopping criterion.
In each training epoch, we use the same number of
examples from each task—the UCCA training set
size. Since training sets differ in size, we sample
this many sentences from each one. The model is
implemented using DyNet (Neubig et al., 2017).13

10http://sdp.delph-in.net/osdp-12.tgz
11http://hdl.handle.net/11234/1-2515
12We did not use AMR, DM or UD++ in French and Ger-

man, as these are only available in English.
13http://dynet.io

Multitask
Hyperparameter Single Main Aux Shared
Pre-trained word dim. 300 300
Learned word dim. 200 200
POS tag dim. 20 20
Dependency relation dim. 10 10
Named entity dim. 3 3
Punctuation dim. 1 1
Action dim. 3 3
Edge label dim. 20 20
MLP layers 2 2 1
MLP dimensions 50 50 50
BiLSTM layers 2 2 2
BiLSTM dimensions 500 300 300

Table 2: Hyperparameter settings. Middle column shows hy-
perparameters used for the single-task architecture, described
in §4.2, and right column for the multitask architecture, de-
scribed in §6. Main refers to parameters specific to the main
task—UCCA parsing (task-specific MLP and BiLSTM, and
edge label embedding), Aux to parameters specific to each
auxiliary task (task-specific MLP, but no edge label embed-
ding since the tasks are unlabeled), and Shared to parameters
shared among all tasks (shared BiLSTM and embeddings).

Hyperparameters. We initialize embeddings
randomly. We use dropout (Srivastava et al., 2014)
between MLP layers, and recurrent dropout (Gal
and Ghahramani, 2016) between BiLSTM layers,
both with p = 0.4. We also use word (α = 0.2),
tag (α = 0.2) and dependency relation (α = 0.5)
dropout (Kiperwasser and Goldberg, 2016).14 In
addition, we use a novel form of dropout, node
dropout: with a probability of 0.1 at each step,
all features associated with a single node in the
parser state are replaced with zero vectors. For op-
timization we use a minibatch size of 100, decay-
ing all weights by 10−5 at each update, and train
with stochastic gradient descent for N epochs
with a learning rate of 0.1, followed by AMS-
Grad (Sashank J. Reddi, 2018) for N epochs with
α = 0.001, β1 = 0.9 and β2 = 0.999. We use
N = 50 for English and German, and N = 400
for French. We found this training strategy better
than using only one of the optimization methods,

14In training, the embedding for a feature value w is re-
placed with a zero vector with a probability of α

#(w)+α
,

where #(w) is the number of occurrences of w observed.
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Primary Remote
LP LR LF LP LR LF

English (in-domain)
HAR17 74.4 72.7 73.5 47.4 51.6 49.4
Single 74.4 72.9 73.6 53 50 51.5
AMR 74.7 72.8 73.7 48.7? 51.1 49.9
DM 75.7? 73.9? 74.8? 54.9 53 53.9
UD++ 75? 73.2 74.1? 49 52.7 50.8
AMR + DM 75.6? 73.9? 74.7? 49.9 53 51.4
AMR + UD++ 74.9 72.7 73.8 47.1 50 48.5
DM + UD++ 75.9? 73.9? 74.9? 48 54.8 51.2
All 75.6? 73.1 74.4? 50.9 53.2 52

Table 3: Labeled precision, recall and F1 (in %) for primary
and remote edges, on the Wiki test set. ? indicates signifi-
cantly better than Single. HAR17: Hershcovich et al. (2017).

Primary Remote
LP LR LF LP LR LF

English (out-of-domain)
HAR17 68.7 68.5 68.6 38.6 18.8 25.3
Single 69 69 69 41.2 19.8 26.7
AMR 69.5 69.5 69.5 42.9 20.2 27.5
DM 70.7? 70.7? 70.7? 42.7 18.6 25.9
UD++ 69.6 69.8? 69.7 41.4 22 28.7
AMR + DM 70.7? 70.2? 70.5? 45.8 19.4 27.3
AMR + UD++ 70.2? 69.9? 70? 45.1 21.8 29.4
DM + UD++ 70.8? 70.3? 70.6? 41.6 21.6 28.4
All 71.2? 70.9? 71? 45.1 22 29.6
French (in-domain)
Single 68.2 67 67.6 26 9.4 13.9
UD 70.3 70? 70.1? 43.8 13.2 20.3
German (in-domain)
Single 73.3 71.7 72.5 57.1 17.7 27.1
UD 73.7? 72.6? 73.2? 61.8 24.9? 35.5?

Table 4: Labeled precision, recall and F1 (in %) for primary
and remote edges, on the 20K test sets. ? indicates signifi-
cantly better than Single. HAR17: Hershcovich et al. (2017).

similar to findings by Keskar and Socher (2017).
We select the epoch with the best average labeled
F1 score on the UCCA development set. Other
hyperparameter settings are listed in Table 2.

Evaluation. We evaluate on UCCA using la-
beled precision, recall and F1 on primary and
remote edges, following previous work (Hersh-
covich et al., 2017). Edges in predicted and
gold graphs are matched by terminal yield and
label. Significance testing of improvements over
the single-task model is done by the bootstrap test
(Berg-Kirkpatrick et al., 2012), with p < 0.05.

8 Results

Table 3 presents our results on the English in-
domain Wiki test set. MTL with all auxiliary tasks
and their combinations improves the primary F1

score over the single task baseline. In most set-
tings the improvement is statistically significant.
Using all auxiliary tasks contributed less than just

DM and UD++, the combination of which yielded
the best scores yet in in-domain UCCA parsing,
with 74.9% F1 on primary edges. Remote F1 is
improved in some settings, but due to the rela-
tively small number of remote edges (about 2%
of all edges), none of the differences is significant.
Note that our baseline single-task model (Single)
is slightly better than the current state-of-the-art
(HAR17; Hershcovich et al., 2017), due to the in-
corporation of additional features (see §4.2).

Table 4 presents our experimental results on the
20K corpora in the three languages. For English
out-of-domain, improvements from using MTL
are even more marked. Moreover, the improve-
ment is largely additive: the best model, using all
three auxiliary tasks (All), yields an error reduc-
tion of 2.9%. Again, the single-task baseline is
slightly better than HAR17.

The contribution of MTL is also apparent in
French and German in-domain parsing: 3.7% er-
ror reduction in French (having less than 10%
as much UCCA training data as English) and
1% in German, where the training set is com-
parable in size to the English one, but is noisier
(see §7). The best MTL models are significantly
better than single-task models, demonstrating that
even a small training set for the main task may
suffice, given enough auxiliary training data (as in
French).

9 Discussion

Quantifying the similarity between tasks.
Task similarity is an important factor in MTL suc-
cess (Bingel and Søgaard, 2017; Martı́nez Alonso
and Plank, 2017). In our case, the main and auxil-
iary tasks are annotated on different corpora from
different domains (§7), and the target representa-
tions vary both in form and in content.

To quantify the domain differences, we follow
Plank and van Noord (2011) and measure the L1
distance between word distributions in the English
training sets and 20K test set (Table 5). All aux-
iliary training sets are more similar to 20K than
Wiki is, which may contribute to the benefits ob-
served on the English 20K test set.

As a measure of the formal similarity of the dif-
ferent schemes to UCCA, we use unlabeled F1

score evaluation on both primary and remote edges
(ignoring edge labels). To this end, we annotated
100 English sentences from Section 02 of the Penn
Treebank Wall Street Journal (PTB WSJ). Anno-
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20K AMR DM UD
Wiki 1.047 0.895 0.913 0.843
20K 0.949 0.971 0.904
AMR 0.757 0.469
DM 0.754

Table 5: L1 distance between dataset word distributions,
quantifying domain differences in English (low is similar).

Primary Remote
UP UR UF UP UR UF

AMR 53.8 15.6 24.2 7.3 5.5 6.3
DM 65 49.2 56 7.4 65.9 13.3
UD++ 82.7 84.6 83.6 12.5 12.7 12.6

Table 6: Unlabeled F1 scores between the representations of
the same English sentences (from PTB WSJ), converted to
the unified DAG format, and annotated UCCA graphs.

tation was carried out by a single expert UCCA
annotator, and is publicly available.15 These sen-
tences had already been annotated by the AMR,
DM and PTB schemes,16 and we convert their an-
notation to the unified DAG format.

Unlabeled F1 scores between the UCCA graphs
and those converted from AMR, DM and UD++

are presented in Table 6. UD++ is highly over-
lapping with UCCA, while DM less so, and AMR
even less (cf. Figure 3).

Comparing the average improvements resulting
from adding each of the tasks as auxiliary (see §8),
we find AMR the least beneficial, UD++ second,
and DM the most beneficial, in both in-domain
and out-of-domain settings. This trend is weakly
correlated with the formal similarity between the
tasks (as expressed in Table 6), but weakly neg-
atively correlated with the word distribution simi-
larity scores (Table 5). We conclude that other fac-
tors should be taken into account to fully explain
this effect, and propose to address this in future
work through controlled experiments, where cor-
pora of the same domain are annotated with the
various formalisms and used as training data for
MTL.

AMR, SDP and UD parsing. Evaluating the
full MTL model (All) on the unlabeled auxiliary
tasks yielded 64.7% unlabeled Smatch F1 (Cai and
Knight, 2013) on the AMR development set, when
using oracle concept identification (since the aux-
iliary model does not predict node labels), 27.2%
unlabeled F1 on the DM development set, and

15http://github.com/danielhers/wsj
16We convert the PTB format to UD++ v1 using Stan-

ford CoreNLP, and then to UD v2 using Udapi: http:
//github.com/udapi/udapi-python.

4.9% UAS on the UD development set. These
poor results reflect the fact that model selection
was based on the score on the UCCA development
set, and that the model parameters dedicated to
auxiliary tasks were very limited (to encourage us-
ing the shared parameters). However, preliminary
experiments using our approach produced promis-
ing results on each of the tasks’ respective English
development sets, when treated as a single task:
67.1% labeled Smatch F1 on AMR (adding a tran-
sition for implicit nodes and classifier for node la-
bels), 79.1% labeled F1 on DM, and 80.1% LAS
F1 on UD. For comparison, the best results on
these datasets are 70.7%, 91.2% and 82.2%, re-
spectively (Foland and Martin, 2017; Peng et al.,
2018; Dozat et al., 2017).

10 Conclusion

We demonstrate that semantic parsers can leverage
a range of semantically and syntactically anno-
tated data, to improve their performance. Our ex-
periments show that MTL improves UCCA pars-
ing, using AMR, DM and UD parsing as auxil-
iaries. We propose a unified DAG representation,
construct protocols for converting these schemes
into the unified format, and generalize a transition-
based DAG parser to support all these tasks, allow-
ing it to be jointly trained on them.

While we focus on UCCA in this work, our
parser is capable of parsing any scheme that can
be represented in the unified DAG format, and pre-
liminary results on AMR, DM and UD are promis-
ing (see §9). Future work will investigate whether
a single algorithm and architecture can be com-
petitive on all of these parsing tasks, an important
step towards a joint many-task model for semantic
parsing.
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Chloé Braud, Barbara Plank, and Anders Søgaard.
2016. Multi-view and multi-task training of RST
discourse parsers. In Proc. of COLING, pages
1903–1913.

Jan Buys and Phil Blunsom. 2017a. Oxford at
SemEval-2017 task 9: Neural AMR parsing with
pointer-augmented attention. In Proc. of SemEval,
pages 914–919.

Jan Buys and Phil Blunsom. 2017b. Robust incremen-
tal neural semantic graph parsing. In Proc. of ACL,
pages 1215–1226.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. In Proc.
of ACL, pages 748–752.

Rich Caruana. 1997. Multitask Learning. Machine
Learning, 28(1):41–75.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
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Çöltekin, Miriam Connor, Elizabeth Davidson,
Marie-Catherine de Marneffe, Valeria de Paiva,
Arantza Diaz de Ilarraza, Peter Dirix, Kaja Do-
brovoljc, Timothy Dozat, Kira Droganova, Puneet
Dwivedi, Marhaba Eli, Ali Elkahky, Tomaž Erjavec,
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Foster, Cláudia Freitas, Katarı́na Gajdošová, Daniel
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Abstract

Character-level models have become a
popular approach specially for their acces-
sibility and ability to handle unseen data.
However, little is known on their ability to
reveal the underlying morphological struc-
ture of a word, which is a crucial skill for
high-level semantic analysis tasks, such as
semantic role labeling (SRL). In this work,
we train various types of SRL models that
use word, character and morphology level
information and analyze how performance
of characters compare to words and mor-
phology for several languages. We con-
duct an in-depth error analysis for each
morphological typology and analyze the
strengths and limitations of character-level
models that relate to out-of-domain data,
training data size, long range dependen-
cies and model complexity. Our exhaus-
tive analyses shed light on important char-
acteristics of character-level models and
their semantic capability.

1 Introduction

Encoding of words is perhaps the most impor-
tant step towards a successful end-to-end natural
language processing application. Although word
embeddings have been shown to provide bene-
fit to such models, they commonly treat words
as the smallest meaning bearing unit and assume
that each word type has its own vector repre-
sentation. This assumption has two major short-
comings especially for languages with rich mor-
phology: (1) inability to handle unseen or out-of-
vocabulary (OOV) word-forms (2) inability to ex-
ploit the regularities among word parts.

The limitations of word embeddings are par-
ticularly pronounced in sentence-level semantic

tasks, especially in languages where word parts
play a crucial role. Consider the Turkish sen-
tences “Köy+lü-ler (villagers) şehr+e (to town)
geldi (came)” and “Sendika+lı-lar (union mem-
bers) meclis+e (to council) geldi (came)”. Here
the stems köy (village) and sendika (union) func-
tion similarly in semantic terms with respect to the
verb come (as the origin of the agents of the verb),
where şehir (town) and meclis (council) both func-
tion as the end point. These semantic similar-
ities are determined by the common word parts
shown in bold. However ortographic similarity
does not always correspond to semantic similar-
ity. For instance the ortographically similar words
knight and night have large semantic differences.
Therefore, for a successful semantic application,
the model should be able to capture both the regu-
larities, i.e, morphological tags and the irregulari-
ties, i.e, lemmas of the word.

Morphological analysis already provides the
aforementioned information about the words.
However access to useful morphological features
may be problematic due to software licensing
issues, lack of robust morphological analyzers
and high ambiguity among analyses. Character-
level models (CLM), being a cheaper and acces-
sible alternative to morphology, have been re-
ported as performing competitively on various
NLP tasks (Ling et al., 2015; Plank et al., 2016;
Lee et al., 2017). However the extent to which
these tasks depend on morphology is small; and
their relation to semantics is weak. Hence, little is
known on their true ability to reveal the underly-
ing morphological structure of a word and their se-
mantic capabilities. Furthermore, their behaviour
across languages from different families; and their
limitations and strengths such as handling of long-
range dependencies, reaction to model complex-
ity or performance on out-of-domain data are un-
known. Analyzing such issues is a key to fully
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understanding the character-level models.
To achieve this, we perform a case study

on semantic role labeling (SRL), a sentence-
level semantic analysis task that aims to identify
predicate-argument structures and assign mean-
ingful labels to them as follows:

[Villagers]comers came [to town]end point

We use a simple method based on bidirectional
LSTMs to train three types of base semantic role
labelers that employ (1) words (2) characters and
character sequences and (3) gold morphological
analysis. The gold morphology serves as the up-
per bound for us to compare and analyze the per-
formances of character-level models on languages
of varying morphological typologies. We carry
out an exhaustive error analysis for each language
type and analyze the strengths and limitations of
character-level models compared to morphology.
In regard to the diversity hypothesis which states
that diversity of systems in ensembles lead to
further improvement, we combine character and
morphology-level models and measure the perfor-
mance of the ensemble to better understand how
similar they are.

We experiment with several languages with
varying degrees of morphological richness and ty-
pology: Turkish, Finnish, Czech, German, Span-
ish, Catalan and English. Our experiments and
analysis reveal insights such as:

• CLMs provide great improvements over
whole-word-level models despite not be-
ing able to match the performance of
morphology-level models (MLMs) for in-
domain datasets. However their performance
surpass all MLMs on out-of-domain data,

• Limitations and strengths differ by morpho-
logical typology. Their limitations for agglu-
tinative languages are related to rich deriva-
tional morphology and high contextual am-
biguity; whereas for fusional languages they
are related to number of morphological tags
(morpheme ambiguity) ,

• CLMs can handle long-range dependencies
equally well as MLMs,

• In presence of more training data, CLM’s
performance is expected to improve faster
than of MLM.

2 Related Work

Neural SRL Methods: Neural networks have
been first introduced to the SRL scene by Col-
lobert et al. (2011), where they use a unified
end-to-end convolutional network to perform vari-
ous NLP tasks. Later, the combination of neural
networks (LSTMs in particular) with traditional
SRL features (categorical and binary) has been in-
troduced (FitzGerald et al., 2015). Recently, it
has been shown that careful design and tuning
of deep models can achieve state-of-the-art with
no or minimal syntactic knowledge for English
and Chinese SRL. Although the architectures vary
slightly, they are mostly based on a variation of
bi-LSTMs. Zhou and Xu (2015); He et al. (2017)
connect the layers of LSTM in an interleaving pat-
tern where in (Wang et al., 2015; Marcheggiani
et al., 2017) regular bi-LSTM layers are used.
Commonly used features for the encoding layer
are: pretrained word embeddings; distance from
the predicate; predicate context; predicate region
mark or flag; POS tag; and predicate lemma em-
bedding. Only a few of the models (Marcheg-
giani et al., 2017; Marcheggiani and Titov, 2017)
perform dependency-based SRL. Furthermore, all
methods focus on languages with rich resources
and less morphological complexity like English
and Chinese.

Character-level Models: Character-level mod-
els have proven themselves useful for many NLP
tasks such as language modeling (Ling et al.,
2015; Kim et al., 2016), POS tagging (Santos and
Zadrozny, 2014; Plank et al., 2016), dependency
parsing (Dozat et al., 2017) and machine trans-
lation (Lee et al., 2017). However the number
of comparative studies that analyze their relation
to morphology are rather limited. Recently, Va-
nia and Lopez (2017) presented a unified frame-
work, where they investigated the performances of
different subword units, namely characters, mor-
phemes and morphological analysis on language
modeling task. They experimented with lan-
guages of varying morphological typologies and
concluded that the performance of character mod-
els can not yet match the morphological models,
albeit very close. Similarly, Belinkov et al. (2017)
analyzed how different word representations help
learn better morphology and model rare words on
a neural MT task and concluded that character-
based representations are much better for learning
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morphology.

3 Method

Formally, we generate a label sequence ~l for each
sentence and predicate pair: (s, p). Each lt ∈ ~l is
chosen from L = {roles ∪ nonrole}, where roles
are language-specific semantic roles (mostly con-
sistent with PropBank) and nonrole is a symbol
to present tokens that are not arguments. Given θ
as model parameters and gt as gold label for tth
token, we find the parameters that minimize the
negative log likelihood of the sequence:

θ̂ = argmin
θ

(
−

n∑

t=1

log(p(gt|θ, s, p))
)

(1)

Label probabilities, p(lt|θ, s, p), are calculated
with equations given below.First, the word encod-
ing layer splits tokens into subwords via ρ func-
tion.

ρ(w) = s0, s1, .., sn (2)

As proposed by Ling et al. (2015), we treat
words as a sequence of subword units. Then,
the sequence is fed to a simple bi-LSTM net-
work (Graves and Schmidhuber, 2005; Gers et al.,
2000) and hidden states from each direction are
weighted with a set of parameters which are also
learned during training. Finally, the weighted vec-
tor is used as the word embedding given in Eq. 4.

hsf , hsb = bi-LSTM(s0, s1, .., sn) (3)

~w =Wf · hsf +Wb · hsb + b (4)

There may be more than one predicate in the sen-
tence so it is crucial to inform the network of
which arguments we aim to label. In order to mark
the predicate of interest, we concatenate a predi-
cate flag pft to the word embedding vector.

~xt = [~w; pft] (5)

Final vector, ~xt serves as an input to another bi-
LSTM unit.

~hf , hb = bi-LSTM(xt) (6)

Finally, the label distribution is calculated via soft-
max function over the concatenated hidden states
from both directions.

~p(lt|s, p) = softmax(Wl · [ ~hf ; ~hb] + ~bl) (7)

For simplicity, we assign the label with the highest
probability to the input token. 1.

3.1 Subword Units
We use three types of units: (1) words (2) char-
acters and character sequences and (3) outputs of
morphological analysis. Words serve as a lower
bound; while morphology is used as an upper
bound for comparison. Table 1 shows sample out-
puts of various ρ functions. Here, char function

ρ word output
char available <-a-v-a-i-l-a-b-l-e->
char3 available <av-ava-vai-ail-ila-lab-abl-ble-le>
morph-DEU prächtiger [prächtig;Pos;Nom;Sg;Masc]
morph-SPA las [el;postype=article;gen=f;num=p]
morph-CAT la [el;postype=article;gen=f;num=s]
morph-TUR boyundaki [boy;NOUN;A3sg;P3sg;Loc;DB;ADJ]
morph-FIN tyhjyyttä [tyhjyys;Case=Par;Number=Sing]
morph-CZE si [se;SubPOS=7;Num=X;Cas=3]

Table 1: Sample outputs of different ρ functions

simply splits the token into its characters. Similar
to n-gram language models, char3 slides a char-
acter window of width n = 3 over the token.
Finally, gold morphological features are used as
outputs of morph-language. Throughout this pa-
per, we use morph and oracle interchangably, i.e.,
morphology-level models (MLM) have access to
gold tags unless otherwise is stated. For all lan-
guages, morph outputs the lemma of the token fol-
lowed by language specific morphological tags.
As an exception, it outputs additional information
for some languages, such as parts-of-speech tags
for Turkish. Word segmenters such as Morfes-
sor and Byte Pair Encoding (BPE) are other com-
monly used subword units. Due to low scores ob-
tained from our preliminary experiments and un-
satisfactory results from previous studies (Vania
and Lopez, 2017), we excluded these units.

4 Experiments

We use the datasets distributed by LDC for Cata-
lan (CAT), Spanish (SPA), German (DEU), Czech
(CZE) and English (ENG) (Hajič et al., 2012b,a);
and datasets made available by Haverinen et al.
(2015); Şahin and Adalı (2017) for Finnish (FIN)
and Turkish (TUR) respectively 2. Datasets are

1Our implementation can be found at https://
github.com/gozdesahin/Subword_Semantic_
Role_Labeling

2Turkish PropBank is based on previous efforts (Atalay
et al., 2003; Sulubacak et al., 2016; Sulubacak and Eryiğit,
2018; Oflazer et al., 2003; Şahin, 2016b,a)
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#sent #token #pred #role type
CZE 39K 653K 414K 51 F
ENG 39K 958K 179K 38 F
DEU 36K 649K 17K 9 F
SPA 14K 419K 44K 34 F
CAT 13K 384K 37K 35 F
FIN 12K 163K 27K 20 A
TUR 4K 39K 8K 26 A

Table 2: Training data statistics. A: Agglutinative,
F: Fusional

provided with syntactic dependency annotations
and semantic roles of verbal predicates. In ad-
dition, English supplies nominal predicates anno-
tated with semantic roles and does not provide any
morphological feature. Statistics for the training
split for all languages are given in Table 2. Here,
#pred is number of predicates, and #role refers
to number distinct semantic roles that occur more
than 10 times. More detailed statistics about the
datasets can be found in Hajič et al. (2009); Haver-
inen et al. (2015); Şahin and Adalı (2017).

4.1 Experimental Setup
To fit the requirements of the SRL task and of our
model, we performed the following:

Spanish, Catalan: Multiword expressions
(MWE) are represented as a single token, (e.g.,
Confederación Francesa del Trabajo), that
causes notably long character sequences which
are hard to handle by LSTMs. For the sake of
memory efficiency and performance, we used an
abbreviation (e.g., CFdT) for each MWE during
training and testing.

Finnish: Original dataset defines its own
format of semantic annotation, such as
17:PBArgM mod|19:PBArgM mod meaning
the node is an argument of 17th and 19th tokens
with ArgM-mod (temporary modifier) semantic
role. They have been converted into CoNLL-09
tabular format, where each predicate’s arguments
are given in a specific column.

Turkish: Words are splitted from derivational
boundaries in the original dataset, where each in-
flectional group is represented as a separate token.
We first merge boundaries of the same word, i.e,
tokens of the word, then we use our own ρ func-
tion to split words into subwords.

Training and Evaluation: We lowercase all to-
kens beforehand and place special start and end of

the token characters. For all experiments, we ini-
tialized weight parameters orthogonally and used
one layer bi-LSTMs both for subword composi-
tion and argument labeling with hidden size of
200. Subword embedding size is chosen as 200.
We used gradient clipping and early stopping to
prevent overfitting. Stochastic gradient descent is
used as the optimizer. The initial learning rate is
set to 1 and reduced by half if scores on develop-
ment set do not improve after 3 epochs. We use
the provided splits and evaluate the results with
the official evaluation script provided by CoNLL-
09 shared task. In this work (and in most of the
recent SRL works), only the scores for argument
labeling are reported, which may cause confusions
for the readers while comparing with older SRL
studies. Most of the early SRL work report com-
bined scores (argument labeling with predicate
sense disambiguation (PSD)). However, PSD is
considered a simpler task with higher F1 scores 3.
Therefore, we believe omitting PSD helps us gain
more useful insights on character level models.

5 Results and Analysis

Our main results on test and development sets for
models that use words, characters (char), char-
acter trigrams (char3) and morphological analy-
ses (morph) are given in Table 3. We calculate
improvement over word (IOW) for each subword
model and improvement over the best character
model (IOC) for the morph. IOW and IOC values
are calculated on the test set.

The biggest improvement over the word base-
line is achieved by the models that have access to
morphology for all languages (except for English)
as expected. Character trigrams consistently out-
performed characters by a small margin. Same
pattern is observed on the results of the develop-
ment set. IOW has the values between 0% to 38%
while IOC values range between 2%-10% depen-
dending on the properties of the language and the
dataset. We analyze the results separately for ag-
glutinative and fusional languages and reveal the
links between certain linguistic phenomena and
the IOC, IOW values.

3For instance in English CoNLL-09 dataset, 87% of the
predicates are annotated with their first sense, hence even a
dummy classifier would achieve 87% accuracy. The best sys-
tem from CoNLL-09 shared task reports 85.63 F1 on English
evaluation dataset, however when the results of PSD are dis-
carded, it drops down to 81.
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(a) Finnish - Contextual ambiguity

(b) Turkish - Derivational morphology

Figure 1: Differences in model performances on
agglutinative languages

word char char3 morph
F1 F1 IOW% F1 IOW% F1 IOW% IOC%

FI
N 48.91 67.24

37.46
67.78

38.58
71.15

45.47 4.97
51.65 66.82 67.08 71.88

T
U

R 44.82 55.89
24.68

56.60
26.28

59.38
32.48 4.91

43.14 54.48 55.41 58.91

SP
A 64.30 67.90

5.61
68.43

6.42
69.39

7.92 2.25
64.53 67.64 67.64 69.17

C
AT

65.45 70.56
7.82

71.34
9.00

73.24
11.90 2.66

65.67 70.43 70.48 72.36

C
Z

E 63.58 74.04
16.45

74.98
17.93

80.66
26.87 7.58

72.69 74.58 75.59 81.06

D
E

U 54.78 63.71
16.29

65.56
19.68

69.35
26.58 5.77

53.76 62.75 63.70 72.18

E
N

G 81.19 81.61
0.52

80.65
-0.67

- - -
78.67 79.22 78.85 - - -

Table 3: F1 scores of word, character, character
trigram and morphology models for argument la-
beling. Best F1 for each language is shown in
bold. First row: results on test, Second row: re-
sults on development.

Agglutinative languages have many mor-
phemes attached to a word like beads on a
string. This leads to high number of OOV
words and cause word lookup models to fail.
Hence, the highest IOWs by character models
are achieved on these languages: Finnish and
Turkish. This language family has one-to-one
morpheme to meaning mapping with small
orthographic differences (e.g., mış, miş, muş,
müş for past perfect tense), that can be easily
extracted from the data. Even though each
morpheme has only one interpretation, each
word (consisting of many morphemes) has
usually more than one. For instance two pos-
sible analyses for the Turkish word “dolar” are
(1) “dol+Verb+Positive+Aorist+3sg” (it fills),
(2) “dola+Verb+Positive+Aorist+3sg” (he/she
wraps). For a syntactic task, models are not
obliged to learn the difference between the two;
whereas for a semantic task like SRL, they
are. We will refer to this issue as contextual
ambiguity. Another important linguistic issue for
agglutinative languages is the complex interac-
tion between morphology and syntax, which is
usually achieved via derivational morphemes. In
other words, unlike inflectional morphemes that
only give information on word-level semantics,
derivational morphemes provide more clues on
sentence-level semantics. The effects of these
two phenomena on model performances is shown
in Fig. 1. Scores given in Fig. 1 are absolute
F1 scores for each model. For the analysis in
Fig. 1a, we separately calculated F1 scores of
each model on words that have been observed
with at least two different set of morphological
features (ambiguous), and one set of features
(non-ambiguous). Due to the low number of am-
biguous words in Turkish dataset (≤100), it has
been calculated for Finnish only. Similarly, for
the derivational morphology analysis in Fig. 1b,
we have separately calculated scores for sentences
containing derived words (derivational), and
simple sentences without any derivations. Both
analyses show that access to gold morphological
tags (oracle) provided big performance gains
on arguments with contextual ambiguity and
sentences with derived words. Moderate IOC
signals that char and char3 learns to imitate the
“beads” and their “predictable order” on the string
(in the absence of the aforementioned issues).
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Figure 2: x axis: Number of morphological features; y axis: Targeted F1 scores

Fusional languages may have many mor-
phemes in a word. Spanish and Catalan have
relatively low morpheme per word ratio that re-
sults with low OOV% (5.63 and 5.40 for Span-
ish and Catalan respectively); whereas, German
and Czech have OOV% of 7.93 and 7.98 (Hajič
et al., 2009). We observe that IOW by character
models are well aligned with OOV percentages of
the datasets. Unlike agglutinative languages, sin-
gle morpheme can serve multiple purposes in fu-
sional languages. For instance, “o” (e.g., habl-o)
may signal 1st person singular present tense, or
3rd person singular past tense. We count the num-
ber of surface forms with at least two different fea-
tures and use their ratio (#ambiguous forms/#total
forms) as a proxy to morphological complexity of
the language. The complexities are approximated
as 22%, 16%, 15% for Czech, Spanish and Cata-
lan respectively; which are aligned with the ob-
served IOCs. Since there is no unique morpheme
to meaning mapping, generally multiple morpho-
logical tags are used to resolve the morpheme am-
biguity. Therefore there is an indirect relation be-
tween the number of morphological tags used and
the ambiguity of the word. To demonstrate this
phenomena, we calculate targeted F1 scores on
arguments with varying number of morphologi-
cal features. Results using feature bins of [1-2],
[3-4] and [5-6] are given in Fig. 2. As the num-
ber of features increase, the performance gap be-
tween oracle and character models grows dramati-
cally for Czech and Spanish, while it stays almost
fixed for Finnish. This finding suggests that high
number of morphological tags signal the vague-
ness/complex cases in fusional languages where
character models struggle; and also shows that the
complexity can not be directly explained by num-
ber of morphological tags for agglutinative lan-
guages. German is known for having many com-
pound words and compound lemmas that lead to
high OOV% for lemma; and also is less ambigu-

ous (9%). Therefore we would expect a lower
IOC. However, the evaluation set consists only of
550 predicates and 1073 arguments, hence small
changes in prediction lead to dramatic percentage
changes.

5.1 Similarity between models

One way to infer similarity is to measure diver-
sity. Consider a set of baseline models that are
not diverse, i.e., making similar errors with sim-
ilar inputs. In such a case, combination of these
models would not be able to overcome the biases
of the learners, hence the combination would not
achieve a better result. In order to test if character
and morphological models are similar, we com-
bine them and measure the performance of the en-
semble. Suppose that a prediction pi is generated
for each token by a model mi, i ∈ n, then the final
prediction is calculated from these predictions by:

pfinal = f(p0, p1, .., pn|φ) (8)

where f is the combining function with parame-
ter φ. The simplest global approach is averaging
(AVG), where f is simply the mean function and
pis are the log probabilities. Mean function com-
bines model outputs linearly, therefore ignores the
nonlinear relation between base models/units. In
order to exploit nonlinear connections, we learn
the parameters φ of f via a simple linear layer fol-
lowed by sigmoid activation. In other words, we
train a new model that learns how to best combine
the predictions from subword models. This en-
semble technique is generally referred to as stack-
ing or stacked generalization (SG). 4

Although not guaranteed, diverse models can
be achieved by altering the input representation,

4To train the SG model, we have used one linear layer
with 64 hidden units followed by sigmoid nonlinear activa-
tion. Weights are orthogonally initialized and optimized via
adam algorithm with a learning rate of 0.02 for 25 epochs.
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char+char3 char+oracle char3+oracle
Avg SG IOB% Avg SG IOB% Avg SG IOB%

Czech 76.24 76.26 2.03 80.36 81.06 0.49 80.57 81.10 0.55
Finnish 70.31 70.29 4.58 72.73 72.88 2.42 72.72 73.02 2.62
Turkish 59.43 59.39 6.34 61.98 62.07 4.53 60.56 60.74 2.28
Spanish 70.01 70.05 3.16 71.80 71.75 3.47 71.64 71.62 3.24
Catalan 72.79 72.71 2.03 74.80 74.82 2.16 75.15 75.18 2.66
German 66.84 66.97 2.15 71.02 71.16 2.62 71.31 71.25 2.84

Table 4: Results of ensembling via averaging (Avg) and stack generalization (SG). IOB: Improvement
Over Best of baseline models

the learning algorithm, training data or the hyper-
parameters. To ensure that the only factor con-
tributing to the diversity of the learners is the input
representation, all parameters, training data and
model settings are left unchanged.

Our results are given in Table 4. IOB shows
the improvement over the best of the baseline
models in the ensemble. Averaging and stack-
ing methods gave similar results, meaning that
there is no immediate nonlinear relations between
units. We observe two language clusters: (1)
Czech and agglutinative languages (2) Spanish,
Catalan, German and English. The common prop-
erty of that separate clusters are (1) high OOV%
and (2) relatively low OOV%. Amongst the first
set, we observe that the improvement gained by
character-morphology ensembles is higher (shown
with green) than ensembles between characters
and character trigrams (shown with red), whereas
the opposite is true for the second set of languages.
It can be interpreted as character level models be-
ing more similar to the morphology level mod-
els for the first cluster, i.e., languages with high
OOV%, and characters and morphology being
more diverse for the second cluster.

6 Limitations and Strengths

To expand our understanding and reveal the limita-
tions and strengths of the models, we analyze their
ability to handle long range dependencies, their re-
lation with training data and model size; and mea-
sure their performances on out of domain data.

6.1 Long Range Dependencies

Long range dependency is considered as an impor-
tant linguistic issue that is hard to solve. Therefore
the ability to handle it is a strong performance in-
dicator. To gain insights on this issue, we mea-
sure how models perform as the distance between
the predicate and the argument increases. The unit
of measure is number of tokens between the two;

and argument is defined as the head of the argu-
ment phrase in accordance with dependency-based
SRL task. For that purpose, we created bins of
[0-4], [5-9], [10-14] and [15-19] distances. Then,
we have calculate F1 scores for arguments in each
bin. Due to low number of predicate-argument
pairs in buckets, we could not analyze German
and Turkish; and also the bin [15-19] is only used
for Czech. Our results are shown in Fig. 3. We
observe that either char or char3 closely follows
the oracle for all languages. The gap between the
two does not increase with the distance, suggest-
ing that the performance gap is not related to long
range dependencies. In other words, both charac-
ters and the oracle handle long range dependencies
equally well.

6.2 Training Data Size

We analyzed how char3 and oracle models per-
form with respect to the training data size. For that
purpose, we trained them on chunks of increas-
ing size and evaluate on the provided test split.
We used units of 2000 sentences for German and
Czech; and 400 for Turkish. Results are shown
in Fig. 4. Apparently as the data size increases,
the performances of both models logarithmically
increase - with a varying speed. To speak in statis-
tical terms, we fit a logarithmic curve to the ob-
served F1 scores (shown with transparent lines)
and check the x coefficients, where x refers to the
number of sentences. This coefficient can be con-
sidered as an approximation to the speed of growth
with data size. We observe that the coefficient
is higher for char3 than oracle for all languages.
It can be interpreted as: in the presence of more
training data, char3 may surpass the oracle; i.e.,
char3 relies on data more than the oracle.

6.3 Out-of-Domain (OOD) Data

As part of the CoNLL09 shared task (Hajič et al.,
2009), out of domain test sets are provided for
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Figure 3: X axis: Distance between the predicate and the argument, Y axis: F1 scores on argument labels

Figure 4: Performance of units w.r.t training data size. X axis: Number of sentences, Y axis: F1 score

word char IOW% char3 IOW% oracle IOW% IOC%
CZE 69.97 72.98 4.30 73.24 4.67 72.28 3.30 -1.31
DEU 51.50 57.05 10.78 55.75 8.24 38.51 -25.24 -45.17
ENG 66.47 68.83 0.70 70.22 0.23 - - -

Table 5: F1 scores on out of domain data. Best
scores are shown with bold.

three languages: Czech, German and English. We
test our models trained on regular training dataset
on these OOD data. The results are given in Ta-
ble 5. Here, we clearly see that the best model has
shifted from oracle to character based models. The
dramatic drop in German oracle model is due to
the high lemma OOV rate which is a consequence
of keeping compounds as a single lemma. Czech
oracle model performs reasonably however is un-
able to beat the generalization power of the char3
model. Furthermore, the scores of the character
models in Table 5 are higher than the best OOD
scores reported in the shared task (Hajič et al.,
2009); even though our main results on evaluation
set are not (except for Czech). This shows that
character-level models have increased robustness
to out-of-domain data due to their ability to learn
regularities among data.

6.4 Model Size

Throughout this paper, our aim was to gain in-
sights on how models perform on different lan-
guages rather than scoring the highest F1. For
this reason, we used a model that can be consid-
ered small when compared to recent neural SRL
models and avoided parameter search. However,

char3 oracle
F1 I (%) F1 I (%)

Finnish ` = 1 67.78 71.15
` = 2 67.62 -0.2 75.71 6.4

Turkish ` = 1 56.60 59.38
` = 2 56.93 0.5 61.02 2.7

Spanish ` = 1 68.43 69.39
` = 2 69.30 1.3 71.56 3.1

Catalan ` = 1 71.34 73.24
` = 2 71.71 0.5 74.84 2.2

Table 6: Effect of layer size on model perfor-
mances. I: Improvement over model with one
layer.

we wonder how the models behave when given
a larger network. To answer this question, we
trained char3 and oracle models with more layers
for two fusional languages (Spanish, Catalan), and
two agglutinative languages (Finnish, Turkish).
The results given in Table 6 clearly shows that
model complexity provides relatively more benefit
to morphological models. This indicates that mor-
phological signals help to extract more complex
linguistic features that have semantic clues.

6.5 Predicted Morphological Tags

Although models with access to gold morpho-
logical tags achieve better F1 scores than char-
acter models, they can be less useful a in real-
life scenario since they require gold tags at test
time. To predict the performance of morphology-
level models in such a scenario, we train the
same models with the same parameters with pre-
dicted morphological features. Predicted tags
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Figure 5: F1 scores for best-char (best of the
CLMs) and model with predicted (predicted-
morph) and gold morphological tags (gold-
morph).

were only available for German, Spanish, Catalan
and Czech. Our results given in Fig. 5, show that
(except for Czech), predicted morphological tags
are not as useful as characters alone.

7 Conclusion

Character-level neural models are becoming the
defacto standard for NLP problems due to their
accessibility and ability to handle unseen data. In
this work, we investigated how they compare to
models with access to gold morphological analy-
sis, on a sentence-level semantic task. We eval-
uated their quality on semantic role labeling in a
number of agglutinative and fusional languages.
Our results lead to the following conclusions:

• For in-domain data, character-level mod-
els cannot yet match the performance of
morphology-level models. However, they
still provide considerable advantages over
whole-word models,

• Their shortcomings depend on the morphol-
ogy type. For agglutinative languages, their
performance is limited on data with rich
derivational morphology and high contextual
ambiguity (morphological disambiguation);
and for fusional languages, they struggle on
tokens with high number of morphological
tags,

• Similarity between character and
morphology-level models is higher than
the similarity within character-level (char
and char-trigram) models on languages with
high OOV%; and vice versa,

• Their ability to handle long-range dependen-
cies is very similar to morphology-level mod-
els,

• They rely relatively more on training data
size. Therefore, given more training data
their performance will improve faster than
morphology-level models,

• They perform substantially well on out of do-
main data, surpassing all morphology-level
models. However, relatively less improve-
ment is expected when model complexity is
increased,

• They generally perform better than models
that only have access to predicted/silver mor-
phological tags.
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Abstract

Abstract meaning representations (AMRs)
are broad-coverage sentence-level seman-
tic representations. AMRs represent sen-
tences as rooted labeled directed acyclic
graphs. AMR parsing is challenging partly
due to the lack of annotated alignments be-
tween nodes in the graphs and words in
the corresponding sentences. We intro-
duce a neural parser which treats align-
ments as latent variables within a joint
probabilistic model of concepts, relations
and alignments. As exact inference re-
quires marginalizing over alignments and
is infeasible, we use the variational auto-
encoding framework and a continuous re-
laxation of the discrete alignments. We
show that joint modeling is preferable to
using a pipeline of align and parse. The
parser achieves the best reported results
on the standard benchmark (74.4% on
LDC2016E25).

1 Introduction

Abstract meaning representations (AMRs) (Ba-
narescu et al., 2013) are broad-coverage sentence-
level semantic representations. AMR encodes,
among others, information about semantic rela-
tions, named entities, co-reference, negation and
modality. The semantic representations can be re-
garded as rooted labeled directed acyclic graphs
(see Figure 1). As AMR abstracts away from de-
tails of surface realization, it is potentially benefi-
cial in many semantic related NLP tasks, including
text summarization (Liu et al., 2015; Dohare and
Karnick, 2017), machine translation (Jones et al.,
2012) and question answering (Mitra and Baral,
2016).

The  boys  must  not  go

-

ARG2
polarityARG0

boy go-02

obligate-01
1

3 2 4

Figure 1: An example of AMR, the dashed lines
denote latent alignments, obligate-01 is the root.
Numbers indicate depth-first traversal order.

AMR parsing has recently received a lot of at-
tention (e.g., (Flanigan et al., 2014; Artzi et al.,
2015; Konstas et al., 2017)). One distinctive
aspect of AMR annotation is the lack of ex-
plicit alignments between nodes in the graph (con-
cepts) and words in the sentences. Though this
arguably simplified the annotation process (Ba-
narescu et al., 2013), it is not straightforward to
produce an effective parser without relying on an
alignment. Most AMR parsers (Damonte et al.,
2017; Flanigan et al., 2016; Werling et al., 2015;
Wang and Xue, 2017; Foland and Martin, 2017)
use a pipeline where the aligner training stage pre-
cedes training a parser. The aligners are not di-
rectly informed by the AMR parsing objective and
may produce alignments suboptimal for this task.

In this work, we demonstrate that the align-
ments can be treated as latent variables in a joint
probabilistic model and induced in such a way as
to be beneficial for AMR parsing. Intuitively, in
our probabilistic model, every node in a graph
is assumed to be aligned to a word in a sen-
tence: each concept is predicted based on the cor-
responding RNN state. Similarly, graph edges
(i.e. relations) are predicted based on representa-
tions of concepts and aligned words (see Figure 2).
As alignments are latent, exact inference requires
marginalizing over latent alignments, which is in-

397



feasible. Instead we use variational inference,
specifically the variational autoencoding frame-
work of Kingma and Welling (2014). Using dis-
crete latent variables in deep learning has proven
to be challenging (Mnih and Gregor, 2014; Born-
schein and Bengio, 2015). We use a continu-
ous relaxation of the alignment problem, rely-
ing on the recently introduced Gumbel-Sinkhorn
construction (Mena et al., 2018). This yields a
computationally-efficient approximate method for
estimating our joint probabilistic model of con-
cepts, relations and alignments.

We assume injective alignments from concepts
to words: every node in the graph is aligned to
a single word in the sentence and every word is
aligned to at most one node in the graph. This is
necessary for two reasons. First, it lets us treat
concept identification as sequence tagging at test
time. For every word we would simply predict the
corresponding concept or predict NULL to signify
that no concept should be generated at this posi-
tion. Secondly, Gumbel-Sinkhorn can only work
under this assumption. This constraint, though of-
ten appropriate, is problematic for certain AMR
constructions (e.g., named entities). In order to
deal with these cases, we re-categorized AMR
concepts. Similar recategorization strategies have
been used in previous work (Foland and Martin,
2017; Peng et al., 2017).

The resulting parser achieves 74.4% Smatch
score on the standard test set when using
LDC2016E25 training set,1 an improvement of
3.4% over the previous best result (van Noord and
Bos, 2017). We also demonstrate that inducing
alignments within the joint model is indeed ben-
eficial. When, instead of inducing alignments, we
follow the standard approach and produce them
on preprocessing, the performance drops by 0.9%
Smatch. Our main contributions can be summa-
rized as follows:

• we introduce a joint probabilistic model for
alignment, concept and relation identifica-
tion;

• we demonstrate that a continuous relaxation
can be used to effectively estimate the model;

• the model achieves the best reported results.2

1The standard deviation across multiple training runs was
0.16%.

2The code can be accessed from https://github.
com/ChunchuanLv/AMR_AS_GRAPH_PREDICTION

2 Probabilistic Model

In this section we describe our probabilistic model
and the estimation technique. In section 3, we de-
scribe preprocessing and post-processing (includ-
ing concept re-categorization, sense disambigua-
tion, wikification and root selection).

2.1 Notation and setting

We will use the following notation throughout the
paper. We refer to words in the sentences as w =
(w1, . . . , wn), where n is sentence length, wk ∈ V
for k ∈ {1 . . . , n}. The concepts (i.e. labeled
nodes) are c = (c1, . . . , cm), where m is the num-
ber of concepts and ci ∈ C for i ∈ {1 . . . ,m}. For
example, in Figure 1, c = (obligate, go, boy, -).3

Note that senses are predicted at post-processing,
as discussed in Section 3.2 (i.e. go is labeled as
go-02).

A relation between ‘predicate concept’ i and
‘argument concept’ j is denoted by rij ∈ R; it
is set to NULL if j is not an argument of i. In our
example, r2,3 = ARG0 and r1,3 = NULL. We will
use R to denote all relations in the graph.

To represent alignments, we will use a =
{a1, . . . , am}, where ai ∈ {1, . . . , n} returns the
index of a word aligned to concept i. In our exam-
ple, a1 = 3.

All three model components rely on bi-
directional LSTM encoders (Schuster and Paliwal,
1997). We denote states of BiLSTM (i.e. con-
catenation of forward and backward LSTM states)
as hk ∈ Rd (k ∈ {1, . . . , n}). The sentence
encoder takes pre-trained fixed word embeddings,
randomly initialized lemma embeddings, part-of-
speech and named-entity tag embeddings.

2.2 Method overview

We believe that using discrete alignments, rather
than attention-based models (Bahdanau et al.,
2015) is crucial for AMR parsing. AMR banks
are a lot smaller than parallel corpora used in ma-
chine translation (MT) and hence it is important
to inject a useful inductive bias. We constrain our
alignments from concepts to words to be injective.
First, it encodes the observation that concepts are
mostly triggered by single words (especially, after
re-categorization, Section 3.1). Second, it implies

3The probabilistic model is invariant to the ordering of
concepts, though the order affects the inference algorithm
(see Section 2.5). We use depth-first traversal of the graph
to generate the ordering.
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go-02

                  The  boys  must  not   go

?boy

obligate-01

ARG0 Classifier

RNN 
encoder

Figure 2: Relation identification: predicting a re-
lation between boy and go-02 relying on the two
concepts and corresponding RNN states.

that each word corresponds to at most one con-
cept (if any). This encourages competition: align-
ments are mutually-repulsive. In our example, ob-
ligate is not lexically similar to the word must and
may be hard to align. However, given that other
concepts are easy to predict, alignment candidates
other than must and the will be immediately ruled
out. We believe that these are the key reasons for
why attention-based neural models do not achieve
competitive results on AMR (Konstas et al., 2017)
and why state-of-the-art models rely on aligners.
Our goal is to combine best of two worlds: to
use alignments (as in state-of-the-art AMR meth-
ods) and to induce them while optimizing for the
end goal (similarly to the attention component of
encoder-decoder models).

Our model consists of three parts: (1) the
concept identification model Pθ(c|a,w); (2) the
relation identification model Pφ(R|a,w, c) and
(3) the alignment model Qψ(a|c, R,w).4 For-
mally, (1) and (2) together with the uniform
prior over alignments P (a) form the generative
model of AMR graphs. In contrast, the align-
ment model Qψ(a|c, R,w), as will be explained
below, is approximating the intractable posterior
Pθ,φ(a|c, R,w) within that probabilistic model.

In other words, we assume the following model
for generating the AMR graph:

Pθ,φ(c, R|w)=
∑

a

P (a)Pθ(c|a,w)Pφ(R|a,w, c)

=
∑

a

P (a)
m∏

i=1

P (ci|hai)
m∏

i,j=1

P (rij |hai ,ci,haj ,cj)

4θ, φ and ψ denote all parameters of the models.

AMR concepts are assumed to be generated condi-
tional independently relying on the BiLSTM states
and surface forms of the aligned words. Similarly,
relations are predicted based only on AMR con-
cept embeddings and LSTM states corresponding
to words aligned to the involved concepts. Their
combined representations are fed into a bi-affine
classifier (Dozat and Manning, 2017) (see Fig-
ure 2).

The expression involves intractable marginal-
ization over all valid alignments. As stan-
dard in variational autoencoders, VAEs (Kingma
and Welling, 2014), we lower-bound the log-
likelihood as

logPθ,φ(c, R|w)

≥ EQ[logPθ(c|a,w)Pφ(R|a,w, c)]

−DKL(Qψ(a|c, R,w)||P (a)), (1)

where Qψ(a|c, R,w) is the variational posterior
(aka the inference network), EQ[. . .] refers to the
expectation under Qψ(a|c, R,w) and DKL is the
Kullback-Liebler divergence. In VAEs, the lower
bound is maximized both with respect to model
parameters (θ and φ in our case) and the parame-
ters of the inference network (ψ). Unfortunately,
gradient-based optimization with discrete latent
variables is challenging. We use a continuous re-
laxation of our optimization problem, where real-
valued vectors âi ∈ Rn (for every concept i) ap-
proximate discrete alignment variables ai. This
relaxation results in low-variance estimates of the
gradient using the parameterization trick (Kingma
and Welling, 2014), and ensures fast and stable
training. We will describe the model components
and the relaxed inference procedure in detail in
sections 2.6 and 2.7.

Though the estimation procedure requires the
use of the relaxation, the learned parser is straight-
forward to use. Given our assumptions about the
alignments, we can independently choose for each
word wk (k = 1, . . . ,m) the most probably con-
cept according to Pθ(c|hk). If the highest scor-
ing option is NULL, no concept is introduced.
The relations could then be predicted relying on
Pφ(R|a,w, c). This would have led to generating
inconsistent AMR graphs, so instead we search for
the highest scoring valid graph (see Section 3.2).
Note that the alignment model Qψ is not used at
test time and only necessary to train accurate con-
cept and relation identification models.
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2.3 Concept identification model
The concept identification model chooses a con-
cept c (i.e. a labeled node) conditioned on the
aligned word k or decides that no concept should
be introduced (i.e. returns NULL). Though it can
be modeled with a softmax classifier, it would
not be effective in handling rare or unseen words.
First, we split the decision into estimating the
probability of concept category τ(c) ∈ T (e.g.
‘number’, ’frame’) and estimating the probabil-
ity of the specific concept within the chosen cat-
egory. Second, based on a lemmatizer and train-
ing data5 we prepare one candidate concept ek for
each word k in vocabulary (e.g., it would propose
want if the word is wants). Similar to Luong et al.
(2015), our model can then either copy the candi-
date ek or rely on the softmax over potential con-
cepts of category τ . Formally, the concept predic-
tion model is defined as

Pθ(c|hk, wk) = P (τ(c)|hk, wk)×
[[ek = c]]× exp(vTcopyhk) + exp(vTc hk)

Z(hk, θ)
,

where the first multiplicative term is a soft-
max classifier over categories (including NULL);
vcopy,vc ∈ Rd (for c ∈ C) are model parameters;
[[. . .]] denotes the indicator function and equals 1
if its argument is true and 0, otherwise; Z(h, θ) is
the partition function ensuring that the scores sum
to 1.

2.4 Relation identification model
We use the following arc-factored relation identi-
fication model:

Pφ(R|a,w, c) =

m∏

i,j=1

P (rij |hai ,ci,haj ,cj) (2)

Each term is modeled in exactly the same way:

1. for both endpoints, embedding of the concept
c is concatenated with the RNN state h;

2. they are linearly projected to a lower dimen-
sion separately through Mh(hai ◦ ci) ∈ Rdf
and Md(haj ◦ cj) ∈ Rdf , where ◦ denotes
concatenation;

3. a log-linear model with bilinear scores
Mh(hai ◦ ci)TCrMd(haj ◦ cj), Cr ∈ Rdf×df
is used to compute the probabilities.

5See supplementary materials.

In the above discussion, we assumed that BiL-
STM encodes a sentence once and the BiLSTM
states are then used to predict concepts and rela-
tions. In semantic role labeling, the task closely
related to the relation identification stage of AMR
parsing, a slight modification of this approach
was shown more effective (Zhou and Xu, 2015;
Marcheggiani et al., 2017). In that previous work,
the sentence was encoded by a BiLSTM once per
each predicate (i.e. verb) and the encoding was
in turn used to identify arguments of that predi-
cate. The only difference across the re-encoding
passes was a binary flag used as input to the BiL-
STM encoder at each word position. The flag
was set to 1 for the word corresponding to the
predicate and to 0 for all other words. In that
way, BiLSTM was encoding the sentence specif-
ically for predicting arguments of a given predi-
cate. Inspired by this approach, when predicting
label rij for j ∈ {1, . . . m}, we input binary flags
p1, . . .pn to the BiLSTM encoder which are set
to 1 for the word indexed by ai (pai = 1) and to
0 for other words (pj = 0, for j 6= ai). This also
means that BiLSTM encoders for predicting rela-
tions and concepts end up being distinct. We use
this multi-pass approach in our experiments.6

2.5 Alignment model

Recall that the alignment model is only used at
training, and hence it can rely both on input (states
h1, . . . ,hn) and on the list of concepts c1, . . . , cm.

Formally, we add (m−n) NULL concepts to the
list.7 Aligning a word to any NULL, would corre-
spond to saying that the word is not aligned to any
‘real’ concept. Note that each one-to-one align-
ment (i.e. permutation) between n such concepts
and n words implies a valid injective alignment
of n words to m ‘real’ concepts. This reduction
to permutations will come handy when we turn to
the Gumbel-Sinkhorn relaxation in the next sec-
tion. Given this reduction, from now on, we will
assume that m = n.

As with sentences, we use a BiLSTM model
to encode concepts c, where gi ∈ Rdg , i ∈
{1, . . . , n}. We use a globally-normalized align-

6Using the vanilla one-pass model from equation (2) re-
sults in 1.4% drop in Smatch score.

7After re-categorization (Section 3.1), m ≥ n holds for
most cases. For exceptions, we append NULL to the sentence.

400



ment model:

Qψ(a|c, R,w) =
exp(

∑n
i=1 ϕ(gi,hai))

Zψ(c,w)
,

where Zψ(c,w) is the intractable partition func-
tion and the terms ϕ(gi,hai) score each alignment
link according to a bilinear form

ϕ(gi,hai) = gTi Bhai , (3)

where B ∈ Rdg×d is a parameter matrix.

2.6 Estimating model with Gumbel-Sinkhorn
Recall that our learning objective (1) involves ex-
pectation under the alignment model. The parti-
tion function of the alignment model Zψ(c,w) is
intractable, and it is tricky even to draw samples
from the distribution. Luckily, the recently pro-
posed relaxation (Mena et al., 2018) lets us cir-
cumvent this issue. First, note that exact samples
from a categorical distribution can be obtained us-
ing the perturb-and-max technique (Papandreou
and Yuille, 2011). For our alignment model, it
would correspond to adding independent noise to
the score for every possible alignment and choos-
ing the highest scoring one:

a? = argmax
a∈P

n∑

i=1

ϕ(gi,hai) + εa, (4)

where P is the set of all permutations of n
elements, εa is a noise drawn independently
for each a from the fixed Gumbel distribution
(G(0, 1)). Unfortunately, this is also intractable,
as there are n! permutations. Instead, in perturb-
and-max an approximate schema is used where
noise is assumed factorizable. In other words,
first noisy scores are computed as ϕ̂(gi,hai) =
ϕ(gi,hai) + εi,ai , where εi,ai ∼ G(0, 1) and
an approximate sample is obtained by a? =
argmaxa

∑n
i=1 ϕ̂(gi,hai),

Such sampling procedure is still intractable in
our case and also non-differentiable. The main
contribution of Mena et al. (2018) is approximat-
ing this argmax with a simple differentiable com-
putation â = St(Φ,Σ) which yields an approxi-
mate (i.e. relaxed) permutation. We use Φ and Σ
to denote the n × n matrices of alignment scores
ϕ(gi,hk) and noise variables εik, respectively. In-
stead of returning index ai for every concept i,
it would return a (peaky) distribution over words
âi. The peakiness is controlled by the temperature

parameter t of Gumbel-Sinkhorn which balances
smoothness (‘differentiability’) vs. bias of the es-
timator. For further details and the derivation, we
refer the reader to the original paper (Mena et al.,
2018).

Note that Φ is a function of the alignment model
Qψ, so we will write Φψ in what follows. The
variational bound (1) can now be approximated as

EΣ∼G(0,1)[logPθ(c|St(Φψ,Σ),w)

+ logPφ(R|St(Φψ,Σ),w, c)]

−DKL(
Φψ + Σ

t
||Σ
t0

) (5)

Following Mena et al. (2018), the original KL
term from equation (1) is approximated by the KL
term between two n× n matrices of i.i.d. Gumbel
distributions with different temperature and mean.
The parameter t0 is the ‘prior temperature’.

Using the Gumbel-Sinkhorn construction un-
fortunately does not guarantee that

∑
i âij = 1. To

encourage this equality to hold, and equivalently
to discourage overlapping alignments, we add an-
other regularizer to the objective (5):

Ω(â, λ) = λ
∑

j

max(
∑

i

(âij)− 1, 0). (6)

Our final objective is fully differentiable with
respect to all parameters (i.e. θ, φ and ψ) and has
low variance as sampling is performed from the
fixed non-parameterized distribution, as in stan-
dard VAEs.

2.7 Relaxing concept and relation
identification

One remaining question is how to use the soft
input â = St(Φψ,Σ) in the concept and re-
lation identification models in equation (5). In
other words, we need to define how we compute
Pθ(c|St(Φψ,Σ),w) and Pφ(R|St(Φψ,Σ),w, c).

The standard technique would be to pass to the
models expectations under the relaxed variables∑n

k=1 âikhk, instead of the vectors hai (Maddison
et al., 2017; Jang et al., 2017). This is what we do
for the relation identification model. We use this
approach also to relax the one-hot encoding of the
predicate position (p, see Section 2.4).

However, the concept prediction model
logPθ(c|St(Φψ,Σ),w) relies on the pointing
mechanism, i.e. directly exploits the words w
rather than relies only on biLSTM states hk. So
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Figure 3: An example of re-categorized AMR.
AMR graph at the top, re-categorized concepts in
the middle, and the sentence is at the bottom.

instead we treat âi as a prior in a hierarchical
model:

logPθ(ci|âi,w)

≈ log

n∑

k=1

âikPθ(ci|ai = k,w) (7)

As we will show in our experiments, a softer ver-
sion of the loss is even more effective:

logPθ(ci|âi,w)

≈ log
n∑

k=1

(âikPθ(ci|ai = k,w))α, (8)

where we set the parameter α = 0.5. We believe
that using this loss encourages the model to more
actively explore the alignment space. Geometri-
cally, the loss surface shaped as a ball in the 0.5-
norm space would push the model away from the
corners, thus encouraging exploration.

3 Pre- and post-pocessing

3.1 Re-Categorization

AMR parsers often rely on a pre-processing stage,
where specific subgraphs of AMR are grouped to-
gether and assigned to a single node with a new
compound category (e.g., Werling et al. (2015);
Foland and Martin (2017); Peng et al. (2017)); this
transformation is reversed at the post-processing
stage. Our approach is very similar to the Factored
Concept Label system of Wang and Xue (2017),
with one important difference that we unpack our
concepts before the relation identification stage, so
the relations are predicted between original con-
cepts (all nodes in each group share the same
alignment distributions to the RNN states). Intu-
itively, the goal is to ensure that concepts rarely
lexically triggered (e.g., thing in Figure 3) get
grouped together with lexically triggered nodes.

Such ‘primary’ concepts get encoded in the cat-
egory of the concept (the set of categories is τ , see
also section 2.3). In Figure 3, the re-categorized
concept thing(opinion) is produced from thing and
opine-01. We use concept as the dummy cate-
gory type. There are 8 templates in our system
which extract re-categorizations for fixed phrases
(e.g. thing(opinion)), and a deterministic system
for grouping lexically flexible, but structurally sta-
ble sub-graphs (e.g., named entities, have-rel-role-
91 and have-org-role-91 concepts).

Details of the re-categorization procedure and
other pre-processing are provided in appendix.

3.2 Post-processing

For post-processing, we handle sense-
disambiguation, wikification and ensure le-
gitimacy of the produced AMR graph. For sense
disambiguation we pick the most frequent sense
for that particular concept (‘-01’, if unseen). For
wikification we again look-up in the training set
and default to ”-”. There is certainly room for
improvement in both stages. Our probability
model predicts edges conditional independently
and thus cannot guarantee the connectivity of
AMR graph, also there are additional constraints
which are useful to impose. We enforce three
constraints: (1) specific concepts can have only
one neighbor (e.g., ‘number’ and ‘string’; see
appendix for details); (2) each predicate concept
can have at most one argument for each relation
r ∈ R; (3) the graph should be connected.
Constraint (1) is addressed by keeping only the
highest scoring neighbor. In order to satisfy the
last two constraints we use a simple greedy proce-
dure. First, for each edge, we pick-up the highest
scoring relation and edge (possibly NULL). If
the constraint (2) is violated, we simply keep the
highest scoring edge among the duplicates and
drop the rest. If the graph is not connected (i.e.
constraint (3) is violated), we greedily choose
edges linking the connected components until the
graph gets connected (MSCG in Flanigan et al.
(2014)).

Finally, we need to select a root node. Simi-
larly to relation identification, for each candidate
concept ci, we concatenate its embedding with
the corresponding LSTM state (hai) and use these
scores in a softmax classifier over all the concepts.
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Model Data Smatch
JAMR (Flanigan et al., 2016) R1 67.0
AMREager (Damonte et al., 2017) R1 64.0
CAMR (Wang et al., 2016) R1 66.5
SEQ2SEQ + 20M (Konstas et al., 2017) R1 62.1
Mul-BiLSTM (Foland and Martin, 2017) R1 70.7
Ours R1 73.7
Neural-Pointer (Buys and Blunsom, 2017) R2 61.9
ChSeq (van Noord and Bos, 2017) R2 64.0
ChSeq + 100K (van Noord and Bos, 2017) R2 71.0
Ours R2 74.4 ± 0.16

Table 1: Smatch scores on the test set. R2 is
LDC2016E25 dataset, and R1 is LDC2015E86
dataset. Statistics on R2 are over 8 runs.

4 Experiments and Discussion

4.1 Data and setting

We primarily focus on the most recent
LDC2016E25 (R2) dataset, which consists
of 36521, 1368 and 1371 sentences in training,
development and testing sets, respectively. The
earlier LDC2015E86 (R1) dataset has been
used by much of the previous work. It contains
16833 training sentences, and same sentences for
development and testing as R2.8

We used the development set to perform model
selection and hyperparameter tuning. The hyper-
parameters, as well as information about embed-
dings and pre-processing, are presented in the sup-
plementary materials.

We used Adam (Kingma and Ba, 2014) to opti-
mize the loss (5) and to train the root classifier.
Our best model is trained fully jointly, and we
do early stopping on the development set scores.
Training takes approximately 6 hours on a single
GeForce GTX 1080 Ti with Intel Xeon CPU E5-
2620 v4.

4.2 Experiments and discussion

We start by comparing our parser to previous work
(see Table 1). Our model substantially outper-
forms all the previous models on both datasets.
Specifically, it achieves 74.4% Smatch score on
LDC2016E25 (R2), which is an improvement of
3.4% over character seq2seq model relying on
silver data (van Noord and Bos, 2017). For
LDC2015E86 (R1), we obtain 73.7% Smatch
score, which is an improvement of 3.0% over

8Annotation in R2 has also been slightly revised.

Models A’ C’ J’ Ch’ Ours
17 16 16 17

Dataset R1 R1 R1 R2 R2
Smatch 64 63 67 71 74.4±0.16

Unlabeled 69 69 69 74 77.1±0.10
No WSD 65 64 68 72 75.5±0.12
Reentrancy 41 41 42 52 52.3±0.43
Concepts 83 80 83 82 85.9±0.11
NER 83 75 79 79 86.0±0.46
Wiki 64 0 75 65 75.7±0.30
Negations 48 18 45 62 58.4±1.32
SRL 56 60 60 66 69.8±0.24

Table 2: F1 scores on individual phenom-
ena. A’17 is AMREager, C’16 is CAMR, J’16 is
JAMR, Ch’17 is ChSeq+100K. Ours are marked
with standard deviation.

Metric Pre- R1 Pre- R2
Align Align mean

Smatch 72.8 73.7 73.5 74.4
Unlabeled 75.3 76.3 76.1 77.1
No WSD 73.8 74.7 74.6 75.5
Reentrancy 50.2 50.6 52.6 52.3
Concepts 85.4 85.5 85.5 85.9
NER 85.3 84.8 85.3 86.0
Wiki 66.8 75.6 67.8 75.7
Negations 56.0 57.2 56.6 58.4
SRL 68.8 68.9 70.2 69.8

Table 3: F1 scores of on subtasks. Scores on
ablations are averaged over 2 runs. The left side
results are from LDC2015E86 and right results are
from LDC2016E25.

the previous best model, multi-BiLSTM parser
of Foland and Martin (2017).

In order to disentangle individual phenomena,
we use the AMR-evaluation tools (Damonte et al.,
2017) and compare to systems which reported
these scores (Table 2). We obtain the highest
scores on most subtasks. The exception is nega-
tion detection. However, this is not too surpris-
ing as many negations are encoded with morphol-
ogy, and character models, unlike our word-level
model, are able to capture predictive morphologi-
cal features (e.g., detect prefixes such as “un-” or
“im-”).

Now, we turn to ablation tests (see Table 3).
First, we would like to see if our latent align-
ment framework is beneficial. In order to test this,
we create a baseline version of our system (‘pre-
align’) which relies on the JAMR aligner (Flani-
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Figure 4: When modeling concepts alone, the pos-
terior probability of the correct (green) and wrong
(red) alignment links will be the same.

Ablation Concepts SRL Smatch
2 stages 85.6 68.9 73.6
2 stages, tune align 85.6 69.2 73.9
Full model 85.9 69.8 74.4

Table 4: Ablation studies: effect of joint model-
ing (all on R2). Scores on ablations are averaged
over 2 runs. The first two models load the same
concept and alignment model before the second
stage.

gan et al., 2014), rather than induces alignments as
latent variables. Recall that in our model we used
training data and a lemmatizer to produce candi-
dates for the concept prediction model (see Sec-
tion 2.3, the copy function). In order to have a
fair comparison, if a concept is not aligned after
JAMR, we try to use our copy function to align it.
If an alignment is not found, we make the align-
ment uniform across the unaligned words. In pre-
liminary experiments, we considered alternatives
versions (e.g., dropping concepts unaligned by
JAMR or dropping concepts unaligned after both
JAMR and the matching heuristic), but the chosen
strategy was the most effective. These scores of
pre-align are superior to the results from Foland
and Martin (2017) which also relies on JAMR
alignments and uses BiLSTM encoders. There
are many potential reasons for this difference in
performance. For example, their relation identi-
fication model is different (e.g., single pass, no
bi-affine modeling), they used much smaller net-
works than us, they use plain JAMR rather than a
combination of JAMR and our copy function, they
use a different recategorization system. These re-
sults confirm that we started with a strong basic
model, and that our variational alignment frame-
work provided further gains in performance.

Now we would like to confirm that joint train-
ing of alignments with both concepts and relations
is beneficial. In other words, we would like to see
if alignments need to be induced in such a way

Ablation Concepts SRL Smatch
No Sinkhorn 85.7 69.3 73.8
No Sinkhorn reg 85.6 69.5 74.2
No soft loss 85.2 69.1 73.7
Full model 85.9 69.8 74.4

Table 5: Ablation studies: alignment modeling
and relaxation (all on R2). Scores on ablations are
averaged over 2 runs.

as to benefit the relation identification task. For
this ablation we break the full joint training into
two stages. We start by jointly training the align-
ment model and the concept identification model.
When these are trained, we optimizing the relation
model but keep the concept identification model
and alignment models fixed (‘2 stages’ in see Ta-
ble 4). When compared to our joint model (‘full
model’), we observe a substantial drop in Smatch
score (-0.8%). In another version (‘2 stages, tune
align’) we also use two stages but we fine-tune
the alignment model on the second stage. This
approach appears slightly more accurate but still
-0.5% below the full model. In both cases, the
drop is more substantial for relations (‘SRL’). In
order to see why relations are potentially useful
in learning alignments, consider Figure 4. The
example contains duplicate concepts long. The
concept prediction model factorizes over concepts
and does not care which way these duplicates are
aligned: correctly (green edges) or not (red edges).
Formally, the true posterior under the concept-
only model in ‘2 stages’ assigns exactly the same
probability to both configurations, and the align-
ment model Qψ will be forced to mimic it (even
though it relies on an LSTM model of the graph).
The spurious ambiguity will have a detrimental ef-
fect on the relation identification stage.

It is interesting to see the contribution of other
modeling decisions we made when modeling and
relaxing alignments. First, instead of using
Gumbel-Sinkhorn, which encourages mutually-
repulsive alignments, we now use a factorized
alignment model. Note that this model (‘No
Sinkhorn’ in Table 5) still relies on (relaxed) dis-
crete alignments (using Gumbel softmax) but does
not constrain the alignments to be injective. A
substantial drop in performance indicates that the
prior knowledge about the nature of alignments
appears beneficial. Second, we remove the addi-
tional regularizer for Gumbel-Sinkhorn approxi-
mation (equation (6)). The performance drop in
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Smatch score (‘No Sinkhorn reg’) is only moder-
ate. Finally, we show that using the simple hier-
archical relaxation (equation (7)) rather than our
softer version of the loss (equation (8)) results in
a substantial drop in performance (‘No soft loss’,
-0.7% Smatch). We hypothesize that the softer
relaxation favors exploration of alignments and
helps to discover better configurations.

5 Additional Related Work

Alignment performance has been previously iden-
tified as a potential bottleneck affecting AMR
parsing (Damonte et al., 2017; Foland and Mar-
tin, 2017). Some recent work has focused on
building aligners specifically for training their
parsers (Werling et al., 2015; Wang and Xue,
2017). However, those aligners are trained in-
dependently of concept and relation identification
and only used at pre-processing.

Treating alignment as discrete variables has
been successful in some sequence transduction
tasks with neural models (Yu et al., 2017, 2016).
Our work is similar in that we also train dis-
crete alignments jointly but the tasks, the inference
framework and the decoders are very different.

The discrete alignment modeling framework
has been developed in the context of traditional
(i.e. non-neural) statistical machine transla-
tion (Brown et al., 1993). Such translation mod-
els have also been successfully applied to semantic
parsing tasks (e.g., (Andreas et al., 2013)), where
they rivaled specialized semantic parsers from that
period. However, they are considerably less accu-
rate than current state-of-the-art parsers applied to
the same datasets (e.g., (Dong and Lapata, 2016)).

For AMR parsing, another way to avoid us-
ing pre-trained aligners is to use seq2seq models
(Konstas et al., 2017; van Noord and Bos, 2017).
In particular, van Noord and Bos (2017) used char-
acter level seq2seq model and achieved the previ-
ous state-of-the-art result. However, their model is
very data demanding as they needed to train it on
additional 100K sentences parsed by other parsers.
This may be due to two reasons. First, seq2seq
models are often not as strong on smaller datasets.
Second, recurrent decoders may struggle with pre-
dicting the linearized AMRs, as many statistical
dependencies are highly non-local.

6 Conclusions

We introduced a neural AMR parser trained by
jointly modeling alignments, concepts and rela-
tions. We make such joint modeling computa-
tionally feasible by using the variational auto-
encoding framework and continuous relaxations.
The parser achieves state-of-the-art results and ab-
lation tests show that joint modeling is indeed ben-
eficial.

We believe that the proposed approach may be
extended to other parsing tasks where alignments
are latent (e.g., parsing to logical form (Liang,
2016)). Another promising direction is integrating
character seq2seq to substitute the copy function.
This should also improve the handling of nega-
tion and rare words. Though our parsing model
does not use any linearization of the graph, we re-
lied on LSTMs and somewhat arbitrary lineariza-
tion (depth-first traversal) to encode the AMR
graph in our alignment model. A better alter-
native would be to use graph convolutional net-
works (Marcheggiani and Titov, 2017; Kipf and
Welling, 2017): neighborhoods in the graph are
likely to be more informative for predicting align-
ments than the neighborhoods in the graph traver-
sal.
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Abstract

We demonstrate that an SHRG-based
parser can produce semantic graphs much
more accurately than previously shown,
by relating synchronous production rules
to the syntacto-semantic composition pro-
cess. Our parser achieves an accuracy of
90.35 for EDS (89.51 for DMRS) in terms
of ELEMENTARY DEPENDENCY MATCH,
which is a 4.87 (5.45) point improvement
over the best existing data-driven model,
indicating, in our view, the importance
of linguistically-informed derivation for
data-driven semantic parsing. This accu-
racy is equivalent to that of English Re-
source Grammar guided models, suggest-
ing that (recurrent) neural network models
are able to effectively learn deep linguistic
knowledge from annotations.

1 Introduction

Graph-structured semantic representations, e.g.
Semantic Dependency Graphs (SDG; Clark et al.,
2002; Ivanova et al., 2012), Elementary De-
pendency Structure (EDS; Oepen and Lønning,
2006), Abstract Meaning Representation (AMR;
Banarescu et al., 2013), Dependency-based Min-
imal Recursion Semantics (DMRS; Copestake,
2009), and Universal Conceptual Cognitive Anno-
tation (UCCA; Abend and Rappoport, 2013), pro-
vide a lightweight yet effective way to encode
rich semantic information of natural language sen-
tences (Kuhlmann and Oepen, 2016). Parsing to
semantic graphs has been extensively studied re-
cently.

At the risk of oversimplifying, work in this area
can be divided into three types, according to how
much structural information of a target graph is ex-
plicitly modeled. Parsers of the first type throw an

input sentence into a sequence-to-sequence model
and leverage the power of deep learning technolo-
gies to obtain auxiliary symbols to transform the
output sequence into a graph (Peng et al., 2017b;
Konstas et al., 2017). The strategy of the second
type is to gradually generate a graph in a greedy
search fashion (Zhang et al., 2016; Buys and Blun-
som, 2017). Usually, a transition system is de-
fined to handle graph construction. The last so-
lution explicitly associates each basic part with a
target graph score, and casts parsing as the search
for the graphs with highest sum of partial scores
(Flanigan et al., 2014; Cao et al., 2017). Although
many parsers achieve encouraging results, they are
very hard for linguists to interpret and understand,
partially because they do not explicitly model the
syntacto-semantic composition process which is a
significant characteristic of natural languages.

In theory, Synchronous Hyperedge Replace-
ment Grammar (SHRG; Drewes et al., 1997) pro-
vides a mathematically sound framework to con-
struct semantic graphs. In practice, however, ini-
tial results on the utility of SHRG for seman-
tic parsing were somewhat disappointing (Peng
et al., 2015; Peng and Gildea, 2016). In this pa-
per, we show that the performance that can be
achieved by an SHRG-based parser is far higher
than what has previously been demonstrated. We
focus here on relating SHRG rules to the syntacto-
semantic composition process because we feel
that information about syntax-semantics interface
has been underexploited in the data-driven pars-
ing architecture. We demonstrate the feasibility
of inducing a high-quality, linguistically-informed
SHRG from compositional semantic annotations
licensed by English Resource Grammar (ERG;
Flickinger, 2000), dubbed English Resource Se-
mantics1 (ERS). Coupled with RNN-based pars-

1http://moin.delph-in.net/ErgSemantics
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Model Grammar SDG EDS DMRS

Data-driven NO 89.4 85.48 84.16
ERG-based Unification 92.80 89.58 89.64
SHRG-based Rewriting - - 90.39 89.51

Table 1: Parsing accuracy of the best existing
grammar-free and -based models as well as our
SHRG-based model. Results are copied from
(Oepen et al., 2015; Peng et al., 2017a; Buys and
Blunsom, 2017).

ing techniques, we build a robust SHRG parser
that is able to produce semantic analysis for all
sentences. Our parser achieves an accuracy of
90.35 for EDS and 89.51 for DMRS in terms of EL-
EMENTARY DEPENDENCY MATCH (EDM) which
outperforms the best existing grammar-free model
(Buys and Blunsom, 2017) by a significant mar-
gin (see Table 1). This marked result affirms the
value of modeling the syntacto-semantic compo-
sition process for semantic parsing.

On sentences that can be parsed by ERG-guided
parsers, e.g. PET2 or ACE3, significant accuracy
gaps between ERG-guided parsers and data-driven
parsers are repeatedly reported (see Table 1). The
main challenge for ERG-guided parsing is lim-
ited coverage. Even for treebanking on WSJ sen-
tences from PTB, such a parser lacks analyses for
c.a. 11% of sentences (Oepen et al., 2015). Our
parser yields equivalent accuracy to ERG-guided
parsers and equivalent coverage, full-coverage in
fact, to data-driven parsers. We see this investi-
gation as striking a balance between data-driven
and grammar-driven parsing. It is not our goal
to argue against the use of unification grammar
in high-performance deep linguistic processing.
Nevertheless, we do take it as a reflection of two
points: (1) (recurrent) neural network models are
able to effectively learn deep linguistic knowledge
from annotations; (2) practical parsing may bene-
fit from transforming a model-theoretic grammar
into a generative-enumerative grammar.

The architecture of our parser has potential
uses beyond establishing a strong string-to-graph
parser. Our grammar extraction algorithm has
some freedom to induce different SHRGs fol-
lowing different linguistic hypothesis, and allows
some issues in theoretical linguistics to be empir-
ically investigated. In this paper, we examine the

2http://pet.opendfki.de/
3http://sweaglesw.org/linguistics/ace/
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Figure 1: A partial rewriting process of HRG on
the semantic graph associated with “Some boys
want to go.” Lowercase symbols indicate termi-
nal edges, while bold, uppercase symbols indicate
nonterminal edges. Red edges are the hyperedges
that will be replaced in the next step, while the
blue edges in the next step constitute their corre-
sponding RHS graphs.

lexicalist/constructivist hypothesis, a divide across
a variety of theoretical frameworks, in an empiri-
cal setup. The lexicalist tradition traces its origins
to Chomsky (1970) and is widely accepted by var-
ious computational grammar formalisms, includ-
ing CCG, LFG, HPSG and LTAG. A lexicalist ap-
proach argues that the lexical properties of words
determine their syntactic and semantic behaviors.
The constructivist perspective, e.g. Borer’s Exo-
Skeletal approach (2005b; 2005a; 2013), empha-
sizes the role of syntax in constructing meanings.
In this paper, we focus on lexicalist and construc-
tivist hypotheses for syntacto-semantic composi-
tion. We present our computation-oriented anal-
ysis in §6. Under the architecture of our neural
parser, a construction grammar works much better
than a lexicalized grammar.

Our parser is available at https://github.
com/draplater/hrg-parser/.

2 Hyperedge Replacement Grammar

Hyperedge replacement grammar (HRG) is a
context-free rewriting formalism for graph gener-
ation (Drewes et al., 1997). An edge-labeled, di-
rected hypergraph is a tuple H = 〈V,E, l,X〉,
where V is a finite set of nodes, and E ⊆ V +

is a finite set of hyperedges. A hyperedge is an
extension of a normal edge which can connect to
more than two nodes or only one node. l : E → L
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Algorithm 1 Hyperedge Replacement Grammar Extraction Algorithm
Require: Input syntactic tree T , hypergraph g

1: RULES ← {}
2: for tree node n in postorder traversal of T do

Ensure: Rewriting rule of node n is A→ B + C, spans of node A, B, C are SPAN-A, SPAN-B, SPAN-C
3: SPANS← {SPAN-A, SPAN-B, SPAN-C}
4: C-EDGES ← {e|e ∈ EDGES(g) ∧ SPAN(e) ∈ SPANS}
5: ALL-NODES ← {s|s ∈ NODES(g) ∧ ∃e ∈ C-EDGES s.t. s ∈ NODES(e)}
6: S-EDGES ← {e|e ∈ EDGES(g) ∧ e is structual edge ∧ ∀s ∈ NODES(e) =⇒ s ∈ C-EDGES}
7: ALL-EDGES = C-EDGES ∪ S-EDGES

8: INTERNAL-NODES ← {}
9: EXTERNAL-NODES ← {}

10: for node s in ALL-NODES do
11: if ∀e ∈ EDGES(g), s ∈ NODES(e) =⇒ e ∈ ALL-EDGES then
12: INTERNAL-NODES ← INTERNAL-NODES ∪ {s}
13: else
14: EXTERNAL-NODES ← EXTERNAL-NODES ∪ {s}
15: end if
16: end for
17: RULES ← RULES ∪ {(A,ALL-EDGES, INTERNAL-NODES, EXTERNAL-NODES)}
18: end for

assigns a label from a finite set L to each edge.
X ∈ V ∗ defines an ordered list of nodes, i.e., ex-
ternal nodes, which specify the connecting parts
when replacing a hyperedge.

An HRG G = 〈N,T, P, S〉 is a graph rewrit-
ing system, where N and T are two disjoint finite
sets of nonterminal and terminal symbols respec-
tively. S ∈ N is the start symbol. P is a finite
set of productions of the form A → R, where the
left hand side (LHS) A ∈ N , and the right hand
side (RHS) R is a hypergraph with edge labels
over N ∪T . The rewriting process replaces a non-
terminal hyperedge with the graph fragment spec-
ified by a production’s RHS, attaching each exter-
nal node to the matched node of the corresponding
LHS. An example is shown in Figure 1. Follow-
ing Chiang et al. (2013), we make the nodes only
describe connections between edges and store no
other information.

A synchronous grammar defines mappings be-
tween different grammars. Here we focus on relat-
ing a string grammar, CFG in our case, to a graph
grammar, i.e., HRG. SHRG can be represented as
tuple G = 〈N,T, T ′, P, S〉. N is a finite set of
nonterminal symbols in both CFG and HRG. T ′

and T are finite sets of terminal symbols in CFG
and HRG, respectively. S ∈ N is the start sym-
bol. P is a finite set of productions of the form
A→ 〈R,R′,∼〉, whereA ∈ N ,R is a hypergraph

fragment with edge labels over N ∪ T , and R′ is
a symbol sequence over N ∪ T ′. ∼ is a mapping
between the nonterminals inR andR′. When a co-
herent CFG derivation is ready, we can interpret it
using the corresponding HRG and get a semantic
graph.

3 Grammar Extraction

3.1 Graph Representations for ERS

ERS are richly detailed semantic representa-
tions produced by the ERG, a hand-crafted,
linguistically-motivated HPSG grammar for En-
glish. Beyond basic predicate–argument struc-
tures, ERS also includes other information about
various complex phenomena such as the distinc-
tion between scopal and non-scopal arguments,
conditionals, comparatives, and many others. ERS
are in the formalism of Minimal Recursion Se-
mantics (MRS; Copestake et al., 2005), but can
be expressed in different ways. Semantic graphs,
including EDS and DMRS, can be reduced from
the standard feature structure encoded representa-
tions, with or without a loss of information. In this
paper, we conduct experiments on ERS data, but
our grammar extraction algorithm and the parser
are not limited to ERS.

One distinguished characteristic of ERS is that
the construction of ERS strictly follows the prin-
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Figure 2: The grammar extraction process of the running example. Conceptual edges which are directly
aligned with the syntactic rules are painted in green. The span-based alignment is shown in the parenthe-
ses. Structural edges that connect conceptual edges are painted in brown. Green edges and brown edges
together form the subgraph, which acts as RHS in the HRG rule. External nodes are represented as solid
dots.

ciple of compositionality (Bender et al., 2015). A
precise syntax-semantics interface is introduced
to guarantee compositionality and therefore all
meaning units can be traced back to linguistic
signals, including both lexical and constructional
ones. Take Figure 2 for example. Every con-
cept, e.g. the existence quantifier some q, is
associated with a surface string. We favor such
correspondence not because it eases extraction
of SHRGs, but because we emphasize sentence
meanings that are from forms. The connection be-
tween syntax (sentence form) and semantics (word
and sentence meaning) is fundamental to the study
of language.

3.2 The Algorithm

We introduce a novel SHRG extraction algorithm,
which requires and only requires alignments be-
tween conceptual edges and surface strings. A tree
is also required, but this tree does not have to be
a gold-standard syntactic tree. All trees that are
compatible with an alignment can be used. The
syntactic part of DeepBank is a phrase structure
which describes HPSG derivation. The vast ma-
jority of syntactic rules in DeepBank are binary,
and the rest are unary. In §5, we report evaluation

results based on DeepBank trees.

A conceptual graph is composed by two kinds
of edges: 1) conceptual edges that carry semantic
concept information and are connected with only
one node, and 2) structural edges that build re-
lationships among concepts by connecting nodes.
The grammar extraction process repeatedly re-
places a subgraph with a nonterminal hyperedge,
defining the nonterminal symbol as LHS and the
subgraph as RHS. The key problem is to identify
an appropriate subgraph in each step. To this end,
we take advantage of DeepBank’s accurate and
fine-grained alignments between the surface string
in syntactic tree and concepts in semantic graphs.

To extract the HRG rule synchronized with the
syntactic rewriting rule A → B + C, we assume
that conceptual edges sharing common spans with
A, B or C are in the same subgraph. This sub-
graph acts as the RHS of the HRG rule. We make
the extraction process go in the direction of pos-
torder traversal of the syntactic tree, to ensure that
all sub-spans of A, B or C are already replaced
with hyperedges. We then add the structural edges
that connect the above conceptual edges to RHS.
After the subgraph is identified, it is easy to distin-
guish between internal nodes and external nodes.
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If all edges connected to a node are in the sub-
graph, this node is an internal node. Otherwise, it
is external node. Finally, the subgraph is replaced
with a nonterminal edge. Algorithm 1 presents a
precise demonstration and Figure 2 illustrates an
example.

4 A Neural SHRG Parser

Under the SHRG formalism, semantic parsing can
be divided into two steps: syntactic parsing and
semantic interpretation. Syntactic parsing utilizes
the CFG part to get a derivation that is shared by
the HRG part. At one derivation step, there may
be more than one HRG rule applicable. In this
case, we need a semantic disambiguation model
to choose a good one.

4.1 Syntactic Parsing
Following the LSTM-Minus approach proposed
by Cross and Huang (2016), we build a constituent
parser with a CKY decoder. We denote the output
vectors of forward and backward LSTM as fi and
bi. The feature si,j of a span (i, j) can be calcu-
lated from the differences of LSTM encodings:

si,j = (fj − fi)⊕ (bi − bj)
The operator ⊕ indicates the concatenation of

two vectors. Constituency parsing can be regarded
as predicting scores for spans and labels, and get-
ting the best syntactic tree with dynamic program-
ming. Following Stern et al. (2017)’s approach,
We calculate the span scores SCOREspan(i, j) and
labels scores SCORElabel(i, j, l) from si,j with
multilayer perceptrons (MLPs):

SCOREspan(i, j) = MLPspan(si,j)

SCORElabel(i, j, l) = MLPlabel(si,j)[l]

x[i] indicates the ith element of a vector x. We
condense the unary chains into one label to ensure
that only one rule is corresponds with a specific
span. Because the construction rules from Deep-
Bank are either unary or binary, we do not deal
with binarization.

Because the SHRG synchronizes at rule level,
we need to restrict the parser to ensure that the out-
put agrees with the known rules. The restriction
can be directly added into the CKY decoder. To
simplify the semantic interpretation process, we
add extra label information to enrich the nontermi-
nals in CFG rules. In particular, we consider the

count of external nodes of a corresponding HRG
rule. For example, the LHS of rule ¯ in Figure 2
will be labeled as “HD-CMP#2”, since the RHS of
its HRG counterpart has two external nodes.

4.2 Semantic Interpretation

When a phrase structure tree, i.e., a derivation
tree, T is available, semantic interpretation can
be regarded as translating T to the derivation of
graph construction by assigning a corresponding
HRG rule to each syntactic counterpart. Our ap-
proach to finding the optimal HRG rule combina-
tion R̂ = {r1, r2, ...} from the search spaceR(T ):

R̂ = argmaxR∈R(T )SCORE(R|T ) (1)

To solve this optimization problem, we implement
a greedy search decoder and a bottom-up beam
search decoder. The final semantic graphG is read
off from R̂.

4.2.1 Greedy Search Model
In this model, we assume that each HRG rule is
selected independently of the others. The score of
G is defined as the sum of all rule scores:

SCORE(R = {r1, r2, ...}|T ) =
∑

r∈R
SCORE(r|T )

The maximization of the graph score can be
decomposed into the maximization of each rule
score. SCORE(r|T ) can be calculated in many
ways. Count-based approach is the simplest one,
where the rule score is estimated by its frequency
in the training data. We also evaluate a sophis-
ticated scoring method, i.e., training a classifier
based on rule embedding:

SCORE(r|T ) = MLP(si,j ⊕ r)

Inspired by the bag-of-words model, we represent
the rule as bag of edge labels. The i-th position
in r indicates the number of times the i-th label
appears in the rule.

4.2.2 Bottom-Up Beam Search Model
We can also leverage structured prediction to ap-
proximate SCORE(R|T ) and employ principled
decoding algorithms to solve the optimization
problem (1). We propose a factorization model to
assign scores to the graph and subgraphs in the in-
termediate state. The score of a certain graph can
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be seen as the sum of each factor score.

SCORE(R|T ) =
∑

i∈PART(R,T )

SCOREPART(i)

We use predicates and arguments as factors for
scoring. There are two kinds of factors: 1) A con-
ceptual edge aligned with span (i, j) taking pred-
icate name p. We use the span embedding si,j as
features, and scoring with non-linear transforma-
tion:

SCOREPARTpred(i, j, p) = MLPpred(si,j)[p]

2) A structural edge with label L connects with
predicates pa and pb, which are aligned with spans
(i1, j1) and (i2, j2) respectively. We use the span
embedding si1,j1 , si2,j2 and random initialized
predicate embedding pa, pb as features, and scor-
ing with non-linear transformation:

SCOREPARTarg(i1, j1, i2, j2,pa,pb, L)

= MLParg(si1,j1 ⊕ si2,j2 ⊕ pa ⊕ pb)[L]
We assign a beam to each node in the syntac-

tic tree. To ensure that we always get a subgraph
which does not contain any nonterminal edges
during the search process, we perform the beam
search in the bottom-up direction. We only reserve
top k subgraphs in each beam. Figure 3 illustrates
the process.

4.3 Training
The objective of training is to make the score of
the correct graph higher than incorrect graphs. We
use the score difference between the correct graph
Rg and the highest scoring incorrect graph as the
loss:

loss = maxR̂ 6=Rg
SCORE(R̂|T )−SCORE(Rg|T )

Following (Kiperwasser and Goldberg, 2016)’s
experience of loss augmented inference, in order
to update graphs which have high model scores but
are very wrong, we augment each factor belonging
to the gold graph by adding a penalty term c to its
score. Finally the loss term is:

loss = SCORE(Rg|T )−
∑

i∈PART(Rg ,T )

c−

max(SCORE(R̂|T )−
∑

i∈PART(R̂,T )∩PART(Rg ,T )

c)

Some boys want to go .
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Figure 3: The semantic interpretation pro-
cess. The interpretation performs bottom-up beam
search to get a bunch of high-scored subgraphs for
each node in the derivation tree.

5 Experiments

5.1 Set-up

DeepBank is an annotation of the Penn TreeBank
Wall Street Journal which is annotated under the
formalism of HPSG. We use DeepBank version
1.1, corresponding to ERG 1214, and use the stan-
dard data split. Therefore the numeric perfor-
mance can be directly compared to results reported
in Buys and Blunsom (2017). We use the pyDel-
phin library to extract DMRS and EDS graphs and
use the tool provided by jigsaw4 to separate punc-
tuation marks from the words they attach to. We
use DyNet5 to implement our neural models, and
automatic batch technique (Neubig et al., 2017)
in DyNet to perform mini-batch gradient descent
training. The detailed network hyper-parameters
can be seen in Table 2. The same pre-trained word
embedding as (Kiperwasser and Goldberg, 2016)
is employed.

5.2 Results of Grammar Extraction

DeepBank provides fine-grained syntactic
trees with rich information. For example,
the label SP-HD HC C denotes that this is a
“head+specifier” construction, where the seman-
tic head is also the syntactic head. But there

4www.coli.uni-saarland.de/˜yzhang/
files/jigsaw.jar

5https://github.com/clab/dynet
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Hyperparamter Value

Batch size 32
Pre-trained word embedding dimension 100
Random-initialized word embedding dimension 150
LSTM Layer count 2
LSTM dimension (each direction) 250
MLP hidden layer count 1
MLP hidden layer dimension 250
penalty term c 1

Table 2: Hyperparamters used in the experiments.

#EP
#Rule

#Instance
Fine Coarse Unlabeled

EDS

1 49689 14234 1476 676817
2 9616 3424 488 64708
3 2739 1486 280 11195
4 1059 732 248 2071
5+ 508 418 251 655

DMRS

1 50668 15745 2688 657999
2 11428 4418 896 79888
3 3576 1929 465 14237
4 1237 873 299 2561
5+ 669 557 297 901

Table 3: Statistics of SHRG rules with different la-
bel type by the count of external points in EDS and
DMRS representations.

is also the potential for data sparseness. In our
experiments, we extract SHRG with three kinds
of labels: fine-grained labels, coarse-grained
labels and single Xs (meaning unlabeled parsing).
The fine-grained labels are the original labels,
namely fine-grained construction types. We use
the part before the first underscore of each label,
e.g. SP-HD, as a coarse-grained label. The
coarse-grained labels are more like the highly
generalized rule schemata proposed by Pollard
and Sag (1994). Some statistics are shown in
Table 3.

Instead of using gold-standard trees to extract
a synchronous grammar, we also tried randomly-
generated alignment-compatible trees. The result
is shown in Table 4. Gold standard trees exhibit a
low entropy, indicating a high regularity.

5.3 Results of Syntactic Parsing
In addition to the standard evaluation method for
phrase-structure parsing, we find a more suitable
measurement, i.e. condensed score, for our task.
Because we condense unary rule chains into one
label and extract synchronous grammar under this
condensed syntactic tree, it is better to calculate
the correctness of the condensed label rather than

Tree Type 1 2 3 4 5+

Gold 1476 488 280 248 251
Fuzzy 1 12710 7591 7963 6578 8998
Fuzzy 2 13606 7355 7228 6090 9112
Fuzzy 3 12278 8228 8462 7039 9946

Table 4: Comparison of grammars extracted
from unlabeled gold trees and randomly-generated
alignment-compatible trees (”fuzzy” trees).

Label
Standard Condensed

P R F POS BCKT POS

Fine 90.81 91.19 91.00 94.40 87.09 92.98
Coarse 90.78 91.24 91.01 98.30 87.93 95.98

Table 5: Accuracy of syntactic parsing under dif-
ferent labels on development data. We add the
count of external nodes of corresponding HRG
rule. “POS” concerns the prediction of pre-
terminals, while “BCKT” denotes bracketing.

a single label. The additional label “#N” that in-
dicates the number of external points is also con-
sidered in our condensed score evaluation method.
The result is shown in Table 5.

5.4 Results of Semantic Interpretation

Dridan and Oepen (2011) proposed the EDM met-
ric to evaluate the performance the ERS-based
graphs. EDM uses the alignment between the
nodes in a graph and the spans in a string to de-
tect the common parts between two graphs. It con-
verts the predicate and predicate–argument rela-
tionship to comparable triples and calculates the
correctness in these triples. A predicate of label L
and span S is denoted as triple (S, NAME, L) and
a relationship R between the predicate labelled P
and argument labelled A is denoted as triple (P, R,
A). We calculate the F1 value of the total triples
as EDM score. Similarity, we compute the F1

score of only predicate triples and only the rela-
tion triples as EDMP and EDMA.

We reuse the word embeddings and bidirec-
tional LSTM in the trained syntactic parsing
model to extract span embedding si,j . The results
of the count-based model, rule embedding model
and structured model with beam decoder are sum-
marized in Table 6. We report the standard EDM
metrics. The count-based model can achieve con-
siderably good results, showing the correctness of
our grammar extraction method. We also try dif-
ferent labels for the syntactic trees. The results
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Model EDMP EDMA EDM

Count Based 90.12 81.96 86.03
Rule Embedding 93.41 84.84 89.11
Beam Search 93.48 87.88 90.67

Table 6: The EDM score on EDS development
data with different model: count based greedy
search, rule embedding greedy search and beam
search. We use syntactic trees with coarse-grained
labels.

Data Label EDMP EDMA EDM

EDS
Fine 92.70 87.77 90.23

Coarse 93.48 87.88 90.67

DMRS
Fine 92.52 86.47 89.46

Coarse 93.60 86.62 90.07

Table 7: Accuracy on the development data under
different labels of syntactic tree and beam search.

are shown in Table 7. Models based on coarse-
grained labels achieve optimal performance. The
results on test set of EDS data are shown in Table
8. We achieve state-of-the-art performance with a
remarkable improvement over Buys and Blunsom
(2017)’s neural parser.

6 On Syntax-Semantics Interface

In this paper, we empirically study the lexical-
ist/constructivist hypothesis, a divide across a va-
riety of theoretical frameworks, taking semantic
parsing as a case study. Although the original
grammar that guides the annotation of ERS data,
namely ERG, is highly lexicalized in that the ma-
jority of information is encoded in lexical entries
(or lexical rules) as opposed to being represented
in constructions (i.e., rules operating on phrases),
our grammar extraction algorithm has some free-
dom to induce different SHRGs that choose be-
tween the lexicalist and constructivist approaches.
We modify algorithm 1 to follow the key insights
of the lexicalist approach. This is done by con-
sidering all outgoing edges when finding the sub-
graph of the lexical rules. The differences between
two kinds of grammars is shown in Table 9.

Different grammars allow the lexical-
ist/constructivist issue in theoretical linguistics to
be empirically examined. The comparison of the
counts of rules in each grammar is summarized
in Table 11, from which we can see that the
sizes of the grammars are comparable. However,
the parsing results are quite different, as shown

Model EDMP EDMA EDM

EDS
Buys and Blunsom 88.14 82.20 85.48
ACE 91.82 86.92 89.58
Ours 93.15 87.59 90.35

DMRS
Buys and Blunsom 87.54 80.10 84.16
ACE 92.08 86.77 89.64
Ours 93.11 86.01 89.51

Table 8: Accuracy on the test set. We use syntactic
trees of coarse-grained labels and beam search.

in Table 10. A construction grammar works
much better than a lexicalized grammar under
the architecture of our neural parser. We take
this comparison as informative since lexicalist
approaches are more widely accepted by various
computational grammar formalisms, including
CCG, LFG, HPSG and LTAG.

We think that the success of applying SHRG to
resolve semantic parsing highly relies on the com-
positionality nature of ERS’ sentence-level se-
mantic annotation. This is the property that makes
sure the extracted rules are consistent and regu-
lar. Previous investigation by Peng et al. (2015)
on SHRG-based semantic parsing utilizes AMR-
Bank which lacks this property to some extent (see
Bender et al.’s argument). We think this may be
one reason for the disappointing parsing perfor-
mance. Think about the AMR graph associated
“John wants Bob to believe that he saw him.” The
AMR’s annotation for co-reference is a kind of
non-compositional, speaker meaning, and results
in grammar sparseness.

7 On Deep Linguistic Knowledge

Semantic annotations have a tremendous impact
on semantic parsing. In parallel with develop-
ing new semantic annotations, e.g. AMRBank,
there is a resurgence of interest in exploring ex-
isting annotations grounded under deep grammar
formalisms, such as semantic analysis provided by
ERS (Flickinger, 2000). In stark contrast, it seems
that only the annotation results gain interests,
but not the core annotation engine—knowledge-
extensive grammar.

The tendency to continually ignore the positive
impact of precision grammar on semantic parsing
is somewhat strange. For sentences that can be
parsed by an ERG-guided parser, there is a signif-
icant accuracy gap which is repeatedly reported.
See Table 1 for recent results. The main challenges
for precision grammar-guided parsing are unsat-
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Table 9: Rules of lexicalized and construction grammars that are extracted from the running example.

Grammar EDMP EDMA EDM

Construction 93.48 87.88 90.67
Lexicalized 92.14 81.05 86.63

Table 10: The EDM score on EDS development
data with construction grammar and lexicalized
grammar using syntax trees of coarse-grained la-
bels and beam search.

Grammar 1 2 3 4 5+

Construction 14234 3424 1486 732 418
Lexicalized 11653 5938 2358 396 11

Table 11: Comparison of the construction gram-
mar and the lexicalized grammar extracted from
EDS data. We use syntax trees of coarse-grained
labels.

isfactory coverage and efficiency that limit their
uses in NLP applications. Even for treebanking
on newswire data, i.e., Wall Street Journal data
from Penn TreeBank (Marcus et al., 1993), ERG
lacks analyses for c.a. 11% of sentences (Oepen
et al., 2015). For text data from the web, e.g.
tweets, this problem is even more serious. More-
over, checking all possible linguistic constraints
makes a grammar-guided parser too slow for many
realistic NLP applications. Robustness and effi-
ciency, thus, are two major problems for practical
NLP applications.

Recent encouraging progress achieved with
purely data-driven models helps resolve the above
two problems. Nevertheless, it seems too rad-
ical to remove all explicit linguistic knowledge
about the syntacto-semantic composition process,
the key characteristics of natural languages. In
this paper, we introduce a neural SHRG-based se-
mantic parser that strikes a balance between data-
driven and grammar-guided parsing. We encode
deep linguistic knowledge partially in a symbolic
way and partially in a statistical way. It is worth
noting that the symbolic system is a derivational,

generative-enumerative grammar, while the origin
of the data source is grounded under a representa-
tional, model-theoretic grammar. While grammar
writers may favor the convenience provided by a
unification grammar formalism, a practical parser
may re-use algorithms by another formalism by
translating grammars through data. Experiments
also suggest that (recurrent) neural network mod-
els are able to effectively gain some deep linguistic
knowledge from annotations.

8 Conclusion

The advantages of using graph grammars to re-
solve semantic parsing is clear in concept but un-
derexploited in practice. Here, we have shown
ways to improve SHRG-based string-to-semantic-
graph parsing. Especially, we emphasize the im-
portance of modeling syntax-semantic interface
and the compositional property of semantic an-
notations. Just like recent explorations on many
other NLP tasks, we also show that neural net-
work models are very powerful to advance deep
language understanding.
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Abstract

To solve math word problems, previous
statistical approaches attempt at learning
a direct mapping from a problem descrip-
tion to its corresponding equation system.
However, such mappings do not include
the information of a few higher-order op-
erations that cannot be explicitly repre-
sented in equations but are required to
solve the problem. The gap between nat-
ural language and equations makes it dif-
ficult for a learned model to generalize
from limited data. In this work we present
an intermediate meaning representation
scheme that tries to reduce this gap. We
use a sequence-to-sequence model with a
novel attention regularization term to gen-
erate the intermediate forms, then execute
them to obtain the final answers. Since the
intermediate forms are latent, we propose
an iterative labeling framework for learn-
ing by leveraging supervision signals from
both equations and answers. Our experi-
ments show using intermediate forms out-
performs directly predicting equations.

1 Introduction

There is a growing interest in math word problem
solving (Kushman et al., 2014; Koncel-Kedziorski
et al., 2015; Huang et al., 2017; Roy and Roth,
2018). It requires reasoning with respect to sets of
numbers or variables, which is an essential capa-
bility in many other natural language understand-
ing tasks. Consider the math problems shown in
Table 1. To solve the problems, one needs to know
how many numbers to be summed up (e.g. “2
numbers/3 numbers”), and the relation between

∗Work done while this author was an intern at Microsoft
Research.

1) The sum of 2 numbers is 18. The first
number is 4 more than the second number.
Find the two numbers.
Equations: x+ y = 18, x = y + 4

2) The sum of 3 numbers is 15. The larger
number is 4 times the smallest and the mid-
dle number is 5. What are the numbers?
Equations: x+ y+ z = 15, x = 4 ∗ z, y = 5

Table 1: Math word problems. Equations have lost
the information of count, max, ordinal operations.

variables (“the first/second number”). However,
an equation system does not encode these infor-
mation explicitly. For example, an equation repre-
sents “the sum of 2 numbers” as (x + y) and “the
sum of 3 numbers” as (x + y + z). This makes
it difficult to generalize to cases unseen from data
(e.g. “the sum of 100 numbers”).

This paper presents a new intermediate meaning
representation scheme for solving math problems,
aiming at closing the semantic gap between natu-
ral language and equations. To generate the inter-
mediate forms, we adapt a sequence-to-sequence
(seq2seq) network following recent work that tries
to generate equations from problem descriptions
for this task. Wang et al. (2017) have shown
that seq2seq models have the power to generate
equations of which problem types do not exist in
training data. In this paper, we propose a new
method which adds an extra meaning representa-
tion and generate an intermediate form as output.
Additionally, we observe that the attention weights
of the seq2seq model repetitively concentrates on
numbers in the problem description. To address
the issue, we further propose to use a form of at-
tention regularization.

To train the model without explicit annotations
of intermediate forms, we propose an iterative la-
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beling framework to leverage signals from both
equations and their solutions. We first derive
possible intermediate forms with ambiguity using
the gold-standard equation systems, and use these
forms for training to get a pre-trained model. Then
we iteratively refine the intermediate forms using
the learned model and the signals from the gold-
standard answers.

We conduct experiments on two publicly avail-
able math problem datasets. Our experimental re-
sults show that using the intermediate forms for
training performs significantly better than directly
mapping problems to equation systems. Further-
more, our iterative labeling framework creates bet-
ter labeled data with intermediate forms for train-
ing, which leads to improved performance.

To summarize, our contributions include:

• We present a new intermediate meaning rep-
resentation scheme for solving math prob-
lems.

• We design an iterative labeling framework to
automatically augment training data with in-
termediate meaning representation.

• We propose using attention regularization in
training to address the issue of incorrect at-
tention in the seq2seq model.

• We verify the effectiveness of our proposed
solutions by conducting experiments and
analysis on real-world datasets.

2 Meaning Representation

In this section, we will compare meaning repre-
sentations for solving math problems and intro-
duce the proposed intermediate meaning represen-
tation.

2.1 Meaning Representations for Math
Problem Solving

We first discuss two meaning representation
schemes for math problem solving.
An equation system is a collection of one or
more equations involving the same set of vari-
ables, which should be considered as highly ab-
stractive symbolic representation.
The Dolphin Language is introduced by Shi et al.
(2015). It contains about 35 math-related classes
and over 200 math-related functions, with addi-
tional classes and functions automatically mined
from Freebase.

Unfortunately, these representation schemes do
not generalize well. Consider the two problems
listed in Table 2. They belong to the same type of
problems asking about the summation of consec-
utive integers. However, their meaning represen-
tations are very different in the Dolphin language
and in equations. On one hand, the Dolphin lan-
guage aligns too closely with natural utterances.
Since the math problem descriptions are diverse
in using various nouns and verbs, Dolphin lan-
guage may represent the same type of problems
differently. On the other hand, an equation system
does not explicitly represent useful problem solv-
ing information such as “number of variables” and
“numbers are consecutive”

2.2 Intermediate Meaning Representation

To bridge the semantic gap between the two mean-
ing representations, we present a new intermedi-
ate meaning representation scheme for math prob-
lem solving. It consists of 6 classes and 23 func-
tions. Here a class is the set of entities with
the same semantic properties and can be inher-
ited (e.g. 2 ∈ int, int v num). A function is
comprised of a name, a list of arguments with cor-
responding types, and a return type. For exam-
ple, there are two overloaded definitions for the
function math#sum (Table 3). These forms can
be constructed by recursively applying joint opera-
tions on functions with class type constraints. Our
representation scheme attempts to borrow the ex-
plicit use of higher-order functions from the Dol-
phin language, while avoiding to be too specific.
Meanwhile, the intermediate forms are not as con-
cise as the equation systems (Table 2). We leave
more detailed definitions to the supplement mate-
rial due to space limit.

3 Problem Statement

Given a math word problem p, our goal is to pre-
dict its answer Ap. For each problem we have an-
notations of both the equation system Ep and the
answer Ap available for training. The latent inter-
mediate form will be denoted as LFp.

We formulate math problem solving as a se-
quence prediction task, taking the sequence of
words in a math problem as input and generating
a sequence of tokens in its corresponding interme-
diate form as output. We then execute the inter-
mediate form to obtain the final answer. We evalu-
ate the task using answer accuracy on two publicly
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Problem 1: Find three consecutive integers with a sum of 267.
Dolphin Language: vf.find(cat(‘integers’), count:3, adj.consecutive, (math#sum(pron.that, 267, det.a)))
Equation: x+ (x+ 1) + (x+ 2) = 267
This work: math#consecutive(3), math#sum(cnt: 3) = 267

Problem 2: What are 5 consecutive numbers total 95?
Dolphin Language: wh.vf.math.total((cat(‘numbers’), count:5, pron.what, adj.consecutive), 95)
Equation: x+ (x+ 1) + (x+ 2) + (x+ 3) + (x+ 4) = 95
This work: math#consecutive(5), math#sum(cnt: 5) = 95

Table 2: Different representations for math problems. Dolphin language is detailed (’all words’). Equa-
tion system is coarse that it represents many functions implicitly, such as “count”, “consecutive”.

Classes
int, float, num, unk, var, list
Functions
ret:int count($1:list): number of variables in $1
ret:var max($1:list): variable of max value in $1
ret:var math#product($1,$2:var): $1 times $2
ret:var math#sum($1:list): sum of variables in $1
ret:var math#sum(cnt:$1:int): sum of $1 unks
Example
Four times the sum of three and a number is 10.
-> math#product(4, math#sum(3, m))=10

Table 3: Examples of classes and functions in our
intermediate representation. “ret” stands for return
type. $1, $2 are arguments with its types.

available math word problem datasets1:

• Number Word Problem (NumWord) is cre-
ated by Shi et al. (2015). It contains 1,878
number word problems (verbally expressed
number problems, such as the examples in
Table 1). Its linear subset (subset of problems
that can be solved by linear equation systems)
has 986 problems, only involving four basic
operations {+,−, ∗, /}.

• Dolphin18K is created by Huang et al. (2016).
It contains 18,711 math word problems col-
lected from Yahoo! Answers2. Since it con-
tains some problems without equations, we
only use the subset of 10,644 problems which
are paired with their equation systems.

1Other small datasets with 4 basic operations {+,−, ∗, /}
and only one unknown variable are considered as subsets of
our datasets.

2https://answers.yahoo.com/

4 Model

In this section, we describe (1) the basic sequence-
to-sequence model, and (2) attention regulariza-
tion.

4.1 Sequence-to-Sequence RNN Model
Our baseline model is based on sequence-to-
sequence learning (Sutskever et al., 2014) with at-
tention (Bahdanau et al., 2015) and copy mecha-
nism (Gulcehre et al., 2016; Gu et al., 2016).
Encoder: The encoder is implemented as a single-
layer bidirectional RNN with gated recurrent units
(GRUs). It reads words one-by-one from the input
problem, producing a sequence of hidden states
hi = [hFi , h

B
i ] with:

hFi = GRU(φin(xi), h
F
i−1), (1)

hBi = GRU(φin(xi), h
B
i+1), (2)

where φin maps each input word xi to a fixed-
dimensional vector.
Decoder with Copying: At each decoding step
j, the decoder receives the word embedding of the
previous word, and an attention function is applied
to attend over the input words as follows:

eji = vT tanh(Whhi +Wssj + battn), (3)

aji =
exp(eji)∑m
i′=1 exp(eji′)

, (4)

cj =
m∑

i=1

ajihi, (5)

where sj is the decoder hidden state. Intuitively,
aji defines the probability distribution of attention
over the input words. They are computed from the
unnormalized attention scores eji. cj is the context
vector, which is the weighted sum of the encoder
hidden states.
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At each step, the model has to decide whether
to generate a word from target vocabulary or to
copy a number from the problem description. The
generation probability pgen is modeled by:

pgen = σ(wTc cj + wTs sj + bptr), (6)

where wc, ws and bptr are model parameters.
Next, pgen is used as a soft switch: with proba-
bility pgen the model decides to generate from the
decoder state. The probability distribution over all
words in the vocabulary is:

PRNN = softmax(W [sj , cj ] + b); (7)

with probability 1− pgen the model decides to di-
rectly copy an input word according to its attention
weight. This leads to the final distribution of de-
coder state outputs:

P (wj = w|·) = pgenPRNN (w) + (1− pgen)aji
(8)

4.2 Attention Regularization
In preliminary experiments, we observed that the
attention weights in the baseline model repeti-
tively concentrate on the numbers in the math
problem description (will be discussed in later sec-
tions with Figure 1(a)). To address this issue,
we regularize the accumulative attention weights
for each input token using a rectified linear unit
(ReLU) layer, leading to the regularization term:

AttReg =
∑

i

ReLU(

T∑

j=0

aji − 1), (9)

where ReLU(x) = max(x, 0). This term penal-
izes the accumulated attention weights on specific
locations if it exceeds 1. Adding this term to the
primary loss to get the final objective function:

Loss = −
∑

i

log p(yi|xi; θ) + λ ∗ AttReg (10)

where λ is a hyper-parameter that controls the con-
tribution of attention regularization in the loss.

The format of our attention regularization term
resembles the coverage mechanism used in neural
machine translation (Tu et al., 2016; Cohn et al.,
2016), which encourages the coverage or fertility
control for input tokens.

5 Iterative Labeling

Since explicit annotations of our intermediate
forms do not exist, we propose an iterative label-
ing framework for training.

5.1 Deriving Latent Forms From Equations

We use the annotated equation systems to derive
possible latent forms. First we define some simple
rules that map an expression to our intermediate
form. For example, we use regular expressions to
match numbers and unknown variables. Example
rules are shown in Table 4 (see Section 2 of the
Supplement Material for all rules).

Regex/Rules Class/Function
\-?[0-9\.]+ num
[a-z] unk
<num>|<unk> var
(<var>\+)+<var> math#sum($1:list)
(<unk>\+)+<unk> math#sum
$1=count of unk (cnt:$1:int)

Table 4: Example rules for deriving latent forms
from equation system.

5.2 Ambiguity in Derivation

For one equation system, several latent form
derivations are possible. Take the following math
problem as an example:

Find 3 consecutive integers that 3 times
the sum of the first and the third is 79.

Given the annotation of its equation
3 ∗ (x + (x + 2)) = 79, there are two pos-
sible latent intermediate forms:
1) math#consecutive(3), math#product(3,
math#sum(ordinal(1), ordinal(3)))=79
2) math#consecutive(3), math#product(3,
math#sum(min(), max()))=79

There exist two types of ambiguities: a) opera-
tor ambiguity. (x+2) may correspond to the op-
erator “ordinal(3)” or “max()”; b) alignment am-
biguity. For each “3” in the intermediate form,
it is unclear which “3” in the input to be copied.
Therefore, we may derive multiple intermediate
forms with spurious ones for a training problem.

We can see from Table 5 that both datasets
we used have the issue of ambiguity, containing
about 20% of problems with operator ambiguity
and 10% of problems with alignment ambiguity.

5.3 Iterative Labeling

To address the issue of ambiguity, we perform an
iterative procedure where we search for correct in-
termediate forms to refine the training data. The
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Dataset Ambiguous Ambig. #LF
oper align (per prob)

NumWord
28.0% 10.2% 3.67

(Linear)
NumWord

26.9% 9.5% 4.29
(All)

Dolphin18K 35.9% 9.6% 3.86

Table 5: Statistics of latent forms on two datasets.
The percentage of problems with operator and
alignment ambiguity is shown in the 2nd and 3rd
columns respectively. We also show the average
number of intermediate forms of problems with
derivation ambiguity in the rightmost column.

intuition is that a better model will lead to more
correct latent form outputs, and more correct latent
forms in training data will lead to a better model.

Algorithm 1 Iterative Labeling

Require:
(1) Tuples of (math problem description, equa-
tion system, answer) Dn = {(pi, Epi , Api)}
(2) Possible latent forms PLF = {(p0, LF 1

p0),
(p0, LF

2
p0), ..., (pn, LF

m
pn)}

(3) Beam size B
(4) training iterations Niter, pre-training itera-
tions Npre

Procedure:
for iter = 1 to Niter do

if iter < Npre then
θ←MLE with PLF

else
for (p, LF ) in PLF do

C = Decode B latent forms given p
for j in 1...B do

if Ans(Cj) is correct then
LF ⇐ Cj
break

θ←MLE with relabeled PLF

Algorithm 1 describes our training procedure.
As pre-training, we first update our model by max-
imum likelihood estimation (MLE) with all possi-
ble latent forms for Npre iterations. Ambiguous
and wrong latent forms may appear at this stage.
This pre-training is to ensure faster convergence
and a more stable model. After Npre iterations,
iterative labeling starts. We decode on each train-
ing instance with beam search. We declare Cj to
be the consistent form in the beam if it can be ex-

ecuted to yield the correct answer. Therefore we
can relabel the latent form LF with Cj for prob-
lem p and use the new pairs for training. If there
is no consistent form in the beam, we keep it un-
changed. With iterative labeling, we update our
model by MLE with relabeled latent forms. There
are two conditions of Npre to consider:
(1) Npre = 0, the training starts iterative labeling
without pre-training.
(2) Npre = Niter, the training is pure MLE with-
out iterative labeling.

6 Experiments

In this section, we compare our method against
several strong baseline systems.

6.1 Experiment Setting
Following previous work, experiments are done in
5-fold cross validation: in each run, 20% is used
for testing, 70% for training and 10% for valida-
tion.
Representation To make the task easier with less
auxiliary nuisances (e.g. bracket pairs), we repre-
sent the intermediate forms in Polish notation. 3

Implementation details The dimension of en-
coder hidden state, decoder hidden state and em-
beddings are 100 in NumWord, 512 in Dol-
phin18K. All model parameters are initialized ran-
domly with Gaussian distribution. The hyper-
parameter λ for the weight of attention regulariza-
tion is set to 1.0 on NumWord and 0.4 on Dol-
phin18K. We use SGD optimizer with decaying
learning rate initialized as 0.5. Dropout rate is set
to 0.5. The stopping criterion for training is vali-
dation accuracy with the maximum number of iter-
ations no more than 150. The vocabulary consists
of words observed no less thanN times in training
set. We set N = 1 for NumWord and N = 5 for
Dolphin18K. The beam size is set to 20 in the de-
coding stage. For iterative training, we first train
a model for Npre = 50 iterations for pre-training.
We tune the hyper-parameters on a separate dev
set.

We consider the following models for compar-
isons:

•Wang et al. (2017): a seq2seq model with at-
tention mechanism. As preprocessing, it re-
places numbers in the math problem with
tokens {n1, n2, ...}. It generates equation

3https://en.wikipedia.org/wiki/Polish_
notation
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as output and recovers {n1, n2, ...} to corre-
sponding numbers in the post-processing.

• Seq2Seq Equ: we implement a seq2seq model
with attention and copy mechanism. Differ-
ent from Wang et al. (2017), it has the ability
to copy numbers from problem description.

• Shi et al. (2015): a rule-based system. It parses
math problems into Dolphin language trees
with predefined grammars and reasons across
trees to get the equations with rules. We re-
port numbers from their paper as the Dolphin
language is not publicly available.

• Huang et al. (2017): the current state-of-the-
art model on Dolphin18K. It is a feature-
based model. It generates candidate equa-
tions and find the most probable equation by
ranking with predefined features.

6.2 Results

Overall results are shown in Table 6. From
the table, we can see that our final model
(Seq2Seq LF+AttReg+Iter) outperforms the
neural-based baseline models (Wang et al.
(2017)4 and Seq2Seq Equ). On Number word
problem dataset, our model already outperforms
the state-of-the-art feature-based model (Huang
et al., 2017) by 40.8% and is comparable to the
ruled-based model (Shi et al., 2015)5.

Advantage of intermediate forms: From the
first two rows, we can see that the seq2seq
model which is trained to generate interme-
diate forms (Seq2Seq LF) greatly outperforms
the same model trained to generate equations
(Seq2Seq Equ). The use of intermediate forms
helps more on NumWord than on Dolphin18K.
This result is expected as the Dolphin18K dataset
is more challenging, containing many other types
of difficulties discussed in Section 6.3.

Effect of Attention Regularization: Attention
regularization improves the seq2seq model on the
two datasets as expected. Figure 1 shows an exam-
ple. The attention regularization does meet the ex-
pectation: the alignments in Fig 1(b) are less con-
centrated on the numbers in the input and more
importantly and alignments are more reasonable.
For example, when generating “math#product” in

4We re-implement this since it is not publicly available.
5The system reports precision and recall. Since all the

problems have answers, its recall equals to our accuracy.

the output, the attention is now correctly focused
on the input token “times”.

Effect of Iterative Labeling: We can see from
Table 6 that iterative labeling clearly contributes to
the accuracy increase on the two datasets. Now we
compare the performance with and without pre-
training in Table 7. When Npre = 0 in Algo-
rithm 1, the model starts iterative labeling from the
first iteration without pre-training. We find that
training with pre-training is substantially better,
as the model without pre-training can be unstable
and may generate misleading spurious candidate
forms.

Next, we compare the performance with pure
MLE training on NumWord (Linear) in Figure 2.
The difference is that after 50 iterations of MLE
training, iterative labeling would refine the latent
forms of training data. In pure MLE training, the
accuracy converges after 130 iterations. By using
iterative labeling, the model achieves the accuracy
of 61.6% at 110th iterations, which is faster to con-
verge and leads to better performance.

Furthermore, to check whether iterative label-
ing actually resolves ambiguities in the intermedi-
ate forms of the training data, we manually sam-
ple 100 math problems with derivation ambigu-
ity. 78% of them are relabeled with correct latent
forms as we have checked. From Table 8, we can
see the latent form of one training problem is iter-
atively refined to the correct one.

6.3 Model Comparisons

To explore the generalization ability of the neu-
ral approach and better guide our future work, we
compare the problems solved by our neural-based
model with the rule-based model (Shi et al., 2015)
and the feature-based model (Huang et al., 2017).

Neural-based v. Rule-based: On NumWord
(ALL), 41.6% of problems can be solved by both
models. 15.5% can only be solved by our neural
model, while the rule-based model generates an
empty or a wrong semantic tree due to the lim-
itations of the predefined grammar. The neural
model is more consistent with flexible word or-
der and insertion of lexical items (e.g. rule-based
model cannot handle the extra word ‘whole’ in
“Find two consecutive whole numbers”).

Neural-based v. Feature-based: On Dol-
phin18K, 9.2% of problems can be solved by both
models. 7.6% can only be solved by our neu-
ral model, which indicates that the neural model
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Models NumWord NumWord Dolphin18K
(Linear) (ALL) (Linear)

Wang et al. (2017) 19.7% 14.6% 10.2%
Seq2Seq Equ 26.8% 20.1% 13.1%
Seq2Seq LF 50.8% 45.2% 13.9%

Seq2Seq LF+AttReg 56.7% 54.0% 15.1%
Seq2Seq LF+AttReg+Iter 61.6% 57.1% 16.8%

Shi et al. (2015) 63.6% 60.2% n/a
Huang et al. (2017) 20.8% n/a 28.4%

Table 6: Performances on two datasets. “LF” means that the model generates latent intermediate forms
instead of equation systems. “AttReg” means attention regularization. “Iter” means iterative labeling.
“n/a” means that the model does not run on the dataset.

(a) seq2seq LF (b) seq2seq LF+AttReg

Figure 1: Example alignments for one problem (darker color represents higher attention score).

NumWord NumWord Dolphin18K
(Linear) (ALL) (Linear)

-pre 58.1% 54.9% 14.9%
+pre 61.6% 57.1% 16.8%

Table 7: Performance with and without pre-
training in iterative labeling.

50 100 150
0.45

0.5

0.55

0.6

0.65

number of iterations

ac
cu

ra
cy

MLE
iterative labeling

Figure 2: Accuracy with different iterations of
training on NumWord (Linear).

can capture novel features that the feature-based
model is missing.

While our neural model is complementary to the
above mentioned models, we observe two main
types of errors (more examples are shown in the
supplementary material):
1. Natural language variations: Same type of
problems can be described in different scenarios.
The two problems: (1) “What is 10 minus 2?” and
(2) “John has 10 apples. How many apples does
John have after giving Mary 2 apples”, lead to the
same equation x = 10 − 2 but with very different
descriptions. With limited size of data, we could
not be expected to cover all possible ways to ask
the same underlining math problems. Although
the feature-based model has considered this with
some features (e.g. POS Tag), the challenge is not
well-addressed.
2. Nested operations: Some problems require
multiple nested operations (e.g. “I think of a num-
ber, double it, add 3, multiply the answer by 3 and
then add on the original number”). The rule-based
model performs more consistently on this.
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Training Problem:
Find 2 0 consecutive integers which the first number is 2 1 more than 2 2 times the second number.
Intermediate form in 1st iteration
(7) math#consecutive(2 0), ordinal(1) = math#sum(“2 0”, math#product(“2 0”, “max()”)
Intermediate form in 51st iteration
(7) math#consecutive(2 0), ordinal(1) = math#sum(2 1, math#product(“2 0”, ordinal(2))
Intermediate form in 101st iteration
(3) math#consecutive(2 0), ordinal(1) = math#sum(2 1, math#product(2 2, ordinal(2))

Table 8: Instance check of intermediate form for one math problem in several training iterations. 2 0
means the the first ‘2’ in the input and so on. Tokens with quote marks mean that they are incorrect.

7 Related Work

Our work is related to two research areas: math
word problem solving and semantic parsing.

7.1 Math Word Problem Solving

There are two major components in this task: (1)
meaning representation; (2) learning framework.

Semantic Representation With the annotation
of equation system, most approaches attempt at
learning a direct mapping from math problem
description to an equation system. There are
other approaches considering an intermediate rep-
resentation that bridges the semantic gap between
natural language and equation system. Bakman
(2007) defines a table of schema (e.g. Transfer-
In-Place, Transfer-In-Ownership) with associated
formulas in natural utterance. A math problem
can be mapped into a list of schema instantiations,
then converted to equations. Liguda and Pfeiffer
(2012) use augmented semantic network to repre-
sent math problems, where nodes represent con-
cepts of quantities and edges represent transition
states. Shi et al. (2015) design a new meaning
representation language called Dolphin Language
(DOL) with over 200 math-related functions and
more additional noun functions. With predefined
rules, these approaches accept limited well-format
input sentences. Inspired by these representations,
our work describes a new formal language which
is more compact and is effective in facilitating bet-
ter machine learning performance.

Learning Framework In rule-based ap-
proaches (Bakman, 2007; Liguda and Pfeiffer,
2012; Shi et al., 2015), they map math prob-
lem description into structures with predefined
grammars and rules.

Feature-based approaches contain two stages:
(1) generate equation candidates; They either re-

place numbers of existing equations in the training
data as new equations (Kushman et al., 2014; Zhou
et al., 2015; Upadhyay et al., 2016), or enumer-
ate possible combinations of math operators and
numbers and variables (Koncel-Kedziorski et al.,
2015), which leads to intractably huge search
space. (2) predict equation with features. For ex-
ample, Hosseini et al. (2014) design features to
classify verbs to addition or subtraction. Roy and
Roth (2015); Roy et al. (2016) leverage the tree
structure of equations. Mitra and Baral (2016);
Roy and Roth (2018) design features for a few
math concepts (e.g. Part-Whole, Comparison).
Roy and Roth (2017) focus on the dependencies
between number units. These approaches requires
manual feature design and the features may be dif-
ficult to be generalized to other tasks.

Recently, there are a few works trying to build
an end-to-end system with neural models. Ling
et al. (2017) consider multiple-choice math prob-
lems and use a seq2seq model to generate rationale
and the final choice (i.e. A, B, C, D). Wang et al.
(2017) apply a seq2seq model to generate equa-
tions with the constraint of single unknown vari-
able. Similarly, we use the seq2seq model but with
novel attention regularization to address incorrect
attention weights in the seq2seq model.

7.2 Semantic Parsing

Our work is also related to the classic set-
tings of learning executable semantic parsers
from indirect supervision (Clarke et al., 2010;
Liang et al., 2011; Artzi and Zettlemoyer, 2011,
2013; Berant et al., 2013; Pasupat and Liang,
2016). Maximum marginal likelihood with beam
search (Kwiatkowski et al., 2013; Pasupat and
Liang, 2016; Ling et al., 2017) is traditionally
used. It maximizes the marginal likelihood of all
consistent logical forms being observed. Recently

426



reinforcement learning (Guu et al., 2017; Liang
et al., 2017) has also been considered, which max-
imizes the expected reward over all possible logi-
cal forms. Different from them, we only consider
one single consistent latent form per training in-
stance by leveraging training signals from both the
answer and the equation system, which should be
more efficient for our task.

8 Conclusion

This paper presents an intermediate meaning rep-
resentation scheme for math problem solving that
bridges the semantic gap between natural lan-
guage and equation systems. To generate inter-
mediate forms, we propose a seq2seq model with
novel attention regularization. Without explicit
annotations of latent forms, we design an iterative
labeling framework for training. Experimental re-
sult shows that using intermediate forms is more
effective than directly using equations. Further-
more, our iterative labeling effectively resolves
ambiguities and leads to better performances.

As shown in the error analysis, same types of
problems can have different natural language ex-
pressions. In the future, we will focus on tackling
this challenge. In addition, we plan to expand the
coverage of our meaning representation to support
more mathematic concepts.
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Abstract

We introduce an open-domain neural se-
mantic parser which generates formal
meaning representations in the style of
Discourse Representation Theory (DRT;
Kamp and Reyle 1993). We propose a
method which transforms Discourse Rep-
resentation Structures (DRSs) to trees and
develop a structure-aware model which
decomposes the decoding process into
three stages: basic DRS structure pre-
diction, condition prediction (i.e., predi-
cates and relations), and referent predic-
tion (i.e., variables). Experimental results
on the Groningen Meaning Bank (GMB)
show that our model outperforms compet-
itive baselines by a wide margin.

1 Introduction

Semantic parsing is the task of mapping natural
language to machine interpretable meaning repre-
sentations. A variety of meaning representations
have been adopted over the years ranging from
functional query language (FunQL; Kate et al.
2005) to dependency-based compositional seman-
tics (λ-DCS; Liang et al. 2011), lambda calculus
(Zettlemoyer and Collins, 2005), abstract meaning
representations (Banarescu et al., 2013), and min-
imal recursion semantics (Copestake et al., 2005).

Existing semantic parsers are for the most part
data-driven using annotated examples consisting
of utterances and their meaning representations
(Zelle and Mooney, 1996; Wong and Mooney,
2006; Zettlemoyer and Collins, 2005). The suc-
cessful application of encoder-decoder models
(Sutskever et al., 2014; Bahdanau et al., 2015) to
a variety of NLP tasks has provided strong impe-
tus to treat semantic parsing as a sequence trans-
duction problem where an utterance is mapped
to a target meaning representation in string for-
mat (Dong and Lapata, 2016; Jia and Liang, 2016;
Kočiskỳ et al., 2016). The fact that meaning rep-
resentations do not naturally conform to a lin-

ear ordering has also prompted efforts to develop
recurrent neural network architectures tailored to
tree or graph-structured decoding (Dong and La-
pata, 2016; Cheng et al., 2017; Yin and Neubig,
2017; Alvarez-Melis and Jaakkola, 2017; Rabi-
novich et al., 2017; Buys and Blunsom, 2017)

Most previous work focuses on building seman-
tic parsers for question answering tasks, such as
querying a database to retrieve an answer (Zelle
and Mooney, 1996; Cheng et al., 2017), or con-
versing with a flight booking system (Dahl et al.,
1994). As a result, parsers trained on query-based
datasets work on restricted domains (e.g., restau-
rants, meetings; Wang et al. 2015), with limited
vocabularies, exhibiting limited compositionality,
and a small range of syntactic and semantic con-
structions. In this work, we focus on open-domain
semantic parsing and develop a general-purpose
system which generates formal meaning represen-
tations in the style of Discourse Representation
Theory (DRT; Kamp and Reyle 1993).

DRT is a popular theory of meaning represen-
tation designed to account for a variety of linguis-
tic phenomena, including the interpretation of pro-
nouns and temporal expressions within and across
sentences. Advantageously, it supports meaning
representations for entire texts rather than isolated
sentences which in turn can be translated into first-
order logic. The Groningen Meaning Bank (GMB;
Bos et al. 2017) provides a large collection of
English texts annotated with Discourse Represen-
tation Structures (see Figure 1 for an example).
GMB integrates various levels of semantic anno-
tation (e.g., anaphora, named entities, thematic
roles, rhetorical relations) into a unified formal-
ism providing expressive meaning representations
for open-domain texts.

We treat DRT parsing as a structure prediction
problem. We develop a method to transform DRSs
to tree-based representations which can be fur-
ther linearized to bracketed string format. We ex-
amine a series of encoder-decoder models (Bah-
danau et al., 2015) differing in the way tree-
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x1,e1,π1

statement(x1), say(e1), Cause(e1, x1), Topic(e1,π1)

π1: k1:
x2

thing(x)
⇒

x3, s1, x3, x5, e2

Topic(s1, x3), dead(s1),
man(x3), of(x2, x3),

magazine(x4), on(x5,x4)
vest(x5), wear(e2),

Agent(e2, x2), Theme(e2, x5)

k2:
x6

thing(x6)
⇒

x7, s2, x8, x9, e3

Topic(s2, x7), dead(s2),
man(x7), of(x6, x7),
|x8|= 2, hand(x9),

in(x8, x9), grenade(x8)
carry(e3), Agent(e3, x6),

Theme(e3, x8)

continuation(k1,k2), parallel(k1,k2)

Figure 1: DRT meaning representation for the sentence The statement says each of the dead men wore
magazine vests and carried two hand grenades.

structured logical forms are generated and show
that a structure-aware decoder is paramount to
open-domain semantic parsing. Our proposed
model decomposes the decoding process into three
stages. The first stage predicts the structure of
the meaning representation omitting details such
as predicates or variable names. The second stage
fills in missing predicates and relations (e.g., thing,
Agent) conditioning on the natural language input
and the previously predicted structure. Finally, the
third stage predicts variable names based on the
input and the information generated so far.

Decomposing decoding into these three steps
reduces the complexity of generating logical
forms since the model does not have to predict
deeply nested structures, their variables, and pred-
icates all at once. Moreover, the model is able to
take advantage of the GMB annotations more effi-
ciently, e.g., examples with similar structures can
be effectively used in the first stage despite being
very different in their lexical make-up. Finally, a
piecemeal mode of generation yields more accu-
rate predictions; since the output of every decod-
ing step serves as input to the next one, the model
is able to refine its predictions taking progressively
more global context into account. Experimen-
tal results on the GMB show that our three-stage
decoder outperforms a vanilla encoder-decoder
model and a related variant which takes shallow
structure into account, by a wide margin.

Our contributions in this work are three-fold:
an open-domain semantic parser which yields dis-
course representation structures; a novel end-to-
end neural model equipped with a structured de-
coder which decomposes the parsing process into
three stages; a DRS-to-tree conversion method
which transforms DRSs to tree-based representa-
tions allowing for the application of structured de-

coders as well as sequential modeling. We release
our code1 and tree formatted version of the GMB
in the hope of driving further research in open-
domain semantic parsing.

2 Discourse Representation Theory

In this section we provide a brief overview of the
representational semantic formalism used in the
GMB. We refer the reader to Bos et al. (2017) and
Kamp and Reyle (1993) for more details.

Discourse Representation Theory (DRT; Kamp
and Reyle 1993) is a general framework for rep-
resenting the meaning of sentences and discourse
which can handle multiple linguistic phenom-
ena including anaphora, presuppositions, and tem-
poral expressions. The basic meaning-carrying
units in DRT are Discourse Representation Struc-
tures (DRSs), which are recursive formal mean-
ing structures that have a model-theoretic interpre-
tation and can be translated into first-order logic
(Kamp and Reyle, 1993). Basic DRSs consist
of discourse referents (e.g., x,y) representing en-
tities in the discourse and discourse conditions
(e.g., man(x), magazine(y)) representing informa-
tion about discourse referents. Following conven-
tions in the DRT literature, we visualize DRSs in
a box-like format (see Figure 1).

GMB adopts a variant of DRT that uses a neo-
Davidsonian analysis of events (Kipper et al.,
2008), i.e., events are first-order entities character-
ized by one-place predicate symbols (e.g., say(e1)
in Figure 1). In addition, it follows Projective Dis-
course Representation Theory (PDRT; Venhuizen
et al. 2013) an extension of DRT specifically de-
veloped to account for the interpretation of pre-
suppositions and related projection phenomena

1https://github.com/EdinburghNLP/EncDecDRSparsing
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(e.g., conventional implicatures). In PDRT, each
basic DRS introduces a label, which can be bound
by a pointer indicating the interpretation site of
semantic content. To account for the rhetorical
structure of texts, GMB adopts Segmented Dis-
course Representation Theory (SDRT; Asher and
Lascarides 2003). In SDRT, discourse segments
are linked with rhetorical relations reflecting dif-
ferent characteristics of textual coherence, such as
temporal order and communicative intentions (see
continuation(k1, k2) in Figure 1).

More formally, DRSs are expressions of type
〈expe〉 (denoting individuals or discourse refer-
ents) and 〈expt〉 (i.e., truth values):

〈expe〉 ::= 〈re f 〉, 〈expt〉 ::= 〈drs〉|〈sdrs〉, (1)

discourse referents 〈re f 〉 are in turn classified
into six categories, namely common referents (xn),
event referents (en), state referents (sn), segment
referents (kn), proposition referents (πn), and time
referents (tn). 〈drs〉 and 〈sdrs〉 denote basic and
segmented DRSs, respectively:

〈drs〉 ::= 〈pvar〉 :
(〈pvar〉,〈re f 〉)∗

(〈pvar〉,〈condition〉)∗ , (2)

〈sdrs〉 ::=
k1 : 〈expt〉,k2 : 〈expt〉

coo(k1,k2)
|

k1:〈expt 〉
k2:〈expt 〉

sub(k1,k2)
, (3)

Basic DRSs consist of a set of referents (〈re f 〉)
and conditions (〈condition〉), whereas segmented
DRSs are recursive structures that combine two
〈expt〉 by means of coordinating (coo) or subor-
dinating (sub) relations. DRS conditions can be
basic or complex:

〈condition〉 ::= 〈basic〉|〈complex〉, (4)

Basic conditions express properties of discourse
referents or relations between them:

〈basic〉 ::= 〈sym1〉(〈expe〉) | 〈sym2〉(〈expe〉,〈expe〉)
| 〈expe〉= 〈expe〉 | 〈expe〉= 〈num〉
| timex(〈expe〉,〈sym0〉)
| named(〈expe〉,〈sym0〉,class).

(5)

where 〈symn〉 denotes n-place predicates, 〈num〉
denotes cardinal numbers, timex expresses tem-
poral information (e.g., timex(x7,2005) denotes
the year 2005), and class refers to named entity
classes (e.g., location).

Complex conditions are unary or binary. Unary
conditions have one DRS as argument and rep-
resent negation (¬) and modal operators express-
ing necessity (2) and possibility (3). Condition

sections # doc # sent # token avg
00-99 10,000 62,010 1,354,149 21.84
20-99 7,970 49,411 1,078,953 21.83
10-19 1,038 6,483 142,344 21.95
00-09 992 6,116 132,852 21.72

Table 1: Statistics on the GMB (avg denotes the
average number of tokens per sentence).

〈re f 〉 : 〈expt〉 represents verbs with propositional
content (e.g., factive verbs). Binary conditions are
conditional statements (→) and questions.

〈complex〉 ::= 〈unary〉 | 〈binary〉, (6)

〈unary〉 ::= ¬〈expt〉 | 2〈expt〉|3〈expt〉|〈re f 〉 : 〈expt〉
〈binary〉 ::=〈expt〉→〈expt〉|〈expt〉∨〈expt〉|〈expt〉?〈expt〉

3 The Groningen Meaning Bank Corpus

Corpus Creation DRSs in GMB were obtained
from Boxer (Bos, 2008, 2015), and then refined
using expert linguists and crowdsourcing meth-
ods. Boxer constructs DRSs based on a pipeline of
tools involving POS-tagging, named entity recog-
nition, and parsing. Specifically, it relies on the
syntactic analysis of the C&C parser (Clark and
Curran, 2007), a general-purpose parser using the
framework of Combinatory Categorial Grammar
(CCG; Steedman 2001). DRSs are obtained from
CCG parses, with semantic composition being
guided by the CCG syntactic derivation.

Documents in the GMB were collected from
a variety of sources including Voice of America
(a newspaper published by the US Federal Gov-
ernment), the Open American National Corpus,
Aesop’s fables, humorous stories and jokes, and
country descriptions from the CIA World Fact-
book. The dataset consists of 10,000 documents
each annotated with a DRS. Various statistics on
the GMB are shown in Table 1. Bos et al. (2017)
recommend sections 20–99 for training, 10–19 for
tuning, and 00–09 for testing.

DRS-to-Tree Conversion As mentioned earlier,
DRSs in the GMB are displayed in a box-like for-
mat which is intuitive and easy to read but not par-
ticularly amenable to structure modeling. In this
section we discuss how DRSs were post-processed
and simplified into a tree-based format, which
served as input to our models.

The GMB provides DRS annotations per-
document. Our initial efforts have focused on
sentence-level DRS parsing which is undoubtedly
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a necessary first step for more global semantic rep-
resentations. It is relatively, straightforward to
obtain sentence-level DRSs from document-level
annotations since referents and conditions are in-
dexed to tokens. We match each sentence in a doc-
ument with the DRS whose content bears the same
indices as the tokens occurring in the sentence.
This matching process yields 52,268 sentences for
training (sections 20–99), 5,172 sentences for de-
velopment (sections 10–19), (development), and
5,440 sentences for testing (sections 00–09).

In order to simplify the representation, we omit
referents in the top part of the DRS (e.g., x1, e1
and π1 in Figure 1) but preserve them in condi-
tions without any information loss. Also we ignore
pointers to DRSs since this information is implic-
itly captured through the typing and co-indexing
of referents. Definition (1) is simplified to:

〈drs〉 ::= DRS(〈condition〉∗), (7)

where DRS() denotes a basic DRS. We also mod-
ify discourse referents to SDRSs (e.g., k1, k2 in
Figure 1) which we regard as elements bearing
scope over expressions 〈expt〉 and add a 2-place
predicate 〈sym2〉 to describe the discourse relation
between them. So, definition (3) becomes:

〈sdrs〉 ::=SDRS((〈re f 〉(〈expt〉))∗ (8)

(〈sym2〉(〈re f 〉,〈re f 〉))∗),

where SDRS() denotes a segmented DRS, and
〈re f 〉 are segment referents.

We treat cardinal numbers 〈num〉 and 〈sym0〉
in relation timex as constants. We introduce the
binary predicate “card” to represent cardinality
(e.g., |x8| = 2 is card(x8,NUM)). We also sim-
plify 〈expe〉 = 〈expe〉 to eq(〈expe〉,〈expe〉) using
the binary relation “eq” (e.g., x1 = x2 becomes
eq(x1,x2)). Moreover, we ignore class in named
and transform named(〈expe〉,〈sym0〉,class) into
〈sym1〉(〈expe〉) (e.g., named(x2,mongolia,geo)
becomes mongolia(x2)). Consequently, basic con-
ditions (see definition (5)) are simplified to:

〈basic〉 ::= 〈sym1〉(〈expe〉)|〈sym2〉(〈expe〉,〈expe〉) (9)

Analogously, we treat unary and binary conditions
as scoped functions, and definition (6) becomes:

〈unary〉 ::= ¬ | 2 | 3 | 〈re f 〉(〈expt〉)
〈binary〉 ::= → | ∨ | ?(〈expt〉,〈expt〉),

(10)

Following the transformations described above,
the DRS in Figure 1 is converted into the tree in

DRS

statement(x1) say(e1) Cause(e1,x1) Topic(e1,π1) π1

SDRS

k1

DRS

=⇒

DRS

thing(x2)
DRS

Topic(s1,x3) . . . Theme(e2,x5)

k2

DRS

=⇒

DRS

thing(x6)

DRS

Topic(s2,x7) . . . Theme(e3,x8)

continuation(k1,k2) parallel(k1,k2)

DRS(statement(x1) say(e1) Cause(e1,x1) Topic(e1,π1) π1(SDRS(k1 (DRS
(=⇒(DRS(thing(x2)) DRS (Topic(s1,x3) dead(s1) man(x3) of(x2,x3) magazine(x4)
on(x5,x4) vest(x5) wear(e2) Agent(e2,x2) Theme(e2,x5))))) k2(DRS =⇒(DRS(thing(x6))
DRS(Topic(s2,x7) dead(s2) man(x7) of(x6,x7) card(x8,NUM) hand(x9) in(x8,x9) carry(e3)
Agent(e3,x6) Theme(e3,x8))))) continuation(k1,k2) parallel(k1,k2)

Figure 2: Tree-based representation (top) of the
DRS in Figure 1 and its linearization (bottom).

Figure 2, which can be subsequently linearized
into a PTB-style bracketed sequence. It is impor-
tant to note that the conversion does not diminish
the complexity of DRSs. The average tree width
in the training set is 10.39 and tree depth is 4.64.

4 Semantic Parsing Models

We present below three encoder-decoder models
which are increasingly aware of the structure of
the DRT meaning representations. The models
take as input a natural language sentence X repre-
sented as w1,w2,. . . ,wn, and generate a sequence
Y = (y1,y2, ...,ym), which is a linearized tree (see
Figure 2 bottom), where n is the length of the
sentence, and m the length of the generated DRS
sequence. We aim to estimate p(Y |X), the con-
ditional probability of the semantic parse tree Y
given natural language input X :

p(Y |X) = ∏
j

p(y j|Y j−1
1 ,Xn

1 )

4.1 Encoder
An encoder is used to represent the natural lan-
guage input X into vector representations. Each
token in a sentence is represented by a vec-
tor xk which is the concatenation of randomly
initialized embeddings ewi , pre-trained word em-
beddings ēwi , and lemma embeddings eli : xk =
tanh([ewi ; ēwi ;eli ] ∗W1 + b1), where W1 ∈ RD and
D is a shorthand for (dw + dp + dl)× dinput (sub-
scripts w, p, and l denote the dimensions of word
embeddings, pre-trained embeddings, and lemma
embeddings, respectively); b1 ∈ Rdinput and the
symbol ; denotes concatenation. Embeddings ewi
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and eli are randomly initialized and tuned during
training, while ēwi are fixed.

We use a bidirectional recurrent neural network
with long short-term memory units (bi-LSTM;
Hochreiter and Schmidhuber 1997) to encode nat-
ural language sentences:

[he1 : hen ] = bi-LSTM(x1 : xn),

where hei denotes the hidden representation of the
encoder, and xi refers to the input representation of
the ith token in the sentence. Table 2 summarizes
the notation used throughout this paper.

4.2 Sequence Decoder

We employ a sequential decoder (Bahdanau et al.,
2015) as our baseline model with the architecture
shown in Figure 3(a). Our decoder is a (forward)
LSTM, which is conditionally initialized with the
hidden state of the encoder, i.e., we set hd0 = hen

and cd0 = cen , where c is a memory cell:

hd j = LSTM(ey j−1),

where hd j denotes the hidden representation of y j,
ey j are randomly initialized embeddings tuned dur-
ing training, and y0 denotes the start of sequence.

The decoder uses the contextual representation
of the encoder together with the embedding of the
previously predicted token to output the next token
from the vocabulary V :

s j = [hct j ;ey j−1 ]∗W2 +b2,

where W2 ∈ R(denc+dy)×|V |, b2 ∈ R|V |, denc and dy
are the dimensions of the encoder hidden unit and
output representation, respectively, and hct j is ob-
tained using an attention mechanism:

hct j =
n

∑
i=1

β jihei ,

where the weight β ji is computed by:

β ji =
e f (hd j ,hei )

∑k e f (hd j ,hek )
,

and f is the dot-product function. We obtain the
probability distribution over the output tokens as:

p j = p(y j|Y j−1
1 ,Xn

1 ) = SOFTMAX(s j)

Symbol Description
X ; Y sequence of words; outputs
wi; yi the ith word; output
X j

i ; Y j
i word; output sequence from position i to j

ewi ; eyi random embedding of word wi; of output yi
ēwi fixed pretrained embedding of word wi
eli random embedding for lemma li
dw dimension of random word embedding
dp dimension of pretrained word embedding
dl the dimension of random lemma embedding

dinput input dimension of encoder
denc; ddec hidden dimension of encoder; decoder

Wi matrix of model parameters
bi vector of model parameters
xi representation of ith token
hei hidden representation of ith token
cei memory cell of ith token in encoder
hdi hidden representation of ith token in decoder
cdi memory cell of ith token in decoder
s j score vector of jth output in decoder

hct j context representation of jth output
βi

j alignment from jth output to ith token
oi

j copy score of jth output from ith token
ˆ indicates tree structure (e.g. Ŷ , ŷi, ŝ j)
¯ indicates DRS conditions (e.g. Ȳ , ȳi, s̄ j)
˙ indicates referents (e.g. Ẏ , ẏi, ṡ j)

Table 2: Notation used throughout this paper.

4.3 Shallow Structure Decoder
The baseline decoder treats all conditions in a
DRS uniformly and has no means of distin-
guishing between conditions corresponding to to-
kens in a sentence (e.g., the predicate say(e1)
refers to the verb said) and semantic relations
(e.g., Cause(e1,x1)). Our second decoder attempts
to take this into account by distinguishing con-
ditions which are local and correspond to words
in a sentence from items which are more global
and express semantic content (see Figure 3(b)).
Specifically, we model sentence specific condi-
tions using a copying mechanism, and all other
conditions G which do not correspond to senten-
tial tokens (e.g., thematic roles, rhetorical rela-
tions) with an insertion mechanism.

Each token in a sentence is assigned a copying
score o ji:

o ji = h>d j
W3hei ,

where subscript ji denotes the ith token at jth time
step, and W3 ∈ Rddec×denc . All other conditions G
are assigned an insertion score:

s j = [hct j ;ey j−1 ]∗W4 +b4,

where W4 ∈ R(denc+dy)×|G |, b4 ∈ R|G |, and hct j are
the same with the baseline decoder. We obtain the
probability distribution over output tokens as:

p j = p(y j|Y j−1
1 ,Xn

1 ) = SOFTMAX([o j;s j])
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Figure 3: (a) baseline model; (b) shallow structure model; (c) deep structure model (scoring components
are not displayed): (c.1) predicts DRS structure, (c.2) predicts conditions, and (c.3) predicts referents.
Blue boxes are encoder hidden units, red boxes are decoder LSTM hidden units, green and yellow boxes
represent copy and insertion scores, respectively.

4.4 Deep Structure Decoder
As explained previously, our structure prediction
problem is rather challenging: the length of a
bracketed DRS is nearly five times longer than
its corresponding sentence. As shown in Fig-
ure 1, a bracketed DRS, y1,y2, ...,yn consists of
three parts: internal structure Ŷ = ŷ1, ŷ2, ...ŷt (e.g.,
DRS( π1( SDRS(k1(DRS(→(DRS( )DRS( ))) k2(
DRS(→( DRS( ) DRS ( ) ) ) ) ) ) )), condi-
tions Ȳ = ȳ1, ȳ2, ..., ȳr (e.g., statement, say, Topic),
and referents Ẏ = ẏ1, ẏ2, ..., ẏv (e.g., x1, e1, π1),
where t + r ∗2+ v = n.2

Our third decoder (see Figure 3(c)) first predicts
the structural make-up of the DRS, then the con-
ditions, and finally their referents in an end-to-end
framework. The probability distribution of struc-
tured output Y given natural language input X is
rewritten as:

p(Y |X) = p(Ŷ ,Ȳ ,Ẏ |X)

= ∏ j p(ŷ j|Ŷ j−1
1 ,X)

×∏ j p(ȳ j|Ȳ j−1
1 ,Ŷ j′

1 ,X)

×∏ j p(ẏ j|Ẏ j−1
1 ,Ȳ j′

1 ,Ŷ
j′′

1 ,X)

(11)

where Ŷ j−1
1 , Ȳ j−1

1 , and Ẏ j−1
1 denote the tree struc-

ture, conditions, and referents predicted so far.
2Each condition has one and only one right bracket.

Ŷ j′
1 denotes the structure predicted before condi-

tions ȳ j; Ŷ j′′
1 and Ȳ j′

1 are the structures and condi-
tions predicted before referents ẏ j. We next dis-
cuss how each decoder is modeled.

Structure Prediction To model basic DRS
structure we apply the shallow decoder discussed
in Section 4.3 and also shown in Figure 3(c.1). To-
kens in such structures correspond to parent nodes
in a tree; in other words, they are all inserted
from G , and subsequently predicted tokens are
only scored with the insert score, i.e., ŝi = si. The
hidden units of the decoder are:

ĥd j = LSTM(eŷ j−1),

And the probabilistic distribution over structure
denoting tokens is:

p(y j|Y j−1
1 ,X) = SOFTMAX(ŝ j)

Condition Prediction DRS conditions are gen-
erated by taking previously predicted structures
into account, e.g., when “DRS(” or “SDRS(”
are predicted, their conditions will be generated
next. By mapping j to (k,mk), the sequence of
conditions can be rewritten as ȳ1, . . . , ȳ j, . . . , ȳr =
ȳ(1,1), ȳ(1,2), . . . , ȳ(k,mk), . . . , where ȳ(k,mk) is mkth
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condition of structure token ŷk. The correspond-
ing hidden units ĥdk act as conditional input to the
decoder. Structure denoting tokens (e.g., “DRS(”
or “SDRS(”) are fed into the decoder one by one
to generate the corresponding conditions as:

eȳ(k,0) = ĥdk ∗W5 +b5,

where W5 ∈Rddec×dy and b5 ∈Rdy . The hidden unit
of the conditions decoder is computed as:

h̄d j = h̄d(k,mk)
= LSTM(eȳ(k,mk−1)),

Given hidden unit h̄d j , we obtain the copy score ō j
and insert score s̄ j. The probabilistic distribution
over conditions is:

p(ȳ j|Ȳ j−1
1 ,Ŷ j′

1 ,X) = SOFTMAX([ō j; s̄ j])

Referent Prediction Referents are generated
based on the structure and conditions of the
DRS. Each condition has at least one referent.
Similar to condition prediction, the sequence of
referents can be rewritten as ẏ1, . . . , ẏ j, . . . , ẏv =
ẏ(1,1), ẏ(1,2), . . . , ẏ(k,mk), . . . The hidden units of the
conditions decoder are fed into the referent de-
coder eẏ(k,0) = h̄dk ∗W6 + b6, where W6 ∈ Rddec×dy ,
b6 ∈ Rdy . The hidden unit of the referent decoder
is computed as:

ḣd j = ḣd(k,mk)
= LSTM(eẏ(k,mk−1)),

All referents are inserted from G , given hidden
unit ḣd j (we only obtain the insert score ṡ j). The
probabilistic distribution over predicates is:

p(ẏ j|Ẏ j−1
1 ,Ȳ j′

1 ,Ŷ
j′′

1 ,X) = SOFTMAX(ṡ j).

Note that a single LSTM is adopted for structure,
condition and referent prediction. The mathematic
symbols are summarized in Table 2.

4.5 Training

The models are trained to minimize a cross-
entropy loss objective with `2 regularization:

L(θ) =−∑
j

log p j +
λ
2
||θ||2,

where θ is the set of parameters, and λ is a regu-
larization hyper-parameter (λ = 10−6). We used
stochastic gradient descent with Adam (Kingma
and Ba, 2014) to adjust the learning rate.

5 Experimental Setup

Settings Our experiments were carried out on
the GMB following the tree conversion process
discussed in Section 3. We adopted the train-
ing, development, and testing partitions recom-
mended in Bos et al. (2017). We compared the
three models introduced in Section 4, namely the
baseline sequence decoder, the shallow structured
decoder and the deep structure decoder. We used
the same empirical hyper-parameters for all three
models. The dimensions of word and lemma em-
beddings were 64 and 32, respectively. The di-
mensions of hidden vectors were 256 for the en-
coder and 128 for the decoder. The encoder used
two hidden layers, whereas the decoder only one.
The dropout rate was 0.1. Pre-trained word em-
beddings (100 dimensions) were generated with
Word2Vec trained on the AFP portion of the En-
glish Gigaword corpus.3

Evaluation Due to the complex nature of our
structured prediction task, we cannot expect model
output to exactly match the gold standard. For
instance, the numbering of the referents may be
different, but nevertheless valid, or the order of
the children of a tree node (e.g., “DRS(india(x1)
say(e1))” and “DRS(say(e1) india(x1))” are the
same). We thus use F1 instead of exact match ac-
curacy. Specifically, we report D-match4 a metric
designed to evaluate scoped meaning representa-
tions and released as part of the distribution of the
Parallel Meaning Bank corpus (Abzianidze et al.,
2017). D-match is based on Smatch5, a metric
used to evaluate AMR graphs (Cai and Knight,
2013); it calculates F1 on discourse representa-
tion graphs (DRGs), i.e., triples of nodes, arcs, and
their referents, applying multiple restarts to obtain
a good referent (node) mapping between graphs.

We converted DRSs (predicted and goldstan-
dard) into DRGs following the top-down pro-
cedure described in Algorithm 1.6 ISCONDI-
TION returns true if the child is a condition
(e.g., india(x1)), where three arcs are created,
one is connected to a parent node and the other
two are connected to arg1 and arg2, respectively
(lines 7–12). ISQUANTIFIER returns true if the
child is a quantifier (e.g., π1, ¬ and 2) and three
arcs are created; one is connected to the parent
node, one to the referent that is created if and only

3The models are trained on a single GPU without batches.
4https://github.com/RikVN/D-match
5https://github.com/snowblink14/smatch
6We refer the interested reader to the supplementary ma-

terial for more details.
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Algorithm 1 DRS to DRG Conversion
Input: T, tree-like DRS

Output: G, a set of edges
1: nb← 0; nc← 0; G← Ø
2: stack← [];R← Ø
3: procedure TRAVELDRS(parent)
4: stack.append(bnb);nb← nb +1
5: nodep← stack.top
6: for child in parent do
7: if ISCONDITION(child) then
8: G← G∪{nodep

child.rel−−−−−→ cnc}
9: G← G∪{cnc

arg1−−→ child.arg1}
10: G← G∪{cnc

arg2−−→ child.arg2}
11: nc← nc +1
12: ADDREFERENT(nodep,child)
13: else if ISQUANTIFIER(child) then
14: G← G∪{nodep

child.class−−−−−−→ cnc}
15: G← G∪{cnc

arg1−−→ child.arg1}
16: G← G∪{cnc

arg1−−→ bnb+1}
17: nc← nc +1
18: if ISPROPSEG(child) then
19: ADDREFERENT(nodep,child)
20: end if
21: TRAVELDRS(child.nextDRS)
22: end if
23: end for
24: stack.pop()
25: end procedure
26: procedure ADDREFERENT(nodep,child)
27: if child.arg1 not in R then
28: G← G∪{nodep

ref−→ child.arg1}
29: R← R∪ child.arg1
30: end if
31: if child.arg2 not in R then
32: G← G∪{nodep

ref−→ child.arg2}
33: R← R∪ child.arg2
34: end if
35: end procedure
36: TRAVELDRS(T )
37: return G

if the child is a proposition or segment (e.g., π1
and k1), and one is connected to the next DRS or
SDRS nodes (lines 13–20). The algorithm will re-
cursively travel all DRS or SDRS nodes (line 21).
Furthermore, arcs are introduced to connect DRS
or SDRS nodes to the referents that first appear in
a condition (lines 26–35).

When comparing two DRGs, we calculate the
F1 over their arcs. For example consider the two
DRGs (a) and (b) shown in Figure 4. Let {b0 :
b0,x1 : x2,x2 : x3,c0 : c0,c1 : c2,c2 : c3} denote the
node alignment between them. The number of
matching arcs is eight, the number of arcs in the
gold DRG is nine, and the number of arcs in the
predicted DRG is 12. So recall is 8/9, precision is
8/12, and F1 is 76.19.

b0

x1 x2

c0

c1

c2

b0

x2 x3

c0

c2

c3

x1

c1

(a) (b)

Figure 4: (a) is the gold DRS and (b) is the pre-
dicted DRS (condition names are not shown).

6 Results

Table 3 compares our three models on the devel-
opment set. As can be seen, the shallow structured
decoder performs better than the baseline decoder,
and the proposed deep structure decoder outper-
forms both of them. Ablation experiments show
that without pre-trained word embeddings or word
lemma embeddings, the model generally performs
worse. Compared to lemma embeddings, pre-
trained word embeddings contribute more.

Table 4 shows our results on the test set. To
assess the degree to which the various decoders
contribute to DRS parsing, we report results when
predicting the full DRS structure (second block),
when ignoring referents (third block), and when
ignoring both referents and conditions (fourth
block). Overall, we observe that the shallow
structure model improves precision over the base-
line with a slight loss in recall, while the deep
structure model performs best by a large margin.
When referents are not taken into account (com-
pare the second and third blocks in Table 4), per-
formance improves across the board. When con-
ditions are additionally omitted, we observe fur-
ther performance gains. This is hardly surpris-
ing, since errors propagate from one stage to the
next when predicting full DRS structures. Fur-
ther analysis revealed that the parser performs
slightly better on (copy) conditions which cor-
respond to natural language tokens compared to
(insert) conditions (e.g., Topic, Agent) which are
generated from global semantic content (83.22 vs
80.63 F1). The parser is also better on sentences
which do not represent SDRSs (79.12 vs 68.36
F1) which is expected given that they usually cor-
respond to more elaborate structures. We also
found that rhetorical relations (linking segments)
are predicted fairly accurately, especially if they
are frequently attested (e.g., Continuation, Paral-
lel), while the parser has difficulty with relations
denoting contrast.

436



Model P (%) R (%) F1 (%)
baseline 51.35 63.85 56.92
shallow 67.88 63.53 65.63
deep 79.01 75.65 77.29
deep (–pre) 78.47 73.43 75.87
deep (–pre & lem) 78.21 72.82 75.42

Table 3: GMB development set.

Model DRG DRG w/o refs DRG w/o refs & conds
P R F1 P R F1 P R F1

baseline 52.21 64.46 57.69 47.20 58.93 52.42 52.89 71.80 60.91
shallow 66.61 63.92 65.24 66.05 62.93 64.45 83.30 62.91 71.68
deep 79.27 75.88 77.54 82.87 79.40 81.10 93.91 88.51 91.13

Table 4: GMB test set.
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Figure 5: F1 score as a function of sentence length.

Figure 5 shows F1 performance for the three
parsers on sentences of different length. We ob-
serve a similar trend for all models: as sentence
length increases, model performance decreases.
The baseline and shallow models do not perform
well on short sentences which despite containing
fewer words, can still represent complex meaning
which is challenging to capture sequentially. On
the other hand, the performance of the deep model
is relatively stable. LSTMs in this case function
relatively well, as they are faced with the eas-
ier task of predicting meaning in different stages
(starting with a tree skeleton which is progres-
sively refined). We provide examples of model
output in the supplementary material.

7 Related Work

Tree-structured Decoding A few recent ap-
proaches develop structured decoders which make
use of the syntax of meaning representations.
Dong and Lapata (2016) and Alvarez-Melis and
Jaakkola (2017) generate trees in a top-down fash-
ion, while in other work (Xiao et al., 2016; Kr-
ishnamurthy et al., 2017) the decoder generates
from a grammar that guarantees that predicted log-
ical forms are well-typed. In a similar vein, Yin
and Neubig (2017) generate abstract syntax trees
(ASTs) based on the application of production
rules defined by the grammar. Rabinovich et al.
(2017) introduce a modular decoder whose various
components are dynamically composed according
to the generated tree structure. In comparison, our
model does not use grammar information explic-

itly. We first decode the structure of the DRS, and
then fill in details pertaining to its semantic con-
tent. Our model is not strictly speaking top-down,
we generate partial trees sequentially, and then ex-
pand non-terminal nodes, ensuring that when we
generate the children of a node, we have already
obtained the structure of the entire tree.

Wide-coverage Semantic Parsing Our model
is trained on the GMB (Bos et al., 2017), a richly
annotated resource in the style of DRT which
provides a unique opportunity for bootstrapping
wide-coverage semantic parsers. Boxer (Bos,
2008) was a precursor to the GMB, the first se-
mantic parser of this kind, which deterministically
maps CCG derivations onto formal meaning rep-
resentations. Le and Zuidema (2012) were the first
to train a semantic parser on an early release of the
GMB (2,000 documents; Basile et al. 2012), how-
ever, they abandon lambda calculus in favor of a
graph based representation. The latter is closely
related to AMR, a general-purpose meaning rep-
resentation language for broad-coverage text. In
AMR the meaning of a sentence is represented as
a rooted, directed, edge-labeled and leaf-labeled
graph. AMRs do not resemble classical meaning
representations and do not have a model-theoretic
interpretation. However, see Bos (2016) and Artzi
et al. (2015) for translations to first-order logic.

8 Conclusions

We introduced a new end-to-end model for open-
domain semantic parsing. Experimental results on
the GMB show that our decoder is able to recover
discourse representation structures to a good de-
gree (77.54 F1), albeit with some simplifications.
In the future, we plan to model document-level
representations which are more in line with DRT
and the GMB annotations.
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Abstract

Many deep learning architectures have
been proposed to model the composition-
ality in text sequences, requiring a sub-
stantial number of parameters and ex-
pensive computations. However, there
has not been a rigorous evaluation re-
garding the added value of sophisticated
compositional functions. In this paper,
we conduct a point-by-point comparative
study between Simple Word-Embedding-
based Models (SWEMs), consisting of
parameter-free pooling operations, rela-
tive to word-embedding-based RNN/CNN
models. Surprisingly, SWEMs exhibit
comparable or even superior performance
in the majority of cases considered. Based
upon this understanding, we propose two
additional pooling strategies over learned
word embeddings: (i) a max-pooling
operation for improved interpretability;
and (ii) a hierarchical pooling operation,
which preserves spatial (n-gram) informa-
tion within text sequences. We present
experiments on 17 datasets encompassing
three tasks: (i) (long) document classifi-
cation; (ii) text sequence matching; and
(iii) short text tasks, including classifica-
tion and tagging.

1 Introduction

Word embeddings, learned from massive unstruc-
tured text data, are widely-adopted building blocks
for Natural Language Processing (NLP). By rep-
resenting each word as a fixed-length vector,
these embeddings can group semantically simi-
lar words, while implicitly encoding rich linguis-
tic regularities and patterns (Bengio et al., 2003;
Mikolov et al., 2013; Pennington et al., 2014).

Leveraging the word-embedding construct, many
deep architectures have been proposed to model
the compositionality in variable-length text se-
quences. These methods range from simple op-
erations like addition (Mitchell and Lapata, 2010;
Iyyer et al., 2015), to more sophisticated compo-
sitional functions such as Recurrent Neural Net-
works (RNNs) (Tai et al., 2015; Sutskever et al.,
2014), Convolutional Neural Networks (CNNs)
(Kalchbrenner et al., 2014; Kim, 2014; Zhang
et al., 2017a) and Recursive Neural Networks
(Socher et al., 2011a).

Models with more expressive compositional
functions, e.g., RNNs or CNNs, have demon-
strated impressive results; however, they are typ-
ically computationally expensive, due to the need
to estimate hundreds of thousands, if not millions,
of parameters (Parikh et al., 2016). In contrast,
models with simple compositional functions often
compute a sentence or document embedding by
simply adding, or averaging, over the word em-
bedding of each sequence element obtained via,
e.g., word2vec (Mikolov et al., 2013), or GloVe
(Pennington et al., 2014). Generally, such a Sim-
ple Word-Embedding-based Model (SWEM) does
not explicitly account for spatial, word-order in-
formation within a text sequence. However, they
possess the desirable property of having signif-
icantly fewer parameters, enjoying much faster
training, relative to RNN- or CNN-based models.
Hence, there is a computation-vs.-expressiveness
tradeoff regarding how to model the composition-
ality of a text sequence.

In this paper, we conduct an extensive experi-
mental investigation to understand when, and why,
simple pooling strategies, operated over word em-
beddings alone, already carry sufficient informa-
tion for natural language understanding. To ac-
count for the distinct nature of various NLP tasks
that may require different semantic features, we
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compare SWEM-based models with existing re-
current and convolutional networks in a point-
by-point manner. Specifically, we consider 17
datasets, including three distinct NLP tasks: doc-
ument classification (Yahoo news, Yelp reviews,
etc.), natural language sequence matching (SNLI,
WikiQA, etc.) and (short) sentence classifica-
tion/tagging (Stanford sentiment treebank, TREC,
etc.). Surprisingly, SWEMs exhibit comparable or
even superior performance in the majority of cases
considered.

In order to validate our experimental findings,
we conduct additional investigations to understand
to what extent the word-order information is uti-
lized/required to make predictions on different
tasks. We observe that in text representation tasks,
many words (e.g., stop words, or words that are
not related to sentiment or topic) do not meaning-
fully contribute to the final predictions (e.g., sen-
timent label). Based upon this understanding, we
propose to leverage a max-pooling operation di-
rectly over the word embedding matrix of a given
sequence, to select its most salient features. This
strategy is demonstrated to extract complementary
features relative to the standard averaging opera-
tion, while resulting in a more interpretable model.
Inspired by a case study on sentiment analysis
tasks, we further propose a hierarchical pooling
strategy to abstract and preserve the spatial infor-
mation in the final representations. This strategy
is demonstrated to exhibit comparable empirical
results to LSTM and CNN on tasks that are sensi-
tive to word-order features, while maintaining the
favorable properties of not having compositional
parameters, thus fast training.

Our work presents a simple yet strong base-
line for text representation learning that is widely
ignored in benchmarks, and highlights the gen-
eral computation-vs.-expressiveness tradeoff asso-
ciated with appropriately selecting compositional
functions for distinct NLP problems. Furthermore,
we quantitatively show that the word-embedding-
based text classification tasks can have the similar
level of difficulty regardless of the employed mod-
els, using the subspace training (Li et al., 2018) to
constrain the trainable parameters. Thus, accord-
ing to Occam’s razor, simple models are preferred.

2 Related Work

A fundamental goal in NLP is to develop expres-
sive, yet computationally efficient compositional

functions that can capture the linguistic structure
of natural language sequences. Recently, several
studies have suggested that on certain NLP ap-
plications, much simpler word-embedding-based
architectures exhibit comparable or even superior
performance, compared with more-sophisticated
models using recurrence or convolutions (Parikh
et al., 2016; Vaswani et al., 2017). Although
complex compositional functions are avoided in
these models, additional modules, such as atten-
tion layers, are employed on top of the word em-
bedding layer. As a result, the specific role that
the word embedding plays in these models is not
emphasized (or explicit), which distracts from un-
derstanding how important the word embeddings
alone are to the observed superior performance.
Moreover, several recent studies have shown em-
pirically that the advantages of distinct composi-
tional functions are highly dependent on the spe-
cific task (Mitchell and Lapata, 2010; Iyyer et al.,
2015; Zhang et al., 2015a; Wieting et al., 2015;
Arora et al., 2016). Therefore, it is of interest to
study the practical value of the additional expres-
siveness, on a wide variety of NLP problems.

SWEMs bear close resemblance to Deep Aver-
aging Network (DAN) (Iyyer et al., 2015) or fast-
Text (Joulin et al., 2016), where they show that
average pooling achieves promising results on cer-
tain NLP tasks. However, there exist several key
differences that make our work unique. First, we
explore a series of pooling operations, rather than
only average-pooling. Specifically, a hierarchi-
cal pooling operation is introduced to incorporate
spatial information, which demonstrates superior
results on sentiment analysis, relative to average
pooling. Second, our work not only explores when
simple pooling operations are enough, but also in-
vestigates the underlying reasons, i.e., what se-
mantic features are required for distinct NLP prob-
lems. Third, DAN and fastText only focused on
one or two problems at a time, thus a compre-
hensive study regarding the effectiveness of vari-
ous compositional functions on distinct NLP tasks,
e.g., categorizing short sentence/long documents,
matching natural language sentences, has hereto-
fore been absent. In response, our work seeks
to perform a comprehensive comparison with re-
spect to simple-vs.-complex compositional func-
tions, across a wide range of NLP problems, and
reveals some general rules for rationally selecting
models to tackle different tasks.
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3 Models & training
Consider a text sequence represented as X (ei-
ther a sentence or a document), composed of a se-
quence of words: {w1, w2, ...., wL}, where L is
the number of tokens, i.e., the sentence/document
length. Let {v1, v2, ...., vL} denote the respective
word embeddings for each token, where vl 2 RK .
The compositional function, X ! z, aims to
combine word embeddings into a fixed-length sen-
tence/document representation z. These represen-
tations are then used to make predictions about se-
quence X . Below, we describe different types of
functions considered in this work.

3.1 Recurrent Sequence Encoder
A widely adopted compositional function is de-
fined in a recurrent manner: the model succes-
sively takes word vector vt at position t, along
with the hidden unit ht�1 from the last position
t � 1, to update the current hidden unit via ht =
f(vt, ht�1), where f(·) is the transition function.

To address the issue of learning long-term de-
pendencies, f(·) is often defined as Long Short-
Term Memory (LSTM) (Hochreiter and Schmid-
huber, 1997), which employs gates to control the
flow of information abstracted from a sequence.
We omit the details of the LSTM and refer the in-
terested readers to the work by Graves et al. (2013)
for further explanation. Intuitively, the LSTM en-
codes a text sequence considering its word-order
information, but yields additional compositional
parameters that must be learned.

3.2 Convolutional Sequence Encoder
The Convolutional Neural Network (CNN) archi-
tecture (Kim, 2014; Collobert et al., 2011; Gan
et al., 2017; Zhang et al., 2017b; Shen et al.,
2018) is another strategy extensively employed
as the compositional function to encode text se-
quences. The convolution operation considers
windows of n consecutive words within the se-
quence, where a set of filters (to be learned) are
applied to these word windows to generate corre-
sponding feature maps. Subsequently, an aggre-
gation operation (such as max-pooling) is used on
top of the feature maps to abstract the most salient
semantic features, resulting in the final representa-
tion. For most experiments, we consider a single-
layer CNN text model. However, Deep CNN text
models have also been developed (Conneau et al.,
2016), and are considered in a few of our experi-
ments.

3.3 Simple Word-Embedding Model
(SWEM)

To investigate the raw modeling capacity of word
embeddings, we consider a class of models with
no additional compositional parameters to en-
code natural language sequences, termed SWEMs.
Among them, the simplest strategy is to compute
the element-wise average over word vectors for a
given sequence (Wieting et al., 2015; Adi et al.,
2016):

z =
1

L

LX

i=1

vi . (1)

The model in (1) can be seen as an average pool-
ing operation, which takes the mean over each of
the K dimensions for all word embeddings, result-
ing in a representation z with the same dimension
as the embedding itself, termed here SWEM-aver.
Intuitively, z takes the information of every se-
quence element into account via the addition op-
eration.

Max Pooling Motivated by the observation that,
in general, only a small number of key words con-
tribute to final predictions, we propose another
SWEM variant, that extracts the most salient fea-
tures from every word-embedding dimension, by
taking the maximum value along each dimension
of the word vectors. This strategy is similar to the
max-over-time pooling operation in convolutional
neural networks (Collobert et al., 2011):

z = Max-pooling(v1, v2, ..., vL) . (2)

We denote this model variant as SWEM-max.
Here the j-th component of z is the maximum
element in the set {v1j , . . . , vLj}, where v1j is,
for example, the j-th component of v1. With this
pooling operation, those words that are unimpor-
tant or unrelated to the corresponding tasks will
be ignored in the encoding process (as the com-
ponents of the embedding vectors will have small
amplitude), unlike SWEM-aver where every word
contributes equally to the representation.

Considering that SWEM-aver and SWEM-max
are complementary, in the sense of accounting for
different types of information from text sequences,
we also propose a third SWEM variant, where the
two abstracted features are concatenated together
to form the sentence embeddings, denoted here
as SWEM-concat. For all SWEM variants, there
are no additional compositional parameters to be
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Model Parameters Complexity Sequential Ops
CNN n · K · d O(n · L · K · d) O(1)

LSTM 4 · d · (K + d) O(L · d2 + L · K · d) O(L)
SWEM 0 O(L · K) O(1)

Table 1: Comparisons of CNN, LSTM and SWEM
architectures. Columns correspond to the number
of compositional parameters, computational com-
plexity and sequential operations, respectively.

learned. As a result, the models only exploit intrin-
sic word embedding information for predictions.

Hierarchical Pooling Both SWEM-aver and
SWEM-max do not take word-order or spatial in-
formation into consideration, which could be use-
ful for certain NLP applications. So motivated, we
further propose a hierarchical pooling layer. Let
vi:i+n�1 refer to the local window consisting of
n consecutive words words, vi, vi+1, ..., vi+n�1.
First, an average-pooling is performed on each
local window, vi:i+n�1. The extracted features
from all windows are further down-sampled with
a global max-pooling operation on top of the rep-
resentations for every window. We call this ap-
proach SWEM-hier due to its layered pooling.

This strategy preserves the local spatial infor-
mation of a text sequence in the sense that it keeps
track of how the sentence/document is constructed
from individual word windows, i.e., n-grams. This
formulation is related to bag-of-n-grams method
(Zhang et al., 2015b). However, SWEM-hier
learns fixed-length representations for the n-grams
that appear in the corpus, rather than just capturing
their occurrences via count features, which may
potentially advantageous for prediction purposes.

3.4 Parameters & Computation Comparison
We compare CNN, LSTM and SWEM wrt their
parameters and computational speed. K denotes
the dimension of word embeddings, as above. For
the CNN, we use n to denote the filter width (as-
sumed constant for all filters, for simplicity of
analysis, but in practice variable n is commonly
used). We define d as the dimension of the final
sequence representation. Specifically, d represents
the dimension of hidden units or the number of fil-
ters in LSTM or CNN, respectively.

We first examine the number of compositional
parameters for each model. As shown in Table 1,
both the CNN and LSTM have a large number of
parameters, to model the semantic compositional-
ity of text sequences, whereas SWEM has no such

parameters. Similar to Vaswani et al. (2017), we
then consider the computational complexity and
the minimum number of sequential operations re-
quired for each model. SWEM tends to be more
efficient than CNN and LSTM in terms of compu-
tation complexity. For example, considering the
case where K = d, SWEM is faster than CNN or
LSTM by a factor of nd or d, respectively. Further,
the computations in SWEM are highly paralleliz-
able, unlike LSTM that requires O(L) sequential
steps.

4 Experiments

We evaluate different compositional functions on
a wide variety of supervised tasks, including
document categorization, text sequence matching
(given a sentence pair, X1, X2, predict their re-
lationship, y) as well as (short) sentence classifi-
cation. We experiment on 17 datasets concerning
natural language understanding, with correspond-
ing data statistics summarized in the Supplemen-
tary Material. Our code will be released to encour-
age future research.

We use GloVe word embeddings with K = 300
(Pennington et al., 2014) as initialization for all
our models. Out-Of-Vocabulary (OOV) words are
initialized from a uniform distribution with range
[�0.01, 0.01]. The GloVe embeddings are em-
ployed in two ways to learn refined word em-
beddings: (i) directly updating each word em-
bedding during training; and (ii) training a 300-
dimensional Multilayer Perceptron (MLP) layer
with ReLU activation, with GloVe embeddings as
input to the MLP and with output defining the re-
fined word embeddings. The latter approach cor-
responds to learning an MLP model that adapts
GloVe embeddings to the dataset and task of in-
terest. The advantages of these two methods dif-
fer from dataset to dataset. We choose the bet-
ter strategy based on their corresponding perfor-
mances on the validation set. The final classifier is
implemented as an MLP layer with dimension se-
lected from the set [100, 300, 500, 1000], followed
by a sigmoid or softmax function, depending on
the specific task.

Adam (Kingma and Ba, 2014) is used to opti-
mize all models, with learning rate selected from
the set [1 ⇥ 10�3, 3 ⇥ 10�4, 2 ⇥ 10�4, 1 ⇥ 10�5]
(with cross-validation used to select the appro-
priate parameter for a given dataset and task).
Dropout regularization (Srivastava et al., 2014) is
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Model Yahoo! Ans. AG News Yelp P. Yelp F. DBpedia
Bag-of-means⇤ 60.55 83.09 87.33 53.54 90.45

Small word CNN⇤ 69.98 89.13 94.46 58.59 98.15
Large word CNN⇤ 70.94 91.45 95.11 59.48 98.28

LSTM⇤ 70.84 86.06 94.74 58.17 98.55
Deep CNN (29 layer)† 73.43 91.27 95.72 64.26 98.71

fastText ‡ 72.0 91.5 93.8 60.4 98.1
fastText (bigram)‡ 72.3 92.5 95.7 63.9 98.6

SWEM-aver 73.14 91.71 93.59 60.66 98.42
SWEM-max 72.66 91.79 93.25 59.63 98.24

SWEM-concat 73.53 92.66 93.76 61.11 98.57
SWEM-hier 73.48 92.48 95.81 63.79 98.54

Table 2: Test accuracy on (long) document classification tasks, in percentage. Results marked with ⇤ are
reported in Zhang et al. (2015b), with † are reported in Conneau et al. (2016), and with ‡ are reported in
Joulin et al. (2016).

Politics Science Computer Sports Chemistry Finance Geoscience
philipdru coulomb system32 billups sio2 (SiO2) proprietorship fossil
justices differentiable cobol midfield nonmetal ameritrade zoos

impeached paranormal agp sportblogs pka retailing farming
impeachment converge dhcp mickelson chemistry mlm volcanic

neocons antimatter win98 juventus quarks budgeting ecosystem

Table 3: Top five words with the largest values in a given word-embedding dimension (each column
corresponds to a dimension). The first row shows the (manually assigned) topic for words in each column.

employed on the word embedding layer and final
MLP layer, with dropout rate selected from the
set [0.2, 0.5, 0.7]. The batch size is selected from
[2, 8, 32, 128, 512].

4.1 Document Categorization
We begin with the task of categorizing documents
(with approximately 100 words in average per
document). We follow the data split in Zhang et al.
(2015b) for comparability. These datasets can
be generally categorized into three types: topic
categorization (represented by Yahoo! Answer
and AG news), sentiment analysis (represented by
Yelp Polarity and Yelp Full) and ontology clas-
sification (represented by DBpedia). Results are
shown in Table 2. Surprisingly, on topic prediction
tasks, our SWEM model exhibits stronger perfor-
mances, relative to both LSTM and CNN compo-
sitional architectures, this by leveraging both the
average and max-pooling features from word em-
beddings. Specifically, our SWEM-concat model
even outperforms a 29-layer deep CNN model
(Conneau et al., 2016), when predicting topics.
On the ontology classification problem (DBpedia
dataset), we observe the same trend, that SWEM
exhibits comparable or even superior results, rela-
tive to CNN or LSTM models.

Since there are no compositional parameters
in SWEM, our models have an order of mag-

nitude fewer parameters (excluding embeddings)
than LSTM or CNN, and are considerably more
computationally efficient. As illustrated in Ta-
ble 4, SWEM-concat achieves better results on
Yahoo! Answer than CNN/LSTM, with only 61K
parameters (one-tenth the number of LSTM pa-
rameters, or one-third the number of CNN param-
eters), while taking a fraction of the training time
relative to the CNN or LSTM.

Model Parameters Speed
CNN 541K 171s

LSTM 1.8M 598s
SWEM 61K 63s

Table 4: Speed & Parameters on Yahoo! Answer
dataset.

Interestingly, for the sentiment analysis tasks,
both CNN and LSTM compositional functions
perform better than SWEM, suggesting that word-
order information may be required for analyzing
sentiment orientations. This finding is consis-
tent with Pang et al. (2002), where they hypoth-
esize that the positional information of a word in
text sequences may be beneficial to predict sen-
timent. This is intuitively reasonable since, for
instance, the phrase “not really good” and “re-
ally not good” convey different levels of nega-
tive sentiment, while being different only by their
word orderings. Contrary to SWEM, CNN and
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LSTM models can both capture this type of infor-
mation via convolutional filters or recurrent transi-
tion functions. However, as suggested above, such
word-order patterns may be much less useful for
predicting the topic of a document. This may be
attributed to the fact that word embeddings alone
already provide sufficient topic information of a
document, at least when the text sequences con-
sidered are relatively long.

4.1.1 Interpreting model predictions
Although the proposed SWEM-max variant gener-
ally performs a slightly worse than SWEM-aver,
it extracts complementary features from SWEM-
aver, and hence in most cases SWEM-concat ex-
hibits the best performance among all SWEM
variants. More importantly, we found that the
word embeddings learned from SWEM-max tend
to be sparse. We trained our SWEM-max model
on the Yahoo datasets (randomly initialized). With
the learned embeddings, we plot the values for
each of the word embedding dimensions, for the
entire vocabulary. As shown in Figure 1, most
of the values are highly concentrated around zero,
indicating that the word embeddings learned are
very sparse. On the contrary, the GloVe word
embeddings, for the same vocabulary, are consid-
erably denser than the embeddings learned from
SWEM-max. This suggests that the model may
only depend on a few key words, among the en-
tire vocabulary, for predictions (since most words
do not contribute to the max-pooling operation in
SWEM-max). Through the embedding, the model
learns the important words for a given task (those
words with non-zero embedding components).

Figure 1: Histograms for learned word em-
beddings (randomly initialized) of SWEM-max
and GloVe embeddings for the same vocabulary,
trained on the Yahoo! Answer dataset.

In this regard, the nature of max-pooling pro-
cess gives rise to a more interpretable model. For

a document, only the word with largest value in
each embedding dimension is employed for the fi-
nal representation. Thus, we suspect that semanti-
cally similar words may have large values in some
shared dimensions. So motivated, after training
the SWEM-max model on the Yahoo dataset, we
selected five words with the largest values, among
the entire vocabulary, for each word embedding
dimension (these words are selected preferentially
in the corresponding dimension, by the max op-
eration). As shown in Table 3, the words chosen
wrt each embedding dimension are indeed highly
relevant and correspond to a common topic (the
topics are inferred from words). For example, the
words in the first column of Table 3 are all po-
litical terms, which could be assigned to the Pol-
itics & Government topic. Note that our model
can even learn locally interpretable structure that
is not explicitly indicated by the label informa-
tion. For instance, all words in the fifth column
are Chemistry-related. However, we do not have a
chemistry label in the dataset, and regardless they
should belong to the Science topic.

4.2 Text Sequence Matching

To gain a deeper understanding regarding the mod-
eling capacity of word embeddings, we further in-
vestigate the problem of sentence matching, in-
cluding natural language inference, answer sen-
tence selection and paraphrase identification. The
corresponding performance metrics are shown in
Table 5. Surprisingly, on most of the datasets con-
sidered (except WikiQA), SWEM demonstrates
the best results compared with those with CNN
or the LSTM encoder. Notably, on SNLI dataset,
we observe that SWEM-max performs the best
among all SWEM variants, consistent with the
findings in Nie and Bansal (2017); Conneau et al.
(2017), that max-pooling over BiLSTM hidden
units outperforms average pooling operation on
SNLI dataset. As a result, with only 120K param-
eters, our SWEM-max achieves a test accuracy of
83.8%, which is very competitive among state-of-
the-art sentence encoding-based models (in terms
of both performance and number of parameters)1.

The strong results of the SWEM approach on
these tasks may stem from the fact that when
matching natural language sentences, it is suffi-
cient in most cases to simply model the word-level

1See leaderboard at https://nlp.stanford.edu/
projects/snli/ for details.
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MultiNLI
Model SNLI Matched Mismatched WikiQA Quora MSRP

Acc. Acc. Acc. MAP MRR Acc. Acc. F1
CNN 82.1 65.0 65.3 0.6752 0.6890 79.60 69.9 80.9

LSTM 80.6 66.9⇤ 66.9⇤ 0.6820 0.6988 82.58 70.6 80.5
SWEM-aver 82.3 66.5 66.2 0.6808 0.6922 82.68 71.0 81.1
SWEM-max 83.8 68.2 67.7 0.6613 0.6717 82.20 70.6 80.8

SWEM-concat 83.3 67.9 67.6 0.6788 0.6908 83.03 71.5 81.3

Table 5: Performance of different models on matching natural language sentences. Results with ⇤ are
for Bidirectional LSTM, reported in Williams et al. (2017). Our reported results on MultiNLI are only
trained MultiNLI training set (without training data from SNLI). For MSRP dataset, we follow the setup
in Hu et al. (2014) and do not use any additional features.

alignments between two sequences (Parikh et al.,
2016). From this perspective, word-order informa-
tion becomes much less useful for predicting rela-
tionship between sentences. Moreover, consider-
ing the simpler model architecture of SWEM, they
could be much easier to be optimized than LSTM
or CNN-based models, and thus give rise to better
empirical results.

4.2.1 Importance of word-order information
One possible disadvantage of SWEM is that it ig-
nores the word-order information within a text se-
quence, which could be potentially captured by
CNN- or LSTM-based models. However, we em-
pirically found that except for sentiment analysis,
SWEM exhibits similar or even superior perfor-
mance as the CNN or LSTM on a variety of tasks.
In this regard, one natural question would be: how
important are word-order features for these tasks?
To this end, we randomly shuffle the words for
every sentence in the training set, while keeping
the original word order for samples in the test set.
The motivation here is to remove the word-order
features from the training set and examine how
sensitive the performance on different tasks are
to word-order information. We use LSTM as the
model for this purpose since it can captures word-
order information from the original training set.

Datasets Yahoo Yelp P. SNLI
Original 72.78 95.11 78.02
Shuffled 72.89 93.49 77.68

Table 6: Test accuracy for LSTM model trained on
original/shuffled training set.

The results on three distinct tasks are shown in
Table 6. Somewhat surprisingly, for Yahoo and
SNLI datasets, the LSTM model trained on shuf-
fled training set shows comparable accuracies to
those trained on the original dataset, indicating

Negative: Friendly staff and nice selection of vegetar-
ian options. Food is just okay, not great.
Makes me wonder why everyone likes
food fight so much.

Positive: The store is small, but it carries specialties
that are difficult to find in Pittsburgh. I was
particularly excited to find middle eastern
chili sauce and chocolate covered turkish
delights.

Table 7: Test samples from Yelp Polarity dataset
for which LSTM gives wrong predictions with
shuffled training data, but predicts correctly with
the original training set.

that word-order information does not contribute
significantly on these two problems, i.e., topic cat-
egorization and textual entailment. However, on
the Yelp polarity dataset, the results drop notice-
ably, further suggesting that word-order does mat-
ter for sentiment analysis (as indicated above from
a different perspective).

Notably, the performance of LSTM on the Yelp
dataset with a shuffled training set is very close to
our results with SWEM, indicating that the main
difference between LSTM and SWEM may be due
to the ability of the former to capture word-order
features. Both observations are in consistent with
our experimental results in the previous section.

Case Study To understand what type of sen-
tences are sensitive to word-order information, we
further show those samples that are wrongly pre-
dicted because of the shuffling of training data in
Table 7. Taking the first sentence as an example,
several words in the review are generally positive,
i.e. friendly, nice, okay, great and likes. However,
the most vital features for predicting the sentiment
of this sentence could be the phrase/sentence ‘is
just okay’, ‘not great’ or ‘makes me wonder why
everyone likes’, which cannot be captured without

446



Model MR SST-1 SST-2 Subj TREC
RAE (Socher et al., 2011b) 77.7 43.2 82.4 – –

MV-RNN (Socher et al., 2012) 79.0 44.4 82.9 – –
LSTM (Tai et al., 2015) – 46.4 84.9 – –
RNN (Zhao et al., 2015) 77.2 – – 93.7 90.2

Constituency Tree-LSTM (Tai et al., 2015) - 51.0 88.0 - -
Dynamic CNN (Kalchbrenner et al., 2014) – 48.5 86.8 – 93.0

CNN (Kim, 2014) 81.5 48.0 88.1 93.4 93.6
DAN-ROOT (Iyyer et al., 2015) - 46.9 85.7 - -

SWEM-aver 77.6 45.2 83.9 92.5 92.2
SWEM-max 76.9 44.1 83.6 91.2 89.0

SWEM-concat 78.2 46.1 84.3 93.0 91.8

Table 8: Test accuracies with different compositional functions on (short) sentence classifications.

considering word-order features. It is worth noting
the hints for predictions in this case are actually n-
gram phrases from the input document.

4.3 SWEM-hier for sentiment analysis

As demonstrated in Section 4.2.1, word-order in-
formation plays a vital role for sentiment analysis
tasks. However, according to the case study above,
the most important features for sentiment predic-
tion may be some key n-gram phrase/words from
the input document. We hypothesize that incor-
porating information about the local word-order,
i.e., n-gram features, is likely to largely mitigate
the limitations of the above three SWEM variants.
Inspired by this observation, we propose using an-
other simple pooling operation termed as hierar-
chical (SWEM-hier), as detailed in Section 3.3.
We evaluate this method on the two document-
level sentiment analysis tasks and the results are
shown in the last row of Table 2.

SWEM-hier greatly outperforms the other three
SWEM variants, and the corresponding accuracies
are comparable to the results of CNN or LSTM
(Table 2). This indicates that the proposed hi-
erarchical pooling operation manages to abstract
spatial (word-order) information from the input
sequence, which is beneficial for performance in
sentiment analysis tasks.

4.4 Short Sentence Processing

We now consider sentence-classification tasks
(with approximately 20 words on average).
We experiment on three sentiment classification
datasets, i.e., MR, SST-1, SST-2, as well as subjec-
tivity classification (Subj) and question classifica-
tion (TREC). The corresponding results are shown
in Table 8. Compared with CNN/LSTM com-
positional functions, SWEM yields inferior accu-
racies on sentiment analysis datasets, consistent
with our observation in the case of document cat-

egorization. However, SWEM exhibits compara-
ble performance on the other two tasks, again with
much less parameters and faster training. Further,
we investigate two sequence tagging tasks: the
standard CoNLL2000 chunking and CoNLL2003
NER datasets. Results are shown in the Supple-
mentary Material, where LSTM and CNN again
perform better than SWEMs. Generally, SWEM
is less effective at extracting representations from
short sentences than from long documents. This
may be due to the fact that for a shorter text se-
quence, word-order features tend to be more im-
portant since the semantic information provided
by word embeddings alone is relatively limited.

Moreover, we note that the results on these rela-
tively small datasets are highly sensitive to model
regularization techniques due to the overfitting is-
sues. In this regard, one interesting future di-
rection may be to develop specific regularization
strategies for the SWEM framework, and thus
make them work better on small sentence classi-
fication datasets.

5 Discussion

5.1 Comparison via subspace training
We use subspace training (Li et al., 2018) to mea-
sure the model complexity in text classification
problems. It constrains the optimization of the
trainable parameters in a subspace of low dimen-
sion d, the intrinsic dimension dint defines the
minimum d that yield a good solution. Two mod-
els are studied: the SWEM-max variant, and the
CNN model including a convolutional layer fol-
lowed by a FC layer. We consider two settings:

(1) The word embeddings are randomly intial-
ized, and optimized jointly with the model param-
eters. We show the performance of direct and sub-
space training on AG News dataset in Figure 2
(a)(b). The two models trained via direct method
share almost identical perfomrnace on training and
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Figure 2: Performance of subspace training. Word
embeddings are optimized in (a)(b), and frozen in
(c)(d).

testing. The subspace training yields similar ac-
curacy with direct training for very small d, even
when model parameters are not trained at all (d =
0). This is because the word embeddings have
the full degrees of freedom to adjust to achieve
good solutions, regardless of the employed mod-
els. SWEM seems to have an easier loss landspace
than CNN for word embeddings to find the best so-
lutions. According to Occam’s razor, simple mod-
els are preferred, if all else are the same.

(2) The pre-trained GloVe are frozen for the
word embeddings, and only the model parameters
are optimized. The results on testing datasets of
AG News and Yelp P. are shown in Figure 2 (c)(d),
respectively. SWEM shows significantly higher
accuracy than CNN for a large range of low sub-
space dimension, indicating that SWEM is more
parameter-efficient to get a decent solution. In
Figure 2(c), if we set the performance threshold
as 80% testing accuracy, SWEM exhibits a lower
dint than CNN on AG News dataset. However,
in Figure 2(d), CNN can leverage more trainable
parameters to achieve higher accuracy when d is
large.

5.2 Linear classifiers
To further investigate the quality of representa-
tions learned from SWEMs, we employ a linear
classifier on top of the representations for pre-
diction, instead of a non-linear MLP layer as in
the previous section. It turned out that utiliz-
ing a linear classifier only leads to a very small
performance drop for both Yahoo! Ans. (from
73.53% to 73.18%) and Yelp P. datasets (from
93.76% to 93.66%) . This observation highlights
that SWEMs are able to extract robust and infor-

mative sentence representations despite their sim-
plicity.

5.3 Extension to other languages
We have also tried our SWEM-concat and SWEM-
hier models on Sogou news corpus (with the
same experimental setup as (Zhang et al., 2015b)),
which is a Chinese dataset represented by Pinyin
(a phonetic romanization of Chinese). SWEM-
concat yields an accuracy of 91.3%, while
SWEM-hier (with a local window size of 5) ob-
tains an accuracy of 96.2% on the test set. Notably,
the performance of SWEM-hier is comparable to
the best accuracies of CNN (95.6%) and LSTM
(95.2%), as reported in (Zhang et al., 2015b). This
indicates that hierarchical pooling is more suitable
than average/max pooling for Chinese text classifi-
cation, by taking spatial information into account.
It also implies that Chinese is more sensitive to lo-
cal word-order features than English.

6 Conclusions
We have performed a comparative study between
SWEM (with parameter-free pooling operations)
and CNN or LSTM-based models, to represent
text sequences on 17 NLP datasets. We further
validated our experimental findings through ad-
ditional exploration, and revealed some general
rules for rationally selecting compositional func-
tions for distinct problems. Our findings regard-
ing when (and why) simple pooling operations are
enough for text sequence representations are sum-
marized as follows:
• Simple pooling operations are surprisingly ef-
fective at representing longer documents (with
hundreds of words), while recurrent/convolutional
compositional functions are most effective when
constructing representations for short sentences.
• Sentiment analysis tasks are more sensitive
to word-order features than topic categorization
tasks. However, a simple hierarchical pooling
layer proposed here achieves comparable results
to LSTM/CNN on sentiment analysis tasks.
• To match natural language sentences, e.g., tex-
tual entailment, answer sentence selection, etc.,
simple pooling operations already exhibit similar
or even superior results, compared to CNN and
LSTM.
• In SWEM with max-pooling operation, each in-
dividual dimension of the word embeddings con-
tains interpretable semantic patterns, and groups
together words with a common theme or topic.
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Abstract

We describe PARANMT-50M, a dataset
of more than 50 million English-English
sentential paraphrase pairs. We generated
the pairs automatically by using neural
machine translation to translate the non-
English side of a large parallel corpus, fol-
lowing Wieting et al. (2017). Our hope
is that PARANMT-50M can be a valu-
able resource for paraphrase generation
and can provide a rich source of seman-
tic knowledge to improve downstream nat-
ural language understanding tasks. To
show its utility, we use PARANMT-50M
to train paraphrastic sentence embeddings
that outperform all supervised systems on
every SemEval semantic textual similarity
competition, in addition to showing how it
can be used for paraphrase generation.1

1 Introduction

While many approaches have been developed for
generating or finding paraphrases (Barzilay and
McKeown, 2001; Lin and Pantel, 2001; Dolan
et al., 2004), there do not exist any freely-
available datasets with millions of sentential para-
phrase pairs. The closest such resource is the
Paraphrase Database (PPDB; Ganitkevitch et al.,
2013), which was created automatically from
bilingual text by pivoting over the non-English
language (Bannard and Callison-Burch, 2005).
PPDB has been used to improve word embed-
dings (Faruqui et al., 2015; Mrkšić et al., 2016).
However, PPDB is less useful for learning sen-
tence embeddings (Wieting and Gimpel, 2017).

In this paper, we describe the creation of a
dataset containing more than 50 million sentential

1 Dataset, code, and embeddings are available at https:
//www.cs.cmu.edu/˜jwieting.

paraphrase pairs. We create it automatically by
scaling up the approach of Wieting et al. (2017).
We use neural machine translation (NMT) to
translate the Czech side of a large Czech-English
parallel corpus. We pair the English translations
with the English references to form paraphrase
pairs. We call this dataset PARANMT-50M. It
contains examples illustrating a broad range of
paraphrase phenomena; we show examples in Sec-
tion 3. PARANMT-50M has the potential to be
useful for many tasks, from linguistically con-
trolled paraphrase generation, style transfer, and
sentence simplification to core NLP problems like
machine translation.

We show the utility of PARANMT-50M by us-
ing it to train paraphrastic sentence embeddings
using the learning framework of Wieting et al.
(2016b). We primarily evaluate our sentence em-
beddings on the SemEval semantic textual similar-
ity (STS) competitions from 2012-2016. Since so
many domains are covered in these datasets, they
form a demanding evaluation for a general purpose
sentence embedding model.

Our sentence embeddings learned from
PARANMT-50M outperform all systems in every
STS competition from 2012 to 2016. These tasks
have drawn substantial participation; in 2016,
for example, the competition attracted 43 teams
and had 119 submissions. Most STS systems use
curated lexical resources, the provided supervised
training data with manually-annotated similari-
ties, and joint modeling of the sentence pair. We
use none of these, simply encoding each sentence
independently using our models and computing
cosine similarity between their embeddings.

We experiment with several compositional ar-
chitectures and find them all to work well. We
find benefit from making a simple change to learn-
ing (“mega-batching”) to better leverage the large
training set, namely, increasing the search space
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of negative examples. In the supplementary, we
evaluate on general-purpose sentence embedding
tasks used in past work (Kiros et al., 2015; Con-
neau et al., 2017), finding our embeddings to per-
form competitively.

Finally, in Section 6, we briefly report re-
sults showing how PARANMT-50M can be used
for paraphrase generation. A standard encoder-
decoder model trained on PARANMT-50M can
generate paraphrases that show effects of “canon-
icalizing” the input sentence. In other work,
fully described by Iyyer et al. (2018), we used
PARANMT-50M to generate paraphrases that
have a specific syntactic structure (represented as
the top two levels of a linearized parse tree).

We release the PARANMT-50M dataset, our
trained sentence embeddings, and our code.
PARANMT-50M is the largest collection of sen-
tential paraphrases released to date. We hope it
can motivate new research directions and be used
to create powerful NLP models, while adding a
robustness to existing ones by incorporating para-
phrase knowledge. Our paraphrastic sentence em-
beddings are state-of-the-art by a significant mar-
gin, and we hope they can be useful for many ap-
plications both as a sentence representation func-
tion and as a general similarity metric.

2 Related Work

We discuss work in automatically building para-
phrase corpora, learning general-purpose sentence
embeddings, and using parallel text for learning
embeddings and similarity functions.

Paraphrase discovery and generation. Many
methods have been developed for generating
or finding paraphrases, including using multiple
translations of the same source material (Barzilay
and McKeown, 2001), using distributional similar-
ity to find similar dependency paths (Lin and Pan-
tel, 2001), using comparable articles from mul-
tiple news sources (Dolan et al., 2004; Dolan
and Brockett, 2005; Quirk et al., 2004), aligning
sentences between standard and Simple English
Wikipedia (Coster and Kauchak, 2011), crowd-
sourcing (Xu et al., 2014, 2015; Jiang et al., 2017),
using diverse MT systems to translate a single
source sentence (Suzuki et al., 2017), and using
tweets with matching URLs (Lan et al., 2017).

The most relevant prior work uses bilingual cor-
pora. Bannard and Callison-Burch (2005) used
methods from statistical machine translation to

find lexical and phrasal paraphrases in parallel
text. Ganitkevitch et al. (2013) scaled up these
techniques to produce the Paraphrase Database
(PPDB). Our goals are similar to those of PPDB,
which has likewise been generated for many lan-
guages (Ganitkevitch and Callison-Burch, 2014)
since it only needs parallel text. In particular, we
follow the approach of Wieting et al. (2017), who
used NMT to translate the non-English side of par-
allel text to get English-English paraphrase pairs.
We scale up the method to a larger dataset, pro-
duce state-of-the-art paraphrastic sentence embed-
dings, and release all of our resources.

Sentence embeddings. Our learning and eval-
uation setting is the same as that of our re-
cent work that seeks to learn paraphrastic sen-
tence embeddings that can be used for downstream
tasks (Wieting et al., 2016b,a; Wieting and Gim-
pel, 2017; Wieting et al., 2017). We trained mod-
els on noisy paraphrase pairs and evaluated them
primarily on semantic textual similarity (STS)
tasks. Prior work in learning general sentence
embeddings has used autoencoders (Socher et al.,
2011; Hill et al., 2016), encoder-decoder architec-
tures (Kiros et al., 2015; Gan et al., 2017), and
other sources of supervision and learning frame-
works (Le and Mikolov, 2014; Pham et al., 2015;
Arora et al., 2017; Pagliardini et al., 2017; Con-
neau et al., 2017).

Parallel text for learning embeddings. Prior
work has shown that parallel text, and resources
built from parallel text like NMT systems and
PPDB, can be used for learning embeddings for
words and sentences. Several have used PPDB
as a knowledge resource for training or improving
embeddings (Faruqui et al., 2015; Wieting et al.,
2015; Mrkšić et al., 2016). NMT architectures
and training settings have been used to obtain bet-
ter embeddings for words (Hill et al., 2014a,b)
and words-in-context (McCann et al., 2017). Hill
et al. (2016) evaluated the encoders of English-
to-X NMT systems as sentence representations.
Mallinson et al. (2017) adapted trained NMT mod-
els to produce sentence similarity scores in seman-
tic evaluations.

3 The PARANMT-50M Dataset

To create our dataset, we used back-translation of
bitext (Wieting et al., 2017). We used a Czech-
English NMT system to translate Czech sentences
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Dataset Avg. Length Avg. IDF Avg. Para. Score Vocab. Entropy Parse Entropy Total Size
Common Crawl 24.0±34.7 7.7±1.1 0.83±0.16 7.2 3.5 0.16M
CzEng 1.6 13.3±19.3 7.4±1.2 0.84±0.16 6.8 4.1 51.4M
Europarl 26.1±15.4 7.1±0.6 0.95±0.05 6.4 3.0 0.65M
News Commentary 25.2±13.9 7.5±1.1 0.92±0.12 7.0 3.4 0.19M

Table 1: Statistics of 100K-samples of Czech-English parallel corpora; standard deviations are shown
for averages.

Reference Translation Machine Translation
so, what’s half an hour? half an hour won’t kill you.
well, don’t worry. i’ve taken out tons and tons of guys. lots of guys. don’t worry, i’ve done it to dozens of men.
it’s gonna be ...... classic. yeah, sure. it’s gonna be great.
greetings, all! hello everyone!
but she doesn’t have much of a case. but as far as the case goes, she doesn’t have much.
it was good in spite of the taste. despite the flavor, it felt good.

Table 2: Example paraphrase pairs from PARANMT-50M, where each consists of an English reference
translation and the machine translation of the Czech source sentence (not shown).

from the training data into English. We paired the
translations with the English references to form
English-English paraphrase pairs.

We used the pretrained Czech-English model
from the NMT system of Sennrich et al. (2017).
Its training data includes four sources: Common
Crawl, CzEng 1.6 (Bojar et al., 2016), Europarl,
and News Commentary. We did not choose Czech
due to any particular linguistic properties. Wieting
et al. (2017) found little difference among Czech,
German, and French as source languages for back-
translation. There were much larger differences
due to data domain, so we focus on the question of
domain in this section. We leave the question of
investigating properties of back-translation of dif-
ferent languages to future work.

3.1 Choosing a Data Source

To assess characteristics that yield useful data, we
randomly sampled 100K English reference trans-
lations from each data source and computed statis-
tics. Table 1 shows the average sentence length,
the average inverse document frequency (IDF)
where IDFs are computed using Wikipedia sen-
tences, and the average paraphrase score for the
two sentences. The paraphrase score is calcu-
lated by averaging PARAGRAM-PHRASE embed-
dings (Wieting et al., 2016b) for the two sentences
in each pair and then computing their cosine sim-
ilarity. The table also shows the entropies of the
vocabularies and constituent parses obtained using
the Stanford Parser (Manning et al., 2014).2

Europarl exhibits the least diversity in terms of

2To mitigate sparsity in the parse entropy, we used only
the top two levels of each parse tree.

rare word usage, vocabulary entropy, and parse
entropy. This is unsurprising given its formu-
laic and repetitive nature. CzEng has shorter sen-
tences than the other corpora and more diverse
sentence structures, as shown by its high parse en-
tropy. In terms of vocabulary use, CzEng is not
particularly more diverse than Common Crawl and
News Commentary, though this could be due to
the prevalence of named entities in the latter two.

In Section 5.3, we empirically compare these
data sources as training data for sentence embed-
dings. The CzEng corpus yields the strongest per-
formance when controlling for training data size.
Since its sentences are short, we suspect this helps
ensure high-quality back-translations. A large por-
tion of it is movie subtitles which tend to use a
wide vocabulary and have a diversity of sentence
structures; however, other domains are included
as well. It is also the largest corpus, containing
over 51 million sentence pairs. In addition to pro-
viding a large number of training examples for
downstream tasks, this means that the NMT sys-
tem should be able to produce quality translations
for this subset of its training data.

For all of these reasons, we chose the CzEng
corpus to create PARANMT-50M. When doing
so, we used beam search with a beam size of 12
and selected the highest scoring translation from
the beam. It took over 10,000 GPU hours to back-
translate the CzEng corpus. We show illustrative
examples in Table 2.

3.2 Manual Evaluation

We conducted a manual analysis of our dataset in
order to quantify its noise level and assess how the
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Para. Score # Avg. Tri. Paraphrase Fluency
Range (M) Overlap 1 2 3 1 2 3

(-0.1, 0.2] 4.0 0.00±0.0 92 6 2 1 5 94
(0.2, 0.4] 3.8 0.02±0.1 53 32 15 1 12 87
(0.4, 0.6] 6.9 0.07±0.1 22 45 33 2 9 89
(0.6, 0.8] 14.4 0.17±0.2 1 43 56 11 0 89
(0.8, 1.0] 18.0 0.35±0.2 1 13 86 3 0 97

Table 3: Manual evaluation of PARANMT-50M.
100-pair samples were drawn from five ranges
of the automatic paraphrase score (first column).
Paraphrase strength and fluency were judged on a
1-3 scale and counts of each rating are shown.

noise can be ameliorated with filtering. Two na-
tive English speakers annotated a sample of 100
examples from each of five ranges of the Para-
phrase Score.3 We obtained annotations for both
the strength of the paraphrase relationship and the
fluency of the translations.

To annotate paraphrase strength, we adopted the
annotation guidelines used by Agirre et al. (2012).
The original guidelines specify six classes, which
we reduced to three for simplicity. We combined
the top two into one category, left the next, and
combined the bottom three into the lowest cate-
gory. Therefore, for a sentence pair to have a rat-
ing of 3, the sentences must have the same mean-
ing, but some unimportant details can differ. To
have a rating of 2, the sentences are roughly equiv-
alent, with some important information missing or
that differs slightly. For a rating of 1, the sentences
are not equivalent, even if they share minor details.

For fluency of the back-translation, we use the
following: A rating of 3 means it has no grammat-
ical errors, 2 means it has one to two errors, and 1
means it has more than two grammatical errors or
is not a natural English sentence.

Table 3 summarizes the annotations. For each
score range, we report the number of pairs, the
mean trigram overlap score, and the number of
times each paraphrase/fluency label was present in
the sample of 100 pairs. There is noise but it is
largely confined to the bottom two ranges which
together comprise only 16% of the entire dataset.
In the highest paraphrase score range, 86% of the
pairs possess a strong paraphrase relationship. The
annotations suggest that PARANMT-50M con-
tains approximately 30 million strong paraphrase
pairs, and that the paraphrase score is a good indi-

3Even though the similarity score lies in [−1, 1], most
observed scores were positive, so we chose the five ranges
shown in Table 3.

cator of quality. At the low ranges, we inspected
the data and found there to be many errors in the
sentence alignment in the original bitext. With re-
gards to fluency, approximately 90% of the back-
translations are fluent, even at the low end of the
paraphrase score range. We do see an outlier at the
second-highest range of the paraphrase score, but
this may be due to the small number of annotated
examples.

4 Learning Sentence Embeddings

To show the usefulness of the PARANMT-50M
dataset, we will use it to train sentence embed-
dings. We adopt the learning framework from
Wieting et al. (2016b), which was developed to
train sentence embeddings from pairs in PPDB.
We first describe the compositional sentence em-
bedding models we will experiment with, then
discuss training and our modification (“mega-
batching”).

Models. We want to embed a word sequence s
into a fixed-length vector. We denote the tth word
in s as st, and we denote its word embedding by
xt. We focus on three model families, though we
also experiment with combining them in various
ways. The first, which we call WORD, simply av-
erages the embeddings xt of all words in s. This
model was found by Wieting et al. (2016b) to per-
form strongly for semantic similarity tasks.

The second is similar to WORD, but instead of
word embeddings, we average character trigram
embeddings (Huang et al., 2013). We call this
TRIGRAM. Wieting et al. (2016a) found this to
work well for sentence embeddings compared to
other n-gram orders and to word averaging.

The third family includes long short-term mem-
ory (LSTM) networks (Hochreiter and Schmidhu-
ber, 1997). We average the hidden states to pro-
duce the final sentence embedding. For regular-
ization during training, we scramble words with
a small probability (Wieting and Gimpel, 2017).
We also experiment with bidirectional LSTMs
(BLSTM), averaging the forward and backward
hidden states with no concatenation.4

Training. The training data is a set S of para-
phrase pairs 〈s, s′〉 and we minimize a margin-

4Unlike Conneau et al. (2017), we found this to outper-
form max-pooling for both semantic similarity and general
sentence embedding tasks.
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based loss `(s, s′) =

max(0, δ − cos(g(s), g(s′)) + cos(g(s), g(t)))

where g is the model (WORD, TRIGRAM, etc.), δ
is the margin, and t is a “negative example” taken
from a mini-batch during optimization. The intu-
ition is that we want the two texts to be more sim-
ilar to each other than to their negative examples.
To select t we choose the most similar sentence in
some set. For simplicity we use the mini-batch for
this set, i.e.,

t = argmax
t′:〈t′,·〉∈Sb\{〈s,s′〉}

cos(g(s), g(t′))

where Sb ⊆ S is the current mini-batch.

Modification: mega-batching. By using the
mini-batch to select negative examples, we may
be limiting the learning procedure. That is, if all
potential negative examples in the mini-batch are
highly dissimilar from s, the loss will be too easy
to minimize. Stronger negative examples can be
obtained by using larger mini-batches, but large
mini-batches are sub-optimal for optimization.

Therefore, we propose a procedure we call
“mega-batching.” We aggregate M mini-batches
to create one mega-batch and select negative ex-
amples from the mega-batch. Once each pair in
the mega-batch has a negative example, the mega-
batch is split back up into M mini-batches and
training proceeds. We found that this provides
more challenging negative examples during learn-
ing as shown in Section 5.5. Table 6 shows re-
sults for different values of M , showing consis-
tently higher correlations with larger M values.

5 Experiments

We now investigate how best to use our generated
paraphrase data for training paraphrastic sentence
embeddings.

5.1 Evaluation
We evaluate sentence embeddings using the Sem-
Eval semantic textual similarity (STS) tasks from
2012 to 2016 (Agirre et al., 2012, 2013, 2014,
2015, 2016) and the STS Benchmark (Cer et al.,
2017). Given two sentences, the aim of the STS
tasks is to predict their similarity on a 0-5 scale,
where 0 indicates the sentences are on different
topics and 5 means they are completely equivalent.
As our test set, we report the average Pearson’s r

Training Corpus WORD TRIGRAM LSTM
Common Crawl 80.9 80.2 79.1
CzEng 1.6 83.6 81.5 82.5
Europarl 78.9 78.0 80.4
News Commentary 80.2 78.2 80.5

Table 4: Pearson’s r × 100 on STS2017 when
training on 100k pairs from each back-translated
parallel corpus. CzEng works best for all models.

over each year of the STS tasks from 2012-2016.
We use the small (250-example) English dataset
from SemEval 2017 (Cer et al., 2017) as a devel-
opment set, which we call STS2017 below.

The supplementary material contains a descrip-
tion of a method to obtain a paraphrase lexicon
from PARANMT-50M that is on par with that pro-
vided by PPDB 2.0. We also evaluate our sen-
tence embeddings on a range of additional tasks
that have previously been used for evaluating sen-
tence representations (Kiros et al., 2015).

5.2 Experimental Setup

For training sentence embeddings on PARANMT-
50M, we follow the experimental procedure of
Wieting et al. (2016b). We use PARAGRAM-
SL999 embeddings (Wieting et al., 2015) to ini-
tialize the word embedding matrix for all models
that use word embeddings. We fix the mini-batch
size to 100 and the margin δ to 0.4. We train all
models for 5 epochs. For optimization we use
Adam (Kingma and Ba, 2014) with a learning rate
of 0.001. For the LSTM and BLSTM, we fixed the
scrambling rate to 0.3.5

5.3 Dataset Comparison

We first compare parallel data sources. We evalu-
ate the quality of a data source by using its back-
translations paired with its English references as
training data for paraphrastic sentence embed-
dings. We compare the four data sources described
in Section 3. We use 100K samples from each
corpus and trained 3 different models on each:
WORD, TRIGRAM, and LSTM. Table 4 shows
that CzEng provides the best training data for all
models, so we used it to create PARANMT-50M
and for all remaining experiments.

5As in our prior work (Wieting and Gimpel, 2017), we
found that scrambling significantly improves results, even
with our much larger training set. But while we previously
used a scrambling rate of 0.5, we found that a smaller rate
of 0.3 worked better when training on PARANMT-50M, pre-
sumably due to the larger training set.
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Filtering Method Model Avg.
Translation Score 83.2
Trigram Overlap 83.1
Paraphrase Score 83.3

Table 5: Pearson’s r × 100 on STS2017 for the
best training fold across the average of WORD,
TRIGRAM, and LSTM models for each filtering
method.

CzEng is diverse in terms of both vocabulary
and sentence structure. It has significantly shorter
sentences than the other corpora, and has much
more training data, so its translations are ex-
pected to be better than those in the other corpora.
Wieting et al. (2017) found that sentence length
was the most important factor in filtering quality
training data, presumably due to how NMT qual-
ity deteriorates with longer sentences. We suspect
that better translations yield better data for training
sentence embeddings.

5.4 Data Filtering
Since the PARANMT-50M dataset is so large, it is
computationally demanding to train sentence em-
beddings on it in its entirety. So, we filter the data
to create a training set for sentence embeddings.

We experiment with three simple methods: (1)
the length-normalized translation score from de-
coding, (2) trigram overlap (Wieting et al., 2017),
and (3) the paraphrase score from Section 3. Tri-
gram overlap is calculated by counting trigrams
in the reference and translation, then dividing the
number of shared trigrams by the total number in
the reference or translation, whichever has fewer.

We filtered the back-translated CzEng data us-
ing these three strategies. We ranked all 51M+
paraphrase pairs in the dataset by the filtering mea-
sure under consideration and then split the data
into tenths (so the first tenth contains the bottom
10% under the filtering criterion, the second con-
tains those in the bottom 10-20%, etc.).

We trained WORD, TRIGRAM, and LSTM
models for a single epoch on 1M examples sam-
pled from each of the ten folds for each filter-
ing criterion. We averaged the correlation on the
STS2017 data across models for each fold. Ta-
ble 5 shows the results of the filtering methods.
Filtering based on the paraphrase score produces
the best data for training sentence embeddings.

We randomly selected 5M examples from the
top two scoring folds using paraphrase score fil-

M WORD TRIGRAM LSTM
1 82.3 81.5 81.5

20 84.0 83.1 84.6
40 84.1 83.4 85.0

Table 6: Pearson’s r× 100 on STS2017 with dif-
ferent mega-batch sizes M .

original sir, i’m just trying to protect.
negative examples:
M=1 i mean, colonel...
M=20 i only ask that the baby be safe.
M=40 just trying to survive. on instinct.
original i’m looking at him, you know?
M=1 they know that i’ve been looking for her.
M=20 i’m keeping him.
M=40 i looked at him with wonder.
original i’il let it go a couple of rounds.
M=1 sometimes the ball doesn’t go down.
M=20 i’ll take two.
M=40 i want you to sit out a couple of rounds, all right?

Table 7: Negative examples for various mega-
batch sizes M with the BLSTM model.

tering, ensuring that we only selected examples in
which both sentences have a maximum length of
30 tokens.6 These resulting 5M examples form the
training data for the rest of our experiments. Note
that many more than 5M pairs from the dataset
are useful, as suggested by our human evaluations
in Section 3.2. We have experimented with dou-
bling the training data when training our best sen-
tence similarity model and found the correlation
increased by more than half a percentage point on
average across all datasets.

5.5 Effect of Mega-Batching
Table 6 shows the impact of varying the mega-
batch size M when training for 5 epochs on our
5M-example training set. For all models, larger
mega-batches improve performance. There is a
smaller gain when moving from 20 to 40, but all
models show clear gains over M = 1.

Table 7 shows negative examples with differ-
ent mega-batch sizes M . We use the BLSTM
model and show the negative examples (nearest
neighbors from the mega-batch excluding the cur-
rent training example) for three sentences. Using
larger mega-batches improves performance, pre-
sumably by producing more compelling negative
examples for the learning procedure. This is likely
more important when training on sentences than

6Wieting et al. (2017) found that sentence length cutoffs
were effective for filtering back-translated parallel text.
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Training Data Model Dim. 2012 2013 2014 2015 2016
WORD 300 66.2 61.8 76.2 79.3 77.5
TRIGRAM 300 67.2 60.3 76.1 79.7 78.3
LSTM 300 67.0 62.3 76.3 78.5 76.0
LSTM 900 68.0 60.4 76.3 78.8 75.9

Our PARANMT BLSTM 900 67.4 60.2 76.1 79.5 76.5
Work WORD + TRIGRAM (addition) 300 67.3 62.8 77.5 80.1 78.2

WORD + TRIGRAM + LSTM (addition) 300 67.1 62.8 76.8 79.2 77.0
WORD, TRIGRAM (concatenation) 600 67.8 62.7 77.4 80.3 78.1
WORD, TRIGRAM, LSTM (concatenation) 900 67.7 62.8 76.9 79.8 76.8

SimpWiki WORD, TRIGRAM (concatenation) 600 61.8 58.4 74.4 77.0 74.0
1st Place System - 64.8 62.0 74.3 79.0 77.7

STS Competitions 2nd Place System - 63.4 59.1 74.2 78.0 75.7
3rd Place System - 64.1 58.3 74.3 77.8 75.7
InferSent (AllSNLI) (Conneau et al., 2017) 4096 58.6 51.5 67.8 68.3 67.2
InferSent (SNLI) (Conneau et al., 2017) 4096 57.1 50.4 66.2 65.2 63.5
FastSent (Hill et al., 2016) 100 - - 63 - -
DictRep (Hill et al., 2016) 500 - - 67 - -

Related Work SkipThought (Kiros et al., 2015) 4800 - - 29 - -
CPHRASE (Pham et al., 2015) - - - 65 - -
CBOW (from Hill et al., 2016) 500 - - 64 - -
BLEU (Papineni et al., 2002) - 39.2 29.5 42.8 49.8 47.4
METEOR (Denkowski and Lavie, 2014) - 53.4 47.6 63.7 68.8 61.8

Table 8: Pearson’s r× 100 on the STS tasks of our models and those from related work. We compare to
the top performing systems from each SemEval STS competition. Note that we are reporting the mean
correlations over domains for each year rather than weighted means as used in the competitions. Our
best performing overall model (WORD, TRIGRAM) is in bold.

Dim. Corr.
Our Work (Unsupervised)
WORD 300 79.2
TRIGRAM 300 79.1
LSTM 300 78.4
WORD + TRIGRAM (addition) 300 79.9
WORD + TRIGRAM + LSTM (addition) 300 79.6
WORD, TRIGRAM (concatenation) 600 79.9
WORD, TRIGRAM, LSTM (concatenation) 900 79.2
Related Work (Unsupervised)
InferSent (AllSNLI) (Conneau et al., 2017) 4096 70.6
C-PHRASE (Pham et al., 2015) 63.9
GloVe (Pennington et al., 2014) 300 40.6
word2vec (Mikolov et al., 2013) 300 56.5
sent2vec (Pagliardini et al., 2017) 700 75.5
Related Work (Supervised)
Dep. Tree LSTM (Tai et al., 2015) 71.2
Const. Tree LSTM (Tai et al., 2015) 71.9
CNN (Shao, 2017) 78.4

Table 9: Results on STS Benchmark test set.

prior work on learning from text snippets (Wieting
et al., 2015, 2016b; Pham et al., 2015).

5.6 Model Comparison

Table 8 shows results on the 2012-2016 STS tasks
and Table 9 shows results on the STS Benchmark.7

Our best models outperform all STS competition
systems and all related work of which we are

7Baseline results are from http://ixa2.si.ehu.
es/stswiki/index.php/STSbenchmark, except for
the unsupervised InferSent result which we computed.

Models Mean Pearson Abs. Diff.
WORD / TRIGRAM 2.75
WORD / LSTM 2.17
TRIGRAM / LSTM 2.89

Table 10: The means (over all 25 STS competi-
tion datasets) of the absolute differences in Pear-
son’s r between each pair of models.

aware on the 2012-2016 STS datasets. Note that
the large improvement over BLEU and METEOR
suggests that our embeddings could be useful for
evaluating machine translation output.

Overall, our individual models (WORD, TRI-
GRAM, LSTM) perform similarly. Using 300 di-
mensions appears to be sufficient; increasing di-
mensionality does not necessarily improve corre-
lation. When examining particular STS tasks, we
found that our individual models showed marked
differences on certain tasks. Table 10 shows the
mean absolute difference in Pearson’s r over all 25
datasets. The TRIGRAM model shows the largest
differences from the other two, both of which use
word embeddings. This suggests that TRIGRAM

may be able to complement the other two by pro-
viding information about words that are unknown
to models that rely on word embeddings.

We experiment with two ways of combining
models. The first is to define additive architectures
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Target Syntax Paraphrase
original with the help of captain picard, the borg will be prepared for everything.
(SBARQ(ADVP)(,)(S)(,)(SQ)) now, the borg will be prepared by picard, will it?
(S(NP)(ADVP)(VP)) the borg here will be prepared for everything.
original you seem to be an excellent burglar when the time comes.
(S(SBAR)(,)(NP)(VP)) when the time comes, you’ll be a great thief.
(S(‘‘)(UCP)(’’)(NP)(VP)) “you seem to be a great burglar, when the time comes.” you said.

Table 11: Syntactically controlled paraphrases generated by the SCPN trained on PARANMT-50M.

that form the embedding for a sentence by adding
the embeddings computed by two (or more) indi-
vidual models. All parameters are trained jointly
just like when we train individual models; that
is, we do not first train two simple models and
add their embeddings. The second way is to de-
fine concatenative architectures that form a sen-
tence embedding by concatenating the embed-
dings computed by individual models, and again
to train all parameters jointly.

In Table 8 and Table 9, these combinations show
consistent improvement over the individual mod-
els as well as the larger LSTM and BLSTM. Con-
catenating WORD and TRIGRAM results in the
best performance on average across STS tasks,
outperforming the best supervised systems from
each year. We have released the pretrained model
for these “WORD, TRIGRAM” embeddings. In ad-
dition to providing a strong baseline for future STS
tasks, these embeddings offer the advantages of
being extremely efficient to compute and being ro-
bust to unknown words.

We show the usefulness of PARANMT by also
reporting the results of training the “WORD, TRI-
GRAM” model on SimpWiki, a dataset of aligned
sentences from Simple English and standard En-
glish Wikipedia (Coster and Kauchak, 2011). It
has been shown useful for training sentence em-
beddings in past work (Wieting and Gimpel,
2017). However, Table 8 shows that training on
PARANMT leads to gains in correlation of 3 to 6
points compared to SimpWiki.

6 Paraphrase Generation

In addition to powering state-of-the-art paraphras-
tic sentence embeddings, our dataset is useful for
paraphrase generation. We briefly describe two ef-
forts in paraphrase generation here.

We have found that training an encoder-decoder
model on PARANMT-50M can produce a para-
phrase generation model that canonicalizes text.
For this experiment, we used a bidirectional
LSTM encoder and a two-layer LSTM decoder

original overall, i that it’s a decent buy, and am happy
that i own it.

paraphrase it’s a good buy, and i’m happy to own it.
original oh, that’s a handsome women, that is.
paraphrase that’s a beautiful woman.

Table 12: Examples from our paraphrase gener-
ation model that show the ability to canonicalize
text and correct grammatical errors.

with soft attention over the encoded states (Bah-
danau et al., 2015). The attention computation
consists of a bilinear product with a learned pa-
rameter matrix. Table 12 shows examples of out-
put generated by this model, showing how the
model is able to standardize the text and correct
grammatical errors. This model would be interest-
ing to evaluate for automatic grammar correction
as it does so without any direct supervision. Fu-
ture work could also use this canonicalization to
improve performance of models by standardizing
inputs and removing noise from data.

PARANMT-50M has also been used for
syntactically-controlled paraphrase generation;
this work is described in detail by Iyyer et al.
(2018). A syntactically controlled paraphrase net-
work (SCPN) is trained to generate a paraphrase
of a sentence whose constituent structure follows
a provided parse template. A parse template con-
tains the top two levels of a linearized parse tree.
Table 11 shows example outputs using the SCPN.
The paraphrases mostly preserve the semantics of
the input sentences while changing their syntax to
fit the target syntactic templates. The SCPN was
used for augmenting training data and finding ad-
versarial examples.

We believe that PARANMT-50M and future
datasets like it can be used to generate rich para-
phrases that improve the performance and robust-
ness of models on a multitude of NLP tasks.

7 Discussion

One way to view PARANMT-50M is as a way to
represent the learned translation model in a mono-
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lingual generated dataset. This raises the ques-
tion of whether we could learn an effective sen-
tence embedding model from the original parallel
text used to train the NMT system, rather than re-
quiring the intermediate step of generating a para-
phrase training set.

However, while Hill et al. (2016) and Mallinson
et al. (2017) used trained NMT models to produce
sentence similarity scores, their correlations are
considerably lower than ours (by 10% to 35% ab-
solute in terms of Pearson). It appears that NMT
encoders form representations that do not neces-
sarily encode the semantics of the sentence in a
way conducive to STS evaluations. They must
instead create representations suitable for a de-
coder to generate a translation. These two goals
of representing sentential semantics and produc-
ing a translation, while likely correlated, evidently
have some significant differences.

Our use of an intermediate dataset leads to the
best results, but this may be due to our efforts in
optimizing learning for this setting (Wieting et al.,
2016b; Wieting and Gimpel, 2017). Future work
will be needed to develop learning frameworks
that can leverage parallel text directly to reach the
same or improved correlations on STS tasks.

8 Conclusion

We described the creation of PARANMT-50M, a
dataset of more than 50M English sentential para-
phrase pairs. We showed how to use PARANMT-
50M to train paraphrastic sentence embeddings
that outperform supervised systems on STS tasks,
as well as how it can be used for generating para-
phrases for purposes of data augmentation, robust-
ness, and even grammar correction.

The key advantage of our approach is that it
only requires parallel text. There are hundreds
of millions of parallel sentence pairs, and more
are being generated continually. Our procedure is
immediately applicable to the wide range of lan-
guages for which we have parallel text.

We release PARANMT-50M, our code, and
pretrained sentence embeddings, which also ex-
hibit strong performance as general-purpose rep-
resentations for a multitude of tasks. We hope that
PARANMT-50M, along with our embeddings,
can impart a notion of meaning equivalence to im-
prove NLP systems for a variety of tasks. We are
actively investigating ways to apply these two new
resources to downstream applications, including

machine translation, question answering, and ad-
ditional paraphrase generation tasks.
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Abstract

We investigate a new commonsense in-
ference task: given an event described
in a short free-form text (“X drinks cof-
fee in the morning”), a system reasons
about the likely intents (“X wants to stay
awake”) and reactions (“X feels alert”) of
the event’s participants. To support this
study, we construct a new crowdsourced
corpus of 25,000 event phrases covering
a diverse range of everyday events and
situations. We report baseline perfor-
mance on this task, demonstrating that
neural encoder-decoder models can suc-
cessfully compose embedding represen-
tations of previously unseen events and
reason about the likely intents and reac-
tions of the event participants. In addition,
we demonstrate how commonsense infer-
ence on people’s intents and reactions can
help unveil the implicit gender inequality
prevalent in modern movie scripts.

1 Introduction

Understanding a narrative requires commonsense
reasoning about the mental states of people in re-
lation to events. For example, if “Alex is dragging
his feet at work”, pragmatic implications about
Alex’s intent are that “Alex wants to avoid do-
ing things” (Figure 1). We can also infer that
Alex’s emotional reaction might be feeling “lazy”
or “bored”. Furthermore, while not explicitly
mentioned, we can infer that people other than
Alex are affected by the situation, and these people
are likely to feel “frustrated” or “impatient”.

This type of pragmatic inference can potentially
be useful for a wide range of NLP applications

⇤These two authors contributed equally.

PersonX drags 
PersonX's feet

PersonX cooks 
thanksgiving

dinner

PersonX reads 
PersonY's diary

to avoid doing things

lazy, bored

frustrated, impatient

to impress their family

tired, a sense of belonging

impressed

to be nosey, know secrets

guilty, curious

angry, violated, betrayed

X's intent

X's reaction

Y's reaction

X's intent

X's reaction

Y's reaction

X's intent

X's reaction

Y's reaction

Figure 1: Examples of commonsense inference on
mental states of event participants. In the third ex-
ample event, common sense tells us that Y is likely
to feel betrayed as a result of X reading their diary.

that require accurate anticipation of people’s in-
tents and emotional reactions, even when they are
not explicitly mentioned. For example, an ideal
dialogue system should react in empathetic ways
by reasoning about the human user’s mental state
based on the events the user has experienced, with-
out the user explicitly stating how they are feel-
ing. Similarly, advertisement systems on social
media should be able to reason about the emo-
tional reactions of people after events such as mass
shootings and remove ads for guns which might
increase social distress (Goel and Isaac, 2016).
Also, pragmatic inference is a necessary step to-
ward automatic narrative understanding and gen-
eration (Tomai and Forbus, 2010; Ding and Riloff,
2016; Ding et al., 2017). However, this type of so-
cial commonsense reasoning goes far beyond the
widely studied entailment tasks (Bowman et al.,
2015; Dagan et al., 2006) and thus falls outside
the scope of existing benchmarks.

In this paper, we introduce a new task, corpus,
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PersonX’s Intent Event Phrase PersonX’s Reaction Others’ Reactions

to express anger
to vent their frustration
to get PersonY’s full

attention

PersonX starts to
yell at PersonY

mad
frustrated
annoyed

shocked
humiliated
mad at PersonX

to communicate something
without being rude

to let the other person think
for themselves

to be subtle

PersonX drops a hint
sly
secretive
frustrated

oblivious
surprised
grateful

to catch the criminal
to be civilized
justice

PersonX reports
to the police

anxious
worried
nervous

sad
angry
regret

to wake up
to feel more energized

PersonX drinks
a cup of coffee

alert
awake
refreshed

NONE

to be feared
to be taken seriously
to exact revenge

PersonX carries
out PersonX’s threat

angry
dangerous
satisfied

sad
afraid
angry

NONE
It starts
snowing NONE

calm
peaceful
cold

Table 1: Example annotations of intent and reactions for 6 event phrases. Each annotator could fill in up
to three free-responses for each mental state.

and model, supporting commonsense inference on
events with a specific focus on modeling stereo-
typical intents and reactions of people, described
in short free-form text. Our study is in a similar
spirit to recent efforts of Ding and Riloff (2016)
and Zhang et al. (2017), in that we aim to model
aspects of commonsense inference via natural lan-
guage descriptions. Our new contributions are:
(1) a new corpus that supports commonsense in-
ference about people’s intents and reactions over
a diverse range of everyday events and situations,
(2) inference about even those people who are not
directly mentioned by the event phrase, and (3) a
task formulation that aims to generate the textual
descriptions of intents and reactions, instead of
classifying their polarities or classifying the infer-
ence relations between two given textual descrip-
tions.

Our work establishes baseline performance on
this new task, demonstrating that, given the
phrase-level inference dataset, neural encoder-
decoder models can successfully compose phrasal
embeddings for previously unseen events and rea-
son about the mental states of their participants.

Furthermore, in order to showcase the practical
implications of commonsense inference on events
and people’s mental states, we apply our model
to modern movie scripts, which provide a new in-
sight into the gender bias in modern films beyond
what previous studies have offered (England et al.,
2011; Agarwal et al., 2015; Ramakrishna et al.,
2017; Sap et al., 2017). The resulting corpus in-
cludes around 25,000 event phrases, which com-
bine automatically extracted phrases from stories
and blogs with all idiomatic verb phrases listed in
the Wiktionary. Our corpus is publicly available.1

2 Dataset

One goal of our investigation is to probe whether
it is feasible to build computational models that
can perform limited, but well-scoped common-
sense inference on short free-form text, which we
refer to as event phrases. While there has been
much prior research on phrase-level paraphrases
(Pavlick et al., 2015) and phrase-level entailment
(Dagan et al., 2006), relatively little prior work fo-
cused on phrase-level inference that requires prag-

1https://tinyurl.com/event2mind
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matic or commonsense interpretation. We scope
our study to two distinct types of inference: given
a phrase that describes an event, we want to reason
about the likely intents and emotional reactions of
people who caused or affected by the event. This
complements prior work on more general com-
monsense inference (Speer and Havasi, 2012; Li
et al., 2016; Zhang et al., 2017), by focusing on
the causal relations between events and people’s
mental states, which are not well covered by most
existing resources.

We collect a wide range of phrasal event de-
scriptions from stories, blogs, and Wiktionary id-
ioms. Compared to prior work on phrasal em-
beddings (Wieting et al., 2015; Pavlick et al.,
2015), our work generalizes the phrases by in-
troducing (typed) variables. In particular, we re-
place words that correspond to entity mentions or
pronouns with typed variables such as PersonX
or PersonY, as shown in examples in Table 1.
More formally, the phrases we extract are a com-
bination of a verb predicate with partially instan-
tiated arguments. We keep specific arguments
together with the predicate, if they appear fre-
quently enough (e.g., PersonX eats pasta
for dinner). Otherwise, the arguments are
replaced with an untyped blank (e.g., PersonX
eats for dinner). In our work, only
person mentions are replaced with typed variables,
leaving other types to future research.

Inference types The first type of pragmatic in-
ference is about intent. We define intent as an
explanation of why the agent causes a volitional
event to occur (or “none” if the event phrase was
unintentional). The intent can be considered a
mental pre-condition of an action or an event. For
example, if the event phrase is PersonX takes
a stab at , the annotated intent might be
that “PersonX wants to solve a problem”.

The second type of pragmatic inference is about
emotional reaction. We define reaction as an ex-
planation of how the mental states of the agent and
other people involved in the event would change
as a result. The reaction can be considered a men-
tal post-condition of an action or an event. For
example, if the event phrase is that PersonX
gives PersonY as a gift, PersonX
might “feel good about themselves” as a result,
and PersonY might “feel grateful” or “feel thank-
ful”.

Source # Unique
Events

# Unique
Verbs

Average


ROC Story 13,627 639 0.57
G. N-grams 7,066 789 0.39
Spinn3r 2,130 388 0.41
Idioms 1,916 442 0.42

Total 24,716 1,333 0.45

Table 2: Data and annotation agreement statistics
for our new phrasal inference corpus. Each event
is annotated by three crowdworkers.

2.1 Event Extraction

We extract phrasal events from three different cor-
pora for broad coverage: the ROC Story train-
ing set (Mostafazadeh et al., 2016), the Google
Syntactic N-grams (Goldberg and Orwant, 2013),
and the Spinn3r corpus (Gordon and Swanson,
2008). We derive events from the set of verb
phrases in our corpora, based on syntactic parses
(Klein and Manning, 2003). We then replace the
predicate subject and other entities with the typed
variables (e.g., PersonX, PersonY), and selec-
tively substitute verb arguments with blanks ( ).
We use frequency thresholds to select events to
annotate (for details, see Appendix A.1). Addi-
tionally, we supplement the list of events with all
2,000 verb idioms found in Wiktionary, in order to
cover events that are less compositional.2 Our fi-
nal annotation corpus contains nearly 25,000 event
phrases, spanning over 1,300 unique verb predi-
cates (Table 2).

2.2 Crowdsourcing

We design an Amazon Mechanical Turk task to
annotate the mental pre- and post-conditions of
event phrases. A snippet of our MTurk HIT de-
sign is shown in Figure 2. For each phrase, we ask
three annotators whether the agent of the event,
PersonX, intentionally causes the event, and if
so, to provide up to three possible textual de-
scriptions of their intents. We then ask anno-
tators to provide up to three possible reactions
that PersonX might experience as a result. We
also ask annotators to provide up to three pos-
sible reactions of other people, when applicable.
These other people can be either explicitly men-
tioned (e.g., “PersonY” in PersonX punches
PersonY’s lights out), or only implied

2We compiled the list of idiomatic verb phrases by cross-
referencing between Wiktionary’s English idioms category
and the Wiktionary English verbs categories.
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Event
PersonX punches PersonY's lights out

1. Does this event make sense enough for you to answer 
questions 2-5?

(Or does it have too many meanings?)

 Yes, can answer
  No, can't answer or has too many meanings

Before the event
2. Does PersonX willingly cause this event?

 Yes
 No

a). Why?

(Try to describe without reusing words from the event)

Because PersonX
wants ...

to (be)
[write a reason]

[write another reason - optional]

[write another reason - optional]

Figure 2: Intent portion of our annotation task. We
allow annotators to label events as invalid if the
phrase is unintelligible. The full annotation setup
is shown in Figure 8 in the appendix.

(e.g., given the event description PersonX
yells at the classroom, we can infer
that other people such as “students” in the class-
room may be affected by the act of PersonX). For
quality control, we periodically removed workers
with high disagreement rates, at our discretion.

Coreference among Person variables With
the typed Person variable setup, events involv-
ing multiple people can have multiple meanings
depending on coreference interpretation (e.g.,
PersonX eats PersonY’s lunch has
very different mental state implications from
PersonX eats PersonX’s lunch). To
prune the set of events that will be annotated
for intent and reaction, we ran a preliminary
annotation to filter out candidate events that have
implausible coreferences. In this preliminary
task, annotators were shown a combinatorial list
of coreferences for an event (e.g., PersonX
punches PersonX’s lights out,
PersonX punches PersonY’s lights
out) and were asked to select only the plausible
ones (e.g., PersonX punches PersonY’s
lights out). Each set of coreferences was
annotated by 3 workers, yielding an overall
agreement of  =0.4. This annotation excluded
8,406 events with implausible coreference from
our set (out of 17,806 events).

2.3 Mental State Descriptions

Our dataset contains nearly 25,000 event phrases,
with annotators rating 91% of our extracted events
as “valid” (i.e., the event makes sense). Of those
events, annotations for the multiple choice por-
tions of the task (whether or not there exists in-
tent/reaction) agree moderately, with an average
Cohen’s  = 0.45 (Table 2). The individual 
scores generally indicate that turkers disagree half
as often as if they were randomly selecting an-
swers.

Importantly, this level of agreement is accept-
able in our task formulation for two reasons. First,
unlike linguistic annotations on syntax or seman-
tics where experts in the corresponding theory
would generally agree on a single correct label,
pragmatic interpretations may better be defined as
distributions over multiple correct labels (e.g., af-
ter PersonX takes a test, PersonX might
feel relieved and/or stressed; de Marneffe et al.,
2012). Second, because we formulate our task as
a conditional language modeling problem, where a
distribution over the textual descriptions of intents
and reactions is conditioned on the event descrip-
tion, this variation in the labels is only as expected.

A majority of our events are annotated as will-
ingly caused by the agent (86%, Cohen’s  =
0.48), and 26% involve other people ( = 0.41).
Most event patterns in our data are fully instan-
tiated, with only 22% containing blanks ( ).
In our corpus, the intent annotations are slightly
longer (3.4 words on average) than the reaction an-
notations (1.5 words).

3 Models

Given an event phrase, our models aim to gener-
ate three entity-specific pragmatic inferences: Per-
sonX’s intent, PersonX’s reaction, and others’ re-
actions. The general outline of our model archi-
tecture is illustrated in Figure 3.

The input to our model is an event pattern de-
scribed through free-form text with typed vari-
ables such as PersonX gives PersonY
as a gift. For notation purposes, we describe
each event pattern E as a sequence of word em-
beddings he1, e2, . . . , eni 2 Rn⇥D. This input is
encoded as a vector hE 2 RH that will be used
for predicting output. The output of the model is
its hypotheses about PersonX’s intent, PersonX’s
reaction, and others’ reactions (vi,vx, and vo, re-
spectively). We experiment with representing the
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PersonX’s Intent 
decoder

vi: start, a, fight vx: powerful vo: defensive

PersonX’s Reaction 
decoder

Others’ Reaction 
decoder

Pre-condition Post-condition

Event2mind Encoder

PersonX punches PersonY’s lights out

E = e1…en

f (e1…en)

hE

softmax(Wi hE+bi) softmax(Wx hE+bx) softmax(Wo hE+bo)

Figure 3: Overview of the model architecture.
From an encoded event, our model predicts intents
and reactions in a multitask setting.

output in two decoding set-ups: three vectors in-
terpretable as discrete distributions over words and
phrases (n-gram reranking) or three sequences of
words (sequence decoding).

Encoding events The input event phrase E is
compressed into an H-dimensional embedding hE

via an encoding function f : Rn⇥D ! RH :

hE = f(e1, . . . , en)

We experiment with several ways for defining f ,
inspired by standard techniques in sentence and
phrase classification (Kim, 2014). First, we exper-
iment with max-pooling and mean-pooling over
the word vectors {ei}n

i=1. We also consider a con-
volutional neural network (ConvNet; LeCun et al.,
1998) taking the last layer of the network as the en-
coded version of the event. Lastly, we encode the
event phrase with a bi-directional RNN (specifi-
cally, a GRU; Cho et al., 2014), concatenating the
final hidden states of the forward and backward
cells as the encoding: hE = [

�!
hn;
 �
h1]. For hyper-

parameters and other details, we refer the reader to
Appendix B.

Though the event sequences are typically rather
short (4.6 tokens on average), our model still ben-
efits from the ConvNet and BiRNN’s ability to
compose words.

Pragmatic inference decoding We use three
decoding modules that take the event phrase em-
bedding hE and output distributions of possible
PersonX’s intent (vi), PersonX’s reactions (vx),
and others’ reactions (vo). We experiment with
two different decoder set-ups.

First, we experiment with n-gram re-ranking,
considering the |V | most frequent {1, 2, 3}-
grams in our annotations. Each decoder projects
the event phrase embedding hE into a |V |-
dimensional vector, which is then passed through
a softmax function. For instance, the distribution
over descriptions of PersonX’s intent is given by:

vi = softmax(WihE + bi)

Second, we experiment with sequence generation,
using RNN decoders to generate the textual de-
scription. The event phrase embedding hE is set as
the initial state hdec of three decoder RNNs (using
GRU cells), which then output the intent/reactions
one word at a time (using beam-search at test
time). For example, an event’s intent sequence
(vi = v

(0)
i v

(1)
i . . .) is computed as follows:

v
(t+1)
i = softmax(Wi RNN(v

(t)
i , h

(t)
i,dec) + bi)

Training objective We minimize the cross-
entropy between the predicted distribution over
words and phrases, against the one actually ob-
served in our dataset. Further, we employ multi-
task learning, simultaneously minimizing the loss
for all three decoders at each iteration.

Training details We fix our input embeddings,
using 300-dimensional skip-gram word embed-
dings trained on Google News (Mikolov et al.,
2013). For decoding, we consider a vocabulary of
size |V | = 14,034 in the n-gram re-ranking setup.
For the sequence decoding setup, we only con-
sider the unigrams in V , yielding an output space
of 7,110 at each time step.

We randomly divided our set of 24,716
unique events (57,094 annotations) into a train-
ing/dev./test set using an 80/10/10% split. Some
annotations have multiple responses (i.e., a crowd-
worker gave multiple possible intents and reac-
tions), in which case we take each of the combina-
tions of their responses as a separate training ex-
ample.

4 Empirical Results

Table 3 summarizes the performance of different
encoding models on the dev and test set in terms
of cross-entropy and recall at 10 predicted intents
and reactions. As expected, we see a moderate
improvement in recall and cross-entropy when us-
ing the more compositional encoder models (Con-
vNet and BiRNN; both n-gram and sequence de-
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Development Test

Encoding
Function

Decoder
Average

Cross-Ent
Recall @10 (%) Average

Cross-Ent
Recall @10 (%)

Intent XReact OReact Intent XReact OReact

max-pool n-gram 5.75 31 35 68 5.14 31 37 67
mean-pool n-gram 4.82 35 39 69 4.94 34 40 68
ConvNet n-gram 4.85 36 42 69 4.81 37 44 69
BiRNN 300d n-gram 4.78 36 42 68 4.74 36 43 69
BiRNN 100d n-gram 4.76 36 41 68 4.73 37 43 68

mean-pool sequence 4.59 39 36 67 4.54 40 38 66
ConvNet sequence 4.44 42 39 68 4.40 43 40 67
BiRNN 100d sequence 4.25 39 38 67 4.22 40 40 67

Table 3: Average cross-entropy (lower is better) and recall @10 (percentage of times the gold falls within
the top 10 decoded; higher is better) on development and test sets for different modeling variations. We
show recall values for PersonX’s intent, PersonX’s reaction and others’ reaction (denoted as “Intent”,
“XReact”, and “OReact”). Note that because of two different decoding setups, cross-entropy between
n-gram and sequence decoding are not directly comparable.

coding setups). Additionally, BiRNN models out-
perform ConvNets on cross-entropy in both de-
coding setups. Looking at the recall split across
intent vs. reaction labels (“Intent”, “XReact” and
“OReact” columns), we see that much of the im-
provement in using these two models is within the
prediction of PersonX’s intents. Note that recall
for “OReact” is much higher, since a majority of
events do not involve other people.

Human evaluation To further assess the qual-
ity of our models, we randomly select 100 events
from our test set and ask crowd-workers to rate
generated intents and reactions. We present 5
workers with an event’s top 10 most likely in-
tents and reactions according to our model and ask
them to select all those that make sense to them.
We evaluate each model’s precision @10 by com-
puting the average number of generated responses
that make sense to annotators.

Figure 4 summarizes the results of this evalu-
ation. In most cases, the performance is higher
for the sequential decoder than the corresponding
n-gram decoder. The biggest gain from using se-
quence decoders is in intent prediction, possibly
because intent explanations are more likely to be
longer. The BiRNN and ConvNet encoders consis-
tently have higher precision than the mean-pooling
with the BiRNN-seq setup slightly outperforming
other models. Unless otherwise specified, this is
the model we employ in further sections.

0%

10%

20%

30%

40%

50%

60%

Intent XReact OReact

mean-pool ngram mean-pool seq
ConvNet ngram ConvNet seq
BiRNN ngram BiRNN seq

Figure 4: Average precision @10 of each model’s
top ten responses in the human evaluation. We
show results for various encoder functions (mean-
pool, ConvNet, BiRNN-100d) combined with two
decoding setups (n-gram re-ranking, sequence
generation).

Error analyses We test whether certain types
of events are easier for predicting commonsense
inference. In Figure 6, we show the difference
in cross-entropy of the BiRNN 100d model on
predicting different portions of the development
set including: Blank events (events containing
non-instantiated arguments), 2+ People events
(events containing multiple different Person vari-
ables), and Idiom events (events coming from
the Wiktionary idiom list). Our results show that,
while intent prediction performance remains sim-
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learn, get a job,  
learn a new skill,  

get better

relax,  
get somewhere, 

go home, get 
some exercise

relax, go home,  
get somewhere,  

get home

learn, graduate, 
learn a new skill,  

get a job

learn, graduate, 
learn a new skill,  

learn more
Intent

PersonX’s  
Reaction

Event1 Event2

satisfied,  
refreshed, 

accomplished, 
exhausted

satisfied, 
healthy, sad,  
exhausted, 
relieved

tired, sad, 
scared, pain, 

hurt

refreshed,  
clean, 

accomplished, 
good

clean, refreshed, 
satisfied, 

accomplished, 
wet

Others’ 
Reaction

angry, upset, 
sad, annoyed, 

hurt

grateful, 
annoyed, 

angry, upset 

grateful,  
thankful,  

relieved, happy, 
satisfied

hurt, angry, sad, 
upset, dead, 

scared

hurt, angry, sad, 
upset, annoyed, 

scared

PersonX 
takes PersonY 

to the 
emergency room

PersonX goes 
 to school

PersonX 
washes 

PersonX’s 
legs

PersonX 
punches 

PersonY’s 
face

PersonX cuts 
PersonX’s 

legs

PersonX 
comes home 

after school

Figure 5: Sample predictions from homotopic embeddings (gradual interpolation between Event1 and
Event2), selected from the top 10 beam elements decoded in the sequence generation setup. Examples
highlight differences captured when ideas are similar (going to and coming from school), when only a
single word differs (washes versus cuts), and when two events are unrelated.

R
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)  
   

   
   

   
   

   
   

Blanks 2+ People Idioms Full Dev

6767

43

68

38

20

3837 39
31

41

30

Intent XReact OReact

Figure 6: Recall @ 10 (%) on different subsets
of the development set for intents, PersonX’s re-
actions, and other people’s reactions, using the
BiRNN 100d model. “Full dev” represents the re-
call on the entire development dataset.

ilar for all three sets of events, it is 10% behind
intent prediction on the full development set. Ad-
ditionally, predicting other people’s reactions is
more difficult for the model when other people are
explicitly mentioned. Unsurprisingly, idioms are
particularly difficult for commonsense inference,
perhaps due to the difficulty in composing mean-
ing over nonliteral or noncompositional event de-
scriptions.

To further evaluate the geometry of the em-
bedding space, we analyze interpolations between
pairs of event phrases (from outside the train set),
similar to the homotopic analysis of Bowman et al.
(2016). For a handful of event pairs, we decode
intents, reactions for PersonX, and reactions for
other people from points sampled at equal inter-

vals on the interpolated line between two event
phrases. We show examples in Figure 5. The
embedding space distinguishes changes from gen-
erally positive to generally negative words and
is also able to capture small differences between
event phrases (such as “washes” versus “cuts”).

5 Analyzing Bias via Event2Mind
Inference

Through Event2Mind inference, we can attempt to
bring to the surface what is implied about people’s
behavior and mental states. We employ this infer-
ence to analyze implicit bias in modern films. As
shown in Figure 7, our model is able to analyze
character portrayal beyond what is explicit in text,
by performing pragmatic inference on character
actions to explain aspects of a character’s mental
state. In this section, we use our model’s infer-
ence to shed light on gender differences in intents
behind and reactions to characters’ actions.

5.1 Processing of Movie Scripts
For our portrayal analyses, we use scene descrip-
tions from 772 movie scripts released by Gorin-
ski and Lapata (2015), assigned to over 21,000
characters as done by Sap et al. (2017). We ex-
tract events from the scene descriptions, and gen-
erate their 10 most probable intent and reaction se-
quences using our BiRNN sequence model (as in
Figure 7).

We then categorize generated intents and reac-
tions into groups based on LIWC category scores
of the generated output (Tausczik and Pennebaker,
2016).3 The intent and reaction categories are then

3We only consider content word categories: ‘Core Drives

469



Vivian sits on her bed,
lost in thought. Her 
bags are packed, ...

PersonX sits on PersonX's 
bed , lost in thought

Rea
ctio
n

Juno laughs and hugs her 
father, planting a smooch 
on his cheek.

PersonX hugs ___ , planting 
a smooch on PersonY's cheek

Intent

show affection

show love

loving

none

funny

friendly

nice

express love

worried

sad

upset

embarrassed

sick

scared

lonely

bad

Figure 7: Two scene description snippets from
Juno (2007, top) and Pretty Woman (1990, bot-
tom), augmented with Event2mind inferences on
the characters’ intents and reactions. E.g., our
model infers that the event PersonX sits on
PersonX’s bed, lost in thought im-
plies that the agent, Vivian, is sad or worried.

aggregated for each character, and standardized
(zero-mean and unit variance).

We compute correlations with gender for each
category of intent or reaction using a logis-
tic regression model, testing significance while
using Holm’s correction for multiple compar-
isons (Holm, 1979).4 To account for the gender
skew in scene presence (29.4% of scenes have
women), we statistically control for the total num-
ber of words in a character’s scene descriptions.
Note that the original event phrases are all gen-
der agnostic, as their participants have been re-
placed by variables (e.g., PersonX). We also find
that the types of gender biases uncovered remain
similar when we run these analyses on the human
annotations or the generated words and phrases
from the BiRNN with n-gram re-ranking decoding
setup.

and Needs’, ‘Personal Concerns’, ‘Biological Processes’,
‘Cognitive Processes’, ‘Social Words’, ‘Affect Words’, ‘Per-
ceptual Processes’. We refer the reader to Tausczik and
Pennebaker (2016) or http://liwc.wpengine.com/
compare-dictionaries/ for a complete list of cate-
gory descriptions.

4Given the data limitation, we represent gender as a bi-
nary, but acknowledge that gender is a more complex social
construct.

5.2 Revealing Implicit Bias via Explicit
Intents and Reactions

Female: intents
AFFILIATION, FRIEND, FAMILY

BODY, SEXUAL, INGEST

SEE, INSIGHT, DISCREP

Male: intents
DEATH, HEALTH, ANGER, NEGEMO

RISK, POWER, ACHIEVE, REWARD, WORK

CAUSE, TENTATIVE‡

Female: reactions
POSEMO, AFFILIATION, FRIEND, REWARD

INGEST, SEXUAL‡, BODY‡

Male: reactions
WORK, ACHIEVE, POWER, HEALTH†

Female: others’ reactions
POSEMO, AFFILIATION, FRIEND

INGEST, SEE, INSIGHT

Male: others’ reactions
ACHIEVE, RISK†

SAD, NEGEMO‡, ANGER†

Table 4: Select LIWC categories correlated with
gender. All results are significant when corrected
for multiple comparisons at p < 0.001, except
†p < 0.05 and ‡p < 0.01.

Our Event2Mind inferences automate portrayal
analyses that previously required manual annota-
tions (Behm-Morawitz and Mastro, 2008; Pren-
tice and Carranza, 2002; England et al., 2011).
Shown in Table 4, our results indicate a gender
bias in the behavior ascribed to characters, consis-
tent with psychology and gender studies literature
(Collins, 2011). Specifically, events with female
semantic agents are intended to be helpful to other
people (intents involving FRIEND, FAMILY, and
AFFILIATION), particularly relating to eating and
making food for themselves and others (INGEST,
BODY). Events with male agents on the other hand
are motivated by and resulting in achievements
(ACHIEVE, MONEY, REWARDS, POWER).

Women’s looks and sexuality are also empha-
sized, as their actions’ intents and reactions are
sexual, seen, or felt (SEXUAL, SEE, PERCEPT).
Men’s actions, on the other hand, are motivated by
violence or fighting (DEATH, ANGER, RISK), with
strong negative reactions (SAD, ANGER, NEGA-
TIVE EMOTION).

Our approach decodes nuanced implications
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into more explicit statements, helping to identify
and explain gender bias that is prevalent in modern
literature and media. Specifically, our results indi-
cate that modern movies have the bias to portray
female characters as having pro-social attitudes,
whereas male characters are portrayed as being
competitive or pro-achievement. This is consis-
tent with gender stereotypes that have been studied
in movies in both NLP and psychology literature
(Agarwal et al., 2015; Madaan et al., 2017; Pren-
tice and Carranza, 2002; England et al., 2011).

6 Related Work

Prior work has sought formal frameworks for in-
ferring roles and other attributes in relation to
events (Baker et al., 1998; Das et al., 2014; Schuler
et al., 2009; Hartshorne et al., 2013, inter alia),
implicitly connoted by events (Reisinger et al.,
2015; White et al., 2016; Greene, 2007; Rashkin
et al., 2016), or sentiment polarities of events
(Ding and Riloff, 2016; Choi and Wiebe, 2014;
Russo et al., 2015; Ding and Riloff, 2018). In ad-
dition, recent work has studied the patterns which
evoke certain polarities (Reed et al., 2017), the
desires which make events affective (Ding et al.,
2017), the emotions caused by events (Vu et al.,
2014), or, conversely, identifying events or rea-
soning behind particular emotions (Gui et al.,
2017). Compared to this prior literature, our work
uniquely learns to model intents and reactions over
a diverse set of events, includes inference over
event participants not explicitly mentioned in text,
and formulates the task as predicting the textual
descriptions of the implied commonsense instead
of classifying various event attributes.

Previous work in natural language inference has
focused on linguistic entailment (Bowman et al.,
2015; Bos and Markert, 2005) while ours fo-
cuses on commonsense-based inference. There
also has been inference or entailment work that
is more generation focused: generating, e.g., en-
tailed statements (Zhang et al., 2017; Blouw and
Eliasmith, 2018), explanations of causality (Kang
et al., 2017), or paraphrases (Dong et al., 2017).
Our work also aims at generating inferences from
sentences; however, our models infer implicit in-
formation about mental states and causality, which
has not been studied by most previous systems.

Also related are commonsense knowledge
bases (Espinosa and Lieberman, 2005; Speer and
Havasi, 2012). Our work complements these ex-

isting resources by providing commonsense rela-
tions that are relatively less populated in previ-
ous work. For instance, ConceptNet contains only
25% of our events, and only 12% have relations
that resemble intent and reaction. We present a
more detailed comparison with ConceptNet in Ap-
pendix C.

7 Conclusion

We introduced a new corpus, task, and model for
performing commonsense inference on textually-
described everyday events, focusing on stereotyp-
ical intents and reactions of people involved in the
events. Our corpus supports learning representa-
tions over a diverse range of events and reason-
ing about the likely intents and reactions of pre-
viously unseen events. We also demonstrate that
such inference can help reveal implicit gender bias
in movie scripts.
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Abstract

Japanese predicate-argument structure
(PAS) analysis involves zero anaphora
resolution, which is notoriously difficult.
To improve the performance of Japanese
PAS analysis, it is straightforward to in-
crease the size of corpora annotated with
PAS. However, since it is prohibitively ex-
pensive, it is promising to take advantage
of a large amount of raw corpora. In this
paper, we propose a novel Japanese PAS
analysis model based on semi-supervised
adversarial training with a raw corpus.
In our experiments, our model outper-
forms existing state-of-the-art models for
Japanese PAS analysis.

1 Introduction

In pro-drop languages, such as Japanese and Chi-
nese, pronouns are frequently omitted when they
are inferable from their contexts and background
knowledge. The natural language processing
(NLP) task for detecting such omitted pronouns
and searching for their antecedents is called zero
anaphora resolution. This task is essential for
downstream NLP tasks, such as information ex-
traction and summarization.

For Japanese, zero anaphora resolution is usu-
ally conducted within predicate-argument struc-
ture (PAS) analysis as a task of finding an omitted
argument for a predicate. PAS analysis is a task
to find an argument for each case of a predicate.
For Japanese PAS analysis, the ga (nominative,
NOM), wo (accusative, ACC) and ni (dative, DAT)
cases are generally handled. To develop mod-
els for Japanese PAS analysis, supervised learn-
ing methods using annotated corpora have been
applied on the basis of morpho-syntactic clues.

However, omitted pronouns have few clues and
thus these models try to learn relations between a
predicate and its (omitted) argument from the an-
notated corpora. The annotated corpora consist of
several tens of thousands sentences, and it is diffi-
cult to learn predicate-argument relations or selec-
tional preferences from such small-scale corpora.
The state-of-the-art models for Japanese PAS anal-
ysis achieve an accuracy of around 50% for zero
pronouns (Ouchi et al., 2015; Shibata et al., 2016;
Iida et al., 2016; Ouchi et al., 2017; Matsubayashi
and Inui, 2017).

A promising way to solve this data scarcity
problem is enhancing models with a large amount
of raw corpora. There are two major approaches
to using raw corpora: extracting knowledge from
raw corpora beforehand (Sasano and Kurohashi,
2011; Shibata et al., 2016) and using raw corpora
for data augmentation (Liu et al., 2017b).

In traditional studies on Japanese PAS analy-
sis, selectional preferences are extracted from raw
corpora beforehand and are used in PAS analy-
sis models. For example, Sasano and Kurohashi
(2011) propose a supervised model for Japanese
PAS analysis based on case frames, which are au-
tomatically acquired from a raw corpus by cluster-
ing predicate-argument structures. However, case
frames are not based on distributed representations
of words and have a data sparseness problem even
if a large raw corpus is employed. Some recent
approaches to Japanese PAS analysis combines
neural network models with knowledge extraction
from raw corpora. Shibata et al. (2016) extract se-
lectional preferences by an unsupervised method
that is similar to negative sampling (Mikolov et al.,
2013). They then use the pre-extracted selectional
preferences as one of the features to their PAS
analysis model. The PAS analysis model is trained
by a supervised method and the selectional prefer-
ence representations are fixed during training. Us-
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Predicate NOM ACC DAT

(1) タクシーがNOM 客をACC 駅にDAT 送った 。 送った タクシー 客 駅

ikeukaykihsukatattuko.attukoin-ikeow-ukaykag-ihsukat
noitatsregnessapixatdeirrac/tnes.noitatsehtotsregnessapdeirracixatA

(2) その 列車は 荷物をACC 運んだ 。 運んだ 列車 荷物

ustominahsseradnokaha.dnokahow-ustominaw-ahsseronos NULL
egaggabniartdeirrac.segaggabdeirracoslaniartehT

(3) タクシーがNOM 客をACC 乗せた とき 事故にDAT 巻き込まれた 。 乗せた タクシー 客

takushi-ga kyaku-wo noseta toki jiko-ni makikomareta. noseta takushi kyaku NULL
When the taxi picked up passengers, it was involved in the accident. picked up taxi passenger

巻き込まれた タクシー 事故

makikomareta takushi NULL jiko
was involved taxi accident

(4) この 列車に は 乗れません 。 乗れません あなた 列車

atananesameronn.esameronaw-in-ahsseronok NULL ressha
niartuoyekattonnac.niartsihtekattonnacuoY

Table 1: Examples of Japanese sentences and their PAS analysis. In sentence (1), case markers ( が(ga),
を(wo), andに(ni) ) correspond to NOM, ACC, and DAT. In example (2), the correct case marker is hidden
by the topic markerは (wa). In sentence (3), the NOM argument of the second predicate巻き込まれた (was

involved), is dropped. NULL indicates that the predicate does not have the corresponding case argument
or that the case argument is not written in the sentence.

ing pre-trained external knowledge in the form of
word embeddings has also been ubiquitous. How-
ever, such external knowledge is overwritten in the
task-specific training.

The other approach to using raw corpora for
PAS analysis is data augmentation. Liu et al.
(2017b) generate pseudo training data from a raw
corpus and use them for their zero pronoun resolu-
tion model. They generate the pseudo training data
by dropping certain words or pronouns in a raw
corpus and assuming them as correct antecedents.
After generating the pseudo training data, they
rely on ordinary supervised training based on neu-
ral networks.

In this paper, we propose a neural semi-
supervised model for Japanese PAS analysis. We
adopt neural adversarial training to directly ex-
ploit the advantage of using a raw corpus. Our
model consists of two neural network models: a
generator model of Japanese PAS analysis and a
so-called “validator” model of the generator pre-
diction. The generator neural network is a model
that predicts probabilities of candidate arguments
of each predicate using RNN-based features and
a head-selection model (Zhang et al., 2017). The
validator neural network gets inputs from the gen-
erator and scores them. This validator can score
the generator prediction even when PAS gold la-
bels are not available. We apply supervised learn-
ing to the generator and unsupervised learning to
the entire network using a raw corpus.

Our contributions are summarized as follows:
(1) a novel adversarial training model for PAS
analysis; (2) learning from a raw corpus as a
source of external knowledge; and (3) as a re-
sult, we achieve state-of-the-art performance on
Japanese PAS analysis.

2 Task Description

Japanese PAS analysis determines essential case
roles of words for each predicate: who did what
to whom. In many languages, such as English,
case roles are mainly determined by word order.
However, in Japanese, word order is highly flexi-
ble. In Japanese, major case roles are the nomina-
tive case (NOM), the accusative case (ACC) and
the dative case (DAT), which roughly correspond
to Japanese surface case markers: が(ga), を(wo),
andに(ni). These case markers are often hidden by
topic markers, and case arguments are also often
omitted.

We explain two detailed tasks of PAS analysis:
case analysis and zero anaphora resolution. In Ta-
ble 1, we show four example Japanese sentences
and their PAS labels. PAS labels are attached to
nominative, accusative and dative cases of each
predicate. Sentence (1) has surface case markers
that correspond to argument cases.

Sentence (2) is an example sentence for case
analysis. Case analysis is a task to find hidden
case markers of arguments that have direct depen-
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( j-th predicate )

NOM:

Raw

Labeled

ACC:

DAT: v′(arg1) v′(arg2) v′(arg3) . . .

v′(arg1) v′(arg2) v′(arg3) . . .
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h′DAT
predj
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Figure 1: The overall model of adversarial training with a raw corpus. The PAS generator G(x) and
validator V (x). The validator takes inputs from the generator as a form of the attention mechanism.
The validator itself is a simple feed-forward network with inputs of j-th predicate and its argument
representations: {h′predj , h

′casek
predj

}. The validator returns scores for three cases and they are used for both
the supervised training of the validator and the unsupervised training of the generator. The supervised
training of the generator is not included in this figure.

dencies to their predicates. Sentence (2) does not
have the nominative case marker が(ga). It is hid-
den by the topic case marker は(wa). Therefore, a
case analysis model has to find the correct NOM
case argument 列車(train).

Sentence (3) is an example sentence for zero
anaphora resolution. Zero anaphora resolution is
a task to find arguments that do not have direct de-
pendencies to their predicates. At the second pred-
icate “巻き込まれた”(was involved), the correct nomi-
native argument is “タクシー”(taxi), while this does
not have direct dependencies to the second predi-
cate. A zero anaphora resolution model has to find
“タクシー”(taxi) from the sentence, and assign it to
the NOM case of the second predicate.

In the zero anaphora resolution task, some cor-
rect arguments are not specified in the article. This
is called as exophora. We consider “author” and
“reader” arguments as exophora (Hangyo et al.,
2013). They are frequently dropped from Japanese
natural sentences. Sentence (4) is an example of
dropped nominative arguments. In this sentence,
the nominative argument is “あなた” (you), but “あ

なた” (you) does not appear in the sentence. This
is also included in zero anaphora resolution. Ex-
cept these special arguments of exophora, we fo-
cus on intra-sentential anaphora resolution in the
same way as (Shibata et al., 2016; Iida et al., 2016;
Ouchi et al., 2017; Matsubayashi and Inui, 2017).
We also attach NULL labels to cases that predicates
do not have.

3 Model

3.1 Generative Adversarial Networks

Generative adversarial networks are originally
proposed in image generation tasks (Goodfellow
et al., 2014; Salimans et al., 2016; Springenberg,
2015). In the original model in Goodfellow et al.
(2014), they propose a generator G and a discrim-
inator D. The discriminator D is trained to dev-
ide the real data distribution pdata(x) and images
generated from the noise samples z(i) ∈ Dz from
noise prior p(z). The discriminator loss is

LD = −
(
Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[log(1−D(G(z)))]
)
, (1)

and they train the discriminator by minimizing this
loss while fixing the generator G. Similarly, the
generator G is trained through minimizing

LG =
1

|Dz|
∑

i

[
log
(
1−D(G(z(i)))

) ]
, (2)

while fixing the discriminator D. By doing this,
the discriminator tries to descriminate the gener-
ated images from real images, while the genera-
tor tries to generate images that can deceive the
adversarial discriminator. This training scheme is
applied for many generative tasks including sen-
tence generation (Subramanian et al., 2017), ma-
chine translation (Britz et al., 2017), dialog gener-
ation (Li et al., 2017), and text classification (Liu
et al., 2017a).
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3.2 Proposed Adversarial Training Using
Raw Corpus

Japanese PAS analysis and many other syntactic
analyses in NLP are not purely generative, and we
can make use of a raw corpus instead of the numer-
ical noise distribution p(z). In this work, we use
an adversarial training method using a raw corpus,
combined with ordinary supervised learning using
an annotated corpus. Let xl ∈ Dl indicate labeled
data and p(xl) indicate their label distribution. We
also use unlabeled data xul ∈ Dul later. Our gen-
erator G can be trained by the cross entropy loss
with labeled data:

LG/SL = −Exl,y∼p(xl)

[
logG(xl)

]
. (3)

Supervised training of the generator works by
minimizing this loss. Note that we follow the no-
tations of Subramanian et al. (2017) in this subsec-
tion.

In addition, we train a so-called validator
against the generator errors. We use the term “val-
idator” instead of “discriminator” for our adversar-
ial training. Unlike the discriminator that is used
for dividing generated images and real images, our
validator is used to score the generator results. As-
sume that yl is the true labels andG(xl) is the pre-
dicted label distribution of data xl from the gener-
ator. We define the labels of the generator errors
as:

q(G(xl),yl) = δargmax[G(xl)], yl
, (4)

where δi,j = 1 only if i = j, otherwise δi,j = 0.
This means that q is equal to 1 if the argument
that the generator predicts is correct, otherwise 0.
We use this generator error for training labels of
the following validator. The inputs of the validator
are both the generator outputs G(x) and data x ∈
D. The validator can be written as V (G(x)). The
validator V is trained with labeled data xl by

LV/SL = −Exl,y∼q(G(xl),yl)

[
log V (G(xl))

]
,

(5)

while fixing the generatorG. This equation means
that the validator is trained with labels of the gen-
erator error q(G(xl),yl).

Once the validator is trained, we train the gen-
erator with an unsupervised method. The genera-
tor G is trained with unlabeled data xul ∈ Dul by
minimizing the loss

LG/UL = − 1

|Dul|
∑

i

[
log V (G(x

(i)
ul ))

]
, (6)

while fixing the validator V . This generator train-
ing loss using the validator can be explained as fol-
lows. The generator tries to increase the validator
scores to 1, while the validator is fixed. If the val-
idator is well-trained, it returns scores close to 1
for correct PAS labels that the generator outputs,
and 0 for wrong labels. Therefore, in Equation (6),
the generator tries to predict correct labels in order
to increase the scores of fixed validator. Note that
the validator has a sigmoid function for the output
of scores. Therefore output scores of the validator
are in [0, 1].

We first conduct the supervised training of gen-
erator network with Equation (3). After this, fol-
lowing Goodfellow et al. (2014), we use k-steps
of the validator training and one-step of the gener-
ator training. We also alternately conduct l-steps
of supervised training of the generator. The entire
loss function of this adversarial training is

L = LG/SL + LV/SL + LG/UL . (7)

Our contribution is that we propose the validator
and train it against the generator errors, instead of
discriminating generated data from real data. Sal-
imans et al. (2016) explore the semi-supervised
learning using adversarial training for K-classes
image classification tasks. They add a new class
of images that are generated by the generator and
classify them.

Miyato et al. (2016) propose virtual adversar-
ial training for semi-supervised learning. They ex-
ploit unlabeled data for continuous smoothing of
data distributions based on the adversarial pertur-
bation of Goodfellow et al. (2015). These stud-
ies, however, do not use the counterpart neural net-
works for learning structures of unlabeled data.

In our Japanese PAS analysis model, the gener-
ator corresponds to the head-selection-based neu-
ral network for Japanese anaphora resolution. Fig-
ure 1 shows the entire model. The labeled data
correspond to the annotated corpora and the labels
correspond to the PAS argument labels. The unla-
beled data correspond to raw corpora. We explain
the details of the generator and the validator neural
networks in Sec.3.3 and Sec.3.4 in turn.

3.3 Generator of PAS Analysis
The generator predicts the probabilities of argu-
ments for each of the NOM, ACC and DAT cases
of a predicate. As shown in Figure 2, the gener-
ator consists of a sentence encoder and an argu-
ment selection model. In the sentence encoder, we
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Figure 2: The generator of PAS. The sentence en-
coder is a three-layer bi-LSTM to compute the dis-
tributed representations of a predicate and its argu-
ments: hpredi and hargi . The argument selection
model is two-layer feedforward neural networks
to compute the scores, scasekargi,predj

, of candidate ar-
guments for each case of a predicate.

use a three-layer bidirectional-LSTM (bi-LSTM)
to read the whole sentence and extract both global
and local features as distributed representations.
The argument selection model consists of a two-
layer feedforward neural network (FNN) and a
softmax function.

For the sentence encoder, inputs are given as a
sequence of embeddings v(x), each of which con-
sist of word x, its inflection from, POS and de-
tailed POS. They are concatenated and fed into the
bi-LSTM layers. The bi-LSTM layers read these
embeddings in forward and backward order and
outputs the distributed representations of a predi-
cate and a candidate argument: hpredj and hargi .
Note that we also use the exophora entities, i.e.,
an author and a reader, as argument candidates.
Therefore, we use specific embeddings for them.
These embeddings are not generated by the bi-
LSTM layers but are directly used in the argument
selection model.

We also use path embeddings to capture a de-
pendency relation between a predicate and its
candidate argument as used in Roth and Lapata

(2016). Although Roth and Lapata (2016) use
a one-way LSTM layer to represent the depen-
dency path from a predicate to its potential argu-
ment, we use a bi-LSTM layer for this purpose.
We feed the embeddings of words and POS tags
to the bi-LSTM layer. In this way, the result-
ing path embedding represents both predicate-to-
argument and argument-to-predicate paths. We
concatenate the bidirectional path embeddings to
generate hpathij , which represents the dependency
relation between the predicate j and its candidate
argument i.

For the argument selection model, we apply the
argument selection model (Zhang et al., 2017) to
evaluate the relation between a predicate and its
potential argument for each argument case. In the
argument selection model, a single FNN is repeat-
edly used to calculate scores for a child word and
its head candidate word, and then a softmax func-
tion calculates normalized probabilities of candi-
date heads. We use three different FNNs that cor-
respond to the NOM, ACC and DAT cases. These
three FNNs have the same inputs of the distributed
representations of j-th predicate hpredj , i-th can-
didate argument hargi and path embedding hpathij
between the predicate j and candidate argument
i. The FNNs for NOM, ACC and DAT compute
the argument scores scasekargi,predj

, where casek ∈
{NOM,ACC,DAT}. Finally, the softmax func-
tion computes the probability p(argi|predj ,casek) of
candidate argument i for case k of j-th predicate
as:

p(argi|predj ,casek) =
exp

(
scasekargi,predj

)

∑

argi

exp
(
scasekargi,predj

) . (8)

Our argument selection model is similar to the
neural network structure of Matsubayashi and Inui
(2017). However, Matsubayashi and Inui (2017)
does not use RNNs to read the whole sentence.
Their model is also designed to choose a case la-
bel for a pair of a predicate and its argument can-
didate. In other words, their model can assign the
same case label to multiple arguments by itself,
while our model does not. Since case arguments
are almost unique for each case of a predicate in
Japanese, Matsubayashi and Inui (2017) select the
argument that has the highest probability for each
case, even though probabilities of case arguments
are not normalized over argument candidates. The
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model of Ouchi et al. (2017) has the same prob-
lem.

3.4 Validator

We exploit a validator to train the generator us-
ing a raw corpus. It consists of a two-layer FNN
to which embeddings of a predicate and its argu-
ments are fed. For predicate j, the input of the
FNN is the representations of the predicate h′predj
and three arguments

{
h′ NOM
predj

, h′ ACC
predj

, h′ DAT
predj

}

that are inferred by the generator. The two-layer
FNN outputs three values, and then three sigmoid
functions compute the scores of scalar values in a
range of [0, 1] for the NOM, ACC and DAT cases:{
s′ NOM
predj

, s′ ACC
predj

, s′ DAT
predj

}
. These scores are the

outputs of the validator D(x). We use dropout of
0.5 at the FNN input and hidden layer.

The generator and validator networks are cou-
pled by the attention mechanism, or the weighted
sum of the validator embeddings. As shown in
Equation (8), we compute a probability distribu-
tion of candidate arguments. We use the weighted
sum of embeddings v′(x) of candidate arguments
to compute the input representations of the valida-
tor:

h′ casekpredj
= Ex∼p(argi)[v

′(x)]

=
∑

argi

p(argi|predj ,casek)v′(argi).

This summation is taken over candidate arguments
in the sentence and the exophora entities. Note
that we use embeddings v′(x) for the validator
that are different from the embeddings v(x) for
the generator, in order to separate the computa-
tion graphs of the generator and the validator neu-
ral networks except the joint part. We use this
weighted sum by the softmax outputs instead of
the argmax function. This allows the backpropa-
gation through this joint. We also feed the embed-
ding of a predicate to the validator:

h′predj = v′(predj). (9)

Note that the validator is a simple neural net-
work compared with the generator. The validator
has limited inputs of predicates and arguments and
no inputs of other words in sentences. This allows
the generator to overwhelm the validator during
the adversarial training.

Type Value

Size of hidden layers of FNNs 1,000
Size of Bi-LSTMs 256
Dim. of word embedding 100
Dim. of POS, detailed POS, inflection form tags 10, 10, 9
Minibatch size for the generator and validator 16, 1

Table 2: Parameters for neural network structure
and training.

KWDLC # snt # of dep # of zero

Train 11,558 9,227 8,216
Dev. 1,585 1,253 821
Test 2,195 1,780 1,669

Table 3: KWDLC data statistics.

3.5 Implementation Details

The neural networks are trained using backprop-
agation. The backpropagation has been done to
the word and POS tags. We use Adam (Kingma
and Ba, 2015) at the initial training of the genera-
tor network for the gradient learning rule. In ad-
versarial learning, Adagrad (Duchi et al., 2010) is
suitable because of the stability of learning. We
use pre-trained word embeddings from 100M sen-
tences from Japanese web corpus by word2vec
(Mikolov et al., 2013). Other embeddings and hid-
den weights of neural networks are randomly ini-
tialized.

For adversarial training, we first train the gen-
erator for two epochs by the supervised method,
and train the validator while fixing the generator
for another epoch. This is because the validator
training preceding the generator training makes
the validator result worse. After this, we alter-
nately do the unsupervised training of the genera-
tor (LG/UL), k-times of supervised training of the
validator (LV/SL) and l-times of supervised train-
ing of the generator (LG/SL).

We use the N(LG/UL)/N(LG/SL) = 1/4 and
N(LV/SL)/N(LG/SL) = 1/4, where N(·) indi-
cates the number of sentences used for training.
Also we use minibatch of 16 sentences for both
supervised and unsupervised training of the gen-
erator, while we do not use minibatch for validator
training. Therefore, we use k = 16 and l = 4.
Other parameters are summarized in Table 2.
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KWDLC NOM ACC DAT

# of dep 7,224 1,555 448
# of zero 6,453 515 1,248

Table 4: KWDLC training data statistics for each
case.

Case Zero

Ouchi+ 2015 76.5 42.1
Shibata+ 2016 89.3 53.4

Gen 91.5 56.2
Gen+Adv 92.0‡ 58.4‡

Table 5: The results of case analysis (Case)
and zero anaphora resolution (Zero). We use F-
measure as an evaluation measure. ‡ denotes that
the improvement is statistically significant at p <
0.05, compared with Gen using paired t-test.

4 Experiments

4.1 Experimental Settings

Following Shibata et al. (2016), we use the
KWDLC (Kyoto University Web Document Leads
Corpus) corpus (Hangyo et al., 2012) for our ex-
periments.1 This corpus contains various Web
documents, such as news articles, personal blogs,
and commerce sites. In KWDLC, lead three sen-
tences of each document are annotated with PAS
structures including zero pronouns. For a raw cor-
pus, we use a Japanese web corpus created by
Hangyo et al. (2012), which has no duplicated sen-
tences with KWDLC. This raw corpus is automat-
ically parsed by the Japanese dependency parser
KNP.

We focus on intra-sentential anaphora resolu-
tion, and so we apply a preprocess to KWDLC.
We regard the anaphors whose antecedents are in
the preceding sentences as NULL in the same way
as Ouchi et al. (2015); Shibata et al. (2016). Tables
3 and 4 list the statistics of KWDLC.

We use the exophora entities, i.e., an author and
a reader, following the annotations in KWDLC.
We also assign author/reader labels to the follow-
ing expressions in the same way as Hangyo et al.
(2013); Shibata et al. (2016):

author “私” (I), “僕” (I), “我々” (we), “弊社” (our
company)

1 The KWDLC corpus is available at http://nlp.
ist.i.kyoto-u.ac.jp/EN/index.php?KWDLC

reader “あなた” (you), “君” (you), “客” (customer),
“皆様” (you all)

Following Ouchi et al. (2015) and Shibata et al.
(2016), we conduct two kinds of analysis: (1) case
analysis and (2) zero anaphora resolution. Case
analysis is the task to determine the correct case
labels when predicates and their arguments have
direct dependencies but their case markers are hid-
den by surface markers, such as topic markers.
Zero anaphora resolution is a task to find certain
case arguments that do not have direct dependen-
cies to their predicates in the sentence.

Following Shibata et al. (2016), we exclude
predicates that the same arguments are filled in
multiple cases of a predicate. This is relatively
uncommon and 1.5 % of the whole corpus are ex-
cluded. Predicates are marked in the gold depen-
dency parses. Candidate arguments are just other
tokens than predicates. This setting is also the
same as Shibata et al. (2016).

All performances are evaluated with micro-
averaged F-measure (Shibata et al., 2016).

4.2 Experimental Results

We compare two models: the supervised genera-
tor model (Gen) and the proposed semi-supervised
model with adversarial training (Gen+Adv). We
also compare our models with two previous mod-
els: Ouchi et al. (2015) and Shibata et al. (2016),
whose performance on the KWDLC corpus is re-
ported.

Table 5 lists the experimental results. Our mod-
els (Gen and Gen+Adv) outperformed the previ-
ous models. Furthermore, the proposed model
with adversarial training (Gen+Adv) was signifi-
cantly better than the supervised model (Gen).

4.3 Comparison with Data Augmentation
Model

We also compare our GAN-based approach with
data augmentation techniques. A data augmenta-
tion approach is used in Liu et al. (2017b). They
automatically process raw corpora and make drops
of words with some rules. However, it is difficult
to directly apply their approach to Japanese PAS
analysis because Japanese zero-pronoun depends
on dependency trees. If we make some drops of ar-
guments of predicates in sentences, this can cause
lacks of nodes in dependency trees. If we prune
some branches of dependency trees of the sen-
tence, this cause the data bias problem.
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Case analysis Zero anaphora resolution

Model NOM ACC DAT NOM ACC DAT

Ouchi+ 2015 87.4 40.2 27.6 48.8 0.0 10.7
Shibata+ 2016 94.1 75.6 30.0 57.7 17.3 37.8
Gen 95.3 83.6 39.7 60.7 30.4 41.2
Gen+Adv 95.3 85.4 51.5 62.3 31.1 44.6

Table 6: The detailed results of case analysis and zero anaphora resolution for the NOM, ACC and DAT
cases. Our models outperform the existing models in all cases. All values are evaluated with F-measure.

Case Zero

Gen 91.5 56.2
Gen+Aug 91.2 57.0

Gen+Adv 92.0‡ 58.4‡

Table 7: The comparisons of Gen+Adv with Gen
and the data augmentation model (Gen+Aug). ‡
denotes that the improvement is statistically sig-
nificant at p < 0.05, compared with Gen+Aug.

Therefore we use existing training corpora and
word embeddings for the data augmentation. First
we randomly choose an argument word w in the
training corpus and then swap it with another word
w′ with the probability of p(w,w′). We choose
top-20 nearest words to the original word w in
the pre-trained word embedding as candidates of
swapped words. The probability is defined as
p(w,w′) ∝ [v(w)>v(w′)]r, where r = 10. This
probability is normalized by top-20 nearest words.
We then merge this pseudo data and the original
training corpus and train the model in the same
way with the Gen model. We conducted several
experiments and found that the model trained with
the same amount of the pseudo data as the training
corpus achieved the best result.

Table 7 shows the results of the data augmen-
tation model and the GAN-based model. Our
Gen+Adv model performs better than the data
augmented model. Note that our data augmenta-
tion model does not use raw corpora directly.

4.4 Discussion
4.4.1 Result Analysis
We report the detailed performance for each case
in Table 6. Among the three cases, zero anaphora
resolution of the ACC and DAT cases is notori-
ously difficult. This is attributed to the fact that
these ACC and DAT cases are fewer than the NOM

case in the corpus as shown in Table 4. However,
we can see that our proposed model, Gen+Adv,
performs much better than the previous models es-
pecially for the ACC and DAT cases. Although
the number of training instances of ACC and DAT
is much smaller than that of NOM, our semi-
supervised model can learn PAS for all three cases
using a raw corpus. This indicates that our model
can work well in resource-poor cases.

We analyzed the results of Gen+Adv by com-
paring with Gen and the model of Shibata et al.
(2016). Here, we focus on the ACC and DAT cases
because their improvements are notable.

• “パックは 洗って、 分別して リサイクルに 出

さなきゃいけないので 手間がかかる。“

It is bothersome to wash, classify and recycle
spent packs.

In this sentence, the predicates “洗って” (wash), “分

別して” (classify), “(リサイクルに) 出す” (recycle)
takes the same ACC argument, “パック” (pack).
This is not so easy for Japanese PAS analysis be-
cause the actual ACC case marker “を” (wo) of
“パック” (pack) is hidden by the topic marker “は”

(wa). The Gen+Adv model can detect the cor-
rect argument while the model of Shibata et al.
(2016) fails. In the Gen+Adv model, each pred-
icate gives a high probability to “パック” (pack)
as an ACC argument and finally chooses this. We
found many examples similar to this and speculate
that our model captures a kind of selectional pref-
erences.

The next example is an error of the DAT case by
the Gen+Adv model.

• “各専門分野も お任せ下さい。”

please leave every professional field (to φ)

The gold label of this DAT case (to φ) is NULL be-
cause this argument is not written in the sentence.

481



0 2 4 6 8 10 12 14 16 18
Epoch

60

70

80

90
F-

va
lu

e

NOM
ACC
DAT

0 2 4 6 8 10 12 14 16 18
Epoch

20

30

40

50

60

F-
va

lu
e 

of
 Z

er
o

NOM
ACC
DAT

Figure 3: Left: validator scores with the development set during adversarial training epochs. Right:
generator scores for Zero with the development set during adversarial training epochs.

However, the Gen+Adv model judged the DAT ar-
gument as “author”. Although we cannot specify
φ as “author” only from this sentence, “author” is
a possible argument depending on the context.

4.4.2 Validator Analysis
We also evaluate the performance of the valida-
tor during the adversarial training with raw cor-
pora. Figure 3 shows the validator performance
and the generator performance of Zero on the de-
velopment set. The validator score is evaluated
with the outputs of generator.

We notice that the NOM case and the other two
cases have different curves in both graphs. This
can be explained by the speciality of the NOM
case. The NOM case has much more author/reader
expressions than the other cases. The prediction of
author/reader expressions depends not only on se-
lectional preferences of predicates and arguments
but on the whole of sentences. Therefore the val-
idator that relies only on predicate and argument
representations cannot predict author/reader ex-
pressions well.

In the ACC and DAT cases, the scores of the
generator and validator increase in the first epochs.
This suggests that the validator learns the weak-
ness of the generator and vice versa. However, in
later epochs, the scores of the generator increase
with fluctuation, while the scores of the validator
saturates. This suggests that the generator gradu-
ally becomes stronger than the validator.

5 Related Work

Shibata et al. (2016) proposed a neural network-
based PAS analysis model using local and global
features. This model is based on the non-neural

model of Ouchi et al. (2015). They achieved
state-of-the-art results on case analysis and zero
anaphora resolution using the KWDLC corpus.
They use an external resource to extract selectional
preferences. Since our model uses an external re-
source, we compare our model with the models of
Shibata et al. (2016) and Ouchi et al. (2015).

Ouchi et al. (2017) proposed a semantic role
labeling-based PAS analysis model using Grid-
RNNs. Matsubayashi and Inui (2017) proposed a
case label selection model with feature-based neu-
ral networks. They conducted their experiments
on NAIST Text Corpus (NTC) (Iida et al., 2007,
2016). NTC consists of newspaper articles, and
does not include the annotations of author/reader
expressions that are common in Japanese natural
sentences.

6 Conclusion

We proposed a novel Japanese PAS analysis model
that exploits a semi-supervised adversarial train-
ing. The generator neural network learns Japanese
PAS and selectional preferences, while the valida-
tor is trained against the generator errors. This val-
idator enables the generator to be trained from raw
corpora and enhance it with external knowledge.
In the future, we will apply this semi-supervised
training method to other NLP tasks.
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Abstract

This paper proposes a novel approach
for event coreference resolution that mod-
els correlations between event coreference
chains and document topical structures
through an Integer Linear Programming
formulation. We explicitly model cor-
relations between the main event chains
of a document with topic transition sen-
tences, inter-coreference chain correla-
tions, event mention distributional charac-
teristics and sub-event structure, and use
them with scores obtained from a local
coreference relation classifier for jointly
resolving multiple event chains in a doc-
ument. Our experiments across KBP 2016
and 2017 datasets suggest that each of the
structures contribute to improving event
coreference resolution performance.

1 Introduction

Event coreference resolution aims to identify and
link event mentions in a document that refer to the
same real-world event, which is vital for identify-
ing the skeleton of a story and text understanding
and is beneficial to numerous other NLP applica-
tions such as question answering and summariza-
tion. In spite of its importance, compared to con-
siderable research for resolving coreferential en-
tity mentions, far less attention has been devoted
to event coreference resolution. Event coreference
resolution thus remained a challenging task and
the best performance remained low.

Event coreference resolution presents unique
challenges. Compared to entities, coreferential
event mentions are fewer in a document and much
more sparsely scattered across sentences. Figure 1
shows a typical news article. Here, the main en-
tity, “President Chen”, appears frequently in ev-

Figure 1: An example document to illustrate the
characteristics of event (red) and entity (blue)
coreference chains.

ery sentence, while the main event “hearing” and
its accompanying event “detention” are mentioned
much less frequently. If we look more closely,
referring back to the same entity serves a differ-
ent purpose than referring to the same event. The
protagonist entity of a story is involved in many
events and relations; thus, the entity is referred
back each time such an event or relation is de-
scribed. In this example, the entity was mentioned
when describing various events he participated or
was involved in, including “detention”, “said”,
“pointed out”, “remitted”, “have a chance”, “re-
lease”, “cheating”, “asked” and “returned”, as
well as when describing several relations involv-
ing him, including “former president”, “his fam-
ily” and “his wife”. In contrast, most events only
appear once in a text, and there is less motivation
to repeat them: a story is mainly formed by a se-
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Dataset Type 0 1 2 3 4 > 4

richERE event 11 34 20 9 7 19
entity 34 33 14 6 3 10

ACE-05 event 5 33 19 10 9 24
entity 37 28 12 7 4 13

KBP 2015 event 15 34 12 9 6 24
KBP 2016 event 8 43 15 7 6 21
KBP 2017 event 12 49 13 7 4 15

Table 1: Percentages of adjacent (event vs. entity)
mention pairs based on the number of sentences
between two mentions.

ries of related but different events. Essentially, (1)
the same event is referred back only when a new
aspect or further information of the event has to be
described, and (2) repetitions of the same events
are mainly used for content organization purposes
and, consequently, correlate well with topic struc-
tures.

Table 1 further shows the comparisons of po-
sitional patterns between event coreference and
entity coreference chains, based on two bench-
mark datasets, ERE (Song et al., 2015) and ACE05
(Walker et al., 2006), where we paired each event
(entity) mention with its nearest antecedent event
(entity) mention and calculated the percentage
of (event vs. entity) coreferent mention pairs
based on the number of sentences between two
mentions. Indeed, for entity coreference resolu-
tion, centering and nearness are striking properties
(Grosz et al., 1995), and the nearest antecedent of
an entity mention is mostly in the same sentence
or in the immediately preceding sentence ( 70%).
This is especially true for nominals and pronouns,
two common types of entity mentions, where the
nearest preceding mention that is also compatible
in basic properties (e.g., gender, person and num-
ber) is likely to co-refer with the current mention.
In contrast, coreferential event mentions are rarely
from the same sentence ( 10%) and are often sen-
tences apart. The sparse distribution of coreferent
event mentions also applies to the three KBP cor-
pora used in this work.

To address severe sparsity of event coreference
relations in a document, we propose a holistic ap-
proach to identify coreference relations between
event mentions by considering their correlations
with document topic structures. Our key observa-
tion is that event mentions make the backbone of
a document and coreferent mentions of the same
event play a key role in achieving a coherent con-
tent structure. For example, in figure 1, the events

“hearing” and “detention” were mentioned in the
headline (H), in the first sentence (S1) as a story
overview, in the second sentence (S2) for transi-
tioning to the body section of the story describ-
ing what happened during the hearing, and then in
the fifth sentence (S5) for transitioning to the end-
ing section of the story describing what happened
after the hearing. By attaching individual event
mentions to a coherent story and its topic struc-
tures, our approach recognizes event coreference
relations that are otherwise not easily seen due to
a mismatch of two event mentions’ local contexts
or long distances between event mentions.

We model several aspects of correlations be-
tween event coreference chains and document
level topic structures, in an Integer Linear Pro-
gramming (ILP) joint inference framework. Ex-
perimental results on the benchmark event coref-
erence resolution dataset KBP-2016 (Ellis et al.,
2016) and KBP 2017 (Getman et al., 2017) show
that the ILP system greatly improves event coref-
erence resolution performance by modeling differ-
ent aspects of correlations between event corefer-
ences and document topic structures, which out-
performs the previous best system on the same
dataset consistently across several event corefer-
ence evaluation metrics.

2 Correlations between Event
Coreference Chains and Document
Topic Structures

We model four aspects of correlations.

Correlations between Main Event Chains and
Topic Transition Sentences: the main events
of a document, e.g., “hearing” and “detention”
in this example 1, usually have multiple corefer-
ent event mentions that span over a large portion
of the document and align well with the docu-
ment topic layout structure (Choubey et al., 2018).
While fine-grained topic segmentation is a diffi-
cult task in its own right, we find that topic tran-
sition sentences often overlap in content (for re-
minding purposes) and can be identified by cal-
culating sentence similarities. For example, sen-
tences S1, S2 and S5 in Figure 1 all mentioned
the two main events and the main entity “Presi-
dent Chen”. We, therefore, encourage coreference
links between event mentions that appear in topic
transition sentences by designing constraints in
ILP and modifying the objective function. In addi-
tion, to avoid fragmented partial event chains and
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recover complete chains for the main events, we
also encourage associating more coreferent event
mentions to a chain that has a large stretch (the
number of sentences between the first and the last
event mention based on their textual positions).

Correlations across Semantically Associated
Event Chains: semantically associated events
often co-occur in the same sentence. For exam-
ple, mentions of the two main events “hearing”
and “detention” co-occur across the document in
sentences H, S1, S2 and S5. The correlation across
event chains is not specific to global main events,
for example, the local events “remitted” and “re-
lease” have their mentions co-occur in sentences
S3 and S4 as well. In ILP, we leverage this ob-
servation and encourage creating coreference links
between event mentions in sentences that contain
other already known coreferent event mentions.

Genre-specific Distributional Patterns: we
model document level distributional patterns of
coreferent event mentions that may be specific to
a genre in ILP. Specifically, news article often be-
gins with a summary of the overall story and then
introduces the main events and their closely as-
sociated events. In subsequent paragraphs, de-
tailed information of events may be introduced
to provide supportive evidence to the main story.
Thereby, a majority of event coreference chains
tend to be initiated in the early sections of the
document. Event mentions in the later paragraphs
may exist as coreferent mentions of an established
coreference chain or as singleton event mentions
which, however, are less likely to initiate a new
coreference chain. Inspired by this observation,
we simply modify the objective function of ILP to
encourage more event coreference links in early
sections of a document.

Subevents: subevents exist mainly to provide
details and evidence for the parent event, there-
fore, the relation between subevents and their par-
ent event presents another aspect of correlations
between event relations and hierarchical document
topic structures. Subevents may share the same
lexical form as the parent event and cause spurious
event coreference links (Araki et al., 2014). We
observe that subevents referring to specific actions
were seldomly referred back in a document and
are often singleton events. Following the approach
proposed by (Badgett and Huang, 2016), we iden-
tify such specific action events and improve event
coreference resolution by specifying constraints in

ILP to discourage coreference links between a spe-
cific action event and other event mentions.

3 Related Work

Compared to entity coreference resolution (Lee
et al., 2017; Clark and Manning, 2016a,b;
Martschat and Strube, 2015; Lee et al., 2013),
far less research was conducted for event coref-
erence resolution. Most existing methods (Ahn,
2006; Chen et al., 2009; Cybulska and Vossen,
2015a,b) heavily rely on surface features, mainly
event arguments (i.e., entities such as event par-
ticipants, time, location, etc.) that were extracted
from local contexts of two events, and determine
that two events are coreferential if their arguments
match. Often, a clustering algorithm, hierarchi-
cal Bayesian (Bejan and Harabagiu, 2010, 2014;
Yang et al., 2015) or spectral clustering algorithms
(Chen and Ji, 2009), is applied on top of a pair-
wise surface feature based classifier for inducing
event clusters. However, identifying potential ar-
guments, linking arguments to a proper event men-
tion, and recognizing compatibilities between ar-
guments are all error-prone (Lu et al., 2016). Joint
event and entity coreference resolution (Lee et al.,
2012), joint inferences of event detection and
event coreference resolution (Lu and Ng, 2017),
and iterative information propagation (Liu et al.,
2014; Choubey and Huang, 2017a) have been pro-
posed to mitigate argument mismatch issues.

However, such methods are incapable of han-
dling more complex and subtle cases, such as
partial event coreference with incompatible argu-
ments (Choubey and Huang, 2017a) and cases
lacking informative local contexts. Consequently,
many event coreference links were missing and the
resulted event chains are fragmented. The low per-
formance of event coreference resolution limited
its uses in downstream applications. (?) shows
that instead of human annotated event coreference
relations, using system predicted relations resulted
in a significant performance reduction in identify-
ing the central event of a document. Moreover,
the recent research by Moosavi and Strube (2017)
found that the extensive use of lexical and sur-
face features biases entity coreference resolvers
towards seen mentions and do not generalize to
unseen domains, and the finding can perfectly ap-
ply to event coreference resolution. Therefore, we
propose to improve event coreference resolution
by modeling correlations between event corefer-

487



ences and the overall topic structures of a docu-
ment, which is more likely to yield robust and gen-
eralizable event coreference resolvers.

4 Modeling Event Coreference Chain -
Topic Structure Correlations Using
Integer Linear Programming

We model discourse level event-topic correlation
structures by formulating the event coreference
resolution task as an Integer Linear Programming
(ILP) problem. Our baseline ILP system is de-
fined over pairwise scores between event mentions
obtained from a pairwise neural network-based
coreference resolution classifier.

4.1 The Local Pairwise Coreference
Resolution Classifier

Our local pairwise coreference classifier uses a
neural network model based on features defined
for an event mention pair. It includes a common
layer with 347 neurons shared between two event
mentions to generate embeddings corresponding
to word lemmas (300) and parts-of-speech (POS)
tags (47). The common layer aims to enrich event
word embeddings with the POS tags using the
shared weight parameters. It also includes a sec-
ond layer with 380 neurons to embed suffix1 and
prefix 2 of event words, distances (euclidean, abso-
lute and cosine) between word embeddings of two
event lemmas and common arguments between
two event mentions. The output from the second
layer is concatenated and fed into the third neu-
ral layer with 10 neurons. The output embedding
from the third layer is finally fed into an output
layer with 1 neuron that generates a score indi-
cating the confidence of assigning the given event
pair to the same coreference cluster. All three lay-
ers and the output layer use the sigmoid activation
function.

4.2 The Basic ILP for Event Coreference
Resolution

Let λ represents the set of all event mentions in
a document, Λ denotes the set of all event men-
tion pairs i.e. Λ = {< i, j > | < i, j > ∈
λ × λ and i < j} and pij = pcls(coref |i, j)
represents the cost of assigning event mentions i
and j to the same coreferent cluster, we can for-

1te, tor, or, ing, cy, id, ed, en, er, ee, pt, de, on, ion, tion,
ation, ction, de, ve, ive, ce, se, ty, al, ar, ge, nd, ize, ze, it, lt

2re, in, at, tr, op

mulate the baseline objective function that min-
imizes equation 1. Further we add constraints
(equation 2) over each triplets of mentions to en-
force transitivity (Denis et al., 2007; Finkel and
Manning, 2008). This guarantees legal clustering
by ensuring that xij = xjk = 1 implies xik = 1.

ΘB =
∑

i,j∈Λ

−log(pij)xij − log(1− pij)(¬xij)

s.t. xij ∈ {0, 1}
(1)

¬xij + ¬xjk ≥ ¬xik (2)

We then add constituent objective functions and
constraints to the baseline ILP formulation to in-
duce correlations between coreference chains and
topical structures (ΘT ), discourage fragmented
chains (ΘG), encourage semantic associations
among chains (ΘC), model genre-specific distri-
butional patterns (ΘD) and discourage subevents
from having coreferent mentions (ΘS). They are
described in the following subsections.

4.2.1 Modeling the Correlation between
Main Event Chains and Topic
Transition Sentences

As shown in the example Figure 1, main events
are likely to have mentions appear in topic transi-
tion sentences. Therefore, We add the following
objective function (equation 3) to the basic objec-
tive function and add the new constraint 4 in order
to encourage coreferent event mentions to occur in
topic transition sentences.

ΘT =
∑

m,n∈Ω

−log(smn)wmn − log(1− smn)(¬wmn)

s.t. wmn ∈ {0, 1}
(n−m) ≥ |S|/θs

(3)

∑

i′∈ξm,j′∈ξn

xi′j′ ≥ wmn (4)

Specifically, let ω represents the set of sentences in
a document and Ω denotes the set of sentence pairs
i.e. Ω = {< m,n > | < m,n > ∈ ω × ω and
m < n}. Then, let sij = psim(simscore|m,n),
which represents the similarity score between sen-
tences m and n and |S| equals to the number of
sentences in a given document. Here, the indicator
variable wmn indicates if the two sentences m and
n are topic transition sentences. Essentially, when
two sentences have a high similarity score (> 0.5)
and are not near (with |S|/θsor more sentences

488



apart, in our experiments we set θs to 5), this ob-
jective function ΘT tries to set the corresponding
indicator variable wmn to 1. Then, we add con-
straint 4 to encourage coreferent event mentions
to occur in topic transition sentences. Note that
ξm refers to all the event mentions in sentence m,
and xij is the indicator variable which is set to
1 if event mentions defined by index i and j are
coreferent. Thus, the above constraint ensures that
two topic transition sentences contain at least one
coreferent event pair.

Identifying Topic Transition Sentences Using
Sentence Similarities: First, we use the unsuper-
vised method based on weighted word embedding
average proposed by Arora et al. (2016) to ob-
tain sentence embeddings. We first compute the
weighted average of words’ embeddings in a sen-
tence, where the weight of a word w is given by
a/(a+p(w)). Here, p(w) represents the estimated
word frequency obtained from English Wikipedia
and a is a small constant (1e-5). We then compute
the first principal component of averaged word
embeddings corresponding to sentences in a docu-
ment and remove the projection on the first princi-
pal component from each averaged word embed-
ding for each sentence.

Then using the resulted averaged word embed-
ding as the sentence embedding, we compute the
similarity between two sentences as cosine simi-
larity between their embeddings. We particularly
choose this simple unsupervised model to reduce
the reliance on any additional corpus for training
a new model for calculating sentence similarities.
This model was found to perform comparably to
supervised RNN-LSTM based models for the se-
mantic textual similarity task.

Constraints for Avoiding Fragmented Partial
Event Chains: The above equations (3-4) con-
sider a pair of sentences and encourage two coref-
erent event mentions to appear in a pair of topic
transition sentences. But the local nature of these
constraints can lead to fragmented main event
chains. Therefore, we further model the dis-
tributional characteristics of global event chains
and encourage the main event chains to have a
large number of coreferential mentions and a long
stretch (the number of sentences that are present
in between the first and last event mention of a
chain), to avoid creating partial chains. Specif-
ically, we add the following objective function

(equation 5) and the new constraints (equation 6
and 7):

ΘG = −
∑

i,j∈µ
γij (5)

σij =
∑

k<i

¬xki ∧
∑

j<l

¬xjl ∧ xij

σij ∈ {0, 1}
(6)

Γi =
∑

k,i∈Λ

xki +
∑

i,j∈Λ

xij

M(1− yij) ≥ (ϕ[j]− ϕ[i]).σij − d0.75 (|S|)e
γij − Γi − Γj ≥M.yij

Γi,Γj , γij ∈ Z; Γi,Γj , γij ≥ 0; yij ∈ {0, 1}

(7)

First, we define an indicator variable σij by
equation 6 3, corresponding to each event men-
tion pair, that takes value 1 if (1) the event men-
tions at index i and j are coreferent; (2) the event
mention at index i doesn’t corefer to any of the
mentions preceding it; and (3) mention at index j
doesn’t corefer to any event mention following it.
Essentially, setting σij to 1 defines an event chain
that starts from the event mention i and ends at the
event mention j.

Then with equation 7, variable σij is used to
identify main event chains as those chains which
are extended to at least 75% of the document.
When a chain is identified as a global chain, we
encourage it to have more coreferential mentions.
Here, Γi (Γj) equals the sum of indicator vari-
ables x corresponding to event pairs that include
the event mention at index i (j) i.e. the number
of mentions that are coreferent to i (j), ϕ[i] (ϕ[j])
represents the sentence number of event mention
i (j), M is a large positive number and yij repre-
sents a slack variable that takes the value 0 if the
event chain represented by σij is a global chain.
Given σi,j is identified as a global chain, variable
γij equals the sum of variables Γi and Γj and is
used in the objective function ΘG (equation 5) to
encourage more coreferential mentions.

3 Equation 6 can be implemented as

np + ns ≤
∑

k<i

xki +
∑

j<l

xjl − xij + (np + ns + 1).σij

∑

k<i

xki +
∑

j<l

xjl − xij + (np + ns + 1).σij ≥ 0

where np, ns represent the number of event mentions preced-
ing event mention i and the number of event mentions follow-
ing event mention j respectively.
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4.2.2 Cross-chain Inferences
As illustrated through Figure 1, semantically re-
lated events tend to have their mentions co-occur
within the same sentence. So, we define the ob-
jective function (equation 8) and constraints (9) to
favor a sentence with a mention from one event
chain to also contain a mention from another
event chain, if the two event chains are known to
have event mentions co-occur in several other sen-
tences.

ΘC = −
∑

m,n∈Ω

Φmn (8)

Φmn =
∑

i∈ξm,j∈ξn
xij

|ξm| > 1; |ξn| > 1; Φmn ∈ Z; Φmn ≥ 0

(9)

To do so, we first define a variable φmn that equals
the number of coreferent event pairs in a sentence
pair, with each sentence having more than one
event mention. We then define ΘC to minimize
the negative sum of φmn. Following the previous
notations, ξm in the above equation represents the
event mentions in sentence m.

4.2.3 Modeling Segment-wise Distributional
Patterns

The position of an event mention in a document
has a direct influence on event coreference chains.
Event mentions that occur in the first few para-
graphs are more likely to initiate an event chain.
On the other hand, event mentions in later parts of
a document may be coreferential with a previously
seen event mention but are extremely unlikely to
begin a new coreference chain. This distributional
association is even stronger in the journalistic style
of writing. We model this through a simple objec-
tive function and constraints (equation 10).

ΘD = −
∑

i∈ξm,j∈ξn
xij +

∑

k∈ξp,l∈ξq
xkl

s.t. m, n < bα|S|c; p, q > dβ|S|e
α ∈ [0, 1]; β ∈ [0, 1]

(10)

Specifically, for the event pairs that belong to the
first α (or the last β) sentences in a document, we
add the negative (positive) sum of their indicator
variables (x) in objective function ΘD.

The equation 10 is meant to inhibit coreference
links between event mentions that exist within the
latter half of document. They do not influence
the links within event chains that start early and
extend till the later segments of the document.

It is also important to understand that position-
based features used in entity coreference resolu-
tion (Haghighi and Klein, 2007) are usually de-
fined for an entity pair. However, we model the
distributional patterns of an event chain in a docu-
ment.

4.2.4 Restraining Subevents from Being
Included in Coreference Chains

Subevents are known to be a major source of false
coreference links due to their high surface similar-
ity with their parent events. Therefore, we discour-
age subevents from being included in coreference
chains in our model and modify the global opti-
mization goal by adding a new objective function
(equation 11).

ΘS =
∑

s∈S
Γs (11)

where S represents the set of subevents in a docu-
ment. We define the objective function ΘS as the
sum of Γs, where Γs equals the number of men-
tions that are coreferent to s. Then our goal is to
minimize ΘS and restrict the subevents from being
included in coreference chains.

We identify probable subevents by using sur-
face syntactic cues corresponding to identifying
a sequence of events in a sentence (Badgett and
Huang, 2016). In particular, a sequence of two or
more verb event mentions in a conjunction struc-
ture are extracted as subevents.

4.3 The full ILP Model and the Parameters
The equations 3-11 model correlations between
non-local structures within or across event chains
and document topical structures. We perform ILP
inference for coreference resolution by optimizing
a global objective function(Θ), defined in equation
12, that incorporates prior knowledge by means of
hard or soft constraints.

Θ = κBΘB +κTΘT +κGΘG +κCΘC +κDΘD +κSΘS

(12)

Here, all the κ parameters are floating point con-
stants. For the sake of simplicity, we set κB and
κT to 1.0 and κG = κC . Then we estimate the pa-
rameters κG(κC) and κD through 2-d grid search
in range [0, 5.0] at the interval of 0.5 on a held out
training data. We found that the best performance
was obtained for κC = κG = 0.5 and κD = 2.5.
Since, ΘS aims to inhibit subevents from being in-
cluded in coreference chains, we set a high value
for κS and found that, indeed, the performance
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remained same for all the values of κS in range
[5.0,15.0]. In our final model, we keep κS = 10.0.
Also, we found that the performance is roughly in-
variant to the parameters κG and κC if they are set
to values between 0.5 and 2.5.

In our experiments, we process each document
to define a distinct ILP problem which is solved
using the PuLP library (Mitchell et al., 2011).

5 Evaluation

5.1 Experimental Setup

We trained our ILP system on the KBP 2015
(Ellis et al., 2015) English dataset and evaluated
the system on KBP 2016 and KBP 2017 English
datasets4. All the KBP corpora include docu-
ments from both discussion forum5 and news ar-
ticles. But as the goal of this study is to lever-
age discourse level topic structure in a document
for improving event coreference resolution perfor-
mance, we only evaluate the ILP system using reg-
ular documents (news articles) in the KBP cor-
pora. Specifically, we train our event extraction
system and local coreference resolution classifier
on 310 documents from the KBP 2015 corpus
that consists of both discussion forum documents
and news articles, tune the hyper-parameters cor-
responding to ILP using 50 news articles6 from
the KBP 2015 corpus and evaluate our system on

4The ECB+ (Cybulska and Vossen, 2014) corpus is an-
other commonly used dataset for evaluating event corefer-
ence resolution performance. But we determined that this
corpus is not appropriate for evaluating our ILP model that
explicitly focuses on using discourse level topic structures
for event coreference resolution. Particularly, the ECB+ cor-
pus was created to facilitate both cross-document and in-
document event coreference resolution research. Thus, the
documents in the corpus were grouped based on several com-
mon topics and in each document, event mentions and coref-
erence relations were only annotated selectively in sentences
that are on a common topic. When the annotated sentences in
each document are stitched together, they do not well reveal
the original document structure, which makes the ECB+ cor-
pus a bad choice for evaluating our approach. In addition, due
to the selective annotation issue, in-document event coref-
erence resolution with the ECB+ corpus is somewhat easier
than with the KBP corpus, which partly explained the signif-
icant differences of published in-document event coreference
resolution results on the two corpora.

5Each discussion forum document consists of a series of
posts in an online discussion thread, which lacks coherent
discourse structures as a regular document. Therefore, only
news articles in the KBP corpora are appropriate for evaluat-
ing our approach.

6KBP 2015 dataset consists of 181 and 179 documents
from discussion forum and news articles respectively. We
randomly picked 50 documents from news articles for tun-
ing ILP hyper-parameters and remaining 310 documents for
training classifiers.

news articles from the official KBP 2016 and 2017
evaluation corpora7 respectively. For direct com-
parisons, the results reported for the baselines, in-
cluding the previous state-of-the-art model, were
based on news articles in the test datasets as well.

We report the event coreference resolution re-
sults based on the version 1.8 of the official KBP
2017 scorer. The scorer employs four coreference
scoring measures, namely B3 (Bagga and Bald-
win, 1998), CEAFe (Luo, 2005), MUC (Vilain
et al., 1995) and BLANC (Recasens and Hovy,
2011) and the unweighted average of their F1
scores (AV GF1).

5.2 Event Mention Identification

Lu and Ng (2017) Ours
Corpus Untyped Typed Untyped Typed
KBP 2016 60.13 49.00 60.03 45.45
KBP 2017 - - 62.89 49.34

Table 2: F1 scores for event mention extraction on
the KBP 2016 and 2017 corpus

We use an ensemble of multi-layer feed forward
neural network classifiers to identify event men-
tions (Choubey and Huang, 2017b). All basic clas-
sifiers are trained on features derived from the lo-
cal context of words. The features include the em-
bedding of word lemma, absolute difference be-
tween embeddings of word and its lemma, prefix
and suffix of word and pos-tag and dependency re-
lation of its context words, modifiers and governor.

We trained 10 classifiers on same feature sets
with slightly different neural network architec-
tures and different training parameters including
dropout rate, optimizer, learning rate, epochs and
network initialization. All the classifiers use relu,
tanh and softmax activations in the input, hidden
and output layers respectively. We use GloVe vec-
tors (Pennington et al., 2014) for word embed-
dings and one-hot vectors for pos-tag and depen-
dency relations in each individual model. Pos-
tagging, dependency parsing, named entity recog-
nition and entity coreference resolution are per-
formed using Stanford CoreNLP (Manning et al.,
2014)

Table 2 shows the event mention identification
results. We report the F1 score for event mention
identification based on the KBP scorer, which con-
siders a mention correct if its span, type and sub-

7There are 85 and 83 news articles in KBP 2016 and 2017
corpora respectively.
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KBP 2016 KBP 2017
Model B3 CEAFe MUC BLANC AV G B3 CEAFe MUC BLANC AV G

Local classifier 51.47 47.96 26.29 30.82 39.13 50.24 48.47 30.81 29.94 39.87
Clustering 46.97 41.95 18.79 26.88 33.65 46.51 40.21 23.10 25.08 33.72
Basic ILP 51.44 47.77 26.65 30.95 39.19 50.4 48.49 31.33 30.58 40.2

+Topic structure 51.44 47.94 28.86 31.87 40.03 50.39 48.23 33.08 31.26 40.74
+Cross-chain 51.09 47.53 31.27 33.07 40.74 50.39 47.67 35.15 31.88 41.27
+Distribution 51.06 48.28 33.53 33.63 41.62 50.42 48.67 37.52 32.08 42.17

+Subevent 51.67 49.1 34.08 34.08 42.23 50.35 48.61 37.24 31.94 42.04
Joint learning 50.16 48.59 32.41 32.72 40.97 - - - - -

Table 3: Results for event coreference resolution systems on the KBP 2016 and 2017 corpus. Joint learning
results correspond to the actual result files evaluated in (Lu and Ng, 2017). The file was obtained from the authors.

type are the same as the gold mention and assigns
a partial score if span partially overlaps with the
gold mention. We also report the event mention
identification F1 score that only considers men-
tion spans and ignores mention types. We can
see that compared to the recent system by (Lu and
Ng, 2017) which conducts joint inferences of both
event mention detection and event coreference res-
olution, detecting types for event mentions is a
major bottleneck to our event extraction system.

Note that the official KBP 2017 event coref-
erence resolution scorer considers a mention pair
coreferent if they strictly match on the event type
and subtype, which has been discussed recently to
be too conservative (Mitamura et al., 2017). But
since improving event mention type detection is
not our main goal, we therefore relax the con-
straints and do not consider event mention type
match while evaluating event coreference resolu-
tion systems. This allows us to directly inter-
pret the influences of document structures in the
event coreference resolution task by overlooking
any bias from upstream tasks.

5.3 Baseline Systems

We compare our document-structure guided event
coreference resolution model with three baselines.
Local classifier performs greedy merging of event
mentions using scores predicted by the local pair-
wise coreference resolution classifier. An event
mention is merged to its best matching antecedent
event mention if the predicted score between the
two event mentions is highest and greater than 0.5.
Clustering performs spectral graph clustering (Pe-
dregosa et al., 2011), which represents commonly
used clustering algorithms for event coreference
resolution. We used the relation between the
size of event mentions and the number of coref-
erence clusters in training data for pre-specifying
the number of clusters. Its low performance is par-

tially accounted to the difficulty of determining the
number of coreference clusters.
Joint learning uses a structured conditional ran-
dom field model that operates at the document
level to jointly model event mention extraction,
event coreference resolution and an auxiliary task
of event anaphoricity determination. This model
has achieved the best event coreference resolution
performance to date on the KBP 2016 corpus (Lu
and Ng, 2017).

5.4 Our Systems

We gradually augment the ILP baseline with ad-
ditional objective functions and constraints de-
scribed in sub-sections 4.2.1, 4.2.2, 4.2.3 and
4.2.4. In all the systems below, we combine ob-
jective functions with their corresponding coeffi-
cients (as described in sub-section 4.3).
The Basic ILP System formulates event corefer-
ence resolution as an ILP optimization task. It
uses scores produced by the local pairwise classi-
fier as weights on variables that represent ILP as-
signments for event coreference relations. (Equa-
tions 1, 2).
+Topic structure incorporates the topical structure
and the characteristics of main event chains in
baseline ILP system (Equations 1-5).
+Cross-chain adds constraints and objective func-
tion defined for cross-chain inference to the Topi-
cal structure system (Equations 1-8).
+Distribution further adds distributional patterns
to the Cross-chain system (Equations 1-10).
+Subevent (Full) optimizes the objective function
defined in equation 12 by considering all the con-
straints defined in 1-11, including constraints for
modeling subevent structures.

5.5 Results and Analysis

Table 3 shows performance comparisons of our
ILP systems with other event coreference resolu-
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tion approaches including the recent joint learning
approach (Lu and Ng, 2017) which is the best per-
forming model on the KBP 2016 corpus. For both
datasets, the full discourse structure augmented
model achieved superior performance compared
to the local classifier based system. The improve-
ment is observed across all metrics with average
F1 gain of 3.1 for KBP 2016 and 2.17 for KBP
2017. Most interestingly, we see over 28% im-
provement in MUC F1 score which directly eval-
uates the pairwise coreference link predictions.
This implies that the document level structures, in-
deed, helps in linking more coreferent event men-
tions, which otherwise are difficult with the local
classifier trained on lexical and surface features.
Our ILP based system also outperforms the pre-
vious best model on the KBP 2016 corpus (Lu
and Ng, 2017) consistently using all the evalua-
tion metrics, with an overall improvement of 1.21
based on the average F1 scores.

In Table 3, we also report the F1 scores when
we increasingly add each type of structure in the
ILP baseline. Among different scoring metrics, all
structures positively contributed to the MUC and
BLANC scores for KBP 2016 corpus. However,
subevent based constraints slightly reduced the F1
scores on KBP 2017 corpus. Based on our prelim-
inary analysis, this can be accounted to the simple
method applied for subevent extraction. We only
extracted 31 subevents in KBP 2017 corpus com-
pared to 211 in KBP 2016 corpus.

5.6 Discussions on Generalizability

The correlations between event coreference chains
and document topic structures are not specific to
news articles and widely exist. Several main dis-
tributional characteristics of coreferent event men-
tions, including 1) main event coreference chains
often have extended presence and have mentions
scattered across segments, and 2) semantically
correlated events often have their respective event
mentions co-occur in a sentence, directly apply to
other sources of texts such as clinical notes. But
certain distributional characteristics are genre spe-
cific. For instance, while it is common to observe
more coreferent event mentions early on in a news
article, coreference chains in a clinical note of-
ten align well with pre-defined segments like the
history of present illness, description of a visit
and treatment plan. Thus, the objective functions
and constraints defined in equations 1-8 can be

directly applied for other domains as well, while
other structures like segment-wise distributional
patterns may require alteration based on domain-
specific knowledge.

6 Conclusions and the Future Work

We have presented an ILP based joint inference
system for event coreference resolution that uti-
lizes scores predicted by a pairwise event corefer-
ence resolution classifier, and models several as-
pects of correlations between event coreference
chains and document level topic structures, includ-
ing the correlation between the main event chains
and topic transition sentences, interdependencies
among event coreference chains, genre-specific
coreferent mention distributions and subevents.
We have shown that these structures are generaliz-
able by conducting experiments on both the KBP
2016 and KBP 2017 datasets. Our model outper-
formed the previous state-of-the-art model across
all coreference scoring metrics. In the future, we
will explore the use of additional discourse struc-
tures that correlate highly with event coreference
chains. Moreover, we will extend this work to
other domains such as biomedical domains.
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Abstract

Distant supervision can effectively label
data for relation extraction, but suffers
from the noise labeling problem. Recent
works mainly perform soft bag-level noise
reduction strategies to find the relatively
better samples in a sentence bag, which is
suboptimal compared with making a hard
decision of false positive samples in sen-
tence level. In this paper, we introduce
an adversarial learning framework, which
we named DSGAN, to learn a sentence-
level true-positive generator. Inspired by
Generative Adversarial Networks, we re-
gard the positive samples generated by the
generator as the negative samples to train
the discriminator. The optimal generator is
obtained until the discrimination ability of
the discriminator has the greatest decline.
We adopt the generator to filter distant su-
pervision training dataset and redistribute
the false positive instances into the nega-
tive set, in which way to provide a cleaned
dataset for relation classification. The ex-
perimental results show that the proposed
strategy significantly improves the perfor-
mance of distant supervision relation ex-
traction comparing to state-of-the-art sys-
tems.

1 Introduction

Relation extraction is a crucial task in the field
of natural language processing (NLP). It has a
wide range of applications including information
retrieval, question answering, and knowledge base
completion. The goal of relation extraction sys-
tem is to predict relation between entity pair in
a sentence (Zelenko et al., 2003; Bunescu and
Mooney, 2005; GuoDong et al., 2005). For exam-

DS data space

DS true positive data

DS false positive data

DS negative data

The decision boundary
of DS data

The desired decision
boundary

Figure 1: Illustration of the distant supervision
training data distribution for one relation type.

ple, given a sentence “The [owl]e1 held the mouse
in its [claw]e2.”, a relation classifier should figure
out the relation Component-Whole between en-
tity owl and claw.

With the infinite amount of facts in real world,
it is extremely expensive, and almost impossible
for human annotators to annotate training dataset
to meet the needs of all walks of life. This prob-
lem has received increasingly attention. Few-
shot learning and Zero-shot Learning (Xian et al.,
2017) try to predict the unseen classes with few
labeled data or even without labeled data. Dif-
ferently, distant supervision (Mintz et al., 2009;
Hoffmann et al., 2011; Surdeanu et al., 2012) is
to efficiently generate relational data from plain
text for unseen relations with distant supervision
(DS). However, it naturally brings with some de-
fects: the resulted distantly-supervised training
samples are often very noisy (shown in Figure 1),
which is the main problem of impeding the per-
formance (Roth et al., 2013). Most of the cur-
rent state-of-the-art methods (Zeng et al., 2015;
Lin et al., 2016) make the denoising operation in
the sentence bag of entity pair, and integrate this
process into the distant supervision relation ex-
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traction. Indeed, these methods can filter a sub-
stantial number of noise samples; However, they
overlook the case that all sentences of an entity
pair are false positive, which is also the common
phenomenon in distant supervision datasets. Un-
der this consideration, an independent and accu-
rate sentence-level noise reduction strategy is the
better choice.

In this paper, we design an adversarial learning
process (Goodfellow et al., 2014; Radford et al.,
2015) to obtain a sentence-level generator that can
recognize the true positive samples from the noisy
distant supervision dataset without any supervised
information. In Figure 1, the existence of false
positive samples makes the DS decision boundary
suboptimal, therefore hinders the performance of
relation extraction. However, in terms of quan-
tity, the true positive samples still occupy most
of the proportion; this is the prerequisite of our
method. Given the discriminator that possesses
the decision boundary of DS dataset (the brown
decision boundary in Figure 1), the generator tries
to generate true positive samples from DS posi-
tive dataset; Then, we assign the generated sam-
ples with negative label and the rest samples with
positive label to challenge the discriminator. Un-
der this adversarial setting, if the generated sam-
ple set includes more true positive samples and
more false positive samples are left in the rest set,
the classification ability of the discriminator will
drop faster. Empirically, we show that our method
has brought consistent performance gains in vari-
ous deep-neural-network-based models, achieving
strong performances on the widely used New York
Times dataset (Riedel et al., 2010). Our contribu-
tions are three-fold:

• We are the first to consider adversarial learn-
ing to denoise the distant supervision relation
extraction dataset.

• Our method is sentence-level and model-
agnostic, so it can be used as a plug-and-play
technique for any relation extractors.

• We show that our method can generate a
cleaned dataset without any supervised infor-
mation, in which way to boost the perfor-
mance of recently proposed neural relation
extractors.

In Section 2, we outline some related works on
distant supervision relation extraction. Next, we

describe our adversarial learning strategy in Sec-
tion 3. In Section 4, we show the stability analyses
of DSGAN and the empirical evaluation results.
And finally, we conclude in Section 5.

2 Related Work

To address the above-mentioned data sparsity is-
sue, Mintz et al. (2009) first align unlabeled
text corpus with Freebase by distant supervision.
However, distant supervision inevitably suffers
from the wrong labeling problem. Instead of ex-
plicitly removing noisy instances, the early works
intend to suppress the noise. Riedel et al. (2010)
adopt multi-instance single-label learning in rela-
tion extraction; Hoffmann et al. (2011) and Sur-
deanu et al. (2012) model distant supervision re-
lation extraction as a multi-instance multi-label
problem.

Recently, some deep-learning-based mod-
els (Zeng et al., 2014; Shen and Huang, 2016)
have been proposed to solve relation extraction.
Naturally, some works try to alleviate the wrong
labeling problem with deep learning technique,
and their denoising process is integrated into rela-
tion extraction. Zeng et al. (2015) select one most
plausible sentence to represent the relation be-
tween entity pairs, which inevitably misses some
valuable information. Lin et al. (2016) calculate
a series of soft attention weights for all sentences
of one entity pair and the incorrect sentences can
be down-weighted; Base on the same idea, Ji et al.
(2017) bring the useful entity information into the
calculation of the attention weights. However,
compared to these soft attention weight assign-
ment strategies, recognizing the true positive
samples from distant supervision dataset before
relation extraction is a better choice. Takamatsu
et al. (2012) build a noise-filtering strategy based
on the linguistic features extracted from many
NLP tools, including NER and dependency tree,
which inevitably suffers the error propagation
problem; while we just utilize word embedding
as the input information. In this work, we learn
a true-positive identifier (the generator) which is
independent of the relation prediction of entity
pairs, so it can be directly applied on top of any
existing relation extraction classifiers. Then, we
redistribute the false positive samples into the
negative set, in which way to make full use of the
distantly labeled resources.
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3 Adversarial Learning for Distant
Supervision

In this section, we introduce an adversarial learn-
ing pipeline to obtain a robust generator which can
automatically discover the true positive samples
from the noisy distantly-supervised dataset with-
out any supervised information. The overview of
our adversarial learning process is shown in Fig-
ure 2. Given a set of distantly-labeled sentences,
the generator tries to generate true positive sam-
ples from it; But, these generated samples are re-
garded as negative samples to train the discrimina-
tor. Thus, when finishing scanning the DS positive
dataset one time, the more true positive samples
that the generator discovers, the sharper drop of
performance the discriminator obtains. After ad-
versarial training, we hope to obtain a robust gen-
erator that is capable of forcing discriminator into
maximumly losing its classification ability.

In the following section, we describe the adver-
sarial training pipeline between the generator and
the discriminator, including the pre-training strat-
egy, objective functions and gradient calculation.
Because the generator involves a discrete sampling
step, we introduce a policy gradient method to cal-
culate gradients for the generator.

3.1 Pre-Training Strategy

Both the generator and the discriminator require
the pre-training process, which is the common set-
ting for GANs (Cai and Wang, 2017; Wang et al.,
2017). With the better initial parameters, the ad-
versarial learning is prone to convergence. As pre-
sented in Figure 2, the discriminator is pre-trained
with DS positive dataset P (label 1) and DS nega-
tive set ND (label 0). After our adversarial learn-
ing process, we desire a strong generator that can,
to the maximum extent, collapse the discrimina-
tor. Therefore, the more robust generator can be
obtained via competing with the more robust dis-
criminator. So we pre-train the discriminator un-
til the accuracy reaches 90% or more. The pre-
training of generator is similar to the discrimi-
nator; however, for the negative dataset, we use
another completely different dataset NG, which
makes sure the robustness of the experiment. Spe-
cially, we let the generator overfits the DS posi-
tive dataset P . The reason of this setting is that
we hope the generator wrongly give high proba-
bilities to all of the noisy DS positive samples at
the beginning of the training process. Then, along

with our adversarial learning, the generator learns
to gradually decrease the probabilities of the false
positive samples.

3.2 Generative Adversarial Training for
Distant Supervision Relation Extraction

The generator and the discriminator of DSGAN
are both modeled by simple CNN, because CNN
performs well in understanding sentence (Zeng
et al., 2014), and it has less parameters than RNN-
based networks. For relation extraction, the input
information consists of the sentences and entity
pairs; thus, as the common setting (Zeng et al.,
2014; Nguyen and Grishman, 2015), we use both
word embedding and position embedding to con-
vert input instances into continuous real-valued
vectors.

What we desire the generator to do is to ac-
curately recognize true positive samples. Unlike
the generator applied in computer vision field (Im
et al., 2016) that generates new image from the
input noise, our generator just needs to discover
true positive samples from the noisy DS posi-
tive dataset. Thus, it is to realize the “sampling
from a probability distribution” process of the dis-
crete GANs (Figure 2). For a input sentence sj ,
we define the probability of being true positive
sample by generator as pG(sj). Similarly, for
discriminator, the probability of being true pos-
itive sample is represented as pD(sj). We de-
fine that one epoch means that one time scan-
ning of the entire DS positive dataset. In or-
der to obtain more feedbacks and make the train-
ing process more efficient, we split the DS posi-
tive dataset P = {s1, s2, ..., sj , ...} into N bags
B = {B1, B2, ...BN}, and the network parame-
ters θG, θD are updated when finishing processing
one bag Bi1. Based on the notion of adversarial
learning, we define the objectives of the generator
and the discriminator as follow, and they are al-
ternatively trained towards their respective objec-
tives.

Generator Suppose that the generator produces
a set of probability distribution {pG(sj)}j=1...|Bi|
for a sentence bag Bi. Based on these probabili-
ties, a set of sentence are sampled and we denote
this set as T .

T = {sj}, sj ∼ pG(sj), j = 1, 2, ..., |Bi| (1)
1The bag here has the different definition from the sen-

tence bag of an entity pair mentioned in the Section 1.
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Figure 2: An overview of the DSGAN training pipeline. The generator (denoted by G) calculates the
probability distribution over a bag of DS positive samples, and then samples according to this probability
distribution. The high-confidence samples generated by G are regarded as true positive samples. The dis-
criminator (denoted by D) receives these high-confidence samples but regards them as negative samples;
conversely, the low-confidence samples are still treated as positive samples. For the generated samples,
G maximizes the probability of being true positive; on the contrary, D minimizes this probability.

This generated dataset T consists of the high-
confidence sentences, and is regard as true posi-
tive samples by the current generator; however, it
will be treated as the negative samples to train the
discriminator. In order to challenge the discrimi-
nator, the objective of the generator can be formu-
lated as maximizing the following probabilities of
the generated dataset T :

LG =
∑

sj∈T
log pD(sj) (2)

Because LG involves a discrete sampling step,
so it cannot be directly optimized by gradient-
based algorithm. We adopt a common approach:
the policy-gradient-based reinforcement learning.
The following section will give the detailed intro-
duction of the setting of reinforcement learning.
The parameters of the generator are continually
updated until reaching the convergence condition.

Discriminator After the generator has gener-
ated the sample subset T , the discriminator treats
them as the negative samples; conversely, the rest
part F = Bi−T is treated as positive samples. So,
the objective of the discriminator can be formu-
lated as minimizing the following cross-entropy
loss function:

(3)

LD = −(
∑

sj∈(Bi−T )
log pD(sj)

+
∑

sj∈T
log(1− pD(sj)))

The update of discriminator is identical to the
common binary classification problem. Naturally,
it can be simply optimized by any gradient-based
algorithm.

What needs to be explained is that, unlike
the common setting of discriminator in previ-
ous works, our discriminator loads the same pre-
trained parameter set at the beginning of each
epoch as shown in Figure 2. There are two rea-
sons. First, at the end of our adversarial training,
what we need is a robust generator rather than a
discriminator. Second, our generator is to sample
data rather than generate new data from scratch;
Therefore, the discriminator is relatively easy to be
collapsed. So we design this new adversarial strat-
egy: the robustest generator is yielded when the
discriminator has the largest drop of performance
in one epoch. In order to create the equal con-
dition, the bag set B for each epoch is identical,
including the sequence and the sentences in each
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Algorithm 1 The DSGAN algorithm.
Data: DS positive set P , DS negative set NG for generator G, DS negative set ND for discriminator D
Input: Pre-trained G with parameters θG on dataset (P , NG); Pre-trained D with parameters θD on

dataset (P , ND)
Output: Adversarially trained generator G

1: Load parameters θG for G
2: Split P into the bag sequence P = {B1, B2, ..., Bi, ..., BN}
3: repeat
4: Load parameters θD for D
5: GG ← 0, GD ← 0
6: for Bi ∈ P, i = 1 toN do
7: Compute the probability pG(sj) for each sentence sj in Bi
8: Obtain the generated part T by sampling according to {pG(sj)}j=1...|B| and the rest set F =
Bi − T

9: GD ← − 1
|P |{5θD

∑T log(1− pD(sj)) +5θD

∑F log pD(sj)}
10: θD ← θD − αDGD
11: Calculate the reward r
12: GG ← 1

|T |
∑T r5θG log pG(sj)

13: θG ← θG + αGGG
14: end for
15: Compute the accuracy ACCD on ND with the current θD
16: until ACCD no longer drops
17: Save θG

bag Bi.

Optimizing Generator The objective of the
generator is similar to the objective of the one-step
reinforcement learning problem: Maximizing the
expectation of a given function of samples from a
parametrized probability distribution. Therefore,
we use a policy gradient strategy to update the
generator. Corresponding to the terminology of
reinforcement learning, sj is the state and PG(sj)
is the policy. In order to better reflect the quality
of the generator, we define the reward r from two
angles:

• As the common setting in adversarial learn-
ing, for the generated sample set, we hope
the confidence of being positive samples by
the discriminator becomes higher. Therefore,
the first component of our reward is formu-
lated as below:

r1 =
1

|T |
∑

sj∈T
pD(sj)− b1 (4)

the function of b1 is to reduce variance during
reinforcement learning.

• The second component is from the average

prediction probability of ND,

p̃ =
1

|ND|
∑

sj∈ND

pD(sj) (5)

ND participates the pre-training process of
the discriminator, but not the adversarial
training process. When the classification ca-
pacity of discriminator declines, the accuracy
of being predicted as negative sample on ND

gradually drops; thus, p̃ increases. In other
words, the generator becomes better. There-
fore, for epoch k, after processing the bagBi,
reward r2 is calculated as below,

r2 = η(p̃ki − b2)
where b2=max{p̃mi },m=1..., k−1

(6)

b2 has the same function as b1.

The gradient of LG can be formulated as below:

5θDLG =
∑

sj∈Bi

Esj∼pG(sj)r5θG log pG(sj)

=
1

|T |
∑

sj∈T
r5θG log pG(sj)

(7)
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3.3 Cleaning Noisy Dataset with Generator
After our adversarial learning process, we obtain
one generator for one relation type; These genera-
tors possess the capability of generating true pos-
itive samples for the corresponding relation type.
Thus, we can adopt the generator to filter the noise
samples from distant supervision dataset. Simply
and clearly, we utilize the generator as a binary
classifier. In order to reach the maximum utiliza-
tion of data, we develop a strategy: for an en-
tity pair with a set of annotated sentences, if all
of these sentences are determined as false nega-
tive by our generator, this entity pair will be redis-
tributed into the negative set. Under this strategy,
the scale of distant supervision training set keeps
unchanged.

4 Experiments

This paper proposes an adversarial learning strat-
egy to detect true positive samples from the noisy
distant supervision dataset. Due to the absence
of supervised information, we define a genera-
tor to heuristically learn to recognize true posi-
tive samples through competing with a discrim-
inator. Therefore, our experiments are intended
to demonstrate that our DSGAN method possess
this capability. To this end, we first briefly intro-
duce the dataset and the evaluation metrics. Em-
pirically, the adversarial learning process, to some
extent, has instability; Therefore, we next illus-
trate the convergence of our adversarial training
process. Finally, we demonstrate the efficiency
of our generator from two angles: the quality of
the generated samples and the performance on the
widely-used distant supervision relation extraction
task.

4.1 Evaluation and Implementation Details
The Reidel dataset2 (Riedel et al., 2010) is a
commonly-used distant supervision relation ex-
traction dataset. Freebase is a huge knowledge
base including billions of triples: the entity pair
and the specific relationship between them. Given
these triples, the sentences of each entity pair are
selected from the New York Times corpus(NYT).
Entity mentions of NYT corpus are recognized by
the Stanford named entity recognizer (Finkel et al.,
2005). There are 52 actual relationships and a spe-
cial relation NA which indicates there is no rela-
tion between head and tail entities. Entity pairs of

2http://iesl.cs.umass.edu/riedel/ecml/

Hyperparameter Value
CNN Window cw, kernel size ck 3, 100

Word embedding de, |V | 50, 114042
Position embedding dp 5
Learning rate of G, D 1e-5, 1e-4

Table 1: Hyperparameter settings of the generator
and the discriminator.

NA are defined as the entity pairs that appear in
the same sentence but are not related according to
Freebase.

Due to the absence of the corresponding labeled
dataset, there is not a ground-truth test dataset to
evaluate the performance of distant supervision re-
lation extraction system. Under this circumstance,
the previous work adopt the held-out evaluation
to evaluate their systems, which can provide an
approximate measure of precision without requir-
ing costly human evaluation. It builds a test set
where entity pairs are also extracted from Free-
base. Similarly, relation facts that discovered from
test articles are automatically compared with those
in Freebase. CNN is widely used in relation clas-
sification (Santos et al., 2015; Qin et al., 2017),
thus the generator and the discriminator are both
modeled as a simple CNN with the window size
cw and the kernel size ck. Word embedding is di-
rectly from the released word embedding matrix
by Lin et al. (2016)3. Position embedding has the
same setting with the previous works: the maxi-
mum distance of -30 and 30. Some detailed hy-
perparameter settings are displayed in Table 1.

4.2 Training Process of DSGAN
Because adversarial learning is widely regarded
as an effective but unstable technique, here
we illustrate some property changes during the
training process, in which way to indicate the
learning trend of our proposed approach. We
use 3 relation types as the examples: /busi-
ness/person/company, /people/person/place lived
and /location/neighborhood/neighborhood of.
Because they are from three major classes (bussi-
ness, people, location) of Reidel dataset and they
all have enough distant-supervised instances.
The first row in Figure 3 shows the classification
ability change of the discriminator during training.
The accuracy is calculated from the negative set
ND. At the beginning of adversarial learning, the

3https://github.com/thunlp/NRE
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Figure 3: The convergence of the DSGAN training process for 3 relation types and the performance of
their corresponding generators. The figures in the first row present the performance change on ND in
some specific epochs during processing the B = {B1, B2, ...BN}. Each curve stands for one epoch;
The color of curves become darker as long as the epoch goes on. Because the discriminator reloads
the pre-trained parameters at the beginning of each epoch, all curves start from the same point for each
relation type; Along with the adversarial training, the generator gradually collapses the discriminator.
The figures in the second row reflect the performance of generators from the view of the difficulty level
of training with the positive datasets that are generated by different strategies. Based on the noisy DS
positive dataset P , DSGAN represents that the cleaned positive dataset is generated by our DSGAN
generator; Random means that the positive set is randomly selected from P ; Pre-training denotes that
the dataset is selected according to the prediction probability of the pre-trained generator. These three
new positive datasets are in the same size.

discriminator performs well on ND; moreover,
ND is not used during adversarial training.
Therefore, the accuracy on ND is the criterion
to reflect the performance of the discriminator.
In the early epochs, the generated samples from
the generator increases the accuracy, because it
has not possessed the ability of challenging the
discriminator; however, as the training epoch
increases, this accuracy gradually decreases,
which means the discriminator becomes weaker.
It is because the generator gradually learn to
generate more accurate true positive samples in
each bag. After the proposed adversarial learning
process, the generator is strong enough to collapse
the discriminator. Figure 4 gives more intuitive
display of the trend of accuracy. Note that there
is a critical point of the decline of accuracy for
each presented relation types. It is because that
the chance we give the generator to challenge
the discriminator is just one time scanning of

the noisy dataset; this critical point is yielded
when the generator has already been robust
enough. Thus, we stop the training process when
the model reaches this critical point. To sum
up, the capability of our generator can steadily
increases, which indicates that DSGAN is a robust
adversarial learning strategy.

4.3 Quality of Generator

Due to the absence of supervised information, we
validate the quality of the generator from another
angle. Combining with Figure 1, for one rela-
tion type, the true positive samples must have ev-
idently higher relevance (the cluster of purple cir-
cles). Therefore, a positive set with more true
positive samples is easier to be trained; In other
words, the convergence speed is faster and the fit-
ting degree on training set is higher. Based on
this , we present the comparison tests in the sec-
ond row of Figure 3. We build three positive
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Figure 4: The performance change of the discrim-
inator on ND during the training process. Each
point in the curves records the prediction accuracy
on ND when finishing each epoch. We stop the
training process when this accuracy no longer de-
creases.

datasets from the noisy distant supervision dataset
P : the randomly-selected positive set, the positive
set base on the pre-trained generator and the pos-
itive set base on the DSGAN generator. For the
pre-trained generator, the positive set is selected
according to the probability of being positive from
high to low. These three sets have the same size
and are accompanied by the same negative set.
Obviously, the positive set from the DSGAN gen-
erator yields the best performance, which indicates
that our adversarial learning process is able to pro-
duce a robust true-positive generator. In addition,
the pre-trained generator also has a good perfor-
mance; however, compared with the DSGAN gen-
erator, it cannot provide the boundary between the
false positives and the true positives.

4.4 Performance on Distant Supervision
Relation Extraction

Based on the proposed adversarial learning pro-
cess, we obtain a generator that can recognize the
true positive samples from the noisy distant super-
vision dataset. Naturally, the improvement of dis-
tant supervision relation extraction can provide a
intuitive evaluation of our generator. We adopt the
strategy mentioned in Section 3.3 to relocate the
dataset. After obtaining this redistributed dataset,
we apply it to train the recent state-of-the-art mod-
els and observe whether it brings further improve-
ment for these systems. Zeng et al. (2015) and Lin
et al. (2016) are both the robust models to solve
wrong labeling problem of distant supervision re-
lation extraction. According to the comparison
displayed in Figure 5 and Figure 6, all four mod-
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Figure 5: Aggregate PR curves of CNN˙based
model.
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Figure 6: Aggregate PR curves of PCNN˙based
model.

els (CNN+ONE, CNN+ATT, PCNN+ONE and
PCNN+ATT) achieve further improvement.

Even though Zeng et al. (2015) and Lin et al.
(2016) are designed to alleviate the influence of
false positive samples, both of them merely focus
on the noise filtering in the sentence bag of en-
tity pairs. Zeng et al. (2015) combine at-least-one
multi-instance learning with deep neural network
to extract only one active sentence to represent the
target entity pair; Lin et al. (2016) assign soft at-
tention weights to the representations of all sen-
tences of one entity pair, then employ the weighted
sum of these representations to predict the rela-
tion between the target entity pair. However, from
our manual inspection of Riedel dataset (Riedel
et al., 2010), we found another false positive case
that all the sentences of a specific entity pair are
wrong; but the aforementioned methods overlook
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Model - +DSGAN p-value
CNN+ONE 0.177 0.189 4.37e-04
CNN+ATT 0.219 0.226 8.36e-03
PCNN+ONE 0.206 0.221 2.89e-06
PCNN+ATT 0.253 0.264 2.34e-03

Table 2: Comparison of AUC values between
previous studies and our DSGAN method. The p-
value stands for the result of t-test evaluation.

this case, while the proposed method can solve this
problem. Our DSGAN pipeline is independent of
the relation prediction of entity pairs, so we can
adopt our generator as the true-positive indicator
to filter the noisy distant supervision dataset be-
fore relation extraction, which explains the origin
of these further improvements in Figure 5 and Fig-
ure 6. In order to give more intuitive compari-
son, in Table 2, we present the AUC value of each
PR curve, which reflects the area size under these
curves. The larger value of AUC reflects the better
performance. Also, as can be seen from the result
of t-test evaluation, all the p-values are less than
5e-02, so the improvements are obvious.

5 Conclusion

Distant supervision has become a standard method
in relation extraction. However, while it brings
the convenience, it also introduces noise in dis-
tantly labeled sentences. In this work, we propose
the first generative adversarial training method
for robust distant supervision relation extraction.
More specifically, our framework has two com-
ponents: a generator that generates true positives,
and a discriminator that tries to classify positive
and negative data samples. With adversarial train-
ing, our goal is to gradually decrease the perfor-
mance of the discriminator, while the generator
improves the performance for predicting true pos-
itives when reaching equilibrium. Our approach
is model-agnostic, and thus can be applied to any
distant supervision model. Empirically, we show
that our method can significantly improve the per-
formances of many competitive baselines on the
widely used New York Time dataset.
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Abstract

The relational facts in sentences are often
complicated. Different relational triplet-
s may have overlaps in a sentence. We
divided the sentences into three types ac-
cording to triplet overlap degree, including
Normal, EntityPairOverlap and SingleEn-
tiyOverlap. Existing methods mainly fo-
cus on Normal class and fail to extract re-
lational triplets precisely. In this paper,
we propose an end-to-end model based on
sequence-to-sequence learning with copy
mechanism, which can jointly extract rela-
tional facts from sentences of any of these
classes. We adopt two different strategies
in decoding process: employing only one
united decoder or applying multiple sepa-
rated decoders. We test our models in two
public datasets and our model outperform
the baseline method significantly.

1 Introduction

Recently, to build large structural knowledge bases
(KB), great efforts have been made on extract-
ing relational facts from natural language texts.
A relational fact is often represented as a triplet
which consists of two entities (an entity pair)
and a semantic relation between them, such as
< Chicago, country, UnitedStates >.

So far, most previous methods mainly focused
on the task of relation extraction or classification
which identifies the semantic relations between t-
wo pre-assigned entities. Although great progress-
es have been made (Hendrickx et al., 2010; Zeng
et al., 2014; Xu et al., 2015a,b), they all assume
that the entities are identified beforehand and ne-
glect the extraction of entities. To extract both of
entities and relations, early works(Zelenko et al.,
2003; Chan and Roth, 2011) adopted a pipeline

N
orm

al

S1: Chicago is located in the 
United States.

{<Chicago, country, United 
States>}

E
P

O
S2: News of the list’s existence 
unnerved officials in Khartoum, 
Sudan ’s capital.

{<Sudan, capital, Khartoum>,
<Sudan, contains, Khartoum>}

S
E

O

S3: Aarhus airport serves the 
city of Aarhus who's leader is 
Jacob Bundsgaard.

{<Aarhus, leaderName, Jacob 
Bundsgaard>,
<Aarhus Airport, cityServed, 

Aarhus>}

Chicago United States

country

Sudan Khartoum

contains

capital

Aarhus

Aarhus Airport

Jacob Bundsgaard

Figure 1: Examples of Normal, EntityPairOver-
lap (EPO) and SingleEntityOverlap (SEO) class-
es. The overlapped entities are marked in yel-
low. S1 belongs to Normal class because none
of its triplets have overlapped entities; S2 belongs
to EntityPairOverlap class since the entity pair
< Sudan,Khartoum > of it’s two triplets are
overlapped; And S3 belongs to SingleEntityOver-
lap class because the entity Aarhus of it’s two
triplets are overlapped and these two triplets have
no overlapped entity pair.

manner, where they first conduct entity recogni-
tion and then predict relations between extract-
ed entities. However, the pipeline framework ig-
nores the relevance of entity identification and re-
lation prediction (Li and Ji, 2014). Recent work-
s attempted to extract entities and relations joint-
ly. Yu and Lam (2010); Li and Ji (2014); Miwa
and Sasaki (2014) designed several elaborate fea-
tures to construct the bridge between these two
subtasks. Similar to other natural language pro-
cessing (NLP) tasks, they need complicated fea-
ture engineering and heavily rely on pre-existing
NLP tools for feature extraction.
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Recently, with the success of deep learning on
many NLP tasks, it is also applied on relation-
al facts extraction. Zeng et al. (2014); Xu et al.
(2015a,b) employed CNN or RNN on relation
classification. Miwa and Bansal (2016); Gupta
et al. (2016); Zhang et al. (2017) treated relation
extraction task as an end-to-end (end2end) table-
filling problem. Zheng et al. (2017) proposed a
novel tagging schema and employed a Recurrent
Neural Networks (RNN) based sequence labeling
model to jointly extract entities and relations.

Nevertheless, the relational facts in sentences
are often complicated. Different relational triplet-
s may have overlaps in a sentence. Such phe-
nomenon makes aforementioned methods, what-
ever deep learning based models and traditional
feature engineering based joint models, always fail
to extract relational triplets precisely. Generally,
according to our observation, we divide the sen-
tences into three types according to triplet over-
lap degree, including Normal, EntityPairOverlap
(EPO) and SingleEntityOverlap (SEO). As shown
in Figure 1, a sentence belongs to Normal class if
none of its triplets have overlapped entities. A sen-
tence belongs to EntityPairOverlap class if some
of its triplets have overlapped entity pair. And a
sentence belongs to SingleEntityOverlap class if
some of its triplets have an overlapped entity and
these triplets don’t have overlapped entity pair. In
our knowledge, most previous methods focused
on Normal type and seldom consider other type-
s. Even the joint models based on neural network
(Zheng et al., 2017), it only assigns a single tag to
a word, which means one word can only partici-
pate in at most one triplet. As a result, the triplet
overlap issue is not actually addressed.

To address the aforementioned challenge, we
aim to design a model that could extract triplets,
including entities and relations, from sentences of
Normal, EntityPairOverlap and SingleEntityOver-
lap classes. To handle the problem of triplet over-
lap, one entity must be allowed to freely partici-
pate in multiple triplets. Different from previous
neural methods, we propose an end2end model
based on sequence-to-sequence (Seq2Seq) learn-
ing with copy mechanism, which can jointly ex-
tract relational facts from sentences of any of these
classes. Specially, the main component of this
model includes two parts: encoder and decoder.
The encoder converts a natural language sentence
(the source sentence) into a fixed length semantic

vector. Then, the decoder reads in this vector and
generates triplets directly. To generate a triplet,
firstly, the decoder generates the relation. Second-
ly, by adopting the copy mechanism, the decoder
copies the first entity (head entity) from the source
sentence. Lastly, the decoder copies the second
entity (tail entity) from the source sentence. In
this way, multiple triplets can be extracted (In de-
tail, we adopt two different strategies in decod-
ing process: employing only one unified decoder
(OneDecoder) to generate all triplets or applying
multiple separated decoders (MultiDecoder) and
each of them generating one triplet). In our mod-
el, one entity is allowed to be copied several times
when it needs to participate in different triplets.
Therefore, our model could handle the triplet over-
lap issue and deal with both of EntityPairOverlap
and SingleEntityOverlap sentence types. More-
over, since extracting entities and relations in a
single end2end neural network, our model could
extract entities and relations jointly.

The main contributions of our work are as fol-
lows:

• We propose an end2end neural model based
on sequence-to-sequence learning with copy
mechanism to extract relational facts from
sentences, where the entities and relations
could be jointly extracted.

• Our model could consider the relational
triplet overlap problem through copy mecha-
nism. In our knowledge, the relational triplet
overlap problem has never been addressed
before.

• We conduct experiments on two public
datasets. Experimental results show that we
outperforms the state-of-the-arts with 39.8%
and 31.1% improvements respectively.

2 Related Work

By giving a sentence with annotated entities, Hen-
drickx et al. (2010); Zeng et al. (2014); Xu et al.
(2015a,b) treat identifying relations in sentences
as a multi-class classification problem. Zeng et al.
(2014) among the first to introduce CNN into re-
lation classification. Xu et al. (2015a) and Xu
et al. (2015b) learned relation representations from
shortest dependency paths through a CNN or RN-
N. Despite their success, these models ignore the
extraction of the entities from sentences and could
not truly extract relational facts.
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Figure 2: The overall structure of OneDecoder model. A bi-directional RNN is used to encode the
source sentence and then a decoder is used to generate triples directly. The relation is predicted and the
entity is copied from source sentence.

By giving a sentence without any annotated en-
tities, researchers proposed several methods to ex-
tract both entities and relations. Pipeline based
methods, like Zelenko et al. (2003) and Chan and
Roth (2011), neglected the relevance of entity ex-
traction and relation prediction. To resolve this
problem, several joint models have been proposed.
Early works (Yu and Lam, 2010; Li and Ji, 2014;
Miwa and Sasaki, 2014) need complicated pro-
cess of feature engineering and heavily depends on
NLP tools for feature extraction. Recent models,
like Miwa and Bansal (2016); Gupta et al. (2016);
Zhang et al. (2017); Zheng et al. (2017), jointly ex-
tract the entities and relations based on neural net-
works. These models are based on tagging frame-
work, which assigns a relational tag to a word or
a word pair. Despite their success, none of these
models can fully handle the triplet overlap prob-
lem mentioned in the first section. The reason is
in their hypothesis, that is, a word (or a word pair)
can only be assigned with just one relational tag.

This work is based on sequence-to-sequence
learning with copy mechanism, which have been

adopted for some NLP tasks. Dong and Lapata
(2016) presented a method based on an attention-
enhanced and encoder-decoder model, which en-
codes input utterances and generates their logical
forms. Gu et al. (2016); He et al. (2017) applied
copy mechanism to sentence generation. They
copy a segment from the source sequence to the
target sequence.

3 Our Model

In this section, we introduce a differentiable neu-
ral model based on Seq2Seq learning with copy
mechanism, which is able to extract multiple rela-
tional facts in an end2end fashion.

Our neural model encodes a variable-length
sentence into a fixed-length vector representation
first and then decodes this vector into the corre-
sponding relational facts (triplets). When decod-
ing, we can either decode all triplets with one u-
nified decoder or decode every triplet with a sep-
arated decoder. We denote them as OneDecoder
model and MultiDecoder model separately.
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3.1 OneDecoder Model

The overall structure of OneDecoder model is
shown in Figure 2.

3.1.1 Encoder
To encode a sentence s = [w1, .., wn], where wt
represent the t-th word and n is the source sen-
tence length, we first turn it into a matrix X =
[x1, · · · , xn], where xt is the embedding of t-th
word.

The canonical RNN encoder reads this matrix
X sequentially and generates output oEt and hid-
den state hEt in time step t(1 ≤ t ≤ n) by

oEt ,h
E
t = f(xt,hEt−1) (1)

where f(· ) represents the encoder function.
Following (Gu et al., 2016), our encoder uses

a bi-directional RNN (Chung et al., 2014) to en-
code the input sentence. The forward and back-

ward RNN obtain output sequence {
−→
oE1 , · · · ,

−→
oEn }

and {
←−
oEn , · · · ,

←−
oE1 }, respectively. We then concate-

nate
−→
oEt and

←−−−−
oEn−t+1 to represent the t-th word. We

use OE = [oE1 , ..., oEn ], where oEt = [
−→
oEt ;
←−−−−
oEn−t+1],

to represent the concatenate result. Similarly, the
concatenation of forward and backward RNN hid-
den states are used as the representation of sen-

tence, that is s = [
−→
hEn ;
←−
hEn ]

3.1.2 Decoder
The decoder is used to generate triplets direct-
ly. Firstly, the decoder generates a relation for
the triplet. Secondly, the decoder copies an enti-
ty from the source sentence as the first entity of
the triplet. Lastly, the decoder copies the second
entity from the source sentence. Repeat this pro-
cess, the decoder could generate multiple triplets.
Once all valid triplets are generated, the decoder
will generate NA triplets, which means “stopping”
and is similar to the “eos” symbol in neural sen-
tence generation. Note that, a NA triplet is com-
posed of an NA-relation and an NA-entity pair.

As shown in Figure 3 (a), in time step t (1 ≤
t), we calculate the decoder output oDt and hidden
state hDt as follows:

oDt ,h
D
t = g(ut,hDt−1) (2)

where g(· ) is the decoder function and hDt−1 is the
hidden state of time step t − 1. We initialize hD0
with the representation of source sentence s. ut is

the decoder input in time step t and we calculate it
as:

ut = [vt; ct]·Wu (3)

where ct is the attention vector and vt is the em-
bedding of copied entity or predicted relation in
time step t− 1. Wu is a weight matrix.

Attention Vector. The attention vector ct is cal-
culated as follows:

ct =
n∑

i=1

αi × oEi (4)

α = softmax(β) (5)

βi = selu([hDt−1; oEi ]·wc) (6)

where oEi is the output of encoder in time step i,
α = [α1, ..., αn] and β = [β1, ..., βn] are vectors,
wc is a weight vector. selu(· ) is activation func-
tion (Klambauer et al., 2017).

After we get decoder output oDt in time step t
(1 ≤ t), if t%3 = 1 (that is t = 1, 4, 7, ...), we
use oDt to predict a relation, which means we are
decoding a new triplet. Otherwise, if t%3 = 2
(that is t = 2, 5, 8, ...), we use oDt to copy the first
entity from the source sentence, and if t%3 = 0
(that is t = 3, 6, 9, ...), we copy the second entity.

Predict Relation. Suppose there are m valid
relations in total. We use a fully connected layer
to calculate the confidence vector qr = [qr1, ..., q

r
m]

of all valid relations:

qr = selu(oDt ·Wr + br) (7)

where Wr is the weight matrix and br is the bias.
When predict the relation, it is possible to predic-
t the NA-relation when the model try to generate
NA-triplet. To take this into consideration, we cal-
culate the confidence value of NA-relation as:

qNA = selu(oDt ·WNA + bNA) (8)

where WNA is the weight matrix and bNA is the
bias. We then concatenate qr and qNA to form
the confidence vector of all relations (including
the NA-relation) and apply softmax to obtain the
probability distribution pr = [pr1, ..., p

r
m+1] as:

pr = softmax([qr;qNA]) (9)

We select the relation with the highest probability
as the predict relation and use it’s embedding as
the next time step input vt+1.
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Figure 3: The inputs and outputs of the decoder(s) of OneDecoder model and MultiDecoder model.
(a) is the decoder of OneDecoder model. As we can see, only one decoder (the green rectangle with
shadows) is used and this encoder is initialized with the sentence representation s. (b) is the decoders
of MultiDecoder model. There are two decoders (the green rectangle and blue rectangle with shadows).
The first decoder is initialized with s; Other decoder(s) are initialized with s and previous decoder’s state.

Copy the First Entity. To copy the first en-
tity, we calculate the confidence vector qe =
[qe1, ..., q

e
n] of all words in source sentence as:

qei = selu([oDt ; oEi ]·we) (10)

where we is the weight vector. Similar with the
relation prediction, we concatenate qe and qNA
to form the confidence vector and apply soft-
max to obtain the probability distribution pe =
[pe1, ..., p

e
n+1]:

pe = softmax([qe;qNA]) (11)

Similarly, We select the word with the highest
probability as the predict the word and use it’s em-
bedding as the next time step input vt+1.

Copy the Second Entity. Copy the second en-
tity is almost the same as copy the first entity. The
only difference is when copying the second enti-
ty, we cannot copy the first entity again. This is
because in a valid triplet, two entities must be dif-
ferent. Suppose the first copied entity is the k-th
word in the source sentence, we introduce a mask
vector M with n (n is the length of source sen-
tence) elements, where:

Mi =

{
1, i 6= k

0, i = k
(12)

then we calculate the probability distribution pe
as:

pe = softmax([M ⊗ qe;qNA]) (13)

where ⊗ is element-wise multiplication. Just like
copy the first entity, We select the word with the
highest probability as the predict word and use it’s
embedding as the next time step input vt+1.

3.2 MultiDecoder Model
MultiDecoder model is an extension of the pro-
posed OneDecoder model. The main difference is
when decoding triplets, MultiDecoder model de-
code triplets with several separated decoders. Fig-
ure 3 (b) shows the inputs and outputs of decoders
of MultiDecoder model. There are two decoders
(the green and blue rectangle with shadows). De-
coders work in a sequential order: the first decoder
generate the first triplet and then the second de-
coder generate the second triplet.

Similar with Eq 2, we calculate the hidden state
hDi
t and output oDi

t of i-th (1 ≤ i) decoder in time
step t as follows:

oDi
t ,hDi

t =

{
gDi(ut,hDi

t−1), t%3 = 2, 0

gDi(ut, ĥ
Di

t−1), t%3 = 1
(14)

gDi(· ) is the decoder function of decoder i. ut is
the decoder input in time step t and we calculated
it as Eq 3. hDi

t−1 is the hidden state of i-th decoder

in time step t − 1. ĥDi

t−1 is the initial hidden state
of i-th decoder, which is calculated as follows:

ĥDi

t−1 =

{
s, i = 1
1
2(s + hDi−1

t−1 ), i > 1
(15)
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Class
NYT WebNLG

Train Test Train Test
Normal 37013 3266 1596 246

EPO 9782 978 227 26
SEO 14735 1297 3406 457
ALL 56195 5000 5019 703

Table 1: The number of sentences of Normal, En-
tityPairOverlap (EPO) and SingleEntityOverlap
(SEO) classes. It’s worthy noting that a sentence
can belongs to both EPO class and SEO class.

3.3 Training
Both OneDecoder and MultiDecoder models are
trained with the negative log-likelihood loss func-
tion. Given a batch of data with B sentences
S = {s1, ..., sB} with the target results Y =
{y1, ..., yB}, where yi = [y1i , ..., y

T
i ] is the target

result of si, the loss function is defined as follows:

L =
1

B × T
B∑

i=1

T∑

t=1

−log(p(yti |y<ti , si, θ)) (16)

T is the maximum time step of decoder. p(x|y) is
the conditional probability of x given y. θ denotes
parameters of the entire model.

4 Experiments

4.1 Dataset
To evaluate the performance of our methods, we
conduct experiments on two widely used datasets.

The first is New York Times (NYT) dataset,
which is produced by distant supervision method
(Riedel et al., 2010). This dataset consists of
1.18M sentences sampled from 294k 1987-2007
New York Times news articles. There are 24 valid
relations in total. In this paper, we treat this dataset
as supervised data as the same as Zheng et al.
(2017). We filter the sentences with more than
100 words and the sentences containing no posi-
tive triplets, and 66195 sentences are left. We ran-
domly select 5000 sentences from it as the test set,
5000 sentences as the validation set and the rest
56195 sentences are used as train set.

The second is WebNLG dataset (Gardent et al.,
2017). It is originally created for Natural Lan-
guage Generation (NLG) task. This dataset con-
tains 246 valid relations. In this dataset, a instance
including a group of triplets and several standard
sentences (written by human). Every standard sen-
tence contains all triplets of this instance. We on-

ly use the first standard sentence in our experi-
ments and we filter out the instances if all enti-
ties of triplets are not found in this standard sen-
tence. The origin WebNLG dataset contains train
set and development set. In our experiments, we
treat the origin development set as test set and ran-
domly split the origin train set into validation set
and train set. After filtering and splitting, the train
set contains 5019 instances, the test set contains
703 instances and the validation set contains 500
instances.

The number of sentences of every class in NYT
and WebNLG dataset are shown in Table 1. It’s
worthy noting that a sentence can belongs to both
EntityPairOverlap class and SingleEntityOverlap
class.

4.2 Settings

In our experiments, for both dataset, we use LSTM
(Hochreiter and Schmidhuber, 1997) as the model
cell; The cell unit number is set to 1000; The em-
bedding dimension is set to 100; The batch size is
100 and the learning rate is 0.001; The maximum
time steps T is 15, which means we predict at most
5 triplets for each sentence (therefore, there are 5
decoders in MultiDecoder model). These hyper-
parameters are tuned on the validation set. We use
Adam (Kingma and Ba, 2015) to optimize param-
eters and we stop the training when we find the
best result in the validation set.

4.3 Baseline and Evaluation Metrics

We compare our models with NovelTagging mod-
el (Zheng et al., 2017), which conduct the best per-
formance on relational facts extraction. We direct-
ly run the code released by Zheng et al. (2017) to
acquire the results.

Following Zheng et al. (2017), we use the stan-
dard micro Precision, Recall and F1 score to eval-
uate the results. Triplets are regarded as correc-
t when it’s relation and entities are both correc-
t. When copying the entity, we only copy the last
word of it. A triplet is regarded as NA-triplet when
and only when it’s relation is NA-relation and it
has an NA-entity pair. The predicted NA-triplets
will be excluded.

4.4 Results

Table 2 shows the Precision, Recall and F1 value
of NovelTagging model (Zheng et al., 2017) and
our OneDecoder and MultiDecoder models.
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Model
NYT WebNLG

Precision Recall F1 Precision Recall F1
NovelTagging 0.624 0.317 0.420 0.525 0.193 0.283
OneDecoder 0.594 0.531 0.560 0.322 0.289 0.305

MultiDecoder 0.610 0.566 0.587 0.377 0.364 0.371

Table 2: Results of different models in NYT dataset and WebNLG dataset.
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Figure 4: Results of NovelTagging, OneDecoder, and MultiDecoder model in Normal, EntityPairOverlap
and SingleEntityOverlap classes in NYT dataset.

As we can see, in NYT dataset, our MultiDe-
coder model achieves the best F1 score, which
is 0.587. There is 39.8% improvement compared
with the NovelTagging model, which is 0.420. Be-
sides, our OneDecoder model also outperforms
the NovelTagging model. In the WebNLG dataset,
MultiDecoder model achieves the highest F1 score
(0.371). MultiDecoder and OneDecoder models
outperform the NovelTagging model with 31.1%
and 7.8% improvements, respectively. These ob-
servations verify the effectiveness of our models.

We can also observe that, in both NYT
and WebNLG dataset, the NovelTagging model
achieves the highest precision value and lowest re-
call value. By contrast, our models are much more
balanced. We think that the reason is in the struc-
ture of the proposed models. The NovelTagging
method finds triplets through tagging the word-
s. However, they assume that only one tag could
be assigned to just one word. As a result, one
word can participate at most one triplet. There-
fore, the NovelTagging model can only recall a
small number of triplets, which harms the recal-
l performance. Different from the NovelTagging
model, our models apply copy mechanism to find
entities for a triplet, and a word can be copied

many times when this word needs to participate
in multiple different triplets. Not surprisingly, our
models recall more triplets and achieve higher re-
call value. Further experiments verified this.

4.5 Detailed Results on Different Sentence
Types

To verify the ability of our models in handling the
overlapping problem, we conduct further experi-
ments on NYT dataset.

Figure 4 shows the results of NovelTagging,
OneDecoder and MultiDecoder model in Normal,
EntityPairOverlap and SingleEntityOverlap class-
es. As we can see, our proposed models perform
much better than NovelTagging model in Entity-
PairOverlap class and SingleEntityOverlap class-
es. Specifically, our models achieve much high-
er performance on all metrics. Another observa-
tion is that NovelTagging model achieves the best
performance in Normal class. This is because the
NovelTagging model is designed more suitable for
Normal class. However, our proposed models are
more suitable for the triplet overlap issues. Fur-
thermore, it is still difficult for our models to judge
how many triplets are needed for the input sen-
tence. As a result, there is a loss in our models
for Normal class. Nevertheless, the overall perfor-
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Figure 5: Relation Extraction from sentences that contains different number of triplets. We divide the
sentences of NYT test set into 5 subclasses. Each class contains sentences that have 1,2,3,4 or >= 5
triplets.

Model NYT WebNLG
OneDecoder 0.858 0.745

MultiDecoder 0.862 0.821

Table 3: F1 values of entity generation.

mance of the proposed models still outperforms
NoverTagging. Moreover, we notice that the w-
hole extracted performance of EntityPairOverlap
and SingleEntityOverlap class is lower than that
in Normal class. It proves that extracting relation-
al facts from EntityPairOverlap and SingleEntity-
Overlap classes are much more challenging than
from Normal class.

We also compare the model’s ability of extract-
ing relations from sentences that contains differ-
ent number of triplets. We divide the sentences in
NYT test set into 5 subclasses. Each class con-
tains sentences that has 1,2,3,4 or >= 5 triplets.
The results are shown in Figure 5. When extract-
ing relation from sentences that contains 1 triplet-
s, NovelTagging model achieve the best perfor-
mance. However, when the number of triplets in-
creases, the performance of NovelTagging mod-
el decreases significantly. We can also observe
the huge decrease of recall value of NovelTagging
model. These experimental results demonstrate
the ability of our model in handling multiple re-
lation extraction.

4.6 OneDecoder vs. MultiDecoder

As shown in the previous experiments (Table 2,
Figure 4 and Figure 5), our MultiDecoder model
performs better then OneDecoder model and Nov-

Model NYT WebNLG
OneDecoder 0.874 0.759

MultiDecoder 0.870 0.751

Table 4: F1 values of relation generation.

elTagging model. To find out why MultiDecoder
model performs better than OneDecoder model,
we analyzed their ability of entity generation and
relation generation. The experiment results are
shown in Table 3 and Table 4. We can observe
that on both NYT and WebNLG datasets, these t-
wo models have comparable abilities on relation
generation. However, MultiDecoder performs bet-
ter than OneDecoder model when generating en-
tities. We think that it is because MultiDecoder
model utilizes different decoder to generate dif-
ferent triplets so that the entity generation results
could be more diverse.

Conclusions and Future Work

In this paper, we proposed an end2end neural
model based on Seq2Seq learning framework with
copy mechanism for relational facts extraction.
Our model can jointly extract relation and entity
from sentences, especially when triplets in the sen-
tences are overlapped. Moreover, we analyze the
different overlap types and adopt two strategies for
this issue, including one unified decoder and mul-
tiple separated decoders. We conduct experiments
on two public datasets to evaluate the effectiveness
of our models. The experiment results show that
our models outperform the baseline method signif-
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icantly and our models can extract relational facts
from all three classes.

This challenging task is far from being solved.
Our future work will concentrate on how to im-
prove the performance further. Another future
work is test our model in other NLP tasks like
event extraction.
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Abstract

Due to the ability of encoding and map-
ping semantic information into a high-
dimensional latent feature space, neural
networks have been successfully used for
detecting events to a certain extent. How-
ever, such a feature space can be easily
contaminated by spurious features inher-
ent in event detection. In this paper, we
propose a self-regulated learning approach
by utilizing a generative adversarial net-
work to generate spurious features. On the
basis, we employ a recurrent network to
eliminate the fakes. Detailed experiments
on the ACE 2005 and TAC-KBP 2015 cor-
pora show that our proposed method is
highly effective and adaptable.

1 Introduction

Event detection aims to locate the event triggers
of specified types in text. Normally, triggers are
words or nuggets that evoke the events of interest.

Detecting events in an automatic way is chal-
lenging, not only because an event can be ex-
pressed in different words, but also because a word
may express a variety of events in different con-
texts. In particular, the frequent utilization of com-
mon words, ambiguous words and pronouns in
event mentions makes them harder to detect:

1) Generality – taken home <Transport>
Ambiguity 1 – campaign in Iraq <Attack>
Ambiguity 2 – political campaign <Elect>
Coreference – Either its bad or good <Marry>

A promising solution to this challenge is
through semantic understanding. Recently, neu-
ral networks have been widely used in this direc-
tion (Nguyen and Grishman, 2016; Ghaeini et al.,

∗ Corresponding author

2016; Feng et al., 2016; Liu et al., 2017b; Chen
et al., 2017), which allows semantics of event
mentions (trigger plus context) to be encoded in
a high-dimensional latent feature space. This fa-
cilitates the learning of deep-level semantics. Be-
sides, the use of neural networks not only strength-
ens current supervised classification of events but
alleviates the complexity of feature engineering.

However, compared to the earlier study (Liao
and Grishman, 2010; Hong et al., 2011; Li et al.,
2013), in which the features are carefully designed
by experts, the neural network based methods suf-
fer more from spurious features. Here, spurious
feature is specified as the latent information which
looks like the semantically related information to
an event, but actually not (Liu et al., 2017a). For
example, in the following sample, the semantic
information of the word “prison” most probably
enables spurious features to come into being, be-
cause the word often co-occurs with the trigger
”taken” to evoke an Arrest-jail event instead
of the ground-truth event Transport:

2) Prison authorities have given the nod for An-
war to be taken home later in the afternoon.
Trigger: taken. Event Type: Transport

It is certain that spurious features often result
from the semantically pseudo-related context, and
during training, a neural network may mistakenly
and unconsciously preserve the memory to pro-
duce the fakes. However, it is difficult to deter-
mine which words are pseudo-related in a specific
case, and when they will “jump out” to mislead the
generation of latent features during testing.

To address the challenge, we suggest to regu-
late the learning process with a two-channel self-
regulated learning strategy. In the self-regulation
process, on one hand, a generative adversarial net-
work is trained to produce the most spurious fea-
tures, while on the other hand, a neural network
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Figure 1: Self-regulated learning scheme

is equipped with a memory suppressor to elimi-
nate the fakes. Detailed experiments on event de-
tection show that our proposed method achieves
a substantial performance gain, and is capable of
robust domain adaptation.

2 Task Definition

The task of event detection is to determine whether
there is one or more event triggers in a sentence.
Trigger is defined as a token or nugget that best
signals the occurrence of an event. If successfully
identified, a trigger is required to be assigned a tag
to indicate the event type:

Input: Either its bad or good
Output: its <trigger>; Marry <type>
We formalize the event detection problem as a

multi-class classification problem. Given a sen-
tence, we classify every token of the sentence into
one of the predefined event classes (Doddington
et al., 2004) or non-trigger class.

3 Self-Regulated Learning (SELF)

SELF is a double-channel model (Figure 1), con-
sisted of a cooperative network (Islam et al., 2003)
and a generative adversarial net (GAN) (Goodfel-
low et al., 2014). A memory suppressor S is used
to regulate communication between the channels.

3.1 Cooperative Network
In channel 1, the generator G is specified as a mul-
tilayer perceptron. It plays a role of a “diligent stu-
dent”. By a differentiable function G(x, θg) with
parameters θg, the generator learns to produce a
vector of latent features og that may best charac-
terize the token x, i.e., og = G(x, θg).

The discriminator D (called “a lucky profes-
sor”) is a single-layer perceptron, implemented as
a differentiable function D(og, θd) with parame-
ters θd. Relying on the feature vector og, it at-
tempts to accurately predict the probability of the
token x triggering an event for all event classes,
i.e., ŷ = D(og, θd), and assigns x to the most
probable class c (iff ŷc > ∀ŷc̄, c̄ �= c).

Therefore, G and D cooperate with each other
during training, developing the parameters θg and
θd with the same goal – to minimize the perfor-
mance loss L(ŷ, y) in the detection task:

[
θg

θd

]
= argmin L(ŷ, y) (1)

where, y denotes the ground-truth probability dis-
tribution over event classes, and L indicates the
deviation of the prediction from the ground truth.

3.2 Generative Adversarial Network
In channel 2, the generator Ǧ and discriminator
Ď have the same perceptual structures as G and
D. They also perform learning by differentiable
functions, respectively Ǧ(x, θǧ) and Ď(oǧ, θď). A
major difference, however, is that they are caught
into a cycle of highly adversarial competition.

The generator Ǧ is a “trouble maker”. It learns
to produce spurious features, and utilizes them to
contaminate the feature vector oǧ of the token x.
Thus Ǧ changes a real sample x into a fake z –
sometimes successfully, sometimes less so. Using
the fakes, Ǧ repeatedly instigates the discrimina-
tor Ď to make mistakes. On the other side, Ď (“a
hapless professor”) has to avoid being deceived,
and struggles to correctly detect events no matter
whether it encounters x or z.

In order to outsmart the adversary, Ǧ develops
the parameters θǧ during training to maximize the
performance loss, but on the contrary, Ď develops
the parameters θď to minimize the loss:

θǧ = argmax L(ŷ, y) (2)

θď = argmin L(ŷ, y) (3)

Numerous studies have confirmed that the two-
player minmax game enables both Ǧ and Ď to im-
prove their methods (Goodfellow et al., 2014; Liu
and Tuzel, 2016; Huang et al., 2017).

3.3 Regulation with Memory Suppressor
Using a memory suppressor, we try to optimize the
diligent student G. The goal is to enable G to be
as dissimilar as possible to the troublemaker Ǧ.

The suppressor uses the output oǧ of Ǧ as a ref-
erence resource which should be full of spurious
features. On the basis, it looks over the output og

of G, so as to verify whether the features in og

are different to those in oǧ. If very different, the
suppressor allows G to preserve the memory (viz.,
θg in G(x, θg)), otherwise update. In other word,
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for G, the suppressor forcibly erases the memory
which may result in the generation of spurious fea-
tures. We call this the self-regulation.

Self-regulation is performed for the whole sen-
tence which is fed into G and Ǧ. Assume that Og

is a matrix, constituted with a series of feature vec-
tors, i.e., the vectors generated by G for all the to-
kens in an input sentence (og ∈ Og), while Oǧ

is another feature matrix, generated by Ǧ for the
tokens (oǧ ∈ Oǧ). Thus, we utilize the matrix ap-
proximation between Og and Oǧ for measuring the
loss of self-regulation learning Ldiff . The higher
the similarity, the greater the loss. During training,
the generator G is required to develop the param-
eters θg to minimize the loss:

θg = argmin Ldiff (og, oǧ) (4)

We present in detail the matrix approximate cal-
culation in section 4.4, where the squared Frobe-
nius norm (Bousmalis et al., 2016) is used.

3.4 Learning to Predict
We incorporate the cooperative network with the
GAN, and enhance their learning by joint training.

In the 4-member incorporation, i.e., {G, Ǧ, D
and Ď}, the primary beneficiary is the lucky pro-
fessor D. It can benefit from both the cooperation
in channel 1 and the competition in channel 2. The
latent features it uses are well-produced by G, and
decontaminated by eliminating possible fakes like
those made by Ǧ. Therefore, in experiments, we
choose to output the prediction results of D.

In this paper, we use two recurrent neural net-
works (RNN) (Sutskever et al., 2014; Chung et al.,
2014) of the same structure as the generators. And
both the discriminators are implemented as a fully-
connected layer followed by a softmax layer.

4 Recurrent Models for SELF

RNN with long short-term memory (abbr., LSTM)
is adopted due to the superior performance in a va-
riety of NLP tasks (Liu et al., 2016a; Lin et al.,
2017; Liu et al., 2017a). Furthermore, the bidi-
rectional LSTM (Bi-LSTM) architecture (Schus-
ter and Paliwal, 1997; Ghaeini et al., 2016; Feng
et al., 2016) is strictly followed. This architecture
enables modeling of the semantics of a token with
both the preceding and following contexts.

4.1 LSTM based Generator
Given a sentence, we follow Chen et al (2015) to
take all the tokens of the whole sentence as the in-

put. Before feeding the tokens into the network,
we transform each of them into a real-valued vec-
tor x ∈ Re. The vector is formed by concatenating
a word embedding with an entity type embedding.

• Word Embedding: It is a fixed-dimensional
real-valued vector which represents the hid-
den semantic properties of a token (Collobert
and Weston, 2008; Turian et al., 2010).

• Entity Type Embedding: It is specially used
to characterize the entity type associated with
a token. The BIO2 tagging scheme (Wang
and Manning, 2013; Huang et al., 2015) is
employed for assigning a type label to each
token in the sentence.

For the input token xt at the current time step t,
the LSTM generates the latent feature vector ot ∈
Rd by the previous memory. Meanwhile, the token
is used to update the current memory.

The LSTM possesses a long-term memory unit
ct ∈ Rd and short-term c̃t ∈ Rd. In addition, it
is equipped with the input gate it, forgetting gate
ft and a hidden state ht, which are assembled to-
gether to promote the use of memory, as well as
dynamic memory updating. Similarly, they are de-
fined as a d-dimensional vector in Rd. Thus LSTM
works in the following way:

⎡
⎢⎢⎣

ot

c̃t

it
ft

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

σ
tanh

σ
σ

⎤
⎥⎥⎦

(
W

[
xt

ht−1

]
+ b

)
(5)

ht = ot � tanh(ct) (6)

ct = c̃t � it + ct−1 � ft (7)

where W ∈ R4d×(d+e) and b ∈ R4d are parame-
ters of affine transformation; σ refers to the logis-
tic sigmoid function and � denotes element-wise
multiplication.

The output functions of both the generators in
SELF, i.e., G and Ǧ, can be boiled down to the
output gate ot ∈ Rd of the LSTM cell:

ot = LSTM(xt; θ) (8)

where, the function LSTM (·;·) is a shorthand for
Eq. (5-7) and θ represents all the parameters of
LSTM. For both G and Ǧ, θ are initialized with the
same values in experiments. But due to the distinct
training goals of G and Ǧ (diligence or making-
trouble), the values of the parameters in the two
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cases will change to be very different after train-
ing. Therefore, we have og,t = LSTM(xt, θg,t)
and oǧ,t = LSTM(xt, θǧ,t).

4.2 Fully-connected Layer for Discrimination
Depending on the feature vectors og,t and oǧ,t, the
two discriminators D and Ď predict the probabil-
ity of the token xt triggering an event for all event
classes. As usual, they compute the probability
distribution over classes using a fully connected
layer followed by a softmax layer:

ŷ = softmax(Ŵ · ot + b̂) (9)

where y̌ is a C-dimensional vector, in which each
dimension indicates the prediction for a class; C
is the class number; Ŵ ∈ Rd is the weight which
needs to be learned; b̂ is a bias term.

It is noteworthy that the discriminator D and Ď
don’t share the weight and the bias. It means that,
for the same token xt, they may make markedly
different predictions: ŷg,t = softmax(Ŵg · og,t +

b̂g) and ŷǧ,t = softmax(Ŵǧ · oǧ,t + b̂ǧ).

4.3 Classification Loss
We specify the loss as the cross-entropy between
the predicted and ground-truth probability distri-
butions over classes. Given a batch of training data
that includes N samples (xi, yi), we calculate the
losses the discriminators cause as below:

L(ŷg, y) = −
N∑

i=1

C∑

j=1

yj
i log(ŷj

g,i) (10)

L(ŷǧ, y) = −
N∑

i=1

C∑

j=1

yj
i log(ŷj

ǧ,i) (11)

where yi is a C-dimensional one-hot vector. The
value of its j-th dimension is set to be 1 only if the
token xi triggers an event of the j-th class, other-
wise 0. Both ŷg,i and ŷǧ,i are the predicted proba-
bility distributions over the C classes for xi.

4.4 Loss of Self-regulated Learning
Assume that Og is a matrix, consisted of the fea-
ture vectors output by G for all the tokens in a sen-
tence, i.e., og,t ∈ Og, and Oǧ is that provided by
Ǧ, i.e., oǧ,t ∈ Oǧ, thus we compute the similarity
between Og and Oǧ and use it as the measure of
self-regulation loss Ldiff (Og, Oǧ):

Ldiff (Og, Oǧ) = ‖OgO
�
ǧ ‖2

F
(12)

where, ‖ · ‖2

F
denotes the squared Frobenius norm

(Bousmalis et al., 2016), which is used to calculate
the similarity between matrices.

It is noteworthy that the feature vectors a gen-
erator outputs are required to serve as the rows in
the matrix, deployed in a top-down manner and
arranged in the order in which they are generated.
For example, the feature vector og,t the generator
G outputs at the time t needs to be placed in the
t-th row of the matrix Og.

At the very beginning of the measurement, the
similarity between every feature vector in Og and
that in OǦ is first calculated by the matrix-matrix
multiplication OgO

�
ǧ :

⎛
⎜⎜⎜⎜⎝

og,1o
�
ǧ,1 ... og,1o

�
ǧ,t ... og,1o

�
ǧ,l

... ... ... ... ...
og,1o

�
ǧ,t ... og,to

�
ǧ,t ... og,to

�
ǧ,l

... ... ... ... ...
og,1o

�
ǧ,l ... og,lo

�
ǧ,t ... og,lo

�
ǧ,l

⎞
⎟⎟⎟⎟⎠

where, the symbol � denotes the transpose opera-
tion; l is the sentence length which is defined to be
uniform for all sentences (l=80), and if it is larger
than the real ones, padding is used; og,ioǧ,j de-
notes the scalar product between the feature vec-
tors og,i and oǧ,j .

Let Am×n be a matrix, the squared Frobenius
norm of Am×n (i.e., ‖Am×n‖2

F
) is defined as:

‖Am×n‖2

F
=

⎛
⎝

m∑

i=1

n∑

j=1

|aij |2
⎞
⎠

1
2

(13)

where, aij denotes the j-th element in the i-th
row of Am×n. Thus, if we let Am×n be the ma-
trix produced by the matrix-matrix multiplication
OgO

�
ǧ , the self-regulation loss Ldiff (Og, Oǧ) can

be eventually obtained by:

Ldiff (Og, Oǧ) =

⎛
⎝

l∑

i=1

l∑

j=1

|og,ioǧ,j |2
⎞
⎠

1
2

(14)

For a batch of training data that includes N ′

sentences, the global self-regulation loss is spec-
ified as the sum of the losses for all the sentences:
LSELF =

∑N ′
i=1 Ldiff (Og, Oǧ).

4.5 Training

We train the cooperative network in SELF to min-
imize the classification loss L(ŷg, y) and the loss
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of self-regulated learning LSELF :

θg = argmin (Lŷg, y) (15)

θd = argmin (L(ŷg, y) + λ · LSELF ) (16)

where λ is a hyper-parameter, which is used to har-
monize the two losses.

The min-max game is utilized for training the
adversarial net in SELF: θǧ = argmax L(ŷǧ, y);
θď = argmin L(ŷǧ, y).

All the networks in SELF are trained jointly us-
ing the same batches of samples. They are trained
via stochastic gradient descent (Nguyen and Gr-
ishman, 2015) with shuffled mini-batches and the
AdaDelta update rule (Zeiler, 2012). The gradi-
ents are computed using back propagation. And
regularization is implemented by a dropout (Hin-
ton et al., 2012).

5 Experimentation

5.1 Resource and Experimental Datasets
We test the presented model on the ACE 2005 cor-
pus. The corpus is annotated with single-token
event triggers and has 33 predefined event types
(Doddington et al., 2004; Ahn, 2006), along with
one class “None” for the non-trigger tokens, con-
stitutes a 34-class classification problem.

For comparison purpose, we use the corpus in
the traditional way, randomly selecting 30 articles
in English from different genres as the develop-
ment set, and utilizing a separate set of 40 English
newswire articles as the test set. The remaining
529 English articles are used as the training set.

5.2 Hyperparameter Settings
The word embeddings are initialized with the 300-
dimensional real-valued vectors. We follow Chen
et al (2015) and Feng et al (2016) to pre-train the
embeddings over NYT corpus using Mikolov et al
(2013)’s skip-gram tool. The entity type embed-
dings, as usual (Nguyen et al., 2016; Feng et al.,
2016; Liu et al., 2017b), are specified as the 50-
dimensional real-valued vectors. They are initial-
ized with the 32-bit floating-point values, which
are all randomly sampled from the uniformly dis-
tributed values in [-1, 1]1. We initialize other ad-
justable parameters of the back-propagation algo-
rithm by randomly sampling in [-0.1, 0.1].

We follow Feng et al (2016) to set the dropout
rate as 0.2 and the mini-batch size as 10. We

1https://www.tensorflow.org/api docs/python/tf/random
uniform

tune the initialized parameters mentioned above,
harmonic coefficient λ, learning rate and the L2
norm on the development set. Grid search (Liu
et al., 2017a) is used to seek for the optimal pa-
rameters. Eventually, we take the coefficient λ of
0.1+3, learning rate of 0.3 and L2 norm of 0.

The source code of SELF2 to reproduce the ex-
periments has been made publicly available.

5.3 Compared Systems
The state-of-the-art models proposed in the past
decade are compared with ours. By taking learn-
ing framework as the criterion, we divide the mod-
els into three classes:

Minimally supervised approach: is Peng et al
(2016)’s MSEP-EMD.

Feature based approaches: primarily includ-
ing Liao and Grishman (2010)’s Cross-Event in-
ference model, which is based on the max-entropy
classification and embeds the document-level con-
fident information in the feature space; Hong et al
(2011)’s Cross-Entity inference model, in which
existential backgrounds of name entities are em-
ployed as the additional discriminant features; and
Li et al (2013)’s Joint model, a sophisticated pre-
dictor frequently ranked among the top 3 in re-
cent TAC-KBP evaluations for nugget and corefer-
ence detection (Hong et al., 2014, 2015; Yu et al.,
2016). It is based on structured perceptron and
combines the local and global features.

Neural network based approaches: including
the convolutional neural network (CNN) (Nguyen
and Grishman, 2015), the non-consecutive N-
grams based CNN (NC-CNN) (Nguyen and Gr-
ishman, 2016) and the CNN that is assembled with
a dynamic multi-pooling layer (DM-CNN) (Chen
et al., 2015). Others include Ghaeini et al (2016)’s
forward-backward recurrent neural network (FB-
RNN) which is developed using gated recurrent
units (GRU), Nguyen et al (2016)’s bidirectional
RNN (Bi-RNN) and Feng et al (2016)’s Hybrid
networks that consist of a Bi-LSTM and a CNN.

Besides, we compare our model with Liu et al
(2016b)’s artificial neural networks (ANNs), Liu
et al (2017b)’s attention-based ANN (ANN-S2)
and Chen et al (2017)’s DM-CNN∗. The models
recently have become popular because, although
simple in structure, they are very analytic by learn-
ing from richer event examples, such as those in

2https://github.com/JoeZhouWenxuan/Self-regulation-
Employing-a-Generative-Adversarial-Network-to-Improve-
Event-Detection/tree/master
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Method P (%) R (%) F (%)
Joint (Local+Global) 76.9 65.0 70.4
MSEP-EMD 75.6 69.8 72.6
DM-CNN 80.4 67.7 73.5
DM-CNN∗ 79.7 69.6 74.3
Bi-RNN 68.5 75.7 71.9
Hybrid: Bi-LSTM+CNN 80.8 71.5 75.9
SELF: Bi-LSTM+GAN 75.3 78.8 77.0

Table 1: Trigger identification performance

FrameNet (FN) and Wikipeida (Wiki).

5.4 Experimental Results

We evaluate our model using Precision (P), Re-
call (R) and F-score (F). To facilitate the compar-
ison, we review the best performance of the com-
petitors, which has been evaluated using the same
metrics, and publicly reported earlier.

Trigger identification

Table 1 shows the trigger identification perfor-
mance. It can be observed that SELF outperforms
other models, with a performance gain of no less
than 1.1% F-score.

Frankly, the performance mainly benefits from
the higher recall (78.8%). But in fact the relatively
comparable precision (75.3%) to the recall rein-
forces the advantages. By contrast, although most
of the compared models achieve much higher pre-
cision over SELF, they suffer greatly from the sub-
stantial gaps between precision and recall. The ad-
vantage is offset by the greater loss of recall.

GAN plays an important role in optimizing Bi-
RNN. This is proven by the fact that SELF (Bi-
LSTM+GAN) outperforms Nguyen et al (2016)’s
Bi-RNN. To be honest, the models use two differ-
ent kinds of recurrent units. Bi-RNN uses GRUs,
but SELF uses the units that possess LSTM. Nev-
ertheless, GRU has been experimentally proven to
be comparable in performance to LSTM (Chung
et al., 2014; Jozefowicz et al., 2015). This allows
a fair comparison between Bi-RNN and SELF.

Event classification

Table 2 shows the performance of multi-class clas-
sification. SELF achieves nearly the same F-score
as Feng et al (2016)’s Hybrid, and outperforms the
others. More importantly, SELF is the only one
which obtains a performance higher than 70% for
both precision and recall.

Besides, by analyzing the experimental results,
we have identified the following regularities:

Methods P (%) R (%) F (%)
MSEP-EMD 70.4 65.0 67.6
Cross-Event 68.8 68.9 68.8
Cross-Entity 72.9 64.3 68.3
Joint (Local+Global) 73.7 62.3 67.5
CNN 71.8 66.4 69.0
DM-CNN 75.6 63.6 69.1
NC-CNN - - 71.3
FB-RNN (GRU) 66.8 68.0 67.4
Bi-RNN (GRU) 66.0 73.0 69.3
ANNs (ACE+FN) 77.6 65.2 70.7
DM-CNN∗(ACE+Wiki) 75.7 66.0 70.5
ANN-S2 (ACE+FN) 76.8 67.5 71.9
Hybrid: Bi-LSTM+CNN 84.6 64.9 73.4
SELF: Bi-LSTM+GAN 71.3 74.7 73.0

Table 2: Detection performance (trigger identifi-
cation plus multi-class classification)

• Similar to the pattern classifiers that are based
on hand-designed features, the CNN models
enable higher precision to be obtained. How-
ever the recall is lower.

• The RNN models contribute to achieving a
higher recall. However the precision is lower.

• Expansion of the training data set helps to in-
crease the precision.

Let us turn to the structurally more complicated
models, SELF and Hybrid.

SELF inherits the merits of the RNN models,
classifying the events with higher recall. Besides,
by the utilization of GAN, SELF has evolved from
the traditional learning strategies, being capable of
learning from GAN and getting rid of the mistak-
enly generated spurious features. So that it outper-
forms other RNNs, with improvements of no less
than 4.5% precision and 1.7% recall.

Hybrid is elaborately established by assembling
a RNN with a CNN. It models an event from two
perspectives: language generation and pragmatics.
The former is deeply learned by using the contin-
uous states hidden in the recurrent units, while the
later the convolutional features. Multi-angled cog-
nition enables Hybrid to be more precise. How-
ever it is built using a single-channel architecture,
concatenating the RNN and the CNN. This results
in twofold accumulation of feature information,
causing a serious overfitting problem. Therefore,
Hybrid is localized to much higher precision but
substantially lower recall.

Overfitting results in enlargement of the gap be-
tween precision and recall when the task changes
to be more difficult. For Hybrid, as illustrated in
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Figure 2: Gaps between precision and recall in the tasks of trigger identification and event classification

Methods Embedding Types Training Data
ANNs word ACE+FN
ANN-S2 word, NE-type ACE+FN
DM-CNN∗ word, PSN ACE+Wiki
CNN word, NE-type, PSN ACE
NC-CNN word, NE-type, PSN ACE
Bi-RNN word, NE-type, DEP ACE
Hybrid word, NE-type, PSN ACE
DM-CNN word, PSN ACE
FB-RNN word, branch ACE
SELF word, NE-type ACE

Table 3: Embedding types and training data (DEP:
Dependency grammar; PSN: Position)

Figure 2, the gap becomes much wider (from 9%
to 19.7%) when the binary classification task (trig-
ger identification) is shifted to multi-class classifi-
cation (event detection). By contrast, other work
shows a nearly constant gap. In particular, SELF
yields a minimum gap in each task, which changes
negligibly from 3.5% to 3.4%.

It may be added that, similar to DM-CNN and
FB-RNN, SELF is cost-effective. Compared to
other models (Table 3), it either uses less training
data, or is only required to learn two kinds of em-
beddings, such as that of words and entity types.

5.5 Discussion: Adaptation, Robustness and
Effectiveness

Domain adaptation is a key criteria for evaluating
the utility of a model in practical application. A
model can be thought of being adaptable only if it
works well for the unlabeled data in the target do-
main when trained on the source domain (Blitzer
et al., 2006; Plank and Moschitti, 2013).

We perform two groups of domain adaptation
experiments, respectively, using the ACE 2005
corpus and the corpus for TAC-KBP 2015 event
nugget track (Ellis et al., 2015).

The ACE corpus consists of 6 domains: broad-

cast conversation (bc), broadcast news (bn), tele-
phone conversation (cts), newswire (nw), usenet
(un) and web blogs (wl). Following the com-
mon practice of adaptation research on this data
(Nguyen and Grishman, 2014, 2015; Plank and
Moschitti, 2013), we take the union of bn and nw
as the source domain and bc, cts and wl as three
different target domains. We randomly select half
of the instances from bc to constitute the develop-
ment set. The TAC-KBP corpus consists of 2 do-
mains: newswire (NW) and discussion forum (DF).
We follow Peng et al (2016) to use one of NW and
DF in alternation as the source domain, while the
other the target domain. We randomly select a pro-
portion (20%) of the instances from the target do-
main to constitute the development set.

We compare with Joint, CNN, MSEP-EMD,
SSED (Sammons et al., 2015) and Hybrid. All
the models except Hybrid have been reported for
the performance assessment of domain adaptation.
In this section, we only cite the best performance
they obtained. We reproduce Hybrid by using the
source code given by authors. To ensure a fair
comparison, we perform 3 runs, in each of which,
both Hybrid and SELF were redeveloped on a new
development set. What we report herein is the av-
erage performance they obtained over the 3 runs.

Adaptation Performance

We show the adaptation performance on the ACE
corpus in Tables 4 and that on TAC-KBP in Table
5. It can be observed that SELF outperforms other
models in the out-of-domain scenarios.

Besides, when testing is performed on the out-
of-domain ACE corpus, the performance degrada-
tion of SELF is not much larger than that of CNN
and Hybrid. When the out-of-domain TAC-KBP
corpus is used, the performance of SELF is im-
paired much less severely than SSED and Hybrid.
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Methods In-domain (bn+nw) Out-of-domain (bc) Out-of-domain (cts) Out-of-domain (wl)
P(%) R(%) F(%) P(%) R(%) F(%) Loss P(%) R(%) F(%) Loss P(%) R(%) F(%) Loss

Joint 72.9 63.2 67.7 68.8 57.5 62.6 ↓5.1 64.5 52.3 57.7 ↓10.0 56.4 38.5 45.7 ↓22.0
CNN 69.2 67.0 68.0 70.2 65.2 67.6 ↓0.4 68.3 58.2 62.8 ↓5.2 54.8 42.0 47.5 ↓20.5

Hybrid 68.8 54.8 61.0 64.7 58.8 61.6 ↑0.6 59.9 50.6 54.9 ↓6.1 54.0 37.9 44.5 ↓16.5
SELF 73.8 65.7 69.5 70.0 67.2 68.9 ↓0.6 68.3 60.2 63.3 ↓6.2 58.0 44.0 50.0 ↓19.5

Table 4: Experimental results of domain adaptation on the ACE 2005 corpus

Methods In-domain (NW) Out-of-domain (DF) In-domain (DF) Out-of-domain (NW)
P(%) R(%) F(%) P(%) R(%) F(%) Loss P(%) R(%) F(%) P(%) R(%) F(%) Loss

MSEP-EMD NA NA 58.5 NA NA 52.8 ↓5.7 NA NA 57.9 NA NA 55.1 ↓2.8
SSED NA NA 63.7 NA NA 52.3 ↓11.4 NA NA 62.6 NA NA 54.8 ↓7.8
Hybrid 72.6 55.4 62.9 62.3 39.2 48.1 ↓14.8 66.0 42.6 51.8 59.1 48.4 53.3 ↑1.5
SELF 67.6 60.6 63.9 69.0 58.7 56.7 ↓7.2 70.5 48.3 57.3 69.3 51.7 59.2 ↑1.9

Table 5: Experimental results of domain adaptation on the TAC-KBP 2015 corpus (NA: not released)

More importantly, the adaptability of SELF is
relatively close to that of MSEP-EMD. Consider-
ing that MSEP-EMD is stable due to using mini-
mal supervision (Peng et al., 2016), we suggest the
fully trained networks in SELF may not appear to
be extremely inflexible, but on the contrary, they
should be transferable for use (Ge et al., 2016).

Robustness in Resource-Poor Settings

There are two resource-poor conditions discussed
in this section, including lack of in-domain train-
ing data and that of out-domain. Hybrid and SELF
are brought into the discussion.

For the former (in-domain) case, we went over
the numbers of samples used for training in the
adaptation experiments, which are shown in Ta-
ble 6. It can be observed that there is a minimum
number of training samples (triggers plus tokens)
contained in the domain of NW. By contrast, the
domain of bn+nw contains the smallest number of
positive samples (triggers) though an overwhelm-
ing number of negative samples (general tokens).

Under such conditions, Hybrid performs better
in the domain of NW compared to bn+nw and DF
in the three in-domain adaptation experiments (see
the column labelled as “In-domain bn+nw” in Ta-
ble 4 as well as “In-domain NW” and “In-domain
DF” in Table 5). It illustrates that Hybrid unnec-
essarily relies on a tremendous number of training
samples to ensure the robustness. But SELF does.
It needs far more negative samples than Hybrid be-
cause of the following reasons:

• It relies on the use of spurious features to im-
plement self-regulation during training.

Domain Training Testing
trigger token trigger token

bn+nw 1,721 74,179 343 16,336
NW 2,098 31,014 2,813 55,459
DF 4,106 10,9275 1,773 43,877

Table 6: Data distribution in the source domains

• For a positive sample, the concerned spurious
features (if have) most probably hide in some
negative samples.

• It’s impossible to be aware of such negative
samples. Therefore, taking into consideration
as many negative samples as possible may
help to increase the probability that the spu-
rious features will be discovered.

This is demonstrated by the fact that SELF ob-
tains better performance in the domain of bn+nw
but not NW (see the column labeled as “Training”
in Table 6 and “In-domain” in Table 4 and 5). It
may be added that SELF performs worse in DF al-
though there are more negative samples used for
training (see Table 6). Taking a glance at the num-
ber of positive samples, one may find that it is ap-
proximately 2.4 times more than that in bn+nw.
But the number of negative samples in DF is only
1.5 times more than that in bn+nw. It implies that,
if there are more positive samples used for train-
ing, SELF needs to consume proportionally more
negative samples for self-regulation. Otherwise,
the performance will degrade.

For the out-domain case, ideally, both Hybrid
and SELF encounter the problem that there is lack
of target domain data available for training. In this
case, SELF displays less performance degradation
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Event mentions Type
And it still does Die
We had no part in it Arrest-Jail
Nobody questions if this is right or ... Attack
And that is what ha- what is happening End-Position
Oh, yeah, it wasn’t perfect Marry

Table 7: Examples of pronouns that act as a trigger

(7.2%) than Hybrid (14.8%) when NW is used for
training. Considering that NW contains the mini-
mum number of samples, we would like to believe
that SELF is more robust than Hybrid for cross-
domain event detection in a resource-poor setting.

Recall and Missing

SELF is able to accurately recall the events whose
occurrence is triggered by ambiguous words, such
as “fine”, “charge”, “campaign”, etc. These am-
biguous words easily causes confusion. For exam-
ple, “campaign” may trigger an Elect event or
Attack in the ACE corpus.

More importantly, SELF fishes out the common
words which serve as a trigger, although they are
not closely related to any kind of events, such as
“take”, “try”, “acquire”, “become”, “create”, etc.
In general, it is very difficult to accurately recall
such triggers because their meanings are not con-
crete enough, and the contexts may be full of kinds
of noises (see example 2 in pg. 1). We observe that
Bi-RNN and Hybrid seldom pick them up.

However, SELF fails to recall the pronouns that
act as a trigger. This is because they occur in spo-
ken language much more frequently than they oc-
cur in written language. The lack of narrative con-
tent makes it difficult to learn the relationship be-
tween the pronouns and the events. Some real ex-
amples collected from ACE are shown in Table 7.

6 Related Work

Event detection is an important subtask of event
extraction (Doddington et al., 2004; Ahn, 2006).

The research can be traced back to the pattern
based approach (Grishman et al., 2005). Encour-
aged by the high accuracy and the benefit of easy-
to-use, researchers have made great efforts to ex-
tract discriminative patterns. Cao et al (2015a;
2015b) use dependency regularization and active
leaning to generalize and expand the patterns.

In the earlier study, another trend is to explore
the features that best characterize each event class,
so as to facilitate supervised classification. A vari-

ety of strategies have emerged for converting clas-
sification clues into feature vectors (Ahn, 2006;
Patwardhan and Riloff, 2009; Liao and Grishman,
2010; Hong et al., 2011; Li et al., 2013, 2014; Wei
et al., 2017). Benefiting from the general model-
ing framework, the methods enable the fusion of
multiple features, and more importantly, they are
flexible to use by feature selection. But consider-
able expertise is required for feature engineering.

Recently, the use of neural networks for event
detection has become a promising line of research.
The closely related work has been presented in
section 5.3. The primary advantages of neural net-
works have been demonstrated in the work, such
as performance enhancement, self-learning capa-
bility and robustness.

The generative adversarial network (Goodfel-
low et al., 2014) has emerged as an increasingly
popular approach for text processing (Zhang et al.,
2016; Lamb et al., 2016; Yu et al., 2017). Liu et
al (2017a) use the adversarial multi-task learning
for text classification. We follow the work to cre-
ate spurious features, but use them to regulate the
self-learning process in a single-task situation.

7 Conclusion

We use a self-regulated learning approach to im-
prove event detection. In the learning process, the
adversarial and cooperative models are utilized in
decontaminating the latent feature space.

In this study, the performance of the discrimi-
nator in the adversarial network is left to be evalu-
ated. Most probably, the discriminator also per-
forms well because it is gradually enhanced by
fierce competition. Considering this possibility,
we suggest to drive the two discriminators in our
self-regulation framework to cooperate with each
other. Besides, the global features extracted in Li
et al (2013)’s work are potentially useful for de-
tecting the event instances referred by pronouns,
although involve noises. Therefore, in the future,
we will encode the global information by neural
networks and use the self-regulation strategy to re-
duce the negative influence of noises.
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Abstract

We propose a context-aware neural net-
work model for temporal information ex-
traction, with a uniform architecture for
event-event, event-timex and timex-timex
pairs. A Global Context Layer (GCL),
inspired by the Neural Turing Machine
(NTM), stores processed temporal rela-
tions in the narrative order, and retrieves
them for use when the relevant entities
are encountered. Relations are then clas-
sified in this larger context. The GCL
model uses long-term memory and atten-
tion mechanisms to resolve long-distance
dependencies that regular RNNs cannot
recognize. GCL does not use postprocess-
ing to resolve timegraph conflicts, outper-
forming previous approaches that do so.
To our knowledge, GCL is also the first
model to use an NTM-like architecture to
incorporate the information about global
context into discourse-scale processing of
natural text.

1 Introduction

Extracting information about the order and timing
of events from text is crucial to any system that
attempts an in-depth natural language understand-
ing, whether related to question answering, tempo-
ral inference, or other related tasks. Earlier tempo-
ral information extraction (TemporalIE) systems
tended to rely on traditional statistical learning
with feature-engineered task-specific models, typ-
ically used in succession (Yoshikawa et al., 2009;
Ling and Weld, 2010; Sun et al., 2013; Chambers
et al., 2014; Mirza and Minard, 2015).

Recently, there have been some attempts to ex-
tract temporal relations with neural network mod-
els, particularly with recurrent neural networks

(RNN) models (Meng et al., 2017; Cheng and
Miyao, 2017; Tourille et al., 2017) and convolu-
tional neural networks (CNN) (Lin et al., 2017).
These models predominantly use token embed-
dings as input, avoiding handcrafted features for
each task. Typically, neural network models out-
perform traditional statistical models. Some stud-
ies also try to combine neural network models with
rule-based information retrieval methods (Fries,
2016). These systems require different models
for different pair types, so several models must be
combined to fully process text.

A common disadvantage of all these models
is that they build relations from isolated pairs of
entities (events or temporal expressions). This
context-blind, pairwise classification often gener-
ates conflicts in the resulting timegraph. Common
ways of ameliorating the conflicts is to apply some
ad hoc constraints to account for basic properties
of relations (e.g. transitivity), often without con-
sidering the content of the text per se. For ex-
ample, Ling and Weld (2010) designed transitiv-
ity formulae, used with local features. Sun (2014)
proposed a strategy that “prefers the edges that can
be inferred by other edges in the graph and remove
the ones that are least so”. Another approach is to
use the results from separate classifiers to rank re-
sults according to their general confidence (Mani
et al., 2007; Chambers et al., 2014). High-ranking
results overwrite low-ranking ones. Meng et al.
(2017) used a greedy pruning algorithm to remove
weak edges from the timegraph until it is coherent.

When humans read text, we certainly do not
follow the procedure of interpreting interpret re-
lations only locally first, and later come up with a
compromise solution that involves all the entities.
Instead, if local information is insufficient, we
consider the relevant information from the wider
context, and resolve the ambiguity as soon as pos-
sible. The resolved relations are stored in our
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memory as “context” for further processing. If
the later evidence suggests our early interpretation
was wrong, we can correct it.

This paper proposes a model to simulate such
mechanisms. Our model introduces a Global Con-
text Layer (GCL), inspired by the Neural Turing
Machine (NTM) architecture (Graves et al., 2014),
to store processed relations in narrative order, and
retrieve them for use when related entities are en-
countered. The stored information can also be up-
dated if necessary, allowing for self-correction.

This paper’s contributions are as follows. To
our knowledge, this is the first attempt to use neu-
ral network models with updateable external mem-
ory to incorporate global context information for
discourse-level processing of natural text in gen-
eral and for temporal relation extraction in par-
ticular. It gives a uniform treatment of all pairs
of temporally relevant entities. We obtain state-
of-the-art results on TimeBank-Dense, which is a
standard benchmark for TemporalIE.

2 Dataset

We train and evaluate our model on TimeBank-
Dense1 (Chambers et al., 2014). There are 6
classes of relations: SIMULTANEOUS, BEFORE,
AFTER, IS INCLUDED, INCLUDES, and VAGUE

TimeBank-Dense annotation aims to approximate
a complete temporal relation graph by including
all intra-sentential relations, all relations between
adjacent sentences, and all relations with docu-
ment creation time. TimeBank-Dense is one of
the standard benchmarks for intrinsic evalution of
TemporalIE systems. We follow the experimental
setup in Chambers et al. (2014), which splits the
corpus into training/validation/test sets of 22, 5,
and 9 documents, respectively. Previous publica-
tions often use the micro-averaged F1 score, which
is equivalent to accuracy in this case. We also rely
on the micro-averaged F1 score for model selec-
tion and evaluation.

Following Meng et al. (2017), we augment the
data by flipping all pairs, except for relations in-
volving document creation time (DCT). In other
words, if a pair (ei, ej) exists, we add (ej , ei) to
the dataset with the opposite label (e.g. BEFORE

becomes AFTER). The augmentation applies to the
validation and test sets also. In the final evaluation,
a double-checking technique picks one result from

1https://www.usna.edu/Users/cs/
nchamber/caevo/#corpus

the two-way classification, based on output scores.
The dataset is heavily imbalanced. The training
set has as much as 44.1% VAGUE labels, whereas
only 1.8% labels are SIMULTANEOUS. We did not
do any up-sampling or down-sampling.

3 System

Our system has two main components. The first
one is a pairwise relation classifier, and the other is
the Global Context Layer (GCL). The pairwise re-
lation classifier follows the architecture designed
by Meng et al. (2017), which used the dependency
paths to the least common ancestor (LCA) from
each entity as input. We train the first component
first, and then assemble them in a combined neu-
ral network to continue training. Fig. 1 gives an
overview of the system.

Figure 1: System overview. Originally, the pre-trained sys-
tem has one more dense layer and an output layer, but they
are truncated before combination. The max pooling layers on
top of each Bi-LSTM layers are omitted here.

3.1 Global Context Layer

The Global Context Layer (GCL) we propose is
inspired by the Neural Turing Machine (NTM) ar-
chitecture, which is an extension of a recurrent
neural network with external memory and an at-
tention mechanism for reading and writing to that
memory. NTM has been shown to perform ba-
sic tasks such as copying, sorting, and associative
recall (Graves et al., 2014). The external mem-
ory not only enables a large (theoretically infinite)
capacity for information storage, but also allows
flexible access based on attention mechanisms.

Essentially, GCL is a specialized form of NTM,
which eliminates some parameters to facilitate
training, and specializes some functions to impose
restrictions. While not as powerful as the canoni-
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cal NTM, it is more suitable for the task of retain-
ing and updating global context information.

3.1.1 Motivation
Vanilla RNNs struggle with capturing long-
distance dependencies. Gated RNNs such as
LSTM have trainable gates to address the “van-
ishing and exploding gradient” problem (Hochre-
iter and Schmidhuber, 1997). At each time step, it
chooses what to memorize and forget, so patterns
over arbitrary time intervals can be recognized.
However, the memory in LSTM is still short-term.
No matter how long the cell states keep certain in-
formation, once it is forgotten, it gets lost forever.
Such a mechanism suffices for modeling contigu-
ous sequences. For example, sentences are nat-
urally fit units for such models, since a sentence
starts only after the preceding sentence is finished,
and LSTM may be an adequate tool to process sen-
tences. However, when the sequences are not con-
tiguous, as in temporal and other discourse-scale
relations, LSTM models do not have the capabil-
ity to look for input pieces across sequences.

When humans read text, discourse-level infor-
mation is often distributed across the full scope of
the text. To fully understand an article, we must be
able to organize the processed information across
sentences and paragraphs. In particular, to inter-
pret temporal relations between entities in a sen-
tence, sometimes we also look at relations with
other entities elsewhere in the text. Such entities
or relations form no regular sequences, and only
a system with long-term memory as well as atten-
tion mechanisms can process them. An NTM-like
architecture has an external memory with attention
mechanisms, so it is an ideal candidate for such
tasks. Furthermore, unlike the models that use at-
tention over inputs (Vinyals et al., 2015; Kumar
et al., 2016), NTM-like models are capable of up-
dating previously stored representations. We de-
scribe below the GCL architecture that we use to
store and update the global context information.

3.1.2 Reading
The input to the GCL layer is a concatenation
of three layers from the pairwise neural network.
Two of these are the entity context representation
layers, encoded by the two LSTM branches. The
other is the penultimate hidden layer before the
output layer, which encodes the relation. We can
write them as [e1, e2,x]. The context representa-
tions are used as “keys” to uniquely identify the

Figure 2: GCL computing attention weights. Input entity rep-
resentations are compared to the Key section of GCL mem-
ory. Slots with the same or similar entities get more attention.

entities. Note that we use flat context embeddings,
rather than dependency path embeddings, because
dependency paths tend to be short and will also
vary for the same entity, depending on the other
entity in the pair. As such, they do not provide a
unique way to represent an entity.

The original design of NTM has a complex
addressing mechanism for reading, which also
makes it difficult to train. An important difference
in GCL is that we separate the “key” component
from the “content” component of memory. Each
memory slot S[i] consists of [K[i];M [i]], where
S is the whole memory with n slots, i ≤ n is the
index, K is the key and M is the content. Ad-
dressing is only performed on the key component.
The key component stores the representation of
two entities, provided by the layers encoding the
flat entity context.

K[i] = eM1[i]⊕ eM2[i] (1)

Here ⊕ is the concatenation operator. In the GCL
model, the read head computes a reading weight
Wn×1 from the input entity representations e1, e2
and the entity representations eM1, eM2 in mem-
ory (i.e., the keys in each memory slot). The first
step is to compute the distance between current in-
put and the memory columns, as shown in Eq. 2.
D[i] is the Euclidean distance between the input
key and the memory key of slot M [i]. D′[i] is
computed after flipping the two entities. We do so
because the order of entities in a pair should not
affect their relevance.

D[i] =
1

Z
||e1 ⊕ e2 − eM1[i]⊕ eM2[i]||22

D′[i] =
1

Z ′
||e2 ⊕ e1 − eM1[i]⊕ eM2[i]||22

(2)
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where Z =
∑

iD[i] is the normalization factor,
and so is Z ′ for the flipped case. The reading
weight is then calculated as in Eq. 3, where 1n×1
is a vector of all 1’s.

W [i] = max(softmax(1−D)[i],

softmax(1−D′)[i])
(3)

Every element of W represents the relevance of
the corresponding memory slot (see Fig. 2). Often
it is still too blurred and needs to be further sharp-
ened as in Eq. 4. Here β is a positive number. W β

is a point-wise exponential function by power of
β. A large β allows “winner takes all”, so only the
most relevant memory slots are read.

W read = softmax(W β) (4)

Parameter β could be a constant, or could be train-
able. Our model computes it from the current in-
put xt and the previous output ht−1, and thus it
varies in each time step. Wsharp and bsharp are
trainable weights and bias, cβ is a constant, and
ReLU is the rectified linear function.

βt = ReLU(Wsharp[xt,ht−1]+bsharp)+cβ (5)

With the sharpened reading weight vector, we are
able to obtain the read vector r1×m from M as a
weighted sum, as in Eq. 6.

r =
∑

i

W read[i]M [i] (6)

Generally speaking, the depth of memory M
should be large enough to allow sparse encoding,
so that crucial information is not lost after the sum-
mation. The read vector then contains contextual
information relevant to current input. Both the
read vector and the current input are fed to the con-
troller, yielding GCL output. Unlike the canonical
NTM, the CGL model does not have a trainable
gate interpolating theW t computed at time t, with
W t−1 computed at previous time t−1. The weight
vector is not passed to next time step, so the atten-
tion has no “inertia”.

We tried two variants of the controller: (a) state-
tracking, with an LSTM layer, and (b) stateless,
with a dense layer. An LSTM controller has an
internal state, and also has gates to select input
and output. If the input data and/or the read vec-
tor from M have regular patterns with respect to
time steps, an LSTM controller would be a better
choice. For the specific task of temporal relation
extraction, we saw no difference in performance.

3.1.3 Writing
The controller produces an output ht, which is
sent to the next layer and also used to update M .
Similar to reading, the first step of writing pro-
cedure is to compute an attention weight vector
over the slots of M . As described above, the read-
ing procedure computes a weighted sum over slots
of M . The writing procedure writes a weighted
ht to each slot. The attention mechanism here is
de facto a soft addressing mechanism. The slots
with a higher attention value will be the addresses
which will get more of an update.

The same weight vector W computed as shown
in Eq. 3 is used for writing. However, an addi-
tional operation is introduced for writing. Recall
that the weights are computed from entity repre-
sentations. If the input entities are e1 and e2, the
weight vector should have high values in the slots
corresponding to e1 and/or e2. But we may not
always want relevant memory slots to be overwrit-
ten. Instead, additional information can be written
to a different slot. Additionally, when M is rela-
tively empty, as at the beginning, the addressing
mechanism may treat all slots equally, and uni-
formly update all slots in the same way. In this
case we want the weight vector to shift each time,
so M can diversify fast.

Therefore we use a shift function similar to the
canonical NTM. The idea is to compute a shifted
weight vector W̃ by convolving W with a shift
kernel s which maps a shift distance to a probabil-
ity value. For example, s(−1) = 0.2, s(0) = 0.5,
s(1) = 0.3 means the probabilities of shifting left,
no shifting, and shifting right are 0.2, 0.5, 0.3, re-
spectively. Generally speaking, we want s to give
zeros for most shift distances, so the shifting oper-
ation is limited to a small range.

W̃ [i] =
n−1∑

j=0

W [j]s[i− j] (7)

At each time step, the shift kernel depends on cur-
rent input and output. If the allowed shift range is
[-s/2, +s/2], we train a weight Ws and bias bs to
calculate the shift weights Cs×1,

Ct = softmax(Ws[xt,ht] + bs) (8)

Then the weights are mapped to a circulant ker-
nel to perform the convolution in Eq. 7, the final
output is W̃ .

Finally, the sharpening still needs to be applied.
For the writing procedure, both addressing and
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shifting are “soft” in nature, and thus could yield
a blurred outcome. Again, we train the weights
to obtain a sharpening parameter γ each time, and
perform softmax over W̃ .

γt = ReLU(Wsharp[xt,ht] + bsharp) + cγ (9)

Wwrite = softmax(W̃ γ) (10)

W̃ γ is the point-wise exponential function, over
the shifted weight vector. cγ is a positive constant.

The original NTM model has gates for interpo-
lating W̃ γ at the current time with the one com-
puted at the previous time step, but we omit this
operation. We also omit the erase vector and the
add vector, so Wwrite fully controls what to over-
write in M and what to retain. As a result, the
writing operation can be expressed as:

Mt[i] =Mt−1[i]+Wwrite[i](ht−Mt−1[i]) (11)

The first term in Eq. 11 is the memory in the pre-
vious time step, and the second term is the update.
We update the keys in the same way. As we can
see, the keys come from entity representations, but
are not exactly the same, due to Wwrite.

Kt[i] = Kt−1[i] +Wwrite[i](e1 ⊕ e2 −Kt−1[i])
(12)

3.1.4 GCL vs. Canonical NTM
We highlight below some major differences be-
tween the canonical NTM and the GCL model.
Typically, NTM computes the keys from input and
output for accessing different memory addresses.
In GCL, the keys are simply the entity representa-
tions [e1, e2] from input, in either order. The key
function effectively involves slicing and flipping
the input. Further discussion of the differences be-
tween the GCL addressing mechanism and some
of the other NTM variations is provided in Sec. 5.

Another major difference is that we do not use
any gates to interpolate the attention vector at the
current time step with the one from the previous
time step. Instead, the previous attention vector is
totally ignored. Since we do not compute the erase
vector or the add vector, this allows the attention
vector to fully control memory updates.

In addition, we unified the trainable weights for
calculating β and γ at each time step. We found
these parameters not to be crucial, and setting
them to be constant does not affect the results. We
also do not shift attention for reading. A possible

advantage of shifting attention is that neighboring
slots of the focus can also be accessed, providing
a way to simulate associative recall. This is based
on the fact that the writing procedure tends to write
similar memories close to each other. However, in
this study we want the reading procedure to be re-
stricted. Associative recall can be realized from
attention vector itself, without shifting.

3.2 Pairwise Classification Model

The pairwise model classifies individual entity
pairs, where entities are events and time expres-
sions (timexes). In other words, for each pair,
we only use the local context, and the relation of
one pair does not affect the classification results
for other pairs. We follow the architecture pro-
posed in Meng et al. (2017), but with the follow-
ing changes: (1) all three types of pairs are han-
dled by the same neural network, rather than by
three separately trained models; (2) the neighbor-
ing words (a flat context) of entity mentions are
used to generate input, in addition to words on
syntactic dependency paths; (3) all timex-timex
pairs are included as well, not only event-timex
and event-event pairs; (4) every pair is assigned
a 3-dimensional “time value”, to approximate the
rule-based approach when possible.

3.2.1 Event Pairs and Event-Timex Pairs
TimeBank-Dense dataset labels three types of
pairs: intra-sentence, cross-sentence and docu-
ment creation time (DCT). For intra-sentence pairs
and cross-sentence pairs, we follow Meng et al.
(2017). The shortest dependency path between the
two entities is identified, and the word embeddings
from the path to the least common ancestor for
each entity are processed by two LSTM branches,
with a separate max pooling layer for each branch.
Path to the root is used for cross-sentence rela-
tions. For relations with the DCT, we use a single
word now as a placeholder for the DCT branch.
Unlike Meng et al. (2017), we allow the model to
accept all three pair types, with a “pair type” fea-
ture as a component of input, defined as an integer
with the value 1, -1 or 0, respectively.

In addition to the shortest dependency path, our
model also uses a flat local context window, that
is, the words around each entity mention, regard-
less of syntactic structures. For an entity start-
ing with word wi, the local context window is
5 words to the left and 10 words to its right i.e.
wi−5wi−4...wiwi+1...wi+10. The windows are cut
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short at the edge of a sentence, or when the sec-
ond entity in encountered. By using this context
window, the words between two entities are of-
ten used twice by the system, and thus given more
consideration. To inform the system of other en-
tity mentions, we also add special input tokens at
the locations where events and timexes are tagged.
The embeddings of the special tokens are uni-
formly initialized, and automatically tuned during
the training process.

3.2.2 Timex Pairs
The method described in Meng et al. (2017) clas-
sifies timex pairs by handcrafted rules and then
adds them to the final results prior to postprocess-
ing. Since timexes have concrete time values, a
rule-based method would seem appropriate. How-
ever, since our model uses global context to help
classify relations and timex-timex pairs enrich the
global context representation, we design a way for
a common classifier model to handle such pairs.

When DCT is not involved, timex pairs are cre-
ated the same way as cross-sentence pairs, that is,
path to the root is used for each entity. DCT is
represented by the placeholder word now. In ad-
dition to the word-based representations, another
input vector is used to simulate the rule-based ap-
proach, to be explained next.

3.2.3 Time Value Vectors
Every timex tag has a time value, following the
ISO-8601 standard. Every value can be mapped to
a 2D vector of real values (start, end). For a pair
we use the subtraction of the vectors to represent
the difference. Suppose we have timexes in below:

THE HAGUE, Netherlands (AP)_ The World Court
<TIMEX3 tid="t21" type="DATE" value="1998-02-27"
temporalFunction="true" functionInDocument="NONE"
anchorTimeID="t0">Friday</TIMEX3> rejected U.S.
and British objections to a Libyan World Court
case that has the trial of two Libyans suspected
of blowing up a Pan Am jumbo jet over Scotland in
<TIMEX3 tid="t22" type="DATE" value="1988"
temporalFunction="false"
functionInDocument="NONE">1988</TIMEX3>.

The first timex can be represented as (1998 + 1/12
+ 26/365, 1998 + 1/12 + 26/365) = (1998.155,
1998.155), and the second one (1988, 1988 +
364/365) = (1988, 1988.997). The difference of
the values are put in the sign function, to ob-
tain the representation: (sign(1988 - 1998.155),
sign(1988.997 - 1998.155)) = (-1, -1). Vector (-1,
-1) clearly indicates the AFTER relation between
t21 and t22. We set the minimum interval to be a
day, which is generally sufficient for our data. The

DURATION timexes are not considered, and word-
based input vectors are used to represent them.

In order to make all the input data have the same
shape, we assign the time value vector to all pairs,
even if a timex is not involved. For non-timex
pairs, a vector (-1, 0, 0) is used. The first element
-1 to indicate a “pseudo” time value. Real timex
pairs have the first value of 1, so the example we
just discussed would be assigned a vector (1, -1, -
1). The time value vectors allow the model to take
advantage of rule-based information.

3.3 Combining Two Components

We tried training the two components in a com-
bined system, but found it slow to converge. In our
experiments, we trained the pairwise model first,
froze it, and then combined it with the GCL layer
to train the GCL. This method also helps us ob-
serve whether the GCL component alone improves
results, given the same input.

We tried combining the systems in two ways.
One is to connect the output layer of the pre-
trained model to GCL, and the other is to slice the
pre-trained model and connect its hidden layer to
GCL. All the GCL layers are bi-directional, aver-
aging forward and backward passes. By connect-
ing the output layer, which has a softmax activa-
tion, we hand the final decisions made by the pair-
wise model to GCL. On the other hand, the hid-
den layer provides higher layers with cruder but
richer information. We found that the latter per-
forms better. It is also possible to train the two
components together from scratch. In this case,
the learning rate has to be set much lower to as-
sure convergence, and the training requires more
epochs.

4 Experiments

For all the experiments, hyperparameters includ-
ing the number of epochs are tuned with the val-
idation set only. Training data is segmented into
chunks. Each chunk contains relation pairs in the
narrative order. The size of chunks is randomly
chosen from [40, 60, 80, 120, 160] at the begin-
ning of each epoch of training. The GCL main-
tains a memory for each chunk, and clears it at the
end of a chunk. The idea here is to train the model
on short paragraphs to avoid overfitting.

To introduce further randomness, the chunks are
rotated for each epoch. For a specific training file,
if chunk i starts with pair ni in epoch 1, in epoch
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2, chunk iwill start with pair ni+chunksize+11.
11 is a prime number we chose to assure each
epoch observes different compositions of chunks.
By doing the rotation, some pairs in the final
chunk of epoch 1 will show up in the first chunk
in epoch 2 as well. However, within each chunk,
we do not randomize pairs, so narrative order is
preserved at this level. We also do not shuffle the
chunks, but only rotate them.

Evaluation on the test set uses only one chunk
for each file (chunk size is the number of pairs).
Each relation pair is only processed once, without
“multiple rounds of reading”. Thus, we essentially
train the model to read shorter paragraphs (varied
in length), but test it on long articles.

4.1 Pairwise Model
As described in Section 3.2, the pairwise classi-
fier has the following input vectors: left and right
shortest path branches, two flat context vectors, a
pair type flag, and a time value vector. Word em-
beddings are initialized with glove.840B.300d
word vectors2, and set to be trainable. The Bi-
LSTM layers are followed by max-pooling. The
two hidden layers have size 512 and 128, respec-
tively. We train this model for 40 epochs, us-
ing the RMSProp optimizer (Tieleman and Hin-
ton, 2012). The learning rate is scheduled as
lr = 2 × 10−3 × 2−

n
5 , where n is the number

of epochs.
The middle block of Table 1 shows the per-

formance of the pairwise model after applying
double-checking. Since all pairs are flipped,
double-checking combines results from (ei, ej)
and (ej , ei), picking the label with the higher prob-
ability score, which typically boosts performance.
The results without double-checking show similar
trends.

4.2 GCL model
After training the pairwise model, we combine it
with GCL. Unless otherwise indicated, the results
reported in this section use the model configura-
tion that connects the hidden layer (rather than the
output layer) of the pairwise model with a bidirec-
tional GCL layer. The bidirectional GCL is real-
ized as the average of a forward GCL and a back-
ward GCL, each producing a sequence. Then two
more hidden layers are put on top of it, followed

2https://nlp.stanford.edu/projects/glove/
3This result does not include timex-timex pairs, which is

3% of total test instances.

Model Micro-F1 Macro-F1
CAEVO (not NN model) .507
CATENA (not NN model) .511
Cheng et al. 2017 .5203

Meng et al. 2017 .519
pairwise .535 .528
Two more hidden layers .539 .532
GCL w/ state-tracking controller .545 .538
GCL w/ stateless controller .546 .538
GCL w/ pre-trained output layer .541 .536

Table 1: Results on the test set. The GCL models use
the same hyperparameters, if possible. The two models on
the top do not use neural networks. The results in the two
lower blocks all use double-check. “Two more hidden lay-
ers” means adding two dense layers on top of the pre-trained
model without using GCL. The last row corresponds to con-
necting the output layer of a pre-trained model to GCL layers
with stateless controller.

by an output layer. All the layers in the pre-trained
pairwise model are set to be untrainable. The two
trainable hidden layers have sizes 512 and 128, re-
spectively, with ReLU activtion and 0.3 dropout
after each one. The GCLs have 128 memory slots.
Learning rate is scheduled as lr = 2×10−4×2−n

2 .
In the experiments, we found the models converge
quite fast with respect to the number of epochs. It
is not surprising because the lower layers are al-
ready well trained, and frozen (no updating). Af-
ter the 5th epoch, the training accuracy typically
reaches 0.95. We stop training after 10 epochs.

The bottom block of Table 1 presents the re-
sults, showing that all models from the present pa-
per outperform existing models from the literature.
One may argue the combined system adds more
hidden layers over a pre-trained model, which con-
tributes to the improvement in performance. We
show a comparison to a baseline model which adds
two dense layers on top of the pairwise model,
without the GCL. The configuration of the two
layers is the same as we used for the GCL models.
The result shows that the performance is slightly
higher than what we get from the pairwise model,
but the difference is smaller than what we get from
GCL models – suggesting that the performance
improvement with GCL models is not just due to
more parameters. We also tried adding an LSTM
layer on top of the pre-trained model, and found
the system cannot converge. It again confirms that
GCL is more powerful than LSTM in handling ir-
regular time series.

We found no difference in performance be-
tween the stateless controller and state-tracking
controller. Connecting the output layer of the pre-
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trained model to GCL seems to generate weaker
results than connecting the hidden layer, although
it also outperforms the pairwise model, and all pre-
vious models in literature.

We performed significance testing to compare
the pairwise model and the GCL-enabled model.
A paired one-tailed t-test shows the results from
the GCL model are significantly higher than re-
sults from pairwise model (p-value 0.0015). While
significant, the improvement is relatively small,
we believe due in part to the small size of
Timebank-Dense dataset.

4.3 Case Study

To illustrate the difference in performance of the
pairwise model and the GCL model, we created a
sample paragraph in which long-distance depen-
dencies and references to DCT are needed to re-
solve some of the temporal relations:

John met Mary in Massachusetts when they attended
the same university. They are getting married in 2019,
2 years after their graduation. But this year, they have
relocated to New Hampshire.

We created the gold standard annotation for this
text with 5 events, 2 timexes, and 24 TLINKs (see
appendix)4. We set the DCT to an arbitrary date
“2018-04-01”. There are no VAGUE or SIMULTA-
NEOUS relations.

For this paragraph, the pairwise model yields an
accuracy (i.e. micro-averaged F1) of 0.292, while
the GCL-enabled model yields 0.417. Overall, the
GCL-enabled model assigns 6 VAGUE labels while
the pairwise assigns 11. It reflects the fact that
GCL tries to infer relations from otherwise vague
evidence. For example, it is difficult to infer the
relation between met and 2019 from the local con-
text (without DCT, particularly), so the pairwise
model labels it as VAGUE, while the GCL-enabled
model correctly assigns BEFORE.

Recall that the GCL is placed on top of a pre-
trained pairwise model, so the mistakes made by
the pairwise model propagate to GCL. For exam-
ple, the pairwise model incorrectly classifies 2019
as BEFORE graduation – perhaps, due to a some-
what unusual syntax. But the GCL-enabled sys-
tem assigns it a VAGUE label, probably as a way
to compromise. In the TimeBank-Dense test data,
VAGUE cases dominate, which may have made it
more difficult for GCL to assign proper labels. In
the future, we believe it may be better to omit

4Note that in TimeBank-Dense, no TLINKS are associated
DURATION timexes, so 2 years is not annotated

writing (and reading) the VAGUE relations to/from
GCL.

4.4 Error Analysis
Table 2 shows the overall performance for each
relation using the GCL system with the stateless
controller. Since we flip pairs and use double-
checking to pick one result for each pair, BE-
FORE/AFTER and IS INCLUDED/INCLUDES are
actually treated in the same way, respectively.
Here we map the results to original pairs, in order
to compare to other systems.

Predicted labels
SIMUL BEF AFT IS INCL INCL VAG Total

SIMUL 10 0 9 2 1 17 39
BEF 0 327 27 15 5 215 589
AFT 1 26 208 4 5 184 428
IS INCL 1 27 3 59 2 67 159
INCL 0 16 9 2 19 70 116
VAG 1 171 87 28 17 596 900

Table 2: Overall results per relation.

As the table shows, the VAGUE relation causes
the most trouble. It is not only because VAGUE

is the largest class, but also because it is often
semantically ambiguous, so even human experts
have low inter-annotator agreement. If we allow
a relatively sparse labeling of data, and use other
evaluation methods (e.g. question answering), the
VAGUE class is not likely to have similar effects.

We also break down the results according to the
types of pairs. Compared to other systems, our
approach has a big advantage for event-event (E-
E) pairs, which is by far the most common (64%)
relation pairs for all data, and also requires more
complex natural language understanding. Com-

Systems E-D E-E E-T Overall
Frequency 14% 64% 19% 97%
CAEVO .553 .494 .494 .502
CATENA .534 .519 .468 .512
Cheng et al. 2017 .546 .529 .471 .520
GCL .489 .570 .487 .542

Table 3: Results on the E-D, E-D and E-T pairs. GCL
stands for the GCL-enabled system with a stateless controller.
Frequencies are percentages in the test set. T-T pairs are
not shown here. CAEVO is from Chambers et al. (2014).
CATENA is from Mirza and Tonelli (2016)

paired to CAEVO, our performance on event-DCT
(E-D) and event-timex (E-T) pairs is not that great.
CAEVO uses engineered features such as entity at-
tributes, temporal signals, and semantic informa-
tion from WordNet, which seems to work well in
these two cases. We took a closer look at our E-D
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results, and found that the relatively low perfor-
mance is mainly caused by misclassifying VAGUE

as AFTER. As Table 4 shows, among the 72

Predicted labels
SIMUL BEF AFT IS INCL INCL VAG

SIMUL 0 0 0 0 0 0
BEF 0 57 11 15 6 37
AFT 0 3 36 0 0 10
IS INCL 0 11 1 31 1 12
INCL 0 0 2 1 3 2
VAG 0 4 20 9 14 25

Table 4: Test results from event and document creation time
(E-D) pairs. The rows are true labels and the columns are
predicted labels.

VAGUE relations in E-D pairs, 20 are labeled AF-
TER by our system. In a news article, most events
occur before the DCT i.e. the time when the arti-
cle was written. If the temporal relation is vague,
our system tends to guess that the event occurs af-
ter the DCT. It is interesting because AFTER only
accounts for 16% of all E-D pairs in test data (and
about the same in training data), behind BEFORE

(41%), VAGUE (21%), and IS INCLUDED (18%).
However, E-D is a relatively small category with
only 311 instances in the test set, so it is difficult
to draw any a substantive conclusion in this case.

Recall that our model has a uniform architec-
ture for all input types and is trained on event-
event, event-timex and event-DCT pairs simulta-
neously. As a result, its performance is not optimal
for some lower-frequency pair types. Tuning the
model for each pair type separately, as well as re-
sampling to deal with class imbalance would, per-
haps, improve performance. However, the point
of these experiments was not to get the largest im-
provement, but to show that the GCL mechanism
can replace heuristic-based timegraph conflict res-
olution, improving the performance of an other-
wise very similar model.

5 Related Work

While the GCL model is inspired by NTM, other
NTM variants have also been proposed recently.
Zhang et al. (2015) proposed structured memory
architectures for NTMs, and argue they could alle-
viate overfitting and increase predictive accuracy.
Graves et al. (2016) proposed a memory access
mechanism on top of NTM, which they call Differ-
entiable Neural Computer (DNC). DNC can store
the transitions between memory locations it ac-
cesses, and thus can model some structured data.

Gülçehre et al. (2016) proposed a Dynamic
Neural Turing Machine (D-NTM) model, which

allows discrete access to memory. Gülçehre et al.
(2017) further simplified the addressing algorithm,
so a single trainable matrix is used to get locations
for read and write. Both models separate the ad-
dress section from the content section of memory,
as do we. We came up with the idea indepen-
dently, noting that the content-based addressing in
the canonical NTM model is difficult to train. A
crucial difference between GCL and these mod-
els is that they use input “content” to compute
keys. In GCL, the addressing mechanism fully
depends on the entity representations, which are
provided by the context encoding layers and not
computed by the GCL controller. Addressing then
involves matching the input entities and the enti-
ties in memory.

Other than NTM-based approaches, there are
models that use an attention mechanism over ei-
ther input or external memory. For instance, the
Pointer Networks (Vinyals et al., 2015) uses at-
tention over input timesteps. However, it has
no power to rewrite information for later use,
since they have no “memory” except for the RNN
states. The Dynamic Memory Networks (Kumar
et al., 2016) has an “episodic memory” module
which can be updated at each timestep. However,
the memory there is a vector (“episode”) with-
out internal structure, and the attention mechanism
works on inputs, just as in Pointer Networks. Our
GCL model and other NTM-based models have a
memory with multiple slots, and the addressing
function (attention) dictates writing and reading
to/from certain slots in the memory.

6 Conclusion

We have proposed the first context-aware neural
model for temporal information extraction using
an external memory to represent global context.
Our model introduces a Global Context Layer
which is able to save and retrieve processed tem-
poral relations, and then use this global context to
infer new relations from new input. The memory
can be updated, allowing self-correction. Experi-
mental results show that the proposed model beats
previous results without resorting to ad-hoc reso-
lution of timegraph conflicts in postprocessing.
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Abstract

Inspired by the double temporality char-
acteristic of narrative texts, we propose a
novel approach for acquiring rich tempo-
ral “before/after” event knowledge across
sentences in narrative stories. The dou-
ble temporality states that a narrative story
often describes a sequence of events fol-
lowing the chronological order and there-
fore, the temporal order of events matches
with their textual order. We explored
narratology principles and built a weakly
supervised approach that identifies 287k
narrative paragraphs from three large text
corpora. We then extracted rich tem-
poral event knowledge from these narra-
tive paragraphs. Such event knowledge
is shown useful to improve temporal rela-
tion classification and outperform several
recent neural network models on the nar-
rative cloze task.

1 Introduction

Occurrences of events, referring to changes and
actions, show regularities. Specifically, certain
events often co-occur and in a particular temporal
order. For example, people often go to work af-
ter graduation with a degree. Such “before/after”
temporal event knowledge can be used to recog-
nize temporal relations between events in a doc-
ument even when their local contexts do not in-
dicate any temporal relations. Temporal event
knowledge is also useful to predict an event given
several other events in the context. Improving
event temporal relation identification and event
prediction capabilities can benefit various NLP
applications, including event timeline generation,
text summarization and question answering.

While being in high demand, temporal event

Michael Kennedy graduated with a bachelor’s degree from
Harvard University in 1980. He married his wife, Vic-
toria, in 1981 and attended law school at the University
of Virginia. After receiving his law degree, he briefly
worked for a private law firm before joining Citizens En-
ergy Corp. He took over management of the corporation,
a non-profit firm that delivered heating fuel to the poor,
from his brother Joseph in 1988. Kennedy expanded the
organization goals and increased fund raising.

Beth paid the taxi driver. She jumped out of the taxi and
headed towards the door of her small cottage. She reached
into her purse for keys. Beth entered her cottage and got
undressed. Beth quickly showered deciding a bath would
take too long. She changed into a pair of jeans, a tee shirt,
and a sweater. Then, she grabbed her bag and left the
cottage.

Figure 1: Two narrative examples

knowledge is lacking and difficult to obtain. Ex-
isting knowledge bases, such as Freebase (Bol-
lacker et al., 2008) or Probase (Wu et al., 2012),
often contain rich knowledge about entities, e.g.,
the birthplace of a person, but contain little event
knowledge. Several approaches have been pro-
posed to acquire temporal event knowledge from
a text corpus, by either utilizing textual patterns
(Chklovski and Pantel, 2004) or building a tempo-
ral relation identifier (Yao et al., 2017). However,
most of these approaches are limited to identifying
temporal relations within one sentence.

Inspired by the double temporality character-
istic of narrative texts, we propose a novel ap-
proach for acquiring rich temporal “before/after”
event knowledge across sentences via identify-
ing narrative stories. The double temporality
states that a narrative story often describes a se-
quence of events following the chronological or-
der and therefore, the temporal order of events
matches with their textual order (Walsh, 2001;
Riedl and Young, 2010; Grabes, 2013). There-
fore, we can easily distill temporal event knowl-
edge if we have identified a large collection of

537



narrative texts. Consider the two narrative ex-
amples in figure 1, where the top one is from
a news article of New York Times and the bot-
tom one is from a novel book. From the top
one, we can easily extract one chronologically or-
dered event sequence {graduated, marry, attend,
receive, work, take over, expand, increase}, with
all events related to the main character Michael
Kennedy. While some parts of the event sequence
are specific to this story, the event sequence con-
tains regular event temporal relations, e.g., people
often {graduate} first and then get {married}, or
{take over} a role first and then {expand} a goal.
Similarly, from the bottom one, we can easily ex-
tract another event sequence {pay, jump out, head,
reach into, enter, undress, shower, change, grab,
leave} that contains routine actions when people
take a shower and change clothes.

There has been recent research on narrative
identification from blogs by building a text clas-
sifier in a supervised manner (Gordon and Swan-
son, 2009; Ceran et al., 2012). However, narra-
tive texts are common in other genres as well,
including news articles and novel books, where
little annotated data is readily available. There-
fore, in order to identify narrative texts from rich
sources, we develop a weakly supervised method
that can quickly adapt and identify narrative texts
from different genres, by heavily exploring the
principles that are used to characterize narrative
structures in narratology studies. It is generally
agreed in narratology (Forster, 1962; Mani, 2012;
Pentland, 1999; Bal, 2009) that a narrative is a dis-
course presenting a sequence of events arranged in
their time order (the plot) and involving specific
characters (the characters). First, we derive spe-
cific grammatical and entity co-reference rules to
identify narrative paragraphs that each contains a
sequence of sentences sharing the same actantial
syntax structure (i.e., NP VP describing a charac-
ter did something) (Greimas, 1971) and mention-
ing the same character. Then, we train a classifier
using the initially identified seed narrative texts
and a collection of grammatical, co-reference and
linguistic features that capture the two key princi-
ples and other textual devices of narratives. Next,
the classifier is applied back to identify new narra-
tives from raw texts. The newly identified narra-
tives will be used to augment seed narratives and
the bootstrapping learning process iterates until no
enough new narratives can be found.

Then by leveraging the double temporality char-
acteristic of narrative paragraphs, we distill gen-
eral temporal event knowledge. Specifically, we
extract event pairs as well as longer event se-
quences consisting of strongly associated events
that often appear in a particular textual order in
narrative paragraphs, by calculating Causal Poten-
tial (Beamer and Girju, 2009; Hu et al., 2013) be-
tween events.

Specifically, we obtained 19k event pairs and
25k event sequences with three to five events from
the 287k narrative paragraphs we identified across
three genres, news articles, novel books and blogs.
Our evaluation shows that both the automatically
identified narrative paragraphs and the extracted
event knowledge are of high quality. Furthermore,
the learned temporal event knowledge is shown to
yield additional performance gains when used for
temporal relation identification and the Narrative
Cloze task. The acquired event temporal knowl-
edge and the knowledge acquisition system are
publicly available1.

2 Related Work

Several previous works have focused on acquir-
ing temporal event knowledge from texts. Ver-
bOcean (Chklovski and Pantel, 2004) used pre-
defined lexico-syntactic patterns (e.g., “X and then
Y”) to acquire event pairs with the temporal hap-
pens before relation from the Web. Yao et al.
(2017) simultaneously trained a temporal “be-
fore/after” relation classifier and acquired event
pairs that are regularly in a temporal relation by
exploring the observation that some event pairs
tend to show the same temporal relation regardless
of contexts. Note that these prior works are limited
to identifying temporal relations within individual
sentences. In contrast, our approach is designed
to acquire temporal relations across sentences in a
narrative paragraph. Interestingly, only 195 (1%)
out of 19k event pairs acquired by our approach
can be found in VerbOcean or regular event pairs
learned by the previous two approaches.

Our design of the overall event knowledge ac-
quisition also benefits from recent progress on nar-
rative identification. Gordon and Swanson (2009)
annotated a small set of paragraphs presenting sto-
ries in the ICWSM Spinn3r Blog corpus (Burton
et al., 2009) and trained a classifier using bag-of-
words features to identify more stories. (Ceran

1http://nlp.cs.tamu.edu/resources.html
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et al., 2012) trained a narrative classifier using se-
mantic triplet features on the CSC Islamic Extrem-
ist corpus. Our weakly supervised narrative iden-
tification method is closely related to Eisenberg
and Finlayson (2017), which also explored the two
key elements of narratives, the plot and the charac-
ters, in designing features with the goal of obtain-
ing a generalizable story detector. But different
from this work, our narrative identification method
does not require any human annotations and can
quickly adapt to new text sources.

Temporal event knowledge acquisition is re-
lated to script learning (Chambers and Jurafsky,
2008), where a script consists of a sequence of
events that are often temporally ordered and rep-
resent a typical scenario. However, most of the
existing approaches on script learning (Chambers
and Jurafsky, 2009; Pichotta and Mooney, 2016;
Granroth-Wilding and Clark, 2016) were designed
to identify clusters of closely related events, not to
learn the temporal order between events though.
For example, Chambers and Jurafsky (2008, 2009)
learned event scripts by first identifying closely re-
lated events that share an argument and then rec-
ognizing their partial temporal orders by a separate
temporal relation classifier trained on the small la-
beled dataset TimeBank (Pustejovsky et al., 2003).
Using the same method to get training data, Jans
et al. (2012); Granroth-Wilding and Clark (2016);
Pichotta and Mooney (2016); Wang et al. (2017)
applied neural networks to learn event embed-
dings and predict the following event in a con-
text. Distinguished from the previous script learn-
ing works, we focus on acquiring event pairs or
longer script-like event sequences with events ar-
ranged in a complete temporal order. In addi-
tion, recent works (Regneri et al., 2010; Modi
et al., 2016) collected script knowledge by directly
asking Amazon Mechanical Turk (AMT) to write
down typical temporally ordered event sequences
in a given scenario (e.g., shopping or cooking). In-
terestingly, our evaluation shows that our approach
can yield temporal event knowledge that covers
48% of human-provided script knowledge.

3 Key Elements of Narratives

It is generally agreed in narratology (Forster,
1962; Mani, 2012; Pentland, 1999; Bal, 2009) that
a narrative presents a sequence of events arranged
in their time order (the plot) and involving specific
characters (the characters).

Plot. The plot consists of a sequence of closely re-
lated events. According to (Bal, 2009), an event in
a narrative often describes a “transition from one
state to another state, caused or experienced by ac-
tors”. Moreover, as Mani (2012) illustrates, a nar-
rative is often “an account of past events in some-
one’s life or in the development of something”.
These prior studies suggest that sentences contain-
ing a plot event are likely to have the actantial syn-
tax “NP VP”2 (Greimas, 1971) with the main verb
in the past tense.
Character. A narrative usually describes events
caused or experienced by actors. Therefore, a nar-
rative story often has one or two main characters,
called protagonists, who are involved in multiple
events and tie events together. The main character
can be a person or an organization.
Other Textual Devices. A narrative may contain
peripheral contents other than events and charac-
ters, including time, place, the emotional and psy-
chological states of characters etc., which do not
advance the plot but provide essential information
to the interpretation of the events (Pentland, 1999).
We use rich Linguistic Inquiry and Word Count
(LIWC) (Pennebaker et al., 2015) features to cap-
ture a variety of textual devices used to describe
such contents.

4 Phase One: Weakly Supervised
Narrative Identification

In order to acquire rich temporal event knowledge,
we first develop a weakly supervised approach that
can quickly adapt to identify narrative paragraphs
from various text sources.

4.1 System Overview

The weakly supervised method is designed to cap-
ture key elements of narratives in each of two
stages. As shown in figure 2, in the first stage, we
identify the initial batch of narrative paragraphs
that satisfy strict rules and the key principles of
narratives. Then in the second stage, we train a sta-
tistical classifier using the initially identified seed
narrative texts and a collection of soft features for
capturing the same key principles and other tex-
tual devices of narratives. Next, the classifier is
applied to identify new narratives from raw texts
again. The newly identified narratives will be used
to augment seed narratives and the bootstrapping

2NP is Noun Phrase and VP is Verb Phrase.
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Figure 2: Overview of the Narrative Learning System

learning process iterates until no enough (specifi-
cally, less than 2,000) new narratives can be found.
Here, in order to specialize the statistical classifier
to each genre, we conduct the learning process on
news, novels and blogs separately.

4.2 Rules for Identifying Seed Narratives

Grammar Rules for Identifying Plot Events.
Guided by the prior narratology studies (Greimas,
1971; Mani, 2012) and our observations, we use
context-free grammar production rules to identify
sentences that describe an event in an actantial
syntax structure. Specifically, we use three sets
of grammar rules to specify the overall syntactic
structure of a sentence. First, we require a sen-
tence to have the basic active voiced structure “S
→ NP VP” or one of the more complex sentence
structures that are derived from the basic struc-
ture considering Coordinating Conjunctions (CC),
Adverbial Phrase (ADVP) or Prepositional Phrase
(PP) attachments3. For example, in the narrative of
Figure 1, the sentence “Michael Kennedy earned
a bachelor’s degree from Harvard University in
1980.” has the basic sentence structure “S→ NP
VP”, where the “NP” governs the character men-
tion of ‘Michael Kennedy’ and the “VP” governs
the rest of the sentence and describes a plot event.

In addition, considering that a narrative is usu-
ally “an account of past events in someone’s life
or in the development of something” (Mani, 2012;
Dictionary, 2007), we require the headword of the
VP to be in the past tense. Furthermore, the sub-
ject of the sentence is meant to represent a char-
acter. Therefore, we specify 12 grammar rules4 to

3We manually identified 14 top-level sentence production
rules, for example, “S→ NP ADVP VP”, “S→ PP , NP VP”
and “S→ S CC S”. Appendix shows all the rules.

4The example NP rules include “NP → NNP”, “NP →
NP CC NP” and “NP→ DT NNP”.

require the sentence subject noun phrase to have
a simple structure and have a proper noun or pro-
noun as its head word.

For seed narratives, we consider paragraphs
containing at least four sentences and we require
60% or more sentences to satisfy the sentence
structure specified above. We also require a nar-
rative paragraph to contain no more than 20% of
sentences that are interrogative, exclamatory or di-
alogue, which normally do not contain any plot
events. The specific parameter settings are mainly
determined based on our observations and anal-
ysis of narrative samples. The threshold of 60%
for “sentences with actantial structure” was set to
reflect the observation that sentences in a narra-
tive paragraph usually (over half) have an actan-
tial structure. A small portion (20%) of interroga-
tive, exclamatory or dialogue sentences is allowed
to reflect the observation that many paragraphs are
overall narratives even though they may contain
1 or 2 such sentences, so that we achieve a good
coverage in narrative identification.

The Character Rule. A narrative usually has a
protagonist character that appears in multiple sen-
tences and ties a sequence of events, therefore,
we also specify a rule requiring a narrative para-
graph to have a protagonist character. Concretely,
inspired by Eisenberg and Finlayson (2017), we
applied the named entity recognizer (Finkel et al.,
2005) and entity coreference resolver (Lee et al.,
2013) from the CoreNLP toolkit (Manning et al.,
2014) to identify the longest entity chain in a para-
graph that has at least one mention recognized as
a Person or Organization, or a gendered pronoun.
Then we calculate the normalized length of this
entity chain by dividing the number of entity men-
tions by the number of sentences in the paragraph.
We require the normalized length of this longest
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entity chain to be ≥ 0.4, meaning that 40% or
more sentences in a narrative mention a character
5.

4.3 The Statistical Classifier for Identifying
New Narratives

Using the seed narrative paragraphs identified in
the first stage as positive instances, we train a sta-
tistical classifier to continue to identify more nar-
rative paragraphs that may not satisfy the specific
rules. We also prepare negative instances to com-
pete with positive narrative paragraphs in train-
ing. Negative instances are paragraphs that are not
likely to be narratives and do not present a plot or
protagonist character, but are similar to seed narra-
tives in others aspects. Specifically, similar to seed
narratives, we require a non-narrative paragraph to
contain at least four sentences with no more than
20% of sentences being interrogative, exclamatory
or dialogue; but in contrast to seed narratives, a
non-narrative paragraph should contain 30% of or
fewer sentences that have the actantial sentence
structure, where the longest character entity chain
should not span over 20% of sentences. We ran-
domly sample such non-narrative paragraphs that
are five times of narrative paragraphs 6.

In addition, since it is infeasible to apply the
trained classifier to all the paragraphs in a large
text corpus, such as the Gigaword corpus (Graff
and Cieri, 2003), we identify candidate narrative
paragraphs and only apply the statistical classifier
to these candidate paragraphs. Specifically, we re-
quire a candidate paragraph to satisfy all the con-
straints used for identifying seed narrative para-
graphs but contain only 30%7 or more sentences
with an actantial structure and have the longest
character entity chain spanning over 20%8 of or
more sentences.

We choose Maximum Entropy (Berger et al.,
1996) as the classifier. Specifically, we use the
MaxEnt model implementation in the LIBLIN-

540% was chosen to reflect that a narrative paragraph of-
ten contains a main character that is commonly mentioned
across sentences (half or a bit less than half of all the sen-
tences).

6We used the skewed pos:neg ratio of 1:5 in all bootstrap-
ping iterations to reflect the observation that there are gener-
ally many more non-narrative paragraphs than narrative para-
graphs in a document.

7This value is half of the corresponding thresshold used
for identifying seed narrative paragraphs.

8This value is half of the corresponding thresshold used
for identifying seed narrative paragraphs.

EAR library9 (Fan et al., 2008) with default pa-
rameter settings. Next, we describe the features
used to capture the key elements of narratives.

Features for Identifying Plot Events: Realiz-
ing that grammar production rules are effective in
identifying sentences that contain a plot event, we
encode all the production rules as features in the
statistical classifier. Specifically, for each narra-
tive paragraph, we use the frequency of all syntac-
tic production rules as features. Note that the bot-
tom level syntactic production rules have the form
of POS tag→WORD and contain a lexical word,
which made these rules dependent on specific con-
texts of a paragraph. Therefore, we exclude these
bottom level production rules from the feature set
in order to model generalizable narrative elements
rather than specific contents of a paragraph.

In addition, to capture potential event sequence
overlaps between new narratives and the already
learned narratives, we build a verb bigram lan-
guage model using verb sequences extracted from
the learned narrative paragraphs and calculate the
perplexity score (as a feature) of the verb sequence
in a candidate narrative paragraph. Specifically,
we calculate the perplexity score of an event se-
quence that is normalized by the number of events,
PP (e1, ..., eN ) = N

√∏N
i=1

1
P (ei|ei−1)

, where N is
the total number of events in a sequence and ei
is a event word. We approximate P (ei|ei−1) =
C(ei−1,ei)
C(ei−1)

, where C(ei−1) is the number of oc-
currences of ei−1 and C(ei−1, ei) is the number
of co-occurrences of ei−1 and ei. C(ei−1, ei)
and C(ei−1) are calculated based on all event se-
quences from known narrative paragraphs.

Features for the Protagonist Characters: We
consider the longest three coreferent entity chains
in a paragraph that have at least one mention rec-
ognized as a Person or Organization, or a gen-
dered pronoun. Similar to the seed narrative iden-
tification stage, we obtain the normalized length
of each entity chain by dividing the number of
entity mentions with the number of sentences in
the paragraph. In addition, we also observe that
a protagonist character appears frequently in the
surrounding paragraphs as well, therefore, we cal-
culate the normalized length of each entity chain
based on its presences in the target paragraph as
well as one preceding paragraph and one follow-

9https://www.csie.ntu.edu.tw/˜cjlin/
liblinear/

541



0 (Seeds) 1 2 3 4 Total
News 20k 40k 12k 5k 1k 78k
Novels 75k 82k 24k 6k 2k 189k
Blogs 6k 10k 3k 1k - 20k
Sum 101k 132k 39k 12k 3k 287k

Table 1: Number of new narratives generated after
each bootstrapping iteration

ing paragraph. We use 6 normalized lengths (3
from the target paragraph 10 and 3 from surround-
ing paragraphs) as features.

Other Writing Style Features: We create a fea-
ture for each semantic category in the Linguistic
Inquiry and Word Count (LIWC) dictionary (Pen-
nebaker et al., 2015), and the feature value is the
total number of occurrences of all words in that
category. These LIWC features capture presences
of certain types of words, such as words denoting
relativity (e.g., motion, time, space) and words re-
ferring to psychological processes (e.g., emotion
and cognitive). In addition, we encode Parts-of-
Speech (POS) tag frequencies as features as well
which have been shown effective in identifying
text genres and writing styles.

4.4 Identifying Narrative Paragraphs from
Three Text Corpora

Our weakly supervised system is based on the
principles shared across all narratives, so it can
be applied to different text sources for identify-
ing narratives. We considered three types of texts:
(1) News Articles. News articles contain narrative
paragraphs to describe the background of an im-
portant figure or to provide details for a significant
event. We use English Gigaword 5th edition (Graff
and Cieri, 2003; Napoles et al., 2012), which con-
tains 10 million news articles. (2) Novel Books.
Novels contain rich narratives to describe actions
by characters. BookCorpus (Zhu et al., 2015) is a
large collection of free novel books written by un-
published authors, which contains 11,038 books of
16 different sub-genres (e.g., Romance, Historical,
Adventure, etc.). (3) Blogs. Vast publicly accessi-
ble blogs also contain narratives because “personal
life and experiences” is a primary topic of blog
posts (Lenhart, 2006). We use the Blog Author-
ship Corpus (Schler et al., 2006) collected from
the blogger.com website, which consists of 680k
posts written by thousands of authors. We applied

10Specifically, the lengths of the longest, second longest
and third longest entity chains.

the Stanford CoreNLP tools (Manning et al., 2014)
to the three text corpora to obtain POS tags, parse
trees, named entities, coreference chains, etc.

In order to combat semantic drifts (McIntosh
and Curran, 2009) in bootstrapping learning, we
set the initial selection confidence score produced
by the statistical classifier at 0.5 and increase it by
0.05 after each iteration. The bootstrapping sys-
tem runs for four iterations and learns 287k narra-
tive paragraphs in total. Table 1 shows the num-
ber of narratives that were obtained in the seed-
ing stage and in each bootstrapping iteration from
each text corpus.

5 Phase Two: Extract Event Temporal
Knowledge from Narratives

Narratives we obtained from the first phase may
describe specific stories and contain uncommon
events or event transitions. Therefore, we apply
Pointwise Mutual Information (PMI) based statis-
tical metrics to measure strengths of event tempo-
ral relations in order to identify general knowl-
edge that is not specific to any particular story.
Our goal is to learn event pairs and longer event
chains with events completely ordered in the tem-
poral “before/after” relation.

First, by leveraging the double temporality char-
acteristic of narratives, we only consider event
pairs and longer event chains with 3-5 events that
have occurred as a segment in at least one event
sequence extracted from a narrative paragraph.
Specifically, we extract the event sequence (the
plot) from a narrative paragraph by finding the
main event in each sentence and chaining the main
events11 according to their textual order.

Then we rank candidate event pairs based on
two factors, how strongly associated two events
are and how common they appear in a particu-
lar temporal order. We adopt the existing met-
ric, Causal Potential (CP), which has been ap-
plied to acquire causally related events (Beamer
and Girju, 2009) and exactly measures the two as-
pects. Specifically, the CP score of an event pair is
calculated using the following equation:

cp(ei, ej) = pmi(ei, ej) + log
P (ei → ej)

P (ej → ei)
(1)

where, the first part refers to the Pointwise Mutual
Information (PMI) between two events and the

11We only consider main events that are in base verb forms
or in the past tense, by requiring their POS tags to be VB,
VBP, VBZ or VBD.
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second part measures the relative ordering or two
events. P (ei → ej) refers to the probability that
ei occurs before ej in a text, which is proportional
to the raw frequency of the pair. PMI measures
the association strength of two events, formally,
pmi(ei, ej) = log

P (ei,ej)
P (ei)P (ej)

, P (ei) = C(ei)∑
x C(ex)

and P (ei, ej) =
C(ei,ej)∑

x

∑
y C(ex,ey)

, where, x and y

refer to all the events in a corpus,C(ei) is the num-
ber of occurrences of ei,C(ei, ej) is the number of
co-occurrences of ei and ej .

While each candidate pair of events should
have appeared consecutively as a segment in at
least one narrative paragraph, when calculating the
CP score, we consider event co-occurrences even
when two events are not consecutive in a narra-
tive paragraph but have one or two other events
in between. Specifically, the same as in (Hu and
Walker, 2017), we calculate separate CP scores
based on event co-occurrences with zero (consec-
utive), one or two events in between, and use the
weighted average CP score for ranking an event
pair, formally, CP (ei, ej) =

∑3
d=1

cpd(ei,ej)
d .

Then we rank longer event sequences based on
CP scores for individual event pairs that are in-
cluded in an event sequence. However, an event
sequence of length n is more than n − 1 event
pairs with any two consecutive events as a pair.
We prefer event sequences that are coherent over-
all, where the events that are one or two events
away are highly related as well. Therefore, we de-
fine the following metric to measure the quality of
an event sequence:

CP (e1, e2, · · · , en) =
∑3

d=1

∑n−d
j=1

CP (ej ,ej+d)

d

n− 1
. (2)

6 Evaluation

6.1 Precision of Narrative Paragraphs
From all the learned narrative paragraphs, we ran-
domly selected 150 texts, with 25 texts selected
from narratives learned in each of the two stages
(i.e., seed narratives and bootstrapped narratives)
using each of the three text corpora (i.e., news,
novels, and blogs). Following the same definition
“A story is a narrative of events arranged in their
time sequence” (Forster, 1962; Gordon and Swan-
son, 2009), two human adjudicators were asked to
judge whether each text is a narrative or a non-
narrative. In order to obtain high inter-agreements,
before the official annotations, we trained the two
annotators for several iterations. Note that the

Narratives Seed Bootstrapped
News 0.84 0.72
Novel 0.88 0.92
Blogs 0.92 0.88
AVG 0.88 0.84

Table 2: Precision of narratives based on human
annotation

pairs
graduate→ teach (5.7), meet→ marry (5.3)
pick up→ carry (6.3), park→ get out (7.3)
turn around→ face (6.5), dial→ ring (6.3)

chains

drive→ park→ get out (7.8)
toss→ fly→ land (5.9)
grow up→ attend→ graduate→ marry (6.9)
contact→ call→ invite→ accept (4.2)
knock→ open→ reach→ pull out→ hold (6.0)

Table 3: Examples of event pairs and chains (with
CP scores). → represents before relation.

texts we used in training annotators are different
from the final texts we used for evaluation pur-
poses. The overall kappa inter-agreement between
the two annotators is 0.77.

Table 2 shows the precision of narratives
learned in the two stages using the three corpora.
We determined that a text is a correct narrative
if both annotators labeled it as a narrative. We
can see that on average, the rule-based classifier
achieves the precision of 88% on initializing seed
narratives and the statistical classifier achieves the
precision of 84% on bootstrapping new ones. Us-
ing narratology based features enables the statis-
tical classifier to extensively learn new narrative,
and meanwhile maintain a high precision.

6.2 Precision of Event Pairs and Chains
To evaluate the quality of the extracted event pairs
and chains, we randomly sampled 20 pairs (2%)
from every 1,000 event pairs up to the top 18,929
pairs with CP score≥ 2.0 (380 pairs selected in to-
tal), and 10 chains (1%) from every 1,000 up to the
top 25,000 event chains12 (250 chains selected in
total). The average CP scores for all event pairs
and all event chains we considered are 2.9 and
5.1 respectively. Two human adjudicators were
asked to judge whether or not events are likely
to occur in the temporal order shown. For event
chains, we have one additional criterion requiring
that events form a coherent sequence overall. An

12It turns out that many event chains have a high CP score
close to 5.0, so we decided not to use a cut-off CP score of
event chains but simply chose to evaluate the top 25,000 event
chains.
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Figure 3: Top-ranked event pairs evaluation

# of top chains 5k 10k 15k 20k 25k
Precision 0.76 0.8 0.75 0.73 0.69

Table 4: Precision of top-ranked event chains

event pair/chain is deemed correct if both anno-
tators labeled it as correct. The two annotators
achieved kappa inter-agreement scores of 0.71 and
0.66, on annotating event pairs and event chains
respectively.

As we know, coverage on acquired knowledge
is often hard to evaluate because we do not have
a complete knowledge base to compare to. Thus,
we propose a pseudo recall metric to evaluate the
coverage of event knowledge we acquired. Reg-
neri et al. (2010) collected Event Sequence De-
scriptions (ESDs) of several types of human ac-
tivities (e.g., baking a cake, going to the theater,
etc.) using crowdsourcing. Our first pseudo re-
call score is calculated based on how many con-
secutive event pairs in human-written scripts can
be found in our top-ranked event pairs. Figure 3
illustrates the precision of top-ranked pairs based
on human annotation and the pseudo recall score
based on ESDs. We can see that about 75% of
the top 19k event pairs are correct, which captures
48% of human-written script knowledge in ESDs.
In addition, table 4 shows the precision of top-
ranked event chains with 3 to 5 events. Among
the top 25k event chains, about 70% are correctly
ordered with the temporal “after” relation. Table 3
shows several examples of event pairs and chains.

6.3 Improving Temporal Relation
Classification by Incorporating Event
Knowledge

To find out whether the learned temporal event
knowledge can help with improving temporal re-

Models Acc.(%)
Choubey and Huang (2017) 51.2
+ CP score 52.3

Table 5: Results on TimeBank corpus

Method Acc.(%)
(Chambers and Jurafsky, 2008) 30.92
(Granroth-Wilding and Clark, 2016) 43.28
(Pichotta and Mooney, 2016) 43.17
(Wang et al., 2017) 46.67
Our Results 48.83

Table 6: Results on MCNC task

lation classification performance, we conducted
experiments on a benchmark dataset - TimeBank
corpus v1.2, which contains 2308 event pairs that
are annotated with 14 temporal relations 13.

To facilitate direct comparisons, we used the
same state-of-the-art temporal relation classifica-
tion system as described in our previous work
Choubey and Huang (2017) and considered all
the 14 relations in classification. Choubey and
Huang (2017) forms three sequences (i.e., word
forms, POS tags, and dependency relations) of
context words that align with the dependency path
between two event mentions and uses three bi-
directional LSTMs to get the embedding of each
sequence. The final fully connected layer maps
the concatenated embeddings of all sequences to
14 fine-grained temporal relations. We applied the
same model here, but if an event pair appears in
our learned list of event pairs, we concatenated the
CP score of the event pair as additional evidence in
the final layer. To be consistent with Choubey and
Huang (2017), we used the same train/test split-
ting, the same parameters for the neural network
and only considered intra-sentence event pairs.
Table 5 shows that by incorporating our learned
event knowledge, the overall prediction accuracy
was improved by 1.1%. Not surprisingly, out of
the 14 temporal relations, the performance on the
relation before was improved the most by 4.9%.

6.4 Narrative Cloze

Multiple Choice version of the Narrative Cloze
task (MCNC) proposed by Granroth-Wilding and
Clark (2016); Wang et al. (2017), aims to eval-

13Specifically, the 14 relations are simultaneous, before,
after, ibefore, iafter, begins, begun by, ends, ended by, in-
cludes, is included, during, during inv, identity
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uate understanding of a script by predicting the
next event given several context events. Present-
ing a chain of contextual events e1, e2, ..., en−1,
the task is to select the next event from five event
candidates, one of which is correct and the oth-
ers are randomly sampled elsewhere in the cor-
pus. Following the same settings of Wang et al.
(2017) and Granroth-Wilding and Clark (2016),
we adapted the dataset (test set) of Chambers and
Jurafsky (2008) to the multiple choice setting. The
dataset contains 69 documents and 349 multiple
choice questions.

We calculated a PMI score between a candidate
event and each context event e1, e2, ..., en−1 based
on event sequences extracted from our learned
287k narratives and we chose the event that have
the highest sum score of all individual PMI scores.
Since the prediction accuracy on 349 multiple
choice questions depends on the random initial-
ization of four negative candidate events, we ran
the experiment 10 times and took the average ac-
curacy as the final performance.

Table 6 shows the comparisons of our results
with the performance of several previous models,
which were all trained with 1,500k event chains
extracted from the NYT portion of the Gigaword
corpus (Graff and Cieri, 2003). Each event chain
consists of a sequence of verbs sharing an actor
within a news article. Except Chambers and Ju-
rafsky (2008), other recent models utilized more
and more sophisticated neural language models.
Granroth-Wilding and Clark (2016) proposed a
two layer neural network model that learns embed-
dings of event predicates and their arguments for
predicting the next event. Pichotta and Mooney
(2016) introduced a LSTM-based language model
for event prediction. Wang et al. (2017) used dy-
namic memory as attention in LSTM for predic-
tion. It is encouraging that by using event knowl-
edge extracted from automatically identified nar-
ratives, we achieved the best event prediction per-
formance, which is 2.2% higher than the best neu-
ral network model.

7 Conclusions

This paper presents a novel approach for leverag-
ing the double temporality characteristic of narra-
tive texts and acquiring temporal event knowledge
across sentences in narrative paragraphs. We de-
veloped a weakly supervised system that explores
narratology principles and identifies narrative texts

from three text corpora of distinct genres. The
temporal event knowledge distilled from narrative
texts were shown useful to improve temporal re-
lation classification and outperform several neural
language models on the narrative cloze task. For
the future work, we plan to expand event temporal
knowledge acquisition by dealing with event sense
disambiguation and event synonym identification
(e.g., drag, pull and haul).
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A Appendix

Here is the full list of grammar rules for identify-
ing plot events in the seeding stage (Section 4.2).
Sentence rules (14):

S→ S CC S
S→ S PRN CC S
S→ NP VP
S→ NP ADVP VP
S→ NP VP ADVP
S→ CC NP VP
S→ PP NP VP
S→ NP PP VP
S→ PP NP ADVP VP
S→ ADVP S NP VP

S→ ADVP NP VP
S→ SBAR NP VP
S→ SBAR ADVP NP VP
S→ CC ADVP NP VP

Noun Phrase rules (12):
NP→ PRP
NP→ NNP
NP→ NNS
NP→ NNP NNP
NP→ NNP CC NNP
NP→ NP CC NP
NP→ DT NN
NP→ DT NNS
NP→ DT NNP
NP→ DT NNPS
NP→ NP NNP
NP→ NP NNP NNP
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Abstract

In this paper, we propose a new strat-
egy, called Text Deconvolution Saliency
(TDS), to visualize linguistic information
detected by a CNN for text classifica-
tion. We extend Deconvolution Networks
to text in order to present a new per-
spective on text analysis to the linguis-
tic community. We empirically demon-
strated the efficiency of our Text Decon-
volution Saliency on corpora from three
different languages: English, French, and
Latin. For every tested dataset, our Text
Deconvolution Saliency automatically en-
codes complex linguistic patterns based on
co-occurrences and possibly on grammat-
ical and syntax analysis.

1 Introduction

As in many other fields of data analysis, Natural
Language Processing (NLP) has been strongly im-
pacted by the recent advances in Machine Learn-
ing, more particularly with the emergence of Deep
Learning techniques. These techniques outper-
form all other state-of-the-art approaches on a
wide range of NLP tasks and so they have been
quickly and intensively used in industrial systems.
Such systems rely on end-to-end training on large
amounts of data, making no prior assumptions
about linguistic structure and focusing on stasti-
cally frequent patterns. Thus, they somehow step
away from computational linguistics as they learn
implicit linguistic information automatically with-
out aiming at explaining or even exhibiting classic
linguistic structures underlying the decision.

This is the question we raise in this article and
that we intend to address by exhibiting classic lin-

∗ L. Vanni and M. Ducoffe contributed equally to this
work and should be considered as co-first authors.

guistic patterns which are indeed exploited im-
plictly in deep architectures to lead to higher per-
formances. Do neural networks make use of co-
occurrences and other standard features, consid-
ered in traditional Textual Data Analysis (TDA)
(Textual Mining)? Do they also rely on comple-
mentary linguistic structure which is invisible to
traditional techniques? If so, projecting neural net-
works features back onto the input space would
highlight new linguistic structures and would lead
to improving the analysis of a corpus and a bet-
ter understanding on where the power of the Deep
Learning techniques comes from.

Our hypothesis is that Deep Learning is sensi-
tive to the linguistic units on which the computa-
tion of the key statistical sentences is based as well
as to phenomena other than frequency and com-
plex linguistic observables. The TDA has more
difficulty taking such elements into account – such
as linguistic linguistic patterns. Our contribu-
tion confronts Textual Data Analysis and Convolu-
tional Neural Networks for text analysis. We take
advantage of deconvolution networks for image
analysis in order to present a new perspective on
text analysis to the linguistic community that we
call Text Deconvolution Saliency (TDS). Our de-
convolution saliency corresponds to the sum over
the word embedding of the deconvolution projec-
tion of a given feature map. Such a score provides
a heat-map of words in a sentence that highlights
the pattern relevant for the classification decision.
We examine z-test (see section 4.2) and TDS for
three languages: English, French and Latin. For
all our datasets, TDS highlights new linguistic ob-
servables, invisible with z-test alone.

2 Related work

Convolutional Neural Networks (CNNs) are
widely used in the computer vision community for
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a wide panel of tasks: ranging from image classifi-
cation, object detection to semantic segmentation.
It is a bottom-up approach where we applied an
input image, stacked layers of convolutions, non-
linearities and sub-sampling.

Encouraged by the success for vision tasks,
researchers applied CNNs to text-related prob-
lems Kalchbrenner et al. (2014); Kim (2014).
The use of CNNs for sentence modeling traces
back to Collobert and Weston (2008). Collobert
adapted CNNs for various NLP problems includ-
ing Part-of-Speech tagging, chunking, Named En-
tity Recognition and semantic labeling. CNNs for
NLP work as an analogy between an image and a
text representation. Indeed each word is embed-
ded in a vector representation, then several words
build a matrix (concatenation of the vectors).

We first discuss our choice of architectures.
If Recurrent Neural Networks (mostly GRU and
LSTM) are known to perform well on a broad
range of tasks for text, recent comparisons have
confirmed the advantage of CNNs over RNNs
when the task at hand is essentially a keyphrase
recognition task Yin et al. (2017).

In Textual Mining, we aim at highlighting lin-
guistics patterns in order to analyze their constrast:
specificities and similarities in a corpus Feldman,
R., and J. Sanger (2007); L. Lebart, A. Salem and
L. Berry (1998). It mostly relies on frequential
based methods such as z-test. However, such ex-
isting methods have so far encountered difficulties
in underlining more challenging linguistic knowl-
edge, which up to now have not been empirically
observed as for instance syntactical motifs Mellet
and Longrée (2009).

In that context, supervised classification, espe-
cially CNNs, may be exploited for corpus anal-
ysis. Indeed, CNN learns automatically param-
eters to cluster similar instances and drive away
instances from different categories. Eventually,
their prediction relies on features which inferred
specificities and similarities in a corpus. Project-
ing such features in the word embedding will re-
veal relevant spots and may automatize the dis-
covery of new linguistic structures as in the pre-
viously cited syntactical motifs. Moreover, CNNs
hold other advantages for linguistic analysis. They
are static architectures that, according to specific
settings are more robust to the vanishing gradi-
ent problem, and thus can also model long-term
dependency in a sentence Dauphin et al. (2017);

Wen et al. (2017); Adel and Schütze (2017). Such
a property may help to detect structures relying on
different parts of a sentence.

All previous works converged to a shared as-
sessment: both CNNs and RNNs provide relevant,
but different kinds of information for text classifi-
cation. However, though several works have stud-
ied linguistic structures inherent in RNNs, to our
knowledge, none of them have focused on CNNs.
A first line of research has extensively studied the
interpretability of word embeddings and their se-
mantic representations Ji and Eisenstein (2014).
When it comes to deep architectures, Karpathy et
al. Karpathy et al. (2015) used LSTMs on charac-
ter level language as a testbed. They demonstrate
the existence of long-range dependencies on real
word data. Their analysis is based on gate activa-
tion statistics and is thus global. On another side,
Li et al. Li et al. (2015) provided new visualization
tools for recurrent models. They use decoders, t-
SNE and first derivative saliency, in order to shed
light on how neural models work. Our perspec-
tive differs from their line of research, as we do
not intend to explain how CNNs work on textual
data, but rather use their features to provide com-
plementary information for linguistic analysis.

Although the usage of RNNs is more common,
there are various visualization tools for CNNs
analysis, inspired by the computer vision field.
Such works may help us to highlight the linguis-
tic features learned by a CNN. Consequently, our
method takes inspiration from those works. Visu-
alization models in computer vision mainly con-
sist in inverting hidden layers in order to spot ac-
tive regions or features that are relevant to the
classification decision. One can either train a de-
coder network or use backpropagation on the in-
put instance to highlight its most relevant features.
While those methods may hold accurate informa-
tion in their input recovery, they have two main
drawbacks: (i) they are computationally expen-
sive: the first method requires training a model
for each latent representation, and the second re-
lies on backpropagation for each submitted sen-
tence; (ii) they are highly hyperparameter depen-
dent and may require some finetuning depending
on the task at hand. On the other hand, Deconvolu-
tion Networks, proposed by Zeiler et al Zeiler and
Fergus (2014), provide an off-the-shelf method to
project a feature map in the input space. It consists
in inverting each convolutional layer iteratively,
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back to the input space. The inverse of a discrete
convolution is computationally challenging. In re-
sponse, a coarse approximation may be employed
which consists of inverting channels and filter
weights in a convolutional layer and then trans-
posing their kernel matrix. More details of the
deconvolution heuristic are provided in section 3.
Deconvolution has several advantages. First, it in-
duces minimal computational requirements com-
pared to previous visualization methods. Also, it
has been used with success for semantic segmen-
tation on images: in Noh et al. (2015); Noh et al
demonstrate the efficiency of deconvolution net-
works to predict segmentation masks to identify
pixel-wise class labels. Thus deconvolution is able
to localize meaningful structure in the input space.

3 Model

3.1 CNN for Text Classification

We propose a deep neural model to capture lin-
guistics patterns in text. This model is based on
Convolutional Neural Networks with an embed-
ding layer for word representations, one convolu-
tional with pooling layer and non-linearities. Fi-
nally we have two fully-connected layers. The
final output size corresponds to the number of
classes. The model is trained by cross-entropy
with an Adam optimizer. Figure 1 shows the
global structure of our architecture. The input
is a sequence of words w1, w2...wn and the out-
put contains class probabilities (for text classifica-
tion).

The embedding is built on top of a Word2Vec
architecture, here we consider a Skip-gram model.
This embedding is also finetuned by the model to
to increase the accuracy. Notice that we do not use
lemmatisation, as in Collobert and Weston (2008),
thus the linguistic material which is automatically
detected does not rely on any prior assumptions
about the part of speech. In computer vision, we
consider images as 2-dimensional isotropic sig-
nals. A text representation may also be consid-
ered as a matrix: each word is embedded in a fea-
ture vector and their concatenation builds a ma-
trix. However, we cannot assume both dimensions
the sequence of words and their embedding repre-
sentation are isotropic. Thus the filters of CNNs
for text typically differ from their counterparts de-
signed for images. Consequently in text, the width
of the filter is usually equal to the dimension of
the embedding, as illustrated with the red, yellow,

blue and green filters in figure 1
Using CNNs has another advantage in our con-

text: due to the convolution operators involved,
they can be easily parallelized and may also be
easily used by the CPU, which is a practical so-
lution for avoiding the use of GPUs at test time.

Figure 1: CNN for Text Classification

3.2 Deconvolution
Extending Deconvolution Networks for text is
not straightforward. Usually, in computer vision,
the deconvolution is represented by a convolution
whose weights depends on the filters of the CNN:
we invert the weights of the channels and the filters
and then transpose each kernel matrix. When con-
sidering deconvolution for text, transposing the
kernel matrices is not realistic since we are deal-
ing with nonisotropic dimensions - the word se-
quences and the filter dimension. Eventually, the
kernel matrix is not transposed.

Another drawback concerns the dimension of
the feature map. Here feature map means the out-
put of the convolution before applying max pool-
ing. Its shape is actually the tuple (# words, # fil-
ters). Because the filters’ width (red, yellow, blue
and green in fig 1) matches the embedding dimen-
sion, the feature maps cannot contain this informa-
tion. To project the feature map in the embedding
space, we need to convolve our feature map with
the kernel matrices. To this aim, we upsample the
feature map to obtain a 3-dimensional sample of
size (# words, embedding dimension, # filters).

To analyze the relevance of a word in a sen-
tence, we only keep one value per word which cor-
responds to the sum along the embedding axis of
the output of the deconvolution. We call this sum
Text Deconvolution Saliency (TDS).

For the sake of consistency, we sum up our
method in figure 2
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Figure 2: Textual Deconvolution Saliency (TDS)

Eventually, every word in a sentence has a
unique TDS score whose value is related to the
others. In the next section, we analyze the rel-
evance of TDS. We thoroughly demonstrate em-
pirically, that the TDS encodes complex linguis-
tic patterns based on co-occurrences and possibly
also on grammatical and syntaxic analysis.

4 Experiments

4.1 Datasets

In order to understand what the linguistic mark-
ers found by the convolutional neural network ap-
proach are, we conducted several tests on different
languages and our model seems to get the same
behavior in all of them. In order to perform all
the linguistic statistical tests, we used our own
simple linguistic toolbox Hyperbase, which allows
the creation of databases from textual corpus, the
analysis and the calculations such as z-test, co-
occurrences, PCA, K-Means distance,... We use it
to evaluate TDS against z-test scoring. We compel
our analysis by only presenting cases on which z-
test fail while TDS does not. Indeed TDS captures
z-test, as we did not find any sentence on which
z-test succeeds while TDS fails. Red words in the
studied examples are the highest TDS.

The first dataset we used for our experiments
is the well known IMDB movie review corpus for
sentiment classification. It consists of 25,000 re-
views labeled by positive or negative sentiment
with around 230,000 words.

The second dataset targets French political dis-
courses. It is a corpus of 2.5 millions of words of
French Presidents from 1958 (with De Gaulle, the
first President of the Fifth Republic) to 2018 with
the first speeches by Macron. In this corpus we
have removed Macron’s speech from the 31st of

December 2017, to use it as a test data set. The
training task is to recognize each french president.

The last dataset we used is based on Latin.
We assembled a contrastive corpus of 2 million
words with 22 principle authors writting in clas-
sical Latin. As with the French dataset, the learn-
ing task here is to be able to predict each author
according to new sequences of words. The next
example is an excerpt of chapter 26 of the 23th
book of Livy:

[...] tutus tenebat se quoad multum ac
diu obtestanti quattuor milia peditum et
quingenti equites in supplementum missi
ex Africa sunt . tum refecta tandem spe
castra propius hostem mouit classem
que et ipse instrui parari que iubet ad
insulas maritimam que oram tutandam .
in ipso impetu mouendarum de [...]

4.2 Z-test Versus Text Deconvolution
Saliency

Z-test is one of the standard metrics used in
linguistic statistics, in particular to measure the
occurrences of word collocations Manning and
Schütze (1999). Indeed, the z-test provides a sta-
tistical score of the co-occurrence of a sequence of
words to appear more frequently than any other se-
quence of words of the same length. This score re-
sults from the comparison between the frequency
of the observerd word sequence with the frequency
expected in the case of a ”Normal” distribution.
In the context of constrative corpus analysis, this
same calculation applied to single words can read-
ily provide, for example, the most specific vocab-
ulary of a given author. The highest z-test are the
most specific words of this given author in this
case. This is a simple but strong method for ana-
lyzing features of text. It can also be used to clas-
sify word sentences according to the global z-test
(sum of the scores) of all the words in the given
sentence. We can thus use this global z-test as
a very simple metric for authorship classification.
The resulting authorship of a given sentence is for
instance given by the author corresponding to the
highest global z-test on that sentence compared
to all other global z-test obtained by summing up
the z-test of each word of the same sentence but
with the vocabulary specificity of another author.
The mean accuracy of assigning the right author to
the right sentence, in our data set, is around 87%,
which confirms that z-test is indeed meaningful for
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z-test Deep Learning
Latin 84% 93%
French 89% 91%
English 90% 97%

Table 1: Test accuray with z-test and Deep Learn-
ing

contrast pattern analysis. On the other hand, most
of the time CNN reaches an accuracy greater than
90% for text classification (as shown in Table 1).

This means that the CNN approaches can learn
also on their own some of the linguistic specifici-
ties useful in discriminating text categories. Pre-
vious works on image classification have high-
lighted the key role of convolutional layers which
learn different level of abstractions of the data to
make classification easier.

The question is: what is the nature of the ab-
straction on text?

We show in this article that CNN approach de-
tects automatically words with high z-test but ob-
viously this is not the only linguistic structure de-
tected.

To make the two values comparable, we nor-
malize them. The values can be either positive or
negative. And we distinguish between two thresh-
olds1 for the z-test: over 2 a word is considered as
specific and over 5 it is strongly specific (and the
oposite with negative values). For the TDS it is
just a matter of activation strength.

The Figure 3 shows us a comparison between
z-test and TDS on a sentence extracted from our
Latin corpora (Livy Book XXIII Chap. 26). This
sentence is an example of specific words used by
Livy2. As we can see, when the z-test is the high-
est, the TDS is also the highest and the TDS val-
ues are high also for the neighbor words (for ex-
ample around the word castra). However, this is
not always the case: for example small words as
que or et are also high in z-test but they do not
impact the network at the same level. We can see
also on Figure 3 that words like tenebat, multum or
propius are totally uncorrelated. The Pearson cor-

1The z-test can be approximated by a normal distribution.
The score we obtain by the z-test is the standard deviation. A
low standard deviation indicates that the data points tend to
be close to the mean (the expected value). Over 2 this score
means there is less than 2% of chance to have this distribu-
tion. Over 5 it’s less than 0.1%.

2Titus Livius Patavinus – (64 or 59 BC - AD 12 or 17) –
was a Roman historian.

Figure 3: z-test versus Text Deconvolution
Saliency (TDS) - Example on Livy Book XXIII
Chap. 26

relation coefficient3 tells us that in this sentence
there is no linear correlation between z-test and
TDS (with a Pearson of 0.38). This example is
one of the most correlated examples of our dataset,
thus CNN seems to learn more than a simple z-
test.

4.3 Dataset: English
For English, we used the IMDB movie review cor-
pus for sentiment classification. With the default
methods, we can easily show the specific vocabu-
lary of each class (positive/negative), according to
the z-test. There are for example the words too,
bad, no or boring as most indicitive of negative
sentiment, and the words and, performance, pow-
erful or best for positive. Is it enough to detect
automatically if a new review is positive or not?
Let’s see an example excerpted from a review from
December 2017 (not in the training set) on the last
American blockbuster:

[...] i enjoyed three moments in the
film in total , and if i am being honest
and the person next to me fell asleep in
the middle and started snoring during
the slow space chasescenes . the story
failed to draw me in and entertain me
the way [...]

In general the z-test is sufficient to predict the
class of this kind of comment. But in this case, the
CNN seems to do better, but why?

3Pearson correlation coefficient measures the linear rela-
tionship between two datasets. It has a value between +1 and
−1, where 1 is total positive linear correlation, 0 is no linear
correlation, and −1 is total negative
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If we sum all the z-test (for negative and posi-
tive), the positive class obtains a greater score than
the negative. The words film, and, honest and en-
tertain – with scores 5.38, 12.23, 4 and 2.4 – make
this example positive. CNN has activated differ-
ent parts of this sentence (as we show in bold/red
in the example). If we take the sub-sequence and
if i am being honest and, there are two occurences
of and but the first one is followed by if and our
toolbox gives us 0.84 for and if as a negative class.
This is far from the 12.23 in the positive. And if
we go further, we can do a co-occurrence analy-
sis on and if on the training set. As we see with
our co-occurrence analysis4 (Figure 4), honest is
among the most specific adjectivals5 associated
with and if. Exactly what we found in our exam-
ple.

Figure 4: co-occurrences analysis of and if (Hy-
perbase)

In addition, we have the same behavior with
the verb fall. There is the word asleep next to
it. Asleep alone is not really specific of nega-
tive review (z-test of 1.13). But the association
of both words become highly specific of negative
sentences (see the co-occurrences analysis - Fig-
ure 5).

4Those figures shows the major co-occurrences for a
given word (or lemma or PartOfSpeech). There two layers
of co-occurrences, the first one (on top) show the direct co-
occurrence and the second (on bottom) show a second level
of co-occurrence. This level is given by the context of two
words (taken together). The colors and the dotted lines are
only used to make it more readable (dotted lines are used for
the first level). The width of each line is related to the z-test
score (more the z-test is big, more the line is wide).

5With our toolbox, we can focus on different part of
speech.

Figure 5: co-occurrences analysis of fall (Hyper-
base)

The Text Deconvolution Saliency here confirms
that the CNN seems to focus not only on high z-
test but on more complex patterns and maybe de-
tects the lemma or the part of speech linked to each
word. We will see now that these observations are
still valid for other languages and can even be gen-
eralized between different TDS.

4.4 Dataset: French
In this corpus we have removed Macron’s speech
from the 31st of December 2017, to use it as a test
data set. In this speech, the CNN primarily recog-
nizes Macron (the training task was to be able to
predict the correct President). To achieve this task
the CNN seems to succeed in finding really com-
plex patterns specific to Macron. For example in
this sequence:

[...] notre pays advienne à l’école pour
nos enfants, au travail pour l’ ensem-
ble de nos concitoyens pour le climat
pour le quotidien de chacune et chacun
d’ entre vous . Ces transformations pro-
fondes ont commencé et se poursuiv-
ront avec la même force le même rythme
la même intensité [...]

The z-test gives a result statistically closer to De
Gaulle than to Macron. The error in the statistical
attribution can be explained by a Gaullist phrase-
ology and the multiplication of linguistic markers
strongly indexed with De Gaulle: De Gaulle had
the specificity of making long and literary sen-
tences articulated around co-ordination conjunc-
tions as in et (z-test = 28 for de Gaulle, two oc-
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Figure 6: Deconvolution on Macron speech.

currences in the excerpt). His speech was also
more conceptual than average, and this resulted in
an over-use of the articles defined le, la, l´, les)
very numerous in the excerpt (7 occurrences); es-
pecially in the feminine singular (la république, la
liberté, la nation, la guerre, etc., here we have la
même force, la même intensité.

The best results given by the CNN may be sur-
prising for a linguist but match perfectly with what
is known about the sociolinguistics of Macron’s
dynamic kind of speeches.

The part of the excerpt, which impacts most
the CNN classification, is related to the nominal
syntagm transformations profondes. Taken sepa-
rately, neither of the phrase’s two words are very
Macronian from a statistical point of view (trans-
formations = 1.9 profondes = 2.9). Better, the
syntagm itself does not appear in the President’s
learning corpus (0 occurrence). However, it can
be seen that the co-occurrence of transformation
and profondes amounts to 4.81 at Macron: so it is
not the occurrence of one word alone, or the other,
which is Macronian but the simultaneous appear-
ance of both in the same window. The second and
complementary most impacting part of the excerpt
thus is related to the two verbs advienne and pour-
suivront. From a semantic point of view, the two
verbs perfectly contribute, after the phrase trans-
formations profondes, to give the necessary dy-
namic to a discourse that advocates change. How-
ever it is the verb tenses (carried by the morphol-
ogy of the verbs) that appear to be the determining
factor in the analysis. The calculation of the gram-
matical codes co-occurring with the word trans-
formations thus indicates that the verbs in the sub-
junctive and the verbs in the future (and also the

nouns) are the privileged codes for Macron (Fig-
ure 7).

Figure 7: Main part-of-speech co-occurrences for
transformations (Hyperbase)

More precisely the algorithm indicates that, for
Macron, when transformation is associated with a
verb in the subjunctive (here advienne), then there
is usually a verb in the future co-present (here
poursuivront). transformations profondes, advi-
enne to the subjunctive, poursuivront to the fu-
ture: all these elements together form a speech
promising action, from the mouth of a young and
dynamic President. Finally, the graph indicates
that transformations is especially associated with
nouns in the President’s speeches: in an extraor-
dinary concentration, the excerpt lists 11 (pays,
école, enfants, travail, concitoyens, climat, quo-
tidien, transformations, force, rythme, intensité).

4.5 Dataset: Latin
As with the French dataset, the learning task here
is to be able to predict the identity of each author
from a contrastive corpus of 2 million words with
22 principle authors writting in classical Latin.

The statistics here identify this sentence as Cae-
sar6 but Livy is not far off. As historians, Caesar
and Livy share a number of specific words: for
example tool words like se (reflexive pronoun) or
que (a coordinator) and prepositions like in, ad, ex,
of. There are also nouns like equites (cavalry) or
castra (fortified camp).

The attribution of the sentence to Caesar cannot
only rely only on z-test: que or in or castra, with

6Gaius Julius Caesar, 100 BC - 44 BC, usually called
Julius Caesar, was a Roman politician and general and a no-
table author of Latin prose.
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differences thereof equivalent or inferior to Livy.
On the other hand, the differences of se, ex, are
greater, as is that of equites. Two very Caesarian
terms undoubtedly make the difference iubet (he
orders) and milia (thousands).

The greater score of quattuor (four), castra,
hostem (the enemy), impetu (the assault) in Livy
are not enough to switch the attribution to this au-
thor.

On the other hand, CNN activates several zones
appearing at the beginning of sentences and cor-
responding to coherent syntactic structures (for
Livy) – Tandem reflexes spe castra propius hostem
mouit (then, hope having finally returned, he
moved the camp closer to the camp of the enemy)
– despite the fact that castra in hostem mouit is
attested only by Tacitus7.

There are also in ipso metu (in fear itself), while
in followed by metu is counted one time with Cae-
sar and one time also with Quinte-Curce8.

More complex structures are possibly also de-
tected by the CNN: the structure tum + participates
Ablative Absolute (tum refecta) is more character-
istic of Livy (z-test 3.3 with 8 occurrences) than
of Caesar (z-test 1.7 with 3 occurrences), even if it
is even more specific of Tacitus (z-test 4.2 with 10
occurrences).

Finally and more likely, the co-occurrence be-
tween castra, hostem and impetu may have played
a major role: Figure 8

Figure 8: Specific co-occurrences between impetu
and castra (Hyperbase)

With Livy, impetu appears as a co-occurrent
7Publius (or Gaius) Cornelius Tacitus, 56 BC - 120 BC,

was a senator and a historian of the Roman Empire.
8Quintus Curtius Rufus was a Roman historian, probably

of the 1st century, his only known and only surviving work
being ”Histories of Alexander the Great”

with the lemmas hostis (z-test 9.42) and castra (z-
test 6.75), while hostis only has a gap of 3.41 in
Caesar and that castra does not appear in the list
of co-occurrents.

For castra, the first co-occurent for Livy is
hostis (z-test 22.72), before castra (z-test 10.18),
ad (z-test 10.85), in (z-test 8.21), impetus (z-test
7.35), que (z-test 5.86) while in Caesar, impetus
does not appear and the scores of all other lemmas
are lower except castra (z-test 15.15), hostis (8),
ad (10,35), in (5,17), que (4.79).

Thus, our results suggest that CNNs manage to
account for specificity, phrase structure, and co-
occurence networks. . .

4.6 Preprocessings and hyperparameters

In order to make our experiments reproductible,
we detail here all the hyperparameters used in
our architecture. The neural network is written
in python with the library Keras (an tensorflow as
backend).

The embedding uses a Word2Vec implementa-
tion given by the gensim Library. Here we use the
SkipGram model with a window size of 10 words
and output vectors of 128 values (embedding di-
mension).

The textual datas are tokenized by a home-
made tokensizer (which work on English, Latin
and French). The corpus is splited into 50 length
sequence of words (punctuation is keeped) and
each word is converted inta an unique vector of
128 value.

The first layer of our model takes the text se-
quence (as word vectors) and applies a weight
corresponding to our WordToVec values. Those
weights are still trainable during model training.

The second layer is the convolution, a Conv2D
in Keras with 512 filters of size 3 ∗ 128 (filter-
ing three words at time), with a Relu activation
method. Then, there is the Maxpooling (MaxPool-
ing2D)

(The deconvolution model is identical until
here. We replace the rest of the classifica-
tion model (Dense) by a transposed convolution
(Conv2DTranspose).)

The last layers of the model are Dense layers.
One hidden layer of 100 neurons with a Relu acti-
vation and one final layer of size equal to the num-
ber of classes with a softmax activation.

All experiments in this paper share the same
architecture and the same hyperparameters, and
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are trained with a cross-entropy method (with an
Adam optimizer) with 90% of the dataset for the
training data and 10% for the validation. All the
tests in this paper are done with new data not in-
cluded in the original dataset.

5 Conclusion

In a nutshell, Text Deconvolution Saliency is ef-
ficient on a wide range of corpora. By crossing
statistical approaches with neural networks, we
propose a new strategy for automatically detect-
ing complex linguistic observables, which up to
now hardly detectable by frequency-based meth-
ods. Recall that the linguistic matter and the
topology recovered by our TDS cannot return to
chance: the zones of activation make it possible
to obtain recognition rates of more than 91% on
the French political speech and 93% on the Latin
corpus; both rates equivalent to or higher than the
rates obtained by the statistical calculation of the
key passages. Improving the model and under-
standing all the mathematical and linguistic out-
comes remains an import goal. In future work,
we intend to thoroughly study the impact of TDS
given morphosyntactic information.
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Abstract

We propose a novel coherence model for
written asynchronous conversations (e.g.,
forums, emails), and show its applications
in coherence assessment and thread recon-
struction tasks. We conduct our research
in two steps. First, we propose improve-
ments to the recently proposed neural en-
tity grid model by lexicalizing its entity
transitions. Then, we extend the model
to asynchronous conversations by incorpo-
rating the underlying conversational struc-
ture in the entity grid representation and
feature computation. Our model achieves
state of the art results on standard co-
herence assessment tasks in monologue
and conversations outperforming existing
models. We also demonstrate its effective-
ness in reconstructing thread structures.

1 Introduction

Sentences in a text or a conversation do not occur
independently, rather they are connected to form
a coherent discourse that is easy to comprehend.
Coherence models are computational models that
can distinguish a coherent discourse from incoher-
ent ones. It has ranges of applications in text gen-
eration, summarization, and coherence scoring.

Inspired by formal theories of discourse, a
number of coherence models have been proposed
(Barzilay and Lapata, 2008; Lin et al., 2011; Li
and Jurafsky, 2017). The entity grid model
(Barzilay and Lapata, 2008) is one of the most
popular coherence models that has received much
attention over the years. As exemplified in Table
1, the model represents a text by a grid that cap-
tures how grammatical roles of different discourse
entities (e.g., nouns) change from one sentence to

∗All authors contributed equally.
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s0 − O − − S X − − − − X X − − X −
s1 − − O − − X X − − S − − X − − −
s2 S − − − X S − − X − − X − − S X
s3 − − − O − − − X − − − − − X S −

Table 1: Entity grid representation (bottom) for a
document (top) from the WSJ corpus.

another in the text. The grid is then converted into
a feature vector containing probabilities of local
entity transitions, enabling machine learning mod-
els to measure the degree of coherence. Earlier
extensions of this basic model incorporate entity-
specific features (Elsner and Charniak, 2011b),
multiple ranks (Feng and Hirst, 2012), and coher-
ence relations (Feng et al., 2014).

Recently, Nguyen and Joty (2017) proposed a
neural version of the grid models. Their model
first transforms the grammatical roles in a grid into
their distributed representations, and employs a
convolution operation over it to model entity tran-
sitions in the distributed space. The spatially max-
pooled features from the convoluted features are
used for coherence scoring. This model achieves
state-of-the-art results in standard evaluation tasks
on the Wall Street Journal (WSJ) corpus.

Although the neural grid model effectively cap-
tures long entity transitions, it is still limited in
that it does not consider any lexical information
regarding the entities, thereby, fails to distinguish
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between entity types. Although the extended neu-
ral grid considers entity features like named entity
and proper mention, it requires an explicit feature
extraction step, which can prevent us to transfer
the model to a resource-poor language or domain.

Apart from these limitations, previous research
on coherence models has mainly focused on
monologic discourse (e.g., news article). The only
exception is the work of Elsner and Charniak
(2011a), who applied coherence models to the task
of conversation disentanglement in synchronous
conversations like phone and chat conversations.

With the emergence of Internet technologies,
asynchronous communication media like emails,
blogs, and forums have become a commonplace
for discussing events and issues, seeking answers,
and sharing personal experiences. Participants
in these media interact with each other asyn-
chronously, by writing at different times. We be-
lieve coherence models for asynchronous conver-
sations can help many downstream applications in
these domains. For example, we will demonstrate
later that coherence models can be used to pre-
dict the underlying thread structure of a conversa-
tion, which provides crucial information for build-
ing effective conversation summarization systems
(Carenini et al., 2008) and community question
answering systems (Barron-Cedeno et al., 2015).

To the best of our knowledge, none has stud-
ied the problem of coherence modeling in asyn-
chronous conversation before. Because of its
asynchronous nature, information flow in these
conversations is often not sequential as in mono-
logue or synchronous conversation. This poses a
novel set of challenges for discourse analysis mod-
els (Joty et al., 2013; Louis and Cohen, 2015). For
example, consider the forum conversation in Fig-
ure 2(a). It is not obvious how a coherence model
like the entity grid can represent the conversation,
and use it in downstream tasks effectively.

In this paper we aim to remedy the above lim-
itations of existing models in two steps. First,
we propose improvements to the existing neural
grid model by lexicalizing its entity transitions.
We propose methods based on word embeddings
to achieve better generalization with the lexical-
ized model. Second, we adapt the model to asyn-
chronous conversations by incorporating the un-
derlying conversational structure in the grid rep-
resentation and subsequently in feature computa-
tion. For this, we propose a novel grid representa-

tion for asynchronous conversations, and adapt the
convolution layer of the neural model accordingly.

We evaluate our approach on two discrimination
tasks. The first task is the standard one, where we
assess the models based on their performance in
discriminating an original document from its ran-
dom permutation. In our second task, we ask the
models to distinguish an original document from
its inverse order of the sentences. For our adapted
model to asynchronous conversation, we also eval-
uate it on thread reconstruction, a task specific to
asynchronous conversation. We performed a se-
ries of experiments, and our main findings are:

(a) Our experiments on the WSJ corpus validate
the utility of our proposed extension to the ex-
isting neural grid model, yielding absolute F1

improvements of up to 4.2% in the standard
task and up to 5.2% in the inverse-order dis-
crimination task, setting a new state-of-the-art.

(b) Our experiments on a forum dataset show that
our adapted model that considers the conver-
sational structure outperforms the temporal
baseline by more than 4% F1 in the standard
task and by about 10% F1 in the inverse order
discrimination task.

(c) When applied to the thread reconstruction
task, our model achieves promising results
outperforming several strong baselines.

We have released our source code and
datasets at https://ntunlpsg.github.
io/project/coherence/n-coh-acl18/

2 Background

In this section we give an overview of existing
coherence models. In the interest of coherence,
we defer description of the neural grid model
(Nguyen and Joty, 2017) until next section, where
we present our extension to this model.

2.1 Traditional Entity Grid Models

Introduced by Barzilay and Lapata (2008), the
entity grid model represents a text by a two-
dimensional matrix. As shown in Table 1, the rows
correspond to sentences, and the columns corre-
spond to entities (noun phrases). Each entry Ei,j
represents the syntactic role that entity ej plays in
sentence si, which can be one of: subject (S), ob-
ject (O), other (X), or absent (–). In cases where an
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entity appears more than once with different gram-
matical roles in the same sentence, the role with
the highest rank (S � O � X) is considered.

Motivated by the Centering Theory (Grosz
et al., 1995), the model considers local entity
transitions as the deciding patterns for assessing
coherence. A local entity transition of length k
is a sequence of {S,O,X,–}k, representing gram-
matical roles played by an entity in k consecutive
sentences. Each grid is represented by a vector of
4k transition probabilities computed from the grid.
To distinguish between transitions of important
entities from unimportant ones, the model con-
siders the salience of the entities, which is mea-
sured by their occurrence frequency in the docu-
ment. With the feature vector representation, co-
herence assessment task is formulated as a ranking
problem in a SVM preference ranking framework
(Joachims, 2002). Barzilay and Lapata (2008)
showed significant improvements in two out of
three evaluation tasks when a coreference resolver
is used to identify coreferent entities in a text.

Elsner and Charniak (2011b) show improve-
ments to the grid model by including non-head
nouns as entities. Instead of employing a coref-
erence resolver, they match the nouns to detect
coreferent entities. They demonstrate further im-
provements by extending the grid to distinguish
between entities of different types. They do so by
incorporating entity-specific features like named
entity, noun class and modifiers. Lin et al. (2011)
model transitions of discourse roles for entities as
opposed to their grammatical roles. They instanti-
ate discourse roles by discourse relations in Penn
Discourse Treebank (Prasad et al., 2008). In a fol-
low up work, Feng et al. (2014) trained the same
model but using relations derived from deep dis-
course structures annotated with Rhetorical Struc-
ture Theory (Mann and Thompson, 1988).

2.2 Other Existing Models

Guinaudeau and Strube (2013) proposed a graph-
based unsupervised method. They convert an en-
tity grid into a bipartite graph consisting of two
sets of nodes, representing sentences and enti-
ties, respectively. The edges are assigned weights
based on the grammatical role of the entities in
the respective sentences. They perform one-mode
projections to transform the bipartite graph to a di-
rected graph containing only sentence nodes. The
coherence score of the document is then computed

as the average out-degree of sentence nodes.
Louis and Nenkova (2012) introduced a coher-

ence model based on syntactic patterns by as-
suming that sentences in a coherent text exhibit
certain syntactic regularities. They propose a local
coherence model that captures the co-occurrence
of structural features in adjacent sentences, and a
global model based on a hidden Markov model,
which learns the global syntactic patterns from
clusters of sentences with similar syntax.

Li and Hovy (2014) proposed a neural frame-
work to compute the coherence score of a docu-
ment by estimating coherence probability for ev-
ery window of three sentences. They encode each
sentence in the window using either a recurrent or
a recursive neural network. To get a document-
level coherence score, they sum up the window-
level log probabilities. Li and Jurafsky (2017)
proposed two encoder-decoder models augmented
with latent variables for both coherence evalua-
tion and discourse generation. Their first model
incorporates global discourse information (topics)
by feeding the output of a sentence-level HMM-
LDA model (Gruber et al., 2007) into the encoder-
decoder model. Their second model is trained
end-to-end with variational inference.

In our work, we take an entity-based approach,
and extend the neural grid model proposed re-
cently by Nguyen and Joty (2017).

3 Extending Neural Entity Grid

In this section we first briefly describe the neu-
ral entity grid model proposed by Nguyen and
Joty (2017). Then, we propose our extension to
this model that leads to improved performance.
We present our coherence model for asynchronous
conversation in the next section.

3.1 Neural Entity Grid
Figure 1 depicts the neural grid model of Nguyen
and Joty (2017). Given an entity grid E, they
first transform each entryEi,j (a grammatical role)
into a distributed representation of d dimensions
by looking up a shared embedding matrix M ∈
R|G|×d, where G is the vocabulary of possible
grammatical roles, i.e., G = {S,O,X,−}. For-
mally, the look-up operation can be expressed as:

L =
[
M(E1,1) · · ·M(Ei,j) · · ·M(EI,J)

]
(1)

where M(Ei,j) refers to the row in M that corre-
sponds to grammatical role Ei,j , and I and J are
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Figure 1: Neural entity grid model proposed by
Nguyen and Joty (2017). The model is trained us-
ing a pairwise ranking approach with shared pa-
rameters for positive and negative documents.

the number of rows (sentences) and columns (en-
tities) in the entity grid, respectively. The result
of the look-up operation is a tensor L ∈ RI×J×d,
which is fed to a convolution layer to model local
entity transitions in the distributed space.

The convolution layer of the neural network
composes patches of entity transitions into high-
level abstract features by treating entities indepen-
dently (i.e., 1D convolution). Formally, it applies
a filter w ∈ Rm.d to each local entity transition of
length m to generate a new abstract feature zi:

zi = h(wTLi:i+m,j + bi) (2)

where Li:i+m,j denotes concatenation of m vec-
tors in L for entity ej , bi is a bias term, and h is
a nonlinear activation function. Repeated applica-
tion of this filter to each possible m-length tran-
sitions of different entities in the grid generates a
feature map, zi = [z1, · · · , zI.J+m−1]. This pro-
cess is repeated N times with N different filters
to get N different feature maps, [z1, · · · , zN ]. A
max-pooling operation is then applied to extract
the most salient features from each feature map:

p = [µl(z
1), · · · , µl(zN )] (3)

where µl(zi) refers to the max operation applied
to each non-overlapping window of l features in
the feature map zi. Finally, the pooled features are
used in a linear layer to produce a coherence score:

y = uTp+ b (4)

where u is the weight vector and b is a bias term.
The model is trained with a pairwise ranking loss
based on ordered training pairs (Ei, Ej):

L(θ) = max{0, 1− φ(Ei|θ) + φ(Ej |θ)} (5)

where entity grid Ei exhibits a higher degree of
coherence than grid Ej , and y = φ(Ek|θ) denotes
the transformation of input grid Ek to a coher-
ence score y done by the model with parameters θ.
We will see later that such ordering of documents
(grids) can be obtained automatically by permut-
ing the original document. Notice that the network
shares its parameters (θ) between the positive (Ei)
and the negative (Ej) instances in a pair.

Since entity transitions in the convolution step
are modeled in a continuous space, it can effec-
tively capture longer transitions compared to tradi-
tional grid models. Unlike traditional grid models
that compute transition probabilities from a single
grid, convolution filters and role embeddings in
the neural model are learned from all training in-
stances, which helps the model to generalize well.

Since the abstract features in the feature maps
are generated by convolving over role transitions
of different entities in a document, the model im-
plicitly considers relations between entities in a
document, whereas transition probabilities in tra-
ditional entity grid models are computed with-
out considering any such relation between entities.
Convolution over the entire grid also incorporates
global information (e.g., topic) of a discourse.

3.2 Lexicalized Neural Entity Grid

Despite its effectiveness, the neural grid model
presented above has a limitation. It does not con-
sider any lexical information regarding the enti-
ties, thus, cannot distinguish between transitions
of different entities. Although the extended neural
grid model proposed in (Nguyen and Joty, 2017)
does incorporate entity features like named entity
type and proper mention, it requires an explicit
feature extraction step using tools like named en-
tity recognizer. This can prevent us in transferring
the model to resource-poor languages or domains.

To address this limitation, we propose to lexi-
calize entity transitions. This can be achieved by
attaching the entity with the grammatical roles.
For example, if an entity ej appears as a sub-
ject (S) in sentence si, the grid entry Ei,j will
be encoded as ej -S. This way, an entity OBAMA

as subject (OBAMA-S) and as object (OBAMA-O)
will have separate entries in the embedding ma-
trix M . We can initialize the word-role embed-
dings randomly, or with pre-trained embeddings
for the word (OBAMA). In another variation, we
kept word and role embeddings separate and con-
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Author: barspinboy Post ID: 1

s0: im having troubles since i uninstall some of my apps, then when
i checked my system registry bunch of junks were left behind by the
apps i already uninstall.
s1: is there any way i could clean my registry aside from expensive
registry cleaners.

Author: kees bakker Post ID: 2
s2: use regedit to delete the ‘bunch of junks’ you found in registry.
s3: regedit is free, but depending on which applications it were ..
s4: it’s somewhat doubtful there will be less crashes and faster setup.

Author: willy Post ID: 3

s5: i tend to use ccleaner (google for it) as a registry cleaner.
s6: using its defaults does pretty well.
s7: in no way will it cure any hardcore problems as you mentioned.
s8: i further suggest, ..

Author: caktus Post ID: 4
s9: try regseeker to clean your registry junk.
s10: it’s free and pretty safe to use automatic.
s11: then clean temp files (don’t compress any files or use indexing.)
s12: if the c drive is compressed, then uncompress it.

Author: barspinboy Post ID: 5

s13: thanks guyz, my registry is clean now
s14: i tried all those suggestions you mentioned ccleaners regedit de-
fragmentation and uninstalling process; it all worked out

(a) A forum conversation
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(c) Role transition for ‘registry’
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l5 ––φ

l6 Sφφ

l7 –φφ

(d) Grid representations

Figure 2: (a) A forum conversation, (b) Thread structure of the conversation, (c) Entity role transition
over a conversation tree, and (d) 2D role transition matrix for an entity; φ denotes zero-padding.

catenated them after the look-up, thus enforcing
OBAMA-S and OBAMA-O to share a part of their
representations. However, in our experiments, we
found the former approach to be more effective.

4 Coherence Models for Asynchronous
Conversations

The main difference between monologue and
asynchronous conversation is that information
flow in asynchronous conversation is not sequen-
tial as in monologue, rather it is often interleaved.
For example, consider the forum conversation in
Figure 2(a). There are three possible subconver-
sations, each corresponding to a path from the
root node to a leaf node in the conversation graph
in Figure 2(b). In response to seeking sugges-
tions about how to clean system registry, the first
path (p1←p2) suggests to use regedit, the second
path (p1←p3) suggests ccleaner, and the third one
(p1←p4) suggests using regseeker. These discus-
sions are interleaved in the chronological order
of the posts (p1←p2←p3←p4←p5). Therefore,
monologue-based coherence models may not be
effective if applied directly to the conversation.

We hypothesize that coherence models for asyn-
chronous conversation should incorporate the con-
versational structure like the tree structure in Fig-
ure 2(b), where the nodes represent posts and
the edges represent ‘reply-to’ links between them.
Since the grid models operate at the sentence level,
we construct conversational structure at the sen-

tence level. We do this by linking the boundary
sentences across posts and by linking sentences
in the same post chronologically. Specifically, we
connect the first sentence of post pj to the last sen-
tence of post pi if pj replies to pi, and sentence
st+1 is linked to st if both st and st+1 are in the
same post.1 Now the question is, how can we rep-
resent a conversation tree with an entity grid, and
then model entity transitions in the tree? In the fol-
lowing, we describe our approach to this problem.

4.1 Conversational Entity Grid

The conversation tree captures how topics flow in
an asynchronous conversation. Our key hypothe-
sis is that in a coherent conversation entities ex-
hibit certain local patterns in the conversation tree
in terms of their distribution and syntactic real-
ization. Figure 2(c) shows how the grammatical
roles of entity ‘registry’ in our example conversa-
tion change over the tree. For coherence assess-
ment, we wish to model entity transitions along
each of the conversation paths (top-to-bottom),
and also their spatial relations across the paths
(left-to-right). The existing grid representation
is insufficient to model the two-dimensional (2D)
spatial entity transitions in a conversation tree.

We propose a three-dimensional (3D) grid for
representing entity transitions in an asynchronous
conversation. The first dimension in our grid rep-

1The links between sentences are not explicitly shown in
Figure 2(b) to avoid visual clutter.
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Figure 3: Conversational Neural Grid model for assessing coherence in asynchronous conversations.

resents entities, while the second and third dimen-
sions represent depth and path of the tree, respec-
tively. Figure 2(d) shows an example representa-
tion for an entity ‘registry’. Each column in the
matrix represents transitions of the entity along a
path, whereas each row represents transitions of
the entity at a level of the conversation tree.

Although illustrated with a tree structure, our
method is applicable to general graph-structured
conversations, where a post can reply to multiple
previous posts. Our model relies on paths from the
root to the leaf nodes, which can be extracted for
any graph as long as we avoid loops.

4.2 Modeling Entity Transitions

As shown in Figure 3, given a 3D entity grid as
input, the look-up layer (Eq. 1) of our neural grid
model produces a 4D tensor L∈RI×J×P×d, where
I is the total number of entities in the conversation,
J is the depth of the tree, P is the number of paths
in the tree, and d is the embedding dimension. The
convolution layer then uses a 2D filter w ∈ Rm.n.d
to convolve local patches of entity transitions

zi = h(wTLi,j:j+m,p:p+n + bi) (6)

where m and n are the height and width of the
filter, and Li,j:j+m,p:p+n ∈ Rm.n.d denotes a con-
catenated vector containing (m × n) embeddings
representing a 2D window of entity transitions. As
we repeatedly apply the filter to each possible win-
dow with stride size 1, we get a 2D feature map Zi

of dimensions (I.J+m−1)×(I.P +n−1). Em-
ploying N different filters, we get N such 2D fea-
ture maps, [Z1, · · · , ZN ], based on which the max
pooling layer extracts the most salient features:

p = [µl×w(Z
1), · · · , µl×w(ZN )] (7)

where µl×w refers to the max operation applied to
each non-overlapping 2D window of l×w features
in a feature map. The pooled features are then lin-

earized and used for coherence scoring in the final
layer of the network as described by Equation 4.

5 Experiments on Monologue

To validate our proposed extension to the neural
grid model, we first evaluate our lexicalized neural
grid model in the standard evaluation setting.

Evaluation Tasks and Dataset: We evaluate
our models on the standard discrimination task
(Barzilay and Lapata, 2008), where a coherence
model is asked to distinguish an original docu-
ment from its incoherent renderings generated by
random permutations of its sentences. The model
is considered correct if it ranks the original docu-
ment higher than the permuted one.

We use the same train-test split of the WSJ

dataset as used in (Nguyen and Joty, 2017) and
other studies (Elsner and Charniak, 2011b; Feng
et al., 2014). Following previous studies, we use
20 random permutations of each article for both
training and testing, and exclude permutations that
match the original article. Table 2 gives some
statistics about the dataset along with the number
of pairs used for training and testing. Nguyen and
Joty (2017) randomly selected 10% of the training
pairs for development purposes, which we also use
for tuning hyperparameters in our models.

In addition to the standard setting, we also eval-
uate our models on an inverse-order setting, where
we ask the models to distinguish an original doc-
ument from the inverse order of its sentences (i.e.,
from last to first). The transitions of roles in a neg-
ative grid are in the reverse order of the original
grid. We do not train our models explicitly on this
task, rather use the trained model from the stan-
dard setting. The number of test pairs in this set-
ting is same as the number of test documents.

Model Settings and Training: We train the
neural models with the pairwise ranking loss in
Equation 5. For a fair comparison, we use
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Sections # Doc. Avg. # Sen. # Pairs

Train 00-13 1,378 21.5 26,422
Test 14-24 1,053 22.3 20,411

Table 2: Statistics on the WSJ dataset.

similar model settings as in (Nguyen and Joty,
2017)2 – ReLU as activation functions (h), RM-
Sprop (Tieleman and Hinton, 2012) as the learn-
ing algorithm, Glorot-uniform (Glorot and Ben-
gio, 2010) for initializing weight matrices, and
uniform U(−0.01, 0.01) for initializing embed-
dings randomly. We applied batch normalization
(Ioffe and Szegedy, 2015), which gave better re-
sults than using dropout. Minibatch size, embed-
ding size and filter number were fixed to 32, 300
and 150, respectively. We tuned for optimal filter
and pooling lengths in {2, · · · , 12}. We train up to
25 epochs, and select the model that performs best
on the development set; see supplementary doc-
uments for best hyperparameter settings for differ-
ent models. We run each experiment five times,
each time with a different random seed, and we
report the average of the runs to avoid any ran-
domness in results. Statistical significance tests
are done using an approximate randomization test
with SIGF V.2 (Padó, 2006).

Results and Discussions: We present our re-
sults on the standard discrimination task and the
inverse-order task in Table 3; see Std (F1) and
Inv (F1) columns, respectively. For space limi-
tations, we only show F1 scores here, and report
both accuracy and F1 in the supplementary docu-
ment. We compare our lexicalized models (group
III) with the unlexicalized models (group II) of
Nguyen and Joty (2017).3 We also report the re-
sults of non-neural entity grid models (Elsner and
Charniak, 2011b) in group I. The extended ver-
sions use entity-specific features.

We experimented with both random and pre-
trained initialization for word embeddings in our
lexicalized models. As can be noticed in Ta-
ble 3, both versions give significant improvements
over the unlexicalized models on both the standard
and the inverse-order discrimination tasks (2.7 -
4.3% absolute). Our best model with Google pre-
trained embeddings (Mikolov et al., 2013) yields
state-of-the-art results. We also experimented

2https://ntunlpsg.github.io/project/coherence/n-coh-acl17
3Our reproduced results for the neural grid model are

slightly lower than their reported results (∼ 1%). We suspect
this is due to the randomness in the experimental setup.

Model Emb. Std (F1) Inv (F1)

I
Grid (E&C) - 81.60 75.78
Ext. Grid (E&C) - 84.95 80.34

II
Neural Grid (N&J) Random 84.36 83.94
Ext. Neural Grid (N&J) Random 85.93 83.00

III
Lex. Neural Grid Random 87.03† 86.88†

Lex. Neural Grid Google 88.56† 88.23†

Table 3: Discrimination results on the WSJ
dataset. Superscript † indicates a lexicalized
model is significantly superior to the unlexicalized
Neural Grid (N&J) model with p-value < 0.01.

with Glove (Pennington et al., 2014), which has
more vocabulary coverage than word2vec – Glove
covers 89.77% of our vocabulary items, whereas
word2vec covers 85.66%. However, Glove did not
perform well giving F1 score of 86% in the stan-
dard discrimination task. Schnabel et al. (2015)
also report similar results where word2vec was
found to be superior to Glove in most evaluation
tasks. Our model also outperforms the extended
neural grid model that relies on an additional fea-
ture extraction step for entity features. These re-
sults demonstrate the efficacy of lexicalization in
capturing fine-grained entity information without
loosing generalizability, thanks to distributed rep-
resentation and pre-trained embeddings.

6 Experiments on Conversation

We evaluate our coherence models for asyn-
chronous conversations on two tasks: discrimina-
tion and thread reconstruction.

6.1 Evaluation on Discrimination
The discrimination tasks are applicable to conver-
sations also. We first present the dataset we use,
then we describe how we create coherent and in-
coherent examples to train and test our models.

Dataset: Our conversational corpus contains
discussion threads regarding computer trou-
bleshooting from the technology related news site
CNET.4 This corpus was originally collected by
Louis and Cohen (2015), and it contains 13,352
threads. For our experiments, we selected 3,825
threads assuring that each contains at least 3 and
at most 15 posts. We use 2,400 threads for train-
ing, 750 for testing and 675 for development pur-
poses. Table 4 shows some basic statistics about
the resulting dataset. The threads roughly contain
29 sentences and 6 comments on average.

4https://www.cnet.com/
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#Thread Avg Com Avg Sen #Pairs (tree) #Pairs (path)

Train 2,400 6.01 28.76 47,948 106,122
Test 750 5.75 27.79 14,986 33,852
Dev 675 6.27 30.70 13,485 28,897

Total 3,825 5.98 28.77 76,419 168,871

Table 4: Statistics on the CNET dataset.

Model Settings and Training: To validate the
efficacy of our conversational grid model, we com-
pare it with the following baseline settings:

• Temporal: In the temporal setting, we con-
struct an entity grid from the chronological order
of the sentences in a conversation, and use it with
our monologue-based coherence models. Models
in this setting thus disregard the structure of the
conversation and treat it as a monologue.

• Path-level: This is a special case of our model,
where we consider each path (a column in our
conversational grid) in the conversation tree sep-
arately. We construct an entity grid for a path and
provide as input to our monologue-based models.

To train the models with pairwise ranking, we
create 20 incoherent conversations for each origi-
nal conversation by shuffling the sentences in their
temporal order. For models involving conversation
trees (path-level and our model), the tree struc-
ture remains unchanged for original and permuted
conversations, only the position of the sentences
vary based on the permutation. Since the shuf-
fling is done globally at the conversation level, this
scheme allows us to compare the three represen-
tations (temporal, path-level and tree-level) fairly
with the same set of permutations.

An incoherent conversation may have paths in
the tree that match the original paths. We remove
those matched paths when training the path-level
model. See Table 4 for number of pairs used for
training and testing our models. We evaluate path-
level models by aggregating correct/wrong deci-
sions for the paths – if the model makes more cor-
rect decisions for the original conversation than
the incoherent one, it is counted as a correct de-
cision overall. Aggregating path-level coherence
scores (e.g., by averaging or summing) would al-
low a coherence model to get awarded for as-
signing higher score to an original path (hence,
correct) while making wrong decisions for the
rest; see supplementary document for an example.
Similar to the setting in Monologue, we did not
train explicitly on the inverse-order task, rather use
the trained model from the standard setting.

Conv. Rep Model Emb. Std (F1) Inv (F1)

Temporal
Neural Grid (N&J) random 82.28 70.53
Lex. Neural Grid random 86.63 80.40
Lex. Neural Grid Google 87.17 80.76

Path-level
Neural Grid (N&J) random 82.39 75.68†

Lex. Neural Grid random 88.13 88.38†

Lex. Neural Grid Google 88.44 89.31†

Tree-level
Neural Grid (N&J) random 83.98† 77.33†

Lex. Neural Grid random 89.87† 89.23†

Lex. Neural Grid Google 91.29† 90.40†

Table 5: Discrimination results on CNET. Super-
script † indicates a model is significantly superior
to its temporal counterpart with p-value < 0.01.

Results and Discussions: Table 5 compares the
results of our models on the two discrimination
tasks. We observe more gains in conversation than
in monologue for the lexicalized models – 4.9% to
7.3% on the standard task, and 10% to 13.6% on
the inverse-order task. Notice especially the huge
gains on the inverse-order task. This indicates lex-
icalization helps to better adapt to new domains.

A comparison of the results on the standard task
across the representations shows that path-level
models perform on par with the temporal models,
whereas the tree-level models outperform others
by a significant margin. The improvements are
2.7% for randomly initialized word vectors and
4% for Google embeddings. Although, the path-
level model considers some conversational struc-
tures, it observes only a portion of the conversation
in its input. The common topics (expressed by en-
tities) of a conversation get distributed across mul-
tiple conversational paths. This limits the path-
level model to learn complex relationships be-
tween entities in a conversation. By encoding an
entire conversation into a single grid and by mod-
eling the spatial relations between the entities, our
conversational grid model captures both local and
global information (topic) of a conversation.

Interestingly, the improvements are higher on
the inverse-order task for both path- and tree-level
models. The inverse order yields more dissimilar-
ity at the paths with respect to the original order,
thus making them easier to distinguish.

If we notice the hyperparameter settings for the
best models on this task (see supplementary docu-
ment), we see they use a filter width of 1. This in-
dicates that to find the right order of the sentences
in conversations, it is sufficient to consider entity
transitions along the conversational paths in a tree.
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6.2 Evaluation on Thread Reconstruction
One crucial advantage of our tree-level model over
other models is that we can use it to build pre-
dictive models to uncover the thread structure of
a conversation from its posts. Consider again the
thread in Figure 2. Our goal is to train a coherence
model that can recover the tree structure in Figure
2(b) from the sequence of posts (p1, p2, . . . , p5).

This task has been addressed previously (Wang
et al., 2008, 2011). Most methods learn an edge-
level classifier to decide for a possible link be-
tween two posts using features like distance in po-
sition/time, cosine similarity, etc. To our knowl-
edge, we are the first to use coherence models for
this problem. However, our goal in this paper is
not to build a state-of-the-art system for thread re-
construction, rather to evaluate coherence models
by showing its effectiveness in scoring candidate
tree hypotheses. In contrast to previous methods,
our approach therefore considers the whole thread
structure at once, and computes coherence scores
for all possible candidate trees of a conversation.
The tree that receives the highest score is predicted
as the thread structure of the conversation.

Training: We train our coherence model for
thread reconstruction using pairwise ranking loss
as before. For a given sequence of comments in a
thread, we construct a set of valid candidate trees;
a valid tree is one that respects the chronological
order of the comments, i.e., a comment can only
reply to a comment that precedes it. The training
set contains ordered pairs (Ti, Tj), where Ti is a
true (gold) tree and Tj is a valid but false tree.

Experiments: The number of valid trees grows
exponentially with the number of posts in a thread,
which makes the inference difficult. As a proof of
concept that coherence models are useful for find-
ing the right tree, we built a simpler dataset by se-
lecting forum threads from the CNET corpus en-
suring that a thread contains at most 5 posts. The
final dataset contains 1200 threads with an average
of 3.8 posts and 27.64 sentences per thread.

We assess the performance of the models at
two levels: (i) thread-level, where we evaluate
if the model could identify the entire conversa-
tion thread correctly, and (ii) edge-level, where
we evaluate if the model could identify individual
replies correctly. For comparison, we use a num-
ber of simple but well performing baselines:

• All-previous creates thread structure by linking

Thread-level Edge-level

Acc F1 Acc

All-previous 27.00 52.00 61.83
All-first 25.67 48.23 58.19
COS-sim 27.66 50.56 60.30

Conv. Entity Grid 30.33† 53.59† 62.81†

Table 6: Thread reconstruction results; † indicates
significant difference from COS-sim (p< .01).

a comment to its previous (in time) comment.

• All-first creates thread structure by linking all
the comments to the initial comment.

• COS-sim creates thread structure by linking a
comment to one of the previous comments with
which it has the highest cosine similarity. We use
TF.IDF representation for the comments.

Table 6 compares our best conversational grid
model (tree-level with Google vectors) with the
baselines. The low thread-level accuracy across
all the systems prove that reconstructing an en-
tire tree is a difficult task. Models are reasonably
accurate at the edge level. Our coherence model
shows promising results, yielding substantial im-
provements over the baselines. It delivers 2.7%
improvements in thread-level and 2.5% in edge-
level accuracy over the best baseline (COS-sim).

Interestingly, our best model for this task uses a
filter width of 2 (maximum can be 4 for 5 posts).
This indicates that spatial (left-to-right) relations
between entity transitions are important to find the
right thread structure of a conversation.

7 Conclusion

We presented a coherence model for asynchronous
conversations. We first extended the existing neu-
ral grid model by lexicalizing its entity transitions.
We then adapt the model to conversational dis-
course by incorporating the thread structure in its
grid representation and feature computation. We
designed a 3D grid representation for capturing
spatio-temporal entity transitions in a conversation
tree, and employed a 2D convolution to compose
high-level features from this representation.

Our lexicalized grid model yields state of the
art results on standard coherence assessment tasks
in monologue and conversations. We also show
a novel application of our model in forum thread
reconstruction. Our future goal is to use the coher-
ence model to generate new conversations.
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Abstract

Deep neural network models for Chinese
zero pronoun resolution learn semantic in-
formation for zero pronoun and candidate
antecedents, but tend to be short-sighted—
they often make local decisions. They typ-
ically predict coreference chains between
the zero pronoun and one single candi-
date antecedent one link at a time, while
overlooking their long-term influence on
future decisions. Ideally, modeling use-
ful information of preceding potential an-
tecedents is critical when later predicting
zero pronoun-candidate antecedent pairs.
In this study, we show how to integrate lo-
cal and global decision-making by exploit-
ing deep reinforcement learning models.
With the help of the reinforcement learn-
ing agent, our model learns the policy of
selecting antecedents in a sequential man-
ner, where useful information provided by
earlier predicted antecedents could be uti-
lized for making later coreference deci-
sions. Experimental results on OntoNotes
5.0 dataset show that our technique sur-
passes the state-of-the-art models.

1 Introduction

Zero pronoun, as a special linguistic phenomenon
in pro-dropped languages, is pervasive in Chinese
documents (Zhao and Ng, 2007). A zero pronoun
is a gap in the sentence, which refers to the com-
ponent that is omitted because of the coherence of
language. Following shows an example of zero
pronoun in Chinese document, where zero pro-
nouns are represented as “�”.

[Sã∫ Nö�] dÜ h: �1 #6 •◊ F
�2 _��˝∂Å ∫�#⇥

⇤Corresponding author.

([Litigant Li Yading] not only shows �1 willing
of acception, but also �2 hopes that there should
be someone in charge of it.)

A zero pronoun can be an anaphoric zero pronoun
if it coreferes to one or more mentions in the as-
sociated text, or unanaphoric, if there are no such
mentions. In this example, the second zero pro-
noun “�2” is anaphoric and corefers to the men-
tion “Sã∫Nö�/Litigant Li Yading” while
the zero pronoun “�1” is unanaphoric. These men-
tions that contain the important information for
interpreting the zero pronoun are called the an-
tecedents.

In recent years, deep learning models for
Chinese zero pronoun resolution have been
widely investigated (Chen and Ng, 2016; Yin
et al., 2017a,b). These solutions concentrate on
anaphoric zero pronoun resolution, applying nu-
merous neural network models to zero pronoun-
candidate antecedent prediction. Neural network
models have demonstrated their capabilities to
learn vector-space semantics of zero pronouns and
their antecedents (Yin et al., 2017a,b), and sub-
stantially surpass classic models (Zhao and Ng,
2007; Chen and Ng, 2013, 2015), obtaining state-
of-the-art results on the benchmark dataset.

However, these models are heavily making local
coreference decisions. They simply consider the
coreference chain between the zero pronoun and
one single candidate antecedent one link at a time
while overlooking their impacts on future deci-
sions. Intuitively, antecedents provide key linguis-
tic cues for explaining the zero pronoun, it is there-
fore reasonable to leverage useful information pro-
vided by previously predicted antecedents as cues
for predicting the later zero pronoun-candidate an-
tecedent pairs. For instance, given a sentence “I
have confidence that � can do it.” with its can-
didate mentions “he”, “the boy” and “I”, it is
challenging to infer whether mention “I” is pos-
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sible to be the antecedent if it is considered sepa-
rately. In that case, the resolver may incorrectly
predict “I” to be the antecedent since “I” is the
nearest mention. Nevertheless, if we know that
“he” and “the boy” have already been predicted
to be the antecedents, it is uncomplicated to infer
the �-“I” pair as “non-coreference” because “I”
corefers to the disparate entity that is refered by
“he”. Hence, a desirable resolver should be able to
1) take advantage of cues of previously predicted
antecedents, which could be incorporated to help
classify later candidate antecedents and 2) model
the long-term influence of the single coreference
decision in a sequential manner.

To achieve these goals, we propose a deep rein-
forcement learning model for anaphoric zero pro-
noun resolution. On top of the neural network
models (Yin et al., 2017a,b), two main innova-
tions are introduced that are capable of effica-
ciously leveraging effective information provided
by potential antecedents, and making long-term
decisions from a global perspective. First, when
dealing with a specific zero pronoun-candidate an-
tecedent pair, our system encodes all its preced-
ing candidate antecedents that are predicted to
be the antecedents in the vector space. Conse-
quently, this representative vector is regarded as
the antecedent information, which can be utilized
to measure the coreference probability of the zero
pronoun-candidate antecedent pair. In addition,
the policy-based deep reinforcement learning al-
gorithm is applied to learn the policy of making
coreference decisions for zero pronoun-candidate
antecedent pairs. The innovative idea behind our
reinforcement learning model is to model the an-
tecedent determination as a sequential decision
process, where our model learns to link the zero
pronoun to its potential antecedents incrementally.
By encoding the antecedents predicted in previous
states, our model is capable of exploring the long-
term influence of independent decisions, produc-
ing more accurate results than models that sim-
ply consider the limited information in one single
state.

Our strategy is favorable in the following as-
pects. First, the proposed model learns to make de-
cisions by linguistic cues of previously predicted
antecedents. Instead of simply making local de-
cisions, our technique allows the model to learn
which action (predict to be an antecedent) avail-
able from the current state can eventually lead to

a high-scoring overall performance. Second, in-
stead of requiring supervised signals at each time
step, deep reinforcement learning model optimizes
its policy based on an overall reward signal. In
other words, it learns to directly optimize the over-
all evaluation metrics, which is more effective than
models that learn with loss functions that heuris-
tically define the goodness of a particular single
decision. Our experiments are conducted on the
OntoNotes dataset. Comparing to baseline sys-
tems, our model obtains significant improvements,
achieving the state-of-the-art performance for zero
pronoun resolution. The major contributions of
this paper are three-fold.

• We are the first to consider reinforcement
learning models for zero pronoun resolution
in Chinese documents;

• The proposed deep reinforcement learning
model leverages linguistic cues provided by
the antecedents predicted in earlier states
when classifying later candidate antecedents;

• We evaluate our reinforcement learning
model on a benchmark dataset, where a con-
siderable improvement is gained over the
state-of-the-art systems.

The rest of this paper is organized as follows.
The next section describes our deep reinforcement
learning model for anaphoric zero pronoun resolu-
tion. Section 3 presents our experiments, includ-
ing the dataset description, evaluation metrics, ex-
periment results, and analysis. We outline related
work in Section 4. The Section 5 is about the con-
clusion and future work.

2 modelology

In this section, we introduce the technical details
of the proposed reinforcement learning frame-
work. The specific task of anaphoric zero pronoun
resolution is to select antecedents from candidate
antecedents for the zero pronoun. Here we formu-
late it as a sequential decision process in a rein-
forcement learning setting. We first describe the
environment of the Markov decision making pro-
cess and our reinforcement learning agent. Then,
we introduce the modules. The last subsection is
about the supervised pre-training technique of our
model.
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Figure 1: Illustration of our reinforcement learning framework. Given a zero pronoun with n candi-
date antecedents (presented as “NP”), for each time, the agent scores pairs of zero pronoun-candidate
antecedent for their likelihood of coreference by 1) zero pronoun; 2) candidate antecedent and 3) an-
tecedent information. Antecedent information at time t is generated by all the antecedents predicted in
previous states.

2.1 Reinforcement Learning for Zero
Pronoun Resolution

Given an anaphoric zero pronoun zp, a set of
candidate antecedents are required to be selected
from its associated text. In particular, we adopt
the heuristic model utilized in recent Chinese
anaphoric zero pronoun resolution work (Chen
and Ng, 2016; Yin et al., 2017a,b) for this pur-
pose. For those noun phrases that are two sen-
tences away at most from the zero pronoun, we se-
lect those who are maximal noun phrases or mod-
ifier ones to compose the candidate set. These
noun phrases ({np1, np2, ..., npn}) and the zero
pronoun (zp) are then encoded into representation
vectors: {vnp1 , vnp2 , ..., vnpn} and vzp.

Previous neural network models (Chen and
Ng, 2016; Yin et al., 2017a,b) generally con-
sider some pairwise models to select an-
tecedents. In these work, candidate antecedents
and the zero pronoun are first merged into pairs
{(zp, np1), (zp, np2), ..., (zp, npn)}, and then dif-
ferent neural networks are applied to deal with
each pair independently. We argue that these
models only make local decisions while overlook-
ing their impacts on future decisions. In con-
trast, we formulate the antecedent determination
process in as Markov decision process problem.
An innovative reinforcement learning algorithm

is designed that learns to classify candidate an-
tecedents incrementally. When predicting one sin-
gle zero pronoun-candidate antecedent pair, our
model leverages antecedent information gener-
ated by previously predicted antecedents, making
coreference decisions based on global signals.

The architecture of our reinforcement learning
framework is shown in Figure 1. For each time
step, our reinforcement learning agent predicts
the zero pronoun-candidate antecedent pair by us-
ing 1) the zero pronoun; 2) information of cur-
rent candidate antecedent and 3) antecedent in-
formation generated by antecedents predicted in
previous states. In particular, our reinforcement
learning agent is designed as a policy network
⇡✓(s, a) = p(a|s; ✓), where s represents the state;
a indicates the action and ✓ represents the param-
eters of the model. The parameters ✓ are trained
using stochastic gradient descent. Compared with
Deep Q-Network (Mnih et al., 2013) that com-
monly learns a greedy policy, policy network is
able to learn a stochastic policy that prevents the
agent from getting stuck at an intermediate state
(Xiong et al., 2017). Additionally, the learned
policy is more explainable, comparing to learned
value functions in Deep Q-Network. We here in-
troduce the definitions of components of our re-
inforcement learning model, namely, state, action
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and reward.

2.1.1 State
Given a zero pronoun zp with its representation
vzp and all of its candidate antecedents represen-
tations {vnp1 , vnp2 , ..., vnpn}, our model generate
coreference decisions for zero pronoun-candidate
antecedent pairs in sequence. More specifically,
for each time, the state is generated by using both
the vectors of the current zero pronoun-candidate
antecedent pair and candidates that have been pre-
dicted to be the antecedents in the previous states.
For time t, the state vector st is generated as fol-
lows:

st = (vzp, vnpt , vante(t), vfeaturet) (1)

where vzp and vnpt are the vectors of zp and npt at
time t. As shown in Chen and Ng (2016), human-
designed handcrafted features are essential for the
resolver since they reveal the syntactical, posi-
tional and other relations between a zero pronoun
and its counterpart antecedents. Hence, to eval-
uate the coreference possibility of each candidate
antecedent in a comprehensive manner, we inte-
grate a group of features that are utilized in pre-
vious work (Zhao and Ng, 2007; Chen and Ng,
2013, 2016) into our model. For these multi-
value features, we decompose them into a corre-
sponding set of binary-value ones. vfeaturet repre-
sents the feature vector. vante(t) represents the an-
tecedent information generated by candidates that
have been predicted to be antecedents in previous
states. After that, these vectors are concatenated
to be the representation of state and fed into the
deep reinforcement learning agent to generate the
action.

2.1.2 Action
The action for each state is defined to be: core-
fer that indicates the zero pronoun and candidate
antecedent are coreference; or otherwise, non-
corefer. If an action corefer is made, we retain
the vector of the counterpart antecedent together
with those of the antecedents predicted in previ-
ous states to generate the vector vante, which is
utilized to produce the antecedent information in
the next state.

2.1.3 Reward
Normally, once the agent executes a series of ac-
tions, it observes a reward R(a1:T ) that could be

any function. To encourage the agent to find ac-
curate antecedents, we regard the F-score for the
selected antecedents as the reward for each action
in a path.

2.2 Reinforcement Learning Agent

Basically, our reinforcement learning agent is
comprised of three parts, namely, the zero pro-
noun encoder that learns to encode a zero pronoun
into vectors by using its context words; the candi-
date mention encoder that represents the candidate
antecedents by content words; and the agent that
maps the state vector s to a probability distribu-
tion over all possible actions.

In this work, the ZP-centered neural network
model proposed by Yin et al. (2017a) is employed
to be the zero pronoun encoder. The encoder
learns to encode the zero pronoun by its associ-
ated text into its vector-space semantics. In par-
ticular, two standard recurrent neural networks
are employed to encode the preceding text and
the following text of a zero pronoun, separately.
Such a model learns to encode the associated text
around the zero pronoun, exploiting sentence-level
information for the zero pronoun. For the can-
didate mentions encoder, we adopt the recurrent
neural network-based model that encodes these
phrases by using its content words. More specif-
ically, we utilize a standard recurrent neural net-
work to model the content of a phrase from left
to right. This model learns to produce the vec-
tor of a phrase by considering its content, pro-
viding our model an ability to reveal its vector-
space semantics. In this way, we generate the vec-
tor for zp, the vzp, and representation vectors of
all its candidate antecedents, which are denoted as
{vnp1 , vnp2 , ..., vnpn}.

Moreover, we employ pooling operations to
encode antecedent information by using the an-
tecedents that are predicted in previous states.
In particular, we generate two vectors by apply-
ing the max-pooling and average-pooling, respec-
tively. These two vectors are then concatenated
together. Let the representative vector of the tth
candidate antecedent to be vnpt 2 Rd, and the pre-
dicted antecedents at time t be writen as S(t) =
[vnpi , vnpj , ..., vnpr ], the vector at time t, vante(t)k

is generated by:

vante(t)k =

(
max{S(t)k,·} for 0  k < d
ave{S(t)k�d,·} for d  k < 2d
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Figure 2: Illustration of the feedforward neural
network model employed as the agent. Its in-
put vector includes these parts: (1) Zero pronoun;
(2) Candidate Antecedents; (3) Pair Features and
(4) Antecedents. By going through all the full-
connected hidden layers and one softmax layer,
the agent maps the state vector into the proba-
bility distribution over actions that indicates the
coreference likelihood of the input zero pronoun-
candidate antecedent pair.

The concatenation of these vectors is regarded
as input and is fed into our reinforcement learn-
ing agent. More specifically, a feed-forward neu-
ral network is utilized to constitute the agent that
maps the state vector to a probability distribution
over all possible actions. Figure 2 shows the ar-
chitecture of the agent. Two hidden layers are em-
ployed in our model, each of which utilizes the
tanh as the activation function. For each layer,
we generate the output by:

hi(st) = tanh(Wihi�1(st) + bi) (2)

where Wi and bi are the parameters of the ith hid-
den layer; si represents the state vector. After
going through all the layers, we can get the rep-
resentative vector for the zero pronoun-candidate
antecedent pair (zp, npt). We then feed it into a
scoring-layer to get their coreference score. The
scoring-layer is a fully-connected layer of dimen-
sion 2:

score(zp, npt) = Wsh2(st) + bs (3)

where h2 represents the output of the second hid-
den layer; Ws 2 R2⇥r is the parameter of the layer
and r is the dimension of h2. Consequently, we
generate the probability distribution over actions
using the output generated by the scoring-layer of
the neural network, where a softmax layer is em-

ployed to gain the probability of each action:

p✓(a) / escore(zp,npt) (4)

In this work, the policy-based reinforcement learn-
ing model is employed to train the parameter of the
agent. More specifically, we explore using the RE-
INFORCE policy gradient algorithm (Williams,
1992), which learns to maximize the expected re-
ward:

J(✓) = Ea1:T⇠p(a|zp,npt;✓)R(a1:T )

=
X

t

X

a

p(a|zp, npt; ✓)R(at)
(5)

where p(a|zp, npt; ✓) indicates the probability of
selecting action a.

Intuitively, the estimation of the gradient might
have very high variance. One commonly used
remedy to reduce the variance is to subtract a base-
line value b from the reward. Hence, we utilize the
gradient estimate as follows:

r✓J(✓) = r✓
X

t

log p(a|zp, npt; ✓)(R(at)� bt)

(6)
Following Clark and Manning (2016), we intor-
duce the baseline b and get the value of bt at time
t by Eat0⇠pR(a1, ..., at0 , ..., aT ).

2.3 Pretraining

Pretraining is crucial in reinforcement learning
techniques (Clark and Manning, 2016; Xiong
et al., 2017). In this work, we pretrain the model
by using the loss function from Yin et al. (2017a):

loss = �
NX

i=1

X

np2A(zpi)

�(zpi, np)log(P (np|zpi))

(7)
where P (np|zpi) is the coreference score gen-
erated by the agent (the probability of choosing
corefer action); A(zpi) represents the candidate
antecedents of zpi; �(zp, np) is 1 or 0, represent-
ing zp and np are coreference or not.

3 Experiments

3.1 Dataset and Settings

3.1.1 Dataset
Same to recent work on Chinese zero pronoun
(Chen and Ng, 2016; Yin et al., 2017a,b), the
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proposed model is evaluated on the Chinese por-
tion of the OntoNotes 5.0 dataset1 that was used
in the Conll-2012 Shared Task. Documents in
this dataset are from six different sources, namely,
Broadcast News (BN ), Newswires (NW ), Broad-
cast Conversations (BC), Telephone Conversa-
tions (TC), Web Blogs (WB) and Magazines
(MZ). Since zero pronoun coreference annota-
tions exist in only the training and development
set (Chen and Ng, 2016), we utilize the training
dataset for training purposes and test our model on
the development set. The statistics of our dataset
are reported in Table 1. To make equal compari-
son, we adopt the strategy as utilized in the exist-
ing work (Chen and Ng, 2016; Yin et al., 2017a),
where 20% of the training dataset are randomly
selected and reserved as a development dataset for
tuning the model.

#Documents #Sentences #AZPs
Training 1,391 36,487 12,111
Test 172 6,083 1,713

Table 1: Statistics on the training and test dataset.

3.1.2 Evaluation Measures
Following previous work on zero pronoun resolu-
tion (Zhao and Ng, 2007; Chen and Ng, 2016; Yin
et al., 2017a,b), metrics employed to evaluate our
model are: recall, precision, and F-score (F). We
report the performance for each source in addition
to the overall result.

3.1.3 Baselines and Experiment Settings
Five recent zero pronoun resolution systems are
employed as our baselines, namely, Zhao and Ng
(2007), Chen and Ng (2015), Chen and Ng (2016),
Yin et al. (2017a) and Yin et al. (2017b). The
first of them is machine learning-based, the sec-
ond is the unsupervised and the other ones are all
deep learning models. Since we concentrate on the
anaphoric zero pronoun resolution process, we run
experiments by employing the experiment setting
with ground truth parse results and ground truth
anaphoric zero pronoun, all of which are from the
original dataset. Moreover, to illustrate the ef-
fectiveness of our reinforcement learning model,
we run a set of ablation experiments by using dif-
ferent pretraining iterations and report the perfor-

1http://catalog.ldc.upenn.edu/
LDC2013T19

mance of our model with different iterations. Be-
sides, to explore the randomness of the reinforce-
ment learning technique, we report the perfor-
mance variation of our model with different ran-
dom seeds.

3.1.4 Implementation Details
We randomly initialize the parameters and mini-
mize the objective function using Adagrad (Duchi
et al., 2011). The embedding dimension is 100,
and hidden layers are 256 and 512 dimensions, re-
spectively. Moreover, the dropout (Hinton et al.,
2012) regularization is added to the output of each
layer. Table 2 shows the hyperparameters we uti-
lized for both the pre-training and reinforcement
learning process. Hyperparameters here are se-

Pre RL
hidden dimentions 256 & 512 256 & 512
training epochs 70 50
batch 256 256
dropout rate 0.5 0.7
learning rate 0.003 0.00009

Table 2: Hyperparameters for the pre-training
(Pre) and reinforcement learning (RL).

lected based on preliminary experiments and there
remains considerable space for improvement, for
instance, applying the annealing.

3.2 Experiment Results

In Table 3, we compare the results of our model
with baselines in the test dataset. Our reinforce-
ment learning model surpasses all previous base-
lines. More specifically, for the “Overall” results,
our model obtains a considerable improvement by
2.3% in F-score over the best baseline (Yin et al.,
2017a). Moreover, we run experiments in differ-
ent sources of documents and report the results
for each source. The number following a source’s
name indicates the amount of anaphoric zero pro-
noun in that source. Our model beats the best
baseline in four of six sources, demonstrating the
efficiency of our reinforcement learning model.
The improvement gained over the best baseline in
source “BC” is 4.3% in F-score, which is encour-
aging since it contains the most anaphoric zero
pronoun. In all words, all these suggest that our
model surpasses existed baselines, which demon-
strates the efficiency of the proposed technique.

Ideally, our model learns useful information
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NW (84) MZ (162) WB (284) BN (390) BC (510) TC (283) Overall
Zhao and Ng (2007) 40.5 28.4 40.1 43.1 44.7 42.8 41.5
Chen and Ng (2015) 46.4 39.0 51.8 53.8 49.4 52.7 50.2
Chen and Ng (2016) 48.8 41.5 56.3 55.4 50.8 53.1 52.2
Yin et al. (2017b) 50.0 45.0 55.9 53.3 55.3 54.4 53.6
Yin et al. (2017a) 48.8 46.3 59.8 58.4 53.2 54.8 54.9
Our model 63.1 50.2 63.1 56.7 57.5 54.0 57.2

Table 3: Experiment results on the test data. The first six columns show the results on different source
of documents and the last column is the overall results.

gathered from candidates that have been predicted
to be the antecedents in previous states, which
brings a global-view instead of simply making
partial decisions. By applying the reinforcement
learning, our model learns to directly optimize
the overall performance in expectation, guiding
benefit in making decisions in a sequential man-
ner. Consequently, they bring benefit to predict
accurate antecedents, leading to the better perfor-
mance.

Moreover, on purpose of better illustrating the
effectiveness of the proposed reinforcement learn-
ing model, we run a set of experiments with dif-
ferent settings. In particular, we compare the
model with and without the proposed reinforce-
ment learning process using different pre-training
iterations. For each time, we report the perfor-
mance of our model on both the test and devel-
opment set. For all these experiments, we retain
the rest of the model unchanged.

Figure 3: Experiment results of different models,
where “RL” represents the reinforcement learning
algorithm and “Pre” presents the model without
reinforcement learning. “dev” shows the perfor-
mance of our reinforcement learning model on the
development dataset.

Figure 3 shows the performance of our model
with and without reinforcement learning. We can
see from the table that our model with reinforce-
ment learning achieves better performance than
the model without this all across the board. With
the help of reinforcement learning, our model
learns to choose effective actions in sequential de-
cisions. It empowers the model to directly opti-
mize the overall evaluation metrics, which brings a
more effective and natural way of dealing with the
task. Moreover, by seeing that the performance
on development dataset stops increasing with it-
erations bigger than 70, we therefore set the pre-
training iterations to 70.

Following Reimers and Gurevych (2017), to il-
lustrate the impact of randomness in our reinforce-
ment learning model, we run our model with dif-
ferent random seed values. Table 4 shows the
performance of our model with different random
seeds on the test dataset. We report the mini-
mum, the maximum, the median F-scores results
and the standard deviation � of F-scores. We run

Min F Median F Max F �

56.5 57.1 57.5 0.00253

Table 4: Performance of our model with different
random seeds.

the model with 38 different random seeds. The
maximum F-score is 57.5% and the minimum one
is 56.5%. Based on this observation, we can draw
the conclusion that our proposed reinforcement
learning model generally beats the baselines and
achieves the state-of-the-art performance.

3.3 Case Study
Lastly, we show a case to illustrate the effective-
ness of our proposed model, as is shown in Fig-
ure 4. In this case, we can see that our model
correctly predict mentions “£✏W/The Xiaohui”
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Figure 4: Example of case study. Noun phrases
with pink background color are the ones selected
to be the antecedents by our model.

and “y/She” as the antecedents of the zero pro-
noun “�”. This case demonstrates the efficiency
of our model. Instead of making only local de-
cisions, our model learns to predict potential an-
tecedents incrementally, selecting global-optimal
antecedents in a sequential manner. In the end, our
model successfully predicts “y/She” as the result.

4 Related Work

4.1 Zero Pronoun Resolution

A wide variety of techniques for machine learning
models for Chinese zero pronoun resolution have
been proposed. Zhao and Ng (2007) utilized the
decision tree to learn the anaphoric zero pronoun
resolver by using syntactical and positional fea-
tures. It is the first time that machine learning tech-
niques are applied for this task. To better explore
syntactics, Kong and Zhou (2010) employed the
tree kernel technique in their model. Chen and Ng
(2013) extended Zhao and Ng (2007)’s model fur-
ther by integrating innovative features and coref-
erence chains between zero pronoun as bridges to
find antecedents. In contrast, unsupervised tech-
niques have been proposed and shown their effi-
ciency. Chen and Ng (2014) proposed an unsu-
pervised model, where a model trained on manu-
ally resolved pronoun was employed for the reso-
lution of zero pronoun. Chen and Ng (2015) pro-
posed an unsupervised anaphoric zero pronoun re-
solver, using the salience model to deal with the
issue. Besides, there has been extensive work on
zero anaphora for other languages. Efforts for
zero pronoun resolution fall into two major cat-
egories, namely, (1) heuristic techniques (Han,
2006); and (2) learning-based models (Iida and
Poesio, 2011; Isozaki and Hirao, 2003; Iida et al.,
2006, 2007; Sasano and Kurohashi, 2011; Iida and
Poesio, 2011; Iida et al., 2015, 2016).

In recent years, deep learning techniques have

been extensively studied for zero pronoun resolu-
tion. Chen and Ng (2016) introduced a deep neural
network resolver for this task. In their work, zero
pronoun and candidates are encoded by a feed-
forward neural network. Liu et al. (2017) explored
to produce pseudo dataset for anaphoric zero pro-
noun resolution. They trained their deep learn-
ing model by adopting a two-step learning method
that overcomes the discrepancy between the gen-
erated pseudo dataset and the real one. To better
utilize vector-space semantics, Yin et al. (2017b)
employed recurrent neural network to encode zero
pronoun and antecedents. In particular, a two-
layer antecedent encoder was employed to gener-
ate the hierarchical representation of antecedents.
Yin et al. (2017a) developed an innovative deep
memory network resolver, where zero pronouns
are encoded by its potential antecedent mentions
and associated text.

The major difference between our model and
existed techniques lies in the applying of deep re-
inforcement learning. In this work, we formu-
late the anaphoric zero pronoun resolution as a se-
quential decision process in a reinforcement learn-
ing setting. With the help of reinforcement learn-
ing, our resolver learns to classify mentions in
a sequential manner, making global-optimal de-
cisions. Consequently, our model learns to take
advantage of earlier predicted antecedents when
making later coreference decisions.

4.2 Deep Reinforcement Learning

Recent advances in deep reinforcement learning
have shown promise results in a variety of natural
language processing tasks (Branavan et al., 2012;
Narasimhan et al., 2015; Li et al., 2016). In recent
time, Clark and Manning (2016) proposed a deep
reinforcement learning model for coreference res-
olution, where an agent is utilized for linking men-
tions to their potential antecedents. They utilized
the policy gradient algorithm to train the model
and achieves better results compared with the
counterpart neural network model. Narasimhan
et al. (2016) introduced a deep Q-learning based
slot-filling technique, where the agent’s action is
to retrieve or reconcile content from a new doc-
ument. Xiong et al. (2017) proposed an innova-
tive reinforcement learning framework for learn-
ing multi-hop relational paths. Deep reinforce-
ment learning is a natural choice for tasks that re-
quire making incremental decisions. By combin-
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ing non-linear function approximations with rein-
forcement learning, the deep reinforcement learn-
ing paradigm can integrate vector-space semantic
into a robust joint learning and reasoning process.
Moreover, by optimizing the policy-based on the
reward signal, deep reinforcement learning model
relies less on heuristic loss functions that require
careful tuning.

5 Conclusion

We introduce a deep reinforcement learning
framework for Chinese zero pronoun resolution.
Our model learns the policy on selecting an-
tecedents in a sequential manner, leveraging ef-
fective information provided by the earlier pre-
dicted antecedents. This strategy contributes to the
predicting for later antecedents, bringing a natu-
ral view for the task. Experiments on the bench-
mark dataset show that our reinforcement learning
model achieves an F-score of 67.2% on the test
dataset, surpassing all the existed models by a con-
siderable margin.

In the future, we plan to explore neural network
models for efficaciously resolving anaphoric zero
pronoun documents and research on some spe-
cific components which might influence the per-
formance of the model, such as the embedding.
Meanwhile, we plan to research on the possibil-
ity of applying adversarial learning (Goodfellow
et al., 2014) to generate better rewards than the
human-defined reward functions. Besides, to deal
with the problematic scenario when ground truth
parse tree and anaphoric zero pronoun are un-
available, we are interested in exploring the neural
network model that integrates the anaphoric zero
pronoun determination and anaphoric zero pro-
noun resolution jointly in a hierarchical architec-
ture without using parser or anaphoric zero pro-
noun detector.

Our code is available at https://github.
com/qyyin/Reinforce4ZP.git.

Acknowledgments

Thank the anonymous reviewers for their valuable
comments. This work was supported by the Major
State Basic Research Development 973 Program
of China (No.2014CB340503), National Natural
Science Foundation of China (No.61472105 and
No.61502120). According to the meaning by
Harbin Institute of Technology, the contact author
of this paper is Ting Liu.

References
SRK Branavan, David Silver, and Regina Barzilay.

2012. Learning to win by reading manuals in a
monte-carlo framework. Journal of Artificial Intel-
ligence Research, 43:661–704.

Chen Chen and Vincent Ng. 2013. Chinese zero pro-
noun resolution: Some recent advances. In EMNLP,
pages 1360–1365.

Chen Chen and Vincent Ng. 2014. Chinese zero pro-
noun resolution: An unsupervised approach com-
bining ranking and integer linear programming. In
Twenty-Eighth AAAI Conference on Artificial Intel-
ligence.

Chen Chen and Vincent Ng. 2015. Chinese zero pro-
noun resolution: A joint unsupervised discourse-
aware model rivaling state-of-the-art resolvers. In
Proceedings of the 53rd Annual Meeting of the ACL
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Papers),
page 320.

Chen Chen and Vincent Ng. 2016. Chinese zero pro-
noun resolution with deep neural networks. In Pro-
ceedings of the 54rd Annual Meeting of the ACL.

Kevin Clark and Christopher D Manning. 2016. Deep
reinforcement learning for mention-ranking corefer-
ence models. Proceedings of EMNLP’16.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research, 12(Jul):2121–2159.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in neural information
processing systems, pages 2672–2680.

Na-Rae Han. 2006. Korean zero pronouns: analysis
and resolution. Ph.D. thesis, Citeseer.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Ryu Iida, Kentaro Inui, and Yuji Matsumoto. 2006. Ex-
ploiting syntactic patterns as clues in zero-anaphora
resolution. In Proceedings of the 21st International
Conference on Computational Linguistics and the
44th annual meeting of the Association for Compu-
tational Linguistics, pages 625–632. Association for
Computational Linguistics.

Ryu Iida, Kentaro Inui, and Yuji Matsumoto. 2007.
Zero-anaphora resolution by learning rich syntactic
pattern features. ACM Transactions on Asian Lan-
guage Information Processing (TALIP), 6(4):1.

577



Ryu Iida and Massimo Poesio. 2011. A cross-lingual
ilp solution to zero anaphora resolution. In Proceed-
ings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language
Technologies-Volume 1, pages 804–813. Association
for Computational Linguistics.

Ryu Iida, Kentaro Torisawa, Chikara Hashimoto, Jong-
Hoon Oh, and Julien Kloetzer. 2015. Intra-
sentential zero anaphora resolution using subject
sharing recognition. Proceedings of EMNLP’15,
pages 2179–2189.

Ryu Iida, Kentaro Torisawa, Jong-Hoon Oh, Cana-
sai Kruengkrai, and Julien Kloetzer. 2016. Intra-
sentential subject zero anaphora resolution using
multi-column convolutional neural network. In Pro-
ceedings of EMNLP.

Hideki Isozaki and Tsutomu Hirao. 2003. Japanese
zero pronoun resolution based on ranking rules and
machine learning. In Proceedings of the 2003 con-
ference on Empirical methods in natural language
processing, pages 184–191. Association for Compu-
tational Linguistics.

Fang Kong and Guodong Zhou. 2010. A tree kernel-
based unified framework for chinese zero anaphora
resolution. In Proceedings of the 2010 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 882–891. Association for Computa-
tional Linguistics.

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky,
Michel Galley, and Jianfeng Gao. 2016. Deep rein-
forcement learning for dialogue generation. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1192–
1202.

Ting Liu, Yiming Cui, Qingyu Yin, Shijin Wang,
Weinan Zhang, and Guoping Hu. 2017. Generat-
ing and exploiting large-scale pseudo training data
for zero pronoun resolution. In ACL.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Alex Graves, Ioannis Antonoglou, Daan Wierstra,
and Martin Riedmiller. 2013. Playing atari with
deep reinforcement learning. NIPS.

Karthik Narasimhan, Tejas Kulkarni, and Regina
Barzilay. 2015. Language understanding for text-
based games using deep reinforcement learning.
EMNLP’15.

Karthik Narasimhan, Adam Yala, and Regina Barzilay.
2016. Improving information extraction by acquir-
ing external evidence with reinforcement learning.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2355–2365.

Nils Reimers and Iryna Gurevych. 2017. Reporting
score distributions makes a difference: Performance
study of lstm-networks for sequence tagging. In
Proceedings of the 2017 Conference on Empirical

Methods in Natural Language Processing, pages
338–348.

Ryohei Sasano and Sadao Kurohashi. 2011. A dis-
criminative approach to japanese zero anaphora res-
olution with large-scale lexicalized case frames. In
IJCNLP, pages 758–766.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256.

Wenhan Xiong, Thien Hoang, and William Yang
Wang. 2017. Deeppath: A reinforcement learning
method for knowledge graph reasoning. Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing.

Qingyu Yin, Yu Zhang, Weinan Zhang, and Ting Liu.
2017a. Chinese zero pronoun resolution with deep
memory network. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1309–1318.

Qingyu Yin, Yu Zhang, Weinan Zhang, and Ting Liu.
2017b. A deep neural network for chinese zero pro-
noun resolution. In IJCAI.

Shanheng Zhao and Hwee Tou Ng. 2007. Identifica-
tion and resolution of chinese zero pronouns: A ma-
chine learning approach. In EMNLP-CoNLL, vol-
ume 2007, pages 541–550.

578



Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 579–589
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

Entity-Centric Joint Modeling of Japanese Coreference Resolution
and Predicate Argument Structure Analysis

Tomohide Shibata†‡ and Sadao Kurohashi†‡
†Graduate School of Informatics, Kyoto University

Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
‡CREST, JST

4-1-8, Honcho, Kawaguchi-shi, Saitama, 332-0012, Japan
{shibata, kuro}@i.kyoto-u.ac.jp

Abstract

Predicate argument structure analysis is a
task of identifying structured events. To
improve this field, we need to identify a
salient entity, which cannot be identified
without performing coreference resolution
and predicate argument structure analy-
sis simultaneously. This paper presents
an entity-centric joint model for Japanese
coreference resolution and predicate argu-
ment structure analysis. Each entity is as-
signed an embedding, and when the re-
sult of both analyses refers to an entity,
the entity embedding is updated. The
analyses take the entity embedding into
consideration to access the global infor-
mation of entities. Our experimental re-
sults demonstrate the proposed method
can improve the performance of the inter-
sentential zero anaphora resolution drasti-
cally, which is a notoriously difficult task
in predicate argument structure analysis.

1 Introduction

Natural language often conveys a sequence of
events like “who did what to whom”, and extract-
ing structured events from the raw text is a kind of
touchstone for machine reading. This is realized
by a combination of coreference resolution (called
CR, hereafter) and predicate argument structure
analysis (called PA, hereafter).

The characteristics and difficulties in the anal-
yses vary among languages. In English, there are
few omissions of arguments, and thus PA is rela-
tively easy, around 83% accuracy (He et al., 2017),
while CR is relatively difficult, around 70% accu-
racy (Lee et al., 2017).

On the other hand, in Japanese and Chinese,
where arguments are often omitted, PA is a dif-

ficult task, and even state-of-the-art systems only
achieve around 50% accuracy. Zero anaphora res-
olution (ZAR) is a difficult subtask of PA, de-
tecting a zero pronoun and identifying a referent
of the zero pronoun. As the following example
shows, CR in English (identifying the antecedent
of it) and ZAR in Japanese (identifying the omit-
ted nominative argument) are similar problems.

(1) a. John bought a car last month.
It was made by Toyota.

b. ジョンは
John-TOP

先月
last month

車を
a car-ACC

買った。
bought.

(φが)
(ϕ-NOM)

トヨタ製だった。
Toyota made-COPULA.

Note that CR such as the relation between
“the company” and “Toyota” is also difficult in
Japanese.

According to the argument position relative to
the predicate, ZAR is classified into the following
three types:

• intra-sentential (intra in short): an argument
is located in the same sentence with the pred-
icate

• inter-sentential (inter in short): an argument
is located in the preceding sentences, such as
“車” for “トヨタ製だった” (Toyota made-
COPULA) in sentence (1b)

• exophora: an argument does not appear in a
document, such as author and reader

Among these three types, the analysis of inter is
extremely difficult because there are many candi-
dates in preceding sentences, and clues such as a
dependency path between a predicate and an argu-
ment cannot be used.

This paper presents a joint model of CR and
PA in Japanese. It is necessary to perform them
together because PA (especially inter-sentential
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Figure 1: An overview of our proposed method. The phrases with red represent a predicate.

ZAR) needs to identify salient entities, which can-
not be identified without performing CR and PA
simultaneously. Our results support this claim,
and suggest that the status quo of PA-exclusive re-
search in Japanese is an insufficient approach.

Our work is inspired by (Wiseman et al., 2016),
which described an English CR system, where
entities are represented by embeddings, and they
are updated by CR results dynamically. We per-
form Japanese CR and PA by extending this idea.
Our experimental results demonstrate the pro-
posed method can improve the performance of
the inter-sentential zero anaphora resolution dras-
tically.

2 Related Work

Predicate Argument Structure Analysis.
Early studies have handled both intra- and inter-
sentential anaphora (Taira et al., 2008; Sasano
and Kurohashi, 2011), and Hangyo et al. (2013)
present a method for handling exophora. Recent
studies, however, focus on only intra-sentential
anaphora (Ouchi et al., 2015; Shibata et al., 2016;
Iida et al., 2016; Ouchi et al., 2017; Matsubayashi
and Inui, 2017), because the analysis of inter-
sentential anaphora is extremely difficult. Neural
network-based approaches (Shibata et al., 2016;
Iida et al., 2016; Ouchi et al., 2017; Matsubayashi
and Inui, 2017) have improved its performance.

Although most of studies did not consider the
notion entity, Sasano and Kurohashi (2011) con-
sider an entity, and its salience score is calcu-
lated based on simple rules. However, they used
gold coreference links to form the entities, and

reported the salience score did not improve the
performance. In contrast, we perform CR auto-
matically, and capture the entity salience by using
RNNs.

For Chinese, where zero anaphors are often
used, neural network-based approaches (Chen and
Ng, 2016; Yin et al., 2017) outperformed conven-
tional machine learning approaches (Zhao and Ng,
2007).

Coreference Resolution. CR has been actively
studied in English and Chinese. Neural network-
based approaches (Wiseman et al., 2016; Clark
and Manning, 2016b,a; Lee et al., 2017) outper-
formed conventional machine learning approaches
(Clark and Manning, 2015). Wiseman et al. (2016)
and Clark and Manning (2016b) learn an entity
representation and integrate this into a mention-
based model. Our work is inspired by Wiseman
et al. (2016), which learn the entity representa-
tion by using Recurrent Neural Networks (RNNs).
Clark and Manning (2016b) adopt a clustering ap-
proach for the entity representation. The reason
why we do not use this is that if we take a cluster-
ing approach in our setting, zero pronouns need
to be first identified before clustering, and thus,
it is hard to perform CR and PA jointly. Lee
et al. (2017) take an end-to-end approach, aiming
at not relying on hand-engineering mention detec-
tor (consider all spans as potential mentions). In
used Japanese evaluation corpora, since the basic
unit for the annotations and our analyses (CR and
PA) is fixed, we do not need consider all spans.

In Japanese, CR has not been actively studied
other than Iida et al. (2003); Sasano et al. (2007)
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since the use of zero pronouns is more common
and problematic.
Semantic Role Labeling. Japanese PA is simi-
lar to Semantic Role Labeling (SRL) in English.
Neural network-based approaches have improved
the performance (Zhou and Xu, 2015; He et al.,
2017). In these approaches, an appropriate argu-
ment for a predicate is searched among mentions
in a text. The notion entity is not considered.
Other Entity-Centric Study. There are several
studies that consider the notion entity in other ar-
eas: text comprehension (Kobayashi et al., 2016;
Henaff et al., 2016) and language modeling (Ji
et al., 2017).

3 Japanese Preliminaries

Before presenting our proposed method, we de-
scribe the basics of Japanese predicate argument
structure and its analysis.

Since the word order is relatively free among
arguments in Japanese, an argument is followed
by a case marking postposition. The postpositions
が (ga), を (wo), and に (ni) indicate nominative
(NOM), accusative (ACC) and dative (DAT), respec-
tively. In the double nominative construction such
as “私が英語が上手だ” (My English is good),
“英語” (English) is regarded as NOM, and “私” (I),
the outer nominative is regarded as NOM2. This
paper targets these four cases.

PA is tightly related to a dependency structure
of a sentence. Considering the relation between a
predicate and its argument, and a necessary analy-
sis can be classified into the following three cate-
gories (see example sentence (2) below).

(2) ジョンは 買った パンを 食べた
John-TOP bought bread–ACC ate.

D
D D

Overt case: When an argument with a case
marking postposition has a dependency relation
with a predicate, PA is not necessary. In example
(2), since “パンを” (bread-ACC) has a dependency
relation with “食べた” (ate), it is obvious that “食
べた” takes “パン” as its ACC argument.

Case analysis: When a topic marker は (wa) is
attached to an argument, the case marking postpo-
sition disappears, and the analysis of identifying
the case role becomes necessary. The analysis is
called case analysis. In the example, although “ジ
ョンは” (John-TOP) has a dependency relation with
“食べた” (ate), the analysis of identifying NOM is

necessary. The same phenomenon happens when a
relative clause is used. When an argument is mod-
ified by a relative clause, we do not know its case
role to the predicate in the relative clause. In the
example, although “パン” has a dependency rela-
tion with “買った” (bought), the analysis of iden-
tifying ACC is necessary.

Zero anaphora resolution (ZAR): Some argu-
ments are not included in the phrases with which
a predicate has a dependency relation. While pro-
nouns are mostly used in English, they are rarely
used in Japanese. This phenomenon is called zero
anaphora, and the analysis of identifying an argu-
ment (referent of the zero pronoun) is called zero
anaphora resolution (ZAR). In the example, al-
though “買った” takes “ジョン” as its NOM argu-
ment, they do not have a dependency relation, and
thus zero anaphora resolution is necessary.

When dependency relations are identified by
parsing, what Japanese PA has to do is case analy-
sis and zero anaphora resolution.

Each predicate has a set of required cases, but
not all the four cases. For example, “買う” (buy)
takes NOM and ACC, but neither DAT nor NOM2. PA
for “買う” in sentence (2) has to find John as NOM,
but also has to judge that it does not take DAT and
NOM2 arguments.

Another difficulty lies in that a predicate takes
a case, but in a sentence it does not take a spe-
cific argument. For example, in the sentence “it
is difficult to bake a bread”, NOM of “bake” is not
a specific person, but means “anyone” or “in gen-
eral”. In such cases, PA has to regard arguments
as unspecified.

4 Overview of Our Proposed Method

An overview of our proposed model is described
with a motivated example (Figure 1). Our model
equips an entity buffer for entity management. At
first, it contains only special entities, author and
reader.

In Japanese CR and PA, a basic phrase, which
consists of one content word and zero or more
function words, is adopted as a basic unit. When
an input text is given, the contextual represen-
tations of basic phrases are obtained by using
Convolutional Neural Network (CNN) and Bi-
directional LSTM. Then, from the beginning of
the text, CR is performed if a target phrase is a
noun phrase, and PA is performed if a target phrase
is a predicate phrase. Both of these analyses take
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into consideration not only the mentions in the text
but also the entities in the entity buffer.

In CR, when a mention refers to an existing en-
tity, the entity embedding in the entity buffer is
updated. In Figure 1, “同氏” (said person) is ana-
lyzed to refer to “コワリョフ氏” (Mr.Kovalyov),
and the entity embedding of “コワリョフ氏” is
updated. When a mention is analyzed to have no
antecedent, it is registered to the entity buffer as a
new entity.

In PA, when a predicate has no argument for any
case, its argument is searched among any mentions
in the text, author and reader. In the same way
as CR, PA takes into consideration not only the
mentions but also entities in the entity buffer, and
updates the entity embedding.

In Figure 1, the predicate “立候補し” (run for)
has no NOM argument. Our method finds “コワ
リョフ氏” as its NOM argument, and then updates
its entity embedding. As mentioned before, the
entity embedding of “コワリョフ氏” is updated
by the coreference relation with “同氏” in the sec-
ond sentence. In the third sentence, the predicate
“支持していた” (support) has also no NOM argu-
ment, and “コワリョフ氏” is identified as its NOM
argument, because the frequent reference implies
its salience.

5 Base Model

5.1 Input Encoding
Conventional machine learning techniques have
extracted features from a basic phrase, which re-
quire much effort on feature engineering. Our
method obtains an embedding of each basic phrase
using CNN and bi-LSTM as shown in Figure 2.

Suppose the i-th basic phrase bpi consists of
|bpi| words. First, the embedding of each word is
represented as a concatenation of word (lemma),
part of speech (POS), sub-POS and conjugation
embeddings. We append start-of-phrase and end-
of-phrase special words to each phrase in order to
better represent prefixes and suffixes. Let W i ∈
Rd×(|bpi|+2) be an embedding matrix for bpi where
d denotes the dimension of word representation.

The embedding of the basic phrase is obtained
by applying CNN to the sequence of words. A fea-
ture map f i is obtained by applying a convolution
between W i and a filter H of width n. The m-th
element of f i is obtained as follows:

f i[m] = tanh(⟨W i[∗,m : m + n− 1],H⟩),
(1)
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Figure 2: Basic phrase embedding obtained with
CNN and Bi-LSTM.

where W i[∗,m : m+n−1] denotes the m-to-(m+
n− 1)-th column of W i, and ⟨A,B⟩ = Tr(ABT)
is the Frobenius inner product. Then, to capture
the most important feature for a given filter in bpi,
the max pooling is applied as follows:

xi = max
m

f i[m]. (2)

The process described so far is for one filter.
The multiple filters of varying widths are applied
to obtain the representation of bpi. When we set h
filters, xi, the embedding of the i-th basic phrase,
is represented as [xi

1, · · · , xi
h].

The embeddings of basic phrases are read by bi-
LSTM to capture their context as follows:

−→
h i =

−−−−→
LSTM(xi,

−→
h i−1),

←−
h i =

←−−−−
LSTM(xi,

←−
h i+1),

(3)

and the contextualized embedding of the i-th ba-
sic phrase is represented as a concatenation of the
hidden layers of forward and backward LSTM.

hi = [
−→
h i;
←−
h i] (4)

This process is performed for each sentence.
Since CR and PA are performed for a whole doc-
ument D, the indices of basic phrases are reas-
signed from the beginning to the end of D in a
consecutive order: D = {h1, h2, · · · , hi, · · · }.

To handle exophora, author and reader are as-
signed a unique trainable embedding, respectively.
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5.2 Coreference Resolution
We adopt a mention-ranking model that as-
signs each mention its highest scoring candi-
date antecedent. This model assigns a score
sm
CR(ant,mi) to a target mention mi and its

candidate antecedent ant1. The candidate an-
tecedents include i) mentions preceding mi, ii) au-
thor and reader, and iii) NACR (no antecedent).
sm
CR(ant,mi) is calculated as follows:

sm
CR(ant,mi) = WCR

2 ReLU(WCR
1 vCR

input), (5)

where WCR
1 and WCR

2 are weight matrices, and
vCR

input is an input vector, a concatenation of the
following vectors:
• embeddings of mi and ant

• exact match or partial match between strings
of mi and ant

• sentence distance between mi and ant. The
distance is binned into one of the buckets [0,
1, 2, 3+].

• whether a pair of mi and ant has an entry in
a synonym dictionary.

When a candidate antecedent is NACR, the input
vector is just the embedding of a target mention
mi, and the same neural network with different
weight matrices calculates a score.

The following margin objective is trained:

LCR =

Nm∑

i

max
ant∈ANT (mi)

(1+sm
CR(ant, mi)−sm

CR(t̂i, mi)),

(6)

where Nm denotes the number of mentions in a
document,ANT (mi) denotes the set of candidate
antecedents of mi, and t̂i denotes the highest scor-
ing true antecedent of mi defined as follows:

t̂i = argmax
ant∈T (mi)

sm
CR(ant,mi), (7)

where T (mi) denotes the set of true antecedents
of mi.

5.3 Predicate Argument Structure Analysis
When a target phrase is a predicate phrase, PA
is performed. For each case of a predicate, PA
searches an appropriate argument among candi-
date arguments: i) basic phrases located in the sen-
tence including the predicate and preceding sen-
tences, ii) author and reader, iii) unspecified, and

1The superscript m of sm
CR(ant, mi) represents a men-

tion-based score, which contrasts with an entity-based score
introduced in Section 6.
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Figure 3: A neural network for PA.

iv) NAPA which means the predicate takes no argu-
ment of for the case.

The probability that the predicate mi takes an
argument arg for case c is defined as follows:

P (c = arg|mi) =
exp(sm

PA(arg, mi, c))∑
carg∈

ARG(mi)

exp(sm
PA(carg, mi, c))

,

(8)
where ARG(mi) denotes the set of candidate ar-
guments of mi, and a score sm

PA(arg, mi, c) is cal-
culated by a neural network as follows (Figure 3):

sm
PA(arg, mi, c) = WPA

2 tanh(WPA
1,c vPA

input), (9)

where WPA
1,c , WPA

2 are weight matrices, and vPA
input

is an input vector, a concatenation of the following
vectors:

• embeddings of mi and arg2

• path embedding: the dependency path be-
tween a predicate and an argument is an im-
portant clue. Roth and Lapata (2016) learn
a representation of a lexicalized dependency
path for SRL. An LSTM reads words3 from
an argument to a predicate along with a de-
pendency path, and the final hidden state is
adopted as the embedding of the dependency
path.4 For case analysis, the direct depen-
dency relation between a predicate and its ar-
gument can be represented as the path em-
bedding.

2An embedding for NAPA is assigned a trainable one.
3We add special words {Parent, Child}, which indicate a

dependency direction between basic phrases.
4When an argument is an inter or exophora, the path em-

bedding is set to be a zero vector.
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• selectional preference: selectional preference
is another important clue for PA. A selec-
tional preference score is learned in an un-
supervised manner from automatic parses of
a raw corpus (Shibata et al., 2016).

• sentence distance between mi and arg. The
distance is binned in the same way as CR.

The objective is to minimize the cross entropy
between predicted and true distributions:

LPA = −
Np∑

i

∑

c

log P (c = ârg|pi), (10)

where Np denotes the number of predicates in a
document, and ârg denotes a true argument.

6 Entity-Centric Model

While the base model performs mention-based CR
and PA, our proposed model performs entity-based
analyses as shown in Figure 1.

6.1 Entity Embedding Update
The entity embeddings are managed in an entity
buffer. First, let us introduce time stamp i for the
entity embedding update. Time i corresponds to
the analysis for the i-th basic phrase in a docu-
ment. If an entity is referred to by the analysis, its
embedding is updated. Let e

(k)
i be the embedding

of an entity k at time i (after the entity embedding
is updated).

In CR, following Wiseman et al. (2016), when
a target phrase mi refers to the entity k, e

(k)
i is

updated as follows:

e
(k)
i ← LSTMe(hi, e

(k)
i−1) (11)

where LSTMe denotes an LSTM for the entity
embedding update. When an antecedent is NACR,
a new entity embedding is set up, initialized by a
zero vector. The entity buffer maintains K LSTMs
(K is the number of entities in a document), and
their parameters are shared.

The proposed method updates the entity embed-
ding not only in CR but also in PA. When the ref-
erent of a zero pronoun of case c of predicate pi is
entity k, the entity embedding is updated by using
the predicate embedding hi multiplied by a weight
matrix Wc for case c as follows:

e
(k)
i ← LSTMe(Wchi, e

(k)
i−1). (12)

In both CR and PA, the embeddings of entities
other than the referred entity k are not updated
(e(l)

i ← e
(l)
i−1(l ̸= k)).

6.2 Use of Entity Embedding in CR and PA
Both CR and PA are allowed to take the entity em-
beddings into consideration. In CR, let zant de-
note the id of an entity to which the candidate an-
tecedent ant belongs. The entity-based score se

CR

is calculated as follows:

se
CR(ant,mi) =

{
hT

i e
(zant)
i−1 (ant ̸=NACR)

gNA(mi) (ant =NACR).
(13)

The intuition behind the first case is that the dot-
product of hi, the embedding of the target men-
tion, and e

(zant)
i−1 , the embedding of the entity that

ant belongs to indicates the plausibility of their
coreference. gNA(mi) is defined as follows:

gNA(mi) = qT tanh(WNA

[
hi∑

k ei−1
(k)

]
), (14)

where q is a weight vector, and WNA is a weight
matrix. The intuition is that whether a target
phrase is NACR can be judged from hi, the embed-
ding of the target mention itself, and the sum of
all the current entity embeddings. se

CR is added to
sm
CR, and the training objective is the same as the

one described in Section 5.2.
In PA, the entity embedding corresponding to

a candidate argument arg5 is just added to the
input vector vPA

input described in Section 5.3, and
mention- and entity-based score sm+e

PA (arg, mi, c)
is calculated in the same way as sm

PA(arg, mi, c).
The training objective is again the same as the one
in Section 5.3.

In Wiseman et al. (2016), the oracle entity as-
signment is used for the entity embedding update
in training, and the system output is used in a
greedy manner in testing. Since the performance
of PA is lower than that of English CR, there might
be a more significant gap between training and
testing. Therefore, scheduled sampling (Bengio
et al., 2015) is adopted to bridge the gap: in train-
ing, the oracle entity assignment is used with prob-
ability ϵt (at the t-th iteration) and the system out-
put otherwise. Exponential decay is used: ϵt = kt

(we set k = 0.75 for our experiments).

7 Experiments

7.1 Experimental Setting
The two kinds of evaluation sets were used for
our experiments. One is the KWDLC (Kyoto Uni-

5When arg is NAPA, the entity embedding is set to a zero
vector.
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versity Web Document Leads Corpus) evaluation
set (Hangyo et al., 2012), and the other is Ky-
oto Corpus. KWDLC consists of the first three
sentences of 5,000 Web documents (15,000 sen-
tences) and Kyoto Corpus consists of 550 News
documents (5,000 sentences). Word segmenta-
tions, POSs, dependencies, PASs, and corefer-
ences were manually annotated (the closest ref-
erents and antecedents were annotated for zero
anaphora and coreferences, respectively). Since
we want to focus on the accuracy of CR and
PA, gold segmentations, POSs, and dependen-
cies were used. KWDLC (Web) was divided into
3,694 documents (11,558 sents.) for training, 512
documents (1,585 sents.) for development, and
700 documents (2,195 sents.) for testing; Kyoto
Corpus (News) was divided into 360 documents
(3,210 sents.) for training, 98 documents (971
sents.) for development, and 100 documents (967
sents.) for testing.

The evaluation measure is an F-measure, and
the evaluation of both CR and PA was relaxed
using a gold coreference chain, which leads to
an entity-based evaluation. We did not use the
conventional CR evaluation measures (MUC, B3,
CEAF and CoNLL) because our F-measure is al-
most the same as MUC, which is a link-based
measure, and the other measures considering sin-
gletons get excessively high values6, and thus they
do not accord with the actual performance in our
setting.7

7.2 Implementation Detail

The dimension of word embeddings was set to
100, and the word embeddings were initialized
with pre-trained embeddings by Skip-gram with
a negative sampling (Mikolov et al., 2013) on
a Japanese Web corpus consisting of 100M sen-
tences. The dimension of POS, sub-POS and con-
jugation were set to 10, respectively, and these em-
beddings were initialized randomly. The dimen-
sions of the hidden layer in all the neural networks
were set to 100. We used filter windows of 1,2,3
with 33 feature maps each for basic phrase CNN.

6In Japanese, since zero pronouns are often used, there are
many singletons. In example sentences (1) of the Introduction
section, while “a car” and “It” form one cluster in English
sentences (1-a), “a car” is a singleton in Japanese sentences
(1-b) because a zero pronoun is used in the second sentence.

7For the Web evaluation set, the F-measure of our pro-
posed method is 0.685, and the conventional evaluation mea-
sures are as follows; MUC: 69.1, B3: 97.2, CEAF: 95.7, and
CoNLL: 87.3.

Adam (Kingma and Ba, 2014) was adopted as the
optimizer. F measures were averaged over four
runs.

Checkpoint ensemble (Chen et al., 2017) was
adopted, where the k best models were taken in
terms of validation score, and then the parame-
ters from the k models were averaged for testing.
This method requires only one training process. In
our experiments, k was set to 5, and the maximum
number of epochs was set to 10.

We used a single-layer bi-LSTM for the input
encoding (Section 5.1); preliminary experiments
with stacked stacked bi-directional LSTM with
residual connections were not favorable. Although
we tried to use the character-level embedding of
each word obtained with CNN, as the same way
in the basic phrase embedding from the word se-
quences, the performance was not improved. The
synonym dictionary used for CR (Section 5.2) was
constructed from an ordinary dictionary and Web
corpus, and has about 7,300 entries (Sasano et al.,
2007).

7.3 Experimental Result

The following three methods were compared:

• Baseline: the method described in Section 5.

• “+entity (CR)”: this method corresponds to
(Wiseman et al., 2016). Entity embedding is
updated based on the CR result, and CR takes
the entity embedding into consideration.

• “+entity (CR,PA)” (proposed method): en-
tity embedding is updated based on PA as
well as CR result, and the CR and PA take
the entity embedding into consideration.

The performance of CR and PA (case analysis
and zero anaphora resolution (ZAR)) is shown in
Table 1. The performance of CR and case anal-
ysis was almost the same for all the methods.
For ZAR, “+entity (CR,PA)” improved the perfor-
mance drastically.

CR surely benefits from the entity salience.
Since entity embeddings are updated based on
system outputs, its performance matters. The
performance of Japanese CR is lower than that
of English CR. Therefore, we assume there are
improved/worsen examples, and our CR perfor-
mance did not improve significantly. The perfor-
mance of ZAR also matters. However, the perfor-
mance of ZAR in our baseline model is extremely
low, and thus there are few worsen examples and
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Web News

method coreference
resolution

case
analysis

zero anaphora
resolution (ZAR)

coreference
resolution

case
analysis

zero anaphora
resolution (ZAR)

Baseline 0.661 0.887 0.516 0.543 0.896 0.278
+entity (CR) 0.666 0.890 0.518 0.539 0.894 0.275
+entity (CR,PA) 0.685 0.892 0.581 0.541 0.895 0.356

Table 1: Performance (F-measure) of coreference resolution, case analysis and zero anaphora resolution.

Web News

case method case
analysis

zero anaphora
resolution (ZAR)

case
analysis

zero anaphora
resolution (ZAR)

all intra inter exophora all intra inter exophora
NOM Baseline 0.942 0.575 0.466 0.083 0.695 0.939 0.316 0.455 0.042 0.261

+entity (CR) 0.945 0.579 0.475 0.117 0.693 0.940 0.315 0.452 0.037 0.239
+entity (CR,PA) 0.945 0.646 0.508 0.502 0.721 0.940 0.390 0.486 0.256 0.357
# of arguments (1,461) (2,009) (338) (393) (1,278) (905) (1,016) (451) (388) (177)

ACC Baseline 0.853 0.268 0.368 0.119 0.000 0.679 0.053 0.093 0.000 0.000
+entity (CR) 0.855 0.254 0.357 0.108 0.000 0.631 0.025 0.048 0.000 0.000
+entity (CR,PA) 0.857 0.343 0.413 0.282 0.000 0.651 0.016 0.028 0.000 0.000
# of arguments (299) (224) (106) (105) (13) (105) (97) (41) (56) (0)

DAT Baseline 0.498 0.432 0.115 0.016 0.581 0.308 0.183 0.039 0.000 0.367
+entity (CR) 0.445 0.422 0.119 0.016 0.574 0.223 0.162 0.005 0.000 0.334
+entity (CR,PA) 0.411 0.465 0.133 0.126 0.600 0.292 0.328 0.030 0.005 0.566
# of arguments (101) (576) (86) (149) (341) (26) (286) (82) (89) (115)

NOM2 Baseline 0.478 0.216 0.259 0.000 0.245 0.098 0.000 0.000 0.000 0.000
+entity (CR) 0.501 0.212 0.226 0.000 0.257 0.069 0.000 0.000 0.000 0.000
+entity (CR,PA) 0.526 0.283 0.240 0.112 0.341 0.092 0.000 0.000 0.000 0.000
# of arguments (110) (140) (29) (28) (83) (13) (37) (17) (13) (7)

all Baseline 0.887 0.516 0.400 0.074 0.654 0.896 0.278 0.394 0.032 0.291
+entity (CR) 0.890 0.518 0.405 0.093 0.654 0.894 0.275 0.396 0.027 0.265
+entity (CR,PA) 0.892 0.581 0.439 0.399 0.681 0.895 0.356 0.417 0.204 0.432
# of arguments (1,971) (2,949) (559) (675) (1,715) (1,049) (1,436) (591) (546) (299)

Table 2: Performance of case analysis and zero anaphora resolution for each case, and each argument
position for zero anaphora resolution. The underlined values indicate the proposed method outperforms
the baseline by a large margin.

a number of improved examples. Therefore, ZAR
can benefit from the entity representation obtained
by both CR and PA.

Table 2 shows performance of case analysis and
zero anaphora resolution for each case, and each
argument position. Unspecified was counted for
exophora. Both for the News and Web evaluation
sets, the performance for inter arguments of zero
anaphora resolution, which was extremely difficult
in the baseline method, was improved by a large
margin by our proposed method.

7.4 Ablation Study

To reveal the importance of each clue for CR and
PA, each clue was ablated. Table 3 shows the
result on the development set. We found that,
the path embedding was effective for PA, and the
string match was effective for CR. The sentence
distance for both CR and PA was effective for
News, but not for Web since the Web evaluation
corpus consists of three-sentence documents.

7.5 Comparison with Other Work

It is difficult to compare the performance of our
method with other studies directly because there
are no studies handling both CR and PA. The com-
parisons with other studies are summarized as fol-
lows:

• Shibata et al. (2016) proposed a neural-
network based PA. Their target was intra and
exophora for three major cases (NOM, ACC
and DAT), and the performance was 0.534 on
the same Web corpus as ours. The perfor-
mance of our proposed method for the same
three cases was 0.626. Furthermore, since
their model assumes a static PA graph, their
model is difficult to be extended to handle
CR.

• Ouchi et al. (2017) proposed a grid-type
RNN model for capturing the multi-predicate
interaction. Their target was only intra on
the NAIST text corpus (News), and the per-
formance was 47.1. Since the NAIST text
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coreference resolution zero anaphora resolution (ZAR)
Web News Web News

F1 ∆ F1 ∆ F1 ∆ F1 ∆
Our proposed model 0.633 0.613 0.512 0.361
CR
- string match 0.212 -0.420 0.184 -0.429 0.474 -0.038 0.348 -0.013
- sentence distance 0.643 +0.011 0.588 -0.025 0.505 -0.007 0.343 -0.018
- synonym dictionary 0.643 +0.010 0.613 0.000 0.510 -0.002 0.348 -0.013
PA
- path embedding 0.643 +0.010 0.625 +0.012 0.459 -0.054 0.268 -0.093
- selectional preference 0.638 +0.005 0.316 -0.297 0.507 -0.005 0.173 -0.188
- sentence distance 0.647 +0.014 0.606 -0.007 0.516 +0.004 0.327 -0.034

Table 3: Ablation study on the development set. The cells shaded gray represent they are not directly
affected from the ablation, but from the counterpart analysis result.

corpus contains a lot of annotation errors as
pointed out in Iida et al. (2016), we did not
conduct our experiments on the NAIST text
corpus.

• Iida et al. (2003) reported an F-measure of
about 0.7 on News domain. The possible rea-
son why our performance on News (0.541)
is lower than theirs is that their basic unit is
a compound noun while our basic unit is a
noun, and thus our setting is difficult in com-
parison with theirs.

Since we handle inter as well as intra and ex-
ophora arguments in PA, together with CR, we can
say that our experimental setting is more practical
in comparison with other studies.

7.6 Error Analysis

In example (3), although the NOM argument of the
predicate “通院ですよ！” (go to hospital) is author,
our method wrongly classified it as unspecified.

(3) 毎日のように
every day

通院ですよ！
go to hospital!

私自身は
I myself-TOP

とても
very

健康なんですけど。
healthy.

((I) go to hospital every day!
(I am) very healthy, though.)

In the second sentence, our method correctly iden-
tified the antecedent of “私” (I) as author, and the
NOM of “健康なんですけど” (healthy) as “私” (I).
Our method adopts the greedy search so that it
cannot exploit this handy information in the anal-
ysis of the first sentence. The global modeling us-
ing reinforcement learning (Clark and Manning,
2016a) for a whole document is our future work.

In example (4), although the NOM argument of
“装飾されています” (be decorated) in the second
sentence is “ドレス” (dress) in the first sentence,
our method wrongly classified it as NAPA.

(4) 大変
very

印象的な
impressive

ドレスです。
dress-COPULA.

オーガンジーの
organdie-GEN

上に
top-DAT

ラインを
line-ACC

描くように
draw-as

小さな
small

ビーズで
bead-INS

装飾されています。
decorated

((This is) a very impressive dress.
(The dress) is decorated by small beads as
they draw a line on its organdy.)

“オーガンジー” (organdie) has a bridging relation
to “ドレス”, which might help capture the salience
of “ドレス”. The bridging reference resolution
is our next target and must be easily incorporated
into our model.

8 Conclusion

This paper has presented an entity-centric neu-
ral network-based joint model of coreference res-
olution and predicate argument structure analy-
sis. Each entity has its embedding, and the em-
beddings are updated according to the result of
both of these analyses dynamically. Both of these
analyses took the entity embedding into consid-
eration to access the global information of enti-
ties. The experimental results demonstrated that
the proposed method could improve the perfor-
mance of the inter-sentential zero anaphora res-
olution drastically, which has been regarded as a
notoriously difficult task. We believe that our pro-
posed method is also effective for other pro-drop
languages such as Chinese and Korean.
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Abstract

This paper reports on two strategies that
have been implemented for improving the
efficiency and precision of wide-coverage
Minimalist Grammar (MG) parsing. The
first extends the formalism presented in
Torr and Stabler (2016) with a mecha-
nism for enforcing fine-grained selectional
restrictions and agreements. The second
is a method for factoring computation-
ally costly null heads out from bottom-up
MG parsing; this has the additional bene-
fit of rendering the formalism fully com-
patible for the first time with highly effi-
cient Markovian supertaggers. These tech-
niques aided in the task of generating MG-
bank, the first wide-coverage corpus of
Minimalist Grammar derivation trees.

1 Introduction

Parsers based on deep grammatical formalisms,
such as CCG (Steedman and Baldridge, 2011) and
HPSG (Pollard and Sag, 1994), exhibit superior
performance on certain semantically crucial (un-
bounded) dependency types when compared to
those with relatively shallow context free gram-
mars (in the spirit of Collins (1997) and Char-
niak (2000)) or, in the case of modern dependency
parsers (McDonald and Pereira (2006), Nivre et
al. (2006)), no explicit formal grammar at all
(Rimell et al. (2009), Nivre et al. (2010)). As
parsing technology advances, the importance of
correctly analysing these more complex construc-
tion types will also inevitably increase, making re-
search into deep parsing technology an important
goal within NLP.

One deep grammatical framework that has not
so far been applied to NLP tasks is the Minimalist
Grammar (MG) formalism (Stabler, 1997). Lin-

guistically, MG is a computationally-oriented for-
malization of many aspects of Chomsky’s (1995)
Minimalist Program, arguably still the dominant
framework in theoretical syntax, but so far con-
spicuously absent from NLP conferences. Part of
the reason for this has been that until now no Min-
imalist treebank existed on which to train efficient
statistical Minimalist parsers.

The Autobank (Torr, 2017) system was de-
signed to address this issue. It provides a GUI
for creating a wide-coverage MG together with a
module for automatically generating MG trees for
the sentences of the Wall Street Journal section of
the Penn Treebank (PTB) (Marcus et al., 1993),
which it does using an exhaustive bottom-up MG
chart parser1. This system has been used to cre-
ate MGbank, the first wide coverage (precision-
oriented) Minimalist Grammar and MG treebank
of English, which consists of 1078 hand-crafted
MG lexical categories (355 of which are phoneti-
cally null) and currently covers approximately half
of the WSJ PTB sentences. A problem which
arose during its construction was that without any
statistical model to constrain the derivation, MG
parsing had to be exhaustive, and this presented
some significant efficiency challenges once the
grammar grew beyond a certain size2, mainly be-
cause of the problem of identifying the location
and category of phonetically silent heads (equiva-
lent to type-changing unary rules) allowed by the
theory. This problem was particularly acute for the
MGbank grammar, which makes extensive use of
such heads to multiply out the lexicon during pars-

1The parser is based on Harkema’s (2001) CKY variant.
2As Cramer and Zhang (2010) (who pursue a similar tree-

banking strategy for HPSG) observe, there is very often con-
siderable tension between the competing goals of efficiency
and coverage for deep, hand-written and precision-oriented
parsers, which aim not only to provide detailed linguistic
analyses for grammatical sentences, but also to reject un-
grammatical ones wherever possible.
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ing. This approach reduces the amount of time
needed for manual annotation, and also enables
the parser to better generalise to unseen construc-
tions, but it can quickly lead to an explosion in the
search space if left unconstrained.

This paper provides details on two strategies
that were developed for constraining the hypoth-
esis space for wide-coverage MG parsing. The
first of these is an implementation of the sorts
of selectional restrictions3 standardly used by
other formalisms, which allow a head to spec-
ify certain fine-grained properties about its argu-
ments. Pesetsky (1991) refers to this type of fine-
grained selection as l(exical)-selection, in con-
trast to coarser-grained c(ategory)-selection and
semantic s-selection. The same system is also
used here to enforce morphosyntactic agreements,
such as subject-verb agreement4 and case ‘assign-
ment’. It is simpler and flatter than the structured
feature value matrices one finds in formalisms
such as HPSG and LFG, which arguably makes
it less linguistically plausible. However, it is also
considerably easier to read and to annotate, which
greatly facilitated the manual treebanking task.

The second technique to be presented is a
method for extracting a set of complex overt cate-
gories from a corpus of MG derivation trees which
has the dual effect of factoring computationally
costly null heads out from parsing (but not from
the resulting parse trees) and rendering MGs fully
compatible for the first time with existing su-
pertagging techniques. Supertagging was origi-
nally introduced in Bangalore and Joshi (1999) for
the Lexicalised Tree Adjoining Grammar (LTAG)
formalism (Schabes et al., 1988), and involves
applying Markovian part-of-speech tagging tech-
niques to strongly lexicalised tag sets that are
much larger and richer than the 45 tags used by
the PTB. Because each supertag contains a great
deal of information about the syntactic environ-
ment of the word it labels, such as its subcatego-
rization frame, supertagging is sometimes referred
to as ‘almost parsing’. It has proven highly ef-
fective at making CCG (Clark and Curran, 2007;
Lewis et al., 2016; Xu, 2016; Wu et al., 2017) pars-
ing in particular efficient enough to support large-
scale NLP tasks, making it desirable to apply this

3These were briefly introduced in Torr (2017), but are ex-
pounded here in much greater depth.

4The approach to agreement adopted here differs in var-
ious respects from the operation Agree (Chomsky (2000)
(2001)) assumed in current mainstream Minimalism.

technique to MGs. However, existing supertag-
gers can only tag what they can see, presenting a
problem for MGs, which include phonetically un-
pronounced heads. Our extraction algorithm ad-
dresses this by anchoring null heads to overt ones
within complex LTAG-like supertag categories.

The paper is arranged as follows: section 2
gives an informal overview of MGs; section 3 in-
troduces the selectional mechanisms and shows
how these are used in MGbank to enforce case
‘assignment’ (3.1), l-selection (3.2) and subject-
verb agreement (3.3); section 4 presents the al-
gorithm for extracting supertags from a corpus of
MG derivation trees (4.1), gives details of how a
standard CKY MG parser can straightforwardly be
adapted to make use of these complex tags (4.2),
and presents some preliminary supertagging re-
sults (4.3) and a discussion of these (4.4); section
5 concludes the paper.

2 Minimalist Grammars

For a more detailed and formal account of the MG
formalism assumed in this paper, see Torr and Sta-
bler (2016) (henceforth T&S); here we give only
an informal overview. MG is introduced in Sta-
bler (1997); it is a strongly lexicalised formalism
in which categories are comprised of lists of struc-
ture building features ordered from left to right.
These features must be checked against each other
and deleted during the derivation, except for a sin-
gle c feature on the complementizer (C) heading
the sentence, which survives intact (equivalent to
reaching the S root in classical CFG parsing). Fea-
tures are checked and deleted via the application of
a small set of abstract Merge and Move rules. Two
simple MG lexical entries are given below (The ::
is a type identifier5):

him :: d
helps :: d= v

The structure building features themselves can
be categorized into four classes: selector =x/x=
features, selectee x features, licensor +y features,
and licensee -y features. In a directional MG, such
as that presented in T&S, the = symbol on the se-
lector can appear on either side of the x category
symbol, and this indicates whether selection is to
the left or to the right. For instance, in our toy lexi-
con helps’s first feature is a d= selector, indicating
that it is looking for a DP on its right. Since the

5:: indicates a non-derived item and : a derived one.
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first feature of him is a d selectee, we can merge
these two words to obtain the following VP cate-
gory, where ✏ is the empty string (The reason for
the commas separating the left and right depen-
dent string components from the head string com-
ponent is to allow for subsequent head movement
of the latter (see Stabler (2001)):

✏, helps, him : v

The strings of the two merged elements have
been here been concatenated, but this will not al-
ways be the case. In particular, if the selected item
has additional features behind its selectee, then it
will need to check these in subsequent derivational
steps via applications of Move. In that case the
two constituents must be kept separate within a
single expression following Merge. To illustrate
this, we will update the lexicon as follows:

him :: d -case
helps :: d= +CASE v

Merging these two items results in the following
expression:

✏, helps, ✏ : +CASE v, him : -case

The two subconstituents, separated above by the
rightmost comma, are referred to as chains; the
leftmost chain in any expression is the head of
the expression; all other chains are movers. The
+CASE licensor on the head chain must now at-
tract a chain within the expression with a matching
-case licensee as its first feature to move overtly
to its left dependent (specifier) position6. Exactly
one moving chain must satisfy this condition, or
this expression will be unable to enter into any
further operations (if more than one chain has
the same licensee feature, it will violate a con-
straint on MG derivations known as the Shortest
Move Constraint (SMC) and automatically be dis-
carded). As this condition is satisfied by just him’s

6Uppercase licensors specify overt movement; lowercase
licensors, by contrast, trigger covert movement, where only
the features move, not the string (see T&S). Note that the
MGbank grammar follows Chomsky’s (2008) suggestion that
it is the lexical verb V, rather than the null ‘little v’ head gov-
erning it, which checks the object’s features, having inherited
the relevant licensors (offline we assume) from v. This uni-
fies the analysis of standard transitives with ECM construc-
tions (Jack expected Mary to help), which in MGbank involve
overt raising of the subject of the embedded infinitival clause
to spec-VP to check accusative case (object control Jack per-
suaded Mary to help involves two such movements, the first
for theta and the second for case).

-case feature, we can perform the unary operation
Move on this expression, resulting in the following
new, single-chained expression:

him, helps, ✏ : v

We can represent these binary Merge and unary
Move operations using the MG derivation tree in
fig 1a. Derivation trees such as this are used fre-
quently in work on Stablerian Minimalist Gram-
mars, but they can be deterministically mapped
into phrase structure trees like fig 1b7.

him, helps, ✏ : v

✏, helps, ✏ : +CASE v, him : -case

✏, him, ✏ : d -case✏, helps, ✏ :: d= +CASE v

(a) VP

V’

DPi

t

V

helps

DPi

him

(b)

Figure 1: An MG Derivation tree for the VP him, helps
(a); and its corresponding Xbar phrase structure tree (b). At
this stage in the derivation the verb and its object are incor-
rectly ordered. This will be rectified by subsequent V-to-v
head movement placing the verb to the left of its object.

To continue this derivation and derive the transi-
tive sentence he helps him, we will expand our lex-
icon with the following categories, where square
brackets indicate a null head and a > diacritic on a
selector feature indicates that a variant of Merge is
triggered in which the head string of the selected
constituent undergoes head movement to the left
of the selecting constituent’s head string:

he :: d -case
[trans] :: >v= =d lv8

[pres] :: lv= +CASE t
[decl] :: t= c

The full derivation tree and corresponding Xbar
phrase structure tree for the sentence are given in
fig 2 and fig 3 respectively.

3 Case, L-selection and Agreement

3.1 Case ‘Assignment’
Notice that at present both the nominative and ac-
cusative forms of the masculine personal pronoun

7MGbank includes MG derivation tree, MG derived (bare
phrase structure) tree, and Xbar tree formats.

8Note that little v is written as lv in MGbank derivation
trees because upper vs lowercase letters are used to trigger
different rules. In the corresponding MGbank Xbar trees,
however, v has been converted to V and lv to v, to make these
trees more familiar.
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✏, [decl], he [pres] helps [trans] him : c

he, [pres], helps [trans] him : t

✏, [pres], helps [trans] him : +CASE t, he : -case

✏, helps [trans], him : lv, he : -case

✏, helps [trans], him : =d lv

him, helps, ✏ : v

✏, helps, ✏ : +CASE v, him : -case

✏, him ✏, :: d -case✏, helps, ✏ :: d= +CASE v

✏, [trans], ✏ :: >v= =d lv

✏, he, ✏ :: d -case

✏, [pres], ✏ :: lv= +CASE t

✏, [decl], ✏ :: t= c

Figure 2: MG derivation tree for the sentence he helps him.

CP

TP

T’

vP

v’

VP

V’

DPj

t

Vk

t

DPj

him

v

v

[trans]

Vk

helps

DPi

t

T

[pres]

DPi

he

C

[decl]

Figure 3: Xbar phrase structure tree for the sentence he
helps him.

in our lexicon have the same feature sequence.
This means that as well as correctly generating
he helps him, our grammar also overgenerates him
helps he. One way to solve this would be to split
+/-case features into +/-nom and +/-acc. However,
many items of category d in English (e.g. the, a,
you, there, it) are syncretised (i.e. have the same
phonetic form) for nominative vs. accusative case.
This solution therefore lacks elegance as it ex-
pands the lexicon with duplicate homophonic en-
tries differing in just a single (semantically mean-
ingless) feature. Furthermore, increasing the size
of the set k of licensees could adversely impact
parsing efficiency, given that the worst case the-
oretical time complexity of MG chart parsing is
known to be n2k+3 (Fowlie and Koller, 2017),
where k is the number of moving chains allowed
in any single expression by the grammar.

Instead, we will retain the single -case licensee
feature and introduce NOM and ACC as subcat-
egories, or selectional properties, of this feature.
We will also subcategorize licensor features using

selectional requirements of the form +X and -X,
where X is some selectional property. Positive +X
features require the presence of the specified prop-
erty on the licensee feature being checked, while
-X features require its absence. For example, con-
sider the following updated lexical entries, where
individual selectional features are separated by the
. symbol:

him :: d -case{ACC}

he :: d -case{NOM}

helps :: d= +CASE{+ACC} v{PRES.TRANS}

[pres] :: lv{+PRES}= +CASE{+NOM} t{FIN.PRES}

[trans] :: >v{+TRANS}= =d lv

The +ACC selectional requirement on the V
head’s +CASE licensor specifies that the object’s
licensee feature must bear an ACC selectional
property, while +NOM on the T(ense) head indi-
cates that the subject’s licensee must have a NOM
property. For SMC purposes, however, these two
different subcategories of -case will still block one
another, meaning that k remains unaffected. The
reader should satisfy themselves that our grammar
now correctly blocks the ungrammatical him helps
he.

We can now also address the aforementioned
syncretism issue without increasing the size of the
grammar. To do this, we simply allow features to
bear multiple selectional properties from the same
paradigm. For example, representing the pronoun
it as follows will allow it to appear in either a nom-
inative or an accusative case licensing position:

it :: d -case{ACC.NOM}
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3.2 L-selection

As well as constraining Move, selectional restric-
tions can also constrain Merge. For instance, we
can ensure that a subject control verb like want
subcategorizes for a to-infinitival CP complement,
and thereby avoid overgenerating Jack wants that
she help(s), simply by using the following cate-
gories for want and that:

want :: c{+INF}= v{TRANS}
that :: t{+FIN}= c{DECL.FIN}

Because that lacks the INF feature required by
want, the ungrammatical derivation is blocked.
We also need to block *Jack wants she help(s),
where the overt C head is omitted. Minimalists
assume that finite embedded declaratives lacking
an overt C are nevertheless headed by a null C -
a silent counterpart of that. A complicating fac-
tor is that a null complementizer is also assumed
to head certain types of embedded infinitivals, in-
cluding the embedded help clause in Jack wants
[CP to help]. Given that these null C heads are
(trivially) homophones and that they arguably ex-
ist to encode the same illocutionary force9, an el-
egant approach would be to minimize the size of
the lexicon - and hence the grammar - by treat-
ing them as one and the same item. On the other
hand, using a single null C head syncretised with
both FIN and INF will fail to block *Jack wants
she help(s).

At present both C and T are specified as FIN,
suggesting a redundancy. Instead, therefore, we
will assume that T, being the locus of tense, is also
the sole locus of inherent finiteness, but that C’s
selectee may inherit FIN or INF from its TP com-
plement as the derivation proceeds10. Only a null
C which inherits INF from a to-TP complement
will be selectable by a verb like want, blocking the

9Infinitival complementizers are sometimes assumed to
encode irrealis force (see e.g. Radford (2004)) in contrast to
that and its null counterpart which encode declarative force.
However, the fact that Jack expects her to help is (on one
reading) virtually synonymous with Jack expects that she will
help suggests that in both cases the C head is encoding the
same semantic property, with any subtle difference in mean-
ing attributable to the contents of the Tense (T) head (i.e. to
vs. will). Consider also Mary wondered whether to help vs.
Mary wondered whether she should help, where the embed-
ded infinitival and finite clauses are both clearly interrogative.

10If Grimshaw (1991) is correct that functional projections
like DP, TP and CP are part of extended projections of the N
and V heads they most closely c-command, then we should
not be surprised to find instances where fine-grained syntactic
properties are projected up through these functional layers.

ungrammatical *Jack wants she help(s). However,
although lacking inherent tense properties, certain
C heads continue to bear inherent tense require-
ments11; for instance, that’s selector will retain its
inherent +FIN, identifying it as a finite comple-
mentizer.

To implement this percolation12 mechanism, we
now introduce selectional variables, which we
write as x, y, z etc. A variable on a selector or
licensor feature will cause all the selectional prop-
erties and requirements (but not other variables)
contained on the selectee or licensee feature that it
checks to be copied onto all other instances of that
variable on the selecting or licensing category’s
remaining unchecked feature sequence. Consider
the following:

[trans] :: >v{+TRANS.x}= =d lv{x}
[pres] :: lv{+PRES.x}= +CASE{+NOM.x} t{FIN.x}
to :: lv{+BARE.x}= t{INF.x}
[decl] :: t{x}= c{DECL.x}
that :: t{+FIN.x}= c{DECL.x}

The [pres] T head has an x variable on its lv=
selector feature and this same variable also ap-
pears to the right on its +CASE licensor and t se-
lectee; any selectional properties or requirements
contained on the lv selectee of its vP complement
will thus percolate onto these two features (see
fig 4). The x’s on the two C heads will percolate
the FIN property from the t selectee of [pres] to the
c selectee of [decl], where it can be selected for by
a verb like say, but not want, which requires INF
(contained on the to T head); this will correctly
block *Jack wants (that) she help(s).

Although we will not discuss the details here,
it is worth noting that the MGbank grammar also
uses this same percolation mechanism to capture
long distance subcategorization in English sub-
junctives, thereby allowing Jack demanded that
she be there on time while also blocking *Jack de-
manded that she is there on time.

11The property vs. requirement distinction mirrors Chom-
sky’s (1995) interpretable vs. uninterpretable one.

12Note that because we are only allowing selectional prop-
erties and requirements to percolate, rather than the structure
building feature themselves, this system is fundamentally dif-
ferent from that described in Kobele (2005), where it was
shown that allowing licensee features to be percolated leads
to type 0 MGs. Furthermore, by unifying any multiple in-
stances of the same selectional property or requirement that
arise on a structure building feature owing to percolation, we
can ensure that the set of MG terminals and non-terminals
remains finite and thus that the weak equivalence to MCFG
(Michaelis, 1998; Harkema, 2001) is maintained.
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✏, [pres], helps [trans] him : +CASE{+NOM.PRES.TRANS.+3SG} t{FIN.PRES.TRANS.+3SG}, he : -case{NOM.3SG}

✏, helps [trans], him : lv{PRES.TRANS.+3SG}, he : -case{NOM.3SG}✏, [pres], ✏ :: lv{+PRES.x}= +CASE{+NOM.x} t{FIN.x}

Figure 4: Merge of T with vP with percolation of selectional properties and requirements.

3.3 Subject-Verb Agreement
The percolation mechanism introduced above can
also be used to capture agreement between the
subject and the inflected verb. In Minimalist the-
ory, this agreement is only indirect: the subject
actually agrees directly with T when it moves to
become the latter’s specifier, having been initially
selected for either by V (in the case of non-agent
arguments) or by v (in the case of agent subjects -
see fig 3)13. There is also assumed to be some sort
of syntactic agreement (Roberts (2010)) and/or
phonetic (Chomsky (2001)) process operating be-
tween T and the inflected verb, resulting in any
tense/agreement inflectional material generated in
T(ense) being suffixed onto the finite verb.

In MGbank, tense agreement is enforced be-
tween T and the finite verb by percolating a
PRES or PAST selectional property from the se-
lectee of the latter up through the tree so that
it can be selected for by the [pres] or [past] T
head. Subject-verb agreement, meanwhile, is en-
forced by also placing an agreement selectional

13A reviewer asks why all subjects are not directly se-
lected for by V, suggesting that this appears to be a deviation
from semantics, and more generally calls for some explana-
tion of the underlying modelling decisions adopted here (e.g.
head movements, case movements, null heads etc) which
clearly deviate from the more surface oriented analyses of
other formalisms used in NLP. In many cases these decisions
rest on decades of research which we cannot hope to sum-
marise here; for good introductions to Minimalism, see Rad-
ford (2004) and Hornstein et al. (2005). It is worth noting,
however, that the null v head in fig 3 is essentially a valency
increasing causative morpheme which ends up suffixed to the
main verb (via head movement of the latter), effectively en-
abling it to take an additional ‘external’ argument. We can
therefore view the V-v complex as a single synthetic verbal
head, so that just as in a language like Turkish the verb öl
meaning ‘to die’ can be transformed from an intransitive to a
transitive (meaning ‘to kill’) by appending to it the causative
suffix dür, in English a verb like break can be transformed
from an intransitive (the window broke) to a transitive (he
broke the window) by applying a null version of this mor-
pheme. This cross-linguistic perspective (which makes this
formalism potentially very relevant for machine translation)
reflects a central goal of Minimalism, which is to show that at
a relevant level of abstract representation, all languages share
a common syntax (making them easier for children to learn).
Most of the analyses adopted here are standard ones from
the literature (see e.g. Larson’s (1988) VP Shell Hypothe-
sis, Baker’s (1988) Uniform Theta Assignment Hypothesis,
Koopman and Sportiche’s (1991) Verb Phrase Internal Sub-
ject Hypothesis, and Chomsky (1995; 2008) on little v).

restriction (+3SG, +1PL, -3SG etc) on the finite
verb’s selectee, and then percolating this up to the
+CASE licensor of the T head. We thus have the
following updated entries:

him :: d -case{ACC.3SG}
he :: d -case{NOM.3SG}
helps :: d= +CASE{+ACC} v{+3SG.PRES}

The percolation step from little v (lv) to T is
shown in fig 4; lv has already inherited PRES and
+3SG from V (helps) at this point, and these fea-
tures now percolate to T’s licensor and selectee14

owing to the x variables; the PRES feature inher-
ited from V by v is selected for by T, enforcing
non-local tense agreement between T and V, while
the +3SG enforces subject verb agreement15.

4 MG Supertagging

The above selectional system restricts the parser’s
search space sufficiently well that it is feasible to
generate an initial MG treebank for many of the
sentences in the PTB, particularly the shorter ones
and those longer ones which do not require the
full range of null heads to be allowed into the
chart16. However, for longer sentences requiring
null heads such as extraposers, topicalizers or fo-
calizers, parsing remains impractically slow. In
this section we show how computationally costly
null heads can be factored out from MG parsing al-

14Note that selectional requirements are entirely inert on
selectee and licensee features while, conversely, selectional
properties are inert on selectors and licensors.

15For non-3SG present tense verbs, MGbank uses a -3SG
negative selectional requirement; for verbs with more com-
plex paradigms, however, the grammar allows for inclusive
disjunctive selectional requirements. For example, the se-
lectee feature of the was form of the verb be bears the fea-
ture [+1SG|+3SG], allowing it to take either a first or third
singular subject.

16The Autobank parser holds certain costly null heads back
from the chart and only introduces these incrementally if it
fails to parse the sentence without them. The advantage of
this strategy is that it improves efficiency for many sentences,
but the disadvantage is that it can also result in correct analy-
ses being bled by incorrect ones. The supertagging approach
introduced in this section eliminates this problem, since null
heads are now anchored to overt ones as part of complex cat-
egories, any of which may freely be assigned by the supertag-
ger.
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together by anchoring them to overt heads within
complex overt categories extracted from this ini-
tial treebank. This allows much more of the dis-
ambiguation work to be undertaken by a statisti-
cal Markovian supertagger17, a strategy which has
proven highly effective at rendering CCG parsing
in particular efficient enough for large-scale NLP
tasks. We also show how a standard CKY MG
parser can be adapted to make use of these com-
plex categories, and present some preliminary su-
pertagging results.

4.1 Factoring null heads out from MG
parsing

Consider again the lexical items which appear
along the spine of the clause in fig 2.

[decl] :: t= c
[pres] :: lv= +CASE t
[trans] :: >v= =d lv
helps :: d= +CASE v

Recall that the null [trans] little v merges with
the VP headed by overt helps, while the null
[pres] T head merges with the vP, and the null
[decl] C with TP. If we view each of these head-
complement merge operations as a link in a chain,
then all of these null heads are either directly (in
the case of v) or indirectly (in the case of T and
C) linked to the overt verb. All of the information
represented on V, v, T and C heads in Minimalism
is in LTAG represented on a single overt lexical
category (known as an initial tree). We can adopt
this perspective for Minimalist parsing if we view
chains of merges that start with some null head
and end with some overt head as constituting com-
plex overt categories. Given a corpus of deriva-
tion trees, it is possible to extract all such chains
appearing in the corpus, essentially precompiling
all of the attested combinations of null heads with
their overt anchors into the lexicon. A very simple
algorithm for doing this is given below.

for each derivation tree ⌧ :
for each null head ⌘ in ⌧ :

if ⌘ is a proform:
linkWithGovernor(⌘);

else:
linkWithHeadOfComplement(⌘);

groupLinksIntoSupertags()
17During treebank generation we used the C&C (Clark and

Curran, 2007) supertagger retrained to take gold CCGbank
categories and words as input and output MGbank supertags.

For each derivation tree, we first anchor all null
heads either directly or indirectly to some overt
head; this is achieved by extracting a set of links,
each of which represents one merge operation in
the tree. Each link is comprised of the two atomic
MG lexical categories that are the arguments to
the merge operation along with matching indices
indicating which features are checked by the op-
eration. Applying the algorithm to our example
sentence would result in the following 3 links:

link1: [decl] :: t=1 c, [pres] :: lv= +CASE t1

link2: [pres] :: lv=2 +CASE t, [trans] :: v= =d lv2

link3: [trans] :: v=3 =d lv, helps :: d= +CASE v3

The majority of null heads are simply linked
with the head of their complement, the only ex-
ception being that null proforms, such as PRO in
arbitrary control constructions18 (named [pro-d]
in MGbank) and the null verbal heads used for
VP ellipsis ([pro-v] in MGbank), are linked to
whichever head selects for them (i.e. their gov-
ernor). Assuming that null proforms are the only
null heads appearing at the bottom of any extended
projection (ep)19 in the corpus, this ensures that all
of the lexical items inside a given supertag are part
of the same ep, except for PRO, which is trivially
an ep in its own right and must therefore be an-
chored to the verb that selects it. Note that some
atomic overt heads (such as he and him in our ex-
ample sentence) will not be involved in any links
and will therefore form simplex supertags.

Once the merge links and unattached overt
heads are extracted, the algorithm then groups
them together in such a way that any lexical items
which are chained together either directly or indi-
rectly by merge links are contained in the same
group. Because links are only formed between
null heads and their complements (except in the
case of the null proform heads), and not between
heads and specifiers or adjuncts, each chain ends
with the first overt head encountered, so that every
(null or overt) head is guaranteed to appear in just
one group and each group is guaranteed to contain
at most one overt lexical item.

The above merge links would form one group,
or supertag, represented compactly as follows:

18Other instances of control are treated as cases of A-
movement following Boeckx et al. (2010).

19Here, we define the clausal extended projection as run-
ning from V up to the closest CP (or TP if CP is absent, as
in ECM constructions), and for nominals from N up to the
closest PP (or DP if PP is absent).
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[decl] :: t=1 c
[pres] :: lv=2 +CASE t1

[trans] :: v=3 =d lv2

helps :: d= +CASE v3

All of the subcategorization information of the
main verb is contained within this supertag, but
unlike in the case of LTAG categories, this is not
always the case: if an auxiliary verb were present
between little vP and TP, for instance, then only
little v would be anchored to the main verb, while
T and C would be anchored to the structurally
higher auxiliary. C is the head triggering A’-
movements, such as wh-movement and topical-
ization. A consequence of this is that, although
like LTAG (but unlike CCG) A’-movement is lex-
icalised onto an overt category here, that overt
category is often structurally and linearly much
closer to the A’-moved element than in LTAG. For
instance, in the sentence what did she say that
Pete eats for breakfast?, an LTAG would precom-
pile the wh-movement onto the supertag for eats,
whereas here the [int] C head licensing this move-
ment would be precompiled onto did.

As noted in Kasai et al. (2017), LTAG’s lexical-
isation of unbounded A’-movement is one reason
why supertagging has proven more difficult to ap-
ply successfully to TAG than to CCG, Markovian
supertaggers being inherently better at identifying
local dependencies. We hope that lexicalising A’-
movement into a supertag that is linearly closer to
the moved item will therefore ultimately prove ad-
vantageous.

4.2 Adapting an existing CKY MG parser to
use MG supertags

The MG supertags can be integrated into an ex-
isting CKY MG parser quite straight forwardly as
follows: first, for each supertag token assigned to
each word in the sentence, we map the indices that
indicate which features check each other into glob-
ally unique identifiers. This is necessary to ensure
that different supertags and different instances of
the same supertag assigned to different words are
differentiated by the system. Then, whenever one
of the constrained features is encountered, the
parser ensures that it is only checked against the
feature with the matching identifier. The parser
otherwise operates as usual except that thousands
of potential merge operations are now disallowed,
with the result that the search space is drastically
reduced (though this of course depends on the

number of supertags assigned to each word).
One complication concerns the dynamic pro-

gramming of the chart. In standard CKY MG
parsing, as with classical CFG CKY, items with
the same category spanning the same substring are
combined into a single chart entry during parsing.
This prevents the system having to create identical
tree fragments multiple times. But the current ap-
proach complicates this because many items now
have different predetermined futures (i.e. their
unchecked features are differentially constrained),
and when the system later attempts to reconstruct
the trees by following the backpointers, things can
become very complicated. We can avoid this is-
sue, however, simply by treating the unique identi-
fiers that were assigned to certain selector features
as part of the category. This has the effect of split-
ting the categories and will, for instance, prevent
two single chain categories =d1 d= v and =d2 d=
v from being treated as a single chart entry until
their =d features have been checked.

4.3 Preliminary Results
An LSTM supertagger similar to that in (Lewis
et al., 2016) was trained on 13,000 sentences ran-
domly chosen from MGbank, extracting various
types of (super)tag from the derivation trees. A
further 742 sentences were used for development,
and 753 for testing, again randomly chosen. We
tried training on just the automatically generated
corpus and testing on the hand-crafted trees, but
this hurt 1-best performances by 2-4%, no doubt
owing to the fact that this hand-crafted set delib-
erately contains many of the rarer constructions in
the Zipfian tail which didn’t make it into the au-
tomatically generated corpus20. With more data
this effect should lessen. The results for n-best su-
pertagging accuracies are given in table 1.

4.4 Discussion
Unsurprisingly, the accuracies improve as the
number of tags decreases. The CCGbank data
contains by far the least tag types and has the
highest performance. However, it is worth not-
ing that the MG supertags contain a lot more in-
formation than their CCGbank counterparts, even
once A’-movement and selectional restrictions are
removed. For example, MGbank encodes all
predicate-argument relations directly in the syn-
tax, distinguishing for instance between subject

20There are 831 category types in the automatically gener-
ated corpus from a total of 1078 for the entire treebank.
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rei ab rei-A’ ab-A’ ov ccg
|tags| 3087 2087 1883 1181 717 342
1-best 79.1 81.1 83.0 84.2 88.0 92.4
2-best 88.4 90.2 91.1 91.9 95.3 97.1
3-best 91.6 93.5 94.1 94.8 97.1 98.3

10-best 96.4 97.4 97.9 98.2 99.2 99.5
25-best 97.6 98.5 98.9 99.1 99.7 99.7
40-best 98.0 98.7 99.0 99.4 99.8 99.8

Table 1: Accuracies on different MG (super)tag types showing
the % of cases where the correct tag appears in the n-best list.
The first row gives the number of different (super)tag types in the
data; rei(fied) is supertags with all selectional properties and re-
quirements; ab(stract) is supertags with all but 5 of these features
removed22; -A’ indicates that null C heads, and [focalizer], [topi-
calizer], [wh] and [relativizer] heads were not included in the su-
pertags, thereby delexicalising A’-movement and moving the for-
malism towards CCG; ov(ert) is the (reified) atomic overt tags; ccg
is the ccgbank supertags.

raising and subject control verbs, and between
object raising (ECM) and object control verbs,
whereas CCGbank itself does not. For a fairer
comparison, therefore, we would need to com-
bine CCGbank syntactic types with the seman-
tic types of Bos (Bos et al., 2004). There are
also many types of dependencies, such as those
for rightward movement and correlative focus
(either..or, neither..nor, both..and), which could be
delixicalised to reduce the size of the supertag sets
further. Of course, the more null heads that are
allowed freely into the chart, the stronger the sta-
tistical model of the derivation itself must be. Fi-
nally, the MGbank grammar (particularly in its rei-
fied versions) is precision-oriented, in the sense
that it blocks many ungrammatical sentence types
(agreement/l-selection violations, binding theory
violations, (anti)that-trace violations, wh-island
violations etc). The extra information needed to
attain this precision expands the tag set but should
also ultimately help in pruning the search space,
enabling the parser to try more tags. The CCG-
bank grammar, meanwhile, is much more flexi-
ble (making it very robust), and therefore leaves
a much greater proportion of the task of constrain-
ing the search space to the probability model.

The 1-best accuracies are clearly not high
enough to be practical for wide-coverage MG
parsing at present. By the time the 3-best su-
pertags per word are considered, however, the ac-
curacies are in all cases quite high, and by the 25-
best they are very high, although it is difficult to
say at this point what level will be sufficient for

wide-coverage parsing. The overt atomic tagging
is much better, achieving high accuracy by the 3-
best, but these tags contain the least information
and therefore leave much more disambiguation to
the parsing model. Clearly, using MG supertags
will require an algorithm that navigates the search
space as efficiently as possible and allows the su-
pertagger to try as many tags for each word as pos-
sible. We are in the process of re-implementing
the A* search algorithm of (Lewis and Steedman,
2014), which allows their CCG parser to consider
the complete distribution of 425 supertags for each
word.

The potential efficiency advantages of parsing
with MG supertags are considerable: reparsing
the seed set of 960 trees (which includes 207 sen-
tences which were added to cover some construc-
tions not found in the Penn Treebank) takes over 8
hours on a 1.4GHz Intel Core i5 Macbook Air with
a perfect oracle providing the 1-best overt atomic
tag, but just over 6 minutes using reified supertags.

5 Conclusion

We presented two methods for constraining the
parser’s search space and improving efficiency
during wide-coverage MG parsing. The first ex-
tends the formalism with mechanisms for enforc-
ing morphosyntactic agreements and selectional
restrictions. The second anchors computationally
costly null heads to overt heads inside complex
overt categories, rendering the formalism fully
compatible with Markovian supertagging tech-
niques. Both techniques have proven useful for
the generation of MGbank. We are now working
on an A* MG parser which can consider the full
distribution of supertags for each word and exploit
the potential of these rich lexical categories.
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Abstract

Linguistic alignment between dialogue
partners has been claimed to be affected
by their relative social power. A com-
mon finding has been that interlocutors of
higher power tend to receive more align-
ment than those of lower power. However,
these studies overlook some low-level lin-
guistic features that can also affect align-
ment, which casts doubts on these find-
ings. This work characterizes the effect
of power on alignment with logistic re-
gression models in two datasets, finding
that the effect vanishes or is reversed af-
ter controlling for low-level features such
as utterance length. Thus, linguistic align-
ment is explained better by low-level fea-
tures than by social power. We argue that
a wider range of factors, especially cog-
nitive factors, need to be taken into ac-
count for future studies on observational
data when social factors of language use
are in question.

1 Introduction

The effect of social power on language use in con-
versations has been widely studied. The Com-
munication Accommodation Theory (Giles, 2008)
states that the social power of speakers influence
the extent to which conversation partners accom-
modate (or align, coordinate) their communicat-
ing styles towards them. This theory is supported
by findings from qualitative studies on employ-
ment interviews (Willemyns et al., 1997), class-
room talks (Jones et al., 1999), and the more re-
cent data-driven studies on large online communi-
ties and court conversations (Danescu-Niculescu-
Mizil et al., 2012; Jones et al., 2014; Noble
and Fernández, 2015). In particular, Danescu-

Niculescu-Mizil et al. (2012) uses a probability-
based measure of linguistic alignment to demon-
strate that people align more towards conversa-
tion partners of higher power, i.e., the admin users
in Wikipedia talk-page, and the justices in U.S.
supreme court conversations, than those of lower
power, i.e., the non-admin users and the lawyers.

However, while these results find sound expla-
nations from socio-linguistic theories, they are still
somewhat surprising from the perspective of cog-
nitive mechanisms of language production, be-
cause the mutual alignment between interlocutors
of in natural dialogue can be explained by an au-
tomatic and low-level priming process (Pickering
and Garrod, 2004). It is known that the strength
of alignment is sensitive to low-level linguistic
features (e.g., words, syntactic structures etc.),
such as temporal clustering properties (Myslín and
Levy, 2016), syntactic surprisal measured by pre-
diction error (Jaeger and Snider, 2013), and lexical
information density (Xu and Reitter, 2018).

Then why, or under what mechanisms, can
alignment be affected by the relatively high-level
social perceptions of power as reported? Could it
be the case that the effect of power on alignment is
actually due to the other low level features in lan-
guage, such as the ones mentioned above? Is the
effect of power still observable, if we control for
other factors? How large is the effect? Is it sig-
nificant enough to be captured by computational
measures of alignment? Answering these ques-
tions will help clarify the role of social factors in
linguistic alignment, and improve our understand-
ing of language production in general.

In this study, we conduct a two-step model anal-
ysis. First, we use a basic model that has two
predictors, count (number of a certain linguis-
tic marker in the preceding utterance) and power
(power status of the preceding speaker), to predict
the occurrence of the same marker in the follow-
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ing utterance. Here, the linguistic markers are de-
rived from 11 Linguistic Inquiry and Word Count
(LIWC; Pennebaker et al., 2001) categories (e.g.,
article, adverb, etc.). With the basic model, the
main effect of count characterizes the strength of
alignment, and the interaction between count and
power characterizes the effect of power on align-
ment (Section 3). Second, we use an extended
model that includes a third predictor, utterance
length (It is chosen as a typical low-level linguis-
tic feature, discussed in Section 2.3), on top of the
basic model. With the extended model, we aim to
examine whether the inclusion of utterance length
will influence the interaction between count and
power (Section 4). Therefore, we can examine the
extent to which the effect of power on alignment
is confounded by low-level linguistic features.

To clarify, our goal is not to disprove the
existence of social accommodation in dialogue.
Nonetheless, it is important to distinguish between
what is caused by automatic priming-based align-
ment and what is caused by high-level, inten-
tional accommodation. As we will discuss, these
are different processes with different predictions.
Throughout this paper we use the term alignment
to refer to the priming-based process, and accom-
modation to refer to the intentional process.

2 Related Work

2.1 Social power and linguistic alignment

The social factors of language use have been
widely studied. Communication Accommoda-
tion Theory (Giles, 2008) posits that individuals
adapt their communication styles to increase or de-
crease the social distance from their interlocutors.
One factor that affects the adaptation of linguistic
styles is social power. Typically, people of lower
power converge their linguistic styles to those of
higher power; for example, interviewees towards
interviewers (Willemyns et al., 1997), or students
towards teachers (Jones et al., 1999).

More recently, sensitive quantitative meth-
ods have been applied to this line of inquiry.
Danescu-Niculescu-Mizil et al. (2012) computed
the probability-based linguistic coordination mea-
sure among Wikipedia editors and participants of
the US supreme court, and they showed that peo-
ple with low power (e.g., lawyers, non-admins) ex-
hibit greater coordination than people with high
power (Justices, admins). Using the same data,
Noble and Fernández (2015) found that linguis-

tic coordination is positively correlated with social
network centrality, and this effect is even greater
than the effect of power status distinction.

The aforementioned studies do not include low-
level language features in their analysis and thus
overlook the possibility that cognitive mechanisms
may be able to more readily explain the data. Im-
portantly, as we will later discuss, these studies
use a measurement of alignment that we believe is
more appropriately measuring the automatic pro-
cess, rather than the intentional one.

2.2 Quantifying linguistic alignment

A variety of computational measures of linguistic
alignment have been developed. Some quantify
the increase in conditional probability of certain
elements (words or word types) given that they
have appeared earlier (Church, 2000; Danescu-
Niculescu-Mizil et al., 2012). Some compute
the proportion of repeated lexical entries or syn-
tactic rules between two pieces of text (Fusaroli
et al., 2012; Wang et al., 2014; Xu and Reitter,
2015). Some use the coefficients returned by gen-
eralized linear models (McCullagh, 1984; Breslow
and Clayton, 1993; Lindstrom and Bates, 1990) as
an index of alignment (Reitter and Moore, 2014).
A large body of the existing computational mea-
sures intensively use LIWC (Pennebaker et al.,
2001) to construct representations of language
users’ styles, which can be used to measure align-
ment with distance-like metrics (Niederhoffer and
Pennebaker, 2002; Jones et al., 2014). Many of
these approaches do not distinguish between dif-
ferent levels of linguistic analysis and different
psycholinguistic processes (phonological, lexical,
syntactic, etc.), and neither do we. Alignment is
consistently present across these levels and pro-
cesses, although it is not as clear in naturalis-
tic language as it is in the constrained utterances
of experiments, particularly at the syntactic level
(Healey et al., 2014). We are concerned with the
question of whether alignment is a socially linked,
intentional adaptation process, as opposed to ad-
dressing any particular cognitive model.

More recently, Doyle et al. (2016) pointed out
that most existing measures are difficult to com-
pare, and emphasized the need for a universal
measure. The Hierarchical Alignment Model
(HAM; Doyle et al., 2016) and Word-Based HAM
(WHAM; Doyle and Frank, 2016) use statisti-
cal inference techniques, which out-perform other
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measures in terms of robustness of capturing lin-
guistic alignment in social media conversations.

In this study, we choose to use generalized lin-
ear models to quantify linguistic alignment, avoid-
ing issues with more complex, and less inspectable
models. For instance, the commonly used prob-
ability based methods and their more advanced
variants (HAM and WHAM) lack the flexibility
to jointly examine multiple factors (e.g., speaker
groups, utterance length etc.) that influence align-
ment. Another issue is that they do not take into
account the number of occurrences of linguistic
markers, which is known to affect alignment (see
Section 2.3). Conversely, though linear models do
not give an accurate per-speaker estimate of align-
ment (which we do not need for the purpose of
this study), they do provide the ability to examine
multiple factors that influence alignment by sim-
ply including multiple predictors in the model. As
should be clear, a generalized linear model also al-
ready takes into account baseline usage with a fit-
ted intercept. Given these considerations, we use
generalized linear models for quantitative analy-
sis. The formulation of our models is described in
Sections 3.2 and 4.1.

2.3 Cognitive constraints on linguistic
alignment: why utterance length matters

There are many, at times competing, cognitive ex-
planations of linguistic alignment in both compre-
hension and production. Jaeger and Snider (2013)
explained alignment as a consequence of expec-
tation adaptation, and they found that stronger
alignment is associated with syntactic structures
that have higher surprisal (roughly speaking, less
common). Alignment in language production
can also be modeled as a general memory phe-
nomenon (Reitter et al., 2011), which explains a
number of known interaction effects. Myslín and
Levy (2016) found that sentence comprehension
is faster when the same syntactic structure clus-
ters in time in prior experience than when it is
evenly spaced in time. Myslín and Levy (2016)
cast comprehension priming as the rational ex-
pectation for repetition of stimuli. Though this
result is not directly related to comprehension-
to-production priming, it makes sense to antici-
pate that production could also be sensitive to the
clustering patterns of linguistic elements, because
comprehension and production are closely cou-
pled processes (Pickering and Garrod, 2007).

Utterance length, i.e., the number of words in
utterance, is a feature that closely relates to both
surprisal and clustering properties. Longer utter-
ances tend to have higher syntactic surprisal (Xu
and Reitter, 2016a), and it is reasonable to assume
they tend to contain more evenly distributed stim-
uli. Thus, utterance length is a low-level linguistic
feature that correlates with many of the causes of
alignment. In this way, we use utterance length
as a stand-in for low-level linguistic features as
a whole when comparing it with social power, a
much higher-level feature. Examining alignment
(in social science research and elsewhere) there-
fore calls for controlling sentence length.

3 Experiment 1: Basic model

In Experiment 1, we justify the practice of us-
ing generalized linear models to quantify linguis-
tic alignment. We compare two ways of charac-
terizing the occurrence of LIWC-derived markers
in a preceding utterance, binary presence and nu-
meric count, to determine which results in better
model. We use an interaction term in the model to
quantify the effect of the power status of speakers
on linguistic alignment, which serves as the basis
for the following sections.

3.1 Corpus data
We use two datasets compiled by Danescu-
Niculescu-Mizil et al. (2012): Wikipedia talk-
page corpus (Wiki) and a corpus of United States
supreme court conversations (SC). Wiki is a col-
lection of conversations from Wikipedia editor’s
talk Pages1, which contains 125,292 conversations
contributed by 30,732 editors. SC is a collection of
conversations from the U.S. Supreme Court Oral
Arguments2, with 51,498 utterances making up
50,389 conversational exchanges, from 204 cases
involving 11 Justices and 311 other participants
(lawyers or amici curiae).

A conversation consists of a sequence of utter-
ances, {ui}(i = 1, 2, . . . , N), where N is the to-
tal number of utterances in the conversation. Be-
cause people take turns to talk in conversation, ui

and ui+1 are always from different speakers. Since
our interest here is the alignment between different
speakers (as opposed to within the same speaker),
we use a sliding window of size 2 to go through

1http://en.wikipedia.org/wiki/
Wikipedia:Talk_page_guidelines

2http://www.supremecourt.gov/oral_
arguments/
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the whole conversation, generating a sequence of
adjacent utterance pairs, {〈primei, targeti〉}(i =
1, 2 . . . N − 1).

Next, we process each utterance ui by count-
ing the number of occurrences of 14 linguistic
markers that are derived from LIWC categories,
resulting in 14 counts for each utterance. These
14 linguistic markers are: high frequency adverbs
(adv), articles (art), auxiliary verbs (auxv), cer-
tainty (certain), conjunctions (conj), discrepancy
(discrep), exclusion (excl), inclusion (incl), imper-
sonal pronouns (ipron), negations (negate), per-
sonal pronouns (ppron), prepositions (prep), quan-
tifiers (quant), and tentativeness (tentat). These
fourteen markers come from taking the union of
the 8 markers used by Danescu-Niculescu-Mizil
et al. (2012) and the 11 markers used by Doyle
and Frank (2016), which are the main studies we
wanted to compare with.

3.2 Statistical models

We formulate alignment as the impact of using
certain linguistic elements in the preceding utter-
ance on their chance to appear again in the fol-
lowing utterance. In the language of generalized
linear models, we use the occurrence of linguistic
markers in target as the response variable and the
predictor is their occurrence in prime. These oc-
currences can be represented as either a boolean
or a count. Thus alignment is characterized by
the β coefficient of the predictor, which allows the
model to distinguish the prevalence of Occurrence
or another feature in primed situations as com-
pared to its prior in the corpus. Factors that may
influence alignment (e.g., social power) can then
be examined by adding a corresponding interac-
tion term to the model.

Our first step, then, is to replicate the previ-
ous studies’ findings of the effect of social power
on alignment. Two models were fitted, predict-
ing the presence of the linguistic marker m in
target utterance over its absence. We fit models
both corresponding to a binary predictor (Cpresence)
and a count-based one (Ccount). Both models in-
clude a second binary predictor, Cpower, indicat-
ing the power status of the prime speaker (high
vs. low), and its interaction with Cpresence and
Ccount, respectively. Additionally, random inter-
cepts on linguistic marker and target speaker are
fitted, based on the consideration that individuals
might have different levels of alignment towards

different markers. Ccount is log-transformed to
maximize model fit according to Bayesian Infor-
mation Criterion; this is commensurate with stan-
dard psycholinguistic practice and known cumu-
lative priming and memory effects. Equation (1)
shows the count-based model. To reiterate, the in-
teraction term Ccount ∗ Cpower characterizes the ef-
fect of power on alignment.

logit(m) = ln
p(m in target)

p(m not in target)
= β0 + β1Ccount + β2Cpower

+ β3Ccount ∗ Cpower

(1)

3.3 Model coefficients
The main effects of Cpresence and Ccount are sig-
nificant (p < 0.001) and positive in both corpora
(SC: βpresence = 0.439, βcount = 0.291; Wiki:
βpresence = 0.440, βcount = 0.395), which cap-
tures the linguistic alignment from prime to target.
However, there is difference in how alignment is
influenced by power between the two corpora: In
SC, Ccount ∗ Cpower is significant (β = 0.078, p <
0.001), but Cpresence ∗ Cpower is non-significant;
In Wiki, on the contrary, Cpresence ∗ Cpower is
marginally significant (β = 0.014, p = .055), but
Ccount ∗ Cpower in not significant. No collinearity
is found between Ccount (or Cpresence) and Cpower
(Pearson correlation r < 0.2).

To explore why using Cpresence vs. Ccount results
in different significance levels for SC and Wiki,
we fit a individual linear model for each linguistic
marker, using 14 disjoint subsets of each corpus.
We present the z scores and significance levels of
the two interaction terms are reported in Table 1.
First, in SC the interaction term Cpresence ∗ Cpower
is significant for 9 out of 14 markers. In Wiki,
Ccount ∗ Cpower is significant for 5 out of 14 mark-
ers. This suggests that the interaction between the
occurrence of linguistic markers and the power
status of speakers exists within a subset of the
linguistic categories, but not across all of them.
Thus, we consider this first experiment a replica-
tion of past findings of the effect of social power
on alignment: social power has a significant ef-
fect across certain markers, but its overall effect is
neutralized in the full model since some markers
at not significant. This analysis also revealed that
Ccount ∗ Cpower is more reliable in capturing this
effect, which is what we will use in the following
experiment.
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Table 1: Summary of the 14 models that fit in-
dividual markers on disjoint data subsets. Wald’s
z-score and significance level (∗∗∗ for p < 0.001,
∗∗ for p < 0.01, ∗ for p < 0.05, and † for 0.05 <
p < 0.1) of the interaction terms (Cpresence ∗Cpower
or Ccount ∗ Cpower) are reported.

Marker
z score

Cpresence ∗ Cpower Ccount ∗ Cpower

SC Wiki SC Wiki

adv 1.19 -0.33 6.16*** -0.40
art 1.99* 0.36 4.60*** 1.27
auxv 3.72*** -0.62 5.81*** -0.83
certain -0.02 3.19** 1.94† 2.84**

conj 0.54 -0.20 6.79*** 0.39
discrep 5.44*** -0.05 8.03*** 0.25
excl -0.53 1.96* 2.94** 2.16*

incl 2.86** 0.80 5.24*** 2.15*

ipron 6.84*** 1.70† 10.22*** 1.90†

negate 2.83** 3.14** 5.49*** 3.11**

ppron 2.74** -1.86† 1.29 -1.13
prep 4.76*** 2.37* 6.87*** -0.19
quant 0.89 1.01 4.14*** -0.04
tentat 3.69*** 0.17 4.52*** -0.78

3.4 Visualizing the effect of power

To better understand the interaction term Ccount ∗
Cpower, we divide the data into two groups by
whether Cpower is high or low, and fit a model on
each of the groups. In the models we include only
one predictor Ccount (see Equation (2)). Then we
compare the main effects (β1 coefficients) from
the two groups.

logit(m) = β0 + β1Ccount (2)

Unsurprisingly, the main effects of Ccount are
significant for both groups (p < 0.001). But
more importantly, the β1 coefficients of the high
power group are larger than those of the low
power group. For SC, the difference is very
salient: β

high
1 = 0.416 (SE = 0.006), βlow

1 =
0.272 (SE = 0.005). For Wiki, the difference is
smaller: β

high
1 = 0.424 (SE = 0.007), βlow

1 =
0.386 (SE = 0.005). This is in line with the non-
significant coefficient of Ccount ∗ Cpower in Wiki.
In fact, the models of Wiki are fitted on a subset
of data that contain the 5 (out of 14) markers that
have significant coefficients of Ccount ∗ Cpower in
the individual models shown in Table 1 (certain,
excl, incl, ipron, negate), so that the difference in
slopes is presented at maximal degree.

In Figure 1 we illustrate the βhigh and βlow coef-
ficients of Ccount by plotting the predicted proba-
bility (the reversed logit transformation of the left-
hand side term of Equation (2)) against Ccount (log-
transformed). It is obvious that the slope of βhigh
is larger than that of βlow (more salient in SC), in-
dicating the significant interaction between Ccount
and Cpower.
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Figure 1: The predicted probability of marker ap-
pearing in target (the reverse logit transform of the
left hand side of Equation (2)) against the number
of markers in prime, i.e., Ccount (log-transformed),
grouped by the power of prime speaker, i.e., high
vs. low. Divergent slopes indicate significant in-
teractions. Colored hexagons indicate the number
of data points within that region.

3.5 Discussion

The occurrence of linguistic markers in prime is
a strong predictor of whether the same marker
will appear again in target. The coefficients of
Ccount can be viewed as indicators of the linguis-
tic alignment between interlocutors: larger posi-
tive βs indicate stronger alignment, while smaller
or even negative βs indicate weaker and reverse
alignment, respectively (not found in our data).

Our results confirm the previously reported ef-
fect of power on linguistic alignment. The signifi-
cant β′ coefficient of Ccount ∗Cpower means that the
β of Ccount is dependent on Cpower. In other words,
the strength of alignment varies significantly de-
pending on different power levels (i.e., high vs.
low) of the prime speaker (reflected by the differ-
ent slopes in Figure 1). However, we need to keep
in mind that this affirmative finding is not safe, be-
cause it based on a simple model that has only one
key predictor, Cpower. According to our hypothe-
sis, the strength of alignment can be influenced by
a lot of low-level linguistic features, and we are
not sure yet if the effect of power will still be visi-
ble after we includes more predictors representing
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those features. This will be the next step experi-
ment.

Additionally, the results also suggest that the in-
fluence of power on linguistic alignment is better
characterized by the more fine-grained cumulative
effect of linguistic markers than when it is simply
explained by the mere difference between their ab-
sence or presence. Thus, we will discard Cpresence
and proceed with Ccount.

4 Experiment 2: Extended model

In our first experiment, we replicated the effect
of prime speakers’ power status on the linguis-
tic alignment from target speakers, from the sig-
nificant interaction term Ccount ∗ Cpower. Now,
we want to determine if the effect of power re-
mains significant after taking into account utter-
ance length. As discussed, our hypothesis is that
alignment (as measured by changes in probabil-
ity of using LIWC categories) is best explained by
low-level linguistic features that would be taken
into account by an automatic priming process.

4.1 Statistical models
We add a new predictor to Equation (1), CpLen,
which is the number of words in prime, result-
ing in an extended model shown in Equation (3).
We are interested to see if β4 remains significant
when the other interaction terms (with correspond-
ing coefficients β5, β6 and β7) are added.

logit(m) = ln
p(m in target)

p(m not in target)
= β0 + β1Ccount + β2Cpower + β3CpLen

+ β4Ccount ∗ Cpower

+ β5Ccount ∗ CpLen

+ β6Cpower ∗ CpLen

+ β7Ccount ∗ Cpower ∗ CpLen
(3)

Note that we used the same subset of Wiki as
used in Section 3.4 (using the five most significant
LIWC categories), so that the strongest effect of
Ccount ∗ Cpower is considered.

4.2 Model coefficients
The coefficients of the full model are in Table 2.
Surprisingly, the coefficient of Ccount ∗ Cpower is
significantly negative in SC, and non-significant
in Wiki (see highlighted rows), which are in con-
trast to the positive coefficients of the same term

Table 2: Summary of the model described in
Equation (3): β coefficients, Wald’s z-score and
significance level (∗∗∗ for p < 0.001, ∗∗ for p <
0.01, ∗ for p < 0.05) for all predictors and inter-
actions.

Corpus Predictor β z

SC

Intercept 0.360 2.40*
Ccount 0.213 26.92***
Cpower -0.060 -3.39***
CpLen 0.080 13.03***
Ccount ∗Cpower -0.103 -9.95***
Ccount ∗ CpLen -0.066 -15.35***
Cpower ∗ CpLen 0.231 25.25***
Ccount ∗ Cpower ∗ CpLen 0.036 4.79***

Wiki

Intercept 0.330 1.40
Ccount 0.149 31.11***
Cpower -0.074 -10.52***
CpLen 0.179 40.80***
Ccount ∗Cpower 0.001 0.14
Ccount ∗ CpLen 0.022 6.13***
Cpower ∗ CpLen 0.042 5.52***
Ccount ∗ Cpower ∗ CpLen -0.010 -1.61

in Table 1. It indicates that the observed effect of
power on alignment depends on the presence of
CpLen in the model. No collinearity is found be-
tween Cpower and other predictors: Pearson corre-
lation r < 0.2; Variance inflation factor (VIF) is
low (< 2.0) (O’brien, 2007).

To further demonstrate how the coefficient of
Cpower ∗ Ccount is dependent on CpLen, we remove
Ccount ∗ CpLen, Cpower ∗ CpLen and Ccount ∗ Cpower ∗
CpLen from Equation (3) stepwisely, and exam-
ine Ccount ∗ Cpower in the corresponding remain-
ing models. z-scores, significance levels, and the
Akaike information criterion (AIC) score (Akaike,
1998) of the remainder models are reported in Ta-
ble 3. In the full model, and when Ccount ∗Cpower ∗
CpLen or Ccount ∗CpLen is removed from the model,
the coefficients of Cpower ∗ Ccount are significantly
negative in SC and non-significant in Wiki. Only
when Cpower ∗CpLen is removed, the coefficients of
Ccount ∗ Cpower become significantly positive (the
last two rows in Table 3). However, the models
that have negative or non-significant coefficient
for Cpower ∗ Ccount have lower AIC scores than
those that have positive coefficient (The full model
has the lowest AIC score), which indicates that the
former ones have higher quality. Altogether, the
stepwise analysis not only indicates that the pos-
itive interaction between Cpower and Ccount shown
in our basic model (Section 3) is unreliable, but
also suggests that a negative interaction (SC) or
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non-significant interaction is more preferable.

4.3 Visualizing interaction effect

To illustrate how the interaction Cpower ∗ Ccount
diminishes after adding CpLen into the extended
model, we cluster different ranges of CpLen and de-
termine how the amount of priming changes with
Ccount w.r.t. different combinations of Cpower and
CpLen. This is a common practice to interpret lin-
ear models with three-way interactions (Houslay,
2014).

To cluster, we first compute the mean of CpLen
(i.e., the average utterance length), MpLen. Then
we divide the data by whether CpLen is above or
below MpLen. Then we compute the mean of CpLen
for the upper and lower parts of data, resulting in
ML

pLen and MS
pLen respectively (L for long and S

for short). Now, we can replace the continuous
variable CpLen to a categorical and ordinal one that
has two values, {MS

pLen, M
L
pLen}, which represent

the length of relatively short and long utterances
respectively. Together with the other categorical
variable, Cpower, which has two values, high and
low, we have four combinations: CpLen = MS

pLen

and Cpower = high (SH), CpLen = ML
pLen and

Cpower = high (LH), CpLen = MS
pLen and Cpower =

low (SL), CpLen = ML
pLen and Cpower = low (LL).

In Figure 2 we plot the smoothed regression lines
of predicted probability against Ccount, w.r.t. the
above four groups of CpLen and Cpower combina-
tions. Here Ccount is not log-transformed, because
it better demonstrates the trend of the fitted regres-
sion lines.

Figure 2 intuitively shows that CpLen is a more
determinant predictor than Cpower. Division by
power, i.e., high (SH and LH groups) vs. low (SL
and LL groups), does not result in a salient dif-
ference in slopes, as it can be seen that the slopes
of high (solid) and low (dashed) power lines do
not differ much from each other within the same
prime utterance length group (indicated by color).
However, division by prime utterance length, i.e.
short (SH and SL) vs. long (LH and LL), results in
very significant differences in slopes: in Figure 2a,
short CpLen group (orange) has larger slopes than
long CpLen group (blue), while in Figure 2b, short
group has smaller slopes than long group.

4.4 Discussion

Adding CpLen to the model has strong impact on
the previous conclusion about the effect of power
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Figure 2: The predicted probability of marker ap-
pearing in target against Ccount, grouped by the
four combinations of CpLen (long vs. short, in-
dicated by color) and Cpower (high vs. low, indi-
cated by line type): LH, LL, SH, and SL. Colored
hexagon indicates the number of data points.

on alignment. First of all, we find a negative inter-
action between Ccount and Cpower in SC and a non-
significant effect in Wiki, which is contrary to the
previous findings reported by Danescu-Niculescu-
Mizil et al. (2012). Moreover, we doubt the relia-
bility of a positive interaction because the valence
of its β varies when other interaction terms (as-
sociated with CpLen) are removed or added, and a
negative or non-significant interaction is preferred
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Table 3: Wald’s z-score and significance level (∗∗∗ for p < 0.001) of the Ccount ∗Cpower term, and the AIC
scores of the remainder models after removing other interaction terms from the full model stepwisely.
The full model is described in Equation (3).

Remainder model
SC Wiki

z-score AIC z-score AIC

Full -9.95*** 697588 0.14 890685

Full − Ccount ∗ Cpower ∗ CpLen -8.75*** 697609 -0.62 890686

Full − Ccount ∗ Cpower ∗ CpLen

− Ccount ∗ CpLen
-5.61*** 697838.9 -0.74 890723.5

Full − Ccount ∗ Cpower ∗ CpLen

− Cpower ∗ CpLen
10.90*** 698254.7 3.85*** 890726.7

Full − Ccount ∗ Cpower ∗ CpLen

− Ccount ∗ CpLen

− Cpower ∗ CpLen

15.02*** 698461.8 3.72*** 890763.8

by a simple model selection criterion.
Second, there is a significant interaction be-

tween Ccount and CpLen, though it is in different
directions for the two corpora: negative β in SC
and positive β in Wiki. Both observations have
some theoretical justification from previous stud-
ies. Myslín and Levy (2016)’s work is in favor of
the negative β: language comprehension is facili-
tated by the clustering of linguistic stimuli in time.
In our case, the linguistic markers in the utterance
of speaker A function as stimuli to speaker B. A
longer utterance means that all the stimuli span
wider in time, and thus demonstrate less cluster-
ing, which make the stimuli less salient features
for speaker B to adapt to. This in turn causes
speaker B to be less likely reuse those stimuli in
the near future. Meanwhile, evidence from the line
of works on surprisal and syntactic priming sup-
ports the positive β. In syntactic alignment, struc-
tures with higher surprisal (less common) are asso-
ciated with stronger alignment (Jaeger and Snider,
2013; Reitter and Moore, 2014). Since surprisal
has been found to be closely related with utterance
length in dialogue (Genzel and Charniak, 2003;
Xu and Reitter, 2016b,a), it is reasonable to expect
that longer utterances receive stronger alignment
because they contain content of higher surprisal.

The discrepancy between Wiki and SC in terms
of the direction of Ccount ∗ CpLen is an interest-
ing phenomenon to explore, because it can tell us
something about how the form of dialogue (Wiki

consists of online conversations and SC consists of
face-to-face ones) affects the underlying cognitive
mechanism of language production.

Regardless, our main finding is that low-level
linguistic features, such as utterance length, have
a strong effect on linguistic alignment. These ef-
fects are an important confound to take into ac-
count when examining higher-level features, such
as social power. In particular, the effect of social
power cannot be reliably detected by linear models
once introducing utterance length.

Another interesting piece of result is the signif-
icant interaction term Cpower ∗ CpLen, which im-
plies that the power status of speaker and how
long he/she tends to speak are not totally unre-
lated. Significant but weak correlation are found
between Cpower and CpLen (using Pearson’s corre-
lation score): r = −0.059 in SC; r = −0.018 in
Wiki. This correlation may show some kind of a
linguistic manifestation of social power, but since
it is not directly related to the alignment process,
we do not further discuss it in this paper.

In summary of the results, we conjecture that
the previously reported effect of power (Danescu-
Niculescu-Mizil et al., 2012) is likely to be caused
by the correlation between power status and utter-
ance length, though further investigation is needed
to confirm this. Moreover, utterance length is just
one simple factor, and there are many more other
linguistic features that can correlate with social
power: e.g., the surprisal based measure of lexi-
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cal information etc.

5 Conclusion

To sum up, our findings suggest that the previously
reported effect of power on linguistic alignment is
not reliable. Instead, we consistently align towards
language that shares certain low-level features. We
call for the inclusion of a wider range of factors
in future studies of social influences on language
use, especially low-level but interpretable cogni-
tive factors. Perhaps in most scenarios, alignment
is primarily influenced by linguistic features them-
selves, rather than social power.

We are not denying the existence of accommo-
dation caused by the social distance between in-
terlocutors. However, we want to stress the dif-
ference between the priming-induced alignment at
lower linguistic levels and the intentional accom-
modation that is caused by higher-level percep-
tion of social power. The latter should be a rela-
tively stable effect that is independent on the low-
level linguistic features. In particular, our findings
suggest that the probability change of LIWC cat-
egories is more likely to be a case of automatic
alignment, rather than an intentional accommo-
dation, because it is better explained by lower-
level linguistic features (utterance length). There-
fore, we suggest that future work on social power
and language use should consider other (maybe
higher-level) linguistic elements.
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Abstract

The field of Natural Language Processing
(NLP) is growing rapidly, with new re-
search published daily along with an abun-
dance of tutorials, codebases and other on-
line resources. In order to learn this dy-
namic field or stay up-to-date on the lat-
est research, students as well as educa-
tors and researchers must constantly sift
through multiple sources to find valuable,
relevant information. To address this situ-
ation, we introduce TutorialBank, a new,
publicly available dataset which aims to
facilitate NLP education and research. We
have manually collected and categorized
over 6,300 resources on NLP as well as
the related fields of Artificial Intelligence
(AI), Machine Learning (ML) and Infor-
mation Retrieval (IR). Our dataset is no-
tably the largest manually-picked corpus
of resources intended for NLP education
which does not include only academic pa-
pers. Additionally, we have created both a
search engine 1 and a command-line tool
for the resources and have annotated the
corpus to include lists of research topics,
relevant resources for each topic, prereq-
uisite relations among topics, relevant sub-
parts of individual resources, among other
annotations. We are releasing the dataset
and present several avenues for further re-
search.

1 Introduction
NLP has seen rapid growth over recent years. A
Google search of “Natural Language Processing”
returns over 100 million hits with papers, tutorials,

1http://aan.how

blog posts, codebases and other related online re-
sources. Additionally, advances in related fields
such as Artificial Intelligence and Deep Learn-
ing are strongly influencing current NLP research.
With these developments, an increasing number of
tutorials and online references are being published
daily. As a result, the task of students, educa-
tors and researchers of tracking the changing land-
scape in this field has become increasingly diffi-
cult.

Recent work has studied the educational aspect
of mining text for presenting scientific topics. One
goal has been to develop concept maps of top-
ics, graphs showing which topics are prerequisites
for learning a given topic (Gordon et al., 2016;
Liu et al., 2016; Pan et al., 2017a,b; Liang et al.,
2017). Another goal has been to automatically
create reading lists for a subject either by build-
ing upon concept graphs (Gordon et al., 2017) or
through an unstructured approach (Jardine, 2014).

Additionally, other work has aimed to automati-
cally summarize scientific topics, either by extrac-
tively summarizing academic papers (Jha et al.,
2013, 2015; Jaidka et al., 2016) or by producing
Wikipedia articles on these topics from multiple
sources (Sauper and Barzilay, 2009; Liu et al.,
2018). Scientific articles constitute primary texts
which describe an author’s work on a particular
subject, while Wikipedia articles can be viewed
as tertiary sources which summarize both results
from primary works as well as explanations from
secondary sources. Tang and McCalla (2004,
2009) and Sheng et al. (2017) explore the peda-
gogical function among the types of sources.

To address the problem of the scientific educa-
tion of NLP more directly, we focus on the an-
notation and utilization of secondary sources pre-
sented in a manner immediately useful to the NLP
community. We introduce the TutorialBank cor-
pus, a manually-collected dataset of links to over
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6,300 high-quality resources on NLP and related
fields. The corpus’s magnitude, manual collection
and focus on annotation for education in addition
to research differentiates it from other corpora.
Throughout this paper we use the general term “re-
source” to describe any tutorial, research survey,
blog post, codebase or other online source with
a focus on educating on a particular subject. We
have created a search engine for these resources
and have annotated them according to a taxonomy
to facilitate their sharing. Additionally, we have
annotated for pedagogical role, prerequisite rela-
tions and relevance of resources to hand-selected
topics and provide a command-line interface for
our annotations.

Our main contribution is the manual collection
of good quality resources related to NLP and the
annotation and presentation of these resources in
a manner conducive to NLP education. Addition-
ally, we show initial work on topic modeling and
resource recommendation. We present a variant
of standard reading-list generation which recom-
mends resources based on a title and abstract pair
and demonstrate additional uses and research di-
rections for the corpus.

2 Related Work
2.1 Pedagogical Value of Resources

Online resources are found in formats which vary
in their roles in education. Sheng et al. (2017)
identify seven types of pedagogical roles found in
technical works: Tutorial, Survey, Software Man-
ual, Resource, Reference Work, Empirical Re-
sults, and Other. They annotate a dataset of over
1,000 resources according to these types. Beyond
these types, resources differ in their pedagogical
value, which they define as “the estimate of how
useful a document is to an individual who seeks to
learn about specific concepts described in the doc-
ument”. Tang and McCalla (2004, 2009) discuss
the pedagogical value of a single type, academic
papers, in relation to a larger recommendation sys-
tem.

2.2 Prerequisite Chains

Prerequisite chains refer to edges in a graph de-
scribing which topics are dependent on the knowl-
edge of another topic. Prerequisite chains play an
important role in curriculum planning and reading
list generation. Liu et al. (2016) propose “Con-
cept Graph Learning” in order to induce a graph
from which they can predict prerequisite relations

among university courses. Their framework con-
sists of two graphs: (1) a higher-level graph which
consists of university courses and (2) a lower-
level graph which consists of induced concepts
and pair-wise sequential preferences in learning or
teaching the concept.

Liang et al. (2017) experiment with prerequi-
site chains on education data but focus on the
recovery of a concept graph rather than on pre-
dicting unseen course relations as in Liu et al.
(2016). They introduce both a synthetic dataset
as well as one scraped from 11 universities which
includes course prerequisites as well as concept-
prerequisite labels. Concept graphs are also used
in (Gordon et al., 2016) to address the problem
of developing reading lists for students. The con-
cept graph in this case is a labeled graph where
nodes represent both documents and concepts (de-
termined using Latent Dirichlet Allocation (LDA)
(Blei et al., 2003)), and edges represent dependen-
cies. They propose methods based on cross en-
tropy and information flow for determining edges
in the graph. Finally, finding prerequisite relation-
ships has also been used in other contexts such
as Massive Open Online Courses (MOOCs) (Pan
et al., 2017a,b).

2.3 Reading List Generation

Jardine (2014) generates recommended reading
lists from a corpus of technical papers in an un-
structured manner in which a topic model weighs
the relevant topics and relevant papers are chosen
through his ThemedPageRank approach. He also
provides a set of expert-generated reading lists.
Conversely, Gordon et al. (2017) approach read-
ing list generation from a structured perspective,
first generating a concept graph from the corpus
and then traversing the graph to select the most
relevant document.

2.4 Survey Extraction

Recent work on survey generation for scientific
topics has focused on creating summaries from
academic papers (Jha et al., 2013, 2015; Jaidka
et al., 2016). Jha et al. (2013) present a system that
generates summaries given a topic keyword. From
a base corpus of papers found by query matching,
they expand the corpus via a citation network us-
ing a heuristic called Restricted Expansion. This
process is repeated for seven standard NLP topics.
In a similar manner, Jha et al. (2015) experiment
with fifteen topics in computational linguistics and
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collect at least surveys written by experts on each
topic, also making use of citation networks to ex-
pand their corpus. They introduce a content model
as well as a discourse model and perform a qual-
itative comparisons of coherence with a standard
summarization model.

The task of creating surveys for specified top-
ics has also been viewed in the multi-document
summarization setting of generating Wikipedia
articles (Sauper and Barzilay, 2009; Liu et al.,
2018). Sauper and Barzilay (2009) induce
domain-specific templates from Wikipedia and fill
these templates with content from the Internet.
More recently Liu et al. (2018) explore a diverse
set of domains for summarization and are the first
to attempt abstractive summarization of the first
section of Wikipedia articles, by combining ex-
tractive and abstractive summarization methods.

3 Dataset Collection

3.1 An Overview of TutorialBank

As opposed to other collections like the ACL An-
thology (Bird et al., 2008; Radev et al., 2009,
2013, 2016), which contain solely academic pa-
pers, our corpus focuses mainly on resources other
than academic papers. The main goal in our deci-
sion process of what to include in our corpus has
been the quality-control of resources which can be
used for an educational purpose. Initially, the re-
sources collected were conference tutorials as well
as surveys, books and longer papers on broader
topics, as these genres contain an inherent amount
of quality-control. Later on, other online resources
were added to the corpus, as explained below. Stu-
dent annotators, described later on, as well as the
professor examined resources which they encoun-
tered in their studies. The resources were added to
the corpus if deemed of good quality. Important
to note is that not all resources which were found
on the Internet were added to TutorialBank; one
could scrape the web according to search terms,
but quality control of the results would be largely
missing. The quality of a resource is a somewhat
subjective measure, but we aimed to find resources
which would serve a pedagogical function to ei-
ther students or researchers, with a professor of
NLP making the final decision. This collection
of resources and meta-data annotation has been
done over multiple years, while this year we cre-
ated the search engine and added additional anno-
tations mentioned below.

1 - Introduction and Linguistics
2 - Language Modeling, Syntax and Parsing
3 - Semantics and Logic
4 - Pragmatics, Discourse, Dialogue and Applications
5 - Classification and Clustering
6 - Information Retrieval and Topic Modeling
7 - Neural Networks and Deep Learning
8 - Artificial Intelligence
9 - Other Topics

Table 1: Top-level Taxonomy Topics

Topic Category Count
Introduction to Neural Networks and

Deep Learning 635

Tools for Deep Learning 475
Miscellaneous Deep Learning 287

Machine Learning 225
Word Embeddings 139

Recurrent Neural Networks 134
Python Basics 133

Reinforcement learning 132
Convolutional Neural Networks 129

Introduction to AI 89

Table 2: Corpus count by taxonomy topic for the
most frequent topics (excluding topic “Other”).

3.1.1 TutorialBank Taxonomy

In order to facilitate the sharing of resources about
NLP, we developed a taxonomy of 305 topics of
varying granularity. The top levels of our taxon-
omy tree are shown in Table 1. The backbone
of our Taxonomy corresponds to the syllabus of a
university-level NLP course and was expanded to
include related topics from other courses in ML,
IR and AI. As a result, there is a bias in the corpus
towards NLP resources and resources from other
fields in so far as they are relevant to NLP. How-
ever, this bias is planned, as our focus remains
teaching NLP. The resource count for the most fre-
quent taxonomy topics is shown in Table 2.

3.2 Data Preprocessing

For each resource in the corpus, we downloaded
the corresponding PDF, PowerPoint presentations
and other source formats and used PDFBox to per-
form OCR in translating the files to textual for-
mat. For HTML pages we downloaded both the
raw HTML with all images as well as a formatted
text version of the pages. For copyright purposes
we release only the meta data such as urls and an-
notations and provide scripts for reproducing the
dataset.
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Resource Category Count
corpus 131
lecture 126
library 1014
link set 1186
naclo 154
paper 1176
survey 390
tutorial 2079

Table 3: Corpus count by pedagogical feature.

4 Dataset Annotation
Annotations were performed by a group of 3 PhD
students in NLP, and 6 undergraduate Computer
Science students who have taken at least one
course in AI or NLP.

4.1 Pedagogical Function

When collecting resources from the Internet, each
item was labeled according to the medium in
which it was found, analogous to the pedagogical
function of (Sheng et al., 2017). We will use this
term throughout the paper to describe this catego-
rization. The categories along with their counts
are shown in Table 3:

• Corpus: A corpus provides access to and a de-
scription of a scientific dataset.

• Lecture: A lecture consists of slides/notes from
a university lecture.

• Library: A library consists of github pages and
other codebases which aid in the implemen-
tation of algorithms.

• NACLO: NACLO problems refer to linguistics
puzzles from the North American Computa-
tional Linguistics Olympiad.

• Paper: A paper is a short/long conference paper
taken from sites such as https://arxiv.org/ and
which is not included in the ACL Anthology.

• Link set: A link set provides a collection of
helpful links in one location.

• Survey: A survey is a long paper or book which
describes a broader subject.

• Tutorial: A tutorial is a slide deck from a con-
ference tutorial or an HTML page that de-
scribes a contained topic.

4.2 Topic to Resource Collection

We first identified by hand 200 potential topics for
survey generation in the fields of NLP, ML, AI and

Capsule Networks
Domain Adaptation

Document Representation
Matrix factorization

Natural language generation
Q Learning

Recursive Neural Networks
Shift-Reduce Parsing
Speech Recognition

Word2Vec

Table 4: Random sample of the list of 200 top-
ics used for prerequisite chains, readling lists and
survey extraction.

IR. Topics were added according to the following
criteria:

1. It is conceivable that someone would write a
Wikipedia page on this topic (an actual page
may or may not exist).

2. The topic is not overly general (e.g., “Natu-
ral Language Processing”) or too obscure or
narrow.

3. In order to write a survey on the topic, one
would need to include information from a
number of sources.

While some of the topics come from our taxon-
omy, many of the taxonomy topics have a differ-
ent granularity than we desired, which motivated
our topic collection. Topics were added to the list
along with their corresponding Wikipedia pages,
if they exist. A sample of the topics selected is
shown in 4. Once the list of topics was com-
piled, annotators were assigned topics and asked
to search that topic in the TutorialBank search en-
gine and find relevant resources. In order to im-
pose some uniformity on the dataset, we chose to
only include resources which consisted of Power-
Point slides as well as HTML pages labeled as tu-
torials. We divided the topics among the annota-
tors and asked them to choose five resources per
topic using our search engine. The resource need
not solely focus on the given topic; the resource
may be on a more general topic and include a sec-
tion on the given topic. As in general searching
for resources, often resources include related in-
formation, so we believe this setting is fitting. For
some topics the annotators chose fewer than five
resources (partially due to the constraint we im-
pose on the form of the resources). We noted top-
ics for which no resources were found, and rather
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than replace the topics to reflect TutorialBank cov-
erage, we leave these topics in and plan to add ad-
ditional resources in a future release.

4.3 Prerequisite Chains

Even with a collection of resources and a list of
topics, a student may not know where to begin
studying a topic of interest. For example, in or-
der to understand sentiment analysis the student
should be familiar with Bayes’ Theorem, the ba-
sics of ML as well as other topics. For this pur-
pose, the annotators annotated which topics are
prerequisites of others for the given topics from
their reading lists. We expanded our list of poten-
tial prerequisites to include eight additional topics
which were too broad for survey generation (e.g.,
Linear Algebra) but which are important prerequi-
sites to capture. Following the method of (Gordon
et al., 2016), we define labeling a topic Y as a pre-
requisite of X according to the following question:

• Would understanding Topic Y help you to un-
derstand Topic X?

As in (Gordon et al., 2016), the annotators can an-
swer this question as “no”, “somewhat” or “yes.”

4.4 Reading Lists

When annotators were collecting relevant re-
sources for a particular topic, we asked them to
order the resources they found in terms of the use-
fulness of the resource for learning that particular
topic. We also include the Wikipedia pages corre-
sponding to the topics, when available, as an ad-
ditional source of information. We do not perform
additional annotation of the order of the resources
or experiment in automatically reproducing these
ordered lists but rather offer this annotation as a
pedagogical tool for students and educators. We
plan the expansion of these lists and analysis in
future experiments.

4.5 Survey Extraction

We frame the task of creating surveys of scien-
tific topics as a document retrieval task. A student
searching for resources in order to learn about a
topic such as Recurrent Neural Networks (RNN’s)
may encounter resources 1) which solely cover
RNN’s as well as 2) resources which cover RNN’s
within the context of a larger topic (e.g., Deep
Learning). Within the first type, not every piece
of content (a single PowerPoint slide or section
in a blog post) contributes equally well to an un-
derstanding of RNN’s; the content may focus on

background information or may not clearly ex-
plain the topic. Within the second type, larger
tutorials may contain valuable information on the
topic, but may also contain much information not
immediately relevant to the query. Given a query
topic and a set of parsed documents we want to
retrieve the parts most relevant to the topic.

In order to prepare the dataset for extracting
surveys of topics, we first divide resources into
units of content which we call “cards”. Power-
Point slides inherently contain a division in the
form of each individual slide, so we divide Pow-
erPoint presentations into individual slides/cards.
For HTML pages, the division is less clear. How-
ever, we convert the HTML pages to a markdown
file and then automatically split the markdown file
using header markers. We believe this is a reason-
able heuristic as tutorials and similar content tend
to be broken up into sections signalled by headers.

For each of the resources which the annotators
gathered for the reading lists on a given topic, that
same annotator was presented with each card from
that resource and asked to rate the usefulness of
the card. The annotator could rate the card from
0-2, with 0 meaning the card is not useful for
learning the specified topic, 1 meaning the card is
somewhat useful and 2 meaning the card is useful.
We chose a 3-point scale as initial trials showed a
5-point scale to be too subjective. The annotators
also had the option in our annotation interface to
drop cards which were parsed incorrectly or were
repeated one after the other as well as skip cards
and return to score a card.

4.6 Illustrations

Whether needed for understanding a subject more
deeply or for preparing a blog post on a subject,
images play an important role in presenting con-
cepts more concretely. Simply extracting the text
from HTML pages leaves behind this valuable in-
formation, and OCR software often fails to parse
complex graphs and images in a non-destructive
fashion. To alleviate this problem and promote the
sharing of images, we extracted all images from
our collected HTML pages. Since many images
were simply HTML icons and other extraneous
images, we manually checked the images and se-
lected those which are of value to the NLP stu-
dent. We collected a total of 2,000 images and
matched them with the taxonomy topic name of
the resource it came from as well as the url of the
resource. While we cannot outdo the countless im-
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ages from Google search, we believe illustrations
can be an additional feature of our search engine,
and we describe an interface for this collection be-
low.

5 Additional Features and Analysis

5.1 Search Engine

In order to present our corpus in a user-friendly
manner, we created a search engine using Apache
Lucene2. We allow the user to query key words
to search our resource corpus, and the results can
then be sorted based on relevance, year, topic,
medium, and other meta data. In addition to
searching by term, users can browse the resources
by topic according to our taxonomy. For each
child topic from the top-level taxonomy down-
ward, we display resources according to their ped-
agogical functions. In addition to searching for
general resources, we also provide search func-
tionality for a corpus of papers, where the user can
search by keyword as well as by author and venue.

While the search engine described above pro-
vides access to our base corpus and meta data, we
also provide a command-line interface tool with
our release so that students and researchers can
easily use our annotations for prerequisite topics,
illustrations and survey generation for educational
purposes. The tool allows the user to input a topic
from the taxonomy and retrieve all images related
to that topic according to our meta data. Addi-
tionally, the user can input a topic from our list of
200 topics, and our tool outputs the prerequisites
of that topic according to our annotation as well as
the cards labelled as relevant for that topic.

5.2 Resource Recommendation from Title
and Abstract Pairs

In addition to needing to search for a general term,
often a researcher begins with an idea for a project
which is already focused on a nuanced sub-task.
An employee at an engineering company may be
starting a project on image captioning. Ideas about
the potential direction of this project may be clear,
but what resources may be helpful or what papers
have already been published on the subject may
not be immediately obvious. To this end we pro-
pose the task of recommending resources from ti-
tle and abstract pairs. The employee will input the
title and abstract of the project and obtain a list
of resources which can help complete the project.

2http://lucene.apache.org/

This task is analogous to reproducing the reference
section of a paper, however, with a focus on tu-
torials and other resources rather than solely on
papers. As an addition to our search engine, we
allow a user to input a title and an abstract of vari-
able length. We then propose taxonomy topics
based on string matches with the query as well as
a list of resources and papers and their scores as
determined by the search engine. We later explore
two baseline models for recommending resources
based on document and topic modeling.

5.3 Dataset and Annotation Statistics

We created reading lists for 182 of the 200 top-
ics we identify in Section 4.2. Resources were
not found for 18 topics due to the granularity of
the topic (e.g., Radial Basis Function Networks)
as well as our intended restriction of the chosen
resources to PowerPoint presentations and HTML
pages. The average number of resources per read-
ing list for the 182 topics is 3.94. As an extension
to the reading lists we collected Wikipedia pages
for 184 of the topics and present these urls as part
of the dataset.

We annotated prerequisite relations for the 200
topics described above. We present a subset of
our annotations in Figure 1, which shows the net-
work of topic relations (nodes without incoming
edges were not annotated for their prerequisites as
part of this shown inter-annotation round). Our
network consists of 794 unidirectional edges and
33 bidirectional edges. The presence of bidirec-
tional edges stems from our definition of a pre-
requisite, which does not preclude bidirectional-
ity (one topic can help explain another and vice-
versa) as well as the similarity of the topics. The
set of bidirectional edges consists of topic pairs
(BLEU - ROUGE; Word Embedding - Distribu-
tional Semantics; Backpropagation - Gradient de-
scent) which could be collapsed into one topic to
create a directed acyclic graph in the future.

For survey extraction, we automatically split
313 resources into content cards which we anno-
tated for usefulness in survey extraction. These
resources are a subset of the reading lists limited
in number due to constraints in downloading urls
and parsing to our annotation interface. The to-
tal number of cards which were not marked as
repeats/mis-parsed totals 17,088, with 54.59 per
resource. 6,099 cards were labeled as somewhat
relevant or relevant for the target topic. The re-
sources marked as non-relevant may be poorly
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Figure 1: Subset of prerequisite annotations taken from inter-annotator agreement round.

Annotation Kappa
Pedagogical Function 0.69

Prerequisites 0.30
Survey Extraction 0.33

Table 5: Inter-annotator agreement.

presented or may not pertain fully to the topic of
that survey. These numbers confirm the appropri-
ateness of this survey corpus as a non-trivial infor-
mation retrieval task.

To better understand the difficulty of our anno-
tation tasks, we performed inter-annotator agree-
ment experiments for each of our annotations. We
randomly sampled twenty-five resources and had
annotators label for pedagogical function. Addi-
tionally, we sampled twenty-five topics for pre-
requisite annotations and five topics with reading
list lengths of five for survey annotation. We used
Fleiss’s Kappa (Fleiss et al., 2004), a variant of
Cohen’s Kappa (Cohen, 1960) designed to mea-
sure annotator agreement for more than two anno-
tators. The results are shown in Table 5. Using
the scale as defined in Landis and Koch (1977),
pedagogical function annotation exhibits substan-
tial agreement while prerequisite annotation and
survey extraction annotation show fair agreement.
The Kappa score for pedagogical function is com-
parable to that of Sheng et al. (2017) (0.68) while
the prerequisite annotation is slightly lower than
the agreement metric used in Gordon et al. (2016)
(0.36) although they measure agreement through
Pearson correlation. We believe that the sparsity
of the labels plays a role in these scores.

5.4 Comparison to Similar Datasets

Our corpus distinguishes itself in its magnitude,
manual collection and focus on annotation for ed-
ucational purposes in addition to research tasks.
We use similar categories for classifying pedagog-
ical function as Sheng et al. (2017), but our corpus
is hand-picked and over four-times larger, while
exhibiting similar annotation agreement.

Gordon et al. (2016) present a corpus for pre-
requisite relations among topics, but this corpus
differs in coverage. They used LDA topic model-
ing to generate a list of 300 topics, while we man-
ually create a list of 200 topics based on criteria
described above. Although their topics are gener-
ated from the ACL Anthology and related to NLP,
we find less than a 40% overlap in topics. Ad-
ditionally, they only annotate a subset of the top-
ics for prerequisite annotations while we focus on
broad coverage, annotating two orders of magni-
tude larger in terms of prerequisite edges while ex-
hibiting fair inter-annotator agreement.

Previous work and datasets on generating sur-
veys for scientific topics have focused on scien-
tific articles (Jha et al., 2013, 2015; Jaidka et al.,
2016) and Wikipedia pages (Sauper and Barzilay,
2009; Liu et al., 2018) as a summarization task.
We, on the other hand, view this problem as an
information retrieval task and focus on extract-
ing content from manually-collected PowerPoint
slides and online tutorials. Sauper and Barzilay
(2009) differ in their domain coverage, and while
the surveys of Jha et al. (2013, 2015) focus on
NLP, we collect resources for an order of magni-
tude larger set of topics. Finally, our focus here in
creating surveys, as well as the other annotations,
is first and foremost to create a useful tool for stu-
dents and researchers. Websites such as the ACL
Anthology3 and arXiv4 provide an abundance of
resources, but do not focus on the pedagogical as-
pect of their content. Meanwhile, websites such as
Wikipedia which aim to create a survey of a topic
may not reflect the latest trends in rapidly chang-
ing fields.

6 Topic Modeling and Resource
Recommendation

As an example usage of our corpus, we experi-
mented with topic modeling and its extension to

3http://aclweb.org/anthology/
4https://arxiv.org/
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Figure 2: Plot showing a query document with title “Statistical language models for IR” and its neighbour
document clusters as obtained through tSNE dimension reduction for Doc2Vec (left) and LDA topic
modeling (right). Nearest neighbor documents titles are shown to the right of each plot.

resource recommendation. We restricted our cor-
pus for this study to non-HTML files to exam-
ine the single domain of PDF’s and PowerPoint
presentations. This set consists of about 1,480
files with a vocabulary size 191,446 and a to-
ken count of 9,134,452. For each file, the to-
kens were processed, stop tokens were stripped,
and then each token was stemmed. Words with
counts less than five across the entire corpus were
dropped. We experimented with two models:
LDA, a generative probabilistic model mentioned
earlier, and Doc2Vec (Le and Mikolov, 2014),
an extension of Word2Vec (Mikolov et al., 2013)
which creates representations of arbitrarily-sized
documents. Figure 2 shows the document repre-
sentations obtained with Doc2Vec as well as the
topic clusters created with LDA. The grouping of
related resources around a point demonstrates the
clustering abilities of these models. We applied
LDA in an unsupervised way, using 60 topics over
300 iterations as obtained through experimenta-
tion, and then colored each document dot with its
category to observe the distribution. Our Doc2Vec
model used hidden dimension 300, a window size
of 10 and a constant learning rate of 0.025. Then,
the model was trained for 10 epochs.

We tested these models for the task of resource
recommendation from title+abstract pairs. We col-
lected 10 random papers from ACL 2017. For
LDA, the document was classified to a topic, and
then the top resources from that topic were cho-
sen, while Doc2Vec computed the similarity be-
tween the query document and the training set and
chose the most similar documents. We concate-
nated the title and abstract as input and had our
models predict the top 20 documents. We then
had five annotators rate the recommendations for
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Figure 3: Relevance accuracies of the Doc2Vec
and LDA resource recommendation models.

helpfulness as 0 (not helpful) or 1 (helpful). Rec-
ommended resources were rated according to the
criterion of whether reading this resource would
be useful in doing a project as described in the ti-
tle and abstract. The results are found in Figure
3. Averaging the performance over each test case,
the LDA model performed better than Doc2Vec
(0.45 to 0.34), although both leave large room for
improvements. LDA recommended resources no-
tably better for cases 5 and 6, which correspond to
papers with very well defined topics areas (Ques-
tion Answering and Machine Translation) while
Doc2Vec was able to find similar documents for
cases 2 and 8 which are a mixture of topics, yet
are well-represented in our corpus (Reinforcement
Learning with dialog agents and emotion (senti-
ment) detection with classification). The low per-
formance for both models also corresponds to dif-
ferences in corpus coverage, and we plan to ex-
plore this bias in the future. We believe that this
variant of reading list generation as well as the re-
lationship between titles and abstracts is an unex-
plored and exciting area for future research.
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7 Conclusion and Future Work
In this paper we introduce the TutorialBank Cor-
pus, a collection of over 6,300 hand-collected re-
sources on NLP and related fields. Our corpus
is notably larger than similar datasets which deal
with pedagogical resources and topic dependen-
cies and unique in use as an educational tool. To
this point, we believe that this dataset, with its
multiple layers of annotation and usable interface,
will be an invaluable tool to the students, edu-
cators and researchers of NLP. Additionally, the
corpus promotes research on tasks not limited to
pedagogical function classification, topic model-
ing and prerequisite relation labelling. Finally, we
formulate the problem of recommending resources
for a given title and abstract pair as a new way to
approach reading list generation and propose two
baseline models. For future work we plan to con-
tinue the collection and annotation of resources
and to separately explore each of the above re-
search tasks.
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Abstract

While argument persuasiveness is one of
the most important dimensions of argu-
mentative essay quality, it is relatively lit-
tle studied in automated essay scoring re-
search. Progress on scoring argument
persuasiveness is hindered in part by the
scarcity of annotated corpora. We present
the first corpus of essays that are simul-
taneously annotated with argument com-
ponents, argument persuasiveness scores,
and attributes of argument components
that impact an argument’s persuasiveness.
This corpus could trigger the development
of novel computational models concerning
argument persuasiveness that provide use-
ful feedback to students on why their ar-
guments are (un)persuasive in addition to
how persuasive they are.

1 Introduction

The vast majority of existing work on au-
tomated essay scoring has focused on holis-
tic scoring, which summarizes the quality of
an essay with a single score and thus pro-
vides very limited feedback to the writer (see
Shermis and Burstein (2013) for the state of the
art). While recent attempts address this prob-
lem by scoring a particular dimension of essay
quality such as coherence (Miltsakaki and Kukich,
2004), technical errors, relevance to prompt
(Higgins et al., 2004; Persing and Ng, 2014), or-
ganization (Persing et al., 2010), and thesis clar-
ity (Persing and Ng, 2013), argument persuasive-
ness is largely ignored in existing automated essay
scoring research despite being one of the most im-
portant dimensions of essay quality.

Nevertheless, scoring the persuasiveness of ar-
guments in student essays is by no means easy.

The difficulty stems in part from the scarcity of
persuasiveness-annotated corpora of student es-
says. While persuasiveness-annotated corpora ex-
ist for other domains such as online debates (e.g.,
Habernal and Gurevych (2016a; 2016b)), to our
knowledge only one corpus of persuasiveness-
annotated student essays has been made publicly
available so far (Persing and Ng, 2015).

Though a valuable resource, Persing and
Ng’s (2015) (P&N) corpus has several weaknesses
that limit its impact on automated essay scoring
research. First, P&N assign only one persuasive-
ness score to each essay that indicates the persua-
siveness of the argument an essay makes for its
thesis. However, multiple arguments are typically
made in a persuasive essay. Specifically, the ar-
guments of an essay are typically structured as
an argument tree, where the major claim, which
is situated at the root of the tree, is supported by
one or more claims (the children of the root node),
each of which is in turn supported by one or more
premises. Hence, each node and its children con-
stitute an argument. In P&N’s dataset, only the
persuasiveness of the overall argument (i.e., the ar-
gument represented at the root and its children) of
each essay is scored. Hence, any system trained
on their dataset cannot provide any feedback to
students on the persuasiveness of any arguments
other than the overall argument. Second, P&N’s
corpus does not contain annotations that explain
why the overall argument is not persuasive if its
score is low. This is undesirable from a feedback
perspective, as a student will not understand why
her argument is not persuasive if its score is low.

Our goal in this paper is to annotate and make
publicly available a corpus of persuasive stu-
dent essays that addresses the aforementioned
weaknesses via designing appropriate annotation
schemes and scoring rubrics. Specifically, not
only do we score the persuasiveness of each ar-
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gument in each essay (rather than simply the per-
suasiveness of the overall argument), but we also
identify a set of attributes that can explain an ar-
gument’s persuasiveness and annotate each argu-
ment with the values of these attributes. These an-
notations enable the development of systems that
can provide useful feedback to students, as the at-
tribute values predicted by these systems can help
a student understand why her essay receives a par-
ticular persuasiveness score. To our knowledge,
this is the first corpus of essays that are simultane-
ously annotated with argument components, per-
suasiveness scores, and related attributes.1

2 Related Work

While argument mining research has traditionally
focused on determining the argumentative struc-
ture of a text document (i.e., identifying its ma-
jor claim, claims, and premises, as well as the re-
lationships between these argument components)
(Stab and Gurevych, 2014b, 2017a; Eger et al.,
2017), researchers have recently begun to study
new argument mining tasks, as described below.

Persuasiveness-related tasks. Most related to
our study is work involving argument persua-
siveness. For instance, Habernal and Gurevych
(2016b) and Wei et al. (2016) study the persua-
siveness ranking task, where the goal is to rank
two internet debate arguments written for the same
topic w.r.t. their persuasiveness. As noted by
Habernal and Gurevych, ranking arguments is a
relatively easier task than scoring an argument’s
persuasiveness: in ranking, a system simply deter-
mines whether one argument is more persuasive
than the other, but not how much more persuasive
one argument is than the other; in scoring, how-
ever, a system has to determine how persuasive
an argument is on an absolute scale. Note that
ranking is not an acceptable evaluation setting for
studying argument persuasiveness in the essay do-
main, as feedback for an essay has to be provided
independently of other essays.

In contrast, there are studies that focus on fac-
tors affecting argument persuasiveness in internet
debates. For instance, Lukin et al. (2017) exam-
ine how audience variables (e.g., personalities) in-
teract with argument style (e.g., factual vs. emo-
tional arguments) to affect argument persuasive-

1Our annotated corpus and annotation man-
ual are publicly available at the website
http://www.hlt.utdallas.edu/∼zixuan/EssayScoring.

ness. Persing and Ng (2017) identify factors that
negatively impact persuasiveness, so their factors,
unlike ours, cannot explain what makes an argu-
ment persuasive.
Other argument mining tasks. Some of the at-
tributes that we annotate our corpus with have
been studied. For instance, Hidey et al. (2017) ex-
amine the different semantic types of claims and
premises, whereas Higgins and Walker (2012) in-
vestigate persuasion strategies (i.e., ethos, pathos,
logos). Unlike ours, these studies use data from
online debate forums and social/environment re-
ports. Perhaps more importantly, they study these
attributes independently of persuasiveness.

Several argument mining tasks have recently
been proposed. For instance, Stab and Gurevych
(2017b) examine the task of whether an argument
is sufficiently supported. Al Khatib et al. (2016)
identify and annotate a news editorial corpus with
fine-grained argumentative discourse units for the
purpose of analyzing the argumentation strategies
used to persuade readers. Wachsmuth et al. (2017)
focus on identifying and annotating 15 logical,
rhetorical, and dialectical dimensions that would
be useful for automatically accessing the quality
of an argument. Most recently, the Argument Rea-
soning Comprehension task organized as part of
SemEval 2018 has focused on selecting the cor-
rect warrant that explains reasoning of an argu-
ment that consists of a claim and a reason.2

3 Corpus

The corpus we chose to annotate is composed of
102 essays randomly chosen from the Argument
Annotated Essays corpus (Stab and Gurevych,
2014a). This collection of essays was taken from
essayforum3, a site offering feedback to students
wishing to improve their ability to write persuasive
essays for tests. Each essay is written in response
to a topic such as “should high school make music
lessons compulsory?” and has already been an-
notated by Stab and Gurevych with an argument
tree. Hence, rather than annotate everything from
scratch, we annotate the persuasiveness score of
each argument in the already-annotated argument
trees in this essay collection as well as the at-
tributes that potentially impact persuasiveness.

Each argument tree is composed of three types
of tree nodes that correspond to argument compo-

2https://competitions.codalab.org/competitions/17327
3www.essayforum.com
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Essays: 102 Sentences: 1462 Tokens: 24518
Major Claims: 185 Claims: 567 Premises: 707
Support Relations: 3615 Attack Relations: 219

Table 1: Corpus statistics.

nents. The three annotated argument component
types include: MajorClaim, which expresses the
author’s stance with respect to the essay’s topic;
Claims, which are controversial statements that
should not be accepted by readers without addi-
tional support; and Premises, which are reasons
authors give to persuade readers about the truth
of another argument component statement. The
two relation types include: Support, which indi-
cates that one argument component supports an-
other, and Attack, which indicates that one argu-
ment component attacks another.

Each argument tree has three to four levels. The
root is a major claim. Each node in the second
level is a claim that supports or attacks its par-
ent (i.e., the major claim). Each node is the third
level is a premise that supports or attacks its par-
ent (i.e., a claim). There is an optional fourth level
consisting of nodes that correspond to premises.
Each of these premises either supports or attacks
its (premise) parent. Stab and Gurevych (2014a)
report high inter-annotator agreement on these an-
notations: for the annotations of major claims,
claims, and premises, the Krippendorff’s α values
(Krippendorff, 1980) are 0.77, 0.70, and 0.76 re-
spectively, and for the annotations of support and
attack relations, the α values are both 0.81.

Note that Stab and Gurevych (2014a) determine
premises and claims by their position in the argu-
ment tree and not by their semantic meaning. Due
to the difficulty of treating an opinion as a non-
negotiable unit of evidence, we convert all sub-
jective premises into claims to demonstrate that
they are subjective and require backing. At the
end of this process, several essays contain argu-
ment trees that violate the scheme used by Stab
and Gurevych, due to some premises supported
by opinion premises, now converted to claims.
Although the ideal argument should not violate
the canonical structure, students attempting to im-
prove their persuasive writing skills may not un-
derstand this, and mistakenly support evidence
with their own opinions.

Statistics of this corpus are shown in Table 1. Its
extensive use in argument mining research in re-
cent years together with its reliably annotated ar-

gument trees makes it an ideal corpus to use for
our annotation task.

4 Annotation

4.1 Definition

Since persuasiveness is defined on an argument,
in order to annotate persuasiveness we need to
define precisely what an argument is. Following
van Eemeren et al. (2014), we define an argument
as consisting of a conclusion that may or may not
be supported/attacked by a set of evidences. Given
an argument tree, a non-leaf node can be inter-
preted as a “conclusion” that is supported or at-
tacked by its children, which can therefore be in-
terpreted as “evidences” for the conclusion. In
contrast, a leaf node can be interpreted as an un-
supported conclusion. Hence, for the purposes of
our work, an argument is composed of a node in
an argument tree and all of its children, if any.

4.2 Annotation Scheme

Recall that the goal of our annotation is to score
each argument w.r.t. its persuasiveness (see Ta-
ble 2 for the rubric for scoring persuasiveness) and
annotate each of its components with a set of pre-
defined attributes that could impact the argument’s
persuasiveness. Table 3 presents a summary of the
attributes we annotate. The rest of this subsection
describes these attributes.

Each component type (MajorClaim, Claim,
Premise) has a distinct set of attributes. All com-
ponent types have three attributes in common:
Eloquence, Specificity, and Evidence. Eloquence
is how well the author uses language to convey
ideas, similar to clarity and fluency. Specificity
refers to the narrowness of a statement’s scope.
Statements that are specific are more believable
because they indicate an author’s confidence and
depth of knowledge about a subject matter. Ar-
gument assertions (major claims and claims) need
not be believable on their own since that is the job
of the supporting evidence. The Evidence score
describes how well the supporting components
support the parent component. The rubrics for
scoring Eloquence, Evidence, Claim/MajorClaim
Specificity, and Premise Specificity are shown in
Tables 4, 5, 6, and 7 respectively.
MajorClaim Since the major claim represents
the overall argument of the essay, it is in this com-
ponent that we annotate the persuasive strategies
employed (i.e., Ethos, Pathos and Logos). These
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Score Description
6 A very strong, clear argument. It would persuade most readers and is devoid of errors that might detract from its

strength or make it difficult to understand.
5 A strong, pretty clear argument. It would persuade most readers, but may contain some minor errors that detract

from its strength or understandability.
4 A decent, fairly clear argument. It could persuade some readers, but contains errors that detract from its strength

or understandability.
3 A poor, understandable argument. It might persuade readers who are already inclined to agree with it, but contains

severe errors that detract from its strength or understandability.
2 It is unclear what the author is trying to argue or the argument is poor and just so riddled with errors as to be

completely unpersuasive.
1 The author does not appear to make any argument (e.g. he may just describe some incident without explaining

why it is important). It could not persuade any readers because there is nothing to be persuaded of. It may or may
not contain detectable errors, but errors are moot since there is not an argument for them to interfere with.

Table 2: Description of the Persuasiveness scores.

Attribute Possible Values Applicability Description
Specificity 1–5 MC,C,P How detailed and specific the statement is
Eloquence 1–5 MC,C,P How well the idea is presented
Evidence 1–6 MC,C,P How well the supporting statements support their parent
Logos/Pathos/Ethos yes,no MC,C Whether the argument uses the respective persuasive strategy
Relevance 1–6 C,P The relevance of the statement to the parent statement
ClaimType value,fact,policy C The category of what is being claimed
PremiseType see Section 4.2 P The type of Premise, e.g. statistics, definition, real example,

etc.
Strength 1–6 P How well a single statement contributes to persuasiveness

Table 3: Summary of the attributes together with their possible values, the argument component type(s)
each attribute is applicable to (MC: MajorClaim, C: Claim, P: Premise), and a brief description.

Score Description
5 Demonstrates mastery of English. There are no grammatical errors that distract from the meaning of the sentence.

Exhibits a well thought out, flowing sentence structure that is easy to read and conveys the idea exceptionally well.
4 Demonstrates fluency in English. If there are any grammatical or syntactical errors, their affect on the meaning is

negligible. Word choice suggests a broad vocabulary.
3 Demonstrates competence in English. There might be a few errors that are noticeable but forgivable, such as

an incorrect verb tense or unnecessary pluralization. Demonstrates a typical vocabulary and a simple sentence
structure.

2 Demonstrates poor understanding of sentence composition and/or poor vocabulary. The choice of words or gram-
matical errors force the reader to reread the sentence before moving on.

1 Demonstrates minimal eloquence. The sentence contains errors so severe that the sentence must be carefully
analyzed to deduce its meaning.

Table 4: Description of the Eloquence scores.

Score Description
6 A very strong, very persuasive argument body. There are many supporting components that have high Relevance

scores. There may be a few attacking child components, but these components must be used for either concession
or refuting counterarguments as opposed to making the argument indecisive or contradictory.

5 A strong, persuasive argument body. There are sufficient supporting components with respectable scores.
4 A decent, fairly persuasive argument body.
3 A poor, possibly persuasive argument body.
2 A totally unpersuasive argument body.
1 There is no argument body for the given component.

Table 5: Description of the Evidence scores.

three attributes are not inherent to the text identi-
fying the major claim but instead summarize the
child components in the argument tree.

Claim The claim argument component pos-
sesses all of the attributes of a major claim in ad-
dition to a Relevance score and a ClaimType. In

order for an argument to be persuasive, all sup-
porting components must be relevant to the com-
ponent that they support/attack. The scoring rubric
for Relevance is shown in Table 8. The ClaimType
can be value (e.g., something is good or bad, im-
portant or not important, etc.), fact (e.g. something
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Score Description
5 The claim summarizes the argument well and has a qualifier that indicates the extent to which the claim holds true.

Claims that summarize the argument well must reference most or all of the supporting components.
4 The claim summarizes the argument very well by mentioning most or all of the supporting components, but does

not have a qualifier indicating the conditions under which the claim holds true. Alternatively, the claim may
moderately summarize the argument by referencing a minority of supporting components and contain qualifier.

3 The claim has a qualifier clause or references a minority of the supporting components, but not both.
2 The claim does not make an attempt to summarize the argument nor does it contain a qualifier clause.
1 Simply rephrases the major claim or is outside scope of the major claim (argument components were annotated

incorrectly: major claim could be used to support claim).

Table 6: Description of the Claim and MajorClaim Specificity scores.

Score Description
5 An elaborate, very specific statement. The statement contains numerical data, or a historical example from the

real world. There is (1) both a sufficient qualifier indicating the extent to which the statement holds true and an
explanation of why the statement is true, or (2) at least one real world example, or (3) a sufficient description of a
hypothetical situation that would evoke a mental image of the situation in the minds of most readers.

4 A more specific statement. It is characterized by either an explanation of why the statement is true, or a qualifier
indicating when/to what extent the statement is true. Alternatively, it may list examples of items that do not qualify
as historical events.

3 A sufficiently specific statement. It simply states a relationship or a fact with little ambiguity.
2 A broad statement. A statement with hedge words and without other redeeming factors such as explicit examples,

or elaborate reasoning. Additionally, there are few adjectives or adverbs.
1 An extremely broad statement. There is no underlying explanation, qualifiers, or real-world examples.

Table 7: Description of the Premise Specificity scores.

Score Description
6 Anyone can see how the support relates to the parent claim. The relationship between the two components is

either explicit or extremely easy to infer. The relationship is thoroughly explained in the text because the two
components contain the same words or exhibit coreference.

5 There is an implied relationship that is obvious, but it could be improved upon to remove all doubt. If the relation-
ship is obvious, both relating components must have high Eloquence and Specificity scores.

4 The relationship is fairly clear. The relationship can be inferred from the context of the two statements. One com-
ponent must have a high Eloquence and Specificity scores and the other must have lower but sufficient Eloquence
and Specificity scores for the relationship to be fairly clear.

3 Somewhat related. It takes some thinking to imagine how the components relate. The parent component or the
child component have low clarity scores. The two statements are about the same topic but unrelated ideas within
the domain of said topic.

2 Mostly unrelated. It takes some major assumptions to relate the two components. A component may also receive
this score if both components have low clarity scores.

1 Totally unrelated. Very few people could see how the two components relate to each other. The statement was
annotated to show that it relates to the claim, but this was clearly in error.

Table 8: Description of the Relevance scores.

is true or false), or policy (claiming that some ac-
tion should or should not be taken).

Premise The attributes exclusive to premises
are PremiseType and Strength. To understand
Strength, recall that only premises can per-
suade readers, but also that an argument can
be composed of a premise and a set of sup-
porting/attacking premises. In an argument
of this kind, Strength refers to how well the
parent premise contributes to the persuasive-
ness independently of the contributions from
its children. The scoring rubric for Strength
is shown in Table 9. PremiseType takes on
a discrete value from one of the following:
real example, invented instance, analogy, testi-

mony, statistics, definition, common knowledge,
and warrant. Analogy, testimony, statistics, and
definition are self-explanatory. A premise is la-
beled invented instance when it describes a hypo-
thetical situation, and definition when it provides a
definition to be used elsewhere in the argument. A
premise has type warrant when it does not fit any
other type, but serves a functional purpose to ex-
plain the relationship between two entities or clar-
ify/quantify another statement. The real example
premise type indicates that the statement is a his-
torical event that actually occurred, or something
that is verfiably true about the real world.
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Score Description
6 A very strong premise. Not much can be improved in order to contribute better to the argument.
5 A strong premise. It contributes to the persuasiveness of the argument very well on its own.
4 A decent premise. It is a fairly strong point but lacking in one or more areas possibly affecting its perception by

the audience.
3 A fairly weak premise. It is not a strong point and might only resonate with a minority of readers.
2 A totally weak statement. May only help to persuade a small number of readers.
1 The statement does not contribute at all.

Table 9: Description of the Strength scores.

Attribute Value MC C P
Specificity 1 0 80 64

2 73 259 134
3 72 155 238
4 32 59 173
5 8 14 98

Logos Yes 181 304
No 4 263

Pathos Yes 67 59
No 118 508

Ethos Yes 16 9
No 169 558

Relevance 1 1 5
2 33 45
3 58 59
4 132 145
5 97 147
6 246 306

Evidence 1 3 246 614
2 62 115 28
3 57 85 12
4 33 80 26
5 16 35 15
6 14 6 12

Eloquence 1 3 23 24
2 19 106 97
3 116 320 383
4 42 102 154
5 5 16 49

ClaimType fact 368
value 145
policy 54

PremiseType real example 93
invented instance 53
analogy 2
testimony 4
statistics 15
definition 3
common know. 493
warrant 44

Persuasiveness 1 3 82 8
2 62 278 112
3 60 84 145
4 28 74 249
5 17 39 123
6 15 10 70

Table 10: Class/Score distributions by component
type.

4.3 Annotation Procedure

Our 102 essays were annotated by two native
speakers of English. We first familiarized them
with the rubrics and definitions and then trained

Attribute MC C P
Persuasiveness .739 .701 .552

Eloquence .590 .580 .557
Specificity .560 .530 .690

Evidence .755 .878 .928
Relevance .678 .555

Strength .549
Logos 1 .842
Pathos .654 .637
Ethos 1 1

ClaimType .589
PremiseType .553

Table 11: Krippendorff’s α agreement on each at-
tribute by component type.

them on five essays (not included in our corpus).
After that, they were both asked to annotate a
randomly selected set of 30 essays and discuss
the resulting annotations to resolve any discrep-
ancies. Finally, the remaining essays were parti-
tioned into two sets, and each annotator received
one set to annotate. The resulting distributions of
scores/classes for persuasiveness and the attributes
are shown in Table 10.

4.4 Inter-Annotator Agreement
We use Krippendorff’s α to measure inter-
annotator agreement. Results are shown in Ta-
ble 11. As we can see, all attributes exhibit an
agreement above 0.5, showing a correlation much
more significant than random chance. Persuasive-
ness has an agreement of 0.688, which suggests
that it can be agreed upon in a reasonably gen-
eral sense. The MajorClaim components have the
highest Persuasiveness agreement, and it declines
as the type changes to Claim and then to Premise.
This would indicate that persuasiveness is easier
to articulate in a wholistic sense, but difficult to
explain as the number of details involved in the
explanation increases.

The agreement scores that immediately stand
out are the perfect 1.0’s for Logos and Ethos. The
perfect Logos score is explained by the fact that
every major claim was marked to use logos. Al-
though ethos is far less common, both annotators
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easily recognized it. This is largely due to the in-
disputability of recognizing a reference to an ac-
cepted authority on a given subject. Very few au-
thors utilize this approach, so when they do it is
extremely apparent. Contrary to Persuasiveness,
Evidence agreement exhibits an upward trend as
the component scope narrows. Even with this pat-
tern, the Evidence agreement is always higher than
Persuasiveness agreement, which suggests that it
is not the only determiner of persuasiveness.

In spite of a rubric defining how to score Elo-
quence, it remains one of the attributes with the
lowest agreement. This indicates that it is diffi-
cult to agree on exact eloquence levels beyond ba-
sic English fluency. Additionally, Specificity pro-
duced unexpectedly low agreement in claims and
major claims. Precisely quantifying how well a
claim summarizes its argument turned out to be a
complicated and subjective task. Relevance agree-
ment for premises is one of the lowest, partly be-
cause there are multiple scores for high relevance,
and no examples were given in the rubric.

All attributes but those with the highest agree-
ment are plagued by inherent subjectivity, regard-
less of how specific the rubric is written. There
are often multiple interpretations of a given sen-
tence, sometimes due to the complexity of natural
language, and sometimes due to the poor writing
of the author. Naturally, this makes it difficult to
identify certain attributes such as Pathos, Claim-
Type, and PremiseType.

Although great care was taken to make each at-
tribute as independent of the others as possible,
they are all related to each other to a minuscule
degree (e.g., Eloquence and Specificity). While
annotators generally agree on what makes a per-
suasive argument, the act of assigning blame to the
persuasiveness (or lack thereof) is tainted by this
overlapping of attributes.

4.5 Analysis of Annotations

To understand whether the attributes we annotated
are indeed useful for predicting persuasiveness,
we compute the Pearson’s Correlation Coefficient
(PC) between persuasiveness and each of the at-
tributes along with the corresponding p-values.
Results are shown in Table 12. Among the cor-
relations that are statistically significant at the p <
.05 level, we see, as expected, that Persuasive-
ness is positively correlated with Specificity, Ev-
idence, Eloquence, and Strength. Neither is it sur-

Attribute PC p-value
Specificity .5680 0
Relevance −.0435 .163
Eloquence .4723 0
Evidence .2658 0
Strength .9456 0
Logos −.1618 0
Ethos −.0616 .1666
Pathos −.0835 .0605
ClaimType:fact .0901 .1072
ClaimType:value −.0858 .1251
ClaimType:policy −.0212 .7046
PremiseType:real example .2414 0
PremiseType:invented instance .0829 .0276
PremiseType:analogy .0300 .4261
PremiseType:testimony .0269 .4746
PremiseType:statistics .1515 0
PremiseType:definition .0278 .4608
PremiseType:common knowledge −.2948 1.228
PremiseType:warrant .0198 .6009

Table 12: Correlation of each attribute with Per-
suasiveness and the corresponding p-value.

MC C P Avg
PC .9688 .9400 .9494 .9495
ME .0710 .1486 .0954 .1061

Table 13: Persuasiveness scoring using gold at-
tributes.

prising that support provided by a premise in the
form of statistics and examples is positively cor-
related with Persuasiveness. While Logos and in-
vented instance also have significant correlations
with Persuasiveness, the correlation is very weak.

Next, we conduct an oracle experiment in an
attempt to understand how well these attributes,
when used together, can explain the persuasive-
ness of an argument. Specifically, we train three
linear SVM regressors (using the SVMlight soft-
ware (Joachims, 1999) with default learning pa-
rameters except for C (the regularization param-
eter), which is tuned on development data using
grid search) to score an argument’s persuasiveness
using the gold attributes as features. The three
regressors are trained on arguments having Ma-
jorClaims, Claims, and Premises as parents. For
instance, to train the regressor involving Major-
Claims, each instance corresponds to an argument
represented by all and only those attributes in-
volved in the major claim and all of its children.4

Five-fold cross-validation results, which are
4There is a caveat. If we define features for each of the

children, the number of features will be proportional to the
number of children. However, SVMs cannot handle a vari-
able number of features. Hence, all of the children will be
represented by one set of features. For instance, the Speci-
ficity feature value of the children will be the Specificity val-
ues averaged over all of the children.
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Prompt: Government budget focus, young children or university?
Education plays a significant role in a country’s long-lasting prosperity. It is no wonder that governments throughout the
world lay special emphasis on education development. As for the two integral components within the system, elementary
and advanced education, there’s no doubt that a government is supposed to offer sufficient financial support for both.
Concerning that elementary education is the fundamental requirement to be a qualified citizen in today’s society, gov-
ernment should guarantee that all people have equal and convenient access to it. So a lack of well-established primary
education goes hand in hand with a high rate of illiteracy, and this interplay compromises a country’s future development.
In other words, if countries, especially developing ones, are determined to take off, one of the key points governments
should set on agenda is to educate more qualified future citizens through elementary education.
. . .

Table 14: An example essay. Owing to space limitations, only its first two paragraphs are shown.

P E S Ev R St Lo Pa Et cType pType
M1 government is supposed to offer sufficient financial

support for both
3 4 2 3 T F F

C1 if countries, especially developing ones, are deter-
mined to take off, one of the key points governments
should set on agenda is to educate more qualified fu-
ture citizens through elementary education

4 5 4 4 6 T F F policy

P1 elementary education is the fundamental require-
ment to be a qualified citizen in today’s society

4 5 3 1 6 4 A

C2 government should guarantee that all people have
equal and convenient access to it

2 3 1 1 6 F F F policy

P2 a lack of well-established primary education goes
hand in hand with a high rate of illiteracy, and this in-
terplay compromises a country’s future development

4 5 3 1 6 4 C

Table 15: The argument components in the example in Table 14 and the scores of their associated at-
tributes: Persuasiveness, Eloquence, Specificity, Evidence, Relevance, Strength, Logos, Pathos, Ethos,
claimType, and premiseType.

shown in Table 13, are expressed in terms of two
evaluation metrics, PC and ME (the mean ab-
solute distance between a system’s prediction and
the gold score). Since PC is a correlation metric,
higher correlation implies better performance. In
contrast, ME is an error metric, so lower scores
imply better performance. As we can see, the
large PC values and the relatively low ME values
provide suggestive evidence that these attributes,
when used in combination, can largely explain the
persuasiveness of an argument.

What these results imply in practice is that mod-
els that are trained on these attributes for per-
suasiveness scoring could provide useful feed-
back to students on why their arguments are
(un)persuasive. For instance, one can build a
pipeline system for persuasiveness scoring as fol-
lows. Given an argument, this system first pre-
dicts its attributes and then scores its persuasive-
ness using the predicted attribute values computed
in the first step. Since the persuasiveness score
of an argument is computed using its predicted at-
tributes, these attributes can explain the persua-
siveness score. Hence, a student can figure out
which aspect of persuasiveness needs improve-
ments by examining the values of the predicted at-

tributes.

4.6 Example

To better understand our annotation scheme, we
use the essay in Table 14 to illustrate how we ob-
tain the attribute values in Table 15. In this es-
say, Claim C1, which supports MajorClaim M1,
is supported by three children, Premises P1 and
P2 as well as Claim C2.

After reading the essay in its entirety and ac-
quiring a holistic impression of the argument’s
strengths and weaknesses, we begin annotating the
atomic argument components bottom up, starting
with the leaf nodes of the argument tree. First, we
consider P2. Its Evidence score is 1 because it is
a leaf node with no supporting evidence. Its Elo-
quence score is 5 because the sentence has no seri-
ous grammatical or syntactic errors, has a flowing,
well thought out sentence structure, and uses artic-
ulate vocabulary. Its Specificity score is 3 because
it is essentially saying that poor primary education
causes illiteracy and consequently inhibits a coun-
try’s development. It does not state why or to what
extent, so we cannot assign a score of 4. How-
ever, it does explain a simple relationship with lit-
tle ambiguity due to the lack of hedge words, so
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we can assign a score of 3. Its PremiseType is
common knowledge because it is reasonable to as-
sume most people would agree that poor primary
education causes illiteracy, and also that illiter-
acy inhibits a country’s development. Its Rele-
vance score is 6: its relationship with its parent is
clear because the two components exhibit coref-
erence. Specifically, P2 contains a reference to
primary/elementary education and shows how this
affects a country’s inability to transition from de-
veloping to developed. Its Strength is 4: though
eloquent and relevant, P2 is lacking substance
in order to be considered for a score of 5 or 6.
The PremiseType is common knowledge, which is
mediocre compared to statistics and real example.
In order for a premise that is not grounded in the
real world to be strong, it must be very specific.
P2 only scored a 3 in Specificity, so we assign a
Strength score of 4. Finally, the argument headed
by P2, which does not have any children, has a
Persuasiveness score of 4, which is obtained by
summarizing the inherent strength of the premise
and the supporting evidence. Although there is
no supporting evidence for this premise, this does
not adversely affect persuasiveness due to the stan-
dalone nature of premises. In this case the persua-
siveness is derived totally from the strength.

Next, the annotator would score C2 and P1,
but for demonstration purposes we will examine
the scoring of C1. C1’s Eloquence score is 5 be-
cause it shows fluency, broad vocabulary, and at-
tention to how well the sentence structure reads.
Its ClaimType is policy because it specifically says
that the government should put something on their
agenda. Its Specificity score is 4: while it contains
information relevant to all the child premises (i.e.,
creating qualified citizens, whose role it is to pro-
vide the education, and the effect of education on a
country’s development), it does not contain a qual-
ifier stating the extent to which the assertion holds
true. Its Evidence score is 4: C1 has two premises
with decent persuasiveness scores and one claim
with a poor persuasiveness score, and there are
no attacking premises, so intuitively, we may say
that this is a midpoint between many low qual-
ity premises and few high quality premises. We
mark Logos as true, Pathos as false, and Ethos as
false: rather than use an emotional appeal or an ap-
peal to authority of any sort, the author attempts to
use logical reasoning in order to prove their point.
Its Persuasiveness score is 4: this score is mainly

determined by the strength of the supporting evi-
dence, given that the assertion is precise and clear
as determined by the specificity and eloquence. Its
Relevance score is 6, as anyone can see how en-
dorsement of elementary education in C1 relates
to the endorsement of elementary and university
education in its parent (i.e., M1).

After all of the claims have been annotated in
the bottom-up method, the annotator moves on to
the major claim, M1. M1’s Eloquence score is 4:
while it shows fluency and a large vocabulary, it
is terse and does not convey the idea exceptionally
well. Its persuasion strategies are obtained by sim-
ply taking the logical disjunction of those used in
its child claims. Since every claim in this essay re-
lied on logos and did not employ pathos nor ethos,
M1 is marked with Logos as true, Pathos as false,
and Ethos as false. Its Evidence score is 3: in this
essay there are two other supporting claims not in
the excerpt, with persuasiveness scores of only 3
and 2, so M1’s evidence has one decently persua-
sive claim, one claim that is poor but understand-
able, and one claim that is so poor as to be com-
pletely unpersuasive (in this case it has no support-
ing premises). Its Specificity score is 2 because it
does not have a quantifier nor does it attempt to
summarize the main points of the evidence. Fi-
nally, its Persuasiveness score is 3: all supporting
claims rely on logos, so there is no added persua-
siveness from a variety of persuasion strategies,
and since the eloquence and specificity are ade-
quate, they do not detract from the Evidence score.

5 Conclusion

We presented the first corpus of 102 persuasive
student essays that are simultaneously annotated
with argument trees, persuasiveness scores, and at-
tributes of argument components that impact these
scores. We believe that this corpus will push the
frontiers of research in content-based essay grad-
ing by triggering the development of novel compu-
tational models concerning argument persuasive-
ness that could provide useful feedback to students
on why their arguments are (un)persuasive in ad-
dition to how persuasive they are.
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Abstract

The prevalent use of too few references for
evaluating text-to-text generation is known
to bias estimates of their quality (hence-
forth, low coverage bias or LCB). This pa-
per shows that overcoming LCB in Gram-
matical Error Correction (GEC) evaluation
cannot be attained by re-scaling or by in-
creasing the number of references in any
feasible range, contrary to previous sug-
gestions. This is due to the long-tailed
distribution of valid corrections for a sen-
tence. Concretely, we show that LCB in-
centivizes GEC systems to avoid correct-
ing even when they can generate a valid
correction. Consequently, existing sys-
tems obtain comparable or superior per-
formance compared to humans, by mak-
ing few but targeted changes to the input.
Similar effects on Text Simplification fur-
ther support our claims.

1 Introduction

Evaluation in monolingual translation (Xu et al.,
2015; Mani, 2009) and in particular in GEC
(Tetreault and Chodorow, 2008; Madnani et al.,
2011; Felice and Briscoe, 2015; Bryant and Ng,
2015; Napoles et al., 2015) has gained notori-
ety for its difficulty, due in part to the hetero-
geneity and size of the space of valid corrections
(Chodorow et al., 2012; Dreyer and Marcu, 2012).
Reference-based evaluation measures (RBM) are
the common practice in GEC, including the stan-
dard M2 (Dahlmeier and Ng, 2012), GLEU
(Napoles et al., 2015) and I-measure (Felice and
Briscoe, 2015).

The Low Coverage Bias (LCB) was previously
discussed by Bryant and Ng (2015), who showed
that inter-annotator agreement in producing ref-

erences is low, and concluded that RBMs under-
estimate the performance of GEC systems. To
address this, they proposed a new measure, Ra-
tio Scoring, which re-scales M2 by the inter-
annotator agreement (i.e., the score of a human
corrector), interpreted as an upper bound.

We claim that the LCB has more far-reaching
implications than previously discussed. First,
while we agree with Bryant and Ng (2015) that
a human correction should receive a perfect score,
we show that LCB does not merely scale system
performance by a constant factor, but rather that
some correction policies are less prone to be bi-
ased against. Concretely, we show that by only
correcting closed class errors, where few possible
corrections are valid, systems can outperform hu-
mans. Indeed, in Section 2.3 we show that some
existing systems outperform humans on M2 and
GLEU, while only applying few changes to the
source.

We thus argue that the development of GEC sys-
tems against low coverage RBMs disincentivizes
systems from making changes to the source in
cases where there are plentiful valid corrections
(open class errors), as necessarily only some of
them are covered by the reference set. To support
our claim we show that (1) existing GEC systems
under-correct, often performing an order of mag-
nitude less corrections than a human does (§3.2);
(2) increasing the number of references alleviates
under-correction (§3.3); and (3) under-correction
is more pronounced in error types that are more
varied in their valid corrections (§3.4).

A different approach for addressing LCB was
taken by (Bryant and Ng, 2015; Sakaguchi et al.,
2016), who propose to increase the number of ref-
erences (henceforth, M ). In Section 2 we esti-
mate the distribution of corrections per sentence,
and find that increasingM is unlikely to overcome
LCB, due to the vast number of valid corrections
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for a sentence and their long-tailed distribution.
Indeed, even short sentences have over 1000 valid
corrections on average. Empirically assessing the
effect of increasing M on the bias, we find dimin-
ishing returns using three standard GEC measures
(M2, accuracy and GLEU), underscoring the dif-
ficulty in this approach.

Similar trends are found when conducting such
experiments to Text Simplification (TS) (§4).
Specifically we show that (1) the distribution of
valid simplifications for a given sentence is long-
tailed; (2) common measures for TS dramatically
under-estimate performance; (3) additional refer-
ences alleviate this under-prediction.

To recap, we find that the LCB hinders the relia-
bility of RBMs for GEC, and incentivizes systems
developed to optimize these measures not to cor-
rect. LCB cannot be overcome by re-scaling or
increasing M in any feasible range.

2 Coverage in RBMs

We begin by formulating a methodology for study-
ing the distribution of valid corrections for a sen-
tence (§2.1), and then turn to assessing the ef-
fect inadequate coverage has on common RBMs
(§2.2). Finally, we compare human and system
scores by common RBMs (§2.3).

Notation. We assume each ungrammatical sen-
tence x has a set of valid corrections Correctx,
and a discrete distribution Dx over them, where
PDx(y) for y ∈ Correctx is the probability a hu-
man annotator would correct x as y.

Let X = x1 . . . xN be the evaluated set of
source sentences and denote Di := Dxi . Each xi
is independently sampled from some distribution
L over input sentences, and is paired with M cor-
rections Yi =

{
y1i , . . . , y

M
i

}
, which are indepen-

dently sampled from Di. Our analysis assumes a
fixed number of references across sentences, but
generalizing to sentence-dependent M is straight-
forward. The coverage of a reference set Yi of size
M for a sentence xi is defined as Py∼Di(y ∈ Yi).

A system C is a function from input sentences
to proposed corrections (strings). An evaluation
measure is a function f : X × Y × C → R. We
use the term “true measure” to refer to a measure’s
output where the reference set includes all valid
corrections, i.e., ∀i : Yi = Correcti.

Experimental Setup. We conduct all experi-
ments on the NUCLE test dataset (Dahlmeier

et al., 2013). NUCLE is a parallel corpus of es-
says written by language learners and their cor-
rected versions, containing 1414 essays and 50 test
essays, each of about 500 words.

We evaluate all participating systems in the
CoNLL 2014 shared task, in addition to three
of the best performing systems on this dataset, a
hybrid system (Rozovskaya and Roth, 2016), a
phrase-based MT system (Junczys-Dowmunt and
Grundkiewicz, 2016) and a neural network system
(Xie et al., 2016). Appendix A lists system names
and abbreviations.

2.1 Estimating the Corrections Distribution

Data. We turn to estimating the number of cor-
rections per sentence, and their histogram. The ex-
periments in the following section are run on a ran-
dom sample of 52 short sentences from the NU-
CLE test data, i.e. with 15 words or less. Through
the length restriction, we avoid introducing too
many independent errors that may drastically in-
crease the number of annotation variants (as every
combination of corrections for these errors is pos-
sible), thus resulting in unreliable estimation for
Dx.

Proven effective in GEC and related tasks such
as MT (Zaidan and Callison-Burch, 2011; Mad-
nani et al., 2011; Post et al., 2012), we use crowd-
sourcing to sample from Dx (see Appendix B).
Aiming to judge grammaticality rather than flu-
ency, we instructed the workers to correct only
when necessary, not for styling. We begin by es-
timating the histogram of Dx for each sentence,
using the crowdsourced corrections. We use UN-
SEENEST (Zou et al., 2016), a non-parametric al-
gorithm to estimate a discrete distribution in which
the individual values do not matter, only their
probability. UNSEENEST aims to minimize the
“earthmover distance”, between the estimated his-
togram and the histogram of the distribution. Intu-
itively, if histograms are piles of dirt, UNSEEN-
EST minimizes the amount of dirt moved times
the distance it moved. UNSEENEST was originally
developed and tested for estimating the histogram
of variants a gene may have, including undiscov-
ered ones, a setting similar to ours. Our manual
tests of UNSEENEST with small artificially created
datasets showed satisfactory results.1

1An implementation of UNSEENEST, the data we col-
lected, the estimated distributions and efficient implementa-
tions of computations with Poisson binomial distributions can
be found in https://github.com/borgr/IBGEC.
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Our estimates show that most input sentences
have a large number of infrequent corrections that
account for much of the probability mass and a
rather small number of frequent corrections. Ta-
ble 1 presents the mean number of different cor-
rections with frequency at least γ (for different
γs), and their total probability mass. For instance,
74.34 corrections account for 75% of the probabil-
ity mass, each occurring with frequency ≥ 0.1%.

Frequency Threshold (γ)
0 0.001 0.01 0.1

Variants 1351.24 74.34 8.72 1.35
Mass 1 0.75 0.58 0.37

Table 1: Estimating the distribution of corrections Dx. The
table presents the mean number of corrections per sentence
with probability more than γ (top row), as well as their total
probability mass (bottom row).

The high number of rare corrections raises the
question of whether these can be regarded as
noise. To test this we conducted another crowd-
sourcing experiment, where 3 annotators were
asked to judge whether a correction produced in
the first experiment, is indeed valid. We plot the
validity of corrections against their frequencies,
finding that frequency has little effect, where even
the rarest corrections are judged valid 78% of the
time. Details in Appendix C.

2.2 Under-estimation as a Function of M
After estimating the histogram of valid corrections
for a sentence, we turn to estimating the result-
ing bias (LCB), for different M values. We study
sentence-level accuracy, F -Score and GLEU.

Sentence-level Accuracy. Sentence-level accu-
racy is the percentage of corrections that exactly
match one of the references. Accuracy is a ba-
sic, interpretable measure, used in GEC by, e.g.,
Rozovskaya and Roth (2010). It is also closely
related to the 0-1 loss function commonly used
for training in GEC (Chodorow et al., 2012; Ro-
zovskaya and Roth, 2013).

Formally, given test sentences X =
{x1, . . . , xN}, their references Y1, . . . , YN
and a system C, we define C’s accuracy to be

Acc (C;X,Y ) =
1

N

N∑

i=1

1C(xi)∈Yi
. (1)

Note that C’s accuracy is, in fact, an estimate
of C’s true accuracy, the probability to produce a
valid correction for a sentence. Formally:

TrueAcc (C) = Px∼L (C (x) ∈ Correctx) . (2)

The bias of Acc (C;X,Y ) for a sample of N
sentences, each paired with M references is then

TrueAcc (C)− EX,Y [Acc (C;X,Y )] = (3)
TrueAcc (C)− P (C (x) ∈ Y ) = (4)
P (C (x) ∈ Correctx) · (5)
(1− P (C (x) ∈ Y |C (x) ∈ Correctx)) (6)

We observe that the bias, denoted bM , is not af-
fected by N , only by M . As M grows, Y better
approximates Correctx, and bM tends to 0.

In order to abstract away from the idiosyn-
crasies of specific systems, we consider an ideal-
ized learner, which, when correct, produces a valid
correction with the same distribution as a human
annotator (i.e., according toDx). Formally, we as-
sume that, if C(x) ∈ Correctx then C(x) ∼ Dx.
Hence the bias bM (Eq. 6) can be re-written as

P (C(x) ∈ Correctx) · (1− PY∼DM
x ,y∼Dx

(y ∈ Y )).

We will henceforth assume that C is perfect
(i.e., its true accuracy is 1). Note that assuming
any other value for C’s true accuracy would sim-
ply scale bM by that accuracy. Similarly, assuming
only a fraction p of the sentences require correc-
tion scales bM by p.

We estimate bM empirically using its empirical
mean on our experimental corpus:

b̂M = 1− 1

N

N∑

i=1

PY∼DM
i ,y∼Di

(y ∈ Y ) .

Using the UNSEENEST estimations of Di, we
can compute b̂M for any size of Yi (M ). However,
as this is highly computationally demanding, we
estimate it using sampling. Specifically, for every
M = 1, ..., 20 and xi, we sample Yi 1000 times
(with replacement), and estimate P (y ∈ Yi) as the
covered probability mass PDi{y : y ∈ Yi}. Based
on that we compute the accuracy distribution and
expectation (see Appendix D).

We repeated all our experiments where Yi is
sampled without replacement, and find similar
trends with a faster increase in accuracy reaching
over 0.47 with M = 10.

Figure 1a presents the expected accuracy of a
perfect system (i.e., 1-b̂M ) for different Ms. Re-
sults show that even for M values which are much
larger than the standard (e.g., M = 20), expected
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(a) Accuracy and Exact Index Match. (b) F0.5 and GLEU (c) (lucky) perfect SARI and MAX-
SARI

Figure 1: The score obtained by perfect systems according to GEC accuracy (1a), GEC F-score and GLEU (1b). Figure 1c
reports TS experimental results, namely the score of a perfect and lucky perfect system using SARI, and a perfect system using
MAX-SARI. The y-axis corresponds to the measure values, and the x-axis to the number of references M . For bootstrapping
experiments points are paired with a confidence interval (p = .95).

accuracy is only around 0.5. As M increases, the
contribution of each additional correction dimin-
ishes sharply (the slope is 0.004 for M = 20).

We also experiment with a more relaxed mea-
sure, Exact Index Match, which is only sensitive
to the identity of the changed words and not to
what they were changed to. Formally, two correc-
tions c and c′ over a source sentence xmatch if for
their word alignments with the source (computed
as above) a : {1, ..., |x|} → {1, ..., |c| , Null} and
a′ : {1, ..., |x|} → {1, ..., |c′| , Null}, it holds that
ca(i) 6= xi ⇔ c′a′(i) 6= xi, where cNull = c′Null.
Results, while somewhat higher, are still only 0.54
with M = 10. (Figure 1a)

F -Score. While accuracy is commonly used as a
loss function for training GEC systems, Fα-score
is standard for evaluating system performance.
The score is computed in terms of edit overlap be-
tween edits that constitute a correction and ones
that constitute a reference, where edits are sub-
string replacements to the source. We use the stan-
dard M2 scorer (Dahlmeier and Ng, 2012), which
defines edits optimistically, maximizing over all
possible annotations that generate the correction
from the source. Since our crowdsourced correc-
tions are not annotated for edits, we produce edits
to the reference heuristically.

The complexity of the measure prohibits an an-
alytic approach (Yeh, 2000). We instead use boot-
strapping to estimate the bias incurred by not be-
ing able to exhaustively enumerate the set of valid
corrections. As with accuracy, in order to avoid
confounding our results with system-specific bi-
ases, we assume the evaluated system is perfect
and sample its corrections from the human distri-
bution of corrections Dx.

Concretely, given a value for M and for N , we
uniformly sample from our experimental corpus
source sentences x1, ..., xN , and M corrections
for each Y1, ..., YN (with replacement). Setting
a realistic value for N in our experiments is im-
portant for obtaining comparable results to those
obtained on the NUCLE corpus (see §2.3), as the
expected value of F -score depends on N and the
number of sentences that do not need correction
(Ncor). Following the statistics of NUCLE’s test
set, we set N = 1312 and Ncor = 136.

Bootstrapping is carried out by the accelerated
bootstrap procedure (Efron, 1987), with 1000 iter-
ations. We also report confidence intervals (p =
.95), computed using the same procedure.

Results (Figure 1b) again show the insufficiency
of commonly-used M values for reliably estimat-
ing system performance. For instance, the F0.5-
score for our perfect system is only 0.42 with
M = 2. The saturation effect, observed for ac-
curacy, is even more pronounced in this setting.

GLEU. We repeat the procedure using the mean
GLEU sentence score (Figure 1b), which was
shown to better correlate with human judgments
than M2 (Napoles et al., 2016). Results are about
2% higher than M2’s with a similar saturation ef-
fect. Sakaguchi et al. (2016) observed a similar ef-
fect when evaluating against fluency-oriented ref-
erences; this has led them to assume that saturation
is due to covering most of the probability mass,
which we now show is not the case.2

2 We do not experiment with I-measure (Felice and
Briscoe, 2015), as its run-time is prohibitively high for exper-
imenting with bootstrapping that requires many applications
of the measure (Choshen and Abend, 2018a), and as empiri-
cal validation studies showed that it has a low correlation with
human judgments (Sakaguchi et al., 2016).
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Figure 2: F0.5 values with M = 2 for different systems,
including confidence interval (p = .95). The left-most col-
umn (“source”) presents the F -score of a system that doesn’t
make any changes to the source sentences. In red is human
performance. See §2 for a legend of the systems.

2.3 Human and System Performance

The bootstrapping method for computing the sig-
nificance of the F -score (§2.2) can also be used
for assessing the significance of the differences in
system performance reported in the literature. We
compute confidence intervals of different systems
on the NUCLE test data (M = 2).

Results (Figure 2) present mixed trends: some
differences between previously reported F -scores
are indeed significant and some are not. For ex-
ample, the best performing system is significantly
better than all but the second one.

Considering the F -score of the best-performing
systems, and comparing them to the F -score of
a perfect system with M = 2 (in accordance
with systems’ reported results), we find that their
scores are comparable, where the systems RoRo
and JMGR surpass a perfect system’s F -score.
Similar experiments with GLEU show that the
two systems obtain comparable or superior perfor-
mance to humans on this measure as well.

2.4 Discussion

In this section we have established that (1) as sys-
tems can surpass human performance on RBMs,
re-scaling cannot be used to overcome the LCB,
and that (2) as the distribution of valid corrections
is long-tailed, the number of references needed
for reliable RBMs is exceedingly high. Indeed,
an average sentence has hundreds or more valid
low-probability corrections, whose total probabil-
ity mass is substantial. Our analysis with Exact In-
dex Match suggests that similar effects are appli-
cable to Grammatical Error Detection as well. The

proposal of Sakaguchi et al. (2016), to emphasize
fluency over grammaticality in reference correc-
tions, only compounds this problem, as it results
in a larger number of valid corrections.

3 Implications of the LCB

We discuss the adverse effects of LCB not only on
the reliability of RBMs, but on the development of
GEC systems. We argue that evaluation with inad-
equate reference coverage incentivizes systems to
under-correct, and to mostly target errors that have
few valid corrections (closed-class). We first show
that low coverage can lead to under-correction
(§3.1), then show that modern systems make far
fewer corrections to the source, compared to hu-
mans (§3.2). §3.3 shows that increasing the num-
ber of references can alleviate this effect. §3.4
shows that open-class errors are more likely to be
under-corrected than closed-class ones.

3.1 Motivating Analysis

For simplicity, we abstract away from the details
of the learning model and assume that systems
attempt to maximize an objective function, over
some training or development data. We assume
maximization is achieved by iterating over the
samples, as with the Perceptron or SGD.

Assume the system is faced with a phrase it pre-
dicts to be ungrammatical. Assume pdetect is the
probability this prediction is correct, and pcorrect
is the probability it is able to predict a valid correc-
tion for this phrase (including correctly identify-
ing it as erroneous). Finally, assume evaluation is
against M references with coverage pcoverage (the
probability that a valid correction will be found
among M randomly sampled references).

We will now assume that the system may ei-
ther choose to correct with the correction it finds
the most likely or not at all. If it chooses not
to correct, its probability of being rewarded (i.e.,
its output is in the reference set) is (1 − pdetect).
Otherwise, its probability of being rewarded is
pcorrect · pcoverage. A system is disincentivized
from altering the phrase in cases where:

pcorrect · pcoverage < 1− pdetect (7)

We expect Condition (7) to frequently hold in
cases that require non-trivial changes, which are
characterized both by low pcoverage (as non-trivial
changes are often open-class), and by lower sys-
tem performance.
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Corrector Sentence
Source This is especially to people who

are overseas.
CHAR, UMC, JMGR This is especially for people

who are overseas.
IPN This is especially to peoples

who are overseas.
CUUI This is especially to the people

who are overseas.
NUCLEA This is especially true for peo-

ple who are overseas.
NUCLEB This is especially relevant to

people who are overseas.

Table 2: Example for a sentence and proposed corrections by
different systems (top part) and by the two NUCLE annota-
tors (bottom part). Systems not mentioned in the table retain
the source. No system produces a new word as needed. The
two references differ in their corrections.

Precision-oriented measures (e.g., F0.5) penal-
ize invalidly correcting more harshly than not cor-
recting an ungrammatical sentence. In these cases,
Condition (7) should be written as

pcorrect·pcoverage−(1− pcorrect · pcoverage)α < 1−pdetect

where α is the ratio between the penalty for in-
troducing a wrong correction and the reward for a
valid correction. The condition is even more likely
to hold with such measures.

3.2 Under-correction in GEC Systems
In this section we compare the prevalence of
changes made to the source by the systems,
to their prevalence in the NUCLE references.
To strengthen our claim, we exclude all non-
alphanumeric characters, both within tokens or as
separate tokens. See Table 2 for an example.

We consider three types of divergences between
the source and the reference. First, we measure
the extent to which words were changed: altered,
deleted or added. To do so, we compute word
alignment between the source and the reference,
casting it as a weighted bipartite matching prob-
lem. Edge weights are assigned to be the token
edit distances.3 Following word alignment, we
define WORDCHANGE as the number of aligned
words and unaligned words changed. Second, we
quantify word order differences using Spearman’s
ρ between the order of the words in the source sen-
tence and the order of their corresponding-aligned
words in the correction. ρ = 0 where the word

3Aligning words in GEC is much simpler than in MT, as
most of the words are unchanged, deleted fully, added, or
changed slightly.

order is uncorrelated, and ρ = 1 where the or-
ders exactly match. We report the average ρ over
all source sentence pairs. Third, we report how
many source sentences were split and how many
concatenated by the reference and by the systems.
One annotator was arbitrarily selected for the fig-
ures.

Results. Results (Figure 3) show that humans
make considerably more changes than systems ac-
cording to all measures of under-correction, both
in terms of the number of sentences modified and
the number of modifications within them. Differ-
ences are often an order of magnitude large. For
example, 36 reference sentences include 6 word
changes, where the maximal number of sentences
with 6 word changes by any system is 5. We find
similar trends on the references of the TreeBank of
Learner English (Yannakoudakis et al., 2011).

3.3 Higher M Alleviates Under-correction

This section reports an experiment for determin-
ing whether increasing the number of references
in training indeed reduces under-correction. There
is no corpus available with multiple references
which is large enough for re-training a system.
Instead, we simulate such a setting with an ora-
cle reranking approach, and test whether the avail-
ability of increasingly more training references re-
duces a system’s under-correction.

Concretely, given a set of sentences, each paired
with M references, a measure and a system’s k-
best list, we define an oracle re-ranker that se-
lects for each sentence the highest scoring cor-
rection. As a test case, we use the RoRo system
with k = 100, and apply it to the largest avail-
able language learner corpus which is paired with
a substantial amount of GEC references, namely
the NUCLE test corpus. We use the standard F -
score as the evaluation measure, examining the
under-correction of the oracle re-ranker for differ-
ent M values, averaging over the 1312 samples of
M references from the available set of ten refer-
ences provided by Bryant and Ng (2015).

As the argument is not trivial, we turn to ex-
plaining why decreased under-correction with an
increase in M indicates that tuning against a small
set of references (low coverage) yields under-
correction. Assume an input sentence with some
sub-string e. There are three cases: (1) e is an
error, (2) e is valid but there are valid references
that alter it, (3) e is uniquely valid. In case (3) or-
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Figure 3: The prevalence of changes in system outputs and
in the NUCLE reference. The top figure presents the number
of sentences (heat) for each amount of word changes (x-axis;
measured by WORDCHANGE) done by the outputs and the
reference (y-axis). The middle figure presents the percent-
age of sentence pairs (y-axis) where the Spearman ρ values
do not exceed a certain threshold (x-axis). The bottom figure
presents the counts of source sentences (y-axis) concatenated
(right bars) or split (left bars) by the references (striped col-
umn) and the outputs (coloured columns). See Appendix A
for a legend of the systems. Under all measures, the gold
standard references make substantially more changes to the
source sentences than any of the systems, in some cases an
order of magnitude more.

Lval

empty Lval not empty

e valid e error
Small M 0 PY (e, Lval) PY (Lval)
Large M 0 0 1

Correction Rate = ↓ ↑

Table 3: The expected effect of oracle re-ranking on under-
correction. Values represent the probability of altering a sub-
string of the input e, which is a proxy to the expected cor-
rection rate. Lval is the valid alterations in the k-best list.
PY (Lval) is the probability that a valid correction from the
list is also in the reference set Y , PY (e, Lval) is the proba-
bility that, in addition, the reference that keeps e is not in Y .
When M increases, the expected correction rate is expected
to increase only if e is an error and a valid correction of it is
found in the k-best list.

Figure 4: The amount of sentences (y-axis) with a given
number of words changed (x-axis) following oracle reranking
with different M values (column colors), where the amount
for M = 1 is subtracted from them. All references are ran-
domly sampled except the “all” column that contains all ten
references. In conclusion, tuning against additional refer-
ences indeed reduces under-correction.

acle re-ranking has no effect and can be ignored.
The corrections in the k-best list can then be par-
titioned to those that keep e as it is; those that in-
validly alter e; and those that validly alter e.

Table 3 presents the probability that e will be
altered in the different cases. Analysis shows that
under-correction is likely to decrease withM only
in the case where e is an error and the k-best list
contains a valid correction of it. Whenever the ref-
erence allows both keeping e and altering e, the
re-ranker selects keeping e.

Indeed, our experimental results show that word
changes increase with M (Figure 4), indicating
that low coverage may play a role in the observed
tendency of GEC systems to under-correct. No
significant difference is found for word order.
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3.4 Under-correction by Error Types

In this section we study the prevalence of under-
correction according to edit types, finding that
open-class types of errors (such as replacing a
word with another word) are more starkly under-
corrected, than closed-class errors. Evaluating
with low coverage RBMs does not incentivize sys-
tems to address open-class errors (in fact, it disin-
centivizes them to). Therefore, even if LCB is not
the cause for this trend, current evaluation proce-
dures may perpetuate it.

We use the data of Bryant et al. (2017), which
automatically assigned types to each edit in the
output of all CoNLL 2014 systems on the NUCLE
test set. As a measure of under-correction ten-
dency, we take the ratio between the mean num-
ber of corrections produced by the systems and by
the references. We note that this analysis does not
consider whether the predicted correction is valid
or not, but only how many of the errors of each
type the systems attempted to correct.

We find that all edit types are under-predicted
on average, but that the least under-predicted ones
are mostly closed-class types. Concretely, the top
quarter of error types consists of orthographical
errors, plurality inflection of nouns, adjective in-
flections to superlative or comparative forms and
determiner selection. The bottom quarter includes
the categories verb selection, noun selection, par-
ticle/preposition selection, pronoun selection, and
the type OTHER, which is a residual category.
The only exception to this regularity is the closed-
class punctuation selection type, which is found in
the lower quarter. See Appendix E.

This trend cannot be explained by assuming that
common error types are targeted more. Indeed,
error type frequency is slightly negatively corre-
lated with the under-correction ratio (ρ=-0.29 p-
value=0.16). A more probable account of this ef-
fect is the disincentive of GEC systems to correct
open-class error types, for which even valid cor-
rections are unlikely to be rewarded.

4 Similar Effects on Simplification

We now turn to replicating our experiments on
Text Simplification (TS). From a formal point of
view, evaluation of the tasks is similar: the output
is obtained by making zero or more edits to the
source. RBMs are the standard for TS evaluation,
much like they are in GEC.

Our experiments on TS demonstrate that simi-

lar trends recur in this setting as well. The ten-
dency of TS systems to under-predict changes to
the source has already been observed by previous
work (Alva-Manchego et al., 2017), showing that
TS systems under-predict word additions, dele-
tions, substitutions, and sequence shifts (Zhang
and Lapata, 2017), and have low edit distance
from the source (Narayan and Gardent, 2016). Our
experiments show that LCB may account for this
under-prediction. Concretely, we show that (1)
the distribution of valid references for a given sen-
tence is long-tailed; (2) common evaluation mea-
sures suffer from LCB, taking SARI (Xu et al.,
2016) as an example RBM (similar trends are ob-
tained with Accuracy); (3) under-prediction is al-
leviated with M in oracle re-ranking experiments.

We crowd-sourced 2500 reference simplifica-
tions for 47 sentences, using the corpus and the an-
notation protocol of Xu et al. (2016), and applying
UNSEENEST to estimate Dx (Appendix B). Table
4 shows that the expected number of references is
even greater in this setting.

Assessing the effect of M on SARI, we find
that SARI diverges from Accuracy and F -score in
that its multi-reference version is not a maximum
over the single-reference scores, but some combi-
nation of them. This can potentially increase cov-
erage, but it also leads to an unintuitive situation:
an output identical to a reference does not receive
a perfect score, but rather the score depends on
how similar the output is to the other references.
A more in-depth analysis of SARI’s handling of
multiple references is found in Appendix F. In
order to neutralize this effect of SARI, we also
report results with MAX-SARI, which coincides
with SARI on M = 1, and is defined as the maxi-
mum single-reference SARI score for M > 1.

Figure 1c presents the coverage of SARI and
MAX-SARI of a perfect TS system that selects a
random correction from the estimated distribution
of corrections using the same bootstrapping pro-
tocol as in §2.1. We also include the SARI score
of a “lucky perfect” system, that randomly selects
one of the given references (the MAX-SARI score
for such a system is 1). Results show that SARI
has a coverage of about 0.45, and that this score is
largely independent of M . The score of predict-
ing one of the available references drops with the
number of references, indicating that SARI scores
may not be comparable across different M values.

We therefore restrict oracle re-ranking experi-
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Frequency Threshold (γ)
0 0.001 0.01 0.1

Variants 2636.29 111.19 4.68 0.13
Mass 1 0.42 0.14 0.02

Table 4: Estimating the distribution of simplifications Dx.
The table presents the mean number of simplifications per
sentence with probability more than γ (top row), as well as
their total probability mass (bottom row).

ments to MAX-SARI, conducting re-ranking ex-
periments on k-best lists in two settings: Moses
(Koehn et al., 2007) with k = 100, and a neu-
ral model (Nisioi et al., 2017) with k = 12. Our
results indeed show that under-prediction is alle-
viated with M in both settings. For example, the
least under-predicting model (the neural one) did
not change 50 sentences with M = 1, but only 29
weren’t changed with M = 8. See Appendix G.

5 Conclusion

We argue that using low-coverage reference sets
has adverse effects on the reliability of reference-
based evaluation, with GEC and TS as a test case,
and consequently on the incentives offered to sys-
tems. We further argue that these effects can-
not be overcome by re-scaling or increasing the
number of references in a feasible way. The pa-
per makes two methodological contributions to the
monolingual translation evaluation literature: (1)
a methodology for evaluating evaluation measures
by the scores they assign a perfect system, us-
ing a bootstrapping procedure; (2) a methodology
for assessing the distribution of valid monolingual
translations. Our findings demonstrate how these
tools can help characterize the biases of existing
systems and evaluation measures. We believe our
findings and methodologies can be useful for sim-
ilar tasks such as style conversion and automatic
post-editing of raw MT outputs.

We note that the LCB further jeopardizes the
reliability of common validation experiments for
RBMs, that assess the correlation between human
and measure rankings of system outputs (Grund-
kiewicz et al., 2015). Indeed, if outputs all simi-
larly under-correct, correlation studies will not be
affected by whether an RBM is sensitive to under-
correction. Therefore, the tendency of RBMs
to reward under-correction cannot be detected by
such correlation experiments (cf. Choshen and
Abend, 2018a).

Our results underscore the importance of de-

veloping alternative evaluation measures that tran-
scend n-gram overlap, and use deeper analysis
tools, e.g., by comparing the semantics of the ref-
erence and the source to the output (cf. Lo and Wu,
2011). Napoles et al. (2016) have made progress
towards this goal in proposing a reference-less
grammaticality measure, using Grammatical Error
Detection tools, as did Asano et al. (2017), who
added a fluency measure to the grammaticality.
In a recent project (Choshen and Abend, 2018b),
we proposed a complementary measure that mea-
sures the semantic faithfulness of the output to the
source, in order to form a combined semantic mea-
sure that bypasses the pitfalls of low coverage.
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Abstract

For evaluating generation systems, auto-
matic metrics such as BLEU cost noth-
ing to run but have been shown to corre-
late poorly with human judgment, leading
to systematic bias against certain model
improvements. On the other hand, av-
eraging human judgments, the unbiased
gold standard, is often too expensive. In
this paper, we use control variates to com-
bine automatic metrics with human evalu-
ation to obtain an unbiased estimator with
lower cost than human evaluation alone.
In practice, however, we obtain only a 7–
13% cost reduction on evaluating summa-
rization and open-response question an-
swering systems. We then prove that our
estimator is optimal: there is no unbi-
ased estimator with lower cost. Our the-
ory further highlights the two fundamen-
tal bottlenecks—the automatic metric and
the prompt shown to human evaluators—
both of which need to be improved to ob-
tain greater cost savings.

1 Introduction

In recent years, there has been an increasing in-
terest in tasks that require generating natural lan-
guage, including abstractive summarization (Nal-
lapati et al., 2016), open-response question an-
swering (Nguyen et al., 2016; Kočisky et al.,
2017), image captioning (Lin et al., 2014), and
open-domain dialogue (Lowe et al., 2017b). Un-
fortunately, the evaluation of these systems re-
mains a thorny issue because of the diversity of
possible correct responses. As the gold standard
of performing human evaluation is often too ex-
pensive, there has been a large effort develop-

∗Authors contributed equally.

ing automatic metrics such as BLEU (Papineni
et al., 2002), ROUGE (Lin and Rey, 2004), ME-
TEOR (Lavie and Denkowski, 2009; Denkowski
and Lavie, 2014) and CiDER (Vedantam et al.,
2015). However, these have shown to be biased,
correlating poorly with human metrics across dif-
ferent datasets and systems (Liu et al., 2016b;
Novikova et al., 2017).

Can we combine automatic metrics and human
evaluation to obtain an unbiased estimate at lower
cost than human evaluation alone? In this paper,
we propose a simple estimator based on control
variates (Ripley, 2009), where we average differ-
ences between human judgments and automatic
metrics rather than averaging the human judg-
ments alone. Provided the two are correlated, our
estimator will have lower variance and thus reduce
cost.

We prove that our estimator is optimal in the
sense that no unbiased estimator using the same
automatic metric can have lower variance. We
also analyze its data efficiency (equivalently, cost
savings)—the factor reduction in number of hu-
man judgments needed to obtain the same accu-
racy versus naive human evaluation—and show
that it depends solely on two factors: (a) the an-
notator variance (which is a function of the hu-
man evaluation prompt) and (b) the correlation be-
tween human judgments and the automatic met-
ric. This factorization allows us to calculate typi-
cal and best-case data efficiencies and accordingly
refine the evaluation prompt or automatic metric.

Finally, we evaluate our estimator on state-
of-the-art systems from two tasks, summariza-
tion on the CNN/Daily Mail dataset (Hermann
et al., 2015; Nallapati et al., 2016) and open-
response question answering on the MS MAR-
COv1.0 dataset (Nguyen et al., 2016). To study
our estimators offline, we preemptively collected
10,000 human judgments which cover several
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Figure 1: (a) At a system-level, automatic metrics (ROUGE-L) and human judgment correlate well, but
(b) the instance-level correlation plot (where each point is a system prediction) shows that the instance-
level correlation is quite low (ρ = 0.31). As a consequence, if we try to locally improve systems to
produce better answers (. in (a)), they do not significantly improve ROUGE scores and vice versa (M).

tasks and systems.1 As predicted by the theory,
we find that the data efficiency depends not only
on the correlation between the human and auto-
matic metrics, but also on the evaluation prompt.
If the automatic metric had perfect correlation, our
data efficiency would be around 3, while if we had
noiseless human judgments, our data efficiency
would be about 1.5. In reality, the reduction in
cost we obtained was only about 10%, suggesting
that improvements in both automatic metric and
evaluation prompt are needed. As one case study
in improving the latter, we show that, when com-
pared to a Likert survey, measuring the amount of
post-editing needed to fix a generated sentence re-
duced the annotator variance by three-fold.

2 Bias in automatic evaluation

It is well understood that current automatic met-
rics tend to correlate poorly with human judg-
ment at the instance-level. For example, Novikova
et al. (2017) report correlations less than 0.3 for
a large suite of word-based and grammar-based
evaluation methods on a generation task. Sim-
ilarly, Liu et al. (2016b) find correlations less
than 0.35 for automatic metrics on a dialog gen-
eration task in one domain, but find correlations
with the same metric dropped significantly to less
than 0.16 when used in another domain. Still,
somewhat surprisingly, several automatic metrics

1An anonymized version of this data and the annota-
tion interfaces used can be found at https://bit.ly/
price-of-debiasing.

have been found to have high system-level correla-
tions (Novikova et al., 2017). What, then, are the
implications of having a low instance-level corre-
lation?

As a case study, consider the task of open-
response question answering: here, a system re-
ceives a human-generated question and must gen-
erate an answer from some given context, e.g. a
document or several webpages. We collected the
responses of several systems on the MS MAR-
COv1 dataset (Nguyen et al., 2016) and crowd-
sourced human evaluations of the system output
(see Section 4 for details).

The instance-level correlation (Figure 1b) is
only ρ = 0.31. A closer look at the instance-level
correlation reveals that while ROUGE is able to
correctly assign low scores to bad examples (lower
left), it is bad at judging good examples and often
assigns them low ROUGE scores (lower right)—
see Table 1 for examples. This observation agrees
with a finding reported in Novikova et al. (2017)
that automatic metrics correlate better with human
judgments on bad examples than average or good
examples.

Thus, as Figure 1(a) shows, we can improve
low-scoring ROUGE examples without improving
their human judgment (M) and vice versa (.). In-
deed, Conroy and Dang (2008) report that sum-
marization systems were optimized for ROUGE
during the DUC challenge (Dang, 2006) until they
were indistinguishable from the ROUGE scores
of human-generated summaries, but the systems
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Question and reference answer System answer (System; Corr / ROUGE-L)

Examples where system is correct and ROUGE-L > 0.5 (19.6% or 285 of 1455 unique responses)

Q. what is anti-mullerian hormone
A. Anti-Mullerian Hormone (AMH) is a protein hormone
produced by granulosa cells (cells lining the egg sacs or fol-
licles) within the ovary.

it is a protein hormone produced by granulosa cells
(cells lining the egg sacs or follicles) within the ovary.
(snet.ens;X / 0.86)

Examples where system is incorrect and ROUGE-L > 0.5 (1.3% or 19 of 1455 unique responses)

Q. at what gestational age can you feel a fetus move
A. 37 to 41 weeks (incorrect reference answer)

37 to 41 weeks (fastqa, fastqa.ext; × / 1.0)

Examples where system is correct and ROUGE-L < 0.5 (56.0% or 815 of 1455 unique responses)

Q. what is the definition of onomatopoeia
A. It is defined as a word, which imitates the natural sounds
of a thing.

the naming of a thing or action by a vocal imitation of the
sound associated with it (as buzz, hiss). (fastqa;X / 0.23)

Examples where system is incorrect and ROUGE-L < 0.5 (23.1% or 336 of 1455 unique responses)

Q. what kind root stem does a dandelion have
A. Fibrous roots and hollow stem.

vitamin a, vitamin c, vitamin d and vitamin b complex, as
well as zinc, iron and potassium. (snet, snet.ens; × /
0.09)

(a) MS MARCO. Human annotators rated answer correctness (AnyCorrect) and the automatic metric used is ROUGE-L
(higher is better).

Reference summary System summary (System; Edit / VecSim)

Examples where system Edit < 0.3 and VecSim > 0.5 (53.9% or 1078 of 2000 responses)

Bhullar is set to sign a�-day contract with the Kings.
The�-year-old will become the NBA’s first player of
Indian descent. Bhullar will be on the roster when the
Kings host New Orleans Pelicans.

Bhullar andThe Kings are signing Bhullar to a �-day contract.
The �-year-old will be on the roster on friday when David Wear’s
�-season contract expires thursday. Bhullar is set to become the
NBA’s first player of Indian descent. (ml; 0.13 / 0.82)

Examples where system Edit > 0.3 and VecSim > 0.5 (18.0% or 360 of 2000 responses)

The Direct Marketing Commission probing B2C
Data and Data Bubble. Investigating whether they
breached rules on the sale of private data. Chief com-
missioner described allegations made about firms as
‘serious’.

� Data obtained by the Mail’s marketing commission said it
would probe both companies over claims that they had breached
the rules on the sale of private data. The FSA said it would probe
both companies over claims they had breached the rules on the
sale of private data. (se2seq; 1.00 / 0.72)

Examples where system Edit < 0.3 and VecSim < 0.5 (14.5% or 290 of 2000 responses)

Death toll rises to more than �. Pemba Tamang, �,
shows no apparent signs of serious injury after rescue.
Americans special forces helicopter �, including �
Americans, to safety.

Six of Despite Nepal’s tragedy, life triumphed in Kathmandu’s
hard-hit neighborhoods. Rescuers pulled an 15-year-old from the
rubble of a multistory residential building. He was wearing a New
York shirt and a blue neck brace. (pointer; 0.04 / 0.27)

Examples where system Edit > 0.3 and VecSim < 0.5 (13.6% or 272 of 2000 responses)

“Mad Men’s” final seven episodes begin airing April
�. The show has never had high ratings but is con-
sidered one of the great TV series. It’s unknown what
will happen to characters, but we can always guess.

‘This’s “Mad Men” is the end of a series of an era’, This he says.
Stores have created fashion lines inspired by the show.“The So-
pranos”. The in � the Kent State shootings in may � or Richard
Nixonś � re-election.. (ml+rl; 0.95 / 0.24)

(b) CNN/Daily Mail. Human judgment scores used are post-edit distance (Edit) (lower is better) and the automatic metric
used is sentence vector similarity with the reference (higher is better).

Table 1: Examples highlighting the different modes in which the automatic metric and human judgments
may agree or disagree. On the MS MARCO task, a majority of responses from systems were actually
correct but poorly scored according to ROUGE-L. On the CNN/Daily Mail task, a significant number of
examples which are scored highly by VecSim are poorly rated by humans, and likewise many examples
scored poorly by VecSim are highly rated by humans.
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had hardly improved on human evaluation. Hill-
climbing on ROUGE can also lead to a system
that does worse on human scores, e.g. in machine
translation (Wu et al., 2016). Conversely, genuine
quality improvements might not be reflected in im-
provements in ROUGE. This bias also appears in
pool-based evaluation for knowledge base popula-
tion (Chaganty et al., 2017). Thus the problems
with automatic metrics clearly motivate the need
for human evaluation, but can we still use the au-
tomatic metrics somehow to save costs?

3 Statistical estimation for unbiased
evaluation

We will now formalize the problem of combining
human evaluation with an automatic metric. Let
X be a set of inputs (e.g., articles), and let S be
the system (e.g. for summarization), which takes
x ∈ X and returns output S(x) (e.g. a summary).
Let Z = {(x, S(x)) : x ∈ X} be the set of system
predictions. Let Y (z) be the random variable rep-
resenting the human judgment according to some
evaluation prompt (e.g. grammaticality or correct-
ness), and define f(z) = E[Y (z)] to be the (un-
known) human metric corresponding to averaging
over an infinite number of human judgments. Our
goal is to estimate the average across all examples:

µ
def
= Ez[f(z)] =

1

|Z|
∑

z∈Z
f(z) (1)

with as few queries to Y as possible.
Let g be an automatic metric (e.g. ROUGE),

which maps z to a real number. We assume eval-
uating g(z) is free. The central question is how
to use g in conjunction with calls to Y to produce
an unbiased estimate µ̂ (that is, E[µ̂] = µ). In this
section, we will construct a simple estimator based
on control variates (Ripley, 2009), and prove that
it is minimax optimal.

3.1 Sample mean

We warm up with the most basic unbiased esti-
mate, the sample mean. We sample z(1), . . . , z(n)

independently with replacement from Z . Then,
we sample each human judgment y(i) = Y (z(i))
independently.2 Define the estimator to be
µ̂mean = 1

n

∑n
i=1 y

(i). Note that µ̂mean is unbiased
(E[µ̂mean] = µ).

2Note that this independence assumption isn’t quite true
in practice since we do not control who annotates our data.

We can define σ2f
def
= Var(f(z)) as the variance

of the human metric and σ2a
def
= Ez[Var(Y (z))] as

the variance of human judgment averaged over Z .
By the law of total variance, the variance of our
estimator is

Var(µ̂mean) =
1

n
(σ2f + σ2a). (2)

3.2 Control variates estimator
Now let us see how an automatic metric g can re-
duce variance. If there is no annotator variance
(σ2a = 0) so that Y (z) = f(z), we should ex-
pect the variance of f(z) − g(z) to be lower than
the variance of f(z), assuming g is correlated with
f—see Figure 2 for an illustration.

The actual control variates estimator needs to
handle noisy Y (z) (i.e. σ2a > 0) and guard against
a g(z) with low correlation. Let us standardize g
to have zero mean and unit variance, because we
have assumed it is free to evaluate. As before, let
z(1), . . . , z(n) be independent samples from Z and
draw y(i) = Y (z(i)) independently as well. We
define the control variates estimator as

µ̂cv =
1

n

n∑

i=1

y(i) − αg(z(i)), (3)

where

α
def
= Cov(f(z), g(z)). (4)

Intuitively, we have averaged over y(i) to handle
the noise introduced by Y (z), and scaled g(z) to
prevent an uncorrelated automatic metric from in-
troducing too much noise.

An important quantity governing the quality of
an automatic metric g is the correlation between
f(z) and g(z) (recall that g has unit variance):

ρ
def
=

α

σf
. (5)

We can show that among all distributions with
fixed σ2f , σ2a, and α (equivalently ρ), this estimator
is minimax optimal, i.e. it has the least variance
among all unbiased estimators:

Theorem 3.1. Among all unbiased estimators that
are functions of y(i) and g(z(i)), and for all distri-
butions with a given σ2f , σ2a, and α,

Var(µ̂cv) =
1

n
(σ2f (1− ρ2) + σ2a), (6)

and no other estimator has a lower worst-case
variance.
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Figure 2: The samples from f(z) have a higher
variance than the samples from f(z) − g(z) but
the same mean. This is the key idea behind using
control variates to reduce variance.
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Figure 3: Inverse data efficiency for various val-
ues of γ and ρ. We need both low γ and high ρ to
obtain significant gains.

Comparing the variances of the two estimators
((2) and (6)), we define the data efficiency as the
ratio of the variances:

DE def
=

Var(µ̂mean)

Var(µ̂cv)
=

1 + γ

1− ρ2 + γ
, (7)

where γ def
= σ2a/σ

2
f is the normalized annotator

variance. Data efficiency is the key quantity in
this paper: it is the multiplicative reduction in the
number of samples required when using the con-
trol variates estimator µ̂cv versus the sample mean
µ̂mean. Figure 3 shows the inverse data efficiency
contours as a function of the correlation ρ and γ.

When there is no correlation between human
and automatic metrics (ρ = 0), the data efficiency
is naturally 1 (no gain). In order to achieve a
data efficiency of 2 (half the labeling cost), we
need |ρ| ≥

√
2/2 ≈ 0.707. Interestingly, even

for an automatic metric with perfect correlation

(ρ = 1), the data efficiency is still capped by
1+γ
γ : unless γ → 0 the data efficiency cannot in-

crease unboundedly. Intuitively, even if we knew
that ρ = 1, f(z) would be undetermined up to a
constant additive shift and just estimating the shift
would incur a variance of 1

nσ
2
a.

3.3 Using the control variates estimator

The control variates estimator can be easily inte-
grated into an existing evaluation: we run human
evaluation on a random sample of system outputs,
automatic evaluation on all the system outputs,
and plug in these results into Algorithm 1.

It is vital that we are able to evaluate the au-
tomatic metric on a significantly larger set of ex-
amples than those with human evaluations to reli-
ably normalize g(z): without these additional ex-
amples, it be can shown that the optimal minimax
estimator for µ is simply the naive estimate µ̂mean.
Intuitively, this is because estimating the mean of
g(z) incurs an equally large variance as estimating
µ. In other words, g(z) is only useful if we have
additional information about g beyond the samples
{z(i)}.

Algorithm 1 shows the estimator. In practice,
we do not know α = Cov(f(z), g(z)), so we use
a plug-in estimate α̂ in line 3 to compute the esti-
mate µ̃ in line 4. We note that estimating α from
data does introduce aO(1/n) bias, but when com-
pared to the standard deviation which decays as
Θ(1/

√
n), this bias quickly goes to 0.

Proposition 3.1. The estimator µ̃ in Algorithm 1
has O(1/n) bias.

Algorithm 1 Control variates estimator

1: Input: n human evaluations y(i) on system
outputs z(i), normalized automatic metric g

2: y = 1
n

∑
i y

(i)

3: α̂ = 1
n

∑
i(y

(i) − y)g(z(i))

4: µ̃ = 1
n

∑
i y

(i) − α̂g(z(i))
5: return µ̃

An additional question that arises when apply-
ing Algorithm 1 is figuring out how many samples
n to use. Given a target variance, the number of
samples can be estimated using (6) with conserva-
tive estimates of σ2f , σ2a and ρ. Alternatively, our
estimator can be combined with a dynamic stop-
ping rule (Mnih et al., 2008) to stop data collection
once we reach a target confidence interval.
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Task Eval. σ2a σ2f γ = σ2
a

σ2
f

CDM Fluency 0.32 0.26 1.23
CDM Redund. 0.26 0.43 0.61
CDM Overall 0.28 0.28 1.00
CDM Edit 0.07 0.18 0.36

MS MARCO AnyCorr. 0.14 0.15 0.95
MS MARCO AvgCorr. 0.12 0.13 0.91

Table 2: A summary of the key statistics, human
metric variance (σ2f ) and annotator variance (σ2a)
for different datasets, CNN/Daily Mail (CDM)
and MS MARCO in our evaluation benchmark.
We observe that the relative variance (γ) is fairly
high for most evaluation prompts, upper bounding
the data efficiency on these tasks. A notable ex-
ception is the Edit prompt wherein systems are
compared on the number of post-edits required to
improve their quality.

3.4 Discussion of assumptions

We will soon see that empirical instantiations of γ
and ρ lead to rather underwhelming data efficien-
cies in practice. In light of our optimality result,
does this mean there is no hope for gains? Let us
probe our assumptions. We assumed that the hu-
man judgments are uncorrelated across different
system outputs; it is possible that a more accurate
model of human annotators (e.g. Passonneau and
Carpenter (2014)) could offer improvements. Per-
haps with additional information about g(z) such
as calibrated confidence estimates, we would be
able to sample more adaptively. Of course the
most direct routes to improvement involve increas-
ing the correlation of g with human judgments and
reducing annotator variance, which we will dis-
cuss more later.

4 Tasks and datasets

In order to compare different approaches to evalu-
ating systems, we first collected human judgments
for the output of several automatic summariza-
tion and open-response question answering sys-
tems using Amazon Mechanical Turk. Details of
instructions provided and quality assurance steps
taken are provided in Appendix A of the supple-
mentary material. In this section, we’ll briefly de-
scribe how we collected this data.

Evaluating language quality in automatic sum-
marization. In automatic summarization, sys-
tems must generate a short (on average two or
three sentence) summary of an article: for our
study, we chose articles from the CNN/Daily Mail
(CDM) dataset (Hermann et al., 2015; Nallapati
et al., 2016) which come paired with reference
summaries in the form of story highlights. We
focus on the language quality of summaries and
leave evaluating content selection to future work.

For each summary, we collected human judg-
ments on a scale from 1–3 (Figure 4a) for flu-
ency, (lack of) redundancy, and overall quality of
the summary using guidelines from the DUC sum-
marization challenge (Dang, 2006). As an alter-
nate human metric, we also asked workers to post-
edit the system’s summary to improve its qual-
ity, similar to the post-editing step in MT evalu-
ations (Snover et al., 2006). Obtaining judgments
costs about $0.15 per summary and this cost rises
to about $0.40 per summary for post-editing.

We collected judgments on the summaries gen-
erated by the seq2seq and pointer models
of See et al. (2017), the ml and ml+rl mod-
els of Paulus et al. (2018), and the reference
summaries.3 Before presenting the summaries to
human annotators, we performed some minimal
post-processing: we true-cased and de-tokenized
the output of seq2seq and pointer using
Stanford CoreNLP (Manning et al., 2014) and re-
placed “unknown” tokens in each system with a
special symbol (�).

Evaluating answer correctness. Next, we look
at evaluating the correctness of system outputs
in question answering using the MS MARCO
question answering dataset (Nguyen et al., 2016).
Here, each system is provided with a question and
up to 10 paragraphs of context. The system gener-
ates open-response answers that do not need to be
tied to a span in any paragraph.

We first ask annotators to judge if the output
is even plausible for the question, and if yes, ask
them identify if it is correct according to each con-
text paragraph. We found that requiring annotators
to highlight regions in the text that support their
decision substantially improved the quality of the
output without increasing costs. Annotations cost
$0.40 per system response.4

3All system output was obtained from the original authors
through private communication.

4This cost could be significantly reduced if systems also
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(a) Interface to evaluate language quality on CNN/Daily
Mail

(b) Interface to judge answer correctness on MS MARCO

Figure 4: Screenshots of the annotation interfaces we used to measure (a) summary language quality on
CNN/Daily Mail and (b) answer correctness on MS MARCO tasks.

While our goal is to evaluate the correctness of
the provided answer, we found that there are of-
ten answers which may be correct or incorrect de-
pending on the context. For example, the question
“what is a pothole” is typically understood to refer
to a hole in a roadway, but also refers to a geo-
logical feature (Figure 4b). This is reflected when
annotators mark one context paragraph to support
the given answer but mark another to contradict it.
We evaluated systems based on both the average
correctness (AvgCorrect) of their answers across
all paragraphs as well as whether their answer is
correct according to any paragraph (AnyCorrect).

We collected annotations on the systems gen-
erated by the fastqa and fastqa ext from
Weissenborn et al. (2017) and the snet and
snet.ens(emble) models from Tan et al. (2018),
along with reference answers. The answers gener-
ated by the systems were used without any post-
processing. Surprisingly, we found that the cor-
rectness of the reference answers (according to
the AnyCorrect metric) was only 73.5%, only 2%
above that of the leading system (snet.ens).
We manually inspected 30 reference answers
which were annotated incorrectly and found that
of those, about 95% were indeed incorrect. How-
ever, 62% are actually answerable from some
paragraph, indicating that the real ceiling perfor-
mance on this dataset is around 90% and that there
is still room for improvement on this task.

5 Experimental results

We are now ready to evaluate the performance
of our control variates estimator proposed in Sec-
tion 3 using the datasets presented in Section 4.

specify which passage they used to generate the answer.

Recall that our primary quantity of interest is data
efficiency, the ratio of the number of human judg-
ments required to estimate the overall human eval-
uation score for the control variates estimator ver-
sus the sample mean. We’ll briefly review the au-
tomatic metrics used in our evaluation before ana-
lyzing the results.

Automatic metrics. We consider the follow-
ing frequently used automatic word-overlap based
metrics in our work: BLEU (Papineni et al.,
2002), ROUGE (Lin and Rey, 2004) and ME-
TEOR (Lavie and Denkowski, 2009). Following
Novikova et al. (2017) and Liu et al. (2016b), we
also compared a vector-based sentence-similarity
using sent2vec (Pagliardini et al., 2017) to
compare sentences (VecSim). Figure 5 shows how
each of these metrics is correlated with human
judgment for the systems being evaluated. Un-
surprisingly, the correlation varies considerably
across systems, with token-based metrics correlat-
ing more strongly for systems that are more ex-
tractive in nature (fastqa and fastqa ext).

Results.5 In Section 3 we proved that the con-
trol variates estimator is not only unbiased but also
has the least variance among other unbiased esti-
mators. Figure 6 plots the width of the 80% con-
fidence interval, estimated using bootstrap, mea-
sured as a function of the number of samples col-
lected for different tasks and prompts. As ex-
pected, the control variates estimator reduces the
width of the confidence interval. We measure data
efficiency by the averaging of the ratio of squared
confidence intervals between the human baseline

5Extended results for other systems, metrics
and prompts can be found at https://bit.ly/
price-of-debiasing/.
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(a) MS MARCO with the AnyCorrect prompt
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(b) CNN/Daily Mail with the Edit prompt

Figure 5: Correlations of different automatic metrics on the MS MARCO and CNN/Daily Mail tasks.
Certain systems are more correlated with certain automatic metrics than others, but overall the correlation
is low to moderate for most systems and metrics.

and control variates estimates. We observe that the
data efficiency depends on the task, prompt and
system, ranging from about 1.08 (a 7% cost reduc-
tion) to 1.15 (a 13% cost reduction) using current
automatic metrics.

As we showed in Section 3, further gains are
fundamentally limited by the quality of the evalu-
ation prompts and automatic metrics. Figures 6a
and 6b show how improving the quality of the
evaluation prompt from a Likert-scale prompt for
quality (Overall) to using post-editing (Edit)
noticeably decreases variance and hence allows
better automatic metrics to increase data effi-
ciency. Likewise, Figure 6c shows how using
a better automatic metric (ROUGE-L instead of
VecSim) also reduces variance.

Figure 6 also shows the conjectured confidence
intervals if we were able to eliminate noise in hu-
man judgments (noiseless humans) or have a au-
tomatic metric that correlated perfectly with aver-
age human judgment (perfect metric). In particu-
lar, we use the mean of all (2–3) humans on each
z for the perfect g(z) and use the mean of all hu-
mans on each z for the “noiseless” Y (z).

In both cases, we are able to significantly in-
crease data efficiency (i.e. decrease estimator vari-
ance). With zero annotator variance and using ex-
isting automatic metrics, the data efficiency ranges
from 1.42 to 1.69. With automatic metrics with
perfect correlation and current variance of human
judgments, it ranges from 2.38 to 7.25. Thus,
we conclude that it is important not only to im-
prove our automatic metrics but also the evalua-
tion prompts we use during human evaluation.

6 Related work

In this work, we focus on using existing automatic
metrics to decrease the cost of human evaluations.
There has been much work on improving the qual-
ity of automatic metrics. In particular, there is
interest in learning models (Lowe et al., 2017a;
Dusek et al., 2017) that are able to optimize for im-
proved correlations with human judgment. How-
ever, in our experience, we have found that these
learned automatic metrics have trouble generaliz-
ing to different systems. The framework we pro-
vide allows us to safely incorporate such models
into evaluation, exploiting them when their corre-
lation is high but also not introducing bias when it
is low.

Our key technical tool is control variates, a stan-
dard statistical technique used to reduce the vari-
ance of Monte Carlo estimates (Ripley, 2009).
The technique has also been used in machine
learning and reinforcement learning to lower vari-
ance estimates of gradients (Greensmith et al.,
2004; Paisley et al., 2012; Ranganath et al., 2014).
To the best of our knowledge, we are the first to ap-
ply this technique in the context of language eval-
uation.

Our work also highlights the importance of hu-
man evaluation. Chaganty et al. (2017) identified
a similar problem of systematic bias in evaluation
metrics in the setting of knowledge base popula-
tion and also propose statistical estimators that re-
lies on human evaluation to correct bias. Unfortu-
nately, their technique relies on having a structured
output (relation triples) that are shared between
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(c) fastqa ext on MS MARCO using
AnyCorrect

Figure 6: 80% bootstrap confidence interval length as a function of the number of human judgments
used when evaluating the indicated systems on their respective datasets and prompts. (a) We see a modest
reduction in variance (and hence cost) relative to human evaluation by using the VecSim automatic metric
with the proposed control variates estimator to estimate Overall scores on the CNN/Daily Mail task;
the data efficiency (DE) is 1.06. (b) By improving the evaluation prompt to use Edits instead, it is
possible to further reduce variance relative to humans (DE is 1.15). (c) Another way to reduce variance
relative to humans is to improve the automatic metric evaluation; here using ROUGE-1 instead of VecSim
improves the DE from 1.03 to 1.16.

systems and does not apply to evaluating natu-
ral language generation. In a similar vein, Chang
et al. (2017) dynamically collect human feedback
to learn better dialog policies.

7 Discussion

Prior work has shown that existing automatic
metrics have poor instance-level correlation with
mean human judgment and that they score many
good quality responses poorly. As a result, the
evaluation is systematically biased against genuine
system improvements that would lead to higher
human evaluation scores but not improve auto-
matic metrics. In this paper, we have explored us-
ing an automatic metric to decrease the cost of hu-
man evaluation without introducing bias. In prac-
tice, we find that with current automatic metrics
and evaluation prompts data efficiencies are only
1.08–1.15 (7–13% cost reduction). Our theory
shows that further improvements are only possi-
ble by improving the correlation of the automatic
metric and reducing the annotator variance of the
evaluation prompt. As an example of how evalu-
ation prompts could be improved, we found that
using post-edits of summarizes decreased normal-
ized annotator variance by a factor of three relative
to using a Likert scale survey. It should be noted
that changing the evaluation prompt also changes
the underlying ground truth f(z): it is up to us
to find a prompt that still captures the essence of
what we want to measure.

Without making stronger assumptions, the con-
trol variates estimator we proposed outlines the
limitations of unbiased estimation. Where do we
go from here? Certainly, we can try to improve
the automatic metric (which is potentially as diffi-
cult as solving the task) and brainstorming alterna-
tive ways of soliciting evaluation (which has been
less explored). Alternatively, we could give up on
measuring absolute scores, and seek instead to find
techniques stably rank methods and thus improve
them. As the NLP community tackles increasingly
difficult tasks, human evaluation will only become
more important. We hope our work provides some
clarity on to how to make it more cost effective.

Reproducibility

All code, data, and experiments for this paper are
available on the CodaLab platform at https://
bit.ly/price-of-debiasing.
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Abstract

Sentence scoring and sentence selection
are two main steps in extractive docu-
ment summarization systems. However,
previous works treat them as two sepa-
rated subtasks. In this paper, we present
a novel end-to-end neural network frame-
work for extractive document summariza-
tion by jointly learning to score and se-
lect sentences. It first reads the doc-
ument sentences with a hierarchical en-
coder to obtain the representation of sen-
tences. Then it builds the output sum-
mary by extracting sentences one by one.
Different from previous methods, our ap-
proach integrates the selection strategy
into the scoring model, which directly pre-
dicts the relative importance given previ-
ously selected sentences. Experiments on
the CNN/Daily Mail dataset show that the
proposed framework significantly outper-
forms the state-of-the-art extractive sum-
marization models.

1 Introduction

Traditional approaches to automatic text summa-
rization focus on identifying important content,
usually at sentence level (Nenkova and McKeown,
2011). With the identified important sentences, a
summarization system can extract them to form
an output summary. In recent years, extractive
methods for summarization have proven effective
in many systems (Carbonell and Goldstein, 1998;
Mihalcea and Tarau, 2004; McDonald, 2007; Cao
et al., 2015a). In previous works that use extrac-
tive methods, text summarization is decomposed
into two subtasks, i.e., sentence scoring and sen-
tence selection.

∗Contribution during internship at Microsoft Research.

Sentence scoring aims to assign an importance
score to each sentence, and has been broadly
studied in many previous works. Feature-based
methods are popular and have proven effective,
such as word probability, TF*IDF weights, sen-
tence position and sentence length features (Luhn,
1958; Hovy and Lin, 1998; Ren et al., 2017).
Graph-based methods such as TextRank (Mihal-
cea and Tarau, 2004) and LexRank (Erkan and
Radev, 2004) measure sentence importance using
weighted-graphs. In recent years, neural network
has also been applied to sentence modeling and
scoring (Cao et al., 2015a; Ren et al., 2017).

For the second step, sentence selection adopts
a particular strategy to choose content sentence
by sentence. Maximal Marginal Relevance (Car-
bonell and Goldstein, 1998) based methods se-
lect the sentence that has the maximal score and
is minimally redundant with sentences already in-
cluded in the summary. Integer Linear Program-
ming based methods (McDonald, 2007) treat sen-
tence selection as an optimization problem under
some constraints such as summary length. Sub-
modular functions (Lin and Bilmes, 2011) have
also been applied to solving the optimization prob-
lem of finding the optimal subset of sentences in a
document. Ren et al. (2016) train two neural net-
works with handcrafted features. One is used to
rank sentences, and the other one is used to model
redundancy during sentence selection.

In this paper, we present a neural extractive
document summarization (NEUSUM) framework
which jointly learns to score and select sentences.
Different from previous methods that treat sen-
tence scoring and sentence selection as two tasks,
our method integrates the two steps into one end-
to-end trainable model. Specifically, NEUSUM is
a neural network model without any handcrafted
features that learns to identify the relative impor-
tance of sentences. The relative importance is
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measured as the gain over previously selected sen-
tences. Therefore, each time the proposed model
selects one sentence, it scores the sentences con-
sidering both sentence saliency and previously se-
lected sentences. Through the joint learning pro-
cess, the model learns to predict the relative gain
given the sentence extraction state and the partial
output summary.

The proposed model consists of two parts, i.e.,
the document encoder and the sentence extractor.
The document encoder has a hierarchical archi-
tecture, which suits the compositionality of doc-
uments. The sentence extractor is built with recur-
rent neural networks (RNN), which provides two
main functionalities. On one hand, the RNN is
used to remember the partial output summary by
feeding the selected sentence into it. On the other
hand, it is used to provide a sentence extraction
state that can be used to score sentences with their
representations. At each step during extraction,
the sentence extractor reads the representation of
the last extracted sentence. It then produces a new
sentence extraction state and uses it to score the
relative importance of the rest sentences.

We conduct experiments on the CNN/Daily
Mail dataset. The experimental results demon-
strate that the proposed NEUSUM by jointly scor-
ing and selecting sentences achieves significant
improvements over separated methods. Our con-
tributions are as follows:

• We propose a joint sentence scoring and se-
lection model for extractive document sum-
marization.

• The proposed model can be end-to-end
trained without handcrafted features.

• The proposed model significantly outper-
forms state-of-the-art methods and achieves
the best result on CNN/Daily Mail dataset.

2 Related Work

Extractive document summarization has been ex-
tensively studied for years. As an effective ap-
proach, extractive methods are popular and dom-
inate the summarization research. Traditional ex-
tractive summarization systems use two key tech-
niques to form the summary, sentence scoring and
sentence selection. Sentence scoring is critical
since it is used to measure the saliency of a sen-
tence. Sentence selection is based on the scores of

sentences to determine which sentence should be
extracted, which is usually done heuristically.

Many techniques have been proposed to model
and score sentences. Unsupervised methods do
not require model training or data annotation. In
these methods, many surface features are useful,
such as term frequency (Luhn, 1958), TF*IDF
weights (Erkan and Radev, 2004), sentence length
(Cao et al., 2015a) and sentence positions (Ren
et al., 2017). These features can be used alone or
combined with weights.

Graph-based methods (Erkan and Radev, 2004;
Mihalcea and Tarau, 2004; Wan and Yang, 2006)
are also applied broadly to ranking sentences. In
these methods, the input document is represented
as a connected graph. The vertices represent the
sentences, and the edges between vertices have at-
tached weights that show the similarity of the two
sentences. The score of a sentence is the impor-
tance of its corresponding vertex, which can be
computed using graph algorithms.

Machine learning techniques are also widely
used for better sentence modeling and importance
estimation. Kupiec et al. (1995) use a Naive Bayes
classifier to learn feature combinations. Conroy
and O’leary (2001) further use a Hidden Markov
Model in document summarization. Gillick and
Favre (2009) find that using bigram features con-
sistently yields better performance than unigrams
or trigrams for ROUGE (Lin, 2004) measures.

Carbonell and Goldstein (1998) proposed the
Maximal Marginal Relevance (MMR) method as
a heuristic in sentence selection. Systems using
MMR select the sentence which has the maximal
score and is minimally redundant with previous
selected sentences. McDonald (2007) treats sen-
tence selection as an optimization problem under
some constraints such as summary length. There-
fore, he uses Integer Linear Programming (ILP) to
solve this optimization problem. Sentence selec-
tion can also be seen as finding the optimal sub-
set of sentences in a document. Lin and Bilmes
(2011) propose using submodular functions to find
the subset.

Recently, deep neural networks based ap-
proaches have become popular for extractive doc-
ument summarization. Cao et al. (2015b) develop
a novel summary system called PriorSum, which
applies enhanced convolutional neural networks to
capture the summary prior features derived from
length-variable phrases. Ren et al. (2017) use
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a two-level attention mechanism to measure the
contextual relations of sentences. Cheng and Lap-
ata (2016) propose treating document summariza-
tion as a sequence labeling task. They first en-
code the sentences in the document and then clas-
sify each sentence into two classes, i.e., extraction
or not. Nallapati et al. (2017) propose a system
called SummaRuNNer with more features, which
also treat extractive document summarization as a
sequence labeling task. The two works are both
in the separated paradigm, as they first assign a
probability of being extracted to each sentence,
and then select sentences according to the prob-
ability until reaching the length limit. Ren et al.
(2016) train two neural networks with handcrafted
features. One is used to rank the sentences to se-
lect the first sentence, and the other one is used
to model the redundancy during sentence selec-
tion. However, their model of measuring the re-
dundancy only considers the redundancy between
the sentence that has the maximal score, which
lacks the modeling of all the selection history.

3 Problem Formulation

Extractive document summarization aims to ex-
tract informative sentences to represent the im-
portant meanings of a document. Given a doc-
ument D = (S1, S2, . . . , SL) containing L sen-
tences, an extractive summarization system should
select a subset of D to form the output summary
S = {Ŝi|Ŝi ∈ D}. During the training phase,
the reference summary S∗ and the score of an out-
put summary S under a given evaluation function
r(S|S∗) are available. The goal of training is to
learn a scoring function f(S) which can be used
to find the best summary during testing:

argmax
S

f(S)

s.t. S = {Ŝi|Ŝi ∈ D}
|S| ≤ l.

where l is length limit of the output summary. In
this paper, l is the sentence number limit.

Previous state-of-the-art summarization sys-
tems search the best solution using the learned
scoring function f(·) with two methods, MMR
and ILP. In this paper, we adopt the MMR method.
Since MMR tries to maximize the relative gain
given previous extracted sentences, we let the
model to learn to score this gain. Previous works
adopt ROUGE recall as the evaluation r(·) con-

sidering the DUC tasks have byte length limit for
summaries. In this work, we adopt the CNN/Daily
Mail dataset to train the neural network model,
which does not have this length limit. To prevent
the tendency of choosing longer sentences, we use
ROUGE F1 as the evaluation function r(·), and set
the length limit l as a fixed number of sentences.

Therefore, the proposed model is trained to
learn a scoring function g(·) of the ROUGE F1
gain, specifically:

g(St|St−1) = r (St−1 ∪ {St})− r(St−1) (1)

where St−1 is the set of previously selected sen-
tences, and we omit the condition S∗ of r(·) for
simplicity. At each time t, the summarization sys-
tem chooses the sentence with maximal ROUGE

F1 gain until reaching the sentence number limit.

4 Neural Document Summarization

Figure 1 gives the overview of NEUSUM, which
consists of a hierarchical document encoder, and a
sentence extractor. Considering the intrinsic hier-
archy nature of documents, that words form a sen-
tence and sentences form a document, we employ
a hierarchical document encoder to reflect this hi-
erarchy structure. The sentence extractor scores
the encoded sentences and extracts one of them at
each step until reaching the output sentence num-
ber limit. In this section, we will first introduce
the hierarchical document encoder, and then de-
scribe how the model produces summary by joint
sentence scoring and selection.

4.1 Document Encoding
We employ a hierarchical document encoder to
represent the sentences in the input document. We
encode the document in two levels, i.e., sentence
level encoding and document level encoding.
Given a document D = (S1, S2, . . . , SL) contain-
ing L sentences. The sentence level encoder reads
the j-th input sentence Sj = (x

(j)
1 , x

(j)
2 , . . . , x

(j)
nj )

and constructs the basic sentence representation
s̃j . Here we employ a bidirectional GRU (BiGRU)
(Cho et al., 2014) as the recurrent unit, where GRU
is defined as:

zi = σ(Wz[xi, hi−1])

ri = σ(Wr[xi, hi−1])

h̃i = tanh(Wh[xi, ri � hi−1])
hi = (1− zi)� hi−1 + zi � h̃i

(2)

(3)

(4)

(5)
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Figure 1: Overview of the NEUSUM model. The model extracts S5 and S1 at the first two steps. At the
first step, we feed the model a zero vector 0 to represent empty partial output summary. At the second
and third steps, the representations of previously selected sentences S5 and S1, i.e., s5 and s1, are fed
into the extractor RNN. At the second step, the model only scores the first 4 sentences since the 5th one
is already included in the partial output summary.

where Wz , Wr and Wh are weight matrices.
The BiGRU consists of a forward GRU and

a backward GRU. The forward GRU reads the
word embeddings in sentence Sj from left to
right and gets a sequence of hidden states,
(~h

(j)
1 ,~h

(j)
2 , . . . ,~h

(j)
nj ). The backward GRU reads

the input sentence embeddings reversely, from
right to left, and results in another sequence of hid-

den states, ( ~h
(j)

1 , ~h
(j)

2 , . . . , ~h
(j)

nj
):

~h
(j)
i = GRU(x

(j)
i ,~h

(j)
i−1)

~h
(j)

i = GRU(x
(j)
i , ~h

(j)

i+1)

(6)

(7)

where the initial states of the BiGRU are set to
zero vectors, i.e., ~h(j)1 = 0 and ~h

(j)

nj
= 0.

After reading the words of the sentence Sj , we
construct its sentence level representation s̃j by
concatenating the last forward and backward GRU
hidden vectors:

s̃j =

[
~h
(j)

1

~h
(j)
nj

]
(8)

We use another BiGRU as the document level
encoder to read the sentences. With the sen-
tence level encoded vectors (s̃1, s̃2, . . . , s̃L) as
inputs, the document level encoder does for-
ward and backward GRU encoding and produces
two list of hidden vectors: (~s1, ~s2, . . . , ~sL) and
( ~s1, ~s2, . . . , ~sL). The document level representa-
tion si of sentence Si is the concatenation of the

forward and backward hidden vectors:

si =

[
~si
~si

]
(9)

We then get the final sentence vectors in the given
document: D = (s1, s2, . . . , sL). We use sentence
Si and its representative vector si interchangeably
in this paper.

4.2 Joint Sentence Scoring and Selection
Since the separated sentence scoring and selection
cannot utilize the information of each other, the
goal of our model is to make them benefit each
other. We couple these two steps together so that:
a) sentence scoring can be aware of previously se-
lected sentences; b) sentence selection can be sim-
plified since the scoring function is learned to be
the ROUGE score gain as described in section 3.

Given the last extracted sentence Ŝt−1, the sen-
tence extractor decides the next sentence Ŝt by
scoring the remaining document sentences. To
score the document sentences considering both
their importance and partial output summary, the
model should have two key abilities: 1) remem-
bering the information of previous selected sen-
tences; 2) scoring the remaining document sen-
tences based on both the previously selected sen-
tences and the importance of remaining sentences.
Therefore, we employ another GRU as the recur-
rent unit to remember the partial output summary,
and use a Multi-Layer Perceptron (MLP) to score
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the document sentences. Specifically, the GRU
takes the document level representation st−1 of the
last extracted sentence Ŝt−1 as input to produce
its current hidden state ht. The sentence scorer,
which is a two-layer MLP, takes two input vec-
tors, namely the current hidden state ht and the
sentence representation vector si, to calculate the
score δ(Si) of sentence Si.

ht = GRU(st−1, ht−1)

δ(Si) = Ws tanh (Wqht +Wdsi)

(10)

(11)

where Ws, Wq and Wd are learnable parameters,
and we omit the bias parameters for simplicity.

When extracting the first sentence, we initialize
the GRU hidden state h0 with a linear layer with
tanh activation function:

h0 = tanh (Wm ~s1 + bm)

S0 = ∅
s0 = 0

(12)

(13)

(14)

whereWm and bm are learnable parameters, and
~s1 is the last backward state of the document level

encoder BiGRU. Since we do not have any sen-
tences extracted yet, we use a zero vector to repre-
sent the previous extracted sentence, i.e., s0 = 0.

With the scores of all sentences at time t, we
choose the sentence with maximal gain score:

Ŝt = argmax
Si∈D

δ(Si) (15)

4.3 Objective Function
Inspired by Inan et al. (2017), we optimize the
Kullback-Leibler (KL) divergence of the model
prediction P and the labeled training data distribu-
tionQ. We normalize the predicted sentence score
δ(Si) with softmax function to get the model pre-
diction distribution P :

P (Ŝt = Si) =
exp (δ(Si))∑L
k=1 exp (δ(Sk))

(16)

During training, the model is expected to learn
the relative ROUGE F1 gain at time step twith pre-
viously selected sentences St−1. Considering that
the F1 gain value might be negative in the labeled
data, we follow previous works (Ren et al., 2017)
to use Min-Max Normalization to rescale the gain
value to [0, 1]:

g(Si) = r(St−1 ∪ {Si})− r(St−1)

g̃(Si) =
g(Si)−min (g(S))

max (g(S))−min (g(S))

(17)

(18)

We then apply a softmax operation with tempera-
ture τ (Hinton et al., 2015) 1 to produce the labeled
data distributionQ as the training target. We apply
the temperature τ as a smoothing factor to produce
a smoothed label distribution Q:

Q(Si) =
exp (τ g̃(Si))∑L
k=1 exp (τ g̃(Sk))

(19)

Therefore, we minimize the KL loss function J :

J = DKL(P ‖ Q) (20)

5 Experiments

5.1 Dataset

A large scale dataset is essential for training neu-
ral network-based summarization models. We use
the CNN/Daily Mail dataset (Hermann et al., 2015;
Nallapati et al., 2016) as the training set in our
experiments. The CNN/Daily Mail news contain
articles and their corresponding highlights. The
highlights are created by human editors and are
abstractive summaries. Therefore, the highlights
are not ready for training extractive systems due
to the lack of supervisions.

We create an extractive summarization train-
ing set based on CNN/Daily Mail corpus. To de-
termine the sentences to be extracted, we design
a rule-based system to label the sentences in a
given document similar to Nallapati et al. (2017).
Specifically, we construct training data by maxi-
mizing the ROUGE-2 F1 score. Since it is com-
putationally expensive to find the global optimal
combination of sentences, we employ a greedy ap-
proach. Given a document with n sentences, we
enumerate the candidates from 1-combination

(
n
1

)

to n-combination
(
n
n

)
. We stop searching if the

highest ROUGE-2 F1 score in
(
n
k

)
is less than the

best one in
(
n
k−1
)
. Table 1 shows the data statistics

of the CNN/Daily Mail dataset.
We conduct data preprocessing using the same

method2 in See et al. (2017), including sentence
splitting and word tokenization. Both Nallapati
et al. (2016, 2017) use the anonymized version of
the data, where the named entities are replaced by
identifiers such as entity4. Following See et al.
(2017), we use the non-anonymized version so we
can directly operate on the original text.

1We set τ = 20 empirically according to the model per-
formance on the development set.

2https://github.com/abisee/cnn-dailymail
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CNN/Daily Mail Training Dev Test

#(Document) 287,227 13,368 11,490
#(Ref / Document) 1 1 1
Doc Len (Sentence) 31.58 26.72 27.05
Doc Len (Word) 791.36 769.26 778.24
Ref Len (Sentence) 3.79 4.11 3.88
Ref Len (Word) 55.17 61.43 58.31

Table 1: Data statistics of CNN/Daily Mail dataset.

5.2 Implementation Details

Model Parameters The vocabulary is collected
from the CNN/Daily Mail training data. We lower-
case the text and there are 732,304 unique word
types. We use the top 100,000 words as the model
vocabulary since they can cover 98.23% of the
training data. The size of word embedding, sen-
tence level encoder GRU, document level encoder
GRU are set to 50, 256, and 256 respectively. We
set the sentence extractor GRU hidden size to 256.

Model Training We initialize the model param-
eters randomly using a Gaussian distribution with
Xavier scheme (Glorot and Bengio, 2010). The
word embedding matrix is initialized using pre-
trained 50-dimension GloVe vectors (Pennington
et al., 2014)3. We found that larger size GloVe
does not lead to improvement. Therefore, we use
50-dim word embeddings for fast training. The
pre-trained GloVe vectors contain 400,000 words
and cover 90.39% of our model vocabulary. We
initialize the rest of the word embeddings ran-
domly using a Gaussian distribution with Xavier
scheme. The word embedding matrix is not up-
dated during training. We use Adam (Kingma and
Ba, 2015) as our optimizing algorithm. For the
hyperparameters of Adam optimizer, we set the
learning rate α = 0.001, two momentum param-
eters β1 = 0.9 and β2 = 0.999 respectively, and
ε = 10−8. We also apply gradient clipping (Pas-
canu et al., 2013) with range [−5, 5] during train-
ing. We use dropout (Srivastava et al., 2014) as
regularization with probability p = 0.3 after the
sentence level encoder and p = 0.2 after the doc-
ument level encoder. We truncate each article to
80 sentences and each sentence to 100 words dur-
ing both training and testing. The model is imple-
mented with PyTorch (Paszke et al., 2017). We

3https://nlp.stanford.edu/projects/
glove/

release the source code and related resources at
https://res.qyzhou.me.

Model Testing At test time, considering that
LEAD3 is a commonly used and strong extractive
baseline, we make NEUSUM and the baselines ex-
tract 3 sentences to make them all comparable.

5.3 Baseline

We compare NEUSUM model with the following
state-of-the-art baselines:

LEAD3 The commonly used baseline by select-
ing the first three sentences as the summary.

TEXTRANK An unsupervised algorithm based
on weighted-graphs proposed by Mihalcea
and Tarau (2004). We use the implementa-
tion in Gensim (Řehůřek and Sojka, 2010).

CRSUM Ren et al. (2017) propose an extractive
summarization system which considers the
contextual information of a sentence. We
train this baseline model with the same train-
ing data as our approach.

NN-SE Cheng and Lapata (2016) propose an ex-
tractive system which models document sum-
marization as a sequence labeling task. We
train this baseline model with the same train-
ing data as our approach.

SUMMARUNNER Nallapati et al. (2017) propose
to add some interpretable features such as
sentence absolute and relative positions.

PGN Pointer-Generator Network (PGN). A state-
of-the-art abstractive document summariza-
tion system proposed by See et al. (2017),
which incorporates copying and coverage
mechanisms.

5.4 Evaluation Metric

We employ ROUGE (Lin, 2004) as our evaluation
metric. ROUGE measures the quality of summary
by computing overlapping lexical units, such as
unigram, bigram, trigram, and longest common
subsequence (LCS). It has become the standard
evaluation metric for DUC shared tasks and pop-
ular for summarization evaluation. Following pre-
vious work, we use ROUGE-1 (unigram), ROUGE-
2 (bigram) and ROUGE-L (LCS) as the evaluation
metrics in the reported experimental results.
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5.5 Results

We use the official ROUGE script4 (version 1.5.5)
to evaluate the summarization output. Table 2
summarizes the results on CNN/Daily Mail data
set using full length ROUGE-F15 evaluation. It in-
cludes two unsupervised baselines, LEAD3 and
TEXTRANK. The table also includes three state-
of-the-art neural network based extractive models,
i.e., CRSUM, NN-SE and SUMMARUNNER. In
addition, we report the state-of-the-art abstractive
PGN model. The result of SUMMARUNNER is on
the anonymized dataset and not strictly compara-
ble to our results on the non-anonymized version
dataset. Therefore, we also include the result of
LEAD3 on the anonymized dataset as a reference.

Models ROUGE-1 ROUGE-2 ROUGE-L

LEAD3 40.24- 17.70- 36.45-

TEXTRANK 40.20- 17.56- 36.44-

CRSUM 40.52- 18.08- 36.81-

NN-SE 41.13- 18.59- 37.40-

PGN‡ 39.53- 17.28- 36.38-

LEAD3‡ * 39.2 15.7 35.5
SUMMARUNNER‡ * 39.6 16.2 35.3
NEUSUM 41.59 19.01 37.98

Table 2: Full length ROUGE F1 evaluation (%)
on CNN/Daily Mail test set. Results with ‡ mark
are taken from the corresponding papers. Those
marked with * were trained and evaluated on the
anonymized dataset, and so are not strictly com-
parable to our results on the original text. All our
ROUGE scores have a 95% confidence interval of
at most ±0.22 as reported by the official ROUGE
script. The improvement is statistically significant
with respect to the results with superscript - mark.

NEUSUM achieves 19.01 ROUGE-2 F1 score on
the CNN/Daily Mail dataset. Compared to the un-
supervised baseline methods, NEUSUM performs
better by a large margin. In terms of ROUGE-
2 F1, NEUSUM outperforms the strong baseline
LEAD3 by 1.31 points. NEUSUM also outper-
forms the neural network based models. Com-
pared to the state-of-the-art extractive model NN-
SE (Cheng and Lapata, 2016), NEUSUM performs
significantly better in terms of ROUGE-1, ROUGE-
2 and ROUGE-L F1 scores. Shallow features, such

4http://www.berouge.com/
5The ROUGE evaluation option is, -m -n 2

as sentence position, have proven effective in doc-
ument summarization (Ren et al., 2017; Nallapati
et al., 2017). Without any hand-crafted features,
NEUSUM performs better than the CRSUM and
SUMMARUNNER baseline models with features.
As given by the 95% confidence interval in the of-
ficial ROUGE script, our model achieves statisti-
cally significant improvements over all the base-
line models. To the best of our knowledge, the pro-
posed NEUSUM model achieves the best results on
the CNN/Daily Mail dataset.

Models Info Rdnd Overall

NN-SE 1.36 1.29 1.39
NEUSUM 1.33 1.21 1.34

Table 3: Rankings of NEUSUM and NN-SE
in terms of informativeness (Info), redundancy
(Rdnd) and overall quality by human participants
(lower is better).

We also provide human evaluation results on a
sample of test set. We random sample 50 docu-
ments and ask three volunteers to evaluate the out-
put of NEUSUM and the NN-SE baseline models.
They are asked to rank the output summaries from
best to worst (with ties allowed) regarding infor-
mativeness, redundancy and overall quality. Table
3 shows the human evaluation results. NEUSUM

performs better than the NN-SE baseline on all
three aspects, especially in redundancy. This in-
dicates that by jointly scoring and selecting sen-
tences, NEUSUM can produce summary with less
content overlap since it re-estimates the saliency
of remaining sentences considering both their con-
tents and previously selected sentences.

6 Discussion

6.1 Precision at Step-t
We analyze the accuracy of sentence selection at
each step. Since we extract 3 sentences at test
time, we show how NEUSUM performs when ex-
tracting each sentence. Given a document D in
test set T, NEUSUM predicted summary S, its
reference summary S∗, and the extractive oracle
summary O with respect to D and S∗ (we use the
method described in section 5.1 to construct O),
we define the precision at step t as p(@t):

p(@t) =
1

|T|
∑

D∈T
1O(S[t]) (21)
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Figure 2: Position distribution of selected sentences of the NN-SE baseline, our NEUSUM model and
oracle on the test set. We only draw the first 30 sentences since the average document length is 27.05.

where S[t] is the sentence extracted at step t, and
1O is the indicator function defined as:

1O(x) =

{
1 if x ∈ O
0 if x /∈ O

(22)
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Figure 3: Precision of extracted sentence at step t
of the NN-SE baseline and the NEUSUM model.

Figure 3 shows the precision at step t of NN-SE
baseline and our NEUSUM. It can be observed that
NEUSUM achieves better precision than the NN-
SE baseline at each step. For the first sentence,
both NEUSUM and NN-SE achieves good perfor-
mance. The NN-SE baseline has 39.18% preci-
sion at the first step, and NEUSUM outperforms
it by 1.2 points. At the second step, NEUSUM

outperforms NN-SE by a large margin. In this
step, the NEUSUM model extracts 31.52% sen-
tences correctly, which is 3.24 percent higher than
28.28% of NN-SE. We think the second step se-
lection benefits from the first step in NEUSUM

since it can remember the selection history, while
the separated models lack this ability.

However, we can notice the trend that the pre-
cision drops fast after each selection. We think
this is due to two main reasons. First, we think
that the error propagation leads to worse selection

for the third selection. As shown in Figure 2, the
p(@1) and p(@2) are 40.38% and 31.52% respec-
tively, so the history is less reliable for the third
selection. Second, intuitively, we think the later
selections are more difficult compared to the pre-
vious ones since the most important sentences are
already selected.

6.2 Position of Selected Sentences

Early works (Ren et al., 2017; Nallapati et al.,
2017) have shown that sentence position is an im-
portant feature in extractive document summariza-
tion. Figure 2 shows the position distributions of
the NN-SE baseline, our NEUSUM model and or-
acle on the CNN/Daily Mail test set. It can be seen
that the NN-SE baseline model tends to extract
large amount of leading sentences, especially the
leading three sentences. According to the statis-
tics, about 80.91% sentences selected by NN-SE
baseline are in leading three sentences.

In the meanwhile, our NEUSUM model selects
58.64% leading three sentences. We can notice
that in the oracle, the percentage of selecting lead-
ing sentences (sentence 1 to 5) is moderate, which
is around 10%. Compared to NN-SE, the posi-
tion of selected sentences in NEUSUM is closer to
the oracle. Although NEUSUM also extracts more
leading sentences than the oracle, it selects more
tailing ones. For example, our NEUSUM model
extracts more than 30% of sentences in the range
of sentence 4 to 6. In the range of sentence 7
to 13, NN-SE barely extracts any sentences, but
our NEUSUM model still extract sentences in this
range. Therefore, we think this is one of the rea-
sons why NEUSUM performs better than NN-SE.

We analyze the sentence position distribution
and offer an explanation for these observations.
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Intuitively, leading sentences are important for a
well-organized article, especially for newswire ar-
ticles. It is also well known that LEAD3 is a very
strong baseline. In the training data, we found that
50.98% sentences labeled as “should be extracted”
belongs to the first 5 sentences, which may cause
the trained model tends to select more leading sen-
tences. One possible situation is that one sentence
in the tail of a document is more important than the
leading sentences, but the margin between them is
not large enough. The models which separately
score and select sentences might not select sen-
tences in the tail whose scores are not higher than
the leading ones. These methods may choose the
safer leading sentences as a fallback in such con-
fusing situation because there is no direct competi-
tion between the leading and tailing candidates. In
our NEUSUM model, the scoring and selection are
jointly learned, and at each step the tailing candi-
dates can compete directly with the leading ones.
Therefore, NEUSUM can be more discriminating
when dealing with this situation.

7 Conclusion

Conventional approaches to extractive document
summarization contain two separated steps: sen-
tence scoring and sentence selection. In this pa-
per, we present a novel neural network frame-
work for extractive document summarization by
jointly learning to score and select sentences to ad-
dress this issue. The most distinguishing feature
of our approach from previous methods is that it
combines sentence scoring and selection into one
phase. Every time it selects a sentence, it scores
the sentences according to the partial output sum-
mary and current extraction state. ROUGE evalua-
tion results show that the proposed joint sentence
scoring and selection approach significantly out-
performs previous separated methods.

Acknowledgments

We thank three anonymous reviewers for their
helpful comments. We also thank Danqing Huang,
Chuanqi Tan, Zhirui Zhang, Shuangzhi Wu and
Wei Jia for helpful discussions. The work of
this paper is funded by the project of National
Key Research and Development Program of China
(No. 2017YFB1002102) and the project of Na-
tional Natural Science Foundation of China (No.
91520204). The first author is funded by the
Harbin Institute of Technology Scholarship Fund.

References
Ziqiang Cao, Furu Wei, Li Dong, Sujian Li, and Ming

Zhou. 2015a. Ranking with recursive neural net-
works and its application to multi-document sum-
marization. In AAAI, pages 2153–2159.

Ziqiang Cao, Furu Wei, Sujian Li, Wenjie Li, Ming
Zhou, and WANG Houfeng. 2015b. Learning sum-
mary prior representation for extractive summariza-
tion. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Papers),
volume 2, pages 829–833.

Jaime Carbonell and Jade Goldstein. 1998. The use of
mmr, diversity-based reranking for reordering doc-
uments and producing summaries. In Proceedings
of the 21st annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 335–336. ACM.

Jianpeng Cheng and Mirella Lapata. 2016. Neural
summarization by extracting sentences and words.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 484–494, Berlin, Germany.
Association for Computational Linguistics.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of
EMNLP 2014, pages 1724–1734, Doha, Qatar. As-
sociation for Computational Linguistics.

John M Conroy and Dianne P O’leary. 2001. Text sum-
marization via hidden markov models. In Proceed-
ings of the 24th annual international ACM SIGIR
conference on Research and development in infor-
mation retrieval, pages 406–407. ACM.
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Abstract

We introduce a novel graph-based frame-
work for abstractive meeting speech sum-
marization that is fully unsupervised and
does not rely on any annotations. Our
work combines the strengths of multiple
recent approaches while addressing their
weaknesses. Moreover, we leverage recent
advances in word embeddings and graph
degeneracy applied to NLP to take exterior
semantic knowledge into account, and to
design custom diversity and informative-
ness measures. Experiments on the AMI
and ICSI corpus show that our system im-
proves on the state-of-the-art. Code and
data are publicly available1, and our sys-
tem can be interactively tested2.

1 Introduction

People spend a lot of their time in meetings. The
ubiquity of web-based meeting tools and the rapid
improvement and adoption of Automatic Speech
Recognition (ASR) is creating pressing needs for
effective meeting speech summarization mecha-
nisms.

Spontaneous multi-party meeting speech tran-
scriptions widely differ from traditional docu-
ments. Instead of grammatical, well-segmented
sentences, the input is made of often ill-formed
and ungrammatical text fragments called utter-
ances. On top of that, ASR transcription and seg-
mentation errors inject additional noise into the in-
put.

In this paper, we combine the strengths of
6 approaches that had previously been applied

∗Work done as part of 3rd year project, with equal con-
tribution.

1
https://bitbucket.org/dascim/acl2018_abssumm

2
http://datascience.open-paas.org/abs_summ_app

to 3 different tasks (keyword extraction, multi-
sentence compression, and summarization) into
a unified, fully unsupervised end-to-end meeting
speech summarization framework that can gener-
ate readable summaries despite the noise inherent
to ASR transcriptions. We also introduce some
novel components. Our method reaches state-of-
the-art performance and can be applied to lan-
guages other than English in an almost out-of-the-
box fashion.

2 Framework Overview

As illustrated in Figure 1, our system is made of 4
modules, briefly described in what follows.

1. Text Preprocessing1. Text Preprocessing 2. Utterance
Community Detection

2. Utterance
Community Detection

3. Multi-Sentence Compression

 

3. Multi-Sentence Compression

 

Word Graph
Building

Word Graph
Building

TranscriptionTranscription

Path Selection &
Reranking

Path Selection &
Reranking

Edge Weight 
Assignment

Edge Weight 
Assignment

4. Budgeted 
Submodular Maximization

4. Budgeted 
Submodular MaximizationSummarySummary

Automatic Speech RecognitionAutomatic Speech Recognition

Figure 1: Overarching system pipeline.

The first module pre-processes text. The goal of
the second Community Detection step is to group
together the utterances that should be summarized
by a common abstractive sentence (Murray et al.,
2012). These utterances typically correspond to a
topic or subtopic discussed during the meeting. A
single abstractive sentence is then separately gen-
erated for each community, using an extension of
the Multi-Sentence Compression Graph (MSCG)
of Filippova (2010). Finally, we generate a sum-
mary by selecting the best elements from the set
of abstractive sentences under a budget constraint.
We cast this problem as the maximization of a cus-
tom submodular quality function.
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Note that our approach is fully unsupervised
and does not rely on any annotations. Our in-
put simply consists in a list of utterances without
any metadata. All we need in addition to that is
a part-of-speech tagger, a language model, a set
of pre-trained word vectors, a list of stopwords
and fillerwords, and optionally, access to a lexical
database such as WordNet. Our system can work
out-of-the-box in most languages for which such
resources are available.

3 Related Work and Contributions

As detailed below, our framework combines the
strengths of 6 recent works. It also includes novel
components.

3.1 Multi-Sentence Compression Graph
(MSCG) (Filippova, 2010)

Description: a fully unsupervised, simple ap-
proach for generating a short, self-sufficient sen-
tence from a cluster of related, overlapping sen-
tences. As shown in Figure 5, a word graph is con-
structed with special edge weights, the K-shortest
weighted paths are then found and re-ranked with
a scoring function, and the best path is used as
the compression. The assumption is that redun-
dancy alone is enough to ensure informativeness
and grammaticality.
Limitations: despite making great strides and
showing promising results, Filippova (2010) re-
ported that 48% and 36% of the generated sen-
tences were missing important information and
were not perfectly grammatical.
Contributions: to respectively improve informa-
tiveness and grammaticality, we combine ideas
found in Boudin and Morin (2013) and Mehdad
et al. (2013), as described next.

3.2 More informative MSCG (Boudin and
Morin, 2013)

Description: same task and approach as in Filip-
pova (2010), except that a word co-occurrence net-
work is built from the cluster of sentences, and that
the PageRank scores of the nodes are computed in
the manner of Mihalcea and Tarau (2004). The
scores are then injected into the path re-ranking
function to favor informative paths.
Limitations: PageRank is not state-of-the-art in
capturing the importance of words in a document.
Grammaticality is not considered.
Contributions: we take grammaticality into ac-

count as explained in subsection 3.4. We also
follow recent evidence (Tixier et al., 2016a)
that spreading influence, as captured by graph
degeneracy-based measures, is better correlated
with “keywordedness” than PageRank scores, as
explained in the next subsection.

3.3 Graph-based word importance scoring
(Tixier et al., 2016a)

Word co-occurrence network. As shown in Fig-
ure 2, we consider a word co-occurrence network
as an undirected, weighted graph constructed by
sliding a fixed-size window over text, and where
edge weights represent co-occurrence counts (Tix-
ier et al., 2016b; Mihalcea and Tarau, 2004).
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Figure 2: Word co-occurrence graph example, for the input
text shown in Figure 5.

Important words are influential nodes. In social
networks, it was shown that influential spreaders,
that is, those individuals that can reach the largest
part of the network in a given number of steps,
are better identified via their core numbers rather
than via their PageRank scores or degrees (Kitsak
et al., 2010). See Figure 3 for the intuition. Sim-
ilarly, in NLP, Tixier et al. (2016a) have shown
that keywords are better identified via their core
numbers rather than via their TextRank scores, that
is, keywords are influencers within their word co-
occurrence network.
Graph degeneracy (Seidman, 1983). Let
G(V,E) be an undirected, weighted graph with
n = |V | nodes and m = |E| edges. A k-core
of G is a maximal subgraph of G in which ev-
ery vertex v has at least weighted degree k. As
shown in Figures 3 and 4, the k-core decomposi-
tion of G forms a hierarchy of nested subgraphs
whose cohesiveness and size respectively increase
and decrease with k. The higher-level cores can
be viewed as a filtered version of the graph that
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excludes noise. This property is highly valuable
when dealing with graphs constructed from noisy
text, like utterances. The core number of a node is
the highest order of a core that contains this node.

Figure 3: k-core decomposition. The blue and the yel-
low nodes have same degree and similar PageRank numbers.
However, the blue node is a much more influential spreader
as it is strategically placed in the core of the network, as cap-
tured by its higher core number.

The CoreRank number of a node (Tixier et al.,
2016a; Bae and Kim, 2014) is defined as the sum
of the core numbers of its neighbors. As shown
in Figure 4, CoreRank more finely captures the
structural position of each node in the graph than
raw core numbers. Also, stabilizing scores across
node neighborhoods enhances the inherent noise
robustness property of graph degeneracy, which is
desirable when working with noisy speech-to-text
output.

3-core

2-core

1-core

Core number Core number Core numberc = 1 c = 2 c = 3

*
**

Figure 4: Value added by CoreRank: while nodes ? and ??
have the same core number (=2), node ? has a greater Cor-
eRank score (3+2+2=7 vs 2+2+1=5), which better reflects its
more central position in the graph.

Time complexity. Building a graph-of-words
is O(nW ), and computing the weighted k-core
decomposition of a graph requires O(m log(n))
(Batagelj and Zaveršnik, 2002). For small pieces
of text, this two step process is so affordable that it
can be used in real-time (Meladianos et al., 2017).
Finally, computing CoreRank scores can be done
with only a small overhead ofO(n), provided that

the graph is stored as a hash of adjacency lists.
Getting the CoreRank numbers from scratch for
a community of utterances is therefore very fast,
especially since typically in this context, n ∼ 10
and m ∼ 100.

3.4 Fluency-aware, more abstractive MSCG
(Mehdad et al., 2013)

Description: a supervised end-to-end framework
for abstractive meeting summarization. Commu-
nity Detection is performed by (1) building an ut-
terance graph with a logistic regression classifier,
and (2) applying the CONGA algorithm. Then,
before performing sentence compression with the
MSCG, the authors also (3) build an entailment
graph with a SVM classifier in order to eliminate
redundant and less informative utterances. In ad-
dition, the authors propose the use of WordNet
(Miller, 1995) during the MSCG building phase
to capture lexical knowledge between words and
thus generate more abstractive compressions, and
of a language model when re-ranking the shortest
paths, to favor fluent compressions.
Limitations: this effort was a significant advance,
as it was the first application of the MSCG to the
meeting summarization task, to the best of our
knowledge. However, steps (1) and (3) above
are complex, based on handcrafted features, and
respectively require annotated training data in the
form of links between human-written abstractive
sentences and original utterances and multiple
external datasets (e.g., from the Recognizing
Textual Entailment Challenge). Such annotations
are costly to obtain and very seldom available in
practice.
Contributions: while we retain the use of WordNet
and of a language model, we show that, without
deteriorating the quality of the results, steps (1)
and (2) above (Community Detection) can be
performed in a much more simple, completely un-
supervised way, and that step (3) can be removed.
That is, the MSCG is powerful enough to remove
redundancy and ensure informativeness, should
proper edge weights and path re-ranking function
be used.

In addition to the aforementioned contributions,
we also introduce the following novel components
into our abstractive summarization pipeline:
• we inject global exterior knowledge into the

edge weights of the MSCG, by using the Word At-
traction Force of Wang et al. (2014), based on
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distance in the word embedding space,
• we add a diversity term to the path re-ranking

function, that measures how many unique clusters
in the embedding space are visited by each path,
• rather than using all the abstractive sentences

as the final summary like in Mehdad et al. (2013),
we maximize a custom submodular function to se-
lect a subset of abstractive sentences that is near-
optimal given a budget constraint (summary size).
A brief background of submodularity in the con-
text of summarization is provided next.

3.5 Submodularity for summarization (Lin
and Bilmes, 2010; Lin, 2012)

Selecting an optimal subset of abstractive sen-
tences from a larger set can be framed as a bud-
geted submodular maximization task:

argmax
S⊆S

f(S)|
∑

s∈S
cs ≤ B (1)

where S is a summary, cs is the cost (word count)
of sentence s, B is the desired summary size in
words (budget), and f is a summary quality scor-
ing set function, which assigns a single numeric
score to a summary S.

This combinatorial optimization task is NP-
hard. However, near-optimal performance can be
guaranteed with a modified greedy algorithm (Lin
and Bilmes, 2010) that iteratively selects the sen-
tence s that maximizes the ratio of quality function
gain to scaled cost f(S∪s)−f(S)/crs (where S is the
current summary and r ≥ 0 is a scaling factor).

In order for the performance guarantees to hold
however, f has to be submodular and monotone
non-decreasing. Our proposed f is described in
subsection 4.4.

4 Our Framework

We detail next each of the four modules in our ar-
chitecture (shown in Figure 1).

4.1 Text preprocessing

We adopt preprocessing steps tailored to the char-
acteristics of ASR transcriptions. Consecutive re-
peated unigrams and bigrams are reduced to single
terms. Specific ASR tags, such as {vocalsound},
{pause}, and {gap} are filtered out. In addition,
filler words, such as uh-huh, okay, well, and by the
way are also discarded. Consecutive stopwords at
the beginning and end of utterances are stripped.

In the end, utterances that contain less than 3 non-
stopwords are pruned out. The surviving utter-
ances are used for the next steps.

4.2 Utterance community detection

The goal here is to cluster utterances into commu-
nities that should be summarized by a common ab-
stractive sentence.

We initially experimented with techniques cap-
italizing on word vectors, such as k-means and hi-
erarchical clustering based on the Euclidean dis-
tance or the Word Mover’s Distance (Kusner et al.,
2015). We also tried graph-based approaches,
such as community detection in a complete graph
where nodes are utterances and edges are weighted
based on the aforementioned distances.

Best results were obtained, however, with a sim-
ple approach in which utterances are projected
into the vector space and assigned standard TF-
IDF weights. Then, the dimensionality of the
utterance-term matrix is reduced with Latent Se-
mantic Analysis (LSA), and finally, the k-means
algorithm is applied. Note that LSA is only used
here, during the utterance community detection
phase, to remove noise and stabilize clustering.
We do not use a topic graph in our approach.

We think using word embeddings was not ef-
fective, because in meeting speech, as opposed to
traditional documents, participants tend to use the
same term to refer to the same thing throughout
the entire conversation, as noted by Riedhammer
et al. (2010), and as verified in practice. This is
probably why, for clustering utterances, capturing
synonymy is counterproductive, as it artificially
reduces the distance between every pair of utter-
ances and blurs the picture.

4.3 Multi-Sentence Compression

The following steps are performed separately for
each community.

Word importance scoring
From a processed version of the community (stem-
ming and stopword removal), we construct an
undirected, weighted word co-occurrence network
as described in subsection 3.3. We use a sliding
window of size W = 6 not overspanning utter-
ances. Note that stemming is performed only here,
and for the sole purpose of building the word co-
occurrence network.

We then compute the CoreRank numbers of the
nodes as described in subsection 3.3.
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Figure 5: Compressed sentence (in bold
red) generated by our multi-sentence com-
pression graph (MSCG) for a 3-utterance
community from meeting IS1009b of the
AMI corpus. Using Filippova (2010)’s
weighting and re-ranking scheme here
would have selected another path: design
different remotes for different people bit of
it’s from their tend to for ti. Note that the
compressed sentence does not appear in the
initial set of utterances, and is compact and
grammatical, despite the redundancy, tran-
scription and segmentation errors of the in-
put. The abstractive and robust nature of
the MSCG makes it particularly well-suited
to the meeting domain.
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We finally reweigh the CoreRank scores, in-
dicative of word importance within a given com-
munity, with a quantity akin to an Inverse Docu-
ment Frequency, where communities serve as doc-
uments and the full meeting as the collection. We
thus obtain something equivalent to the TW-IDF
weighting scheme of Rousseau and Vazirgiannis
(2013), where the CoreRank scores are the term
weights TW:
TW -IDF (t, d,D) = TW (t, d)× IDF (t,D)

(2)
where t is a term belonging to community d,

and D is the set of all utterance communities. We
compute the IDF as IDF (t,D) = 1 + log|D|/Dt,
where |D| is the number of communities and Dt

the number of communities containing t.
The intuition behind this reweighing scheme is

that a term should be considered important within
a given meeting if it has a high CoreRank score
within its community and if the number of com-
munities in which the term appears is relatively
small.

Word graph building
The backbone of the graph is laid out as a directed
sequence of nodes corresponding to the words
in the first utterance, with special START and
END nodes at the beginning and at the end (see
Figure 5). Edge direction follows the natural flow
of text. Words from the remaining utterances are
then iteratively added to the graph (between the
START and END nodes) based on the following
rules:

1) if the word is a non-stopword, the word is
mapped onto an existing node if it has the same
lowercased form and the same part-of-speech tag3.
In case of multiple matches, we check the imme-
diate context (the preceding and following words
in the utterance and the neighboring nodes in the
graph), and we pick the node with the largest con-
text overlap or which has the greatest number of
words already mapped to it (when no overlap).
When there is no match, we use WordNet as de-
scribed in Appendix A.

2) if the word is a stopword and there is a
match, it is mapped only if there is an overlap
of at least one non-stopword in the immediate
context. Otherwise, a new node is created.

Finally, note that any two words appearing within
the same utterance cannot be mapped to the same
node. This ensures that every utterance is a loop-
less path in the graph. Of course, there are many
more paths in the graphs than original utterances.

Edge Weight Assignment
Once the word graph is constructed, we assign
weights to its edges as:

w′′′(pi, pj) =
w′(pi, pj)
w′′(pi, pj)

(3)

where pi and pj are two neighbors in the MSCG.
As detailed next, those weights combine local co-
occurrence statistics (numerator) with global exte-
rior knowledge (denominator). Note that the lower

3
We used NLTK’s averaged perceptron tagger, available at: http://www.nltk.

org/api/nltk.tag.html#module-nltk.tag.perceptron
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Figure 6: t-SNE visualization (Maaten and Hin-
ton, 2008) of the Google News vectors of the
words in the utterance community shown in Fig-
ure 5. Arrows join the words in the best com-
pression path shown in Figure 5. Movements in
the embedding space, as measured by the num-
ber of unique clusters covered by the path (here,
6/11), provide a sense of the diversity of the
compressed sentence, as formalized in Equation
10.
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Local co-occurrence statistics.

We use Filippova (2010)’s formula:

w′(pi, pj) =
f(pi) + f(pj)∑

P∈G′,pi,pj∈P diff(P, pi, pj)−1

(4)
where f(pi) is the number of words mapped to
node pi in the MSCG G′, and diff(P, pi, pj)

−1 is
the inverse of the distance between pi and pj in a
path P (in number of hops). This weighting func-
tion favors edges between infrequent words that
frequently appear close to each other in the text
(the lower, the better).

Global exterior knowledge.
We introduce a second term based on the Word At-
traction Force score of Wang et al. (2014):

w′′(pi, pj) =
f(pi)× f(pj)

d2pi,pj
(5)

where dpi,pj is the Euclidean distance between the
words mapped to pi and pj in a word embedding
space4. This component favor paths going through
salient words that have high semantic similarity
(the higher, the better). The goal is to ensure read-
ability of the compression, by avoiding to generate
a sentence jumping from one word to a completely
unrelated one.

Path re-ranking
As in Boudin and Morin (2013), we use a short-
est weighted path algorithm to find the K paths
between the START and END symbols having the
lowest cumulative edge weight:

W (P ) =

|P |−1∑

i=1

w′′′(pi, pi+1) (6)

4
GoogleNews vectors https://code.google.com/archive/p/word2vec

Where |P | is the number of nodes in the path.
Paths having less than z words or that do not con-
tain a verb are filtered out (z is a tuning parame-
ter). However, unlike in Boudin and Morin (2013),
we rerank the K best paths with the following
novel weighting scheme (the lower, the better),
and the path with the lowest score is used as the
compression:

score(P ) =
W (P )

|P | × F (P )× C(P )×D(P )
(7)

The denominator takes into account the length of
the path, and its fluency (F ), coverage (C), and
diversity (D). F , C, and D are detailed in what
follows.

Fluency. We estimate the grammaticality of a
path with an n-gram language model. In our ex-
periments, we used a trigram model5:

F (P ) =

∑|P |
i=1 logPr(pi|pi−1i−n+1)

#n-gram
(8)

where |P | denote path length, and pi and
#n-gram are respectively the words and number
of n-grams in the path.

Coverage. We reward the paths that visit impor-
tant nouns, verbs and adjectives:

C(P ) =

∑
pi∈P TW-IDF(pi)

#pi
(9)

where #pi is the number of nouns, verbs and ad-
jectives in the path. The TW-IDF scores are com-
puted as explained in subsection 4.3.

Diversity. We cluster all words from the MSCG
in the word embedding space by applying the k-
means algorithm. We then measure the diversity of
the vocabulary contained in a path as the number

5
CMUSphinx English LM: https://cmusphinx.github.io
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of unique clusters visited by the path, normalized
by the length of the path:

D(P ) =

∑k
j=1 1∃pi∈P |pi∈clusterj

|P | (10)

The graphical intuition for this measure is pro-
vided in Figure 6. Note that we do not normalize
D by the total number of clusters (only by path
length) because k is fixed for all candidate paths.

4.4 Budgeted submodular maximization
We apply the previous steps separately for all ut-
terance communities, which results in a set S of
abstractive sentences (one for each community).
This set of sentences can already be considered to
be a summary of the meeting. However, it might
exceed the maximum size allowed, and still con-
tain some redundancy or off-topic sections unre-
lated to the general theme of the meeting (e.g.,
chit-chat).

Therefore, we design the following submodular
and monotone non-decreasing objective function:

f(S) =
∑

si∈S
nsiwsi + λ

k∑

j=1

1∃si∈S|si∈groupj

(11)
where λ ≥ 0 is the trade-off parameter, nsi is the
number of occurrences of word si in S, and wsi is
the CoreRank score of si.

Then, as explained in subsection 3.5, we ob-
tain a near-optimal subset of abstractive sentences
by maximizing f with a greedy algorithm. Cor-
eRank scores and clusters are found as previ-
ously described, except that this time they are ob-
tained from the full processed meeting transcrip-
tion rather than from a single utterance commu-
nity.

5 Experimental setup

5.1 Datasets
We conducted experiments on the widely-used
AMI (McCowan et al., 2005) and ICSI (Janin
et al., 2003) benchmark datasets. We used the tra-
ditional test sets of 20 and 6 meetings respectively
for the AMI and ICSI corpora (Riedhammer et al.,
2008). Each meeting in the AMI test set is asso-
ciated with a human abstractive summary of 290
words on average, whereas each meeting in the
ICSI test set is associated with 3 human abstrac-
tive summaries of respective average sizes 220,

220 and 670 words. For parameter tuning, we con-
structed development sets of 47 and 25 meetings,
respectively for AMI and ICSI, by randomly sam-
pling from the training sets. The word error rate of
the ASR transcriptions is respectively of 36% and
37% for AMI and ICSI.

5.2 Baselines
We compared our system against 7 baselines,
which are listed below and more thoroughly de-
tailed in Appendix B. Note that preprocessing was
exactly the same for our system and all baselines.
• Random and Longest Greedy are basic base-
lines recommended by (Riedhammer et al., 2008),
• TextRank (Mihalcea and Tarau, 2004),
• ClusterRank (Garg et al., 2009),
• CoreRank & PageRank submodular (Tixier
et al., 2017),
• Oracle is the same as the random baseline, but
uses the human extractive summaries as input.

In addition to the baselines above, we included
in our comparison 3 variants of our system using
different MSCGs: Our System (Baseline) uses
the original MSCG of Filippova (2010), Our Sys-
tem (KeyRank) uses that of Boudin and Morin
(2013), and Our System (FluCovRank) that of
Mehdad et al. (2013). Details about each approach
were given in Section 3.

5.3 Parameter tuning
For Our System and each of its variants, we con-
ducted a grid search on the development sets of
each corpus, for fixed summary sizes of 350 and
450 words (AMI and ICSI). We searched the fol-
lowing parameters:
• n: number of utterance communities (see Sec-
tion 4.2). We tested values of n ranging from 20
to 60, with steps of 5. This parameter controls how
much abstractive should the summary be. If all ut-
terances are assigned to their own singleton com-
munity, the MSCG is of no utility, and our frame-
work is extractive. It becomes more and more ab-
stractive as the number of communities decreases.
• z: minimum path length (see Section 4.3). We
searched values in the range [6, 16] with steps of 2.
If a path is shorter than a certain minimum number
of words, it often corresponds to an invalid sen-
tence, and should thereby be filtered out.
• λ and r, the trade-off parameter and the scaling
factor (see Section 4.4). We searched [0, 1] and
[0, 2] (respectively) with steps of 0.1. The parame-
ter λ plays a regularization role favoring diversity.
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The scaling factor makes sure the quality function
gain and utterance cost are comparable.

The best parameter values for each corpus are
summarized in Table 1. λ is mostly non-zero, in-
dicating that it is necessary to include a regular-
ization term in the submodular function. In some
cases though, r is equal to zero, which means that
utterance costs are not involved in the greedy de-
cision heuristic. These observations contradict the
conclusion of Lin (2012) that r = 0 cannot give
best results.

System AMI ICSI
Our System 50, 8, (0.7, 0.5) 40, 14, (0.0, 0.0)

Our System (Baseline) 50, 12, (0.3, 0.5) 45, 14, (0.1, 0.0)
Our System (KeyRank) 50, 10, (0.2, 0.9) 45, 12, (0.3, 0.4)

Our System (FluCovRank) 35, 6, (0.4, 1.0) 50, 10, (0.2, 0.3)

Table 1: Optimal parameter values n, z, (λ, r).

Apart from the tuning parameters, we set the
number of LSA dimensions to 30 and 60 (resp.
on AMI and ISCI). The small number of LSA di-
mensions retained can be explained by the fact
that the AMI and ICSI transcriptions feature 532
and 1126 unique words on average, which is much
smaller than traditional documents. This is due to
relatively small meeting duration, and to the fact
that participants tend to stick to the same terms
throughout the entire conversation. For the k-
means algorithm, k was set equal to the minimum
path length z when doing MSCG path re-ranking
(see Equation 10), and to 60 when generating the
final summary (see Equation 11).

Following Boudin and Morin (2013), the num-
ber of shortest weighted paths K was set to 200,
which is greater than the K = 100 used by Fil-
ippova (2010). Increasing K from 100 improves
performance with diminishing returns, but sig-
nificantly increases complexity. We empirically
found 200 to be a good trade-off.

6 Results and Interpretation

Metrics. We evaluated performance with the
widely-used ROUGE-1, ROUGE-2 and ROUGE-
SU4 metrics (Lin, 2004). These metrics are re-
spectively based on unigram, bigram, and unigram
plus skip-bigram overlap with maximum skip dis-
tance of 4, and have been shown to be highly
correlated with human evaluations (Lin, 2004).
ROUGE-2 scores can be seen as a measure of sum-
mary readability (Lin and Hovy, 2003; Ganesan
et al., 2010). ROUGE-SU4 does not require con-

secutive matches but is still sensitive to word or-
der.

Macro-averaged results for summaries gener-
ated from automatic transcriptions can be seen in
Figure 7 and Table 2. Table 2 provides detailed
comparisons over the fixed budgets that we used
for parameter tuning, while Figure 7 shows the
performance of the models for budgets ranging
from 150 to 500 words. The same information for
summaries generated from manual transcriptions
is available in Appendix C. Finally, summary ex-
amples are available in Appendix D.
ROUGE-1. Our systems outperform all baselines
on AMI (including Oracle) and all baselines on
ICSI (except Oracle). Specifically, Our System is
best on ICSI, while Our System (KeyRank) is su-
perior on AMI. We can also observe on Figure 7
that our systems are consistently better throughout
the different summary sizes, even though their pa-
rameters were tuned for specific sizes only. This
shows that the best parameter values are quite ro-
bust across the entire budget range.
ROUGE-2. Again, our systems (except Our Sys-
tem (Baseline)) outperform all baselines, except
Oracle. In addition, Our System and Our System
(FluCovRank) consistently improve on Our Sys-
tem (Baseline), which proves that the novel com-
ponents we introduce improve summary fluency.
ROUGE-SU4. ROUGE-SU4 was used to mea-
sure the amount of in-order word pairs overlap-
ping. Our systems are competitive with all base-
lines, including Oracle. Like with ROUGE-1, Our
System is better than Our System (KeyRank) on
ICSI, whereas the opposite is true on AMI.
General remarks.
• The summaries of all systems except Oracle
were generated from noisy ASR transcriptions, but
were compared against human abstractive sum-
maries. ROUGE being based on word overlap, it
makes it very difficult to reach very high scores,
because many words in the ground truth sum-
maries do not appear in the transcriptions at all.
• The scores of all systems are lower on ICSI than
on AMI. This can be explained by the fact that on
ICSI, the system summaries have to jointly match
3 human abstractive summaries of different con-
tent and size, which is much more difficult than
matching a single summary.
• Our framework is very competitive to Oracle,
which is notable since the latter has direct access
to the human extractive summaries. Note that Or-
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Figure 7: ROUGE-1 F-1 scores for various budgets (ASR transcriptions).

AMI ROUGE-1 AMI ROUGE-2 AMI ROUGE-SU4 ICSI ROUGE-1 ICSI ROUGE-2 ICSI ROUGE-SU4
R P F-1 R P F-1 R P F-1 R P F-1 R P F-1 R P F-1

Our System 41.83 34.44 37.25 8.22 6.95 7.43 15.83 13.70 14.51 36.99 28.12 31.60 5.41 4.39 4.79 13.10 10.17 11.35
Our System (Baseline) 41.56 34.37 37.11 7.88 6.66 7.11 15.36 13.20 14.02 36.39 27.20 30.80 5.19 4.12 4.55 12.59 9.70 10.86

Our System (KeyRank) 42.43 35.01 37.86 8.72 7.29 7.84 16.19 13.76 14.71 35.95 27.00 30.52 4.64 3.64 4.04 12.43 9.23 10.50
Our System (FluCovRank) 41.84 34.61 37.37 8.29 6.92 7.45 16.28 13.48 14.58 36.27 27.56 31.00 5.56 4.35 4.83 13.47 9.85 11.29

Oracle 40.49 34.65 36.73 8.07 7.35 7.55 15.00 14.03 14.26 37.91 28.39 32.12 5.73 4.82 5.18 13.35 10.73 11.80
CoreRank Submodular 41.14 32.93 36.13 8.06 6.88 7.33 14.84 13.91 14.18 35.22 26.34 29.82 4.36 3.76 4.00 12.11 9.58 10.61
PageRank Submodular 40.84 33.08 36.10 8.27 6.88 7.42 15.37 13.71 14.32 36.05 26.69 30.40 4.82 4.16 4.42 12.19 10.39 11.14

TextRank 39.55 32.60 35.25 7.67 6.43 6.90 14.87 12.87 13.62 34.89 26.33 29.70 4.60 3.74 4.09 12.42 9.43 10.64
ClusterRank 39.36 32.53 35.14 7.14 6.05 6.46 14.34 12.80 13.35 32.63 24.44 27.64 4.03 3.44 3.68 11.04 8.88 9.77

Longest Greedy 37.31 30.93 33.35 5.77 4.71 5.11 13.79 11.11 12.15 35.57 26.74 30.23 4.84 3.88 4.27 13.09 9.46 10.90
Random 39.42 32.48 35.13 6.88 5.89 6.26 14.07 12.70 13.17 34.78 25.75 29.28 4.19 3.51 3.78 11.61 9.37 10.29

Table 2: Macro-averaged results for 350 and 450 word summaries (ASR transcriptions).

acle does not reach very high ROUGE scores be-
cause the overlap between the human extractive
and abstractive summaries is low (19% and 29%,
respectively on AMI and ICSI test sets).

7 Conclusion and Next Steps

Our framework combines the strengths of 6 ap-
proaches that had previously been applied to 3 dif-
ferent tasks (keyword extraction, multi-sentence
compression, and summarization) into a uni-
fied, fully unsupervised end-to-end summarization
framework, and introduces some novel compo-
nents. Rigorous evaluation on the AMI and ICSI
corpora shows that we reach state-of-the-art per-
formance, and generate reasonably grammatical
abstractive summaries despite taking noisy utter-
ances as input and not relying on any annotations
or training data. Finally, thanks to its fully unsu-
pervised nature, our method is applicable to other
languages than English in an almost out-of-the-
box manner.

Our framework was developed for the meeting
domain. Indeed, our generative component, the

multi-sentence compression graph (MSCG), needs
redundancy to perform well. Such redundancy
is typically present in meeting speech but not in
traditional documents. In addition, the MSCG is
by design robust to noise, and our custom path
re-ranking strategy, based on graph degeneracy,
makes it even more robust to noise. As a result,
our framework is advantaged on ASR input. Fi-
nally, we use a language model to favor fluent
paths, which is crucial when working with (meet-
ing) speech but not that important when dealing
with well-formed input.

Future efforts should be dedicated to improv-
ing the community detection phase and generating
more abstractive sentences, probably by harness-
ing Deep Learning. However, the lack of large
training sets for the meeting domain is an obsta-
cle to the use of neural approaches.
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Abstract

Inspired by how humans summarize long
documents, we propose an accurate and
fast summarization model that first selects
salient sentences and then rewrites them
abstractively (i.e., compresses and para-
phrases) to generate a concise overall sum-
mary. We use a novel sentence-level pol-
icy gradient method to bridge the non-
differentiable computation between these
two neural networks in a hierarchical way,
while maintaining language fluency. Em-
pirically, we achieve the new state-of-the-
art on all metrics (including human eval-
uation) on the CNN/Daily Mail dataset, as
well as significantly higher abstractiveness
scores. Moreover, by first operating at
the sentence-level and then the word-level,
we enable parallel decoding of our neural
generative model that results in substan-
tially faster (10-20x) inference speed as
well as 4x faster training convergence than
previous long-paragraph encoder-decoder
models. We also demonstrate the general-
ization of our model on the test-only DUC-
2002 dataset, where we achieve higher
scores than a state-of-the-art model.

1 Introduction

The task of document summarization has two
main paradigms: extractive and abstractive. The
former method directly chooses and outputs the
salient sentences (or phrases) in the original doc-
ument (Jing and McKeown, 2000; Knight and
Marcu, 2000; Martins and Smith, 2009; Berg-
Kirkpatrick et al., 2011). The latter abstractive
approach involves rewriting the summary (Banko
et al., 2000; Zajic et al., 2004), and has seen sub-
stantial recent gains due to neural sequence-to-

sequence models (Chopra et al., 2016; Nallap-
ati et al., 2016; See et al., 2017; Paulus et al.,
2018). Abstractive models can be more concise
by performing generation from scratch, but they
suffer from slow and inaccurate encoding of very
long documents, with the attention model being
required to look at all encoded words (in long
paragraphs) for decoding each generated summary
word (slow, one by one sequentially). Abstrac-
tive models also suffer from redundancy (repeti-
tions), especially when generating multi-sentence
summary.

To address both these issues and combine
the advantages of both paradigms, we pro-
pose a hybrid extractive-abstractive architecture,
with policy-based reinforcement learning (RL) to
bridge together the two networks. Similar to how
humans summarize long documents, our model
first uses an extractor agent to select salient sen-
tences or highlights, and then employs an abstrac-
tor network to rewrite (i.e., compress and para-
phrase) each of these extracted sentences. To over-
come the non-differentiable behavior of our ex-
tractor and train on available document-summary
pairs without saliency label, we next use actor-
critic policy gradient with sentence-level metric
rewards to connect these two neural networks and
to learn sentence saliency. We also avoid com-
mon language fluency issues (Paulus et al., 2018)
by preventing the policy gradients from affect-
ing the abstractive summarizer’s word-level train-
ing, which is supported by our human evaluation
study. Our sentence-level reinforcement learn-
ing takes into account the word-sentence hierar-
chy, which better models the language structure
and makes parallelization possible. Our extractor
combines reinforcement learning and pointer net-
works, which is inspired by Bello et al. (2017)’s
attempt to solve the Traveling Salesman Problem.
Our abstractor is a simple encoder-aligner-decoder
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model (with copying) and is trained on pseudo
document-summary sentence pairs obtained via
simple automatic matching criteria.

Thus, our method incorporates the abstractive
paradigm’s advantages of concisely rewriting sen-
tences and generating novel words from the full
vocabulary, yet it adopts intermediate extractive
behavior to improve the overall model’s quality,
speed, and stability. Instead of encoding and at-
tending to every word in the long input document
sequentially, our model adopts a human-inspired
coarse-to-fine approach that first extracts all the
salient sentences and then decodes (rewrites) them
(in parallel). This also avoids almost all redun-
dancy issues because the model has already cho-
sen non-redundant salient sentences to abstrac-
tively summarize (but adding an optional final
reranker component does give additional gains by
removing the fewer across-sentence repetitions).

Empirically, our approach is the new state-of-
the-art on all ROUGE metrics (Lin, 2004) as well
as on METEOR (Denkowski and Lavie, 2014)
of the CNN/Daily Mail dataset, achieving sta-
tistically significant improvements over previous
models that use complex long-encoder, copy, and
coverage mechanisms (See et al., 2017). The
test-only DUC-2002 improvement also shows our
model’s better generalization than this strong ab-
stractive system. In addition, we surpass the pop-
ular lead-3 baseline on all ROUGE scores with an
abstractive model. Moreover, our sentence-level
abstractive rewriting module also produces sub-
stantially more (3x) novel N -grams that are not
seen in the input document, as compared to the
strong flat-structured model of See et al. (2017).
This empirically justifies that our RL-guided ex-
tractor has learned sentence saliency, rather than
benefiting from simply copying longer sentences.
We also show that our model maintains the same
level of fluency as a conventional RNN-based
model because the reward does not leak to our ab-
stractor’s word-level training. Finally, our model’s
training is 4x and inference is more than 20x faster
than the previous state-of-the-art. The optional
final reranker gives further improvements while
maintaining a 7x speedup.

Overall, our contribution is three fold: First
we propose a novel sentence-level RL technique
for the well-known task of abstractive summariza-
tion, effectively utilizing the word-then-sentence
hierarchical structure without annotated matching

sentence-pairs between the document and ground
truth summary. Next, our model achieves the
new state-of-the-art on all metrics of multiple ver-
sions of a popular summarization dataset (as well
as a test-only dataset) both extractively and ab-
stractively, without loss in language fluency (also
demonstrated via human evaluation and abstrac-
tiveness scores). Finally, our parallel decoding re-
sults in a significant 10-20x speed-up over the pre-
vious best neural abstractive summarization sys-
tem with even better accuracy.1

2 Model

In this work, we consider the task of summa-
rizing a given long text document into several
(ordered) highlights, which are then combined
to form a multi-sentence summary. Formally,
given a training set of document-summary pairs
{xi, yi}Ni=1, our goal is to approximate the func-
tion h : X → Y,X = {xi}Ni=1, Y = {yi}Ni=1

such that h(xi) = yi, 1 ≤ i ≤ N . Further-
more, we assume there exists an abstracting func-
tion g defined as: ∀s ∈ Si,∃d ∈ Di such that
g(d) = s, 1 ≤ i ≤ N , where Si is the set of sum-
mary sentences in xi and Di the set of document
sentences in yi. i.e., in any given pair of docu-
ment and summary, every summary sentence can
be produced from some document sentence. For
simplicity, we omit subscript i in the remainder
of the paper. Under this assumption, we can fur-
ther define another latent function f : X → Dn

that satisfies f(x) = {dt}nj=1 and y = h(x) =
[g(d1), g(d2), . . . , g(dn)], where [, ] denotes sen-
tence concatenation. This latent function f can be
seen as an extractor that chooses the salient (or-
dered) sentences in a given document for the ab-
stracting function g to rewrite. Our overall model
consists of these two submodules, the extractor
agent and the abstractor network, to approximate
the above-mentioned f and g, respectively.

2.1 Extractor Agent

The extractor agent is designed to model f , which
can be thought of as extracting salient sentences
from the document. We exploit a hierarchical neu-
ral model to learn the sentence representations of
the document and a ‘selection network’ to extract
sentences based on their representations.

1We are releasing our code, best pretrained models,
as well as output summaries, to promote future research:
https://github.com/ChenRocks/fast_abs_rl
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Figure 1: Our extractor agent: the convolutional encoder computes representation rj for each sentence.
The RNN encoder (blue) computes context-aware representation hj and then the RNN decoder (green)
selects sentence jt at time step t. With jt selected, hjt will be fed into the decoder at time t+ 1.

2.1.1 Hierarchical Sentence Representation
We use a temporal convolutional model (Kim,
2014) to compute rj , the representation of each in-
dividual sentence in the documents (details in sup-
plementary). To further incorporate global context
of the document and capture the long-range se-
mantic dependency between sentences, a bidirec-
tional LSTM-RNN (Hochreiter and Schmidhuber,
1997; Schuster et al., 1997) is applied on the con-
volutional output. This enables learning a strong
representation, denoted as hj for the j-th sentence
in the document, that takes into account the con-
text of all previous and future sentences in the
same document.

2.1.2 Sentence Selection
Next, to select the extracted sentences based on the
above sentence representations, we add another
LSTM-RNN to train a Pointer Network (Vinyals
et al., 2015), to extract sentences recurrently. We
calculate the extraction probability by:

utj =





v>p tanh(Wp1hj +Wp2et) if jt 6= jk

∀k < t

−∞ otherwise
(1)

P (jt|j1, . . . , jt−1) = softmax(ut) (2)
where et’s are the output of the glimpse opera-
tion (Vinyals et al., 2016):

atj = v>g tanh(Wg1hj +Wg2zt) (3)

αt = softmax(at) (4)

et =
∑

j

αtjWg1hj (5)
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Action (extract sent.)

Figure 2: Reinforced training of the extractor (for
one extraction step) and its interaction with the ab-
stractor. For simplicity, the critic network is not
shown. Note that all d’s and st are raw sentences,
not vector representations.

In Eqn. 3, zt is the output of the added LSTM-
RNN (shown in green in Fig. 1) which is referred
to as the decoder. All theW ’s and v’s are trainable
parameters. At each time step t, the decoder per-
forms a 2-hop attention mechanism: It first attends
to hj’s to get a context vector et and then attends
to hj’s again for the extraction probabilities.2 This
model is essentially classifying all sentences of the
document at each extraction step. An illustration
of the whole extractor is shown in Fig. 1.

2.2 Abstractor Network

The abstractor network approximates g, which
compresses and paraphrases an extracted docu-
ment sentence to a concise summary sentence. We

2Note that we force-zero the extraction prob. of already
extracted sentences so as to prevent the model from using re-
peating document sentences and suffering from redundancy.
This is non-differentiable and hence only done in RL training.
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use the standard encoder-aligner-decoder (Bah-
danau et al., 2015; Luong et al., 2015). We add the
copy mechanism3 to help directly copy some out-
of-vocabulary (OOV) words (See et al., 2017). For
more details, please refer to the supplementary.

3 Learning

Given that our extractor performs a non-
differentiable hard extraction, we apply stan-
dard policy gradient methods to bridge the back-
propagation and form an end-to-end trainable
(stochastic) computation graph. However, sim-
ply starting from a randomly initialized network
to train the whole model in an end-to-end fash-
ion is infeasible. When randomly initialized, the
extractor would often select sentences that are
not relevant, so it would be difficult for the ab-
stractor to learn to abstractively rewrite. On the
other hand, without a well-trained abstractor the
extractor would get noisy reward, which leads
to a bad estimate of the policy gradient and a
sub-optimal policy. We hence propose optimiz-
ing each sub-module separately using maximum-
likelihood (ML) objectives: train the extractor to
select salient sentences (fit f ) and the abstractor to
generate shortened summary (fit g). Finally, RL is
applied to train the full model end-to-end (fit h).

3.1 Maximum-Likelihood Training for
Submodules

Extractor Training: In Sec. 2.1.2, we have
formulated our sentence selection as classifica-
tion. However, most of the summarization datasets
are end-to-end document-summary pairs with-
out extraction (saliency) labels for each sentence.
Hence, we propose a simple similarity method to
provide a ‘proxy’ target label for the extractor.
Similar to the extractive model of Nallapati et al.
(2017), for each ground-truth summary sentence,
we find the most similar document sentence djt
by:4

jt = argmaxi(ROUGE-Lrecall(di, st)) (6)

Given these proxy training labels, the extractor is
then trained to minimize the cross-entropy loss.

3We use the terminology of copy mechanism (originally
named pointer-generator) in order to avoid confusion with
the pointer network (Vinyals et al., 2015).

4Nallapati et al. (2017) selected sentences greedily to
maximize the global summary-level ROUGE, whereas we
match exactly 1 document sentence for each GT summary
sentence based on the individual sentence-level score.

Abstractor Training: For the abstractor training,
we create training pairs by taking each summary
sentence and pairing it with its extracted docu-
ment sentence (based on Eqn. 6). The network
is trained as an usual sequence-to-sequence model
to minimize the cross-entropy loss L(θabs) =
− 1
M

∑M
m=1 logPθabs(wm|w1:m−1) of the decoder

language model at each generation step, where
θabs is the set of trainable parameters of the ab-
stractor and wm the mth generated word.

3.2 Reinforce-Guided Extraction
Here we explain how policy gradient techniques
are applied to optimize the whole model. To
make the extractor an RL agent, we can formu-
late a Markov Decision Process (MDP)5: at each
extraction step t, the agent observes the current
state ct = (D, djt−1), samples an action jt ∼
πθa,ω(ct, j) = P (j) from Eqn. 2 to extract a doc-
ument sentence and receive a reward6

r(t+ 1) = ROUGE-LF1(g(djt), st) (7)

after the abstractor summarizes the extracted sen-
tence djt . We denote the trainable parameters of
the extractor agent by θ = {θa, ω} for the decoder
and hierarchical encoder respectively. We can then
train the extractor with policy-based RL. We illus-
trate this process in Fig. 2.

The vanilla policy gradient algorithm, REIN-
FORCE (Williams, 1992), is known for high vari-
ance. To mitigate this problem, we add a critic
network with trainable parameters θc to predict
the state-value function V πθa,ω(c). The predicted
value of critic bθc,ω(c) is called the ‘baseline’,
which is then used to estimate the advantage func-
tion: Aπθ(c, j) = Qπθa,ω(c, j) − V πθa,ω(c) be-
cause the total return Rt is an estimate of action-
value function Q(ct, jt). Instead of maximizing
Q(ct, jt) as done in REINFORCE, we maximize
Aπθ(c, j) with the following policy gradient:

∇θa,ωJ(θa, ω) =
E[∇θa,ωlogπθ(c, j)Aπθ(c, j)]

(8)

And the critic is trained to minimize the square
loss: Lc(θc, ω) = (bθc,ω(ct) − Rt)

2. This is
5Strictly speaking, this is a Partially Observable Markov

Decision Process (POMDP). We approximate it as an MDP
by assuming that the RNN hidden state contains all past info.

6In Eqn. 6, we use ROUGE-recall because we want the
extracted sentence to contain as much information as possible
for rewriting. Nevertheless, for Eqn. 7, ROUGE-F1 is more
suitable because the abstractor g is supposed to rewrite the
extracted sentence d to be as concise as the ground truth s.

678



known as the Advantage Actor-Critic (A2C), a
synchronous variant of A3C (Mnih et al., 2016).
For more A2C details, please refer to the supp.

Intuitively, our RL training works as follow: If
the extractor chooses a good sentence, after the ab-
stractor rewrites it the ROUGE match would be
high and thus the action is encouraged. If a bad
sentence is chosen, though the abstractor still pro-
duces a compressed version of it, the summary
would not match the ground truth and the low
ROUGE score discourages this action. Our RL
with a sentence-level agent is a novel attempt in
neural summarization. We use RL as a saliency
guide without altering the abstractor’s language
model, while previous work applied RL on the
word-level, which could be prone to gaming the
metric at the cost of language fluency.7

Learning how many sentences to extract: In a
typical RL setting like game playing, an episode
is usually terminated by the environment. On the
other hand, in text summarization, the agent does
not know in advance how many summary sentence
to produce for a given article (since the desired
length varies for different downstream applica-
tions). We make an important yet simple, intuitive
adaptation to solve this: by adding a ‘stop’ ac-
tion to the policy action space. In the RL training
phase, we add another set of trainable parameters
vEOE (EOE stands for ‘End-Of-Extraction’) with
the same dimension as the sentence representation.
The pointer-network decoder treats vEOE as one
of the extraction candidates and hence naturally
results in a stop action in the stochastic policy.
We set the reward for the agent performing EOE
to ROUGE-1F1([{g(djt)}t], [{st}t]); whereas for
any extraneous, unwanted extraction step, the
agent receives zero reward. The model is there-
fore encouraged to extract when there are still re-
maining ground-truth summary sentences (to ac-
cumulate intermediate reward), and learn to stop
by optimizing a global ROUGE and avoiding extra
extraction.8 Overall, this modification allows dy-

7During this RL training of the extractor, we keep the ab-
stractor parameters fixed. Because the input sentences for the
abstractor are extracted by an intermediate stochastic policy
of the extractor, it is impossible to find the correct target sum-
mary for the abstractor to fit g with ML objective. Though it
is possible to optimize the abstractor with RL, in out prelim-
inary experiments we found that this does not improve the
overall ROUGE, most likely because this RL optimizes at a
sentence-level and can add across-sentence redundancy. We
achieve SotA results without this abstractor-level RL.

8We use ROUGE-1 for terminal reward because it is a
better measure of bag-of-words information (i.e., has all the

namic decisions of number-of-sentences based on
the input document, eliminates the need for tuning
a fixed number of steps, and enables a data-driven
adaptation for any specific dataset/application.

3.3 Repetition-Avoiding Reranking
Existing abstractive summarization systems on
long documents suffer from generating repeating
and redundant words and phrases. To mitigate
this issue, See et al. (2017) propose the coverage
mechanism and Paulus et al. (2018) incorporate
tri-gram avoidance during beam-search at test-
time. Our model without these already performs
well because the summary sentences are gener-
ated from mutually exclusive document sentences,
which naturally avoids redundancy. However, we
do get a small further boost to the summary quality
by removing a few ‘across-sentence’ repetitions,
via a simple reranking strategy: At sentence-level,
we apply the same beam-search tri-gram avoid-
ance (Paulus et al., 2018). We keep all k sentence
candidates generated by beam search, where k is
the size of the beam. Next, we then rerank all
kn combinations of the n generated summary sen-
tence beams. The summaries are reranked by the
number of repeated N -grams, the smaller the bet-
ter. We also apply the diverse decoding algorithm
described in Li et al. (2016) (which has almost no
computation overhead) so as to get the above ap-
proach to produce useful diverse reranking lists.
We show how much the redundancy affects the
summarization task in Sec. 6.2.

4 Related Work

Early summarization works mostly focused on ex-
tractive and compression based methods (Jing and
McKeown, 2000; Knight and Marcu, 2000; Clarke
and Lapata, 2010; Berg-Kirkpatrick et al., 2011;
Filippova et al., 2015). Recent large-sized corpora
attracted neural methods for abstractive summa-
rization (Rush et al., 2015; Chopra et al., 2016).
Some of the recent success in neural abstractive
models include hierarchical attention (Nallapati
et al., 2016), coverage (Suzuki and Nagata, 2016;
Chen et al., 2016; See et al., 2017), RL based met-
ric optimization (Paulus et al., 2018), graph-based
attention (Tan et al., 2017), and the copy mecha-
nism (Miao and Blunsom, 2016; Gu et al., 2016;
See et al., 2017).

important information been generated); while ROUGE-L is
used as intermediate rewards since it is known for better mea-
surement of language fluency within a local sentence.
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Our model shares some high-level intuition with
extract-then-compress methods. Earlier attempts
in this paradigm used Hidden Markov Models and
rule-based systems (Jing and McKeown, 2000),
statistical models based on parse trees (Knight
and Marcu, 2000), and integer linear programming
based methods (Martins and Smith, 2009; Gillick
and Favre, 2009; Clarke and Lapata, 2010; Berg-
Kirkpatrick et al., 2011). Recent approaches in-
vestigated discourse structures (Louis et al., 2010;
Hirao et al., 2013; Kikuchi et al., 2014; Wang
et al., 2015), graph cuts (Qian and Liu, 2013),
and parse trees (Li et al., 2014; Bing et al., 2015).
For neural models, Cheng and Lapata (2016) used
a second neural net to select words from an ex-
tractor’s output. Our abstractor does not merely
‘compress’ the sentences but generatively produce
novel words. Moreover, our RL bridges the ex-
tractor and the abstractor for end-to-end training.

Reinforcement learning has been used to op-
timize the non-differential metrics of language
generation and to mitigate exposure bias (Ran-
zato et al., 2016; Bahdanau et al., 2017). Henß
et al. (2015) use Q-learning based RL for extrac-
tive summarization. Paulus et al. (2018) use RL
policy gradient methods for abstractive summa-
rization, utilizing sequence-level metric rewards
with curriculum learning (Ranzato et al., 2016)
or weighted ML+RL mixed loss (Paulus et al.,
2018) for stability and language fluency. We use
sentence-level rewards to optimize the extractor
while keeping our ML trained abstractor decoder
fixed, so as to achieve the best of both worlds.

Training a neural network to use another fixed
network has been investigated in machine trans-
lation for better decoding (Gu et al., 2017a) and
real-time translation (Gu et al., 2017b). They used
a fixed pretrained translator and applied policy
gradient techniques to train another task-specific
network. In question answering (QA), Choi et al.
(2017) extract one sentence and then generate the
answer from the sentence’s vector representation
with RL bridging. Another recent work attempted
a new coarse-to-fine attention approach on sum-
marization (Ling and Rush, 2017) and found de-
sired sharp focus properties for scaling to larger in-
puts (though without metric improvements). Very
recently (concurrently), Narayan et al. (2018) use
RL for ranking sentences in pure extraction-based
summarization and Çelikyilmaz et al. (2018) in-
vestigate multiple communicating encoder agents

to enhance the copying abstractive summarizer.
Finally, there are some loosely-related recent

works: Zhou et al. (2017) proposed selective gate
to improve the attention in abstractive summa-
rization. Tan et al. (2018) used an extract-then-
synthesis approach on QA, where an extraction
model predicts the important spans in the passage
and then another synthesis model generates the fi-
nal answer. Swayamdipta et al. (2017) attempted
cascaded non-recurrent small networks on extrac-
tive QA, resulting a scalable, parallelizable model.
Fan et al. (2017) added controlling parameters to
adapt the summary to length, style, and entity pref-
erences. However, none of these used RL to bridge
the non-differentiability of neural models.

5 Experimental Setup

Please refer to the supplementary for full training
details (all hyperparameter tuning was performed
on the validation set). We use the CNN/Daily Mail
dataset (Hermann et al., 2015) modified for sum-
marization (Nallapati et al., 2016). Because there
are two versions of the dataset, original text and
entity anonymized, we show results on both ver-
sions of the dataset for a fair comparison to prior
works. The experiment runs training and evalu-
ation for each version separately. Despite the fact
that the 2 versions have been considered separately
by the summarization community as 2 different
datasets, we use same hyper-parameter values for
both dataset versions to show the generalization of
our model. We also show improvements on the
DUC-2002 dataset in a test-only setup.

5.1 Evaluation Metrics

For all the datasets, we evaluate standard ROUGE-
1, ROUGE-2, and ROUGE-L (Lin, 2004) on full-
length F1 (with stemming) following previous
works (Nallapati et al., 2017; See et al., 2017;
Paulus et al., 2018). Following See et al. (2017),
we also evaluate on METEOR (Denkowski and
Lavie, 2014) for a more thorough analysis.

5.2 Modular Extractive vs. Abstractive

Our hybrid approach is capable of both extrac-
tive and abstractive (i.e., rewriting every sentence)
summarization. The extractor alone performs ex-
tractive summarization. To investigate the effect of
the recurrent extractor (rnn-ext), we implement a
feed-forward extractive baseline ff-ext (details in
supplementary). It is also possible to apply RL
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Models ROUGE-1 ROUGE-2 ROUGE-L METEOR
Extractive Results

lead-3 (See et al., 2017) 40.34 17.70 36.57 22.21
Narayan et al. (2018) 40.0 18.2 36.6 -
ff-ext 40.63 18.35 36.82 22.91
rnn-ext 40.17 18.11 36.41 22.81
rnn-ext + RL 41.47 18.72 37.76 22.35

Abstractive Results
See et al. (2017) (w/o coverage) 36.44 15.66 33.42 16.65
See et al. (2017) 39.53 17.28 36.38 18.72
Fan et al. (2017) (controlled) 39.75 17.29 36.54 -
ff-ext + abs 39.30 17.02 36.93 20.05
rnn-ext + abs 38.38 16.12 36.04 19.39
rnn-ext + abs + RL 40.04 17.61 37.59 21.00
rnn-ext + abs + RL + rerank 40.88 17.80 38.54 20.38

Table 1: Results on the original, non-anonymized CNN/Daily Mail dataset. Adding RL gives statisti-
cally significant improvements for all metrics over non-RL rnn-ext models (and over the state-of-the-art
See et al. (2017)) in both extractive and abstractive settings with p < 0.01. Adding the extra reranking
stage yields statistically significant better results in terms of all ROUGE metrics with p < 0.01.

to extractor without using the abstractor (rnn-ext
+ RL).9 Benefiting from the high modularity of
our model, we can make our summarization sys-
tem abstractive by simply applying the abstractor
on the extracted sentences. Our abstractor rewrites
each sentence and generates novel words from a
large vocabulary, and hence every word in our
overall summary is generated from scratch; mak-
ing our full model categorized into the abstractive
paradigm.10 We run experiments on separately
trained extractor/abstractor (ff-ext + abs, rnn-ext +
abs) and the reinforced full model (rnn-ext + abs +
RL) as well as the final reranking version (rnn-ext
+ abs + RL + rerank).

6 Results

For easier comparison, we show separate tables
for the original-text vs. anonymized versions –
Table 1 and Table 2, respectively. Overall, our
model achieves strong improvements and the new
state-of-the-art on both extractive and abstractive
settings for both versions of the CNN/DM dataset
(with some comparable results on the anonymized
version). Moreover, Table 3 shows the gener-
alization of our abstractive system to an out-of-
domain test-only setup (DUC-2002), where our
model achieves better scores than See et al. (2017).

6.1 Extractive Summarization

In the extractive paradigm, we compare our model
with the extractive model from Nallapati et al.

9In this case the abstractor function g(d) = d.
10Note that the abstractive CNN/DM dataset does not in-

clude any human-annotated extraction label, and hence our
models do not receive any direct extractive supervision.

Models R-1 R-2 R-L
Extractive Results

lead-3 (Nallapati et al., 2017) 39.2 15.7 35.5
Nallapati et al. (2017) 39.6 16.2 35.3
ff-ext 39.51 16.85 35.80
rnn-ext 38.97 16.65 35.32
rnn-ext + RL 40.13 16.58 36.47

Abstractive Results
Nallapati et al. (2016) 35.46 13.30 32.65
Fan et al. (2017) (controlled) 38.68 15.40 35.47
Paulus et al. (2018) (ML) 38.30 14.81 35.49
Paulus et al. (2018) (RL+ML) 39.87 15.82 36.90
ff-ext + abs 38.73 15.70 36.33
rnn-ext + abs 37.58 14.68 35.24
rnn-ext + abs + RL 38.80 15.66 36.37
rnn-ext + abs + RL + rerank 39.66 15.85 37.34

Table 2: ROUGE for anonymized CNN/DM.

(2017) and a strong lead-3 baseline. For producing
our summary, we simply concatenate the extracted
sentences from the extractors. From Table 1 and
Table 2, we can see that our feed-forward extrac-
tor out-performs the lead-3 baseline, empirically
showing that our hierarchical sentence encoding
model is capable of extracting salient sentences.11

The reinforced extractor performs the best, be-
cause of the ability to get the summary-level re-
ward and the reduced train-test mismatch of feed-
ing the previous extraction decision. The improve-
ment over lead-3 is consistent across both tables.
In Table 2, it outperforms the previous best neural
extractive model (Nallapati et al., 2017). In Ta-
ble 1, our model also outperforms a recent, con-

11The ff-ext model outperforms rnn-ext possibly because
it does not predict sentence ordering; thus is easier to opti-
mize and the n-gram based metrics do not consider sentence
ordering. Also note that in our MDP formulation, we cannot
apply RL on ff-ext due to its historyless nature. Even if ap-
plied naively, there is no mean for the feed-forward model to
learn the EOE described in Sec. 3.2.
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Models R-1 R-2 R-L
See et al. (2017) 37.22 15.78 33.90
rnn-ext + abs + RL 39.46 17.34 36.72

Table 3: Generalization to DUC-2002 (F1).

current work by Narayan et al. (2018), showing
that our pointer-network extractor and reward for-
mulations are very effective when combined with
A2C RL.

6.2 Abstractive Summarization

After applying the abstractor, the ff-ext based
model still out-performs the rnn-ext model. Both
combined models exceed the pointer-generator
model (See et al., 2017) without coverage by a
large margin for all metrics, showing the effec-
tiveness of our 2-step hierarchical approach: our
method naturally avoids repetition by extracting
multiple sentences with different keypoints.12

Moreover, after applying reinforcement learn-
ing, our model performs better than the best model
of See et al. (2017) and the best ML trained model
of Paulus et al. (2018). Our reinforced model out-
performs the ML trained rnn-ext + abs baseline
with statistical significance of p < 0.01 on all met-
rics for both version of the dataset, indicating the
effectiveness of the RL training. Also, rnn-ext +
abs + RL is statistically significant better than See
et al. (2017) for all metrics with p < 0.01.13 In
the supplementary, we show the learning curve of
our RL training, where the average reward goes
up quickly after the extractor learns the End-of-
Extract action and then stabilizes. For all the
above models, we use standard greedy decoding
and find that it performs well.

Reranking and Redundancy Although the
extract-then-abstract approach inherently will not
generate repeating sentences like other neural-
decoders do, there might still be across-sentence
redundancy because the abstractor is not aware
of other extracted sentences when decoding one.
Hence, we incorporate an optional reranking strat-
egy described in Sec. 3.3. The improved ROUGE
scores indicate that this successfully removes
some remaining redundancies and hence produces
more concise summaries. Our best abstractive

12A trivial lead-3 + abs baseline obtains ROUGE of
(37.37, 15.59, 34.82), which again confirms the importance
of our reinforce-based sentence selection.

13We calculate statistical significance based on the boot-
strap test (Noreen, 1989; Efron and Tibshirani, 1994) with
100K samples. Output of Paulus et al. (2018) is not available
so we couldn’t test for statistical significance there.

Relevance Readability Total
See et al. (2017) 120 128 248
rnn-ext + abs + RL + rerank 137 133 270
Equally good/bad 43 39 82

Table 4: Human Evaluation: pairwise comparison
between our final model and See et al. (2017).

model (rnn-ext + abs + RL + rerank) is clearly su-
perior than the one of See et al. (2017). We are
comparable on R-1 and R-2 but a 0.4 point im-
provement on R-L w.r.t. Paulus et al. (2018).14

We also outperform the results of Fan et al. (2017)
on both original and anonymized dataset versions.
Several previous works have pointed out that ex-
tractive baselines are very difficult to beat (in
terms of ROUGE) by an abstractive system (See
et al., 2017; Nallapati et al., 2017). Note that our
best model is one of the first abstractive models
to outperform the lead-3 baseline on the original-
text CNN/DM dataset. Our extractive experiment
serves as a complementary analysis of the effect of
RL with extractive systems.

6.3 Human Evaluation

We also conduct human evaluation to ensure ro-
bustness of our training procedure. We measure
relevance and readability of the summaries. Rel-
evance is based on the summary containing im-
portant, salient information from the input article,
being correct by avoiding contradictory/unrelated
information, and avoiding repeated/redundant in-
formation. Readability is based on the summa-
rys fluency, grammaticality, and coherence. To
evaluate both these criteria, we design the follow-
ing Amazon MTurk experiment: we randomly se-
lect 100 samples from the CNN/DM test set and
ask the human testers (3 for each sample) to rank
between summaries (for relevance and readabil-
ity) produced by our model and that of See et al.
(2017) (the models were anonymized and ran-
domly shuffled), i.e. A is better, B is better, both
are equally good/bad. Following previous work,
the input article and ground truth summaries are
also shown to the human participants in addition
to the two model summaries.15 From the results
shown in Table 4, we can see that our model is
better in both relevance and readability w.r.t. See
et al. (2017).

14We do not list the scores of their pure RL model because
they discussed its bad readability.

15We selected human annotators that were located in the
US, had an approval rate greater than 95%, and had at least
10,000 approved HITs on record.
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Speed
Models total time (hr) words / sec
(See et al., 2017) 12.9 14.8
rnn-ext + abs + RL 0.68 361.3
rnn-ext + abs + RL + rerank 2.00 (1.46 +0.54) 109.8

Table 5: Speed comparison with See et al. (2017).

6.4 Speed Comparison

Our two-stage extractive-abstractive hybrid model
is not only the SotA on summary quality met-
rics, but more importantly also gives a significant
speed-up in both train and test time over a strong
neural abstractive system (See et al., 2017).16

Our full model is composed of a extremely fast
extractor and a parallelizable abstractor, where the
computation bottleneck is on the abstractor, which
has to generate summaries with a large vocabulary
from scratch.17 The main advantage of our ab-
stractor at decoding time is that we can first com-
pute all the extracted sentences for the document,
and then abstract every sentence concurrently (in
parallel) to generate the overall summary. In Ta-
ble 5, we show the substantial test-time speed-up
of our model compared to See et al. (2017).18 We
calculate the total decoding time for producing all
summaries for the test set.19 Due to the fact that
the main test-time speed bottleneck of RNN lan-
guage generation model is that the model is con-
strained to generate one word at a time, the total
decoding time is dependent on the number of to-
tal words generated; we hence also report the de-
coded words per second for a fair comparison. Our
model without reranking is extremely fast. From
Table 5 we can see that we achieve a speed up of
18x in time and 24x in word generation rate. Even
after adding the (optional) reranker, we still main-
tain a 6-7x speed-up (and hence a user can choose
to use the reranking component depending on their
downstream application’s speed requirements).20

16The only publicly available code with a pretrained model
for neural summarization which we can test the speed.

17The time needed for extractor is negligible w.r.t. the ab-
stractor because it does not require large matrix multiplica-
tion for generating every word. Moreover, with convolutional
encoder at word-level made parallelizable by the hierarchical
rnn-ext, our model is scalable for very long documents.

18For details of training speed-up, please see the supp.
19We time the model of See et al. (2017) using beam size of

4 (used for their best-reported scores). Without beam-search,
it gets significantly worse ROUGE of (36.62, 15.12, 34.08),
so we do not compare speed-ups w.r.t. that version.

20Most of the recent neural abstractive summarization sys-
tems are of similar algorithmic complexity to that of See et al.
(2017). The main differences such as the training objective
(ML vs. RL) and copying (soft/hard) has negligible test run-
time compared to the slowest component: the long-summary

Novel N -gram (%)
Models 1-gm 2-gm 3-gm 4-gm
See et al. (2017) 0.1 2.2 6.0 9.7
rnn-ext + abs + RL + rerank 0.3 10.0 21.7 31.6
reference summaries 10.8 47.5 68.2 78.2

Table 6: Abstractiveness: novel n-gram counts.

7 Analysis

7.1 Abstractiveness

We compute an abstractiveness score (See et al.,
2017) as the ratio of novel n-grams in the gen-
erated summary that are not present in the in-
put document. The results are shown in Table 6:
our model rewrites substantially more abstractive
summaries than previous work. A potential rea-
son for this is that when trained with individual
sentence-pairs, the abstractor learns to drop more
document words so as to write individual sum-
mary sentences as concise as human-written ones;
thus the improvement in multi-gram novelty.

7.2 Qualitative Analysis on Output Examples

We show examples of how our best model selects
sentences and then rewrites them. In the supple-
mentary Figure 2 and Figure 3, we can see how
the abstractor rewrites the extracted sentences con-
cisely while keeping the mentioned facts. Adding
the reranker makes the output more compact glob-
ally. We observe that when rewriting longer text,
the abstractor would have many facts to choose
from (Figure 3 sentence 2) and this is where the
reranker helps avoid redundancy across sentences.

8 Conclusion

We propose a novel sentence-level RL model
for abstractive summarization, which makes the
model aware of the word-sentence hierarchy. Our
model achieves the new state-of-the-art on both
CNN/DM versions as well a better generalization
on test-only DUC-2002, along with a significant
speed-up in training and decoding.
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Abstract

An accurate abstractive summary of a doc-
ument should contain all its salient infor-
mation and should be logically entailed by
the input document. We improve these
important aspects of abstractive summa-
rization via multi-task learning with the
auxiliary tasks of question generation and
entailment generation, where the former
teaches the summarization model how to
look for salient questioning-worthy de-
tails, and the latter teaches the model
how to rewrite a summary which is a
directed-logical subset of the input doc-
ument. We also propose novel multi-
task architectures with high-level (seman-
tic) layer-specific sharing across multi-
ple encoder and decoder layers of the
three tasks, as well as soft-sharing mech-
anisms (and show performance ablations
and analysis examples of each contribu-
tion). Overall, we achieve statistically sig-
nificant improvements over the state-of-
the-art on both the CNN/DailyMail and
Gigaword datasets, as well as on the DUC-
2002 transfer setup. We also present sev-
eral quantitative and qualitative analysis
studies of our model’s learned saliency
and entailment skills.

1 Introduction

Abstractive summarization is the challenging
NLG task of compressing and rewriting a docu-
ment into a short, relevant, salient, and coherent
summary. It has numerous applications such as
summarizing storylines, event understanding, etc.
As compared to extractive or compressive sum-
marization (Jing and McKeown, 2000; Knight and

∗ Equal contribution.

Marcu, 2002; Clarke and Lapata, 2008; Filippova
et al., 2015; Henß et al., 2015), abstractive sum-
maries are based on rewriting as opposed to se-
lecting. Recent end-to-end, neural sequence-to-
sequence models and larger datasets have allowed
substantial progress on the abstractive task, with
ideas ranging from copy-pointer mechanism and
redundancy coverage, to metric reward based re-
inforcement learning (Rush et al., 2015; Chopra
et al., 2016; Nallapati et al., 2016; See et al., 2017).

Despite these strong recent advancements, there
is still a lot of scope for improving the summary
quality generated by these models. A good rewrit-
ten summary is one that contains all the salient
information from the document, is logically fol-
lowed (entailed) by it, and avoids redundant infor-
mation. The redundancy aspect was addressed by
coverage models (Suzuki and Nagata, 2016; Chen
et al., 2016; Nallapati et al., 2016; See et al., 2017),
but we still need to teach these models about how
to better detect salient information from the in-
put document, as well as about better logically-
directed natural language inference skills.

In this work, we improve abstractive text sum-
marization via soft, high-level (semantic) layer-
specific multi-task learning with two relevant aux-
iliary tasks. The first is that of document-to-
question generation, which teaches the summa-
rization model about what are the right questions
to ask, which in turn is directly related to what the
salient information in the input document is. The
second auxiliary task is a premise-to-entailment
generation task to teach it how to rewrite a sum-
mary which is a directed-logical subset of (i.e.,
logically follows from) the input document, and
contains no contradictory or unrelated informa-
tion. For the question generation task, we use the
SQuAD dataset (Rajpurkar et al., 2016), where
we learn to generate a question given a sentence
containing the answer, similar to the recent work
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by Du et al. (2017). Our entailment generation
task is based on the recent SNLI classification
dataset and task (Bowman et al., 2015), converted
to a generation task (Pasunuru and Bansal, 2017).

Further, we also present novel multi-task learn-
ing architectures based on multi-layered encoder
and decoder models, where we empirically show
that it is substantially better to share the higher-
level semantic layers between the three afore-
mentioned tasks, while keeping the lower-level
(lexico-syntactic) layers unshared. We also ex-
plore different ways to optimize the shared pa-
rameters and show that ‘soft’ parameter sharing
achieves higher performance than hard sharing.

Empirically, our soft, layer-specific sharing
model with the question and entailment genera-
tion auxiliary tasks achieves statistically signif-
icant improvements over the state-of-the-art on
both the CNN/DailyMail and Gigaword datasets.
It also performs significantly better on the DUC-
2002 transfer setup, demonstrating its strong gen-
eralizability as well as the importance of auxiliary
knowledge in low-resource scenarios. We also re-
port improvements on our auxiliary question and
entailment generation tasks over their respective
previous state-of-the-art. Moreover, we signif-
icantly decrease the training time of the multi-
task models by initializing the individual tasks
from their pretrained baseline models. Finally, we
present human evaluation studies as well as de-
tailed quantitative and qualitative analysis studies
of the improved saliency detection and logical in-
ference skills learned by our multi-task model.

2 Related Work

Automatic text summarization has been progres-
sively improving over the time, initially more fo-
cused on extractive and compressive models (Jing
and McKeown, 2000; Knight and Marcu, 2002;
Clarke and Lapata, 2008; Filippova et al., 2015;
Kedzie et al., 2015), and moving more towards
compressive and abstractive summarization based
on graphs and concept maps (Giannakopoulos,
2009; Ganesan et al., 2010; Falke and Gurevych,
2017) and discourse trees (Gerani et al., 2014),
syntactic parse trees (Cheung and Penn, 2014;
Wang et al., 2013), and Abstract Meaning Repre-
sentations (AMR) (Liu et al., 2015; Dohare and
Karnick, 2017). Recent work has also adopted
machine translation inspired neural seq2seq mod-
els for abstractive summarization with advances

in hierarchical, distractive, saliency, and graph-
attention modeling (Rush et al., 2015; Chopra
et al., 2016; Nallapati et al., 2016; Chen et al.,
2016; Tan et al., 2017). Paulus et al. (2018)
and Henß et al. (2015) incorporated recent ad-
vances from reinforcement learning. Also, See
et al. (2017) further improved results via pointer-
copy mechanism and addressed the redundancy
with coverage mechanism.

Multi-task learning (MTL) is a useful paradigm
to improve the generalization performance of a
task with related tasks while sharing some com-
mon parameters/representations (Caruana, 1998;
Argyriou et al., 2007; Kumar and Daumé III,
2012). Several recent works have adopted MTL
in neural models (Luong et al., 2016; Misra
et al., 2016; Hashimoto et al., 2017; Pasunuru and
Bansal, 2017; Ruder et al., 2017; Kaiser et al.,
2017). Moreover, some of the above works have
investigated the use of shared vs unshared sets of
parameters. On the other hand, we investigate the
importance of soft parameter sharing and high-
level versus low-level layer-specific sharing.

Our previous workshop paper (Pasunuru et al.,
2017) presented some preliminary results for
multi-task learning of textual summarization with
entailment generation. This current paper has
several major differences: (1) We present ques-
tion generation as an additional effective auxil-
iary task to enhance the important complemen-
tary aspect of saliency detection; (2) Our new
high-level layer-specific sharing approach is sig-
nificantly better than alternative layer-sharing ap-
proaches (including the decoder-only sharing by
Pasunuru et al. (2017)); (3) Our new soft shar-
ing parameter approach gives stat. significant
improvements over hard sharing; (4) We pro-
pose a useful idea of starting multi-task mod-
els from their pretrained baselines, which sig-
nificantly speeds up our experiment cycle1; (5)
For evaluation, we show diverse improvements
of our soft, layer-specific MTL model (over
state-of-the-art pointer+coverage baselines) on the
CNN/DailyMail, Gigaword, as well as DUC
datasets; we also report human evaluation plus
analysis examples of learned saliency and entail-
ment skills; we also report improvements on the
auxiliary question and entailment generation tasks
over their respective previous state-of-the-art.

1About 4-5 days for Pasunuru et al. (2017) approach vs.
only 10 hours for us. This will allow the community to try
many more multi-task training and tuning ideas faster.
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In our work, we use a question generation task
to improve the saliency of abstractive summariza-
tion in a multi-task setting. Using the SQuAD
dataset (Rajpurkar et al., 2016), we learn to gen-
erate a question given the sentence containing the
answer span in the comprehension (similar to Du
et al. (2017)). For the second auxiliary task of en-
tailment generation, we use the generation version
of the RTE classification task (Dagan et al., 2006;
Lai and Hockenmaier, 2014; Jimenez et al., 2014;
Bowman et al., 2015). Some previous work has
explored the use of RTE for redundancy detec-
tion in summarization by modeling graph-based
relationships between sentences to select the most
non-redundant sentences (Mehdad et al., 2013;
Gupta et al., 2014), whereas our approach is based
on multi-task learning.

3 Models

First, we introduce our pointer+coverage baseline
model and then our two auxiliary tasks: question
generation and entailment generation (and finally
the multi-task learning models in Sec. 4).

3.1 Baseline Pointer+Coverage Model
We use a sequence-attention-sequence model with
a 2-layer bidirectional LSTM-RNN encoder and
a 2-layer uni-directional LSTM-RNN decoder,
along with Bahdanau et al. (2015) style attention.
Let x = {x1, x2, ..., xm} be the source document
and y = {y1, y2, ..., yn} be the target summary.
The output summary generation vocabulary dis-
tribution conditioned over the input source doc-
ument is Pv(y|x; θ) =

∏n
t=1 pv(yt|y1:t−1, x; θ).

Let the decoder hidden state be st at time step t
and let ct be the context vector which is defined as
a weighted combination of encoder hidden states.
We concatenate the decoder’s (last) RNN layer
hidden state st and context vector ct and apply a
linear transformation, and then project to the vo-
cabulary space by another linear transformation.
Finally, the conditional vocabulary distribution at
each time step t of the decoder is defined as:

pv(yt|y1:t−1, x; θ) = sfm(Vp(Wf [st; ct]+bf )+bp)
(1)

where, Wf , Vp, bf , bp are trainable parameters,
and sfm(·) is the softmax function.

Pointer-Generator Networks Pointer mecha-
nism (Vinyals et al., 2015) helps in directly copy-
ing the words from the source sequence during tar-
get sequence generation, which is a good fit for a

task like summarization. Our pointer mechanism
approach is similar to See et al. (2017), who use
a soft switch based on the generation probability
pg = σ(Wgct+Ugst+Vgewt−1+bg), where σ(·) is
a sigmoid function, Wg, Ug, Vg and bg are param-
eters learned during training. ewt−1 is the previous
time step output word embedding. The final word
distribution is Pf (y) = pg ·Pv(y)+(1−pg)·Pc(y),
where Pv vocabulary distribution is as shown in
Eq. 1, and copy distribution Pc is based on the at-
tention distribution over source document words.

Coverage Mechanism Following previous
work (See et al., 2017), coverage helps alleviate
the issue of word repetition while generating
long summaries. We maintain a coverage vector
ĉt =

∑t−1
t=0 αt that sums over all of the previous

time steps attention distributions αt, and this is
added as input to the attention mechanism. Cov-
erage loss is Lcov(θ) =

∑
t

∑
imin(αt,i, ĉt,i).

Finally, the total loss is a weighted combination
of cross-entropy loss and coverage loss:

L(θ) = − logPf (y) + λLcov(θ) (2)

where λ is a tunable hyperparameter.

3.2 Two Auxiliary Tasks

Despite the strengths of the strong model de-
scribed above with attention, pointer, and cover-
age, a good summary should also contain max-
imal salient information and be a directed log-
ical entailment of the source document. We
teach these skills to the abstractive summarization
model via multi-task training with two related aux-
iliary tasks: question generation task and entail-
ment generation.

Question Generation The task of question gen-
eration is to generate a question from a given in-
put sentence, which in turn is related to the skill
of being able to find the important salient infor-
mation to ask questions about. First the model
has to identify the important information present
in the given sentence, then it has to frame (gener-
ate) a question based on this salient information,
such that, given the sentence and the question, one
has to be able to predict the correct answer (salient
information in this case). A good summary should
also be able to find and extract all the salient
information in the given source document, and
hence we incorporate such capabilities into our ab-
stractive text summarization model by multi-task
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learning it with a question generation task, shar-
ing some common parameters/representations (see
more details in Sec. 4). For setting up the ques-
tion generation task, we follow Du et al. (2017)
and use the SQuAD dataset to extract sentence-
question pairs. Next, we use the same sequence-
to-sequence model architecture as our summariza-
tion model. Note that even though our question
generation task is generating one question at a
time2, our multi-task framework (see Sec. 4) is set
up in such a way that the sentence-level knowledge
from this auxiliary task can help the document-
level primary (summarization) task to generate
multiple salient facts – by sharing high-level se-
mantic layer representations. See Sec. 7 and Ta-
ble 10 for a quantitative evaluation showing that
the multi-task model can find multiple (and more)
salient phrases in the source document. Also see
Sec. 7 (and supp) for challenging qualitative ex-
amples where baseline and SotA models only re-
cover a small subset of salient information but our
multi-task model with question generation is able
to detect more of the important information.

Entailment Generation The task of entailment
generation is to generate a hypothesis which is
entailed by (or logically follows from) the given
premise as input. In summarization, the gen-
eration decoder also needs to generate a sum-
mary that is entailed by the source document,
i.e., does not contain any contradictory or unre-
lated/extraneous information as compared to the
input document. We again incorporate such infer-
ence capabilities into the summarization model via
multi-task learning, sharing some common repre-
sentations/parameters between our summarization
and entailment generation model (more details in
Sec. 4). For this task, we use the entailment-
labeled pairs from the SNLI dataset (Bowman
et al., 2015) and set it up as a generation task
(using the same strong model architecture as our
abstractive summarization model). See Sec. 7
and Table 9 for a quantitative evaluation showing
that the multi-task model is better entailed by the
source document and has fewer extraneous facts.
Also see Sec. 7 and supplementary for qualitative
examples of how our multi-task model with the
entailment auxiliary task is able to generate more
logically-entailed summaries than the baseline and

2We also tried to generate all the questions at once from
the full document, but we obtained low accuracy because of
this task’s challenging nature and overall less training data.
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Figure 1: Overview of our multi-task model with
parallel training of three tasks: abstractive sum-
mary generation (SG), question generation (QG),
and entailment generation (EG). We share the
‘blue’ color representations across all the three
tasks, i.e., second layer of encoder, attention pa-
rameters, and first layer of decoder.

SotA models, which instead produce extraneous,
unrelated words not present (in any paraphrased
form) in the source document.

4 Multi-Task Learning

We employ multi-task learning for parallel train-
ing of our three tasks: abstractive summariza-
tion, question generation, and entailment genera-
tion. In this section, we describe our novel layer-
specific, soft-sharing approaches and other multi-
task learning details.

4.1 Layer-Specific Sharing Mechanism

Simply sharing all parameters across the related
tasks is not optimal, because models for differ-
ent tasks have different input and output distribu-
tions, esp. for low-level vs. high-level parameters.
Therefore, related tasks should share some com-
mon representations (e.g., high-level information),
as well as need their own individual task-specific
representations (esp. low-level information). To
this end, we allow different components of model
parameters of related tasks to be shared vs. un-
shared, as described next.
Encoder Layer Sharing: Belinkov et al. (2017)
observed that lower layers (i.e., the layers closer
to the input words) of RNN cells in a seq2seq
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machine translation model learn to represent word
structure, while higher layers (farther from input)
are more focused on high-level semantic mean-
ings (similar to findings in the computer vision
community for image features (Zeiler and Fergus,
2014)). We believe that while textual summa-
rization, question generation, and entailment gen-
eration have different training data distributions
and low-level representations, they can still benefit
from sharing their models’ high-level components
(e.g., those that capture the skills of saliency and
inference). Thus, we keep the lower-level layer
(i.e., first layer closer to input words) of the 2-
layer encoder of all three tasks unshared, while we
share the higher layer (second layer in our model
as shown in Fig. 1) across the three tasks.
Decoder Layer Sharing: Similarly for the de-
coder, lower layers (i.e., the layers closer to the
output words) learn to represent word structure
for generation, while higher layers (farther from
output) are more focused on high-level semantic
meaning. Hence, we again share the higher level
components (first layer in the decoder far from
output as show in Fig. 1), while keeping the lower
layer (i.e., second layer) of decoders of all three
tasks unshared.
Attention Sharing: As described in Sec. 3.1, the
attention mechanism defines an attention distribu-
tion over high-level layer encoder hidden states
and since we share the second, high-level (seman-
tic) layer of all the encoders, it is intuitive to share
the attention parameters as well.

4.2 Soft vs. Hard Parameter Sharing
Hard-sharing: In the most common multi-task
learning hard-sharing approach, the parameters to
be shared are forced to be the same. As a result,
gradient information from multiple tasks will di-
rectly pass through shared parameters, hence forc-
ing a common space representation for all the re-
lated tasks. Soft-sharing: In our soft-sharing
approach, we encourage shared parameters to be
close in representation space by penalizing their
l2 distances. Unlike hard sharing, this approach
gives more flexibility for the tasks by only loosely
coupling the shared space representations. We
minimize the following loss function for the pri-
mary task in soft-sharing approach:

L(θ) = − logPf (y)+λLcov(θ)+γ‖θs−ψs‖ (3)

where γ is a hyperparameter, θ represents the pri-
mary summarization task’s full parameters, while

θs and ψs represent the shared parameter subset
between the primary and auxiliary tasks.

4.3 Fast Multi-Task Training

During multi-task learning, we alternate the mini-
batch optimization of the three tasks, based on a
tunable ‘mixing ratio’ αs : αq : αe; i.e., optimiz-
ing the summarization task for αs mini-batches
followed by optimizing the question generation
task for αq mini-batches, followed by entailment
generation task for αe mini-batches (and for 2-
way versions of this, we only add one auxiliary
task at a time). We continue this process until all
the models converge. Also, importantly, instead
of training from scratch, we start the primary task
(summarization) from a 90%-converged model of
its baseline to make the training process faster. We
observe that starting from a fully-converged base-
line makes the model stuck in a local minimum.
In addition, we also start all auxiliary models
from their 90%-converged baselines, as we found
that starting the auxiliary models from scratch
has a chance to pull the primary model’s shared
parameters towards randomly-initialized auxiliary
model’s shared parameters.

5 Experimental Setup

Datasets: We use CNN/DailyMail dataset (Her-
mann et al., 2015; Nallapati et al., 2016) and
Gigaword (Rush et al., 2015) datasets for sum-
marization, and the Stanford Natural Language
Inference (SNLI) corpus (Bowman et al., 2015)
and the Stanford Question Answering Dataset
(SQuAD) (Rajpurkar et al., 2016) datasets for our
entailment and question generation tasks, resp.
We also show generalizability/transfer results on
DUC-2002 with our CNN/DM trained models.
Supplementary contains dataset details.
Evaluation Metrics: We use the standard
ROUGE evaluation package (Lin, 2004) for re-
porting the results on all of our summarization
models. Following previous work (Chopra et al.,
2016; Nallapati et al., 2016), we use ROUGE
full-length F1 variant for all our results. Fol-
lowing See et al. (2017), we also report ME-
TEOR (Denkowski and Lavie, 2014) using the
MS-COCO evaluation script (Chen et al., 2015).
Human Evaluation Criteria: We used Amazon
MTurk to perform human evaluation of summary
relevance and readability. We selected human an-
notators that were located in the US, had an ap-
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Models ROUGE-1 ROUGE-2 ROUGE-L METEOR
PREVIOUS WORK

Seq2Seq(50k vocab) (See et al., 2017) 31.33 11.81 28.83 12.03
Pointer (See et al., 2017) 36.44 15.66 33.42 15.35
Pointer+Coverage (See et al., 2017) ? 39.53 17.28 36.38 18.72
Pointer+Coverage (See et al., 2017) † 38.82 16.81 35.71 18.14

OUR MODELS
Two-Layer Baseline (Pointer+Coverage) ⊗ 39.56 17.52 36.36 18.17
⊗ + Entailment Generation 39.84 17.63 36.54 18.61
⊗ + Question Generation 39.73 17.59 36.48 18.33
⊗ + Entailment Gen. + Question Gen. 39.81 17.64 36.54 18.54

Table 1: CNN/DailyMail summarization results. ROUGE scores are full length F-1 (as previous work).
All the multi-task improvements are statistically significant over the state-of-the-art baseline.

Models R-1 R-2 R-L
PREVIOUS WORK

ABS+ (Rush et al., 2015) 29.76 11.88 26.96
RAS-El (Chopra et al., 2016) 33.78 15.97 31.15
lvt2k (Nallapati et al., 2016) 32.67 15.59 30.64
Pasunuru et al. (2017) 32.75 15.35 30.82

OUR MODELS
2-Layer Pointer Baseline ⊗ 34.26 16.40 32.03
⊗ + Entailment Generation 35.45 17.16 33.19
⊗ + Question Generation 35.48 17.31 32.97
⊗ + Entailment + Question 35.98 17.76 33.63

Table 2: Summarization results on Gigaword.
ROUGE scores are full length F-1.

proval rate greater than 95%, and had at least
10,000 approved HITs. For the pairwise model
comparisons discussed in Sec. 6.2, we showed the
annotators the input article, the ground truth sum-
mary, and the two model summaries (randomly
shuffled to anonymize model identities) – we then
asked them to choose the better among the two
model summaries or choose ‘Not-Distinguishable’
if both summaries are equally good/bad. In-
structions for relevance were defined based on
the summary containing salient/important infor-
mation from the given article, being correct
(i.e., avoiding contradictory/unrelated informa-
tion), and avoiding redundancy. Instructions for
readability were based on the summary’s fluency,
grammaticality, and coherence.

Training Details All our soft/hard and layer-
specific sharing decisions were made on the val-
idation/development set. Details of RNN hidden
state sizes, Adam optimizer, mixing ratios, etc. are
provided in the supplementary for reproducibility.

6 Results

6.1 Summarization (Primary Task) Results
Pointer+Coverage Baseline We start from the
strong model of See et al. (2017).3 Table 1 shows

3We use two layers so as to allow our high- versus low-
level layer sharing intuition. Note that this does not increase

that our baseline model performs better than or
comparable to See et al. (2017).4 On Gigaword
dataset, our baseline model (with pointer only,
since coverage not needed for this single-sentence
summarization task) performs better than all pre-
vious works, as shown in Table 2.

Multi-Task with Entailment Generation We
first perform multi-task learning between ab-
stractive summarization and entailment genera-
tion with soft-sharing of parameters as discussed
in Sec. 4. Table 1 and Table 2 shows that this
multi-task setting is better than our strong base-
line models and the improvements are statistically
significant on all metrics5 on both CNN/DailyMail
(p < 0.01 in ROUGE-1/ROUGE-L/METEOR and
p < 0.05 in ROUGE-2) and Gigaword (p < 0.01
on all metrics) datasets, showing that entailment
generation task is inducing useful inference skills
to the summarization task (also see analysis exam-
ples in Sec. 7).

Multi-Task with Question Generation For
multi-task learning with question generation,
the improvements are statistically significant in
ROUGE-1 (p < 0.01), ROUGE-L (p < 0.05), and
METEOR (p < 0.01) for CNN/DailyMail and in
all metrics (p < 0.01) for Gigaword, compared
to the respective baseline models. Also, Sec. 7
presents quantitative and qualitative analysis of
this model’s improved saliency.6

the parameter size much (23M versus 22M for See et al.
(2017)).

4As mentioned in the github for See et al. (2017), their
publicly released pretrained model produces the lower scores
that we represent by † in Table 1.

5Stat. significance is computed via bootstrap test (Noreen,
1989; Efron and Tibshirani, 1994) with 100K samples.

6In order to verify that our improvements were from the
auxiliary tasks’ specific character/capabilities and not just
due to adding more data, we separately trained word em-
beddings on each auxiliary dataset (i.e., SNLI and SQuAD)
and incorporated them into the summarization model. We
found that both our 2-way multi-task models perform sig-
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Models Relevance Readability Total
MTL VS. BASELINE

MTL wins 43 40 83
Baseline wins 22 24 46
Non-distinguish. 35 36 71

MTL VS. SEE ET AL. (2017)
MTL wins 39 33 72
See (2017) wins 29 38 67
Non-distinguish. 32 29 61

Table 3: CNN/DM Human Evaluation: pairwise
comparison between our 3-way multi-task (MTL)
model w.r.t. our baseline and See et al. (2017).

Models Relevance Readability Total
MTL wins 33 32 65
Baseline wins 22 22 44
Non-distinguish. 45 46 91

Table 4: Gigaword Human Evaluation: pairwise
comparison between our 3-way multi-task (MTL)
model w.r.t. our baseline.

Multi-Task with Entailment and Question Gen-
eration Finally, we perform multi-task learning
with all three tasks together, achieving the best of
both worlds (inference skills and saliency). Ta-
ble 1 and Table 2 show that our full multi-task
model achieves the best scores on CNN/DailyMail
and Gigaword datasets, and the improvements
are statistically significant on all metrics on
both CNN/DailyMail (p < 0.01 in ROUGE-
1/ROUGE-L/METEOR and p < 0.02 in ROUGE-
2) and Gigaword (p < 0.01 on all metrics). Fi-
nally, our 3-way multi-task model (with both en-
tailment and question generation) outperforms the
publicly-available pretrained result (†) of the pre-
vious SotA (See et al., 2017) with stat. signifi-
cance (p < 0.01), as well the higher-reported re-
sults (?) on ROUGE-1/ROUGE-2 (p < 0.01).

6.2 Human Evaluation
We also conducted a blind human evaluation on
Amazon MTurk for relevance and readability,
based on 100 samples, for both CNN/DailyMail
and Gigaword (see instructions in Sec. 5). Table. 3
shows the CNN/DM results where we do pairwise
comparison between our 3-way multi-task model’s
output summaries w.r.t. our baseline summaries
and w.r.t. See et al. (2017) summaries. As shown,
our 3-way multi-task model achieves both higher
relevance and higher readability scores w.r.t. the
baseline. W.r.t. See et al. (2017), our MTL model
is higher in relevance scores but a bit lower in

nificantly better than these models using the auxiliary word-
embeddings, suggesting that merely adding more data in not
enough.

Models R-1 R-2 R-L
See et al. (2017) 34.30 14.25 30.82
Baseline 35.96 15.91 32.92
Multi-Task (EG + QG) 36.73 16.15 33.58

Table 5: ROUGE F1 scores on DUC-2002.

readability scores (and is higher in terms of total
aggregate scores). One potential reason for this
lower readability score is that our entailment gen-
eration auxiliary task encourages our summariza-
tion model to rewrite more and to be more abstrac-
tive than See et al. (2017) – see abstractiveness re-
sults in Table 11.

We also show human evaluation results on the
Gigaword dataset in Table 4 (again based on pair-
wise comparisons for 100 samples), where we see
that our MTL model is better than our state-of-the-
art baseline on both relevance and readability.7

6.3 Generalizability Results (DUC-2002)

Next, we also tested our model’s generalizabil-
ity/transfer skills, where we take the models
trained on CNN/DailyMail and directly test them
on DUC-2002. We take our baseline and 3-
way multi-task models, plus the pointer-coverage
model from See et al. (2017).8 We only re-
tune the beam-size for each of these three mod-
els separately (based on DUC-2003 as the vali-
dation set).9 As shown in Table 5, our multi-
task model achieves statistically significant im-
provements over the strong baseline (p < 0.01
in ROUGE-1 and ROUGE-L) and the pointer-
coverage model from See et al. (2017) (p < 0.01
in all metrics). This demonstrates that our model
is able to generalize well and that the auxiliary
knowledge helps more in low-resource scenarios.

6.4 Auxiliary Task Results

In this section, we discuss the individual/separated
performance of our auxiliary tasks.

Entailment Generation We use the same archi-
tecture as described in Sec. 3.1 with pointer mech-

7Note that we did not have output files of any previous
work’s model on Gigaword; however, our baseline is already
a strong state-of-the-art model as shown in Table 2.

8We use the publicly-available pretrained model from See
et al. (2017)’s github for these DUC transfer results, which
produces the † results in Table 1. All other comparisons and
analysis in our paper are based on their higher ? results.

9We follow previous work which has shown that larger
beam values are better and feasible for DUC corpora. How-
ever, our MTL model still achieves stat. significant improve-
ments (p < 0.01 in all metrics) over See et al. (2017) without
beam retuning (i.e., with beam = 4).
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Models M C R B
Pasunuru&Bansal (2017) 29.6 117.8 62.4 40.6
Our 1-layer pointer EG 32.4 139.3 65.1 43.6
Our 2-layer pointer EG 32.3 140.0 64.4 43.7

Table 6: Performance of our pointer-based entail-
ment generation (EG) models compared with pre-
vious SotA work. M, C, R, B are short for Meteor,
CIDEr-D, ROUGE-L, and BLEU-4, resp.

Models M C R B
Du et al. (2017) 15.2 - 38.0 10.8
Our 1-layer pointer QG 15.4 75.3 36.2 9.2
Our 2-layer pointer QG 17.5 95.3 40.1 13.8

Table 7: Performance of our pointer-based ques-
tion generation (QG) model w.r.t. previous work.

anism, and Table 6 compares our model’s perfor-
mance to Pasunuru and Bansal (2017). Our pointer
mechanism gives a performance boost, since the
entailment generation task involves copying from
the given premise sentence, whereas the 2-layer
model seems comparable to the 1-layer model.
Also, the supplementary shows some output ex-
amples from our entailment generation model.

Question Generation Again, we use same ar-
chitecture as described in Sec. 3.1 along with
pointer mechanism for the task of question gen-
eration. Table 7 compares the performance of our
model w.r.t. the state-of-the-art Du et al. (2017).
Also, the supplementary shows some output ex-
amples from our question generation model.

7 Ablation and Analysis Studies

Soft-sharing vs. Hard-sharing As described in
Sec. 4.2, we choose soft-sharing over hard-sharing
because of the more expressive parameter shar-
ing it provides to the model. Empirical results in
Table. 8 prove that soft-sharing method is statis-
tically significantly better than hard-sharing with
p < 0.001 in all metrics.10

Comparison of Different Layer-Sharing Meth-
ods We also conducted ablation studies among
various layer-sharing approaches. Table 8 shows
results for soft-sharing models with decoder-only
sharing (D1+D2; similar to Pasunuru et al. (2017))
as well as lower-layer sharing (encoder layer 1
+ decoder layer 2, with and without attention
shared). As shown, our final model (high-level
semantic layer sharing E2+Attn+D1) outperforms

10In the interest of space, most of the analyses are shown
for CNN/DailyMail experiments, but we observed similar
trends for the Gigaword experiments as well.

Models R-1 R-2 R-L M
Final Model 39.81 17.64 36.54 18.54

SOFT-VS.-HARD SHARING
Hard-sharing 39.51 17.44 36.33 18.21

LAYER SHARING METHODS
D1+D2 39.62 17.49 36.44 18.34
E1+D2 39.51 17.51 36.37 18.15
E1+Attn+D2 39.32 17.36 36.11 17.88

Table 8: Ablation studies comparing our final
multi-task model with hard-sharing and different
alternative layer-sharing methods. Here E1, E2,
D1, D2, Attn refer to parameters of the first/second
layer of encoder/decoder, and attention parame-
ters. Improvements of final model upon ablation
experiments are all stat. signif. with p < 0.05.

Models Average Entailment Probability
Baseline 0.907
Multi-Task (EG) 0.912

Table 9: Entailment classification results of our
baseline vs. EG-multi-task model (p < 0.001).

these alternate sharing methods in all metrics with
statistical significance (p < 0.05).11

Quantitative Improvements in Entailment
We employ a state-of-the-art entailment clas-
sifier (Chen et al., 2017), and calculate the
average of the entailment probability of each of
the output summary’s sentences being entailed
by the input source document. We do this for
output summaries of our baseline and 2-way-EG
multi-task model (with entailment generation).
As can be seen in Table 9, our multi-task model
improves upon the baseline in the aspect of being
entailed by the source document (with statistical
significance p < 0.001). Further, we use the
Named Entity Recognition (NER) module from
CoreNLP (Manning et al., 2014) to compute the
number of times the output summary contains
extraneous facts (i.e., named entities as detected
by the NER system) that are not present in the
source documents, based on the intuition that
a well-entailed summary should not contain
unrelated information not followed from the
input premise. We found that our 2-way MTL
model with entailment generation reduces this
extraneous count by 17.2% w.r.t. the baseline.
The qualitative examples below further discuss
this issue of generating unrelated information.

Quantitative Improvements in Saliency Detec-
tion For our saliency evaluation, we used the

11Note that all our soft and layer sharing decisions were
strictly made on the dev/validation set (see Sec. 5).
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Models Average Match Rate
Baseline 27.75 %
Multi-Task (QG) 28.06 %

Table 10: Saliency classification results of our
baseline vs. QG-multi-task model (p < 0.01).

Models 2-gram 3-gram 4-gram
See et al. (2017) 2.24 6.03 9.72
MTL (3-way) 2.84 6.83 10.66

Table 11: Abstractiveness: novel n-gram percent.

answer-span prediction classifier from Pasunuru
and Bansal (2018) trained on SQuAD (Rajpurkar
et al., 2016) as the keyword detection classifier.
We then annotate the ground-truth and model sum-
maries with this keyword classifier and compute
the % match, i.e., how many salient words from
the ground-truth summary were also generated in
the model summary. The results are shown in Ta-
ble 10, where the 2-way-QG MTL model (with
question generation) versus baseline improvement
is stat. significant (p < 0.01). Moreover, we
found 93 more cases where our 2-way-QG MTL
model detects 2 or more additional salient key-
words than the pointer baseline model (as opposed
to vice versa), showing that sentence-level ques-
tion generation task is helping the document-level
summarization task in finding more salient terms.

Qualitative Examples on Entailment and
Saliency Improvements Fig. 2 presents an
example of output summaries generated by See
et al. (2017), our baseline, and our 3-way multi-
task model. See et al. (2017) and our baseline
models generate phrases like “john hartson”
and “hampden injustice” that don’t appear in
the input document, hence they are not entailed
by the input.12 Moreover, both models missed
salient information like “josh meekings”, “leigh
griffiths”, and “hoops”, that our multi-task model
recovers.13 Hence, our 3-way multi-task model
generates summaries that are both better at logical
entailment and contain more salient information.
We refer to supplementary Fig. 3 for more de-
tails and similar examples for separated 2-way
multi-task models (supplementary Fig. 1, Fig. 2).

Abstractiveness Analysis As suggested in See
et al. (2017), we also compute the abstractiveness
score as the number of novel n-grams between the

12These extra, non-entailed unrelated/contradictory infor-
mation are not present at all in any paraphrase form in the
input document.

13We consider the fill-in-the-blank highlights annotated by
human on CNN/DailyMail dataset as salient information.

Input Document: celtic have written to the scottish football association in order to gain an ‘ under-
standing óf the refereeing decisions during their scottish cup semi-final defeat by inverness on sunday
. the hoops were left outraged by referee steven mclean ś failure to award a penalty or red card for a
clear handball in the box by josh meekings to deny leigh griffith ś goal-bound shot during the first-half
. caley thistle went on to win the game 3-2 after extra-time and denied rory delia ś men the chance
to secure a domestic treble this season . celtic striker leigh griffiths has a goal-bound shot blocked
by the outstretched arm of josh meekings . celtic ś adam matthews -lrb- right -rrb- slides in with a
strong challenge on nick ross in the scottish cup semi-final . ‘ given the level of reaction from our sup-
porters and across football , we are duty bound to seek an understanding of what actually happened
, ćeltic said in a statement . they added , ‘ we have not been given any other specific explanation
so far and this is simply to understand the circumstances of what went on and why such an obvious
error was made . h́owever , the parkhead outfit made a point of congratulating their opponents , who
have reached the first-ever scottish cup final in their history , describing caley as a ‘ fantastic club
ánd saying ‘ reaching the final is a great achievement . ćeltic had taken the lead in the semi-final
through defender virgil van dijk ś curling free-kick on 18 minutes , but were unable to double that lead
thanks to the meekings controversy . it allowed inverness a route back into the game and celtic had
goalkeeper craig gordon sent off after the restart for scything down marley watkins in the area . greg
tansey duly converted the resulting penalty . edward ofere then put caley thistle ahead , only for john
guidetti to draw level for the bhoys . with the game seemingly heading for penalties , david raven
scored the winner on 117 minutes , breaking thousands of celtic hearts . celtic captain scott brown
-lrb- left -rrb- protests to referee steven mclean but the handball goes unpunished . griffiths shows off
his acrobatic skills during celtic ś eventual surprise defeat by inverness . celtic pair aleksandar tonev
-lrb- left -rrb- and john guidetti look dejected as their hopes of a domestic treble end .
Ground-truth: celtic were defeated 3-2 after extra-time in the scottish cup semi-final .

leigh griffiths had a goal-bound shot blocked by a clear handball. however, no action was taken

against offender josh meekings . the hoops have written the sfa for an ’understanding’ of the
decision .
See et al. (2017): john hartson was once on the end of a major hampden injustice while playing
for celtic . but he can not see any point in his old club writing to the scottish football association over
the latest controversy at the national stadium . hartson had a goal wrongly disallowed for offside
while celtic were leading 1-0 at the time but went on to lose 3-2 .
Our Baseline: john hartson scored the late winner in 3-2 win against celtic . celtic were leading
1-0 at the time but went on to lose 3-2 . some fans have questioned how referee steven mclean and
additional assistant alan muir could have missed the infringement .

Multi-task: celtic have written to the scottish football association in order to gain an ‘ understand-
ing ’ of the refereeing decisions . the hoops were left outraged by referee steven mclean ’s failure

to award a penalty or red card for a clear handball in the box by josh meekings . celtic striker

leigh griffiths has a goal-bound shot blocked by the outstretched arm of josh meekings .

Figure 3: Example of summaries generated by See et al. (2017), our baseline, and 3-way multi-task model
with summarization and both entailment generation and question generation. The boxed-red highlighted
words/phrases are not present in the input source document in any paraphrasing form. All the unboxed-
green highlighted words/phrases correspond to the salient information. See detailed discussion in Fig.
1 and Fig. 2 above. As shown, the outputs from See et al. (2017) and the baseline both include non-
entailed words/phrases (e.g. “john hartson”), as well as they missed salient information (“hoops”, “josh
meekings”, “leigh griffiths”) in their output summaries. Our multi-task model, however, manages to
accomplish both, i.e., cover more salient information and also avoid unrelated information.

Figure 2: Example summary from our 3-
way MTL model. The boxed-red high-
lights are extraneously-generated words not
present/paraphrased in the input document. The
unboxed-green highlights show salient phrases.

model output summary and source document. As
shown in Table 11, our multi-task model (EG +
QG) is more abstractive than See et al. (2017).

8 Conclusion

We presented a multi-task learning approach to
improve abstractive summarization by incorporat-
ing the ability to detect salient information and to
be logically entailed by the document, via ques-
tion generation and entailment generation auxil-
iary tasks. We propose effective soft and high-
level (semantic) layer-specific parameter sharing
and achieve significant improvements over the
state-of-the-art on two popular datasets, as well as
a generalizability/transfer DUC-2002 setup.
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Abstract

As the popularity of free-form user-
generated reviews in e-commerce and re-
view websites continues to increase, there
is a growing need for automatic mecha-
nisms that sift through the vast number of
reviews and identify quality content. On-
line review helpfulness modeling and pre-
diction is a task which studies the factors
that determine review helpfulness and at-
tempts to accurately predict it. This survey
paper provides an overview of the most
relevant work on product review helpful-
ness prediction and understanding in the
past decade, discusses gained insights, and
provides guidelines for future research.

1 Introduction

Research on the computational modeling and pre-
diction of online review helpfulness has generally
proceeded in two directions. One concerns the au-
tomatic prediction of the helpfulness of a review,
where helpfulness is typically defined as the frac-
tion of “helpful” votes it receives. Review help-
fulness research in the NLP and text mining com-
munities has largely focused on identifying tex-
tual content features of a review that are useful
for automatic helpfulness prediction. The other di-
rection concerns understanding the nature of help-
fulness, where researchers seek to understand the
process of human evaluation of review helpfulness
and the factors that influence it.

The increasing popularity of modeling and pre-
diction of review helpfulness since its inception
more than a decade ago can be attributed to its
practical significance. Nowadays, customers reg-
ularly rely on different kinds of user reviews (e.g.,
hotels, restaurants, products, movies) to decide
what to spend their money on. Given the large

number of reviews available in web platforms, a
review helpfulness prediction system could sub-
stantially save people’s time by allowing them to
focus on the most helpful reviews. Hence, a suc-
cessful review helpfulness prediction system could
be as useful as a product recommender system.

Unfortunately, unlike in many key areas of re-
search in NLP, it is by no means easy to determine
the state of the art in automatic helpfulness pre-
diction. Empirical comparisons are complicated
for at least two reasons. First, historically, sys-
tems have been trained on different datasets, not
all of which are publicly available. Second, re-
searchers have not built on the successes of each
other, evaluating their ideas against baselines that
are not necessarily the state of the art. Worse still,
new features are not always properly evaluated.
This somewhat disorganized situation can be at-
tributed in part to the lack of a common forum
for researchers to discuss a long-term vision and
a roadmap for research in this area.

Our goal in this survey is to present an overview
of the current state of research on computational
modeling and prediction of product review help-
fulness. Our focus on product reviews is moti-
vated by the fact that they are the most widely
studied type of review. Despite this focus, it is by
no means the case that our work is only applicable
to product reviews. While online platforms differ
in objectives and review domains (e.g., Amazon
is an online product store, Yelp is a business re-
view website, and TripAdvisor is a booking web-
site for a variety of travel activities), the principles
that govern the helpfulness voting process are ro-
bust across platforms and domains. This means
that most, if not all, of our findings are transfer-
able to other kinds of online reviews. We believe
that this survey will be useful to researchers and
developers interested in a better understanding of
the mechanisms behind review helpfulness.
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2 Datasets

The main source of product reviews used in past
research is Amazon.com, but interesting work has
been done on data from Ciao.com (a now defunct
product review website). The main difference be-
tween these two sources is the metadata associated
with them: Amazon.com offers anonymous vot-
ing information, whereas Ciao attaches userIDs to
helpfulness votes. Ciao also uses helpfulness votes
in the range of 0 to 5, whereas Amazon votes are
binary. Furthermore, Ciao offers information on
a social trust network, where users choose to con-
nect to reviewers if they find their reviews con-
sistently helpful, unlike Amazon.com, which does
not offer any such social trust network. These dif-
ferences have allowed researchers to make obser-
vations on Ciao.com data that cannot be made on
Amazon.com.

Datasets are collected from the aforementioned
sources through web scraping or APIs. When
it comes to Amazon datasets, researchers can
choose one of two pre-collected datasets: the
Multi-Domain Sentiment Dataset1(Blitzer et al.,
2007) (MDSD) and the Amazon Review Dataset2

(McAuley et al., 2015; He and McAuley, 2016)
(ARD). These datasets have a similar number
of product categories (25 and 24, respectively).
However, the latest version of MDSD contains
1,422,530 reviews, while ARD contains 142.8
million reviews. Furthermore, ARD offers a va-
riety of metadata that is not present in MDSD
(e.g., product salesrank). To the best of our knowl-
edge, there is only one pre-collected Ciao dataset3

(302,232 reviews, 43,666 users, and 8,894,899
helpfulness votes), which was made available by
Tang et al. (2013). Few researchers have used
these pre-collected datasets, however. Instead,
most have relied on collecting their own datasets
directly from websites. As mentioned before, the
general lack of testing on pre-collected datasets
has made system comparisons difficult.

The majority of researchers simply use helpful-
ness scores (the fraction of users who vote a re-
view as helpful) as found in websites as ground
truth for system training and evaluation. Given
that these scores are volatile when reviews have
few votes, researchers frequently filter out reviews

1https://www.cs.jhu.edu/˜mdredze/
datasets/sentiment/

2http://jmcauley.ucsd.edu/data/amazon/
3https://www.cse.msu.edu/˜tangjili/

trust.html

Votes : [97, 102]
Text : I’m a much bigger fan of the Targus folding
keyboard. For starters it folds into the size of a
handspring. Second of all the Landware version’s
keys are incredibly small. The one feature benefit
of landware is that it’s a rigid design so it can be
used on your lap - while the Targus version is very
flexible and needs to be placed on a flat surface to
type.

Figure 1: Example Review

that do not have a minimum number of votes.
Some researchers have argued that helpfulness
scores might not be good indicators of actual help-
fulness, and have resorted to rating or ranking re-
views themselves (Liu et al., 2007; Tsur and Rap-
poport, 2009; Yang et al., 2015), but these ap-
proaches are not the norm.

Researchers have observed interesting patterns
in review datasets. For instance, positive reviews
are more likely to have high helpfulness scores
(O’Mahony et al., 2010; Huang et al., 2015), top
ranking reviews hold a disproportionate amount
of votes when compared to lower-ranked reviews
(Liu et al., 2007), and more recent reviews tend
to get fewer votes than older reviews (Liu et al.,
2007). Although some of these effects may be the
consequence of website voting mechanisms (e.g.,
Amazon shows reviews based on their helpful-
ness), they should be taken in consideration when
selecting and pre-processing datasets.

Perhaps the most important observation is that
helpfulness scores may not be strongly corre-
lated to review quality (Liu et al., 2007; Danescu-
Niculescu-Mizil et al., 2009; Tsur and Rappoport,
2009; Ghose and Ipeirotis, 2011; Yang et al.,
2015). In at least one study, independent anno-
tators agreed more frequently (85%) with an al-
ternate helpfulness ranking than with one based
on helpfulness scores (Tsur and Rappoport, 2009).
The example review in Figure 1 shows discrep-
ancies between quality and score. While this re-
view is relatively short and contains only a couple
of judgments on its product, 97 out of 102 peo-
ple voted it as helpful (0.95 score). The quality of
this review does not seem to match its near-perfect
score. As we will see in Section 4, these discrep-
ancies could be explained as the consequence of
several moderating factors, which have a direct in-
fluence on the helpfulness voting process but are
largely ignored in current helpfulness prediction
systems.
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3 Helpfulness Prediction

Helpfulness prediction tasks include score regres-
sion (predicting the helpfulness score h ∈ [0, 1]
of a review), binary review classification (classi-
fying a review as helpful or not), and review rank-
ing (ordering a set of reviews by their helpfulness).
In this section, we present the evaluation measures
and approaches explored in past work.

3.1 Performance Measures

Regarding performance measures, classification
tasks have used Precision, Recall, and F-measure.
Regression tasks have mostly used mean squared
error (MSE), which measures the average of the
sum of the squared error, and root mean squared
error (RMSE), which is defined as the square root
of MSE. Ranking systems have used Normalized
Discounted Cumulative Gain (NDCG), which is
popularly used to measure the relevance of search
results in information retrieval (here, helpfulness
is used as a measure of relevance), and NDCG@k,
a special version of NDCG that only takes into ac-
count the top k items in a ranking (this is used
because users only read a limited number of re-
views). Researchers have also used Pearson and
Spearman correlations to measure model fit and
ranking performance.

3.2 Approaches

Next, we provide a high-level overview of the ap-
proaches that have been employed to predict the
helpfulness of online product reviews.

Regression has primarily been attempted
through support vector regression (Kim et al.,
2006; Zhang and Varadarajan, 2006; Yang et al.,
2015). However, probabilistic matrix factorization
(Tang et al., 2013), linear regression (Lu et al.,
2010), and extended tensor factorization models
(Moghaddam et al., 2012) have successfully
been used to integrate sophisticated constraints
into the learning process and have achieved
improvements over regular regression models.
Multi-layer neural networks have also been used
towards this purpose (Lee and Choeh, 2014). In
particular, there seems to be progress toward more
sophisticated models. For instance, Mukherjee
et al. (2017) used a HMM-LDA based model to
jointly infer reviewer expertise, predict aspects,
and review helpfulness, which showed significant
improvement over simpler models. Classification
approaches have mostly been based on SVMs

(Kim et al., 2006; Hong et al., 2012; Zeng et al.,
2014; Krishnamoorthy, 2015), but thresholded
linear regression models (Ghose and Ipeirotis,
2011), Naive Bayes, Random Forests, J48 and
JRip have also been used (O’Mahony et al., 2010;
Ghose and Ipeirotis, 2011; Krishnamoorthy,
2015). Recent work has also approached this task
with neural networks (Malik and Hussain, 2017;
Chen et al., 2018). Regarding ranking, some
researchers have used ranking-specific methods
such as SVM ranking (Tsur and Rappoport, 2009;
Hong et al., 2012), but others have attempted to
recover rankings from classification (O’Mahony
and Smyth, 2009, 2010) or regression (Mukherjee
et al., 2017) outputs.

Table 1 provides an overview of some of the
most relevant features used in helpfulness predic-
tion systems, explains the intuition behind them
and, whenever possible, their correlation to help-
fulness and impact on performance. Here, we dif-
ferentiate primarily between content and context
features. Content features focus on information
directly derived from the review, such as review
text and star rating, whereas context features fo-
cus on information from outside the review, such
as reviewer/user information.

Content features include Review Length Fea-
tures, which are based on the intuition that longer
reviews have more information and are thus more
helpful; Readability Features, which are based on
the conjecture that if a review is easier to read, it
will be found helpful by more users; Word-Based
Features, which are based on the idea of identify-
ing key words whose presence indicates the impor-
tance of the information found in a review; Word-
Category Features, which identify the presence of
words belonging to specific word lists; and Con-
tent Divergence Features, which measure how dif-
ferent the contents of the review are from specific
reference texts. Context features include Reviewer
Features, which collect meaningful reviewer his-
torical information to predict future helpfulness
scores; and User-Reviewer Idiosyncrasy Features,
which attempt to capture the similarity between
users and reviewers. We also include a couple of
Miscellaneous Features, which are based on meta-
data and sentiment analysis; these features are bet-
ter understood in the context of the moderating
factors presented in Section 4.

Researchers have managed to mostly agree on
some observations regarding which features are
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Feature Description Comments
Content Features

Review Length Features: Measure review length using different metrics.
Average Sentence
Length - Used in Liu et al. (2007), Lu et al. (2010), and Yang et al.

(2015) without studying its individual predictive power.
No. of Sentences - Used in Liu et al. (2007), Lu et al. (2010), Yang et al. (2015)

Number of Words - Positive correlation (Mudambi and Schuff, 2010); shown to
subdue sentence features (Kim et al., 2006).

Readability Features: Measure how easy a review is to read.

Readability Measures how easy a text is to read Ghose and Ipeirotis (2011) and Korfiatis et al. (2012) found
a positive correlation.

Spelling Errors - Ghose and Ipeirotis (2011) found a negative correlation.

Paragraph Metrics Avg. paragraph length, no. of para-
graphs

Kim et al. (2006) found an insignificant difference when
included in a binary classifier.

Word-Based Features: Indicate the presence of meaningful key words.

Unigram TF-IDF Degree of word importance in rela-
tion to all reviews for a product

Kim et al. (2006) observed a positive correlation and per-
formance improvement when combined with review length.

Dominant Terms Presence of particularly important
terms for a specific book

Tsur and Rappoport (2009) based entire system on this met-
ric. Tailored for book reviews: similar to UGR TF-IDF.

Word-Category Features: Indicate the presence of words of lists of semantically related words in review.

Product features Attempt to identify the presence of
important topics

Liu et al. (2007) showed 2.89-3.22% improvement. Hong
et al. (2012) presented a system which improves ∼ 8% ac-
curacy over Kim et al. (2006) and Liu et al. (2007) but the
individual predictive power of the feature was not analyzed.
Kim et al. (2006) found it inferior to UGR TF-IDF.

Subjective Tokens Words taken from lists of subjective
adjectives and nouns

Zhang and Varadarajan (2006) found it “barely” correlated
with helpfulness. No significant performance improvement.

Sentiment Words Attempt to capture the presence of
opinions, analyses, emotions etc.

Kim et al. (2006) found these features inferior to UGR TF-
IDF; Yang et al. (2015) found the opposite and significant
improvement over simple text features regression.

Syntactic tokens
A variety of tokens including
nouns, adjectives, adverbs, wh- de-
terminers etc.

Kim et al. (2006) found no performance gains; Hong et al.
(2012) built a system with volition auxiliaries and sentence
tense which showed∼ 8% accuracy improvement over Kim
et al. (2006) and Liu et al. (2007), but the individual predic-
tive power of these features was not studied.

Content Divergence Features: Measure the difference between reviews and some reference text.
Review-product de-
scr. divergence

Helpful reviews should echo the
contents of product description

Zhang and Varadarajan (2006) found no significant im-
provement in model correlation.

Sentiment diver-
gence

The mainstream opinion polarity
for a product and its strength are
compared to those of the review

Hong et al. (2012) presented a system which improved ∼
8% accuracy over Kim et al. (2006) and Liu et al. (2007)
but the individual predictive power of the feature was not
analyzed.

KL average review
divergence

Divergence between the unigram
language model of the review and
aggregated product reviews

Lu et al. (2010) introduced it in their baseline model along
with a variety of features; the individual predictive power of
the feature was not studied.

Miscellaneous Features

Star rating The review-assigned product star
rating

Positively correlated to helpfulness (Huang et al., 2015). In-
fluence explained by Danescu-Niculescu-Mizil et al. (2009)
and Mudambi and Schuff (2010) (see Sections 4.4, 4.2).

Subjectivity The probability of a review and its
sentences being subjective

Based on the conjecture that readers prefer subjective or
objective info. based on product type. Empirical evidence
found in Ghose and Ipeirotis (2011) (see Section 4.5).

Context Features
Reviewer Features: Capture reviewer statistics.

# Past Reviews Previous reviews written by re-
viewer No influence found by Huang et al. (2015).

# Helpful Votes Previous votes received by reviewer No influence found by Huang et al. (2015).

Avg. Helpfulness Reviewer avg. past helpfulness Positive correlation found by Huang et al. (2015). Mixed
effects found by Ghose and Ipeirotis (2011).

User-Reviewer Idiosyncrasy: Capture the similarity between users and reviewers.

Connection
Strength

User-Reviewer connection strength
in a social network using the metric
introduced in Tang et al. (2012)

Relative performance increase of 1.15-28.38% (Lu et al.,
2010; Tang et al., 2013) (see Section 4.3)

User-Reviewer
Product Rating
Similarity

User-Reviewer product rating his-
tory similarity

Relative performance increase of 28.38% (Tang et al., 2013)
(see Section 4.3)

Table 1: Summary of Observed Features on Helpfulness
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useful for helpfulness prediction4. Review length
has been shown multiple times to be strongly (pos-
itively) correlated to helpfulness (Kim et al., 2006;
Liu et al., 2007; Otterbacher, 2009; Mudambi and
Schuff, 2010; Cao et al., 2011; Pan and Zhang,
2011; Yang et al., 2015; Bjering et al., 2015;
Huang et al., 2015; Salehan and Kim, 2016) with
only few researchers disagreeing on the existence
of the correlation (Zhang and Varadarajan, 2006;
Korfiatis et al., 2012). There is general agreement
that a review’s star rating can also be useful for
helpfulness prediction. Some researchers use the
extremity of the rating (positive, negative, neu-
tral) as a feature (positive and negative reviews are
seen as more useful than neutral reviews) (Ghose
and Ipeirotis, 2011), while others use star ratings
directly (Kim et al., 2006; Mudambi and Schuff,
2010; Pan and Zhang, 2011; Zeng et al., 2014;
Huang et al., 2015; Bjering et al., 2015). Some
researchers argue that star rating is useful because
of the presence of positivity bias (i.e., reviews
with positive star ratings are seen as more help-
ful), while few researchers disagree on the ex-
istence of a connection between star ratings and
helpfulness (Otterbacher, 2009). Review readabil-
ity metrics, which measure how “easy” it is to read
a review, have been found to have a positive cor-
relation to helpfulness (Ghose and Ipeirotis, 2011;
Korfiatis et al., 2012), but have not been as thor-
oughly tested as other features. A recurrent idea
is that of capturing review content relevance: un-
igram TF-IDF statistics (the relative importance
of the words in a review when compared to other
reviews of the same product) (Kim et al., 2006),
dominant terms (computed using a custom metric
similar to TF-IDF, but tailored for book reviews)
(Tsur and Rappoport, 2009), and latent review top-
ics (the themes present in the review) (McAuley
and Leskovec, 2013; Mukherjee et al., 2017) stand
out particularly.

3.3 The State of Helpfulness Prediction
The classical approach to helpfulness prediction
has consisted of finding new hand-crafted features
that can improve system performance. Although
many interesting features continue to be found
(e.g., emotion (Martin and Pu, 2014), aspect (Yang
et al., 2016), and argument (Liu et al., 2017) based
features), advances have been hindered by the lack

4We do not discuss features that are not helpful since, in
general, they are not as thoroughly tested as those mentioned
here.

of standard datasets, which are needed for perfor-
mance comparisons, and feature ablation studies,
which are needed to properly evaluate the contri-
bution of newly proposed features.

Even so, as in many other areas of NLP, recent
systems based on neural network architectures
have shown performance increases both when us-
ing hand-crafted features (Lee and Choeh, 2014;
Malik and Hussain, 2017) and when performing
raw-text predictions (Chen et al., 2018). More-
over, recent systems have been shown to be able
to tackle domain knowledge transfer considerably
well (Chen et al., 2018). Although these systems
were not compared against a robust hand-crafted
feature baseline, the fact that authors are begin-
ning to use pre-collected datasets (ARD) enables
fairer comparisons. Intuitively, we expect models
based on neural network architectures to be bet-
ter at capturing latent semantics, as well as some
of the feature interactions we will present in Sec-
tion 4. In parallel, systems that have incorpo-
rated user and reviewer features, particularly those
that learn from individual user votes (Tang et al.,
2013), have shown large performance increases
over extensive hand-crafted-only feature baselines
(Lu et al., 2010; Tang et al., 2013), and more so-
phisticated models focused on review semantics
(Mukherjee et al., 2017) have also outperformed
hand-crafted-only feature baselines significantly.

4 The Helpfulness Voting Process:
Entities and Moderating Factors

So far we have presented an overview of the fea-
tures used in helpfulness prediction systems. With
a few exceptions (Mudambi and Schuff, 2010;
Ghose and Ipeirotis, 2011; Tang et al., 2013), past
work on helpfulness prediction has focused exclu-
sively on non-moderating factors (i.e., observable
features which can contribute towards helpfulness
scores, but cannot alter or influence the voting pro-
cess itself). Even so, researchers have gained key
insights on certain moderating factors (i.e., mech-
anisms and properties that can influence the voting
process outcome). These findings are relevant not
only because they can be used to enhance helpful-
ness prediction, but because, when put together,
they constitute arguments in favor of reconsider-
ing the helpfulness prediction task and its focus.
In this section, we will present a variety of moder-
ating factors.
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4.1 The Voting Process and its Entities
To start our discussion on moderating factors, let
us provide a brief, intuitive definition of the steps
involved in the helpfulness voting process and out-
line the entities involved in it5:

1. A reviewer, a, writes a review r on product p
2. A user, u, reads the review by reviewer a on

product p and internally assigns it a score s
using some criterion c.

3. If the score s is over some threshold t, the
user votes the review as “helpful”. Other-
wise, the user votes it as “not helpful”.

Intuitively, one can expect these four entities —
reviewers, users, reviews, and products — to play
a role in determining the outcome of the voting
process. Moreover, it is reasonable to expect both
the nature of these entities and the interactions be-
tween them to be sometimes expressed through
hidden features/variables. For instance, one can-
not directly observe a user’s opinion of a prod-
uct unless he/she writes a review, and one can-
not directly observe a particular user’s information
needs or a product’s nature, which would indicate
what kind of review is most helpful for it. In the
next subsections, we will discuss different mod-
erating factors that have been discovered for each
of these entities, the observable features that have
been used to approximate them, and their effects
on the voting process.

4.2 User-Product Predispositions
Danescu-Niculescu-Mizil et al. (2009) showed
that the difference between user and reviewer
opinions can influence helpfulness votes. Since
user opinions are hidden, based on the assump-
tion that star ratings are good indicators of opin-
ion, Danescu et al. studied the interplay between
review star rating deviation from the mean (the
divergence between the reviewer’s opinion and
the average opinion of the product) and star rat-
ing variance (the level of opinion consensus for a
product) for 1 million Amazon US book reviews,
making the following observations:

1. When star rating variance is very low, the
most helpful reviews are those with the av-
erage star rating.

2. With moderate variance, the most helpful re-
views are those with a slightly-above-average
star rating.

5Here we assume voting participation and do not attempt
to reconcile it with polarity, but a deeper understanding of
participation could lead to better interpretations of votes.

3. As variance becomes large, reviews with star
ratings both above and below the average are
more helpful (positive reviews still deemed
somewhat more helpful).

These observations held when controlling for
review text, and constitute one of the most
straightforward pieces of evidence against text-
only review helpfulness understanding and pre-
diction. Although these observations show only
aggregated user behavior, they have a theoretical
backing by past research (Wilson and Peterson,
1989), and hint that a deeper understanding of user
opinions can lead to better prediction systems.

4.3 User-Reviewer Idiosyncrasy

Tang et al. (2013) found that, by observing
users’ actions, user-reviewer idiosyncrasy similar-
ity could be measured and used to enhance help-
fulness prediction. They showed that the exis-
tence and strength of connections between review-
ers and users in a social network, along with prod-
uct rating history similarity, moderated the general
user opinion of a particular reviewer’s reviews.
Specifically, they analyzed social network connec-
tions in Ciao’s circle of trust, a social network
where a user connects to a reviewer if they consis-
tently find their reviews helpful, along with users’
and reviewers’ product rating histories, and made
the following observations:

1. Users are likely to think of reviews from their
connected reviewers as more helpful.

2. The more strongly users connect to a re-
viewer, the more helpful users consider the
reviews from the reviewer.6

3. Users are likely to consider the reviews from
reviewers with similar product ratings as
more helpful.

4. The more similar the product ratings of users
and reviewers, the more helpful users con-
sider the reviews from the reviewer.

As Tang et al. proposed that differences in help-
fulness scores are not necessarily a consequence
of review quality, but of differences of opinion be-
tween users (if everyone thought the same way, all
reviews would have a score of either 0 or 1), they
were among the first to advocate for user-specific
helpfulness prediction, which aims to predict how
a specific user will vote, instead of predicting the

6Connection strength is measured with the metric intro-
duced in Tang et al. (2012).
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aggregated votes of the community. Under this ap-
proach, Tang et al. implemented their observations
in a probabilistic matrix factorization framework
and achieved a 28.38% relative improvement over
a text-reviewer-based baseline that included an ex-
tensive set of text features present in other systems
(Lu et al., 2010).

This suggests that the similarity between re-
viewers’ idiosyncrasy as expressed in reviews and
that of users can be approximated by studying
user and reviewer actions. Further, the informa-
tion used by Tang et al. (2013) towards this pur-
pose is not the only kind that could prove use-
ful. It could easily be extended to include the
vast amount of user information stored by current
day e-commerce websites such as Amazon. Users’
age, gender, purchase history, location, browsing
and purchase patterns, and review history (both
writing and rating) could be used to define prior
probabilities on some user x liking the review
of a reviewer y.7 As some of this information
has already been used in recommender systems, it
would be of interest to explore the extent to which
techniques from this field (specifically those from
collaborative filtering) can be applied to helpful-
ness prediction.

4.4 Product Nature

Product nature moderates users’ information
needs and the criteria of a helpful review. On-
line stores now have an astoundingly large cata-
log of products, which can be very different in
price, use, target market, complexity, popularity,
etc. Hence, it is reasonable to expect the informa-
tion needs of users to depend at least somewhat on
the product in question. Consider the task of buy-
ing a house vs buying a TV. We can easily see that
the amount and nature of information needed to
buy a TV or a house is considerably different. Fur-
ther, the quality of these products stems from dif-
ferent sources: a TV’s perceived quality depends
mostly on its technical features, whereas the per-
ceived quality of a house depends to some degree
on the potential buyer. Therefore, it is perfectly
sensible to expect helpful reviews for products of
different “types” to be different. Below we show
that the nature of a product moderates the effects

7Since a reviewer’s idiosyncrasy is embodied in his/her
reviews, we do not rule out the possibility that more complex
text representations can also be used to approximate it. Re-
gardless, these sources of information should still be able to
complement prediction systems.

of star ratings, review length, and subjectivity on
helpfulness scores.

Researchers have proven the influence of prod-
uct nature on the helpfulness voting process by dif-
ferentiating between search and experience goods.
According to Nelson (1970, 1974), the quality of
search goods is derived from objective attributes
(e.g., a camera), whereas the quality of experience
goods is based on subjective attributes (e.g., a mu-
sic CD). Mudambi and Schuff (2010) first identi-
fied that review length (word count) is positively
correlated to review helpfulness, and then made
the following observations:
• For experience goods, reviews with extreme

star ratings (high or low) are associated with
lower levels of helpfulness than reviews with
moderate star ratings.
• Review depth has a greater positive effect on

the helpfulness of the review for search goods
than experience goods.

These observations make it clear that the nature
of a product can impact the way a user will judge a
review’s helpfulness. However, approximating the
nature of a product is not a trivial task. As stated
by Mudambi and Schuff, even if these observa-
tions hold, classifying products as search or expe-
rience goods is a complicated task, since products
fall at some point along a spectrum and commonly
have aspects of both search and experience goods.
This means that finding methods of automatically
discovering product features or classifications that
influence the helpfulness voting process is an im-
portant task for future research.

What other product categorizations are there
that could influence helpfulness and be easily col-
lected/computed? We propose to start by using
categories already present in e-commerce web-
sites. Intuitively, it would make sense for prod-
ucts under the “computers” category to be simi-
lar in their information needs. And as such, sys-
tems trained on computer reviews should learn
similar parameters. As most e-commerce websites
use a hierarchical product categorization system,
by starting at the most specific subcategories one
could potentially generalize subcategory-learned
parameters into category-wide trends.

4.5 Review Nature
A review’s style influences the properties that
make it helpful. It is well known that when it
comes to expressing opinions, the way informa-
tion is presented can be almost as important as the
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information itself. Even if two reviewers have a
similar opinion on a product, the way they frame
their opinion can make a big difference when it
comes to how helpful their reviews are. Consider
the task of deciding whether to buy a specific car.
What advice could prove useful for this decision?
We could consider regular advice that is mostly
concerned with the car itself, comparative advice
that relates various aspects of the car with its alter-
natives, and suggestive advice, which focuses on
usage recommendations.

Qazi et al. (2016) used these three types of
advice to classify hotel reviews from TripAdvi-
sor.com and made the following observations:

• For comparative reviews, longer reviews are
considered more helpful.
• For suggestive and regular reviews, shorter

reviews are more helpful.

Similar findings on the influence of review na-
ture were made by Huang et al. (2015): when
differentiating between reviews written by regular
and top Amazon reviewers, they made the follow-
ing observations:

• The influence of word count on review help-
fulness is bounded (after 144 words, the ef-
fect stops) for regular reviewers.
• For top reviewers, the effect is nonexistent.

Similarly to product nature, an important re-
search question for future work is how to identify
and exploit review categories for effective help-
fulness prediction. We expect more sophisticated
textual features to be necessary to differentiate be-
tween meaningful styles of reviews.

4.6 Review Context

Sipos et al. (2014) found evidence that helpfulness
votes are the consequence of judgments of relative
quality (i.e., how the review compares to its neigh-
bors) and that aggregate user voting polarity is in-
fluenced by the specific review ranking that web-
sites display at any given point in time. To prove
this, they collected daily snapshots of the top 50
reviews of 595 Amazon products over a 5 month
period. Four months after the data collection pe-
riod ended, they collected the full review rankings
for all 595 products. This final review ranking was
taken to be the “true” ranking. They studied daily
changes and observed that:

• A review receives more positive votes when
it is under-ranked (under its final ranking).

• A review receives more positive votes when
it is superior to its neighbors.
• A review receives fewer positive votes when

it is over-ranked (over its final ranking).
• A review receives fewer positive votes when

it is locally inferior to its neighbors.

Sipos et al. noted that these observations are
consistent with the interpretation that users vote
to correct “misorderings” in the ranking. This has
important consequences for user-specific helpful-
ness prediction systems. Recall that votes may
express judgments over a set of reviews. If re-
searchers build training sets that identify user
votes and contain sufficient information to repli-
cate context at the time of voting, systems could
learn more about user preferences: a vote would
no longer inform solely on a user’s perceived help-
fulness of a review x, but on the user’s perceived
helpfulness of xwith respect to its neighbors. This
could be particularly useful in sparsity scenarios,
and could lead to better helpfulness predictions.

5 Conclusions and Recommendations

Online product review helpfulness modeling and
prediction is a multi-faceted task that involves
using content and context information to under-
stand and predict helpfulness scores. Researchers
now have at their disposal at least three public,
pre-collected product review datasets — MDSD,
ARD, and Ciao — to build and test systems. Al-
though significant advances have been made on
finding hand-crafted features for helpfulness pre-
diction, effective comparisons between proposed
approaches have been hindered by the lack of stan-
dard evaluation datasets, well-defined baselines,
and feature ablation studies. However, there have
been exciting developments in helpfulness pre-
diction: systems that have attempted to exploit
user and reviewer information, along with those
based on sophisticated models (e.g., probabilis-
tic matrix factorization, HMM-LDA) and neural
network architectures, are promising prospects for
future work. Furthermore, a variety of insightful
observations have been made on moderating fac-
tors. In particular, product opinions, user idiosyn-
crasy, product and review nature, along with re-
view voting context have been shown to influence
the way users vote. This provides suggestive evi-
dence that researchers should adopt a holistic view
of the helpfulness voting process, which may re-
quire information not present in current datasets.
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We conclude our survey with several recom-
mendations for future work on computational
modeling and prediction of review helpfulness.

Task If one acknowledges the role that users
play in determining whether a review is helpful
or not, it seems contradictory to insist on predict-
ing helpfulness scores, which represent the aver-
age perception of a subset of users that (1) may
not be representative of the entire population and
(2) may not serve users well if their perceptions
do not align with the subset of users that voted
(even if the subset consisted of the entire popu-
lation). This is why we consider that user-specific
helpfulness prediction, first presented in Moghad-
dam et al. (2012) and Tang et al. (2013), should
be the goal of future work, as it allows systems
to tailor their predictions to users’ preferences and
needs (much like a recommender system). Note
that pursuing user-specific helpfulness prediction
is not enough. A substantial amount of work must
still be done to find, approximate, and implement
moderating factors in helpfulness prediction sys-
tems, as well as build models that can adequately
reflect the effects of these factors.

Data Given that we recommend user-specific
helpfulness prediction, we propose the develop-
ment of a gold standard that contains informa-
tion that can facilitate the design of user-specific
models (e.g., records of who voted and how, data
relevant to user-profiling recommendations such
as age, location, social networks, purchase and
browsing history and patterns, product reviews
written, and review and product rating histories).
Furthermore, as users frequently vote on reviews
in a different context (scores and neighboring re-
views can vary over time), this dataset should in-
clude temporal information, which would allow
researchers to reconstruct the context under which
votes are cast. To build this dataset, we recom-
mend that researchers work with companies such
as Amazon, which may have such information.

Features and knowledge sources While we en-
courage the development of user-specific helpful-
ness prediction, we by no means imply that a
model should be trained for each user. In fact,
this may not be feasible if a user has cast only a
small number of votes. There are multiple ways to
approach this task. One is to train a user-specific
model for each cluster of “similar” users. Taking
inspirations from collaborative filtering, we could
define or learn user similarity based on their pur-

chasing/browsing/review and product rating histo-
ries (Liu et al., 2014) as well as profiling informa-
tion (Krulwich, 1997), which should be available
in the aforementioned dataset. Further, “similar”
reviews (i.e., reviews on which users vote simi-
larly) could be exploited (Sarwar et al., 2001; Lin-
den et al., 2003). Once product and user/reviewer
factors are incorporated into a model, it may be-
come feasible to use past instances to predict help-
fulness votes (how similar is a test instance to past
situations where a user has voted “helpful”?).
Baseline systems To design a strong baseline
system, first, researchers should consider all pro-
posed features so far, including content features,
context features, and features used to approach
moderating factors. Second, combinations of
these features should be systematically tested on
the different models proposed by researchers. As
we have seen that product nature influences the
voting process, these tests should be conducted
over different products and product categories. We
recommend identifying specific experience and
search products, since the effects of product na-
ture have already been proven for them. Although
ideally, these tests would be carried out on our
proposed gold-standard dataset, we believe that
the Ciao dataset introduced in Tang et al. (2013)
and ARD (McAuley et al., 2015) can prove use-
ful to define a baseline in the short term. Towards
this purpose, the systems proposed in Tang et al.
(2013), Mukherjee et al. (2017), Malik and Hus-
sain (2017), and Chen et al. (2018) could serve as
baselines after being enriched with extra features.
Other platforms, review domains and lan-
guages While we focused on Amazon product
reviews written in English, the majority of the fea-
tures discussed in Section 3 are platform-, domain-
and language-independent, and the existence and
importance of moderating factors described in
Section 4 is by no means limited to product re-
views. Consequently, we encourage researchers
to evaluate the usefulness of these features and
study these moderating factors in different do-
mains, platforms, and languages, possibly identi-
fying new features and moderating factors.
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Abstract

Cross-cultural differences and similarities
are common in cross-lingual natural lan-
guage understanding, especially for re-
search in social media. For instance, peo-
ple of distinct cultures often hold dif-
ferent opinions on a single named en-
tity. Also, understanding slang terms
across languages requires knowledge of
cross-cultural similarities. In this pa-
per, we study the problem of computing
such cross-cultural differences and simi-
larities. We present a lightweight yet ef-
fective approach, and evaluate it on two
novel tasks: 1) mining cross-cultural dif-
ferences of named entities and 2) find-
ing similar terms for slang across lan-
guages. Experimental results show that
our framework substantially outperforms a
number of baseline methods on both tasks.
The framework could be useful for ma-
chine translation applications and research
in computational social science.

1 Introduction

Computing similarities between terms is one of
the most fundamental computational tasks in natu-
ral language understanding. Much work has been
done in this area, most notably using the distri-
butional properties drawn from large monolingual
textual corpora to train vector representations of
words or other linguistic units (Pennington et al.,
2014; Le and Mikolov, 2014). However, com-
puting cross-cultural similarities of terms between
different cultures is still an open research ques-
tion, which is important in cross-lingual natural
language understanding. In this paper, we address
cross-cultural research questions such as these:

∗Both authors contributed equally.

#Nanjing says no to Nagoya# This small Japan, is really irritating. 
What is this? We Chinese people are tolerant of good and evil, 
and you? People do things, and the gods are watching. Japanese, 
be careful, and beware of thunder chop!       (via Bing Translation)

Figure 1: Two social media messages about
Nagoya from different cultures in 2012

1. Were there any cross-cultural differences be-
tween Nagoya (a city in Japan) for native En-
glish speakers and 名古屋 (Nagoya in Chi-
nese) for Chinese people in 2012?

2. What English terms can be used to explain
“浮云” (a Chinese slang term)?

These kinds of questions about cross-cultural dif-
ferences and similarities are important in cross-
cultural social studies, multi-lingual sentiment
analysis, culturally sensitive machine translation,
and many other NLP tasks, especially in social
media. We propose two novel tasks in mining
them from social media.

The first task (Section 4) is to mine cross-
cultural differences in the perception of named
entities (e.g., persons, places and organizations).
Back in 2012, in the case of “Nagoya”, many na-
tive English speakers posted their pleasant travel
experiences in Nagoya on Twitter. However, Chi-
nese people overwhelmingly greeted the city with
anger and condemnation on Weibo (a Chinese ver-
sion of Twitter), because the city mayor denied the
truthfulness of the Nanjing Massacre. Figure 1 il-
lustrates two example microblog messages about
Nagoya in Twitter and Weibo respectively.

The second task (Section 5) is to find simi-
lar terms for slang across cultures and languages.
Social media is always a rich soil where slang
terms emerge in many cultures. For example,
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“浮云” literally means “floating clouds”, but now
almost equals to “nothingness” on the Chinese
web. Our experiments show that well-known on-
line machine translators such as Google Translate
are only able to translate such slang terms to their
literal meanings, even under clear contexts where
slang meanings are much more appropriate.

Enabling intelligent agents to understand such
cross-cultural knowledge can benefit their perfor-
mances in various cross-lingual language process-
ing tasks. Both tasks share the same core problem,
which is how to compute cross-cultural differ-
ences (or similarities) between two terms from
different cultures. A term here can be either an
ordinary word, an entity name, or a slang term. We
focus on names and slang in this paper for they
convey more social and cultural connotations.

There are many works on cross-lingual word
representation (Ruder et al., 2017) to com-
pute general cross-lingual similarities (Camacho-
Collados et al., 2017). Most existing models re-
quire bilingual supervision such as aligned paral-
lel corpora, bilingual lexicons, or comparable doc-
uments (Sarath et al., 2014; Kočiský et al., 2014;
Upadhyay et al., 2016). However, they do not pur-
posely preserve social or cultural characteristics
of named entities or slang terms, and the required
parallel corpora are rare and expensive.

In this paper, we propose a lightweight yet
effective approach to project two incompatible
monolingual word vector spaces into a single
bilingual word vector space, known as social vec-
tor space (SocVec). A key element of SocVec is
the idea of “bilingual social lexicon”, which con-
tains bilingual mappings of selected words reflect-
ing psychological processes, which we believe are
central to capturing the socio-linguistic character-
istics. Our contribution in this paper is two-fold:

(a) We present an effective approach (SocVec)
to mine cross-cultural similarities and differ-
ences of terms, which could benefit research in
machine translation, cross-cultural social me-
dia analysis, and other cross-lingual research
in natural language processing and computa-
tional social science.

(b) We propose two novel and important tasks in
cross-cultural social studies and social media
analysis. Experimental results on our anno-
tated datasets show that the proposed method
outperforms many strong baseline methods.

2 The SocVec Framework

In this section, we first discuss the intuition be-
hind our model, the concept of “social words”
and our notations. Then, we present the overall
workflow of our approach. We finally describe
the SocVec framework in detail.

2.1 Problem Statement

We choose (English, Chinese) to be the target lan-
guage pair throughout this paper for the salient
cross-cultural differences between the east and the
west1. Given an English term W and a Chinese
term U , the core research question is how to com-
pute a similarity score, ccsim(W,U), to represent
the cross-cultural similarities between them.

We cannot directly calculate the similarity be-
tween the monolingual word vectors of W and U ,
because they are trained separately and the seman-
tics of dimension are not aligned. Thus, the chal-
lenge is to devise a way to compute similarities
across two different vector spaces while retaining
their respective cultural characteristics.

A very intuitive solution is to firstly translate
the Chinese term U to its English counterpart U ′

through a Chinese-English bilingual lexicon, and
then regard ccsim(W,U) as the (cosine) similarity
between W and U ′ with their monolingual word
embeddings. However, this solution is not promis-
ing in some common cases for three reasons:
(a) if U is an OOV (Out of Vocabulary) term, e.g.,

a novel slang term, then there is probably no
translation U ′ in bilingual lexicons.

(b) if W and U are names referring to the same
named entity, then we have U ′ = W . There-
fore, ccsim(W,U) is just the similarity be-
tweenW and itself, and we cannot capture any
cross-cultural differences with this method.

(c) this approach does not explicitly preserve the
cultural and social contexts of the terms.

To overcome the above problems, our intuition
is to project both English and Chinese word vec-
tors into a single third space, known as SocVec,
and the projection is supposed to purposely carry
cultural features of terms.

2.2 Social Words and Our Notations

Some research in psychology and sociology (Ki-
tayama et al., 2000; Gareis and Wilkins, 2011)

1Nevertheless, the techniques are language independent
and thus can be utilized for any language pairs so long as the
necessary resources outlined in Section 2.3 are available.
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Figure 2: Workflow for computing the cross-
cultural similarity between an English word W and
a Chinese word U, denoted by ccsim(W,U)

show that culture can be highly related to emo-
tions and opinions people express in their discus-
sions. As suggested by Tausczik and Pennebaker
(2009), we thus define the concept of “social
word” as the words directly reflecting opinion,
sentiment, cognition and other human psycho-
logical processes2, which are important to cap-
turing cultural and social characteristics. Both
Elahi and Monachesi (2012) and Garimella et al.
(2016a) find such social words are most effec-
tive culture/socio-linguistic features in identifying
cross-cultural differences.

We use these notations throughout the paper:
CnVec and EnVec denote the Chinese and English
word vector space, respectively; CSV and ESV de-
note the Chinese and English social word vocab;
BL means Bilingual Lexicon, and BSL is short for
Bilingual Social Lexicon; finally, we use Ex, Cx

and Sx to denote the word vectors of the word x
in EnVec, CnVec and SocVec spaces respectively.

2.3 Overall Workflow

Figure 2 shows the workflow of our framework to
construct the SocVec and compute ccsim(W,U).
Our proposed SocVec model attacks the problem
with the help of three low-cost external resources:
(i) an English corpus and a Chinese corpus from
social media; (ii) an English-to-Chinese bilingual
lexicon (BL); (iii) an English social word vocabu-
lary (ESV) and a Chinese one (CSV).

We train English and Chinese word embeddings
(EnVec and CnVec) on the English and Chinese so-
cial media corpus respectively. Then, we build a
BSL from the CSV, ESV and BL (see Section 2.4).
The BSL further maps the previously incompati-

2Example social words in English include fawn, inept,
tremendous, gratitude, terror, terrific, loving, traumatic, etc.
We discuss the sources of such social words in Section 3.

ble EnVec and CnVec into a single common vector
space SocVec, where two new vectors, SW for W
and SU for U , are finally comparable.

2.4 Building the BSL
The process of building the BSL is illustrated
in Figure 3. We first extract our bilingual lexi-
con (BL), where confidence score wi represents
the probability distribution on the multiple trans-
lations for each word. Afterwards, we use BL to
translate each social word in the ESV to a set of
Chinese words and then filter out all the words that
are not in the CSV. Now, we have a set of Chinese
social words for each English social word, which
is denoted by a “translation set”. The final step is
to generate a Chinese “pseudo-word” for each En-
glish social word using their corresponding trans-
lation sets. A “pseudo-word” can be either a real
word that is the most representative word in the
translation set, or an imaginary word whose vec-
tor is a certain combination of the vectors of the
words in the translation set.

For example, in Figure 3, the English social
word “fawn” has three Chinese translations in the
bilingual lexicon, but only two of them (under-
lined) are in the CSV. Thus, we only keep these
two in the translation set in the filtered bilingual
lexicon. The pseudo-word generator takes the
word vectors of the two words (in the black box),
namely 奉承 (flatter) and 谄媚 (toady), as input,
and generates the pseudo-word vector denoted by
“fawn*”. Note that the direction of building BSL
can also be from Chinese to English, in the same
manner. However, we find that the current direc-
tion gives better results due to the better translation
quality of our BL in this direction.

Given an English social word, we denote ti as
the ith Chinese word of its translation set consist-
ing of N social words. We design four intuitive
types of pseudo-word generator as follows, which
are tested in the experiments:
(1) Max. Maximum of the values in each dimen-
sion, assuming dimensionality is K:

Pseudo(Ct1 , ...,CtN) =



max(C

(1)
t1
, ..., C

(1)
tN

)
...

max(C
(K)
t1

, ..., C
(K)
tN

)



T

(2) Avg. Average of the values in every dimension:

Pseudo(Ct1 , ...,CtN) =
1

N

N∑

i

Cti
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Figure 3: Generating an entry in the BSL for “fawn” and its pseudo-word “fawn*”

(3) WAvg. Weighted average value of every di-
mension with respect to the translation confidence:

Pseudo(Ct1 , ...,CtN) =
1

N

N∑

i

wiCti

(4) Top. The most confident translation:

Pseudo(Ct1 , ...,CtN) = Ctk , k = argmax
i

wi

Finally, the BSL contains a set of English-
Chinese word vector pairs, where each entry rep-
resents an English social word and its Chinese
pseudo-word based on its “translation set”.

2.5 Constructing the SocVec Space
Let Bi denote the English word of the ith entry of
the BSL, and its corresponding Chinese pseudo-
word is denoted byB∗i . We can project the English
word vector EW into the SocVec space by comput-
ing the cosine similarities between EW and each
English word vector in BSL as values on SocVec
dimensions, effectively constructing a new vector
SW of size L. Similarly, we map a Chinese word
vector CU to be a new vector SU. SW and SU

belong to the same vector space SocVec and are
comparable. The following equation illustrates the
projection, and how to compute ccsim3.

ccsim(W,U) := f(EW,CU)

= sim






cos(EW,EB1)

...
cos(EW,EBL)



T

,



cos(CU,CB∗1)

...
cos(CU,CB∗

L
)



T



= sim(SW,SU)

For example, if W is “Nagoya” and U is “名古
屋”, we compute the cosine similarities between
“Nagoya” and each English social word in the BSL
with their monolingual word embeddings in En-
glish. Such similarities compose Snagoya. Simi-
larly, we compute the cosine similarities between

3The function sim is a generic similarity function, for
which several metrics are considered in experiments.

“名古屋” and each Chinese pseudo-word, and
compose the social word vector S名古屋.

In other words, for each culture/language, the
new word vectors like SW are constructed based
on the monolingual similarities of each word to
the vectors of a set of task-related words (“social
words” in our case). This is also a significant part
of the novelty of our transformation method.

3 Experimental Setup

Prior to evaluating SocVec with our two proposed
tasks in Section 4 and Section 5, we present our
preparation steps as follows.

Social Media Corpora Our English Twitter
corpus is obtained from Archive Team’s Twitter
stream grab4. The Chinese Weibo corpus comes
from Open Weiboscope Data Access5 (Fu et al.,
2013). Both corpora cover the whole year of 2012.
We then randomly down-sample each corpus to
100 million messages where each message con-
tains at least 10 characters, normalize the text (Han
et al., 2012), lemmatize the text (Manning et al.,
2014) and use LTP (Che et al., 2010) to perform
word segmentation for the Chinese corpus.

Entity Linking and Word Embedding Entity
linking is a preprocessing step which links vari-
ous entity mentions (surface forms) to the identity
of corresponding entities. For the Twitter corpus,
we use Wikifier (Ratinov et al., 2011; Cheng and
Roth, 2013), a widely used entity linker in En-
glish. Because no sophisticated tool for Chinese
short text is available, we implement our own tool
that is greedy for high precision. We train En-
glish and Chinese monolingual word embedding
respectively using word2vec’s skip-gram method
with a window size of 5 (Mikolov et al., 2013b).

Bilingual Lexicon Our bilingual lexicon is
collected from Microsoft Translator6, which trans-
lates English words to multiple Chinese words

4
https://archive.org/details/twitterstream

5
http://weiboscope.jmsc.hku.hk/datazip/

6
http://www.bing.com/translator/api/Dictionary/

Lookup?from=en&to=zh-CHS&text=<input_word>
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with confidence scores. Note that all named en-
tities and slang terms used in the following exper-
iments are excluded from this bilingual lexicon.

Social Word Vocabulary Our social word vo-
cabularies come from Empath (Fast et al., 2016)
and OpinionFinder (Choi et al., 2005) for En-
glish, and TextMind (Gao et al., 2013) for Chi-
nese. Empath is similar to LIWC (Tausczik and
Pennebaker, 2009), but has more words and more
categories and is publicly available. We manu-
ally select 91 categories of words that are rele-
vant to human perception and psychological pro-
cesses following Garimella et al. (2016a). Opin-
ionFinder consists of words relevant to opinions
and sentiments, and TextMind is a Chinese coun-
terpart for Empath. In summary, we obtain 3,343
words from Empath, 3,861 words from Opinion-
Finder, and 5,574 unique social words in total.

4 Task 1: Mining cross-cultural
differences of named entities

Task definition: This task is to discover and quan-
tify cross-cultural differences of concerns towards
named entities. Specifically, the input in this task
is a list of 700 named entities of interest and two
monolingual social media corpora; the output is
the scores for the 700 entities indicating the cross-
cultural differences of the concerns towards them
between two corpora. The ground truth is from the
labels collected from human annotators.

4.1 Ground Truth Scores

Harris (1954) states that the meaning of words is
evidenced by the contexts they occur with. Like-
wise, we assume that the cultural properties of an
entity can be captured by the terms they always
co-occur within a large social media corpus. Thus,
for each of randomly selected 700 named entities,
we present human annotators with two lists of 20
most co-occurred terms within Twitter and Weibo
corpus respectively.

Our annotators are instructed to rate the topic-
relatedness between the two word lists using one
of following labels: “very different”, “different”,
“hard to say”, “similar” and “very similar”. We
do this for efficiency and avoiding subjectivity. As
the word lists presented come from social media
messages, the social and cultural elements are al-
ready embedded in their chances of occurrence.
All four annotators are native Chinese speakers but
have excellent command of English and lived in

the US extensively, and they are trained with many
selected examples to form shared understanding of
the labels. The inter-annotator agreement is 0.67
by Cohen’s kappa coefficient, suggesting substan-
tial correlation (Landis and Koch, 1977).

4.2 Baseline and Our Methods

We propose eight baseline methods for this novel
task: distribution-based methods (BL-JS, E-BL-
JS, and WN-WUP) compute cross-lingual relat-
edness between two lists of the words surround-
ing the input English and Chinese terms respec-
tively (LE and LC); transformation-based meth-
ods (LTrans and BLex) compute the vector repre-
sentation in English and Chinese corpus respec-
tively, and then train a transformation; MCCA,
MCluster and Duong are three typical bilingual
word representation models for computing gen-
eral cross-lingual word similarities.

The LE and LC in the BL-JS and WN-WUP
methods are the same as the lists that annotators
judge. BL-JS (Bilingual Lexicon Jaccard Similar-
ity) uses the bilingual lexicon to translate LE to a
Chinese word list L∗E as a medium, and then cal-
culates the Jaccard Similarity between L∗E and LC
as JEC . Similarly, we compute JCE . Finally, we
regard (JEC + JCE)/2 as the score of this named
entity. E-BL-JS (Embedding-based Jaccard Simi-
larity) differs from BL-JS in that it instead com-
pares the two lists of words gathered from the
rankings of word embedding similarities between
the name of entities and all English words and
Chinese words respectively. WN-WUP (Word-
Net Wu-Palmer Similarity) uses Open Multilingual
Wordnet (Wang and Bond, 2013) to compute the
average similarities over all English-Chinese word
pairs constructed from the LE and LC .

We follow the steps of Mikolov et al. (2013a) to
train a linear transformation (LTrans) matrix be-
tween EnVec and CnVec, using 3,000 translation
pairs with maximum confidences in the bilingual
lexicon. Given a named entity, this solution simply
calculates the cosine similarity between the vec-
tor of its English name and the transformed vec-
tor of its Chinese name. BLex (Bilingual Lexi-
con Space) is similar to our SocVec but it does not
use any social word vocabularies but uses bilin-
gual lexicon entries as pivots instead.

MCCA (Ammar et al., 2016) takes two trained
monolingual word embeddings with a bilingual
lexicon as input, and develop a bilingual word em-
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Entity Twitter topics Weibo topics

Maldives coup, president Nasheed quit, political
crisis holiday, travel, honeymoon, paradise, beach

Nagoya tour, concert, travel, attractive, Osaka Mayor Takashi Kawamura, Nanjing Massacre, denial of history

Quebec
Conservative Party, Liberal Party,
politicians, prime minister, power
failure

travel, autumn, maples, study abroad, immigration,
independence

Philippines gunman attack, police, quake, tsunami South China Sea, sovereignty dispute, confrontation, protest

Yao Ming NBA, Chinese, good player, Asian patriotism, collective values, Jeremy Lin, Liu Xiang, Chinese
Law maker, gold medal superstar

USC college football, baseball, Stanford,
Alabama, win, lose

top destination for overseas education, Chinese student
murdered, scholars, economics, Sino American politics

Table 1: Selected culturally different entities with summarized Twitter and Weibo’s trending topics

bedding space. It is extended from the work of
Faruqui and Dyer (2014), which performs slightly
worse in the experiments. MCluster (Ammar
et al., 2016) requires re-training the bilingual word
embeddings from the two mono-lingual corpora
with a bilingual lexicon. Similarly, Duong (Duong
et al., 2016) retrains the embeddings from mono-
lingual corpora with an EM-like training algo-
rithm. We also use our BSL as the bilingual lex-
icon in these methods to investigate its effective-
ness and generalizability. The dimensionality is
tuned from {50, 100, 150, 200} in all these bilin-
gual word embedding methods.

With our constructed SocVec space, given a
named entity with its English and Chinese names,
we can simply compute the similarity between
their SocVecs as its cross-cultural difference score.
Our method is based on monolingual word embed-
dings and a BSL, and thus does not need the time-
consuming re-training on the corpora.

4.3 Experimental Results

For qualitative evaluation, Table 1 shows some of
the most culturally different entities mined by the
SocVec method. The hot and trendy topics on
Twitter and Weibo are manually summarized to
help explain the cross-cultural differences. The
perception of these entities diverges widely be-
tween English and Chinese social media, thus sug-
gesting significant cross-cultural differences. Note
that some cultural differences are time-specific.
We believe such temporal variations of cultural
differences can be valuable and beneficial for so-
cial studies as well. Investigating temporal factors
of cross-cultural differences in social media can be
an interesting future research topic in this task.

In Table 2, we evaluate the benchmark methods
and our approach with three metrics: Spearman
and Pearson, where correlation is computed be-

Method Spearman Pearson MAP
BL-JS 0.276 0.265 0.644

WN-WUP 0.335 0.349 0.677
E-BL-JS 0.221 0.210 0.571
LTrans 0.366 0.385 0.644
BLex 0.596 0.595 0.765

MCCA-BL(100d) 0.325 0.343 0.651
MCCA-BSL(150d) 0.357 0.376 0.671
MCluster-BL(100d) 0.365 0.388 0.693

MCluster-BSL(100d) 0.391 0.425 0.713
Duong-BL(100d) 0.618 0.627 0.785

Duong-BSL(100d) 0.625 0.631 0.791
SocVec:opn 0.668 0.662 0.834
SocVec:all 0.676 0.671 0.834

SocVec:noun 0.564 0.562 0.756
SocVec:verb 0.615 0.618 0.779
SocVec:adj. 0.636 0.639 0.800

Table 2: Comparison of Different Methods

tween truth averaged scores (quantifying the labels
from 1.0 to 5.0) and computed cultural difference
scores from different methods; Mean Average Pre-
cision (MAP), which converts averaged scores as
binary labels, by setting 3.0 as the threshold. The
SocVec:opn considers only OpinionFinder as the
ESV, while SocVec:all uses the union of Empath
and OpinionFinder vocabularies7.

Lexicon Ablation Test. To show the effec-
tiveness of social words versus other type of
words as the bridge between the two cultures,
we also compare the results using sets of nouns
(SocVec:noun), verbs (SocVec:verb) and adjec-
tives (SocVec:adj.). All vocabularies under com-
parison are of similar sizes (around 5,000), indi-
cating that the improvement of our method is sig-
nificant. Results show that our SocVec models, and
in particular, the SocVec model using the social
words as cross-lingual media, performs the best.

7The following tuned parameters are used in SocVec
methods: 5-word context window, 150 dimensions monolin-
gual word vectors, cosine similarity as the sim function, and
“Top” as the pseudo-word generator.
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Similarity Spearman Pearson MAP
PCorr. 0.631 0.625 0.806
L1 + M 0.666 0.656 0.824
Cos 0.676 0.669 0.834
L2 + E 0.676 0.671 0.834

Table 3: Different Similarity Functions

Generator Spearman Pearson MAP
Max. 0.413 0.401 0.726
Avg. 0.667 0.625 0.831

W.Avg. 0.671 0.660 0.832
Top 0.676 0.671 0.834

Table 4: Different Pseudo-word Generators

Similarity Options. We also evaluate the ef-
fectiveness of four different similarity options
in SocVec, namely, Pearson Correlation Coef-
ficient (PCorr.), L1-normalized Manhattan dis-
tance (L1+M), Cosine Similarity (Cos) and L2-
normalized Euclidean distance (L2+E). From Ta-
ble 3, we conclude that among these four options,
Cos and L2+E perform the best.

Pseudo-word Generators. Table 4 shows ef-
fect of using four pseudo-word generator func-
tions, from which we can infer that “Top” gen-
erator function performs best for it reduces some
noisy translation pairs.

5 Task 2: Finding most similar words for
slang across languages

Task Description: This task is to find the most
similar English words of a given Chinese slang
term in terms of its slang meanings and senti-
ment, and vice versa. The input is a list of
English/Chinese slang terms of interest and two
monolingual social media corpora; the output is a
list of Chinese/English word sets corresponding to
each input slang term. Simply put, for each given
slang term, we want to find a set of the words in
a different language that are most similar to itself
and thus can help people understand it across lan-
guages. We propose Average Cosine Similarity
(Section 5.3) to evaluate a method’s performance
with the ground truth (presented below).

5.1 Ground Truth

Slang Terms. We collect the Chinese slang terms
from an online Chinese slang glossary8 consisting
of 200 popular slang terms with English expla-
nations. For English, we resort to a slang word

8
https://www.chinasmack.com/glossary

Gg Bi Bd CC LT
18.24 16.38 17.11 17.38 9.14

TransBL MCCA MCluster Duong SV
18.13 17.29 17.47 20.92 23.01

(a) Chinese Slang to English

Gg Bi Bd LT TransBL
6.40 15.96 15.44 7.32 11.43

MCCA MCluster Duong SV
15.29 14.97 15.13 17.31

(b) English Slang to Chinese

Table 5: ACS Sum Results of Slang Translation

list from OnlineSlangDictionary9 with explana-
tions and downsample the list to 200 terms.
Truth Sets. For each Chinese slang term, its truth
set is a set of words extracted from its English ex-
planation. For example, we construct the truth set
of the Chinese slang term “二百五” by manually
extracting significant words about its slang mean-
ings (bold) in the glossary:
二二二百百百五五五: A foolish person who is lacking in sense

but still stubborn, rude, and impetuous.
Similarly, for each English slang term, its Chinese
word sets are the translation of the words hand
picked from its English explanation.

5.2 Baseline and Our Methods

We propose two types of baseline methods for
this task. The first is based on well-known on-
line translators, namely Google (Gg), Bing (Bi)
and Baidu (Bd). Note that experiments using
them are done in August, 2017. Another baseline
method for Chinese is CC-CEDICT10 (CC), an on-
line public Chinese-English dictionary, which is
constantly updated for popular slang terms.

Considering situations where many slang terms
have literal meanings, it may be unfair to re-
trieve target terms from such machine translators
by solely inputing slang terms without specific
contexts. Thus, we utilize example sentences of
their slang meanings from some websites (mainly
from Urban Dictionary11). The following example
shows how we obtain the target translation terms
for the slang word “fruitcake” (an insane person):

Input sentence: Oh man, you don’t want to date
that girl. She’s always drunk and yelling. She is a
total fruitcake.12

9
http://onlineslangdictionary.com/word-list/

10
https://cc-cedict.org/wiki/

11
http://www.urbandictionary.com/

12
http://www.englishbaby.com/lessons/4349/slang/

fruitcake
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Slang Explanation Google Bing Baidu Ours

浮云
something as ephemeral and
unimportant as “passing clouds” clouds nothing floating

clouds nothingness, illusion

水军
“water army”, people paid to slander
competitors on the Internet and to
help shape public opinion

Water army Navy Navy propaganda,
complicit, fraudulent

floozy a woman with a reputation for
promiscuity N/A 劣根性

(depravity) 荡妇(slut) 骚货(slut),妖
精(promiscuous)

fruitcake a crazy person, someone who is
completely insane

水果蛋糕
(fruit cake)

水果蛋糕
(fruit cake)

水果蛋糕
(fruit cake)

怪诞(bizarre),厌
烦(annoying)

Table 6: Bidirectional Slang Translation Examples Produced by SocVec

Google Translation: 哦, 男人, 你不想约会那个女

孩。她总是喝醉了,大喊大叫。她是一个水水水果果果蛋蛋蛋糕糕糕。

Another lines of baseline methods is scoring-
based. The basic idea is to score all words in our
bilingual lexicon and consider the top K words as
the target terms. Given a source term to be trans-
lated, the Linear Transform (LT), MCCA, MClus-
ter and Duong methods score the candidate tar-
get terms by computing cosine similarities in their
constructed bilingual vector space (with the tuned
best settings in previous evaluation). A more so-
phisticated baseline (TransBL) leverages the bilin-
gual lexicon: for each candidate target term w in
the target language, we first obtain its translations
Tw back into the source language and then cal-
culate the average word similarities between the
source term and the translations Tw as w’s score.

Our SocVec-based method (SV) is also scoring-
based. It simply calculates the cosine similarities
between the source term and each candidate target
term within SocVec space as their scores.

5.3 Experimental Results
To quantitatively evaluate our methods, we need to
measure similarities between a produced word set
and the ground truth set. Exact-matching Jaccard
similarity is too strict to capture valuable related-
ness between two word sets. We argue that aver-
age cosine similarity (ACS) between two sets of
word vectors is a better metric for evaluating the
similarity between two word sets.

ACS(A,B) =
1

|A||B|

|A|∑

i=1

|B|∑

j=1

Ai ·Bj

‖Ai‖‖Bj‖

The above equation illustrates such computation,
where A and B are the two word sets: A is the
truth set and B is a similar list produced by each
method. In the previous case of “二百五” (Sec-
tion 5.1), A is {foolish, stubborn, rude, impetu-
ous} while B can be {imbecile, brainless, scum-

Chinese Slang English Slang Explanation

萌
adorbz, adorb,
adorbs, tweeny,

attractiveee
cute, adorable

二百五
shithead, stupidit,

douchbag
A foolish

person

鸭梨
antsy, stressy,

fidgety, grouchy,
badmood

stress, pressure,
burden

Table 7: Slang-to-Slang Translation Examples

bag, imposter}. Ai and Bj denote the word vector
of the ith word in A and jth word in B respec-
tively. The embeddings used in ACS computations
are pre-trained GloVe word vectors13 and thus the
computation is fair among different methods.

Experimental results of Chinese and English
slang translation in terms of the sum of ACS over
200 terms are shown in Table 5. The perfor-
mance of online translators for slang typically de-
pends on human-set rules and supervised learning
on well-annotated parallel corpora, which are rare
and costly, especially for social media where slang
emerges the most. This is probably the reason why
they do not perform well. The Linear Transfor-
mation (LT) model is trained on highly confident
translation pairs in the bilingual lexicon, which
lacks OOV slang terms and social contexts around
them. The TransBL method is competitive be-
cause its similarity computations are within mono-
lingual semantic spaces and it makes great use of
the bilingual lexicon, but it loses the information
from the related words that are not in the bilin-
gual lexicon. Our method (SV) outperforms base-
lines by directly using the distances in the SocVec
space, which proves that the SocVec well captures
the cross-cultural similarities between terms.

To qualitatively evaluate our model, in Table 6,
we present several examples of our translations for
Chinese and English slang terms as well as their

13
https://nlp.stanford.edu/projects/glove/
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explanations from the glossary. Our results are
highly correlated with these explanations and cap-
ture their significant semantics, whereas most on-
line translators just offer literal translations, even
within obviously slang contexts. We take a step
further to directly translate Chinese slang terms to
English slang terms by filtering out ordinary (non-
slang) words in the original target term lists, with
examples shown in Table 7.

6 Related Work

Although social media messages have been essen-
tial resources for research in computational social
science, most works based on them only focus on a
single culture and language (Petrovic et al., 2010;
Paul and Dredze, 2011; Rosenthal and McKeown,
2015; Wang and Yang, 2015; Zhang et al., 2015;
Lin et al., 2017). Cross-cultural studies have been
conducted on the basis of a questionnaire-based
approach for many years. There are only a few
of such studies using NLP techniques.

Nakasaki et al. (2009) present a framework to
visualize the cross-cultural differences in concerns
in multilingual blogs collected with a topic key-
word. Elahi and Monachesi (2012) show that
cross-cultural analysis through language in social
media data is effective, especially using emotion
terms as culture features, but the work is restricted
in monolingual analysis and a single domain (love
and relationship). Garimella et al. (2016a) investi-
gate the cross-cultural differences in word usages
between Australian and American English through
their proposed “socio-linguistic features” (similar
to our social words) in a supervised way. With
the data of social network structures and user in-
teractions, Garimella et al. (2016b) study how to
quantify the controversy of topics within a culture
and language. Gutiérrez et al. (2016) propose an
approach to detect differences of word usage in
the cross-lingual topics of multilingual topic mod-
eling results. To the best of our knowledge, our
work for Task 1 is among the first to mine and
quantify the cross-cultural differences in concerns
about named entities across different languages.

Existing research on slang mainly focuses on
automatic discovering of slang terms (Elsahar and
Elbeltagy, 2014) and normalization of noisy texts
(Han et al., 2012) as well as slang formation.
Ni and Wang (2017) are among the first to pro-
pose an automatic supervised framework to mono-
lingually explain slang terms using external re-

sources. However, research on automatic transla-
tion or cross-lingually explanation for slang terms
is missing from the literature. Our work in Task
2 fills the gap by computing cross-cultural sim-
ilarities with our bilingual word representations
(SocVec) in an unsupervised way. We believe this
application is useful in machine translation for so-
cial media (Ling et al., 2013).

Many existing cross-lingual word embedding
models rely on expensive parallel corpora with
word or sentence alignments (Klementiev et al.,
2012; Kočiský et al., 2014). These works often
aim to improve the performance on monolingual
tasks and cross-lingual model transfer for docu-
ment classification, which does not require cross-
cultural signals. We position our work in a broader
context of “monolingual mapping” based cross-
lingual word embedding models in the survey of
Ruder et al. (2017). The SocVec uses only lexi-
con resource and maps monolingual vector spaces
into a common high-dimensional third space by
incorporating social words as pivot, where orthog-
onality is approximated by setting clear meaning
to each dimension of the SocVec space.

7 Conclusion

We present the SocVec method to compute cross-
cultural differences and similarities, and evaluate
it on two novel tasks about mining cross-cultural
differences in named entities and computing cross-
cultural similarities in slang terms. Through ex-
tensive experiments, we demonstrate that the pro-
posed lightweight yet effective method outper-
forms a number of baselines, and can be useful
in translation applications and cross-cultural stud-
ies in computational social science. Future di-
rections include: 1) mining cross-cultural differ-
ences in general concepts other than names and
slang, 2) merging the mined knowledge into exist-
ing knowledge bases, and 3) applying the SocVec
in downstream tasks like machine translation.14
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Abstract

Previous works in computer science, as
well as political and social science, have
shown correlation in text between political
ideologies and the moral foundations ex-
pressed within that text. Additional work
has shown that policy frames, which are
used by politicians to bias the public to-
wards their stance on an issue, are also
correlated with political ideology. Based
on these associations, this work takes a
first step towards modeling both the lan-
guage and how politicians frame issues on
Twitter, in order to predict the moral foun-
dations that are used by politicians to ex-
press their stances on issues. The contri-
butions of this work includes a dataset an-
notated for the moral foundations, anno-
tation guidelines, and probabilistic graph-
ical models which show the usefulness of
jointly modeling abstract political slogans,
as opposed to the unigrams of previous
works, with policy frames for the predic-
tion of the morality underlying political
tweets.

1 Introduction

Social media microblogging platforms, specifi-
cally Twitter, have become highly influential and
relevant to current political events. Such plat-
forms allow politicians to communicate with the
public as events are unfolding and shape public
discourse on various issues. Furthermore, politi-
cians are able to express their stances on issues
and by selectively using certain political slogans,
reveal their underlying political ideologies and
moral views on an issue. Previous works in po-
litical and social science have shown a correlation
between political ideology, stances on political is-

sues, and the moral convictions used to justify
these stances (Graham et al., 2009). For example,
Figure 1 presents a tweet, by a prominent member
of the U.S. Congress, which expresses concern

We are permitting the incarceration and
shooting of thousands of black and
brown boys in their formative years.

Figure 1: Example Tweet Highlighting Classifica-
tion Difficulty.

about the fate of young individuals (i.e., incarcer-
ation, shooting), specifically for vulnerable mem-
bers of minority groups. The Moral Foundations
Theory (MFT) (Haidt and Joseph, 2004; Haidt and
Graham, 2007) provides a theoretical framework
for explaining these nuanced distinctions. The the-
ory suggests that there are five basic moral values
which underlie human moral perspectives, emerg-
ing from evolutionary, social, and cultural origins.
These are referred to as the moral foundations
(MF) and include Care/Harm, Fairness/Cheating,
Loyalty/Betrayal, Authority/Subversion, and Pu-
rity/Degradation (Table 1 provides a more de-
tailed explanation). The above example reflects
the moral foundations that shape the author’s per-
spective on the issue: Harm and Cheating.

Traditionally, analyzing text based on the MFT
has relied on the use of a lexical resource,
the Moral Foundations Dictionary (MFD) (Haidt
and Graham, 2007; Graham et al., 2009). The
MFD, similar to LIWC (Pennebaker et al., 2001;
Tausczik and Pennebaker, 2010), associates a list
of related words with each one of the moral foun-
dations. Therefore, analyzing text equates to
counting the number of occurrences of words in
the text which also match the words in the MFD.
Given the highly abstract and generalized nature
of the moral foundations, this approach often falls
short of dealing with the highly ambiguous text

720



politicians use to express their perspectives on
specific issues. The following tweet, by another
prominent member of the U.S. Congress, reflects
the author’s use of both the Harm and Cheating
moral foundations.

30k Americans die to gun violence.
Still, I'm moving to North Carolina
where it's safe to go to the bathroom.

Figure 2: Example Tweet Highlighting Classifica-
tion Difficulty.

While the first foundation (Harm) can be di-
rectly identified using a word match to the MFD
(as shown in red), the second foundation requires
first identifying the sarcastic expression referring
to LGBTQ rights and then using extensive world
knowledge to determine the appropriate moral
foundation. 1 Relying on a match of safe to the
MFD would indicate the Care MF is being used
instead of the Cheating foundation.

In this paper, we aim to solve this chal-
lenge by suggesting a data-driven approach to
moral foundation identification in tweets. Pre-
vious work (Garten et al., 2016) has looked
at classification-based approaches over tweets
specifically related to Hurricane Sandy, augment-
ing the textual content with background knowl-
edge using entity linking (Lin et al., 2017). Dif-
ferent from this and similar works, we look at
the tweets of U.S. politicians over a long period
of time, discussing a large number of events, and
touching on several different political issues. Our
approach is guided by the intuition that the ab-
stract moral foundations will manifest differently
in text, depending on the specific characteristics of
the events discussed in the tweet. As a result, it is
necessary to correctly model the relevant contex-
tualizing information.

Specifically, we are interested in exploring how
political ideology, language, and framing interact
to represent morality on Twitter. We examine the
interplay of political slogans (for example “repeal
and replace” when referring to the Affordable
Care Act), and policy framing techniques (Boyd-
stun et al., 2014; Johnson et al., 2017) as features
for predicting the underlying moral values which
are expressed in politicians’ tweets. Additionally,
we identify high-level themes characterizing the

1The tweet refers to legislation proposed in 2016 concern-
ing transgender bathroom access restrictions.

main point of the tweet, which allows the model
to identify the author’s perspective on specific is-
sues and generalize over the specific wording used
(for example, if the tweet mentions Religion or
Political Maneuvering).

This information is incorporated into global
probabilistic models using Probabilistic Soft
Logic (PSL), a graphical probabilistic modeling
framework (Bach et al., 2013). PSL specifies
high level rules over a relational representation of
these features, which are compiled into a graphi-
cal model called a hinge-loss Markov random field
that is used to make the final prediction. Our ex-
periments show the importance of modeling con-
textualizing information, leading to significant im-
provements over dictionary driven approaches and
purely lexical methods.

In summary, this paper makes the following
contributions: (1) This work is among the first
to explore jointly modeling language and polit-
ical framing techniques for the classification of
moral foundations used in the tweets of U.S.
politicians on Twitter. (2) We provide a descrip-
tion of our annotation guidelines and an annotated
dataset of 2,050 tweets.2 (3) We suggest compu-
tational models which easily adapt to new policy
issues, for the classification of the moral founda-
tions present in tweets.

2 Related Works

In this paper, we explore how political ideol-
ogy, language, framing, and morality interact on
Twitter. Previous works have studied framing
in longer texts, such as congressional speeches
and news (Fulgoni et al., 2016; Tsur et al., 2015;
Card et al., 2015; Baumer et al., 2015), as well
as issue-independent framing on Twitter (John-
son and Goldwasser, 2016; Johnson et al., 2017).
Ideology measurement (Iyyer et al., 2014; Bam-
man and Smith, 2015; Sim et al., 2013; Djemili
et al., 2014), political sentiment analysis (Pla and
Hurtado, 2014; Bakliwal et al., 2013), and polls
based on Twitter political sentiment (Bermingham
and Smeaton, 2011; O’Connor et al., 2010; Tu-
masjan et al., 2010) are also related to the study
of framing. The association between Twitter and
framing in molding public opinion of events and
issues (Burch et al., 2015; Harlow and Johnson,
2011; Meraz and Papacharissi, 2013; Jang and

2The data will be available at http://purduenlp.
cs.purdue.edu/projects/twittermorals.

721



MORAL FOUNDATION AND BRIEF DESCRIPTION
1. Care/Harm: Care for others, generosity, compassion,
ability to feel pain of others, sensitivity to suffering of oth-
ers, prohibiting actions that harm others.
2. Fairness/Cheating: Fairness, justice, reciprocity, recip-
rocal altruism, rights, autonomy, equality, proportionality,
prohibiting cheating.
3. Loyalty/Betrayal: Group affiliation and solidarity,
virtues of patriotism, self-sacrifice for the group, prohibit-
ing betrayal of one’s group.
4. Authority/Subversion: Fulfilling social roles, submit-
ting to authority, respect for social hierarchy/traditions,
leadership, prohibiting rebellion against authority.
5. Purity/Degradation: Associations with the sacred
and holy, disgust, contamination, religious notions which
guide how to live, prohibiting violating the sacred.
6. Non-moral: Does not fall under any other foundations.

Table 1: Brief Descriptions of Moral Foundations.

Hart, 2015) has also been studied.
The connection between morality and politi-

cal ideology has been explored in the fields of
psychology and sociology (Graham et al., 2009,
2012). Moral foundations were also used to in-
form downstream tasks, by using the MFD to
identify the moral foundations in partisan news
sources (Fulgoni et al., 2016), or to construct fea-
tures for other downstream tasks (Volkova et al.,
2017). Several recent works have looked into us-
ing data-driven methods that go beyond the MFD
to study tweets related to Hurricane Sandy (Garten
et al., 2016; Lin et al., 2017).

3 Data Annotation

The Moral Foundations Theory (Haidt and Gra-
ham, 2007) was proposed by sociologists and psy-
chologists as a way to understand how morality
develops, as well as its similarities and differences
across cultures. The theory consists of the five
moral foundations shown in Table 1. The goal of
this work is to classify the tweets of the Congres-
sional Tweets Dataset (Johnson et al., 2017) with
the moral foundation implied in the tweet.

We first attempted to use Amazon Mechanical
Turk for annotation, but found that most Mechani-
cal Turkers would choose the Care/Harm or Fair-
ness/Cheating label a majority of the time. Ad-
ditionally, annotators preferred choosing first the
foundation branch (i.e., Care/Harm) and then its
sentiment (positive or negative) as opposed to the
choice of each foundation separately, i.e., given
the choice between Harm or Care/Harm and Neg-
ative, annotators preferred the latter. Based on
these observations, two annotators, one liberal and

one conservative (self-reported), manually anno-
tated a subset of tweets. This subset had an
inter-annotator agreement of 67.2% using Cohen’s
Kappa coefficient. The annotators then discussed
and agreed on general guidelines which were used
to label the remaining tweets of the dataset. The
resulting dataset has an inter-annotator agreement
of 79.2% using Cohen’s Kappa statistic. The over-
all distribution, distributions by political party, and
distributions per issue of the labeled dataset are
presented in Table 2. Table 3 lists the frames that
most frequently co-occured with each MF. As ex-
pected, frames concerning Morality and Sympathy
are highly correlated with the Purity foundation,
while Subversion is highly correlated with the Le-
gal and Political frames.

Labeling tweets presents several challenges.
First, tweets are short and thus lack the context
often necessary for choosing a moral viewpoint.
Tweets are often ambiguous, e.g., a tweet may ex-
press care for people who are being harmed by a
policy. Another major challenge was overcoming
the political bias of the annotator. For example,
if a tweet discusses opposing Planned Parenthood
because it provides abortion services, the liberal
annotator typically viewed this as Harm (i.e., hurt-
ing women by taking away services from them),
while the conservative annotator tended to view
this as Purity (i.e., all life is sacred and should
be protected). To overcome this bias, annota-
tors were given the political party of the politician
who wrote the tweets and instructed to choose the
moral foundation from the politician’s perspec-
tive. To further simplify the annotation process,
all tweets belonging to one political party were la-
beled together, i.e., all Republican tweets were la-
beled and then all Democrat tweets were labeled.
Finally, tweets present a compound problem, of-
ten expressing two thoughts which can further be
contradictory. This results in one tweet having
multiple moral foundations. Annotators chose a
primary moral foundation whenever possible, but
were allowed a secondary foundation if the tweet
presented two differing thoughts.

Several recurring themes continued to appear
throughout the dataset including “thoughts and
prayers” for victims of gun shooting events or
rhetoric against the opposing political party. The
annotators agreed to use the following moral foun-
dation labels for these repeating topics as follows:
(1) The Purity label is used for tweets that relate to
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Morals OVERALL PARTY ISSUE
REP DEM ABO ACA GUN IMM LGBTQ TER

Care 524 156 368 37 123 215 33 34 113
Harm 355 151 204 26 64 141 19 34 101
Fairness 268 55 213 41 81 19 11 86 39
Cheating 82 37 45 14 27 11 10 9 13
Loyalty 303 63 240 28 29 128 36 38 58
Betrayal 53 25 28 10 4 9 6 3 22
Authority 192 62 130 24 44 50 38 10 34
Subversion 419 251 168 34 169 75 73 25 60
Purity 174 86 88 24 3 102 5 24 41
Degradation 66 34 32 5 0 31 0 4 31
Non-moral 334 198 136 17 143 28 47 7 96

Table 2: Distributions of Moral Foundations. Overall is across the entire dataset. Party is the Republican
(REP) or Democrat (DEM) specific distributions. Issue lists the six issue-specific distributions (Abortion,
ACA, Guns, Immigration, LGBTQ, Terrorism).

MORAL FOUNDATION AND CO-OCCURING FRAMES
Care: Capacity & Resources, Security & Defense, Health
& Safety, Quality of Life, Public Sentiment, External Reg-
ulation & Reputation
Harm: Economic, Crime & Punishment
Fairness: Fairness & Equality
Loyalty: Cultural Identity
Subversion: Legality, Constitutionality, & Jurisdiction,
Political Factors & Implications, Policy Description, Pre-
scription, & Evaluation
Purity: Morality & Ethics, Personal Sympathy & Support
Non-moral: Factual, (Self) Promotion

Table 3: Foundations and Co-occuring Frames.
Cheating, Betrayal, Authority, and Degradation
did not co-occur frequently with any frames.

prayers or the fight against ISIL/ISIS. (2) Loyalty
is for tweets that discuss “stand(ing) with” others,
American values, troops, or allies, or reference a
demographic that the politician belongs to, e.g. if
the politician tweeting is a woman and she dis-
cusses an issue in terms of its effects on women.
(3) At the time the dataset was collected, the Pres-
ident was Barack Obama and the Republican party
controlled Congress. Therefore, any tweets specif-
ically attacking Obama or Republicans (the con-
trolling party) were labeled as Subversion. (4)
Tweets discussing health or welfare were labeled
as Care. (5) Tweets which discussed limiting or
restricting laws or rights were labeled as Cheating.
(6) Sarcastic attacks, typically against the oppos-
ing political party, were labeled as Degradation.

4 Feature Extraction for PSL Models

For this work, we designed extraction models and
PSL models that were capable of adapting to the
dynamic language used on Twitter and predicting
the moral foundation of a given tweet. Our ap-

proach uses weakly supervised extraction models,
whose only initial supervision is a set of unigrams
and the political party of the tweet’s author, to
extract features for each PSL model. These fea-
tures are represented as PSL predicates and com-
bined into the probabilistic rules of each model, as
shown in Table 4, which successively build upon
the rules of the previous model.

4.1 Global Modeling Using PSL
PSL is a declarative modeling language which can
be used to specify weighted, first-order logic rules
that are compiled into a hinge-loss Markov ran-
dom field. This field defines a probability distri-
bution over possible continuous value assignments
to the random variables of the model (Bach et al.,
2015) and is represented as:

P (Y | X) =
1

Z
exp

(
−

M∑

r=1

λrφr(Y , X)

)

where Z is a normalization constant, λ is the
weight vector, and

φr(Y,X) = (max{lr(Y, X), 0})ρr

is the hinge-loss potential specified by a linear
function lr. The exponent ρr ∈ 1, 2 is optional.
Each potential represents the instantiation of a
rule, which takes the following form:

λ1 : P1(x) ∧ P2(x, y)→ P3(y)

λ2 : P1(x) ∧ P4(x, y)→ ¬P3(y)

P1, P2, P3, and P4 are predicates (e.g., party, is-
sue, and frame) and x, y are variables. Each rule
has a weight λ to reflect its importance to the
model. Using concrete constants a, b (e.g., tweets)
which instantiate the variables x, y, model atoms
are mapped to continuous [0,1] assignments.
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MOD. INFORMATION USED EXAMPLE OF PSL RULE
M1 UNIGRAMS (MFD OR AR) UNIGRAMM (T, U)→ MORAL(T, M)
M2 M1 + PARTY UNIGRAMM (T, U) ∧ PARTY(T, P)→ MORAL(T, M)
M3 M2 + ISSUE UNIGRAMM (T, U) ∧ PARTY(T, P) ∧ ISSUE(T, I)→ MORAL(T, M)
M4 M3 + PHRASE UNIGRAMM (T, U) ∧ PARTY(T, P) ∧ PHRASE(T, PH)→ MORAL(T, M)
M5 M4 + FRAME UNIGRAMM (T, U) ∧ PHRASE(T, PH) ∧ FRAME(T, F)→ MORAL(T, M)
M6 M5 + PARTY-BIGRAMS UNIGRAMM (T, U) ∧ PARTY(T, P) ∧ BIGRAMP (T, B)→ MORAL(T, M)
M7 M6 + PARTY-ISSUE-BIGRAMS UNIGRAMM (T, U) ∧ PARTY(T, P) ∧ BIGRAMP I (T, B)→ MORAL(T, M)
M8 M7 + PHRASE BIGRAMP I (T, B) ∧ PHRASE(T, PH)→ MORAL(T, M)
M9 M8 + FRAME BIGRAMP I (T, B) ∧ FRAME(T, F)→ MORAL(T, M)
M10 M9 + PARTY-TRIGRAMS UNIGRAMM (T, U) ∧ PARTY(T, P) ∧ TRIGRAMP (T, TG)→ MORAL(T, M)
M11 M10 + PARTY-ISSUE-TRIGRAMS UNIGRAMM (T, U) ∧ PARTY(T, P) ∧ TRIGRAMP I (T, TG)→ MORAL(T, M)
M12 M11 + PHRASE TRIGRAMP I (T, TG) ∧ PHRASE(T, PH)→ MORAL(T, M)
M13 M12 + FRAME TRIGRAMP I (T, TG) ∧ FRAME(T, F)→ MORAL(T, M)

Table 4: Examples of PSL Moral Model Rules Using Gold Standard Frames. For these rules, the FRAME

predicate is initialized with the known frame labels of the tweet. Each model builds successively on the
rules of the previous model.

M2: UNIGRAMS + PARTY UNIGRAMM (T, U) ∧ PARTY(T, P) ∧ FRAME(T, F)→ MORAL(T, M)
UNIGRAMM (T, U) ∧ PARTY(T, P) ∧ MORAL(T, M)→ FRAME(T, F)

M13: ALL FEATURES TRIGRAMP I (T, TG) ∧ PHRASE(T, PH) ∧ FRAME(T, F) → MORAL(T, M)
TRIGRAMP I (T, TG) ∧ UNIGRAMM (T, U) ∧ MORAL(T, M) → FRAME(T, F)

Table 5: Examples of PSL Joint Moral and Frame Model Rules. For these models, the FRAME predicate
is not initialized with known values, but is predicted jointly with the MORAL predicate.

4.2 Feature Extraction Models

For each aspect of the tweets that composes the
PSL models, scripts are written to first identify
and then extract the correct information from the
tweets. Once extracted, this information is format-
ted into PSL predicate notation and input to the
PSL models. Table 4 presents the information that
composes each PSL model, as well as an example
of how rules in the PSL model are constructed.

Language: Works studying the Moral Founda-
tions Theory typically assign a foundation to a
body of text based on a majority match of the
words in the text to the Moral Foundations Dic-
tionary (MFD), a predefined list of unigrams asso-
ciated with each foundation. These unigrams cap-
ture the conceptual idea behind each foundation.
Annotators noted, however, that when choosing a
foundation they typically used a small phrase or
the entire tweet, not a single unigram. Based on
this, we compiled all of the annotators’ phrases
per foundation into a unique set to create a new
list of unigrams for each foundation. These un-
igrams are referred to as “Annotator’s Rationale
(AR)” throughout the remainder of this paper. The
PSL predicate UNIGRAMM (T, U) is used to input
any unigram U from tweet T that matches the M

list of unigrams (either from the MFD or AR lists)
into the PSL models. An example of a rule using
this predicate is shown in the first row of Table 4.

During annotation, we observed that often a
tweet has only one match to a unigram, if any, and
therefore a majority count approach may fail. Fur-
ther, as shown in Figure 2, many tweets have one
unigram that matches one foundation and another
unigram that matches a different foundation. In
such cases, the correct foundation cannot be de-
termined from unigram counts alone. Based on
these observations and the annotators’ preference
for using phrases, we incorporate the most fre-
quent bigrams and trigrams for each political party
(BIGRAMP (T, B) and TRIGRAMP (T, TG)) and
for each party on each issue (BIGRAMP I (T, B)
and TRIGRAMP I (T, TG)). These top 20 bigrams
and trigrams contribute to a more accurate predic-
tion than unigrams alone (Johnson et al., 2017).

Ideological Information: Previous works have
shown a strong correlation between ideology
and the moral foundations (Haidt and Graham,
2007), as well as between ideology and policy is-
sues (Boydstun et al., 2014). Annotators were able
to agree on labels when instructed to label from
the ideological point of view of the tweet’s author,
even if it opposed their own views. Based on these
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positive correlations, we incorporate both the issue
of the tweet (ISSUE(T, I)) and the political party
of the author of the tweet (PARTY(T, P)) into the
PSL models. Examples of how this information is
represented in the PSL models are shown in rows
two and three of Table 4.

Abstract Phrases: As described previously,
annotators reported that phrases were more use-
ful than unigrams in determining the moral foun-
dation of the tweet. Due to the dynamic nature
of language and trending issues on Twitter, it is
impracticable to construct a list of all possible
phrases one can expect to appear in tweets. How-
ever, because politicians are known for sticking to
certain talking points, these phrases can be ab-
stracted into higher-level phrases that are more
stable and thus easier to identify and extract.

For example, a tweet discussing “President
Obama’s signing a bill” has two possible concrete
phrases: President Obama’s signing and signing a
bill. Each phrase falls under two possible abstrac-
tions: political maneuvering (Obama’s actions)
and mentions legislation (signing of a bill). In this
paper we use the following high-level abstrac-
tions: legislation or voting, rights
and equality, emotion, sources of
danger or harm, positive benefits
or effects, solidarity, politi-
cal maneuvering, protection and
prevention, American values or
traditions, religion, and promo-
tion. For example, if a tweet mentions “civil
rights” or “equal pay”, then these phrases indicate
that the rights and equality abstraction
is being used to express morality. Some of these
abstractions correlate with the corresponding
MF or frame, e.g., the religion abstraction is
highly correlated with the Purity foundation and
political maneuvering is correlated with
the Political Factors & Implications Frame.

To match phrases in tweets to these abstrac-
tions, we use the embedding-based model of Lee
et al. (2017). This phrase similarity model was
trained on the Paraphrase Database (PPDB) (Gan-
itkevitch et al., 2013) and incorporates a Convo-
lutional Neural Network (CNN) to capture sen-
tence structures. This model generates the em-
beddings of our abstract phrases and computes the
cosine similarities between phrases and tweets as
the scores. The input tweets and phrases are rep-
resented as the average word embeddings in the

input layer, which are then projected into a con-
volutional layer, a max-pooling layer, and finally
two fully-connected layers. The embeddings are
thus represented in the final layer. The learning
objective of this model is:

min
Wc,Ww

( ∑

<x1,x2>∈X
max(0, δ − cos(g(x1), g(x2))

+ cos(g(x1), g(t1)))

+max(0, δ − cos(g(x1), g(x2)))
+ cos(g(x2), g(t2))

)

+λc||Wc||2 + λw||Winit −Ww||2,

where X is all the positive input pairs, δ is the
margin, g(·) represents the network, λc and λw
are the weights for L2-regularization, Wc is the
network parameters, Ww is the word embeddings,
Winit is the initial word embeddings, and t1 and t2
are negative examples that are randomly selected.

All tweet-phrase pairs with a cosine similarity
over a given threshold are used as input to the PSL
model via the predicate PHRASE(T, PH), which
indicates that tweet T contains a phrase that is
similar to an abstracted phrase (PH). 3 Rows four,
eight, and twelve of Table 4 show examples of the
phrase rules as used in our modeling procedure.

Nuanced Framing: Framing is a political
strategy in which politicians carefully word their
statements in order to bias public opinion towards
their stance on an issue. This technique is a fine-
grained view of how issues are expressed. Frames
are associated with issue, political party, and ide-
ologies. For example, if a politician emphasizes
the economic burden a new bill would place on the
public, then they are using the Economic frame.
Different from this, if they emphasize how peo-
ple’s lives will improve because of this bill, then
they are using the Quality of Life frame.

In this work, we explore frames in two settings:
(1) where the actual frames of tweets are known
and used to predict the moral foundation of the
tweets and (2) when the frames are unknown and
predicted jointly with the moral foundations. Us-
ing the Congressional Tweets Dataset as the true
labels for 17 policy frames, this information is in-
put to the PSL models using the FRAME(T, F)
predicate as shown in Table 4. Conversely, the

3A threshold score of 0.45 provided the most accurate
matches while minimizing noise.
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same predicate can be used as a joint prediction
target predicate, with no initialization, as shown in
Table 5.

5 Experimental Results

In this section, we present an analysis of the re-
sults of our modeling approach. Table 6 summa-
rizes our overall results and compares the tradi-
tional BoW SVM classifier4 to several variations
of our model. We provide an in-depth analysis,
broken down by the different types of moral foun-
dations, in Tables 7 and 8.

We also study the relationship between moral
foundations, policy framing, and political ideol-
ogy. Table 9 describes the results of a joint
model for predicting moral foundations and pol-
icy frames. Finally, in Section 6 we discuss how
moral foundations can be used for the downstream
prediction of political party affiliation.

MODEL MFD AR
SVM BOW 18.70 —
PSL BOW 21.88 —
MAJORITY VOTE 12.50 10.86
M1 (UNIGRAMS) 7.17 8.68
M3 (+ POLITICAL INFO) 22.01 30.45
M5 (+ FRAMES) 28.94 37.44
M9 (+ BIGRAMS) 67.93 66.50
M13 (ALL FEATURES) 72.49 69.38

Table 6: Overview of Macro-weighted Average F1
Scores of SVM and PSL Models. The top portion
of the table shows the results of the three base-
lines. The bottom portion shows a subset of the
PSL models (parentheses indicate features added
onto the previous models).

Evaluation Metrics: Since each tweet can have
more than one moral foundation, our prediction
task is a multilabel classification task. The preci-
sion of a multilabel model is the ratio of how many
predicted labels are correct:

Precision =
1

T

T∑

t=1

|Yt ∩ h(xt)|
|h(xt)|

(1)

The recall of this model is the ratio of how many
of the actual labels were predicted:

Recall =
1

T

T∑

t=1

|Yt ∩ h(xt)|
|Yt|

(2)

4For this work, we used the SVM implementation pro-
vided by scikit-learn.

In both formulas, T is the number of tweets, Yt is
the true label for tweet t, xt is a tweet example, and
h(xt) are the predicted labels for that tweet. The
F1 score is computed as the harmonic mean of the
precision and recall. Additionally, the last lines of
Tables 7 and 8 provide the macro-weighted aver-
age F1 score over all moral foundations.

Analysis of Supervised Experiments: We con-
ducted supervised experiments using five-fold
cross validation with randomly chosen splits. Ta-
ble 6 shows an overview of the average results
of our supervised experiments for five of the PSL
models. The first column lists the SVM or PSL
model. The second column presents the results of
a given model when using the MFD as the source
of the unigrams for the initial model (M1). The
final column shows the results when the AR uni-
grams are used as the initial source of supervision.
The first two rows show the results of predicting
the morals present in tweets using a bag-of-words
(BoW) approach. Both the SVM and PSL models
perform poorly due to the eleven predictive classes
and noisy input features. The third row shows the
results when taking a majority vote over the pres-
ence of MFD unigrams, similar to previous works.
This approach is simpler and less noisy than M1,
the PSL model closest to this approach.

The last five lines of this table also show the
overall trends of the full results shown in Tables 7
and 8. As can be seen in all three tables, as we
add more information with each PSL model, the
overall results continue to improve, with the final
model (M13) achieving the highest F1 score for
both sources of unigrams.

An interesting trend to note is that the AR un-
igrams based models result in better average per-
formance for most of the models until M9. Mod-
els M9 and above incorporate the most power-
ful features: bigrams and trigrams with phrases
and frames. This suggests that the AR unigrams,
designed specifically for the political Twitter do-
main, are more useful than the MFD unigrams,
when only unigrams are available. Conversely,
the MFD unigrams are designed to conceptu-
ally capture morality, and therefore have weaker
performance in the unigram-based models, but
achieve higher performance when combined with
the more powerful features of the higher models.
For all models, incorporating phrases and frames
results in a more accurate prediction than when us-
ing unigrams alone.
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Moral Fdn. RESULTS OF NON-JOINT PSL MODEL PREDICTIONS
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13

CARE 16.61 52.51 43.34 53.24 53.38 53.59 55.64 62.40 66.00 66.48 67.32 67.59 67.78
HARM 12.57 47.62 42.58 50.39 57.24 55.29 60.06 67.06 71.58 71.58 72.39 73.68 73.54
FAIRNESS 24.68 52.22 45.16 50.22 51.50 50.86 61.54 71.13 74.00 74.50 75.32 75.48 75.48
CHEATING 0.00 0.00 0.00 0.00 0.00 0.00 0.00 21.05 51.85 51.85 56.14 60.00 60.00
LOYALTY 18.29 44.53 41.49 43.87 43.59 44.22 47.65 59.15 62.82 63.75 63.75 63.95 64.20
BETRAYAL 0.00 0.00 10.00 20.00 20.00 20.00 18.18 34.78 66.67 66.67 68.42 70.00 70.00
AUTHORITY 0.00 30.93 30.19 33.10 35.53 33.96 45.52 55.29 62.50 65.91 67.78 69.23 69.61
SUBVERSION 3.77 32.69 13.39 25.90 24.66 42.36 59.29 72.66 77.29 78.08 78.41 79.22 79.61
PURITY 0.00 8.89 4.88 9.88 9.76 56.12 63.86 70.86 72.13 74.16 76.09 79.14 80.41
DEGRADATION 2.99 15.38 9.52 10.00 10.00 8.00 20.69 52.94 61.54 61.54 68.09 73.47 73.47
NON-MORAL 0.00 0.00 1.60 3.51 12.70 12.31 54.55 71.14 80.90 81.82 82.35 82.54 83.33
AVERAGE 7.17 25.89 22.01 27.28 28.94 34.25 44.27 58.04 67.93 68.76 70.55 72.21 72.49

Table 7: F1 Scores of PSL Models Using the Moral Foundations Dictionary (MFD). The highest predic-
tion per moral foundation is marked in bold.

Moral Fdn. RESULTS OF NON-JOINT PSL MODEL PREDICTIONS
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13

CARE 7.29 29.72 30.51 30.86 30.62 35.66 46.41 54.17 61.77 62.16 62.91 64.79 64.91
HARM 2.25 8.89 19.31 21.89 26.18 26.09 37.28 52.40 62.18 62.18 63.74 64.67 64.86
FAIRNESS 9.15 26.43 27.12 28.70 30.43 31.92 53.56 69.88 72.52 72.52 74.26 74.63 74.63
CHEATING 4.76 13.33 25.45 25.45 38.71 39.34 40.68 51.61 62.16 62.16 64.94 65.82 65.82
LOYALTY 2.61 19.66 23.85 25.10 27.31 29.57 38.06 47.73 54.30 55.22 55.59 57.34 57.91
BETRAYAL 0.00 0.00 0.00 6.25 12.12 11.76 18.18 28.57 60.47 60.47 62.22 65.22 65.22
AUTHORITY 13.59 40.19 48.40 51.82 56.25 56.14 57.04 63.30 66.45 66.67 67.32 67.53 67.53
SUBVERSION 4.79 40.69 42.34 43.21 43.93 44.03 47.20 55.12 56.47 56.47 57.07 57.53 57.65
PURITY 5.62 13.64 19.78 23.16 30.00 60.38 69.66 76.67 79.35 79.35 80.21 81.82 82.52
DEGRADATION 16.66 31.37 37.74 44.83 51.61 51.61 57.14 68.75 73.53 73.53 77.33 78.95 78.95
NON-MORAL 28.78 52.99 60.48 61.33 64.72 66.00 73.62 79.41 82.25 82.25 82.55 82.78 83.20
AVERAGE 8.68 25.17 30.45 32.96 37.44 41.14 48.98 58.87 66.50 66.63 68.01 69.19 69.38

Table 8: F1 Scores of PSL Models Using Annotator’s Rationale (AR). The highest prediction per moral
foundation is marked in bold.

Analysis of Joint Experiments: In addition to
studying the effects of each feature on the mod-
els’ ability to predict moral foundations, we also
explored jointly predicting both policy frames and
moral foundations. These tasks are highly related
as shown by the large increase in score between
the baseline and skyline measurements in Table 9
once frames are incorporated into the models.

Both moral foundations and frame classification
are challenging multilabel classification tasks, the
former using 11 possible foundations and the lat-
ter consisting of 17 possible frames. Furthermore,
joint learning problems are harder to learn due to
a larger numbers of parameters, which in turn also
affects learning and inference.

Table 9 shows the macro-weighted average F1

scores for three different models. The BASELINE

model shows the results of predicting only the
MORAL of the tweet using the non-joint model
M13, which uses all features with frames initial-
ized. The JOINT model is designed to predict both
the moral foundation and frame of a tweet simulta-

neously (as shown in Table 5), with no frame ini-
tialization. Finally, the SKYLINE model is M13
with all features, where the frames are initialized
with their known values.

The joint model using AR unigrams outper-
forms the baseline, showing that there is some
benefit to modeling moral foundations and frames
together, as well as using domain-specific uni-
grams. However, it is unable to beat the MFD-
based unigrams model. This is likely due to
the large amount of noise introduced by incorrect
frame predictions into the joint model. As ex-
pected, the joint model does not outperform the
skyline model which is able to use the known val-
ues of the frames in order to accurately classify the
moral foundations associated with the tweets.

Finally, the predictions for the frames in the
joint model were quite low, going from an average
F1 score of 26.09 in M1 to an average F1 score
of 27.99 in M13. This likely has two causes: (1)
frame prediction is a challenging 17-label classifi-
cation task, with a random baseline of 6% (which
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our approach is able to exceed) and (2) the lower
performance is because the frames are predicted
with no initialization. In previous works, the
frame prediction models are initialized with a set
of unigrams expected to occur for each frame.
Different from this approach, the only informa-
tion our models provide to the frames are politi-
cal party, issue, associated bigrams and trigrams,
and the predicted values for the moral founda-
tions from using this information. The F1 score
of 27.99 with such minimal initialization indicates
that there is indeed a relationship between pol-
icy frames and the moral foundations expressed in
tweets worth exploring in future work.

PSL MODEL MFD AR
BASELINE 55.49 55.88
JOINT 51.22 58.75
SKYLINE 72.49 69.38

Table 9: Overview of Macro-weighted Average F1
Scores of Joint PSL Model M13. BASELINE is
the MORAL prediction result. JOINT is the result
of jointly predicting the MORAL and uninitialized
FRAME predicates. SKYLINE shows the results
when using all features with initialized frames.

6 Qualitative Results

Previous works (Makazhanov and Rafiei, 2013;
Preoţiuc-Pietro et al., 2017) have shown the use-
fulness of moral foundations for the prediction of
political party preference and the political ideolo-
gies of Twitter users. The moral foundation in-
formation used in these tasks is typically repre-
sented as word-level features extracted from the
MFD. Unfortunately, these dictionary-based fea-
tures are often too noisy to contribute to highly
accurate predictions.

Recall the example tweets shown in Figures 1
and 2. Both figures are examples of tweets that
are mislabeled by the traditional MFD-based ap-
proach, but correctly labeled using PSL Model
M13. Using the MFD, Figure 1 is labeled as Au-
thority due to “permit”, the only matching un-
igram, while Figure 2 is incorrectly labeled as
Care, even though there is one matching unigram
for Harm and one for Care. To further demon-
strate this point we compare the dictionary fea-
tures to features extracted from the MORAL pre-
dictions of our PSL model.

Table 10 shows the results of using the differ-
ent feature sets for the prediction of political af-

filiation of the author of a given tweet. All three
models use moral information for prediction, but
this information is represented differently in each
of the models. The MFD model (line 1) uses
the MFD unigrams to directly predict the politi-
cal party of the author. The PSL model (line 2)
uses the MF prediction made by the best perform-
ing model (M13) as features. Finally, the GOLD
model (line 3) uses the actual MF annotations.

The difference in performance between the
GOLD and MFD results shows that directly map-
ping the expected MFD unigrams to politicians’
tweets is not informative enough for party affilia-
tion prediction. However, by using abstract repre-
sentations of language, the PSL model is able to
achieve results closer to that which can be attained
when using the actual annotations as features.

PSL MODEL REP DEM
MFD 48.72 51.28
PSL 61.25 66.92
GOLD 68.57 71.43

Table 10: Accuracy of Author Political Party Pre-
diction. REP represents Republican and DEM rep-
resents Democrat.

7 Conclusion

Moral foundations and policy frames are em-
ployed as political strategies by politicians to gar-
ner support from the public. Politicians carefully
word their statements to express their moral and
social positions on issues, while maximizing their
base’s response to their message. In this paper we
present PSL models for the classification of moral
foundations expressed in political discourse on the
microblog, Twitter. We show the benefits and
drawbacks of traditionally used MFD unigrams
and domain-specific unigrams for initialization of
the models. We also provide an initial approach
to the joint modeling of frames and moral foun-
dations. In future works, we will exploit the in-
teresting connections between moral foundations
and frames for the analysis of more detailed ideo-
logical leanings and stance prediction.
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Abstract

Semantic parsing aims at mapping natural
language utterances into structured mean-
ing representations. In this work, we pro-
pose a structure-aware neural architecture
which decomposes the semantic parsing
process into two stages. Given an input ut-
terance, we first generate a rough sketch of
its meaning, where low-level information
(such as variable names and arguments) is
glossed over. Then, we fill in missing de-
tails by taking into account the natural lan-
guage input and the sketch itself. Experi-
mental results on four datasets characteris-
tic of different domains and meaning rep-
resentations show that our approach con-
sistently improves performance, achieving
competitive results despite the use of rela-
tively simple decoders.

1 Introduction

Semantic parsing maps natural language utter-
ances onto machine interpretable meaning rep-
resentations (e.g., executable queries or logical
forms). The successful application of recurrent
neural networks to a variety of NLP tasks (Bah-
danau et al., 2015; Vinyals et al., 2015) has pro-
vided strong impetus to treat semantic parsing as
a sequence-to-sequence problem (Jia and Liang,
2016; Dong and Lapata, 2016; Ling et al., 2016).
The fact that meaning representations are typi-
cally structured objects has prompted efforts to
develop neural architectures which explicitly ac-
count for their structure. Examples include tree
decoders (Dong and Lapata, 2016; Alvarez-Melis
and Jaakkola, 2017), decoders constrained by a
grammar model (Xiao et al., 2016; Yin and Neu-
big, 2017; Krishnamurthy et al., 2017), or modular

decoders which use syntax to dynamically com-
pose various submodels (Rabinovich et al., 2017).

In this work, we propose to decompose the de-
coding process into two stages. The first decoder
focuses on predicting a rough sketch of the mean-
ing representation, which omits low-level details,
such as arguments and variable names. Example
sketches for various meaning representations are
shown in Table 1. Then, a second decoder fills
in missing details by conditioning on the natural
language input and the sketch itself. Specifically,
the sketch constrains the generation process and is
encoded into vectors to guide decoding.

We argue that there are at least three advantages
to the proposed approach. Firstly, the decompo-
sition disentangles high-level from low-level se-
mantic information, which enables the decoders
to model meaning at different levels of granular-
ity. As shown in Table 1, sketches are more com-
pact and as a result easier to generate compared to
decoding the entire meaning structure in one go.
Secondly, the model can explicitly share knowl-
edge of coarse structures for the examples that
have the same sketch (i.e., basic meaning), even
though their actual meaning representations are
different (e.g., due to different details). Thirdly,
after generating the sketch, the decoder knows
what the basic meaning of the utterance looks like,
and the model can use it as global context to im-
prove the prediction of the final details.

Our framework is flexible and not restricted to
specific tasks or any particular model. We con-
duct experiments on four datasets representative of
various semantic parsing tasks ranging from log-
ical form parsing, to code generation, and SQL
query generation. We adapt our architecture to
these tasks and present several ways to obtain
sketches from their respective meaning represen-
tations. Experimental results show that our frame-
work achieves competitive performance compared
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Dataset Length Example

GEO
7.6

13.7
6.9

x : which state has the most rivers running through it?
y : (argmax $0 (state:t $0) (count $1 (and (river:t $1) (loc:t $1 $0))))
a : (argmax#1 state:t@1 (count#1 (and river:t@1 loc:t@2 ) ) )

ATIS
11.1
21.1
9.2

x : all flights from dallas before 10am
y : (lambda $0 e (and (flight $0) (from $0 dallas:ci) (< (departure time $0) 1000:ti)))
a : (lambda#2 (and flight@1 from@2 (< departure time@1 ? ) ) )

DJANGO
14.4
8.7
8.0

x : if length of bits is lesser than integer 3 or second element of bits is not equal to string ’as’ ,
y : if len(bits) < 3 or bits[1] != ’as’:
a : if len ( NAME ) < NUMBER or NAME [ NUMBER ] != STRING :

WIKISQL

17.9
13.3
13.0
2.7

Table schema: ‖Pianist‖Conductor‖Record Company‖Year of Recording‖Format‖
x : What record company did conductor Mikhail Snitko record for after 1996?
y : SELECT Record Company WHERE (Year of Recording > 1996) AND (Conductor = Mikhail Snitko)
a : WHERE > AND =

Table 1: Examples of natural language expressions x, their meaning representations y, and meaning
sketches a. The average number of tokens is shown in the second column.

with previous systems, despite employing rela-
tively simple sequence decoders.

2 Related Work

Various models have been proposed over the years
to learn semantic parsers from natural language
expressions paired with their meaning representa-
tions (Tang and Mooney, 2000; Ge and Mooney,
2005; Zettlemoyer and Collins, 2007; Wong and
Mooney, 2007; Lu et al., 2008; Kwiatkowski et al.,
2011; Andreas et al., 2013; Zhao and Huang,
2015). These systems typically learn lexicalized
mapping rules and scoring models to construct a
meaning representation for a given input.

More recently, neural sequence-to-sequence
models have been applied to semantic parsing with
promising results (Dong and Lapata, 2016; Jia and
Liang, 2016; Ling et al., 2016), eschewing the
need for extensive feature engineering. Several
ideas have been explored to enhance the perfor-
mance of these models such as data augmenta-
tion (Kočiský et al., 2016; Jia and Liang, 2016),
transfer learning (Fan et al., 2017), sharing param-
eters for multiple languages or meaning represen-
tations (Susanto and Lu, 2017; Herzig and Berant,
2017), and utilizing user feedback signals (Iyer
et al., 2017). There are also efforts to develop
structured decoders that make use of the syntax of
meaning representations. Dong and Lapata (2016)
and Alvarez-Melis and Jaakkola (2017) develop
models which generate tree structures in a top-
down fashion. Xiao et al. (2016) and Krishna-
murthy et al. (2017) employ the grammar to con-
strain the decoding process. Cheng et al. (2017)

use a transition system to generate variable-free
queries. Yin and Neubig (2017) design a gram-
mar model for the generation of abstract syntax
trees (Aho et al., 2007) in depth-first, left-to-right
order. Rabinovich et al. (2017) propose a modular
decoder whose submodels are dynamically com-
posed according to the generated tree structure.

Our own work also aims to model the structure
of meaning representations more faithfully. The
flexibility of our approach enables us to easily ap-
ply sketches to different types of meaning repre-
sentations, e.g., trees or other structured objects.
Coarse-to-fine methods have been popular in the
NLP literature, and are perhaps best known for
syntactic parsing (Charniak et al., 2006; Petrov,
2011). Artzi and Zettlemoyer (2013) and Zhang
et al. (2017) use coarse lexical entries or macro
grammars to reduce the search space of semantic
parsers. Compared with coarse-to-fine inference
for lexical induction, sketches in our case are ab-
stractions of the final meaning representation.

The idea of using sketches as intermediate rep-
resentations has also been explored in the field
of program synthesis (Solar-Lezama, 2008; Zhang
and Sun, 2013; Feng et al., 2017). Yaghmazadeh
et al. (2017) use SEMPRE (Berant et al., 2013) to
map a sentence into SQL sketches which are com-
pleted using program synthesis techniques and it-
eratively repaired if they are faulty.

3 Problem Formulation

Our goal is to learn semantic parsers from in-
stances of natural language expressions paired
with their structured meaning representations.
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Figure 1: We first generate the meaning sketch a for natural language input x. Then, a fine meaning
decoder fills in the missing details (shown in red) of meaning representation y. The coarse structure a is
used to guide and constrain the output decoding.

Let x = x1 · · · x|x| denote a natural language ex-
pression, and y = y1 · · · y|y| its meaning repre-
sentation. We wish to estimate p (y|x), the con-
ditional probability of meaning representation y
given input x. We decompose p (y|x) into a two-
stage generation process:

p (y|x) = p (y|x, a) p (a|x) (1)

where a = a1 · · · a|a| is an abstract sketch rep-
resenting the meaning of y. We defer detailed
description of how sketches are extracted to Sec-
tion 4. Suffice it to say that the extraction amounts
to stripping off arguments and variable names
in logical forms, schema specific information in
SQL queries, and substituting tokens with types in
source code (see Table 1).

As shown in Figure 1, we first predict sketch a
for input x, and then fill in missing details to gen-
erate the final meaning representation y by condi-
tioning on both x and a. The sketch is encoded
into vectors which in turn guide and constrain the
decoding of y. We view the input expression x,
the meaning representation y, and its sketch a as
sequences. The generation probabilities are fac-
torized as:

p (a|x) =

|a|∏

t=1

p (at|a<t, x) (2)

p (y|x, a) =

|y|∏

t=1

p (yt|y<t, x, a) (3)

where a<t = a1 · · · at−1, and y<t = y1 · · · yt−1.
In the following, we will explain how p (a|x) and
p (y|x, a) are estimated.

3.1 Sketch Generation
An encoder is used to encode the natural language
input x into vector representations. Then, a de-
coder learns to compute p (a|x) and generate the
sketch a conditioned on the encoding vectors.

Input Encoder Every input word is mapped to
a vector via xt = Wxo (xt), where Wx ∈
Rn×|Vx| is an embedding matrix, |Vx| is the vo-
cabulary size, and o (xt) a one-hot vector. We use
a bi-directional recurrent neural network with long
short-term memory units (LSTM, Hochreiter and
Schmidhuber 1997) as the input encoder. The en-
coder recursively computes the hidden vectors at
the t-th time step via:

−→e t = fLSTM

(−→e t−1,xt

)
, t = 1, · · · , |x| (4)

←−e t = fLSTM

(←−e t+1,xt

)
, t = |x|, · · · , 1 (5)

et = [−→e t,
←−e t] (6)

where [·, ·] denotes vector concatenation, et ∈ Rn,
and fLSTM is the LSTM function.

Coarse Meaning Decoder The decoder’s hid-
den vector at the t-th time step is computed by
dt = fLSTM (dt−1,at−1), where at−1 ∈ Rn is
the embedding of the previously predicted token.
The hidden states of the first time step in the de-
coder are initialized by the concatenated encoding
vectors d0 = [−→e |x|,

←−e 1]. Additionally, we use an
attention mechanism (Luong et al., 2015) to learn
soft alignments. We compute the attention score
for the current time step t of the decoder, with the
k-th hidden state in the encoder as:

st,k = exp{dt · ek}/Zt (7)
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where Zt =
∑|x|

j=1 exp{dt · ej} is a normalization
term. Then we compute p (at|a<t, x) via:

ed
t =

|x|∑

k=1

st,kek (8)

datt
t = tanh

(
W1dt + W2e

d
t

)
(9)

p (at|a<t, x) = softmaxat

(
Wod

att
t + bo

)
(10)

where W1,W2 ∈ Rn×n, Wo ∈ R|Va|×n, and
bo ∈ R|Va| are parameters. Generation terminates
once an end-of-sequence token “</s>” is emitted.

3.2 Meaning Representation Generation
Meaning representations are predicted by condi-
tioning on the input x and the generated sketch a.
The model uses the encoder-decoder architecture
to compute p (y|x, a), and decorates the sketch a
with details to generate the final output.

Sketch Encoder As shown in Figure 1, a bi-
directional LSTM encoder maps the sketch se-
quence a into vectors {vk}|a|

k=1 as in Equation (6),
where vk denotes the vector of the k-th time step.

Fine Meaning Decoder The final decoder is
based on recurrent neural networks with an atten-
tion mechanism, and shares the input encoder de-
scribed in Section 3.1. The decoder’s hidden states
{ht}|y|

t=1 are computed via:

it =

{
vk yt−1 is determined by ak

yt−1 otherwise
(11)

ht = fLSTM (ht−1, it)

where h0 = [−→e |x|,
←−e 1], and yt−1 is the embed-

ding of the previously predicted token. Apart from
using the embeddings of previous tokens, the de-
coder is also fed with {vk}|a|

k=1. If yt−1 is deter-
mined by ak in the sketch (i.e., there is a one-to-
one alignment between yt−1 and ak), we use the
corresponding token’s vector vk as input to the
next time step.

The sketch constrains the decoding output. If
the output token yt is already in the sketch, we
force yt to conform to the sketch. In some cases,
sketch tokens will indicate what information is
missing (e.g., in Figure 1, token “flight@1” in-
dicates that an argument is missing for the pred-
icate “flight”). In other cases, sketch tokens
will not reveal the number of missing tokens
(e.g., “STRING” in DJANGO) but the decoder’s

output will indicate whether missing details have
been generated (e.g., if the decoder emits a clos-
ing quote token for “STRING”). Moreover, type
information in sketches can be used to constrain
generation. In Table 1, sketch token “NUMBER”
specifies that a numeric token should be emitted.

For the missing details, we use the hidden vec-
tor ht to compute p (yt|y<t, x, a), analogously
to Equations (7)–(10).

3.3 Training and Inference
The model’s training objective is to maximize the
log likelihood of the generated meaning represen-
tations given natural language expressions:

max
∑

(x,a,y)∈D
log p (y|x, a) + log p (a|x)

where D represents training pairs.
At test time, the prediction for input x is ob-

tained via â = arg maxa′ p (a′|x) and ŷ =
arg maxy′ p (y′|x, â), where a′ and y′ represent
coarse- and fine-grained meaning candidates. Be-
cause probabilities p (a|x) and p (y|x, a) are fac-
torized as shown in Equations (2)–(3), we can ob-
tain best results approximately by using greedy
search to generate tokens one by one, rather than
iterating over all candidates.

4 Semantic Parsing Tasks

In order to show that our framework applies across
domains and meaning representations, we devel-
oped models for three tasks, namely parsing nat-
ural language to logical form, to Python source
code, and to SQL query. For each of these tasks
we describe the datasets we used, how sketches
were extracted, and specify model details over and
above the architecture presented in Section 3.

4.1 Natural Language to Logical Form
For our first task we used two benchmark datasets,
namely GEO (880 language queries to a database
of U.S. geography) and ATIS (5, 410 queries to
a flight booking system). Examples are shown
in Table 1 (see the first and second block). We
used standard splits for both datasets: 600 train-
ing and 280 test instances for GEO (Zettlemoyer
and Collins, 2005); 4, 480 training, 480 develop-
ment, and 450 test examples for ATIS. Mean-
ing representations in these datasets are based
on λ-calculus (Kwiatkowski et al., 2011). We
use brackets to linearize the hierarchical structure.
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Algorithm 1 Sketch for GEO and ATIS
Input: t: Tree-structure λ-calculus expression

t.pred: Predicate name, or operator name
Output: a: Meaning sketch

� (count $0 (< (fare $0) 50:do))→(count#1 (< fare@1 ?))
function SKETCH(t)

if t is leaf then � No nonterminal in arguments
return “%s@%d” % (t.pred,len(t.args))

if t.pred is λ operator, or quantifier then � e.g., count
Omit variable information defined by t.pred
t.pred ← “%s#%d” % (t.pred,len(variable))

for c ← argument in t.args do
if c is nonterminal then

c ← SKETCH(c)
else

c ← “?” � Placeholder for terminal
return t

The first element between a pair of brackets is an
operator or predicate name, and any remaining el-
ements are its arguments.

Algorithm 1 shows the pseudocode used to ex-
tract sketches from λ-calculus-based meaning rep-
resentations. We strip off arguments and variable
names in logical forms, while keeping predicates,
operators, and composition information. We use
the symbol “@” to denote the number of missing
arguments in a predicate. For example, we ex-
tract “from@2” from the expression “(from $0 dal-
las:ci)” which indicates that the predicate “from”
has two arguments. We use “?” as a placeholder
in cases where only partial argument information
can be omitted. We also omit variable informa-
tion defined by the lambda operator and quanti-
fiers (e.g., exists, count, and argmax). We use the
symbol “#” to denote the number of omitted to-
kens. For the example in Figure 1, “lambda $0 e”
is reduced to “lambda#2”.

The meaning representations of these two
datasets are highly compositional, which moti-
vates us to utilize the hierarchical structure of
λ-calculus. A similar idea is also explored in the
tree decoders proposed in Dong and Lapata (2016)
and Yin and Neubig (2017) where parent hidden
states are fed to the input gate of the LSTM units.
On the contrary, parent hidden states serve as input
to the softmax classifiers of both fine and coarse
meaning decoders.

Parent Feeding Taking the meaning sketch
“(and flight@1 from@2)” as an example, the par-
ent of “from@2” is “(and”. Let pt denote the par-
ent of the t-th time step in the decoder. Compared
with Equation (10), we use the vector datt

t and the
hidden state of its parent dpt to compute the prob-

ability p (at|a<t, x) via:

p (at|a<t, x) = softmaxat

(
Wo[d

att
t ,dpt ] + bo

)

where [·, ·] denotes vector concatenation. The par-
ent feeding is used for both decoding stages.

4.2 Natural Language to Source Code

Our second semantic parsing task used DJANGO

(Oda et al., 2015), a dataset built upon the Python
code of the Django library. The dataset contains
lines of code paired with natural language expres-
sions (see the third block in Table 1) and exhibits
a variety of use cases, such as iteration, exception
handling, and string manipulation. The original
split has 16, 000 training, 1, 000 development, and
1, 805 test instances.

We used the built-in lexical scanner of Python1

to tokenize the code and obtain token types.
Sketches were extracted by substituting the origi-
nal tokens with their token types, except delimiters
(e.g., “[”, and “:”), operators (e.g., “+”, and “*”),
and built-in keywords (e.g., “True”, and “while”).
For instance, the expression “if s[:4].lower() ==
’http’:” becomes “if NAME [ : NUMBER ] . NAME (
) == STRING :”, with details about names, values,
and strings being omitted.

DJANGO is a diverse dataset, spanning various
real-world use cases and as a result models are
often faced with out-of-vocabulary (OOV) tokens
(e.g., variable names, and numbers) that are un-
seen during training. We handle OOV tokens with
a copying mechanism (Gu et al., 2016; Gulcehre
et al., 2016; Jia and Liang, 2016), which allows
the fine meaning decoder (Section 3.2) to directly
copy tokens from the natural language input.

Copying Mechanism Recall that we use a soft-
max classifier to predict the probability distribu-
tion p (yt|y<t, x, a) over the pre-defined vocabu-
lary. We also learn a copying gate gt ∈ [0, 1] to
decide whether yt should be copied from the input
or generated from the vocabulary. We compute the
modified output distribution via:

gt = sigmoid(wg · ht + bg)

p̃ (yt|y<t, x, a) = (1 − gt)p (yt|y<t, x, a)

+ �[yt /∈Vy ]gt

∑

k:xk=yt

st,k

1https://docs.python.org/3/library/
tokenize
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where wg ∈ Rn and bg ∈ R are parameters, and
the indicator function �[yt /∈Vy ] is 1 only if yt is
not in the target vocabulary Vy; the attention score
st,k (see Equation (7)) measures how likely it is to
copy yt from the input word xk.

4.3 Natural Language to SQL
The WIKISQL (Zhong et al., 2017) dataset con-
tains 80, 654 examples of questions and SQL
queries distributed across 24, 241 tables from
Wikipedia. The goal is to generate the correct SQL
query for a natural language question and table
schema (i.e., table column names), without using
the content values of tables (see the last block in
Table 1 for an example). The dataset is partitioned
into a training set (70%), a development set (10%),
and a test set (20%). Each table is present in one
split to ensure generalization to unseen tables.

WIKISQL queries follow the format “SELECT
agg op agg col WHERE (cond col cond op
cond) AND ...”, which is a subset of the SQL syn-
tax. SELECT identifies the column that is to be in-
cluded in the results after applying the aggregation
operator agg op2 to column agg col. WHERE
can have zero or multiple conditions, which means
that column cond col must satisfy the con-
straints expressed by the operator cond op3 and
the condition value cond. Sketches for SQL
queries are simply the (sorted) sequences of con-
dition operators cond op in WHERE clauses. For
example, in Table 1, sketch “WHERE > AND =”
has two condition operators, namely “>” and “=”.

The generation of SQL queries differs from our
previous semantic parsing tasks, in that the ta-
ble schema serves as input in addition to natu-
ral language. We therefore modify our input en-
coder in order to render it table-aware, so to speak.
Furthermore, due to the formulaic nature of the
SQL query, we only use our decoder to gener-
ate the WHERE clause (with the help of sketches).
The SELECT clause has a fixed number of slots
(i.e., aggregation operator agg op and column
agg col), which we straightforwardly predict
with softmax classifiers (conditioned on the in-
put). We briefly explain how these components
are modeled below.

Table-Aware Input Encoder Given a table
schema with M columns, we employ the spe-
cial token “‖” to concatenate its header names

2agg op ∈ {empty,COUNT,MIN,MAX,SUM,AVG}.
3cond op ∈ {=, <, >}.

|| of |||| college number presidents

Column 1 Column 2

ଵࢉ ଶࢉ
ଶݔ ଷݔ ସݔ

ଵࢋ ଶࢋ ଵݔଷࢋସࢋ
Input Question

Question-to-Table Attention

ࢋଵࢉ ࢋଶࢉ ଵ݁̃ࢋଷࢉࢋସࢉ ̃݁ଶ ̃݁ସ̃݁ଷ LSTM units
Vectors
Attention

Figure 2: Table-aware input encoder (left) and ta-
ble column encoder (right) used for WIKISQL.

as “‖c1,1 · · · c1,|c1|‖· · · ‖cM,1 · · · cM,|cM |‖”, where
the k-th column (“ck,1 · · · ck,|ck|”) has |ck| words.
As shown in Figure 2, we use bi-directional
LSTMs to encode the whole sequence. Next, for
column ck, the LSTM hidden states at positions
ck,1 and ck,|ck| are concatenated. Finally, the con-
catenated vectors are used as the encoding vectors
{ck}M

k=1 for table columns.
As mentioned earlier, the meaning representa-

tions of questions are dependent on the tables. As
shown in Figure 2, we encode the input question x

into {et}|x|
t=1 using LSTM units. At each time

step t, we use an attention mechanism towards ta-
ble column vectors {ck}M

k=1 to obtain the most rel-
evant columns for et. The attention score from et

to ck is computed via ut,k ∝ exp{α(et) · α(ck)},
where α(·) is a one-layer neural network, and∑M

k=1 ut,k = 1. Then we compute the con-
text vector ce

t =
∑M

k=1 ut,kck to summarize the
relevant columns for et. We feed the concate-
nated vectors {[et, c

e
t ]}|x|

t=1 into a bi-directional
LSTM encoder, and use the new encoding vectors
{ẽt}|x|

t=1 to replace {et}|x|
t=1 in other model com-

ponents. We define the vector representation of
input x as:

ẽ = [
−→̃
e |x|,

←−̃
e 1] (12)

analogously to Equations (4)–(6).

SELECT Clause We feed the question vector ẽ
into a softmax classifier to obtain the aggregation
operator agg op. If agg col is the k-th table
column, its probability is computed via:

σ(x) = w3 · tanh (W4x + b4) (13)

p (agg col = k|x) ∝ exp{σ([ẽ, ck])} (14)

where
∑M

j=1 p (agg col = j|x) = 1, σ(·) is a
scoring network, and W4 ∈ R2n×m,w3,b4 ∈
Rm are parameters.
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̃݁ WHERE  < AND  =

ଵ࢜ ଶ࢜
ଵࢎ

Column 4

ଶࢎସࢎ ଷANDcond_colࢎ
Pointer

ସࢉ
cond

Pointer

ଶݔ ହݔ

̃݁ଶ ̃݁ହ
…

…
Sketch-Guided

WHERE
Decoding

Sketch 
Encoding

Sketch 
Classification

Figure 3: Fine meaning decoder of the WHERE
clause used for WIKISQL.

WHERE Clause We first generate sketches
whose details are subsequently decorated by the
fine meaning decoder described in Section 3.2.
As the number of sketches in the training set is
small (35 in total), we model sketch generation as
a classification problem. We treat each sketch a
as a category, and use a softmax classifier to com-
pute p (a|x):

p (a|x) = softmaxa (Waẽ + ba)

where Wa ∈ R|Va|×n,ba ∈ R|Va| are parame-
ters, and ẽ is the table-aware input representation
defined in Equation (12).

Once the sketch is predicted, we know the con-
dition operators and number of conditions in the
WHERE clause which follows the format “WHERE
(cond op cond col cond) AND ...”. As shown
in Figure 3, our generation task now amounts
to populating the sketch with condition columns
cond col and their values cond.

Let {ht}|y|
t=1 denote the LSTM hidden states

of the fine meaning decoder, and {hatt
t }|y|

t=1

the vectors obtained by the attention mecha-
nism as in Equation (9). The condition column
cond colyt is selected from the table’s head-
ers. For the k-th column in the table, we com-
pute p (cond colyt = k|y<t, x, a) as in Equa-
tion (14), but use different parameters and com-
pute the score via σ([hatt

t , ck]). If the k-th table
column is selected, we use ck for the input of the
next LSTM unit in the decoder.

Condition values are typically mentioned in the
input questions. These values are often phrases
with multiple tokens (e.g., Mikhail Snitko in Ta-
ble 1). We therefore propose to select a text span
from input x for each condition value condyt

rather than copying tokens one by one. Let
xl · · · xr denote the text span from which condyt

is copied. We factorize its probability as:

p (condyt = xl · · · xr|y<t, x, a)

= p
(
�l�L

yt
|y<t, x, a

)
p

(
�r�R

yt
|y<t, x, a, �l�L

yt

)

p
(
�l�L

yt
|y<t, x, a

)
∝ exp{σ([hatt

t , ẽl])}
p

(
�r�R

yt
|y<t, x, a, �l�L

yt

)
∝ exp{σ([hatt

t , ẽl, ẽr])}

where �l�L
yt

/�r�R
yt

represents the first/last copying
index of condyt is l/r, the probabilities are nor-
malized to 1, and σ(·) is the scoring network de-
fined in Equation (13). Notice that we use dif-
ferent parameters for the scoring networks σ(·).
The copied span is represented by the concate-
nated vector [ẽl, ẽr], which is fed into a one-layer
neural network and then used as the input to the
next LSTM unit in the decoder.

5 Experiments

We present results on the three semantic parsing
tasks discussed in Section 4. Our implementation
and pretrained models are available at https://
github.com/donglixp/coarse2fine.

5.1 Experimental Setup

Preprocessing For GEO and ATIS, we used the
preprocessed versions provided by Dong and La-
pata (2016), where natural language expressions
are lowercased and stemmed with NLTK (Bird
et al., 2009), and entity mentions are replaced by
numbered markers. We combined predicates and
left brackets that indicate hierarchical structures to
make meaning representations compact. We em-
ployed the preprocessed DJANGO data provided
by Yin and Neubig (2017), where input expres-
sions are tokenized by NLTK, and quoted strings
in the input are replaced with place holders. WIK-
ISQL was preprocessed by the script provided
by Zhong et al. (2017), where inputs were lower-
cased and tokenized by Stanford CoreNLP (Man-
ning et al., 2014).

Configuration Model hyperparameters were
cross-validated on the training set for GEO, and
were validated on the development split for the
other datasets. Dimensions of hidden vectors and
word embeddings were selected from {250, 300}
and {150, 200, 250, 300}, respectively. The
dropout rate was selected from {0.3, 0.5}. Label
smoothing (Szegedy et al., 2016) was employed
for GEO and ATIS. The smoothing parameter was
set to 0.1. For WIKISQL, the hidden size of σ(·)
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Method GEO ATIS

ZC07 (Zettlemoyer and Collins, 2007) 86.1 84.6
UBL (Kwiatkowksi et al., 2010) 87.9 71.4
FUBL (Kwiatkowski et al., 2011) 88.6 82.8
GUSP++ (Poon, 2013) — 83.5
KCAZ13 (Kwiatkowski et al., 2013) 89.0 —
DCS+L (Liang et al., 2013) 87.9 —
TISP (Zhao and Huang, 2015) 88.9 84.2

SEQ2SEQ (Dong and Lapata, 2016) 84.6 84.2
SEQ2TREE (Dong and Lapata, 2016) 87.1 84.6
ASN (Rabinovich et al., 2017) 85.7 85.3
ASN+SUPATT (Rabinovich et al., 2017) 87.1 85.9

ONESTAGE 85.0 85.3
COARSE2FINE 88.2 87.7

− sketch encoder 87.1 86.9
+ oracle sketch 93.9 95.1

Table 2: Accuracies on GEO and ATIS.

and α(·) in Equation (13) was set to 64. Word
embeddings were initialized by GloVe (Penning-
ton et al., 2014), and were shared by table encoder
and input encoder in Section 4.3. We appended
10-dimensional part-of-speech tag vectors to em-
beddings of the question words in WIKISQL. The
part-of-speech tags were obtained by the spaCy
toolkit. We used the RMSProp optimizer (Tiele-
man and Hinton, 2012) to train the models. The
learning rate was selected from {0.002, 0.005}.
The batch size was 200 for WIKISQL, and was
64 for other datasets. Early stopping was used to
determine the number of epochs.

Evaluation We use accuracy as the evaluation
metric, i.e., the percentage of the examples that
are correctly parsed to their gold standard meaning
representations. For WIKISQL, we also execute
generated SQL queries on their corresponding ta-
bles, and report the execution accuracy which is
defined as the proportion of correct answers.

5.2 Results and Analysis

We compare our model (COARSE2FINE) against
several previously published systems as well as
various baselines. Specifically, we report results
with a model which decodes meaning representa-
tions in one stage (ONESTAGE) without leverag-
ing sketches. We also report the results of several
ablation models, i.e., without a sketch encoder and
without a table-aware input encoder.

Table 2 presents our results on GEO and ATIS.
Overall, we observe that COARSE2FINE outper-
forms ONESTAGE, which suggests that disentan-
gling high-level from low-level information dur-

Method Accuracy

Retrieval System 14.7
Phrasal SMT 31.5
Hierarchical SMT 9.5

SEQ2SEQ+UNK replacement 45.1
SEQ2TREE+UNK replacement 39.4
LPN+COPY (Ling et al., 2016) 62.3
SNM+COPY (Yin and Neubig, 2017) 71.6

ONESTAGE 69.5
COARSE2FINE 74.1

− sketch encoder 72.1
+ oracle sketch 83.0

Table 3: DJANGO results. Accuracies in the first
and second block are taken from Ling et al. (2016)
and Yin and Neubig (2017).

ing decoding is beneficial. The results also show
that removing the sketch encoder harms perfor-
mance since the decoder loses access to additional
contextual information. Compared with previous
neural models that utilize syntax or grammatical
information (SEQ2TREE, ASN; the second block
in Table 2), our method performs competitively
despite the use of relatively simple decoders. As
an upper bound, we report model accuracy when
gold meaning sketches are given to the fine mean-
ing decoder (+oracle sketch). As can be seen, pre-
dicting the sketch correctly boosts performance.
The oracle results also indicate the accuracy of the
fine meaning decoder.

Table 3 reports results on DJANGO where we
observe similar tendencies. COARSE2FINE out-
performs ONESTAGE by a wide margin. It is also
superior to the best reported result in the literature
(SNM+COPY; see the second block in the table).
Again we observe that the sketch encoder is ben-
eficial and that there is an 8.9 point difference in
accuracy between COARSE2FINE and the oracle.

Results on WIKISQL are shown in Table 4. Our
model is superior to ONESTAGE as well as to pre-
vious best performing systems. COARSE2FINE’s
accuracies on aggregation agg op and agg col
are 90.2% and 92.0%, respectively, which is com-
parable to SQLNET (Xu et al., 2017). So the
most gain is obtained by the improved decoder
of the WHERE clause. We also find that a table-
aware input encoder is critical for doing well
on this task, since the same question might lead
to different SQL queries depending on the table
schemas. Consider the question “how many pres-
idents are graduated from A”. The SQL query
over table “‖President‖College‖” is “SELECT
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Method Accuracy Execution
Accuracy

SEQ2SEQ 23.4 35.9
Aug Ptr Network 43.3 53.3
SEQ2SQL (Zhong et al., 2017) 48.3 59.4
SQLNET (Xu et al., 2017) 61.3 68.0

ONESTAGE 68.8 75.9
COARSE2FINE 71.7 78.5

− sketch encoder 70.8 77.7
− table-aware input encoder 68.6 75.6
+ oracle sketch 73.0 79.6

Table 4: Evaluation results on WIKISQL. Accu-
racies in the first block are taken from Zhong et al.
(2017) and Xu et al. (2017).

Method GEO ATIS DJANGO WIKISQL

ONESTAGE 85.4 85.9 73.2 95.4
COARSE2FINE 89.3 88.0 77.4 95.9

Table 5: Sketch accuracy. For ONESTAGE,
sketches are extracted from the meaning represen-
tations it generates.

COUNT(President) WHERE (College = A)”, but
the query over table “‖College‖Number of Presi-
dents‖” would be “SELECT Number of Presidents
WHERE (College = A)”.

We also examine the predicted sketches them-
selves in Table 5. We compare sketches generated
by COARSE2FINE against ONESTAGE. The latter
model generates meaning representations without
an intermediate sketch generation stage. Never-
theless, we can extract sketches from the output of
ONESTAGE following the procedures described in
Section 4. Sketches produced by COARSE2FINE

are more accurate across the board. This is not
surprising because our model is trained explicitly
to generate compact meaning sketches. Taken to-
gether (Tables 2–4), our results show that better
sketches bring accuracy gains on GEO, ATIS, and
DJANGO. On WIKISQL, the sketches predicted
by COARSE2FINE are marginally better compared
with ONESTAGE. Performance improvements on
this task are mainly due to the fine meaning de-
coder. We conjecture that by decomposing de-
coding into two stages, COARSE2FINE can better
match table columns and extract condition values
without interference from the prediction of condi-
tion operators. Moreover, the sketch provides a
canonical order of condition operators, which is
beneficial for the decoding process (Vinyals et al.,
2016; Xu et al., 2017).

6 Conclusions

In this paper we presented a coarse-to-fine de-
coding framework for neural semantic parsing.
We first generate meaning sketches which abstract
away from low-level information such as argu-
ments and variable names and then predict miss-
ing details in order to obtain full meaning repre-
sentations. The proposed framework can be easily
adapted to different domains and meaning repre-
sentations. Experimental results show that coarse-
to-fine decoding improves performance across
tasks. In the future, we would like to apply the
framework in a weakly supervised setting, i.e., to
learn semantic parsers from question-answer pairs
and to explore alternative ways of defining mean-
ing sketches.
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Abstract

In this work we focus on confidence mod-
eling for neural semantic parsers which
are built upon sequence-to-sequence mod-
els. We outline three major causes of un-
certainty, and design various metrics to
quantify these factors. These metrics are
then used to estimate confidence scores
that indicate whether model predictions
are likely to be correct. Beyond confi-
dence estimation, we identify which parts
of the input contribute to uncertain pre-
dictions allowing users to interpret their
model, and verify or refine its input. Ex-
perimental results show that our confi-
dence model significantly outperforms a
widely used method that relies on poste-
rior probability, and improves the quality
of interpretation compared to simply rely-
ing on attention scores.

1 Introduction

Semantic parsing aims to map natural language
text to a formal meaning representation (e.g., log-
ical forms or SQL queries). The neural sequence-
to-sequence architecture (Sutskever et al., 2014;
Bahdanau et al., 2015) has been widely adopted
in a variety of natural language processing tasks,
and semantic parsing is no exception. However,
despite achieving promising results (Dong and
Lapata, 2016; Jia and Liang, 2016; Ling et al.,
2016), neural semantic parsers remain difficult to
interpret, acting in most cases as a black box,
not providing any information about what made
them arrive at a particular decision. In this work,
we explore ways to estimate and interpret the

∗Work carried out during an internship at Microsoft Re-
search.

model’s confidence in its predictions, which we ar-
gue can provide users with immediate and mean-
ingful feedback regarding uncertain outputs.

An explicit framework for confidence modeling
would benefit the development cycle of neural se-
mantic parsers which, contrary to more traditional
methods, do not make use of lexicons or templates
and as a result the sources of errors and inconsis-
tencies are difficult to trace. Moreover, from the
perspective of application, semantic parsing is of-
ten used to build natural language interfaces, such
as dialogue systems. In this case it is important
to know whether the system understands the input
queries with high confidence in order to make de-
cisions more reliably. For example, knowing that
some of the predictions are uncertain would al-
low the system to generate clarification questions,
prompting users to verify the results before trig-
gering unwanted actions. In addition, the training
data used for semantic parsing can be small and
noisy, and as a result, models do indeed produce
uncertain outputs, which we would like our frame-
work to identify.

A widely-used confidence scoring method is
based on posterior probabilities p (y|x) where x
is the input and y the model’s prediction. For a
linear model, this method makes sense: as more
positive evidence is gathered, the score becomes
larger. Neural models, in contrast, learn a compli-
cated function that often overfits the training data.
Posterior probability is effective when making de-
cisions about model output, but is no longer a good
indicator of confidence due in part to the nonlin-
earity of neural networks (Johansen and Socher,
2017). This observation motivates us to develop
a confidence modeling framework for sequence-
to-sequence models. We categorize the causes of
uncertainty into three types, namely model uncer-
tainty, data uncertainty, and input uncertainty and
design different metrics to characterize them.
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We compute these confidence metrics for a
given prediction and use them as features in a re-
gression model which is trained on held-out data
to fit prediction F1 scores. At test time, the re-
gression model’s outputs are used as confidence
scores. Our approach does not interfere with
the training of the model, and can be thus ap-
plied to various architectures, without sacrificing
test accuracy. Furthermore, we propose a method
based on backpropagation which allows to inter-
pret model behavior by identifying which parts of
the input contribute to uncertain predictions.

Experimental results on two semantic parsing
datasets (IFTTT, Quirk et al. 2015; and DJANGO,
Oda et al. 2015) show that our model is supe-
rior to a method based on posterior probability.
We also demonstrate that thresholding confidence
scores achieves a good trade-off between coverage
and accuracy. Moreover, the proposed uncertainty
backpropagation method yields results which are
qualitatively more interpretable compared to those
based on attention scores.

2 Related Work

Confidence Estimation Confidence estimation
has been studied in the context of a few NLP
tasks, such as statistical machine translation (Blatz
et al., 2004; Ueffing and Ney, 2005; Soricut and
Echihabi, 2010), and question answering (Gondek
et al., 2012). To the best of our knowledge, con-
fidence modeling for semantic parsing remains
largely unexplored. A common scheme for model-
ing uncertainty in neural networks is to place dis-
tributions over the network’s weights (Denker and
Lecun, 1991; MacKay, 1992; Neal, 1996; Blun-
dell et al., 2015; Gan et al., 2017). But the result-
ing models often contain more parameters, and the
training process has to be accordingly changed,
which makes these approaches difficult to work
with. Gal and Ghahramani (2016) develop a the-
oretical framework which shows that the use of
dropout in neural networks can be interpreted as
a Bayesian approximation of Gaussian Process.
We adapt their framework so as to represent un-
certainty in the encoder-decoder architectures, and
extend it by adding Gaussian noise to weights.

Semantic Parsing Various methods have been
developed to learn a semantic parser from natural
language descriptions paired with meaning repre-
sentations (Tang and Mooney, 2000; Zettlemoyer
and Collins, 2007; Lu et al., 2008; Kwiatkowski

et al., 2011; Andreas et al., 2013; Zhao and Huang,
2015). More recently, a few sequence-to-sequence
models have been proposed for semantic parsing
(Dong and Lapata, 2016; Jia and Liang, 2016;
Ling et al., 2016) and shown to perform compet-
itively whilst eschewing the use of templates or
manually designed features. There have been sev-
eral efforts to improve these models including the
use of a tree decoder (Dong and Lapata, 2016),
data augmentation (Jia and Liang, 2016; Kočiský
et al., 2016), the use of a grammar model (Xiao
et al., 2016; Rabinovich et al., 2017; Yin and Neu-
big, 2017; Krishnamurthy et al., 2017), coarse-to-
fine decoding (Dong and Lapata, 2018), network
sharing (Susanto and Lu, 2017; Herzig and Berant,
2017), user feedback (Iyer et al., 2017), and trans-
fer learning (Fan et al., 2017). Current semantic
parsers will by default generate some output for
a given input even if this is just a random guess.
System results can thus be somewhat unexpected
inadvertently affecting user experience. Our goal
is to mitigate these issues with a confidence scor-
ing model that can estimate how likely the predic-
tion is correct.

3 Neural Semantic Parsing Model

In the following section we describe the neural se-
mantic parsing model (Dong and Lapata, 2016; Jia
and Liang, 2016; Ling et al., 2016) we assume
throughout this paper. The model is built upon
the sequence-to-sequence architecture and is illus-
trated in Figure 1. An encoder is used to encode
natural language input q = q1 · · · q|q| into a vec-
tor representation, and a decoder learns to gen-
erate a logical form representation of its mean-
ing a = a1 · · · a|a| conditioned on the encoding
vectors. The encoder and decoder are two differ-
ent recurrent neural networks with long short-term
memory units (LSTMs; Hochreiter and Schmid-
huber 1997) which process tokens sequentially.
The probability of generating the whole sequence
p (a|q) is factorized as:

p (a|q) =

|a|∏

t=1

p (at|a<t, q) (1)

where a<t = a1 · · · at−1.
Let et ∈ Rn denote the hidden vector of

the encoder at time step t. It is computed via
et = fLSTM (et−1,qt), where fLSTM refers to the
LSTM unit, and qt ∈ Rn is the word embedding
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Figure 1: We use dropout as approximate
Bayesian inference to obtain model uncertainty.
The dropout layers are applied to i) token vectors;
ii) the encoder’s output vectors; iii) bridge vectors;
and iv) decoding vectors.

of qt. Once the tokens of the input sequence are
encoded into vectors, e|q| is used to initialize the
hidden states of the first time step in the decoder.

Similarly, the hidden vector of the de-
coder at time step t is computed by dt =
fLSTM (dt−1,at−1), where at−1 ∈ Rn is the word
vector of the previously predicted token. Addi-
tionally, we use an attention mechanism (Luong
et al., 2015a) to utilize relevant encoder-side con-
text. For the current time step t of the decoder, we
compute its attention score with the k-th hidden
state in the encoder as:

rt,k ∝ exp{dt · ek} (2)

where
∑|q|

j=1 rt,j = 1. The probability of generat-
ing at is computed via:

ct =

|q|∑

k=1

rt,kek (3)

datt
t = tanh (W1dt + W2ct) (4)

p (at|a<t, q) = softmaxat

(
Wod

att
t

)
(5)

where W1,W2 ∈ Rn×n and Wo ∈ R|Va|×n are
three parameter matrices.

The training objective is to maximize the like-
lihood of the generated meaning representation a
given input q, i.e., maximize

∑
(q,a)∈D log p (a|q),

where D represents training pairs. At test time,
the model’s prediction for input q is obtained via
â = arg maxa′ p (a′|q), where a′ represents can-
didate outputs. Because p (a|q) is factorized as
shown in Equation (1), we can use beam search
to generate tokens one by one rather than iterating
over all possible results.

4 Confidence Estimation

Given input q and its predicted meaning rep-
resentation a, the confidence model estimates

Algorithm 1 Dropout Perturbation
Input: q, a: Input and its prediction

M: Model parameters
1: for i ← 1, · · · , F do
2: M̂i ← Apply dropout layers to M � Figure 1
3: Run forward pass and compute p̂(a|q; M̂i)

4: Compute variance of {p̂(a|q; M̂i)}F
i=1 � Equation (6)

score s (q, a) ∈ (0, 1). A large score indicates
the model is confident that its prediction is correct.
In order to gauge confidence, we need to estimate
“what we do not know”. To this end, we iden-
tify three causes of uncertainty, and design various
metrics characterizing each one of them. We then
feed these metrics into a regression model in order
to predict s (q, a).

4.1 Model Uncertainty
The model’s parameters or structures contain un-
certainty, which makes the model less confident
about the values of p (a|q). For example, noise in
the training data and the stochastic learning algo-
rithm itself can result in model uncertainty. We
describe metrics for capturing uncertainty below:

Dropout Perturbation Our first metric uses
dropout (Srivastava et al., 2014) as approxi-
mate Bayesian inference to estimate model un-
certainty (Gal and Ghahramani, 2016). Dropout
is a widely used regularization technique during
training, which relieves overfitting by randomly
masking some input neurons to zero according
to a Bernoulli distribution. In our work, we use
dropout at test time, instead. As shown in Algo-
rithm 1, we perform F forward passes through the
network, and collect the results {p̂(a|q; M̂i)}F

i=1

where M̂i represents the perturbed parameters.
Then, the uncertainty metric is computed by the
variance of results. We define the metric on the
sequence level as:

var{p̂(a|q; M̂i)}F
i=1. (6)

In addition, we compute uncertainty uat at the
token-level at via:

uat = var{p̂(at|a<t, q; M̂i)}F
i=1 (7)

where p̂(at|a<t, q; M̂i) is the probability of
generating token at (Equation (5)) using per-
turbed model M̂i. We operationalize token-
level uncertainty in two ways, as the aver-
age score avg{uat}|a|

t=1 and the maximum score
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max{uat}|a|
t=1 (since the uncertainty of a sequence

is often determined by the most uncertain token).
As shown in Figure 1, we add dropout layers in
i) the word vectors of the encoder and decoder
qt,at; ii) the output vectors of the encoder et;
iii) bridge vectors e|q| used to initialize the hid-
den states of the first time step in the decoder; and
iv) decoding vectors datt

t (Equation (4)).

Gaussian Noise Standard dropout can be
viewed as applying noise sampled from a
Bernoulli distribution to the network parameters.
We instead use Gaussian noise, and apply the
metrics in the same way discussed above. Let v
denote a vector perturbed by noise, and g a vector
sampled from the Gaussian distribution N (0, σ2).
We use v̂ = v + g and v̂ = v + v � g as two
noise injection methods. Intuitively, if the model
is more confident in an example, it should be more
robust to perturbations.

Posterior Probability Our last class of metrics
is based on posterior probability. We use the log
probability log p(a|q) as a sequence-level metric.
The token-level metric min{p(at|a<t, q)}|a|

t=1 can
identify the most uncertain predicted token. The
perplexity per token − 1

|a|
∑|a|

t=1 log p (at|a<t, q) is
also employed.

4.2 Data Uncertainty

The coverage of training data also affects the un-
certainty of predictions. If the input q does not
match the training distribution or contains un-
known words, it is difficult to predict p (a|q) re-
liably. We define two metrics:

Probability of Input We train a language model
on the training data, and use it to estimate the
probability of input p(q|D) where D represents the
training data.

Number of Unknown Tokens Tokens that do
not appear in the training data harm robustness,
and lead to uncertainty. So, we use the number of
unknown tokens in the input q as a metric.

4.3 Input Uncertainty

Even if the model can estimate p (a|q) reliably, the
input itself may be ambiguous. For instance, the
input the flight is at 9 o’clock can be interpreted as
either flight time(9am) or flight time(9pm). Se-
lecting between these predictions is difficult, es-
pecially if they are both highly likely. We use the

following metrics to measure uncertainty caused
by ambiguous inputs.

Variance of Top Candidates We use the vari-
ance of the probability of the top candidates to in-
dicate whether these are similar. The sequence-
level metric is computed by:

var{p(ai|q)}K
i=1

where a1 . . . aK are the K-best predictions ob-
tained by the beam search during inference (Sec-
tion 3).

Entropy of Decoding The sequence-level en-
tropy of the decoding process is computed via:

H[a|q] = −
∑

a′
p(a′|q) log p(a′|q)

which we approximate by Monte Carlo sampling
rather than iterating over all candidate predic-
tions. The token-level metrics of decoding en-
tropy are computed by avg{H[at|a<t, q]}|a|

t=1 and
max{H[at|a<t, q]}|a|

t=1.

4.4 Confidence Scoring
The sentence- and token-level confidence metrics
defined in Section 4 are fed into a gradient tree
boosting model (Chen and Guestrin, 2016) in or-
der to predict the overall confidence score s (q, a).
The model is wrapped with a logistic function so
that confidence scores are in the range of (0, 1).

Because the confidence score indicates whether
the prediction is likely to be correct, we can use the
prediction’s F1 (see Section 6.2) as target value.
The training loss is defined as:

∑

(q,a)∈D
ln(1+e−ŝ(q,a))yq,a+ ln(1+eŝ(q,a))(1−yq,a)

where D represents the data, yq,a is the target F1
score, and ŝ(q, a) the predicted confidence score.
We refer readers to Chen and Guestrin (2016)
for mathematical details of how the gradient tree
boosting model is trained. Notice that we learn
the confidence scoring model on the held-out set
(rather than on the training data of the semantic
parser) to avoid overfitting.

5 Uncertainty Interpretation

Confidence scores are useful in so far they can be
traced back to the inputs causing the uncertainty
in the first place. For semantic parsing, identifying
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Backpropagation

: score of neuron 
: contribution ratio
(from to )

Figure 2: Uncertainty backpropagation at the neu-
ron level. Neuron m’s score um is collected from
child neurons c1 and c2 by um = vc1

muc1 + vc2
muc2 .

The score um is then redistributed to its parent
neurons p1 and p2, which satisfies vm

p1
+ vm

p2
= 1.

which input words contribute to uncertainty would
be of value, e.g., these could be treated explicitly
as special cases or refined if they represent noise.

In this section, we introduce an algorithm
that backpropagates token-level uncertainty scores
(see Equation (7)) from predictions to input to-
kens, following the ideas of Bach et al. (2015) and
Zhang et al. (2016). Let um denote neuron m’s
uncertainty score, which indicates the degree to
which it contributes to uncertainty. As shown in
Figure 2, um is computed by the summation of the
scores backpropagated from its child neurons:

um =
∑

c∈Child(m)

vc
muc

where Child(m) is the set of m’s child neurons,
and the non-negative contribution ratio vc

m indi-
cates how much we backpropagate uc to neu-
ron m. Intuitively, if neuron m contributes more
to c’s value, ratio vc

m should be larger.
After obtaining score um, we redistribute it to

its parent neurons in the same way. Contribution
ratios from m to its parent neurons are normalized
to 1: ∑

p∈Parent(m)

vm
p = 1

where Parent(m) is the set of m’s parent neurons.
Given the above constraints, we now define

different backpropagation rules for the operators
used in neural networks. We first describe the rules
used for fully-connected layers. Let x denote the
input. The output is computed by z = σ(Wx+b),
where σ is a nonlinear function, W ∈ R|z|∗|x| is
the weight matrix, b ∈ R|z| is the bias, and neu-
ron zi is computed via zi = σ(

∑|x|
j=1 Wi,jxj +

bi). Neuron xk’s uncertainty score uxk
is gath-

Algorithm 2 Uncertainty Interpretation
Input: q, a: Input and its prediction
Output: {ûqt}|q|

t=1: Interpretation scores for input tokens
Function: TokenUnc: Get token-level uncertainty

1: � Get token-level uncertainty for predicted tokens
2: {uat}|a|

t=1 ← TokenUnc(q, a)
3: � Initialize uncertainty scores for backpropagation
4: for t ← 1, · · · , |a| do
5: Decoder classifier’s output neuron ← uat

6: � Run backpropagation
7: for m ← neuron in backward topological order do
8: � Gather scores from child neurons
9: um ← ∑

c∈Child(m) vc
muc

10: � Summarize scores for input words
11: for t ← 1, · · · , |q| do
12: uqt ← ∑

c∈qt
uc

13: {ûqt}|q|
t=1 ← normalize {uqt}|q|

t=1

ered from the next layer:

uxk
=

|z|∑

i=1

vzi
xk

uzi =

|z|∑

i=1

|Wi,kxk|∑|x|
j=1 |Wi,jxj |

uzi

ignoring the nonlinear function σ and the bias b.
The ratio vzi

xk
is proportional to the contribution of

xk to the value of zi.
We define backpropagation rules for element-

wise vector operators. For z = x ± y, these are:

uxk
= |xk|

|xk|+|yk|uzk
uyk

= |yk|
|xk|+|yk|uzk

where the contribution ratios vzk
xk

and vzk
yk

are de-
termined by |xk| and |yk|. For multiplication, the
contribution of two elements in 1

3 ∗3 should be the
same. So, the propagation rules for z = x�y are:

uxk
= | log |xk||

| log |xk||+| log |yk||uzk
uyk

= | log |yk||
| log |xk||+| log |yk||uzk

where the contribution ratios are determined by
| log |xk|| and | log |yk||.

For scalar multiplication, z = λx where λ de-
notes a constant. We directly assign z’s uncer-
tainty scores to x and the backpropagation rule is
uxk

= uzk
.

As shown in Algorithm 2, we first initial-
ize uncertainty backpropagation in the decoder
(lines 1–5). For each predicted token at, we com-
pute its uncertainty score uat as in Equation (7).
Next, we find the dimension of at in the decoder’s
softmax classifier (Equation (5)), and initialize the
neuron with the uncertainty score uat . We then
backpropagate these uncertainty scores through
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Dataset Example

IFTTT
turn android phone to full volume at 7am monday to friday
date time−every day of the week at−((time of day (07)(:)(00)) (days of the week

(1)(2)(3)(4)(5))) THEN android device−set ringtone volume−(volume ({’
volume level’:1.0,’name’:’100%’}))

DJANGO
for every key in sorted list of user settings
for key in sorted(user settings):

Table 1: Natural language descriptions and their meaning representations from IFTTT and DJANGO.

the network (lines 6–9), and finally into the neu-
rons of the input words. We summarize them and
compute the token-level scores for interpreting the
results (line 10–13). For input word vector qt, we
use the summation of its neuron-level scores as the
token-level score:

ûqt ∝
∑

c∈qt

uc

where c ∈ qt represents the neurons of word vec-
tor qt, and

∑|q|
t=1 ûqt = 1. We use the normalized

score ûqt to indicate token qt’s contribution to pre-
diction uncertainty.

6 Experiments

In this section we describe the datasets used in
our experiments and various details concerning
our models. We present our experimental re-
sults and analysis of model behavior. Our code is
publicly available at https://github.com/
donglixp/confidence.

6.1 Datasets
We trained the neural semantic parser introduced
in Section 3 on two datasets covering different do-
mains and meaning representations. Examples are
shown in Table 1.

IFTTT This dataset (Quirk et al., 2015) con-
tains a large number of if-this-then-that programs
crawled from the IFTTT website. The programs
are written for various applications, such as home
security (e.g., “email me if the window opens”),
and task automation (e.g., “save instagram pho-
tos to dropbox”). Whenever a program’s trigger is
satisfied, an action is performed. Triggers and ac-
tions represent functions with arguments; they are
selected from different channels (160 in total) rep-
resenting various services (e.g., Android). There
are 552 trigger functions and 229 action func-
tions. The original split contains 77, 495 training,
5, 171 development, and 4, 294 test instances. The

subset that removes non-English descriptions was
used in our experiments.

DJANGO This dataset (Oda et al., 2015) is built
upon the code of the Django web framework. Each
line of Python code has a manually annotated nat-
ural language description. Our goal is to map the
English pseudo-code to Python statements. This
dataset contains diverse use cases, such as itera-
tion, exception handling, and string manipulation.
The original split has 16, 000 training, 1, 000 de-
velopment, and 1, 805 test examples.

6.2 Settings
We followed the data preprocessing used in previ-
ous work (Dong and Lapata, 2016; Yin and Neu-
big, 2017). Input sentences were tokenized us-
ing NLTK (Bird et al., 2009) and lowercased.
We filtered words that appeared less than four
times in the training set. Numbers and URLs in
IFTTT and quoted strings in DJANGO were re-
placed with place holders. Hyperparameters of the
semantic parsers were validated on the develop-
ment set. The learning rate and the smoothing con-
stant of RMSProp (Tieleman and Hinton, 2012)
were 0.002 and 0.95, respectively. The dropout
rate was 0.25. A two-layer LSTM was used for
IFTTT, while a one-layer LSTM was employed
for DJANGO. Dimensions for the word embedding
and hidden vector were selected from {150, 250}.
The beam size during decoding was 5.

For IFTTT, we view the predicted trees as a set
of productions, and use balanced F1 as evaluation
metric (Quirk et al., 2015). We do not measure ac-
curacy because the dataset is very noisy and there
rarely is an exact match between the predicted out-
put and the gold standard. The F1 score of our
neural semantic parser is 50.1%, which is compa-
rable to Dong and Lapata (2016). For DJANGO,
we measure the fraction of exact matches, where
F1 score is equal to accuracy. Because there are
unseen variable names at test time, we use atten-
tion scores as alignments to replace unknown to-
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Method IFTTT DJANGO

POSTERIOR 0.477 0.694

CONF 0.625 0.793
− MODEL 0.595 0.759
− DATA 0.610 0.787
− INPUT 0.608 0.785

Table 2: Spearman ρ correlation between confi-
dence scores and F1. Best results are shown in
bold. All correlations are significant at p < 0.01.

kens in the prediction with the input words they
align to (Luong et al., 2015b). The accuracy of
our parser is 53.7%, which is better than the re-
sult (45.1%) of the sequence-to-sequence model
reported in Yin and Neubig (2017).

To estimate model uncertainty, we set dropout
rate to 0.1, and performed 30 inference passes.
The standard deviation of Gaussian noise was
0.05. The language model was estimated using
KenLM (Heafield et al., 2013). For input un-
certainty, we computed variance for the 10-best
candidates. The confidence metrics were imple-
mented in batch mode, to take full advantage of
GPUs. Hyperparameters of the confidence scor-
ing model were cross-validated. The number of
boosted trees was selected from {20, 50}. The
maximum tree depth was selected from {3, 4, 5}.
We set the subsample ratio to 0.8. All other hyper-
parameters in XGBoost (Chen and Guestrin, 2016)
were left with their default values.

6.3 Results

Confidence Estimation We compare our ap-
proach (CONF) against confidence scores based
on posterior probability p(a|q) (POSTERIOR). We
also report the results of three ablation variants
(−MODEL, −DATA, −INPUT) by removing each
group of confidence metrics described in Sec-
tion 4. We measure the relationship between con-
fidence scores and F1 using Spearman’s ρ corre-
lation coefficient which varies between −1 and 1
(0 implies there is no correlation). High ρ indi-
cates that the confidence scores are high for cor-
rect predictions and low otherwise.

As shown in Table 2, our method CONF outper-
forms POSTERIOR by a large margin. The ablation
results indicate that model uncertainty plays the
most important role among the confidence met-
rics. In contrast, removing the metrics of data un-
certainty affects performance less, because most
examples in the datasets are in-domain. Improve-

F1 Dout Noise PR PPL LM #UNK Var

Dout 0.59
Noise 0.59 0.90
PR 0.52 0.84 0.82
PPL 0.48 0.78 0.78 0.89
LM 0.30 0.26 0.32 0.27 0.25
#UNK 0.27 0.31 0.33 0.29 0.25 0.32
Var 0.49 0.83 0.78 0.88 0.79 0.25 0.27
Ent 0.53 0.78 0.78 0.80 0.75 0.27 0.30 0.76

Table 3: Correlation matrix for F1 and individual
confidence metrics on the IFTTT dataset. All cor-
relations are significant at p < 0.01. Best predic-
tors are shown in bold. Dout is short for dropout,
PR for posterior probability, PPL for perplexity,
LM for probability based on a language model,
#UNK for number of unknown tokens, Var for
variance of top candidates, and Ent for Entropy.

F1 Dout Noise PR PPL LM #UNK Var

Dout 0.76
Noise 0.78 0.94
PR 0.73 0.89 0.90
PPL 0.64 0.80 0.81 0.84
LM 0.32 0.41 0.40 0.38 0.30
#UNK 0.27 0.28 0.28 0.26 0.19 0.35
Var 0.70 0.87 0.87 0.89 0.87 0.37 0.23
Ent 0.72 0.89 0.90 0.92 0.86 0.38 0.26 0.90

Table 4: Correlation matrix for F1 and individual
confidence metrics on the DJANGO dataset. All
correlations are significant at p < 0.01. Best pre-
dictors are shown in bold. Same shorthands apply
as in Table 3.

ments for each group of metrics are significant
with p < 0.05 according to bootstrap hypothesis
testing (Efron and Tibshirani, 1994).

Tables 3 and 4 show the correlation matrix for
F1 and individual confidence metrics on the IFTTT

and DJANGO datasets, respectively. As can be
seen, metrics representing model uncertainty and
input uncertainty are more correlated to each other
compared with metrics capturing data uncertainty.
Perhaps unsurprisingly metrics of the same group
are highly inter-correlated since they model the
same type of uncertainty. Table 5 shows the rel-
ative importance of individual metrics in the re-
gression model. As importance score we use the
average gain (i.e., loss reduction) brought by the
confidence metric once added as feature to the
branch of the decision tree (Chen and Guestrin,
2016). The results indicate that model uncer-
tainty (Noise/Dropout/Posterior/Perplexity) plays
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Metric Dout Noise PR PPL LM #UNK Var Ent

IFTTT 0.39 1.00 0.89 0.27 0.26 0.46 0.43 0.34
DJANGO 1.00 0.59 0.22 0.58 0.49 0.14 0.24 0.25

Table 5: Importance scores of confidence metrics
(normalized by maximum value on each dataset).
Best results are shown in bold. Same shorthands
apply as in Table 3.

the most important role. On IFTTT, the number of
unknown tokens (#UNK) and the variance of top
candidates (var(K-best)) are also very helpful be-
cause this dataset is relatively noisy and contains
many ambiguous inputs.

Finally, in real-world applications, confidence
scores are often used as a threshold to trade-off
precision for coverage. Figure 3 shows how F1
score varies as we increase the confidence thresh-
old, i.e., reduce the proportion of examples that
we return answers for. F1 score improves mono-
tonically for POSTERIOR and our method, which,
however, achieves better performance when cov-
erage is the same.

Uncertainty Interpretation We next evaluate
how our backpropagation method (see Section 5)
allows us to identify input tokens contributing to
uncertainty. We compare against a method that in-
terprets uncertainty based on the attention mech-
anism (ATTENTION). As shown in Equation (2),
attention scores rt,k can be used as soft alignments
between the time step t of the decoder and the
k-th input token. We compute the normalized un-
certainty score ûqt for a token qt via:

ûqt ∝
|a|∑

t=1

rt,kuat (8)

where uat is the uncertainty score of the predicted
token at (Equation (7)), and

∑|q|
t=1 ûqt = 1.

Unfortunately, the evaluation of uncertainty in-
terpretation methods is problematic. For our se-
mantic parsing task, we do not a priori know which
tokens in the natural language input contribute to
uncertainty and these may vary depending on the
architecture used, model parameters, and so on.
We work around this problem by creating a proxy
gold standard. We inject noise to the vectors rep-
resenting tokens in the encoder (see Section 4.1)
and then estimate the uncertainty caused by each
token qt (Equation (6)) under the assumption that
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Figure 3: Confidence scores are used as thresh-
old to filter out uncertain test examples. As the
threshold increases, performance improves. The
horizontal axis shows the proportion of examples
beyond the threshold.

addition of noise should only affect genuinely un-
certain tokens. Notice that here we inject noise
to one token at a time1 instead of all parameters
(see Figure 1). Tokens identified as uncertain by
the above procedure are considered gold standard
and compared to those identified by our method.
We use Gaussian noise to perturb vectors in our
experiments (dropout obtained similar results).

We define an evaluation metric based on the
overlap (overlap@K) among tokens identified as
uncertain by the model and the gold standard.
Given an example, we first compute the interpre-
tation scores of the input tokens according to our
method, and obtain a list τ1 of K tokens with high-
est scores. We also obtain a list τ2 of K tokens
with highest ground-truth scores and measure the
degree of overlap between these two lists:

overlap@K =
|τ1 ∩ τ2|

K

1Noise injection as described above is used for evaluation
purposes only since we need to perform forward passes mul-
tiple times (see Section 4.1) for each token, and the running
time increases linearly with the input length.
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Method IFTTT DJANGO

@2 @4 @2 @4

ATTENTION 0.525 0.737 0.637 0.684
BACKPROP 0.608 0.791 0.770 0.788

Table 6: Uncertainty interpretation against in-
ferred ground truth; we compute the overlap be-
tween tokens identified as contributing to uncer-
tainty by our method and those found in the gold
standard. Overlap is shown for top 2 and 4 tokens.
Best results are in bold.

google calendar−any event starts THEN facebook
−create a status message−(status message
({description}))

ATT post calendar event to facebook
BP post calendar event to facebook
feed−new feed item−(feed url(

url sports.espn.go.com)) THEN ...
ATT espn mlb headline to readability
BP espn mlb headline to readability
weather−tomorrow’s low drops below−((

temperature(0)) (degrees in(c))) THEN ...
ATT warn me when it’s going to be freezing tomorrow
BP warn me when it’s going to be freezing tomorrow
if str number[0] == ’ STR ’:

ATT if first element of str number equals a string STR .
BP if first element of str number equals a string STR .
start = 0

ATT start is an integer 0 .
BP start is an integer 0 .
if name.startswith(’ STR ’):

ATT if name starts with an string STR ,
BP if name starts with an string STR ,

Table 7: Uncertainty interpretation for ATTEN-
TION (ATT) and BACKPROP (BP) . The first line in
each group is the model prediction. Predicted to-
kens and input words with large scores are shown
in red and blue, respectively.

where K ∈ {2, 4} in our experiments. For ex-
ample, the overlap@4 metric of the lists τ1 =
[q7, q8, q2, q3] and τ2 = [q7, q8, q3, q4] is 3/4, be-
cause there are three overlapping tokens.

Table 6 reports results with overlap@2 and
overlap@4. Overall, BACKPROP achieves bet-
ter interpretation quality than the attention mech-
anism. On both datasets, about 80% of the
top-4 tokens identified as uncertain agree with the
ground truth. Table 7 shows examples where our
method has identified input tokens contributing to
the uncertainty of the output. We highlight to-
ken at if its uncertainty score uat is greater than
0.5 ∗ avg{uat′ }

|a|
t′=1. The results illustrate that the

parser tends to be uncertain about tokens which are

function arguments (e.g., URLs, and message con-
tent), and ambiguous inputs. The examples show
that BACKPROP is qualitatively better compared to
ATTENTION; attention scores often produce inac-
curate alignments while BACKPROP can utilize in-
formation flowing through the LSTMs rather than
only relying on the attention mechanism.

7 Conclusions

In this paper we presented a confidence estimation
model and an uncertainty interpretation method
for neural semantic parsing. Experimental results
show that our method achieves better performance
than competitive baselines on two datasets. Direc-
tions for future work are many and varied. The
proposed framework could be applied to a variety
of tasks (Bahdanau et al., 2015; Schmaltz et al.,
2017) employing sequence-to-sequence architec-
tures. We could also utilize the confidence esti-
mation model within an active learning framework
for neural semantic parsing.
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Abstract

Semantic parsing is the task of transducing
natural language (NL) utterances into for-
mal meaning representations (MRs), com-
monly represented as tree structures. An-
notating NL utterances with their cor-
responding MRs is expensive and time-
consuming, and thus the limited availabil-
ity of labeled data often becomes the bot-
tleneck of data-driven, supervised mod-
els. We introduce STRUCTVAE, a vari-
ational auto-encoding model for semi-
supervised semantic parsing, which learns
both from limited amounts of parallel data,
and readily-available unlabeled NL utter-
ances. STRUCTVAE models latent MRs
not observed in the unlabeled data as tree-
structured latent variables. Experiments
on semantic parsing on the ATIS domain
and Python code generation show that
with extra unlabeled data, STRUCTVAE
outperforms strong supervised models.1

1 Introduction

Semantic parsing tackles the task of mapping nat-
ural language (NL) utterances into structured for-
mal meaning representations (MRs). This in-
cludes parsing to general-purpose logical forms
such as λ-calculus (Zettlemoyer and Collins,
2005, 2007) and the abstract meaning represen-
tation (AMR, Banarescu et al. (2013); Misra and
Artzi (2016)), as well as parsing to computer-
executable programs to solve problems such as
question answering (Berant et al., 2013; Yih et al.,
2015; Liang et al., 2017), or generation of domain-
specific (e.g., SQL) or general purpose program-
ming languages (e.g., Python) (Quirk et al., 2015;
Yin and Neubig, 2017; Rabinovich et al., 2017).

1Code available at http://pcyin.me/struct vae

Structured Latent Semantic Space (MRs)

p(z)

Inference Model
q�(z|x)

Reconstruction Model
p✓(x|z)

Sort my_list in descending order

z

Figure 1: Graphical Representation of STRUCTVAE

While these models have a long history (Zelle
and Mooney, 1996; Tang and Mooney, 2001), re-
cent advances are largely attributed to the success
of neural network models (Xiao et al., 2016; Ling
et al., 2016; Dong and Lapata, 2016; Iyer et al.,
2017; Zhong et al., 2017). However, these mod-
els are also extremely data hungry: optimization
of such models requires large amounts of training
data of parallel NL utterances and manually anno-
tated MRs, the creation of which can be expensive,
cumbersome, and time-consuming. Therefore, the
limited availability of parallel data has become the
bottleneck of existing, purely supervised-based
models. These data requirements can be alleviated
with weakly-supervised learning, where the deno-
tations (e.g., answers in question answering) of
MRs (e.g., logical form queries) are used as indi-
rect supervision (Clarke et al. (2010); Liang et al.
(2011); Berant et al. (2013), inter alia), or data-
augmentation techniques that automatically gen-
erate pseudo-parallel corpora using hand-crafted
or induced grammars (Jia and Liang, 2016; Wang
et al., 2015).

In this work, we focus on semi-supervised
learning, aiming to learn from both limited
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amounts of parallel NL-MR corpora, and unla-
beled but readily-available NL utterances. We
draw inspiration from recent success in applying
variational auto-encoding (VAE) models in semi-
supervised sequence-to-sequence learning (Miao
and Blunsom, 2016; Kociský et al., 2016), and
propose STRUCTVAE — a principled deep gener-
ative approach for semi-supervised learning with
tree-structured latent variables (Fig. 1). STRUCT-
VAE is based on a generative story where the
surface NL utterances are generated from tree-
structured latent MRs following the standard VAE
architecture: (1) an off-the-shelf semantic parser
functions as the inference model, parsing an ob-
served NL utterance into latent meaning represen-
tations (§ 3.2); (2) a reconstruction model decodes
the latent MR into the original observed utterance
(§ 3.1). This formulation enables our model to
perform both standard supervised learning by op-
timizing the inference model (i.e., the parser) us-
ing parallel corpora, and unsupervised learning
by maximizing the variational lower bound of the
likelihood of the unlabeled utterances (§ 3.3).

In addition to these contributions to semi-
supervised semantic parsing, STRUCTVAE con-
tributes to generative model research as a whole,
providing a recipe for training VAEs with struc-
tured latent variables. Such a structural latent
space is contrast to existing VAE research using
flat representations, such as continuous distributed
representations (Kingma and Welling, 2013), dis-
crete symbols (Miao and Blunsom, 2016), or hy-
brids of the two (Zhou and Neubig, 2017).

We apply STRUCTVAE to semantic parsing
on the ATIS domain and Python code genera-
tion. As an auxiliary contribution, we implement a
transition-based semantic parser, which uses Ab-
stract Syntax Trees (ASTs, § 3.2) as intermedi-
ate MRs and achieves strong results on the two
tasks. We then apply this parser as the inference
model for semi-supervised learning, and show that
with extra unlabeled data, STRUCTVAE outper-
forms its supervised counterpart. We also demon-
strate that STRUCTVAE is compatible with differ-
ent structured latent representations, applying it to
a simple sequence-to-sequence parser which uses
λ-calculus logical forms as MRs.

2 Semi-supervised Semantic Parsing
In this section we introduce the objectives for
semi-supervised semantic parsing, and present
high-level intuition in applying VAEs for this task.

2.1 Supervised and Semi-supervised Training
Formally, semantic parsing is the task of map-
ping utterance x to a meaning representation z.
As noted above, there are many varieties of MRs
that can be represented as either graph structures
(e.g., AMR) or tree structures (e.g., λ-calculus
and ASTs for programming languages). In this
work we specifically focus on tree-structured MRs
(see Fig. 2 for a running example Python AST),
although application of a similar framework to
graph-structured representations is also feasible.

Traditionally, purely supervised semantic
parsers train a probabilistic model pφ(z|x) using
parallel data L of NL utterances and annotated
MRs (i.e., L = {〈x, z〉}). As noted in the
introduction, one major bottleneck in this ap-
proach is the lack of such parallel data. Hence,
we turn to semi-supervised learning, where the
model additionally has access to a relatively large
amount of unlabeled NL utterances U = {x}.
Semi-supervised learning then aims to maximize
the log-likelihood of examples in both L and U:

J =
∑

〈x,z〉 ∈L
log pφ(z|x)

︸ ︷︷ ︸
supervised obj. Js

+α
∑

x∈U
log p(x)

︸ ︷︷ ︸
unsupervised obj. Ju

(1)

The joint objective consists of two terms: (1) a
supervised objective Js that maximizes the con-
ditional likelihood of annotated MRs, as in stan-
dard supervised training of semantic parsers; and
(2) a unsupervised objective Ju, which maximizes
the marginal likelihood p(x) of unlabeled NL ut-
terances U, controlled by a tuning parameter α.
Intuitively, if the modeling of pφ(z|x) and p(x)
is coupled (e.g., they share parameters), then op-
timizing the marginal likelihood p(x) using the
unsupervised objective Ju would help the learn-
ing of the semantic parser pφ(z|x) (Zhu, 2005).
STRUCTVAE uses the variational auto-encoding
framework to jointly optimize pφ(z|x) and p(x),
as outlined in § 2.2 and detailed in § 3.

2.2 VAEs for Semi-supervised Learning
From Eq. (1), our semi-supervised model must be
able to calculate the probability p(x) of unlabeled
NL utterances. To model p(x), we use VAEs,
which provide a principled framework for gener-
ative models using neural networks (Kingma and
Welling, 2013). As shown in Fig. 1, VAEs define a
generative story (bold arrows in Fig. 1, explained
in § 3.1) to model p(x), where a latent MR z is
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sampled from a prior, and then passed to the recon-
struction model to decode into the surface utter-
ance x. There is also an inference model qφ(z|x)
that allows us to infer the most probable latent MR
z given the input x (dashed arrows in Fig. 1, ex-
plained in § 3.2). In our case, the inference pro-
cess is equivalent to the task of semantic parsing
if we set qφ(·) , pφ(·). VAEs also provide a
framework to compute an approximation of p(x)
using the inference and reconstruction models, al-
lowing us to effectively optimize the unsupervised
and supervised objectives in Eq. (1) in a joint fash-
ion (Kingma et al. (2014), explained in § 3.3).

3 STRUCTVAE: VAEs with
Tree-structured Latent Variables

3.1 Generative Story

STRUCTVAE follows the standard VAE architec-
ture, and defines a generative story that explains
how an NL utterance is generated: a latent mean-
ing representation z is sampled from a prior dis-
tribution p(z) over MRs, which encodes the la-
tent semantics of the utterance. A reconstruction
model pθ(x|z) then decodes the sampled MR z
into the observed NL utterance x.

Both the prior p(z) and the reconstruction
model p(x|z) takes tree-structured MRs as inputs.
To model such inputs with rich internal structures,
we follow Konstas et al. (2017), and model the dis-
tribution over a sequential surface representation
of z, zs instead. Specifically, we have p(z) ,
p(zs) and pθ(x|z) , pθ(x|zs)2. For code gener-
ation, zs is simply the surface source code of the
AST z. For semantic parsing, zs is the linearized
s-expression of the logical form. Linearization al-
lows us to use standard sequence-to-sequence net-
works to model p(z) and pθ(x|z). As we will ex-
plain in § 4.3, we find these two components per-
form well with linearization.

Specifically, the prior is parameterized by
a Long Short-Term Memory (LSTM) language
model over zs. The reconstruction model is an
attentional sequence-to-sequence network (Luong
et al., 2015), augmented with a copying mech-
anism (Gu et al., 2016), allowing an out-of-
vocabulary (OOV) entity in zs to be copied to x
(e.g., the variable name my list in Fig. 1 and its
AST in Fig. 2). We refer readers to Appendix B
for details of the neural network architecture.

2Linearizion is used by the prior and the reconstruction
model only, and not by the inference model.

3.2 Inference Model

STRUCTVAE models the semantic parser pφ(z|x)
as the inference model qφ(z|x) in VAE (§ 2.2),
which maps NL utterances x into tree-structured
meaning representations z. qφ(z|x) can be any
trainable semantic parser, with the correspond-
ing MRs forming the structured latent semantic
space. In this work, we primarily use a seman-
tic parser based on the Abstract Syntax Descrip-
tion Language (ASDL) framework (Wang et al.,
1997) as the inference model. The parser en-
codes x into ASTs (Fig. 2). ASTs are the native
meaning representation scheme of source code in
modern programming languages, and can also be
adapted to represent other semantic structures, like
λ-calculus logical forms (see § 4.2 for details).
We remark that STRUCTVAE works with other se-
mantic parsers with different meaning representa-
tions as well (e.g., using λ-calculus logical forms
for semantic parsing on ATIS, explained in § 4.3).

Our inference model is a transition-based parser
inspired by recent work in neural semantic pars-
ing and code generation. The transition system is
an adaptation of Yin and Neubig (2017) (hereafter
YN17), which decomposes the generation process
of an AST into sequential applications of tree-
construction actions following the ASDL gram-
mar, thus ensuring the syntactic well-formedness
of generated ASTs. Different from YN17, where
ASTs are represented as a Context Free Grammar
learned from a parsed corpus, we follow Rabi-
novich et al. (2017) and use ASTs defined under
the ASDL formalism (§ 3.2.1).

3.2.1 Generating ASTs with ASDL Grammar

First, we present a brief introduction to ASDL. An
AST can be generated by applying typed construc-
tors in an ASDL grammar, such as those in Fig. 3
for the Python ASDL grammar. Each constructor
specifies a language construct, and is assigned to
a particular composite type. For example, the con-
structor Call has type expr (expression), and it
denotes function calls. Constructors are associated
with multiple fields. For instance, the Call con-
structor and has three fields: func, args and key-
words. Like constructors, fields are also strongly
typed. For example, the func field of Call has
expr type. Fields with composite types are in-
stantiated by constructors of the same type, while
fields with primitive types store values (e.g., iden-
tifier names or string literals). Each field also has
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Expr

Name

Call

value

func

Name

args keywords

Keyword
sorted

id

id

my_list reverse Name

valuearg

True

t1

t2

t3

t4

t5

t6

t8

t9 t10

t11

id

sorted(my_list, reverse=True)

t Frontier Field Action
t1 stmt root Expr(expr value)
t2 expr value Call(expr func, expr* args,

keyword* keywords)
t3 expr func Name(identifier id)
t4 identifier id GENTOKEN[sorted]
t5 expr* args Name(identifier id)
t6 identifier id GENTOKEN[my list]
t7 expr* args REDUCE (close the frontier field)
t8 keyword* keywords keyword(identifier arg,

expr value)
t9 identifier arg GENTOKEN[reverse]
t10 expr value Name(identifier id)
t11 identifier id GENTOKEN[True]
t12 keyword* keywords REDUCE (close the frontier field)

Figure 2: Left An example ASDL AST with its surface source code. Field names are labeled on upper arcs. Blue squares
denote fields with sequential cardinality. Grey nodes denote primitive identifier fields, with annotated values. Fields are labeled
with time steps at which they are generated. Right Action sequences used to construct the example AST. Frontier fields are
denoted by their signature (type name). Each constructor in the Action column refers to an APPLYCONSTR action.

stmt    FunctionDef(identifier name, 
                               arguments args, stmt* body)
     |  ClassDef(identifier name, expr* bases, stmt* body)
     |  Expr(expr value)
     |  Return(expr? value)

7!

expr    Call(expr func, expr* args, keyword* keywords)
     |  Name(identifier id)
     |  Str(string s)

7!

Figure 3: Excerpt of the python abstract syntax gram-
mar (Python Software Foundation, 2016)

a cardinality (single, optional ?, and sequential ∗),
specifying the number of values the field has.

Each node in an AST corresponds to a typed
field in a constructor (except for the root node).
Depending on the cardinality of the field, an AST
node can be instantiated with one or multiple con-
structors. For instance, the func field in the ex-
ample AST has single cardinality, and is instan-
tiated with a Name constructor; while the args
field with sequential cardinality could have multi-
ple constructors (only one shown in this example).

Our parser employs a transition system to gen-
erate an AST using three types of actions. Fig. 2
(Right) lists the sequence of actions used to gen-
erate the example AST. The generation process
starts from an initial derivation with only a root
node of type stmt (statement), and proceeds ac-
cording to the top-down, left-to-right traversal of
the AST. At each time step, the parser applies an
action to the frontier field of the derivation:

APPLYCONSTR[c] actions apply a constructor
c to the frontier composite field, expanding the
derivation using the fields of c. For fields with sin-
gle or optional cardinality, an APPLYCONSTR ac-
tion instantiates the empty frontier field using the
constructor, while for fields with sequential car-
dinality, it appends the constructor to the frontier
field. For example, at t2 the Call constructor is

applied to the value field of Expr, and the deriva-
tion is expanded using its three child fields.

REDUCE actions complete generation of a field
with optional or multiple cardinalities. For in-
stance, the args field is instantiated by Name at t5,
and then closed by a REDUCE action at t7.

GENTOKEN[v] actions populate an empty
primitive frontier field with token v. A primitive
field whose value is a single token (e.g., identi-
fier fields) can be populated with a single GEN-
TOKEN action. Fields of string type can be in-
stantiated using multiple such actions, with a final
GENTOKEN[</f>] action to terminate the genera-
tion of field values.

3.2.2 Modeling qφ(z|x)
The probability of generating an AST z is natu-
rally decomposed into the probabilities of the ac-
tions {at} used to construct z:

qφ(z|x) =
∏

t

p(at|a<t,x).

Following YN17, we parameterize qφ(z|x) using
a sequence-to-sequence network with auxiliary re-
current connections following the topology of the
AST. Interested readers are referred to Appendix B
and Yin and Neubig (2017) for details of the neu-
ral network architecture.

3.3 Semi-supervised Learning

In this section we explain how to optimize the
semi-supervised learning objective Eq. (1) in
STRUCTVAE.

Supervised Learning For the supervised learn-
ing objective, we modify Js, and use the labeled
data to optimize both the inference model (the se-
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mantic parser) and the reconstruction model:

Js ,
∑

(x,z)∈L

(
log qφ(z|x) + log pθ(x|z)

)
(2)

Unsupervised Learning To optimize the unsu-
pervised learning objective Ju in Eq. (1), we max-
imize the variational lower-bound of log p(x):

log p(x) ≥ Ez∼qφ(z|x)
(
log pθ(x|z)

)

− λ ·KL[qφ(z|x)||p(z)] = L (3)

where KL[qφ||p] is the Kullback-Leibler (KL) di-
vergence. Following common practice in optimiz-
ing VAEs, we introduce λ as a tuning parameter
of the KL divergence to control the impact of the
prior (Miao and Blunsom, 2016; Bowman et al.,
2016).

To optimize the parameters of our model in the
face of non-differentiable discrete latent variables,
we follow Miao and Blunsom (2016), and ap-
proximate ∂L

∂φ using the score function estimator
(a.k.a. REINFORCE, Williams (1992)):
∂L
∂φ

=
∂

∂φ
Ez∼qφ(z|x)

(
log pθ(x|z)− λ

(
log qφ(z|x)− log p(z)

))

︸ ︷︷ ︸
learning signal

=
∂

∂φ
Ez∼qφ(z|x)l

′(x, z)

≈ 1

|S(x)|
∑

zi∈S(x)
l′(x, zi)

∂ log qφ(zi|x)
∂φ (4)

where we approximate the gradient using a set of
samples S(x) drawn from qφ(·|x). To ensure the
quality of sampled latent MRs, we follow Guu
et al. (2017) and use beam search. The term
l′(x, z) is defined as the learning signal (Miao
and Blunsom, 2016). The learning signal weights
the gradient for each latent sample z. In REIN-
FORCE, to cope with the high variance of the
learning signal, it is common to use a baseline
b(x) to stabilize learning, and re-define the learn-
ing signal as

l(x, z) , l′(x, z)− b(x). (5)

Specifically, in STRUCTVAE, we define

b(x) = a · log p(x) + c, (6)

where log p(x) is a pre-trained LSTM language
model. This is motivated by the empirical obser-
vation that log p(x) correlates well with the recon-
struction score log pθ(x|z), hence with l′(x, z).

Finally, for the reconstruction model, its gradi-

ent can be easily computed:
∂L
∂θ
≈ 1

|S(x)|
∑

zi∈S(x)

∂ log pθ(x|zi)
∂θ

.

Discussion Perhaps the most intriguing question
here is why semi-supervised learning could im-
prove semantic parsing performance. While the
underlying theoretical exposition still remains an
active research problem (Singh et al., 2008), in
this paper we try to empirically test some likely
hypotheses. In Eq. (4), the gradient received by
the inference model from each latent sample z is
weighed by the learning signal l(x, z). l(x, z) can
be viewed as the reward function in REINFORCE
learning. It can also be viewed as weights associ-
ated with pseudo-training examples {〈x, z〉 : z ∈
S(x)} sampled from the inference model. Intu-
itively, a sample z with higher rewards should:
(1) have z adequately encode the input, leading
to high reconstruction score log pθ(x|z); and (2)
have z be succinct and natural, yielding high prior
probability. Let z∗ denote the gold-standard MR
of x. Consider the ideal case where z∗ ∈ S(x)
and l(x, z∗) is positive, while l(x, z′) is negative
for other imperfect samples z′ ∈ S(x), z′ 6= z∗.
In this ideal case, 〈x, z∗〉would serve as a positive
training example and other samples 〈x, z′〉 would
be treated as negative examples. Therefore, the in-
ference model would receive informative gradient
updates, and learn to discriminate between gold
and imperfect MRs. This intuition is similar in
spirit to recent efforts in interpreting gradient up-
date rules in reinforcement learning (Guu et al.,
2017). We will present more empirical statistics
and observations in § 4.3.

4 Experiments

4.1 Datasets

In our semi-supervised semantic parsing experi-
ments, it is of interest how STRUCTVAE could
further improve upon a supervised parser with ex-
tra unlabeled data. We evaluate on two datasets:

Semantic Parsing We use the ATIS dataset, a
collection of 5,410 telephone inquiries of flight
booking (e.g., “Show me flights from ci0 to ci1”).
The target MRs are defined using λ-calculus log-
ical forms (e.g., “lambda $0 e (and (flight

$0) (from $ci0) (to $ci1))”). We use the
pre-processed dataset released by Dong and Lap-
ata (2016), where entities (e.g., cities) are canoni-
calized using typed slots (e.g., ci0). To predict λ-
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calculus logical forms using our transition-based
parser, we use the ASDL grammar defined by Ra-
binovich et al. (2017) to convert between logical
forms and ASTs (see Appendix C for details).

Code Generation The DJANGO dataset (Oda
et al., 2015) contains 18,805 lines of Python
source code extracted from the Django web frame-
work. Each line of code is annotated with an NL
utterance. Source code in the DJANGO dataset
exhibits a wide variety of real-world use cases
of Python, including IO operation, data structure
manipulation, class/function definition, etc. We
use the pre-processed version released by Yin and
Neubig (2017) and use the astor package to con-
vert ASDL ASTs into Python source code.

4.2 Setup

Labeled and Unlabeled Data STRUCTVAE re-
quires access to extra unlabeled NL utterances for
semi-supervised learning. However, the datasets
we use do not accompany with such data. We
therefore simulate the semi-supervised learning
scenario by randomly sub-sampling K examples
from the training split of each dataset as the la-
beled set L. To make the most use of the NL ut-
terances in the dataset, we construct the unlabeled
set U using all NL utterances in the training set3,4.

Training Procedure Optimizing the unsuper-
vised learning objective Eq. (3) requires sampling
structured MRs from the inference model qφ(z|x).
Due to the complexity of the semantic parsing
problem, we cannot expect any valid samples
from randomly initialized qφ(z|x). We therefore
pre-train the inference and reconstruction mod-
els using the supervised objective Eq. (2) until
convergence, and then optimize using the semi-
supervised learning objective Eq. (1). Throughout
all experiments we set α (Eq. (1)) and λ (Eq. (3))
to 0.1. The sample size |S(x)| is 5. We observe
that the variance of the learning signal could still
be high when low-quality samples are drawn from
the inference model qφ(z|x). We therefore clip

3We also tried constructing U using the disjoint portion
of the NL utterances not presented in the labeled set L, but
found this yields slightly worse performance, probably due
to lacking enough unlabeled data. Interpreting these results
would be an interesting avenue for future work.

4While it might be relatively easy to acquire additional
unlabeled utterances in practical settings (e.g., through query
logs of a search engine), unfortunately most academic seman-
tic parsing datasets, like the ones used in this work, do not
feature large sets of in-domain unlabeled data. We therefore
perform simulated experiments instead.

|L| SUP. SELFTRAIN STRUCTVAE
500 63.2 65.3 66.0
1,000 74.6 74.2 75.7
2,000 80.4 83.3 82.4
3,000 82.8 83.6 83.6
4,434 (All) 85.3 – 84.5

Previous Methods ACC.
ZC07 (Zettlemoyer and Collins, 2007) 84.6
WKZ14 (Wang et al., 2014) 91.3
SEQ2TREE (Dong and Lapata, 2016)† 84.6
ASN (Rabinovich et al., 2017)† 85.3

+ supervised attention 85.9

Table 1: Performance on ATIS w.r.t. the size of labeled train-
ing data L. †Existing neural network-based methods

|L| SUP. SELFTRAIN STRUCTVAE
1,000 49.9 49.5 52.0
2,000 56.6 55.8 59.0
3,000 61.0 61.4 62.4
5,000 63.2 64.5 65.6
8,000 70.3 69.6 71.5
12,000 71.1 71.6 72.0
16,000 (All) 73.7 – 72.3

Previous Method ACC.
YN17 (Yin and Neubig, 2017) 71.6

Table 2: Performance on DJANGO w.r.t. the size of labeled
training data L

all learning signals lower than k = −20.0. Early-
stopping is used to avoid over-fitting. We also pre-
train the prior p(z) (§ 3.3) and the baseline func-
tion Eq. (6). Readers are referred to Appendix D
for more detail of the configurations.

Metric As standard in semantic parsing re-
search, we evaluate by exact-match accuracy.

4.3 Main Results
Tab. 1 and Tab. 2 list the results on ATIS and
DJANGO, resp, with varying amounts of labeled
data L. We also present results of training the
transition-based parser using only the supervised
objective (SUP., Eq. (2)). We also compare
STRUCTVAE with self-training (SELFTRAIN), a
semi-supervised learning baseline which uses the
supervised parser to predict MRs for unlabeled
utterances in U − L, and adds the predicted ex-
amples to the training set to fine-tune the super-
vised model. Results for STRUCTVAE are aver-
aged over four runs to account for the additional
fluctuation caused by REINFORCE training.

Supervised System Comparison First, to high-
light the effectiveness of our transition parser
based on ASDL grammar (hence the reliability of
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Figure 4: Histograms of learning signals on DJANGO (|L| =
5000) and ATIS (|L| = 2000). Difference in sample means
is statistically significant (p < 0.05).

our supervised baseline), we compare the super-
vised version of our parser with existing parsing
models. On ATIS, our supervised parser trained
on the full data is competitive with existing neural
network based models, surpassing the SEQ2TREE

model, and on par with the Abstract Syntax Net-
work (ASN) without using extra supervision. On
DJANGO, our model significantly outperforms the
YN17 system, probably because the transition sys-
tem used by our parser is defined natively to con-
struct ASDL ASTs, reducing the number of ac-
tions for generating each example. On DJANGO,
the average number of actions is 14.3, compared
with 20.3 reported in YN17.

Semi-supervised Learning Next, we discuss
our main comparison between STRUCTVAE with
the supervised version of the parser (recall that the
supervised parser is used as the inference model
in STRUCTVAE, § 3.2). First, comparing our
proposed STRUCTVAE with the supervised parser
when there are extra unlabeled data (i.e., |L| <
4, 434 for ATIS and |L| < 16, 000 for DJANGO),
semi-supervised learning with STRUCTVAE con-
sistently achieves better performance. Notably, on
DJANGO, our model registers results as compet-
itive as previous state-of-the-art method (YN17)
using only half the training data (71.5 when |L| =
8000 v.s. 71.6 for YN17). This demonstrates
that STRUCTVAE is capable of learning from un-
labeled NL utterances by inferring high quality,
structurally rich latent meaning representations,
further improving the performance of its super-
vised counterpart that is already competitive. Sec-
ond, comparing STRUCTVAE with self-training,
we find STRUCTVAE outperforms SELFTRAIN

in eight out of ten settings, while SELFTRAIN

1 2 3 4 5
0.0

0.4

0.8

(a) DJANGO

1 2 3 4 5
0.0

0.4

0.8

(b) ATIS

Figure 5: Distribution of the rank of l(x,z∗) in sampled set

under-performs the supervised parser in four out
of ten settings. This shows self-training does not
necessarily yield stable gains while STRUCTVAE
does. Intuitively, STRUCTVAE would perform
better since it benefits from the additional signal of
the quality of MRs from the reconstruction model
(§ 3.3), for which we present more analysis in our
next set of experiments.

For the sake of completeness, we also report the
results of STRUCTVAE when L is the full train-
ing set. Note that in this scenario there is no extra
unlabeled data disjoint with the labeled set, and
not surprisingly, STRUCTVAE does not outper-
form the supervised parser. In addition to the su-
pervised objective Eq. (2) used by the supervised
parser, STRUCTVAE has the extra unsupervised
objective Eq. (3), which uses sampled (probably
incorrect) MRs to update the model. When there
is no extra unlabeled data, those sampled (incor-
rect) MRs add noise to the optimization process,
causing STRUCTVAE to under-perform.

Study of Learning Signals As discussed
in § 3.3, in semi-supervised learning, the gradient
received by the inference model from each sam-
pled latent MR is weighted by the learning signal.
Empirically, we would expect that on average,
the learning signals of gold-standard samples z∗,
l(x, z∗), are positive, larger than those of other
(imperfect) samples z′, l(x, z′). We therefore
study the statistics of l(x, z∗) and l(x, z′) for all
utterances x ∈ U − L, i.e., the set of utterances
which are not included in the labeled set.5 The
statistics are obtained by performing inference
using trained models. Figures 4a and 4b depict
the histograms of learning signals on DJANGO

and ATIS, resp. We observe that the learning
signals for gold samples concentrate on positive
intervals. We also show the mean and variance
of the learning signals. On average, we have
l(x, z∗) being positive and l(x, z) negative. Also
note that the distribution of l(x, z∗) has smaller
variance and is more concentrated. Therefore the
inference model receives informative gradient up-
dates to discriminate between gold and imperfect

5We focus on cases where z∗ is in the sample set S(x).
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NL join p and cmd into a file path, substitute it for f
zs1 f = os.path.join(p, cmd) 3

log q(z|x) = −1.00 log p(x|z) = −2.00
log p(z) = −24.33 l(x,z) = 9.14

zs2 p = path.join(p, cmd) 7

log q(z|x) = −8.12 log p(x|z) = −20.96
log p(z) = −27.89 l(x,z) = −9.47

NL append i-th element of existing to child loggers
zs1 child loggers.append(existing[i]) 3

log q(z|x) = −2.38 log p(x|z) = −9.66
log p(z) = −13.52 l(x,z) = 1.32

zs2 child loggers.append(existing[existing])7

log q(z|x) = −1.83 log p(x|z) = −16.11
log p(z) = −12.43 l(x,z) = −5.08

NL split string pks by ’,’, substitute the result for pri-
mary keys

zs1 primary keys = pks.split(’,’) 3

log q(z|x) = −2.38 log p(x|z) = −11.39
log p(z) = −10.24 l(x,z) = 2.05

zs2 primary keys = pks.split + ’,’ 7

log q(z|x) = −0.84 log p(x|z) = −14.87
log p(z) = −20.41 l(x,z) = −2.60

Table 3: Inferred latent MRs on DJANGO (|L| = 5000). For
simplicity we show the surface representation of MRs (zs,
source code) instead.

samples. Next, we plot the distribution of the
rank of l(x, z∗), among the learning signals of
all samples of x, {l(x, zi) : zi ∈ S(x)}. Results
are shown in Fig. 5. We observe that the gold
samples z∗ have the largest learning signals in
around 80% cases. We also find that when z∗ has
the largest learning signal, its average difference
with the learning signal of the highest-scoring
incorrect sample is 1.27 and 0.96 on DJANGO and
ATIS, respectively.

Finally, to study the relative contribution of
the reconstruction score log p(x|z) and the prior
log p(z) to the learning signal, we present ex-
amples of inferred latent MRs during training
(Tab. 3). Examples 1&2 show that the reconstruc-
tion score serves as an informative quality measure
of the latent MR, assigning the correct samples zs1
with high log p(x|z), leading to positive learning
signals. This is in line with our assumption that a
good latent MR should adequately encode the se-
mantics of the utterance. Example 3 shows that
the prior is also effective in identifying “unnatu-
ral” MRs (e.g., it is rare to add a function and a
string literal, as in zs2). These results also sug-
gest that the prior and the reconstruction model
perform well with linearization of MRs. Finally,
note that in Examples 2&3 the learning signals for
the correct samples zs1 are positive even if their in-
ference scores q(z|x) are lower than those of zs2.

|L| SUPERVISED STRUCTVAE-SEQ

500 47.3 55.6
1,000 62.5 73.1
2,000 73.9 74.8
3,000 80.6 81.3
4,434 (All) 84.6 84.2

Table 4: Performance of the STRUCTVAE-SEQ on ATIS
w.r.t. the size of labeled training data L

ATIS DJANGO
|L| SUP. MLP LM |L| SUP. MLP LM

500 63.2 61.5† 66.0 1,000 49.9 47.0† 52.0
1,000 74.6 76.3 75.7 5,000 63.2 62.5† 65.6
2,000 80.4 82.9 82.4 8,000 70.3 67.6† 71.5
3,000 82.8 81.4† 83.6 12,000 71.1 71.6 72.0

Table 5: Comparison of STRUCTVAE with different base-
line functions b(x), italic†: semi-supervised learning with
the MLP baseline is worse than supervised results.

This result further demonstrates that learning sig-
nals provide informative gradient weights for op-
timizing the inference model.

Generalizing to Other Latent MRs Our main
results are obtained using a strong AST-based se-
mantic parser as the inference model, with copy-
augmented reconstruction model and an LSTM
language model as the prior. However, there are
many other ways to represent and infer structure
in semantic parsing (Carpenter, 1998; Steedman,
2000), and thus it is of interest whether our ba-
sic STRUCTVAE framework generalizes to other
semantic representations. To examine this, we
test STRUCTVAE using λ-calculus logical forms
as latent MRs for semantic parsing on the ATIS

domain. We use standard sequence-to-sequence
networks with attention (Luong et al., 2015) as
inference and reconstruction models. The infer-
ence model is trained to construct a tree-structured
logical form using the transition actions defined
in Cheng et al. (2017). We use a classical tri-gram
Kneser-Ney language model as the prior. Tab. 4
lists the results for this STRUCTVAE-SEQ model.

We can see that even with this very different
model structure STRUCTVAE still provides signif-
icant gains, demonstrating its compatibility with
different inference/reconstruction networks and
priors. Interestingly, compared with the results
in Tab. 1, we found that the gains are especially
larger with few labeled examples — STRUCT-
VAE-SEQ achieves improvements of 8-10 points
when |L| < 1000. These results suggest that
semi-supervision is especially useful in improving
a mediocre parser in low resource settings.
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Impact of Baseline Functions In § 3.3 we dis-
cussed our design of the baseline function b(x)
incorporated in the learning signal (Eq. (4)) to
stabilize learning, which is based on a language
model (LM) over utterances (Eq. (6)). We com-
pare this baseline with a commonly used one in
REINFORCE training: the multi-layer perceptron
(MLP). The MLP takes as input the last hidden
state of the utterance given by the encoding LSTM
of the inference model. Tab. 5 lists the results
over sampled settings. We found that although
STRUCTVAE with the MLP baseline sometimes
registers better performance on ATIS, in most set-
tings it is worse than our LM baseline, and could
be even worse than the supervised parser. On the
other hand, our LM baseline correlates well with
the learning signal, yielding stable improvements
over the supervised parser. This suggests the im-
portance of using carefully designed baselines in
REINFORCE learning, especially when the re-
ward signal has large range (e.g., log-likelihoods).

Impact of the Prior p(z) Fig. 6 depicts the per-
formance of STRUCTVAE as a function of the KL
term weight λ in Eq. (3). When STRUCTVAE
degenerates to a vanilla auto-encoder without the
prior distribution (i.e., λ = 0), it under-performs
the supervised baseline. This is in line with our
observation in Tab. 3 showing that the prior helps
identify unnatural samples. The performance of
the model also drops when λ > 0.1, suggesting
that empirically controlling the influence of the
prior to the inference model is important.

Impact of Unlabeled Data Size Fig. 7 illus-
trates the accuracies w.r.t. the size of unlabeled
data. STRUCTVAE yields consistent gains as the
size of the unlabeled data increases.

5 Related Works
Semi-supervised Learning for NLP Semi-
supervised learning comes with a long his-
tory (Zhu, 2005), with applications in NLP from
early work of self-training (Yarowsky, 1995), and
graph-based methods (Das and Smith, 2011), to
recent advances in auto-encoders (Cheng et al.,
2016; Socher et al., 2011; Zhang et al., 2017) and
deep generative methods (Xu et al., 2017). Our
work follows the line of neural variational infer-
ence for text processing (Miao et al., 2016), and
resembles Miao and Blunsom (2016), which uses
VAEs to model summaries as discrete latent vari-
ables for semi-supervised summarization, while
we extend the VAE architecture for more complex,
tree-structured latent variables.

Semantic Parsing Most existing works allevi-
ate issues of limited parallel data through weakly-
supervised learning, using the denotations of MRs
as indirect supervision (Reddy et al., 2014; Kr-
ishnamurthy et al., 2016; Neelakantan et al.,
2016; Pasupat and Liang, 2015; Yin et al., 2016).
For semi-supervised learning of semantic pars-
ing, Kate and Mooney (2007) first explore us-
ing transductive SVMs to learn from a semantic
parser’s predictions. Konstas et al. (2017) ap-
ply self-training to bootstrap an existing parser
for AMR parsing. Kociský et al. (2016) em-
ploy VAEs for semantic parsing, but in con-
trast to STRUCTVAE’s structured representation
of MRs, they model NL utterances as flat la-
tent variables, and learn from unlabeled MR data.
There have also been efforts in unsupervised se-
mantic parsing, which exploits external linguis-
tic analysis of utterances (e.g., dependency trees)
and the schema of target knowledge bases to infer
the latent MRs (Poon and Domingos, 2009; Poon,
2013). Another line of research is domain adap-
tation, which seeks to transfer a semantic parser
learned from a source domain to the target domain
of interest, therefore alleviating the need of paral-
lel data from the target domain (Su and Yan, 2017;
Fan et al., 2017; Herzig and Berant, 2018).

6 Conclusion

We propose STRUCTVAE, a deep generative
model with tree-structured latent variables for
semi-supervised semantic parsing. We apply
STRUCTVAE to semantic parsing and code gen-
eration tasks, and show it outperforms a strong su-
pervised parser using extra unlabeled data.
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Abstract

This paper proposes a neural semantic
parsing approach – Sequence-to-Action,
which models semantic parsing as an end-
to-end semantic graph generation process.
Our method simultaneously leverages the
advantages from two recent promising di-
rections of semantic parsing. Firstly, our
model uses a semantic graph to represent
the meaning of a sentence, which has a
tight-coupling with knowledge bases. Sec-
ondly, by leveraging the powerful repre-
sentation learning and prediction ability
of neural network models, we propose a
RNN model which can effectively map
sentences to action sequences for seman-
tic graph generation. Experiments show
that our method achieves state-of-the-art
performance on OVERNIGHT dataset and
gets competitive performance on GEO and
ATIS datasets.

1 Introduction

Semantic parsing aims to map natural lan-
guage sentences to logical forms (Zelle and
Mooney, 1996; Zettlemoyer and Collins, 2005;
Wong and Mooney, 2007; Lu et al., 2008;
Kwiatkowski et al., 2013). For example, the
sentence “Which states border Texas?” will
be mapped to answer (A, (state (A),
next to (A, stateid ( texas )))).

A semantic parser needs two functions, one
for structure prediction and the other for seman-
tic grounding. Traditional semantic parsers are
usually based on compositional grammar, such as
CCG (Zettlemoyer and Collins, 2005, 2007), DCS
(Liang et al., 2011), etc. These parsers compose
structure using manually designed grammars, use
lexicons for semantic grounding, and exploit fea-

Sequence-to-Action 

RNN Model

Sentence

Action 

Sequence

Semantic 

Graph

Generate

Construct

Constraints

KB

 Which states border Texas?

add_variable:     A

add_type:           state

arg_node:           A

add_entity:        texas:st

add_edge:          next_to

arg_node:           A

arg_node:           texas:st

return:                 A

A
next_to

type
statereturn

texas:st

Figure 1: Overview of our method, with a demon-
stration example.

tures for candidate logical forms ranking. Un-
fortunately, it is challenging to design grammars
and learn accurate lexicons, especially in wide-
open domains. Moreover, it is often hard to design
effective features, and its learning process is not
end-to-end. To resolve the above problems, two
promising lines of work have been proposed: Se-
mantic graph-based methods and Seq2Seq meth-
ods.

Semantic graph-based methods (Reddy et al.,
2014, 2016; Bast and Haussmann, 2015; Yih et al.,
2015) represent the meaning of a sentence as a
semantic graph (i.e., a sub-graph of a knowledge
base, see example in Figure 1) and treat semantic
parsing as a semantic graph matching/generation
process. Compared with logical forms, seman-
tic graphs have a tight-coupling with knowledge
bases (Yih et al., 2015), and share many com-
monalities with syntactic structures (Reddy et al.,
2014). Therefore both the structure and seman-
tic constraints from knowledge bases can be eas-
ily exploited during parsing (Yih et al., 2015).
The main challenge of semantic graph-based pars-
ing is how to effectively construct the semantic
graph of a sentence. Currently, semantic graphs
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are either constructed by matching with patterns
(Bast and Haussmann, 2015), transforming from
dependency tree (Reddy et al., 2014, 2016), or
via a staged heuristic search algorithm (Yih et al.,
2015). These methods are all based on manually-
designed, heuristic construction processes, mak-
ing them hard to handle open/complex situations.

In recent years, RNN models have achieved
success in sequence-to-sequence problems due to
its strong ability on both representation learning
and prediction, e.g., in machine translation (Cho
et al., 2014). A lot of Seq2Seq models have
also been employed for semantic parsing (Xiao
et al., 2016; Dong and Lapata, 2016; Jia and
Liang, 2016), where a sentence is parsed by trans-
lating it to linearized logical form using RNN
models. There is no need for high-quality lexi-
cons, manually-built grammars, and hand-crafted
features. These models are trained end-to-end,
and can leverage attention mechanism (Bahdanau
et al., 2014; Luong et al., 2015) to learn soft align-
ments between sentences and logical forms.

In this paper, we propose a new neural semantic
parsing framework – Sequence-to-Action, which
can simultaneously leverage the advantages of se-
mantic graph representation and the strong predic-
tion ability of Seq2Seq models. Specifically, we
model semantic parsing as an end-to-end semantic
graph generation process. For example in Figure
1, our model will parse the sentence “Which states
border Texas” by generating a sequence of ac-
tions [add variable:A, add type:state,
...]. To achieve the above goal, we first design an
action set which can encode the generation process
of semantic graph (including node actions such
as add variable, add entity, add type,
edge actions such as add edge, and operation ac-
tions such as argmin, argmax, count, sum,
etc.). And then we design a RNN model which
can generate the action sequence for constructing
the semantic graph of a sentence. Finally we fur-
ther enhance parsing by incorporating both struc-
ture and semantic constraints during decoding.

Compared with the manually-designed, heuris-
tic generation algorithms used in traditional se-
mantic graph-based methods, our sequence-to-
action method generates semantic graphs using a
RNN model, which is learned end-to-end from
training data. Such a learnable, end-to-end gener-
ation makes our approach more effective and can
fit to different situations.

Compared with the previous Seq2Seq seman-
tic parsing methods, our sequence-to-action model
predicts a sequence of semantic graph generation
actions, rather than linearized logical forms. We
find that the action sequence encoding can better
capture structure and semantic information, and
is more compact. And the parsing can be en-
hanced by exploiting structure and semantic con-
straints. For example, in GEO dataset, the action
add edge:next to must subject to the seman-
tic constraint that its arguments must be of type
state and state, and the structure constraint
that the edge next to must connect two nodes to
form a valid graph.

We evaluate our approach on three standard
datasets: GEO (Zelle and Mooney, 1996), ATIS

(He and Young, 2005) and OVERNIGHT (Wang
et al., 2015b). The results show that our
method achieves state-of-the-art performance on
OVERNIGHT dataset and gets competitive perfor-
mance on GEO and ATIS datasets.

The main contributions of this paper are sum-
marized as follows:

• We propose a new semantic parsing frame-
work – Sequence-to-Action, which models
semantic parsing as an end-to-end semantic
graph generation process. This new frame-
work can synthesize the advantages of se-
mantic graph representation and the predic-
tion ability of Seq2Seq models.

• We design a sequence-to-action model, in-
cluding an action set encoding for semantic
graph generation and a Seq2Seq RNN model
for action sequence prediction. We further
enhance the parsing by exploiting structure
and semantic constraints during decoding.
Experiments validate the effectiveness of our
method.

2 Sequence-to-Action Model for
End-to-End Semantic Graph
Generation

Given a sentence X = x1, ..., x|X|, our sequence-
to-action model generates a sequence of actions
Y = y1, ..., y|Y | for constructing the correct
semantic graph. Figure 2 shows an example.
The conditional probability P (Y |X) used in our
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Sentence: Which river runs through the most states?

Semantic Graph:

Action Sequence:

      

most

arg_for_1 arg_for_2

A B

state

traverse 

typetype

river

return

Structure Semantic Arg 

add_operation most  

add_variable A  

add_type river A 

add_variable B  

add_type state B 

add_edge traverse A, B 

end_operation most A, B 

return A  

 

Figure 2: An example of a sentence paired with its
semantic graph, together with the action sequence
for semantic graph generation.

model is decomposed as follows:

P (Y |X) =

|Y |∏

t=1

P (yt|y<t, X) (1)

where y<t = y1, ..., yt−1.
To achieve the above goal, we need: 1) an ac-

tion set which can encode semantic graph genera-
tion process; 2) an encoder which encodes natural
language input X into a vector representation, and
a decoder which generates y1, ..., y|Y | conditioned
on the encoding vector. In following we describe
them in detail.

2.1 Actions for Semantic Graph Generation

Generally, a semantic graph consists of nodes
(including variables, entities, types) and edges
(semantic relations), with some universal opera-
tions (e.g., argmax, argmin, count, sum, and
not). To generate a semantic graph, we define six
types of actions as follows:

Add Variable Node: This kind of actions de-
notes adding a variable node to semantic graph. In
most cases a variable node is a return node (e.g.,
which, what), but can also be an intermediate vari-
able node. We represent this kind of action as
add variable:A, where A is the identifier of
the variable node.

Add Entity Node: This kind of actions denotes
adding an entity node (e.g., Texas, New York) and
is represented as add entity node:texas.
An entity node corresponds to an entity in knowl-
edge bases.

Add Type Node: This kind of actions denotes
adding a type node (e.g., state, city). We represent
them as add type node:state.

Add Edge: This kind of actions denotes adding
an edge between two nodes. An edge is a binary
relation in knowledge bases. This kind of actions
is represented as add edge:next to.

Operation Action: This kind of actions de-
notes adding an operation. An operation can be
argmax, argmin, count, sum, not, et al. Be-
cause each operation has a scope, we define two
actions for an operation, one is operation start ac-
tion, represented as start operation:most,
and the other is operation end action, repre-
sented as end operation:most. The sub-
graph within the start and end operation actions
is its scope.

Argument Action: Some above actions need
argument information. For example, which nodes
the add edge:next to action should connect
to. In this paper, we design argument actions
for add type, add edge and operation ac-
tions, and the argument actions should be put di-
rectly after its main action.

For add type actions, we put an argument ac-
tion to indicate which node this type node should
constrain. The argument can be a variable node
or an entity node. An argument action for a type
node is represented as arg:A.

For add edge action, we use two argu-
ment actions: arg1 node and arg2 node,
and they are represented as arg1 node:A and
arg2 node:B.

We design argument actions for different op-
erations. For operation:sum, there are
three arguments: arg-for, arg-in and
arg-return. For operation:count, they
are arg-for and arg-return. There are two
arg-for arguments for operation:most.

We can see that each action encodes both struc-
ture and semantic information, which makes it
easy to capture more information for parsing and
can be tightly coupled with knowledge base. Fur-
thermore, we find that action sequence encoding
is more compact than linearized logical form (See
Section 4.4 for more details).
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Figure 3: Our attention-based Sequence-to-Action
RNN model, with a controller for incorporating
constraints.

2.2 Neural Sequence-to-Action Model
Based on the above action encoding mechanism,
this section describes our encoder-decoder model
for mapping sentence to action sequence. Specif-
ically, similar to the RNN model in Jia and
Liang (2016), this paper employs the attention-
based sequence-to-sequence RNN model. Figure
3 presents the overall structure.
Encoder: The encoder converts the input se-
quence x1, ..., xm to a sequence of context-
sensitive vectors b1, ..., bm using a bidirectional
RNN (Bahdanau et al., 2014). Firstly each word xi
is mapped to its embedding vector, then these vec-
tors are fed into a forward RNN and a backward
RNN. The sequence of hidden states h1, ..., hm are
generated by recurrently applying the recurrence:

hi = LSTM(φ(x)(xi), hi−1). (2)

The recurrence takes the form of LSTM (Hochre-
iter and Schmidhuber, 1997). Finally, for each in-
put position i, we define its context-sensitive em-
bedding as bi = [hFi , h

B
i ].

Decoder: This paper uses the classical attention-
based decoder (Bahdanau et al., 2014), which gen-
erates action sequence y1, ..., yn, one action at a
time. At each time step j, it writes yj based on
the current hidden state sj , then updates the hid-
den state to sj+1 based on sj and yj . The decoder
is formally defined by the following equations:

s1 = tanh(W (s)[hFm, h
B
1 ]) (3)

eji = sTj W
(a)bi (4)

aji =
exp(eji)∑m
i′=1

exp(eji′ )
(5)

cj =

m∑

i=1

ajibi (6)

P (yj = w|x, y1:j−1) ∝ exp(Uw[sj , cj ]) (7)

sj+1 = LSTM([φ(y)(yj), cj ], sj) (8)

where the normalized attention scores aji defines
the probability distribution over input words, in-
dicating the attention probability on input word i
at time j; eji is un-normalized attention score. To
incorporate constraints during decoding, an extra
controller component is added and its details will
be described in Section 3.3.
Action Embedding. The above decoder needs
the embedding of each action. As described
above, each action has two parts, one for struc-
ture (e.g., add edge), and the other for se-
mantic (e.g., next to). As a result, ac-
tions may share the same structure or se-
mantic part, e.g., add edge:next to and
add edge:loc have the same structure part,
and add node:A and arg node:A have the
same semantic part. To make parameters more
compact, we first embed the structure part and
the semantic part independently, then concate-
nate them to get the final embedding. For in-
stance, φ(y)(add edge:next to ) = [ φ

(y)
strut(

add edge ), φ
(y)
sem( next to )]. The action em-

beddings φ(y) are learned during training.

3 Constrained Semantic Parsing using
Sequence-to-Action Model

In this section, we describe how to build a neural
semantic parser using sequence-to-action model.
We first describe the training and the inference of
our model, and then introduce how to incorporate
structure and semantic constraints during decod-
ing.

3.1 Training

Parameter Estimation. The parameters of our
model include RNN parameters W (s), W (a), Uw,
word embeddings φ(x), and action embeddings
φ(y). We estimate these parameters from training
data. Given a training example with a sentence X
and its action sequence Y , we maximize the like-
lihood of the generated sequence of actions given
X . The objective function is:

n∑

i=1

logP (Yi|Xi) (9)

Standard stochastic gradient descent algorithm is
employed to update parameters.
Logical Form to Action Sequence. Currently,
most datasets of semantic parsing are labeled with
logical forms. In order to train our model, we
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Figure 4: The procedure of converting between
logical form and action sequence.

convert logical forms to action sequences using
semantic graph as an intermediate representation
(See Figure 4 for an overview). Concretely, we
transform logical forms into semantic graphs us-
ing a depth-first-search algorithm from root, and
then generate the action sequence using the same
order. Specifically, entities, variables and types
are nodes; relations are edges. Conversely we can
convert action sequence to logical form similarly.
Based on the above algorithm, action sequences
can be transformed into logical forms in a deter-
ministic way, and the same for logical forms to
action sequences.
Mechanisms for Handling Entities. Entities play
an important role in semantic parsing (Yih et al.,
2015). In Dong and Lapata (2016), entities are
replaced with their types and unique IDs. In
Jia and Liang (2016), entities are generated via
attention-based copying mechanism helped with a
lexicon. This paper implements both mechanisms
and compares them in experiments.

3.2 Inference

Given a new sentence X , we predict action se-
quence by:

Y ∗ = argmax
Y

P (Y |X) (10)

where Y represents action sequence, and P (Y |X)
is computed using Formula (1). Beam search is
used for best action sequence decoding. Semantic
graph and logical form can be derived from Y ∗ as
described in above.

3.3 Incorporating Constraints in Decoding

For decoding, we generate action sequentially. It
is obviously that the next action has a strong cor-
relation with the partial semantic graph generated
to current, and illegal actions can be filtered us-
ing structure and semantic constraints. Specifi-
cally, we incorporate constraints in decoding using
a controller. This procedure has two steps: 1) the
controller constructs partial semantic graph using
the actions generated to current; 2) the controller
checks whether a new generated action can meet

Sentence: Which states border Texas?

Partial Semantic Graph:

 

A

next_to

type
state

texas:st

 Structure Semantic Arg Validity 

Generated 

Actions 

add_variable A   

add_type state A  

add_entity texas:st   

Candidate 

Next 

Action 

add_type city texas:st O 

add_edge loc A, texas:st O 

add_edge next_to A, A O 

add_edge next_to A, texas:st P 

…
 

…
 

…
 

…
 

Figure 5: A demonstration of illegal action filter-
ing using constraints. The graph in color is the
constructed semantic graph to current.

all structure/semantic constraints using the partial
semantic graph.

Structure Constraints. The structure constraints
ensure action sequence will form a connected
acyclic graph. For example, there must be two ar-
gument nodes for an edge, and the two argument
nodes should be different (The third candidate next
action in Figure 5 violates this constraint). This
kind of constraints are domain-independent. The
controller encodes structure constraints as a set of
rules.

Semantic Constraints. The semantic constraints
ensure the constructed graph must follow the
schema of knowledge bases. Specifically, we
model two types of semantic constraints. One is
selectional preference constraints where the argu-
ment types of a relation should follow knowledge
base schemas. For example, in GEO dataset, rela-
tion next to’s arg1 and arg2 should both be
a state. The second is type conflict constraints,
i.e., an entity/variable node’s type must be consis-
tent, i.e., a node cannot be both of type city and
state. Semantic constraints are domain-specific
and are automatically extracted from knowledge
base schemas. The controller encodes semantic
constraints as a set of rules.

4 Experiments

In this section, we assess the performance of our
method and compare it with previous methods.
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4.1 Datasets

We conduct experiments on three standard
datasets: GEO, ATIS and OVERNIGHT.
GEO contains natural language questions about
US geography paired with corresponding Pro-
log database queries. Following Zettlemoyer and
Collins (2005), we use the standard 600/280 in-
stance splits for training/test.
ATIS contains natural language questions of a
flight database, with each question is annotated
with a lambda calculus query. Following Zettle-
moyer and Collins (2007), we use the standard
4473/448 instance splits for training/test.
OVERNIGHT contains natural language para-
phrases paired with logical forms across eight do-
mains. We evaluate on the standard train/test splits
as Wang et al. (2015b).

4.2 Experimental Settings

Following the experimental setup of Jia and Liang
(2016): we use 200 hidden units and 100-
dimensional word vectors for sentence encoding.
The dimensions of action embedding are tuned on
validation datasets for each corpus. We initialize
all parameters by uniformly sampling within the
interval [-0.1, 0.1]. We train our model for a to-
tal of 30 epochs with an initial learning rate of
0.1, and halve the learning rate every 5 epochs af-
ter epoch 15. We replace word vectors for words
occurring only once with an universal word vec-
tor. The beam size is set as 5. Our model is
implemented in Theano (Bergstra et al., 2010),
and the codes and settings are released on Github:
https://github.com/dongpobeyond/Seq2Act.

We evaluate different systems using the stan-
dard accuracy metric, and the accuracies on differ-
ent datasets are obtained as same as Jia and Liang
(2016).

4.3 Overall Results

We compare our method with state-of-the-art sys-
tems on all three datasets. Because all systems us-
ing the same training/test splits, we directly use
the reported best performances from their original
papers for fair comparison.

For our method, we train our model with three
settings: the first one is the basic sequence-to-
action model without constraints – Seq2Act; the
second one adds structure constraints in decod-
ing – Seq2Act (+C1); the third one is the full
model which adds both structure and semantic

GEO ATIS

Previous Work
Zettlemoyer and Collins (2005) 79.3 –
Zettlemoyer and Collins (2007) 86.1 84.6
Kwiatkowksi et al. (2010) 88.9 –
Kwiatkowski et al. (2011) 88.6 82.8
Liang et al. (2011)* (+lexicon) 91.1 –
Poon (2013) – 83.5
Zhao et al. (2015) 88.9 84.2
Rabinovich et al. (2017) 87.1 85.9
Seq2Seq Models
Jia and Liang (2016) 85.0 76.3
Jia and Liang (2016)* (+data) 89.3 83.3
Dong and Lapata (2016): 2Seq 84.6 84.2
Dong and Lapata (2016): 2Tree 87.1 84.6
Our Models
Seq2Act 87.5 84.6
Seq2Act (+C1) 88.2 85.0
Seq2Act (+C1+C2) 88.9 85.5

Table 1: Test accuracies on GEO and ATIS

datasets, where * indicates systems with extra-
resources are used.

constraints – Seq2Act (+C1+C2). Semantic con-
straints (C2) are stricter than structure constraints
(C1). Therefore we set that C1 should be first met
for C2 to be met. So in our experiments we add
constraints incrementally. The overall results are
shown in Table 1-2. From the overall results, we
can see that:

1) By synthetizing the advantages of seman-
tic graph representation and the prediction abil-
ity of Seq2Seq model, our method achieves state-
of-the-art performance on OVERNIGHT dataset,
and gets competitive performance on GEO and
ATIS dataset. In fact, on GEO our full model
(Seq2Act+C1+C2) also gets the best test accuracy
of 88.9 if under the same settings, which only falls
behind Liang et al. (2011)* which uses extra hand-
crafted lexicons and Jia and Liang (2016)* which
uses extra augmented training data. On ATIS our
full model gets the second best test accuracy of
85.5, which only falls behind Rabinovich et al.
(2017) which uses a supervised attention strategy.
On OVERNIGHT, our full model gets state-of-the-
art accuracy of 79.0, which even outperforms Jia
and Liang (2016)* with extra augmented training
data.

2) Compared with the linearized logical form
representation used in previous Seq2Seq base-
lines, our action sequence encoding is more effec-
tive for semantic parsing. On all three datasets,
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Soc. Blo. Bas. Res. Cal. Hou. Pub. Rec. Avg.
Previous Work
Wang et al. (2015b) 48.2 41.9 46.3 75.9 74.4 54.0 59.0 70.8 58.8
Seq2Seq Models
Xiao et al. (2016) 80.0 55.6 80.5 80.1 75.0 61.9 75.8 – 72.7
Jia and Liang (2016) 81.4 58.1 85.2 76.2 78.0 71.4 76.4 79.6 75.8
Jia and Liang (2016)* (+data) 79.6 60.2 87.5 79.5 81.0 72.5 78.3 81.0 77.5
Our Models
Seq2Act 81.4 60.4 87.5 79.8 81.0 73.0 79.5 81.5 78.0
Seq2Act (+C1) 81.8 60.9 88.0 80.1 81.0 73.5 80.1 82.0 78.4
Seq2Act (+C1+C2) 82.1 61.4 88.2 80.7 81.5 74.1 80.7 82.9 79.0

Table 2: Test accuracies on OVERNIGHT dataset, which includes eight domains: Social, Blocks, Bas-
ketball, Restaurants, Calendar, Housing, Publications, and Recipes.

our basic Seq2Act model gets better results than
all Seq2Seq baselines. On GEO, the Seq2Act
model achieve test accuracy of 87.5, better than
the best accuracy 87.1 of Seq2Seq baseline. On
ATIS, the Seq2Act model obtains a test accuracy
of 84.6, the same as the best Seq2Seq baseline. On
OVERNGIHT, the Seq2Act model gets a test accu-
racy of 78.0, better than the best Seq2Seq baseline
gets 77.5. We argue that this is because our ac-
tion sequence encoding is more compact and can
capture more information.

3) Structure constraints can enhance semantic
parsing by ensuring the validity of graph using the
generated action sequence. In all three datasets,
Seq2Act (+C1) outperforms the basic Seq2Act
model. This is because a part of illegal actions
will be filtered during decoding.

4) By leveraging knowledge base schemas dur-
ing decoding, semantic constraints are effective
for semantic parsing. Compared to Seq2Act and
Seq2Act (+C1), the Seq2Act (+C1+C2) gets the
best performance on all three datasets. This is
because semantic constraints can further filter se-
mantic illegal actions using selectional preference
and consistency between types.

4.4 Detailed Analysis

Effect of Entity Handling Mechanisms. This pa-
per implements two entity handling mechanisms –
Replacing (Dong and Lapata, 2016) which identi-
fies entities and then replaces them with their types
and IDs, and attention-based Copying (Jia and
Liang, 2016). To compare the above two mech-
anisms, we train and test with our full model and
the results are shown in Table 3. We can see that,
Replacing mechanism outperforms Copying in all
three datasets. This is because Replacing is done

Replacing Copying
GEO 88.9 88.2
ATIS 85.5 84.0

OVERNIGHT 79.0 77.9

Table 3: Test accuracies of Seq2Act (+C1+C2) on
GEO, ATIS, and OVERNIGHT of two entity han-
dling mechanisms.

Logical Form Action Sequence
GEO 28.2 18.2
ATIS 28.4 25.8

OVERNIGHT 46.6 33.3

Table 4: Average length of logical forms and ac-
tion sequences on three datasets. On OVERNIGHT,
we average across all eight domains.

in preprocessing, while attention-based Copying
is done during parsing and needs additional copy
mechanism.
Linearized Logical Form vs. Action Sequence.
Table 4 shows the average length of linearized log-
ical forms used in previous Seq2Seq models and
the action sequences of our model on all three
datasets. As we can see, action sequence en-
coding is more compact than linearized logical
form encoding: action sequence is shorter on all
three datasets, 35.5%, 9.2% and 28.5% reduction
in length respectively. The main advantage of a
shorter/compact encoding is that it will reduce the
influence of long distance dependency problem.

4.5 Error Analysis

We perform error analysis on results and find there
are mainly two types of errors.
Unseen/Informal Sentence Structure. Some test
sentences have unseen syntactic structures. For
example, the first case in Table 5 has an unseen
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Error Types Examples

Un-covered
Sentence
Structure

Sentence: Iowa borders how many states? (Formal Form: How many states does Iowa border?)
Gold Parse: answer(A, count(B, (const (C, stateid(iowa)), next to(C, B),
state (B)), A))
Predicted Parse: answer (A, count(B, state(B), A))

Under-
Mapping

Sentence: Please show me first class flights from indianapolis to memphis one way leaving before 10am
Gold Parse: (lambda x (and (flight x) (oneway x) (class type x first:cl)
(< (departure time x) 1000:ti) (from x indianapolis:ci) (to x
memphis:ci)))
Predicted Parse: (lambda x (and (flight x) (oneway x) (< (departure time x)
1000:ti) (from x indianapolis:ci) (to x memphis:ci)))

Table 5: Some examples for error analysis. Each example includes the sentence for parsing, with gold
parse and predicted parse from our model.

and informal structure, where entity word “Iowa”
and relation word “borders” appear ahead of the
question words “how many”. For this problem,
we can employ sentence rewriting or paraphrasing
techniques (Chen et al., 2016; Dong et al., 2017) to
transform unseen sentence structures into normal
ones.
Under-Mapping. As Dong and Lapata (2016)
discussed, the attention model does not take the
alignment history into consideration, makes some
words are ignored during parsing. For example in
the second case in Table 5, “first class” is ignored
during the decoding process. This problem can be
further solved using explicit word coverage mod-
els used in neural machine translation (Tu et al.,
2016; Cohn et al., 2016)

5 Related Work

Semantic parsing has received significant attention
for a long time (Kate and Mooney, 2006; Clarke
et al., 2010; Krishnamurthy and Mitchell, 2012;
Artzi and Zettlemoyer, 2013; Berant and Liang,
2014; Quirk et al., 2015; Artzi et al., 2015; Reddy
et al., 2017). Traditional methods are mostly
based on the principle of compositional seman-
tics, which first trigger predicates using lexicons
and then compose them using grammars. The
prominent grammars include SCFG (Wong and
Mooney, 2007; Li et al., 2015), CCG (Zettlemoyer
and Collins, 2005; Kwiatkowski et al., 2011; Cai
and Yates, 2013), DCS (Liang et al., 2011; Be-
rant et al., 2013), etc. As discussed above, the
main drawback of grammar-based methods is that
they rely on high-quality lexicons, manually-built
grammars, and hand-crafted features.

In recent years, one promising direction of se-
mantic parsing is to use semantic graph as rep-
resentation. Thus semantic parsing is modeled
as a semantic graph generation process. Ge and
Mooney (2009) build semantic graph by trans-

forming syntactic tree. Bast and Haussmann
(2015) identify the structure of a semantic query
using three pre-defined patterns. Reddy et al.
(2014, 2016) use Freebase-based semantic graph
representation, and convert sentences to semantic
graphs using CCG or dependency tree. Yih et al.
(2015) generate semantic graphs using a staged
heuristic search algorithm. These methods are all
based on manually-designed, heuristic generation
process, which may suffer from syntactic parse er-
rors (Ge and Mooney, 2009; Reddy et al., 2014,
2016), structure mismatch (Chen et al., 2016), and
are hard to deal with complex sentences (Yih et al.,
2015).

One other direction is to employ neural
Seq2Seq models, which models semantic parsing
as an end-to-end, sentence to logical form machine
translation problem. Dong and Lapata (2016), Jia
and Liang (2016) and Xiao et al. (2016) transform
word sequence to linearized logical forms. One
main drawback of these methods is that it is hard
to capture and exploit structure and semantic con-
straints using linearized logical forms. Dong and
Lapata (2016) propose a Seq2Tree model to cap-
ture the hierarchical structure of logical forms.

It has been shown that structure and seman-
tic constraints are effective for enhancing seman-
tic parsing. Krishnamurthy et al. (2017) use type
constraints to filter illegal tokens. Liang et al.
(2017) adopt a Lisp interpreter with pre-defined
functions to produce valid tokens. Iyyer et al.
(2017) adopt type constraints to generate valid ac-
tions. Inspired by these approaches, we also in-
corporate both structure and semantic constraints
in our neural sequence-to-action model.

Transition-based approaches are important in
both dependency parsing (Nivre, 2008; Hender-
son et al., 2013) and AMR parsing (Wang et al.,
2015a). In semantic parsing, our method has a
tight-coupling with knowledge bases, and con-
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straints can be exploited for more accurate decod-
ing. We believe this can also be used to enhance
previous transition based methods and may also be
used in other parsing tasks, e.g., AMR parsing.

6 Conclusions

This paper proposes Sequence-to-Action, a
method which models semantic parsing as an
end-to-end semantic graph generation process.
By leveraging the advantages of semantic graph
representation and exploiting the representation
learning and prediction ability of Seq2Seq models,
our method achieved significant performance im-
provements on three datasets. Furthermore, struc-
ture and semantic constraints can be easily incor-
porated in decoding to enhance semantic parsing.

For future work, to solve the problem of the lack
of training data, we want to design weakly super-
vised learning algorithm using denotations (QA
pairs) as supervision. Furthermore, we want to
collect labeled data by designing an interactive UI
for annotation assist like (Yih et al., 2016), which
uses semantic graphs to annotate the meaning of
sentences, since semantic graph is more natural
and can be easily annotated without the need of
expert knowledge.
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♥University of Copenhagen, Copenhagen, Denmark

♠Insight Research Centre, National University of Ireland, Galway, Ireland
♣Aylien Ltd., Dublin, Ireland

3Language Technology Lab, University of Cambridge, UK
soegaard@di.ku.dk,sebastian@ruder.io,iv250@cam.ac.uk

Abstract

Unsupervised machine translation—i.e.,
not assuming any cross-lingual supervi-
sion signal, whether a dictionary, transla-
tions, or comparable corpora—seems im-
possible, but nevertheless, Lample et al.
(2018a) recently proposed a fully unsu-
pervised machine translation (MT) model.
The model relies heavily on an adversar-
ial, unsupervised alignment of word em-
bedding spaces for bilingual dictionary in-
duction (Conneau et al., 2018), which we
examine here. Our results identify the lim-
itations of current unsupervised MT: un-
supervised bilingual dictionary induction
performs much worse on morphologically
rich languages that are not dependent mark-
ing, when monolingual corpora from dif-
ferent domains or different embedding al-
gorithms are used. We show that a simple
trick, exploiting a weak supervision sig-
nal from identical words, enables more ro-
bust induction, and establish a near-perfect
correlation between unsupervised bilingual
dictionary induction performance and a pre-
viously unexplored graph similarity metric.

1 Introduction

Cross-lingual word representations enable us to
reason about word meaning in multilingual con-
texts and facilitate cross-lingual transfer (Ruder
et al., 2018). Early cross-lingual word embedding
models relied on large amounts of parallel data
(Klementiev et al., 2012; Mikolov et al., 2013a),
but more recent approaches have tried to minimize
the amount of supervision necessary (Vulić and
Korhonen, 2016; Levy et al., 2017; Artetxe et al.,
2017). Some researchers have even presented un-
supervised methods that do not rely on any form

of cross-lingual supervision at all (Barone, 2016;
Conneau et al., 2018; Zhang et al., 2017).

Unsupervised cross-lingual word embeddings
hold promise to induce bilingual lexicons and ma-
chine translation models in the absence of dictio-
naries and translations (Barone, 2016; Zhang et al.,
2017; Lample et al., 2018a), and would therefore
be a major step toward machine translation to, from,
or even between low-resource languages.

Unsupervised approaches to learning cross-
lingual word embeddings are based on the assump-
tion that monolingual word embedding graphs are
approximately isomorphic, that is, after removing a
small set of vertices (words) (Mikolov et al., 2013b;
Barone, 2016; Zhang et al., 2017; Conneau et al.,
2018). In the words of Barone (2016):

. . . we hypothesize that, if languages are used to
convey thematically similar information in similar
contexts, these random processes should be approx-
imately isomorphic between languages, and that
this isomorphism can be learned from the statistics
of the realizations of these processes, the mono-
lingual corpora, in principle without any form of
explicit alignment.

Our results indicate this assumption is not true in
general, and that approaches based on this assump-
tion have important limitations.

Contributions We focus on the recent state-
of-the-art unsupervised model of Conneau et al.
(2018).1 Our contributions are: (a) In §2, we show
that the monolingual word embeddings used in
Conneau et al. (2018) are not approximately iso-
morphic, using the VF2 algorithm (Cordella et al.,
2001) and we therefore introduce a metric for quan-
tifying the similarity of word embeddings, based
on Laplacian eigenvalues. (b) In §3, we identify cir-
cumstances under which the unsupervised bilingual

1Our motivation for this is that Artetxe et al. (2017) use
small dictionary seeds for supervision, and Barone (2016)
seems to obtain worse performance than Conneau et al. (2018).
Our results should extend to Barone (2016) and Zhang et al.
(2017), which rely on very similar methodology.
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(a) Top 10 most frequent
English words

(b) German translations
of top 10 most frequent
English words

(c) Top 10 most frequent
English nouns

(d) German translations
of top 10 most frequent
English nouns

Figure 1: Nearest neighbor graphs.

dictionary induction (BDI) algorithm proposed in
Conneau et al. (2018) does not lead to good perfor-
mance. (c) We show that a simple trick, exploiting
a weak supervision signal from words that are iden-
tical across languages, makes the algorithm much
more robust. Our main finding is that the perfor-
mance of unsupervised BDI depends heavily on all
three factors: the language pair, the comparability
of the monolingual corpora, and the parameters of
the word embedding algorithms.

2 How similar are embeddings across
languages?

As mentioned, recent work focused on unsuper-
vised BDI assumes that monolingual word embed-
ding spaces (or at least the subgraphs formed by
the most frequent words) are approximately isomor-
phic. In this section, we show, by investigating the
nearest neighbor graphs of word embedding spaces,
that word embeddings are far from isomorphic. We
therefore introduce a method for computing the
similarity of non-isomorphic graphs. In §4.7, we
correlate our similarity metric with performance on
unsupervised BDI.

Isomorphism To motivate our study, we first
establish that word embeddings are far from
graph isomorphic2—even for two closely re-

2Two graphs that contain the same number of graph ver-
tices connected in the same way are said to be isomorphic. In
the context of weighted graphs such as word embeddings, a

lated languages, English and German, and us-
ing embeddings induced from comparable corpora
(Wikipedia) with the same hyper-parameters.

If we take the top k most frequent words in En-
glish, and the top k most frequent words in German,
and build nearest neighbor graphs for English and
German using the monolingual word embeddings
used in Conneau et al. (2018), the graphs are of
course very different. This is, among other things,
due to German case and the fact that the translates
into der, die, and das, but unsupervised alignment
does not have access to this kind of information.
Even if we consider the top k most frequent En-
glish words and their translations into German, the
nearest neighbor graphs are not isomorphic. Fig-
ure 1a-b shows the nearest neighbor graphs of the
top 10 most frequent English words on Wikipedia,
and their German translations.

Word embeddings are particularly good at cap-
turing relations between nouns, but even if we con-
sider the top k most frequent English nouns and
their translations, the graphs are not isomorphic;
see Figure 1c-d. We take this as evidence that
word embeddings are not approximately isomor-
phic across languages. We also ran graph isomor-
phism checks on 10 random samples of frequent
English nouns and their translations into Spanish,
and only in 1/10 of the samples were the corre-
sponding nearest neighbor graphs isomorphic.

Eigenvector similarity Since the nearest neigh-
bor graphs are not isomorphic, even for frequent
translation pairs in neighboring languages, we want
to quantify the potential for unsupervised BDI us-
ing a metric that captures varying degrees of graph
similarity. Eigenvalues are compact representations
of global properties of graphs, and we introduce
a spectral metric based on Laplacian eigenvalues
(Shigehalli and Shettar, 2011) that quantifies the
extent to which the nearest neighbor graphs are
isospectral. Note that (approximately) isospectral
graphs need not be (approximately) isomorphic,
but (approximately) isomorphic graphs are always
(approximately) isospectral (Gordon et al., 1992).
Let A1 and A2 be the adjacency matrices of the
nearest neighbor graphs G1 and G2 of our two
word embeddings, respectively. Let L1 = D1−A1

and L2 = D2−A2 be the Laplacians of the nearest
neighbor graphs, where D1 and D2 are the corre-
sponding diagonal matrices of degrees. We now

weak version of this is to require that the underlying nearest
neighbor graphs for the most frequent k words are isomorphic.
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compute the eigensimilarity of the Laplacians of
the nearest neighbor graphs, L1 and L2. For each
graph, we find the smallest k such that the sum of
the k largest Laplacian eigenvalues is <90% of the
Laplacian eigenvalues. We take the smallest k of
the two, and use the sum of the squared differences
between the largest k Laplacian eigenvalues ∆ as
our similarity metric.

∆ =

k∑

i=1

(λ1i − λ2i)2

where k is chosen s.t.

min
j
{
∑k

i=1 λji∑n
i=1 λji

> 0.9}

Note that ∆ = 0 means the graphs are isospec-
tral, and the metric goes to infinite. Thus, the higher
∆ is, the less similar the graphs (i.e., their Lapla-
cian spectra). We discuss the correlation between
unsupervised BDI performance and approximate
isospectrality or eigenvector similarity in §4.7.

3 Unsupervised cross-lingual learning

3.1 Learning scenarios

Unsupervised neural machine translation relies on
BDI using cross-lingual embeddings (Lample et al.,
2018a; Artetxe et al., 2018), which in turn relies
on the assumption that word embedding graphs are
approximately isomorphic. The work of Conneau
et al. (2018), which we focus on here, also makes
several implicit assumptions that may or may not be
necessary to achieve such isomorphism, and which
may or may not scale to low-resource languages.
The algorithms are not intended to be limited to
learning scenarios where these assumptions hold,
but since they do in the reported experiments, it is
important to see to what extent these assumptions
are necessary for the algorithms to produce useful
embeddings or dictionaries.

We focus on the work of Conneau et al. (2018),
who present a fully unsupervised approach to align-
ing monolingual word embeddings, induced using
fastText (Bojanowski et al., 2017). We describe the
learning algorithm in §3.2. Conneau et al. (2018)
consider a specific set of learning scenarios:

(a) The authors work with the following lan-
guages: English-{French, German, Chinese,
Russian, Spanish}. These languages, except

French, are dependent marking (Table 1).3 We
evaluate Conneau et al. (2018) on (English to)
Estonian (ET), Finnish (FI), Greek (EL), Hun-
garian (HU), Polish (PL), and Turkish (TR) in
§4.2, to test whether the selection of languages
in the original study introduces a bias.

(b) The monolingual corpora in their experiments
are comparable; Wikipedia corpora are used,
except for an experiment in which they in-
clude Google Gigawords. We evaluate across
different domains, i.e., on all combinations of
Wikipedia, EuroParl, and the EMEA medical
corpus, in §4.3. We believe such scenarios are
more realistic for low-resource languages.

(c) The monolingual embedding models are in-
duced using the same algorithms with the
same hyper-parameters. We evaluate Con-
neau et al. (2018) on pairs of embeddings
induced with different hyper-parameters in
§4.4. While keeping hyper-parameters fixed
is always possible, it is of practical interest to
know whether the unsupervised methods work
on any set of pre-trained word embeddings.

We also investigate the sensitivity of unsuper-
vised BDI to the dimensionality of the monolin-
gual word embeddings in §4.5. The motivation for
this is that dimensionality reduction will alter the
geometric shape and remove characteristics of the
embedding graphs that are important for alignment;
but on the other hand, lower dimensionality intro-
duces regularization, which will make the graphs
more similar. Finally, in §4.6, we investigate the
impact of different types of query test words on
performance, including how performance varies
across part-of-speech word classes and on shared
vocabulary items.

3.2 Summary of Conneau et al. (2018)
We now introduce the method of Conneau et al.
(2018).4 The approach builds on existing work on
learning a mapping between monolingual word em-
beddings (Mikolov et al., 2013b; Xing et al., 2015)
and consists of the following steps: 1) Monolin-
gual word embeddings: An off-the-shelf word
embedding algorithm (Bojanowski et al., 2017) is
used to learn source and target language spaces X

3A dependent-marking language marks agreement and
case more commonly on dependents than on heads.

4https://github.com/facebookresearch/
MUSE
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and Y . 2) Adversarial mapping: A translation
matrix W is learned between the spaces X and Y
using adversarial techniques (Ganin et al., 2016).
A discriminator is trained to discriminate samples
from the translated source space WX from the tar-
get space Y , while W is trained to prevent this.
This, again, is motivated by the assumption that
source and target language word embeddings are
approximately isomorphic. 3) Refinement (Pro-
crustes analysis): W is used to build a small bilin-
gual dictionary of frequent words, which is pruned
such that only bidirectional translations are kept
(Vulić and Korhonen, 2016). A new translation
matrix W that translates between the spaces X and
Y of these frequent word pairs is then induced by
solving the Orthogonal Procrustes problem:

W ∗ = argminW ‖WX − Y ‖F = UV >

s.t. UΣV > = SVD(Y X>)
(1)

This step can be used iteratively by using the new
matrix W to create new seed translation pairs. It
requires frequent words to serve as reliable anchors
for learning a translation matrix. In the experiments
in Conneau et al. (2018), as well as in ours, the iter-
ative Procrustes refinement improves performance
across the board. 4) Cross-domain similarity lo-
cal scaling (CSLS) is used to expand high-density
areas and condense low-density ones, for more ac-
curate nearest neighbor calculation, CSLS reduces
the hubness problem in high-dimensional spaces
(Radovanović et al., 2010; Dinu et al., 2015). It
relies on the mean similarity of a source language
embedding x to itsK target language nearest neigh-
bours (K = 10 suggested) nn1, . . . , nnK :

mnnT (x) =
1

K

K∑

i=1

cos(x, nni) (2)

where cos is the cosine similarity. mnnS(y) is
defined in an analogous manner for any target lan-
guage embedding y. CSLS(x, y) is then calcu-
lated as follows:

2cos(x, y)−mnnT (x)−mnnS(y) (3)

3.3 A simple supervised method
Instead of learning cross-lingual embeddings com-
pletely without supervision, we can extract inex-
pensive supervision signals by harvesting identi-
cally spelled words as in, e.g. (Artetxe et al., 2017;

Smith et al., 2017). Specifically, we use identi-
cally spelled words that occur in the vocabularies
of both languages as bilingual seeds, without em-
ploying any additional transliteration or lemma-
tization/normalization methods. Using this seed
dictionary, we then run the refinement step using
Procrustes analysis of Conneau et al. (2018).

4 Experiments

In the following experiments, we investigate the
robustness of unsupervised cross-lingual word
embedding learning, varying the language pairs,
monolingual corpora, hyper-parameters, etc., to
obtain a better understanding of when and why
unsupervised BDI works.

Task: Bilingual dictionary induction After the
shared cross-lingual space is induced, given a list
of N source language words xu,1, . . . , xu,N , the
task is to find a target language word t for each
query word xu relying on the representations in
the space. ti is the target language word closest
to the source language word xu,i in the induced
cross-lingual space, also known as the cross-lingual
nearest neighbor. The set of learned N (xu,i, ti)
pairs is then run against a gold standard dictionary.

We use bilingual dictionaries compiled by Con-
neau et al. (2018) as gold standard, and adopt their
evaluation procedure: each test set in each language
consists of 1500 gold translation pairs. We rely on
CSLS for retrieving the nearest neighbors, as it con-
sistently outperformed the cosine similarity in all
our experiments. Following a standard evaluation
practice (Vulić and Moens, 2013; Mikolov et al.,
2013b; Conneau et al., 2018), we report Precision
at 1 scores (P@1): how many times one of the
correct translations of a source word w is retrieved
as the nearest neighbor of w in the target language.

4.1 Experimental setup
Our default experimental setup closely follows the
setup of Conneau et al. (2018). For each language
we induce monolingual word embeddings for all
languages from their respective tokenized and low-
ercased Polyglot Wikipedias (Al-Rfou et al., 2013)
using fastText (Bojanowski et al., 2017). Only
words with more than 5 occurrences are retained
for training. Our fastText setup relies on skip-gram
with negative sampling (Mikolov et al., 2013a) with
standard hyper-parameters: bag-of-words contexts
with the window size 2, 15 negative samples, sub-
sampling rate 10−4, and character n-gram length
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Marking Type # Cases

English (EN) dependent isolating None
French (FR) mixed fusional None
German (DE) dependent fusional 4
Chinese (ZH) dependent isolating None
Russian (RU) dependent fusional 6–7
Spanish (ES) dependent fusional None

Estonian (ET) mixed agglutinative 10+
Finnish (FI) mixed agglutinative 10+
Greek (EL) double fusional 3
Hungarian (HU) dependent agglutinative 10+
Polish (PL) dependent fusional 6–7
Turkish (TR) dependent agglutinative 6–7

Table 1: Languages in Conneau et al. (2018) and
in our experiments (lower half)

Unsupervised Supervised Similarity
(Adversarial) (Identical) (Eigenvectors)

EN-ES 81.89 82.62 2.07

EN-ET 00.00 31.45 6.61
EN-FI 00.09 28.01 7.33
EN-EL 00.07 42.96 5.01
EN-HU 45.06 46.56 3.27
EN-PL 46.83 52.63 2.56
EN-TR 32.71 39.22 3.14

ET-FI 29.62 24.35 3.98

Table 2: Bilingual dictionary induction scores
(P@1×100%) using a) the unsupervised method
with adversarial training; b) the supervised method
with a bilingual seed dictionary consisting of iden-
tical words (shared between the two languages).
The third columns lists eigenvector similarities be-
tween 10 randomly sampled source language near-
est neighbor subgraphs of 10 nodes and the sub-
graphs of their translations, all from the benchmark
dictionaries in Conneau et al. (2018).

3-6. All embeddings are 300-dimensional.
As we analyze the impact of various modeling

assumptions in the following sections (e.g., domain
differences, algorithm choices, hyper-parameters),
we also train monolingual word embeddings us-
ing other corpora and different hyper-parameter
choices. Quick summaries of each experimental
setup are provided in the respective subsections.

4.2 Impact of language similarity

Conneau et al. (2018) present results for several
target languages: Spanish, French, German, Rus-
sian, Chinese, and Esperanto. All languages but Es-
peranto are isolating or exclusively concatenating
languages from a morphological point of view. All
languages but French are dependent-marking. Ta-

ble 1 lists three important morphological properties
of the languages involved in their/our experiments.

Agglutinative languages with mixed or double
marking show more morphological variance with
content words, and we speculate whether unsuper-
vised BDI is challenged by this kind of morpholog-
ical complexity. To evaluate this, we experiment
with Estonian and Finnish, and we include Greek,
Hungarian, Polish, and Turkish to see how their
approach fares on combinations of these two mor-
phological traits.

We show results in the left column of Table 2.
The results are quite dramatic. The approach
achieves impressive performance for Spanish, one
of the languages Conneau et al. (2018) include in
their paper. For the languages we add here, perfor-
mance is less impressive. For the languages with
dependent marking (Hungarian, Polish, and Turk-
ish), P@1 scores are still reasonable, with Turkish
being slightly lower (0.327) than the others. How-
ever, for Estonian and Finnish, the method fails
completely. Only in less than 1/1000 cases does a
nearest neighbor search in the induced embeddings
return a correct translation of a query word.5

The sizes of Wikipedias naturally vary across
languages: e.g., fastText trains on approximately
16M sentences and 363M word tokens for Spanish,
while it trains on 1M sentences and 12M words for
Finnish. However, the difference in performance
cannot be explained by the difference in training
data sizes. To verify that near-zero performance in
Finnish is not a result of insufficient training data,
we have conducted another experiment using the
large Finnish WaC corpus (Ljubešić et al., 2016)
containing 1.7B words in total (this is similar in
size to the English Polyglot Wikipedia). However,
even with this large Finnish corpus, the model does
not induce anything useful: P@1 equals 0.0.

We note that while languages with mixed mark-
ing may be harder to align, it seems unsupervised
BDI is possible between similar, mixed marking
languages. So while unsupervised learning fails
for English-Finnish and English-Estonian, perfor-
mance is reasonable and stable for the more similar
Estonian-Finnish pair (Table 2). In general, un-
supervised BDI, using the approach in Conneau
et al. (2018), seems challenged when pairing En-

5We note, though, that varying our random seed, perfor-
mance for Estonian, Finnish, and Greek is sometimes (approx-
imately 1 out of 10 runs) on par with Turkish. Detecting main
causes and remedies for the inherent instability of adversarial
training is one the most important avenues for future research.
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glish with languages that are not isolating and do
not have dependent marking.6

The promise of zero-supervision models is that
we can learn cross-lingual embeddings even for
low-resource languages. On the other hand, a simi-
lar distribution of embeddings requires languages
to be similar. This raises the question whether we
need fully unsupervised methods at all. In fact, our
supervised method that relies on very naive supervi-
sion in the form of identically spelled words leads
to competitive performance for similar language
pairs and better results for dissimilar pairs. The fact
that we can reach competitive and more robust per-
formance with such a simple heuristic questions the
true applicability of fully unsupervised approaches
and suggests that it might often be better to rely on
available weak supervision.

4.3 Impact of domain differences
Monolingual word embeddings used in Conneau
et al. (2018) are induced from Wikipedia, a near-
parallel corpus. In order to assess the sensitivity of
unsupervised BDI to the comparability and domain
similarity of the monolingual corpora, we repli-
cate the experiments in Conneau et al. (2018) using
combinations of word embeddings extracted from
three different domains: 1) parliamentary proceed-
ings from EuroParl.v7 (Koehn, 2005), 2) Wikipedia
(Al-Rfou et al., 2013), and 3) the EMEA corpus in
the medical domain (Tiedemann, 2009). We report
experiments with three language pairs: English-
{Spanish, Finnish, Hungarian}.

To control for the corpus size, we restrict each
corpus in each language to 1.1M sentences in to-
tal (i.e., the number of sentences in the smallest,
EMEA corpus). 300-dim fastText vectors are in-
duced as in §4.1, retaining all words with more than
5 occurrences in the training data. For each pair
of monolingual corpora, we compute their domain
(dis)similarity by calculating the Jensen-Shannon
divergence (El-Gamal, 1991), based on term distri-
butions.7 The domain similarities are displayed in
Figures 2a–c.8

We show the results of unsupervised BDI in Fig-
ures 2g–i. For Spanish, we see good performance
in all three cases where the English and Spanish

6One exception here is French, which they include in their
paper, but French arguably has a relatively simple morphology.

7In order to get comparable term distributions, we translate
the source language to the target language using the bilingual
dictionaries provided by Conneau et al. (2018).

8We also computed A-distances (Blitzer et al., 2007) and
confirmed that trends were similar.

corpora are from the same domain. When the two
corpora are from different domains, performance
is close to zero. For Finnish and Hungarian, perfor-
mance is always poor, suggesting that more data
is needed, even when domains are similar. This is
in sharp contrast with the results of our minimally
supervised approach (Figures 2d–f) based on iden-
tical words, which achieves decent performance in
many set-ups.

We also observe a strong decrease in P@1 for
English-Spanish (from 81.19% to 46.52%) when
using the smaller Wikipedia corpora. This result
indicates the importance of procuring large mono-
lingual corpora from similar domains in order to
enable unsupervised dictionary induction. How-
ever, resource-lean languages, for which the unsu-
pervised method was designed in the first place,
cannot be guaranteed to have as large monolingual
training corpora as available for English, Spanish
or other major resource-rich languages.

4.4 Impact of hyper-parameters

Conneau et al. (2018) use the same hyper-
parameters for inducing embeddings for all lan-
guages. This is of course always practically possi-
ble, but we are interested in seeing whether their ap-
proach works on pre-trained embeddings induced
with possibly very different hyper-parameters. We
focus on two hyper-parameters: context window-
size (win) and the parameter controlling the num-
ber of n-gram features in the fastText model (chn),
while at the same time varying the underlying algo-
rithm: skip-gram vs. cbow. The results for English-
Spanish are listed in Table 3.

The small variations in the hyper-parameters
with the same underlying algorithm (i.e., using skip-
gram or cbow for both EN and ES) yield only slight
drops in the final scores. Still, the best scores are
obtained with the same configuration on both sides.
Our main finding here is that unsupervised BDI
fails (even) for EN-ES when the two monolingual
embedding spaces are induced by two different al-
gorithms (see the results of the entire Spanish cbow
column).9 In sum, this means that the unsuper-
vised approach is unlikely to work on pre-trained
word embeddings unless they are induced on same-

9We also checked if this result might be due to a lower-
quality monolingual ES space. However, monolingual word
similarity scores on available datasets in Spanish show perfor-
mance comparable to that of Spanish skip-gram vectors: e.g.,
Spearman’s ρ correlation is ≈ 0.7 on the ES evaluation set
from SemEval-2017 Task 2 (Camacho-Collados et al., 2017).
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(a) en-es: domain similarity
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(b) en-fi: domain similarity
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(c) en-hu: domain similarity
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(f) en-hu: identical words
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(g) en-es: fully unsupervised BLI
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(h) en-fi: fully unsupervised BLI
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Figure 2: Influence of language-pair and domain similarity on BLI performance, with three language pairs
(en-es/fi/hu). Top row, (a)-(c): Domain similarity (higher is more similar) computed as dsim = 1− JS,
where JS is Jensen-Shannon divergence; Middle row, (d)-(f): baseline BLI model which learns a linear
mapping between two monolingual spaces based on a set of identical (i.e., shared) words; Bottom row,
(g)-(i): fully unsupervised BLI model relying on the distribution-level alignment and adversarial training.
Both BLI models apply the Procrustes analysis and use CSLS to retrieve nearest neighbours.

or comparable-domain, reasonably-sized training
data using the same underlying algorithm.

4.5 Impact of dimensionality
We also perform an experiment on 40-dimensional
monolingual word embeddings. This leads to re-
duced expressivity, and can potentially make the
geometric shapes of embedding spaces harder to
align; on the other hand, reduced dimensionality
may also lead to less overfitting. We generally

see worse performance (P@1 is 50.33 for Spanish,
21.81 for Hungarian, 20.11 for Polish, and 22.03
for Turkish) – but, very interestingly, we obtain
better performance for Estonian (13.53), Finnish
(15.33), and Greek (24.17) than we did with 300 di-
mensions. We hypothesize this indicates monolin-
gual word embedding algorithms over-fit to some
of the rarer peculiarities of these languages.
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English
(skipgram, win=2, chn=3-6)

Spanish Spanish
(skipgram) (cbow)

== 81.89 00.00
6= win=10 81.28 00.07
6= chn=2-7 80.74 00.00
6= win=10, chn=2-7 80.15 00.13

Table 3: Varying the underlying fastText algorithm
and hyper-parameters. The first column lists differ-
ences in training configurations between English
and Spanish monolingual embeddings.

en-es en-hu en-fi

Noun 80.94 26.87 00.00
Verb 66.05 25.44 00.00
Adjective 85.53 53.28 00.00
Adverb 80.00 51.57 00.00
Other 73.00 53.40 00.00

Table 4: P@1× 100% scores for query words with
different parts-of-speech.

4.6 Impact of evaluation procedure
BDI models are evaluated on a held-out set of query
words. Here, we analyze the performance of the
unsupervised approach across different parts-of-
speech, frequency bins, and with respect to query
words that have orthographically identical coun-
terparts in the target language with the same or a
different meaning.

Part-of-speech We show the impact of the part-
of-speech of the query words in Table 4; again on a
representative subset of our languages. The results
indicate that performance on verbs is lowest across
the board. This is consistent with research on dis-
tributional semantics and verb meaning (Schwartz
et al., 2015; Gerz et al., 2016).

Frequency We also investigate the impact of the
frequency of query words. We calculate the word
frequency of English words based on Google’s Tril-
lion Word Corpus: query words are divided in
groups based on their rank – i.e., the first group
contains the top 100 most frequent words, the sec-
ond one contains the 101th-1000th most frequent
words, etc. – and plot performance (P@1) relative
to rank in Figure 3. For EN-FI, P@1 was 0 across
all frequency ranks. The plot shows sensitivity to
frequency for HU, but less so for ES.

Homographs Since we use identical word forms
(homographs) for supervision, we investigated

20
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60

80

100 1000 10000

P
@
1×

10
0%

Word frequency rank

en-es
en-hu

Figure 3: P@1 scores for EN-ES and EN-HU for
queries with different frequency ranks.

Spelling Meaning en-es en-hu en-fi

Same Same 45.94 18.07 00.00
Same Diff 39.66 29.97 00.00
Diff Diff 62.42 34.45 00.00

Table 5: Scores (P@1 × 100%) for query words
with same and different spellings and meanings.

whether these are representative or harder to align
than other words. Table 5 lists performance for
three sets of query words: (a) source words that
have homographs (words that are spelled the same
way) with the same meaning (homonyms) in the
target language, e.g., many proper names; (b)
source words that have homographs that are not
homonyms in the target language, e.g., many short
words; and (c) other words. Somewhat surpris-
ingly, words which have translations that are ho-
mographs, are associated with lower precision than
other words. This is probably due to loan words
and proper names, but note that using homographs
as supervision for alignment, we achieve high pre-
cision for this part of the vocabulary for free.

4.7 Evaluating eigenvector similarity

Finally, in order to get a better understanding of
the limitations of unsupervised BDI, we correlate
the graph similarity metric described in §2 (right
column of Table 2) with performance across lan-
guages (left column). Since we already established
that the monolingual word embeddings are far from
isomorphic—in contrast with the intuitions motivat-
ing previous work (Mikolov et al., 2013b; Barone,
2016; Zhang et al., 2017; Conneau et al., 2018)—
we would like to establish another diagnostic met-
ric that identifies embedding spaces for which the
approach in Conneau et al. (2018) is likely to work.
Differences in morphology, domain, or embedding
parameters seem to be predictive of poor perfor-
mance, but a metric that is independent of linguistic
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Figure 4: Strong correlation (ρ = 0.89) between
BDI performance (x) and graph similarity (y)

categorizations and the characteristics of the mono-
lingual corpora would be more widely applicable.
We plot the values in Table 2 in Figure 4. Recall
that our graph similarity metric returns a value in
the half-open interval [0,∞). The correlation be-
tween BDI performance and graph similarity is
strong (ρ ∼ 0.89).

5 Related work

Cross-lingual word embeddings Cross-lingual
word embedding models typically, unlike Conneau
et al. (2018), require aligned words, sentences, or
documents (Levy et al., 2017). Most approaches
based on word alignments learn an explicit map-
ping between the two embedding spaces (Mikolov
et al., 2013b; Xing et al., 2015). Recent approaches
try to minimize the amount of supervision needed
(Vulić and Korhonen, 2016; Artetxe et al., 2017;
Smith et al., 2017). See Upadhyay et al. (2016) and
Ruder et al. (2018) for surveys.

Unsupervised cross-lingual learning Haghighi
et al. (2008) were first to explore unsupervised
BDI, using features such as context counts and or-
thographic substrings, and canonical correlation
analysis. Recent approaches use adversarial learn-
ing (Goodfellow et al., 2014) and employ a discrim-
inator, trained to distinguish between the translated
source and the target language space, and a gener-
ator learning a translation matrix (Barone, 2016).
Zhang et al. (2017), in addition, use different forms
of regularization for convergence, while Conneau
et al. (2018) uses additional steps to refine the in-
duced embedding space.

Unsupervised machine translation Research
on unsupervised machine translation (Lample et al.,
2018a; Artetxe et al., 2018; Lample et al., 2018b)
has generated a lot of interest recently with a

promise to support the construction of MT systems
for and between resource-poor languages. All unsu-
pervised NMT methods critically rely on accurate
unsupervised BDI and back-translation. Models
are trained to reconstruct a corrupted version of
the source sentence and to translate its translated
version back to the source language. Since the cru-
cial input to these systems are indeed cross-lingual
word embedding spaces induced in an unsupervised
fashion, in this paper we also implicitly investigate
one core limitation of such unsupervised MT tech-
niques.

6 Conclusion

We investigated when unsupervised BDI (Conneau
et al., 2018) is possible and found that differences
in morphology, domains or word embedding algo-
rithms may challenge this approach. Further, we
found eigenvector similarity of sampled nearest
neighbor subgraphs to be predictive of unsuper-
vised BDI performance. We hope that this work
will guide further developments in this new and
exciting field.
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Abstract

Recent work has managed to learn cross-
lingual word embeddings without parallel
data by mapping monolingual embeddings
to a shared space through adversarial train-
ing. However, their evaluation has focused
on favorable conditions, using comparable
corpora or closely-related languages, and
we show that they often fail in more re-
alistic scenarios. This work proposes an
alternative approach based on a fully un-
supervised initialization that explicitly ex-
ploits the structural similarity of the em-
beddings, and a robust self-learning algo-
rithm that iteratively improves this solu-
tion. Our method succeeds in all tested
scenarios and obtains the best published
results in standard datasets, even surpass-
ing previous supervised systems. Our
implementation is released as an open
source project at https://github.
com/artetxem/vecmap.

1 Introduction

Cross-lingual embedding mappings have shown to
be an effective way to learn bilingual word em-
beddings (Mikolov et al., 2013; Lazaridou et al.,
2015). The underlying idea is to independently
train the embeddings in different languages us-
ing monolingual corpora, and then map them to
a shared space through a linear transformation.
This allows to learn high-quality cross-lingual rep-
resentations without expensive supervision, open-
ing new research avenues like unsupervised neural
machine translation (Artetxe et al., 2018b; Lample
et al., 2018).

While most embedding mapping methods rely
on a small seed dictionary, adversarial training has
recently produced exciting results in fully unsu-

pervised settings (Zhang et al., 2017a,b; Conneau
et al., 2018). However, their evaluation has fo-
cused on particularly favorable conditions, lim-
ited to closely-related languages or comparable
Wikipedia corpora. When tested on more realis-
tic scenarios, we find that they often fail to pro-
duce meaningful results. For instance, none of the
existing methods works in the standard English-
Finnish dataset from Artetxe et al. (2017), obtain-
ing translation accuracies below 2% in all cases
(see Section 5).

On another strand of work, Artetxe et al. (2017)
showed that an iterative self-learning method is
able to bootstrap a high quality mapping from very
small seed dictionaries (as little as 25 pairs of
words). However, their analysis reveals that the
self-learning method gets stuck in poor local op-
tima when the initial solution is not good enough,
thus failing for smaller training dictionaries.

In this paper, we follow this second approach
and propose a new unsupervised method to build
an initial solution without the need of a seed dic-
tionary, based on the observation that, given the
similarity matrix of all words in the vocabulary,
each word has a different distribution of similar-
ity values. Two equivalent words in different lan-
guages should have a similar distribution, and we
can use this fact to induce the initial set of word
pairings (see Figure 1). We combine this initial-
ization with a more robust self-learning method,
which is able to start from the weak initial solu-
tion and iteratively improve the mapping. Coupled
together, we provide a fully unsupervised cross-
lingual mapping method that is effective in re-
alistic settings, converges to a good solution in
all cases tested, and sets a new state-of-the-art in
bilingual lexicon extraction, even surpassing pre-
vious supervised methods.

789



EN  −  two IT  −  due (two) IT  −  cane (dog)
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Figure 1: Motivating example for our unsupervised initialization method, showing the similarity distri-
butions of three words (corresponding to the smoothed density estimates from the normalized square root
of the similarity matrices as defined in Section 3.2). Equivalent translations (two and due) have more
similar distributions than non-related words (two and cane - meaning dog). This observation is used to
build an initial solution that is later improved through self-learning.

2 Related work

Cross-lingual embedding mapping methods work
by independently training word embeddings in
two languages, and then mapping them to a shared
space using a linear transformation.

Most of these methods are supervised, and use
a bilingual dictionary of a few thousand entries
to learn the mapping. Existing approaches can
be classified into regression methods, which map
the embeddings in one language using a least-
squares objective (Mikolov et al., 2013; Shigeto
et al., 2015; Dinu et al., 2015), canonical methods,
which map the embeddings in both languages to
a shared space using canonical correlation analy-
sis and extensions of it (Faruqui and Dyer, 2014;
Lu et al., 2015), orthogonal methods, which map
the embeddings in one or both languages under
the constraint of the transformation being orthog-
onal (Xing et al., 2015; Artetxe et al., 2016; Zhang
et al., 2016; Smith et al., 2017), and margin meth-
ods, which map the embeddings in one language
to maximize the margin between the correct trans-
lations and the rest of the candidates (Lazaridou
et al., 2015). Artetxe et al. (2018a) showed that
many of them could be generalized as part of a
multi-step framework of linear transformations.

A related research line is to adapt these methods
to the semi-supervised scenario, where the train-
ing dictionary is much smaller and used as part of a
bootstrapping process. While similar ideas where
already explored for traditional count-based vec-
tor space models (Peirsman and Padó, 2010; Vulić
and Moens, 2013), Artetxe et al. (2017) brought
this approach to pre-trained low-dimensional word

embeddings, which are more widely used nowa-
days. More concretely, they proposed a self-
learning approach that alternates the mapping and
dictionary induction steps iteratively, obtaining re-
sults that are comparable to those of supervised
methods when starting with only 25 word pairs.

A practical approach for reducing the need of
bilingual supervision is to design heuristics to
build the seed dictionary. The role of the seed
lexicon in learning cross-lingual embedding map-
pings is analyzed in depth by Vulić and Korho-
nen (2016), who propose using document-aligned
corpora to extract the training dictionary. A more
common approach is to rely on shared words and
cognates (Peirsman and Padó, 2010; Smith et al.,
2017), while Artetxe et al. (2017) go further and
restrict themselves to shared numerals. However,
while these approaches are meant to eliminate the
need of bilingual data in practice, they also make
strong assumptions on the writing systems of lan-
guages (e.g. that they all use a common alpha-
bet or Arabic numerals). Closer to our work,
a recent line of fully unsupervised approaches
drops these assumptions completely, and attempts
to learn cross-lingual embedding mappings based
on distributional information alone. For that pur-
pose, existing methods rely on adversarial train-
ing. This was first proposed by Miceli Barone
(2016), who combine an encoder that maps source
language embeddings into the target language, a
decoder that reconstructs the source language em-
beddings from the mapped embeddings, and a dis-
criminator that discriminates between the mapped
embeddings and the true target language embed-
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dings. Despite promising, they conclude that their
model “is not competitive with other cross-lingual
representation approaches”. Zhang et al. (2017a)
use a very similar architecture, but incorporate ad-
ditional techniques like noise injection to aid train-
ing and report competitive results on bilingual lex-
icon extraction. Conneau et al. (2018) drop the
reconstruction component, regularize the mapping
to be orthogonal, and incorporate an iterative re-
finement process akin to self-learning, reporting
very strong results on a large bilingual lexicon
extraction dataset. Finally, Zhang et al. (2017b)
adopt the earth mover’s distance for training, opti-
mized through a Wasserstein generative adversar-
ial network followed by an alternating optimiza-
tion procedure. However, all this previous work
used comparable Wikipedia corpora in most ex-
periments and, as shown in Section 5, face diffi-
culties in more challenging settings.

3 Proposed method

Let X and Z be the word embedding matrices in
two languages, so that their ith row Xi∗ and Zi∗
denote the embeddings of the ith word in their re-
spective vocabularies. Our goal is to learn the lin-
ear transformation matrices WX and WZ so the
mapped embeddings XWX and ZWZ are in the
same cross-lingual space. At the same time, we
aim to build a dictionary between both languages,
encoded as a sparse matrix D where Dij = 1 if
the jth word in the target language is a translation
of the ith word in the source language.

Our proposed method consists of four sequen-
tial steps: a pre-processing that normalizes the
embeddings (§3.1), a fully unsupervised initializa-
tion scheme that creates an initial solution (§3.2), a
robust self-learning procedure that iteratively im-
proves this solution (§3.3), and a final refinement
step that further improves the resulting mapping
through symmetric re-weighting (§3.4).

3.1 Embedding normalization

Our method starts with a pre-processing that
length normalizes the embeddings, then mean
centers each dimension, and then length normal-
izes them again. The first two steps have been
shown to be beneficial in previous work (Artetxe
et al., 2016), while the second length normaliza-
tion guarantees the final embeddings to have a unit
length. As a result, the dot product of any two
embeddings is equivalent to their cosine similarity

and directly related to their Euclidean distance1,
and can be taken as a measure of their similarity.

3.2 Fully unsupervised initialization

The underlying difficulty of the mapping problem
in its unsupervised variant is that the word embed-
ding matrices X and Z are unaligned across both
axes: neither the ith vocabulary item Xi∗ and Zi∗
nor the jth dimension of the embeddings X∗j and
Z∗j are aligned, so there is no direct correspon-
dence between both languages. In order to over-
come this challenge and build an initial solution,
we propose to first construct two alternative repre-
sentations X ′ and Z ′ that are aligned across their
jth dimension X ′

∗j and Z ′
∗j , which can later be

used to build an initial dictionary that aligns their
respective vocabularies.

Our approach is based on a simple idea: while
the axes of the original embeddings X and Z are
different in nature, both axes of their correspond-
ing similarity matrices MX = XXT and MZ =
ZZT correspond to words, which can be exploited
to reduce the mismatch to a single axis. More con-
cretely, assuming that the embedding spaces are
perfectly isometric, the similarity matrices MX

and MZ would be equivalent up to a permutation
of their rows and columns, where the permutation
in question defines the dictionary across both lan-
guages. In practice, the isometry requirement will
not hold exactly, but it can be assumed to hold ap-
proximately, as the very same problem of map-
ping two embedding spaces without supervision
would otherwise be hopeless. Based on that, one
could try every possible permutation of row and
column indices to find the best match between MX

and MZ , but the resulting combinatorial explosion
makes this approach intractable.

In order to overcome this problem, we pro-
pose to first sort the values in each row of MX

and MZ , resulting in matrices sorted(MX) and
sorted(MZ)2. Under the strict isometry condition,
equivalent words would get the exact same vec-
tor across languages, and thus, given a word and
its row in sorted(MX), one could apply nearest
neighbor retrieval over the rows of sorted(MZ) to
find its corresponding translation.

On a final note, given the singular value de-
composition X = USV T , the similarity matrix

1Given two length normalized vectors u and v, u · v =
cos(u, v) = 1 − ||u − v||2/2.

2Note that the values in each row are sorted independently
from other rows.
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is MX = US2UT . As such, its square root√
MX = USUT is closer in nature to the origi-

nal embeddings, and we also find it to work better
in practice. We thus compute sorted(

√
MX) and

sorted(
√

MZ) and normalize them as described in
Section 3.1, yielding the two matrices X ′ and Z ′

that are later used to build the initial solution for
self-learning (see Section 3.3).

In practice, the isometry assumption is strong
enough so the above procedure captures some
cross-lingual signal. In our English-Italian exper-
iments, the average cosine similarity across the
gold standard translation pairs is 0.009 for a ran-
dom solution, 0.582 for the optimal supervised so-
lution, and 0.112 for the mapping resulting from
this initialization. While the latter is far from be-
ing useful on its own (the accuracy of the resulting
dictionary is only 0.52%), it is substantially better
than chance, and it works well as an initial solution
for the self-learning method described next.

3.3 Robust self-learning

Previous work has shown that self-learning can
learn high-quality bilingual embedding mappings
starting with as little as 25 word pairs (Artetxe
et al., 2017). In this method, training iterates
through the following two steps until convergence:

1. Compute the optimal orthogonal mapping
maximizing the similarities for the current
dictionary D:

arg max
WX ,WZ

∑

i

∑

j

Dij((Xi∗WX) · (Zj∗WZ))

An optimal solution is given by WX = U
and WZ = V , where USV T = XT DZ is
the singular value decomposition of XT DZ.

2. Compute the optimal dictionary over the sim-
ilarity matrix of the mapped embeddings
XWXW T

Z ZT . This typically uses nearest
neighbor retrieval from the source language
into the target language, so Dij = 1 if j =
argmaxk (Xi∗WX) · (Zk∗WZ) and Dij = 0
otherwise.

The underlying optimization objective is inde-
pendent from the initial dictionary, and the algo-
rithm is guaranteed to converge to a local opti-
mum of it. However, the method does not work if
starting from a completely random solution, as it
tends to get stuck in poor local optima in that case.

For that reason, we use the unsupervised initial-
ization procedure at Section 3.2 to build an initial
solution. However, simply plugging in both meth-
ods did not work in our preliminary experiments,
as the quality of this initial method is not good
enough to avoid poor local optima. For that rea-
son, we next propose some key improvements in
the dictionary induction step to make self-learning
more robust and learn better mappings:

• Stochastic dictionary induction. In or-
der to encourage a wider exploration of the
search space, we make the dictionary induc-
tion stochastic by randomly keeping some el-
ements in the similarity matrix with probabil-
ity p and setting the remaining ones to 0. As a
consequence, the smaller the value of p is, the
more the induced dictionary will vary from
iteration to iteration, thus enabling to escape
poor local optima. So as to find a fine-grained
solution once the algorithm gets into a good
region, we increase this value during train-
ing akin to simulated annealing, starting with
p = 0.1 and doubling this value every time
the objective function at step 1 above does
not improve more than ǫ = 10−6 for 50 it-
erations.

• Frequency-based vocabulary cutoff. The
size of the similarity matrix grows quadrat-
ically with respect to that of the vocabular-
ies. This does not only increase the cost of
computing it, but it also makes the number of
possible solutions grow exponentially3, pre-
sumably making the optimization problem
harder. Given that less frequent words can be
expected to be noisier, we propose to restrict
the dictionary induction process to the k most
frequent words in each language, where we
find k = 20, 000 to work well in practice.

• CSLS retrieval. Dinu et al. (2015) showed
that nearest neighbor suffers from the hub-
ness problem. This phenomenon is known
to occur as an effect of the curse of dimen-
sionality, and causes a few points (known as
hubs) to be nearest neighbors of many other
points (Radovanović et al., 2010a,b). Among
the existing solutions to penalize the similar-
ity score of hubs, we adopt the Cross-domain

3There are mn possible combinations that go from a
source vocabulary of n entries to a target vocabulary of m
entries.
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Similarity Local Scaling (CSLS) from Con-
neau et al. (2018). Given two mapped em-
beddings x and y, the idea of CSLS is to
compute rT(x) and rS(y), the average co-
sine similarity of x and y for their k near-
est neighbors in the other language, respec-
tively. Having done that, the corrected score
CSLS(x, y) = 2 cos(x, y) − rT(x) − rS(y).
Following the authors, we set k = 10.

• Bidirectional dictionary induction. When
the dictionary is induced from the source into
the target language, not all target language
words will be present in it, and some will oc-
cur multiple times. We argue that this might
accentuate the problem of local optima, as re-
peated words might act as strong attractors
from which it is difficult to escape. In or-
der to mitigate this issue and encourage di-
versity, we propose inducing the dictionary in
both directions and taking their correspond-
ing concatenation, so D = DX→Z +DZ→X .

In order to build the initial dictionary, we com-
pute X ′ and Z ′ as detailed in Section 3.2 and apply
the above procedure over them. As the only differ-
ence, this first solution does not use the stochastic
zeroing in the similarity matrix, as there is no need
to encourage diversity (X ′ and Z ′ are only used
once), and the threshold for vocabulary cutoff is
set to k = 4, 000, so X ′ and Z ′ can fit in memory.
Having computed the initial dictionary, X ′ and Z ′

are discarded, and the remaining iterations are per-
formed over the original embeddings X and Z.

3.4 Symmetric re-weighting

As part of their multi-step framework, Artetxe
et al. (2018a) showed that re-weighting the tar-
get language embeddings according to the cross-
correlation in each component greatly improved
the quality of the induced dictionary. Given the
singular value decomposition USV T = XT DZ,
this is equivalent to taking WX = U and WZ =
V S, where X and Z are previously whitened
applying the linear transformations (XT X)− 1

2

and (ZT Z)− 1
2 , and later de-whitened applying

UT (XT X)
1
2 U and V T (ZT Z)

1
2 V .

However, re-weighting also accentuates the
problem of local optima when incorporated into
self-learning as, by increasing the relevance of
dimensions that best match for the current solu-
tion, it discourages to explore other regions of the

search space. For that reason, we propose using
it as a final step once self-learning has converged
to a good solution. Unlike Artetxe et al. (2018a),
we apply re-weighting symmetrically in both lan-
guages, taking WX = US

1
2 and WZ = V S

1
2 .

This approach is neutral in the direction of the
mapping, and gives good results as shown in our
experiments.

4 Experimental settings

Following common practice, we evaluate our
method on bilingual lexicon extraction, which
measures the accuracy of the induced dictionary
in comparison to a gold standard.

As discussed before, previous evaluation has
focused on favorable conditions. In particular, ex-
isting unsupervised methods have almost exclu-
sively been tested on Wikipedia corpora, which is
comparable rather than monolingual, exposing a
strong cross-lingual signal that is not available in
strictly unsupervised settings. In addition to that,
some datasets comprise unusually small embed-
dings, with only 50 dimensions and around 5,000-
10,000 vocabulary items (Zhang et al., 2017a,b).
As the only exception, Conneau et al. (2018) re-
port positive results on the English-Italian dataset
of Dinu et al. (2015) in addition to their main
experiments, which are carried out in Wikipedia.
While this dataset does use strictly monolingual
corpora, it still corresponds to a pair of two rela-
tively close indo-european languages.

In order to get a wider picture of how our
method compares to previous work in differ-
ent conditions, including more challenging set-
tings, we carry out our experiments in the widely
used dataset of Dinu et al. (2015) and the
subsequent extensions of Artetxe et al. (2017,
2018a), which together comprise English-Italian,
English-German, English-Finnish and English-
Spanish. More concretely, the dataset consists of
300-dimensional CBOW embeddings trained on
WacKy crawling corpora (English, Italian, Ger-
man), Common Crawl (Finnish) and WMT News
Crawl (Spanish). The gold standards were de-
rived from dictionaries built from Europarl word
alignments and available at OPUS (Tiedemann,
2012), split in a test set of 1,500 entries and
a training set of 5,000 that we do not use in
our experiments. The datasets are freely avail-
able. As a non-european agglutinative language,
the English-Finnish pair is particularly challeng-
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ES-EN IT-EN TR-EN

best avg s t best avg s t best avg s t

Zhang et al. (2017a), λ = 1 71.43 68.18 10 13.2 60.38 56.45 10 12.3 0.00 0.00 0 13.0
Zhang et al. (2017a), λ = 10 70.24 66.37 10 13.0 57.64 52.60 10 12.6 21.07 17.95 10 13.2
Conneau et al. (2018), code 76.18 75.82 10 25.1 67.32 67.00 10 25.9 32.64 14.34 5 25.3
Conneau et al. (2018), paper 76.15 75.81 10 25.1 67.21 60.22 9 25.5 29.79 16.48 7 25.5
Proposed method 76.43 76.28 10 0.6 66.96 66.92 10 0.9 36.10 35.93 10 1.7

Table 1: Results of unsupervised methods on the dataset of Zhang et al. (2017a). We perform 10 runs for
each method and report the best and average accuracies (%), the number of successful runs (those with
>5% accuracy) and the average runtime (minutes).

EN-IT EN-DE EN-FI EN-ES

best avg s t best avg s t best avg s t best avg s t

Zhang et al. (2017a), λ = 1 0.00 0.00 0 47.0 0.00 0.00 0 47.0 0.00 0.00 0 45.4 0.00 0.00 0 44.3
Zhang et al. (2017a), λ = 10 0.00 0.00 0 46.6 0.00 0.00 0 46.0 0.07 0.01 0 44.9 0.07 0.01 0 43.0
Conneau et al. (2018), code 45.40 13.55 3 46.1 47.27 42.15 9 45.4 1.62 0.38 0 44.4 36.20 21.23 6 45.3
Conneau et al. (2018), paper 45.27 9.10 2 45.4 0.07 0.01 0 45.0 0.07 0.01 0 44.7 35.47 7.09 2 44.9
Proposed method 48.53 48.13 10 8.9 48.47 48.19 10 7.3 33.50 32.63 10 12.9 37.60 37.33 10 9.1

Table 2: Results of unsupervised methods on the dataset of Dinu et al. (2015) and the extensions of
Artetxe et al. (2017, 2018a). We perform 10 runs for each method and report the best and average accu-
racies (%), the number of successful runs (those with >5% accuracy) and the average runtime (minutes).

ing due to the linguistic distance between them.
For completeness, we also test our method in
the Spanish-English, Italian-English and Turkish-
English datasets of Zhang et al. (2017a), which
consist of 50-dimensional CBOW embeddings
trained on Wikipedia, as well as gold standard
dictionaries4 from Open Multilingual WordNet
(Spanish-English and Italian-English) and Google
Translate (Turkish-English). The lower dimen-
sionality and comparable corpora make an easier
scenario, although it also contains a challenging
pair of distant languages (Turkish-English).

Our method is implemented in Python using
NumPy and CuPy. Together with it, we also test
the methods of Zhang et al. (2017a) and Conneau
et al. (2018) using the publicly available imple-
mentations from the authors5. Given that Zhang
et al. (2017a) report using a different value of
their hyperparameter λ for different language pairs
(λ = 10 for English-Turkish and λ = 1 for the
rest), we test both values in all our experiments to

4The test dictionaries were obtained through personal
communication with the authors. The rest of the language
pairs were left out due to licensing issues.

5Despite our efforts, Zhang et al. (2017b) was left out be-
cause: 1) it does not create a one-to-one dictionary, thus diffi-
culting direct comparison, 2) it depends on expensive propri-
etary software 3) its computational cost is orders of magni-
tude higher (running the experiments would have taken sev-
eral months).

better understand its effect. In the case of Conneau
et al. (2018), we test both the default hyperparam-
eters in the source code as well as those reported
in the paper, with iterative refinement activated in
both cases. Given the instability of these methods,
we perform 10 runs for each, and report the best
and average accuracies, the number of successful
runs (those with >5% accuracy) and the average
runtime. All the experiments were run in a single
Nvidia Titan Xp.

5 Results and discussion

We first present the main results (§5.1), then the
comparison to the state-of-the-art (§5.2), and fi-
nally ablation tests to measure the contribution of
each component (§5.3).

5.1 Main results

We report the results in the dataset of Zhang et al.
(2017a) at Table 1. As it can be seen, the pro-
posed method performs at par with that of Con-
neau et al. (2018) both in Spanish-English and
Italian-English, but gets substantially better re-
sults in the more challenging Turkish-English pair.
While we are able to reproduce the results re-
ported by Zhang et al. (2017a), their method gets
the worst results of all by a large margin. An-
other disadvantage of that model is that different

794



Supervision Method EN-IT EN-DE EN-FI EN-ES

5k dict.

Mikolov et al. (2013) 34.93† 35.00† 25.91† 27.73†

Faruqui and Dyer (2014) 38.40* 37.13* 27.60* 26.80*

Shigeto et al. (2015) 41.53† 43.07† 31.04† 33.73†

Dinu et al. (2015) 37.7 38.93* 29.14* 30.40*

Lazaridou et al. (2015) 40.2 - - -
Xing et al. (2015) 36.87† 41.27† 28.23† 31.20†

Zhang et al. (2016) 36.73† 40.80† 28.16† 31.07†

Artetxe et al. (2016) 39.27 41.87* 30.62* 31.40*

Artetxe et al. (2017) 39.67 40.87 28.72 -
Smith et al. (2017) 43.1 43.33† 29.42† 35.13†

Artetxe et al. (2018a) 45.27 44.13 32.94 36.60

25 dict. Artetxe et al. (2017) 37.27 39.60 28.16 -

Init. Smith et al. (2017), cognates 39.9 - - -
heurist. Artetxe et al. (2017), num. 39.40 40.27 26.47 -

None

Zhang et al. (2017a), λ = 1 0.00* 0.00* 0.00* 0.00*

Zhang et al. (2017a), λ = 10 0.00* 0.00* 0.01* 0.01*

Conneau et al. (2018), code‡ 45.15* 46.83* 0.38* 35.38*

Conneau et al. (2018), paper‡ 45.1 0.01* 0.01* 35.44*

Proposed method 48.13 48.19 32.63 37.33

Table 3: Accuracy (%) of the proposed method in comparison with previous work. *Results obtained
with the official implementation from the authors. †Results obtained with the framework from Artetxe
et al. (2018a). The remaining results were reported in the original papers. For methods that do not
require supervision, we report the average accuracy across 10 runs. ‡For meaningful comparison, runs
with <5% accuracy are excluded when computing the average, but note that, unlike ours, their method
often gives a degenerated solution (see Table 2).

language pairs require different hyperparameters:
λ = 1 works substantially better for Spanish-
English and Italian-English, but only λ = 10
works for Turkish-English.

The results for the more challenging dataset
from Dinu et al. (2015) and the extensions of
Artetxe et al. (2017, 2018a) are given in Table
2. In this case, our proposed method obtains the
best results in all metrics for all the four language
pairs tested. The method of Zhang et al. (2017a)
does not work at all in this more challenging sce-
nario, which is in line with the negative results re-
ported by the authors themselves for similar con-
ditions (only %2.53 accuracy in their large Gi-
gaword dataset). The method of Conneau et al.
(2018) also fails for English-Finnish (only 1.62%
in the best run), although it is able to get positive
results in some runs for the rest of language pairs.
Between the two configurations tested, the default
hyperparameters in the code show a more stable
behavior.

These results confirm the robustness of the pro-
posed method. While the other systems succeed
in some runs and fail in others, our method con-
verges to a good solution in all runs without excep-

tion and, in fact, it is the only one getting positive
results for English-Finnish. In addition to being
more robust, our method also obtains substantially
better accuracies, surpassing previous methods by
at least 1-3 points in all but the easiest pairs. More-
over, our method is not sensitive to hyperparame-
ters that are difficult to tune without a development
set, which is critical in realistic unsupervised con-
ditions.

At the same time, our method is significantly
faster than the rest. In relation to that, it is interest-
ing that, while previous methods perform a fixed
number of iterations and take practically the same
time for all the different language pairs, the run-
time of our method adapts to the difficulty of the
task thanks to the dynamic convergence criterion
of our stochastic approach. This way, our method
tends to take longer for more challenging language
pairs (1.7 vs 0.6 minutes for es-en and tr-en in
one dataset, and 12.9 vs 7.3 minutes for en-fi and
en-de in the other) and, in fact, our (relative) ex-
ecution times correlate surprisingly well with the
linguistic distance with English (closest/fastest is
German, followed by Italian/Spanish, followed by
Turkish/Finnish).
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EN-IT EN-DE EN-FI EN-ES

best avg s t best avg s t best avg s t best avg s t

Full system 48.53 48.13 10 8.9 48.47 48.19 10 7.3 33.50 32.63 10 12.9 37.60 37.33 10 9.1

- Unsup. init. 0.07 0.02 0 16.5 0.00 0.00 0 17.3 0.07 0.01 0 13.8 0.13 0.02 0 15.9

- Stochastic 48.20 48.20 10 2.7 48.13 48.13 10 2.5 0.28 0.28 0 4.3 37.80 37.80 10 2.6
- Cutoff (k=100k) 46.87 46.46 10 114.5 48.27 48.12 10 105.3 31.95 30.78 10 162.5 35.47 34.88 10 185.2
- CSLS 0.00 0.00 0 15.0 0.00 0.00 0 13.8 0.00 0.00 0 13.1 0.00 0.00 0 14.1
- Bidirectional 46.00 45.37 10 5.6 48.27 48.03 10 5.5 31.39 24.86 8 7.8 36.20 35.77 10 7.3

- Re-weighting 46.07 45.61 10 8.4 48.13 47.41 10 7.0 32.94 31.77 10 11.2 36.00 35.45 10 9.1

Table 4: Ablation test on the dataset of Dinu et al. (2015) and the extensions of Artetxe et al. (2017,
2018a). We perform 10 runs for each method and report the best and average accuracies (%), the number
of successful runs (those with >5% accuracy) and the average runtime (minutes).

5.2 Comparison with the state-of-the-art

Table 3 shows the results of the proposed method
in comparison to previous systems, including
those with different degrees of supervision. We
focus on the widely used English-Italian dataset
of Dinu et al. (2015) and its extensions. Despite
being fully unsupervised, our method achieves the
best results in all language pairs but one, even sur-
passing previous supervised approaches. The only
exception is English-Finnish, where Artetxe et al.
(2018a) gets marginally better results with a dif-
ference of 0.3 points, yet ours is the only unsu-
pervised system that works for this pair. At the
same time, it is remarkable that the proposed sys-
tem gets substantially better results than Artetxe
et al. (2017), the only other system based on self-
learning, with the additional advantage of being
fully unsupervised.

5.3 Ablation test

In order to better understand the role of different
aspects in the proposed system, we perform an ab-
lation test, where we separately analyze the effect
of initialization, the different components of our
robust self-learning algorithm, and the final sym-
metric re-weighting. The obtained results are re-
ported in Table 4.

In concordance with previous work, our results
show that self-learning does not work with ran-
dom initialization. However, the proposed unsu-
pervised initialization is able to overcome this is-
sue without the need of any additional informa-
tion, performing at par with other character-level
heuristics that we tested (e.g. shared numerals).

As for the different self-learning components,
we observe that the stochastic dictionary induction
is necessary to overcome the problem of poor lo-

cal optima for English-Finnish, although it does
not make any difference for the rest of easier lan-
guage pairs. The frequency-based vocabulary cut-
off also has a positive effect, yielding to slightly
better accuracies and much faster runtimes. At the
same time, CSLS plays a critical role in the sys-
tem, as hubness severely accentuates the problem
of local optima in its absence. The bidirectional
dictionary induction is also beneficial, contribut-
ing to the robustness of the system as shown by
English-Finnish and yielding to better accuracies
in all cases.

Finally, these results also show that symmet-
ric re-weighting contributes positively, bringing
an improvement of around 1-2 points without any
cost in the execution time.

6 Conclusions

In this paper, we show that previous unsupervised
mapping methods (Zhang et al., 2017a; Conneau
et al., 2018) often fail on realistic scenarios involv-
ing non-comparable corpora and/or distant lan-
guages. In contrast to adversarial methods, we
propose to use an initial weak mapping that ex-
ploits the structure of the embedding spaces in
combination with a robust self-learning approach.
The results show that our method succeeds in all
cases, providing the best results with respect to
all previous work on unsupervised and supervised
mappings.

The ablation analysis shows that our initial so-
lution is instrumental for making self-learning
work without supervision. In order to make self-
learning robust, we also added stochasticity to
dictionary induction, used CSLS instead of near-
est neighbor, and produced bidirectional dictio-
naries. Results also improved using smaller in-
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termediate vocabularies and re-weighting the fi-
nal solution. Our implementation is available as
an open source project at https://github.
com/artetxem/vecmap.

In the future, we would like to extend the
method from the bilingual to the multilingual sce-
nario, and go beyond the word level by incorporat-
ing embeddings of longer phrases.
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Abstract

We propose a multi-lingual multi-task ar-
chitecture to develop supervised models
with a minimal amount of labeled data for
sequence labeling. In this new architec-
ture, we combine various transfer mod-
els using two layers of parameter shar-
ing. On the first layer, we construct the
basis of the architecture to provide uni-
versal word representation and feature ex-
traction capability for all models. On the
second level, we adopt different parame-
ter sharing strategies for different transfer
schemes. This architecture proves to be
particularly effective for low-resource set-
tings, when there are less than 200 train-
ing sentences for the target task. Using
Name Tagging as a target task, our ap-
proach achieved 4.3%-50.5% absolute F-
score gains compared to the mono-lingual
single-task baseline model. 1

1 Introduction

When we use supervised learning to solve Natu-
ral Language Processing (NLP) problems, we typ-
ically train an individual model for each task with
task-specific labeled data. However, our target
task may be intrinsically linked to other tasks. For
example, Part-of-speech (POS) tagging and Name
Tagging can both be considered as sequence la-
beling; Machine Translation (MT) and Abstrac-
tive Text Summarization both require the ability
to understand the source text and generate natu-
ral language sentences. Therefore, it is valuable to
transfer knowledge from related tasks to the tar-
get task. Multi-task Learning (MTL) is one of

∗* Part of this work was done when the first author was
on an internship at Facebook.

1The code of our model is available at https://github.
com/limteng-rpi/mlmt

the most effective solutions for knowledge trans-
fer across tasks. In the context of neural network
architectures, we usually perform MTL by sharing
parameters across models (Ruder, 2017).

Previous studies (Collobert and Weston, 2008;
Dong et al., 2015; Luong et al., 2016; Liu et al.,
2018; Yang et al., 2017) have proven that MTL
is an effective approach to boost the performance
of related tasks such as MT and parsing. However,
most of these previous efforts focused on tasks and
languages which have sufficient labeled data but
hit a performance ceiling on each task alone. Most
NLP tasks, including some well-studied ones such
as POS tagging, still suffer from the lack of train-
ing data for many low-resource languages. Ac-
cording to Ethnologue2, there are 7, 099 living lan-
guages in the world. It is an unattainable goal to
annotate data in all languages, especially for tasks
with complicated annotation requirements. Fur-
thermore, some special applications (e.g., disaster
response and recovery) require rapid development
of NLP systems for extremely low-resource lan-
guages. Therefore, in this paper, we concentrate
on enhancing supervised models in low-resource
settings by borrowing knowledge learned from re-
lated high-resource languages and tasks.

In (Yang et al., 2017), the authors simulated
a low-resource setting for English and Spanish
by downsampling the training data for the tar-
get task. However, for most low-resource lan-
guages, the data sparsity problem also lies in re-
lated tasks and languages. Under such circum-
stances, a single transfer model can only bring lim-
ited improvement. To tackle this issue, we propose
a multi-lingual multi-task architecture which com-
bines different transfer models within a unified ar-
chitecture through two levels of parameter sharing.
In the first level, we share character embeddings,

2https://www.ethnologue.com/guides/
how-many-languages
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character-level convolutional neural networks, and
word-level long-short term memory layer across
all models. These components serve as a basis
to connect multiple models and transfer univer-
sal knowledge among them. In the second level,
we adopt different sharing strategies for different
transfer schemes. For example, we use the same
output layer for all Name Tagging tasks to share
task-specific knowledge (e.g., I-PER3 should not
be assigned to the first word in a sentence).

To illustrate our idea, we take sequence label-
ing as a case study. In the NLP context, the goal
of sequence labeling is to assign a categorical label
(e.g., POS tag) to each token in a sentence. It un-
derlies a range of fundamental NLP tasks, includ-
ing POS Tagging, Name Tagging, and chunking.

Experiments show that our model can effec-
tively transfer various types of knowledge from
different auxiliary tasks and obtains up to 50.5%
absolute F-score gains on Name Tagging com-
pared to the mono-lingual single-task baseline.
Additionally, our approach does not rely on a large
amount of auxiliary task data to achieve the im-
provement. Using merely 1% auxiliary data, we
already obtain up to 9.7% absolute gains in F-
score.

2 Model

2.1 Basic Architecture

The goal of sequence labeling is to assign a
categorical label to each token in a given sen-
tence. Though traditional methods such as Hidden
Markov Models (HMMs) and Conditional Ran-
dom Fields (CRFs) (Lafferty et al., 2001; Rati-
nov and Roth, 2009; Passos et al., 2014) achieved
high performance on sequence labeling tasks, they
typically relied on hand-crafted features, therefore
it is difficult to adapt them to new tasks or lan-
guages. To avoid task-specific engineering, (Col-
lobert et al., 2011) proposed a feed-forward neu-
ral network model that only requires word embed-
dings trained on a large scale corpus as features.
After that, several neural models based on the
combination of long-short term memory (LSTM)
and CRFs (Ma and Hovy, 2016; Lample et al.,
2016; Chiu and Nichols, 2016) were proposed and

3We adopt the BIOES annotation scheme. Prefixes B-, I-
, E-, and S- represent the beginning of a mention, inside of
a mention, the end of a mention and a single-token mention
respectively. The O tag is assigned to a word which is not part
of any mention.

achieved better performance on sequence labeling
tasks.

Figure 1: LSTM-CNNs: an LSTM-CRFs-based
model for Sequence Labeling

LSTM-CRFs-based models are well-suited for
multi-lingual multi-task learning for three reasons:
(1) They learn features from word and character
embeddings and therefore require little feature en-
gineering; (2) As the input and output of each
layer in a neural network are abstracted as vec-
tors, it is fairly straightforward to share compo-
nents between neural models; (3) Character em-
beddings can serve as a bridge to transfer mor-
phological and semantic information between lan-
guages with identical or similar scripts, without
requiring cross-lingual dictionaries or parallel sen-
tences.

Therefore, we design our multi-task multi-
lingual architecture based on the LSTM-CNNs
model proposed in (Chiu and Nichols, 2016). The
overall framework is illustrated in Figure 1. First,
each word wi is represented as the combination
xi of two parts, word embedding and character
feature vector, which is extracted from character
embeddings of the characters in wi using convo-
lutional neural networks (CharCNN). On top of
that, a bidirectional LSTM processes the sequence
x = {x1, x2, ...} in both directions and encodes
each word and its context into a fixed-size vec-
tor hi. Next, a linear layer converts hi to a score
vector yi, in which each component represents the
predicted score of a target tag. In order to model
correlations between tags, a CRFs layer is added
at the top to generate the best tagging path for the
whole sequence. In the CRFs layer, given an in-
put sentence x of length L and the output of the
linear layer y, the score of a sequence of tags z is
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defined as:

S(x, y, z) =
L∑

t=1

(Azt−1,zt + yt,zt
),

where A is a transition matrix in which Ap,q rep-
resents the binary score of transitioning from tag
p to tag q, and yt,z represents the unary score of
assigning tag z to the t-th word. Given the ground
truth sequence of tags z, we maximize the follow-
ing objective function during the training phase:

O = log P (z|x)

= S(x, y, z) − log
∑

z̃∈Z

eS(x,y,z̃),

where Z is the set of all possible tagging paths.
We emphasize that our actual implementation

differs slightly from the LSTM-CNNs model.
We do not use additional word- and character-
level explicit symbolic features (e.g., capitaliza-
tion and lexicon) as they may require additional
language-specific knowledge. Additionally, we
transform character feature vectors using high-
way networks (Srivastava et al., 2015), which is
reported to enhance the overall performance by
(Kim et al., 2016) and (Liu et al., 2018). High-
way networks is a type of neural network that can
smoothly switch its behavior between transform-
ing and carrying information.

2.2 Multi-task Multi-lingual Architecture
MTL can be employed to improve performance on
multiple tasks at the same time, such as MT and
parsing in (Luong et al., 2016). However, in our
scenario, we only focused on enhancing the per-
formance of a low-resource task, which is our tar-
get task or main task. Our proposed architecture
aims to transfer knowledge from a set of auxiliary
tasks to the main task. For simplicity, we refer to
a model of a main (auxiliary) task as a main (aux-
iliary) model.

To jointly train multiple models, we perform
multi-task learning using parameter sharing. Let
Θi be the set of parameters for model mi and
Θi,j = Θi ∩ Θj be the shared parameters between
mi and mj . When optimizing model mi, we up-
date Θi and hence Θi,j . In this way, we can par-
tially train model mj as Θi,j ⊆ Θj . Previously,
each MTL model generally uses a single transfer
scheme. In order to merge different transfer mod-
els into a unified architecture, we employ two lev-
els of parameter sharing as follows.

On the first level, we construct the basis of
the architecture by sharing character embeddings,
CharCNN and bidirectional LSTM among all
models. This level of parameter sharing aims to
provide universal word representation and feature
extraction capability for all tasks and languages.

Character Embeddings and Character-level
CNNs. Character features can represent morpho-
logical and semantic information; e.g., the En-
glish morpheme dis- usually indicates negation
and reversal as in “disagree” and “disapproval”.
For low-resource languages lacking in data to
suffice the training of high-quality word embed-
dings, character embeddings learned from other
languages may provide crucial information for la-
beling, especially for rare and out-of-vocabulary
words. Take the English word “overflying” (flying
over) as an example. Even if it is rare or absent
in the corpus, we can still infer the word meaning
from its suffix over- (above), root fly, and prefix
-ing (present participle form). In our architecture,
we share character embeddings and the CharCNN
between languages with identical or similar scripts
to enhance word representation for low-resource
languages.

Bidirectional LSTM. The bidirectional LSTM
layer is essential to extract character, word, and
contextual information from a sentence. However,
with a large number of parameters, it cannot be
fully trained only using the low-resource task data.
To tackle this issue, we share the bidirectional
LSTM layer across all models. Bear in mind that
because our architecture does not require aligned
cross-lingual word embeddings, sharing this layer
across languages may confuse the model as it
equally handles embeddings in different spaces.
Nevertheless, under low-resource circumstances,
data sparsity is the most critical factor that affects
the performance.

On top of this basis, we adopt different pa-
rameter sharing strategies for different transfer
schemes. For cross-task transfer, we use the same
word embedding matrix across tasks so that they
can mutually enhance word representations. For
cross-lingual transfer, we share the linear layer
and CRFs layer among languages to transfer task-
specific knowledge, such as the transition score
between two tags.

Word Embeddings. For most words, in addi-
tion to character embeddings, word embeddings
are still crucial to represent semantic informa-
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Figure 2: Multi-task Multi-lingual Architecture

tion. We use the same word embedding matrix for
tasks in the same language. The matrix is initial-
ized with pre-trained embeddings and optimized
as parameters during training. Thus, task-specific
knowledge can be encoded into the word embed-
dings by one task and subsequently utilized by an-
other one. For a low-resource language even with-
out sufficient raw text, we mix its data with a re-
lated high-resource language to train word embed-
dings. In this way, we merge both corpora and
hence their vocabularies.

Recently, Conneau et al. (2017) proposed a
domain-adversarial method to align two mono-
lingual word embedding matrices without cross-
lingual supervision such as a bilingual dictionary.
Although cross-lingual word embeddings are not
required, we evaluate our framework with aligned
embeddings generated using this method. Experi-
ment results show that the incorporation of cross-
lingual embeddings substantially boosts the per-
formance under low-resource settings.

Linear Layer and CRFs. As the tag set varies
from task to task, the linear layer and CRFs can
only be shared across languages. We share these
layers to transfer task-specific knowledge to the
main model. For example, our model corrects [S-
PER Charles] [S-PER Picqué] to [B-PER Charles]
[E-PER Picqué] because the CRFs layer fully
trained on other languages assigns a low score to
the rare transition S-PER→S-PER and promotes
B-PER→E-PER. In addition to the shared linear
layer, we add an unshared language-specific lin-
ear layer to allow the model to behave differently

toward some features for different languages. For
example, the suffix -ment usually indicates nouns
in English whereas indicates adverbs in French.

We combine the output of the shared linear layer
yu and the output of the language-specific linear
layer ys using:

y = g ⊙ ys + (1 − g) ⊙ yu,

where g = σ(W gh + bg). W g and bg are op-
timized during training. h is the LSTM hidden
states. As W g is a square matrix, y, ys, and yu

have the same dimension.
Although we only focus on sequence labeling

in this work, our architecture can be adapted for
many NLP tasks with slight modification. For ex-
ample, for text classification tasks, we can take the
last hidden state of the forward LSTM as the sen-
tence representation and replace the CRFs layer
with a Softmax layer.

In our model, each task has a separate object
function. To optimize multiple tasks within one
model, we adopt the alternating training approach
in (Luong et al., 2016). At each training step, we
sample a task di with probability ri∑

j rj
, where ri

is the mixing rate value assigned to di. In our ex-
periments, instead of tuning ri, we estimate it by:

ri = µiζi

√
Ni ,

where µi is the task coefficient, ζi is the language
coefficient, and Ni is the number of training ex-
amples. µi (or ζi) takes the value 1 if the task
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(or language) of di is the same as that of the tar-
get task; Otherwise it takes the value 0.1. For ex-
ample, given English Name Tagging as the target
task, the task coefficient µ and language coeffi-
cient ζ of Spanish Name Tagging are 0.1 and 1
respectively.

While assigning lower mixing rate values to
auxiliary tasks, this formula also takes the amount
of data into consideration. Thus, auxiliary tasks
receive higher probabilities to reduce overfitting
when we have a smaller amount of main task data.

3 Experiments

3.1 Data Sets
For Name Tagging, we use the following data
sets: Dutch (NLD) and Spanish (ESP) data from the
CoNLL 2002 shared task (Tjong Kim Sang, 2002),
English (ENG) data from the CoNLL 2003 shared
task (Tjong Kim Sang and De Meulder, 2003),
Russian (RUS) data from LDC2016E95 (Rus-
sian Representative Language Pack), and Chechen
(CHE) data from TAC KBP 2017 10-Language
EDL Pilot Evaluation Source Corpus4. We se-
lect Chechen as another target language in addi-
tion to Dutch and Spanish because it is a truly
under-resourced language and its related language,
Russian, also lacks NLP resources.

Code Train Dev Test
NLD 202,931 (13,344) 37,761 (2,616) 68,994 (3,941)
ESP 207,484 (18,797) 51,645 (4,351) 52,098 (3,558)
ENG 204,567 (23,499) 51,578 (5,942) 46,666 (5,648)
RUS 66,333 (3,143) 8,819 (413) 7,771 (407)
CHE 98,355 (2,674) 12,265 (312) 11,933 (366)

Table 1: Name Tagging data set statistics: #token
and #name (between parentheses).

For POS Tagging, we use English, Dutch, Span-
ish, and Russian data from the CoNLL 2017
shared task (Zeman et al., 2017; Nivre et al.,
2017). In this data set, each token is annotated
with two POS tags, UPOS (universal POS tag) and
XPOS (language-specific POS tag). We use UPOS

because it is consistent throughout all languages.

3.2 Experimental Setup
We use 50-dimensional pre-trained word embed-
dings and 50-dimensional randomly initialized
character embeddings. We train word embeddings
using the word2vec package5. English, Span-

4https://tac.nist.gov/2017/KBP/data.html
5https://github.com/tmikolov/word2vec

ish, and Dutch embeddings are trained on corre-
sponding Wikipedia articles (2017-12-20 dumps).
Russian embeddings are trained on documents in
LDC2016E95. Chechen embeddings are trained
on documents in TAC KBP 2017 10-Language
EDL Pilot Evaluation Source Corpus. To learn a
mapping between mono-lingual word embeddings
and obtain cross-lingual embeddings, we use the
unsupervised model in the MUSE library6 (Con-
neau et al., 2017). Although word embeddings are
fine-tuned during training, we update the embed-
ding matrix in a sparse way and thus do not have
to update a large number of parameters.

We optimize parameters using Stochastic Gra-
dient Descent with momentum, gradient clipping
and exponential learning rate decay. At step t, the
learning rate αt is updated using αt = α0 ∗ ρt/T ,
where α0 is the initial learning rate, ρ is the decay
rate, and T is the decay step.7 To reduce overfit-
ting, we apply Dropout (Srivastava et al., 2014) to
the output of the LSTM layer.

We conduct hyper-parameter optimization by
exploring the space of parameters shown in Ta-
ble 2 using random search (Bergstra and Bengio,
2012). Due to time constraints, we only perform
parameter sweeping on the Dutch Name Tagging
task with 200 training examples. We select the set
of parameters that achieves the best performance
on the development set and apply it to all models.

Layer Range Final
CharCNN Filter Number [10, 30] 20
Highway Layer Number [1, 2] 2
Highway Activation Function ReLU, SeLU SeLU
LSTM Hidden State Size [50, 200] 171
LSTM Dropout Rate [0.3, 0.8] 0.6
Learning Rate [0.01, 0.2] 0.02
Batch Size [5, 25] 19

Table 2: Hyper-parameter search space.

3.3 Comparison of Different Models
In Figure 3, 4, and 5, we compare our model with
the mono-lingual single-task LSTM-CNNs model
(denoted as baseline), cross-task transfer model,
and cross-lingual transfer model in low-resource
settings with Dutch, Spanish, and Chechen Name
Tagging as the main task respectively. We use En-
glish as the related language for Dutch and Span-
ish, and use Russian as the related language for

6https://github.com/facebookresearch/MUSE
7Momentum β, gradient clipping threshold, ρ, and T are

set to 0.9, 5.0, 0.9, and 10000 in the experiments.
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Chechen. For cross-task transfer, we take POS
Tagging as the auxiliary task. Because the CoNLL
2017 data does not include Chechen, we only use
Russian POS Tagging and Russian Name Tagging
as auxiliary tasks for Chechen Name Tagging.

We take Name Tagging as the target task for
three reasons: (1) POS Tagging has a much lower
requirement for the amount of training data. For
example, using only 10 training sentences, our
baseline model achieves 75.5% and 82.9% pre-
diction accuracy on Dutch and Spanish; (2) Com-
pared to POS Tagging, Name Tagging has been
considered as a more challenging task; (3) Exist-
ing POS Tagging resources are relatively richer
than Name Tagging ones; e.g., the CoNLL 2017
data set provides POS Tagging training data for 45
languages. Name Tagging also has a higher anno-
tation cost as its annotation guidelines are usually
more complicated.

We can see that our model substantially outper-
forms the mono-lingual single-task baseline model
and obtains visible gains over single transfer mod-
els. When trained with less than 50 main tasks
training sentences, cross-lingual transfer consis-
tently surpasses cross-task transfer, which is not
surprising because in the latter scheme, the linear
layer and CRFs layer of the main model are not
shared with other models and thus cannot be fully
trained with little data.

Because there are only 20,400 sentences in
Chechen documents, we also experiment with
the data augmentation method described in Sec-
tion 2.2 by training word embeddings on a mix-
ture of Russian and Chechen data. This method
yields additional 3.5%-10.0% absolute F-score
gains. We also experiment with transferring from
English to Chechen. Because Chechen uses Cyril-
lic alphabet , we convert its data set to Latin script.
Surprisingly, although these two languages are not
close, we get more improvement by using English
as the auxiliary language.

In Table 3, we compare our model with state-of-
the-art models using all Dutch or Spanish Name
Tagging data. Results show that although we de-
sign this architecture for low-resource settings, it
also achieves good performance in high-resource
settings. In this experiment, with sufficient train-
ing data for the target task, we perform another
round of parameter sweeping. We increase the em-
bedding sizes and LSTM hidden state size to 100
and 225 respectively.
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Figure 3: Performance on Dutch Name Tagging.
We scale the horizontal axis to show more details
under 100 sentences. Our Model*: our model with
MUSE cross-lingual embeddings.
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Figure 4: Performance on Spanish Name Tagging.
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Figure 5: Performance on Chechen Name Tag-
ging.

3.4 Qualitative Analysis

In Table 4, we compare Name Tagging results
from the baseline model and our model, both
trained with 100 main task sentences.

The first three examples show that shared
character-level networks can transfer different lev-
els of morphological and semantic information.
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Language Model F-score
Dutch Gillick et al. (2016) 82.84

Lample et al. (2016) 81.74
Yang et al. (2017) 85.19
Baseline 85.14
Cross-task 85.69
Cross-lingual 85.71
Our Model 86.55

Spanish Gillick et al. (2016) 82.95
Lample et al. (2016) 85.75
Yang et al. (2017) 85.77
Baseline 85.44
Cross-task 85.37
Cross-lingual 85.02
Our Model 85.88

Table 3: Comparison with state-of-the-art models.

In example #1, the baseline model fails to iden-
tify “Palestijnen”, an unseen word in the Dutch
data, while our model can recognize it because
the shared CharCNN represents it in a way similar
to its corresponding English word “Palestinians”,
which occurs 20 times. In addition to mentions,
the shared CharCNN can also improve represen-
tations of context words, such as “staat” (state) in
the example. For some words dissimilar to corre-
sponding English words, the CharCNN may en-
hance their word representations by transferring
morpheme-level knowledge. For example, in sen-
tence #2, our model is able to identify “Rusland”
(Russia) as the suffix -land is usually associated
with location names in the English data; e.g., Fin-
land. Furthermore, the CharCNN is capable of
capturing some word-level patterns, such as capi-
talized hyphenated compound and acronym as ex-
ample #3 shows. In this sentence, neither “PMS-
centra” nor “MST” can be found in auxiliary task
data, while we observe a number of similar expres-
sions, such as American-style and LDP.

The transferred knowledge also helps reduce
overfitting. For example, in sentence #4, the
baseline model mistakenly tags “sección” (sec-
tion) and “consellerı́a” (department) as organiza-
tions because their capitalized forms usually ap-
pear in Spanish organization names. With knowl-
edge learned in auxiliary tasks that a lowercased
word is rarely tagged as a proper noun, our model
is able to avoid overfitting and correct these errors.
Sentence #5 shows an opposite situation, where
the capitalized word “campesinos” (farm worker)
never appears in Spanish names.

In Table 5, we show differences between cross-

lingual transfer and cross-task transfer. Although
the cross-task transfer model recognizes “Inge-
borg Marx” missed by the baseline model, it mis-
takenly assigns an S-PER tag to “Marx”. Instead,
from English Name Tagging, the cross-lingual
transfer model borrows task-specific knowledge
through the shared CRFs layer that (1) B-PER→S-
PER is an invalid transition, and (2) even if we as-
sign S-PER to “Ingeborg”, it is rare to have con-
tinuous person names without any conjunction or
punctuation. Thus, the cross-lingual model pro-
motes the sequence B-PER→E-PER.

In Figure 6, we depict the change of tag dis-
tribution with the number of training sentences.
When trained with less than 100 sentences, the
baseline model only correctly predicts a few tags
dominated by frequent types. By contrast, our
model has a visibly higher recall and better pre-
dicts infrequent tags, which can be attributed to
the implicit data augmentation and inductive bias
introduced by MTL (Ruder, 2017). For example,
if all location names in the Dutch training data
are single-token ones, the baseline model will in-
evitably overfit to the tag S-LOC and possibly la-
bel “Caldera de Taburiente” as [S-LOC Caldera]
[S-LOC de] [S-LOC Taburiente], whereas with the
shared CRFs layer fully trained on English Name
Tagging, our model prefers B-LOC→I-LOC→E-
LOC, which receives a higher transition score.
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Figure 6: The distribution of correctly predicted
tags on Dutch Name Tagging. The height of each
stack indicates the number of a certain tag.

3.5 Ablation Studies
In order to quantify the contributions of individ-
ual components, we conduct ablation studies on
Dutch Name Tagging with different numbers of
training sentences for the target task. For the ba-
sic model, we we use separate LSTM layers and

805



#1 [DUTCH]: If a Palestinian State is, however, the first thing the Palestinians will do.
⋆ [B] Als er een Palestijnse staat komt, is dat echter het eerste wat de Palestijnen zullen doen

⋆ [A] Als er een [S-MISC Palestijnse] staat komt, is dat echter het eerste wat de [S-MISC Palestijnen] zullen doen

#2 [DUTCH]: That also frustrates the Muscovites, who still live in the proud capital of Russia but can not look at the soaps
that the stupid farmers can see on the outside.
⋆ [B] Ook dat frustreert de Moskovieten , die toch in de fiere hoofdstad van Rusland wonen maar niet naar de soaps kunnen
kijken die de domme boeren op de buiten wel kunnen zien
⋆ [A] Ook dat frustreert de [S-MISC Moskovieten] , die toch in de fiere hoofdstad van [S-LOC Rusland] wonen maar niet
naar de soaps kunnen kijken die de domme boeren op de buiten wel kunnen zien
#3 [DUTCH]: And the PMS centers are merging with the centers for school supervision, the MSTs.
⋆ [B] En smelten de PMS-centra samen met de centra voor schooltoezicht, de MST’s .
⋆ [A] En smelten de [S-MISC PMS-centra] samen met de centra voor schooltoezicht, de [S-MISC MST’s] .

#4 [SPANISH]: The trade union section of CC.OO. in the Department of Justice has today denounced more attacks of students
to educators in centers dependent on this department ...
⋆ [B] La [B-ORG sección] [I-ORG sindical] [I-ORG de] [S-ORG CC.OO.] en el [B-ORG Departamento] [I-ORG de] [E-ORG

Justicia] ha denunciado hoy ms agresiones de alumnos a educadores en centros dependientes de esta [S-ORG consellerı́a]
...
⋆ [A] La sección sindical de [S-ORG CC.OO.] en el [B-ORG Departamento] [I-ORG de] [E-ORG Justicia] ha denunciado

hoy ms agresiones de alumnos a educadores en centros dependientes de esta consellerı́a ...
#5 [SPANISH]: ... and the Single Trade Union Confederation of Peasant Workers of Bolivia, agreed upon when the state of
siege was ended last month.
⋆ [B] ... y la [B-ORG Confederación] [I-ORG Sindical] [I-ORG Unica] [I-ORG de] [E-ORG Trabajadores] Campesinos de

[S-ORG Bolivia] , pactadas cuando se dio fin al estado de sitio, el mes pasado .

⋆ [A] .. y la [B-ORG Confederación] [I-ORG Sindical] [I-ORG Unica] [I-ORG de] [I-ORG Trabajadores] [I-ORG Campesinos]

[I-ORG de] [E-ORG Bolivia] , pactadas cuando se dio fin al estado de sitio, el mes pasado .

Table 4: Name Tagging results, each of which contains an English translation, result of the baseline
model (B), and result of our model (A). The GREEN ( RED ) highlight indicates a correct (incorrect) tag.

[DUTCH] ... Ingeborg Marx is her name, a formidable
heavy weight to high above her head!
⋆ [B] ... Zag ik zelfs onlangs niet dat een lief, mooi
vrouwtje, Ingeborg Marx is haar naam, een formidabel
zwaar gewicht tot hoog boven haar hoofd stak!
⋆ [CROSS-TASK] ... Zag ik zelfs onlangs niet dat een lief,
mooi vrouwtje, [B-PER Ingeborg] [S-PER Marx] is haar
naam, een formidabel zwaar gewicht tot hoog boven haar
hoofd stak!
⋆ [CROSS-LINGUAL] ... Zag ik zelfs onlangs niet dat een
lief, mooi vrouwtje, [B-PER Ingeborg] [E-PER Marx] is
haar naam, een formidabel zwaar gewicht tot hoog boven
haar hoofd stak!

Table 5: Comparing cross-task transfer and cross-
lingual transfer on Dutch Name Tagging with 100
training sentences.

remove the character embeddings, highway net-
works, language-specific layer, and Dropout layer.
As Table 6 shows, adding each component usu-
ally enhances the performance (F-score, %), while
the impact also depends on the size of the tar-
get task data. For example, the language-specific
layer slightly impairs the performance with only
10 training sentences. However, this is unsurpris-

ing as it introduces additional parameters that are
only trained by the target task data.

Model 0 10 100 200 All
Basic 2.06 20.03 47.98 51.52 77.63
+C 1.69 24.22 48.53 56.26 83.38
+CL 9.62 25.97 49.54 56.29 83.37
+CLS 3.21 25.43 50.67 56.34 84.02
+CLSH 7.70 30.48 53.73 58.09 84.68
+CLSHD 12.12 35.82 57.33 63.27 86.00

Table 6: Performance comparison between mod-
els with different components (C: character em-
bedding; L: shared LSTM; S: language-specific
layer; H: highway networks; D: dropout).

3.6 Effect of the Amount of Auxiliary Task
Data

For many low-resource languages, their related
languages are also low-resource. To evaluate our
model’s sensitivity to the amount of auxiliary task
data, we fix the size of main task data and down-
sample all auxiliary task data with sample rates
from 1% to 50%. As Figure 7 shows, the perfor-
mance goes up when we raise the sample rate from
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1% to 20%. However, we do not observe signif-
icant improvement when we further increase the
sample rate. By comparing scores in Figure 3 and
Figure 7, we can see that using only 1% auxiliary
data, our model already obtains 3.7%-9.7% abso-
lute F-score gains. Due to space limitations, we
only show curves for Dutch Name Tagging, while
we observe similar results on other tasks. There-
fore, we may conclude that our model does not
heavily rely on the amount of auxiliary task data.
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Figure 7: The effect of the amount of auxiliary
task data on Dutch Name Tagging.

4 Related Work

Multi-task Learning has been applied in differ-
ent NLP areas, such as machine translation (Lu-
ong et al., 2016; Dong et al., 2015; Domhan
and Hieber, 2017), text classification (Liu et al.,
2017), dependency parsing (Peng et al., 2017),
textual entailment (Hashimoto et al., 2017), text
summarization (Isonuma et al., 2017) and se-
quence labeling (Collobert and Weston, 2008;
Søgaard and Goldberg, 2016; Rei, 2017; Peng and
Dredze, 2017; Yang et al., 2017; von Däniken and
Cieliebak, 2017; Aguilar et al., 2017; Liu et al.,
2018)

Collobert and Weston (2008) is an early attempt
that applies MTL to sequence labeling. The au-
thors train a CNN model jointly on POS Tag-
ging, Semantic Role Labeling, Name Tagging,
chunking, and language modeling using parame-
ter sharing. Instead of using other sequence la-
beling tasks, Rei (2017) and Liu et al. (2018)
take language modeling as the secondary train-
ing objective to extract semantic and syntactic
knowledge from large scale raw text without ad-
ditional supervision. In (Yang et al., 2017), the
authors propose three transfer models for cross-
domain, cross-application, and cross-lingual trans-

fer for sequence labeling, and also simulate a low-
resource setting by downsampling the training
data. By contrast, we combine cross-task trans-
fer and cross-lingual transfer within a unified ar-
chitecture to transfer different types of knowledge
from multiple auxiliary tasks simultaneously. In
addition, because our model is designed for low-
resource settings, we share components among
models in a different way (e.g., the LSTM layer
is shared across all models). Differing from most
MTL models, which perform supervisions for all
tasks on the outermost layer, (Søgaard and Gold-
berg, 2016) proposes an MTL model which super-
vised tasks at different levels. It shows that su-
pervising low-level tasks such as POS Tagging at
lower layer obtains better performance.

5 Conclusions and Future Work

We design a multi-lingual multi-task architecture
for low-resource settings. We evaluate the model
on sequence labeling tasks with three language
pairs. Experiments show that our model can ef-
fectively transfer different types of knowledge to
improve the main model. It substantially out-
performs the mono-lingual single-task baseline
model, cross-lingual transfer model, and cross-
task transfer model.

The next step of this research is to apply this
architecture to other types of tasks, such as Event
Extract and Semantic Role Labeling that involve
structure prediction. We also plan to explore the
possibility of integrating incremental learning into
this architecture to adapt a trained model for new
tasks rapidly.
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Word translation without parallel data. arXiv
preprint arXiv:1710.04087.

Pius von Däniken and Mark Cieliebak. 2017. Transfer
learning and sentence level features for named en-
tity recognition on tweets. In Proceedings of the 3rd
Workshop on Noisy User-generated Text.

Tobias Domhan and Felix Hieber. 2017. Using target-
side monolingual data for neural machine translation
through multi-task learning. In EMNLP.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for mul-
tiple language translation. In ACL.

Dan Gillick, Cliff Brunk, Oriol Vinyals, and Amarnag
Subramanya. 2016. Multilingual language process-
ing from bytes. In NAACL HLT.

Kazuma Hashimoto, Yoshimasa Tsuruoka, Richard
Socher, et al. 2017. A joint many-task model: Grow-
ing a neural network for multiple nlp tasks. In
EMNLP.

Masaru Isonuma, Toru Fujino, Junichiro Mori, Yutaka
Matsuo, and Ichiro Sakata. 2017. Extractive sum-
marization using multi-task learning with document
classification. In EMNLP.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In AAAI.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In ICML.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In NAACL HLT.

Liyuan Liu, Jingbo Shang, Frank Xu, Xiang Ren, Huan
Gui, Jian Peng, and Jiawei Han. 2018. Empower
sequence labeling with task-aware neural language
model. In AAAI.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2017.
Adversarial multi-task learning for text classifica-
tion. In ACL.

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2016. Multi-task se-
quence to sequence learning. In ICLR.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional LSTM-CNNs-
CRF. In ACL.

Joakim Nivre, Željko Agić, Lars Ahrenberg, Lene
Antonsen, Maria Jesus Aranzabe, Masayuki Asa-
hara, Luma Ateyah, Mohammed Attia, Aitz-
iber Atutxa, Liesbeth Augustinus, Elena Bad-
maeva, Miguel Ballesteros, Esha Banerjee, Sebas-
tian Bank, Verginica Barbu Mititelu, John Bauer,
Kepa Bengoetxea, Riyaz Ahmad Bhat, Eckhard
Bick, Victoria Bobicev, Carl Börstell, Cristina
Bosco, Gosse Bouma, Sam Bowman, Aljoscha Bur-
chardt, Marie Candito, Gauthier Caron, Gülşen
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Abstract

Bilingual tasks, such as bilingual lexicon
induction and cross-lingual classification,
are crucial for overcoming data sparsity in
the target language. Resources required
for such tasks are often out-of-domain,
thus domain adaptation is an important
problem here. We make two contributions.
First, we test a delightfully simple method
for domain adaptation of bilingual word
embeddings. We evaluate these embed-
dings on two bilingual tasks involving dif-
ferent domains: cross-lingual twitter sen-
timent classification and medical bilingual
lexicon induction. Second, we tailor a
broadly applicable semi-supervised clas-
sification method from computer vision to
these tasks. We show that this method
also helps in low-resource setups. Using
both methods together we achieve large
improvements over our baselines, by using
only additional unlabeled data.

1 Introduction

In this paper we study two bilingual tasks that
strongly depend on bilingual word embeddings
(BWEs). Previously, specialized domain adap-
tation approaches to such tasks were proposed.
We instead show experimentally that a simple
adaptation process involving only unlabeled text
is highly effective. We then show that a semi-
supervised classification method from computer
vision can be applied successfully for further gains
in cross-lingual classification.

Our BWE adaptation method is delightfully
simple. We begin by adapting monolingual word
embeddings to the target domain for source and
target languages by simply building them using
both general and target-domain unlabeled data. As

a second step we use post-hoc mapping (Mikolov
et al., 2013b), i.e., we use a seed lexicon to trans-
form the word embeddings of the two languages
into the same vector space. We show experimen-
tally for the first time that the domain-adapted
bilingual word embeddings we produce using this
extremely simple technique are highly effective.
We study two quite different tasks and domains,
where resources are lacking, showing that our sim-
ple technique performs well for both of them:
cross-lingual twitter sentiment classification and
medical bilingual lexicon induction. In previous
work, task-dependent approaches were used for
this type of domain adaptation. Our approach is
simple and task independent.

Second, we adapt the semi-supervised image
classification system of Häusser et al. (2017) for
NLP problems for the first time. This approach
is broadly applicable to many NLP classification
tasks where unlabeled data is available. We tai-
lor it to both of our cross-lingual tasks. The sys-
tem exploits unlabeled data during the training of
classifiers by learning similar features for similar
labeled and unlabeled training examples, thereby
extracting information from unlabeled examples
as well. As we show experimentally, the system
further improves cross-lingual knowledge transfer
for both of our tasks.

After combining both techniques, the results of
sentiment analysis are competitive with systems
that use annotated data in the target language, an
impressive result considering that we require no
target-language annotated data. The method also
yields impressive improvements for bilingual lex-
icon induction compared with baselines trained on
in-domain data. We show that this system re-
quires the high-quality domain-adapted bilingual
word embeddings we previously created to use un-
labeled data well.
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2 Previous Work

2.1 Bilingual Word Embeddings
Many approaches have been proposed for creating
high quality BWEs using different bilingual sig-
nals. Following Mikolov et al. (2013b), many au-
thors (Faruqui and Dyer, 2014; Xing et al., 2015;
Lazaridou et al., 2015; Vulić and Korhonen, 2016)
map monolingual word embeddings (MWEs) into
the same bilingual space. Others leverage paral-
lel texts (Hermann and Blunsom, 2014; Gouws
et al., 2015) or create artificial cross-lingual cor-
pora using seed lexicons or document alignments
(Vulić and Moens, 2015; Duong et al., 2016) to
train BWEs.

In contrast, our aim is not to improve the in-
trinsic quality of BWEs, but to adapt BWEs to
specific domains to enhance their performance on
bilingual tasks in these domains. Faruqui et al.
(2015), Gouws and Søgaard (2015), Rothe et al.
(2016) have previously studied domain adaptation
of bilingual word embeddings, showing it to be
highly effective for improving downstream tasks.
However, importantly, their proposed methods are
based on specialized domain lexicons (such as,
e.g., sentiment lexicons) which contain task spe-
cific word relations. Our delightfully simple ap-
proach is, in contrast, effectively task independent
(in that it only requires unlabeled in-domain text),
which is an important strength.

2.2 Cross-Lingual Sentiment Analysis
Sentiment analysis is widely applied, and thus ide-
ally we would have access to high quality super-
vised models in all human languages. Unfortu-
nately, good quality labeled datasets are missing
for many languages. Training models on resource
rich languages and applying them to resource poor
languages is therefore highly desirable. Cross-
lingual sentiment classification (CLSC) tackles
this problem (Mihalcea et al., 2007; Banea et al.,
2010; Wan, 2009; Lu et al., 2011; Balamurali and
Joshi, 2012; Gui et al., 2013). Recent CLSC ap-
proaches use BWEs as features of deep learn-
ing architectures which allows us to use a model
for target-language sentiment classification, even
when the model was trained only using source-
language supervised training data. Following this
approach we perform CLSC on Spanish tweets us-
ing English training data. Even though Spanish is
not resource-poor we simulate this by using only
English annotated data.

Xiao and Guo (2013) proposed a cross-lingual
log-bilinear document model to learn distributed
representations of words, which can capture both
the semantic similarities of words across lan-
guages and the predictive information with respect
to the classification task. Similarly, Tang and Wan
(2014) jointly embedded texts in different lan-
guages into a joint semantic space representing
sentiment. Zhou et al. (2014) employed aligned
sentences in the BWE learning process, but in the
sentiment classification process only representa-
tions in the source language are used for training,
and representations in the target language are used
for predicting labels. An important weakness of
these three works was that aligned sentences were
required.

Some work has trained sentiment-specific
BWEs using annotated sentiment information in
both languages (Zhou et al., 2015, 2016), which
is desirable, but this is not applicable to our sce-
nario. Our goal is to adapt BWEs to a specific
domain without requiring additional task-specific
engineering or knowledge sources beyond having
access to plentiful target-language in-domain un-
labeled text. Both of the approaches we study in
this work fit this criterion, the delightfully sim-
ple method for adapting BWEs can improve the
performance of any off-the-shelf classifier that is
based on BWEs, while the broadly applicable
semi-supervised approach of Häusser et al. (2017)
can improve the performance of any off-the-shelf
classifier.

2.3 Bilingual Lexicon Induction (BLI)

BLI is an important task that has been addressed
by a large amount of previous work. The goal
of BLI is to automatically extract word translation
pairs using BWEs. While BLI is often used to pro-
vide an intrinsic evaluation of BWEs (Lazaridou
et al., 2015; Vulić and Moens, 2015; Vulić and
Korhonen, 2016) it is also useful for tasks such
as machine translation (Madhyastha and España
Bohnet, 2017). Most work on BLI using BWEs fo-
cuses on frequent words in high-resource domains
such as parliament proceedings or news texts. Re-
cently Heyman et al. (2017) tackled BLI of words
in the medical domain. This task is useful for
many applications such as terminology extraction
or OOV mining for machine translation of medi-
cal texts. Heyman et al. (2017) show that when
only a small amount of medical data is available,
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BLI using BWEs tends to perform poorly. Es-
pecially BWEs obtained using post-hoc mapping
(Mikolov et al., 2013b; Lazaridou et al., 2015) fail
on this task. Consequently, Heyman et al. (2017)
build BWEs using aligned documents and then en-
gineer a specialized classification-based approach
to BLI. In contrast, our delightfully simple ap-
proach to create high-quality BWEs for the med-
ical domain requires only monolingual data. We
show that our adapted BWEs yield impressive im-
provements over non-adapted BWEs in this task
with both cosine similarity and with the classifier
of Heyman et al. (2017). In addition, we show
that the broadly applicable method can push per-
formance further using easily accessible unlabeled
data.

3 Adaptation of BWEs

BWEs trained on general domain texts usually re-
sult in lower performance when used in a system
for a specific domain. There are two reasons for
this. (i) Vocabularies of specific domains contain
words that are not used in the general case, e.g.,
names of medicines or diseases. (ii) The mean-
ing of a word varies across domains; e.g., “apple”
mostly refers to a fruit in general domains, but is
an electronic device in many product reviews.

The delightfully simple method adapts general
domain BWEs in a way that preserves the seman-
tic knowledge from general domain data and lever-
ages monolingual domain specific data to create
domain-specific BWEs. Our domain-adaptation
approach is applicable to any language-pair in
which monolingual data is available. Unlike other
methods, our approach is task independent: it only
requires unlabeled in-domain target language text.

3.1 Approach

To create domain adapted BWEs, we first train
MWEs (monolingual word embeddings) in both
languages and then map those into the same space
using post-hoc mapping (Mikolov et al., 2013b).
We train MWEs for both languages by concate-
nating monolingual out-of-domain and in-domain
data. The out-of-domain data allows us to cre-
ate accurate distributed representations of com-
mon vocabulary while the in-domain data embeds
domain specific words. We then map the two
MWEs using a small seed lexicon to create the
adapted BWEs. Because post-hoc mapping only
requires a seed lexicon as bilingual signal it can

easily be used with (cheap) monolingual data.
For post-hoc mapping, we use Mikolov et al.

(2013b)’s approach. This model assumes a W ∈
Rd1×d2 matrix which maps vectors from the
source to the target MWEs where d1 and d2 are
the embedding space dimensions. A seed lexicon
of (xi, yi) ∈ L ⊆ Rd1×Rd2 pairs is needed where
xi and yi are source and target MWEs. W can be
learned using ridge regression by minimizing the
L2-regularized mapping error between the source
xi and the target yi vectors:

min
W

∑

i

||Wxi − yi||22 + λ||W ||22 (1)

where λ is the regularization weight. Based on
the source embedding x, we then compute a target
embedding as Wx.

We create MWEs with word2vec skipgram
(Mikolov et al., 2013a)1 and estimate W with
scikit-learn (Pedregosa et al., 2011). We use de-
fault parameters.

4 Cross-Lingual Sentiment Classification

In CLSC, an important application of BWEs, we
train a supervised sentiment model on training
data available in the source (a resource rich lan-
guage) and apply it to the target (a resource poor
language, for which there is typically no train-
ing data available). Because BWEs embed source
and target words in the same space, annotations
in the source (represented as BWEs) enable trans-
fer learning. For CLSC of tweets, a drawback of
BWEs trained on non-twitter data is that they do
not produce embeddings for twitter-specific vo-
cabulary, e.g., slang words like English coool and
(Mexican) Spanish chido, resulting in lost infor-
mation when a sentiment classifier uses them.

4.1 Training Data for Twitter Specific BWEs
As comparable non-twitter data we use OpenSub-
titles (Lison and Tiedemann, 2016) which contains
49.2M English and Spanish subtitle sentences re-
spectively (Subtitle). The reason behind choos-
ing Subtitles is that although it is out-of-domain it
contains slang words similar to tweets thus serving
as a strong baseline in our setup. We experiment
with two monolingual twitter data sets:

(i) 22M tweets: Downloaded2 English (17.2M)
and Spanish (4.8M) tweets using the public

1https://github.com/dav/word2vec
2We downloaded for a month starting on 2016-10-15.
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Twitter Streaming API3 with language filters
en and es

(ii) a BACKGROUND corpus of 296K English
and 150K Spanish (non-annotated) tweets re-
leased with the test data of the RepLab task
(Amigó et al., 2013) described below

All twitter data was tokenized using Bird et al.
(2009) and lowercased. User names, URLs, num-
bers, emoticons and punctuation were removed.

As lexicon for the mapping, we use the BNC
word frequency list (Kilgarriff, 1997), a list of
6,318 frequent English lemmas and their Span-
ish translations, obtained from Google Translate.
Note that we do not need a domain-specific lexi-
con in order to get good quality adapted BWEs.

4.2 Training Data for Sentiment Classifiers
For sentiment classification, we use data from the
RepLab 2013 shared task (Amigó et al., 2013).
The data is annotated with positive, neutral and
negative labels and contains English and Spanish
tweets. We used the official English training set
(26.6K tweets) and the Spanish test set (14.9K)
in the resource-poor setup. We only use the 7.2K
Spanish labeled training data for comparison rea-
sons in §6.2, which we will discuss later.

The shared task was on target-level sentiment
analysis, i.e., given a pair (document, target en-
tity), the gold annotation is based on whether the
sentiment expressed by the document is about the
target. For example: I cried on the back seat of
my BMW! where BMW is the target would be neg-
ative in the sentence-level scenario. However, it
is neutral in the target-level case because the neg-
ative sentiment is not related to BMW. The rea-
son for using this dataset is that it contains com-
parable English and Spanish tweets annotated for
sentiment. There are other twitter datasets for En-
glish (Nakov et al., 2016) and Spanish (Garcıa-
Cumbreras et al., 2016), but they were down-
loaded at different times and were annotated using
different annotation methodologies, thus impeding
a clean and consistent evaluation.

4.3 Sentiment Systems
For evaluating our adapted BWEs on the RepLab
dataset we used a target-aware sentiment classi-
fier introduced by Zhang et al. (2016). The net-
work first embeds input words using pre-trained

3dev.twitter.com/streaming/overview

BWEs and feeds them to a bi-directional gated
neural network. Pooling is applied on the hidden
representations of the left and right context of the
target mention respectively. Finally, gated neurons
are used to model the interaction between the tar-
get mention and its surrounding context. During
training we hold our pre-trained BWEs fixed and
keep the default parameters of the model.

We also implement Kim (2014)’s CNN-non-
static system, which does not use the target in-
formation in a given document (target-ignorant).
The network first embeds input words using pre-
trained BWEs and feeds them to a convolutional
layer with multiple window sizes. Max pooling
is applied on top of convolution followed by a
fully connected network with one hidden layer.
We used this system as well because it performed
comparably to the target-aware system. The rea-
son for this is that only 1% of the used data con-
tains more than one target and out of these rare
cases only 14% have differing sentiment labels in
the same sentence, which are the difficult cases of
target-level sentiment analysis. We used the de-
fault parameters as described in (Kim, 2014) with
the exception of using 1000 feature maps and 30
epochs, based on our initial experiments. Word
embeddings are fixed during the training just as
for the target-aware classifier.

4.4 Results

As we previously explained we evaluate our adap-
tation method on the task of target-level senti-
ment classification using both target-aware and
target-ignorant classifiers. For all experiments,
our two baselines are off-the-shelf classifiers us-
ing non-adapted BWEs, i.e., BWEs trained only
using Subtitles. Our goal is to show that our BWE
adaptation method can improve the performance
of such classifiers. We train our adapted BWEs
on the concatenation of Subtitle and 22M tweets
or BACKGROUND respectively. In addition, we
also report results with BWEs trained only on
tweets.

To train the sentiment classifiers we use the En-
glish Replab training set and we evaluate on the
Spanish test set. To show the performance that
can be reached in a monolingual setup, we report
results obtained by using annotated Spanish sen-
timent data instead of English (oracle). We train
two oracle sentiment classifiers using (i) MWEs
trained on only the Spanish part of Subtitle and (ii)
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Baseline 55.14% 59.05%
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e BACKGROUND 56.79% 58.50%
22M tweets 59.44% 61.14%

Subtitle+BACKGROUND 58.64% 59.34%
Subtitle+22M tweets 60.99% 61.06%

Table 1: Accuracy of the BWE adaptation ap-
proach on the target-level sentiment classification
task. The oracle systems used Spanish sentiment
training data instead of English.

BWEs trained on Subtitle using posthoc mapping.
The difference between the two is that the em-
beddings of (ii) are enriched with English words
which can be beneficial for the classification of
Spanish tweets because they often contain a few
English words.

We do not compare with word embedding adap-
tation methods relying on specialized resources.
The point of our work is to study task-independent
methods and to the best of our knowledge ours is
the first such attempt. Similarly, we do not com-
pare against machine translation based sentiment
classifiers (e.g., (Zhou et al., 2016)) because for
their adaptation in-domain parallel data would be
needed.

Table 1 gives results for both classifiers. It
shows that the adaptation of Subtitle based BWEs
with data from Twitter (22M tweets and BACK-
GROUND) clearly outperforms the Baseline in
all cases. The target-aware system performed
poorly with the baseline BWEs and could bene-
fit significantly from the adaptation approach. The
target-ignorant performed better with the baseline
BWEs but could also benefit from the adaptation.
Comparing results with the Twitter-dataset-only
based BWEs, the 22M tweets performed better
even though the BACKGROUND dataset is from
the same topic as the RepLab train and test sets.
Our conjecture is that the latter is too small to cre-
ate good BWEs. In combination with Subtitles,
22M tweets also yields better results than when
combined with BACKGROUND. Although the
best accuracy was reached using the 22M tweets-
only based BWEs, it is only slightly better then
the adapted Subtitles+22M tweets based BWEs.
In §6 we show that both the semantic knowledge
from Subtitles and the domain-specific informa-
tion from tweets are needed to further improve re-
sults.

Comparing the two classifiers we can say that
they performed similarly in terms of their best re-
sults. On the other hand, the target-ignorant sys-
tem had better results on average. This might
seem surprising at first because the system does
not use the target as information. But considering
the characteristics of RepLab, i.e., that the number
of tweets that contains multiple targets is negligi-
ble, using the target offers no real advantage.

Although we did not focus on the impact of
the seed lexicon size, we ran post-hoc mapping
with different sizes during our preliminary experi-
ments. With 1,000 and 100 word pairs in the lex-
icon the target-ignorant system suffered 0.5% and
4.0% drop in average of our setups respectively.

To summarize the result: using adapted BWEs
for the Twitter CLSC task improves the perfor-
mance of off-the-shelf classifiers.

5 Medical Bilingual Lexicon Induction

Another interesting downstream task for BWEs is
bilingual lexicon induction. Given a list of words
in a source language, the goal of BLI is to mine
translations for each word in a chosen target lan-
guage. The medical bilingual lexicon induction
task proposed in (Heyman et al., 2017) aims to
mine medical words using BWEs trained on a very
small amount of English and Dutch monolingual
medical data. Due to the lack of resources in this
domain, good quality BWEs are hard to build us-
ing in-domain data only. We show that by enrich-
ing BWEs with general domain knowledge (in the
form of general domain monolingual corpora) bet-
ter results can be achieved on this medical domain
task.

5.1 Experimental Setup

We evaluate our improved BWEs on the dataset
provided by Heyman et al. (2017). The mono-
lingual medical data consists of English and
Dutch medical articles from Wikipedia. The En-
glish (resp. Dutch) articles contain 52,336 (resp.
21,374) sentences. A total of 7,368 manually an-
notated word translation pairs occurring in the En-
glish (source) and Dutch (target) monolingual cor-
pora are provided as gold data. This set is split
64%/16%/20% into trn/dev/test. 20% of the En-
glish words have multiple translations. Given an
English word, the task is to find the correct Dutch
translation.

As monolingual general-domain data we use
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cosine similarity classifier
F1 (top) F1 (all) F1 (top) F1 (all)

Baseline 13.43 9.84 37.73 36.61
Baseline BNC lexicon - - 20.73 21.78

Adapted medical lexicon 14.18 14.15 40.71 38.09
Adapted BNC lexicon 16.29 16.71 22.10 21.50

Table 2: We report F1 results for medical BLI with the cosine similarity and the classifier based sys-
tems. We present baseline and our proposed domain adaptation method using both general and medical
lexicons.

the English and Dutch data from Europarl (v7)
(Koehn, 2005), a corpus of 2 million sentence
pairs. Although Europarl is a parallel corpus, we
use it in a monolingual way and shuffle each side
of the corpus before training. By using massive
cheap data we create high-quality MWEs in each
language which are still domain-specific (due to
inclusion of medical data). To obtain an out-of-
domain seed lexicon, we translated the English
words in BNC to Dutch using Google Translate
(just as we did before for the Twitter CLSC task).
We then use the out-of-domain BNC and the in-
domain medical seed lexicons in separate exper-
iments to create BWEs with post-hoc mapping.
Note, we did not concatenate the two lexicons
because (i) they have a small common subset of
source words which have different target words,
thus having a negative effect on the mapping and
(ii) we did not want to modify the medical seed
lexicon because it was taken from previous work.

5.2 BLI Systems

To perform BLI we use two methods. Because
BWEs represent words from different languages
in a shared space, BLI can be performed via co-
sine similarity in this space. In other words, given
a BWE representing two languages Vs and Vt, the
translation of each word s ∈ Vs can be induced by
taking the word t ∈ Vt whose representation ~xt in
the BWE is closest to the representation ~xs.

As the second approach we use a classifier
based system proposed by Heyman et al. (2017).
This neural network based system is comprised of
two main modules. The first is a character-level
LSTM which aims to learn orthographic similar-
ity of word pairs. The other is the concatenation
of the embeddings of the two words using embed-
ding layers with the aim of learning the similar-
ity among semantic representations of the words.
Dense layers are applied on top of the two mod-
ules before the output soft-max layer. The clas-
sifier is trained using positive and negative word

pair examples and a pre-trained word embedding
model. Negative examples are randomly gener-
ated for each positive one in the training lexi-
con. We used default parameters as reported by
Heyman et al. (2017) except for the t classifica-
tion thresholds (used at prediction time). We fine-
tuned these on dev. We note that the system works
with pre-trained MWEs as well (and report these
as official baseline results) but it requires BWEs
for candidate generation at prediction time, thus
we use BWEs for the system’s input for all exper-
iments. In preliminary work, we had found that
MWE and BWE results are similar.

5.3 Results

Heyman et al. (2017)’s results are our base-
line. Table 2 compares its performance with our
adapted BWEs, with both cosine similarity and
classification based systems. “top” F1 scores are
based on the most probable word as prediction
only; “all” F1 scores use all words as prediction
whose probability is above the threshold. It can
be seen that the cosine similarity based system us-
ing adapted BWEs clearly outperforms the non-
adapted BWEs which were trained in a resource
poor setup.4 Moreover, the best performance was
reached using the general seed lexicon for the
mapping which is due to the fact that general do-
main words have better quality embeddings in the
MWE models, which in turn gives a better quality
mapping.

The classification based system performs sig-
nificantly better comparing to cosine similarity by
exploiting the seed lexicon better. Using adapted
BWEs as input word embeddings for the system
further improvements were achieved which shows
the better quality of our BWEs. Simulating an
even poorer setup by using a general lexicon, the

4The results for cosine similarity in (Heyman et al., 2017)
are based on BWESG-based BWEs (Vulić and Moens, 2016)
trained on a small document aligned parallel corpus without
using a seed lexicon.
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performance gain of the classifier is lower. This
shows the significance of the medical seed lexicon
for this system. On the other hand, adapted BWEs
have better performance compared to non-adapted
ones using the best translation while they have just
slightly lower F1 using multiple translations. This
result shows that while with adapted BWEs the
system predicts better “top” translations, it has a
harder time when predicting “all” due to the in-
creased vocabulary size.

To summarize: we have shown that adapted
BWEs increase performance for this task and do-
main; and they do so independently of the task-
specific system that is used.

6 Semi-Supervised Learning

In addition to the experiments that show our BWE-
adaptation method’s task and language indepen-
dence, we investigate ways to further incorporate
unlabeled data to overcome data sparsity.

Häusser et al. (2017) introduce a semi-
supervised method for neural networks that makes
associations from the vector representation of la-
beled samples to those of unlabeled ones and back.
This lets the learning exploit unlabeled samples as
well. While Häusser et al. (2017) use their model
for image classification, we adapt it to CLSC of
tweets and medical BLI. We show that our semi-
supervised model requires adapted BWEs to be ef-
fective and yields significant improvements. This
innovative method is general and can be applied to
any classification when unlabeled text is available.

6.1 Model

Häusser et al. (2017)’s basic assumption is that the
embeddings of labeled and unlabeled samples –
i.e., the representations in the neural network on
which the classification layer is applied – are sim-
ilar within the same class. To achieve this, walking
cycles are introduced: a cycle starts from a labeled
sample, goes to an unlabeled one and ends at a la-
beled one. A cycle is correct if the start and end
samples are in the same class. The probability of
going from sample A to B is proportional to the
cosine similarity of their embeddings. To maxi-
mize the number of correct cycles, two loss func-
tions are employed: Walker loss and Visit loss.

Walker loss penalizes incorrect walks and en-
courages a uniform probability distribution of

walks to the correct class. It is defined as:

Lwalker := H(T, P aba) (2)

where H is the cross-entropy function, P abaij is
the probability that a cycle starts from sample i
and ends at j and T is the uniform target distribu-
tion:

Tij :=

{
1/(#c(i)) if c(i) = c(j)

0 otherwise
(3)

where c(i) is the class of sample i and #c(i) is
the number of occurrences of c(i) in the labeled
set.

Visit loss encourages cycles to visit all unla-
beled samples, rather than just those which are the
most similar to labeled samples. It is defined as:

Lvisit := H(V, P visit)

P visitj := 〈P abij 〉i (4)

Vj :=
1

U

whereH is cross-entropy, P abij is the probability
that a cycle starts from sample i and goes to j and
U is the number of unlabeled samples.

The total loss during training is the sum of the
walker, visit and classification (cross-entropy be-
tween predicted and gold labels) losses which is
minimized using Adam (Kingma and Ba, 2015).

We adapt this model (including the two losses)
to sentiment classification, focusing on the target-
ignorant classifier, and the classifier based ap-
proach for BLI. We will call these systems
semisup5. Due to the fact that we initialize the
embedding layers for both classifiers with BWEs
the models are able to make some correct cycles
at the beginning of the training and improve them
later on. We will describe the labeled and unla-
beled datasets used in the subsequent sections be-
low.

We use Häusser et al. (2017)’s implementation
of the losses, with 1.0, 0.5 and 1.0 weights for the
walker, visit and classification losses, respectively,
for CLSC based on preliminary experiments. We
fine-tuned the weights for BLI on dev for each ex-
periment.

5We publicly release our implementation: https://
github.com/hangyav/biadapt
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BACKGROUND 57.41% (-1.09%)

22M tweets 60.19% (-0.95%)
Subtitle+BACKGROUND 60.31% (0.97%)

Subtitle+22M tweets 63.23% (2.17%)

Table 3: Accuracy on CLSC of the adapted BWE
approach with the semisup (target-ignorant with
additional loss functions) system comparing to the
target-ignorant in brackets.

6.2 Semi-Supervised CLSC

As in §4.4, we use pre-trained BWEs to initialize
the classifier and use English sentiment training
data as the labeled set. Furthermore, we use the
Spanish sentiment training data as the unlabeled
set, ignoring its annotation. This setup is very
similar to real-word low-resource scenarios: unla-
beled target-language tweets are easy to download
while labeled English ones are available.

Table 3 gives results for adapted BWEs and
shows that semisup helps only when word embed-
dings are adapted to the Twitter domain. As men-
tioned earlier, semisup compares labeled and un-
labeled samples based on their vector representa-
tions. By using BWEs based on only Subtitles, we
lose too many embeddings of similar English and
Spanish tweets. On the other hand, if we use only
tweet-based BWEs we lose good quality seman-
tic knowledge which can be learned from more
standard text domains. By combining the two do-
mains we were able to capture both sides. For Sub-
title+22M tweets, we even get very close to the
best oracle (BWE Subtitle) in Table 1 getting only
0.27% less accuracy – an impressive result keep-
ing in mind that we did not use labeled Spanish
data.

The RepLab dataset contains tweets from 4 top-
ics: automotive, banking, university, music. We
manually analyzed similar tweets from the labeled
and unlabeled sets. We found that when using
semisup, English and Spanish tweets from the
same topics are more similar in the embedding
space than occurs without the additional losses.
Topics differ in how they express sentiment – this
may explain why semisup increases performance
for RepLab.

Adding supervision. To show how well
semisup can exploit the unlabeled data we used
both English and Spanish sentiment training
data together to train the sentiment classifiers.

Table 4 shows that by using annotated data in
both languages we get clearly better results
than when using only one language. Tables
3 and 4 show that for Subtitle+22M tweets
based BWEs, the semisup approach achieved
high improvement (2.17%) comparing to target-
ignorant with English training data only, while
it achieved lower improvement (0.97%) with the
Subtitle+BACKGROUND based BWEs. On the
other hand, adding labeled Spanish data caused
just a slight increase comparing to semisup with
Subtitle+22M tweets based BWEs (0.59%), while
in case of Subtitle+BACKGROUND we got
significant additional improvement (2.61%). This
means that with higher quality BWEs, unlabeled
target-language data can be exploited better.

It can also be seen that the target-aware system
outperformed the target-ignorant system using ad-
ditional labeled target-language data. The reason
could be that it is a more complex network and
therefore needs more data to reach high perfor-
mance.

The results in table 4 are impressive: our target-
level system is strongly competitive with the of-
ficial shared task results. We achieved high ac-
curacy on the Spanish test set by using only En-
glish training data. Comparing our best system
which used all training data to the official results
(Amigó et al., 2013) we would rank 2nd even
though our system is not fine-tuned for the Re-
pLab dataset. Furthermore, we also outperformed
the oracles when using annotated data from both
languages which shows the additional advantage
of using BWEs.

6.3 Semi-Supervised BLI

For BLI experiments with semisup we used word
pairs from the medical seed lexicon as the la-
beled set (with negative word pairs generated as
described in §5.2). As opposed to CLSC and the
work of (Häusser et al., 2017), for this task we do
not have an unlabeled set, and therefore we need to
generate it. We developed two scenarios. For the
first, BNC, we generate a general unlabeled set us-
ing English words from the BNC lexicon and gen-
erate 10 pairs out of each word by using the 5 most
similar Dutch words based on the corresponding
BWEs and 5 random Dutch words. For the sec-
ond scenario, medical, we generate an in-domain
unlabeled set by generating for each English word
in the medical lexicon the 3 most similar Dutch
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lang target-aware target-ignorant

or
ac

le MWE Subtitle Es 62.17% 63.27%
BWE Subtitle Es 62.46% 63.50%

do
m

ai
n

ad
ap

ta
tio

n Subtitle+BACKGROUND En 58.64% 59.34%
Subtitle+BACKGROUND En+Es 64.01% 62.92% (2.61%)

Subtitle+22M tweets En 60.99% 61.06%
Subtitle+22M tweets En+Es 64.24% 63.82% (0.59%)

Table 4: Accuracy on CLSC of both target-aware and target-ignorant systems using English or/and
Spanish sentiment training data. Column lang shows the language of the used training data. Differences
comparing to semisup are indicated in brackets.

F1 (top) F1 (all)
Baseline+BNC 35.04 (-0.66) 34.98 (-1.40)

Baseline+medical 36.20 (0.50) 36.55 (0.16)
Adapted+BNC 41.01 (0.30) 39.04 (0.95)

Adapted+medical 41.44 (0.73) 37.51 (-0.57)

Table 5: Results with the semi-supervised system
for BLI. Differences comparing to previous re-
sults are indicated in brackets. Baseline results are
compared to rerun experiments of Heyman et al.
(2017) using BWEs instead of MWEs.

words based on BWEs and for each of these we
use the 5 most similar English words (ignoring the
words which are in the original medical lexicon)
and 5 negative words. The idea behind these meth-
ods is to automatically generate an unlabeled set
that hopefully has a similar positive and negative
word pair distribution to the distribution in the la-
beled set.

Results in Table 5 show that adding semisup
to the classifier further increases performance for
BLI as well. For the baseline system, when using
only in-domain text for creating BWEs, only the
medical unlabeled set was effective, general do-
main word pairs could not be exploited due to the
lack of general semantic knowledge in the BWE
model. On the other hand, by using our domain
adapted BWEs, which contain both general do-
main and in-domain semantical knowledge, we
can exploit word pairs from both domains. Results
for adapted BWEs increased in 3 out of 4 cases,
where the only exception is when using multiple
translations for a given source word (which may
have been caused by the bigger vocabulary size).

These results show that adapted BWEs are
needed to exploit unlabeled data well which leads
to an impressive overall 3.71 increase compared
with the best result in previous work (Heyman
et al., 2017), by using only unlabeled data.

7 Conclusion

Bilingual word embeddings trained on general
domain data yield poor results in out-of-domain
tasks. We presented experiments on two different
low-resource task/domain combinations. Our de-
lightfully simple task independent method to adapt
BWEs to a specific domain uses unlabeled mono-
lingual data only. We showed that with the sup-
port of adapted BWEs the performance of off-
the-shelf methods can be increased for both cross-
lingual Twitter sentiment classification and medi-
cal bilingual lexicon induction. Furthermore, by
adapting the broadly applicable semi-supervised
approach of Häusser et al. (2017) (which until now
has only been applied in computer vision) we were
able to effectively exploit unlabeled data to fur-
ther improve performance. We showed that, when
also using high-quality adapted BWEs, the per-
formance of the semi-supervised systems can be
significantly increased by using unlabeled data at
classifier training time. In addition, CLSC results
are competitive with a system that uses target-
language labeled data, even when we use no such
target-language labeled data.
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Abstract

We introduce a neural reading comprehen-
sion model that integrates external com-
monsense knowledge, encoded as a key-
value memory, in a cloze-style setting.
Instead of relying only on document-to-
question interaction or discrete features as
in prior work, our model attends to rel-
evant external knowledge and combines
this knowledge with the context represen-
tation before inferring the answer. This al-
lows the model to attract and imply knowl-
edge from an external knowledge source
that is not explicitly stated in the text,
but that is relevant for inferring the an-
swer. Our model improves results over a
very strong baseline on a hard Common
Nouns dataset, making it a strong competi-
tor of much more complex models. By
including knowledge explicitly, our model
can also provide evidence about the back-
ground knowledge used in the RC process.

1 Introduction

Reading comprehension (RC) is a language under-
standing task similar to question answering, where
a system is expected to read a given passage of text
and answer questions about it. Cloze-style reading
comprehension is a task setting where the question
is formed by replacing a token in a sentence of the
story with a placeholder (left part of Figure 1).

In contrast to many previous complex models
(Weston et al., 2015; Dhingra et al., 2017; Cui
et al., 2017; Munkhdalai and Yu, 2016; Sordoni
et al., 2016) that perform multi-turn reading of a
story and a question before inferring the correct
answer, we aim to tackle the cloze-style RC task in
a way that resembles how humans solve it: using,
in addition, background knowledge. We develop
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Figure 1: Cloze-style reading comprehension with
external commonsense knowledge.

a neural model for RC that can successfully deal
with tasks where most of the information to infer
answers from is given in the document (story), but
where additional information is needed to predict
the answer, which can be retrieved from a knowl-
edge base and added to the context representations
explicitly.1 An illustration is given in Figure 1.

Such knowledge may be commonsense knowl-
edge or factual background knowledge about enti-
ties and events that is not explicitly expressed but
can be found in a knowledge base such as Con-
ceptNet (Speer et al., 2017), BabelNet (Navigli
and Ponzetto, 2012), Freebase (Tanon et al., 2016)
or domain-specific KBs collected with Informa-
tion Extraction approaches (Fader et al., 2011;
Mausam et al., 2012; Bhutani et al., 2016). Thus,
we aim to define a neural model that encodes pre-
selected knowledge in a memory, and that learns to
include the available knowledge as an enrichment
to the context representation.

The main difference of our model to prior
state-of-the-art is that instead of relying only on
document-to-question interaction or discrete fea-
tures while performing multiple hops over the doc-
ument, our model (i) attends to relevant selected

1‘Context representation’ refers to a vector representa-
tion computed from textual information only (i.e., document
(story) or question).
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external knowledge and (ii) combines this knowl-
edge with the context representation before infer-
ring the answer, in a single hop. This allows
the model to explicitly imply knowledge that is
not stated in the text, but is relevant for inferring
the answer, and that can be found in an external
knowledge source. Moreover, by including knowl-
edge explicitly, our model provides evidence and
insight about the used knowledge in the RC.

Our main contributions are: (i) We develop
a method for integrating knowledge in a simple
but effective reading comprehension model (AS
Reader, Kadlec et al. (2016)) and improve its re-
sults significantly whereas other models employ
features or multiple hops. (ii) We examine two
sources of common knowledge: WordNet (Miller
et al., 1990) and ConceptNet (Speer et al., 2017)
and show that this type of knowledge is important
for answering common nouns questions and also
improves slightly the performance for named enti-
ties.

(iii) We show that knowledge facts can be added
directly to the text-only representation, enrich-
ing the neural context encoding. (iv) We demon-
strate the effectiveness of the injected knowledge
by case studies and data statistics in a qualitative
evaluation study.

2 Reading Comprehension with
Background Knowledge Sources

In this work, we examine the impact of using ex-
ternal knowledge as supporting information for the
task of cloze style reading comprehension.

We build a system with two modules. The first,
Knowledge Retrieval, performs fact retrieval and
selects a number of facts f1, ..., fp that might be
relevant for connecting story, question and can-
didate answers. The second, main module, the
Knowledgeable Reader, is a knowledge-enhanced
neural module. It uses the input of the story con-
text tokens d1..m, the question tokens q1..n, the set
of answer candidates a1..k and a set of ‘relevant’
background knowledge facts f1..p in order to se-
lect the right answer. To include external knowl-
edge for the RC task, we encode each fact f1..p
and use attention to select the most relevant among
them for each token in the story and question.
We expect that enriching the text with additional
knowledge about the mentioned concepts will im-
prove the prediction of correct answers in a strong
single-pass system. See Figure 1 for illustration.

2.1 Knowledge Retrieval

In our experiments we use knowledge from the
Open Mind Common Sense (OMCS, Singh et al.
(2002)) part of ConceptNet, a crowd-sourced re-
source of commonsense knowledge with a total of
∼630k facts. Each fact fi is represented as a triple
fi=(subject, relation, object), where subject and
object can be multi-word expressions and relation
is a relation type. An example is: ([bow]subj ,
[IsUsedFor]rel, [hunt, animals]obj)

We experiment with three set-ups: using (i)
all facts from OMCS that pertain to Concept-
Net, referred to as CN5All, (ii) using all facts
from CN5All excluding some WordNet relations
referred to as CN5Sel(ected) (see Section 3), and
using (iii) facts from OMCS that have source set
to WordNet (CN5WN3).

Retrieving relevant knowledge. For each in-
stance (D, Q, A1..10) we retrieve relevant com-
monsense background facts. We first retrieve facts
that contain lemmas that can be looked up via to-
kens contained in any D(ocument), Q(uestion) or
A(nswer candidates). We add a weight value for
each node: 4, if it contains a lemma of a candi-
date token from A; 3, if it contains a lemma from
the tokens of Q; and 2 if it contains a lemma from
the tokens of D. The selected weights are chosen
heuristically such that they model relative fact im-
portance in different interactions as A+A > A+Q
> A+D>D+Q>D+D. We weight the fact triples
that contain these lemmas as nodes, by summing
the weights of the subject and object arguments.
Next, we sort the knowledge triples by this overall
weight value. To limit the memory of our model,
we run experiments with different sizes of the top
number of facts (P ) selected from all instance fact
candidates, P ∈ {50, 100, 200}. As additional re-
trieval limitation, we force the number of facts per
answer candidate to be the same, in order to avoid
a frequency bias for an answer candidate that ap-
pears more often in the knowledge source. Thus, if
we select the maximum 100 facts for each task in-
stance and we have 10 answer candidates ai=1..10,
we retrieve the top 10 facts for each candidate ai
that has either a subject or an object lemma for a
token in ai. If the same fact contains lemmas of
two candidates ai and aj (j > i), we add the fact
once for ai and do not add the same fact again for
aj . If several facts have the same weight, we take
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Figure 2: The Knowledgeable Reader combines
plain context & enhanced (context + knowledge)
repres. of D and Q and retrieved knowledge from
the explicit memory with the Key-Value approach.

the first in the order of the list2, i.e., the order of
retrieval from the database. If one candidate has
less than 10 facts, the overall fact candidates for
the sample will be less than the maximum (100).

2.2 Neural Model: Extending the Attention
Sum Reader with a Knowledge Memory

We implement our Knowledgeable Reader (Kn-
Reader) using as a basis the Attention Sum Reader
as one of the strongest core models for single-hop
RC. We extend it with a knowledge fact memory
that is filled with pre-selected facts. Our aim is to
examine how adding commonsense knowledge to
a simple yet effective model can improve the RC
process and to show some evidence of that by at-
tending on the incorporated knowledge facts. The
model architecture is shown in Figure 2.

Base Attention Model. The Attention-Sum
Reader (Kadlec et al., 2016), our base model for
RC reads the input of story tokens d1..n, the ques-
tion tokens q1..m, and the set of candidates a1..10
that occur in the story text. The model calcu-
lates the attention between the question represen-
tation rq and the story token context encodings
of the candidate tokens a1..10 and sums the atten-
tion scores for the candidates that appear multiple
times in the story. The model selects as answer the
candidate that has the highest attention score.

Word Embeddings Layer. We represent input
document and question tokens w by looking up
their embedding representations ei = Emb(wi),
where Emb is an embedding lookup function. We
apply dropout (Srivastava et al., 2014) with keep

2We also experimented with re-ranking the facts with the
same weight sums using tf-idf but we did not notice a differ-
ence in performance.

probability p = 0.8 to the output of the embed-
dings lookup layer.

Context Representations. To represent the
document and question contexts, we first encode
the tokens with a Bi-directional GRU (Gated Re-
current Unit) (Chung et al., 2014) to obtain con-
text-encoded representations for document (cctxd1..n)
and question (cctxq1..m) encoding:

cctxd1..n = BiGRU ctx(ed1..n) ∈ Rn×2h (1)

cctxq1..m = BiGRU ctx(eq1..m) ∈ Rm×2h (2)

, where di and qi denote the ith token of a text
sequence d (document) and q (question), respec-
tively, n and m is the size of d and q and h the
output hidden size (256) of a single GRU unit.
BiGRU is defined in (3), with ei a word embed-
ding vector

BiGRU ctx(ei, hiprev) =
[
−−−→
GRU(ei,

−−−→
hiprev),

←−−−
GRU(ei,

←−−−
hiprev)]

(3)

, where hiprev = [
−−−→
hiprev ,

←−−−
hiprev ], and

−−−→
hiprev

and
←−−−
hiprev are the previous hidden states of the

forward and backward layers. Below we use
BiGRU ctx(ei) without the hidden state, for short.

Question Query Representation. For the
question we construct a single vector representa-
tion rctxq by retrieving the token representation at
the placeholder (XXXX) index pl (cf. Figure 2):

rctxq = cctxqi..m [pl] ∈ R2h (4)

where [pl] is an element pickup operation.
Our question vector representation is different

from the original AS Reader that builds the ques-
tion by concatenating the last states of a for-
ward and backward layer [

−−−→
GRU(em),

←−−−
GRU(e1)].

We changed the original representation as we ob-
served some very long questions and in this way
aim to prevent the context encoder from ’forget-
ting’ where the placeholder is.

Answer Prediction: Qctx to Dctx Attention.
In order to predict the correct answer to the given
question, we rank the given answer candidates
a1..aL according to the normalized attention sum
score between the context (ctx) representation of
the question placeholder rctxq and the representa-
tion of the candidate tokens in the document:

P (ai|q, d) = softmax(
∑

αij ) (5)

αij = Att(rctxq , cctxdj ), i ∈ [1..L] (6)
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, where j is an index pointer from the list of in-
dices that point to the candidate ai token occur-
rences in the document context representation cd.
Att is a dot product.

Enriching Context Representations with
Knowledge (Context+Knowledge). To en-
hance the representation of the context, we add
knowledge, retrieved as a set of knowledge facts.

Knowledge Encoding. For each instance in
the dataset, we retrieve a number of relevant facts
(cf. Section 2.1). Each retrieved fact is represented
as a triple f = (wsubj1..Lsubj

, wrel0 , wobj1..Lobj
), where

wsubj1..Lsubj
and wobj1..Lobj

are a multi-word expres-
sions representing the subject and object with se-
quence lengths Lsubj and Lobj , and wrel0 is a word
token corresponding to a relation.3 As a result
of fact encoding, we obtain a separate knowledge
memory for each instance in the data.

To encode the knowledge we use a BiGRU to
encode the triple argument tokens into the follow-
ing context-encoded representations:

fsubjlast = BiGRU(Emb(wsubj1..Lsubj
), 0) (7)

f rellast = BiGRU(Emb(wrel0 ), fsubjlast ) (8)

fobjlast = BiGRU(Emb(wobj1..Lsubj
), f rellast) (9)

, where fsubjlast , f rellast, f
obj
last are the final hidden

states of the context encoder BiGRU , that are
also used as initial representations for the encod-
ing of the next triple attribute in left-to-right order.
See Supplement for comprehensive visualizations.
The motivation behind this encoding is: (i) We
encode the knowledge fact attributes in the same
vector space as the plain tokens; (ii) we preserve
the triple directionality; (iii) we use the relation
type as a way of filtering the subject information
to initialize the object.

Querying the Knowledge Memory. To en-
rich the context representation of the document
and question tokens with the facts collected in
the knowledge memory, we select a single sum of
weighted fact representations for each token using
Key-Value retrieval (Miller et al., 2016). In our
model the key Mk(ey)

i can be either fsubjlast or fobjlast

and the value Mv(alue)
i is fobjlast.

For each context-encoded token cctxsi (s = d, q;
i the token index) we attend over all knowledge

3The 0 in wrel
0 indicates that we encode the relation as a

single relation type word. Ex. /r/IsUsedFor.

memory keys Mk
i in the retrieved P knowledge

facts. We use an attention function Att, scale the
scalar attention value using softmax, multiply it
with the value representation Mv

i and sum the re-
sult into a single vector value representation cknsi :

cknsi =
∑

softmax(Att(cctx,Mk
1..P ))

TMv
1..P

(10)
Att is a dot product, but it can be replaced with

another attention function. As a result of this op-
eration, the context token representation cctxsi and
the corresponding retrieved knowledge cknsi are in
the same vector space ∈ R2h.

Combine Context and Knowledge (ctx+kn).
We combine the original context token representa-
tion cctxsi , with the acquired knowledge representa-
tion cknsi to obtain cctx+knsi :

cctx+knsi = γcctxsi + (1− γ)cknsi (11)

, where γ = 0.5. We keep γ static but it can be
replaced with a gating function.

Answer Prediction: Qctx(+kn) to Dctx(+kn).
To rank answer candidates a1..aL we use attention
sum similar to Eq.5 over an attention αensembleij
that combines attentions between context (ctx)
and context+knowledge (ctx+kn) representations
of the question (rctx(+kn)q ) and candidate token oc-
currences aij in the document cctx(+kn)dj

:

P (ai|q, d) = softmax(
∑

αensembleij ) (12)

αensembleij =

W1Att(r
ctx
q , cctxdj )

+W2Att(r
ctx
q , cctx+kndj

)

+W3Att(r
ctx+kn
q , cctxdj )

+W4Att(r
ctx+kn
q , cctx+kndj

)

(13)

, where j is an index pointer from the list of
indices that point to the candidate ai token oc-
currences in the document context representation
c
ctx(+kn)
d . W1..4 are scalar weights initialized with
1.0 and optimized during training.4 We pro-
pose the combination of ctx and ctx + kn atten-
tions because our task does not provide supervi-
sion whether the knowledge is needed or not.

4An example for learned W1..4 is (2.13, 1.41, 1.49, 1.84)
in setting (CBT CN, CN5Sel, Subj-Obj as k-v, 50 facts).
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CN NE
Train 120,769 / 470 108,719 / 433

Dev 2,000 / 448 2,000 / 412
Test 2,500 / 461 2,500 / 424

Vocab 53,185 53,063

Table 1: Characteristics of Children Book Test
datasets. CN: Common Nouns, NE: Named En-
tities. Cells for Train, Dev, Test show overall num-
bers of examples and average story size in tokens.

3 Data and Task Description

We experiment with knowledge-enhanced cloze-
style reading comprehension using the Common
Nouns and Named Entities partitions of the Chil-
dren’s Book Test (CBT) dataset (Hill et al., 2015).

In the CBT cloze-style task a system is asked to
read a children story context of 20 sentences. The
following 21st sentence involves a placeholder to-
ken that the system needs to predict, by choosing
from a given set of 10 candidate words from the
document. An example with suggested external
knowledge facts is given in Figure 1. While in
its Common Nouns setup, the task can be consid-
ered as a language modeling task, Hill et al. (2015)
show that humans can answer the questions with-
out the full context with an accuracy of only 64.4%
and a language model alone with 57.7%. By con-
trast, the human performance when given the full
context is at 81.6%. Since the best neural model
(Munkhdalai and Yu, 2016) achieves only 72.0%
on the task, we hypothesize that the task itself can
benefit from external knowledge. The characteris-
tics of the data are shown in Table 1.

Other popular cloze-style datasets such as
CNN/Daily Mail (Hermann et al., 2015) or Who-
DidWhat (Onishi et al., 2016) are mainly focu-
sed on finding Named Entities where the benefit
of adding commonsense knowledge (as we show
for the NE part of CBT) would be more limited.

Knowledge Source. As a source of common-
sense knowledge we use the Open Mind Com-
mon Sense part of ConceptNet 5.0 that contains
630k fact triples. We refer to this entire source as
CN5All. We conduct experiments with subparts of
this data: CN5WN3 which is the WordNet 3 part of
CN5All (213k triples) and CN5Sel, which excludes
the following WordNet relations: RelatedTo, IsA,
Synonym, SimilarTo, HasContext.

4 Related Work

Cloze-Style Reading Comprehension. Follow-
ing the original MCTest (Richardson et al., 2013)
dataset multiple-choice version of cloze-style RC)
recently several large-scale, automatically gener-
ated datasets for cloze-style reading comprehen-
sion gained a lot of attention, among others the
‘CNN/Daily Mail’ (Hermann et al., 2015; On-
ishi et al., 2016) and the Children’s Book Test
(CBTest) data set (Hill et al., 2015). Early work in-
troduced simple but good single turn models (Her-
mann et al., 2015; Kadlec et al., 2016; Chen et al.,
2016), that read the document once with the ques-
tion representation ‘in mind’ and select an answer
from a given set of candidates. More complex
models (Weston et al., 2015; Dhingra et al., 2017;
Cui et al., 2017; Munkhdalai and Yu, 2016; Sor-
doni et al., 2016) perform multi-turn reading of the
story context and the question, before inferring the
correct answer or use features (GA Reader, Dhin-
gra et al. (2017). Performing multiple hops and
modeling a deeper relation between question and
document was further developed by several mod-
els (Seo et al., 2017; Xiong et al., 2016; Wang
et al., 2016, 2017; Shen et al., 2016) on another
generation of RC datasets, e.g. SQuAD (Rajpurkar
et al., 2016), NewsQA (Trischler et al., 2017) or
TriviaQA (Joshi et al., 2017).

Integrating Background Knowledge in Neural
Models. Integrating background knowledge in a
neural model was proposed in the neural-checklist
model by Kiddon et al. (2016) for text genera-
tion of recipes. They copy words from a list of
ingredients instead of inferring the word from a
global vocabulary. Ahn et al. (2016) proposed a
language model that copies fact attributes from
a topic knowledge memory. The model predicts
a fact in the knowledge memory using a gating
mechanism and given this fact, the next word to
be selected is copied from the fact attributes. The
knowledge facts are encoded using embeddings
obtained using TransE (Bordes et al., 2013). Yang
et al. (2017) extended a seq2seq model with atten-
tion to external facts for dialogue and recipe gen-
eration and a co-reference resolution-aware lan-
guage model. A similar model was adopted by He
et al. (2017) for answer generation in dialogue. In-
corporating external knowledge in a neural model
has proven beneficial for several other tasks: Yang
and Mitchell (2017) incorporated knowledge di-
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rectly into the LSTM cell state to improve event
and entity extraction. They used knowledge em-
beddings trained on WordNet (Miller et al., 1990)
and NELL (Mitchell et al., 2015) using the BILIN-
EAR (Yang et al., 2014) model.

Work similar to ours is by Long et al. (2017),
who have introduced a new task of Rare Entity
Prediction. The task is to read a paragraph from
WikiLinks (Singh et al., 2012) and to fill a blank
field in place of a missing entity. Each miss-
ing entity is characterized with a short description
derived from Freebase, and the system needs to
choose one from a set of pre-selected candidates
to fill the field. While the task is superficially sim-
ilar to cloze-style reading comprehension, it dif-
fers considerably: first, when considering the text
without the externally provided entity information,
it is clearly ambiguous. In fact, the task is more
similar to Entity Linking tasks in the Knowledge
Base Population (KBP) tracks at TAC 2013-2017,
which aim at detecting specific entities from Free-
base. Our work, by contrast, examines the impact
of injecting external knowledge in a reading com-
prehension, or NLU task, where the knowledge
is drawn from a commonsense knowledge base,
ConceptNet in our case. Another difference is
that in their setup, the reference knowledge for the
candidates is explicitly provided as a single, fixed
set of knowledge facts (the entity description), en-
coded in a single representation. In our work, we
are retrieving (typically) distinct sets of knowl-
edge facts that might (or might not) be relevant for
understanding the story and answering the ques-
tion. Thus, in our setup, we crucially depend on
the ability of the attention mechanism to retrieve
relevant pieces of knowledge. Our aim is to exam-
ine to what extent commonsense knowledge can
contribute to and improve the cloze-style RC task,
that in principle is supposed to be solvable without
explicitly given additional knowledge. We show
that by integrating external commonsense knowl-
edge we achieve clear improvements in reading
comprehension performance over a strong base-
line, and thus we can speculate that humans, when
solving this RC task, are similarly using common-
sense knowledge as implicitly understood back-
ground knowledge.

Recent unpublished work in Weissenborn et al.
(2017) is driven by similar intentions. The au-
thors exploit knowledge from ConceptNet to im-
prove the performance of a reading comprehen-

sion model, experimenting on the recent SQuAD
(Rajpurkar et al., 2016) and TriviaQA (Joshi et al.,
2017) datasets. While the source of the back-
ground knowledge is the same, the way of inte-
grating this knowledge into the model and task is
different. (i) We are using attention to select un-
ordered fact triples using key-value retrieval and
(ii) we integrate the knowledge that is consid-
ered relevant explicitly for each token in the con-
text. The model of Weissenborn et al. (2017), by
contrast, explicitly reads the acquired additional
knowledge sequentially after reading the docu-
ment and question, but transfers the background
knowledge implicitly, by refining the word embed-
dings of the words in the document and the ques-
tion with the words from the supporting knowl-
edge that share the same lemma. In contrast to
the implicit knowledge transfer of Weissenborn
et al. (2017), our explicit attention over exter-
nal knowledge facts can deliver insights about the
used knowledge and how it interacts with specific
context tokens (see Section 6).

5 Experiments and Results

We perform quantitative analysis through experi-
ments. We study the impact of the used knowl-
edge and different model components that employ
the external knowledge. Some of the experiments
below focus only on the Common Nouns (CN)
dataset, as it has been shown to be more challeng-
ing than Named Entities (NE) in prior work.

5.1 Model Parameters
We experiment with different model parameters.

Number of facts. We explore different sizes of
knowledge memories, in terms of number of ac-
quired facts. If not stated otherwise, we use 50
facts per example.

Key-Value Selection Strategy. We use two
strategies for defining key and value (Key/Value):
Subj/Obj and Obj/Obj, where Subj and Obj are the
subject and object attributes in the fact triples and
they are selected as Key and Value for the KV
memory (see Section 2.2, Querying the Knowl-
edge Memory). If not stated otherwise, we use the
Subj/Obj strategy.

Answer Selection Components. If not stated
otherwise, we use ensemble attention αensemble
(combinations of ctx and ctx+kn) to rank the an-
swers. We call this our Full model (see Sec. 2.2).
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Source Dev Test
CN5All 71.40 66.72
CN5WN3 (WN3) 70.70 68.48
CN5Sel(ected) 71.85 67.64

Table 2: Results with different knowledge sources,
for CBT-CN (Full model, 50 facts).

# facts 50 100 200 500
Dev 71.85 71.35 71.40 71.20
Test 67.64 67.44 68.12 67.24

Table 3: Results for CBT (CN) with different num-
bers of facts. (Full model, CN5Sel)

Hyper-parameters. For our experiments we use
pre-trained Glove (Pennington et al., 2014) em-
beddings, BiGRU with hidden size 256, batch
size of 64 and learning reate of 0.001 as they were
shown (Kadlec et al., 2016) to perform good on
the AS Reader.

5.2 Empirical Results

We perform experiments with the different model
parameters described above. We report accuracy
on the Dev and Test and use the results on Dev set
for pruning the experiments.

Knowledge Sources. We experiment with dif-
ferent configuration of ConceptNet facts (see Sec-
tion 3). Results on the CBT CN dataset are shown
in Table 2. CN5Sel works best on the Dev set but
CN5WN3 works much better on Test. Further ex-
periments use the CN5Sel setup.

Number of facts. We further experiment with
different numbers of facts on the Common Nouns
dataset (Table 3). The best result on the Dev set is
for 50 facts so we use it for further experiments.

Component ablations. We ensemble the atten-
tions from different combinations of the inter-
action between the question and document con-
text (ctx) representations and context+knowledge
(ctx+kn) representations in order to infer the right
answer (see Section 2.2, Answer Ranking).

Table 4 shows that the combination of differ-
ent interactions between ctx and ctx+kn represen-
tations leads to clear improvement over the w/o
knowledge setup, in particular for the Common
Nouns dataset. We also performed ablations for
a model with 100 facts (see Supplement).

Key-Value Selection Strategy. Table 5 shows
that for the NE dataset, the two strategies perform

NE CN
Drepr to Qrepr interaction Dev Test Dev Test
Dctx, Qctx (w/o know) 75.50 70.30 68.20 64.80
Dctx+kn, Qctx+kn 76.45 69.68 70.85 66.32
Dctx, Qctx+kn 77.10 69.72 70.80 66.32
Dctx+kn, Qctx 75.65 70.88 71.20 67.96
Full model 76.80 70.24 71.85 67.64
w/o Dctx, Qctx 75.95 70.24 70.65 67.12
w/o Dctx+kn, Qctx+kn 76.20 69.80 70.75 67.00
w/o Dctx, Qctx+kn 76.55 70.52 71.75 66.32
w/o Dctx+kn, Qctx 76.05 70.84 70.80 66.80

Table 4: Results for different combinations of in-
teractions between document (D) and question (Q)
context (ctx) and context + knowledge (ctx+kn)
representations. (CN5Sel, 50 facts)

NE CN
Key/Value Dev Test Dev Test
Subj/Obj 76.65 71.52 71.85 67.64
Obj/Obj 76.70 71.28 71.25 67.48

Table 5: Results for key-value knowledge retrieval
and integration. (CN5Sel, 50 facts). Subj/Obj
means: we attend over the fact subject (Key) and
take the weighted fact object as value (Value).

NE CN
Models dev test dev test

Human (ctx + q) - 81.6 - 81.6
Single interaction

LSTMs (ctx + q) (Hill et al., 2015) 51.2 41.8 62.6 56.0
AS Reader 73.8 68.6 68.8 63.4
AS Reader (our impl) 75.5 70.3 68.2 64.8
KnReader (ours) 77.4 71.4 71.8 67.6

Multiple interactions
MemNNs (Weston et al., 2015) 70.4 66.6 64.2 63.0
EpiReader (Trischler et al., 2016) 74.9 69.0 71.5 67.4
GA Reader (Dhingra et al., 2017) 77.2 71.4 71.6 68.0
IAA Reader (Sordoni et al., 2016) 75.3 69.7 72.1 69.2
AoA Reader (Cui et al., 2017) 75.2 68.6 72.2 69.4
GA Reader (+feat) 77.8 72.0 74.4 70.7
NSE (Munkhdalai and Yu, 2016) 77.0 71.4 74.3 71.9

Table 6: Comparison of KnReader to existing end-
to-end neural models on the benchmark datasets.

equally well on the Dev set, whereas the Subj/Obj
strategy works slightly better on the Test set. For
Common Nouns, Subj/Obj is better.

Comparison to Previous Work. Table 6 com-
pares our model (Knowledgeable Reader) to pre-
vious work on the CBT datasets. We show the
results of our model with the settings that per-
formed best on the Dev sets of the two datasets
NE and CN: for NE, (Dctx+kn, Qctx) with 100
facts; for CN the Full model with 50 facts, both
with CN5Sel.

Note that our work focuses on the impact of
external knowledge and employs a single inter-
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action (single-hop) between the document context
and the question so we primarily compare to and
aim at improving over similar models. KnReader
clearly outperforms prior single-hop models on
both datasets. While we do not improve over the
state of the art, our model stands well among other
models that perform multiple hops. In the Supple-
ment we also give comparison to ensemble models
and some models that use re-ranking strategies.

6 Discussion and Analysis

6.1 Analysis of the empirical results.

Our experiments examined key parameters of the
KnReader. As expected, injection of background
knowledge yields only small improvements over
the baseline model for Named Entities. However,
on this dataset our single-hop model is competitive
to most multi-hop neural architectures.

The integration of knowledge clearly helps for
the Common Nouns task. The impact of knowl-
edge sources (Table 2) is different on the Dev and
Test sets which indicates that either the model or
the data subsets are sensitive to different knowl-
edge types and retrieved knowledge. Table 5
shows that attending over the Subj of the knowl-
edge triple is slightly better than Obj. This shows
that using a Key-Value memory is valuable. A rea-
son for lower performance of Obj/Obj is that the
model picks facts that are similar to the candidate
tokens, not adding much new information. From
the empirical results we see that training and eval-
uation with less facts is slightly better. We hypoth-
esize that this is related to the lack of supervision
on the retrieved and attended knowledge.

6.2 Interpreting Component Importance

Figure 3 shows the impact on prediction accu-
racy of individual components of the Full model,
including the interaction between D and Q with
ctx or ctx + kn (w/o ctx-only). The values for
each component are obtained from the attention
weights, without retraining the model. The differ-
ence between blue (left) and orange (right) values
indicates how much the module contributes to the
model. Interestingly, the ranking of the contribu-
tion (Dctx, Qctx+kn > Dctx+kn, Qctx > Dctx+kn,
Qctx+kn) corresponds to the component impor-
tance ablation on the Dev set, lines 5-8, Table 4.
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  -­‐>	
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200
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  -­‐>	
  incorrect

Figure 3: # of items with reversed prediction
(±correct) for each combination of (ctx+kn, ctx)
for Q and D. We report the number of wrong
→ correct (blue) and correct → wrong (orange)
changes when switching from score w/o knowl-
edge to score w/ knowledge. The best model type
is Ensemble. (Full model w/o Dctx, Qctx).

6.3 Qualitative Data Investigation

We will use the attention values of the interactions
between Dctx(+kn) and Qctx(+kn) and attentions
to facts from each candidate token and the ques-
tion placeholder to interpret how knowledge is em-
ployed to make a prediction for a single example.

Method: Interpreting Model Components.
We manually inspect examples from the evalu-
ation sets where KnReader improves prediction
(blue (left) category, Fig. 3) or makes the predic-
tion worse (orange (right) category, Fig. 3). Figure
4 shows the question with placeholder, followed
by answer candidates and their associated atten-
tion weights as assigned by the model w/o knowl-
edge. The matrix shows selected facts and their as-
signed weights for the question and the candidate
tokens. Finally, we show the attention weights de-
termined by the knowledge-enhanced D to Q inter-
actions. The attention to the correct answer (head)
is low when the model considers the text alone
(w/o knowledge). When adding retrieved knowl-
edge to theQ only (row ctx, ctx+kn) and to both
Q and D (row ctx + kn, ctx + kn) the score im-
proves, while when adding knowledge to D alone
(row ctx+ kn, ctx) the score remains ambiguous.
The combined score Ensemble (see Eq. 13) then
takes the final decision for the answer. In this ex-
ample, the question can be answered without the
story. The model tries to find knowledge that is
related to eyes. The fact eyes /r/PartOf head is
not contained in the retrieved knowledge but in-
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bird head legs sides wood
Dctx, Qctx (w/o know) 0.00 0.26 0.40 0.33 0.02

Q: UNK_59 did not say anything ; but when the other two had
passed on she bent down to the bird , brushed aside the

feathers from his xxxxx , and kissed his closed eyes gently
.

0.0
0.4

Q
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w
oo

d

bird /r/PartOf bird

beak /r/PartOf bird

wing /r/PartOf bird

a bird /r/UsedFor testing air
in a mine

bird /r/CapableOf head south

a bird /r/CapableOf sing to
other birds

head /r/PartOf animal

basilar artery /r/PartOf head

ear /r/PartOf head

porch /r/PartOf house

a bird /r/HasA two legs

wood /r/Antonym fire

spite /r/DistinctFrom like

wood /r/AtLocation a fire

wood /r/DistinctFrom carpet

0.2

0.4

0.6

0.8

bird head legs sides wood
Ensemble

Dctx + kn, Qctx

        Dctx + kn, Qctx + kn

Dctx, Qctx + kn

0.02 0.70 0.12 0.05 0.02
0.01 0.36 0.37 0.23 0.03
0.07 0.68 0.19 0.02 0.01
0.01 0.83 0.13 0.01 0.00

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Figure 4: Interpreting the components of Kn-
Reader. Adding knowledge to Q and D increases
the score for the correct answer. Results for top
5 candidates are shown. (Full model, CN data,
CN5Sel, Subj/Obj, 50 facts)

stead the model selects the fact ear /r/PartOf head
which receives the highest attention from Q. The
weighted Obj representation (head) is added to the
question with the highest weight, together with an-
imal and bird from the next highly weighted facts
This results in a high score for theQctx toDctx+kn

interaction with candidate head. See Supplement
for more details.

Using the method described above, we analyze
several example cases (presented in Supplement)
that highlight different aspects of our model. Here
we summarize our observations.

(i.) Answer prediction from Q or Q+D. In
both human and machine RC, questions can be an-
swered based on the question alone (Figure 4) or
jointly with the story context (Case 2, Suppl.). We
show that empirically, enriching the question with
knowledge is crucial for the first type, while en-
richment of Q and D is required for the second.

(ii.) Overcoming frequency bias.. We show

that when appropriate knowledge is available and
selected, the model is able to correct a frequency
bias towards an incorrect answer (Cases 1 and 3).

(iii.) Providing appropriate knowledge. We
observe a lack of knowledge regarding events (e.g.
take off vs. put on clothes, Case 2; climb up, Case
5). Nevertheless relevant knowledge from CN5
can help predicting infrequent candidates (Case 2).

(iv.) Knowledge, Q and D encoding. The con-
text encoding of facts allows the model to detect
knowledge that is semantically related, but not sur-
face near to phrases in Q and D (Case 2). The
model finds facts to non-trivial paraphrases (e.g.
undressed–naked, Case 2).

7 Conclusion and Future Work

We propose a neural cloze-style reading com-
prehension model that incorporates external com-
monsense knowledge, building on a single-turn
neural model. Incorporating external knowledge
improves its results with a relative error rate re-
duction of 9% on Common Nouns, thus the model
is able to compete with more complex RC mod-
els. We show that the types of knowledge con-
tained in ConceptNet are useful. We provide quan-
titative and qualitative evidence of the effective-
ness of our model, that learns how to select rel-
evant knowledge to improve RC. The attractive-
ness of our model lies in its transparency and flex-
ibility: due to the attention mechanism, we can
trace and analyze the facts considered in answer-
ing specific questions. This opens up for deeper
investigation and future improvement of RC mod-
els in a targeted way, allowing us to investigate
what knowledge sources are required for different
data sets and domains. Since our model directly
integrates background knowledge with the docu-
ment and questioncontext representations, it can
be adapted to very different task settings where
we have a pair of two arguments (i.e. entailment,
question answering, etc.) In future work, we will
investigate even tighter integration of the attended
knowledge and stronger reasoning methods.
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Abstract

Question Answering (QA), as a research
field, has primarily focused on either
knowledge bases (KBs) or free text as a
source of knowledge. These two sources
have historically shaped the kinds of ques-
tions that are asked over these sources, and
the methods developed to answer them.
In this work, we look towards a practi-
cal use-case of QA over user-instructed
knowledge that uniquely combines ele-
ments of both structured QA over knowl-
edge bases, and unstructured QA over
narrative, introducing the task of multi-
relational QA over personal narrative. As
a first step towards this goal, we make
three key contributions: (i) we generate
and release TEXTWORLDSQA, a set of
five diverse datasets, where each dataset
contains dynamic narrative that describes
entities and relations in a simulated world,
paired with variably compositional ques-
tions over that knowledge, (ii) we perform
a thorough evaluation and analysis of sev-
eral state-of-the-art QA models and their
variants at this task, and (iii) we release
a lightweight Python-based framework we
call TEXTWORLDS for easily generating
arbitrary additional worlds and narrative,
with the goal of allowing the community
to create and share a growing collection of
diverse worlds as a test-bed for this task.

1 Introduction

Personal devices that interact with users via nat-
ural language conversation are becoming ubiqui-
tous (e.g., Siri, Alexa), however, very little of that
conversation today allows the user to teach, and
then query, new knowledge. Most of the focus in

She and Amy are 
both TAs for 
this course

Which phd
students are 
advised by the 
department head?

John is now the 
department head

User	queries	
taught	

knowledge

User	teaches
new	knowledge

Figure 1: Illustration of our task: relational
question answering from dynamic knowledge ex-
pressed via personal narrative

these personal devices has been on Question An-
swering (QA) over general world-knowledge (e.g.,
“who was the president in 1980” or “how many
ounces are in a cup”). These devices open a new
and exciting possibility of enabling end-users to
teach machines in natural language, e.g., by ex-
pressing the state of their personal world to its vir-
tual assistant (e.g., via narrative about people and
events in that user’s life) and enabling the user to
ask questions over that personal knowledge (e.g.,
“which engineers in the QC team were involved in
the last meeting with the director?”).

This type of questions highlight a unique
blend of two conventional streams of research
in Question Answering (QA) – QA over struc-
tured sources such as knowledge bases (KBs),
and QA over unstructured sources such as free
text. This blend is a natural consequence of our
problem setting: (i) users may choose to express
rich relational knowledge about their world, in
turn enabling them to pose complex composi-
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1. There is an associate professor named Andy
2. He returned from a sabbatical
3. This professor currently has funding
4. There is a masters level course called G301
5. That course is taught by him
6. That class is part of the mechanical 

engineering department
7. Roslyn is a student in this course
8. U203 is a undergraduate level course
9. Peggy and that student are TAs for this 

course

…
What students are advised by a professor with 
funding?
[Albertha, Roslyn, Peggy, Lucy, Racquel]

What assistant professors advise students who 
passed their thesis proposal?  
[Andy]

Which courses have masters student TAs? 
[G301, U101 ]

Who are the professors working on unsupervised 
machine learning?
[Andy, Hanna]

1. There is a new important mobile project
2. That project is in the implementation stage
3. Hiram is a tester on mobile project
4. Mobile project has moved to the deployment 

stage
5. Andrew created a new issue for mobile 

project: fails with apache stack
6. Andrew is no longer assigned to that project
7. That developer resolved the changelog needs     

to be added issue

…

Are there any developers assigned to projects in 
the evaluation stage? 
[Tawnya, Charlott, Hiram]

Who is the null pointer exception during parsing 
issue assigned to? 
Hiram

Are there any issues that are resolved for 
experimental projects?
[saving data throws exception,
wrong pos tag on consecutive words]

Academic	Department	World Software	Engineering	World

Figure 2: Illustrative snippets from two sample worlds. We aim to generate natural-sounding first-person
narratives from five diverse worlds, covering a range of different events, entities and relations.

tional queries (e.g., “all CS undergrads who took
my class last semester”), while at the same time
(ii) personal knowledge generally evolves through
time and has an open and growing set of relations,
making natural language the only practical inter-
face for creating and maintaining that knowledge
by non-expert users. In short, the task that we ad-
dress in this work is: multi-relational question
answering from dynamic knowledge expressed
via narrative.

Although we hypothesize that question-
answering over personal knowledge of this sort
is ubiquitous (e.g., between a professor and their
administrative assistant, or even if just in the
user’s head), such interactions are rarely recorded,
presenting a significant practical challenge to
collecting a sufficiently large real-world dataset of
this type. At the same time, we hypothesize that
the technical challenges involved in developing
models for relational question answering from
narrative would not be fundamentally impacted
if addressed via sufficiently rich, but controlled
simulated narratives. Such simulations also
offer the advantage of enabling us to directly
experiment with stories and queries of different
complexity, potentially offering additional insight
into the fundamental challenges of this task.

While our problem setting blends the problems

of relational question answering over knowledge
bases and question answering over text, our hy-
pothesis is that end-to-end QA models may learn
to answer such multisentential relational queries,
without relying on an intermediate knowledge
base representation. In this work, we conduct
an extensive evaluation of a set of state-of-the-art
end-to-end QA models on our task and analyze
their results.

2 Related Work

Question answering has been mainly studied in
two different settings: KB-based and text-based.
KB-based QA mostly focuses on parsing ques-
tions to logical forms (Zelle and Mooney, 1996;
Zettlemoyer and Collins, 2012; Berant et al., 2013;
Kwiatkowski et al., 2013; Yih et al., 2015) in order
to better retrieve answer candidates from a knowl-
edge base. Text-based QA aims to directly an-
swer questions from the input text. This includes
works on early information retrieval-based meth-
ods (Banko et al., 2002; Ahn et al., 2004) and
methods that build on extracted structured repre-
sentations from both the question and the input
text (Sachan et al., 2015; Sachan and Xing, 2016;
Khot et al., 2017; Khashabi et al., 2018b). Al-
though these structured presentations make rea-
soning more effective, they rely on sophisticated

834



NLP pipelines and suffer from error propaga-
tion. More recently, end-to-end neural archi-
tectures have been successfully applied to text-
based QA, including Memory-augmented neural
networks (Sukhbaatar et al., 2015; Miller et al.,
2016; Kumar et al., 2016) and attention-based neu-
ral networks (Hermann et al., 2015; Chen et al.,
2016; Kadlec et al., 2016; Dhingra et al., 2017;
Xiong et al., 2017; Seo et al., 2017; Chen et al.,
2017). In this work, we focus on QA over text
(where the text is generated from a supporting
KB) and evaluate several state-of-the-art memory-
augmented and attention-based neural architec-
tures on our QA task. In addition, we consider a
sequence-to-sequence model baseline (Bahdanau
et al., 2015), which has been widely used in dia-
log (Vinyals and Le, 2015; Ghazvininejad et al.,
2017) and recently been applied to generating an-
swer values from Wikidata (Hewlett et al., 2016).

There are numerous datasets available for evalu-
ating the capabilities of QA systems. For example,
MCTest (Richardson et al., 2013) contains com-
prehension questions for fictional stories. Allen
AI Science Challenge (Clark, 2015) contains sci-
ence questions that can be answered with knowl-
edge from text books. RACE (Lai et al., 2017)
is an English exam dataset for middle and high
school Chinese students. MULTIRC (Khashabi
et al., 2018a) is a dataset that focuses on evaluating
multi-sentence reasoning skills. These datasets
all require humans to carefully design multiple-
choice questions and answers, so that certain as-
pects of the comprehension and reasoning capa-
bilities are properly evaluated. As a result, it is
difficult to collect them at scale. Furthermore, as
the knowledge required for answering each ques-
tion is not clearly specified in these datasets, it can
be hard to identify the limitations of QA systems
and propose improvements.

Weston et al. (2015) proposes to use synthetic
QA tasks (the BABI dataset) to better under-
stand the limitations of QA systems. BABI builds
on a simulated physical world similar to interac-
tive fiction (Montfort, 2005) with simple objects
and relations and includes 20 different reasoning
tasks. Various types of end-to-end neural net-
works (Sukhbaatar et al., 2015; Lee et al., 2015;
Peng et al., 2015) have demonstrated promising
accuracies on this dataset. However, the per-
formance can hardly translate to real-world QA
datasets, as BABI uses a small vocabulary (150

words) and short sentences with limited language
variations (e.g., nesting sentences, coreference).
A more sophisticated QA dataset with a support-
ing KB is WIKIMOVIES (Miller et al., 2016),
which contains 100k questions about movies,
each of them is answerable by using either a KB
or a Wikipedia article. However, WIKIMOVIES is
highly domain-specific, and similar to BABI, the
questions are designed to be in simple forms with
little compositionality and hence limit the diffi-
culty level of the tasks.

Our dataset differs in the above datasets in that
(i) it contains five different realistic domains per-
mitting cross-domain evaluation to test the abil-
ity of models to generalize beyond a fixed set of
KB relations, (ii) it exhibits rich referring expres-
sions and linguistic variations (vocabulary much
larger than the BABI dataset), (iii) questions in our
dataset are designed to be deeply compositional
and can cover multiple relations mentioned across
multiple sentences.

Other large-scale QA datasets include Cloze-
style datasets such as CNN/Daily Mail (Her-
mann et al., 2015), Children’s Book Test (Hill
et al., 2015), and Who Did What (Onishi
et al., 2016); datasets with answers being
spans in the document, such as SQuAD (Ra-
jpurkar et al., 2016), NewsQA (Trischler et al.,
2016), and TriviaQA (Joshi et al., 2017); and
datasets with human generated answers, for in-
stance, MS MARCO (Nguyen et al., 2016) and
SearchQA (Dunn et al., 2017). One common
drawback of these datasets is the difficulty in ac-
cessing a system’s capability of integrating infor-
mation across a document context. Kočiskỳ et al.
(2017) recently emphasized this issue and pro-
posed NarrativeQA, a dataset of fictional stories
with questions that reflect the complexity of nar-
ratives: characters, events, and evolving relations.
Our dataset contains similar narrative elements,
but it is created with a supporting KB and hence it
is easier to analyze and interpret results in a con-
trolled setting.

3 TEXTWORLDS: Simulated Worlds for
Multi-Relational QA from Narratives

In this work, we synthesize narratives in five di-
verse worlds, each containing a thousand narra-
tives and where each narrative describes the evo-
lution of a simulated user’s world from a first-
person perspective. In each narrative, the simu-
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lated user may introduce new knowledge, update
existing knowledge or express a state change (e.g.,
“Homework 3 is now due on Friday” or “Saman-
tha passed her thesis defense”). Each narrative is
interleaved with questions about the current state
of the world, and questions range in complexity
depending on the amount of knowledge that needs
to be integrated to answer them. This allows us to
benchmark a range of QA models at their ability
to answer questions that require different extents
of relational reasoning to be answered.

The set of worlds that we simulate as part of this
work are as follows:

1. MEETING WORLD: This world describes sit-
uations related to professional meetings, e.g.,
meetings being set/cancelled, people attending
meetings, topics of meetings.

2. HOMEWORK WORLD: This world describes
situations from the first-person perspective of
a student, e.g., courses taken, assignments in
different courses, deadlines of assignments.

3. SOFTWARE ENGINEERING WORLD: This
world describes situations from the first-person
perspective of a software development man-
ager, e.g., task assignment to different project
team members, stages of software develop-
ment, bug tickets.

4. ACADEMIC DEPARTMENT WORLD: This
world describes situations from the first-person
perspective of a professor, e.g., teaching assign-
ments, faculty going/returning from sabbati-
cals, students from different departments tak-
ing/dropping courses.

5. SHOPPING WORLD: This world describes sit-
uations about a person shopping for various
occasions, e.g., adding items to a shopping
list, purchasing items at different stores, noting
where items are on sale.

3.1 Narrative

Each world is represented by a set of entities E and
a set of unary, binary or ternary relations R. For-
mally, a single step in one simulation of a world
involves a combination of instantiating new enti-
ties and defining new (or mutating existing) re-
lations between entities. Practically, we imple-
ment each world as a collection of classes and

Statistics Value

# of total stories 5,000
# of total questions 1,207,022
Avg. # of entity mentions (per story) 217.4
Avg. # of correct answers (per question) 8.7
Avg. # of statements in stories 100
Avg. # of tok. in stories 837.5
Avg. # of tok. in questions 8.9
Avg. # of tok. in answers 1.5
Vocabulary size (tok.) 1,994
Vocabulary size (entity) 10,793

Table 1: TEXTWORLDSQA dataset statistics

methods, with each step of the simulation creat-
ing or mutating class instances by sampling en-
tities and methods on those entities. By design,
these classes and methods are easy to extend, to
either enrich existing worlds or create new ones.
Each simulation step is then expressed as a natural
language statement, which is added to the narra-
tive. In the process of generating a natural lan-
guage expression, we employ a rich mechanism
for generating anaphora, such as “meeting with
John about the performance review” and “meeting
that I last added”, in addition to simple pronoun
references. This allows us to generate more nat-
ural and flowing narratives. These references are
generated and composed automatically by the un-
derlying TEXTWORLDS framework, significantly
reducing the effort needed to build new worlds.
Furthermore, all generated stories also provide ad-
ditional annotation that maps all entities to under-
lying gold-standard KB ids, allowing to perform
experiments that provide models with different de-
grees of access to the “simulation oracle”.

We generate 1,000 narratives within each world,
where each narrative consists of 100 sentences,
plus up to 300 questions interleaved randomly
within the narrative. See Figure 1 for two example
narratives. Each story in a given world samples its
entities from a large general pool of entity names
collected from the web (e.g., people names, uni-
versity names). Although some entities do overlap
between stories, each story in a given world con-
tains a unique flow of events and entities involved
in those events. See Table 1 for the data statistics.

3.2 Questions

Formally, questions are queries over the
knowledge-base in the state defined up to
the point when the question is asked in the narra-
tive. In the narrative, the questions are expressed
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Dataset Questions
Single Entity/Relation Multiple entities

Single relation Two relations Three relations
MEETING 57,590 (41.16%) 46,373 (33.14%) 30,391 (21.72%) 5,569 (3.98%)
HOMEWORK 45,523 (24.10%) 17,964 (9.51%) 93,669 (49.59%) 31,743 (16.80%)
SOFTWARE 47,565 (20.59%) 51,302 (22.20%) 66,026 (28.58%) 66,150 (28.63%)
ACADEMIC 46,965 (24.81%) 54,581 (28.83%) 57,814 (30.53%) 29,982 (15.83%)
SHOPPING 111,522 (26.25%) 119,890 (28.22%) 107,418 (25.29%) 85,982 (20.24%)
All 309,165 (26.33%) 290,110 (24.71%) 355,318 (30.27%) 219,426 (18.69%)

Table 2: Dataset statistics by question type.

in natural language, employing the same anaphora
mechanism used in generating the narrative (e.g.,
“who is attending the last meeting I added?”).

We categorize generated questions into four
types, reflecting the number and types of facts re-
quired to answer them; questions that require more
facts to answer are typically more compositional
in nature. We categorize each question in our
dataset into one of the following four categories:

Single Entity/Single Relation Answers to these
questions are a single entity, e.g. “what is John’s
email address?”, or expressed in lambda-calculus
notation:

λx.EmailAddress(John, x)

The answers to these questions are found in a sin-
gle sentence in the narrative, although it is pos-
sible that the answer may change through the
course of the narrative (e.g., “John’s new office is
GHC122”).

Multi-Entity/Single Relation Answers to these
questions can be multiple entities but involve a
single relation, e.g., “Who is enrolled in the Math
class?”, or expressed in lambda calculus notation:

λx.TakingClass(x, Math)

Unlike the previous category, answers to these
questions can be sets of entities.

Multi-Entity/Two Relations Answers to these
questions can be multiple entities and involve two
relations, e.g., “Who is enrolled in courses that I
am teaching?”, or expressed in lambda calculus:

λx.∃y.EnrolledInClass(x, y)
∧ CourseTaughtByMe(y)

Multi-Entity/Three Relations Answers to these
questions can be multiple entities and involve
three relations, e.g., “Which undergraduates are

enrolled in courses that I am teaching?”, or ex-
pressed in lambda calculus notation:

λx.∃y.EnrolledInClass(x, y)
∧ CourseTaughtByMe(y)

∧ Undergrad(x)

In the data that we generate, answers to questions
are always sets of spans in the narrative (the rea-
son for this constraint is for easier evaluation of
several existing machine-reading models; this as-
sumption can easily be relaxed in the simulation).
In all of our evaluations, we will partition our re-
sults by one of the four question categories listed
above, which we hypothesize correlates with the
difficulty of a question.

4 Methods

We develop several baselines for our QA task, in-
cluding a logistic regression model and four differ-
ent neural network models: Seq2Seq (Bahdanau
et al., 2015), MemN2N (Sukhbaatar et al., 2015),
BiDAF (Seo et al., 2017), and DrQA (Chen et al.,
2017). These models generate answers in differ-
ent ways, e.g., predicting a single entity, predict-
ing spans of text, or generating answer sequences.
Therefore, we implement two experimental set-
tings: ENTITY and RAW. In the ENTITY setting,
given a question and a story, we treat all the en-
tity spans in the story as candidate answers, and
the prediction task becomes a classification prob-
lem. In the RAW setting, a model needs to pre-
dict the answer spans. For logistic regression and
MemN2N, we adopt the ENTITY setting as they
are naturally classification models. This ideally
provides an upper bound on the performance when
considering answer candidate generation. For all
the other models, we can apply the RAW setting.

4.1 Logistic Regression
The logistic regression baseline predicts the likeli-
hood of an answer candidate being a true answer.
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For each answer candidate e and a given ques-
tion, we extract the following features: (1) The fre-
quency of e in the story; (2) The number of words
within e; (3) Unigrams and bigrams within e; (4)
Each non-stop question word combined with each
non-stop word within e; (5) The average minimum
distance between each non-stop question word and
e in the story; (6) The common words (excluding
stop words) between the question and the text sur-
rounding of e (within a window of 10 words); (7)
Sum of the frequencies of the common words to
the left of e, to the right e, and both. These features
are designed to help the model pick the correct an-
swer spans. They have shown to be effective for
answer prediction in previous work (Chen et al.,
2016; Rajpurkar et al., 2016).

We associate each answer candidate with a bi-
nary label indicating whether it is a true answer.
We train a logistic regression classifier to pro-
duce a probability score for each answer candi-
date. During test, we search for an optimal thresh-
old that maximizes the F1 performance on the val-
idation data. During training, we optimize the
cross-entropy loss using Adam (Kingma and Ba,
2014) with an initial learning rate of 0.01. We use
a batch size of 10, 000 and train with 5 epochs.
Training takes roughly 10 minutes for each do-
main on a Titan X GPU.

4.2 Seq2Seq

The seq2seq model is based on the sequence to
sequence model presented in (Bahdanau et al.,
2015), which includes an attention model. Bah-
danau et al. (Bahdanau et al., 2015) have used this
model to build a neural based machine translation
performing at the state-of-the-art. We adopt this
model to fit our own domain by including a pre-
processing step in which all statements are con-
catenated with a dedicated token, while eliminat-
ing all previously asked questions, and the current
question is added at the end of the list of state-
ments. The answers are treated as a sequence
of words. We use word embeddings (Zou et al.,
2013), as it was shown to improve accuracy. We
use 3 GRU (Cho et al., 2014) connected layers,
each with a capacity of 256. Our batch size was
set to 16. We use gradient descent with an ini-
tial learning rate of 0.5 and a decay factor of 0.99,
iterating on the data for 50, 000 steps (5 epochs).
The training process for each domain took approx-
imately 48 hours on a Titan X GPU.

4.3 MemN2N

End-To-End Memory Network (MemN2N) is a
neural architecture that encodes both long-term
and short-term context into a memory and it-
eratively reads from the memory (i.e., multi-
ple hops) relevant information to answer a ques-
tion (Sukhbaatar et al., 2015). It has been shown
to be effective for a variety of question answering
tasks (Weston et al., 2015; Sukhbaatar et al., 2015;
Hill et al., 2015).

In this work, we directly apply MemN2N to
our task with a small modification. Originally,
MemN2N was designed to produce a single an-
swer for a question, so at the prediction layer, it
uses softmax to select the best answer from the
answer candidates. In order to account for multi-
ple answers for a given question, we modify the
prediction layer to apply the logistic function and
optimize the cross entropy loss instead. For train-
ing, we use the parameter setting as in a publicly
available MemN2N 1 except that we set the em-
bedding size to 300 instead of 20. We train the
model for 100 epochs and it takes about 2 hours
for each domain on a Titan X GPU.

4.4 BiDAF-M

BiDAF (Bidirectional Attention Flow Net-
works) (Seo et al., 2017) is one of the top-
performing models on the span-based question
answering dataset SQuAD (Rajpurkar et al.,
2016). We reimplement BiDAF with simplified
parameterizations and change the prediction layer
so that it can predict multiple answer spans.

Specifically, we encode the input story
{x1, ..., xT } and a given question {q1, ..., qJ} at
the character level and the word level, where the
character level uses CNNs and the word level uses
pre-trained word vectors. The concatenation of
the character and word embeddings are passed
to a bidirectional LSTM to produce a contextual
embedding for each word in the story context
and in the question. Then, we apply the same
bidirectional attention flow layer to model the
interactions between the context and question
embeddings, producing question-aware feature
vectors for each word in the context, denoted
as G ∈ Rdg×T . G is then fed into a bidirec-
tional LSTM layer to obtain a feature matrix
M1 ∈ Rd1×T for predicting the start offset of
the answer span, and M1 is then passed into

1https://github.com/domluna/memn2n
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Within-World MEETING HOMEWORK SOFTWARE DEPARTMENT SHOPPING Avg. F1

Logistic Regression 50.1 55.7 60.9 55.9 61.1 56.7
Seq2Seq 22.5 32.6 16.7 39.1 31.5 28.5
MemN2N 55.4 46.6 69.5 67.3 46.3 57.0
BiDAF-M 81.8 76.9 68.4 68.2 68.7 72.8
DrQA-M 81.2 83.6 79.1 76.4 76.5 79.4

Cross-World MEETING HOMEWORK SOFTWARE DEPARTMENT SHOPPING Avg. F1

Logistic Regression 9.0 9.1 11.1 9.9 7.2 9.3
Seq2Seq 8.8 3.5 1.9 5.4 2.6 4.5
MemN2N 23.6 2.9 4.7 14.6 0.07 9.2
BiDAF-M 34.0 6.9 16.1 22.2 3.9 16.6
DrQA-M 46.5 12.2 23.1 28.5 9.3 23.9

Table 3: F1 scores for different baselines evaluated on both within-world and across-world settings.

another bidirectional LSTM layer to obtain a
feature matrix M2 ∈ Rd2×T for predicting the
end offset of the answer span. We then compute
two probability scores for each word i in the
narrative: pstart = sigmoid(wT

1 [G;M1]) and
pend = sigmoid(wT

2 [G;M1;M2]), where w1

and w2 are trainable weights. The training objec-
tive is simply the sum of cross-entropy losses for
predicting the start and end indices.

We use 50 1D filters for CNN character embed-
ding, each with a width of 5. The word embedding
size is 300 and the hidden dimension for LSTMs is
128. For optimization, we use Adam (Kingma and
Ba, 2014) with an initial learning rate of 0.001,
and use a minibatch size of 32 for 15 epochs. The
training process takes roughly 20 hours for each
domain on a Titan X GPU.

4.5 DrQA-M

DrQA (Chen et al., 2017) is an open-domain QA
system that has demonstrated strong performance
on multiple QA datasets. We modify the Doc-
ument Reader component of DrQA and imple-
ment it in a similar framework as BiDAF-M for
fair comparisons. First, we employ the same
character-level and word-level encoding layers to
both the input story and a given question. We then
use the concatenation of the character and word
embeddings as the final embeddings for words in
the story and in the question. We compute the
aligned question embedding (Chen et al., 2017) as
a feature vector for each word in the story and con-
catenate it with the story word embedding and pass
it into a bidirectional LSTM to obtain the contex-
tual embeddings E ∈ Rd×T for words in the story.
Another bidirectional LSTM is used to obtain the
contextual embeddings for the question, and self-

attention is used to compress them into one single
vector q ∈ Rd. The final prediction layer uses a
bilinear term to compute scores for predicting the
start offset: pstart = sigmoid(qTW1E) and an-
other bilinear term for predicting the end offset:
pend = sigmoid(qTW2E), where W1 and W2

are trainable weights. The training loss is the same
as in BiDAF-M, and we use the same parameter
setting. Training takes roughly 10 hours for each
domain on a Titan X GPU.

5 Experiments

We use two evaluation settings for measuring per-
formance at this task: within-world and across-
world. In the within-world evaluation setting, we
test on the same world that the model was trained
on. We then compute the precision, recall and F1

for each question and report the macro-average F1
score for questions in each world. In the across-
world evaluation setting, the model is trained on
four out of the five worlds, and tested on the re-
maining world. The across-world regime is obvi-
ously more challenging, as it requires the model to
be able to learn to generalize to unseen relations
and vocabulary. We consider the across-world
evaluation setting to be the main evaluation crite-
ria for any future models used on this dataset, as it
mimics the practical requirement of any QA sys-
tem used in personal assistants: it has to be able
to answer questions on any new domain the user
introduces to the system.

5.1 Results

We draw several important observations from our
results. First, we observe that more compositional
questions (i.e., those that integrate multiple rela-
tions) are more challenging for most models - as
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Figure 3: F1 score breakdown based on the num-
ber of relations involved in the questions.

all models (except Seq2seq) decrease in perfor-
mance with the number of relations composed in
a question (Figure 5.1). This can be in part ex-
plained by the fact that more composition ques-
tions are typically longer, and also require the
model to integrate more sources of information in
the narrative in order to answer them. One surpris-
ing observation from our results is that the perfor-
mance on questions that ask about a single relation
and have only a single answer is lower than ques-
tions that ask about a single relation but that can
have multiple answers (see detailed results in the
Appendix). This is in part because questions that
can have multiple answers typically have canoni-
cal entities as answers (e.g., person’s name), and
these entities generally repeat in the text, making
it easier for the model to find the correct answer.

Table 3 reports the overall (macro-average) F1
scores for different baselines. We can see that
BiDAF-M and DrQA-M perform surprisingly well
in the within-world evaluation even though they
do not use any entity span information. In partic-
ular, DrQA-M outperforms BiDAF-M which sug-
gests that modeling question-context interactions
using simple bilinear terms have advantages over
using more complex bidirectional attention flows.
The lower performance of MemN2N suggests that
its effectiveness on the BABI dataset does not di-
rectly transfer to our dataset. Note that the original
MemN2N architecture uses simple bag-of-words
and position encoding for sentences. This may
work well on dataset with a simple vocabulary,
for example, MemN2N performs the best in the
SOFTWARE world as the SOFTWARE world has

a smaller vocabulary compared to other worlds.
In general, we believe that better text representa-
tions for questions and narratives can lead to im-
proved performance. Seq2Seq model also did not
perform as well. This is due to the inherent diffi-
culty of generation and encoding long sequences.
We found that it performs better when training
and testing on shorter stories (limited to 30 state-
ments). Interestingly, the logistic regression base-
line performs on a par with MemN2N, but there
is still a large performance gap to BiDAF-M and
DrQA-M, and the gap is greater for questions that
compose multiple relations.

In the across-world setting, the performance of
all methods dramatically decreases.2 This sug-
gests the limitations of these methods in gener-
alizing to unseen relations and vocabulary. The
span-based models BiDAF-M and DrQA-M have
an advantage in this setting as they can learn
to answer questions based on the alignment be-
tween the question and the narrative. However, the
low performance still suggests their limitations in
transferring question answering capabilities.

6 Conclusion

In this work, we have taken the first steps towards
the task of multi-relational question answering ex-
pressed through personal narrative. Our hypoth-
esis is that this task will become increasingly im-
portant as users begin to teach personal knowledge
about their world to the personal assistants em-
bedded in their devices. This task naturally syn-
thesizes two main branches of question answer-
ing research: QA over KBs and QA over free
text. One of our main contributions is a collec-
tion of diverse datasets that feature rich composi-
tional questions over a dynamic knowledge graph
expressed through simulated narrative. Another
contribution of our work is a thorough set of ex-
periments and analysis of different types of end-
to-end architectures for QA at their ability to an-
swer multi-relational questions of varying degrees
of compositionality. Our long-term goal is that
both the data and the simulation code we release
will inspire and motivate the community to look
towards the vision of letting end-users teach our
personal assistants about the world around us.

2In order to allow generalization across different domains
for the Seq2Seq model, we replace entities appearing in each
story with an id that correlates to their appearance order. Af-
ter the model outputs its prediction, the entity ids are con-
verted back to the entity phrase.
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The TEXTWORDSQA dataset and the code
can be downloaded at https://igorlabutov.
github.io/textworldsqa.github.io/
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Dataset Questions
Single Entity/Relation Multiple Entities

Single Relation Two Relations Three Relations
P R F1 P R F1 P R F1 P R F1

Logistic Regression
MEETING 42.0 78.1 51.0 50.6 74.6 56.6 33.3 66.3 41.1 31.8 57.6 38.0
HOMEWORK 39.7 57.8 44.2 98.6 99.1 98.8 57.4 78.7 62.2 25.4 42.0 28.0
SOFTWARE 55.0 73.3 59.0 54.3 98.2 66.5 58.2 76.0 62.3 46.3 84.6 56.4
DEPARTMENT 42.6 65.9 48.0 59.0 82.5 65.1 38.8 52.7 41.2 42.5 64.6 46.9
SHOPPING 53.1 70.2 56.2 79.6 83.4 79.0 53.1 60.5 52.3 53.4 67.9 56.0
Average 46.5 69.1 51.7 68.4 87.6 73.2 48.2 66.8 51.8 39.9 63.3 45.1

Sequence-to-Sequence
MEETING 27.9 18.3 22.1 48.1 12.1 19.3 42.1 15.0 22.1 33.7 19.7 24.8
HOMEWORK 16.3 9.0 11.6 71.9 9.3 16.4 75.3 35.9 48.6 32.9 15.6 21.1
SOFTWARE 42.5 21.5 28.5 44.8 8.5 14.2 50.0 6.3 11.2 45.5 7.4 12.7
DEPARTMENT 49.9 35.6 41.5 54.1 20.3 29.6 57.2 38.0 45.7 43.9 39.7 41.7
SHOPPING 25.8 16.0 19.8 71.3 28.2 40.5 33.3 19.3 24.4 46.9 31.4 37.6
Average 32.5 20.1 24.7 58.0 15.7 24.0 51.6 22.9 30.4 40.6 22.7 27.6

MemN2N
MEETING 56.9 56.0 54.7 66.8 58.4 58.6 57.0 57.5 54.8 38.7 40.7 38.8
HOMEWORK 42.6 41.2 41.3 97.9 63.7 73.9 60.4 47.9 49.4 36.5 29.0 30.1
SOFTWARE 68.5 71.6 68.5 72.9 73.2 70.9 69.7 67.3 66.1 75.0 74.8 72.6
DEPARTMENT 56.3 74.3 61.3 78.5 87.0 80.2 59.4 76.6 63.2 57.8 74.2 61.6
SHOPPING 51.3 45.4 45.5 74.9 54.1 59.0 45.6 40.6 40.2 44.3 37.6 37.9
Average 55.1 57.7 54.3 78.2 67.3 68.5 58.4 58.0 54.8 50.4 51.3 48.2

BIDAF-M
MEETING 87.6 92.4 88.2 78.6 86.1 79.2 68.9 89.6 74.6 73.9 94.4 80.0
HOMEWORK 79.9 97.4 84.5 86.8 81.0 82.4 76.4 90.0 78.9 47.0 78.5 55.5
SOFTWARE 48.0 89.4 57.4 68.5 93.6 75.8 62.4 86.1 67.5 62.7 90.9 71.3
DEPARTMENT 57.0 64.6 58.1 73.6 85.9 76.6 67.0 83.2 70.8 63.1 71.4 64.0
SHOPPING 60.5 87.1 66.9 76.7 90.9 79.8 57.1 89.0 65.8 53.2 88.5 62.0
Average 66.6 86.2 71.0 76.8 87.5 78.8 66.4 87.6 71.5 60.0 84.7 66.6

DrQA-M
MEETING 77.1 94.2 81.0 80.6 95.8 85.1 68.6 95.7 76.8 64.1 97.9 74.3
HOMEWORK 88.8 97.9 91.4 85.2 80.2 81.4 85.0 94.7 87.9 51.6 85.8 60.2
SOFTWARE 72.7 96.0 78.9 78.6 93.3 82.7 79.4 89.4 80.9 66.3 93.2 74.5
DEPARTMENT 67.1 97.9 76.1 80.3 95.0 84.1 67.1 94.4 74.8 55.8 95.2 66.9
SHOPPING 71.5 93.9 77.7 86.4 94.8 88.7 62.8 91.1 71.4 62.4 90.7 69.7
Average 75.4 96.0 81.0 82.2 91.8 84.4 72.6 93.1 78.4 60.0 92.6 69.1

Table 4: Test performance at the task of question answering by question type using the within-world
evaluation.
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Dataset Questions
Single Entity/Relation Across Entities

Single Relation Two Relations Three Relations
Logistic Regression

MEETING 8.8 10.9 7.2 5.6
HOMEWORK 7.5 20.2 8.5 6.7
SOFTWARE 8.2 12.0 12.9 10.6
DEPARTMENT 7.4 14.4 9.7 6.1
SHOPPING 8.2 9.0 5.9 6.6
Average 8.0 13.3 8.8 7.1

Sequence-to-Sequence
MEETING 7.4 8.1 10.0 14.0
HOMEWORK 4.2 2.9 3.1 2.3
SOFTWARE 5.0 0.6 0.9 1.1
DEPARTMENT 5.5 4.0 5.6 5.6
SHOPPING 2.5 2.6 2.3 2.8
Average 4.9 3.6 4.4 5.2

MemN2N
MEETING 9.0 34.2 33.0 27.4
HOMEWORK 3.3 12.4 1.0 2.5
SOFTWARE 13.4 0.8 3.2 2.9
DEPARTMENT 12.9 20.8 13.0 9.4
SHOPPING 0.1 0.07 0.05 0.03
Average 7.8 13.7 10.1 8.4

BIDAF-M
MEETING 31.1 40.2 30.4 30.0
HOMEWORK 10.4 20.3 2.3 7.8
SOFTWARE 19.2 13.4 22.7 9.1
DEPARTMENT 23.3 30.5 19.0 13.5
SHOPPING 5.6 3.2 2.6 3.4
Average 17.9 21.5 15.4 12.8

DrQA-M
MEETING 44.5 58.8 33.3 37.1
HOMEWORK 19.8 30.1 5.9 9.4
SOFTWARE 26.4 23.4 24.0 19.4
DEPARTMENT 31.0 38.8 24.4 15.7
SHOPPING 19.3 2.3 6.7 7.1
Average 28.2 30.7 18.9 17.7

Table 5: Test performance (F1 score) at the task of question answering by question type using the
across-world evaluation.
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Abstract

We introduce a method of adapting neural
paragraph-level question answering mod-
els to the case where entire documents are
given as input. Most current question an-
swering models cannot scale to document
or multi-document input, and naively ap-
plying these models to each paragraph in-
dependently often results in them being
distracted by irrelevant text. We show
that it is possible to significantly improve
performance by using a modified training
scheme that teaches the model to ignore
non-answer containing paragraphs. Our
method involves sampling multiple para-
graphs from each document, and using an
objective function that requires the model
to produce globally correct output. We
additionally identify and improve upon a
number of other design decisions that arise
when working with document-level data.
Experiments on TriviaQA and SQuAD
shows our method advances the state of the
art, including a 10 point gain on TriviaQA.

1 Introduction

Teaching machines to answer arbitrary user-
generated questions is a long-term goal of natural
language processing. For a wide range of ques-
tions, existing information retrieval methods are
capable of locating documents that are likely to
contain the answer. However, automatically ex-
tracting the answer from those texts remains an
open challenge. The recent success of neural mod-
els at answering questions given a related para-
graph (Wang et al., 2017c; Tan et al., 2017) sug-
gests they have the potential to be a key part of

∗Work completed while interning at the Allen Institute
for Artificial Intelligence

a solution to this problem. Most neural models
are unable to scale beyond short paragraphs, so
typically this requires adapting a paragraph-level
model to process document-level input.

There are two basic approaches to this task.
Pipelined approaches select a single paragraph
from the input documents, which is then passed to
the paragraph model to extract an answer (Joshi
et al., 2017; Wang et al., 2017a). Confidence
based methods apply the model to multiple para-
graphs and return the answer with the highest con-
fidence (Chen et al., 2017a). Confidence meth-
ods have the advantage of being robust to errors
in the (usually less sophisticated) paragraph selec-
tion step, however they require a model that can
produce accurate confidence scores for each para-
graph. As we shall show, naively trained models
often struggle to meet this requirement.

In this paper we start by proposing an improved
pipelined method which achieves state-of-the-art
results. Then we introduce a method for training
models to produce accurate per-paragraph confi-
dence scores, and we show how combining this
method with multiple paragraph selection further
increases performance.

Our pipelined method focuses on addressing the
challenges that come with training on document-
level data. We use a linear classifier to select
which paragraphs to train and test on. Since an-
notating entire documents is expensive, data of
this sort is typically distantly supervised, mean-
ing only the answer text, not the answer spans,
are known. To handle the noise this creates, we
use a summed objective function that marginal-
izes the model’s output over all locations the an-
swer text occurs. We apply this approach with
a model design that integrates some recent ideas
in reading comprehension models, including self-
attention (Cheng et al., 2016) and bi-directional at-
tention (Seo et al., 2016).
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Our confidence method extends this approach
to better handle the multi-paragraph setting. Pre-
vious approaches trained the model on questions
paired with paragraphs that are known a priori to
contain the answer. This has several downsides:
the model is not trained to produce low confidence
scores for paragraphs that do not contain an an-
swer, and the training objective does not require
confidence scores to be comparable between para-
graphs. We resolve these problems by sampling
paragraphs from the context documents, includ-
ing paragraphs that do not contain an answer, to
train on. We then use a shared-normalization ob-
jective where paragraphs are processed indepen-
dently, but the probability of an answer candidate
is marginalized over all paragraphs sampled from
the same document. This requires the model to
produce globally correct output even though each
paragraph is processed independently.

We evaluate our work on TriviaQA (Joshi et al.,
2017) in the wiki, web, and unfiltered setting.
Our model achieves a nearly 10 point lead over
published prior work. We additionally perform
an ablation study on our pipelined method, and
we show the effectiveness of our multi-paragraph
methods on a modified version of SQuAD (Ra-
jpurkar et al., 2016) where only the correct docu-
ment, not the correct paragraph, is known. Finally,
we combine our model with a web search backend
to build a demonstration end-to-end QA system1,
and show it performs well on questions from the
TREC question answering task (Voorhees et al.,
1999). We release our code2 to facilitate future
work.

2 Pipelined Method

In this section we propose a pipelined QA system,
where a single paragraph is selected and passed to
a paragraph-level question answering model.

2.1 Paragraph Selection

If there is a single source document, we select the
paragraph with the smallest TF-IDF cosine dis-
tance with the question. Document frequencies are
computed using the individual paragraphs within
the document. If there are multiple input docu-
ments, we found it beneficial to use a linear clas-
sifier that uses the same TF-IDF score, whether
the paragraph was the first in its document, how

1https://documentqa.allenai.org
2https://github.com/allenai/document-qa

many tokens preceded it, and the number of ques-
tion words it includes as features. The classifier is
trained on the distantly supervised objective of se-
lecting paragraphs that contain at least one answer
span. On TriviaQA web, relative to truncating the
document as done by prior work, this improves the
chance of the selected text containing the correct
answer from 83.1% to 85.1%.

2.2 Handling Noisy Labels

Question: Which British general was killed at Khartoum
in 1885?
Answer: Gordon
Context: In February 1885 Gordon returned to the Sudan
to evacuate Egyptian forces. Khartoum came under siege
the next month and rebels broke into the city, killing Gor-
don and the other defenders. The British public reacted to
his death by acclaiming ‘Gordon of Khartoum’, a saint.
However, historians have suggested that Gordon...

Figure 1: Noisy supervision can cause many spans
of text that contain the answer, but are not situated
in a context that relates to the question (red), to
distract the model from learning from more rele-
vant spans (green).

In a distantly supervised setup we label all text
spans that match the answer text as being correct.
This can lead to training the model to select un-
wanted answer spans. Figure 1 contains an exam-
ple. To handle this difficulty, we use a summed
objective function similar to the one from Kadlec
et al. (2016), that optimizes the negative log-
likelihood of selecting any correct answer span.
The models we consider here work by indepen-
dently predicting the start and end token of the an-
swer span, so we take this approach for both pre-
dictions. For example, the objective for predicting
the answer start token becomes − log

(∑
a∈A pa

)

where A is the set of tokens that start an answer
and pi is the answer-start probability predicted by
the model for token i. This objective has the ad-
vantage of being agnostic to how the model dis-
tributes probability mass across the possible an-
swer spans, allowing the model to focus on only
the most relevant spans.

2.3 Model
We use a model with the following layers (shown
in Figure 2):

Embedding: We embed words using pre-
trained word vectors. We concatenate these with
character-derived word embeddings, which are
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Figure 2: High level outline of our model.

produced by embedding characters using a learned
embedding matrix and then applying a convolu-
tional neural network and max-pooling.

Pre-Process: A shared bi-directional
GRU (Cho et al., 2014) is used to process
the question and passage embeddings.

Attention: The attention mechanism from
the Bi-Directional Attention Flow (BiDAF)
model (Seo et al., 2016) is used to build a query-
aware context representation. Let hi and qj be
the vector for context word i and question word
j, and nq and nc be the lengths of the question
and context respectively. We compute attention
between context word i and question word j as:

aij = w1 · hi +w2 · qj +w3 · (hi � qj)

where w1, w2, and w3 are learned vectors and �
is element-wise multiplication. We then compute
an attended vector ci for each context token as:

pij =
eaij∑nq

j=1 e
aij

ci =

nq∑

j=1

qjpij

We also compute a query-to-context vector qc:

mi = max
1≤j≤nq

aij

pi =
emi

∑nc
i=1 e

mi
qc =

nc∑

i=1

hipi

The final vector for each token is built by con-
catenating hi, ci, hi � ci, and qc � ci. In our
model we subsequently pass the result through a
linear layer with ReLU activations.

Self-Attention: Next we use a layer of residual
self-attention. The input is passed through another
bi-directional GRU. Then we apply the same at-
tention mechanism, only now between the passage
and itself. In this case we do not use query-to-
context attention and we set aij = −inf if i = j.

As before, we pass the concatenated output
through a linear layer with ReLU activations. The
result is then summed with the original input.

Prediction: In the last layer of our model a bi-
directional GRU is applied, followed by a linear
layer to compute answer start scores for each to-
ken. The hidden states are concatenated with the
input and fed into a second bi-directional GRU and
linear layer to predict answer end scores. The soft-
max function is applied to the start and end scores
to produce answer start and end probabilities.

Dropout: We apply variational dropout (Gal
and Ghahramani, 2016) to the input to all the
GRUs and the input to the attention mechanisms
at a rate of 0.2.

3 Confidence Method

We adapt this model to the multi-paragraph setting
by using the un-normalized and un-exponentiated
(i.e., before the softmax operator is applied) score
given to each span as a measure of the model’s
confidence. For the boundary-based models we
use here, a span’s score is the sum of the start and
end score given to its start and end token. At test
time we run the model on each paragraph and se-
lect the answer span with the highest confidence.
This is the approach taken by Chen et al. (2017a).

Our experiments in Section 5 show that these
confidence scores can be very poor if the model is
only trained on answer-containing paragraphs, as
done by prior work. Table 1 contains some quali-
tative examples of the errors that occur.

We hypothesize that there are two key sources
of error. First, for models trained with the soft-
max objective, the pre-softmax scores for all spans
can be arbitrarily increased or decreased by a con-
stant value without changing the resulting softmax
probability distribution. As a result, nothing pre-
vents models from producing scores that are arbi-
trarily all larger or all smaller for one paragraph
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Question Low Confidence Correct Extraction High Confidence Incorrect Extraction

When is the Members
Debate held?

Immediately after Decision Time a “Mem-
bers Debate” is held, which lasts for 45 min-
utes...

...majority of the Scottish electorate voted for
it in a referendum to be held on 1 March
1979 that represented at least...

How many tree species
are in the rainforest?

...one 2001 study finding a quarter square
kilometer (62 acres) of Ecuadorian rainforest
supports more than 1,100 tree species

The affected region was approximately
1,160,000 square miles (3,000,000 km2) of
rainforest, compared to 734,000 square miles

Who was Warsz?
....In actuality, Warsz was a 12th/13th century
nobleman who owned a village located at the
modern....

One of the most famous people born in War-
saw was Maria Sklodowska - Curie, who
achieved international...

How much did the ini-
tial LM weight in kg?

The initial LM model weighed approximately
33,300 pounds (15,000 kg), and...

The module was 11.42 feet (3.48 m) tall,
and weighed approximately 12,250 pounds
(5,560 kg)

Table 1: Examples from SQuAD where a model was less confident in a correct extraction from one
paragraph (left) than in an incorrect extraction from another (right). Even if the passage has no correct
answer and does not contain any question words, the model assigns high confidence to phrases that match
the category the question is asking about. Because the confidence scores are not well-calibrated, this
confidence is often higher than the confidence assigned to correct answer spans in different paragraphs,
even when those correct spans have better contextual evidence.

than another. Second, if the model only sees para-
graphs that contain answers, it might become too
confident in heuristics or patterns that are only ef-
fective when it is known a priori that an answer
exists. For example, the model might become too
reliant on selecting answers that match semantic
type the question is asking about, causing it be eas-
ily distracted by other entities of that type when
they appear in irrelevant text. This kind of error
has also been observed when distractor sentences
are added to the context (Jia and Liang, 2017)

We experiment with four approaches to training
models to produce comparable confidence scores,
shown in the following subsections. In all cases
we will sample paragraphs that do not contain an
answer as additional training points.

3.1 Shared-Normalization

In this approach a modified objective function is
used where span start and end scores are normal-
ized across all paragraphs sampled from the same
context. This means that paragraphs from the
same context use a shared normalization factor in
the final softmax operations. We train on this ob-
jective by including multiple paragraphs from the
same context in each mini-batch. The key idea is
that this will force the model to produce scores that
are comparable between paragraphs, even though
it does not have access to information about what
other paragraphs are being considered.

3.2 Merge

As an alternative to the previous method, we ex-
periment with concatenating all paragraphs sam-

pled from the same context together during train-
ing. A paragraph separator token with a learned
embedding is added before each paragraph.

3.3 No-Answer Option
We also experiment with allowing the model to se-
lect a special “no-answer” option for each para-
graph. First we re-write our objective as:

− log

(
esa∑n
i=1 e

si

)
− log

(
egb∑n
j=1 e

gj

)
=

− log

(
esa+gb∑n

i=1

∑n
j=1 e

si+gj

)

where sj and gj are the scores for the start and end
bounds produced by the model for token j, and a
and b are the correct start and end tokens. We have
the model compute another score, z, to represent
the weight given to a “no-answer” possibility. Our
revised objective function becomes:

− log

(
(1− δ)ez + δesa+gb

ez +
∑n

i=1

∑n
j=1 e

si+gj

)

where δ is 1 if an answer exists and 0 otherwise. If
there are multiple answer spans we use the same
objective, except the numerator includes the sum-
mation over all answer start and end tokens.

We compute z by adding an extra layer at the
end of our model. We build input vectors by tak-
ing the summed hidden states of the RNNs used to
predict the start/end token scores weighed by the
start/end probabilities, and using a learned atten-
tion vector on the output of the self-attention layer.
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These vectors are fed into a two layer network with
an 80 dimensional hidden layer and ReLU activa-
tions that produces z as its only output.

3.4 Sigmoid
As a final baseline, we consider training models
with the sigmoid loss objective function. That is,
we compute a start/end probability for each token
by applying the sigmoid function to the start/end
scores of each token. A cross entropy loss is used
on each individual probability. The intuition is
that, since the scores are being evaluated indepen-
dently of one another, they are more likely to be
comparable between different paragraphs.

4 Experimental Setup

4.1 Datasets
We evaluate our approach on four datasets: Triv-
iaQA unfiltered (Joshi et al., 2017), a dataset of
questions from trivia databases paired with docu-
ments found by completing a web search of the
questions; TriviaQA wiki, the same dataset but
only including Wikipedia articles; TriviaQA web,
a dataset derived from TriviaQA unfiltered by
treating each question-document pair where the
document contains the question answer as an in-
dividual training point; and SQuAD (Rajpurkar
et al., 2016), a collection of Wikipedia articles and
crowdsourced questions.

4.2 Preprocessing
We note that for TriviaQA web we do not sub-
sample as was done by Joshi et al. (2017), instead
training on the all 530k training examples. We
also observe that TriviaQA documents often con-
tain many small paragraphs, so we restructure the
documents by merging consecutive paragraphs to-
gether up to a target size. We use a maximum para-
graph size of 400 unless stated otherwise. Para-
graph separator tokens with learned embeddings
are added between merged paragraphs to preserve
formatting information. We are also careful to
mark all spans of text that would be considered an
exact match by the official evaluation script, which
includes some minor text pre-processing, as an-
swer spans, not just spans that are an exact string
match with the answer text.

4.3 Sampling
Our confidence-based approaches are trained by
sampling paragraphs from the context during
training. For SQuAD and TriviaQA web we take

Model EM F1
baseline (Joshi et al., 2017) 41.08 47.40
BiDAF 50.21 56.86
BiDAF + TF-IDF 53.41 59.18
BiDAF + sum 56.22 61.48
BiDAF + TF-IDF + sum 57.20 62.44
our model + TF-IDF + sum 61.10 66.04

Table 2: Results on TriviaQA web using our
pipelined method.

the top four paragraphs as judged by our paragraph
ranking function (see Section 2.1). We sample two
different paragraphs from those four each epoch
to train on. Since we observe that the higher-
ranked paragraphs are more likely to contain the
context needed to answer the question, we sample
the highest ranked paragraph that contains an an-
swer twice as often as the others. For the merge
and shared-norm approaches, we additionally re-
quire that at least one of the paragraphs contains
an answer span, and both of those paragraphs are
included in the same mini-batch. For TriviaQA
wiki we repeat the process but use the top 8 para-
graphs, and for TriviaQA unfiltered we use the top
16, because much more context is given in these
settings.

4.4 Implementation

We train the model with the Adadelta opti-
mizer (Zeiler, 2012) with a batch size 60 for Triv-
iaQA and 45 for SQuAD. At test time we select
the most probable answer span of length less than
or equal to 8 for TriviaQA and 17 for SQuAD.
The GloVe 300 dimensional word vectors released
by Pennington et al. (2014) are used for word em-
beddings. On SQuAD, we use a dimensionality
of size 100 for the GRUs and of size 200 for the
linear layers employed after each attention mecha-
nism. We found for TriviaQA, likely because there
is more data, using a larger dimensionality of 140
for each GRU and 280 for the linear layers is bene-
ficial. During training, we maintain an exponential
moving average of the weights with a decay rate of
0.999. We use the weight averages at test time. We
do not update the word vectors during training.

5 Results

5.1 TriviaQA Web and TriviaQA Wiki

First, we do an ablation study on TriviaQA web
to show the effects of our proposed methods for
our pipeline model. We start with a baseline fol-
lowing the one used by Joshi et al. (2017). This
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Model Web Web Verified Wiki Wiki Verified
EM F1 EM F1 EM F1 EM F1

Baseline (Joshi et al., 2017) 40.74 47.06 49.54 55.80 40.32 45.91 44.86 50.71
Smarnet (Chen et al., 2017b) 40.87 47.09 51.11 55.98 42.41 48.84 50.51 55.90
Mnemonic Reader (Hu et al., 2017) 46.65 52.89 56.96 61.48 46.94 52.85 54.45 59.46
(Weissenborn et al., 2017a) 50.56 56.73 63.20 67.97 48.64 55.13 53.42 59.92
Neural Cascade (Swayamdipta et al., 2017) 53.75 58.57 63.20 66.88 51.59 55.95 58.90 62.53
S-Norm (ours) 66.37 71.32 79.97 83.70 63.99 68.93 67.98 72.88

Table 3: Published TriviaQA results. Our approach advances the state of the art by about 10 points on
these datasets4
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Figure 3: Results on TriviaQA web when apply-
ing our models to multiple paragraphs from each
document. Most of our training methods improve
the model’s ability to utilize more text.

system uses BiDAF (Seo et al., 2016) as the para-
graph model, and selects a random answer span
from each paragraph each epoch to train on. The
first 400 tokens of each document are used during
training, and the first 800 during testing. When
using the TF-IDF paragraph selection approach,
we instead break the documents into paragraphs
of size 400 when training and 800 when testing,
and select the top-ranked paragraph to feed into
the model. As shown in Table 2, our baseline out-
performs the results reported by Joshi et al. (2017)
significantly, likely because we are not subsam-
pling the data. We find both TF-IDF ranking and
the sum objective to be effective. Using our re-
fined model increases the gain by another 4 points.

Next we show the results of our confidence-
based approaches. For this comparison we split
documents into paragraphs of at most 400 to-
kens, and rank them using TF-IDF cosine distance.
Then we measure the performance of our proposed
approaches as the model is used to independently
process an increasing number of these paragraphs,
and the highest confidence answer is selected as
the final output. The results are shown in Figure 3.

On this dataset even the model trained without
any of the proposed training methods (“none”) im-
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Figure 4: Results for our confidence methods on
TriviaQA unfiltered. The shared-norm approach
is the strongest, while the baseline model starts to
lose performance as more paragraphs are used.

proves as more paragraphs are used, showing it
does a passable job at focusing on the correct para-
graph. The no-answer option training approach
lead to a significant improvement, and the shared-
norm and merge approaches are even better.

We use the shared-norm approach for evalua-
tion on the TriviaQA test sets. We found that in-
creasing the paragraph size to 800 at test time, and
to 600 during training, was slightly beneficial, al-
lowing our model to reach 66.04 EM and 70.98 F1
on the dev set. As shown in Table 3, our model is
firmly ahead of prior work on both the TriviaQA
web and TriviaQA wiki test sets. Since our sub-
mission, a few additional entries have been added
to the public leader for this dataset5, although to
the best of our knowledge these results have not
yet been published.

5.2 TriviaQA Unfiltered

Next we apply our confidence methods to Trivi-
aQA unfiltered. This dataset is of particular inter-
est because the system is not told which document
contains the answer, so it provides a plausible sim-
ulation of answering a question using a document

4Comparison made of 5/01/2018.
5https://competitions.codalab.org/competitions/17208
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Figure 5: Results for our confidence methods on
document-level SQuAD. The shared-norm model
is the only model that does not lose performance
when exposed to large numbers of paragraphs.

retrieval system. We show the same graph as be-
fore for this dataset in Figure 4. Our methods have
an even larger impact on this dataset, probably be-
cause there are many more relevant and irrelevant
paragraphs for each question, making paragraph
selection more important.

Note the naively trained model starts to lose
performance as more paragraphs are used, show-
ing that errors are being caused by the model be-
ing overly confident in incorrect extractions. We
achieve a score of 61.55 EM and 67.61 F1 on the
dev set. This advances the only prior result re-
ported for this dataset, 50.6 EM and 57.3 F1 from
Wang et al. (2017b), by 10 points.

5.3 SQuAD

We additionally evaluate our model on SQuAD.
SQuAD questions were not built to be answered
independently of their context paragraph, which
makes it unclear how effective of an evaluation
tool they can be for document-level question an-
swering. To assess this we manually label 500 ran-
dom questions from the training set.

We categorize questions as:

1. Context-independent, meaning it can be un-
derstood independently of the paragraph.

2. Document-dependent, meaning it can be un-
derstood given the article’s title. For exam-
ple, “What individual is the school named af-
ter?” for the document “Harvard University”.

3. Paragraph-dependent, meaning it can only be
understood given its paragraph. For example,
“What was the first step in the reforms?”.

We find 67.4% of the questions to be context-
independent, 22.6% to be document-dependent,

and the remaining 10% to be paragraph-
dependent. There are many document-dependent
questions because questions are frequently about
the subject of the document. Since a reasonably
high fraction of the questions can be understood
given the document they are from, and to isolate
our analysis from the retrieval mechanism used,
we choose to evaluate on the document-level. We
build documents by concatenating all the para-
graphs in SQuAD from the same article together
into a single document.

Given the correct paragraph (i.e., in the standard
SQuAD setting) our model reaches 72.14 EM and
81.05 F1 and can complete 26 epochs of training
in less than five hours. Most of our variations to
handle the multi-paragraph setting caused a minor
(up to half a point) drop in performance, while the
sigmoid version fell behind by a point and a half.

We graph the document-level performance in
Figure 5. For SQuAD, we find it crucial to em-
ploy one of the suggested confidence training tech-
niques. The base model starts to drop in perfor-
mance once more than two paragraphs are used.
However, the shared-norm approach is able to
reach a peak performance of 72.37 F1 and 64.08
EM given 15 paragraphs. Given our estimate that
10% of the questions are ambiguous if the para-
graph is unknown, our approach appears to have
adapted to the document-level task very well.

Finally, we compare the shared-norm model
with the document-level result reported by Chen
et al. (2017a). We re-evaluate our model using
the documents used by Chen et al. (2017a), which
consist of the same Wikipedia articles SQuAD was
built from, but downloaded at different dates. The
advantage of this dataset is that it does not allow
the model to know a priori which paragraphs were
filtered out during the construction of SQuAD.
The disadvantage is that some of the articles have
been edited since the questions were written, so
some questions may no longer be answerable. Our
model achieves 59.14 EM and 67.34 F1 on this
dataset, which significantly outperforms the 49.7
EM reported by Chen et al. (2017a).

5.4 Curated TREC

We perform one final experiment that tests our
model as part of an end-to-end question answering
system. For document retrieval, we re-implement
the pipeline from Joshi et al. (2017). Given a
question, we retrieve up to 10 web documents us-

7https://github.com/brmson/yodaqa/wiki/Benchmarks
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Model Accuracy
S-Norm (ours) 53.31

YodaQA with Bing (Baudiš, 2015), 37.18
YodaQA (Baudiš, 2015), 34.26

DrQA + DS (Chen et al., 2017a) 25.7

Table 4: Results on the Curated TREC corpus, Yo-
daQA results extracted from its github page7

ing a Bing web search of the question, and all
Wikipedia articles about entities the entity linker
TAGME (Ferragina and Scaiella, 2010) identifies
in the question. We then use our linear paragraph
ranker to select the 16 most relevant paragraphs
from all these documents, which are passed to
our model to locate the final answer span. We
choose to use the shared-norm model trained on
the TriviaQA unfiltered dataset since it is trained
using multiple web documents as input. We use
the same heuristics as Joshi et al. (2017) to filter
out trivia or QA websites to ensure questions can-
not be trivially answered using webpages that di-
rectly address the question. A demo of the system
is publicly available8.

We find accuracy on the TriviaQA unfiltered
questions remains almost unchanged (within half
a percent exact match score) when using our doc-
ument retrieval method instead of the given doc-
uments, showing our pipeline does a good job of
producing evidence documents that are similar to
the ones in the training data.

We test the system on questions from the TREC
QA tasks (Voorhees et al., 1999), in particular a
curated set of questions from Baudiš (2015), the
same dataset used in Chen et al. (2017a). We apply
our system to the 694 test questions without re-
training on the train questions.

We compare against DrQA (Chen et al., 2017a)
and YodaQA (Baudiš, 2015). It is important to
note that these systems use different document
corpora (Wikipedia for DrQA, and Wikipedia,
several knowledge bases, and optionally Bing web
search for YodaQA) and different training data
(SQuAD and the TREC training questions for
DrQA, and TREC only for YodaQA), so we can-
not make assertions about the relative performance
of individual components. Nevertheless, it is in-
structive to show how the methods we experiment
with in this work can advance an end-to-end QA
system.

The results are listed in Table 4. Our method
outperforms prior work, breaking the 50% accu-

8https://documentqa.allenai.org/

Category proportion
Sentence reading errors 35.2
Paragraph reading errors 17.6

Document coreference errors 14.1
Part of answer extracted 7.1

Required background knowledge 5.8
Answer indirectly stated 20.2

Table 5: Error analysis on TriviaQA web.

racy mark. This is a strong proof-of-concept that
neural paragraph reading combined with existing
document retrieval methods can advance the state-
of-the-art on general question answering. It also
shows that, despite the noise, the data from Trivi-
aQA is sufficient to train models that can be effec-
tive on out-of-domain QA tasks.

5.5 Discussion

We found that models that have only been trained
on answer-containing paragraphs can perform
very poorly in the multi-paragraph setting. The
results were particularly bad for SQuAD; we think
this is partly because the paragraphs are shorter, so
the model had less exposure to irrelevant text.

The shared-norm approach consistently outper-
formed the other methods, especially on SQuAD
and TriviaQA unfiltered, where many paragraphs
were needed to reach peak performance. Figures
3, 4, and 5 show this technique has a minimal ef-
fect on the performance when only one paragraph
is used, suggesting the model’s per-paragraph per-
formance is preserved. Meanwhile, it can be
seen the accuracy of the shared-norm model never
drops as more paragraphs are added, showing it
successfully resolves the problem of being dis-
tracted by irrelevant text.

The no-answer and merge approaches were
moderately effective, we suspect because they at
least expose the model to more irrelevant text.
However, these methods do not address the fun-
damental issue of requiring confidence scores to
be comparable between independent applications
of the model to different paragraphs, which is why
we think they lagged behind. The sigmoid objec-
tive function reduces the paragraph-level perfor-
mance considerably, especially on the TriviaQA
datasets. We suspect this is because it is vulner-
able to label noise, as discussed in Section 2.2.

5.6 Error Analysis

We perform an error analysis by labeling 200 ran-
dom TriviaQA web dev-set errors made by the
shared-norm model. We found 40.5% of the er-
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rors were caused because the document did not
contain sufficient evidence to answer the question,
and 17% were caused by the correct answer not
being contained in the answer key. The distribu-
tion of the remaining errors is shown in Table 5.

We found quite a few cases where a sentence
contained the answer, but the model was unable
to extract it due to complex syntactic structure or
paraphrasing. Two kinds of multi-sentence read-
ing errors were also common: cases that required
connecting multiple statements made in a sin-
gle paragraph, and long-range coreference cases
where a sentence’s subject was named in a previ-
ous paragraph. Finally, some questions required
background knowledge, or required the model to
extract answers that were only stated indirectly
(e.g., examining a list to extract the nth element).
Overall, these results suggest good avenues for im-
provement are to continue advancing the sentence
and paragraph level reading comprehension abili-
ties of the model, and adding a mechanism to han-
dle document-level coreferences.

6 Related Work

Reading Comprehension Datasets. The state of
the art in reading comprehension has been rapidly
advanced by neural models, in no small part due
to the introduction of many large datasets. The
first large scale datasets for training neural reading
comprehension models used a Cloze-style task,
where systems must predict a held out word from
a piece of text (Hermann et al., 2015; Hill et al.,
2015). Additional datasets including SQuAD (Ra-
jpurkar et al., 2016), WikiReading (Hewlett et al.,
2016), MS Marco (Nguyen et al., 2016) and Triv-
iaQA (Joshi et al., 2017) provided more realis-
tic questions. Another dataset of trivia questions,
Quasar-T (Dhingra et al., 2017), was introduced
recently that uses ClueWeb09 (Callan et al., 2009)
as its source for documents. In this work we
choose to focus on SQuAD because it is well stud-
ied, and TriviaQA because it is more challenging
and features documents and multi-document con-
texts (Quasar T is similar, but was released after
we started work on this project).

Neural Reading Comprehension. Neural
reading comprehension systems typically use
some form of attention (Wang and Jiang, 2016), al-
though alternative architectures exist (Chen et al.,
2017a; Weissenborn et al., 2017b). Our model
follows this approach, but includes some re-
cent advances such as variational dropout (Gal

and Ghahramani, 2016) and bi-directional atten-
tion (Seo et al., 2016). Self-attention has been
used in several prior works (Cheng et al., 2016;
Wang et al., 2017c; Pan et al., 2017). Our
approach to allowing a reading comprehension
model to produce a per-paragraph no-answer score
is related to the approach used in the BiDAF-
T (Min et al., 2017) model to produce per-sentence
classification scores, although we use an attention-
based method instead of max-pooling.

Open QA. Open question answering has been
the subject of much research, especially spurred
by the TREC question answering track (Voorhees
et al., 1999). Knowledge bases can be used,
such as in (Berant et al., 2013), although the re-
sulting systems are limited by the quality of the
knowledge base. Systems that try to answer ques-
tions using natural language resources such as
YodaQA (Baudiš, 2015) typically use pipelined
methods to retrieve related text, build answer can-
didates, and pick a final output.

Neural Open QA. Open question answering
with neural models was considered by Chen et al.
(2017a), where researchers trained a model on
SQuAD and combined it with a retrieval engine
for Wikipedia articles. Our work differs because
we focus on explicitly addressing the problem
of applying the model to multiple paragraphs.
A pipelined approach to QA was recently pro-
posed by Wang et al. (2017a), where a ranker
model is used to select a paragraph for the read-
ing comprehension model to process. More recent
work has considered evidence aggregation tech-
niques (Wang et al., 2017b; Swayamdipta et al.,
2017). Our work shows paragraph-level mod-
els that produce well-calibrated confidence scores
can effectively exploit large amounts of text with-
out aggregation, although integrating aggregation
techniques could further improve our results.

7 Conclusion

We have shown that, when using a paragraph-level
QA model across multiple paragraphs, our train-
ing method of sampling non-answer-containing
paragraphs while using a shared-norm objective
function can be very beneficial. Combining this
with our suggestions for paragraph selection, us-
ing the summed training objective, and our model
design allows us to advance the state of the art
on TriviaQA. As shown by our demo, this work
can be directly applied to building deep-learning-
powered open question answering systems.
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Abstract

Complex machine learning models for NLP
are often brittle, making different predic-
tions for input instances that are extremely
similar semantically. To automatically de-
tect this behavior for individual instances,
we present semantically equivalent ad-
versaries (SEAs) – semantic-preserving
perturbations that induce changes in the
model’s predictions. We generalize these
adversaries into semantically equivalent
adversarial rules (SEARs) – simple, uni-
versal replacement rules that induce ad-
versaries on many instances. We demon-
strate the usefulness and flexibility of SEAs
and SEARs by detecting bugs in black-box
state-of-the-art models for three domains:
machine comprehension, visual question-
answering, and sentiment analysis. Via
user studies, we demonstrate that we gener-
ate high-quality local adversaries for more
instances than humans, and that SEARs in-
duce four times as many mistakes as the
bugs discovered by human experts. SEARs
are also actionable: retraining models us-
ing data augmentation significantly reduces
bugs, while maintaining accuracy.

1 Introduction

With increasing complexity of models for tasks like
classification (Joulin et al., 2016), machine compre-
hension (Rajpurkar et al., 2016; Seo et al., 2017),
and visual question answering (Zhu et al., 2016),
models are becoming increasingly challenging to
debug, and to determine whether they are ready for
deployment. In particular, these complex models
are prone to brittleness: different ways of phrasing
the same sentence can often cause the model to

In the United States especially, several high-profile
cases such as Debra LaFave, Pamela Rogers, and
Mary Kay Letourneau have caused increased
scrutiny on teacher misconduct.

(a) Input Paragraph

Q: What has been the result of this publicity?
A: increased scrutiny on teacher misconduct

(b) Original Question and Answer

Q: What haL been the result of this publicity?
A: teacher misconduct
(c) Adversarial Q & A (Ebrahimi et al., 2018)

Q: What’s been the result of this publicity?
A: teacher misconduct

(d) Semantically Equivalent Adversary

Figure 1: Adversarial examples for question an-
swering, where the model predicts the correct an-
swer for the question and input paragraph (1a and
1b). It is possible to fool the model by adversarially
changing a single character (1c), but at the cost of
making the question nonsensical. A Semantically
Equivalent Adversary (1d) results in an incorrect
answer while preserving semantics.

output different predictions. While held-out accu-
racy is often useful, it is not sufficient: practitioners
consistently overestimate their model’s generaliza-
tion (Patel et al., 2008) since test data is usually
gathered in the same manner as training and vali-
dation. When deployed, these seemingly accurate
models encounter sentences that are written very
differently than the ones in the training data, thus
making them prone to mistakes, and fragile with re-
spect to distracting additions (Jia and Liang, 2017).
These problems are exacerbated by the variability
in language, and by cost and noise in annotations,
making such bugs challenging to detect and fix.

A particularly challenging issue is oversensitiv-
ity (Jia and Liang, 2017): a class of bugs where
models output different predictions for very similar
inputs. These bugs are prevalent in image classifi-
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Transformation Rules #Flips

(WP is→WP’s) 70 (1%)
(?→??) 202(3%)

(a) Example Rules

Original: What is the oncorhynchus
also called? A: chum salmon
Changed: What’s the oncorhynchus
also called? A: keta

(b) Example for (WP is→WP’s)

Original: How long is the Rhine?
A: 1,230 km
Changed: How long is the Rhine??
A: more than 1,050,000

(c) Example for (?→??)

Figure 2: Semantically Equivalent Adversarial Rules: For the task of question answering, the proposed
approach identifies transformation rules for questions in (a) that result in paraphrases of the queries, but
lead to incorrect answers (#Flips is the number of times this happens in the validation data). We show
examples of rephrased questions that result in incorrect answers for the two rules in (b) and (c).

cation (Szegedy et al., 2014), a domain where one
can measure the magnitude of perturbations, and
many small-magnitude changes are imperceptible
to the human eye. For text, however, a single word
addition can change semantics (e.g. adding “not”),
or have no semantic impact for the task at hand.

Inspired by adversarial examples for images,
we introduce semantically equivalent adver-
saries (SEAs) – text inputs that are perturbed in
semantics-preserving ways, but induce changes in
a black box model’s predictions (example in Figure
1). Producing such adversarial examples systemati-
cally can significantly aid in debugging ML models,
as it allows users to detect problems that happen
in the real world, instead of oversensitivity only
to malicious attacks such as intentionally scram-
bling, misspelling, or removing words (Bansal
et al., 2014; Ebrahimi et al., 2018; Li et al., 2016).

While SEAs describe local brittleness (i.e. are
specific to particular predictions), we are also inter-
ested in bugs that affect the model more globally.
We represent these via simple replacement rules
that induce SEAs on multiple predictions, such as
in Figure 2, where a simple contraction of “is”after
Wh pronouns (what, who, whom) (2b) makes 70
(1%) of the previously correct predictions of the
model “flip” (i.e. become incorrect). Perhaps more
surprisingly, adding a simple “?” induces mistakes
in 3% of examples. We call such rules semantically
equivalent adversarial rules (SEARs).

In this paper, we present SEAs and SEARs, de-
signed to unveil local and global oversensitivity
bugs in NLP models. We first present an approach
to generate semantically equivalent adversaries,
based on paraphrase generation techniques (Lapata
et al., 2017), that is model-agnostic (i.e. works for
any black box model). Next, we generalize SEAs
into semantically equivalent rules, and outline the
properties for optimal rule sets: semantic equiva-
lence, high adversary count, and non-redundancy.
We frame the problem of finding such a set as a

submodular optimization problem, leading to an
accurate yet efficient algorithm.

Including the human into the loop, we demon-
strate via user studies that SEARs help users un-
cover important bugs on a variety of state-of-the-art
models for different tasks (sentiment classification,
visual question answering). Our experiments indi-
cate that SEAs and SEARs make humans signifi-
cantly better at detecting impactful bugs – SEARs
uncover bugs that cause 3 to 4 times more mistakes
than human-generated rules, in much less time. Fi-
nally, we show that SEARs are actionable, enabling
the human to close the loop by fixing the discov-
ered bugs using a data augmentation procedure.

2 Semantically Equivalent Adversaries

Consider a black box model f that takes a sentence
x and makes a prediction f(x), which we want
to debug. We identify adversaries by generating
paraphrases of x, and getting predictions from f
until the original prediction is changed.

Given an indicator function SemEq(x, x′) that
is 1 if x is semantically equivalent to x′ and 0 oth-
erwise, we define a semantically equivalent adver-
sary (SEA) as a semantically equivalent instance
that changes the model prediction in Eq (1). Such
adversaries are important in evaluating the robust-
ness of f , as each is an undesirable bug.

SEA(x, x′)=1
[

SemEq(x, x′)∧f(x) 6=f(x′)
]

(1)

While there are various ways of scoring semantic
similarity between pairs of texts based on embed-
dings (Le and Mikolov, 2014; Wieting and Gimpel,
2017), they do not explicitly penalize unnatural sen-
tences, and generating sentences requires surround-
ing context (Le and Mikolov, 2014) or training
a separate model. We turn instead to paraphras-
ing based on neural machine translation (Lapata
et al., 2017), where P (x′|x) (the probability of a
paraphrase x′ given original sentence x) is propor-
tional to translating x into multiple pivot languages
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and then taking the score of back-translating the
translations into the original language. This ap-
proach scores semantics and “plausibility” simulta-
neously (as translation models have “built in” lan-
guage models) and allows for easy paraphrase gen-
eration, by linearly combining the paths of each
back-decoder when back-translating.

Unfortunately, given source sentences x and z,
P (x′|x) is not comparable to P (z′|z), as each has
a different normalization constant, and heavily de-
pends on the shape of the distribution around x or
z. If there are multiple perfect paraphrases near x,
they will all share probability mass, while if there
is a paraphrase much better than the rest near z, it
will have a higher score than the ones near x, even
if the paraphrase quality is the same. We thus de-
fine the semantic score S(x, x′) as a ratio between
the probability of a paraphrase and the probability
of the sentence itself:

S(x, x′) = min

(
1,
P (x′|x)

P (x|x)

)
(2)

We define SemEq(x, x′) = 1[S(x, x′) ≥ τ ], i.e.
x′ is semantically equivalent to x if the similarity
score between x and x′ is greater than some thresh-
old τ (which we crowdsource in Section 5). In
order to generate adversaries, we generate a set of
paraphrases Πx around x via beam search and get
predictions on Πx using the black box model until
an adversary is found, or until S(x, x′) < τ . We
may be interested in the best adversary for a partic-
ular instance, i.e. argmaxx′∈Πx

S(x, x′)SEAx(x′),
or we may consider multiple SEAs for generaliza-
tion purposes. We illustrate this process in Figure 3,
where we generate SEAs for a VQA model by gen-
erating paraphrases around the question, and check-
ing when the model prediction changes. The first
two adversaries with highest S(x, x′) are semanti-
cally equivalent, the third maintains the semantics
enough for it to be a useful adversary, and the fourth
is ungrammatical and thus not useful.

3 Semantically Equivalent Adversarial
Rules (SEARs)

While finding the best adversary for a particular
instance is useful, humans may not have time or
patience to examine too many SEAs, and may not
be able to generalize well from them in order to
understand and fix the most impactful bugs. In
this section, we address the problem of generaliz-
ing local adversaries into Semantically Equivalent

What color is the tray? Pink

What colour is the tray? Green
Which color is the tray? Green
What color is it? Green
How color is tray? Green

Figure 3: Visual QA Adversaries: Paraphrasing
questions to find adversaries for the original ques-
tion (top, in bold) asked of a given image. Adver-
saries are sorted by decreasing semantic similarity.

Adversarial Rules for Text (SEARs), search and re-
place rules that produce semantic adversaries with
little or no change in semantics, when applied to a
corpus of sentences. Assuming that humans have
limited time, and are thus willing to look at B
rules, we propose a method for selecting such a set
of rules given a reference dataset X .

A rule takes the form r = (a→c), where the
first instance of the antecedent a is replaced by the
consequent c for every instance that includes a, as
we previously illustrated in Figure 2a. The output
after applying rule r on a sentence x is represented
as the function call r(x), e.g. if r =(movie→film),
r(“Great movie!”) = “Great film!”.

Proposing a set of rules: In order to generalize
a SEA x′ into a candidate rule, we must represent
the changes that took place from x→ x′. We will
use x = “What color is it?” and x′ = “Which color
is it?” from Figure 4 as a running example.

One approach is exact matching: selecting the
minimal contiguous sequence that turns x into x′,
(What→Which) in the example. Such changes may
not always be semantics preserving, so we also
propose further rules by including the immediate
context (previous and/or next word with respect
to the sequence), e.g. (What color→Which color).
Adding such context, however, may make rules
very specific, thus restricting their value. To al-
low for generalization, we also represent the an-
tecedent of proposed rules by a product of their raw
text with coarse and fine-grained Part-of-Speech
tags, and allow these tags to happen in the con-
sequent if they match the antecedent. In the
running example, we would propose rules like
(What color→Which color), (What NOUN→Which
NOUN ), (WP color→Which color), etc.

We generate SEAs and propose rules for every
x ∈ X , which gives us a set of candidate rules
(second box in Figure 4, for loop in Algorithm 1).
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Figure 4: SEAR process. (1) SEAs are generalized into candidate rules, (2) rules that are not semantically
equivalent are filtered out, e.g. r5: (What→Which), (3) rules are selected according to Eq (3), in order to
maximize coverage and avoid redundancy (e.g. rejecting r2, valuing r1 more highly than r4), and (4) a
user vets selected rules and keeps the ones that they think are bugs.

Selecting a set of rules: Given a set of candidate
rules, we want to select a set R such that |R| ≤ B,
and the following properties are met:

1. Semantic Equivalence: Application of the
rules in the set should produce semantically equiv-
alent instances. This is equivalent to considering
rules that have a high probability of inducing se-
mantically equivalent instances when applied, i.e.
E[SemEq(x, r(x))] ≥ 1−δ. This is the Filter step
in Algorithm 1. For example, consider the rule
(What→Which) in Fig 4 which produces some se-
mantically equivalent instances, but also produces
many instances that are unnatural (e.g. “What is
he doing?” → “Which is he doing?”), and is thus
filtered out by this criterion.

2. High adversary count: The rules in the set
should induce as many SEAs as possible in valida-
tion data. Furthermore, each of the induced SEAs
should have as high of a semantic similarity score
as possible, i.e. for each rule r ∈ R we want to
maximize

∑
x∈X S(x, r(x))SEA(x, r(x)). In Fig-

ure 4, r1 induces more and more similar mistakes
when compared to r4, and is thus superior to r4.

3. Non-redundancy: Different rules in the set
may induce the same SEAs, or may induce different
SEAs for the same instances. Ideally, rules in the
set should cover as many instances in the validation
as possible, rather than focus on a small set of
fragile predictions. Furthermore, rules should not
be repetitive to the user. In Figure 4 (mid), r1
covers a superset of r2’s adversaries, making r2
completely redundant and thus not included in R.

Properties 2 and 3 combined suggest a weighted
coverage problem, where a rule r covers an in-
stance x if SEA(x, r(x)), the weight of the connec-
tion being given by S(x, r(x)). We thus want to

Algorithm 1 Generating SEARs for a model
Require: Classifier f , Correct instances X
Require: Hyperparameters, δ, τ , Budget B
R ← {}{Set of rules}
for all x ∈ X do
X ′ = GenParaphrases(X, τ)
A ← {x′ ∈ X ′ | f(x) 6= f(x′)} {SEAs; §2}
R ← R∪ Rules(A)

end for
R ← Filter(R, δ, τ) {Remove low scoring SEARs}
R ← SubMod(R, B) {high count / score, diverse }
return R

find the set of semantically equivalent rules that:

max
R,|R|<B

∑

x∈X
max
r∈R

S(x, r(x))SEA(x, r(x)) (3)

While Eq (3) is NP-hard, the objective is monotone
submodular (Krause and Golovin, 2014), and thus
a greedy algorithm that iteratively adds the rule
with the highest marginal gain offers a constant-
factor approximation guarantee of 1 − 1/e to the
optimum. This is the SubMod procedure in Algo-
rithm 1, represented pictorially in Figure 4, where
the output is a set of rules given to a human, who
judges if they are really bugs or not.

4 Illustrative Examples

Before evaluating the utility of SEAs and SEARs
with user studies, we show examples in state-of-the-
art models for different tasks. Note that we treat
these models as black boxes, not using internals or
gradients in any way when discovering these bugs.

Machine Comprehension: We take the Al-
lenNLP (Gardner et al., 2017) implementation of
BiDaF (Seo et al., 2017) for Machine Comprehen-
sion, and display some high coverage SEARs for it
in Table 1 (also, Figures 1 and 2a). For each rule,
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SEAR Questions / SEAs f(x) Flips

What is What’s the NASUWT? Trade unions

2%What VBZ→ Teachers in Wales
What’s What is What’s a Hauptlied? main hymn Veni

redemptor gentium

What resource Which resource coal wool

1%What NOUN→ was mined in the Newcastle area?
Which NOUN What health Which health nervous breakdown

problem did Tesla have in 1879? relations

What was So what was Satyagraha

2%What VERB→ Ghandi’s work called? Civil Disobedience
So what VERB What is So what is a new trend Co-teaching

in teaching? educational institutions

What did And what did Tesla an induction motor

2%What VBD→ develop in 1887? laboratory
And what VBD What was And what was journalist sleep

Kenneth Swezey’s job?

Table 1: SEARs for Machine Comprehension

SEAR Questions / SEAs f(x) Flips

WP VBZ→ What has What’s been cut? Cake Pizza 3.3%
WP’s Who is Who’s holding the baby Woman Man

What NOUN→ What Which kind of floor is it? Wood Marble 3.9%
Which NOUN What Which color is the jet? Gray White

color→colour What color colour is the tray? Pink Green 2.2%
What color colour is the jet? Gray Blue

ADV is→ Where is Where’s the jet? Sky Airport 2.1%
ADV’s How is How’s the desk? Messy Empty

Table 2: SEARs for Visual QA

we display two example questions with the corre-
sponding SEA, the prediction (with corresponding
change) and the percentage of “flips” - instances
previously predicted correctly on the validation
data, but predicted incorrectly after the application
of the rule. The rule (What VBZ→What’s) general-
izes the SEA on Figure 1, and shows that the model
is fragile with respect to contractions (flips 2% of
all correctly predicted instances on the validation
data). The second rule uncovers a bug with respect
to simple question rephrasing, while the third and
fourth rules show that the model is not robust to a
more conversational style of asking questions.

Visual QA: We show SEARs for a state-of-the-
art visual question-answering model (Zhu et al.,
2016) in Table 2. Even though the contexts are
different (paragraphs for machine comprehension,
images for VQA), it is interesting that both models
display similar bugs. The fact that VQA is fragile to
“Which” questions is because questions of this form
are not in the training set, while (color→colour)
probably stems from an American bias in data col-
lection. Changes induced by these four rules flip
more than 10% of the predictions in the validation
data, which is of critical concern if the model is
being evaluated for production.

SEAR Reviews / SEAs f(x) Flips

movie→ Yeah, the movie film pretty much sucked . Neg Pos 2%
film This is not movie film making . Neg Pos

film→ Excellent film movie . Pos Neg 1%
movie I’ll give this film movie 10 out of 10 ! Pos Neg

is→was Ray Charles is was legendary . Pos Neg 4%
It is was a really good show to watch . Pos Neg

this→that Now this that is a movie I really dislike . Neg Pos 1%
The camera really likes her in this that movie. Pos Neg

DET NOUN is The movie is It is terrible Neg Pos 1%
→it is The dialog is It is atrocious Neg Pos

Table 3: SEARs for Sentiment Analysis

Sentiment Analysis: Finally, in Table 3 we dis-
play SEARs for a fastText (Joulin et al., 2016)
model for sentiment analysis trained on movie re-
views. Surprisingly, many of its predictions change
for perturbations that have no sentiment connota-
tions, even in the presence of polarity-laden words.

5 User Studies

We compare automatically discovered SEAs and
SEARs to user-generated adversaries and rules, and
propose a way to fix the bugs induced by SEARs.

Our evaluation benchmark includes two tasks:
visual question answering (VQA) and sentiment
analysis on movie review sentences. We choose
these tasks because a human can quickly look at a
prediction and judge if it is correct or incorrect, can
easily perturb instances, and judge if two instances
in a pair are semantically equivalent or not. Since
our focus is debugging, throughout the experiment
we only considered SEAs and SEARs on examples
that are originally predicted correctly (i.e. every
adversary is also by construction a mistake). The
user interfaces for all experiments in this section
are included in the supplementary material.

5.1 Implementation Details

The paraphrasing model (Lapata et al., 2017) re-
quires translation models to and from different
languages. We train neural machine translation
models using the default parameters of OpenNMT-
py (Klein et al., 2017) for English↔Portuguese
and English↔French models, on 2 million and 1
million parallel sentences (respectively) from Eu-
roParl, news, and other sources (Tiedemann, 2012).
We use the spacy library (http://spacy.io)
for POS tagging. For SEAR generation, we set
δ = 0.1 (i.e. at least 90% equivalence). We gener-
ate a set of candidate adversaries as described in
Section 2, and ask mechanical turkers to judge them
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Human vs SEA Human vs HSEA

Neither 145 (48%) 127 (42%)
Only Human 47 (16%) 38 (13%)
Only SEA 54 (18%) 72 (24%)
Both 54 (18%) 63 (21%)

(a) Visual Question-Answering

Human vs SEA Human vs HSEA

Neither 177 (59%) 161 (54%)
Only Human 45 (15%) 40 (13%)
Only SEA 47 (16%) 63 (21%)
Both 31 (10%) 36 (12%)

(b) Sentiment Analysis

Table 4: Finding Semantically Equivalent Ad-
versaries: we compare how often humans produce
semantics-preserving adversaries, when compared
to our automatically generated adversaries (SEA,
left) and our adversaries filtered by humans (HSEA,
right). There are four possible outcomes: neither
produces a semantic equivalent adversary (i.e. they
either do not produce an adversary or the adversary
produced is not semantically equivalent), both do,
or only one is able to do so.

for semantic equivalence. Using these evaluations,
we identify τ = 0.0008 as the value that minimizes
the entropy in the induced splits, and use it for
the remaining experiments. Source code and pre-
trained language models are available at https:
//github.com/marcotcr/sears.

For VQA, we use the multiple choice telling
system and dataset of Zhu et al. (2016), using
their implementation, with default parameters. The
training data consists of questions that begin with
“What”, “Where”, “When”, “Who”, “Why”, and
“How”. The task is multiple choice, with four pos-
sible answers per instance. For sentiment analy-
sis, we train a fastText (Joulin et al., 2016) model
with unigrams and bigrams (embedding size of 50)
on RottenTomato movie reviews (Pang and Lee,
2005), and evaluate it on IMDB sentence-sized
reviews (Kotzias et al., 2015), simulating the com-
mon case where a model trained on a public dataset
is applied to new data from a similar domain.

5.2 Can humans find good adversaries?

In this experiment, we compare our method for
generating SEAs with user’s ability to discover
semantic-preserving adversaries. We take a ran-
dom sample of 100 correctly-predicted instances
for each task. In the first condition (human), we
display each instance to 3 Amazon Mechanical

Turk workers, and give them 10 attempts at creating
semantically equivalent adversaries (with immedi-
ate feedback as to whether or not their attempts
changed the prediction). Next, we ask them to
choose the adversary that is semantically closest
to the original instance, out of the candidates they
generated. In the second condition (SEA), we gen-
erate adversaries for each of the instances, and pick
the best adversary according to the semantic scorer.
The third condition (HSEA) is a collaboration be-
tween our method and humans: we take the top 5
adversaries ranked by S(x, x′), and ask workers to
pick the one closest to the original instance, rather
than asking them to generate the adversaries.

To evaluate whether the proposed adversaries
are semantically equivalent, we ask a separate set
of workers to evaluate the similarity between each
adversary and the original instance (with the image
as context for VQA), on a scale of 1 (completely
unrelated) to 5 (exactly the same meaning). Each
adversary is evaluated by at least 10 workers, and
considered equivalent if the median score ≥ 4. We
thus obtain 300 comparisons between human and
SEA, and 300 between human and HSEA.

The results in Table 4a and 4b are consistent
across tasks: both models are susceptible to SEAs
for a large fraction of predictions, and our fully au-
tomated method is able to produce SEAs as often as
humans (left columns). On the other hand, asking
humans to choose from generated SEAs (HSEA)
yields much better results than asking humans to
generate them (right columns), or using the high-
est scored SEA. The semantic scorer does make
mistakes, so the top adversary is not always seman-
tically equivalent, but a good quality SEA is often
in the top 5, and is easily identified by users.

On both datasets, the automated method or hu-
mans were able to generate adversaries at the ex-
clusion of the other roughly one third of the time,
which indicates that they do not generate the same
adversaries. Humans generate paraphrases differ-
ently than our method: the average character edit
distance of our SEAs is 6.2 for VQA and 9.0 for
Sentiment, while for humans it is 18.1 and 43.3, re-
spectively. This is illustrated by examples in Table
5 - in Table 5a we see examples where very com-
pact changes generate adversaries (humans were
not able to find these changes though). The exam-
ples in Table 5b indicate that humans can generate
adversaries that: (1) make use of the visual context
in VQA, which our method does not, and (2) sig-
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Dataset Original SEA

VQA Where are the men? Where are the males?
What kind of meat is on the
boy’s plate?

What sort of meat is on the
boy’s plate?

Sentiment They are so easy to love,
but even more easy to
identify with.

They’re so easy to love, but
even more easy to identify
with.

Today the graphics are crap. Today, graphics are bullshit.

(a) Automatically generated adversaries, examples where hu-
mans failed to generate SEAs (Only SEA)

Dataset Original Human-generated SEA

VQA How many suitcases? How many suitcases are sit-
ting on the shelf?

Where is the blue van? What is the blue van’s loca-
tion?

Sentiment (very serious spoilers) this
movie was a huge disap-
pointment.

serious spoilers this movie
did not deliver what I hoped

Also great directing and
photography.

Photography and directing
were on point.

(b) Human generated adversaries, examples where our approach
failed to generate SEAs (Only Human)

Table 5: Examples of generated adversaries

nificantly change the sentence structure, which the
translation-based semantic scorer does not.

5.3 Can experts find high-impact bugs?

Here we investigate whether experts are able to
detect high-impact global bugs, i.e. devise rules
that flip many predictions, and compare them to
generated SEARs. Instead of AMT workers, we
have 26 expert subjects: students, graduates, or pro-
fessors who have taken at least a graduate course in
machine learning or NLP1. The experiment setup
is as follows: for each task, subjects are given an
interface where they see examples in the validation
data, perturb those examples, and get predictions.
The interface also allows them to create search and
replace rules, with immediate feedback on how
many mistakes are induced by their rules. They
also see the list of examples where the rules apply,
so they can verify semantic equivalence. Subjects
are instructed to try to maximize the number of mis-
takes induced in the validation data (i.e. maximize
“mistake coverage”), but only through semantically
equivalent rules. They can try as many rules as
they like, and are asked to select the best set of at
most 10 rules at the end. This is quite a challeng-
ing task for humans (yet another reason to prefer
algorithmic approaches), but we are not aware of
any existing automated methods. Finally, we in-

1We have an IRB/consent form, and personal information
was only collected as needed to compensate subjects
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Figure 5: Mistakes induced by expert-generated
rules (green), SEARs (blue), and a combination of
both (pink), with standard error bars.
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Figure 6: Time for users to create rules (green) and
to evaluate SEARs (blue), with standard error bars

struct subjects they could finish each task in about
15 minutes (some took longer, some ended earlier),
in order to keep the total time reasonable.

After creating their rules for VQA and sentiment
analysis, the subjects evaluate 20 SEARs (one rule
at a time) for each task, and accept only semanti-
cally equivalent rules. When a subject rejects a rule,
we recompute the remaining set according to Eq (3)
in real time. If a subject accepts more than 10 rules,
only the first 10 are considered, in order to ensure a
fair comparison against the expert-generated rules.

We compare expert-generated rules with ac-
cepted SEARs (each subject’s rules are compared
to the SEARs they accepted) in terms of the per-
centage of the correct predictions that “flip” when
the rules are applied. This is what we asked the
subjects to maximize, and all the rules were ones
deemed to be semantic equivalent by the subjects
themselves. We also consider the union of expert-
generated rules and accepted SEARs. The results
in Figure 5 show that on both datasets, the filtered
SEARs induce a much higher rate of mistakes than
the rules the subjects themselves created, with a
small increase when the union of both sets is taken.
Furthermore, subjects spent less time evaluating
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Error rate
Validation Sensitivity

Visual QA
Original Model 44.4.% 12.6%
SEAR Augmented 45.7 % 1.4%

Sentiment Analysis
Original Model 22.1% 12.6%
SEAR Augmented 21.3% 3.4%

Table 6: Fixing bugs using SEARs: Effect of re-
training models using SEARs, both on original
validation and on sensitivity dataset. Retraining
significantly reduces the number of bugs, with sta-
tistically insignificant changes to accuracy.

SEARs than trying to create their own rules (Fig-
ure 6). SEARs for sentiment analysis contain fewer
POS tags, and are thus easier to evaluate for seman-
tic equivalence than for VQA.

Discovering these bugs is hard for humans (even
experts) without SEARs: not only do they need to
imagine rules that maintain semantic equivalence,
they must also discover the model’s weak spots.
Making good use of POS tags is also a challenge:
only 50% of subjects attempt rules with POS tags
for VQA, 36% for sentiment analysis.

Experts accepted 8.69 rules (on average) out of
20 for VQA as semantically equivalent, and 17.32
out of 20 for sentiment analysis. Similar to the
previous experiment, errors made by the seman-
tic scorer lead to rules that are not semantically
equivalent (e.g. Table 7). With minimal human
intervention, however, SEARs vastly outperform
human experts in finding impactful bugs.

5.4 Fixing bugs using SEARs

Once such bugs are discovered, it is natural to want
to fix them. The global and deterministic nature
of SEARs make them actionable, as they represent
bugs in a systematic manner. Once impactful bugs
are identified, we use a simple data augmentation
procedure: applying SEARs to the training data,
and retraining the model on the original training
augmented with the generated examples.

We take the rules that are accepted by ≥ 20 sub-
jects as accepted bugs, a total of 4 rules (in Table 2)
for VQA, and 16 rules for sentiment (including
ones in Table 3). We then augment the training data
by applying these rules to it, and retrain the models.
To check if the bugs are still present, we create
a sensitivity dataset by applying these SEARs to
instances predicted correctly on the validation. A
model not prone to the bugs described by these

rules should not change any of its predictions, and
should thus have error rate 0% on this sensitivity
data. We also measure accuracy on the original
validation data, to make sure that our bug-fixing
procedure is not decreasing accuracy.

Table 6 shows that the incidence of these errors
is greatly reduced after augmentation, with negli-
gible changes to the validation accuracy (on both
tasks, the changes are consistent with the effect
of retraining with different seeds). These results
show that SEARs are useful not only for discover-
ing bugs, but are also actionable through a simple
augmentation technique for any model.

6 Related Work

Previous work on debugging primarily focuses on
explaining predictions in validation data in order to
uncover bugs (Ribeiro et al., 2016, 2018; Kulesza
et al., 2011), or find labeling errors (Zhang et al.,
2018; Koh and Liang, 2017). Our work is com-
plementary to these techniques, as they provide no
mechanism to detect oversensitivity bugs. We are
able to uncover these bugs even when they are not
present in the data, since we generate sentences.

Adversarial examples for image recognition
are typically indistinguishable to the human
eye (Szegedy et al., 2014). These are more of
a security concern than bugs per se, as images
with adversarial noise are not “natural”, and not
expected to occur in the real world outside of tar-
geted attacks. Adversaries are usually specific to
predictions, and even universal adversarial pertur-
bations (Moosavi-Dezfooli et al., 2017) are not
natural, semantically meaningful to humans, or ac-
tionable. “Imperceptible” adversarial noise does
not carry over from images to text, as adding or
changing a single word in a sentence can drastically
alter its meaning. Jia and Liang (2017) recognize
that a true analog to detect oversensitivity would
need semantic-preserving perturbations, but do not
pursue an automated solution due to the difficulty
of paraphrase generation. Their adversaries are
whole sentence concatenations, generated by man-
ually defined rules tailored to reading comprehen-
sion, and each adversary is specific to an individual
instance. Zhao et al. (2018) generate natural text
adversaries by projecting the input data to a la-
tent space using a generative adversarial networks
(GANs), and searching for adversaries close to the
original instance in this latent space. Apart from
the challenge of training GANs to generate high
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quality text, there is no guarantee that an example
close in the latent space is semantically equiva-
lent. Ebrahimi et al. (2018), along with propos-
ing character-level changes that are not semantic-
preserving, also propose a heuristic that replaces
single words adversarially to preserve semantics.
This approach not only depends on having white-
box access to the model, but is also not able to
generate many adversaries (only ∼ 1.6% for sen-
timent analysis, compare to ∼ 33% for SEAs in
Table 4b). Developed concurrently with our work,
Iyyer et al. (2018) proposes a neural paraphrase
model based on back-translated data, which is able
to produce paraphrases that have different sentence
structures from the original. They use paraphrases
to generate adversaries and try to post-process non-
sensical outputs, but they do not explicitly reject
non-semantics preserving ones, nor do they try to
induce rules from individual adversaries. In any
case, their adversaries are also useful for data aug-
mentation, in experiments similar to ours.

In summary, previous work on text adversaries
change semantics, only generate local (instance-
specific) adversaries (Zhao et al., 2018; Iyyer
et al., 2018), or are tailored for white-box mod-
els (Ebrahimi et al., 2018) or specific tasks (Jia and
Liang, 2017). In contrast, SEAs expose oversensi-
tivity for specific predictions of black-box models
for a variety of tasks, while SEARs are intuitive
and actionable global rules that induce a high num-
ber of high-quality adversaries. To our knowledge,
we are also the first to evaluate human performance
in adversarial generation (semantics-preserving or
otherwise), and our extensive evaluation shows that
SEAs and SEARs detect individual bugs and gen-
eral patterns better than humans can.

7 Limitations and Future Work

Having demonstrated the usefulness of SEAs and
SEARs in a variety of domains, we now describe
their limitations and opportunities for future work.

Semantic scoring errors: Paraphrasing is still
an active area of research, and thus our semantic
scorer is sometimes incorrect in evaluating rules
for semantic equivalence. We show examples of
SEARs that are rejected by users in Table 7 – the se-
mantic scorer does not sufficiently penalize preposi-
tion changes, and is biased towards common terms.
The presence of such errors is why we still need
humans in the loop to accept or reject SEARs.

SEAR Questions / SEAs f(x)

on→in What is on in the background? A building Mountains
What is on? in Lights The television

VBP→is Where are is the water bottles Table Vending Maching
Where are is the people gathered living room kitchen

VERB on
→ What is on the background? A building Mountains

VERB What are the planes parked on? Concrete landing strip

Table 7: SEARs for VQA that are rejected by users

Other paraphrase limitations: Paraphrase
models based on neural machine translation are
biased towards maintaining the sentence structure,
and thus do not produce certain adversaries
(e.g. Table 5b), which recent work on para-
phrasing (Iyyer et al., 2018) or generation using
GANs (Zhao et al., 2018) may address. More
critically, existing models are inaccurate for long
texts, restricting SEAs and SEARs to sentences.

Better bug fixing: Our data augmentation has
the human users accept/reject rules based on
whether or not they preserve semantics. Develop-
ing more effective ways of leveraging the expert’s
time to close the loop, and facilitating more inter-
active collaboration between humans and SEARs
are exciting areas for future work.

8 Conclusion

We introduced SEAs and SEARs – adversarial ex-
amples and rules that preserve semantics, while
causing models to make mistakes. We presented
examples of such bugs discovered in state-of-the-
art models for various tasks, and demonstrated via
user studies that non-experts and experts alike are
much better at detecting local and global bugs in
NLP models by using our methods. We also close
the loop by proposing a simple data augmentation
solution that greatly reduced oversensitivity while
maintaining accuracy. We demonstrated that SEAs
and SEARs can be an invaluable tool for debug-
ging NLP models, while indicating their current
limitations and avenues for future work.
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Abstract

Style transfer is the task of rephrasing the
text to contain specific stylistic proper-
ties without changing the intent or affect
within the context. This paper introduces
a new method for automatic style trans-
fer. We first learn a latent representation of
the input sentence which is grounded in a
language translation model in order to bet-
ter preserve the meaning of the sentence
while reducing stylistic properties. Then
adversarial generation techniques are used
to make the output match the desired style.
We evaluate this technique on three dif-
ferent style transformations: sentiment,
gender and political slant. Compared
to two state-of-the-art style transfer mod-
eling techniques we show improvements
both in automatic evaluation of style trans-
fer and in manual evaluation of meaning
preservation and fluency.

1 Introduction

Intelligent, situation-aware applications must pro-
duce naturalistic outputs, lexicalizing the same
meaning differently, depending upon the envi-
ronment. This is particularly relevant for lan-
guage generation tasks such as machine trans-
lation (Sutskever et al., 2014; Bahdanau et al.,
2015), caption generation (Karpathy and Fei-Fei,
2015; Xu et al., 2015), and natural language gen-
eration (Wen et al., 2017; Kiddon et al., 2016). In
conversational agents (Ritter et al., 2011; Sordoni
et al., 2015; Vinyals and Le, 2015; Li et al., 2016),
for example, modulating the politeness style, to
sound natural depending upon a situation: at a
party with friends “Shut up! the video is start-
ing!”, or in a professional setting “Please be quiet,
the video will begin shortly.”.

These goals have motivated a considerable
amount of recent research efforts focused at “con-
trolled” language generation—aiming at separat-
ing the semantic content of what is said from
the stylistic dimensions of how it is said. These
include approaches relying on heuristic substitu-
tions, deletions, and insertions to modulate de-
mographic properties of a writer (Reddy and
Knight, 2016), integrating stylistic and demo-
graphic speaker traits in statistical machine trans-
lation (Rabinovich et al., 2016; Niu et al., 2017),
and deep generative models controlling for a par-
ticular stylistic aspect, e.g., politeness (Sennrich
et al., 2016), sentiment, or tense (Hu et al., 2017;
Shen et al., 2017). The latter approaches to style
transfer, while more powerful and flexible than
heuristic methods, have yet to show that in addi-
tion to transferring style they effectively preserve
meaning of input sentences.

This paper introduces a novel approach to trans-
ferring style of a sentence while better preserv-
ing its meaning. We hypothesize—relying on the
study of Rabinovich et al. (2016) who showed
that author characteristics are significantly ob-
fuscated by both manual and automatic machine
translation—that grounding in back-translation is
a plausible approach to rephrase a sentence while
reducing its stylistic properties. We thus first use
back-translation to rephrase the sentence and re-
duce the effect of the original style; then, we gen-
erate from the latent representation, using separate
style-specific generators controlling for style (§2).

We focus on transferring author attributes:
(1) gender and (2) political slant, and (3) on sen-
timent modification. The second task is novel:
given a sentence by an author with a particular po-
litical leaning, rephrase the sentence to preserve
its meaning but to confound classifiers of politi-
cal slant (§3). The task of sentiment modification
enables us to compare our approach with state-of-
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Figure 1: Style transfer pipeline: to rephrase a sentence and reduce its stylistic characteristics, the sen-
tence is back-translated. Then, separate style-specific generators are used for style transfer.

the-art models (Hu et al., 2017; Shen et al., 2017).
Style transfer is evaluated using style classi-

fiers trained on held-out data. Our back-translation
style transfer model outperforms the state-of-the-
art baselines (Shen et al., 2017; Hu et al., 2017)
on the tasks of political slant and sentiment mod-
ification; 12% absolute improvement was attained
for political slant transfer, and up to 7% absolute
improvement in modification of sentiment (§5).
Meaning preservation was evaluated manually, us-
ing A/B testing (§4). Our approach performs bet-
ter than the baseline on the task of transferring
gender and political slant. Finally, we evaluate the
fluency of the generated sentences using human
evaluation and our model outperforms the baseline
in all experiments for fluency.

The main contribution of this work is a new
approach to style transfer that outperforms state-
of-the-art baselines in both the quality of input–
output correspondence (meaning preservation and
fluency), and the accuracy of style transfer. The
secondary contribution is a new task that we pro-
pose to evaluate style transfer: transferring politi-
cal slant.

2 Methodology

Given two datasets X1 = {x(1)
1 , . . . ,x

(n)
1 } and

X2 = {x(1)
2 , . . . ,x

(n)
2 } which represent two dif-

ferent styles s1 and s2, respectively, our task is to
generate sentences of the desired style while pre-
serving the meaning of the input sentence. Specifi-
cally, we generate samples of datasetX1 such that
they belong to style s2 and samples of X2 such
that they belong to style s1. We denote the out-
put of dataset X1 transfered to style s2 as X̂1 =

{x̂(1)
2 , . . . , x̂

(n)
2 } and the output of dataset X2

transferred to style s1 as X̂2 = {x̂(1)
1 , . . . , x̂

(n)
1 }.

Hu et al. (2017) and Shen et al. (2017) in-
troduced state-of-the-art style transfer models
that use variational auto-encoders (Kingma and

Welling, 2014, VAEs) and cross-aligned auto-
encoders, respectively, to model a latent content
variable z. The latent content variable z is a code
which is not observed. The generative model con-
ditions on this code during the generation pro-
cess. Our aim is to design a latent code z which
(1) represents the meaning of the input sentence
grounded in back-translation and (2) weakens the
style attributes of author’s traits. To model the
former, we use neural machine translation. Prior
work has shown that the process of translating a
sentence from a source language to a target lan-
guage retains the meaning of the sentence but does
not preserve the stylistic features related to the au-
thor’s traits (Rabinovich et al., 2016). We hypoth-
esize that a latent code z obtained through back-
translation will normalize the sentence and devoid
it from style attributes specific to author’s traits.

Figure 1 shows the overview of the proposed
method. In our framework, we first train a ma-
chine translation model from source language e
to a target language f . We also train a back-
translation model from f to e. Let us assume our
styles s1 and s2 correspond to DEMOCRATIC and
REPUBLICAN style, respectively. In Figure 1, the
input sentence i thank you, rep. visclosky. is la-
beled as DEMOCRATIC. We translate the sentence
using the e → f machine translation model and
generate the parallel sentence in the target lan-
guage f : je vous remercie, rep. visclosky. Using
the fixed encoder of the f → e machine transla-
tion model, we encode this sentence in language
f . The hidden representation created by this en-
coder of the back-translation model is used as z.
We condition our generative models on this z. We
then train two separate decoders for each style
s1 and s2 to generate samples in these respective
styles in source language e. Hence the sentence
could be translated to the REPUBLICAN style us-
ing the decoder for s2. For example, the sentence
i’m praying for you sir. is the REPUBLICAN ver-
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Figure 2: The latent representation from back-translation and the style classifier feedback are used to
guide the style-specific generators.

sion of the input sentence and i thank you, senator
visclosky. is the more DEMOCRATIC version of it.

Note that in this setting, the machine translation
and the encoder of the back-translation model re-
main fixed. They are not dependent on the data
we use across different tasks. This facilitates re-
usability and spares the need of learning separate
models to generate z for a new style data.

2.1 Meaning-Grounded Representation

In this section we describe how we learn the la-
tent content variable z using back-translation. The
e → f machine translation and f → e back-
translation models are trained using a sequence-to-
sequence framework (Sutskever et al., 2014; Bah-
danau et al., 2015) with style-agnostic corpus. The
style-specific sentence i thank you, rep. visclosky.
in source language e is translated to the target lan-
guage f to get je vous remercie, rep. visclosky.
The individual tokens of this sentence are then
encoded using the encoder of the f → e back-
translation model. The learned hidden representa-
tion is z.

Formally, let θE represent the parameters of the
encoder of f → e translation system. Then z is
given by:

z = Encoder(xf ;θE) (1)

where, xf is the sentence x in language f . Specif-
ically, xf is the output of e → f translation sys-
tem when xe is given as input. Since z is derived
from a non-style specific process, this Encoder is
not style specific.

2.2 Style-Specific Generation

Figure 2 shows the architecture of the generative
model for generating different styles. Using the
encoder embedding z, we train multiple decoders

for each style. The sentence generated by a de-
coder is passed through the classifier. The loss
of the classifier for the generated sentence is used
as feedback to guide the decoder for the gener-
ation process. The target attribute of the clas-
sifier is determined by the decoder from which
the output is generated. For example, in the case
of DEMOCRATIC decoder, the target attribute is
DEMOCRATIC and for the REPUBLICAN decoder
the target is REPUBLICAN.

2.2.1 Style Classifiers

We train a convolutional neural network (CNN)
classifier to accurately predict the given style. We
also use it to evaluate the error in the generated
samples for the desired style. We train the classi-
fier in a supervised manner. The classifier accepts
either discrete or continuous tokens as inputs. This
is done such that the generator output can be used
as input to the classifier. We need labeled exam-
ples to train the classifier such that each instance
in the dataset X should have a label in the set
s = {s1, s2}. Let θC denote the parameters of
the classifier. The objective to train the classifier
is given by:

Lclass(θC) = EX [log qC(s|x)]. (2)

To improve the accuracy of the classifier, we aug-
ment classifier’s inputs with style-specific lexi-
cons. We concatenate binary style indicators to
each input word embedding in the classifier. The
indicators are set to 1 if the input word is present
in a style-specific lexicon; otherwise they are set to
0. Style lexicons are extracted using the log-odds
ratio informative Dirichlet prior (Monroe et al.,
2008), a method that identifies words that are sta-
tistically overrepresented in each of the categories.

868



2.2.2 Generator Learning
We use a bidirectional LSTM to build our de-
coders which generate the sequence of tokens x̂ =
{x1, · · ·xT }. The sequence x̂ is conditioned on
the latent code z (in our case, on the machine
translation model). In this work we use a cor-
pus translated to French by the machine transla-
tion system as the input to the encoder of the back-
translation model. The same encoder is used to en-
code sentences of both styles. The representation
created by this encoder is given by Eq 1. Samples
are generated as follows:

x̂ ∼ z = p(x̂|z) (3)

=
∏

t

p(x̂t|x̂<t, z) (4)

where, x̂<t are the tokens generated before x̂t.
Tokens are discrete and non-differentiable. This

makes it difficult to use a classifier, as the gen-
eration process samples discrete tokens from the
multinomial distribution parametrized using soft-
max function at each time step t. This non-
differentiability, in turn, breaks down gradient
propagation from the discriminators to the gen-
erator. Instead, following Hu et al. (2017) we
use a continuous approximation based on softmax,
along with the temperature parameter which an-
neals the softmax to the discrete case as training
proceeds. To create a continuous representation of
the output of the generative model which will be
given as an input to the classifier, we use:

x̂t ∼ softmax(ot/τ),

where, ot is the output of the generator and τ is the
temperature which decreases as the training pro-
ceeds. Let θG denote the parameters of the gen-
erators. Then the reconstruction loss is calculated
using the cross entropy function, given by:

Lrecon(θG;x) = EqE(z|x)[log pgen(x|z)] (5)

Here, the back-translation encoder E creates the
latent code z by:

z = E(x) = qE(z|x) (6)

The generative loss Lgen is then given by:

minθgenLgen = Lrecon + λcLclass (7)

where Lrecon is given by Eq. (5), Lclass is given
by Eq (2) and λc is a balancing parameter.

We also use global attention of (Luong et al.,
2015) to aid our generators. At each time step t of
the generation process, we infer a variable length
alignment vector at:

at =
exp(score(ht, h̄s))∑
s′ exp(score(ht, h̄s′ )

(8)

score(ht, h̄s) = dot(hTt , h̄s), (9)

where ht is the current target state and h̄s are all
source states. While generating sentences, we use
the attention vector to replace unknown characters
(UNK) using the copy mechanism in (See et al.,
2017).

3 Style Transfer Tasks

Much work in computational social science has
shown that people’s personal and demographic
characteristics—either publicly observable (e.g.,
age, gender) or private (e.g., religion, politi-
cal affiliation)—are revealed in their linguistic
choices (Nguyen et al., 2016). There are practi-
cal scenarios, however, when these attributes need
to be modulated or obfuscated. For example,
some users may wish to preserve their anonymity
online, for personal security concerns (Jardine,
2016), or to reduce stereotype threat (Spencer
et al., 1999). Modulating authors’ attributes while
preserving meaning of sentences can also help
generate demographically-balanced training data
for a variety of downstream applications.

Moreover, prior work has shown that the qual-
ity of language identification and POS tagging
degrades significantly on African American Ver-
nacular English (Blodgett et al., 2016; Jørgensen
et al., 2015); YouTube’s automatic captions have
higher error rates for women and speakers from
Scotland (Rudinger et al., 2017). Synthesiz-
ing balanced training data—using style transfer
techniques—is a plausible way to alleviate bias
present in existing NLP technologies.

We thus focus on two tasks that have practi-
cal and social-good applications, and also accu-
rate style classifiers. To position our method with
respect to prior work, we employ a third task of
sentiment transfer, which was used in two state-
of-the-art approaches to style transfer (Hu et al.,
2017; Shen et al., 2017). We describe the three
tasks and associated dataset statistics below. The
methodology that we advocate is general and can
be applied to other styles, for transferring various
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social categories, types of bias, and in multi-class
settings.

Gender. In sociolinguistics, gender is known to
be one of the most important social categories
driving language choice (Eckert and McConnell-
Ginet, 2003; Lakoff and Bucholtz, 2004; Coates,
2015). Reddy and Knight (2016) proposed a
heuristic-based method to obfuscate gender of a
writer. This method uses statistical association
measures to identify gender-salient words and sub-
stitute them with synonyms typically of the oppo-
site gender. This simple approach produces highly
fluent, meaning-preserving sentences, but does not
allow for more general rephrasing of sentence be-
yond single-word substitutions. In our work, we
adopt this task of transferring the author’s gender
and adapt it to our experimental settings.

We used Reddy and Knight’s (2016) dataset of
reviews from Yelp annotated for two genders cor-
responding to markers of sex.1 We split the re-
views to sentences, preserving the original gender
labels. To keep only sentences that are strongly
indicative of a gender, we then filtered out gender-
neutral sentences (e.g., thank you) and sentences
whose likelihood to be written by authors of one
gender is lower than 0.7.2

Political slant. Our second dataset is comprised
of top-level comments on Facebook posts from all
412 current members of the United States Sen-
ate and House who have public Facebook pages
(Voigt et al., 2018).3 Only top-level comments
that directly respond to the post are included. Ev-
ery comment to a Congressperson is labeled with
the Congressperson’s party affiliation: democratic
or republican. Topic and sentiment in these com-
ments reveal commenter’s political slant. For ex-
ample, defund them all, especially when it comes
to the illegal immigrants . and thank u james,
praying for all the work u do . are republican,
whereas on behalf of the hard-working nh public
school teachers- thank you ! and we need more
strong voices like yours fighting for gun control .

1We note that gender may be considered along a spec-
trum (Eckert and McConnell-Ginet, 2003), but use gender
as a binary variable due to the absence of corpora with
continuous-valued gender annotations.

2We did not experiment with other threshold values.
3The posts and comments are all public; however, to pro-

tect the identity of Facebook users in this dataset Voigt et al.
(2018) have removed all identifying user information as well
as Facebook-internal information such as User IDs and Post
IDs, replacing these with randomized ID numbers.

Style class train dev test
gender 2.57M 2.67M 4.5K 535K
political 80K 540K 4K 56K
sentiment 2M 444K 63.5K 127K

Table 1: Sentence count in style-specific corpora.

represent examples of democratic sentences. Our
task is to preserve intent of the commenter (e.g.,
to thank their representative), but to modify their
observable political affiliation, as in the example
in Figure 1. We preprocessed and filtered the
comments similarly to the gender-annotated cor-
pus above.

Sentiment. To compare our work with the state-
of-the-art approaches of style transfer for non-
parallel corpus we perform sentiment transfer,
replicating the models and experimental setups of
Hu et al. (2017) and Shen et al. (2017). Given a
positive Yelp review, a style transfer model will
generate a similar review but with an opposite sen-
timent. We used Shen et al.’s (2017) corpus of
reviews from Yelp. They have followed the stan-
dard practice of labeling the reviews with rating of
higher than three as positive and less than three as
negative. They have also split the reviews to sen-
tences and assumed that the sentence has the same
sentiment as the review.

Dataset statistics. We summarize below cor-
pora statistics for the three tasks: transferring gen-
der, political slant, and sentiment. The dataset for
sentiment modification task was used as described
in (Shen et al., 2017). We split Yelp and Facebook
corpora into four disjoint parts each: (1) a training
corpus for training a style classifier (class); (2) a
training corpus (train) used for training the style-
specific generative model described in §2.2; (3)
development and (4) test sets. We have removed
from training corpora class and train all sentences
that overlap with development and test corpora.
Corpora sizes are shown in Table 1.

Table 2 shows the approximate vocabulary sizes
used for each dataset. The vocabulary is the same
for both the styles in each experiment.

Style gender political sentiment
Vocabulary 20K 20K 10K

Table 2: Vocabulary sizes of the datasets.

Table 3 summarizes sentence statistics. All the

870



sentences have maximum length of 50 tokens.

Style Avg. Length %data
male 18.08 50.00
female 18.21 50.00
republican 16.18 50.00
democratic 16.01 50.00
negative 9.66 39.81
positive 8.45 60.19

Table 3: Average sentence length and class distri-
bution of style corpora.

4 Experimental Setup

In what follows, we describe our experimental set-
tings, including baselines used, hyperparameter
settings, datasets, and evaluation setups.

Baseline. We compare our model against the
“cross-aligned” auto-encoder (Shen et al., 2017),
which uses style-specific decoders to align the
style of generated sentences to the actual distribu-
tion of the style. We used the off-the-shelf senti-
ment model released by Shen et al. (2017) for the
sentiment experiments. We also separately train
this model for the gender and political slant using
hyper-parameters detailed below.4

Translation data. We trained an English–
French neural machine translation system and a
French–English back-translation system. We used
data from Workshop in Statistical Machine Trans-
lation 2015 (WMT15) (Bojar et al., 2015) to train
our translation models. We used the French–
English data from the Europarl v7 corpus, the
news commentary v10 corpus and the common
crawl corpus from WMT15. Data were tokenized
using the Moses tokenizer (Koehn et al., 2007).
Approximately 5.4M English–French parallel sen-
tences were used for training. A vocabulary size of
100K was used to train the translation systems.

Hyperparameter settings. In all the experi-
ments, the generator and the encoders are a two-
layer bidirectional LSTM with an input size of 300
and the hidden dimension of 500. The generator

4In addition, we compared our model with the current
state-of-the-art approach introduced by Hu et al. (2017); Shen
et al. (2017) use this method as baseline, obtaining compara-
ble results. We reproduced the results reported in (Hu et al.,
2017) using their tasks and data. However, the same model
trained on our political slant datasets (described in §3), ob-
tained an almost random accuracy of 50.98% in style transfer.
We thus omit these results.

samples a sentence of maximum length 50. All
the generators use global attention vectors of size
500. The CNN classifier is trained with 100 filters
of size 5, with max-pooling. The input to CNN is
of size 302: the 300-dimensional word embedding
plus two bits for membership of the word in our
style lexicons, as described in §2.2.1. Balancing
parameter λc is set to 15. For sentiment task, we
have used settings provided in (Shen et al., 2017).

5 Results

We evaluate our approach along three dimensions.
(1) Style transfer accuracy, measuring the propor-
tion of our models’ outputs that generate sentences
of the desired style. The style transfer accuracy
is performed using classifiers trained on held-out
train data that were not used in training the style
transfer models. (2) Preservation of meaning. (3)
Fluency, measuring the readability and the natu-
ralness of the generated sentences. We conducted
human evaluations for the latter two.

In what follows, we first present the quality of
our neural machine translation systems, then we
present the evaluation setups, and then present the
results of our experiments.

Translation quality. The BLEU scores
achieved for English–French MT system is
32.52 and for French–English MT system is
31.11; these are strong translation systems. We
deliberately chose a European language close to
English for which massive amounts of parallel
data are available and translation quality is high,
to concentrate on the style generation, rather than
improving a translation system. 5

5.1 Style Transfer Accuracy

We measure the accuracy of style transfer for the
generated sentences using a pre-trained style clas-
sifier (§2.2.1). The classifier is trained on data that
is not used for training our style transfer genera-
tive models (as described in §3). The classifier has
an accuracy of 82% for the gender-annotated cor-
pus, 92% accuracy for the political slant dataset
and 93.23% accuracy for the sentiment dataset.

5Alternatively, we could use a pivot language that is ty-
pologically more distant from English, e.g., Chinese. In this
case we hypothesize that stylistic traits would be even less
preserved in translation, but the quality of back-translated
sentences would be worse. We have not yet investigated how
the accuracy of the translation model, nor the language of
translation affects our models.
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We transfer the style of test sentences and then
test the classification accuracy of the generated
sentences for the opposite label. For example, if
we want to transfer the style of male Yelp reviews
to female, then we use the fixed common encoder
of the back-translation model to encode the test
male sentences and then we use the female gener-
ative model to generate the female-styled reviews.
We then test these generated sentences for the fe-
male label using the gender classifier.

Experiment CAE BST
Gender 60.40 57.04

Political slant 75.82 88.01
Sentiment 80.43 87.22

Table 4: Accuracy of the style transfer in gener-
ated sentences.

In Table 4, we detail the accuracy of each
classifier on generated style-transfered sentences.6

We denote the Shen et al.’s (2017) Cross-aligned
Auto-Encoder model as CAE and our model as
Back-translation for Style Transfer (BST).

On two out of three tasks our model substan-
tially outperforms the baseline, by up to 12% in
political slant transfer, and by up to 7% in senti-
ment modification.

5.2 Preservation of Meaning

Although we attempted to use automatics mea-
sures to evaluate how well meaning is preserved
in our transformations; measures such as BLEU
(Papineni et al., 2002) and Meteor (Denkowski
and Lavie, 2011), or even cosine similarity be-
tween distributed representations of sentences do
not capture this distance well.

Meaning preservation in style transfer is not
trivial to define as literal meaning is likely to
change when style transfer occurs. For example
“My girlfriend loved the desserts” vs “My partner
liked the desserts”. Thus we must relax the con-
dition of literal meaning to intent or affect of the
utterance within the context of the discourse. Thus
if the intent is to criticize a restaurant’s service
in a review, changing “salad” to “chicken” could
still have the same effect but if the intent is to or-
der food that substitution would not be acceptable.
Ideally we wish to evaluate transfer within some

6In each experiment, we report aggregated results across
directions of style transfer; same results broke-down to style
categories are listed in the Supplementary Material.

Experiment CAE No Pref. BST
Gender 15.23 41.36 43.41

Political slant 14.55 45.90 39.55
Sentiment 35.91 40.91 23.18

Table 5: Human preference for meaning preserva-
tion in percentages.

downstream task and ensure that the task has the
same outcome even after style transfer. This is a
hard evaluation and hence we resort to a simpler
evaluation of the “meaning” of the sentence.

We set up a manual pairwise comparison fol-
lowing Bennett (2005). The test presents the orig-
inal sentence and then, in random order, its corre-
sponding sentences produced by the baseline and
our models. For the gender style transfer we asked
“Which transferred sentence maintains the same
sentiment of the source sentence in the same se-
mantic context (i.e. you can ignore if food items
are changed)”. For the task of changing the po-
litical slant, we asked “Which transferred sen-
tence maintains the same semantic intent of the
source sentence while changing the political po-
sition”. For the task of sentiment transfer we
have followed the annotation instruction in (Shen
et al., 2017) and asked “Which transferred sen-
tence is semantically equivalent to the source sen-
tence with an opposite sentiment”

We then count the preferences of the eleven
participants, measuring the relative acceptance of
the generated sentences.7 A third option “=” was
given to participants to mark no preference for ei-
ther of the generated sentence. The “no prefer-
ence” option includes choices both are equally bad
and both are equally good. We conducted three
tests one for each type of experiment - gender, po-
litical slant and sentiment. We also divided our
annotation set into short (#tokens ≤ 15) and long
(15 < #tokens ≤ 30) sentences for the gender and
the political slant experiment. In each set we had
20 random samples for each type of style trans-
fer. In total we had 100 sentences to be annotated.
Note that we did not ask about appropriateness of
the style transfer in this test, or fluency of outputs,
only about meaning preservation.

The results of human evaluation are presented
in Table 5. Although a no-preference op-
tion was chosen often—showing that state-of-
the-art systems are still not on par with hu-

7None of the human judges are authors of this paper
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man expectations—the BST models outperform
the baselines in the gender and the political slant
transfer tasks.

Crucially, the BST models significantly outper-
form the CAE models when transferring style in
longer and harder sentences. Annotators preferred
the CAE model only for 12.5% of the long sen-
tences, compared to 47.27% preference for the
BST model.

5.3 Fluency

Finally, we evaluate the fluency of the generated
sentences. Fluency was rated from 1 (unreadable)
to 4 (perfect) as is described in (Shen et al., 2017).
We randomly selected 60 sentences each gener-
ated by the baseline and the BST model.

The results shown in Table 6 are averaged
scores for each model.

Experiment CAE BST
Gender 2.42 2.81

Political slant 2.79 2.87
Sentiment 3.09 3.18

Overall 2.70 2.91
Overall Short 3.05 3.11
Overall Long 2.18 2.62

Table 6: Fluency of the generated sentences.

BST outperforms the baseline overall. It is in-
teresting to note that BST generates significantly
more fluent longer sentences than the baseline
model. Since the average length of sentences was
higher for the gender experiment, BST notably
outperformed the baseline in this task, relatively to
the sentiment task where the sentences are shorter.
Examples of the original and style-transfered sen-
tences generated by the baseline and our model are
shown in the Supplementary Material.

5.4 Discussion

The loss function of the generators given in Eq.
5 includes two competing terms, one to improve
meaning preservation and the other to improve the
style transfer accuracy. In the task of sentiment
modification, the BST model preserved meaning
worse than the baseline, on the expense of be-
ing better at style transfer. We note, however,
that the sentiment modification task is not partic-
ularly well-suited for evaluating style transfer: it
is particularly hard (if not impossible) to disentan-
gle the sentiment of a sentence from its proposi-

tional content, and to modify sentiment while pre-
serving meaning or intent. On the other hand, the
style-transfer accuracy for gender is lower for BST
model but the preservation of meaning is much
better for the BST model, compared to CAE model
and to ”No preference” option. This means that
the BST model does better job at closely repre-
senting the input sentence while taking a mild hit
in the style transfer accuracy.

6 Related Work

Style transfer with non-parallel text corpus has be-
come an active research area due to the recent ad-
vances in text generation tasks. Hu et al. (2017)
use variational auto-encoders with a discriminator
to generate sentences with controllable attributes.
The method learns a disentangled latent represen-
tation and generates a sentence from it using a
code. This paper mainly focuses on sentiment
and tense for style transfer attributes. It evaluates
the transfer strength of the generated sentences
but does not evaluate the extent of preservation
of meaning in the generated sentences. In our
work, we show a qualitative evaluation of mean-
ing preservation.

Shen et al. (2017) first present a theoretical anal-
ysis of style transfer in text using non-parallel
corpus. The paper then proposes a novel cross-
alignment auto-encoders with discriminators ar-
chitecture to generate sentences. It mainly fo-
cuses on sentiment and word decipherment for
style transfer experiments.

Fu et al. (2018) explore two models for style
transfer. The first approach uses multiple decoders
for each type of style. In the second approach,
style embeddings are used to augment the encoded
representations, so that only one decoder needs to
be learned to generate outputs in different styles.
Style transfer is evaluated on scientific paper ti-
tles and newspaper tiles, and sentiment in reviews.
This method is different from ours in that we use
machine translation to create a strong latent state
from which multiple decoders can be trained for
each style. We also propose a different human
evaluation scheme.

Li et al. (2018) first extract words or phrases
associated with the original style of the sentence,
delete them from the original sentence and then
replace them with new phrases associated with the
target style. They then use a neural model to flu-
ently combine these into a final output. Junbo
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et al. (2017) learn a representation which is style-
agnostic, using adversarial training of the auto-
encoder.

Our work is also closely-related to a problem of
paraphrase generation (Madnani and Dorr, 2010;
Dong et al., 2017), including methods relying
on (phrase-based) back-translation (Ganitkevitch
et al., 2011; Ganitkevitch and Callison-Burch,
2014). More recently, Mallinson et al. (2017) and
Wieting et al. (2017) showed how neural back-
translation can be used to generate paraphrases.
An additional related line of research is machine
translation with non-parallel data. Lample et al.
(2018) and Artetxe et al. (2018) have proposed
sophisticated methods for unsupervised machine
translation. These methods could in principle be
used for style transfer as well.

7 Conclusion

We propose a novel approach to the task of style
transfer with non-parallel text.8 We learn a la-
tent content representation using machine transla-
tion techniques; this aids grounding the meaning
of the sentences, as well as weakening the style
attributes. We apply this technique to three dif-
ferent style transfer tasks. In transfer of political
slant and sentiment we outperform an off-the-shelf
state-of-the-art baseline using a cross-aligned au-
toencoder. The political slant task is a novel task
that we introduce. Our model also outperforms the
baseline in all the experiments of fluency, and in
the experiments for meaning preservation in gen-
erated sentences of gender and political slant. Yet,
we acknowledge that the generated sentences do
not always adequately preserve meaning.

This technique is suitable not just for style
transfer, but for enforcing style, and removing
style too. In future work we intend to apply this
technique to debiasing sentences and anonymiza-
tion of author traits such as gender and age.

In the future work, we will also explore whether
an enhanced back-translation by pivoting through
several languages will learn better grounded latent
meaning representations. In particular, it would be
interesting to back-translate through multiple tar-
get languages with a single source language (John-
son et al., 2016).

8All the code and data used in the experi-
ments will be released to facilitate reproducibility at
https://github.com/shrimai/Style-Transfer-Through-Back-
Translation

Measuring the separation of style from content
is hard, even for humans. It depends on the task
and the context of the utterance within its dis-
course. Ultimately we must evaluate our style
transfer within some down-stream task where our
style transfer has its intended use but we achieve
the same task completion criteria.
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Abstract

While large-scale knowledge graphs pro-
vide vast amounts of structured facts about
entities, a short textual description can of-
ten be useful to succinctly characterize an
entity and its type. Unfortunately, many
knowledge graph entities lack such tex-
tual descriptions. In this paper, we in-
troduce a dynamic memory-based network
that generates a short open vocabulary de-
scription of an entity by jointly leverag-
ing induced fact embeddings as well as
the dynamic context of the generated se-
quence of words. We demonstrate the abil-
ity of our architecture to discern relevant
information for more accurate generation
of type description by pitting the system
against several strong baselines.

1 Introduction

Broad-coverage knowledge graphs such as Free-
base, Wikidata, and NELL are increasingly being
used in many NLP and AI tasks. For instance, DB-
pedia and YAGO were vital for IBM’s Watson!
Jeopardy system (Welty et al., 2012). Google’s
Knowledge Graph is tightly integrated into its
search engine, yielding improved responses for
entity queries as well as for question answering.
In a similar effort, Apple Inc. is building an in-
house knowledge graph to power Siri and its next
generation of intelligent products and services.

Despite being rich sources of factual knowl-
edge, cross-domain knowledge graphs often lack a
succinct textual description for many of the exist-
ing entities. Fig. 1 depicts an example of a concise
entity description presented to a user. Descriptions
of this sort can be beneficial both to humans and
in downstream AI and natural language process-
ing tasks, including question answering (e.g., Who

Figure 1: A motivating example question that demonstrates
the importance of short textual descriptions.

is Roger Federer?), named entity disambiguation
(e.g., Philadelphia as a city vs. the film or even the
brand of cream cheese), and information retrieval,
to name but a few.

Additionally, descriptions of this sort can also
be useful to determine the ontological type of
an entity – another challenging task that often
needs to be addressed in cross-domain knowledge
graphs. Many knowledge graphs already provide
ontological type information, and there has been
substantial previous research on how to predict
such types automatically for entities in knowl-
edge graphs (Neelakantan and Chang, 2015; Miao
et al., 2016; Kejriwal and Szekely, 2017), in semi-
structured resources such as Wikipedia (Ponzetto
and Strube, 2007; de Melo and Weikum, 2010),
or even in unstructured text (Snow et al., 2006;
Bansal et al., 2014; Tandon et al., 2015). How-
ever, most such work has targeted a fixed inven-
tory of types from a given target ontology, many
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of which are more abstract in nature (e.g., human
or artifact). In this work, we consider the task of
generating more detailed open vocabulary descrip-
tions (e.g., Swiss tennis player) that can readily be
presented to end users, generated from facts in the
knowledge graph.

Apart from type descriptions, certain knowl-
edge graphs, such as Freebase and DBpedia, also
provide a paragraph-length textual abstract for ev-
ery entity. In the latter case, these are sourced
from Wikipedia. There has also been research
on generating such abstracts automatically (Biran
and McKeown, 2017). While abstracts of this sort
provide considerably more detail than ontologi-
cal types, they are not sufficiently concise to be
grasped at a single glance, and thus the onus is put
on the reader to comprehend and summarize them.

Typically, a short description of an entity will
hence need to be synthesized just by drawing on
certain most relevant facts about it. While in many
circumstances, humans tend to categorize entities
at a level of abstraction commonly referred to as
basic level categories (Rosch et al., 1976), in an
information seeking setting, however, such as in
Fig. 1, humans naturally expect more detail from
their interlocutor. For example, occupation and
nationality are often the two most relevant prop-
erties used in describing a person in Wikidata,
while terms such as person or human being are
likely to be perceived as overly unspecific. How-
ever, choosing such most relevant and distinctive
attributes from the set of available facts about the
entity is non-trivial, especially given the diver-
sity of different kinds of entities in broad-coverage
knowledge graphs. Moreover, the generated text
should be coherent, succinct, and non-redundant.

To address this problem, we propose a dynamic
memory-based generative network that can gen-
erate short textual descriptions from the available
factual information about the entities. To the best
of our knowledge, we are the first to present neural
methods to tackle this problem. Previous work has
suggested generating short descriptions using pre-
defined templates (cf. Section 4). However, this
approach severely restricts the expressivity of the
model and hence such templates are typically only
applied to very narrow classes of entities. In con-
trast, our goal is to design a broad-coverage open
domain description generation architecture.

In our experiments, we induce a new benchmark
dataset for this task by relying on Wikidata, which

has recently emerged as the most popular crowd-
sourced knowledge base, following Google’s des-
ignation of Wikidata as the successor to Freebase
(Tanon et al., 2016). With a broad base of 19,000
casual Web users as contributors, Wikidata is a
crucial source of machine-readable knowledge in
many applications. Unlike DBpedia and Freebase,
Wikidata usually contains a very concise descrip-
tion for many of its entities. However, because
Wikidata is based on user contributions, many
new entries are created that still lack such descrip-
tions. This can be a problem for downstream tools
and applications using Wikidata for background
knowledge. Hence, even for Wikidata, there is
a need for tools to generate fine-grained type de-
scriptions. Fortunately, we can rely on the entities
for which users have already contributed short de-
scriptions to induce a new benchmark dataset for
the task of automatically inducing type descrip-
tions from structured data.

2 A Dynamic Memory-based Generative
Network Architecture

Our proposed dynamic memory-based generative
network consists of three key components: an in-
put module, a dynamic memory module, and an
output module. A schematic diagram of these are
given in Fig. 2.

2.1 Input Module

The input to the input module is a set of N facts
F = {f1, f2, . . . , fN} pertaining to an entity.
Each of these input facts are essentially (s, p, o)
triples, for subjects s, predicates p, and objects o.
Upon being encoded into a distributed vector rep-
resentation, we refer to them as fact embeddings.

Although many different encoding schemes can
be adopted to obtain such fact embeddings, we
opt for a positional encoding as described by
Sukhbaatar et al. (2015), motivated in part by the
considerations given by Xiong et al. (2016). For
completeness, we describe the positional encoding
scheme here.

We encode each fact fi as a vector fi =∑J
j=1 lj◦wi

j, where ◦ is an element-wise multipli-
cation, and lj is a column vector with the structure
lkj = (1 − j

J ) − (k/d)(1 − 2 jJ ), with J being
the number of words in the factual phrase, wi

j as
the embedding of the j-th word, and d as the di-
mensionality of the embedding. Details about how
these factual phrases are formed for our data are

878



Figure 2: Model architecture.

given in Section 3.3.
Thus, the output of this module is a concatena-

tion of N fact embeddings F = [f1; f2; . . . ; fN].

2.2 Dynamic Memory Module
The dynamic memory module is responsible for
memorizing specific facts about an entity that will
be useful for generating the next word in the out-
put description sequence. Intuitively, such a mem-
ory should be able to update itself dynamically by
accounting not only for the factual embeddings but
also for the current context of the generated se-
quence of words.

To begin with, the memory is initialized as
m(0) = max(0,WmF+ bm). At each time step
t, the memory module attempts to gather pertinent
contextual information by attending to and sum-
ming over the fact embeddings in a weighted man-
ner. These attention weights are scalar values in-
formed by two factors: (1) how much information
from a particular fact is used by the previous mem-
ory state m(t−1), and (2) how much information of
a particular fact is invoked in the current context of
the output sequence h(t−1). Formally,

xi
(t) = [|fi − h(t−1)|; |fi −m(t−1)|], (1)

zi
(t) = W2 tanh(W1xi

(t) + b1) + b2, (2)

a
(t)
i =

exp(zi
(t))

∑N
k=1 exp(zk

(t))
, (3)

where |.| is the element-wise absolute difference

and [; ] denotes the concatenation of vectors.
Having obtained the attention weights, we apply

a soft attention mechanism to extract the current
context vector at time t as

c(t) =

N∑

i=1

a
(t)
i fi. (4)

This newly obtained context information is then
used along with the previous memory state to up-
date the memory state as follows:

C(t) = [m(t−1); c(t);h(t−1)] (5)

m(t) = max(0,WmC(t) + bm) (6)

Such updated memory states serve as the input to
the decoder sequence of the output module at each
time step.

2.3 Output Module

The output module governs the process of repeat-
edly decoding the current memory state so as to
emit the next word in an ordered sequence of out-
put words. We rely on GRUs for this.

At each time step, the decoder GRU is presented
as input a glimpse of the current memory state
m(t) as well as the previous context of the out-
put sequence, i.e., the previous hidden state of the
decoder h(t−1). At each step, the resulting output
of the GRU is concatenated with the context vec-
tor ci

(t) and is passed through a fully connected
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layer and finally through a softmax layer. During
training, we deploy teacher forcing at each step
by providing the vector embedding of the previ-
ous correct word in the sequence as an additional
input. During testing, when such a signal is not
available, we use the embedding of the predicted
word in the previous step as an additional input to
the current step. Formally,

h(t) = GRU([m(t);w(t−1)],h(t−1)), (7)

h̃(t) = tanh(Wd[h
(t); c(t)] + bd), (8)

ŷ(t) = Softmax(Woh̃
(t) + bo), (9)

where [; ] is the concatenation operator, w(t−1) is
vector embedding of the previous word in the se-
quence, and ŷ(t) is the probability distribution for
the predicted word over the vocabulary at the cur-
rent step.

2.4 Loss Function and Training

Training this model amounts to picking suitable
values for the model parameters θ, which include
the matrices W1, W2, Wm, Wd, Wo and the
corresponding bias terms b1, b2, bm, bd, and bo

as well as the various transition and output matri-
ces of the GRU.

To this end, if each of the training instances has
a description with a maximum of M words, we
can rely on the categorical cross-entropy over the
entire output sequence as the loss function:

L(θ) = −
M∑

t=1

|V|∑

j=1

y
(t)
j log(ŷ

(t)
j ). (10)

where y(t)j ∈ {0, 1} and |V| is the vocabulary size.
We train our model end-to-end using Adam as

the optimization technique.

3 Evaluation

In this section, we describe the process of creat-
ing our benchmark dataset as well as the baseline
methods and the experimental results.

3.1 Benchmark Dataset Creation

For the evaluation of our method, we introduce a
novel benchmark dataset that we have extracted
from Wikidata and transformed to a suitable for-
mat. We rely on the official RDF exports of
Wikidata, which are generated regularly (Erxleben
et al., 2014), specifically, the RDF dump dated

2016-08-01, which consists of 19,768,780 enti-
ties with 2,570 distinct properties. A pair of a
property and its corresponding value represents a
fact about an entity. In Wikidata parlance, such
facts are called statements. We sample a dataset
of 10K entities from Wikidata, and henceforth re-
fer to the resulting dataset as WikiFacts10K. Our
sampling method ensures that each entity in Wiki-
Facts10K has an English description and at least
5 associated statements. We then transform each
extracted statement into a phrasal form by con-
catenating the words of the property name and its
value. For example, the (subject, predicate, object)
triple (Roger Federer, occupation, tennis player)
is transformed to ’occupation tennis player’. We
refer to these phrases as the factual phrases, which
are embedded as described earlier. We randomly
divide this dataset into training, validation, and
test sets with a 8:1:1 ratio. We have made our code
and data available1 for reproducibility and to facil-
itate further research in this area.

3.2 Baselines
We compare our model against an array of base-
lines of varying complexity. We experiment with
some variants of our model as well as several other
state-of-the-art models that, although not specif-
ically designed for this setting, can straightfor-
wardly be applied to the task of generating de-
scriptions from factual data.

1. Facts-to-sequence Encoder-Decoder
Model. This model is a variant of the
standard sequence-to-sequence encoder-
decoder architecture described by Sutskever
et al. (2014). However, instead of an input
sequence, it here operates on a set of fact em-
beddings {f1, f2, . . . , fN}, which are emitted
by the positional encoder described in Sec-
tion 2.1. We initialize the hidden state of the
decoder with a linear transformation of the
fact embeddings as h(0) = WF + b, where
F = [f1; f2; . . . ; fN] is the concatenation of
N fact embeddings.

As an alternative, we also experimented with
a sequence encoder that takes a separate fact
embedding as input at each step and initial-
izes the decoder hidden state with the final
hidden state of the encoder. However, this
approach did not yield us better results.

1https://github.com/kingsaint/Open-vocabulary-entity-
type-description
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Table 1: Automatic evaluation results of different models. For a detailed explanation of the baseline models, please refer to
Section 3.2. The best performing model for each column is highlighted in boldface.

Model B-1 B-2 B-3 B-4 ROUGE-L METEOR CIDEr
Facts-to-seq 0.404 0.324 0.274 0.242 0.433 0.214 1.627
Facts-to-seq w. Attention 0.491 0.414 0.366 0.335 0.512 0.257 2.207
Static Memory 0.374 0.298 0.255 0.223 0.383 0.185 1.328
DMN+ 0.281 0.234 0.236 0.234 0.275 0.139 0.912
Our Model 0.611 0.535 0.485 0.461 0.641 0.353 3.295

2. Facts-to-sequence Model with Attention
Decoder. The encoder of this model is iden-
tical to the one described above. The differ-
ence is in the decoder module that uses an
attention mechanism.

At each time step t, the decoder GRU re-
ceives a context vector c(t) as input, which is
an attention weighted sum of the fact embed-
dings. The attention weights and the context
vectors are computed as follows:

x(t) = [w(t−1);h(t−1)] (11)

z(t) = Wx(t) + b (12)

a(t) = softmax(z(t)) (13)

c(t) = max(0,
N∑

i=1

a
(t)
i fi) (14)

After obtaining the context vector, it is fed to
the GRU as input:

h(t) = GRU([w(t−1); c(t)],h(t−1)) (15)

3. Static Memory Model. This is a variant
of our model in which we do not upgrade
the memory dynamically at each time step.
Rather, we use the initial memory state as the
input to all of the decoder GRU steps.

4. Dynamic Memory Network (DMN+). We
consider the approach proposed by Xiong
et al. (2016), which supersedes Kumar et al.
(2016). However, some minor modifications
are needed to adapt it to our task. Unlike the
bAbI dataset, our task does not involve any
question. The presence of a question is im-
perative in DMN+, as it helps to determine
the initial state of the episodic memory mod-
ule. Thus, we prepend an interrogative phrase
such as ”Who is” or ”What is” to every entity
name. The question module of the DMN+
is hence presented with a question such as

”Who is Roger Federer?” or ”What is Star
Wars?”. Another difference is in the output
module. In DMN+, the final memory state
is passed through a softmax layer to generate
the answer. Since most answers in the bAbI
dataset are unigrams, such an approach suf-
fices. However, as our task is to generate a
sequence of words as descriptions, we use a
GRU-based decoder sequence model, which
at each time step receives the final mem-
ory state m(T ) as input to the GRU. We re-
strict the number of memory update episodes
to 3, which is also the preferred number of
episodes in the original paper.

3.3 Experimental Setup
For each entity in the WikiFacts10K dataset, there
is a corresponding set of facts expressed as factual
phrases as defined earlier. Each factual phrase in
turn is encoded as a vector by means of the posi-
tional encoding scheme described in Section 2.1.
Although other variants could be considered, such
as LSTMs and GRUs, we apply this standard fact
encoding mechanism for our model as well as all
our baselines for the sake of uniformity and fair
comparison. Another factor that makes the use
of a sequence encoder such as LSTMs or GRUs
less suitable is that the set of input facts is essen-
tially unordered without any temporal correlation
between facts.

We fixed the dimensionality of the fact embed-
dings and all hidden states to be 100. The vocab-
ulary size is 29K. Our models and all other base-
lines are trained for a maximum of 25 epochs with
an early stopping criterion and a fixed learning rate
of 0.001.

To evaluate the quality of the generated descrip-
tions, we rely on the standard BLEU (B-1, B-2,
B-3, B-4), ROUGE-L, METEOR and CIDEr met-
rics, as implemented by Sharma et al. (2017). Of
course, we would be remiss not to point out that
these metrics are imperfect. In general, they tend
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to be conservative in that they only reward gen-
erated descriptions that overlap substantially with
the ground truth descriptions given in Wikidata. In
reality, it may of course be the case that alternative
descriptions are equally appropriate. In fact, in-
specting the generated descriptions, we found that
our method often indeed generates correct alter-
native descriptions. For instance, Darius Kaiser
is described as a cyclist, but one could also de-
scribe him as a German bicycle racer. Despite
their shortcomings, the aforementioned metrics
have generally been found suitable for comparing
supervised systems, in that systems with signifi-
cantly higher scores tend to fare better at learning
to reproduce ground truth captions.

3.4 Results

The results of the experiments are reported in Ta-
ble 1. Across all metrics, we observe that our
model obtains significantly better scores than the
alternatives.

A facts-to-seq model exploiting our positional
fact encoding performs adequately. With an addi-
tional attention mechanism (Facts-to-seq w. Atten-
tion), the results are even better. This is on account
of the attention mechanism’s ability to reconsider
the attention distribution at each time step using
the current context of the output sequence. The
results suggest that this enables the model to more
flexibly focus on the most pertinent parts of the
input. In this regard, such a model thus resem-
bles our approach. However, there are important
differences between this baseline and our model.
Our model not only uses the current context of
the output sequence, but also memorizes how in-
formation of a particular fact has been used thus
far, via the dynamic memory module. We con-
jecture that the dynamic memory module thereby
facilitates generating longer description sequences
more accurately by better tracking which parts
have been attended to, as is empirically corrobo-
rated by the comparably higher BLEU scores for
longer n-grams.

The analysis of the Static Memory approach
amounts to an ablation study, as it only differs
from our full model in lacking memory updates.
The divergence of scores between the two variants
suggests that the dynamic memory indeed is vital
for more dynamically attending to the facts by tak-
ing into account the current context of the output
sequence at each step. Our model needs to dynam-

ically achieve different objectives at different time
points. For instance, it may start off looking at
several properties to infer a type of the appropriate
granularity for the entity (e.g., village), while in
the following steps it considers a salient property
and emits the corresponding named entity for it as
well as a suitable preposition (e.g., in China).

Finally, the poor results of the DMN+ approach
show that a naı̈ve application of a state-of-the-
art dynamic memory architecture does not suffice
to obtain strong results on this task. Indeed, the
DMN+ is even outperformed by our Facts-to-seq
baseline. This appears to stem from the inability of
the model to properly memorize all pertinent facts
in its encoder.

Analysis. In Figure 3, we visualize the attention
distribution over facts. We observe how the model
shifts its focus to different sorts of properties while
generating successive words.

Table 2 provides a representative sample of
the generated descriptions and their ground truth
counterparts. A manual inspection reveals five
distinct patterns. The first case is that of exact
matches with the reference descriptions. The sec-
ond involves examples on which there is a high
overlap of words between the ground truth and
generated descriptions, but the latter as a whole is
incorrect because of semantic drift or other chal-
lenges. In some cases, the model may have never
seen a word or named entity during training (e.g.,
Hypocrisy), or their frequency is very limited in
the training set. While it has been shown that
GRUs with an attention mechanism are capable
of learning to copy random strings from the input
(Gu et al., 2016), we conjecture that a dedicated
copy mechanism may help to mitigate this prob-
lem, which we will explore in future research. In
other cases, the model conflates semantically re-
lated concepts, as is evident from examples such
as a film being described as a filmmaker and a
polo player as a water polo player. Next, the
third group involves generated descriptions that
are more specific than the ground truth, but cor-
rect, while, in the fourth group, the generated out-
puts generalize the descriptions to a certain extent.
For example, American musician and pianist is
generalized as American musician, since musician
is a hypernym of pianist. Finally, the last group
consists of cases in which our model generated
descriptions that are factually accurate and may
be deemed appropriate despite diverging from the
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Figure 3: An example of attention distribution over the facts while emitting words. The country of citizenship property gets
the most attention while generating the first word French of the left description. For generating the next three words, the fact
occupation attracts the most attention. Similarly, instance of attracts the most attention when generating the sequence Italian
comune.

Table 2: A representative sample of the generated descriptions and its comparison with the ground truth descriptions.

Item Ground Truth Description Generated Description
Matches Q20538915 painting by Claude Monet painting by Claude Monet

Q10592904 genus of fungi genus of fungi
Q669081 municipality in Austria municipality in Austria
Q23588047 microbial protein found in microbial protein found in

Mycobacterium abscessus Mycobacterium abscessus
Semantic drift Q1777131 album by Hypocrisy album by Mandy Moore

Q16164685 polo player water polo player
Q849834 class of 46 electric locomotives class of 20 british 0-6-0t locomotives
Q1434610 1928 film filmmaker

More specific Q1865706 footballer Finnish footballer
Q19261036 number natural number
Q7807066 cricketer English cricketer
Q10311160 Brazilian lawyer Brazilian lawyer and politician

More general Q149658 main-belt asteroid asteroid
Q448330 American musician and pianist American musician
Q4801958 2011 Hindi film Indian film
Q7815530 South Carolina politician American politician

Alternative Q7364988 Dean of York British academic
Q1165984 cyclist German bicycle racer
Q6179770 recipient of the knight’s cross German general
Q17660616 singer-songwriter Canadian musician

reference descriptions to an extent that almost no
overlapping words are shared with them. Note that
such outputs are heavily penalized by the metrics
considered in our evaluation.

4 Related Work

Type Prediction. There has been extensive
work on predicting the ontological types of enti-
ties in large knowledge graphs (Neelakantan and
Chang, 2015; Miao et al., 2016; Kejriwal and
Szekely, 2017; Shimaoka et al., 2017), in semi-
structured resources such as Wikipedia (Ponzetto
and Strube, 2007; de Melo and Weikum, 2010),
as well as in text (Del Corro et al., 2015;
Yaghoobzadeh and Schütze, 2015; Ren et al.,

2016). However, the major shortcoming of these
sorts of methods, including those aiming at more
fine-grained typing, is that they assume that the set
of candidate types is given as input, and the main
remaining challenge is to pick the correct one(s).
In contrast, our work yields descriptions that often
indicate the type of entity, but typically are more
natural-sounding and descriptive (e.g. French Im-
pressionist artist) than the oftentimes abstract on-
tological types (such as human or artifact) chosen
by type prediction methods.

A separate, long-running series of work has ob-
tained open vocabulary type predictions for named
entities and concepts mentioned in text (Hearst,
1992; Snow et al., 2006), possibly also induc-
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ing taxonomies from them (Poon and Domingos,
2010; Velardi et al., 2013; Bansal et al., 2014).
However, these methods typically just need to se-
lect existing spans of text from the input as the
output description.

Text Generation from Structured Data. Re-
search on methods to generate descriptions for en-
tities has remained scant. Lebret et al. (2016) take
Wikipedia infobox data as input and train a custom
form of neural language model that, conditioned
on occurrences of words in the input table, gen-
erates biographical sentences as output. However,
their system is limited to a single kind of descrip-
tion (biographical sentences) that tend to share
a common structure. Wang et al. (2016) focus
on the problem of temporal ordering of extracted
facts. Biran and McKeown (2017) introduced a
template-based description generation framework
for creating hybrid concept-to-text and text-to-text
generation systems that produce descriptions of
RDF entities. Their framework can be tuned for
new domains, but does not yield a broad-coverage
multi-domain model. Voskarides et al. (2017) first
create sentence templates for specific entity rela-
tionships, and then, given a new relationship in-
stance, generate a description by selecting the best
template and filling the template slots with the ap-
propriate entities from the knowledge graph. Kut-
lak et al. (2013) generates referring expressions
by converting property-value pairs to text using
a hand-crafted mapping scheme. Wiseman et al.
(2017) considered the related task of mapping ta-
bles with numeric basketball statistics to natural
language. They investigated an extensive array of
current state-of-the-art neural pointer methods but
found that template-based models outperform all
neural models on this task by a significant margin.
However, their method requires specific templates
for each domain (for example, basketball games in
their case). Applying template-based methods to
cross-domain knowledge bases is highly challeng-
ing, as this would require too many different tem-
plates for different types of entities. Our dataset
contains items of from a large number of diverse
domains such as humans, books, films, paintings,
music albums, genes, proteins, cities, scientific ar-
ticles, etc., to name but a few.

Chen and Mooney (2008) studied the task
of taking representations of observations from a
sports simulation (Robocup simulator) as input,
e.g. pass(arg1=purple6, arg2=purple3), and gen-

erating game commentary. Liang et al. (2009)
learned alignments between formal descriptions
such as rainChance(time=26-30,mode=Def) and
natural language weather reports. Mei et al. (2016)
used LSTMs for these sorts of generation tasks,
via a custom coarse-to-fine architecture that first
determines which input parts to focus on.

Much of the aforementioned work essentially
involves aligning small snippets in the input to the
relevant parts in the training output and then learn-
ing to expand such input snippets into full sen-
tences. In contrast, in our task, alignments be-
tween parts of the input and the output do not
suffice. Instead, describing an entity often also
involves considering all available evidence about
that entity to infer information about it that is of-
ten not immediately given. Rather than verbaliz-
ing facts, our method needs a complex attention
mechanism to predict an object’s general type and
consider the information that is most likely to ap-
pear salient to humans from across the entire input.

The WebNLG Challenge (Gardent et al., 2017)
is another task for generating text from structured
data. However, this task requires a textual verbal-
ization of every triple. On the contrary, the task
we consider in this work is quite complementary
in that a verbalization of all facts one-by-one is not
the sought result. Rather, our task requires synthe-
sizing a short description by carefully selecting the
most relevant and distinctive facts from the set of
all available facts about the entity. Due to these
differences, the WebNLG dataset was not suitable
for the research question considered by our paper.

Neural Text Summarization. Generating entity
descriptions is related to the task of text summa-
rization. Most traditional work in this area was
extractive in nature, i.e. it selects the most salient
sentences from a given input text and concatenates
them to form a shorter summary or presents them
differently to the user (Yang et al., 2017). Abstrac-
tive summarization goes beyond this in generat-
ing new text not necessarily encountered in the in-
put, as is typically necessary in our setting. The
surge of sequence-to-sequence modeling of text
via LSTMs naturally extends to the task of abstrac-
tive summarization by training a model to accept a
longer sequence as input and learning to generate
a shorter compressed sequence as a summary.

Rush et al. (2015) employed this idea to gen-
erate a short headline from the first sentence of
a text. Subsequent work investigated the use of
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architectures such as pointer-generator networks
to better cope with long input texts (See et al.,
2017). Recently, Liu et al. (2018) presented a
model that generates an entire Wikipedia article
via a neural decoder component that performs ab-
stractive summarization of multiple source docu-
ments. Our work differs from such previous work
in that we do not consider a text sequence as input.
Rather, our input are a series of entity relationships
or properties, as reflected by our facts-to-sequence
baselines in the experiments. Note that our task
is in certain respects also more difficult than text
summarization. While regular neural summariz-
ers are often able to identify salient spans of text
that can be copied to the output, our input is of a
substantially different form than the desired out-
put.

Additionally, our goal is to make our method
applicable to any entity with factual information
that may not have a corresponding Wikipedia-like
article available. Indeed, Wikidata currently has
46 million items, whereas the English Wikipedia
has only 5.6 million articles. Hence, for the vast
majority of items in Wikidata, no corresponding
Wikipedia article is available. In such cases, a
summarization baseline will not be effective.

Episodic Memory Architectures. A number of
neural models have been put forth that possess
the ability to interact with a memory component.
Recent advances in neural architectures that com-
bine memory components with an attention mech-
anism exhibit the ability to extract and reason
over factual information. A well-known exam-
ple is the End-To-End Memory Network model by
Sukhbaatar et al. (2015), which may make mul-
tiple passes over the memory input to facilitate
multi-hop reasoning. These have been particularly
successful on the bAbI test suite of artificial com-
prehension tests (Weston et al., 2015), due to their
ability to extract and reason over the input.

At the core of the Dynamic Memory Networks
(DMN) architecture (Kumar et al., 2016) is an
episodic memory module, which is updated at
each episode with new information that is required
to answer a predefined question. Our approach
shares several commonalities with DMNs, as it
is also endowed with a dynamic memory of this
sort. However, there are also a number of signif-
icant differences. First of all, DMN and its im-
proved version DMN+ (Xiong et al., 2016) assume
sequential correlations between the sentences and

rely on them for reasoning purposes. To this end,
DMN+ needs an additional layer of GRUs, which
is used to capture sequential correlations among
sentences. Our model does not need any such
layer, as facts in a knowledge graph do not nec-
essarily possess any sequential interconnections.
Additionally, DMNs assume a predefined num-
ber of memory episodes, with the final memory
state being passed to the answer module. Unlike
DMNs, our model uses the dynamic context of the
output sequence to update the memory state. The
number of memory updates in our model flexibly
depends on the length of the generated sequence.
DMNs also have an additional question module as
input, which guides the memory updates and also
the output, while our model does not leverage any
such guiding factor. Finally, in DMNs, the output
is typically a unigram, whereas our model emits a
sequence of words.

5 Conclusion

Short textual descriptions of entities facilitate in-
stantaneous grasping of key information about en-
tities and their types. Generating them from facts
in a knowledge graph requires not only mapping
the structured fact information to natural language,
but also identifying the type of entity and then dis-
cerning the most crucial pieces of information for
that particular type from the long list of input facts
and compressing them down to a highly succinct
form. This is very challenging in light of the very
heterogeneous kinds of entities in our data.

To this end, we have introduced a novel dy-
namic memory-based neural architecture that up-
dates its memory at each step to continually re-
assess the relevance of potential input signals. We
have shown that our approach outperforms several
competitive baselines. In future work, we hope to
explore the potential of this architecture on further
kinds of data, including multimodal data (Long
et al., 2018), from which one can extract structured
signals. Our code and data is freely available.2
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Abstract

We explore story generation: creative sys-
tems that can build coherent and fluent
passages of text about a topic. We collect
a large dataset of 300K human-written sto-
ries paired with writing prompts from an
online forum. Our dataset enables hierar-
chical story generation, where the model
first generates a premise, and then trans-
forms it into a passage of text. We gain
further improvements with a novel form of
model fusion that improves the relevance
of the story to the prompt, and adding a
new gated multi-scale self-attention mech-
anism to model long-range context. Ex-
periments show large improvements over
strong baselines on both automated and
human evaluations. Human judges prefer
stories generated by our approach to those
from a strong non-hierarchical model by a
factor of two to one.

1 Introduction

Story-telling is on the frontier of current text gen-
eration technology: stories must remain themati-
cally consistent across the complete document, re-
quiring modeling very long range dependencies;
stories require creativity; and stories need a high
level plot, necessitating planning ahead rather than
word-by-word generation (Wiseman et al., 2017).

We tackle the challenges of story-telling with
a hierarchical model, which first generates a sen-
tence called the prompt describing the topic for
the story, and then conditions on this prompt when
generating the story. Conditioning on the prompt
or premise makes it easier to generate consistent
stories because they provide grounding for the
overall plot. It also reduces the tendency of stan-
dard sequence models to drift off topic.

Prompt: The Mage, the Warrior, and the Priest

Story: A light breeze swept the ground, and carried with
it still the distant scents of dust and time-worn stone. The
Warrior led the way, heaving her mass of armour and mus-
cle over the uneven terrain. She soon crested the last of the
low embankments, which still bore the unmistakable fin-
gerprints of haste and fear. She lifted herself up onto the
top the rise, and looked out at the scene before her. [...]

Figure 1: Example prompt and beginning of a
story from our dataset. We train a hierarchical
model that first generates a prompt, and then con-
ditions on the prompt when generating a story.

We find that standard sequence-to-sequence
(seq2seq) models (Sutskever et al., 2014) applied
to hierarchical story generation are prone to de-
generating into language models that pay little at-
tention to the writing prompt (a problem that has
been noted in other domains, such as dialogue re-
sponse generation (Li et al., 2015a)). This failure
is due to the complex and underspecified depen-
dencies between the prompt and the story, which
are much harder to model than the closer depen-
dencies required for language modeling (for exam-
ple, consider the subtle relationship between the
first sentence and prompt in Figure 1).

To improve the relevance of the generated story
to its prompt, we introduce a fusion mechanism
(Sriram et al., 2017) where our model is trained on
top of an pre-trained seq2seq model. To improve
over the pre-trained model, the second model must
focus on the link between the prompt and the story.
For the first time, we show that fusion mechanisms
can help seq2seq models build dependencies be-
tween their input and output.

Another major challenge in story generation is
the inefficiency of modeling long documents with
standard recurrent architectures—stories contain
734 words on average in our dataset. We improve
efficiency using a convolutional architecture, al-
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# Train Stories 272,600
# Test Stories 15,138
# Validation Stories 15,620
# Prompt Words 7.7M
# Story Words 200M
Average Length of Prompts 28.4
Average Length of Stories 734.5

Table 1: Statistics of WRITINGPROMPTS dataset

lowing whole stories to be encoded in parallel.
Existing convolutional architectures only encode a
bounded amount of context (Dauphin et al., 2017),
so we introduce a novel gated self-attention mech-
anism that allows the model to condition on its
previous outputs at different time-scales.

To train our models, we gathered a large dataset
of 303,358 human generated stories paired with
writing prompts from an online forum. Evaluating
free form text is challenging, so we also introduce
new evaluation metrics which isolate different as-
pects of story generation.

Experiments show that our fusion and self-
attention mechanisms improve over existing tech-
niques on both automated and human evaluation
measures. Our new dataset and neural architec-
tures allow for models which can creatively gen-
erate longer, more consistent and more fluent pas-
sages of text. Human judges prefer our hierarchi-
cal model’s stories twice as often as those of a non-
hierarchical baseline.

2 Writing Prompts Dataset

We collect a hierarchical story generation dataset1

from Reddit’s WRITINGPROMPTS forum.2

WRITINGPROMPTS is a community where online
users inspire each other to write by submitting
story premises, or prompts, and other users freely
respond. Each prompt can have multiple story
responses. The prompts have a large diversity
of topic, length, and detail. The stories must be
at least 30 words, avoid general profanity and
inappropriate content, and should be inspired by
the prompt (but do not necessarily have to fulfill
every requirement). Figure 1 shows an example.

We scraped three years of prompts and their
associated stories using the official Reddit API.
We clean the dataset by removing automated bot
posts, deleted posts, special announcements, com-

1 www.github.com/pytorch/fairseq
2www.reddit.com/r/WritingPrompts/

ments from moderators, and stories shorter than
30 words. We use NLTK for tokenization. The
dataset models full text to generate immediately
human-readable stories. We reserve 5% of the
prompts for a validation set and 5% for a test set,
and present additional statistics about the dataset
in Table 1.

For our experiments, we limit the length of the
stories to 1000 words maximum and limit the vo-
cabulary size for the prompts and the stories to
words appearing more than 10 times each. We
model an unknown word token and an end of doc-
ument token. This leads to a vocabulary size of
19,025 for the prompts and 104,960 for the sto-
ries. As the dataset is scraped from an online fo-
rum, the number of rare words and misspellings
is quite large, so modeling the full vocabulary is
challenging and computationally intensive.

3 Approach

The challenges of WRITINGPROMPTS are primar-
ily in modeling long-range dependencies and con-
ditioning on an abstract, high-level prompt. Re-
current and convolutional networks have success-
fully modeled sentences (Jozefowicz et al., 2016;
Dauphin et al., 2017), but accurately modeling
several paragraphs is an open problem. While
seq2seq networks have strong performance on a
variety of problems, we find that they are unable
to build stories that accurately reflect the prompts.
We will evaluate strategies to address these chal-
lenges in the following sections.

3.1 Hierarchical Story Generation

High-level structure is integral to good stories, but
language models generate on a strictly-word-by-
word basis and so cannot explicitly make high-
level plans. We introduce the ability to plan by
decomposing the generation process into two lev-
els. First, we generate the premise or prompt of
the story using the convolutional language model
from Dauphin et al. (2017). The prompt gives a
sketch of the structure of the story. Second, we use
a seq2seq model to generate a story that follows
the premise. Conditioning on the prompt makes it
easier for the story to remain consistent and also
have structure at a level beyond single phrases.
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Figure 2: Self-Attention Mechanism of a single
head, with GLU gating and downsampling. Mul-
tiple heads are concatenated, with each head using
a separate downsampling function.

3.2 Efficient Learning with Convolutional
Sequence-to-Sequence Model

The length of stories in our dataset is a challenge
for RNNs, which process tokens sequentially. To
transform prompts into stories, we instead build
on the convolutional seq2seq model of Gehring
et al. (2017), which uses deep convolutional net-
works as the encoder and decoder. Convolutional
models are ideally suited to modeling long se-
quences, because they allow parallelism of com-
putation within the sequence. In the Conv seq2seq
model, the encoder and decoder are connected
with attention modules (Bahdanau et al., 2015)
that perform a weighted sum of encoder outputs,
using attention at each layer of the decoder.

3.3 Modeling Unbounded Context with
Gated Multi-Scale Self-attention

CNNs can only model a bounded context win-
dow, preventing the modeling of long-range de-
pendencies within the output story. To en-
able modeling of unbounded context, we supple-
ment the decoder with a self-attention mechanism
(Sukhbaatar et al., 2015; Vaswani et al., 2017),

Figure 3: Multihead self-attention mechanism.
The decoder layer depicted attends with itself to
gate the input of the subsequent decoder layer.

which allows the model to refer to any previously
generated words. The self-attention mechanism
improves the model’s ability to extract long-range
context with limited computational impact due to
parallelism.

Gated Attention: Similar to Vaswani et al.
(2017), we use multi-head attention to allow each
head to attend to information at different posi-
tions. However, the queries, keys and values are
not given by linear projections but by more expres-
sive gated deep neural nets with Gated Linear Unit
(Dauphin et al., 2017) activations. We show that
gating lends the self-attention mechanism crucial
capacity to make fine-grained selections.

Multi-Scale Attention: Further, we propose to
have each head operating at a different time scale,
depicted in Figure 2. Thus the input to each head
is downsampled a different amount—the first head
sees the full input, the second every other input
timestep, the third every third input timestep, etc.
The different scales encourage the heads to attend
to different information. The downsampling oper-
ation limits the number of tokens in the attention
maps, making them sharper.

The output of a single attention head is given by

hL+1
0:t = Linear

(
v(hL0:t−1) (1)

� softmax(q(hL0:t)k(h
L
0:t)
>)
)

where hL0:t contains the hidden states up to time t
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at layer L, and q, k, v are gated downsampling net-
works as shown in Figure 2. Unlike Vaswani et al.
(2017), we allow the model to optionally attend to
a 0 vector at each timestep, if it chooses to ignore
the information of past timesteps (see Figure 3).
This mechanism allows the model to recover the
non-self-attention architecture and avoid attending
to the past if it provides only noise. Additionally,
we do not allow the self-attention mechanism to
attend to the current timestep, only the past.

3.4 Improving Relevance to Input Prompt
with Model Fusion

Unlike tasks such as translation, where the seman-
tics of the target are fully specified by the source,
the generation of stories from prompts is far more
open-ended. We find that seq2seq models ignore
the prompt and focus solely on modeling the sto-
ries, because the local dependencies required for
language modeling are easier to model than the
subtle dependencies between prompt and story.

We propose a fusion-based approach to en-
courage conditioning on the prompt. We train a
seq2seq model that has access to the hidden states
of a pretrained seq2seq model. Doing so can be
seen as a type of boosting or residual learning that
allows the second model to focus on what the first
model failed to learn—such as conditioning on
the prompt. To our knowledge, this paper is the
first to show that fusion reduces the problem of
seq2seq models degenerating into language mod-
els that capture primarily syntactic and grammati-
cal information.

The cold fusion mechanism of Sriram et al.
(2017) pretrains a language model and subse-
quently trains a seq2seq model with a gating
mechanism that learns to leverage the final hidden
layer of the language model during seq2seq train-
ing. We modify this approach by combining two
seq2seq models as follows (see Figure 4):

gt = σ(W [h
Training
t ;hPretrained

t ] + b)

ht = gt ◦ [hTraining
t ;hPretrained

t ]

where the hidden state of the pretrained seq2seq
model and training seq2seq model (represented by
ht) are concatenated to learn gates gt. The gates
are computed using a linear projection with the
weight matrix W . The gated hidden layers are
combined by concatenation and followed by more
fully connected layers with GLU activations (see

Figure 4: Diagram of our fusion model, which
learns a second seq2seq model to improve a pre-
trained model. The separate hidden states are com-
bined after gating through concatenation.

Appendix). We use layer normalization (Ba et al.,
2016) after each fully connected layer.

4 Related Work

4.1 Story Generation
Sequence-to-sequence neural networks (Sutskever
et al., 2014) have achieved state of the art perfor-
mance on a variety of text generation tasks, such
as machine translation (Sutskever et al., 2014) and
summarization (Rush et al., 2015). Recent work
has applied these models to more open-ended gen-
eration tasks, including writing Wikipedia articles
(Liu et al., 2018) and poetry (Zhang and Lapata,
2014).

Previous work on story generation has explored
seq2seq RNN architectures (Roemmele, 2016),
but has focused largely on using various content to
inspire the stories. For instance, Kiros et al. (2015)
uses photos to inspire short paragraphs trained on
romance novels, and Jain et al. (2017) chain a se-
ries of independent descriptions together into a
short story. Martin et al. (2017) decompose story
generation into two steps, first converting text into
event representations, then modeling stories as se-
quences of events before translating back to natu-
ral language. Similarly, Harrison et al. (2017) gen-
erate summaries of movies as sequences of events
using an RNN, then sample event representations
using MCMC. They find this technique can gener-
ate text of the desired genre, but the movie plots
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are not interpretable (as the model outputs events,
not raw text). However, we are not aware of pre-
vious work that has used hierarchical generation
from a textual premise to improve the coherence
and structure of stories.

4.2 Hierarchical Text Generation

Previous work has proposed decomposing the
challenge of generating long sequences of text
into a hierarchical generation task. For instance,
Li et al. (2015b) use an LSTM to hierarchically
learn word, then sentence, then paragraph embed-
dings, then transform the paragraph embeddings
into text. Yarats and Lewis (2017) generate a dis-
crete latent variable based on the context, then
generates text conditioned upon it.

4.3 Fusion Models

Previous work has investigated the integration
of language models with seq2seq models. The
two models can be leveraged together without ar-
chitectural modifications: Ramachandran et al.
(2016) use language models to initialize the en-
coder and decoder side of the seq2seq model inde-
pendently, and Chorowski and Jaitly (2016) com-
bine the predictions of the language model and
seq2seq model solely at inference time. Recent
work has also proposed deeper integration. Gul-
cehre et al. (2015) combined a trained language
model with a trained seq2seq model to learn a gat-
ing function that joins them. Sriram et al. (2017)
propose training the seq2seq model given the fixed
language model then learning a gate to filter the in-
formation from the language model.

5 Experimental Setup

5.1 Baselines

We evaluate a number of baselines:
(1) Language Models: Non-hierarchical models

for story generation, which do not condition on the
prompt. We use both the gated convolutional lan-
guage (GCNN) model of Dauphin et al. (2017) and
our additional self-attention mechanism.

(2) seq2seq: using LSTMs and convolutional
seq2seq architectures, and Conv seq2seq with de-
coder self-attention.

(3) Ensemble: an ensemble of two Conv
seq2seq with self-attention models.

(4) KNN: we also compare with a KNN model
to find the closest prompt in the training set for
each prompt in the test set. A TF-IDF vector for

Model Valid
Perplexity

Test
Perplexity

Conv seq2seq 45.27 45.54
+ self-attention 42.01 42.32
+ multihead 40.12 40.39
+ multiscale 38.76 38.91
+ gating 37.37 37.94

Table 2: Effect of new attention mechanism.
Gated multi-scale attention significantly improves
the perplexity on the WRITINGPROMPTS dataset.

each prompt was created using FASTTEXT (Bo-
janowski et al., 2016) and FAISS (Johnson et al.,
2017) was used for KNN search. The retrieved
story from the training set is limited to 150 words
to match the length of generated stories.

5.2 Fusion Training

To train the fusion model, we first pretrain a Conv
seq2seq with self-attention model on the WRIT-
INGPROMPTS dataset. This pretrained model is
fixed and provided to the second Conv seq2seq
with self-attention model during training time.
The two models are integrated with the fusion
mechanism described in Section 3.4.

5.3 Training

We implement models with the fairseq-py library
in PyTorch. Similar to Gehring et al. (2017),
we train using the Nesterov accelerated gradient
method (Sutskever et al., 2013) using gradient
clipping (Pascanu et al., 2013). We perform hy-
perparameter optimization on each of our models
by cross-validating with random search on a vali-
dation set. We provide model architectures in the
appendix.

5.4 Generation

We generate stories from our models using a top-k
random sampling scheme. At each timestep, the
model generates the probability of each word in
the vocabulary being the likely next word. We
randomly sample from the k = 10 most likely
candidates from this distribution. Then, subse-
quent timesteps generate words based on the pre-
viously selected words. We find this sampling
strategy substantially more effective than beam
search, which tends to produce common phrases
and repetitive text from the training set (Vijayaku-
mar et al., 2016; Shao et al., 2017). Sentences pro-
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Model # Parameters (mil) Valid Perplexity Test Perplexity
GCNN LM 123.4 54.50 54.79
GCNN + self-attention LM 126.4 51.84 51.18
LSTM seq2seq 110.3 46.83 46.79
Conv seq2seq 113.0 45.27 45.54
Conv seq2seq + self-attention 134.7 37.37 37.94
Ensemble: Conv seq2seq + self-attention 270.3 36.63 36.93
Fusion: Conv seq2seq + self-attention 255.4 36.08 36.56

Table 3: Perplexity on WRITINGPROMPTS. We dramatically improve over standard seq2seq models.

Figure 5: Human accuracy at pairing stories with
the prompts used to generate them. People find
that our fusion model significantly improves the
link between the prompt and generated stories.

duced by beam search tend to be short and generic.
Completely random sampling can introduce very
unlikely words, which can damage generation as
the model has not seen such mistakes at training
time. The restriction of sampling from the 10 most
likely candidates reduces the risk of these low-
probability samples.

For each model, we tune a temperature parame-
ter for the softmax at generation time. To ease hu-
man evaluation, we generate stories of 150 words
and do not generate unknown word tokens.

For prompt generation, we use a self-
attentive GCNN language model trained with the
same prompt-side vocabulary as the sequence-to-
sequence story generation models. The language
model to generate prompts has a validation per-
plexity of 63.06. Prompt generation is conducted
using the top-k random sampling from the 10 most
likely candidates, and the prompt is completed
when the language model generates the end of
prompt token.

5.5 Evaluation
We propose a number of evaluation metrics to
quantify the performance of our models. Many
commonly used metrics, such as BLEU for ma-

Figure 6: Accuracy of prompt ranking. The fusion
model most accurately pairs prompt and stories.

Figure 7: Accuracy on the prompt/story pairing
task vs. number of generated stories. Our genera-
tive fusion model can produce many stories with-
out degraded performance, while the KNN can
only produce a limited number relevant stories.

Model Human
Preference

Language model 32.68%
Hierarchical Model 67.32%

Table 4: Effect of Hierarchical Generation. Hu-
man judges prefer stories that were generated hier-
archically by first creating a premise and creating
a full story based on it with a seq2seq model.
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Figure 8: Average weighting of each model in our Fusion model for the beginning of the generated story
for the prompt Gates of Hell. The fused model (orange) is primarily used for words which are closely
related to the prompt, whereas generic words are generated by the pre-trained model (green).

chine translation or ROUGE for summarization,
compute an n-gram overlap between the generated
text and the human text—however, in our open-
ended generation setting, these are not useful. We
do not aim to generate a specific story; we want
to generate viable and novel stories. We focus on
measuring both the fluency of our models and their
ability to adhere to the prompt.

For automatic evaluation, we measure model
perplexity on the test set and prompt ranking accu-
racy. Perplexity is commonly used to evaluate the
quality of language models, and it reflects how flu-
ently the model can produce the correct next word
given the preceding words. We use prompt rank-
ing to assess how strongly a model’s output de-
pends on its input. Stories are decoded under 10
different prompts—9 randomly sampled prompts
and 1 true corresponding prompt—and the like-
lihood of the story given the various prompts is
recorded. We measure the percentage of cases
where the true prompt is the most likely to gen-
erate the story. In our evaluation, we examined
1000 stories from the test set for each model.

For human evaluation, we use Amazon Me-
chanical Turk to conduct a triple pairing task. We
use each model to generate stories based on held-
out prompts from the test set. Then, groups of
three stories are presented to the human judges.
The stories and their corresponding prompts are
shuffled, and human evaluators are asked to se-
lect the correct pairing for all three prompts. 105
stories per model are grouped into questions, and
each question is evaluated by 15 judges.

Lastly, we conduct human evaluation to evalu-
ate the importance of hierarchical generation for
story writing. We use Amazon Mechanical Turk to
compare the stories from hierarchical generation
from a prompt with generation without a prompt.
400 pairs of stories were evaluated by 5 judges
each in a blind test.

6 Results

We analyze the effect of our modeling improve-
ments on the WRITINGPROMPTS dataset.

Effect of Hierarchical Generation: We ex-
plore leveraging our dataset to perform hierarchi-
cal story generation by first using a self-attentive
GCNN language model to generate a prompt, and
then using a fusion model to write a story given
the generated prompt. We evaluate the effect of
hierarchical generation using a human study in Ta-
ble 4. 400 stories were generated from a self-
attentive GCNN language model, and another 400
were generated from our hierarchical fusion model
given generated prompts from a language model.
In a blind comparison where raters were asked to
choose the story they preferred reading, human
raters preferred the hierarchical model 67% of the
time.

Effect of new attention mechanism: Table 2
shows the effect of the proposed additions to the
self-attention mechanism proposed by Vaswani
et al. (2017). Table 3 shows that deep multi-scale
self-attention and fusion each significantly im-
prove the perplexity compared to the baselines. In
combination these additions to the Conv seq2seq
baseline reduce the perplexity by 9 points.

Effect of model fusion: Results in Table 3 show
that adding our fusion mechanism substantially
improves the likelihood of human-generated sto-
ries, and even outperforms an ensemble despite
having fewer parameters. We observe in Figure
5 that fusion has a much more significant impact
on the topicality of the stories. In comparison, en-
sembling has no effect on people’s ability to as-
sociate stories with a prompt, but adding model
fusion leads improves the pairing accuracy of the
human judges by 7%. These results suggest that
by training a second model on top of the first, we
have encouraged that model to learn the challeng-
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ing additional dependencies to relate to the source
sequence. To our knowledge, these are the first
results to show that fusion has such capabilities.

Comparison with Nearest Neighbours: Near-
est Neighbour Search (KNN) provides a strong
baseline for text generation. Figure 5 shows that
the fusion model can match the performance of
nearest neighbour search in terms of the connec-
tion between the story and prompt. The real value
in our generative approach is that it can produce
an unlimited number of stories, whereas KNN can
never generalize from its training data. To quan-
tify this improvement, Figure 7 plots the relevance
of the kth best story to a given prompt; the perfor-
mance of KNN degrades much more rapidly.

7 Discussion

7.1 Generation Quality

Our proposed fusion model is capable of gener-
ating unique text without copying directly from
the training set. When analyzing 500 150-word
generated stories from test-set prompts, the aver-
age longest common subsequence is 8.9. In con-
trast, the baseline Conv seq2seq model copies 10.2
words on average and the KNN baseline copies all
150 words from a story in the training set.

Figure 8 shows the values of the fusion gates for
an example story, averaged at each timestep. The
pretrained seq2seq model acts similarly to a lan-
guage model producing common words and punc-
tuation. The second seq2seq model learns to focus
on rare words, such as horned and robe.

However, the fusion model has limitations. Us-
ing random sampling to generate can produce er-
rors. For example, can’t is tokenized to ca n’t,
and the model occasionally produces the first to-
ken but misses the second. A similar error is after
one line of dialogue, the model may move to an-
other line of dialogue without generating a new-
line token. A further obstacle is repetition. The
model focuses frequently on what it has recently
produced, which leads to the generation of similar
text multiple times.

In the generation of prompts using the GCNN
language model, we find that prompts are fairly
generic compared to human prompts. Language
models often struggle to model rare words accu-
rately, as the probability distribution over the next
word is dominated by more common words. This
tends to produce similar prompts, particularly at

the start — we see many prompts that start with
the man. In contrast, many of the human prompts
are very unique (e.g. prompting stories in fantasy
worlds such as Harry Potter and Game of Thrones)
and the language model rarely produces the spe-
cific vocabulary required by these settings.

7.2 Use of Attention
We analyze the encoder-decoder attention in the
fusion model and find that unlike attention maps in
machine translation, where each decoder timestep
tends to attend to a different word on the encoder-
side, the attention map for each decoder timestep
looks similar and focuses mainly on salient words
in the prompt. We further look at the usage of
the self-attention layers within the decoder. While
they could be leveraged to look at words generated
very far in the past, at many timesteps the self-
attention focuses on the recent past.

8 Conclusion

We have collected the first dataset for creative text
generation based on short writing prompts. This
new dataset pushes the boundaries of text gen-
eration by requiring longer range dependencies
and conditioning on an abstract premise. Build-
ing on this dataset, we show through automatic
and human evaluation that novel hierarchical mod-
els, self-attention mechanisms and model fusion
significantly improves the fluency, topicality, and
overall quality of the generated stories.
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Generation with Fusion of Conv seq2seq + Self-Attention
Example Prompt 1: Aliens start abducting humans

It has been two weeks, and the last of my kind has gone. It is only a matter of time until there will be nothing left. I’m not
sure what the hell is going on... I can’t think. I can hear a distant scream. I think of a strange, alien sound. I try to speak, but
am interrupted by something, something that feels like a drum, I ca not tell. I mean I’m just a little bit older than an average
human. But I can, and I can feel the vibrations . I hear the sound of a ship approaching. The ground quakes at the force of
the impact, and a loud explosion shatters the silence.

Example Prompt 2: The scientists have discovered something terrible .

The scientist stood there, a little dazed as he stared.
“What is it?” He asked.
“This...this...Thing...This is a virus. A chemical that can destroy entire planet and it is a very small, complex, chemical that
could destroy any planet.” The scientist replied. His lab assistant looked down at the tablet.
“I’ve just discovered it. I can’t believe it. It looks like it’s made of some sort of chemical that’s very dangerous.”
“ Well, there’s a virus on the ground. It’s very effective...” “ I can’t believe what it is.” he said, pointing to the scientist .
“ We don’t know what this thing is. We haven’t seen anything like it . We can’t even see anything like this. ” Dr. Jones
stared at the scientist for a moment.
“What do you mean what does it do ?”
“It...It ’s a monster.”

Example Prompt 3: The silence before the storm comes

“I’m sorry,” she said “I can’t do this anymore.”
She sat in the grass, the grass blowing behind her as she sat staring at the sky. Her eyes were still closed but she was still
staring at it. Her hand was still shaking, her eyes closed as she watched the rain roll in and out of view. She could see the
world through her eyelids now. Her hands were still shaking like she hadn’t eaten in days. Her fingers were still clenched
tight and her fingers were now shaking. She wasn’t even sure if she was going to cry or if she just wanted to cry. It wasn’t
until she was close enough to hear the words.
“I ...I just...I need to...I ...” She was crying now and then, the rain was picking up. Her lips were shaking now and she could
see that the storm was getting closer and closer. Her heart stopped when she heard the thunder. She knew it was coming.
The storm was

Generation with Language Model + Self-Attention Baseline
Example 1:
I’ve always been the curious type. Growing up in the ghetto, I’ve been around for more than a year now. I still haven’t
heard it on my own. I’m not sure if I’m a good person. But I’m not the only one. I’ve been to the hospital, but it’s not my
first time. I’ve been to my psychiatrist’s journals before. “Hey, are you ... are you okay?” I asked. “Yes” I said. “What’s
wrong?” she replied, “I was just ... Doing something.” She said, “I’ve never been a bad person.”

Example 2:
The man was an accountant. He had to be. He had to be the next president. I looked back over the top and saw that his wife
was crying in the kitchen. I looked at the clock. It seemed to be coming slower, but I knew if I did it would not be long
before I was in my own home. I wasn’t sure. I had a hard time finding the right words to say. I was about to leave when he
suddenly became angry and began talking to me. “Hello, sir, I’m John. What is your name?” “My name is Manuel and I’m
a journalist.” I said

Table 5: Example stories generated by the proposed hierarchical fusion approach compared to stories
generated by a language model. Stories generated by the fusion model relate to the desired prompt and
show increased coherence between sentences and ability to stay on one topic compared to the language
modeling baseline.
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Abstract

Though impressive results have been
achieved in visual captioning, the task
of generating abstract stories from photo
streams is still a little-tapped problem.
Different from captions, stories have more
expressive language styles and contain
many imaginary concepts that do not ap-
pear in the images. Thus it poses chal-
lenges to behavioral cloning algorithms.
Furthermore, due to the limitations of au-
tomatic metrics on evaluating story qual-
ity, reinforcement learning methods with
hand-crafted rewards also face difficul-
ties in gaining an overall performance
boost. Therefore, we propose an Adver-
sarial REward Learning (AREL) frame-
work to learn an implicit reward function
from human demonstrations, and then op-
timize policy search with the learned re-
ward function. Though automatic eval-
uation indicates slight performance boost
over state-of-the-art (SOTA) methods in
cloning expert behaviors, human evalua-
tion shows that our approach achieves sig-
nificant improvement in generating more
human-like stories than SOTA systems.
Code will be made available here1.

1 Introduction

Recently, increasing attention has been focused on
visual captioning (Chen et al., 2015; Xu et al.,
2016; Wang et al., 2018c), which aims at describ-
ing the content of an image or a video. Though it
has achieved impressive results, its capability of
performing human-like understanding is still re-
strictive. To further investigate machine’s capa-

∗ Equal contribution
1
https://github.com/littlekobe/AREL

Story	#1:	The	brother	and	sister	were	ready for	the	first	
day	of	school.	They	were	excited to	go	to	their	first	day	
and	meet	new	friends.	They	told	their	mom how	happy
they	were.	They	said	they	were	going	to	make	a	lot	of	new	
friends	.	Then	they	got	up	and	got	ready to	get	in	the	car .
Story	#2:	The	brother did	not	want	to	talk	to	his	sister.	
The	siblings	made	up.	They	started	to	talk	and	smile.	
Their	parents showed	up.	They	were	happy to	see	them.

(a) (b) (c) (d) (e)
Captions:	
(a)	A	small	boy	and	a	girl	are	sitting	together.
(b)	Two	kids	sitting	on	a	porch	with	their	backpacks	on.
(c)	Two	young	kids	with	backpacks	sitting	on	the	porch.	
(d)	Two	young	children	that	are	very	close	to	one	another.	
(e)	A	boy	and	a	girl	smiling	at	the	camera	together.

Figure 1: An example of visual storytelling and
visual captioning. Both captions and stories are
shown here: each image is captioned with one sen-
tence, and we also demonstrate two diversified sto-
ries that match the same image sequence.

bilities in understanding more complicated visual
scenarios and composing more structured expres-
sions, visual storytelling (Huang et al., 2016) has
been proposed. Visual captioning is aimed at de-
picting the concrete content of the images, and its
expression style is rather simple. In contrast, vi-
sual storytelling goes one step further: it summa-
rizes the idea of a photo stream and tells a story
about it. Figure 1 shows an example of visual
captioning and visual storytelling. We have ob-
served that stories contain rich emotions (excited,
happy, not want) and imagination (siblings, par-
ents, school, car). It, therefore, requires the capa-
bility to associate with concepts that do not explic-
itly appear in the images. Moreover, stories are
more subjective, so there barely exists standard
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templates for storytelling. As shown in Figure 1,
the same photo stream can be paired with diverse
stories, different from each other. This heavily in-
creases the evaluation difficulty.

So far, prior work for visual storytelling (Huang
et al., 2016; Yu et al., 2017b) is mainly inspired
by the success of visual captioning. Nevertheless,
because these methods are trained by maximizing
the likelihood of the observed data pairs, they are
restricted to generate simple and plain description
with limited expressive patterns. In order to cope
with the challenges and produce more human-like
descriptions, Rennie et al. (2016) have proposed
a reinforcement learning framework. However, in
the scenario of visual storytelling, the common re-
inforced captioning methods are facing great chal-
lenges since the hand-crafted rewards based on
string matches are either too biased or too sparse
to drive the policy search. For instance, we used
the METEOR (Banerjee and Lavie, 2005) score
as the reward to reinforce our policy and found
that though the METEOR score is significantly
improved, the other scores are severely harmed.
Here we showcase an adversarial example with an
average METEOR score as high as 40.2:

We had a great time to have a lot of the.
They were to be a of the. They were to be in
the. The and it were to be the. The, and it
were to be the.

Apparently, the machine is gaming the metrics.
Conversely, when using some other metrics (e.g.
BLEU, CIDEr) to evaluate the stories, we observe
an opposite behavior: many relevant and coherent
stories are receiving a very low score (nearly zero).

In order to resolve the strong bias brought by
the hand-coded evaluation metrics in RL training
and produce more human-like stories, we propose
an Adversarial REward Learning (AREL) frame-
work for visual storytelling. We draw our inspi-
ration from recent progress in inverse reinforce-
ment learning (Ho and Ermon, 2016; Finn et al.,
2016; Fu et al., 2017) and propose the AREL algo-
rithm to learn a more intelligent reward function.
Specifically, we first incorporate a Boltzmann dis-
tribution to associate reward learning with distri-
bution approximation, then design the adversarial
process with two models – a policy model and a
reward model. The policy model performs the
primitive actions and produces the story sequence,
while the reward model is responsible for learning

the implicit reward function from human demon-
strations. The learned reward function would be
employed to optimize the policy in return.

For evaluation, we conduct both automatic met-
rics and human evaluation but observe a poor cor-
relation between them. Particularly, our method
gains slight performance boost over the base-
line systems on automatic metrics; human evalu-
ation, however, indicates significant performance
boost. Thus we further discuss the limitations
of the metrics and validate the superiority of our
AREL method in performing more intelligent un-
derstanding of the visual scenes and generating
more human-like stories.

Our main contributions are four-fold:

• We propose an adversarial reward learning
framework and apply it to boost visual story
generation.

• We evaluate our approach on the Visual
Storytelling (VIST) dataset and achieve the
state-of-the-art results on automatic metrics.

• We empirically demonstrate that automatic
metrics are not perfect for either training or
evaluation.

• We design and perform a comprehensive
human evaluation via Amazon Mechanical
Turk, which demonstrates the superiority of
the generated stories of our method on rele-
vance, expressiveness, and concreteness.

2 Related Work

Visual Storytelling Visual storytelling is the
task of generating a narrative story from a photo
stream, which requires a deeper understanding
of the event flow in the stream. Park and Kim
(2015) has done some pioneering research on sto-
rytelling. Chen et al. (2017) proposed a multi-
modal approach for storyline generation to pro-
duce a stream of entities instead of human-like de-
scriptions. Recently, a more sophisticated dataset
for visual storytelling (VIST) has been released
to explore a more human-like understanding of
grounded stories (Huang et al., 2016). Yu et al.
(2017b) proposes a multi-task learning algorithm
for both album summarization and paragraph gen-
eration, achieving the best results on the VIST
dataset. But these methods are still based on be-
havioral cloning and lack the ability to generate
more structured stories.
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Reinforcement Learning in Sequence Genera-
tion Recently, reinforcement learning (RL) has
gained its popularity in many sequence generation
tasks such as machine translation (Bahdanau et al.,
2016), visual captioning (Ren et al., 2017; Wang
et al., 2018b), summarization (Paulus et al., 2017;
Chen et al., 2018), etc. The common wisdom of
using RL is to view generating a word as an ac-
tion and aim at maximizing the expected return
by optimizing its policy. As pointed in (Ranzato
et al., 2015), traditional maximum likelihood al-
gorithm is prone to exposure bias and label bias,
while the RL agent exposes the generative model
to its own distribution and thus can perform bet-
ter. But these works usually utilize hand-crafted
metric scores as the reward to optimize the model,
which fails to learn more implicit semantics due to
the limitations of automatic metrics.

Rethinking Automatic Metrics Automatic
metrics, including BLEU (Papineni et al., 2002),
CIDEr (Vedantam et al., 2015), METEOR (Baner-
jee and Lavie, 2005), and ROUGE (Lin, 2004),
have been widely applied to the sequence gener-
ation tasks. Using automatic metrics can ensure
rapid prototyping and testing new models with
fewer expensive human evaluation. However, they
have been criticized to be biased and correlate
poorly with human judgments, especially in many
generative tasks like response generation (Lowe
et al., 2017; Liu et al., 2016), dialogue sys-
tem (Bruni and Fernández, 2017) and machine
translation (Callison-Burch et al., 2006). The
naive overlap-counting methods are not able
to reflect many semantic properties in natural
language, such as coherence, expressiveness, etc.

Generative Adversarial Network Generative
adversarial network (GAN) (Goodfellow et al.,
2014) is a very popular approach for estimating
intractable probabilities, which sidestep the diffi-
culty by alternately training two models to play a
min-max two-player game:

min
D

max
G

E
x∼pdata

[logD(x)] + E
z∼pz

[logD(G(z))] ,

where G is the generator and D is the discrimina-
tor, and z is the latent variable. Recently, GAN
has quickly been adopted to tackle discrete prob-
lems (Yu et al., 2017a; Dai et al., 2017; Wang et al.,
2018a). The basic idea is to use Monte Carlo pol-
icy gradient estimation (Williams, 1992) to update
the parameters of the generator.

Adversarial
Objective Reward Model Policy Model

Environment

Reward

Inverse	RL

RL

Images	 references

Sampled
Story

Images

Figure 2: AREL framework for visual storytelling.

Inverse Reinforcement Learning Reinforce-
ment learning is known to be hindered by the
need for an extensive feature and reward engi-
neering, especially under the unknown dynamics.
Therefore, inverse reinforcement learning (IRL)
has been proposed to infer expert’s reward func-
tion. Previous IRL approaches include maximum
margin approaches (Abbeel and Ng, 2004; Ratliff
et al., 2006) and probabilistic approaches (Ziebart,
2010; Ziebart et al., 2008). Recently, adversarial
inverse reinforcement learning methods provide
an efficient and scalable promise for automatic re-
ward acquisition (Ho and Ermon, 2016; Finn et al.,
2016; Fu et al., 2017; Henderson et al., 2017).
These approaches utilize the connection between
IRL and energy-based model and associate every
data with a scalar energy value by using Boltz-
mann distribution pθ(x) ∝ exp(−Eθ(x)). In-
spired by these methods, we propose a practical
AREL approach for visual storytelling to uncover
a robust reward function from human demonstra-
tions and thus help produce human-like stories.

3 Our Approach

3.1 Problem Statement

Here we consider the task of visual storytelling,
whose objective is to output a word sequenceW =
(w1, w1, · · · , wT ), wt ∈ V given an input image
stream of 5 ordered images I = (I1, I2, · · · , I5),
where V is the vocabulary of all output token.
We formulate the generation as a markov deci-
sion process and design a reinforcement learning
framework to tackle it. As described in Figure 2,
our AREL framework is mainly composed of two
modules: a policy model πβ(W ) and a reward
model Rθ(W ). The policy model takes an image
sequence I as the input and performs sequential
actions (choosing wordsw from the vocabulary V)
to form a narrative story W . The reward model
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CNN

My	brother	recently	graduated	college.

It	was	a	formal	cap	and	gown	event.

My	mom	and	dad	attended.

Later,	my	aunt	and	grandma	showed	up.

When	the	event	was	over	he	even	
got	congratulated	by	the	mascot.

Encoder Decoder

Figure 3: Overview of the policy model. The vi-
sual encoder is a bidirectional GRU, which en-
codes the high-level visual features extracted from
the input images. Its outputs are then fed into the
RNN decoders to generate sentences in parallel.
Finally, we concatenate all the generated sentences
as a full story. Note that the five decoders share the
same weights.

is optimized by the adversarial objective (see Sec-
tion 3.3) and aims at deriving a human-like reward
from both human-annotated stories and sampled
predictions.

3.2 Model
Policy Model As is shown in Figure 3, the pol-
icy model is a CNN-RNN architecture. We fist
feed the photo stream I = (I1, · · · , I5) into a
pretrained CNN and extract their high-level image
features. We then employ a visual encoder to fur-
ther encode the image features as context vectors
hi = [

←−
hi ;
−→
hi ]. The visual encoder is a bidirectional

gated recurrent units (GRU).
In the decoding stage, we feed each context vec-

tor hi into a GRU-RNN decoder to generate a sub-
story Wi. Formally, the generation process can be
written as:

sit = GRU(sit−1, [w
i
t−1, hi]) , (1)

πβ(w
i
t|wi1:t−1) = softmax(Wss

i
t + bs) , (2)

where sit denotes the t-th hidden state of i-th de-
coder. We concatenate the previous token wit−1
and the context vector hi as the input. Ws and
bs are the projection matrix and bias, which out-
put a probability distribution over the whole vo-
cabulary V. Eventually, the final story W is the
concatenation of the sub-stories Wi. β denotes all
the parameters of the encoder, the decoder, and the
output layer.

Story Convolution FC	layerPooling

CNN

my
mom
and
dad

attended
.

<EOS>

+

Reward

Figure 4: Overview of the reward model. Our re-
ward model is a CNN-based architecture, which
utilizes convolution kernels with size 2, 3 and 4
to extract bigram, trigram and 4-gram representa-
tions from the input sequence embeddings. Once
the sentence representation is learned, it will be
concatenated with the visual representation of the
input image, and then be fed into the final FC layer
to obtain the reward.

Reward Model The reward model Rθ(W ) is a
CNN-based architecture (see Figure 4). Instead of
giving an overall score for the whole story, we ap-
ply the reward model to different story parts (sub-
stories) Wi and compute partial rewards, where
i = 1, · · · , 5. We observe that the partial rewards
are more fine-grained and can provide better guid-
ance for the policy model.

We first query the word embeddings of the sub-
story (one sentence in most cases). Next, multi-
ple convolutional layers with different kernel sizes
are used to extract the n-grams features, which
are then projected into the sentence-level repre-
sentation space by pooling layers (the design here
is inspired by Kim (2014)). In addition to the
textual features, evaluating the quality of a story
should also consider the image features for rele-
vance. Therefore, we then combine the sentence
representation with the visual feature of the input
image through concatenation and feed them into
the final fully connected decision layer. In the
end, the reward model outputs an estimated reward
value Rθ(W ). The process can be written in for-
mula:

Rθ(W ) =Wr(fconv(W ) +WiICNN ) + br, (3)

where Wr, br denotes the weights in the output
layer, and fconv denotes the operations in CNN.
ICNN is the high-level visual feature extracted
from the image, and Wi projects it into the sen-
tence representation space. θ includes all the pa-
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rameters above.

3.3 Learning

Reward Boltzmann Distribution In order to
associate story distribution with reward function,
we apply EBM to define a Reward Boltzmann dis-
tribution:

pθ(W ) =
exp(Rθ(W ))

Zθ
, (4)

Where W is the word sequence of the story and
pθ(W ) is the approximate data distribution, and
Zθ =

∑
W

exp(Rθ(W )) denotes the partition func-

tion. According to the energy-based model (Le-
Cun et al., 2006), the optimal reward function
R∗(W ) is achieved when the Reward-Boltzmann
distribution equals to the “real” data distribution
pθ(W ) = p∗(W ).

Adversarial Reward Learning We first intro-
duce an empirical distribution pe(W ) = 1(W∈D)

|D|
to represent the empirical distribution of the train-
ing data, whereD denotes the dataset with |D| sto-
ries and 1 denotes an indicator function. We use
this empirical distribution as the “good” examples,
which provides the evidence for the reward func-
tion to learn from.

In order to approximate the Reward Boltzmann
distribution towards the “real” data distribution
p∗(W ), we design a min-max two-player game,
where the Reward Boltzmann distribution pθ aims
at maximizing the its similarity with empirical
distribution pe while minimizing that with the
“faked” data generated from policy model πβ . On
the contrary, the policy distribution πβ tries to
maximize its similarity with the Boltzmann dis-
tribution pθ. Formally, the adversarial objective
function is defined as

max
β

min
θ
KL(pe(W )||pθ(W ))−KL(πβ(W )||pθ(W )) .

(5)

We further decompose it into two parts. First,
because the objective Jβ of the story genera-
tion policy is to minimize its similarity with the
Boltzmann distribution pθ, the optimal policy
that minimizes KL-divergence is thus π(W ) ∼
exp(Rθ(W )), meaning if Rθ is optimal, the op-
timal πβ = π∗. In formula,

Jβ =−KL(πβ(W )||pθ(W ))

= E
W∼πβ(W )

[Rθ(W )] +H(πβ(W )) , (6)

Algorithm 1 The AREL Algorithm.
1: for episode← 1 to N do
2: collect story W by executing policy πθ
3: if Train-Reward then
4: θ ← θ − η × ∂Jθ

∂θ (see Equation 9)
5: else if Train-Policy then
6: collect story W̃ from empirical pe
7: β ← β − η × ∂Jβ

∂β (see Equation 9)
8: end if
9: end for

where H denotes the entropy of the policy model.
On the other hand, the objective Jθ of the re-
ward function is to distinguish between human-
annotated stories and machine-generated stories.
Hence it is trying to minimize the KL-divergence
with the empirical distribution pe and maximize
the KL-divergence with the approximated policy
distribution πβ:

Jθ =KL(pe(W )||pθ(W ))−KL(πβ(W )||pθ(W ))

=
∑

W

[pe(W )Rθ(W )− πβ(W )Rθ(W )]

−H(pe) +H(πβ) ,

(7)

SinceH(πβ) andH(pe) are irrelevant to θ, we de-
note them as constant C. Therefore, the objective
Jθ can be further derived as

Jθ = E
W∼pe(W )

[Rθ(W )]− E
W∼πβ(W )

[Rθ(W )] + C . (8)

Here we propose to use stochastic gradient de-
scent to optimize these two models alternately.
Formally, the gradients can be written as

∂Jθ
∂θ

= E
W∼pe(W )

∂Rθ(W )

∂θ
− E
W∼πβ(W )

∂Rθ(W )

∂θ
,

∂Jβ
∂β

= E
W∼πβ(W )

(Rθ(W ) + log πθ(W )− b)∂ log πβ(W )

∂β
,

(9)

where b is the estimated baseline to reduce the
variance.

Training & Testing As described in Algo-
rithm 1, we introduce an alternating algorithm to
train these two models using stochastic gradient
descent. During testing, the policy model is used
with beam search to produce the story.

4 Experiments and Analysis

4.1 Experimental Setup
VIST Dataset The VIST dataset (Huang et al.,
2016) is the first dataset for sequential vision-to-
language tasks including visual storytelling, which

903



consists of 10,117 Flickr albums with 210,819
unique photos. In this paper, we mainly evalu-
ate our AREL method on this dataset. After filter-
ing the broken images2, there are 40,098 training,
4,988 validation, and 5,050 testing samples. Each
sample contains one story that describes 5 selected
images from a photo album (mostly one sentence
per image). And the same album is paired with 5
different stories as references. In our experiments,
we used the same split settings as in (Huang et al.,
2016; Yu et al., 2017b) for a fair comparison.

Evaluation Metrics In order to comprehen-
sively evaluate our method on storytelling dataset,
we adopted both the automatic metrics and human
evaluation as our criterion. Four diverse automatic
metrics were used in our experiments: BLEU,
METEOR, ROUGE-L, and CIDEr. We utilized
the open source evaluation code3 used in (Yu et al.,
2017b). For human evaluation, we employed the
Amazon Mechanical Turk to perform two kinds of
user studies (see Section 4.3 for more details).

Training Details We employ pretrained
ResNet-152 model (He et al., 2016) to extract
image features from the photo stream. We built a
vocabulary of size 9,837 to include words appear-
ing more than three times in the training set. More
training details can be found at Appendix B.

4.2 Automatic Evaluation
In this section, we compare our AREL method
with the state-of-the-art methods as well as stan-
dard reinforcement learning algorithms on auto-
matic evaluation metrics. Then we further discuss
the limitations of the hand-crafted metrics on eval-
uating human-like stories.

Comparison with SOTA on Automatic Metrics
In Table 1, we compare our method with Huang
et al. (2016) and Yu et al. (2017b), which report
achieving best-known results on the VIST dataset.
We first implement a strong baseline model (XE-
ss), which share the same architecture with our
policy model but is trained with cross-entropy loss
and scheduled sampling. Besides, we adopt the
traditional generative adversarial training for com-
parison (GAN). As shown in Table 1, our XE-
ss model already outperforms the best-known re-

2There are only 3 (out of 21,075) broken images in the
test set, which basically has no influence on the final results.
Moreover, Yu et al. (2017b) also removed the 3 pictures, so it
is a fair comparison.

3
https://github.com/lichengunc/vist_eval

Method B-1 B-2 B-3 B-4 M R C

Huang et al. - - - - 31.4 - -
Yu et al. - - 21.0 - 34.1 29.5 7.5
XE-ss 62.3 38.2 22.5 13.7 34.8 29.7 8.7
GAN 62.8 38.8 23.0 14.0 35.0 29.5 9.0
AREL-s-50 63.8 38.9 22.9 13.8 34.9 29.4 9.5
AREL-t-50 63.4 39.0 23.1 14.1 35.2 29.6 9.5
AREL-s-100 63.9 39.1 23.0 13.9 35.0 29.7 9.6
AREL-t-100 63.8 39.1 23.2 14.1 35.0 29.5 9.4

Table 1: Automatic evaluation on the VIST
dataset. We report BLEU (B), METEOR (M),
ROUGH-L (R), and CIDEr (C) scores of the
SOTA systems and the models we implemented,
including XE-ss, GAN and AREL. AREL-s-N de-
notes AREL models with sigmoid as output acti-
vation and alternate frequency as N, while AREL-
t-N denoting AREL models with tahn as the output
activation (N = 50 or 100).

sults on the VIST dataset, and the GAN model can
bring a performance boost. We then use the XE-
ss model to initialize our policy model and further
train it with AREL. Evidently, our AREL model
performs the best and achieves the new state-of-
the-art results across all metrics.

But, compared with the XE-ss model, the per-
formance gain is minor, especially on METEOR
and ROUGE-L scores. However, in Sec. 4.3, the
extensive human evaluation has indicated that our
AREL framework brings a significant improve-
ment on generating human-like stories over the
XE-ss model. The inconsistency of automatic
evaluation and human evaluation lead to a suspect
that these hand-crafted metrics lack the ability to
fully evaluate stories’ quality due to the compli-
cated characteristics of the stories. Therefore, we
conduct experiments to analyze and discuss the
defects of the automatic metrics in section 4.2.

Limitations of Automatic Metrics As we
claimed in the introduction, string-match-based
automatic metrics are not perfect and fail to eval-
uate some semantic characteristics of the stories,
like the expressiveness and coherence of the sto-
ries. In order to confirm our conjecture, we uti-
lize automatic metrics as rewards to reinforce the
visual storytelling model by adopting policy gra-
dient with baseline to train the policy model. The
quantitative results are demonstrated in Table 1.

Apparently, METEOR-RL and ROUGE-RL are
severely ill-posed: they obtain the highest scores
on their own metrics but damage the other met-
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Method B-1 B-2 B-3 B-4 M R C

XE-ss 62.3 38.2 22.5 13.7 34.8 29.7 8.7
BLEU-RL 62.1 38.0 22.6 13.9 34.6 29.0 8.9
METEOR-RL 68.1 35.0 15.4 6.8 40.2 30.0 1.2
ROUGE-RL 58.1 18.5 1.6 0 27.0 33.8 0
CIDEr-RL 61.9 37.8 22.5 13.8 34.9 29.7 8.1
AREL (avg) 63.7 39.0 23.1 14.0 35.0 29.6 9.5

Table 2: Comparison with different RL mod-
els with different metric scores as the rewards.
We report the average scores of the AREL mod-
els as AREL (avg). Although METEOR-RL
and ROUGE-RL models achieve very high scores
on their own metrics, the underlined scores are
severely damaged. Actually, they are gaming their
own metrics with nonsense sentences.

rics severely. We observe that these models are
actually overfitting to a given metric while losing
the overall coherence and semantical correctness.
Same as METEOR score, there is also an adver-
sarial example for ROUGE-L4, which is nonsense
but achieves an average ROUGE-L score of 33.8.

Besides, as can be seen in Table 1, after rein-
forced training, BLEU-RL and CIDEr-RL do not
bring a consistent improvement over the XE-ss
model. We plot the histogram distributions of both
BLEU-3 and CIDEr scores on the test set in Fig-
ure 5. An interesting fact is that there are a large
number of samples with nearly zero score on both
metrics. However, we observed those “zero-score”
samples are not pointless results; instead, lots of
them make sense and deserve a better score than
zero. Here is a “zero-score” example on BLEU-3:

I had a great time at the restaurant today.
The food was delicious. I had a lot of food.
The food was delicious. T had a great time.

The corresponding reference is

The table of food was a pleasure to see!
Our food is both nutritious and beautiful!
Our chicken was especially tasty! We love
greens as they taste great and are healthy!
The fruit was a colorful display that tanta-
lized our palette..

Although the prediction is not as good as the ref-
erence, it is actually coherent and relevant to the

4An adversarial example for ROUGE-L: we the was a .
and to the . we the was a . and to the . we the was a . and to
the . we the was a . and to the . we the was a . and to the .

Method Win Lose Unsure
XE-ss 22.4% 71.7% 5.9%
BLEU-RL 23.4% 67.9% 8.7%
CIDEr-RL 13.8% 80.3% 5.9%
GAN 34.3% 60.5% 5.2%
AREL 38.4% 54.2% 7.4%

Table 3: Turing test results.

theme “food and eating”, which showcases the de-
feats of using BLEU and CIDEr scores as a reward
for RL training.

Moreover, we compare the human evaluation
scores with these two metric scores in Figure 5.
Noticeably, both BLEU-3 and CIDEr have a poor
correlation with the human evaluation scores.
Their distributions are more biased and thus can-
not fully reflect the quality of the generated sto-
ries. In terms of BLEU, it is extremely hard for
machines to produce the exact 3-gram or 4-gram
matching, so the scores are too low to provide use-
ful guidance. CIDEr measures the similarity of a
sentence to the majority of the references. How-
ever, the references to the same image sequence
are photostream different from each other, so the
score is very low and not suitable for this task. In
contrast, our AREL framework can lean a more
robust reward function from human-annotated sto-
ries, which is able to provide better guidance to
the policy and thus improves its performances over
different metrics.

Comparison with GAN We here compare our
method with traditional GAN (Goodfellow et al.,
2014), the update rule for generator can be gener-
ally classified into two categories. We demonstrate
their corresponding objectives and ours as follows:

GAN1 : Jβ = E
W∼pβ

[− logRθ(W )] ,

GAN2 : Jβ = E
W∼pβ

[log(1−Rθ(W ))] ,

ours : Jβ = E
W∼pβ

[−Rθ(W )] .

As discussed in Arjovsky et al. (2017), GAN1 is
prone to the unstable gradient issue and GAN2
is prone to the vanishing gradient issue. Analyti-
cally, our method does not suffer from these two
common issues and thus is able converge to op-
timum solutions more easily. From Table 1, we
can observe slight gains of using AREL over GAN
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Figure 5: Metric score distributions. We plot the histogram distributions of BLEU-3 and CIDEr scores on
the test set, as well as the human evaluation score distribution on the test samples. For a fair comparison,
we use the Turing test results to calculate the human evaluation scores (see Section 4.3). Basically, 0.2
score is given if the generated story wins the Turing test, 0.1 for tie, and 0 if losing. Each sample has 5
scores from 5 judges, and we use the sum as the human evaluation score, so it is in the range [0, 1].

AREL vs XE-ss AREL vs BLEU-RL AREL vs CIDEr-RL AREL vs GAN
Choice (%) AREL XE-ss Tie AREL BLEU-RL Tie AREL CIDEr-RL Tie AREL GAN Tie
Relevance 61.7 25.1 13.2 55.8 27.9 16.3 56.1 28.2 15.7 52.9 35.8 11.3
Expressiveness 66.1 18.8 15.1 59.1 26.4 14.5 59.1 26.6 14.3 48.5 32.2 19.3
Concreteness 63.9 20.3 15.8 60.1 26.3 13.6 59.5 24.6 15.9 49.8 35.8 14.4

Table 4: Pairwise human comparisons. The results indicate the consistent superiority of our AREL model
in generating more human-like stories than the SOTA methods.

with automatic metrics, therefore we further de-
ploy human evaluation for a better comparison.

4.3 Human Evaluation
Automatic metrics cannot fully evaluate the ca-
pability of our AREL method. Therefore, we
perform two different kinds of human evaluation
studies on Amazon Mechanical Turk: Turing test
and pairwise human evaluation. For both tasks,
we use 150 stories (750 images) sampled from the
test set, each assigned to 5 workers to eliminate
human variance. We batch six items as one assign-
ment and insert an additional assignment as a san-
ity check. Besides, the order of the options within
each item is shuffled to make a fair comparison.

Turing Test We first conduct five indepen-
dent Turing tests for XE-ss, BLEU-RL, CIDEr-
RL, GAN, and AREL models, during which the
worker is given one human-annotated sample and
one machine-generated sample, and needs to de-
cide which is human-annotated. As shown in Ta-
ble 3, our AREL model significantly outperforms
all the other baseline models in the Turing test: it
has much more chances to fool AMT worker (the
ratio is AREL:XE-ss:BLEU-RL:CIDEr-RL:GAN
= 45.8%:28.3%:32.1%:19.7%:39.5%), which con-
firms the superiority of our AREL framework in
generating human-like stories. Unlike automatic
metric evaluation, the Turing test has indicated

a much larger margin between AREL and other
competing algorithms. Thus, we empirically con-
firm that metrics are not perfect in evaluating many
implicit semantic properties of natural language.
Besides, the Turing test of our AREL model re-
veals that nearly half of the workers are fooled by
our machine generation, indicating a preliminary
success toward generating human-like stories.

Pairwise Comparison In order to have a clear
comparison with competing algorithms with re-
spect to different semantic features of the sto-
ries, we further perform four pairwise compar-
ison tests: AREL vs XE-ss/BLEU-RL/CIDEr-
RL/GAN. For each photo stream, the worker is
presented with two generated stories and asked to
make decisions from the three aspects: relevance5,
expressiveness6 and concreteness7. This head-to-
head compete is designed to help us understand in
what aspect our model outperforms the competing
algorithms, which is displayed in Table 4.

Consistently on all the three comparisons, a
large majority of the AREL stories trumps the
competing systems with respect to their relevance,

5Relevance: the story accurately describes what is hap-
pening in the image sequence and covers the main objects.

6Expressiveness: coherence, grammatically and semanti-
cally correct, no repetition, expressive language style.

7Concreteness: the story should narrate concretely what
is in the image rather than giving very general descriptions.
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XE-ss We	took	a	trip	to	the	
mountains.

There	were	many	
different	kinds	of	
different	kinds.	

We	had	a	great	time.	 He	was	a	great	time.	 It	was	a	beautiful	day.

AREL
The	family	decided	to	
take	a	trip	to	the	
countryside.

There	were	so	many	
different	kinds	of	
things	to	see.

The	family	decided	to	
go	on	a	hike. I	had	a	great	time.	

At	the	end	of	the	day,	
we	were	able	to	take	
a	picture	of	the	
beautiful	scenery.

Human-
created	Story

We	went	on	a	hike	
yesterday.	

There	were	a	lot	of	
strange	plants	there. I	had	a	great	time.	

We	drank	a	lot	of	
water	while	we	were	
hiking.

The	view	was	
spectacular.

Figure 6: Qualitative comparison example with XE-ss. The direct comparison votes (AREL:XE-ss:Tie)
were 5:0:0 on Relevance, 4:0:1 on Expressiveness, and 5:0:0 on Concreteness.

expressiveness, and concreteness. Therefore, it
empirically confirms that our generated stories are
more relevant to the image sequences, more coher-
ent and concrete than the other algorithms, which
however is not explicitly reflected by the auto-
matic metric evaluation.

4.4 Qualitative Analysis

Figure 6 gives a qualitative comparison example
between AREL and XE-ss models. Looking at the
individual sentences, it is obvious that our results
are more grammatically and semantically correct.
Then connecting the sentences together, we ob-
serve that the AREL story is more coherent and
describes the photo stream more accurately. Thus,
our AREL model significantly surpasses the XE-
ss model on all the three aspects of the qualitative
example. Besides, it won the Turing test (3 out 5
AMT workers think the AREL story is created by
a human). In the appendix, we also show a nega-
tive case that fails the Turing test.

5 Conclusion

In this paper, we not only introduce a novel ad-
versarial reward learning algorithm to generate
more human-like stories given image sequences,
but also empirically analyze the limitations of the
automatic metrics for story evaluation. We believe
there are still lots of improvement space in the
narrative paragraph generation tasks, like how to
better simulate human imagination to create more
vivid and diversified stories.
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Abstract

We present a deep neural network that
leverages images to improve bilingual text
embeddings. Relying on bilingual image
tags and descriptions, our approach con-
ditions text embedding induction on the
shared visual information for both lan-
guages, producing highly correlated bilin-
gual embeddings. In particular, we propose
a novel model based on Partial Canonical
Correlation Analysis (PCCA). While the
original PCCA finds linear projections of
two views in order to maximize their canon-
ical correlation conditioned on a shared
third variable, we introduce a non-linear
Deep PCCA (DPCCA) model, and de-
velop a new stochastic iterative algorithm
for its optimization. We evaluate PCCA
and DPCCA on multilingual word simi-
larity and cross-lingual image description
retrieval. Our models outperform a large
variety of previous methods, despite not
having access to any visual signal during
test time inference.1

1 Introduction

Research in multi-modal semantics deals with the
grounding problem (Harnad, 1990), motivated by
evidence that many semantic concepts, irrespec-
tive of the actual language, are grounded in the
perceptual system (Barsalou and Wiemer-Hastings,
2005). In particular, recent studies have shown
that performance on NLP tasks can be improved
by joint modeling of text and vision, with multi-
modal and perceptually enhanced representation
learning outperforming purely textual representa-

1Our code and data are available at: https://github.
com/rotmanguy/DPCCA.

tions (Feng and Lapata, 2010; Kiela and Bottou,
2014; Lazaridou et al., 2015).

These findings are not surprising, and can be
explained by the fact that humans understand lan-
guage not only by its words, but also by their vi-
sual/perceptual context. The ability to connect vi-
sion and language has also enabled new tasks which
require both visual and language understanding,
such as visual question answering (Antol et al.,
2015; Fukui et al., 2016; Xu and Saenko, 2016),
image-to-text retrieval and text-to-image retrieval
(Kiros et al., 2014; Mao et al., 2014), image caption
generation (Farhadi et al., 2010; Mao et al., 2015;
Vinyals et al., 2015; Xu et al., 2015), and visual
sense disambiguation (Gella et al., 2016).

While the main focus is still on monolingual set-
tings, the fact that visual data can serve as a natural
bridge between languages has sparked additional
interest towards multilingual multi-modal model-
ing. Such models induce bilingual multi-modal
spaces based on multi-view learning (Calixto et al.,
2017; Gella et al., 2017; Rajendran et al., 2016).

In this work, we propose a novel effective ap-
proach for learning bilingual text embeddings con-
ditioned on shared visual information. This addi-
tional perceptual modality bridges the gap between
languages and reveals latent connections between
concepts in the multilingual setup. The shared vi-
sual information in our work takes the form of
images with word-level tags or sentence-level de-
scriptions assigned in more than one language.

We propose a deep neural architecture termed
Deep Partial Canonical Correlation Analysis
(DPCCA) based on the Partial CCA (PCCA)
method (Rao, 1969). To the best of our knowledge,
PCCA has not been used in multilingual settings
before. In short, PCCA is a variant of CCA which
learns maximally correlated linear projections of
two views (e.g., two language-specific “text-based
views”) conditioned on a shared third view (e.g.,
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the “visual view”). We discuss the PCCA and
DPCCA methods in §3 and show how they can be
applied without having access to the shared images
at test time inference.

PCCA inherits one disadvantageous property
from CCA: both methods compute estimates for
covariance matrices based on all training data. This
would prevent feasible training of their deep non-
linear variants, since deep neural nets (DNNs) are
predominantly optimized via stochastic optimiza-
tion algorithms. To resolve this major hindrance,
we propose an effective optimization algorithm
for DPCCA, inspired by the work of Wang et al.
(2015b) on Deep CCA (DCCA) optimization.

We evaluate our DPCCA architecture on two se-
mantic tasks: 1) multilingual word similarity and
2) cross-lingual image description retrieval. For the
former, we construct and provide to the commu-
nity a new Word-Image-Word (WIW) dataset con-
taining bilingual lexicons for three languages with
shared images for 5K+ concepts. WIW is used as
training data for word similarity experiments, while
evaluation is conducted on the standard multilin-
gual SimLex-999 dataset (Hill et al., 2015; Leviant
and Reichart, 2015).

The results reveal stable improvements over a
large space of non-deep and deep CCA-style base-
lines in both tasks. Most importantly, 1) PCCA
is overall better than other methods which do not
use the additional perceptual view; 2) DPCCA out-
performs PCCA, indicating the importance of non-
linear transformations modeled through DNNs; 3)
DPCCA outscores DCCA, again verifying the im-
portance of conditioning multilingual text embed-
ding induction on the shared visual view; and 4)
DPCCA outperforms two recent multi-modal bilin-
gual models which also leverage visual information
(Gella et al., 2017; Rajendran et al., 2016).

2 Related Work

This work is related to two research threads: 1)
multi-modal models that combine vision and lan-
guage, with a focus on multilingual settings; 2) cor-
relational multi-view models based on CCA which
learn a shared vector space for multiple views.

Multi-Modal Modeling in Multilingual Settings
Research in cognitive science suggests that human
meaning representations are grounded in our per-
ceptual system and sensori-motor experience (Har-
nad, 1990; Lakoff and Johnson, 1999; Louwerse,
2011). Visual context serves as a useful cross-

lingual grounding signal (Bruni et al., 2014; Glavaš
et al., 2017) due to its language invariance, even en-
abling the induction of word-level bilingual seman-
tic spaces solely through tagged images obtained
from the Web (Bergsma and Van Durme, 2011;
Kiela et al., 2015). Vulić et al. (2016) combine text
embeddings with visual features via simple tech-
niques of concatenation and averaging to obtain
bilingual multi-modal representations, with noted
improvements over text-only embeddings on word
similarity and bilingual lexicon extraction. How-
ever, similar to the monolingual model of Kiela and
Bottou (2014), their models lack the training phase,
and require the visual signal at test time.

Recent work from Gella et al. (2017) exploits vi-
sual content as a bridge between multiple languages
by optimizing a contrastive loss function. Further-
more, Rajendran et al. (2016) extend the work of
Chandar et al. (2016) and propose to use a pivot
representation in multimodal multilingual setups,
with English representations serving as the pivot.
While these works learn shared multimodal mul-
tilingual vector spaces, we demonstrate improved
performance with our models (see §7).

Finally, although not directly comparable, recent
work in neural machine translation has constructed
models that can translate image descriptions by
additionally relying on visual features of the im-
age provided (Calixto and Liu, 2017; Elliott et al.,
2015; Hitschler et al., 2016; Huang et al., 2016;
Nakayama and Nishida, 2017, inter alia).

Correlational Models CCA-based techniques
support multiple views on related data: e.g., when
coupled with a bilingual dictionary, input monolin-
gual word embeddings for two different languages
can be seen as two views of the same latent se-
mantic signal. Recently, CCA-based models for
bilingual text embedding induction were proposed.
These models rely on the basic CCA model (Chan-
dar et al., 2016; Faruqui and Dyer, 2014), its deep
variant (Lu et al., 2015), and a CCA extension
which supports more than two views (Funaki and
Nakayama, 2015; Rastogi et al., 2015). In this
work, we propose to use (D)PCCA, which organ-
ically supports our setup: it conditions the two
(textual) views on a shared (visual) view.

CCA-based methods (including PCCA) require
the estimation of covariance matrices over all train-
ing data (Kessy et al., 2017). This hinders the use
of DNNs with these models, as DNNs are typi-
cally trained via stochastic optimization over mini-
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batches on very large training sets. To address
this limitation, various optimization methods for
Deep CCA were proposed. Andrew et al. (2013)
use L-BFGS (Byrd et al., 1995) over all training
samples, while Arora and Livescu (2013) and Yan
and Mikolajczyk (2015) train with large batches.
However, these methods suffer from high memory
complexity with unstable numerical computations.

Wang et al. (2015b) have recently proposed a
stochastic approach for CCA and DCCA which
copes well with small and large batch sizes while
preserving high model performance. They use or-
thogonal iterations to estimate a moving average of
the covariance matrices, which improves memory
consumption. Therefore, we base our novel opti-
mization algorithm for DPCCA on this approach.

3 Methodology: Deep Partial CCA

Given two image descriptions x and y in two lan-
guages and an image z that they refer to, the task is
to learn a shared bilingual space such that similar
descriptions obtain similar representations in the in-
duced space. The image z serves as a shared third
view on the textual data during training. The rep-
resentation model is then utilized in cross-lingual
and monolingual tasks. In this paper we focus on
the more realistic scenario where no relevant vi-
sual content is available at test time. For this goal
we propose a novel Deep Partial CCA (DPCCA)
framework.

In what follows, we first review the CCA model
and its deep variant: DCCA. We then introduce
our DPCCA architecture, and describe our new
stochastic optimization algorithm for DPCCA.

3.1 CCA and Deep CCA

DCCA (Andrew et al., 2013) extends CCA by
learning non-linear (instead of linear) transforma-
tions of features contained in the input matrices
X ∈ RDx×N and Y ∈ RDy×N , where Dx and
Dy are input vector dimensionalities, and N is the
number of input items. Since CCA is a special
case of the non-linear DCCA (see below), we here
briefly outline the more general DCCA model.

The DCCA architecture is illustrated in Fig-
ure 1a. Non-linear transformations are achieved
through two DNNs f : RDx×N → RD′x×N and
g : RDy×N → RD′y×N for X and Y . D′x and D′y
are the output dimensionalities. A final linear layer
is added to resemble the linear CCA projection.

The goal is to project the features of X and

Y into a shared L-dimensional (1 ≤ L ≤
min(D′x, D

′
y)) space such that the canonical corre-

lation of the final outputs F (X) = W Tf(X)
and G(Y ) = V T g(Y ) is maximized. W ∈
RD′x×L and V ∈ RD′y×L are projection matrices:
they project the final outputs of the DNNs to the
shared space. Wf and Vg (the parameters of f
and g) and the projection matrices are the model
parameters: WF = {Wf ,W }; VG = {Vg,V }.2
Formally, the DCCA objective can be written as:

max
WF ,VG

Tr(Σ̂FG)

so that Σ̂FF = Σ̂GG = I.
(1)

Σ̂FG ≡ 1
N−1F (X)G(Y )T is the estimation

of the cross-covariance matrix of the outputs,
and Σ̂FF ≡ 1

N−1F (X)F (X)T , Σ̂GG ≡
1

N−1G(Y )G(Y )T are the estimations of the auto-
covariance matrices of the outputs.3 Further, fol-
lowing Wang et al. (2015b), the optimal solution
of Eq. (1) is equivalent to the optimal solution of
the following:

min
WF ,VG

1

N − 1
‖F (X)−G(Y )‖2F

s.t. Σ̂FF = Σ̂GG = I.

(2)

The main disadvantage of DCCA is its inability to
support more than two views, and to learn condi-
tioned on an additional shared view, which is why
we introduce Deep Partial CCA.

3.2 New Model: Deep Partial CCA

Figure 1b illustrates the architecture of DPCCA.
The training data now consists of triplets
(xi,yi, zi)

N
1=1 from three views, forming the

columns of X , Y and Z, where xi ∈ RDx ,yi ∈
RDy , zi ∈ RDz for i = 1, . . . , N . The objective is
to maximize the canonical correlation of the first
two views X and Y conditioned on the shared
third variable Z. Following Rao (1969)’s work
on Partial CCA, we first consider two multivariate
linear multiple regression models:

F (X) = AZ + F (X|Z), (3)
G(Y ) = BZ +G(Y |Z). (4)

2For notational simplicity, we assume f(X) and g(Y )
to have zero-means, otherwise it is possible to centralize them
at the final layer of each network to the same effect.

3The CCA model can be seen as a special (linear) case
of the more general DCCA model. The basic CCA objective
can be recovered from the DCCA objective by simply setting
D′x = Dx, D′y = Dy and f(X) = idX , g(Y ) = idY ; id
is the identity mapping.
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(a) (b)

Figure 1: DCCA and DPCCA architectures. (a): DCCA. X and Y (English and German image
descriptions) are fed through two identical deep feed-forward neural networks followed by a final linear
layer. The final nodes of the networks F (X) and G(Y ) are then maximally correlated via the CCA
objective. (b): DPCCA. In addition, a third (shared) variable Z (an image) is either optimized via an
identical architecture of the two main views (DPCCA Variant B, illustrated here) or kept fixed (DPCCA
Variant A). The final nodes of the networks F (X) andG(Y ) are maximally correlated conditioned on
the final node in the middle networkH(Z) (or directly on the input node Z in DPCCA Variant A).

A,B ∈ RL×Dz are matrices of coefficients, and
F (X|Z),G(Y |Z) ∈ RL×N are normal random
error matrices: residuals. We then minimize the
mean-squared error regression criterion:

min
A

1

N − 1
‖F (X)−AZ‖2F , (5)

min
B

1

N − 1
‖G(Y )−BZ‖2F . (6)

After obtaining the optimal solutions for the coeffi-
cients, Â and B̂, the residuals are as follows:

F (X|Z) = F (X)− ÂZ

= F (X)− Σ̂FZΣ̂−1
ZZZ. (7)

G(Y |Z) is computed in the analogous man-
ner, now relying on G(Y ) and B̂Z. Σ̂S′Z ≡

1
N−1SZ

T refers to the covariance matrix es-
timator of S′ and Z, where (S′, S) ∈
{(F ,F (X)), (G,G(Y )), (Z,Z)}.4

The canonical correlation between the residual
matrices F (X|Z) andG(Y |Z) is referred to as
the partial canonical correlation. The Deep PCCA
objective can be obtained by replacing F (X) and
G(Y ) with their residuals in Eq. (2):

min
WF ,VG

1

N − 1
‖F (X|Z)−G(Y |Z)‖2F

s.t. Σ̂FF |Z = Σ̂GG|Z = I.

(8)

The computation of the conditional covariance ma-
trix Σ̂FF |Z can be formulated as follows:

Σ̂FF |Z ≡
1

N − 1
F (X|Z)F (X|Z)T

= Σ̂FF − Σ̂FZΣ̂−1
ZZΣ̂T

FZ . (9)

4A small value ε > 0 is added to the main diagonal of the
covariance estimators for numerical stability.

The other conditional covariance matrix Σ̂GG|Z is
again computed in the analogous manner, replacing
F withG andX with Y .5

While the (D)PCCA objective is computed over
the residuals, after the network is trained (using
multilingual texts and corresponding images) we
can compute the representations of F (X) and
G(Y ) at test time without having access to im-
ages (see the network structure in Figure 1b). This
heuristic enables the use of DPCCA in a real-life
scenario in which images are unavailable at test
time, and its encouraging results are demonstrated
in §7.

Model Variants We consider two DPCCA vari-
ants : 1) in DPCCA Variant A, the shared view Z
is kept fixed; 2) DPCCA Variant B also optimizes
over Z, as illustrated in Figure 1b. Variant A may
be seen as a special case of Variant B.6

Variant B learns a non-linear function of the
shared variable,H(Z) = UTh(Z), during train-
ing, where h : RDz×N → RDz′×N is a DNN hav-
ing the same architecture as f and g. U ∈ RDz′×L

is the final linear layer of H , such that over-
all, the additional parameters of the model are
UH = {Uh,U}. Instead of assuming a linear
connection between F (X) and G(Y ) to Z, as
in Variant A, we now assume that the linear con-
nection takes place withH(Z). This assumption

5The original PCCA objective can be recovered by setting
D′x = Dx, D′y = Dy and f(X) = idX , g(Y ) = idY .

6For Variant A, in order for Z to be on the same range
of values as in F and G, we pass it through the activation
function of the network, Z = σ(Z). Due to space constraints
we discuss DPCCA Variant A in the supplementary material
only.
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changes Eq. (3) and Eq. (4) to:7

F (X) = A′ ·H(Z) + F (X|H(Z)), (10)

G(Y ) = B′ ·H(Z) +G(Y |H(Z)). (11)

4 DPCCA: Optimization Algorithm

Training deep variants of CCA-style multi-view
models is non-trivial due to estimation on the en-
tire training set related to whitening constraints
(i.e., the orthogonality of covariance matrices). To
overcome this issue, Wang et al. (2015b) proposed
a stochastic optimization algorithm for DCCA via
non-linear orthogonal iterations (DCCA NOI). Re-
lying on the solution for DCCA (§4.1), we develop
a new optimization algorithm for DPCCA in §4.2.

4.1 Optimization of DCCA
The DCCA optimization from Wang et al. (2015b),
fully provided in Algorithm 1, relies on three key
steps. First, the estimation of the covariance matri-
ces in the form of Σ̂FF t at time t is calculated by
a moving average over the minibatches:

Σ̂FF t ←ρΣ̂FF t−1

+ (1− ρ)
( |bt|
N − 1

)−1
F (Xbt)F (Xbt)

T . (12)

bt is the minibatch at time t,Xbt is the current in-
put matrix at time t, and ρ ∈ [0, 1] controls the ratio
between the overall covariance estimation and the
covariance estimation of the current minibatch.8

This step eliminates the need of estimating the co-
variances over all training data, as well as the in-
herent bias when the estimate relies only on the
current minibatch.

Second, the DCCA NOI algorithm forces the
whitening constraints to hold by performing an
explicit matrix transformation in the form of:

˜F (Xbt) = Σ̂
− 1

2
FFt

F (Xbt). (13)

According to Horn et al. (1988), if ρ = 0:
( |bt|
N − 1

)−1 ˜F (Xbt)
˜F (Xbt)

T

= I. (14)

Finally, in order to optimize the DCCA objective
(see Eq. (2)), the weights of the two DNNs are de-
coupled: i.e., the objective is disassembled into two
separate mean-squared error objectives. Instead of

7Note that the matrices of coefficients A′ , B′ ∈ RL×L.
8Setting ρ to a high value indicates slow updates of the

estimator; setting it low mostly erases the overall estimation
and relies more on the current minibatch estimation.

Algorithm 1 The non-linear orthogonal iterations (NOI)
algorithm for DCCA (DCCA NOI)

Input: Data matrices X ∈ RDx×N , Y ∈ RDy×N , time
constant ρ, learning rate η.

initialization: Initialize weights (WF , VG).
Randomly choose a minibatch (Xb0 , Yb0 ).
Initialize covariances:
Σ̂FF ← N−1

|b0| F (Xb0)F (Xb0)T

Σ̂GG ← N−1
|b0| G(Yb0)G(Yb0)T

for t = 1, 2, . . . , n do
Randomly choose a minibatch (Xbt , Ybt ).

Update covariances:
Σ̂FF ← ρΣ̂FF + (1− ρ)N−1

|bt| F (Xbt)F (Xbt)
T

Σ̂GG ← ρΣ̂GG + (1− ρ)N−1
|bt| G(Ybt)G(Ybt)

T

Fix G̃(Ybt) = Σ̂
− 1

2
GGG(Ybt), and compute ∇WF with

respect to:

min
WF

1
|bt|‖F (Xbt)− G̃(Ybt)‖2F

Update parameters:
WF ←WF − η∇WF

Fix ˜F (Xbt) = Σ̂
− 1

2
FF F (Xbt), and compute ∇VG with

respect to:

min
VG

1
|bt|‖G(Ybt)− ˜F (Xbt)‖2F

Update parameters:
VG ← VG − η∇VG

end for

Output: (WF ,VG)

trying to bring F (Xbt) andG(Ybt) closer in one
gradient descent step, two steps are performed: one
of the views is fixed, and a gradient step over the
other is performed, and so on, iteratively. The final
objective functions at each time step are:

min
WF

1

|bt|
‖F (Xbt)− G̃(Ybt)‖2F , (15)

min
VG

1

|bt|
‖G(Ybt)− ˜F (Xbt)‖2F . (16)

Wang et al. (2015b) show that the projection ma-
tricesW and V converge to the exact solutions of
CCA as t→∞ when considering linear CCA.

4.2 Optimization of DPCCA
Our DPCCA optimization is based on the
DCCA NOI algorithm with several adjustments.
Besides the requirement to obtain the sample
covariances Σ̂FF and Σ̂GG, when calculating
the conditional variables F (X|Z), G(Y |Z),
Σ̂FF |Z and Σ̂GG|Z , we additionally have to
obtain the stochastic estimators Σ̂FZ , Σ̂GZ and
Σ̂ZZ . To this end, we use the moving average esti-
mation from Eq. (12). Next, we define the whiten-
ing transformation on the residuals:
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˜F (Xbt |Zbt) = Σ̂
− 1

2
FFt|ZF (Xbt |Zbt), (17)

˜G(Ybt |Zbt) = Σ
− 1

2
GGt|ZG(Ybt |Zbt). (18)

As before, the whitening constraints hold when ρ
= 0. From here, we derive our two final objective
functions over the residuals at time t:

min
WF

1

|bt|
‖F (Xbt |Zbt)− ˜G(Ybt |Zbt)‖2F , (19)

min
VG

1

|bt|
‖G(Ybt |Zbt)− ˜F (Xbt |Zbt)‖2F . (20)

Equivalently to Eq. (15)-(16) that replace Eq. (2),
Eq. (19)-(20) replace Eq. (8) by performing
stochastic, decoupled and unconstrained steps. As
our algorithm performs CCA over the residuals, we
gain the same guarantees as Wang et al. (2015b),
now for the projection matrices of the residuals.

Algorithm 2 shows the full optimization pro-
cedure for the more complex DPCCA Variant B.
The full algorithm for Variant A is provided in the
supplementary material. The main difference is
that with Variant B we replace Z with H(Z) in
all equations where it appears, and we optimize
over UH along withWF and VG in Eq. (19) and
Eq. (20), respectively.

5 Tasks and Data

Cross-lingual Image Description Retrieval
The cross-lingual image description retrieval
task is formulated as follows: taking an image
description as a query in the source language, the
system has to retrieve a set of relevant descriptions
in the target language which describe the same
image. Our evaluation assumes a single-best
scenario, where only a single target description is
relevant for each query. In addition, in our setup,
images are not available during inference: retrieval
is performed based solely on text queries. This
enables a fair comparison between our model and
many baseline models that cannot represent images
and text in a shared space. Moreover, it allows
us to test our model in the realistic setup where
images are not available at test time. To avoid the
use of images at retrieval time with DPCCA, we
perform the retrieval on F (X) andG(Y ), rather
than on F (X|Z) andG(Y |Z) (see §3.2).

We use the Multi30K dataset (Elliott et al., 2016),
originated from Flickr30K (Young et al., 2014) that
is comprised of Flicker images described with 1-5
English descriptions per image. Multi30K adds

Algorithm 2 The non-linear orthogonal iterations (NOI)
algorithm for DPCCA Variant B

Input: Data matrices X ∈ RDx×N , Y ∈ RDy×N ,
Z ∈ RDz×N , time constant ρ, learning rate η.

initialization: Initialize weights (WF ,VG,UH ).
Randomly choose a minibatch (Xb0 ,Yb0 ,Zb0 ).
Initialize covariances:
Σ̂FF ← N−1

|b0| F (Xb0)F (Xb0)T

Σ̂GG ← N−1
|b0| G(Yb0)G(Yb0)T

Σ̂HH ← N−1
|b0| H(Zb0)H(Zb0)T

Σ̂FH ← N−1
|b0| F (Xb0)H(Zb0)T

Σ̂GH ← N−1
|b0| G(Yb0)H(Zb0)T

for t = 1, 2, . . . , n do
Randomly choose a minibatch (Xbt ,Ybt ,Zbt ).
Update covariances:
Σ̂FF ← ρΣ̂FF + (1− ρ)N−1

|bt| F (Xbt)F (Xbt)
T

Σ̂GG ← ρΣ̂GG + (1− ρ)N−1
|bt| G(Ybt)G(Ybt)

T

Σ̂HH ← ρΣ̂HH + (1− ρ)N−1
|bt| H(Zbt)H(Zbt)

T

Σ̂FH ← ρΣ̂FH + (1− ρ)N−1
|bt| F (Xbt)H(Zbt)

T

Σ̂GH ← ρΣ̂GH + (1− ρ)N−1
|bt| G(Ybt)H(Zbt)

T

Update conditional variables:
F |H ← F (Xbt)− Σ̂FHΣ̂−1

HHH(Zbt)

G|H ← G(Ybt)− Σ̂GHΣ̂−1
HHH(Zbt)

Σ̂FF |H ← Σ̂FF − Σ̂FHΣ̂−1
HHΣ̂T

FH

Σ̂GG|H ← Σ̂GG − Σ̂GHΣ̂−1
HHΣ̂T

GH

Fix G̃|H = Σ̂
− 1

2
GG|HG|H , and compute ∇WF , ∇UH

with respect to:
min

WF ,UH

1
|bt|‖F |H − G̃|H‖2F

Update parameters:
WF ←WF − η∇WF ,UH ← UH − η∇UH

Fix F̃ |H = Σ̂
− 1

2
FF |HF |H , and compute ∇VG, ∇UH

with respect to:
min

VG,UH

1
|bt|‖G|H − F̃ |H‖2F

Update parameters:
VG ← VG − η∇VG,UH ← UH − η∇UH

end for

Output: (WF ,VG,UH )

German descriptions to a total of 30,014 images:
most were written independently of the English de-
scriptions, while some are direct translations. Each
image is associated with one English and one Ger-
man description. We rely on the original Multi30K
splits with 29,000, 1,014, and 1,000 triplets for
training, validation, and test, respectively.

Multilingual Word Similarity The word simi-
larity task tests the correlation between automatic
and human generated word similarity scores. We
evaluate with the Multilingual SimLex-999 dataset
(Leviant and Reichart, 2015): the 999 English (EN)
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EN-DE EN-IT EN-RU

Nouns 4606 4735 4106
Adjectives 405 416 348
Verbs 392 400 227
Adverbs 167 161 142
Prepositions 12 12 9

Total 5598 5740 4838

Table 1: WIW statistics: the number of WIW en-
tries across POS classes in each language pair. The
numbers of words per POS class are not summed
to the total number of words as other (less frequent)
POS tags are also represented.

word pairs from SimLex-999 (Hill et al., 2015)
were translated to German (DE), Italian (IT), and
Russian (RU), and similarity scores were crowd-
sourced from native speakers.

We introduce a new dataset termed Word-Image-
Word (WIW), which we use to train word-level
models for the multilingual word similarity task.
WIW contains three bilingual lexicons (EN-DE,
EN-IT, EN-RU) with images shared between words
in a lexicon entry. Each WIW entry is a triplet: an
English word, its translation in DE/IT/RU, and a
set of images relevant to the pair.

English words were taken from the January
2017 Wikipedia dump. After removing stop words
and punctuation, we extract the 6,000 most fre-
quent words from the cleaned corpus not present
in SimLex. DE/IT/RU words were obtained semi-
automatically from the EN words using Google
Translate. The images are crawled from the Bing
search engine using MMFeat9 (Kiela, 2016) by
querying the EN words only. Following the sugges-
tions from the study of Kiela et al. (2016), we save
the top 20 images as relevant images.10

Table 1 provides a summary of the WIW dataset.
The dataset contains both concrete and abstract
words, and words of different POS tags.11 This
property has an influence on the image collection:
similar to Kiela et al. (2014), we have noticed
that images of more concrete concepts are less dis-
persed (see also examples from Figure 2).

6 Experimental Setup

Data Preprocessing and Embeddings For the
sentence-level task, all descriptions were lower-

9https://github.com/douwekiela/mmfeat.
10Offensive words and images are manually cleaned.
11POS tag information is taken from the NLTK toolkit for

the English words.

Figure 2: WIW examples from each of the three
bilingual lexicons. Note that the designated words
can be either abstract (true), express an action
(dance) or be more concrete (plant).

cased and tokenized. Each sentence is represented
with one vector: the average of its word embed-
dings. For English, we rely on 500-dimensional En-
glish skip-gram word embeddings (Mikolov et al.,
2013) trained on the January 2017 Wikipedia dump
with bag-of-words contexts (window size of 5). For
German we use the deWaC 1.7B corpus (Baroni
et al., 2009) to obtain 500-dimensional German em-
beddings using the same word embedding model.
For word similarity, to be directly comparable to
previous work, we rely on 300-dim word vectors
in EN, DE, IT, and RU from Mrkšić et al. (2017).

Visual features are extracted from the penul-
timate layer (FC7) of the VGG-19 network (Si-
monyan and Zisserman, 2015), and compressed to
the dimensionality of the textual inputs by a Princi-
pal Component Analysis (PCA) step. For the word
similarity task, we average the visual vectors across
all images of each word pair as done in, e.g., (Vulić
et al., 2016), before the PCA step.

Baseline Models We consider a wide variety
of multi-view CCA-based baselines. First, we
compare against the original (linear) CCA model
(Hotelling, 1936), and its deep non-linear exten-
sion DCCA (Andrew et al., 2013). For DCCA:
1) we rely on its improved optimization algorithm
from Wang et al. (2015a) which uses a stochas-
tic approach with large minibatches; 2) we com-
pare against the DCCA NOI variant (Wang et al.,
2015b) described by Algorithm 1, and another re-
cent DCCA variant with the optimization algorithm
based on a stochastic decorrelational loss (Chang
et al., 2017) (DCCA SDL); and 3) we also test
the DCCA Autoencoder model (DCCAE) (Wang
et al., 2015a), which offers a trade-off between
maximizing the canonical correlation of two sets of
variables and finding informative features for their
reconstruction.

Another baseline is Generalized CCA (GCCA)
(Funaki and Nakayama, 2015; Horst, 1961; Rastogi
et al., 2015): a linear model which extends CCA to
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three or more views. Unlike PCCA, GCCA does
not condition two variables on the third shared one,
but rather seeks to maximize the canonical correla-
tions of all pairs of views. We also compare to Non-
parametric CCA (NCCA) (Michaeli et al., 2016),
and to a probabilistic variant of PCCA (PPCCA,
Mukuta and Harada (2014)).

Finally, we compare with the two recent models
which operate in the setup most similar to ours: 1)
Bridge Correlational Networks (BCN) (Rajendran
et al., 2016); and 2) Image Pivoting (IMG PIVOT)
from Gella et al. (2017). For both models, we re-
port results only with the strongest variant based on
the findings from the original papers, also verified
by additional experimentation in our work.12

Hyperparameter Tuning The hyperparameters
of the different models are tuned with a grid search
over the following values: {2,3,4,5} for number
of layers, {tanh, sigmoid, ReLU} as the activation
functions (we use the same activation function in all
the layers of the same network), {64,128,256} for
minibatch size, {0.001,0.0001} for learning rate,
and {128,256} for L (the size of the output vectors).
The dimensions of all mid-layers are set to the input
size. We use the Adam optimizer (Kingma and Ba,
2015), with the number of epochs set to 300.

For all participating models, we report test per-
formance of the best hyperparameter on the valida-
tion set. For word similarity, following a standard
practice (Levy et al., 2015; Vulić et al., 2017) we
tune all models on one half of the SimLex data
and evaluate on the other half, and vice versa. The
reported score is the average of the two halves.
Similarity scores for all tasks were computed using
the cosine similarity measure.

7 Results and Discussion

Cross-lingual Image Description Retrieval
We report two standard evaluation metrics: 1)
Recall at 1 (R@1) scores, and 2) the sentence-level
BLEU+1 metric (Lin and Och, 2004), a variant
of BLEU which smooths terms for higher-order
n-grams, making it more suitable for evaluating
short sentences. The scores for the retrieval task
with all models are summarized in Table 2.

12 More details about preprocessing and baselines (includ-
ing all links to their code), are in the the supplementary mate-
rial. We use original readily available implementations of all
baselines whenever this is possible, and our in-house imple-
mentations for baselines for which no code is provided by the
original authors.

R@1 BLEU+1
Model EN→DE DE→EN EN→DE DE→EN

DPCCA (Variant A) 0.795 0.779 0.836 0.827
DPCCA (Variant B) 0.809 0.794 0.848 0.839

DPCCA(B)+DCCA NOI (concat) 0.826 0.791 0.863 0.837
DCCA NOI (Wang et al., 2015b) 0.812 0.788 0.849 0.830
DCCA SDL (Chang et al., 2017) 0.507 0.487 0.552 0.533

DCCA (Wang et al., 2015a) 0.619 0.621 0.664 0.673
DCCAE (Wang et al., 2015a) 0.564 0.542 0.607 0.598

IMG PIVOT (Gella et al., 2017) 0.772 0.763 0.789 0.781
BCN (Rajendran et al., 2016) 0.579 0.570 0.628 0.629

PCCA (Rao, 1969) 0.785 0.737 0.825 0.787
CCA (Hotelling, 1936) 0.764 0.704 0.803 0.754

GCCA (Funaki and Nakayama, 2015) 0.699 0.690 0.742 0.743
NCCA (Michaeli et al., 2016) 0.157 0.165 0.205 0.213

PPCCA (Mukuta and Harada, 2014) 0.035 0.050 0.063 0.086

Table 2: Results on cross-lingual image description
retrieval. NN-based models are above the dashed
line. Best overall results are in bold. Best results
with non-deep models are underlined.

The results clearly demonstrate the superiority
of DPCCA (with a slight advantage to the more
complex Variant B) and of the concatenation of
their representation with that of the DCCA NOI
(strongest) baseline. Furthermore, the non-deep,
linear PCCA achieves strong results: it outscores
all non-deep models, as well as all deep models
except from DCCA NOI, IMG PIVOT in one case,
and its deep version: DPCCA. This emphasizes our
contribution in proposing PCCA for multilingual
processing with images as a cross-lingual bridge.

The results suggest that: 1) the inclusion of vi-
sual information in the training process helps the
retrieval task even without such information during
inference. DPCCA outscores all DCCA variants
(either alone or through a concatenation with the
DCCA NOI representation), and PCCA outscores
the original two-view CCA model; and 2) deep,
non-linear architectures are useful: our DPCCA
outperforms the linear PCCA model.

We also note clear improvements over the two re-
cent models which also rely on visual information:
IMG PIVOT and BCN. The gain over IMG PIVOT
is observed despite the fact that IMG PIVOT is
a more complex multi-modal model which relies
on RNNs, and is tailored to sentence-level tasks.
Finally, the scores from Table 2 suggest that im-
proved performance can be achieved by an en-
semble model, that is, a simple concatenation of
DPCCA (B) and DCCA NOI.

Multilingual Word Similarity The results, pre-
sented as standard Spearman’s rank correlation
scores, are summarized in Table 3: we present
fine-grained results over different POS classes for
EN and DE, and compare them to the results from
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English-German

Model EN-Adj EN-Verbs EN-Nouns DE-Adj DE-Verbs DE-Nouns

DPCCA (Variant A) 0.640 0.311 0.369 0.430 0.321 0.404
DPCCA (Variant B) 0.626 0.316 0.382 0.462 0.319 0.399

DCCA NOI (Wang et al., 2015b) 0.611 0.308 0.361 0.441 0.297 0.398
DCCA (Wang et al., 2015a) 0.618 0.261 0.327 0.404 0.290 0.362

PCCA (Rao, 1969) 0.614 0.296 0.340 0.305 0.143 0.340
CCA (Hotelling, 1936) 0.557 0.297 0.321 0.284 0.157 0.346

GCCA (Funaki and Nakayama, 2015) 0.636 0.280 0.378 0.446 0.277 0.398

INIT EMB 0.582 0.160 0.306 0.407 0.164 0.285

Table 3: Results on EN and DE SimLex-999 (POS-based evaluation). All scores are Spearman’s rank
correlations. INIT EMB refers to initial pre-trained monolingual word embeddings (see §6).

EN-DE WIW EN-IT WIW EN-RU WIW

Model EN DE EN IT EN RU

DPCCA (A) 0.398 0.400 0.412 0.429 0.404 0.407
DPCCA (B) 0.405 0.400 0.413 0.427 0.413 0.402

PCCA 0.374 0.301 0.370 0.386 0.374 0.374

DCCA NOI 0.390 0.398 0.413 0.422 0.407 0.398
GCCA 0.395 0.386 0.414 0.407 0.412 0.396

INIT EMB 0.321 0.278 0.321 0.361 0.321 0.385

Table 4: Results (Spearman rank correlation) of our
models and the strongest baselines on Multilingual
SimLex-999 (all data).

a selection of strongest baselines. Further, Table 4
presents results on all SimLex word pairs. The
POS class result patterns for EN-IT and EN-RU
are very similar to the patterns in Table 3 and are
provided in the supplementary material. First, the
results over the initial monolingual embeddings
before training (INIT EMB) clearly indicate that
multilingual information is beneficial for the word
similarity task. We observe improvements with all
models (the only exception being extremely low-
scoring PPCCA and NCCA, not shown). More-
over, by additionally grounding concepts from two
languages in the visual modality it is possible to
further boost word similarity scores. This result
is in line with prior work in monolingual settings
(Chrupała et al., 2015; Kiela and Bottou, 2014;
Lazaridou et al., 2015), which have shown to profit
from multi-modal features.

The results on the POS classes represented in
SimLex-999 (nouns, verbs, adjectives, Table 3)
form our main finding: conditioning the multilin-
gual representations on a shared image leads to im-
provements in verb and adjective representations.
While for nouns one of the DPCCA variants is
the best performing model for both languages, the
gaps from the best performing baselines are much
smaller. This is interesting since, e.g., verbs are

more abstract than nouns (Hartmann and Søgaard,
2017; Hill et al., 2014). Considering the fact that
SimLex-999 consists of 666 noun pairs, 222 verb
pairs and 111 adjective pairs, this is the reason that
the gains of DPCCA over the strongest baselines
across the entire evaluation set are more modest
(Table 4). We note again that the same patterns
presented in Table 3 for EN-DE – more promi-
nent verb and adjective gains and a smaller gain on
nouns – also hold for EN-IT and EN-RU (see the
supplementary material).

8 Conclusion and Future Work

We addressed the problem of utilizing images as a
bridge between languages to learn improved bilin-
gual text representations. Our main contribution
is two-fold. First, we proposed to use the Partial
CCA (PCCA) method. In addition, we proposed
a stochastic optimization algorithm for the deep
version of PCCA that overcomes the challenges
posed by the covariance estimation required by the
method. Our experiments reveal the effectiveness
of these methods for both sentence-level and word-
level tasks. Crucially, our proposed solution does
not require access to images at inference/test time,
in line with the realistic scenario where images that
describe sentential queries are not readily available.

In future work we plan to improve our meth-
ods by exploiting the internal structure of images
and sentences as well as by effectively integrating
signals from more than two languages.
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Abstract

We introduce Picturebook, a large-scale
lookup operation to ground language via
‘snapshots’ of our physical world accessed
through image search. For each word in
a vocabulary, we extract the top-k im-
ages from Google image search and feed
the images through a convolutional net-
work to extract a word embedding. We
introduce a multimodal gating function
to fuse our Picturebook embeddings with
other word representations. We also intro-
duce Inverse Picturebook, a mechanism to
map a Picturebook embedding back into
words. We experiment and report results
across a wide range of tasks: word simi-
larity, natural language inference, seman-
tic relatedness, sentiment/topic classifica-
tion, image-sentence ranking and machine
translation. We also show that gate acti-
vations corresponding to Picturebook em-
beddings are highly correlated to human
judgments of concreteness ratings.

1 Introduction

Constructing grounded representations of natu-
ral language is a promising step towards achiev-
ing human-like language learning. In recent years,
a large amount of research has focused on in-
tegrating vision and language to obtain visually
grounded word and sentence representations. One
source of grounding, which has been utilized in
existing work, is image search engines. Search
engines allow us to obtain correspondences be-
tween language and images that are far less re-
stricted than existing multimodal datasets which
typically have restricted vocabularies. While true
natural language understanding may require fully

*Both authors contributed equally to this work.

embodied cognition, search engines allow us to
get a form of quasi-grounding from high-coverage
‘snapshots’ of our physical world provided by the
interaction of millions of users.

One place to incorporate grounding is in the
lookup table that maps tokens to vectors. The
dominant approach to learning distributed word
representations is through indexing a learned ma-
trix. While immensely successful, this lookup op-
eration is typically learned through co-occurrence
objectives or a task-dependent reward signal. A
very different way to obtain word embeddings is
to aggregate features obtained by using the word
as a query for an image search engine. This in-
volves retrieving the top-k images from a search
engine, running those through a convolutional net-
work and aggregating the results. These word em-
beddings are grounded via the retrieved images.
While several authors have considered this ap-
proach, it has been largely limited to a few thou-
sand queries and only a small number of tasks.

In this paper we introduce Picturebook embed-
dings produced by image search using words as
queries. Picturebook embeddings are obtained
through a convolutional network trained with a
semantic ranking objective on a proprietary im-
age dataset with over 100+ million images (Wang
et al., 2014). Using Google image search, a Pic-
turebook embedding for a word is obtained by
concatenating the k-feature vectors of our convo-
lutional network on the top-k retrieved search re-
sults. The main contributions of our work are as
follows:

• We obtain Picturebook embeddings for the 2.2
million words that occur in the Glove vocabu-
lary (Pennington et al., 2014) 1, allowing each
word to have a Glove embedding and a par-
allel grounded word representation. This col-
lection of word representations that we visually
1Common Crawl, 840B tokens
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ground via image search is 2-3 orders of magni-
tude larger than prior work.

• We introduce a multimodal gating mechanism
to selectively choose between Glove and Pic-
turebook embeddings in a task-dependent way.
We apply our approach to over a dozen datasets
and several different tasks: word similarity, sen-
tence relatedness, natural language inference,
topic/sentiment classification, image sentence
ranking and Machine Translation (MT).

• We introduce Inverse Picturebook to perform
the inverse lookup operation. Given a Pic-
turebook embedding, we find the closest words
which would generate the embedding. This is
useful for generative modelling tasks.

• We perform an extensive analysis of our gating
mechanism, showing that the gate activations
for Picturebook embeddings are highly corre-
lated with human judgments of concreteness.
We also show that Picturebook gate activations
are negatively correlated with image dispersion
(Kiela et al., 2014), indicating that our model
selectively chooses between word embeddings
based on their abstraction level.

• We highlight the importance of the convolu-
tional network used to extract embeddings. In
particular, networks trained with semantic la-
bels result in better embeddings than those
trained with visual labels, even when evaluating
similarity on concrete words.

2 Related Work

The use of image search for obtaining word rep-
resentations is not new. Table 1 illustrates ex-
isting methods that utilize image search and the
tasks considered in their work. There has also
been other work using other image sources such
as ImageNet (Kiela and Bottou, 2014; Collell and
Moens, 2016) over the WordNet synset vocabu-
lary, and using Flickr photos and captions (Joulin
et al., 2016). Our approach differs from the above
methods in three main ways: a) we obtain search-
grounded representations for over 2 million words
as opposed to a few thousand, b) we apply our rep-
resentations to a higher diversity of tasks than pre-
viously considered, and c) we introduce a multi-
modal gating mechanism that allows for a more
flexible integration of features than mere concate-
nation.

Our work also relates to existing multimodal
models combining different representations of the
data (Hill and Korhonen, 2014). Various work has

Method tasks

(Bergsma and Durme, 2011) bilingual lexicons
(Bergsma and Goebel, 2011) lexical preference
(Kiela et al., 2014) word similarity
(Kiela et al., 2015a) lexical entailment detection
(Kiela et al., 2015b) bilingual lexicons
(Shutova et al., 2016) metaphor identification
(Bulat et al., 2015) predicting property norms
(Kiela, 2016) toolbox
(Vulic et al., 2016) bilingual lexicons
(Kiela et al., 2016) word similarity
(Anderson et al., 2017) decoding brain activity
(Glavas et al., 2017) semantic text similarity
(Bhaskar et al., 2017) abstract vs concrete nouns
(Hartmann and Sogaard, 2017) bilingual lexicons
(Bulat et al., 2017) decoding brain activity

Table 1: Existing methods that use image search
for grounding and their corresponding tasks.

also fused text-based representations with image-
based representations (Bruni et al., 2014; Lazari-
dou et al., 2015; Chrupala et al., 2015; Mao et al.,
2016; Silberer et al., 2017; Kiela et al., 2017;
Collell et al., 2017; Zablocki et al., 2018) and
representations derived from a knowledge-graph
(Thoma et al., 2017). More recently, gating-based
approaches have been developed for fusing tra-
ditional word embeddings with visual represen-
tations. Arevalo et al. (2017) introduce a gat-
ing mechanism inspired by the LSTM while Kiela
et al. (2018) describe an asymmetric gate that al-
lows one modality to ‘attend’ to the other. The
work that most closely matches ours is that of
Wang et al. (2018) who also consider fusing Glove
embeddings with visual features. However, their
analysis is restricted to word similarity tasks and
they require text-to-image regression to obtain vi-
sual embeddings for unseen words, due to the use
of ImageNet. The use of image search allows us to
obtain visual embeddings for a virtually unlimited
vocabulary without needing a mapping function.

3 Picturebook Embeddings

Our Picturebook embeddings ground language us-
ing the ‘snapshots’ returned by an image search
engine. Given a word (or phrase), we image search
for the top-k images and extract the images. We
then pass each image through a CNN trained with
a semantic ranking objective to extract its em-
bedding. Our Picturebook embeddings reflect the
search rankings by concatenating the individual
embeddings in the order of the search results. We
can perform all of these operations offline to con-
struct a matrix Ep representing the Picturebook
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embeddings over a vocabulary.

3.1 Inducing Picturebook Embeddings
The convolutional network used to obtain Pic-
turebook embeddings is based off of Wang et al.
(2014). Let pi, p

+
i , p�i denote a triplet of query,

positive and negative images, respectively. We de-
fine the following hinge loss for a given triplet as
follows:

l(pi, p
+
i , p�i ) =

max{0, g + D(f(pi), f(p+
i ))�D(f(pi), f(p�i ))}

(1)
where f(pi) represents the embedding of image
pi, D(·, ·) is the Euclidean distance and g is a mar-
gin (gap) hyperparameter. Suppose we have avail-
able pairwise relevance scores ri,j = r(pi, pj) in-
dicating the similarity of images pi and pj . The
objective function that is optimized is given by:

min
X

i

⇠i + �kWk22

s.t. :l(pi, p
+
i , p�i )  ⇠i

8pi, p
+
i , p�i such that r(pi, p

+
i ) > r(pi, p

�
i )
(2)

where ⇠i are slack variables and W is a vector
of the network’s model parameters. The model is
trained end-to-end using a proprietary dataset with
100+ million images. We refer the reader to Wang
et al. (2014) for additional details of training, in-
cluding the specifics of the architecture used.

After the model is trained, we can use the con-
volutional network as a feature extractor for im-
ages by computing an embedding vector f(p) for
an image p. Suppose we would like to obtain a
Picturebook embedding for a given word w. We
first perform an image search with query w to ob-
tain a ranked list of images pw

1 , . . . , pw
k . The Pic-

turebook embedding for a word w is then repre-
sented as:

ep(w) = [f(pw
1 ); f(pw

2 ); . . . ; f(pw
k )] (3)

namely, the concatenation of the feature vectors
in ranked order. In our model, each embedding
results in a 64-dimensional vector with the final
Picturebook embedding being 64 ⇤ k dimensions.
Most of our experiments use k = 10 images re-
sulting in a word embedding size of 640. To ob-
tain the full collection of embeddings, we run the
full Glove vocabulary (2.2M words) through im-
age search to obtain a corresponding Picturebook
embedding to each word in the Glove vocabulary.

3.2 Visual vs Semantic Similarity
The training procedure is heavily influenced by
the choice of similarity function ri,j . We consider
two types of image similarity: visual and seman-
tic. As an example, an image of a blue car would
have high visual similarity to other blue cars but
would have higher semantic similarity to cars of
the same make, independent of color. In our ex-
periments we consider two types of Picturebook
embedding: one trained through optimizing for vi-
sual similarity and another for semantic similarity.
As we will show in our experiments, the semantic
Picturebook embeddings result in representations
that are more useful for natural language process-
ing tasks than the visual embeddings.

3.3 Multimodal Fusion Gating
Picturebook embeddings on their own are likely to
be useful for representing concrete words but it is
not clear whether they will be of benefit for ab-
stract words. Consequently, we would like to fuse
our Picturebook embeddings with other sources of
information, for example Glove embeddings (Pen-
nington et al., 2014) or randomly initialized em-
beddings that will be trained. Let eg = eg(w) be
our other embedding (i.e., Glove) for a word w
and ep = ep(w) be our Picturebook embedding.
We fuse our embeddings using a multimodal gat-
ing mechanism:

g = �(eg, ep) (4)
e = g � �(eg) + (1� g)�  (ep) (5)

where � is a 1 hidden layer DNN with ReLU ac-
tivations and sigmoid outputs, � and  are 1 hid-
den layer DNNs with ReLU activations and tanh
outputs. The gating DNN � allows the model to
learn how visual a word is as a function of its
input ep and eg. Similar gating mechanisms can
be found in LSTMs (Hochreiter and Schmidhu-
ber, 1997) and other multimodal models (Arevalo
et al., 2017; Wang et al., 2018; Kiela et al., 2018).
On some experiments we found it beneficial to in-
clude a skip connection from the hidden layer of
�. We chose this form of fusion over other ap-
proaches, such as CCA variants and metric learn-
ing methods, to allow for easier interpretability
and analysis. We leave comparison of alternative
fusion strategies for future work.

3.4 Contextual Gating
The gating described above is non-contextual, in
the sense that each embedding computes a gate
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value independent of the context the words oc-
cur in. In some cases it may be beneficial to
use contextual gates that are aware of the sen-
tence that words appear in to decide how to weight
Glove and Picturebook embeddings. For contex-
tual gates, we use the same approach as above ex-
cept we replace the controller �(eg, ep) with in-
puts that have been fed through a bidirectional-
LSTM, e.g. �(BiLSTM(eg),BiLSTM(ep)). We
experiment with contextual gating for all experi-
ments that use a bidirectional-LSTM encoder.

3.5 Inverse Picturebook
Picturebook embeddings can be seen as a form of
implicit image search: given a word (or phrase),
image search the word query and concatenate the
embeddings of the images produced by a CNN.
Up until now, we have only discussed scenarios
where we have a word and we want to perform
this implicit search operation. In generative mod-
elling problems (i.e., MT), we want to perform the
opposite operation. Given a Picturebook embed-
ding, we want to find the closest word or phrase
aligned to the representation. For example, given
the word ‘bicycle’ in English and its Picturebook
embedding, we want to find the closest French
word that would generate this representation (i.e.,
‘vélo’). We want to perform this inverse image
search operation given its Picturebook embedding.

We introduce a differentiable mechanism which
allows us to align words across source and target
languages in the Picturebook embedding domain.
Let h be our internal representation of our model
(i.e., seq2seq decoder state), and ei be the i-th
word embedding from our Picturebook embedding
matrix Ep:

p(yi|h) =
exp(hh, eii)P
j exp(hh, eji)

(6)

Given a representation h, Equation 6 simply finds
the most similar word in the embedding space.
This can be easily implemented by setting the out-
put softmax matrix as the transpose of the Picture-
book embedding matrix Ep. In practice, we find
adding additional parameters helps with learning:

p(yi|h) =
exp(hh, ei + e0ii+ bi)P
j exp(hh, ej + e0ji+ bj)

(7)

where e0i is a trainable weight vector per word and
bi is a trainable bias per word. A similar technique
to tie the softmax matrix as the transpose of the
embedding matrix can be found in language mod-
elling (Press and Wolf, 2017; Inan et al., 2017).

4 Experiments

To evaluate the effectiveness of our embeddings,
we perform both quantitative and qualitative eval-
uation across a wide range of natural language
processing tasks. Hyperparameter details of each
experiment are included in the appendix. Since the
use of Picturebook embeddings adds extra param-
eters to our models, we include a baseline for each
experiment (either based on Glove or learned em-
beddings) that we extensively tune. In most exper-
iments, we end up with baselines that are stronger
than what has previously been reported.

4.1 Nearest neighbours

In order to get a sense of the representations our
model learns, we first compute nearest neighbour
results of several words, shown in Table 2. These
results can be interpreted as follows: the words
that appear as neighbours are those which have se-
mantically similar images to that of the query. Of-
ten this captures visual similarity as well. Some
words capture multimodality, such as ‘deep’ refer-
ring both to deep sea as well as to AI. Searching
for cities returns cities which have visually simi-
lar characteristics. Words like ‘sun’ also return the
corresponding word in different languages, such
as ‘Sol’ in Spanish and ‘Soleil’ in French. Finally,
it’s worth highlighting that the most frequent asso-
ciation of a word may not be what is represented
in image search results. For example, the word
‘is’ returns words related to terrorists and ISIS and
‘it’ returns words related to scary and clowns due
to the 2017 film of the same name. We also re-
port nearest neighbour examples across languages
in Appendix A.1.

4.2 Word similarity

Our first quantitative experiment aims to deter-
mine how well Picturebook embeddings capture
word similarity. We use the SimLex-999 dataset
(Hill et al., 2015) and report results across 9 cat-
egories: all (the whole evaluation), adjectives,
nouns, verbs, concreteness quartiles and the hard-
est 333 pairs. For the concreteness quartiles,
the first quartile corresponds to the most abstract
words, while the last corresponds to the most
concrete words. The hardest pairs are those for
which similarity is difficult to distinguish from re-
latedness. This is an interesting category since
image-based word embeddings are perhaps less
likely to confuse similarity with relatedness than
distributional-based methods. For Glove, scores
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language deep network Melbourne association sun life not

interdisciplinary deepest internet Austin inclusion prominence praising Nosign
languages deep-sea cyberspace Raleigh committees Sol rejoicing prohibited

literacy manta networks Cincinnati social Soleil freedom Forbidden
sociology depths blueprints Yokohama groupe Sole glorifying no

multilingual Jarvis connectivity Cleveland members Venere worshipping no-fly
inclusion cyber interconnections Tampa participation Marte healed forbid

communications AI blueprint Pittsburgh personnel eclipses praise 10
linguistics hackers AI Boston involvement Venus healing prohibiting

values restarting interconnected Rochester staffing eclipse trust forbidden
user-generated diver tech Frankfurt meetings fireballs happiness Stop

Table 2: Nearest neighbours of words. Results are retrieved over the 100K most frequent words.

Model all adjs nouns verbs conc-q1 conc-q2 conc-q3 conc-q4 hard

Glove 40.8 62.2 42.8 19.6 43.3 41.6 42.3 40.2 27.2
Picturebook 37.3 11.7 48.2 17.3 14.4 27.5 46.2 60.7 28.8
Glove + Picturebook 45.5 46.2 52.1 22.8 36.7 41.7 50.4 57.3 32.5

Picturebook (Visual) 31.3 11.1 38.8 20.4 13.9 26.1 38.7 47.7 23.9
Picturebook (Semantic) 37.3 11.7 48.2 17.3 14.4 27.5 46.2 60.7 28.8

Picturebook (1) 24.5 2.6 33.5 12.1 4.7 17.8 32.8 47.8 13.6
Picturebook (2) 28.4 6.5 38.9 9.0 5.0 21.3 34.3 55.1 15.7
Picturebook (3) 30.3 11.9 41.9 3.1 2.6 24.3 37.5 58.3 18.4
Picturebook (5) 34.4 6.8 44.5 18.0 9.0 27.9 42.8 58.3 25.9
Picturebook (10) 37.3 11.7 48.2 17.3 14.4 27.5 46.2 60.7 28.8

Table 3: SimLex-999 results (Spearman’s ⇢). Best results overall are bolded. Best results per section
are underlined. Bracketed numbers signify the number of images used. Some rows are copied across
sections for ease of reading.

are computed via cosine similarity. For computing
a score between 2 word pairs with Picturebook, we
set s(w(1), w(2)) = �mini,j d(e

(1)
i , e

(2)
j ). 2 That

is, the score is minus the smallest cosine distance
between all pairs of images of the two words. Note
that this reduces to negative cosine distance when
using only 1 image per word. We also report re-
sults combining Glove and Picturebook by sum-
ming their two independent similarity scores. By
default, we use 10 images for each embedding us-
ing the semantic convolutional network.

Table 3 displays our results, from which sev-
eral observations can be made. First, we observe
that combining Glove and Picturebook leads to
improved similarity across most categories. For
adjectives and the most abstract category, Glove
performs significantly better, while for the most
concrete category Picturebook is significantly bet-
ter. This result confirms that Glove and Picture-
book capture very different properties of words.
Next we observe that the performance of Picture-
book gets progressively better across each con-
creteness quartile rating, with a 20 point improve-
ment over Glove for the most concrete category.

2We found scoring all pairs of images to outperform scor-
ing only the corresponding equally ranked image.

For the hardest subset of words, Picturebook per-
forms slightly better than Glove while Glove per-
forms better across all pairs. We also compare to
a convolutional network trained with visual sim-
ilarity. We observe a performance difference be-
tween our visual and semantic embeddings: on all
categories except verbs, the semantic embeddings
outperform visual ones, even on the most concrete
categories. This indicates the importance of the
type of similarity used for training the model. Fi-
nally we note that adding more images nearly con-
sistently improves similarity scores across cate-
gories. Kiela et al. (2016) showed that after 10-20
images, performance tends to saturate. All sub-
sequent experiments use 10 images with semantic
Picturebook.

4.3 Sentential Inference and Relatedness

We next consider experiments on 3 pairwise pre-
diction datasets: SNLI (Bowman et al., 2015),
MultiNLI (Williams et al., 2017) and SICK
(Marelli et al., 2014). The first two are natural lan-
guage inference tasks and the third is a sentence
semantic relatedness task. We explore the use of
two types of sentential encoders: Bag-of-Words
(BoW) and BiLSTM-Max (Conneau et al., 2017a).
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Model SNLI MultiNLI SICK Relatedness

dev test dev-mat dev-mis test-p test-s test-mse

Glove (bow) 85.2 84.2 70.5 69.9 86.8 79.8 25.2
Picturebook (bow) 84.0 83.8 67.9 67.1 85.8 79.3 27.0
Glove + Picturebook (bow) 86.2 85.2 71.3 70.9 87.2 80.9 24.4

BiLSTM-Max (Conneau et al., 2017a) 85.0 84.5
Glove 86.8 86.3 74.1 74.5
Picturebook 85.2 85.1 70.7 70.3
Glove + Picturebook 86.7 86.1 73.7 73.7
Glove + Picturebook + Contextual Gating 86.9 86.5 74.2 74.4

Table 4: Classification accuracies are reported for SNLI and MulitNLI. For SICK we report Pearson,
Spearman and MSE. Higher is better for all metrics except MSE. Best results overall per column are
bolded. Best results per section are underlined.

Three sets of features are used: Glove only, Pic-
turebook only and Glove + Picturebook. For the
latter, we use multimodal gating for all encoders
and contextual gating in the BiLSTM-Max model.
For SICK, we follow previous work and report av-
erage results across 5 runs (Tai et al., 2015). Due
to the small size of the dataset, we only experiment
with BoW on SICK. The full details of hyperpa-
rameters are discussed in Appendix B.

Table 4 displays our results. For BoW mod-
els, adding Picturebook embeddings to Glove re-
sults in significant gains across all three tasks. For
BiLSTM-Max, our contextual gating sets a new
state-of-the-art on SNLI sentence encoding meth-
ods (methods without interaction layers), outper-
forming the recently proposed methods of Im and
Cho (2017); Shen et al. (2018). It is worth not-
ing the effect that different encoders have when
using our embeddings. While non-contextual gat-
ing is sufficient to improve bag-of-words methods,
with BiLSTM-Max it slightly hurts performance
over the Glove baseline. Adding contextual gating
was necessary to improve over the Glove baseline
on SNLI. Finally we note the strength of our own
Glove baseline over the reported results of Con-
neau et al. (2017a), from which we improve on
their accuracy from 85.0 to 86.8 on the develop-
ment set. 3

4.4 Sentiment and Topic Classification
Our next set of experiments aims to determine how
well Picturebook embeddings do on tasks that are
primarily non-visual, such as topic and sentiment
classification. We experiment with 7 datasets pro-
vided by Zhang et al. (2015) and compare bag-of-
words models against n-gram baselines provided

3All reported results on SNLI are available at https:
//nlp.stanford.edu/projects/snli/

by the authors as well as fastText (Joulin et al.,
2017). Hyperparameter details are reported in Ap-
pendix B.

Our experimental results are provided in Table
5. Perhaps unsurprisingly, adding Picturebook to
Glove matches or only slightly improves on 5 out
of 7 tasks and obtains a lower result on AG News
and Yahoo. Our results show that Picturebook em-
beddings, while minimally aiding in performance,
can perform reasonably well on their own - out-
performing the n-gram baselines of (Zhang et al.,
2015) on 5 out of 7 tasks and the unigram fastText
baseline on all 7 tasks. This result shows that our
embeddings are able to work as a general text em-
bedding, though they typically lag behind Glove.
We note that the best performing methods on these
tasks are based on convolutional neural networks
(Conneau et al., 2017b).

4.5 Image-Sentence Ranking

We next consider experiments that map images
and sentences into a common vector space for re-
trieval. Here, we utilize VSE++ (Faghri et al.,
2017) as our base model and evaluate on the
COCO dataset (Lin et al., 2014). VSE++ improves
over the original CNN-LSTM embedding method
of Kiros et al. (2015a) by using hard negatives in-
stead of summing over contrastive examples. We
re-implement their model with 2 modifications: 1)
we replace the unidirectional LSTM encoder with
a BiLSTM-Max sentence encoder and 2) we use
Inception-V3 (Szegedy et al., 2016) as our CNN
instead of ResNet 152 (He et al., 2016). As in pre-
vious work, we report the mean Recall@K (R@K)
and the median rank over 1000 images and 5000
sentences. Full details of the hyperparameters are
in Appendix B.

Table 6 displays our results on this task.
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Model AG DBP Yelp P. Yelp F. Yah. A. Amz. F. Amz. P.

BoW (Zhang et al., 2015) 88.8 96.6 92.2 58.0 68.9 54.6 90.4
ngrams (Zhang et al., 2015) 92.0 98.6 95.6 56.3 68.5 54.3 92.0
ngrams TFIDF (Zhang et al., 2015) 92.4 98.7 95.4 54.8 68.5 52.4 91.5
fastText (Joulin et al., 2017) 91.5 98.1 93.8 60.4 72.0 55.8 91.2
fastText-bigram (Joulin et al., 2017) 92.5 98.6 95.7 63.9 72.3 60.2 94.6

Glove (bow) 94.0 98.6 94.4 61.7 74.1 58.5 93.2
Picturebook (bow) 92.8 98.5 94.4 61.6 73.3 57.8 92.9
Glove + Picturebook (bow) 93.9 98.6 94.5 61.9 73.8 58.7 93.2

Table 5: Test accuracy [%] on topic and sentiment classification datasets. Best results per dataset are
bolded, best results per section are underlined. We compare directly against other bag of ngram baselines.

Image Annotation Image Search
Model R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

VSE++ (Faghri et al., 2017) 64.6 95.7 1 52.0 92.0 1

Glove 64.6 88.9 95.5 1 53.7 86.5 94.4 1
Picturebook 62.4 90.2 95.3 1 54.2 86.4 94.3 1
Glove + Picturebook 61.8 89.2 95.0 1 54.1 86.7 94.7 1
Glove + Picturebook + Contextual Gating 63.4 90.3 96.5 1 55.2 87.2 94.4 1

Table 6: COCO test-set results for image-sentence retrieval experiments. Our models use VSE++. R@K
is Recall@K (high is good). Med r is the median rank (low is good).

Our Glove baseline was able to match or out-
perform the reported results in Faghri et al.
(2017) with the exception of Recall@10 for im-
age annotation, where it performs slightly worse.
Glove+Picturebook improves over the Glove base-
line for image search but falls short on image an-
notation. However, using contextual gating re-
sults in improvements over the baseline on all met-
rics except R@1 for image annotation. Our re-
ported results have been recently outperformed by
Gu et al. (2018); Huang et al. (2018b); Lee et al.
(2018), which are more sophisticated methods that
incorporate generative modelling, reinforcement
learning and attention.

4.6 Machine Translation

We experiment with the Multi30k (Elliott et al.,
2016, 2017) dataset for MT. We compare our
Picturebook models with other text-only non-
ensembled models on the Flickr Test2016, Flickr
Test2017 and MSCOCO test sets from Caglayan
et al. (2017), the winner of the WMT 17 Mul-
timodal Machine Translation competition (Elliott
et al., 2017). We use the standard seq2seq
(Sutskever et al., 2015) with content-based atten-
tion (Bahdanau et al., 2015) model and we de-
scribe our hyperparmeters in Appendix B.

Table 7 summarizes our English ! German
results and Table 8 summarizes our English !
French results. We find our models to perform
better in BLEU than METEOR relatively com-

pared to (Caglayan et al., 2017). We believe this
is due to the fact we did not use Byte Pair En-
coding (BPE) (Sennrich et al., 2016), and ME-
TEOR captures word stemming (Denkowski and
Lavie, 2014). This is also highlighted where our
French models perform better than our German
models relatively, due to the compounding nature
of German words. Since seq2seq MT models are
typically trained without Glove embeddings, we
also did not use Glove embeddings for this task,
but rather we combine randomly initialized learn-
able embeddings with the fixed Picturebook em-
beddings. We find the gating mechanism not to
help much with the MT task since the trainable
embeddings are free to change their norm magni-
tudes. We did not experiment with regularizing the
norm of the embeddings. On the English! Ger-
man tasks, we find our Picturebook model to per-
form on average 0.8 BLEU or 0.7 METEOR over
our baseline. On the German task, compared to the
previously best published results (Caglayan et al.,
2017) we do better in BLEU but slightly worse in
METEOR. We suspect this is due to the fact that
we did not use BPE. On the English ! French
task, the Picturebook models do on average 1.2
BLEU better or 1.0 METEOR over our baseline.

We also report results for the IWSLT 2014
German-English task (Cettolo et al., 2014) in Ta-
ble 9. Compared to our baseline, we report a
gain of 0.3 and 1.1 BLEU for German ! En-
glish and English ! German respectively. We
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Model Test2016 Test2017 MSCOCO

BLEU METEOR BLEU METEOR BLEU METEOR

BPE (Caglayan et al., 2017) 38.1 57.3 30.8 51.6 26.4 46.8

Baseline 38.9 56.5 32.6 50.7 26.8 45.4
Picturebook 39.6 56.9 31.8 50.1 27.7 45.8
Picturebook + Inverse Picturebook 40.2 57.2 32.3 50.7 27.8 46.3
Picturebook + Inverse Picturebook + Gating 40.0 57.3 33.0 51.1 27.9 46.5

Table 7: Machine Translation results on the Multi30k English! German task. We note that our models
do not use BPE, and we perform better in BLEU relative to METEOR.

Model Test2016 Test2017 MSCOCO

BLEU METEOR BLEU METEOR BLEU METEOR

BPE (Caglayan et al., 2017) 52.5 69.6 50.4 67.5 41.2 61.3

Baseline 60.7 74.1 52.3 67.4 42.8 60.6
Picturebook 61.0 74.2 52.4 67.5 43.1 61.0
Picturebook + Inverse Picturebook 61.8 75.0 52.6 67.7 42.8 61.2
Picturebook + Inverse Picturebook + Gating 62.1 75.2 53.6 68.4 43.8 61.6

Table 8: Machine Translation results on the Multi30k English! French task.

report new state-of-the-art results for the English
! German task at 25.4 BLEU, while our Ger-
man! English model achieves 29.6 BLEU which
is slightly behind the recently proposed Neural
Phrase-based Machine Translation (NPMT) model
at 29.9 (Huang et al., 2018a). We note that the
NPMT is not a seq2seq model and can be aug-
mented with our Picturebook embeddings. We
also note that our models may not be directly com-
parable to previously published seq2seq models
from (Wiseman and Rush, 2016; Bahdanau et al.,
2017) since we used a deeper encoder and decoder.

4.7 Limitations

We explored the use of Picturebook for larger
machine translation tasks, including the popular
WMT14 benchmarks. For these tasks, we found
that models that incorporate Picturebook led to
faster convergence. However, we were not able to
improve upon BLEU scores from equivalent mod-
els that do not use Picturebook. This indicates
that while our embeddings are useful for smaller
MT experiments, further research is needed on
how to best incorporate grounded representations
in larger translation tasks.

4.8 Gate Analysis

In this section we perform an extensive analy-
sis of the gating mechanism for models trained
across datasets used in our experiments. In our
first experiment, we aim to determine how well

gate activations correlate to a) human judgments
of concreteness and b) image dispersion (Kiela
et al., 2014). For concreteness ratings, we use the
dataset of Brysbaert et al. (2013) which provides
ratings for 40,000 English lemmas. Image disper-
sion is the average distance between all pairs of
images returned from a search query. It was shown
in Kiela et al. (2014) that abstract words tend to
have higher dispersion ratings, due to having much
higher variety in the types of images returned from
a query. On the other hand, low dispersion ratings
were more associated with concrete words. For
each word, we compute the mean gate activation
value for Picturebook embeddings. 4 For con-
creteness ratings, we take the intersection of words
that have ratings with the dataset vocabulary. We
then compute the Spearman correlation of mean
gate activations with a) concreteness ratings and
b) image dispersion scores.

Table 10 illustrates the result of this analysis.
We observe that gates have high correlations with
concreteness ratings and strong negative correla-
tions with image dispersion scores. Moreover, this
result holds true across all datasets, even those that
are not inherently visual. These results provide ev-
idence that our gating mechanism actively prefers
Glove embeddings for abstract words and Picture-
book embeddings for concrete words. Appendix
A contains examples of words that most strongly
activate Glove and Picturebook gates.

4We only consider non-contextualized gates.
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Model DE! EN BLEU EN! DE BLEU

MIXER (Ranzato et al., 2016) 21.8
Beam Search Optimization (Wiseman and Rush, 2016) 25.5
Actor-Critic + Log Likelihood (Bahdanau et al., 2017) 28.5
Neural Phrase-based Machine Translation (Huang et al., 2018a) 29.9 25.1

Baseline 29.3 24.3
Picturebook 29.6 25.4

Table 9: Machine Translation results on the IWSLT 2014 German-English task.

Rank SNLI MultiNLI COCO AG-News DBpedia Yelp Amazon

ccorr disp ccorr disp ccorr disp ccorr disp ccorr disp ccorr disp ccorr disp

top-1% 73 -41 39 -27 53 -22 60 -16 56 -30 47 -28 32 -17
top-10% 54 -39 48 -34 34 -23 52 -24 54 -32 49 -26 50 -30
all 35 -30 30 -27 21 -16 36 -17 39 -30 24 -20 33 -31

Table 10: Correlations (rounded, x100) of mean Picturebook gate activations to human judgements of
concreteness ratings (ccorr) and image dispersion (disp) within the specified most frequent words.

(a) SNLI (b) MultiNLI (c) AG-News

Figure 1: POS analysis. Top bar for each tag is Glove, bottom is Picturebook. Tags are sorted by Glove
frequencies. Results taken over the top 100 mean activation values within the 10K most frequent words.

Finally we analyze the parts-of-speech (POS)
of the highest activated words. These results are
shown in Figure 1. The highest scoring Pic-
turebook words are almost all singular and plural
nouns (NN / NNS). We also observe tags which
are exclusively Glove oriented, namely adverbs
(RB), prepositions (IN) and determiners (DT).

5 Conclusion

Traditionally, word representations have been built
on co-occurrences of neighbouring words; and
such representations only make use of the statis-
tics of the text distribution. Picturebook embed-
dings offer an alternative approach to constructing
word representations grounded in image search
engines. In this work we demonstrated that Pic-
turebook complements traditional embeddings on
a wide variety of tasks. Through the use of mul-
timodal gating, our models lead to interpretable
weightings of abstract vs concrete words. In fu-
ture work, we would like to explore other aspects

of search engines for language grounding as well
as the effect these embeddings may have on learn-
ing generic sentence representations (Kiros et al.,
2015b; Hill et al., 2016; Conneau et al., 2017a;
Logeswaran and Lee, 2018). Recently, contextu-
alized word representations have shown promis-
ing improvements when combined with existing
embeddings (Melamud et al., 2016; Peters et al.,
2017; McCann et al., 2017; Peters et al., 2018).
We expect that integrating Picturebook with these
embeddings to lead to further performance im-
provements as well.
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Abstract

Despite recent advances in knowledge rep-
resentation, automated reasoning, and ma-
chine learning, artificial agents still lack
the ability to understand basic action-
effect relations regarding the physical
world, for example, the action of cutting
a cucumber most likely leads to the state
where the cucumber is broken apart into
smaller pieces. If artificial agents (e.g.,
robots) ever become our partners in joint
tasks, it is critical to empower them with
such action-effect understanding so that
they can reason about the state of the world
and plan for actions. Towards this goal,
this paper introduces a new task on naive
physical action-effect prediction, which
addresses the relations between concrete
actions (expressed in the form of verb-
noun pairs) and their effects on the state of
the physical world as depicted by images.
We collected a dataset for this task and de-
veloped an approach that harnesses web
image data through distant supervision to
facilitate learning for action-effect predic-
tion. Our empirical results have shown
that web data can be used to complement a
small number of seed examples (e.g., three
examples for each action) for model learn-
ing. This opens up possibilities for agents
to learn physical action-effect relations for
tasks at hand through communication with
humans with a few examples.

1 Introduction

Causation in the physical world has long been a
central discussion to philosophers who study ca-
sual reasoning and explanation (Ducasse, 1926;
Gopnik et al., 2007), to mathematicians or com-

puter scientists who apply computational ap-
proaches to model cause-effect prediction (Pearl
et al., 2009), and to domain experts (e.g., medical
doctors) who attempt to understand the underly-
ing cause-effect relations (e.g., disease and symp-
toms) for their particular inquires. Apart from this
wide range of topics, this paper investigates a spe-
cific kind of causation, the very basic causal rela-
tions between a concrete action (expressed in the
form of a verb-noun pair such as “cut-cucumber”)
and the change of the physical state caused by
this action. We call such relations naive physical
action-effect relations.

For example, given an image as shown in Fig-
ure 1, we would have no problem predicting what
actions can cause the state of the world depicted in
the image, e.g., slicing an apple will likely lead to
the state. On the other hand, given a statement
“slice an apple”, it would not be hard for us to
imagine what state change may happen to the ap-
ple. We can make such action-effect prediction
because we have developed an understanding of
this kind of basic action-effect relations at a very
young age (Baillargeon, 2004). What happens to
machines? Will artificial agents be able to make
the same kind of predictions? The answer is not
yet.

Despite tremendous progress in knowledge rep-
resentation, automated reasoning, and machine
learning, artificial agents still lack the understand-
ing of naive causal relations regarding the physical
world. This is one of the bottlenecks in machine
intelligence. If artificial agents ever become capa-
ble of working with humans as partners, they will
need to have this kind of physical action-effect un-
derstanding to help them reason, learn, and per-
form actions.

To address this problem, this paper introduces
a new task on naive physical action-effect pre-
diction. This task supports both cause predic-
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Figure 1: Images showing the effects of “slice an
apple”.

tion: given an image which describes a state of the
world, identify the most likely action (in the form
of a verb-noun pair, from a set of candidates) that
can result in that state; and effect prediction: given
an action in the form of a verb-noun pair, identify
images (from a set of candidates) that depicts the
most likely effects on the state of the world caused
by that action. Note that there could be different
ways to formulate this problem, for example, both
causes and effects are in the form of language or
in the form of images/videos. Here we intention-
ally frame the action as a language expression (i.e.,
a verb-noun pair) and the effect as depicted in an
image in order to make a connection between lan-
guage and perception. This connection is impor-
tant for physical agents that not only can perceive
and act, but also can communicate with humans in
language.

As a first step, we collected a dataset of 140
verb-noun pairs. Each verb-noun pair is annotated
with possible effects described in language and de-
picted in images (where language descriptions and
image descriptions are collected separately). We
have developed an approach that applies distant
supervision to harness web data for bootstrapping
action-effect prediction models. Our empirical re-
sults have shown that, using a simple bootstrap-
ping strategy, our approach can combine the noisy
web data with a small number of seed examples to
improve action-effect prediction. In addition, for a
new verb-noun pair, our approach can infer its ef-
fect descriptions and predict action-effect relations
only based on 3 image examples.

The contributions of this paper are three folds.
First, it introduces a new task on physical action-
effect prediction, a first step towards an under-

standing of causal relations between physical ac-
tions and the state of the physical world. Such
ability is central to robots which not only perceive
from the environment, but also act to the environ-
ment through planning. To our knowledge, there
is no prior work that attempts to connect actions
(in language) and effects (in images) in this na-
ture. Second, our approach harnesses the large
amount of image data available on the web with
minimum supervision. It has shown that physi-
cal action-effect models can be learned through
a combination of a few annotated examples and
a large amount of un-annotated web data. This
opens up the possibility for humans to teach robots
new tasks through language communication with
a small number of examples. Third, we have cre-
ated a dataset for this task, which is available to
the community 1. Our bootstrapping approach can
serve as a baseline for future work on this topic.

In the following sections, we first describe our
data collection effort, then introduce the bootstrap-
ping approach for action-effect prediction, and fi-
nally present results from our experiments.

2 Related Work

In the NLP community, there has been exten-
sive work that models cause-effect relations from
text (Cole et al., 2005; Do et al., 2011; Yang and
Mao, 2014). Most of these previous studies ad-
dress high-level causal relations between events,
for example, “the collapse of the housing bubble”
causes the effect of “stock prices to fall” (Sharp
et al., 2016). They do not concern the kind of
naive physical action-effect relations in this pa-
per. There is also an increasing amount of effort
on capturing commonsense knowledge, for exam-
ple, through knowledge base population. Except
for few (Yatskar et al., 2016) that acquires knowl-
edge from images, most of the previous effort ap-
ply information extraction techniques to extract
facts from a large amount of web data (Dredze
et al., 2010; Rajani and Mooney, 2016). DBPe-
dia (Lehmann et al., 2015), Freebase (Bollacker
et al., 2008), and YAGO (Suchanek et al., 2007)
knowledge bases contain millions of facts about
the world such as people and places. However,
they do not contain basic cause-effect knowledge
related to concrete actions and their effects to the
world. Recent work started looking into phys-

1This dataset is available at http://lair.cse.msu.
edu/lair/projects/actioneffect.html
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ical causality of action verbs (Gao et al., 2016)
and other physical properties of verbs (Forbes and
Choi, 2017; Zellers and Choi, 2017; Chao et al.,
2015). But they do not address action-effect pre-
diction.

The idea of modeling object physical state
change has also been studied in the computer vi-
sion community (Fire and Zhu, 2016). Compu-
tational models have been developed to infer ob-
ject states from observations and to further pre-
dict future state changes (Zhou and Berg, 2016;
Wu et al., 2016, 2017). The action recognition
task can be treated as detecting the transforma-
tion on object states (Fathi and Rehg, 2013; Yang
et al., 2013; Wang et al., 2016). However these
previous works only focus on the visual presenta-
tion of motion effects. Recent years have seen an
increasing amount of work integrating language
and vision, for example, visual question answer-
ing (Antol et al., 2015; Fukui et al., 2016; Lu et al.,
2016), image description generation (Xu et al.,
2015; Vinyals et al., 2015), and grounding lan-
guage to perception (Yang et al., 2016; Roy, 2005;
Tellex et al., 2011; Misra et al., 2017). While
many approaches require a large amount of train-
ing data, recent works have developed zero/few
shot learning for language and vision (Mukherjee
and Hospedales, 2016; Xu et al., 2016, 2017a,b;
Tsai and Salakhutdinov, 2017). Different from
these previous works, this paper introduces a new
task that connects language with vision for physi-
cal action-effect prediction.

In the robotics community, an important task
is to enable robots to follow human natural lan-
guage instructions. Previous works (She et al.,
2014; Misra et al., 2015; She and Chai, 2016,
2017) explicitly model verb semantics as desired
goal states and thus linking natural language com-
mands with underlying planning systems for ac-
tion planning and execution. However, these stud-
ies were carried out either in a simulated world or
in a carefully curated simple environment within
the limitation of the robot’s manipulation system.
And they only focus on a very limited set of do-
main specific actions which often only involve the
change of locations. In this work, we study a set
of open-domain physical actions and a variety of
effects perceived from the environment (i.e., from
images).

3 Action-Effect Data Collection

We collected a dataset to support the investigation
on physical action-effect prediction. This dataset
consists of actions expressed in the form of verb-
noun pairs, effects of actions described in lan-
guage, and effects of actions depicted in images.
Note that, as we would like to have a wide range
of possible effects, language data and image data
are collected separately.

Actions (verb-noun pairs). We selected 40 nouns
that represent everyday life objects, most of them
are from the COCO dataset (Lin et al., 2014), with
a combination of food, kitchen ware, furniture, in-
door objects, and outdoor objects. We also iden-
tified top 3000 most frequently used verbs from
Google Syntactic N-gram dataset (Goldberg and
Orwant, 2013) (Verbargs set). And we extracted
top frequent verb-noun pairs containing a verb
from the top 3000 verbs and a noun in the 40 nouns
which hold a dobj (i.e., direct object) dependency
relation. This resulted in 6573 candidate verb-
noun pairs. As changes to an object can occur
at various dimensions (e.g., size, color, location,
attachment, etc.), we manually selected a subset
of verb-noun pairs based on the following criteria:
(1) changes to the objects are visible (as opposed
to other types such as temperature change, etc.);
and (2) changes reflect one particular dimension
as opposed to multiple dimensions (as entailed by
high-level actions such as “cook a meal”, which
correspond to multiple dimensions of change and
can be further decomposed into basic actions). As
a result, we created a subset of 140 verb-noun pairs
(containing 62 unique verbs and 39 unique nouns)
for our investigation.

Effects Described in Language. The basic
knowledge about physical action-effect is so fun-
damental and shared among humans. It is of-
ten presupposed in our communication and not
explicitly stated. Thus, it is difficult to extract
naive action-effect relations from the existing tex-
tual data (e.g., web). This kind of knowledge is
also not readily available in commonsense knowl-
edge bases such as ConceptNet (Speer and Havasi,
2012). To overcome this problem, we applied
crowd-sourcing (Amazon Mechanical Turk) and
collected a dataset of language descriptions de-
scribing effects for each of the 140 verb-noun
pairs. The workers were shown a verb-noun pair,
and were asked to use their own words and imag-
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Action Effect Text
ignite paper The paper is on fire.
soak shirt The shirt is thoroughly wet.
fry potato The potatoes become crisp and golden.
stain shirt There is a visible mark on the shirt.

Table 1: Example action and effect text from our
collected data.

inations to describe what changes might occur to
the corresponding object as a result of the action.
Each verb-noun pair was annotated by 10 differ-
ent annotators, which has led to a total of 1400
effect descriptions. Table 1 shows some examples
of collected effect descriptions. These effect lan-
guage descriptions allow us to derive seed effect
knowledge in a symbolic form.

Effects Depicted in Images. For each action,
three students searched the web and collected a
set of images depicting potential effects. Specif-
ically, given a verb-noun pair, each of the three
students was asked to collect at least 5 positive
images and 5 negative images. Positive images
are those deemed to capture the resulting world
state of the action. And negative images are those
deemed to capture some state of the related ob-
ject (i.e., the nouns in the verb-noun pairs), but are
not the resulting state of the corresponding action.
Then, each student was also asked to provide pos-
itive or negative labels for the images collected by
the other two students. As a result each image has
three positive/negative labels. We only keep the
images whose labels are agreed by all three stu-
dents. In total, the dataset contains 4163 images.
On average, each action has 15 positive images,
and 15 negative images. Figure 2 shows several
examples of positive images and negative images
of the action peel-orange. The positive images
show an orange in a peeled state, while the neg-
ative images show oranges in different states (or-
ange as a whole, orange slices, orange juice, etc.).

4 Action-Effect Prediction

Action-effect prediction is to connect actions (as
causes) to the effects of actions. Specifically,
given an image which depicts a state of the world,
our task is to predict what concrete actions could
cause the state of the world. This task is different
from traditional action recognition as the underly-
ing actions (e.g., human body posture/movement)
are not captured by the images. In this regard, it is
also different from image description generation.

Figure 2: Positive images (top row) and negative
images (bottom row) of the action peel-orange.

We frame the problem as a few-shot learning
task, by only providing a few human-labelled im-
ages for each action at the training stage. Given
the very limited training data, we attempt to make
use of web-search images. Web search has been
adopted by previous computer vision studies to ac-
quire training data (Fergus et al., 2005; Kennedy
et al., 2006; Berg et al., 2010; Otani et al., 2016).
Compared with human annotations, web-search
comes at a much lower cost, but with a trade-off
of poor data quality. To address this issue, we ap-
ply a bootstrapping approach that aims to handle
data with noisy labels.

The first question is what search terms should
be used for image search. There are two options.
The first option is to directly use the action terms
(i.e., verb-noun pairs) to search images and the
downloaded web images are referred to as action
web images. As desired images should be depict-
ing effects of an action, terms describing effects
become a natural choice. The second option is to
use the key phrases extracted from language effect
descriptions to search the web. The downloaded
web images are referred to as effect web images.

4.1 Extracting Effect Phrases from Language
Data

We first apply chunking (shallow parsing) using
the SENNA software (Collobert et al., 2011) to
break an effect description into phrases such as
noun phrases (NP), verb phrases (VP), preposi-
tional phrases (PP), adjectives (ADJP), adverbs
(ADVP), etc. After some examination, we found
that most of the effect descriptions follow simple
syntactic patterns. For a verb-noun pair, around
80% of its effect descriptions start with the same
noun as the subject. In an effect description, the
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Example patterns Example Effect Phrases (bold) extracted from effect descriptions
VP with a verb ∈ {be, become, turn, get} The ship is destroyed.
VP + PRT The wall is knocked off.
VP + ADVP The door swings forward.
ADJP The window would begin to get clean.
PP + NP The eggs are divided into whites and yolks.

Table 2: Example patterns that are used to extract effect phrases (bold) from sample sentences.

change of state associated with the noun is mainly
captured by some key phrases. For example, an
adjective phrase usually describes a physical state;
verbs like be, become, turn, get often indicate a
description of change of the state. Based on these
observations, we defined a set of patterns to iden-
tify phrases that describe physical states of an ob-
ject. In total 1997 effect phrases were extracted
from the language data. Table 2 shows some ex-
ample patterns and example effect phrases that are
extracted.

4.2 Downloading Web Images

The purpose of querying search engine is to re-
trieve images of objects in certain effect states.
To form image searching keywords, the effect
phrases are concatenated with the corresponding
noun phrases, for example, “apple + into thin
pieces”. The image search results are downloaded
and used as supplementary training data for the
action-effect prediction models. However, web
images can be noisy. First of all, not all of the au-
tomatically extracted effect phrases describe vis-
ible state of objects. Even if a phrase represents
visible object states, the retrieved results may not
be relevant. Figure 3 shows some example image
search results using queries describing the object
name “book”, and describing the object state such
as “book is on fire”, “book is set aflame”. These
state phrases were used by human annotators to
describe the effect of the action “burn a book”. We
can see that the images returned from the query
“book is set aflame” are not depicting the physi-
cal effect state of “burn a book”. Therefore, it’s
important to identify images with relevant effect
states to train the model. To do that, we applied
a bootstrapping method to handle the noisy web
images as described in Section 4.3. For an action
(i.e., a verb-noun pair), it has multiple correspond-
ing effect phrases, and all of their image search re-
sults are treated as training images for this action.

Since both the human annotated image data
(Section 3) and the web-search image data were
obtained from Internet search engines, they may

book� book	is	on	fire� book	is	set	aflame�

Figure 3: Examples of image search results.

have duplicates. As part of the annotated images
are used as test data to evaluate the models, it
is important to remove duplicates. We designed
a simple method to remove any images from the
web-search image set that has a duplicate in the
human annotated set. We first embed all images
into feature vectors using pre-trained CNNs. For
each web-search image, we calculate its cosine
similarity score with each of the annotated images.
And we simply remove the web images that have
a score larger than 0.95.

4.3 Models

We formulate the action-effect prediction task as
a multi-class classification problem. Given an im-
age, the model will output a probability distribu-
tion q over the candidate actions (i.e., verb-noun
pairs) that can potentially cause the effect depicted
in the image.

Specifically for model training, we are given a
set of human annotated seeding image data {x, t}
and a set of web-search image data {x′, t′}. Here
x and x′ are the images (depicting effect states),
and t and t′ are their classification targets (i.e., ac-
tions that cause the effects). Each target vector is
the observed image label, t ∈ {0, 1}C ,

∑
i ti = 1,

and C is the number of classes (i.e., actions). The
human annotated targets t can be trusted. But the
targets of web-search images t′ are usually very
noisy. Bootstrapping method has been shown to
be an effective method to handle noisy labelled
data (Rosenberg et al., 2005; Whitney and Sarkar,
2012; Reed et al., 2014). The objective of the
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Figure 4: Architecture for the action-effect predic-
tion model with bootstrapping.

cross-entropy loss is defined as follows:

L(t,q) =
C∑

i=1

ti log (qi), (1)

where q are the predicted class probabilities, and
C is the number of classes. To handle the
noisy labels in the web-search data {x′, t′}, we
adopt a bootstrapping objective following Reed’s
work (Reed et al., 2014):

L(t′,q) =
C∑

i=1

[βt′i + (1− β)zi] log (qi), (2)

where β ∈ [0, 1] is a model parameter to be as-
signed, z is the one-hot vector of the prediction q,
zi = 1, if i = argmax qk, k = 1 . . . C.

The model architecture is shown in Figure 4.
After each training batch, the current model will
be used to make predictions q on images in the
next batch. And the target probabilities is calcu-
lated as a linear combination of the current predic-
tions q and the observed noisy labels t′. The idea
behind this bootstrapping strategy is to ensure the
consistency of the model’s predictions. By first
initializing the model on the seeding image data,
the bootstrapping approach allows the model to
trust more on the web images that are consistent
with the seeding data.

4.4 Evaluation

We evaluate the models on the action-effect pre-
diction task. Given an image that illustrates a state
of the world, the goal is to predict what action
could cause that state. Given an action in the form
of a verb-noun pair, the goal is to identify images
that depict the most likely effects on the state of
the world caused by that action.

For each of the 140 verb-noun pairs, we use
10% of the human annotated images as the seed-
ing image data for training, and use 30% for de-
velopment and the rest 60% for test. The seeding
image data set contains 408 images. On average,
each verb-noun pair has less than 3 seeding images
(including positive images and negative images).
The development set contains 1252 images. The
test set contains 2503 images. The model param-
eters were selected based on the performance on
the development set.

As a given image may not be relevant to any ef-
fect, we add a background class to refer to images
where effects are not caused by any action in the
space of actions. So the total of classes for our
evaluation model is 141. For each verb-noun pair
and each of the effect phrases, around 40 images
were downloaded from the Bing image search en-
gine and used as candidate training examples. In
total we have 6653 action web images and 59575
effect web images.

Methods for Comparison
All the methods compared are based on one neu-
ral network structure. We use ResNet (He et al.,
2016) pre-trained on ImageNet (Deng et al., 2009)
to extract image features. The extracted image fea-
tures are fed to a fully connected layer with rec-
tified linear units and then to a softmax layer to
make predictions. More specifically, we compare
the following configurations:
(1) BS+Seed+Act+Eff. The bootstrapping ap-
proach trained on the seeding images, the action
web images, and the effect web images. During
the training stage, the model was first trained on
the seeding image data using vanilla cross-entropy
objective (Equation 1). Then it was further trained
on a combination of the seeding image data and
web-search data using the bootstrapping objective
(Equation 2). In the experiments we set β = 0.3.
(2) BS+Seed+Act. The bootstrapping approach
trained in the same fashion as (1). The only dif-
ference is that this method does not use the effect
web images.
(3) Seed+Act+Eff. A baseline method trained on
a combination of the seeding images, the web ac-
tion images, and the web effect images, using the
vanilla cross-entropy objective.
(4) Seed+Act. A baseline method trained on a
combination of the seeding images and the action
web images, using the vanilla cross-entropy objec-
tive.
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Top Action 
Predictions Top Effect Descriptions Top Action 

Predictions Top Effect Descriptions

bake potato
peel potato 
boil potato 
fry potato

potato crispy 
potato is crushed 
eggs get beaten 
potato browned

wrap book 
tear book
fold paper 
shave hair

book is ripped 
paper become creased 
book into smaller pieces 
meat is being prepped

peel carrot 
cut wood 
chop carrot
grate carrot

carrot into little sections 
tree into pieces 
carrot into tiny pieces 
wood is being chopped

stain paper 
close drawer 
squeeze bottle
crack bottle

bottle is pressed together 
meat is exposed 
paper around itself 
drawer is pushed back

chop onion 
cut onion 
slice onion 
background

onion is being cut 
onion in 
banana is made 
banana is removed

chop onion 
cook onion 
grate potato 
background

onion is heated 
onion into small pieces 
onion into multiple pieces 
onion is chopped

Figure 5: Several example test images and their predicted actions and predicted effect descriptions. The
actions in bold are ground-truth labels.

MAP Top 1 Top 5 Top 20
BS+Seed+Act+Eff 0.290 0.414 0.750 0.921
BS+Seed+Act 0.252 0.414 0.721 0.893
Seed+Act+Eff 0.247 0.314 0.679 0.886
Seed+Act 0.241 0.371 0.650 0.814
Seed 0.182 0.329 0.629 0.807

Table 3: Results for the action-effect prediction
task (given an action, rank all the candidate im-
ages).

MAP Top 1 Top 5 Top 20
BS+Seed+Act+Eff 0.660 0.523 0.843 0.954
BS+Seed+Act 0.642 0.508 0.802 0.924
Seed+Act+Eff 0.289 0.176 0.398 0.625
Seed+Act 0.481 0.301 0.724 0.926
Seed 0.634 0.520 0.765 0.892

Table 4: Results for the action-effect prediction
task (given an image, rank all the actions).

(5) Seed. A baseline method that was only trained
on the seeding image data, using the vanilla cross-
entropy objective.

Evaluation Results
We apply the trained classification model to all of
the test images. Based on the matrix of predic-
tion scores, we can evaluate action-effect predic-
tion from two angles: (1) given an action class,
rank all the candidate images; (2) given an image,
rank all the candidate action classes. Table 3 and 4
show the results for these two angels respectively.
We report both mean average precision (MAP) and
top prediction accuracy.

Overall, BS+Seed+Act+Eff gives the best per-
formance. By comparing the bootstrap approach
with baseline approaches (i.e., BS+Seed+Act+Eff

vs. Seed+Act+Eff, and BS+Seed+Act vs.
Seed+Act), the bootstrapping approaches clearly
outperforms their counterparts, demonstrating its
ability in handling noisy web data. Comparing
BS+Seed+Act+Eff with BS+Seed+Act, we can
see that BS+Seed+Act+Eff performs better. This
indicates the use of effect descriptions can bring
more relevant images to train better models for
action-effect prediction.

In Table 4, the poor performance of
Seed+Act+Eff and Seed+Act shows that it is
risky to fully rely on the noisy web search results.
These two methods had trouble in distinguishing
the background class from the rest.

We further trained another multi-class classifier
with web effect images, using their corresponding
effect phrases as class labels. Given a test image,
we apply this new classifier to predict the effect
descriptions of this image. Figure 5 shows some
example images, their predicted actions based on
our bootstrapping approach and their predicted ef-
fect phrases based on the new classifier. These ex-
amples also demonstrate another advantage of in-
corporating seed effect knowledge from language
data: it provides state descriptions that can be used
to better explain the perceived state. Such explana-
tion can be crucial in human-agent communication
for action planning and reasoning.

5 Generalizing Effect Knowledge to New
Verb-Noun Pairs

In real applications, it is very likely that we do not
have the effect knowledge (i.e., language effect de-
scriptions) for every verb-noun pair. And annotat-
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Action	 Effect	

slice		apple	 into		many		small		pieces	

LSTM� LSTM�

Cosine		
Embedding	Loss	

Figure 6: Architecture of the action-effect embed-
ding model.

ing effect knowledge using language (as shown in
Section 3) can be very expensive. In this section,
we describe how to potentially generalize seed ef-
fect knowledge to new verb-noun pairs through an
embedding model.

5.1 Action-Effect Embedding Model
The structure of our model is shown in Figure 6.
It is composed of two sub-networks: one for verb-
noun pairs (i.e., action) and the other one for effect
phrases (i.e, effect). The action or effect is fed into
an LSTM encoder and then to two fully-connected
layers. The output is an action embedding vc and
effect embedding ve. The networks are trained by
minimizing the following cosine embedding loss
function:

L(vc,ve) =
{
1− s(vc,ve), if (c, e) ∈ T
max(0, s(vc,ve)), if (c, e) /∈ T

s(·, ·) is the cosine similarity between vectors. T
is a collection of action-effect pairs. Suppose c is
an input for action and e is an input for effect, this
loss function will learn an action and effect seman-
tic space that maximizes the similarities between
c and e if they have an action-effect relation (i.e.,
(c, e) ∈ T ). During training, the negative action-
effect pairs (i.e., (c, e) /∈ T ) are randomly sam-
pled from data. In the experiments, the negative
sampling ratio is set to 25. That is, for each posi-
tive action-effect pair, 25 negative pairs are created
through random sampling.

At the inference step, given an unseen verb-
noun pair, we embed it into the action and ef-
fect semantic space. Its embedding vector will be
used to calculate similarities with all the embed-
ding vectors of the candidate effect phrases.

MAP Top 1 Top 5
BS+Seed+Act+Eff 0.529 0.643 0.928
BS+Seed+Act+pEff 0.507 0.642 0.893
BS+Seed+Act 0.435 0.643 0.964
Seed 0.369 0.678 0.786

Table 5: Results for the action-effect prediction
task (given an action, rank all the candidate im-
ages).

MAP Top 1 Top 5
BS+Seed+Act+Eff 0.733 0.574 0.947
BS+Seed+Act+pEff 0.729 0.551 0.961
BS+Seed+Act 0.724 0.557 0.933
Seed 0.705 0.557 0.898

Table 6: Results for the action-effect prediction
task (given an image, rank all the actions).

5.2 Evaluation

We divided the 140 verb-noun pairs into 70%
training set (98 verb-noun pairs), 10% develop-
ment set (14) and 20% test set (28). For the action-
effect embedding model, we use pre-trained
GloVe word embeddings (Pennington et al., 2014)
as input to the LSTM. The embedding model was
trained using the language effect data correspond-
ing to the training verb-noun pairs, and then it was
applied to predict effect phrases for the unseen
verb-noun pairs in the test set. For each unseen
verb-noun pair, we collected its top five predicted
effect phrases. Each predicted effect phrase was
then used as query keywords to download web ef-
fect images. This set of web images are referred
to as pEff and will be used in training the action-
effect prediction model.

For each of the 28 test (i.e., new) verb-noun
pairs, we use the same ratio 10% (about 3 ex-
amples) of the human annotated images as the
seeding images, which were combined with down-
loaded web images to train the prediction model.
The remaining 30% and 60% are used as the de-
velopment set, and the test set. We compare the
following different configurations:
(1) BS+Seed+Act+pEff. The bootstrapping ap-
proach trained on the seeding images, the action
web images, and the web images downloaded us-
ing the predicted effect phrases.
(2) BS+Seed+Act+Eff. The bootstrapping ap-
proach trained on the seeding images, the action
web images, and the effect web images (down-
loaded using ground-truth effect phrases).
(3) BS+Seed+Act. The bootstrapping approach
trained on the seeding images and the action web
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Action Text Predicted Effect Text

chop carrot

carrot into sandwiches,
carrot is sliced,
carrot is cut thinly,
carrot into different pieces,
carrot is divided

ignite paper

paper is being charred ,
paper is being burned,
paper is set,
paper is being destroyed,
paper is lit

mash potato

potato into chunks,
potato into sandwiches,
potato into slices,
potato is chewed,
potato into smaller pieces

Table 7: Example predicted effect phrases for
new verb-noun pairs. Unseen verbs and nouns are
shown in bold.

images.

(4) Seed. A baseline only trained on the seeding
images.

Table 5 and 6 show the results for the
action-effect prediction task for unseen verb-
noun pairs. From the results we can see that
BS+Seed+Act+pEff achieves close performance
compared with BS+Seed+Act+Eff, which uses hu-
man annotated effect phrases. Although in most
cases, BS+Seed+Act+pEff outperforms the base-
line, which seems to point to the possibility that
semantic embedding space can be employed to
extend effect knowledge to new verb-noun pairs.
However, the current results are not conclusive
partly due to the small testing set. More in-depth
evaluation is needed in the future.

Table 7 shows top predicted effect phrases for
several new verb-noun pairs. After analyzing the
action-effect prediction results we notice that gen-
eralizing the effect knowledge to a verb-noun pair
that contains an unseen verb tends to be more dif-
ficult than generalizing to a verb-noun pair that
contains an unseen noun. Among the 28 test verb-
noun pairs, 12 of them contain unseen verbs and
known nouns, 7 of them contain unseen nouns and
known verbs. For the task of ranking images given
an action, the mean average precision is 0.447 for
the unseen verb cases and 0.584 for the unseen
noun cases. Although not conclusive, this might
indicate that, verbs tend to capture more informa-
tion about the effect states of the world than nouns.

6 Discussion and Conclusion

When robots operate in the physical world, they
not only need to perceive the world, but also need
to act to the world. They need to understand the
current state, to map their goals to the world state,
and to plan for actions that can lead to the goals.
All of these point to the importance of the ability
to understand causal relations between actions and
the state of the world. To address this issue, this
paper introduces a new task on action-effect pre-
diction.

Particularly, we focus on modeling the connec-
tion between an action (a verb-noun pair) and its
effect as illustrated in an image and treat natural
language effect descriptions as side knowledge to
help acquiring web image data and bootstrap train-
ing. Our current model is very simple and perfor-
mance is yet to be improved. We plan to apply
more advanced approaches in the future, for exam-
ple, attention models that jointly capture actions,
image states, and effect descriptions. We also plan
to incorporate action-effect prediction to human-
robot collaboration, for example, to bridge the gap
of commonsense knowledge about the physical
world between humans and robots.

This paper presents an initial investigation on
action-effect prediction. There are many chal-
lenges and unknowns, from problem formulation
to knowledge representation; from learning and
inference algorithms to methods and metrics for
evaluations. Nevertheless, we hope this work can
motivate more research in this area, enabling phys-
ical action-effect reasoning, towards agents which
can perceive, act, and communicate with humans
in the physical world.
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Abstract

Target-oriented sentiment classification
aims at classifying sentiment polarities
over individual opinion targets in a sen-
tence. RNN with attention seems a good
fit for the characteristics of this task, and
indeed it achieves the state-of-the-art per-
formance. After re-examining the draw-
backs of attention mechanism and the ob-
stacles that block CNN to perform well in
this classification task, we propose a new
model to overcome these issues. Instead of
attention, our model employs a CNN layer
to extract salient features from the trans-
formed word representations originated
from a bi-directional RNN layer. Between
the two layers, we propose a component
to generate target-specific representations
of words in the sentence, meanwhile in-
corporate a mechanism for preserving the
original contextual information from the
RNN layer. Experiments show that our
model achieves a new state-of-the-art per-
formance on a few benchmarks.1

1 Introduction

Target-oriented (also mentioned as “target-level”
or “aspect-level” in some works) sentiment clas-
sification aims to determine sentiment polarities
over “opinion targets” that explicitly appear in the
sentences (Liu, 2012). For example, in the sen-
tence “I am pleased with the fast log on, and the
long battery life”, the user mentions two targets

∗The work was done when Xin Li was an intern at Ten-
cent AI Lab. This project is substantially supported by a grant
from the Research Grant Council of the Hong Kong Special
Administrative Region, China (Project Code: 14203414).

1Our code is open-source and available at https://
github.com/lixin4ever/TNet

“log on” and “better life”, and expresses positive
sentiments over them. The task is usually formu-
lated as predicting a sentiment category for a (tar-
get, sentence) pair.

Recurrent Neural Networks (RNNs) with at-
tention mechanism, firstly proposed in machine
translation (Bahdanau et al., 2014), is the most
commonly-used technique for this task. For ex-
ample, Wang et al. (2016); Tang et al. (2016b);
Yang et al. (2017); Liu and Zhang (2017); Ma
et al. (2017) and Chen et al. (2017) employ atten-
tion to measure the semantic relatedness between
each context word and the target, and then use
the induced attention scores to aggregate contex-
tual features for prediction. In these works, the
attention weight based combination of word-level
features for classification may introduce noise and
downgrade the prediction accuracy. For example,
in “This dish is my favorite and I always get it
and never get tired of it.”, these approaches tend
to involve irrelevant words such as “never” and
“tired” when they highlight the opinion modifier
“favorite”. To some extent, this drawback is rooted
in the attention mechanism, as also observed in
machine translation (Luong et al., 2015) and im-
age captioning (Xu et al., 2015).

Another observation is that the sentiment of a
target is usually determined by key phrases such
as “is my favorite”. By this token, Convolu-
tional Neural Networks (CNNs)—whose capabil-
ity for extracting the informative n-gram features
(also called “active local features”) as sentence
representations has been verified in (Kim, 2014;
Johnson and Zhang, 2015)— should be a suitable
model for this classification problem. However,
CNN likely fails in cases where a sentence ex-
presses different sentiments over multiple targets,
such as “great food but the service was dreadful!”.
One reason is that CNN cannot fully explore the
target information as done by RNN-based meth-
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ods (Tang et al., 2016a).2 Moreover, it is hard
for vanilla CNN to differentiate opinion words of
multiple targets. Precisely, multiple active local
features holding different sentiments (e.g., “great
food” and “service was dreadful”) may be cap-
tured for a single target, thus it will hinder the pre-
diction.

We propose a new architecture, named Target-
Specific Transformation Networks (TNet), to
solve the above issues in the task of target senti-
ment classification. TNet firstly encodes the con-
text information into word embeddings and gener-
ates the contextualized word representations with
LSTMs. To integrate the target information into
the word representations, TNet introduces a novel
Target-Specific Transformation (TST) component
for generating the target-specific word representa-
tions. Contrary to the previous attention-based ap-
proaches which apply the same target representa-
tion to determine the attention scores of individual
context words, TST firstly generates different rep-
resentations of the target conditioned on individual
context words, then it consolidates each context
word with its tailor-made target representation to
obtain the transformed word representation. Con-
sidering the context word “long” and the target
“battery life” in the above example, TST firstly
measures the associations between “long” and in-
dividual target words. Then it uses the association
scores to generate the target representation con-
ditioned on “long”. After that, TST transforms
the representation of “long” into its target-specific
version with the new target representation. Note
that “long” could also indicate a negative senti-
ment (say for “startup time”), and the above TST
is able to differentiate them.

As the context information carried by the rep-
resentations from the LSTM layer will be lost
after the non-linear TST, we design a context-
preserving mechanism to contextualize the gen-
erated target-specific word representations. Such
mechanism also allows deep transformation struc-
ture to learn abstract features3. To help the CNN
feature extractor locate sentiment indicators more
accurately, we adopt a proximity strategy to scale
the input of convolutional layer with positional rel-
evance between a word and the target.

2One method could be concatenating the target represen-
tation with each word representation, but the effect as shown
in (Wang et al., 2016) is limited.

3Abstract features usually refer to the features ultimately
useful for the task (Bengio et al., 2013; LeCun et al., 2015).

In summary, our contributions are as follows:
• TNet adapts CNN to handle target-level senti-

ment classification, and its performance dominates
the state-of-the-art models on benchmark datasets.
• A novel Target-Specific Transformation com-

ponent is proposed to better integrate target infor-
mation into the word representations.
• A context-preserving mechanism is designed

to forward the context information into a deep
transformation architecture, thus, the model can
learn more abstract contextualized word features
from deeper networks.

2 Model Description

Given a target-sentence pair (wτ ,w), where
wτ = {wτ1 , wτ2 , ..., wτm} is a sub-sequence of
w = {w1, w2, ..., wn}, and the corresponding
word embeddings xτ = {xτ1 , xτ2 , ..., xτm} and x =
{x1, x2, ..., xn}, the aim of target sentiment clas-
sification is to predict the sentiment polarity y ∈
{P,N,O} of the sentence w over the target wτ ,
where P , N and O denote “positive”, “negative”
and “neutral” sentiments respectively.

The architecture of the proposed Target-
Specific Transformation Networks (TNet) is
shown in Fig. 1. The bottom layer is a BiLSTM
which transforms the input x = {x1, x2, ..., xn} ∈
Rn×dimw into the contextualized word represen-
tations h(0) = {h(0)1 , h

(0)
2 , ..., h

(0)
n } ∈ Rn×2dimh

(i.e. hidden states of BiLSTM), where dimw

and dimh denote the dimensions of the word em-
beddings and the hidden representations respec-
tively. The middle part, the core part of our
TNet, consists of L Context-Preserving Transfor-
mation (CPT) layers. The CPT layer incorporates
the target information into the word representa-
tions via a novel Target-Specific Transformation
(TST) component. CPT also contains a context-
preserving mechanism, resembling identity map-
ping (He et al., 2016a,b) and highway connec-
tion (Srivastava et al., 2015a,b), allows preserving
the context information and learning more abstract
word-level features using a deep network. The top
most part is a position-aware convolutional layer
which first encodes positional relevance between
a word and a target, and then extracts informative
features for classification.

2.1 Bi-directional LSTM Layer

As observed in Lai et al. (2015), combining con-
textual information with word embeddings is an
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Figure 1: Architecture of TNet.

effective way to represent a word in convolution-
based architectures. TNet also employs a BiL-
STM to accumulate the context information for
each word of the input sentence, i.e., the bottom
part in Fig. 1. For simplicity and space issue, we
denote the operation of an LSTM unit on xi as
LSTM(xi). Thus, the contextualized word repre-
sentation h(0)i ∈ R2dimh is obtained as follows:

h
(0)
i = [

−−−−→
LSTM(xi);

←−−−−
LSTM(xi)], i ∈ [1, n]. (1)

2.2 Context-Preserving Transformation

The above word-level representation has not con-
sidered the target information yet. Traditional
attention-based approaches keep the word-level
features static and aggregate them with weights
as the final sentence representation. In contrast,
as shown in the middle part in Fig. 1, we intro-
duce multiple CPT layers and the detail of a sin-
gle CPT is shown in Fig. 2. In each CPT layer,
a tailor-made TST component that aims at better
consolidating word representation and target rep-
resentation is proposed. Moreover, we design a
context-preserving mechanism enabling the learn-
ing of target-specific word representations in a
deep neural architecture.

2.2.1 Target-Specific Transformation
TST component is depicted with the TST block in
Fig. 2. The first task of TST is to generate the rep-
resentation of the target. Previous methods (Chen

Figure 2: Details of a CPT module.

et al., 2017; Liu and Zhang, 2017) average the em-
beddings of the target words as the target repre-
sentation. This strategy may be inappropriate in
some cases because different target words usually
do not contribute equally. For example, in the tar-
get “amd turin processor”, the word “processor”
is more important than “amd” and “turin”, because
the sentiment is usually conveyed over the phrase
head, i.e.,“processor”, but seldom over modifiers
(such as brand name “amd”). Ma et al. (2017) at-
tempted to overcome this issue by measuring the
importance score between each target word repre-
sentation and the averaged sentence vector. How-
ever, it may be ineffective for sentences expressing
multiple sentiments (e.g., “Air has higher resolu-
tion but the fonts are small.”), because taking the
average tends to neutralize different sentiments.

We propose to dynamically compute the impor-
tance of target words based on each sentence word
rather than the whole sentence. We first employ
another BiLSTM to obtain the target word repre-
sentations hτ ∈ Rm×2dimh :

hτj = [
−−−−→
LSTM(xτj );

←−−−−
LSTM(xτj )], j ∈ [1,m]. (2)

Then, we dynamically associate them with each
word wi in the sentence to tailor-make target rep-
resentation rτi at the time step i:

rτi =

m∑

j=1

hτj ∗ F(h(l)i , hτj ), (3)

where the function F measures the relatedness be-
tween the j-th target word representation hτj and
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the i-th word-level representation h(l)i :

F(h(l)i , hτj ) =
exp (h

(l)>
i hτj )∑m

k=1 exp (h
(l)>
i hτk)

. (4)

Finally, the concatenation of rτi and h(l)i is fed into
a fully-connected layer to obtain the i-th target-
specific word representation h̃i

(l)
:

h̃
(l)
i = g(W τ [h

(l)
i : rτi ] + bτ ), (5)

where g(∗) is a non-linear activation function and
“:” denotes vector concatenation. W τ and bτ are
the weights of the layer.

2.2.2 Context-Preserving Mechanism
After the non-linear TST (see Eq. 5), the con-
text information captured with contextualized rep-
resentations from the BiLSTM layer will be lost
since the mean and the variance of the features
within the feature vector will be changed. To take
advantage of the context information, which has
been proved to be useful in (Lai et al., 2015),
we investigate two strategies: Lossless Forward-
ing (LF) and Adaptive Scaling (AS), to pass the
context information to each following layer, as de-
picted by the block “LF/AS” in Fig. 2. Accord-
ingly, the model variants are named TNet-LF and
TNet-AS.

Lossless Forwarding. This strategy preserves
context information by directly feeding the fea-
tures before the transformation to the next layer.
Specifically, the input h(l+1)

i of the (l+1)-th CPT
layer is formulated as:

h
(l+1)
i = h

(l)
i + h̃

(l)
i , i ∈ [1, n], l ∈ [0, L], (6)

where h(l)i is the input of the l-th layer and h̃(l)i
is the output of TST in this layer. We unfold the
recursive form of Eq. 6 as follows:

h
(l+1)
i = h

(0)
i +TST(h(0)i )+· · ·+TST(h(l)i ). (7)

Here, we denote h̃(l)i as TST(h
(l)
i ). From Eq. 7,

we can see that the output of each layer will con-
tain the contextualized word representations (i.e.,
h
(0)
i ), thus, the context information is encoded

into the transformed features. We call this strat-
egy “Lossless Forwarding” because the contex-
tualized representations and the transformed rep-
resentations (i.e., TST(h(l)i )) are kept unchanged
during the feature combination.

Adaptive Scaling. Lossless Forwarding intro-
duces the context information by directly adding
back the contextualized features to the trans-
formed features, which raises a question: Can
the weights of the input and the transformed fea-
tures be adjusted dynamically? With this motiva-
tion, we propose another strategy, named “Adap-
tive Scaling”. Similar to the gate mechanism in
RNN variants (Jozefowicz et al., 2015), Adaptive
Scaling introduces a gating function to control the
passed proportions of the transformed features and
the input features. The gate t(l) as follows:

t
(l)
i = σ(Wtransh

(l)
i + btrans), (8)

where t(l)i is the gate for the i-th input of the l-th
CPT layer, and σ is the sigmoid activation func-
tion. Then we perform convex combination of h(l)i
and h̃(l)i based on the gate:

h
(l+1)
i = t

(l)
i � h̃

(l)
i + (1− t(l)i )� h(l)i . (9)

Here, � denotes element-wise multiplication. The
non-recursive form of this equation is as follows
(for clarity, we ignore the subscripts):

h(l+1) = [

l∏

k=0

(1− t(k))]� h(0)

+[t(0)
l∏

k=1

(1− t(k))]� TST(h(0)) + · · ·

+t(l−1)(1− t(l))� TST(h(l−1)) + t(l) � TST(h(l)).

Thus, the context information is integrated in
each upper layer and the proportions of the contex-
tualized representations and the transformed rep-
resentations are controlled by the computed gates
in different transformation layers.

2.3 Convolutional Feature Extractor

Recall that the second issue that blocks CNN to
perform well is that vanilla CNN may associate a
target with unrelated general opinion words which
are frequently used as modifiers for different tar-
gets across domains. For example, “service” in
“Great food but the service is dreadful” may be
associated with both “great” and “dreadful”. To
solve it, we adopt a proximity strategy, which is
observed effective in (Chen et al., 2017; Li and
Lam, 2017). The idea is a closer opinion word is
more likely to be the actual modifier of the target.
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# Positive # Negative # Neutral

LAPTOP
Train 980 858 454
Test 340 128 171

REST
Train 2159 800 632
Test 730 195 196

TWITTER
Train 1567 1563 3127
Test 174 174 346

Table 1: Statistics of datasets.

Specifically, we first calculate the position rel-
evance vi between the i-th word and the target4:

vi =





1− (k+m−i)
C i < k +m

1− i−k
C k +m ≤ i ≤ n

0 i > n

(10)

where k is the index of the first target word, C is a
pre-specified constant, and m is the length of the
target wτ . Then, we use v to help CNN locate the
correct opinion w.r.t. the given target:

ĥ
(l)
i = h

(l)
i ∗ vi, i ∈ [1, n], l ∈ [1, L]. (11)

Based on Eq. 10 and Eq. 11, the words close to
the target will be highlighted and those far away
will be downgraded. v is also applied on the in-
termediate output to introduce the position infor-
mation into each CPT layer. Then we feed the
weighted h(L) to the convolutional layer, i.e., the
top-most layer in Fig. 1, to generate the feature
map c ∈ Rn−s+1 as follows:

ci = ReLU(w>convh
(L)
i:i+s−1 + bconv), (12)

where h(L)
i:i+s−1 ∈ Rs·dimh is the concatenated vec-

tor of ĥ(L)i , · · · , ĥ(L)i+s−1, and s is the kernel size.
wconv ∈ Rs·dimh and bconv ∈ R are learnable
weights of the convolutional kernel. To capture
the most informative features, we apply max pool-
ing (Kim, 2014) and obtain the sentence represen-
tation z ∈ Rnk by employing nk kernels:

z = [max(c1), · · · ,max(cnk
)]>. (13)

Finally, we pass z to a fully connected layer for
sentiment prediction:

p(y|wτ ,w) = Softmax(Wfz + bf ). (14)

where Wf and bf are learnable parameters.
4As we perform sentence padding, it is possible that the

index i is larger than the actual length n of the sentence.

3 Experiments

3.1 Experimental Setup

As shown in Table 1, we evaluate the proposed
TNet on three benchmark datasets: LAPTOP and
REST are from SemEval ABSA challenge (Pon-
tiki et al., 2014), containing user reviews in laptop
domain and restaurant domain respectively. We
also remove a few examples having the “conflict
label” as done in (Chen et al., 2017); TWITTER
is built by Dong et al. (2014), containing twitter
posts. All tokens are lowercased without removal
of stop words, symbols or digits, and sentences are
zero-padded to the length of the longest sentence
in the dataset. Evaluation metrics are Accuracy
and Macro-Averaged F1 where the latter is more
appropriate for datasets with unbalanced classes.
We also conduct pairwise t-test on both Accuracy
and Macro-Averaged F1 to verify if the improve-
ments over the compared models are reliable.

TNet is compared with the following methods.

• SVM (Kiritchenko et al., 2014): It is a tra-
ditional support vector machine based model
with extensive feature engineering;

• AdaRNN (Dong et al., 2014): It learns the
sentence representation toward target for sen-
timent prediction via semantic composition
over dependency tree;

• AE-LSTM, and ATAE-LSTM (Wang et al.,
2016): AE-LSTM is a simple LSTM model
incorporating the target embedding as input,
while ATAE-LSTM extends AE-LSTM with
attention;

• IAN (Ma et al., 2017): IAN employs two
LSTMs to learn the representations of the
context and the target phrase interactively;

• CNN-ASP: It is a CNN-based model imple-
mented by us which directly concatenates tar-
get representation to each word embedding;

• TD-LSTM (Tang et al., 2016a): It employs
two LSTMs to model the left and right con-
texts of the target separately, then performs
predictions based on concatenated context
representations;

• MemNet (Tang et al., 2016b): It applies
attention mechanism over the word embed-
dings multiple times and predicts sentiments
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Hyper-params TNet-LF TNet-AS
LAPTOP REST TWITTER LAPTOP REST TWITTER

dimw 300 300
dimh 50 50
dropout rates (plstm, psent) (0.3, 0.3) (0.3, 0.3)
L 2 2
batch size 64 25 64 64 32 64
s 3 3
nk 50 100
C 40.0 30.0

Table 2: Settings of hyper-parameters.

based on the top-most sentence representa-
tions;

• BILSTM-ATT-G (Liu and Zhang, 2017):
It models left and right contexts using two
attention-based LSTMs and introduces gates
to measure the importance of left context,
right context, and the entire sentence for the
prediction;

• RAM (Chen et al., 2017): RAM is a multi-
layer architecture where each layer consists
of attention-based aggregation of word fea-
tures and a GRU cell to learn the sentence
representation.

We run the released codes of TD-LSTM and
BILSTM-ATT-G to generate results, since their
papers only reported results on TWITTER. We
also rerun MemNet on our datasets and evaluate
it with both accuracy and Macro-Averaged F1.5

We use pre-trained GloVe vectors (Pennington
et al., 2014) to initialize the word embeddings
and the dimension is 300 (i.e., dimw = 300).
For out-of-vocabulary words, we randomly sam-
ple their embeddings from the uniform distribu-
tion U(−0.25, 0.25), as done in (Kim, 2014). We
only use one convolutional kernel size because it
was observed that CNN with single optimal ker-
nel size is comparable with CNN having multiple
kernel sizes on small datasets (Zhang and Wallace,
2017). To alleviate overfitting, we apply dropout
on the input word embeddings of the LSTM and
the ultimate sentence representation z. All weight
matrices are initialized with the uniform distribu-
tion U(−0.01, 0.01) and the biases are initialized

5The codes of TD-LSTM/MemNet and BILSTM-ATT-
G are available at: http://ir.hit.edu.cn/˜dytang
and http://leoncrashcode.github.io. Note that
MemNet was only evaluated with accuracy.

as zeros. The training objective is cross-entropy,
and Adam (Kingma and Ba, 2015) is adopted as
the optimizer by following the learning rate and
the decay rates in the original paper.

The hyper-parameters of TNet-LF and TNet-
AS are listed in Table 2. Specifically, all hyper-
parameters are tuned on 20% randomly held-out
training data and the hyper-parameter collection
producing the highest accuracy score is used for
testing. Our model has comparable number of
parameters compared to traditional LSTM-based
models as we reuse parameters in the transforma-
tion layers and BiLSTM.6

3.2 Main Results

As shown in Table 3, both TNet-LF and TNet-AS
consistently achieve the best performance on all
datasets, which verifies the efficacy of our whole
TNet model. Moreover, TNet can perform well for
different kinds of user generated content, such as
product reviews with relatively formal sentences
in LAPTOP and REST, and tweets with more un-
grammatical sentences in TWITTER. The reason
is the CNN-based feature extractor arms TNet
with more power to extract accurate features from
ungrammatical sentences. Indeed, we can also ob-
serve that another CNN-based baseline, i.e., CNN-
ASP implemented by us, also obtains good results
on TWITTER.

On the other hand, the performance of those
comparison methods is mostly unstable. For the
tweet in TWITTER, the competitive BILSTM-
ATT-G and RAM cannot perform as effective as
they do for the reviews in LAPTOP and REST, due
to the fact that they are heavily rooted in LSTMs
and the ungrammatical sentences hinder their ca-

6All experiments are conducted on a single NVIDIA GTX
1080. The prediction cost of a sentence is about 2 ms.
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Models LAPTOP REST TWITTER
ACC Macro-F1 ACC Macro-F1 ACC Macro-F1

Baselines

SVM 70.49\ - 80.16\ - 63.40∗ 63.30∗

AdaRNN - - - - 66.30\ 65.90\

AE-LSTM 68.90\ - 76.60\ - - -
ATAE-LSTM 68.70\ - 77.20\ - - -
IAN 72.10\ - 78.60\ - - -
CNN-ASP 72.46 65.31 77.82 65.11 73.27 71.77
TD-LSTM 71.83 68.43 78.00 66.73 66.62 64.01
MemNet 70.33 64.09 78.16 65.83 68.50 66.91
BILSTM-ATT-G 74.37 69.90 80.38 70.78 72.70 70.84
RAM 75.01 70.51 79.79 68.86 71.88 70.33

CPT Alternatives
LSTM-ATT-CNN 73.37 68.03 78.95 68.71 70.09 67.68
LSTM-FC-CNN-LF 75.59 70.60 80.41 70.23 73.70 72.82
LSTM-FC-CNN-AS 75.78 70.72 80.23 70.06 74.28 72.60

Ablated TNet

TNet w/o transformation 73.30 68.25 78.90 65.86 72.10 70.57
TNet w/o context 73.91 68.87 80.07 69.01 74.51 73.05
TNet-LF w/o position 75.13 70.63 79.86 69.69 73.83 72.49
TNet-AS w/o position 75.27 70.03 79.79 69.78 73.84 72.47

TNet variants TNet-LF 76.01†,‡ 71.47†,‡ 80.79†,‡ 70.84‡ 74.68†,‡ 73.36†,‡

TNet-AS 76.54†,‡ 71.75†,‡ 80.69†,‡ 71.27†,‡ 74.97†,‡ 73.60†,‡

Table 3: Experimental results (%). The results with symbol“\” are retrieved from the original papers, and
those starred (∗) one are from Dong et al. (2014). The marker † refers to p-value < 0.01 when comparing
with BILSTM-ATT-G, while the marker ‡ refers to p-value < 0.01 when comparing with RAM.

pability in capturing the context features. Another
difficulty caused by the ungrammatical sentences
is that the dependency parsing might be error-
prone, which will affect those methods such as
AdaRNN using dependency information.

From the above observations and analysis, some
takeaway message for the task of target sentiment
classification could be:

• LSTM-based models relying on sequential
information can perform well for formal sen-
tences by capturing more useful context fea-
tures;

• For ungrammatical text, CNN-based mod-
els may have some advantages because CNN
aims to extract the most informative n-gram
features and is thus less sensitive to informal
texts without strong sequential patterns.

3.3 Performance of Ablated TNet
To investigate the impact of each component such
as deep transformation, context-preserving mech-
anism, and positional relevance, we perform com-
parison between the full TNet models and its abla-
tions (the third group in Table 3). After removing
the deep transformation (i.e., the techniques intro-
duced in Section 2.2), both TNet-LF and TNet-
AS are reduced to TNet w/o transformation (where

position relevance is kept), and their results in both
accuracy and F1 measure are incomparable with
those of TNet. It shows that the integration of tar-
get information into the word-level representations
is crucial for good performance.

Comparing the results of TNet and TNet w/o
context (where TST and position relevance are
kept), we observe that the performance of TNet
w/o context drops significantly on LAPTOP and
REST7, while on TWITTER, TNet w/o context
performs very competitive (p-values with TNet-
LF and TNet-AS are 0.066 and 0.053 respec-
tively for Accuracy). Again, we could attribute
this phenomenon to the ungrammatical user gen-
erated content of twitter, because the context-
preserving component becomes less important for
such data. TNet w/o context performs consistently
better than TNet w/o transformation, which veri-
fies the efficacy of the target specific transforma-
tion (TST), before applying context-preserving.

As for the position information, we conduct
statistical t-test between TNet-LF/AS and TNet-
LF/AS w/o position together with performance
comparison. All of the produced p-values are
less than 0.05, suggesting that the improvements
brought in by position information are significant.

7Without specification, the significance level is set to 0.05.
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3.4 CPT versus Alternatives

The next interesting question is what if we replace
the transformation module (i.e., the CPT layers in
Fig.1) of TNet with other commonly-used compo-
nents? We investigate two alternatives: attention
mechanism and fully-connected (FC) layer, result-
ing in three pipelines as shown in the second group
of Table 3 (position relevance is kept for them).

LSTM-ATT-CNN applies attention as the al-
ternative8, and it does not need the context-
preserving mechanism. It performs unexception-
ally worse than the TNet variants. We are sur-
prised that LSTM-ATT-CNN is even worse than
TNet w/o transformation (a pipeline simply re-
moving the transformation module) on TWITTER.
More concretely, applying attention results in neg-
ative effect on TWITTER, which is consistent
with the observation that all those attention-based
state-of-the-art methods (i.e., TD-LSTM, Mem-
Net, BILSTM-ATT-G, and RAM) cannot perform
well on TWITTER.

LSTM-FC-CNN-LF and LSTM-FC-CNN-AS
are built by applying FC layer to replace TST
and keeping the context-preserving mechanism
(i.e., LF and AS). Specifically, the concatena-
tion of word representation and the averaged tar-
get vector is fed to the FC layer to obtain target-
specific features. Note that LSTM-FC-CNN-
LF/AS are equivalent to TNet-LF/AS when pro-
cessing single-word targets (see Eq. 3). They ob-
tain competitive results on all datasets: compara-
ble with or better than the state-of-the-art methods.
The TNet variants can still outperform LSTM-
FC-CNN-LF/AS with significant gaps, e.g., on
LAPTOP and REST, the accuracy gaps between
TNet-LF and LSTM-FC-CNN-LF are 0.42% (p <
0.03) and 0.38% (p < 0.04) respectively.

3.5 Impact of CPT Layer Number

As our TNet involves multiple CPT layers, we in-
vestigate the effect of the layer number L. Specif-
ically, we conduct experiments on the held-out
training data of LAPTOP and vary L from 2 to
10, increased by 2. The cases L=1 and L=15 are
also included. The results are illustrated in Fig-
ure 3. We can see that both TNet-LF and TNet-
AS achieve the best results when L=2. While in-
creasing L, the performance is basically becoming
worse. For large L, the performance of TNet-AS

8We tried different attention mechanisms and report the
best one here, namely, dot attention (Luong et al., 2015).
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Figure 3: Effect of L.

generally becomes more sensitive, it is probably
because AS involves extra parameters (see Eq 9)
that increase the training difficulty.

3.6 Case Study
Table 4 shows some sample cases. The input tar-
gets are wrapped in the brackets with true labels
given as subscripts. The notations P, N and O
in the table represent positive, negative and neu-
tral respectively. For each sentence, we under-
line the target with a particular color, and the
text of its corresponding most informative n-gram
feature9 captured by TNet-AS (TNet-LF captures
very similar features) is in the same color (so color
printing is preferred). For example, for the target
“resolution” in the first sentence, the captured fea-
ture is “Air has higher”. Note that as discussed
above, the CNN layer of TNet captures such fea-
tures with the size-three kernels, so that the fea-
tures are trigrams. Each of the last features of the
second and seventh sentences contains a padding
token, which is not shown.

Our TNet variants can predict target sentiment
more accurately than RAM and BILSTM-ATT-G
in the transitional sentences such as the first sen-
tence by capturing correct trigram features. For
the third sentence, its second and third most infor-
mative trigrams are “100% . PAD” and “’ s not”,
being used together with “features make up”, our
models can make correct predictions. Moreover,
TNet can still make correct prediction when the
explicit opinion is target-specific. For example,

9For each convolutional filter, only one n-gram feature in
the feature map will be kept after the max pooling. Among
those from different filters, the n-gram with the highest fre-
quency will be regarded as the most informative n-gram w.r.t.
the given target.
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Sentence BILSTM-ATT-G RAM TNet-LF TNet-AS
1. Air has higher [resolution]P but the [fonts]N are small . (N7, N) (N7, N) (P, N) (P, N)
2. Great [food]P but the [service]N is dreadful . (P, N) (P, N) (P, N) (P, N)
3. Sure it ’ s not light and slim but the [features]P make up
for it 100% .

N7 N7 P P

4. Not only did they have amazing , [sandwiches]P , [soup]P
, [pizza]P etc , but their [homemade sorbets]P are out of this
world !

(P, O7, O7, P) (P, P, O7, P) (P, P, P, P) (P, P, P, P)

5. [startup times]N are incredibly long : over two minutes . P7 P7 N N
6. I am pleased with the fast [log on]P , speedy [wifi
connection]P and the long [battery life]P ( > 6 hrs ) .

(P, P, P) (P, P, P) (P, P, P) (P, P, P)

7. The [staff]N should be a bit more friendly . P7 P7 P7 P7

Table 4: Example predictions, color printing is preferred. The input targets are wrapped in brackets with
the true labels given as subscripts. 7 indicates incorrect prediction.

“long” in the fifth sentence is negative for “startup
time”, while it could be positive for other targets
such as “battery life” in the sixth sentence. The
sentiment of target-specific opinion word is con-
ditioned on the given target. Our TNet variants,
armed with the word-level feature transformation
w.r.t. the target, is capable of handling such case.

We also find that all these models cannot give
correct prediction for the last sentence, a com-
monly used subjunctive style. In this case, the dif-
ficulty of prediction does not come from the de-
tection of explicit opinion words but the inference
based on implicit semantics, which is still quite
challenging for neural network models.

4 Related Work

Apart from sentence level sentiment classifica-
tion (Kim, 2014; Shi et al., 2018), aspect/target
level sentiment classification is also an impor-
tant research topic in the field of sentiment analy-
sis. The early methods mostly adopted supervised
learning approach with extensive hand-coded fea-
tures (Blair-Goldensohn et al., 2008; Titov and
McDonald, 2008; Yu et al., 2011; Jiang et al.,
2011; Kiritchenko et al., 2014; Wagner et al.,
2014; Vo and Zhang, 2015), and they fail to model
the semantic relatedness between a target and its
context which is critical for target sentiment anal-
ysis. Dong et al. (2014) incorporate the target in-
formation into the feature learning using depen-
dency trees. As observed in previous works, the
performance heavily relies on the quality of de-
pendency parsing. Tang et al. (2016a) propose to
split the context into two parts and associate tar-
get with contextual features separately. Similar to
(Tang et al., 2016a), Zhang et al. (2016) develop a
three-way gated neural network to model the in-

teraction between the target and its surrounding
contexts. Despite the advantages of jointly mod-
eling target and context, they are not capable of
capturing long-range information when some crit-
ical context information is far from the target. To
overcome this limitation, researchers bring in the
attention mechanism to model target-context as-
sociation (Tang et al., 2016a,b; Wang et al., 2016;
Yang et al., 2017; Liu and Zhang, 2017; Ma et al.,
2017; Chen et al., 2017; Zhang et al., 2017; Tay
et al., 2017). Compared with these methods, our
TNet avoids using attention for feature extraction
so as to alleviate the attended noise.

5 Conclusions

We re-examine the drawbacks of attention mecha-
nism for target sentiment classification, and also
investigate the obstacles that hinder CNN-based
models to perform well for this task. Our TNet
model is carefully designed to solve these issues.
Specifically, we propose target specific transfor-
mation component to better integrate target infor-
mation into the word representation. Moreover,
we employ CNN as the feature extractor for this
classification problem, and rely on the context-
preserving and position relevance mechanisms to
maintain the advantages of previous LSTM-based
models. The performance of TNet consistently
dominates previous state-of-the-art methods on
different types of data. The ablation studies show
the efficacy of its different modules, and thus ver-
ify the rationality of TNet’s architecture.
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Abstract

Aspect sentiment classification (ASC) is
a fundamental task in sentiment analy-
sis. Given an aspect/target and a sentence,
the task classifies the sentiment polarity
expressed on the target in the sentence.
Memory networks (MNs) have been used
for this task recently and have achieved
state-of-the-art results. In MNs, attention
mechanism plays a crucial role in detect-
ing the sentiment context for the given
target. However, we found an important
problem with the current MNs in perform-
ing the ASC task. Simply improving the
attention mechanism will not solve it. The
problem is referred to as target-sensitive
sentiment, which means that the sentiment
polarity of the (detected) context is de-
pendent on the given target and it cannot
be inferred from the context alone. To
tackle this problem, we propose the target-
sensitive memory networks (TMNs). Sev-
eral alternative techniques are designed for
the implementation of TMNs and their ef-
fectiveness is experimentally evaluated.

1 Introduction

Aspect sentiment classification (ASC) is a core
problem of sentiment analysis (Liu, 2012). Given
an aspect and a sentence containing the aspect,
ASC classifies the sentiment polarity expressed in
the sentence about the aspect, namely, positive,
neutral, or negative. Aspects are also called opin-
ion targets (or simply targets), which are usually
product/service features in customer reviews. In
this paper, we use aspect and target interchange-
ably. In practice, aspects can be specified by the
user or extracted automatically using an aspect ex-
traction technique (Liu, 2012). In this work, we
assume the aspect terms are given and only focus
on the classification task.

Due to their impressive results in many NLP
tasks (Deng et al., 2014), neural networks have
been applied to ASC (see the survey (Zhang et al.,
2018)). Memory networks (MNs), a type of neu-
ral networks which were first proposed for ques-
tion answering (Weston et al., 2015; Sukhbaatar
et al., 2015), have achieved the state-of-the-art re-
sults in ASC (Tang et al., 2016). A key factor for
their success is the attention mechanism. How-
ever, we found that using existing MNs to deal
with ASC has an important problem and simply
relying on attention modeling cannot solve it. That
is, their performance degrades when the sentiment
of a context word is sensitive to the given target.

Let us consider the following sentences:

(1) The screen resolution is excellent but
the price is ridiculous.
(2) The screen resolution is excellent but
the price is high.
(3) The price is high.
(4) The screen resolution is high.

In sentence (1), the sentiment expressed on as-
pect screen resolution (or resolution for short) is
positive, whereas the sentiment on aspect price is
negative. For the sake of predicting correct senti-
ment, a crucial step is to first detect the sentiment
context about the given aspect/target. We call this
step targeted-context detection. Memory networks
(MNs) can deal with this step quite well because
the sentiment context of a given aspect can be
captured by the internal attention mechanism in
MNs. Concretely, in sentence (1) the word “ex-
cellent” can be identified as the sentiment context
when resolution is specified. Likewise, the con-
text word “ridiculous” will be placed with a high
attention when price is the target. With the correct
targeted-context detected, a trained MN, which
recognizes “excellent” as positive sentiment and
“ridiculous” as negative sentiment, will infer cor-
rect sentiment polarity for the given target. This
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is relatively easy as “excellent” and “ridiculous”
are both target-independent sentiment words, i.e.,
the words themselves already indicate clear senti-
ments.

As illustrated above, the attention mechanism
addressing the targeted-context detection problem
is very useful for ASC, and it helps classify many
sentences like sentence (1) accurately. This also
led to existing and potential research in improving
attention modeling (discussed in Section 5). How-
ever, we observed that simply focusing on tackling
the target-context detection problem and learning
better attention are not sufficient to solve the prob-
lem found in sentences (2), (3) and (4).

Sentence (2) is similar to sentence (1) ex-
cept that the (sentiment) context modifying as-
pect/target price is “high”. In this case, when
“high” is assigned the correct attention for the as-
pect price, the model also needs to capture the sen-
timent interaction between “high” and price in or-
der to identify the correct sentiment polarity. This
is not as easy as sentence (1) because “high” itself
indicates no clear sentiment. Instead, its sentiment
polarity is dependent on the given target.

Looking at sentences (3) and (4), we further
see the importance of this problem and also why
relying on attention mechanism alone is insuffi-
cient. In these two sentences, sentiment contexts
are both “high” (i.e., same attention), but sentence
(3) is negative and sentence (4) is positive simply
because their target aspects are different. There-
fore, focusing on improving attention will not help
in these cases. We will give a theoretical insight
about this problem with MNs in Section 3.

In this work, we aim to solve this problem. To
distinguish it from the aforementioned targeted-
context detection problem as shown by sentence
(1), we refer to the problem in (2), (3) and (4) as
the target-sensitive sentiment (or target-dependent
sentiment) problem, which means that the senti-
ment polarity of a detected/attended context word
is conditioned on the target and cannot be directly
inferred from the context word alone, unlike “ex-
cellent” and “ridiculous”. To address this prob-
lem, we propose target-sensitive memory networks
(TMNs), which can capture the sentiment interac-
tion between targets and contexts. We present sev-
eral approaches to implementing TMNs and ex-
perimentally evaluate their effectiveness.

2 Memory Network for ASC

This section describes our basic memory network
for ASC, also as a background knowledge. It
does not include the proposed target-sensitive sen-
timent solutions, which are introduced in Sec-
tion 4. The model design follows previous stud-
ies (Sukhbaatar et al., 2015; Tang et al., 2016) ex-
cept that a different attention alignment function is
used (shown in Eq. 1). Their original models will
be compared in our experiments as well. The def-
initions of related notations are given in Table 1.

t a target word, t ∈ RV×1

vt target embedding of t, vt ∈ Rd×1

xi a context word in a sentence, xi ∈ RV×1

mi, ci input, output context embedding
of word xi, and mi, ci ∈ Rd×1

V number of words in vocabulary
d vector/embedding dimension
A input embedding matrix A ∈ Rd×V

C output embedding matrix C ∈ Rd×V

α attention distribution in a sentence
αi attention of context word i, αi ∈ (0, 1)
o output representation, o ∈ Rd×1

K number of sentiment classes
s sentiment score, s ∈ RK×1

y sentiment probability

Table 1: Definition of Notations

Input Representation: Given a target aspect t,
an embedding matrix A is used to convert t into
a vector representation, vt (vt = At). Similarly,
each context word (non-aspect word in a sentence)
xi ∈ {x1, x2, ...xn} is also projected to the con-
tinuous space stored in memory, denoted by mi

(mi = Axi) ∈ {m1,m2, ...mn}. Here n is the
number of words in a sentence and i is the word
position/index. Both t and xi are one-hot vectors.
For an aspect expression with multiple words, its
aspect representation vt is the averaged vector of
those words (Tang et al., 2016).

Attention: Attention can be obtained based on
the above input representation. Specifically, an at-
tention weight αi for the context word xi is com-
puted based on the alignment function:

αi = softmax(vTt Mmi) (1)

where M ∈ Rd×d is the general learning ma-
trix suggested by Luong et al. (2015). In this
manner, attention α = {α1, α2, ..αn} is rep-
resented as a vector of probabilities, indicating
the weight/importance of context words towards a
given target. Note that αi ∈ (0, 1) and

∑
i
αi = 1.
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Output Representation: Another embedding
matrixC is used for generating the individual (out-
put) continuous vector ci (ci = Cxi) for each con-
text word xi. A final response/output vector o is
produced by summing over these vectors weighted
with the attention α, i.e., o =

∑
i
αici.

Sentiment Score (or Logit): The aspect sen-
timent scores (also called logits) for positive,
neutral, and negative classes are then calculated,
where a sentiment-specific weight matrix W ∈
RK×d is used. The sentiment scores are repre-
sented in a vector s ∈ RK×1, whereK is the num-
ber of (sentiment) classes, which is 3 in ASC.

s =W (o+ vt) (2)

The final sentiment probability y is produced with
a softmax operation, i.e., y = softmax(s).

3 Problem of the above Model for
Target-Sensitive Sentiment

This section analyzes the problem of target-
sensitive sentiment in the above model. The anal-
ysis can be generalized to many existing MNs as
long as their improvements are on attention α only.
We first expand the sentiment score calculation
from Eq. 2 to its individual terms:

s =W (o+ vt) =W (
∑

i

αici + vt)

= α1Wc1 + α2Wc2 + ...αnWcn +Wvt

(3)

where “+” denotes element-wise summation. In
Eq. 3, αiWci can be viewed as the individual sen-
timent logit for a context word and Wvt is the
sentiment logit of an aspect. They are linearly
combined to determine the final sentiment score s.
This can be problematic in ASC. First, an aspect
word often expresses no sentiment, for example,
“screen”. However, if the aspect term vt is sim-
ply removed from Eq. 3, it also causes the prob-
lem that the model cannot handle target-dependent
sentiment. For instance, the sentences (3) and (4)
in Section 1 will then be treated as identical if
their aspect words are not considered. Second, if
an aspect word is considered and it directly bears
some positive or negative sentiment, then when an
aspect word occurs with different context words
for expressing opposite sentiments, a contradic-
tion can be resulted from them, especially in the
case that the context word is a target-sensitive sen-
timent word. We explain it as follows.

Let us say we have two target words price and
resolution (denoted as p and r). We also have
two possible context words “high” and “low” (de-
noted as h and l). As these two sentiment words
can modify both aspects, we can construct four
snippets “high price”, “low price”, “high resolu-
tion” and “low resolution”. Their sentiments are
negative, positive, positive, and negative respec-
tively. Let us set W to R1×d so that s becomes a
1-dimensional sentiment score indicator. s > 0
indicates a positive sentiment and s < 0 indi-
cates a negative sentiment. Based on the above
example snippets or phrases we have four corre-
sponding inequalities: (a) W (αhch + vp) < 0, (b)
W (αlcl+ vp) > 0, (c) W (αhch+ vr) > 0 and (d)
W (αlcl + vr) < 0. We can drop all α terms here
as they all equal to 1, i.e., they are the only context
word in the snippets to attend to (the target words
are not contexts). From (a) and (b) we can infer
(e) Wch < −Wvp < Wcl. From (c) and (d) we
can infer (f) Wcl < −Wvr < Wch. From (e) and
(f) we have (g) Wch < Wcl < Wch, which is a
contradiction.

This contradiction means that MNs cannot learn
a set of parameters W and C to correctly clas-
sify the above four snippets/sentences at the same
time. This contradiction also generalizes to real-
world sentences. That is, although real-world
review sentences are usually longer and contain
more words, since the attention mechanism makes
MNs focus on the most important sentiment con-
text (the context with high αi scores), the problem
is essentially the same. For example, in sentences
(2) and (3) in Section 1, when price is targeted,
the main attention will be placed on “high”. For
MNs, these situations are nearly the same as that
for classifying the snippet “high price”. We will
also show real examples in the experiment section.

One may then ask whether improving attention
can help address the problem, as αi can affect the
final results by adjusting the sentiment effect of the
context word via αiWci. This is unlikely, if not
impossible. First, notice that αi is a scalar ranging
in (0,1), which means it essentially assigns higher
or lower weight to increase or decrease the senti-
ment effect of a context word. It cannot change the
intrinsic sentiment orientation/polarity of the con-
text, which is determined by Wci. For example,
if Wci assigns the context word “high” a positive
sentiment (Wci > 0), αi will not make it negative
(i.e., αiWci < 0 cannot be achieved by chang-
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ing αi). Second, other irrelevant/unimportant con-
text words often carry no or little sentiment infor-
mation, so increasing or decreasing their weights
does not help. For example, in the sentence “the
price is high”, adjusting the weights of context
words “the” and “is” will neither help solve the
problem nor be intuitive to do so.

4 The Proposed Approaches

This section introduces six (6) alternative target-
sensitive memory networks (TMNs), which all can
deal with the target-sensitive sentiment problem.
Each of them has its characteristics.

Non-linear Projection (NP): This is the first
approach that utilizes a non-linear projection to
capture the interplay between an aspect and its
context. Instead of directly following the common
linear combination as shown in Eq. 3, we use a
non-linear projection (tanh) as the replacement to
calculate the aspect-specific sentiment score.

s =W · tanh(
∑

i

αici + vt) (4)

As shown in Eq. 4, by applying a non-linear pro-
jection over attention-weighted ci and vt, the con-
text and aspect information are coupled in a way
that the final sentiment score cannot be obtained
by simply summing their individual contributions
(compared with Eq. 3). This technique is also in-
tuitive in neural networks. However, notice that
by using the non-linear projection (or adding more
sophisticated hidden layers) over them in this way,
we sacrifice some interpretability. For example,
we may have difficulty in tracking how each indi-
vidual context word (ci) affects the final sentiment
score s, as all context and target representations
are coupled. To avoid this, we can use the follow-
ing five alternative techniques.

Contextual Non-linear Projection (CNP):
Despite the fact that it also uses the non-linear pro-
jection, this approach incorporates the interplay
between a context word and the given target into
its (output) context representation. We thus name
it Contextual Non-linear Projection (CNP).

s =W
∑

i

αi · tanh(ci + vt) (5)

From Eq. 5, we can see that this approach can keep
the linearity of attention-weighted context aggre-
gation while taking into account the aspect infor-
mation with non-linear projection, which works

in a different way compared to NP. If we define
c̃i = tanh(ci + vt), c̃i can be viewed as the
target-aware context representation of context xi
and the final sentiment score is calculated based
on the aggregation of such c̃i. This could be a
more reasonable way to carry the aspect informa-
tion rather than simply summing the aspect repre-
sentation (Eq. 3).

However, one potential disadvantage is that this
setting uses the same set of vector representa-
tions (learned by embeddings C) for multiple pur-
poses, i.e., to learn output (context) representa-
tions and to capture the interplay between contexts
and aspects. This may degenerate its model per-
formance when the computational layers in mem-
ory networks (called “hops”) are deep, because
too much information is required to be encoded
in such cases and a sole set of vectors may fail to
capture all of it.

To overcome this, we suggest the involvement
of an additional new set of embeddings/vectors,
which is exclusively designed for modeling the
sentiment interaction between an aspect and its
context. The key idea is to decouple different
functioning components with different representa-
tions, but still make them work jointly. The fol-
lowing four techniques are based on this idea.

Interaction Term (IT): The third approach is to
formulate explicit target-context sentiment inter-
action terms. Different from the targeted-context
detection problem which is captured by atten-
tion (discussed in Section 1), here the target-
context sentiment (TCS) interaction measures the
sentiment-oriented interaction effect between tar-
gets and contexts, which we refer to as TCS inter-
action (or sentiment interaction) for short in the
rest of this paper. Such sentiment interaction is
captured by a new set of vectors, and we thus also
call such vectors TCS vectors.

s =
∑

i

αi(Wsci + wI〈di, dt〉) (6)

In Eq. 6, Ws ∈ RK×d and wI ∈ RK×1 are used
instead of W in Eq. 3. Ws models the direct sen-
timent effect from ci while wI works with di and
dt together for learning the TCS interaction. di
and dt are TCS vector representations of context
xi and aspect t, produced from a new embedding
matrix D, i.e., di = Dxi, dt = Dt (D ∈ Rd×V
and di, dt ∈ Rd×1).

Unlike input and output embeddings A and C,
D is designed to capture the sentiment interac-
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tion. The vectors fromD affect the final sentiment
score through wI〈di, dt〉, where wI is a sentiment-
specific vector and 〈di, dt〉 ∈ R denotes the dot
product of the two TCS vectors di and dt. Com-
pared to the basic MNs, this model can better cap-
ture target-sensitive sentiment because the inter-
actions between a context word h and different
aspect words (say, p and r) can be different, i.e.,
〈dh, dp〉 6= 〈dh, dr〉.

The key advantage is that now the sentiment ef-
fect is explicitly dependent on its target and con-
text. For example, 〈dh, dp〉 can help shift the final
sentiment to negative and 〈dh, dr〉 can help shift
it to positive. Note that α is still needed to con-
trol the importance of different contexts. In this
manner, targeted-context detection (attention) and
TCS interaction are jointly modeled and work to-
gether for sentiment inference. The proposed tech-
niques introduced below also follow this core idea
but with different implementations or properties.
We thus will not repeat similar discussions.

Coupled Interaction (CI): This proposed tech-
nique associates the TCS interaction with an ad-
ditional set of context representation. This rep-
resentation is for capturing the global correlation
between context and different sentiment classes.

s =
∑

i

αi(Wsci +WI〈di, dt〉ei) (7)

Specifically, ei is another output representation for
xi, which is coupled with the sentiment interaction
factor 〈di, dt〉. For each context word xi, ei is gen-
erated as ei = Exi whereE ∈ Rd×V is an embed-
ding matrix. 〈di, dt〉 and ei function together as a
target-sensitive context vector and are used to pro-
duce sentiment scores with WI (WI ∈ RK×d).

Joint Coupled Interaction (JCI): A natural
variant of the above model is to replace ei with
ci, which means to learn a joint output representa-
tion. This can also reduce the number of learning
parameters and simplify the CI model.

s =
∑

i

αi(Wsci +WI〈di, dt〉ci) (8)

Joint Projected Interaction (JPI): This model
also employs a unified output representation like
JCI, but a context output vector ci will be projected
to two different continuous spaces before senti-
ment score calculation. To achieve the goal, two
projection matrices W1, W2 and the non-linear
projection function tanh are used. The intuition is

that, when we want to reduce the (embedding) pa-
rameters and still learn a joint representation, two
different sentiment effects need to be separated in
different vector spaces. The two sentiment effects
are modeled as two terms:

s =
∑

i

αiWJ tanh(W1ci)

+
∑

i

αiWJ〈di, dt〉 tanh(W2ci)
(9)

where the first term can be viewed as learn-
ing target-independent sentiment effect while the
second term captures the TCS interaction. A
joint sentiment-specific weight matrix WJ(WJ ∈
RK×d) is used to control/balance the interplay be-
tween these two effects.

Discussions: (a) In IT, CI, JCI, and JPI, their
first-order terms are still needed, because not in
all cases sentiment inference needs TCS interac-
tion. For some simple examples like “the battery is
good”, the context word “good” simply indicates
clear sentiment, which can be captured by their
first-order term. However, notice that the mod-
eling of second-order terms offers additional help
in both general and target-sensitive scenarios. (b)
TCS interaction can be calculated by other model-
ing functions. We have tried several methods and
found that using the dot product 〈di, dt〉 or dTi Wdt
(with a projection matrix W ) generally produces
good results. (c) One may ask whether we can use
fewer embeddings or just use one universal em-
bedding to replace A, C and D (the definition of
D can be found in the introduction of IT). We have
investigated them as well. We found that merging
A and C is basically workable. But merging D
and A/C produces poor results because they es-
sentially function with different purposes. While
A and C handle targeted-context detection (atten-
tion), D captures the TCS interaction. (d) Except
NP, we do not apply non-linear projection to the
sentiment score layer. Although adding non-linear
transformation to it may further improve model
performance, the individual sentiment effect from
each context will become untraceable, i.e., losing
some interpretability. In order to show the effec-
tiveness of learning TCS interaction and for anal-
ysis purpose, we do not use it in this work. But
it can be flexibly added for specific tasks/analyses
that do not require strong interpretability.

Loss function: The proposed models are all
trained in an end-to-end manner by minimizing the
cross entropy loss. Let us denote a sentence and a
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target aspect as x and t respectively. They appear
together in a pair format (x, t) as input and all such
pairs construct the dataset H . g(x,t) is a one-hot
vector and gk(x,t) ∈ {0, 1} denotes a gold senti-
ment label, i.e., whether (x, t) shows sentiment k.
yx,t is the model-predicted sentiment distribution
for (x, t). ykx,t denotes its probability in class k.
Based on them, the training loss is constructed as:

loss = −
∑

(x,t)∈H

∑

k∈K
gk(x,t) log y

k
(x,t) (10)

5 Related Work

Aspect sentiment classification (ASC) (Hu and
Liu, 2004), which is different from document or
sentence level sentiment classification (Pang et al.,
2002; Kim, 2014; Yang et al., 2016), has recently
been tackled by neural networks with promising
results (Dong et al., 2014; Nguyen and Shirai,
2015) (also see the survey (Zhang et al., 2018)).
Later on, the seminal work of using attention
mechanism for neural machine translation (Bah-
danau et al., 2015) popularized the application of
the attention mechanism in many NLP tasks (Her-
mann et al., 2015; Cho et al., 2015; Luong et al.,
2015), including ASC.

Memory networks (MNs) (Weston et al., 2015;
Sukhbaatar et al., 2015) are a type of neural mod-
els that involve such attention mechanisms (Bah-
danau et al., 2015), and they can be applied to
ASC. Tang et al. (2016) proposed an MN vari-
ant to ASC and achieved the state-of-the-art per-
formance. Another common neural model using
attention mechanism is the RNN/LSTM (Wang
et al., 2016).

As discussed in Section 1, the attention mech-
anism is suitable for ASC because it effectively
addresses the targeted-context detection problem.
Along this direction, researchers have studied
more sophisticated attentions to further help the
ASC task (Chen et al., 2017; Ma et al., 2017; Liu
and Zhang, 2017). Chen et al. (2017) proposed to
use a recurrent attention mechanism. Ma et al.
(2017) used multiple sets of attentions, one for
modeling the attention of aspect words and one
for modeling the attention of context words. Liu
and Zhang (2017) also used multiple sets of at-
tentions, one obtained from the left context and
one obtained from the right context of a given tar-
get. Notice that our work does not lie in this direc-
tion. Our goal is to solve the target-sensitive sen-

timent and to capture the TCS interaction, which
is a different problem. This direction is also finer-
grained, and none of the above works addresses
this problem. Certainly, both directions can im-
prove the ASC task. We will also show in our ex-
periments that our work can be integrated with an
improved attention mechanism.

To the best of our knowledge, none of the ex-
isting studies addresses the target-sensitive senti-
ment problem in ASC under the purely data-driven
and supervised learning setting. Other concepts
like sentiment shifter (Polanyi and Zaenen, 2006)
and sentiment composition (Moilanen and Pul-
man, 2007; Choi and Cardie, 2008; Socher et al.,
2013) are also related, but they are not learned
automatically and require rule/patterns or external
resources (Liu, 2012). Note that our approaches
do not rely on handcrafted patterns (Ding et al.,
2008; Wu and Wen, 2010), manually compiled
sentiment constraints and review ratings (Lu et al.,
2011), or parse trees (Socher et al., 2013).

6 Experiments

We perform experiments on the datasets of Se-
mEval Task 2014 (Pontiki et al., 2014), which
contain online reviews from domain Laptop and
Restaurant. In these datasets, aspect sentiment
polarities are labeled. The training and test sets
have also been provided. Full statistics of the
datasets are given in Table 2.

Dataset Positive Neutral Negative
Train Test Train Test Train Test

Restaurant 2164 728 637 196 807 196
Laptop 994 341 464 169 870 128

Table 2: Statistics of Datasets

6.1 Candidate Models for Comparison
MN: The classic end-to-end memory net-
work (Sukhbaatar et al., 2015).
AMN: A state-of-the-art memory network used
for ASC (Tang et al., 2016). The main difference
from MN is in its attention alignment function,
which concatenates the distributed representations
of the context and aspect, and uses an additional
weight matrix for attention calculation, following
the method introduced in (Bahdanau et al., 2015).
BL-MN: Our basic memory network presented in
Section 2, which does not use the proposed tech-
niques for capturing target-sensitive sentiments.
AE-LSTM: RNN/LSTM is another popular
attention based neural model. Here we compare
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with a state-of-the-art attention-based LSTM for
ASC, AE-LSTM (Wang et al., 2016).
ATAE-LSTM: Another attention-based LSTM
for ASC reported in (Wang et al., 2016).
Target-sensitive Memory Networks (TMNs):
The six proposed techniques, NP, CNP, IT, CI,
JCI, and JPI give six target-sensitive memory
networks.

Note that other non-neural network based mod-
els like SVM and neural models without atten-
tion mechanism like traditional LSTMs have been
compared and reported with inferior performance
in the ASC task (Dong et al., 2014; Tang et al.,
2016; Wang et al., 2016), so they are excluded
from comparisons here. Also, note that non-neural
models like SVMs require feature engineering to
manually encode aspect information, while this
work aims to improve the aspect representation
learning based approaches.

6.2 Evaluation Measure
Since we have a three-class classification task
(positive, negative and neutral) and the classes are
imbalanced as shown in Table 2, we use F1-score
as our evaluation measure. We report both F1-
Macro over all classes and all individual class-
based F1 scores. As our problem requires fine-
grained sentiment interaction, the class-based F1
provides more indicative information. In addition,
we report the accuracy (same as F1-Micro), as it is
used in previous studies. However, we suggest us-
ing F1-score because accuracy biases towards the
majority class.

6.3 Training Details
We use the open-domain word embeddings1 for
the initialization of word vectors. We initialize
other model parameters from a uniform distribu-
tion U (-0.05, 0.05). The dimension of the word
embedding and the size of the hidden layers are
300. The learning rate is set to 0.01 and the
dropout rate is set to 0.1. Stochastic gradient de-
scent is used as our optimizer. The position encod-
ing is also used (Tang et al., 2016). We also com-
pare the memory networks in their multiple com-
putational layers version (i.e., multiple hops) and
the number of hops is set to 3 as used in the men-
tioned previous studies. We implemented all mod-
els in the TensorFlow environment using same in-
put, embedding size, dropout rate, optimizer, etc.

1https://github.com/mmihaltz/word2vec-GoogleNews-
vectors

so as to test our hypotheses, i.e., to make sure the
achieved improvements do not come from else-
where. Meanwhile, we can also report all evalua-
tion measures discussed above2. 10% of the train-
ing data is used as the development set. We report
the best results for all models based on their F-1
Macro scores.

6.3.1 Result Analysis

The classification results are shown in Table 3.
Note that the candidate models are all based on
classic/standard attention mechanism, i.e., without
sophisticated or multiple attentions involved. We
compare the 1-hop and 3-hop memory networks
as two different settings. The top three F1-Macro
scores are marked in bold. Based on them, we
have the following observations:

1. Comparing the 1-hop memory networks (first
nine rows), we see significant performance
gains achieved by CNP, CI, JCI, and JPI on
both datasets, where each of them has p <
0.01 over the strongest baseline (BL-MN)
from paired t-test using F1-Macro. IT also
outperforms the other baselines while NP has
similar performance to BL-MN. This indi-
cates that TCS interaction is very useful, as
BL-MN and NP do not model it.

2. In the 3-hop setting, TMNs achieve much
better results on Restaurant. JCI, IT, and CI
achieve the best scores, outperforming the
strongest baseline AMN by 2.38%, 2.18%,
and 2.03%. On Laptop, BL-MN and most
TMNs (except CNP and JPI) perform sim-
ilarly. However, BL-MN performs poorly
on Restaurant (only better than two models)
while TMNs show more stable performance.

3. Comparing all TMNs, we see that JCI works
the best as it always obtains the top-three
scores on two datasets and in two settings. CI
and JPI also perform well in most cases. IT,
NP, and CNP can achieve very good scores in
some cases but are less stable. We also ana-
lyzed their potential issues in Section 4.

4. It is important to note that these improve-
ments are quite large because in many cases
sentiment interactions may not be necessary
(like sentence (1) in Section 1). The overall
good results obtained by TMNs demonstrate
their capability of handling both general and
target-sensitive sentiments, i.e., the proposed

2Most related studies report accuracy only.
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Restaurant Laptop
Model Macro Neg. Neu. Pos. Micro Model Macro Neg. Neu. Pos. Micro

MN 58.91 57.07 36.81 82.86 71.52 MN 56.16 47.06 45.81 75.63 61.91
AMN 63.82 61.76 43.56 86.15 75.68 AMN 60.01 52.67 47.89 79.48 66.14

BL-MN 64.34 61.96 45.86 85.19 75.30 BL-MN 62.89 57.16 49.51 81.99 68.90
NP 64.62 64.89 43.21 85.78 75.93 NP 62.63 56.43 49.62 81.83 68.65

CNP 65.58 62.97 47.65 86.12 75.97 CNP 64.38 57.92 53.23 81.98 69.62
IT 65.37 65.22 44.44 86.46 76.98 IT 63.07 57.01 50.62 81.58 68.38
CI 66.78 65.49 48.32 86.51 76.96 CI 63.65 57.33 52.60 81.02 68.65
JCI 66.21 65.74 46.23 86.65 77.16 JCI 64.19 58.49 53.69 80.40 68.42
JPI 66.58 65.44 47.60 86.71 76.96 JPI 64.53 58.62 51.71 83.25 70.06

AE-LSTM 66.45 64.22 49.40 85.73 76.43 AE-LSTM 62.45 55.26 50.35 81.74 68.50
ATAE-LSTM 65.41 66.19 43.34 86.71 76.61 ATAE-LSTM 59.41 55.27 42.15 80.81 67.40

MN (hops) 62.68 60.35 44.57 83.11 72.86 MN (hops) 60.61 55.59 45.94 80.29 66.61
AMN (hops) 66.46 65.57 46.64 87.16 77.27 AMN (hops) 65.16 60.00 52.56 82.91 70.38

BL-MN (hops) 65.71 63.83 46.91 86.39 76.45 BL-MN (hops) 67.11 63.10 54.53 83.69 72.15
NP (hops) 65.98 64.18 47.86 85.90 75.73 NP (hops) 67.79 63.17 56.27 83.92 72.43

CNP (hops) 66.87 65.32 49.07 86.22 76.65 CNP (hops) 64.85 58.84 53.29 82.43 70.25
IT (hops) 68.64 67.11 51.47 87.33 78.55 IT (hops) 66.23 61.43 53.69 83.57 71.37
CI (hops) 68.49 64.83 53.03 87.60 78.69 CI (hops) 66.79 61.80 55.30 83.26 71.67
JCI (hops) 68.84 66.28 52.06 88.19 78.79 JCI (hops) 67.23 61.08 57.49 83.11 71.79
JPI (hops) 67.86 66.72 49.63 87.24 77.95 JPI (hops) 65.16 59.01 54.25 82.20 70.18

Table 3: Results of all models on two datasets. Top three F1-Macro scores are marked in bold. The first
nine models are 1-hop memory networks. The last nine models are 3-hop memory networks.

techniques do not bring harm while capturing
additional target-sensitive signals.

5. Micro-F1/accuracy is greatly affected by the
majority class, as we can see the scores from
Pos. and Micro are very consistent. TMNs, in
fact, effectively improve the minority classes,
which are reflected in Neg. and Neu., for
example, JCI improves BL-MN by 3.78% in
Neg. on Restaurant. This indicates their use-
fulness of capturing fine-grained sentiment
signals. We will give qualitative examples in
next section to show their modeling superior-
ity for identifying target-sensitive sentiments.

Restaurant
Model Macro Neg. Neu. Pos. Micro
TRMN 69.00 68.66 50.66 87.70 78.86
RMN 67.48 66.48 49.11 86.85 77.14

Laptop
Model Macro Neg. Neu. Pos. Micro
TRMN 68.18 62.63 57.37 84.30 72.92
RMN 67.17 62.65 55.31 83.55 72.07

Table 4: Results with Recurrent Attention

Integration with Improved Attention: As dis-
cussed, the goal of this work is not for learn-
ing better attention but addressing the target-
sensitive sentiment. In fact, solely improving at-
tention does not solve our problem (see Sections 1
and 3). However, better attention can certainly
help achieve an overall better performance for the
ASC task, as it makes the targeted-context detec-
tion more accurate. Here we integrate our pro-

posed technique JCI with a state-of-the-art sophis-
ticated attention mechanism, namely, the recurrent
attention framework, which involves multiple at-
tentions learned iteratively (Kumar et al., 2016;
Chen et al., 2017). We name our model with this
integration as Target-sensitive Recurrent-attention
Memory Network (TRMN) and the basic memory
network with the recurrent attention as Recurrent-
attention Memory Network (RMN). Their results
are given in Table 4. TRMN achieves significant
performance gain with p < 0.05 in paired t-test.

6.4 Effect of TCS Interaction for Identifying
Target-Sensitive Sentiment

We now give some real examples to show the
effectiveness of modeling TCS interaction for
identifying target-sensitive sentiments, by com-
paring a regular MN and a TMN. Specifically,
BL-MN and JPI are used. Other MNs/TMNs
have similar performances to BL-MN/JPI qual-
itatively, so we do not list all of them here.
For BL-MN and JPI, their sentiment scores
of a single context word i are calculated by
αiWci (from Eq. 3) and αiWJ tanh(W1ci) +
αiWJ〈di, dt〉tanh(W2ci) (from Eq. 9), each of
which results in a 3-dimensional vector.
Illustrative Examples: Table 5 shows two records
in Laptop. In record 1, to identify the senti-
ment of target price in the presented sentence, the
sentiment interaction between the context word
“higher” and the target word price is the key. The
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Record 1 Record 2
Sentence Price was higher when purchased on MAC.. Sentence (MacBook) Air has higher resolution..
Target Price Sentiment Negative Target Resolution Sentiment Positive
Result Sentiment Logits on context “higher” Result Sentiment Logits on context “higher”

TMN Negative Neutral Positive TMN Negative Neutral Positive
0.2663 (Correct) -0.2604 -0.0282 -0.4729 -0.3949 0.9041 (Correct)

MN Negative Neutral Positive MN Negative Neutral Positive
0.3641 (Correct) -0.3275 -0.0750 0.2562 (Wrong) -0.2305 - 0.0528

Table 5: Sample Records and Model Comparison between MN and TMN

specific sentiment scores of the word “higher” to-
wards negative, neutral and positive classes in both
models are reported. We can see both models
accurately assign the highest sentiment scores to
the negative class. We also observe that in MN
the negative score (0.3641) in the 3-dimension
vector {0.3641,−0.3275,−0.0750} calculated by
αiWci is greater than neutral (−0.3275) and pos-
itive (−0.0750) scores. Notice that αi is always
positive (ranging in (0, 1)), so it can be inferred
that the first value in vector Wci is greater than
the other two values. Here ci denotes the vec-
tor representation of “higher” so we use chigher to
highlight it and we have {Wchigher}Negative >
{Wchigher}Neutral/Positive as an inference.

In record 2, the target is resolution and its sen-
timent is positive in the presented sentence. Al-
though we have the same context word “higher”,
different from record 1, it requires a positive sen-
timent interaction with the current target. Look-
ing at the results, we see TMN assigns the high-
est sentiment score of word “higher” to positive
class correctly, whereas MN assigns it to neg-
ative class. This error is expected if we con-
sider the above inference {Wchigher}Negative >
{Wchigher}Neutral/Positive in MN. The cause
of this unavoidable error is that Wci is
not conditioned on the target. In contrast,
WJ〈di, ·dt〉tanh(W2ci) can change the sentiment
polarity with the aspect vector dt encoded. Other
TMNs also achieve it (like WI〈di, dt〉ci in JCI).

One may notice that the aspect information (vt)
is actually also considered in the form of αiWci+
Wvt in MNs and wonder whether Wvt may help
address the problem given different vt. Let us as-
sume it helps, which means in the above exam-
ple an MN makes Wvresolution favor the positive
class and Wvprice favor the negative class. But
then we will have trouble when the context word
is “lower”, where it requires Wvresolution to favor
the negative class and Wvprice to favor the posi-
tive class. This contradiction reflects the theoreti-
cal problem discussed in Section 3.

Other Examples: We also found other interesting
target-sensitive sentiment expressions like “large
bill” and “large portion”, “small tip” and “small
portion” from Restaurant. Notice that TMNs
can also improve the neutral sentiment (see Ta-
ble 3). For instance, TMN generates a sentiment
score vector of the context “over” for target as-
pect price: {0.1373, 0.0066, -0.1433} (negative)
and for target aspect dinner: {0.0496, 0.0591, -
0.1128} (neutral) accurately. But MN produces
both negative scores {0.0069, 0.0025, -0.0090}
(negative) and {0.0078, 0.0028, -0.0102} (nega-
tive) for the two different targets. The latter one in
MN is incorrect.

7 Conclusion and Future Work

In this paper, we first introduced the target-
sensitive sentiment problem in ASC. After that,
we discussed the basic memory network for ASC
and analyzed the reason why it is incapable of cap-
turing such sentiment from a theoretical perspec-
tive. We then presented six techniques to construct
target-sensitive memory networks. Finally, we re-
ported the experimental results quantitatively and
qualitatively to show their effectiveness.

Since ASC is a fine-grained and complex task,
there are many other directions that can be further
explored, like handling sentiment negation, better
embedding for multi-word phrase, analyzing sen-
timent composition, and learning better attention.
We believe all these can help improve the ASC
task. The work presented in this paper lies in the
direction of addressing target-sensitive sentiment,
and we have demonstrated the usefulness of cap-
turing this signal. We believe that there will be
more effective solutions coming in the near future.
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Abstract

Getting manually labeled data in each do-
main is always an expensive and a time
consuming task. Cross-domain sentiment
analysis has emerged as a demanding con-
cept where a labeled source domain facili-
tates a sentiment classifier for an unlabeled
target domain. However, polarity orienta-
tion (positive or negative) and the signifi-
cance of a word to express an opinion of-
ten differ from one domain to another do-
main. Owing to these differences, cross-
domain sentiment classification is still a
challenging task. In this paper, we propose
that words that do not change their polar-
ity and significance represent the transfer-
able (usable) information across domains
for cross-domain sentiment classification.
We present a novel approach based on χ2

test and cosine-similarity between context
vector of words to identify polarity pre-
serving significant words across domains.
Furthermore, we show that a weighted
ensemble of the classifiers enhances the
cross-domain classification performance.

1 Introduction

The choice of the words to express an opinion de-
pends on the domain as users often use domain-
specific words (Qiu et al., 2009; Sharma and Bhat-
tacharyya, 2015). For example, entertaining and
boring are frequently used in the movie domain to
express an opinion; however, finding these words
in the electronics domain is rare. Moreover, there
are words which are likely to be used across do-
mains in the same proportion, but may change
their polarity orientation from one domain to an-
other (Choi et al., 2009). For example, a word like
unpredictable is positive in the movie domain (un-

predictable plot), but negative in the automobile
domain (unpredictable steering). Such a polarity
changing word should be assigned positive orien-
tation in the movie domain and negative orienta-
tion in the automobile domain.1 Due to these dif-
ferences across domains, a supervised algorithm
trained on a labeled source domain, does not gen-
eralize well on an unlabeled target domain and the
cross-domain performance degrades.

Generally, supervised learning algorithms have
to be re-trained from scratch on every new domain
using the manually annotated review corpus (Pang
et al., 2002; Kanayama and Nasukawa, 2006; Pang
and Lee, 2008; Esuli and Sebastiani, 2005; Breck
et al., 2007; Li et al., 2009; Prabowo and Thel-
wall, 2009; Taboada et al., 2011; Cambria et al.,
2013; Rosenthal et al., 2014). This is not practical
as there are numerous domains and getting manu-
ally annotated data for every new domain is an ex-
pensive and time consuming task (Bhattacharyya,
2015). On the other hand, domain adaptation tech-
niques work in contrast to traditional supervised
techniques on the principle of transferring learned
knowledge across domains (Blitzer et al., 2007;
Pan et al., 2010; Bhatt et al., 2015). The exist-
ing transfer learning based domain adaptation al-
gorithms for cross-domain classification have gen-
erally been proven useful in reducing the labeled
data requirement, but they do not consider words
like unpredictable that change polarity orienta-
tion across domains. Transfer (reuse) of chang-
ing polarity words affects the cross-domain per-
formance negatively. Therefore, one cannot use
transfer learning as the proverbial hammer, rather
one needs to gauge what to transfer from the
source domain to the target domain.

In this paper, we propose that the words which

1The word ‘unpredictable’ is a classic example of chang-
ing (inconsistent) polarity across domains (Turney, 2002;
Fahrni and Klenner, 2008).
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are equally significant with a consistent polar-
ity across domains represent the usable informa-
tion for cross-domain sentiment analysis. χ2 is
a popularly used and reliable statistical test to
identify significance and polarity of a word in an
annotated corpus (Oakes et al., 2001; Al-Harbi
et al., 2008; Cheng and Zhulyn, 2012; Sharma
and Bhattacharyya, 2013). However, for an un-
labeled corpus no such statistical technique is ap-
plicable. Therefore, identification of words which
are significant with a consistent polarity across
domains is a non-trivial task. In this paper, we
present a novel technique based on χ2 test and
cosine-similarity between context vector of words
to identify Significant Consistent Polarity (SCP)
words across domains.2 The major contribution of
this research is as follows.

1. Extracting significant consistent polarity
words across domains: A technique which
exploits cosine-similarity between context
vector of words and χ2 test is used to iden-
tify SCP words across labeled source and un-
labeled target domains.

2. An ensemble-based adaptation algorithm: A
classifier (Cs) trained on SCP words in the
labeled source domain acts as a seed to initi-
ate a classifier (Ct) on the target specific fea-
tures. These classifiers are then combined in
a weighted ensemble to further enhance the
cross-domain classification performance.

Our results show that our approach gives a sta-
tistically significant improvement over Structured
Correspondence Learning (SCL) (Bhatt et al.,
2015) and common unigrams in identification of
transferable words, which eventually facilitates a
more accurate sentiment classifier in the target do-
main. The road-map for rest of the paper is as fol-
lows. Section 2 describes the related work. Sec-
tion 3 describes the extraction of the SCP and the
ensemble-based adaptation algorithm. Section 4
elaborates the dataset and the experimental proto-
col. Section 5 presents the results and section 6
reports the error analysis. Section 7 concludes the
paper.3

2SCP words are words which are significant in both the
domains with consistent polarity orientation.

3Majority of this work is done at Conduent Labs India till
February 2016.

2 Related Work

The most significant efforts in the learning of
transferable knowledge for cross-domain text clas-
sification are Structured Correspondence Learning
(SCL) (Blitzer et al., 2007) and Structured Fea-
ture Alignment (SFA) (Pan et al., 2010). SCL
aims to learn the co-occurrence between features
from the two domains. It starts with learning
pivot features that occur frequently in both the do-
mains. It models correlation between pivots and
all other features by training linear predictors to
predict presence of pivot features in the unlabeled
target domain data. SCL has shown significant im-
provement over a baseline (shift-unaware) model.
SFA uses some domain-independent words as a
bridge to construct a bipartite graph to model
the co-occurrence relationship between domain-
specific words and domain-independent words.
Our approach also exploits the concept of co-
occurrence (Pan et al., 2010), but we measure the
co-occurrence in terms of similarity between con-
text vector of words, unlike SCL and SFA, which
literally look for the co-occurrence of words in
the corpus. The use of context vector of words in
place of words helps to overcome the data sparsity
problem (Sharma et al., 2015).

Domain adaptation for sentiment classification
has been explored by many researchers (Jiang and
Zhai, 2007; Ji et al., 2011; Saha et al., 2011; Glo-
rot et al., 2011; Xia et al., 2013; Zhou et al., 2014;
Bhatt et al., 2015). Most of the works have fo-
cused on learning a shared low dimensional repre-
sentation of features that can be generalized across
different domains. However, none of the ap-
proaches explicitly analyses significance and po-
larity of words across domains. On the other
hand, Glorot et al., (2011) proposed a deep learn-
ing approach which learns to extract a meaning-
ful representation for each review in an unsuper-
vised fashion. Zhou et al., (2014) also proposed a
deep learning approach to learn a feature mapping
between cross-domain heterogeneous features as
well as a better feature representation for mapped
data to reduce the bias issue caused by the cross-
domain correspondences. Though deep learning
based approaches perform reasonably good, they
don’t perform explicit identification and visualiza-
tion of transferable features across domains un-
like SFA and SCL, which output a set of words
as transferable (reusable) features. Our approach
explicitly determines the words which are equally
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significant with a consistent polarity across source
and target domains. Our results show that the use
of SCP words as features identified by our ap-
proach leads to a more accurate cross-domain sen-
timent classifier in the unlabeled target domain.

3 Approach: Cross-domain Sentiment
Classification

The proposed approach identifies words which
are equally significant for sentiment classification
with a consistent polarity across source and tar-
get domains. These Significant Consistent Polar-
ity (SCP) words make a set of transferable knowl-
edge from the labeled source domain to the un-
labeled target domain for cross-domain sentiment
analysis. The algorithm further adapts to the un-
labeled target domain by learning target domain
specific features. The following sections elaborate
SCP features extraction (3.1) and the ensemble-
based cross-domain adaptation algorithm (3.2).

3.1 Extracting SCP Features
The words which are not significant for classifi-
cation in the labeled source domain, do not trans-
fer useful knowledge to the target domain through
a supervised classifier trained in the source do-
main. Moreover, words that are significant in both
the domains, but have different polarity orienta-
tion transfer the wrong information to the target
domain through a supervised classifier trained in
the labeled source domain, which also downgrade
the cross-domain performance.

Our algorithm identifies the significance and the
polarity of all the words individually in their re-
spective domains. Then the words which are sig-
nificant in both the domains with the consistent
polarity orientation are used to initiate the cross-
domain adaptation algorithm. The following sec-
tions elaborate how the significance and the polar-
ity of the words are obtained in the labeled source
and the unlabeled target domains.

3.1.1 Extracting Significant Words with the
Polarity Orientation from the Labeled
Source Domain

Since we have a polarity annotated dataset in the
source domain, a statistical test like χ2 test can
be applied to find the significance of a word in
the corpus for sentiment classification (Cheng and
Zhulyn, 2012; Zheng et al., 2004). We have used
goodness of fit chi2 test with equal number of re-
views in positive and negative corpora. This test is

generally used to determine whether sample data
is consistent with a null hypothesis.4 Here, the null
hypothesis is that the word is equally used in the
positive and the negative corpora. The χ2 test is
formulated as follows:

χ2(w) = ((cwp − µw)2 + (cwn − µw)2)/µw (1)

Where, cwp is the observed count of a wordw in the
positive documents and cwn is the observed count in
the negative documents. µw represents an average
of the word’s count in the positive and the negative
documents. Here, µw is the expected count or the
value of the null-hypothesis. There is an inverse
relation between χ2 value and the p-value which
is probability of the data given null hypothesis is
true. In such a case where a word results in a p-
value smaller than the critical p-value (0.05), we
reject the null-hypothesis. Consequently, we as-
sume that the word w belongs to a particular class
(positive or negative) in the data, hence it is a sig-
nificant word for classification (Sharma and Bhat-
tacharyya, 2013).

Polarity of Words in the Labeled Source Do-
main: Chi-square test substantiates the statisti-
cally significant association of a word with a class
label. Based on this association we assign a polar-
ity orientation to a word in the domain. In other
words, if a word is found significant by χ2 test,
then the exact class of the word is determined by
comparing cwp and cwn . For instance, if cwp is higher
than cwn , then the word is positive, else negative.

3.1.2 Extracting Significant Words with the
Polarity Orientation from the
Unlabeled Target Domain

Target domain data is unlabeled and hence, χ2 test
cannot be used to find significance of the words.
However, to obtain SCP words across domains, we
take advantage of the fact that we have to identify
significance of only those words in the target do-
main which are already proven to be significant in
the source domain. We presume that a word which
is significant in the source domain as per χ2 test
and occurs with a frequency greater than a certain
threshold (θ) in the target domain is significant in
the target domain also.

countt(significants(w)) > θ ⇒ significantt(w)
(2)

4http://stattrek.com/chi-square-test/
goodness-of-fit.aspx?Tutorial=AP.
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Equation (2) formulates the significance test in
the unlabeled target (t) domain. Here, function
significants assures the significance of the word
w in the labeled source (s) domain and countt
gives the normalized count of the w in t.5 χ2 test
has one key assumption that the expected value of
an observed variable should not be less than 5 to
be significant. Considering this assumption as a
base, we fix the value of θ as 10.6

Polarity of Words in the Unlabeled Target
Domain: Generally, in a polar corpus, a posi-
tive word occurs more frequently in context of
other positive words, while a negative word oc-
curs in context of other negative words (Sharma
et al., 2015).7 Based on this hypothesis, we ex-
plore the contextual information of a word that is
captured well by its context vector to assign po-
larity to words in the target domain (Rill et al.,
2012; Rong, 2014). Mikolov et al., (2013) showed
that similarity between context vector of words in
vicinity such as ‘go’ and ‘to’ is higher compared
to distant words or words that are not in the neigh-
borhood of each other. Here, the observed concept
is that if a word is positive, then its context vec-
tor learned from the polar review corpus will give
higher cosine-similarity with a known positive po-
larity word in comparison to a known negative po-
larity word or vice versa. Therefore, based on the
cosine-similarity scores we can assign the label of
the known polarity word to the unknown polarity
word. We term known polarity words as Positive-
pivot and Negative-pivot.

Context Vector Generation: To compute con-
text vector (conV ec) of a word (w), we have
used publicly available word2vec toolkit with the
skip-gram model (Mikolov et al., 2013).8 In this
model, each word’s Huffman code is used as an
input to a log-linear classifier with a continuous
projection layer and words within a given win-
dow are predicted (Faruqui et al., 2014). We
construct a 100 dimensional vector for each can-

5Normalized count of w in t shows the proportion of oc-
currences of w in t.

6We tried with smaller values of theta also, but they were
not found as effective as theta value of 10 for significant
words identification.

7For example, ‘excellent’ will be used more often in pos-
itive reviews in comparison to negative reviews, hence, it
would have more positive words in its context. Likewise,
‘terrible’ will be used more frequently in negative reviews
in comparison to positive reviews, hence, it would have more
negative words in its context.

8 Available at: https://radimrehurek.com/
gensim/models/word2vec.html

didate word from the unlabeled target domain
data. The decision method given in Equation
3 defines the polarity assignment to the un-
known polarity words of the target domain. If
a word w gives a higher cosine-similarity with
the PosPivot (Positive-pivot) than the NegPivot
(Negative-pivot), the decision method assigns the
positive polarity to the word w, else negative po-
larity to the word w.

If(cosine(conV ec(w), conV ec(PosPivot)) >
cosine(conV ec(w), conV ec(NegPivot)))

⇒ Positive
If(cosine(conV ec(w), conV ec(PosPivot))
< cosine(conV ec(w), conV ec(NegPivot)))

⇒ Negative

(3)

Pivot Selection Method: We empirically ob-
served that a polar word which has the highest fre-
quency in the corpus gives more coverage to esti-
mate the polarity orientation of other words while
using context vector. Essentially, the frequent oc-
currence of the word in the corpus allows it to be
in context of other words frequently. Therefore
a polar word having the highest frequency in the
target domain is observed to be more accurate as
pivot for identification of polarity of input words.9

Table 1 shows the examples of a few words in
the electronics domain whose polarity orientation
is derived based on the similarity scores obtained
with PosPivot and NegPivot words in the electron-
ics domain.
Transferable Knowledge: The proposed algo-
rithm uses the above mentioned techniques to
identify the significance and the polarity of words
in the labeled source data (cf. Section 3.1.1) and
the unlabeled target data (cf. Section 3.1.2). The
words which are found significant in both the do-
mains with the same polarity orientation form a set
of SCP features for cross-domain sentiment classi-
fication. The weights learned for the SCP features
in the labeled source domain by the classification
algorithm can be reused for sentiment classifica-
tion in the unlabeled target domain as SCP features
have consistent impacts in both the domains.

9 To obtain the highest frequency based pivots, words in
the target corpus (unlabeled) were ordered based on their fre-
quency in the corpus, then a few top words were manually
observed (by three human annotators) to pick out a positive
word and a negative word. The positive and negative polar-
ity of pivots were confirmed manually to get rid of random
high frequency words (for example, function words). These
highest frequency polar words were set as Positive-pivot and
Negative-pivot.
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Word Great Poor Polarity
Noisy 0.03 0.24 Neg
Crap 0.04 0.28 Neg
Weak 0.05 0.21 Neg
Defective 0.21 0.70 Neg
Sturdy 0.43 0.04 Pos
Durable 0.44 0.00 Pos
Perfect 0.48 0.20 Pos
Handy 0.60 0.21 Pos

Table 1: Cosine-similarity scores with PosPivot
(great) and NegPivot (poor), and inferred polarity
orientation of the words.

Symbol Description
s, t Represent Source (s) and Target (t) respectively
l, u Represent labeled and unlabeled respectively
Dl

s, Du
t Represent Dataset in s and t domains respectively

Vs, Vt Vocabularies of words in the s and t respectively
ris,rit ith review in Dl

s and Du
t respectively

sigPol() Identifies significant words with their polarity
f Set of features
SVM Implemented classification algorithm
Cs Classifier Cs is trained on Dl

s with SCP as features
Rn

t Top-n reviews in t as per classification score by Cs

Ct Classifier Ct is trained on Rt
n

unigrams() Gives bag-of-words
Ws, Wt Weights for Cs and Ct respectively
WSM Weighted Sum Model

Table 2: Notations used in the paper

3.2 Ensemble-based Cross-domain
Adaptation Algorithm

Apart from the transferable SCP words (Obtained
in Section 3.1), each domain has specific discrim-
inating words which can be discovered only from
that domain data. The proposed cross-domain
adaptation approach (Algorithm 1) attempts to
learn such domain specific features from the tar-
get domain using a classifier trained on SCP words
in the source domain. An ensemble of the clas-
sifiers trained on the SCP features (transferred
from the source) and domain specific features
(learned within the target) further enhances the
cross-domain performance. Table 2 lists the no-
tations used in the algorithm. The working of the
cross-domain adaptation algorithm is as follows:

1. Identify SCP features from the labeled source
and the unlabeled target domain data.

2. A SVM based classifier is trained on SCP
words as features using labeled source do-
main data, named as Cs.

3. The classifier Cs is used to predict the labels
for the unlabeled target domain instancesDu

t ,

and the confidently predicted instances ofDu
t

form a set of pseudo labeled instances Rnt .

4. A SVM based classifier is trained on the
pseudo labeled target domain instances Rnt ,
using unigrams in Rnt as features to include
the target specific words, this classifier is
named as Ct .

5. Finally, a Weighted Sum Model (WSM) of
Cs and Ct gives a classifier in the target do-
main.

The confidence in the prediction of Du
t is mea-

sured in terms of the classification-score of the
document, i.e., the distance of the input document
from the separating hyper-plane given by the SVM
classifier (Hsu et al., 2003). The top n confidently
predicted pseudo labeled instances (Rnt ) are used
to train classifier Ct, where n depends on a thresh-
old that is empirically set to | ± 0.2|.10 The clas-
sifier Cs trained on the SCP features (transferred
knowledge) from the source domain and the clas-
sifier Ct trained on self-discovered target specific
features from the pseudo labeled target domain in-
stances bring in complementary information from
the two domains. Therefore, combiningCs andCt
in a weighted ensemble (WSM) further enhances
the cross-domain performance. Algorithm 1 gives
the pseudo code of the proposed adaptation ap-
proach.

Input: Dl
s = {r1s , r2s , r3s , ....rjs},
Du

t = {r1t , r2t , r3t , ....rkt },
Vs = {w1

s , w
2
s , w

3
s , ....w

p
s},

Vt = {w1
t , w

2
t , w

3
t , ....w

q
t }

Output: Sentiment Classifier in the Target Domain
1: SCP = sigPol(Dl

s) ∩ sigPol(Du
t )

2: Cs = Train-SVM(Dl
s), where f = SCP

3: Predict Label: Cs(D
u
t )→ Dl

t

4: Select: Rn
t | ∀rit ∈ Du

t , Cs(r
i
t) > φ, where i ∈

{1, 2....k} and n <= k
5: Ct = Train-SVM(Rn

t ), where f = {unigrams(Rn
t )}

6: WSM = (Cs ∗Ws + Ct ∗Wt)/(Ws +Wt)
7: Sentiment Classifier in the Target Domain = WSM

ALGORITHM 1: Building of target domain
classifier from the source domain

Weighted Sum Model (WSM): The weighted
ensemble of classifiers helps to overcome the er-

10Balamurali et al., (2013) have shown that 350 to 400 la-
beled documents are required to get a high accuracy classifier
in a domain using supervised classification techniques, but
beyond 400 labeled documents there is not much improve-
ment in the classification accuracy. Hence, threshold on clas-
sification score is set such that it can give a sufficient number
of documents for supervised classification. Threshold |±0.2|
gives documents between 350 to 400.
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rors produced by the individual classifier. The for-
mulation of WSM is given in step-6 of the Al-
gorithm 1. If Cs has wrongly predicted a docu-
ment at boundary point and Ct has predicted the
same document confidently, then weighted sum
of Cs and Ct predicts the document correctly or
vice versa. For example, a document is classi-
fied by Cs as negative (wrong prediction) with
a classification-score of −0.07, while the same
document is classified by Ct as positive (correct
prediction) with a classification-score of 0.33, the
WSM of Cs and Ct will classify the document as
positive with a classification-score of 0.12 (Equa-
tion 4).

WSM =
(−0.07 ∗ 0.765 + 0.33 ∗ 0.712)

(0.765 + 0.712)
= 0.12

(4)
Here 0.765 and 0.712 are the weights Ws and

Wt to the classifiers Cs and Ct respectively.
Weights to the Classifiers in WSM: The weights
Ws and Wt are the classification accuracies ob-
tained by Cs and Ct respectively on the cross-
validation data from the target domain. The
weights Ws and Wt allow Cs and Ct to partici-
pate in the WSM in proportion of their accuracy
on the cross-validation data. This restriction fa-
cilitates the domination of the classifier which is
more accurate.

4 Dataset & Experimental Protocol

In this paper, we show comparison between SCP-
based domain adaptation (our approach) and SCL-
based domain adaptation approach proposed by
Bhatt el al. (2015) using four domains, viz., Elec-
tronics (E), Kitchen (K), Books (B), and DVD.11

We use SVM algorithm with linear kernel (Tong
and Koller, 2002) to train a classifier in all the
mentioned classification systems in the paper. To
implement SVM algorithm, we have used the pub-
licly available Python based Scikit-learn package
(Pedregosa et al., 2011).12 Data in each domain
is divided into three parts, viz., train (60%), val-
idation (20%) and test (20%). The SCP words
are extracted from the training data. The weights
WS and Wt for the source and target classifiers
are essentially accuracies obtained by Cs and Ct

11The same multi-domain dataset is used by Bhatt et
al. (2015), available at: http://www.cs.jhu.edu/
˜mdredze/datasets/sentiment/index2.html.

12Available at: http://scikit-learn.org/
stable/modules/svm.html.

respectively on validation dataset from the target
domain. We report the accuracy for all the sys-
tems on the test data. Table 3 shows the statistics
of the dataset.

Domain No. of Reviews Avg. Length
Electronic (E) 2000 110 words
Kitchen (K) 2000 93 words
Books (B) 2000 173 words
DVD (D) 2000 197 words

Table 3: Dataset statistics

5 Results

In this paper, we compare our approach with
Structured Correspondence Learning (SCL) and
common unigrams. SCL is used by Bhatt et al.,
(2015) for identification of transferable informa-
tion from the labeled source domain to the unla-
beled target domain for cross-domain sentiment
analysis. They showed that transferable features
extracted by SCL provide a better cross-domain
sentiment analysis system than the transferable
features extracted by Structured Feature Align-
ment (Pan et al., 2010). The SCL-based sentiment
classifier in the target domain proposed by Bhatt
et. al., (2015) is state-of-the-art for cross-domain
sentiment analysis. On the other hand, common
unigrams of the source and target are the most vis-
ible transferable information.13

Gold standard SCP words: Chi-square test
gives us significance and polarity of the word in
the corpus by taking into account the polarity la-
bels of the reviews. Application of chi-square test
in both the domains, considering that the target do-
main is also labeled, gives us gold standard SCP
words. There is no manual annotation involved.

F-score for SCP Words Identification Task:
The set of SCP words represent the usable in-
formation across domains for cross-domain clas-
sification, hence we compare the F-score for the
SCP words identification task obtained with our
approach, SCL and common-unigrams in Figure
1. It demonstrates that our approach gives a huge
improvement in the F-score over SCL and com-
mon unigrams for all the 12 pairs of the source
and target domains. To measure the statistical sig-
nificance of this improvement, we applied t-test
on the F-score distribution obtained with our ap-
proach, SCL and common unigrams. t-test is a

13Common unigrams is a set of unique words which appear
in both the domains.
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statistical significance test. It is used to determine
whether two sets of data are significantly different
or not.14 Our approach performs significantly bet-
ter than SCL and common unigrams, while SCL
performs better than common unigrams as per t-
test.

Comparison among Cs, Ct and WSM: Ta-
ble 4 shows the comparison among classifiers ob-
tained in the target domain using SCP given by our
approach, SCL, common-unigrams, and gold stan-
dard SCP for electronics as the source and movie
as the target domains. Since electronics and movie
are two very dissimilar domains in terms of do-
main specific words, unlike, books and movie, get-
ting a high accuracy classifier in the movie domain
from the electronics domain is a challenging task
(Pang et al., 2002). Therefore, in Table 4 results
are reported with electronics as the source domain
and movie as the target domain.15 In all four cases,
there is difference in the transferred information
from the source to the target, but the ensemble-
based classification algorithm (Section 3.2) is the
same. Table 4 depicts sentiment classification
accuracy obtained with Cs, Ct and WSM. The
weights Ws and Wt in WSM are normalized ac-
curacies by Cs and Ct respectively on the valida-
tion set from the target domain. The fourth column
(size) represents the feature set size. We observed
that WSM gives the highest accuracy, which vali-
dates our assumption that a weighted sum of two
classifiers is better than the performance of indi-
vidual classifiers. The WSM accuracy obtained
with SCP words given by our approach is compa-
rable to the accuracy obtained with gold standard
SCP words.

The motivation of this research is to learn
shared representation cognizant of significant
and polarity changing words across domains.
Hence, we report cross-domain classification ac-
curacy obtained with three different types of
shared representations (transferable knowledge),
viz., common-unigrams, SCL and our approach.16

System-1, system-2 and system-3 in Table 5 show
the final cross-domain sentiment classification ac-
curacy obtained with WSM in the target domain

14The detail about the test is available at: http://www.
socialresearchmethods.net/kb/stat_t.php.

15The movie review dataset is a balanced corpus of
2000 reviews. Available at: http://www.cs.cornell.
edu/people/pabo/movie-review-data/

16The reported accuracy is the ratio of correctly predicted
documents to that of the total number of documents in the test
dataset.

Ws & Wt Features Size Acc
Cs SCP (Our

approach)
296 75.0

Ct Unigrams 4751 74.3

WSM 0.72 & 0.69 - - 77.5
Cs SCL 1000 66.8

Ct Unigrams 4615 68.0

WSM 0.63 & 0.61 - - 69.3
Cs Common-

Unigrams
2236 64.0

Ct Unigrams 4236 64.0

WSM 0.62 & 0.58 - - 65
Cs SCP (Gold

standard)
163 77.0

Ct Unigrams 1183 78.5

WSM 0.73 & 0.75 - - 80.0

Table 4: Classification accuracy in % given by Cs,
Ct and WSM with different feature sets for elec-
tronics as source and movie as target.

for 12 pairs of source and target using common-
unigrams, SCL and our approach respectively.

System-1: This system considers common-
unigrams of both the domains as shared repre-
sentation. System-2: It differs from system-1
in the shared representation, which is learned us-
ing Structured Correspondence Learning (SCL)
(Bhatt et al., 2015) to initiate the process. System-
3: This system implements the proposed domain
adaptation algorithm. Here, the shared represen-
tation is the SCP words and the ensemble-based
domain adaptation algorithm (Section 3.2) gives
the final classifier in the target domain. Table 5
depicts that the system-3 is better than system-1
and system-2 for all pairs, except K to B and B to
D. For these two pairs, system-2 performs better
than system-3, though the difference in accuracy
is very low (below 1%).

To enhance the final accuracy in the target do-
main, Bhatt et al., (2015) performed iterations
over the pseudo labeled target domain instances
(Rnt ). In each iteration, they obtained a new Ct
trained on increased number of pseudo labeled
documents. This process is repeated till all the
training instances of the target domain are consid-
ered. The Ct obtained in the last iteration makes
WSM with Cs which is trained on the transfer-
able features given by SCL. Bhatt et al., (2015)
have shown that iteration-based domain adapta-
tion technique is more effective than one-shot
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Figure 1: F-score for SCP words identification task (Source→ Target) with respect to gold standard SCP
words.

System-1 System-2 System-3 System-4 System-5 System-6
D→B 62 64.2 67 66 76.5 78.5
E→B 63 58.9 68.3 67 75.6 76.3
K→B 67 68.75 67.85 69 71.2 74
B→D 76 81 80.5 77 81.5 81.5
E→D 68 71 77.5 71.5 74 80.5
K→D 69 69 74 71 75.2 77
B→E 68 66 73 69 79 81.2
D→E 61 62 74 66 73.2 74.2
K→E 76 75.75 80 78 81 82
B→K 66 67.5 72 69 79.2 80.5
D→K 65.75 67 71 66 80 81
E→K 74.25 75 85.75 76 84 85.75

Table 5: Cross-domain sentiment classification accuracy in the target domain (Source (S)→ Target (T)).

Domain Significant Words Unigrams
Books (B) 76 89
DVD (D) 82.5 84

Electronics (E) 82.5 85
Kitchen (K) 82.5 86

Table 6: In-domain sentiment classification accu-
racy using significant words and unigrams.

adaptation approaches. System-4, system-5, and
system-6 in Table 5 incorporate the iterative pro-
cess into system-1, system-2, and system-3 re-
spectively. We observed the same trend after the
inclusion of the iterative process also, as the SCP-
based system-6 performed the best in all 12 cases.
On the other hand, SCL-based system-5 performs
better than the common-unigrams based system-
4. Table 7 shows the results of significance test (t-
test) performed on the accuracy distributions pro-
duced by the six different systems. The notice-

able point is that the iterations over SCL (system-
5) and our approach (system-6) narrow down the
difference in the accuracy between system-2 and
system-3 as system-2 and system-3 have a statis-
tically significant difference in accuracy with the
p-value of 0.039 (Row-4 of Table 7), but the dif-
ference between system-5 and system-6 is not sta-
tistically significant. Essentially, system-3 does
not give much improvement with iterations, unlike
system-2. In other words, addition of the iterative
process with the shared representation given by
SCL overcomes the errors introduced by SCL. On
the other hand, SCP given by our approach were
able to produce a less erroneous system in one-
shot. Table 6 shows the in-domain sentiment clas-
sification accuracy obtained with unigrams and
significant words as features considering labeled
data in the domain. System-6 tries to equalize the
in-domain accuracy obtained with unigrams.
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P-value Significant?
sys1 vs sys2 0.719 No
sys1 vs sys3 0.011 Yes
sys2 vs sys3 0.039 Yes
sys1 vs sys4 0.219 No
sys2 vs sys4 0.467 No
sys3 vs sys4 0.090 No
sys1 vs sys5 0 Yes
sys2 vs sys5 0 Yes
sys3 vs sys5 0.101 No
sys4 vs sys5 0 Yes
sys1 vs sys6 0 Yes
sys2 vs sys6 0 Yes
sys3 vs sys6 0.0130 Yes
sys4 vs sys6 0 Yes
sys5 vs sys6 0.231 No

Table 7: t-test (α = 0.05) results on the difference
in accuracy produced by various systems (cf. Ta-
ble 5).

To validate our assertion that polarity preserv-
ing significant words (SCP) across source and tar-
get domains make a less erroneous set of trans-
ferable knowledge from the source domain to
the target domain, we computed Pearson product-
moment correlation between F-score obtained for
our approach (cf. Figure 1) and cross-domain ac-
curacy obtained with SCP (System-3, cf. Table
5). We observed a strong positive correlation (r)
of 0.78 between F-score and cross-domain accu-
racy. Essentially, an accurate set of SCP words
positively stimulates an improved classifier in the
unlabeled target domain.

6 Error Analysis

The pairs of domains which share a greater num-
ber of domain-specific words, result in a higher ac-
curacy cross-domain classifier. For example, Elec-
tronics (E) and Kitchen (K) domains share many
domain-specific words, hence pairing of such sim-
ilar domains as the source and the target results
into a higher accuracy classifier in the target do-
main. Table 5 shows that K→E outperforms
B→E and D→E, and E→K outperforms B→K
and D→K. On the other hand, DVD (D) and elec-
tronics are two very different domains unlike elec-
tronics and Kitchen, or DVD and books. The DVD
dataset contains reviews about the music albums.
This difference in types of reviews makes them to
share less number of words. Table 8 shows the
percent (%) of common words among the 4 do-
mains. The percent of common unique words are
common unique words divided by the summation

of unique words in the domains individually.

E - D E - K E - B D - K D - B K - B
15 22 17 14 22 17

Table 8: Common unique words between the do-
mains in percent (%).

7 Conclusion

In this paper, we proposed that the Significant
Consistent Polarity (SCP) words represent the
transferable information from the labeled source
domain to the unlabeled target domain for cross-
domain sentiment classification. We showed a
strong positive correlation of 0.78 between the
SCP words identified by our approach and the sen-
timent classification accuracy achieved in the un-
labeled target domain. Essentially, a set of less
erroneous transferable features leads to a more ac-
curate classification system in the unlabeled tar-
get domain. We have presented a technique based
on χ2 test and cosine-similarity between context
vector of words to identify SCP words. Results
show that the SCP words given by our approach
represent more accurate transferable information
in comparison to the Structured Correspondence
Learning (SCL) algorithm and common-unigrams.
Furthermore, we show that an ensemble of the
classifiers trained on the SCP features and target
specific features overcomes the errors of the indi-
vidual classifiers.
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Venkatasubramanian, and Scott L DuVall. 2011.
Active supervised domain adaptation. In Machine
Learning and Knowledge Discovery in Databases,
pages 97–112.

Raksha Sharma and Pushpak Bhattacharyya. 2013.
Detecting domain dedicated polar words. In Pro-
ceedings of the International Joint Conference on
Natural Language Processing, pages 661–666.

Raksha Sharma and Pushpak Bhattacharyya. 2015.
Domain sentiment matters: A two stage sentiment
analyzer. In Proceedings of the International Con-
ference on Natural Language Processing.

Raksha Sharma, Mohit Gupta, Astha Agarwal, and
Pushpak Bhattacharyya. 2015. Adjective intensity
and sentiment analysis. In Proceedings of Confer-
ence on Empirical Methods in Natural Language
Processing.

Maite Taboada, Julian Brooke, Milan Tofiloski, Kim-
berly Voll, and Manfred Stede. 2011. Lexicon-based
methods for sentiment analysis. Computational Lin-
guistics, 37(2):267–307.

Simon Tong and Daphne Koller. 2002. Support vec-
tor machine active learning with applications to text
classification. The Journal of Machine Learning Re-
search, 2:45–66.

Peter D. Turney. 2002. Thumbs up or thumbs down?:
Semantic orientation applied to unsupervised classi-
fication of reviews. In Proceedings of Association
for Computational Linguistics, pages 417–424.

Rui Xia, Chengqing Zong, Xuelei Hu, and Erik Cam-
bria. 2013. Feature ensemble plus sample selec-
tion: domain adaptation for sentiment classification.
IEEE Intelligent Systems, 28(3):10–18.

Zhaohui Zheng, Xiaoyun Wu, and Rohini Srihari.
2004. Feature selection for text categorization on
imbalanced data. ACM Sig KDD Explorations
Newsletter, 6(1):80–89.

Joey Tianyi Zhou, Sinno Jialin Pan, Ivor W Tsang,
and Yan Yan. 2014. Hybrid heterogeneous trans-
fer learning through deep learning. In AAAI, pages
2213–2220.

978



Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 979–988
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

Unpaired Sentiment-to-Sentiment Translation: A Cycled
Reinforcement Learning Approach

Jingjing Xu1∗, Xu Sun1∗, Qi Zeng1, Xuancheng Ren1,
Xiaodong Zhang1, Houfeng Wang1, Wenjie Li2

1MOE Key Lab of Computational Linguistics, School of EECS, Peking University
2Department of Computing, Hong Kong Polytechnic University

{jingjingxu,xusun,pkuzengqi,renxc,zxdcs,wanghf}@pku.edu.cn
cswjli@comp.polyu.edu.hk

Abstract

The goal of sentiment-to-sentiment “trans-
lation” is to change the underlying senti-
ment of a sentence while keeping its con-
tent. The main challenge is the lack of
parallel data. To solve this problem, we
propose a cycled reinforcement learning
method that enables training on unpaired
data by collaboration between a neutral-
ization module and an emotionalization
module. We evaluate our approach on two
review datasets, Yelp and Amazon. Exper-
imental results show that our approach sig-
nificantly outperforms the state-of-the-art
systems. Especially, the proposed method
substantially improves the content preser-
vation performance. The BLEU score is
improved from 1.64 to 22.46 and from
0.56 to 14.06 on the two datasets, respec-
tively.1

1 Introduction

Sentiment-to-sentiment “translation” requires the
system to change the underlying sentiment of a
sentence while preserving its non-emotional se-
mantic content as much as possible. It can be re-
garded as a special style transfer task that is impor-
tant in Natural Language Processing (NLP) (Hu
et al., 2017; Shen et al., 2017; Fu et al., 2018).
It has broad applications, including review senti-
ment transformation, news rewriting, etc. Yet the
lack of parallel training data poses a great obstacle
to a satisfactory performance.

Recently, several related studies for language
style transfer (Hu et al., 2017; Shen et al., 2017)
have been proposed. However, when applied

∗Equal Contribution.
1The released code can be found in

https://github.com/lancopku/unpaired-sentiment-translation

to the sentiment-to-sentiment “translation” task,
most existing studies only change the underlying
sentiment and fail in keeping the semantic con-
tent. For example, given “The food is delicious”
as the source input, the model generates “What a
bad movie” as the output. Although the sentiment
is successfully transformed from positive to neg-
ative, the output text focuses on a different topic.
The reason is that these methods attempt to im-
plicitly separate the emotional information from
the semantic information in the same dense hidden
vector, where all information is mixed together in
an uninterpretable way. Due to the lack of super-
vised parallel data, it is hard to only modify the
underlying sentiment without any loss of the non-
emotional semantic information.

To tackle the problem of lacking parallel data,
we propose a cycled reinforcement learning ap-
proach that contains two parts: a neutralization
module and an emotionalization module. The
neutralization module is responsible for extracting
non-emotional semantic information by explicitly
filtering out emotional words. The advantage is
that only emotional words are removed, which
does not affect the preservation of non-emotional
words. The emotionalization module is responsi-
ble for adding sentiment to the neutralized seman-
tic content for sentiment-to-sentiment translation.

In cycled training, given an emotional sentence
with sentiment s, we first neutralize it to the non-
emotional semantic content, and then force the
emotionalization module to reconstruct the origi-
nal sentence by adding the sentiment s. Therefore,
the emotionalization module is taught to add senti-
ment to the semantic context in a supervised way.
By adding opposite sentiment, we can achieve the
goal of sentiment-to-sentiment translation. Be-
cause of the discrete choice of neutral words, the
gradient is no longer differentiable over the neu-
tralization module. Thus, we use policy gradient,
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one of the reinforcement learning methods, to re-
ward the output of the neutralization module based
on the feedback from the emotionalization mod-
ule. We add different sentiment to the semantic
content and use the quality of the generated text
as reward. The quality is evaluated by two useful
metrics: one for identifying whether the generated
text matches the target sentiment; one for evalu-
ating the content preservation performance. The
reward guides the neutralization module to better
identify non-emotional words. In return, the im-
proved neutralization module further enhances the
emotionalization module.

Our contributions are concluded as follows:

• For sentiment-to-sentiment translation, we
propose a cycled reinforcement learning ap-
proach. It enables training with unpaired
data, in which only reviews and sentiment la-
bels are available.

• Our approach tackles the bottleneck of keep-
ing semantic information by explicitly sepa-
rating sentiment information from semantic
content.

• Experimental results show that our approach
significantly outperforms the state-of-the-art
systems, especially in content preservation.

2 Related Work

Style transfer in computer vision has been stud-
ied (Johnson et al., 2016; Gatys et al., 2016; Liao
et al., 2017; Li et al., 2017; Zhu et al., 2017). The
main idea is to learn the mapping between two im-
age domains by capturing shared representations
or correspondences of higher-level structures.

There have been some studies on unpaired lan-
guage style transfer recently. Hu et al. (2017) pro-
pose a new neural generative model that combines
variational auto-encoders (VAEs) and holistic at-
tribute discriminators for effective imposition of
style semantic structures. Fu et al. (2018) pro-
pose to use an adversarial network to make sure
that the input content does not have style informa-
tion. Shen et al. (2017) focus on separating the
underlying content from style information. They
learn an encoder that maps the original sentence
to style-independent content and a style-dependent
decoder for rendering. However, their evalua-
tions only consider the transferred style accuracy.
We argue that content preservation is also an in-
dispensable evaluation metric. However, when

applied to the sentiment-to-sentiment translation
task, the previously mentioned models share the
same problem. They have the poor preservation of
non-emotional semantic content.

In this paper, we propose a cycled reinforce-
ment learning method to improve sentiment-to-
sentiment translation in the absence of parallel
data. The key idea is to build supervised train-
ing pairs by reconstructing the original sentence.
A related study is “back reconstruction” in ma-
chine translation (He et al., 2016; Tu et al., 2017).
They couple two inverse tasks: one is for trans-
lating a sentence in language A to a sentence in
language B; the other is for translating a sentence
in language B to a sentence in language A. Dif-
ferent from the previous work, we do not intro-
duce the inverse task, but use collaboration be-
tween the neutralization module and the emotion-
alization module.

Sentiment analysis is also related to our
work (Socher et al., 2011; Pontiki et al., 2015;
Rosenthal et al., 2017; Chen et al., 2017; Ma et al.,
2017, 2018b). The task usually involves detecting
whether a piece of text expresses positive, nega-
tive, or neutral sentiment. The sentiment can be
general or about a specific topic.

3 Cycled Reinforcement Learning for
Unpaired Sentiment-to-Sentiment
Translation

In this section, we introduce our proposed method.
An overview is presented in Section 3.1. The de-
tails of the neutralization module and the emo-
tionalization module are shown in Section 3.2 and
Section 3.3. The cycled reinforcement learning
mechanism is introduced in Section 3.4.

3.1 Overview

The proposed approach contains two modules:
a neutralization module and an emotionalization
module, as shown in Figure 1. The neutraliza-
tion module first extracts non-emotional seman-
tic content, and then the emotionalization module
attaches sentiment to the semantic content. Two
modules are trained by the proposed cycled rein-
forcement learning method. The proposed method
requires the two modules to have initial learning
ability. Therefore, we propose a novel pre-training
method, which uses a self-attention based senti-
ment classifier (SASC). A sketch of cycled rein-
forcement learning is shown in Algorithm 1. The
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Neutralization Module

Emotionalization Module

The food is very *

The food is very delicious

Classifier

Negative

terrible andis tastelessThe food

very deliciousisThe food

Positive

Figure 1: An illustration of the two modules.
Lower: The neutralization module removes emo-
tional words and extracts non-emotional semantic
information. Upper: The emotionalization mod-
ule adds sentiment to the semantic content. The
proposed self-attention based sentiment classifier
is used to guide the pre-training.

details are introduced as follows.

3.2 Neutralization Module

The neutralization module Nθ is used for explic-
itly filtering out emotional information. In this
paper, we consider this process as an extraction
problem. The neutralization module first identifies
non-emotional words and then feeds them into the
emotionalization module. We use a single Long-
short Term Memory Network (LSTM) to generate
the probability of being neutral or being polar for
every word in a sentence. Given an emotional in-
put sequence x = (x1, x2, . . . , xT ) of T words
from Γ, the vocabulary of words, this module is
responsible for producing a neutralized sequence.

Since cycled reinforcement learning requires
the modules with initial learning ability, we pro-
pose a novel pre-training method to teach the
neutralization module to identify non-emotional
words. We construct a self-attention based sen-
timent classifier and use the learned attention
weight as the supervisory signal. The motivation
comes from the fact that, in a well-trained senti-
ment classification model, the attention weight re-
flects the sentiment contribution of each word to

Algorithm 1 The cycled reinforcement learning
method for training the neutralization module Nθ

and the emotionalization module Eφ.
1: Initialize the neutralization module Nθ , the emotional-

ization module Eφ with random weights θ, φ
2: Pre-train Nθ using MLE based on Eq. 6
3: Pre-train Eφ using MLE based on Eq. 7
4: for each iteration i = 1, 2, ...,M do
5: Sample a sequence x with sentiment s from X
6: Generate a neutralized sequence x̂ based on Nθ
7: Given x̂ and s, generate an output based on Eφ
8: Compute the gradient of Eφ based on Eq. 8
9: Compute the reward R1 based on Eq. 11

10: s̄ = the opposite sentiment
11: Given x̂ and s̄, generate an output based on Eφ
12: Compute the reward R2 based on Eq. 11
13: Compute the combined reward Rc based on Eq. 10
14: Compute the gradient of Nθ based on Eq. 9
15: Update model parameters θ, φ
16: end for

some extent. Emotional words tend to get higher
attention weights while neutral words usually get
lower weights. The details of sentiment classifier
are described as follows.

Given an input sequence x, a sentiment label y
is produced as

y = softmax(W · c) (1)

where W is a parameter. The term c is computed
as a weighted sum of hidden vectors:

c =
T∑

i=0

αihi (2)

where αi is the weight of hi. The term hi is the
output of LSTM at the i-th word. The term αi is
computed as

αi =
exp(ei)∑T
i=0 exp(ei)

(3)

where ei = f(hi,hT ) is an alignment model. We
consider the last hidden state hT as the context
vector, which contains all information of an input
sequence. The term ei evaluates the contribution
of each word for sentiment classification.

Our experimental results show that the proposed
sentiment classifier achieves the accuracy of 89%
and 90% on two datasets. With high classifica-
tion accuracy, the attention weight produced by
the classifier is considered to adequately capture
the sentiment information of each word.

To extract non-emotional words based on con-
tinuous attention weights, we map attention
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weights to discrete values, 0 and 1. Since the dis-
crete method is not the key part is this paper, we
only use the following method for simplification.

We first calculate the averaged attention value
in a sentence as

ᾱ =
1

T

T∑

i=0

αi (4)

where ᾱ is used as the threshold to distinguish
non-emotional words from emotional words. The
discrete attention weight is calculated as

α̂i =

{
1, if αi ≤ ᾱ
0, if αi > ᾱ

(5)

where α̂i is treated as the identifier.
For pre-training the neutralization module, we

build the training pair of input text x and a discrete
attention weight sequence α̂. The cross entropy
loss is computed as

Lθ = −
T∑

i=1

PNθ(α̂i|xi) (6)

3.3 Emotionalization Module
The emotionalization module Eφ is responsible
for adding sentiment to the neutralized semantic
content. In our work, we use a bi-decoder based
encoder-decoder framework, which contains one
encoder and two decoders. One decoder adds the
positive sentiment and the other adds the negative
sentiment. The input sentiment signal determines
which decoder to use. Specifically, we use the
seq2seq model (Sutskever et al., 2014) for im-
plementation. Both the encoder and decoder are
LSTM networks. The encoder learns to compress
the semantic content into a dense vector. The de-
coder learns to add sentiment based on the dense
vector. Given the neutralized semantic content and
the target sentiment, this module is responsible for
producing an emotional sequence.

For pre-training the emotionalization module,
we first generate a neutralized input sequence x̂ by
removing emotional words identified by the pro-
posed sentiment classifier. Given the training pair
of a neutralized sequence x̂ and an original sen-
tence x with sentiment s, the cross entropy loss is
computed as

Lφ = −
T∑

i=1

PEφ(xi|x̂i, s) (7)

where a positive example goes through the posi-
tive decoder and a negative example goes through
the negative decoder.

We also explore a simpler method for pre-
training the emotionalization module, which uses
the product between a continuous vector 1 − α
and a word embedding sequence as the neutralized
content where α represents an attention weight
sequence. Experimental results show that this
method achieves much lower results than explic-
itly removing emotional words based on discrete
attention weights. Thus, we do not choose this
method in our work.

3.4 Cycled Reinforcement Learning
Two modules are trained by the proposed cycled
method. The neutralization module first neutral-
izes an emotional input to semantic content and
then the emotionalization module is forced to re-
construct the original sentence based on the source
sentiment and the semantic content. Therefore,
the emotionalization module is taught to add senti-
ment to the semantic content in a supervised way.
Because of the discrete choice of neutral words,
the loss is no longer differentiable over the neu-
tralization module. Therefore, we formulate it as
a reinforcement learning problem and use policy
gradient to train the neutralization module. The
detailed training process is shown as follows.

We refer the neutralization module Nθ as the
first agent and the emotionalization module Eφ as
the second one. Given a sentence x associated
with sentiment s, the term x̂ represents the mid-
dle neutralized context extracted by α̂, which is
generated by PNθ(α̂|x).

In cycled training, the original sentence can be
viewed as the supervision for training the second
agent. Thus, the gradient for the second agent is

∇φJ(φ) = ∇φ log(PEφ(x|x̂, s)) (8)

We denote x̄ as the output generated by
PEφ(x̄|x̂, s). We also denote y as the output gen-
erated by PEφ(y|x̂, s̄) where s̄ represents the op-
posite sentiment. Given x̄ and y, we first calcu-
late rewards for training the neutralized module,
R1 and R2. The details of calculation process will
be introduced in Section 3.4.1. Then, we optimize
parameters through policy gradient by maximiz-
ing the expected reward to train the neutralization
module. It guides the neutralization module to
identify non-emotional words better. In return, the
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improved neutralization module further enhances
the emotionalization module.

According to the policy gradient theo-
rem (Williams, 1992), the gradient for the first
agent is

∇θJ(θ) = E[Rc · ∇θ log(PNθ(α̂|x))] (9)

where Rc is calculated as

Rc = R1 +R2 (10)

Based on Eq. 8 and Eq. 9, we use the sampling
approach to estimate the expected reward. This
cycled process is repeated until converge.

3.4.1 Reward
The reward consists of two parts, sentiment con-
fidence and BLEU. Sentiment confidence evalu-
ates whether the generated text matches the target
sentiment. We use a pre-trained classifier to make
the judgment. Specially, we use the proposed self-
attention based sentiment classifier for implemen-
tation. The BLEU (Papineni et al., 2002) score
is used to measure the content preservation per-
formance. Considering that the reward should en-
courage the model to improve both metrics, we use
the harmonic mean of sentiment confidence and
BLEU as reward, which is formulated as

R = (1 + β2)
2 ·BLEU · Confid

(β2 ·BLEU) + Confid
(11)

where β is a harmonic weight.

4 Experiment

In this section, we evaluate our method on two re-
view datasets. We first introduce the datasets, the
training details, the baselines, and the evaluation
metrics. Then, we compare our approach with the
state-of-the-art systems. Finally, we show the ex-
perimental results and provide the detailed analy-
sis of the key components.

4.1 Unpaired Datasets
We conduct experiments on two review datasets
that contain user ratings associated with each re-
view. Following previous work (Shen et al., 2017),
we consider reviews with rating above three as
positive reviews and reviews below three as neg-
ative reviews. The positive and negative reviews
are not paired. Since our approach focuses on
sentence-level sentiment-to-sentiment translation

where sentiment annotations are provided at the
document level, we process the two datasets with
the following steps. First, following previous
work (Shen et al., 2017), we filter out the reviews
that exceed 20 words. Second, we construct text-
sentiment pairs by extracting the first sentence in
a review associated with its sentiment label, be-
cause the first sentence usually expresses the core
idea. Finally, we train a sentiment classifier and
filter out the text-sentiment pairs with the classi-
fier confidence below 0.8. Specially, we use the
proposed self-attention based sentiment classifier
for implementation. The details of the processed
datasets are introduced as follows.

Yelp Review Dataset (Yelp): This dataset is
provided by Yelp Dataset Challenge.2 The pro-
cessed Yelp dataset contains 400K, 10K, and 3K
pairs for training, validation, and testing, respec-
tively.

Amazon Food Review Dataset (Amazon):
This dataset is provided by McAuley and
Leskovec (2013). It consists of amounts of food
reviews from Amazon.3 The processed Ama-
zon dataset contains 230K, 10K, and 3K pairs for
training, validation, and testing, respectively.

4.2 Training Details

We tune hyper-parameters based on the perfor-
mance on the validation sets. The self-attention
based sentiment classifier is trained for 10 epochs
on two datasets. We set β for calculating reward
to 0.5, hidden size to 256, embedding size to 128,
vocabulary size to 50K, learning rate to 0.6, and
batch size to 64. We use the Adagrad (Duchi et al.,
2011) optimizer. All of the gradients are clipped
when the norm exceeds 2. Before cycled train-
ing, the neutralization module and the emotional-
ization module are pre-trained for 1 and 4 epochs
on the yelp dataset, for 3 and 5 epochs on the Ama-
zon dataset.

4.3 Baselines

We compare our proposed method with the follow-
ing state-of-the-art systems.

Cross-Alignment Auto-Encoder (CAAE):
This method is proposed by Shen et al. (2017).
They propose a method that uses refined align-
ment of latent representations in hidden layers to

2https://www.yelp.com/dataset/
challenge

3http://amazon.com
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perform style transfer. We treat this model as a
baseline and adapt it by using the released code.

Multi-Decoder with Adversarial Learning
(MDAL): This method is proposed by Fu et al.
(2018). They use a multi-decoder model with ad-
versarial learning to separate style representations
and content representations in hidden layers. We
adapt this model by using the released code.

4.4 Evaluation Metrics

We conduct two evaluations in this work, includ-
ing an automatic evaluation and a human evalua-
tion. The details of evaluation metrics are shown
as follows.

4.4.1 Automatic Evaluation
We quantitatively measure sentiment transforma-
tion by evaluating the accuracy of generating des-
ignated sentiment. For a fair comparison, we
do not use the proposed sentiment classification
model. Following previous work (Shen et al.,
2017; Hu et al., 2017), we instead use a state-
of-the-art sentiment classifier (Vieira and Moura,
2017), called TextCNN, to automatically evalu-
ate the transferred sentiment accuracy. TextCNN
achieves the accuracy of 89% and 88% on two
datasets. Specifically, we generate sentences given
sentiment s, and use the pre-trained sentiment
classifier to assign sentiment labels to the gener-
ated sentences. The accuracy is calculated as the
percentage of the predictions that match the senti-
ment s.

To evaluate the content preservation perfor-
mance, we use the BLEU score (Papineni et al.,
2002) between the transferred sentence and the
source sentence as an evaluation metric. BLEU
is a widely used metric for text generation tasks,
such as machine translation, summarization, etc.
The metric compares the automatically produced
text with the reference text by computing overlap-
ping lexical n-gram units.

To evaluate the overall performance, we use the
geometric mean of ACC and BLEU as an evalua-
tion metric. The G-score is one of the most com-
monly used “single number” measures in Informa-
tion Retrieval, Natural Language Processing, and
Machine Learning.

4.4.2 Human Evaluation
While the quantitative evaluation provides indi-
cation of sentiment transfer quality, it can not
evaluate the quality of transferred text accurately.

Yelp ACC BLEU G-score
CAAE (Shen et al., 2017) 93.22 1.17 10.44
MDAL (Fu et al., 2018) 85.65 1.64 11.85
Proposed Method 80.00 22.46 42.38
Amazon ACC BLEU G-score
CAAE (Shen et al., 2017) 84.19 0.56 6.87
MDAL (Fu et al., 2018) 70.50 0.27 4.36
Proposed Method 70.37 14.06 31.45

Table 1: Automatic evaluations of the proposed
method and baselines. ACC evaluates sentiment
transformation. BLEU evaluates content preserva-
tion. G-score is the geometric mean of ACC and
BLEU.

Therefore, we also perform a human evaluation on
the test set. We randomly choose 200 items for the
human evaluation. Each item contains the trans-
formed sentences generated by different systems
given the same source sentence. The items are
distributed to annotators who have no knowledge
about which system the sentence is from. They
are asked to score the transformed text in terms of
sentiment and semantic similarity. Sentiment rep-
resents whether the sentiment of the source text
is transferred correctly. Semantic similarity eval-
uates the context preservation performance. The
score ranges from 1 to 10 (1 is very bad and 10 is
very good).

4.5 Experimental Results

Automatic evaluation results are shown in Table 1.
ACC evaluates sentiment transformation. BLEU
evaluates semantic content preservation. G-score
represents the geometric mean of ACC and BLEU.
CAAE and MDAL achieve much lower BLEU
scores, 1.17 and 1.64 on the Yelp dataset, 0.56
and 0.27 on the Amazon dataset. The low BLEU
scores indicate the worrying content preservation
performance to some extent. Even with the desired
sentiment, the irrelevant generated text leads to
worse overall performance. In general, these two
systems work more like sentiment-aware language
models that generate text only based on the target
sentiment and neglect the source input. The main
reason is that these two systems attempt to sep-
arate emotional information from non-emotional
content in a hidden layer, where all information
is complicatedly mixed together. It is difficult to
only modify emotional information without any
loss of non-emotional semantic content.

In comparison, our proposed method achieves
the best overall performance on the two datasets,
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Yelp Sentiment Semantic G-score
CAAE (Shen et al., 2017) 7.67 3.87 5.45
MDAL (Fu et al., 2018) 7.12 3.68 5.12
Proposed Method 6.99 5.08 5.96
Amazon Sentiment Semantic G-score
CAAE (Shen et al., 2017) 8.61 3.15 5.21
MDAL (Fu et al., 2018) 7.93 3.22 5.05
Proposed Method 7.92 4.67 6.08

Table 2: Human evaluations of the proposed
method and baselines. Sentiment evaluates senti-
ment transformation. Semantic evaluates content
preservation.

demonstrating the ability of learning knowledge
from unpaired data. This result is attributed to
the improved BLEU score. The BLEU score is
largely improved from 1.64 to 22.46 and from 0.56
to 14.06 on the two datasets. The score improve-
ments mainly come from the fact that we separate
emotional information from semantic content by
explicitly filtering out emotional words. The ex-
tracted content is preserved and fed into the emo-
tionalization module. Given the overall quality of
transferred text as the reward, the neutralization
module is taught to extract non-emotional seman-
tic content better.

Table 2 shows the human evaluation results. It
can be clearly seen that the proposed method ob-
viously improves semantic preservation. The se-
mantic score is increased from 3.87 to 5.08 on the
Yelp dataset, and from 3.22 to 4.67 on the Amazon
dataset. In general, our proposed model achieves
the best overall performance. Furthermore, it also
needs to be noticed that with the large improve-
ment in content preservation, the sentiment accu-
racy of the proposed method is lower than that of
CAAE on the two datasets. It shows that simulta-
neously promoting sentiment transformation and
content preservation remains to be studied further.

By comparing two evaluation results, we find
that there is an agreement between the human
evaluation and the automatic evaluation. It indi-
cates the usefulness of automatic evaluation met-
rics. However, we also notice that the human eval-
uation has a smaller performance gap between the
baselines and the proposed method than the auto-
matic evaluation. It shows the limitation of auto-
matic metrics for giving accurate results. For eval-
uating sentiment transformation, even with a high
accuracy, the sentiment classifier sometimes gen-
erates noisy results, especially for those neutral
sentences (e.g., “I ate a cheese sandwich”). For
evaluating content preservation, the BLEU score

Input: I would strongly advise against using this com-
pany.
CAAE: I love this place for a great experience here.
MDAL: I have been a great place was great.
Proposed Method: I would love using this company.
Input: The service was nearly non-existent and ex-
tremely rude.
CAAE: The best place in the best area in vegas.
MDAL: The food is very friendly and very good.
Proposed Method: The service was served and com-
pletely fresh.
Input: Asked for the roast beef and mushroom sub,
only received roast beef.
CAAE: We had a great experience with.
MDAL: This place for a great place for a great food
and best.
Proposed Method: Thanks for the beef and spring
bbq.
Input: Worst cleaning job ever!
CAAE: Great food and great service!
MDAL: Great food, food!
Proposed Method: Excellent outstanding job ever!
Input: Most boring show I’ve ever been.
CAAE: Great place is the best place in town.
MDAL: Great place I’ve ever ever had.
Proposed Method: Most amazing show I’ve ever
been.
Input: Place is very clean and the food is delicious.
CAAE: Don’t go to this place.
MDAL: This place wasn’t worth the worst place is hor-
rible.
Proposed Method: Place is very small and the food is
terrible.
Input: Really satisfied with experience buying clothes.
CAAE: Don’t go to this place.
MDAL: Do not impressed with this place.
Proposed Method: Really bad experience.

Table 3: Examples generated by the proposed ap-
proach and baselines on the Yelp dataset. The two
baselines change not only the polarity of exam-
ples, but also the semantic content. In comparison,
our approach changes the sentiment of sentences
with higher semantic similarity.

is computed based on the percentage of overlap-
ping n-grams between the generated text and the
reference text. However, the overlapping n-grams
contain not only content words but also function
words, bringing the noisy results. In general, ac-
curate automatic evaluation metrics are expected
in future work.

Table 3 presents the examples generated by
different systems on the Yelp dataset. The two
baselines change not only the polarity of exam-
ples, but also the semantic content. In compari-
son, our method precisely changes the sentiment
of sentences (and paraphrases slightly to ensure
fluency), while keeping the semantic content un-
changed.
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Yelp ACC BLEU G-score
Emotionalization Module 41.84 25.66 32.77
+ NM + Cycled RL 85.71 1.08 9.62
+ NM + Pre-training 70.61 17.02 34.66
+ NM + Cycled RL + Pre-training 80.00 22.46 42.38
Amazon ACC BLEU G-score
Emotionalization Module 57.28 12.22 26.46
+ NM + Cycled RL 64.16 8.03 22.69
+ NM + Pre-training 69.61 11.16 27.87
+ NM + Cycled RL + Pre-training 70.37 14.06 31.45

Table 4: Performance of key components in the
proposed approach. “NM” denotes the neutraliza-
tion module. “Cycled RL” represents cycled rein-
forcement learning.

4.6 Incremental Analysis

In this section, we conduct a series of experiments
to evaluate the contributions of our key compo-
nents. The results are shown in Table 4.

We treat the emotionalization module as a base-
line where the input is the original emotional sen-
tence. The emotionalization module achieves the
highest BLEU score but with much lower senti-
ment transformation accuracy. The encoding of
the original sentiment leads to the emotional hid-
den vector that influences the decoding process
and results in worse sentiment transformation per-
formance.

It can be seen that the method with all compo-
nents achieves the best performance. First, we find
that the method that only uses cycled reinforce-
ment learning performs badly because it is hard to
guide two randomly initialized modules to teach
each other. Second, the pre-training method brings
a slight improvement in overall performance. The
G-score is improved from 32.77 to 34.66 and from
26.46 to 27.87 on the two datasets. The bottle-
neck of this method is the noisy attention weight
because of the limited sentiment classification ac-
curacy. Third, the method that combines cycled
reinforcement learning and pre-training achieves
the better performance than using one of them.
Pre-training gives the two modules initial learning
ability. Cycled training teaches the two modules to
improve each other based on the feedback signals.
Specially, the G-score is improved from 34.66 to
42.38 and from 27.87 to 31.45 on the two datasets.
Finally, by comparing the methods with and with-
out the neutralization module, we find that the neu-
tralization mechanism improves a lot in sentiment
transformation with a slight reduction on content
preservation. It proves the effectiveness of explic-

Michael is absolutely wonderful.
I would strongly advise against using this company.

Horrible experience!
Worst cleaning job ever!
Most boring show i ’ve ever been.
Hainan chicken was really good.
I really don’t understand all the negative reviews for this
dentist.
Smells so weird in there.
The service was nearly non-existent and extremely rude.

Table 5: Analysis of the neutralization module.
Words in red are removed by the neutralization
module.

itly separating sentiment information from seman-
tic content.

Furthermore, to analyze the neutralization abil-
ity in the proposed method, we randomly sample
several examples, as shown in Table 5. It can be
clearly seen that emotional words are removed ac-
curately almost without loss of non-emotional in-
formation.

4.7 Error Analysis

Although the proposed method outperforms the
state-of-the-art systems, we also observe sev-
eral failure cases, such as sentiment-conflicted
sentences (e.g., “Outstanding and bad service”),
neutral sentences (e.g., “Our first time here”).
Sentiment-conflicted sentences indicate that the
original sentiment is not removed completely.
This problem occurs when the input contains emo-
tional words that are unseen in the training data,
or the sentiment is implicitly expressed. Han-
dling complex sentiment expressions is an impor-
tant problem for future work. Neutral sentences
demonstrate that the decoder sometimes fails in
adding the target sentiment and only generates text
based on the semantic content. A better sentiment-
aware decoder is expected to be explored in future
work.

5 Conclusions and Future Work

In this paper, we focus on unpaired sentiment-
to-sentiment translation and propose a cycled re-
inforcement learning approach that enables train-
ing in the absence of parallel training data. We
conduct experiments on two review datasets. Ex-
perimental results show that our method substan-
tially outperforms the state-of-the-art systems, es-
pecially in terms of semantic preservation. For fu-
ture work, we would like to explore a fine-grained
version of sentiment-to-sentiment translation that
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not only reverses sentiment, but also changes the
strength of sentiment.
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Abstract

Natural Language Inference (NLI), also
known as Recognizing Textual Entailment
(RTE), is one of the most important prob-
lems in natural language processing. It re-
quires to infer the logical relationship be-
tween two given sentences. While current
approaches mostly focus on the interac-
tion architectures of the sentences, in this
paper, we propose to transfer knowledge
from some important discourse markers to
augment the quality of the NLI model. We
observe that people usually use some dis-
course markers such as “so” or “but” to
represent the logical relationship between
two sentences. These words potentially
have deep connections with the meanings
of the sentences, thus can be utilized to
help improve the representations of them.
Moreover, we use reinforcement learning
to optimize a new objective function with
a reward defined by the property of the
NLI datasets to make full use of the labels
information. Experiments show that our
method achieves the state-of-the-art per-
formance on several large-scale datasets.

1 Introduction

In this paper, we focus on the task of Natural Lan-
guage Inference (NLI), which is known as a sig-
nificant yet challenging task for natural language
understanding. In this task, we are given two sen-
tences which are respectively called premise and
hypothesis. The goal is to determine whether the
logical relationship between them is entailment,
neutral, or contradiction.

Recently, performance on NLI(Chen et al.,
2017b; Gong et al., 2018; Chen et al., 2017c)

∗corresponding author

Premise: A soccer game with multiple males
playing.
Hypothesis: Some men are playing a sport.
Label: Entailment
Premise: An older and younger man smiling.
Hypothesis: Two men are smiling and laughing
at the cats playing on the floor.
Label: Neutral
Premise: A black race car starts up in front of
a crowd of people
Hypothesis: A man is driving down a lonely
road.
Label: Contradiction

Table 1: Three examples in SNLI dataset.

has been significantly boosted since the re-
lease of some high quality large-scale benchmark
datasets such as SNLI(Bowman et al., 2015) and
MultiNLI(Williams et al., 2017). Table 1 shows
some examples in SNLI. Most state-of-the-art
works focus on the interaction architectures be-
tween the premise and the hypothesis, while they
rarely concerned the discourse relations of the sen-
tences, which is a core issue in natural language
understanding.

People usually use some certain set of words
to express the discourse relation between two sen-
tences1. These words, such as “but” or “and”, are
denoted as discourse markers. These discourse
markers have deep connections with the intrinsic
relations of two sentences and intuitively corre-
spond to the intent of NLI, such as “but” to “con-
tradiction”, “so” to “entailment”, etc.

Very few NLI works utilize this information re-
vealed by discourse markers. Nie et al. (2017)
proposed to use discourse markers to help rep-

1Here sentences mean either the whole sentences or the
main clauses of a compound sentence.
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resent the meanings of the sentences. However,
they represent each sentence by a single vector and
directly concatenate them to predict the answer,
which is too simple and not ideal for the large-
scale datasets.

In this paper, we propose a Discourse Marker
Augmented Network for natural language infer-
ence, where we transfer the knowledge from the
existing supervised task: Discourse Marker Pre-
diction (DMP)(Nie et al., 2017), to an integrated
NLI model. We first propose a sentence encoder
model that learns the representations of the sen-
tences from the DMP task and then inject the en-
coder to the NLI network. Moreover, because our
NLI datasets are manually annotated, each exam-
ple from the datasets might get several different la-
bels from the annotators although they will finally
come to a consensus and also provide a certain la-
bel. In consideration of that different confidence
level of the final labels should be discriminated,
we employ reinforcement learning with a reward
defined by the uniformity extent of the original la-
bels to train the model. The contributions of this
paper can be summarized as follows.

• Unlike previous studies, we solve the task
of the natural language inference via trans-
ferring knowledge from another supervised
task. We propose the Discourse Marker Aug-
mented Network to combine the learned en-
coder of the sentences with the integrated
NLI model.

• According to the property of the datasets, we
incorporate reinforcement learning to opti-
mize a new objective function to make full
use of the labels’ information.

• We conduct extensive experiments on two
large-scale datasets to show that our method
achieves better performance than other state-
of-the-art solutions to the problem.

2 Task Description

2.1 Natural Language Inference (NLI)

In the natural language inference tasks, we are
given a pair of sentences (P,H), which respec-
tively means the premise and hypothesis. Our
goal is to judge whether their logical relationship
between their meanings by picking a label from
a small set: entailment (The hypothesis is defi-
nitely a true description of the premise), neutral

(The hypothesis might be a true description of
the premise), and contradiction (The hypothesis is
definitely a false description of the premise).

2.2 Discourse Marker Prediction (DMP)
For DMP, we are given a pair of sentences
(S1, S2), which is originally the first half and sec-
ond half of a complete sentence. The model must
predict which discourse marker was used by the
author to link the two ideas from a set of candi-
dates.

3 Sentence Encoder Model

Following (Nie et al., 2017; Kiros et al., 2015), we
use BookCorpus(Zhu et al., 2015) as our training
data for discourse marker prediction, which is a
dataset of text from unpublished novels, and it is
large enough to avoid bias towards any particular
domain or application. After preprocessing, we
obtain a dataset with the form (S1, S2,m), which
means the first half sentence, the last half sentence,
and the discourse marker that connected them in
the original text. Our goal is to predict them given
S1 and S2.

We first use Glove(Pennington et al., 2014) to
transform {St}2t=1 into vectors word by word and
subsequently input them to a bi-directional LSTM:

−→
hit =

−−−−→
LSTM(Glove(Sit)), i = 1, ..., |St|

←−
hit =

←−−−−
LSTM(Glove(Sit)), i = |St|, ..., 1

(1)

where Glove(w) is the embedding vector of the
word w from the Glove lookup table, |St| is the
length of the sentence St. We apply max pool-
ing on the concatenation of the hidden states from
both directions, which provides regularization and
shorter back-propagation paths(Collobert and We-
ston, 2008), to extract the features of the whole
sequences of vectors:

−→rt = Maxdim([
−→
h1
t ;
−→
h2
t ; ...;

−−→
h
|St|
t ])

←−rt = Maxdim([
←−
h1
t ;
←−
h2
t ; ...;

←−−
h
|St|
t ])

(2)

where Maxdim means that the max pooling is per-
formed across each dimension of the concatenated
vectors, [; ] denotes concatenation. Moreover, we
combine the last hidden state from both directions
and the results of max pooling to represent our
sentences:

rt = [−→rt ;←−rt ;
−−→
h
|St|
t ;
←−
h1
t ]

(3)
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Figure 1: Overview of our Discource Marker Augmented Network, comprising the part of Discourse
Marker Prediction (upper) for pre-training and Natural Language Inferance (bottom) to which the learned
knowledge will be transferred.

where rt is the representation vector of the sen-
tence St. To predict the discource marker be-
tween S1 and S2, we combine the representations
of them with some linear operation:

r = [r1; r2; r1 + r2; r1 � r2] (4)

where � is elementwise product. Finally we
project r to a vector of label size (the total num-
ber of discourse markers in the dataset) and use
softmax function to normalize the probability dis-
tribution.

4 Discourse Marker Augmented
Network

As presented in Figure 1, we show how our Dis-
course Marker Augmented Network incorporates
the learned encoder into the NLI model.

4.1 Encoding Layer
We denote the premise as P and the hypothesis as
H . To encode the words, we use the concatenation
of following parts:
Word Embedding: Similar to the previous sec-
tion, we map each word to a vector space by using
pre-trained word vectors GloVe.
Character Embedding: We apply Convolutional
Neural Networks (CNN) over the characters of
each word. This approach is proved to be help-
ful in handling out-of-vocab (OOV) words(Yang
et al., 2017).
POS and NER tags: We use the part-of-speech
(POS) tags and named-entity recognition (NER)

tags to get syntactic information and entity label of
the words. Following (Pan et al., 2017b), we ap-
ply the skip-gram model(Mikolov et al., 2013) to
train two new lookup tables of POS tags and NER
tags respectively. Each word can get its own POS
embedding and NER embedding by these lookup
tables. This approach represents much better geo-
metrical features than common used one-hot vec-
tors.
Exact Match: Inspired by the machine compre-
hension tasks(Chen et al., 2017a), we want to
know whether every word in P is in H (and H
in P ). We use three binary features to indicate
whether the word can be exactly matched to any
question word, which respectively means original
form, lowercase and lemma form.

For encoding, we pass all sequences of vectors
into a bi-directional LSTM and obtain:

pi = BiLSTM(frep(Pi),pi−1), i = 1, ..., n

uj = BiLSTM(frep(Hj),uj−1), j = 1, ...,m
(5)

where frep(x) = [Glove(x); Char(x); POS(x);
NER(x); EM(x)] is the concatenation of the em-
bedding vectors and the feature vectors of the
word x, n = |P |, m = |H|.

4.2 Interaction Layer
In this section, we feed the results of the encoding
layer and the learned sentence encoder into the at-
tention mechanism, which is responsible for link-
ing and fusing information from the premise and
the hypothesis words.
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We first obtain a similarity matrix A ∈ Rn×m
between the premise and hypothesis by

Aij = v>1 [pi;uj ;pi ◦ uj ; rp; rh] (6)

where v1 is the trainable parameter, rp and rh are
sentences representations from the equation (3)
learned in the Section 3, which denote the premise
and hypothesis respectively. In addition to previ-
ous popular similarity matrix, we incorporate the
relevance of each word of P (H) to the whole sen-
tence ofH(P ). Now we use A to obtain the atten-
tions and the attended vectors in both directions.

To signify the attention of the i-th word of P to
every word of H , we use the weighted sum of uj
by Ai::

ũi =
∑

j

Aij · uj (7)

where ũi is the attention vector of the i-th word
of P for the entire H . In the same way, the p̃j is
obtained via:

p̃j =
∑

i

Aij · pi (8)

To model the local inference between aligned
word pairs, we integrate the attention vectors with
the representation vectors via:

p̂i = f([pi; ũi;pi − ũi;pi � ũi])

ûj = f([uj ; p̃j ;uj − p̃j ;uj � p̃j ])
(9)

where f is a 1-layer feed-forward neural network
with the ReLU activation function, p̂i and ûj are
local inference vectors. Inspired by (Seo et al.,
2016) and (Chen et al., 2017b), we use a mod-
eling layer to capture the interaction between the
premise and the hypothesis. Specifically, we use
bi-directional LSTMs as building blocks:

pMi = BiLSTM(p̂i,p
M
i−1)

uMj = BiLSTM(ûj ,u
M
j−1)

(10)

Here, pMi and uMj are the modeling vectors which
contain the crucial information and relationship
among the sentences.

We compute the representation of the whole
sentence by the weighted average of each word:

pM =
∑

i

exp(v>2 p
M
i )∑

i′ exp(v>2 p
M
i′ )

pMi

uM =
∑

j

exp(v>3 u
M
j )

∑
j′ exp(v>3 u

M
j′ )

uMj

(11)

Label SNLI MultiNLI
Number Correct Total Correct Total

1 510711 510711 392702 392702
2 0 0 0 0
3 8748 0 3045 0
4 16395 2199 4859 0
5 33179 56123 11743 19647

Table 2: Statistics of the labels of SNLI and
MuliNLI. Total means the number of examples
whose number of annotators is in the left column.
Correct means the number of examples whose
number of correct labels from the annotators is in
the left column.

where v2,v3 are trainable vectors. We don’t share
these parameter vectors in this seemingly parallel
strucuture because there is some subtle difference
between the premise and hypothesis, which will
be discussed later in Section 5.

4.3 Output Layer

The NLI task requires the model to predict the
logical relation from the given set: entailment,
neutral or contradiction. We obtain the probabil-
ity distribution by a linear function with softmax
function:

d = softmax(W[pM ;uM ;pM � uM ; rp � rh])
(12)

where W is a trainable parameter. We com-
bine the representations of the sentences computed
above with the representations learned from DMP
to obtain the final prediction.

4.4 Training

As shown in Table 2, many examples from our
datasets are labeled by several people, and the
choices of the annotators are not always consis-
tent. For instance, when the label number is 3 in
SNLI, “total=0” means that no examples have 3
annotators (maybe more or less); “correct=8748”
means that there are 8748 examples whose num-
ber of correct labels is 3 (the number of annotators
maybe 4 or 5, but some provided wrong labels).
Although all the labels for each example will be
unified to a final (correct) label, diversity of the
labels for a single example indicates the low con-
fidence of the result, which is not ideal to only use
the final label to optimize the model.
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We propose a new objective function that com-
bines both the log probabilities of the ground-truth
label and a reward defined by the property of the
datasets for the reinforcement learning. The most
widely used objective function for the natural lan-
guage inference is to minimize the negative log
cross-entropy loss:

JCE(Θ) = − 1

N

N∑

k

log(dkl ) (13)

where Θ are all the parameters to optimize, N is
the number of examples in the dataset, dl is the
probability of the ground-truth label l.

However, directly using the final label to train
the model might be difficult in some situations,
where the example is confusing and the labels
from the annotators are different. For instance,
consider an example from the SNLI dataset:

• P : “A smiling costumed woman is holding
an umbrella.”

• H: “A happy woman in a fairy costume holds
an umbrella.”

The final label is neutral, but the original labels
from the five annotators are neural, neural, en-
tailment, contradiction, neural, in which case the
relation between “smiling” and “happy” might be
under different comprehension. The final label’s
confidence of this example is obviously lower than
an example that all of its labels are the same. To
simulate the thought of human being more closely,
in this paper, we tackle this problem by using the
REINFORCE algorithm(Williams, 1992) to min-
imize the negative expected reward, which is de-
fined as:

JRL(Θ) = −El∼π(l|P,H)[R(l, {l∗})] (14)

where π(l|P,H) is the previous action policy that
predicts the label given P and H , {l∗} is the set of
annotated labels, and

R(l, {l∗}) =
number of l in {l∗}

|{l∗}| (15)

is the reward function defined to measure the dis-
tance to all the ideas of the annotators.

To avoid of overwriting its earlier results and
further stabilize training, we use a linear function
to integrate the above two objective functions:

J(Θ) = λJCE(Θ) + (1− λ)JRL(Θ) (16)

where λ is a tunable hyperparameter.

Discourse Marker Percentage(%)

but 57.12
because 9.41

if 29.78
when 25.32

so 31.01
although 1.76

before 15.52
still 11.29

Table 3: Statistics of discouse markers in our
dataset from BookCorpus.

5 Experiments

5.1 Datasets

BookCorpus: We use the dataset from BookCor-
pus(Zhu et al., 2015) to pre-train our sentence
encoder model. We preprocessed and collected
discourse markers from BookCorpus as (Nie et al.,
2017). We finally curated a dataset of 6527128
pairs of sentences for 8 discourse markers, whose
statistics are shown in Table 3.
SNLI: Stanford Natural Language Infer-
ence(Bowman et al., 2015) is a collection of
more than 570k human annotated sentence
pairs labeled for entailment, contradiction, and
semantic independence. SNLI is two orders of
magnitude larger than all other resources of its
type. The premise data is extracted from the cap-
tions of the Flickr30k corpus(Young et al., 2014),
the hypothesis data and the labels are manually
annotated. The original SNLI corpus contains also
the other category, which includes the sentence
pairs lacking consensus among multiple human
annotators. We remove this category and use the
same split as in (Bowman et al., 2015) and other
previous work.
MultiNLI: Multi-Genre Natural Language Infer-
ence(Williams et al., 2017) is another large-scale
corpus for the task of NLI. MultiNLI has 433k
sentences pairs and is in the same format as
SNLI, but it includes a more diverse range of text,
as well as an auxiliary test set for cross-genre
transfer evaluation. Half of these selected genres
appear in training set while the rest are not,
creating in-domain (matched) and cross-domain
(mismatched) development/test sets.
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Method SNLI MultiNLI
Matched Mismatched

300D LSTM encoders(Bowman et al., 2016) 80.6 – –
300D Tree-based CNN encoders(Mou et al., 2016) 82.1 – –
4096D BiLSTM with max-pooling(Conneau et al., 2017) 84.5 – –
600D Gumbel TreeLSTM encoders(Choi et al., 2017) 86.0 – –
600D Residual stacked encoders(Nie and Bansal, 2017) 86.0 74.6 73.6
Gated-Att BiLSTM(Chen et al., 2017d) – 73.2 73.6
100D LSTMs with attention(Rocktäschel et al., 2016) 83.5 – –
300D re-read LSTM(Sha et al., 2016) 87.5 – –
DIIN(Gong et al., 2018) 88.0 78.8 77.8
Biattentive Classification Network(McCann et al., 2017) 88.1 – –
300D CAFE(Tay et al., 2017) 88.5 78.7 77.9
KIM(Chen et al., 2017b) 88.6 – –
600D ESIM + 300D Syntactic TreeLSTM(Chen et al., 2017c) 88.6 – –
DMAN 88.8 78.9 78.2
BiMPM(Ensemble)(Wang et al., 2017) 88.8 – –
DIIN(Ensemble)(Gong et al., 2018) 88.9 80.0 78.7
KIM(Ensemble)(Chen et al., 2017b) 89.1 – –
300D CAFE(Ensemble)(Tay et al., 2017) 89.3 80.2 79.0
DMAN(Ensemble) 89.6 80.3 79.4

Table 4: Performance on the SNLI dataset and the MultiNLI dataset. In the top part, we show sentence
encoding-based models; In the medium part, we present the performance of integrated neural network
models; In the bottom part, we show the results of ensemble models.

5.2 Implementation Details

We use the Stanford CoreNLP toolkit(Manning
et al., 2014) to tokenize the words and generate
POS and NER tags. The word embeddings are ini-
tialized by 300d Glove(Pennington et al., 2014),
the dimensions of POS and NER embeddings are
30 and 10. The dataset we use to train the embed-
dings of POS tags and NER tags are the training
set given by SNLI. We apply Tensorflow r1.3 as
our neural network framework. We set the hid-
den size as 300 for all the LSTM layers and ap-
ply dropout(Srivastava et al., 2014) between lay-
ers with an initial ratio of 0.9, the decay rate as
0.97 for every 5000 step. We use the AdaDelta for
optimization as described in (Zeiler, 2012) with ρ
as 0.95 and ε as 1e-8. We set our batch size as 36
and the initial learning rate as 0.6. The parame-
ter λ in the objective function is set to be 0.2. For
DMP task, we use stochastic gradient descent with
initial learning rate as 0.1, and we anneal by half
each time the validation accuracy is lower than the
previous epoch. The number of epochs is set to be
10, and the feedforward dropout rate is 0.2. The

learned encoder in subsequent NLI task is train-
able.

5.3 Results

In table 4, we compare our model to other compet-
itive published models on SNLI and MultiNLI. As
we can see, our method Discourse Marker Aug-
mented Network (DMAN) clearly outperforms all
the baselines and achieves the state-of-the-art re-
sults on both datasets.

The methods in the top part of the table are
sentence encoding based models. Bowman et al.
(2016) proposed a simple baseline that uses LSTM
to encode the whole sentences and feed them into
a MLP classifier to predict the final inference re-
lationship, they achieve an accuracy of 80.6% on
SNLI. Nie and Bansal (2017) test their model on
both SNLI and MiltiNLI, and achieves competi-
tive results.

In the medium part, we show the results of
other neural network models. Obviously, the per-
formance of most of the integrated methods are
better than the sentence encoding based mod-
els above. Both DIIN(Gong et al., 2018) and
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Ablation Model Accuracy

Only Sentence Encoder Model 83.37
No Sentence Encoder Model 87.24
No Char Embedding 87.95
No POS Embedding 88.76
No NER Embedding 88.71
No Exact Match 88.26
No REINFORCE 88.41
DMAN 88.83

Table 5: Ablations on the SNLI development
dataset.

CAFE(Tay et al., 2017) exceed other methods
by more than 4% on MultiNLI dataset. How-
ever, our DMAN achieves 88.8% on SNLI, 78.9%
on matched MultiNLI and 78.2% on mismatched
MultiNLI, which are all best results among the
baselines.

We present the ensemble results on both
datasets in the bottom part of the table 4. We
build an ensemble model which consists of 10 sin-
gle models with the same architecture but initial-
ized with different parameters. The performance
of our model achieves 89.6% on SNLI, 80.3%
on matched MultiNLI and 79.4% on mismatched
MultiNLI, which are all state-of-the-art results.

5.4 Ablation Analysis

As shown in Table 5, we conduct an ablation ex-
periment on SNLI development dataset to evaluate
the individual contribution of each component of
our model. Firstly we only use the results of the
sentence encoder model to predict the answer, in
other words, we represent each sentence by a sin-
gle vector and use dot product with a linear func-
tion to do the classification. The result is obvi-
ously not satisfactory, which indicates that only
using sentence embedding from discourse mark-
ers to predict the answer is not ideal in large-scale
datasets. We then remove the sentence encoder
model, which means we don’t use the knowledge
transferred from the DMP task and thus the rep-
resentations rp and rh are set to be zero vectors
in the equation (6) and the equation (12). We
observe that the performance drops significantly
to 87.24%, which is nearly 1.5% to our DMAN
model, which indicates that the discourse mark-
ers have deep connections with the logical rela-
tions between two sentences they links. When

Figure 2: Performance when the sentence encoder
is pretrained on different discourse markers sets.
“NONE” means the model doesn’t use any dis-
course markers; “ALL” means the model use all
the discourse markers.

we remove the character-level embedding and the
POS and NER features, the performance drops a
lot. We conjecture that those feature tags help the
model represent the words as a whole while the
char-level embedding can better handle the out-
of-vocab (OOV) or rare words. The exact match
feature also demonstrates its effectiveness in the
ablation result. Finally, we ablate the reinforce-
ment learning part, in other words, we only use
the original loss function to optimize the model
(set λ = 1). The result drops about 0.5%, which
proves that it is helpful to utilize all the informa-
tion from the annotators.

5.5 Semantic Analysis

In Figure 2, we show the performance on the three
relation labels when the model is pre-trained on
different discourse markers sets. In other words,
we removed discourse marker from the original
set each time and use the rest 7 discourse mark-
ers to pre-train the sentence encoder in the DMP
task and then train the DMAN. As we can see,
there is a sharp decline of accuracy when remov-
ing “but”, “because” and “although”. We can in-
tuitively speculate that “but” and “although” have
direct connections with the contradiction label
(which drops most significantly) while “because”
has some links with the entailment label. We ob-
serve that some discourse markers such as “if” or
“before” contribute much less than other words
which have strong logical hints, although they
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(a) Discourse markers augmentation

(b) Without discourse markers augmentation

Figure 3: Comparison of the visualized similarity
relations.

actually improve the performance of the model.
Compared to the other two categories, the “contra-
diction” label examples seem to benefit the most
from the pre-trained sentence encoder.

5.6 Visualization
In Figure 3, we also provide a visualized analysis
of the hidden representation from similarity ma-
trix A (computed in the equation (6)) in the situ-
ations that whether we use the discourse markers
or not. We pick a sentence pair whose premise
is “3 young man in hoods standing in the mid-
dle of a quiet street facing the camera.” and hy-
pothesis is “Three people sit by a busy street bare-
headed.” We observe that the values are highly
correlated among the synonyms like “people” with
“man”, “three” with “3” in both situations. How-
ever, words that might have contradictory mean-
ings like “hoods” with “bareheaded”, “quiet” with
“busy” perform worse without the discourse mark-
ers augmentation, which conforms to the conclu-
sion that the “contradiction” label examples bene-
fit a lot which is observed in the Section 5.5.

6 Related Work

6.1 Discourse Marker Applications
This work is inspired most directly by the DisSent
model and Discourse Prediction Task of Nie et al.
(2017), which introduce the use of the discourse

markers information for the pretraining of sen-
tence encoders. They follow (Kiros et al., 2015) to
collect a large sentence pairs corpus from Book-
Corpus(Zhu et al., 2015) and propose a sentence
representation based on that. They also apply their
pre-trained sentence encoder to a series of natural
language understanding tasks such as sentiment
analysis, question-type, entailment, and related-
ness. However, all those datasets are provided by
Conneau et al. (2017) for evaluating sentence em-
beddings and are almost all small-scale and are
not able to support more complex neural network.
Moreover, they represent each sentence by a sin-
gle vector and directly combine them to predict the
answer, which is not able to interact among the
words level.

In closely related work, Jernite et al. (2017)
propose a model that also leverage discourse re-
lations. However, they manually group the dis-
course markers into several categories based on
human knowledge and predict the category instead
of the explicit discourse marker phrase. How-
ever, the size of their dataset is much smaller than
that in (Nie et al., 2017), and sometimes there has
been disagreement among annotators about what
exactly is the correct categorization of discourse
relations(Hobbs, 1990).

Unlike previous works, we insert the sentence
encoder into an integrated network to augment
the semantic representation for NLI tasks rather
than directly combining the sentence embeddings
to predict the relations.

6.2 Natural Language Inference

Earlier research on the natural language inference
was based on small-scale datasets(Marelli et al.,
2014), which relied on traditional methods such as
shallow methods(Glickman et al., 2005), natural
logic methods(MacCartney and Manning, 2007),
etc. These datasets are either not large enough to
support complex deep neural network models or
too easy to challenge natural language.

Large and complicated networks have been
successful in many natural language process-
ing tasks(Zhu et al., 2017; Chen et al., 2017e;
Pan et al., 2017a). Recently, Bowman et al.
(2015) released Stanford Natural language Infer-
ence (SNLI) dataset, which is a high-quality and
large-scale benchmark, thus inspired many signifi-
cant works(Bowman et al., 2016; Mou et al., 2016;
Vendrov et al., 2016; Conneau et al., 2017; Wang
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et al., 2017; Gong et al., 2018; McCann et al.,
2017; Chen et al., 2017b; Choi et al., 2017; Tay
et al., 2017). Most of them focus on the improve-
ment of the interaction architectures and obtain
competitive results, while transfer learning from
external knowledge is popular as well. Vendrov
et al. (2016) incorpated Skipthought(Kiros et al.,
2015), which is an unsupervised sequence model
that has been proven to generate useful sentence
embedding. McCann et al. (2017) proposed to
transfer the pre-trained encoder from the neural
machine translation (NMT) to the NLI tasks.

Our method combines a pre-trained sentence
encoder from the DMP task with an integrated NLI
model to compose a novel framework. Further-
more, unlike previous studies, we make full use
of the labels provided by the annotators and em-
ploy policy gradient to optimize a new objective
function in order to simulate the thought of human
being.

7 Conclusion

In this paper, we propose Discourse Marker Aug-
mented Network for the task of the natural lan-
guage inference. We transfer the knowledge
learned from the discourse marker prediction task
to the NLI task to augment the semantic represen-
tation of the model. Moreover, we take the various
views of the annotators into consideration and em-
ploy reinforcement learning to help optimize the
model. The experimental evaluation shows that
our model achieves the state-of-the-art results on
SNLI and MultiNLI datasets. Future works in-
volve the choice of discourse markers and some
other transfer learning sources.
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Abstract

During the last years, there has been a
lot of interest in achieving some kind of
complex reasoning using deep neural net-
works. To do that, models like Mem-
ory Networks (MemNNs) have combined
external memory storages and attention
mechanisms. These architectures, how-
ever, lack of more complex reasoning
mechanisms that could allow, for instance,
relational reasoning. Relation Networks
(RNs), on the other hand, have shown
outstanding results in relational reasoning
tasks. Unfortunately, their computational
cost grows quadratically with the number
of memories, something prohibitive for
larger problems. To solve these issues,
we introduce the Working Memory Net-
work, a MemNN architecture with a novel
working memory storage and reasoning
module. Our model retains the relational
reasoning abilities of the RN while re-
ducing its computational complexity from
quadratic to linear. We tested our model
on the text QA dataset bAbI and the visual
QA dataset NLVR. In the jointly trained
bAbI-10k, we set a new state-of-the-art,
achieving a mean error of less than 0.5%.
Moreover, a simple ensemble of two of our
models solves all 20 tasks in the joint ver-
sion of the benchmark.

1 Introduction

A central ability needed to solve daily tasks is
complex reasoning. It involves the capacity to
comprehend and represent the environment, re-
tain information from past experiences, and solve
problems based on the stored information. Our
ability to solve those problems is supported by

multiple specialized components, including short-
term memory storage, long-term semantic and
procedural memory, and an executive controller
that, among others, controls the attention over
memories (Baddeley, 1992).

Many promising advances for achieving com-
plex reasoning with neural networks have been ob-
tained during the last years. Unlike symbolic ap-
proaches to complex reasoning, deep neural net-
works can learn representations from perceptual
information. Because of that, they do not suf-
fer from the symbol grounding problem (Har-
nad, 1999), and can generalize better than clas-
sical symbolic approaches. Most of these neu-
ral network models make use of an explicit mem-
ory storage and an attention mechanism. For in-
stance, Memory Networks (MemNN), Dynamic
Memory Networks (DMN) or Neural Turing Ma-
chines (NTM) (Weston et al., 2014; Kumar et al.,
2016; Graves et al., 2014) build explicit memories
from the perceptual inputs and access these mem-
ories using learned attention mechanisms. Af-
ter that some memories have been attended, us-
ing a multi-step procedure, the attended memories
are combined and passed through a simple out-
put layer that produces a final answer. While this
allows some multi-step inferential process, these
networks lack a more complex reasoning mecha-
nism, needed for more elaborated tasks such as in-
ferring relations among entities (relational reason-
ing). On the contrary, Relation Networks (RNs),
proposed in Santoro et al. (2017), have shown
outstanding performance in relational reasoning
tasks. Nonetheless, a major drawback of RNs
is that they consider each of the input objects in
pairs, having to process a quadratic number of
relations. That limits the usability of the model
on large problems and makes forward and back-
ward computations quite expensive. To solve these
problems we propose a novel Memory Network
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Figure 1: The W-MemNN model applied to textual question answering. Each input fact is processed
using a GRU, and the output representation is stored in the short-term memory storage. Then, the atten-
tional controller computes an output vector that summarizes relevant parts of the memories. This process
is repeated H hops (a dotted line delimits each hop), and each output is stored in the working memory
buffer. Finally, the output of each hop is passed to the reasoning module that produces the final output.

architecture called the Working Memory Network
(W-MemNN). Our model augments the original
MemNN with a relational reasoning module and
a new working memory buffer.

The attention mechanism of the Memory Net-
work allows the filtering of irrelevant inputs, re-
ducing a lot of the computational complexity
while keeping the relational reasoning capabili-
ties of the RN. Three main components compose
the W-MemNN: An input module that converts
the perceptual inputs into an internal vector rep-
resentation and save these representations into a
short-term storage, an attentional controller that
attend to these internal representations and update
a working memory buffer, and a reasoning mod-
ule that operates on the set of objects stored in
the working memory buffer in order to produce a
final answer. This component-based architecture
is inspired by the well-known model from cogni-
tive sciences called the multi-component working
memory model, proposed in Baddeley and Hitch
(1974).
We studied the proposed model on the text-based
QA benchmark bAbI (Weston et al., 2015) which
consists of 20 different toy tasks that measure dif-
ferent reasoning skills. While models such as Ent-
Net (Henaff et al., 2016) have focused on the per-
task training version of the benchmark (where a
different model is trained for each task), we de-
cided to focus on the jointly trained version of the

task, where the model is trained on all tasks simul-
taneously. In the jointly trained bAbI-10k bench-
mark we achieved state-of-the-art performance,
improving the previous state-of-the-art on more
than 2%. Moreover, a simple ensemble of two
of our models can solve all 20 tasks simultane-
ously. Also, we tested our model on the visual QA
dataset NLVR. In that dataset, we obtained per-
formance at the level of the Module Neural Net-
works (Andreas et al., 2016). Our model, however,
achieves these results using the raw input state-
ments, without the extra text processing used in
the Module Networks.

Finally, qualitative and quantitative analysis
shows that the inclusion of the Relational Rea-
soning module is crucial to improving the perfor-
mance of the MemNN on tasks that involve re-
lational reasoning. We can achieve this perfor-
mance by also reducing the computation times of
the RN considerably. Consequently, we hope that
this contribution may allow applying RNs to larger
problems.

2 Model

Our model is based on the Memory Network ar-
chitecture. Unlike MemNN we have included a
reasoning module that helps the network to solve
more complex tasks. The proposed model consists
of three main modules: An input module, an at-
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tentional controller, and a reasoning module. The
model processes the input information in multiple
passes or hops. At each pass the output of the pre-
vious hop can condition the current pass, allowing
some incremental refinement.
Input module: The input module converts the
perceptual information into an internal feature rep-
resentation. The input information can be pro-
cessed in chunks, and each chunk is saved into
a short-term storage. The definition of what is a
chunk of information depends on each task. For
instance, for textual question answering, we define
each chunk as a sentence. Other options might be
n-grams or full documents. This short-term stor-
age can only be accessed during the hop.
Attentional Controller: The attentional con-
troller decides in which parts of the short-term
storage the model should focus. The attended
memories are kept during all the hops in a work-
ing memory buffer. The attentional controller is
conditioned by the task at hand, for instance, in
question answering the question can condition the
attention. Also, it may be conditioned by the out-
put of previous hops, allowing the model to change
its focus to new portions of the memory over time.
Many models compute the attention for each
memory using a compatibility function between
the memory and the question. Then, the output
is calculated as the weighted sum of the memory
values, using the attention as weight. A simple
way to compute the attention for each memory is
to use dot-product attention. This kind of mech-
anism is used in the original Memory Network
and computes the attention value as the dot prod-
uct between each memory and the question. Al-
though this kind of attention is simple, it may not
be enough for more complex tasks. Also, since
there are no learned weights in the attention mech-
anism, the attention relies entirely on the learned
embeddings. That is something that we want to
avoid in order to separate the learning of the in-
put and attention module. One way to allow learn-
ing in the dot-product attention is to project the
memories and query vectors linearly. That is done
by multiplying each vector by a learned projec-
tion matrix (or equivalently a feed-forward neural
network). In this way, we can set apart the atten-
tion and input embeddings learning, and also al-
low more complex patterns of attention.

Reasoning Module: The memories stored in
the working memory buffer are passed to the rea-

soning module. The choice of reasoning mecha-
nism is left open and may depend on the task at
hand. In this work, we use a Relation Network
as the reasoning module. The RN takes the at-
tended memories in pairs to infer relations among
the memories. That can be useful, for example, in
tasks that include comparisons.
A detailed description of the full model is shown
in Figure 1.

2.1 W-MemN2N for Textual Question
Answering

We proceed to describe an implementation of the
model for textual question answering. In textual
question answering the input consists of a set of
sentences or facts, a question, and an answer. The
goal is to answer the question correctly based on
the given facts.
Let (s, q, a) represents an input sample, consisting
of a set of sentences s = {xi}Li=1, a query q and
an answer a. Each sentence contains M words,
{wi}Mi=1, where each word is represented as a one-
hot vector of length |V |, being |V | the vocabulary
size. The question contains Q words, represented
as in the input sentences.

Input Module
Each word in each sentence is encoded into a vec-
tor representation vi using an embedding matrix
W ∈ R|V |×d, where d is the embedding size.
Then, the sentence is converted into a memory
vector mi using the final output of a gated recur-
rent neural network (GRU) (Chung et al., 2014):

mi = GRU([v1, v2, ..., vM ])

Each memory {mi}Li=1, where mi ∈ Rd, is stored
into the short-term memory storage. The question
is encoded into a vector u in a similar way, using
the output of a gated recurrent network.

Attentional Controller
Our attention module is based on the Multi-Head
attention mechanism proposed in Vaswani et al.
(2017). First, the memories are projected using
a projection matrixWm ∈ Rd×d, asm′i =Wmmi.
Then, the similarity between the projected mem-
ory and the question is computed using the Scaled
Dot-Product attention:

αi = Softmax
(uTm′i√

d

)
(1)

=
exp((uTm′i)/

√
d)∑

j exp((u
Tm′j)/

√
d)
. (2)
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Next, the memories are combined using the atten-
tion weights αi, obtaining an output vector h =∑

j αjmj .
In the Multi-Head mechanism, the memories are
projected S times using different projection matri-
ces {W s

m}Ss=1. For each group of projected mem-
ories, an output vector {hi}Si=1 is obtained using
the Scaled Dot-Product attention (eq. 2). Finally,
all vector outputs are concatenated and projected
again using a different matrix:

ok = [h1;h2; ...;hS ]Wo,

where ; is the concatenation operator and Wo ∈
RSd×d. The ok vector is the final response vector
for the hop k. This vector is stored in the working
memory buffer. The attention procedure can be
repeated many times (or hops). At each hop, the
attention can be conditioned on the previous hop
by replacing the question vector u by the output of
the previous hop. To do that we pass the output
through a simple neural network ft. Then, we use
the output of the network as the new conditioner:

onk = ft(ok). (3)

This network allows some learning in the transi-
tion patterns between hops.
We found Multi-Head attention to be very useful
in the joint bAbI task. This can be a product of
the intrinsic multi-task nature of the bAbI dataset.
A possibility is that each attention head is being
adapted for different groups of related tasks. How-
ever, we did not investigate this further.
Also, note that while in this section we use the
same set of memories at each hop, this is not nec-
essary. For larger sequences each hop can operate
in different parts of the input sequence, allowing
the processing of the input in various steps.

Reasoning Module
The outputs stored in the working memory buffer
are passed to the reasoning module. The reason-
ing module used in this work is a Relation Net-
work (RN). In the RN the output vectors are con-
catenated in pairs together with the question vec-
tor. Each pair is passed through a neural network
gθ and all the outputs of the network are added to
produce a single vector. Then, the sum is passed
to a final neural network fφ:

r = fφ

(∑

i,j

gθ([oi; oj ;u])

)
, (4)

The output of the Relation Network is then passed
through a final weight matrix and a softmax to pro-
duce the predicted answer:

â = Softmax(V r), (5)

where V ∈ R|A|×dφ , |A| is the number of possi-
ble answers and dφ is the dimension of the output
of fφ. The full network is trained end-to-end us-
ing standard cross-entropy between â and the true
label a.

3 Related Work

3.1 Memory Augmented Neural Networks
During the last years, there has been plenty of
work on achieving complex reasoning with deep
neural networks. An important part of these de-
velopments has used some kind of explicit mem-
ory and attention mechanisms. One of the earliest
recent work is that of Memory Networks (Weston
et al., 2014). Memory Networks work by building
an addressable memory from the inputs and then
accessing those memories in a series of reading
operations. Another, similar, line of work is the
one of Neural Turing Machines. They were pro-
posed in Graves et al. (2014) and are the basis for
recent neural architectures including the Differ-
entiable Neural Computer (DNC) and the Sparse
Access Memory (SAM) (Graves et al., 2016; Rae
et al., 2016). The NTM model also uses a con-
tent addressable memory, as in the Memory Net-
work, but adds a write operation that allows up-
dating the memory over time. The management of
the memory, however, is different from the one of
the MemNN. While the MemNN model pre-load
the memories using all the inputs, the NTM writes
and read the memory one input at a time.

An additional model that makes use of explicit
external memory is the Dynamic Memory Net-
work (DMN) (Kumar et al., 2016; Xiong et al.,
2016). The model shares some similarities with
the Memory Network model. However, unlike the
MemNN model, it operates in the input sequen-
tially (as in the NTM model). The model de-
fines an Episodic Memory module that makes use
of a Gated Recurrent Neural Network (GRU) to
store and update an internal state that represents
the episodic storage.

3.2 Memory Networks
Since our model is based on the MemNN architec-
ture, we proceed to describe it in more detail. The
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Memory Network model was introduced in We-
ston et al. (2014). In that work, the authors pro-
posed a model composed of four components: The
input feature map that converts the input into an
internal vector representation, the generalization
module that updates the memories given the input,
the output feature map that produces a new out-
put using the stored memories, and the response
module that produces the final answer. The model,
as initially proposed, needed some strong supervi-
sion that explicitly tells the model which memo-
ries to attend. In order to solve that limitation, the
End-To-End Memory Network (MemN2N) was
proposed in Sukhbaatar et al. (2015).

The model replaced the hard-attention mech-
anism used in the original MemNN by a soft-
attention mechanism that allowed to train it end-
to-end without strong supervision. In our model,
we use a component-based approach, as in the
original MemNN architecture. However, there are
some differences: First, our model makes use of
two external storages: a short-term storage, and
a working memory buffer. The first is equivalent
to the one updated by the input and generaliza-
tion module of the MemNN. The working memory
buffer, on the other hand, does not have a coun-
terpart in the original model. Second, our model
replaces the response module by a reasoning mod-
ule. Unlike the original MemNN, our reasoning
module is intended to make more complex work
than the response module, that was only designed
to produce a final answer.

3.3 Relation Networks

The ability to infer and learn relations between en-
tities is fundamental to solve many complex rea-
soning problems. Recently, a number of neural
network models have been proposed for this task.
These include Interaction Networks, Graph Neu-
ral Networks, and Relation Networks (Battaglia
et al., 2016; Scarselli et al., 2009; Santoro et al.,
2017). In specific, Relation Networks (RNs) have
shown excellent results in solving textual and vi-
sual question answering tasks requiring relational
reasoning. The model is relatively simple: First,
all the inputs are grouped in pairs and each pair is
passed through a neural network. Then, the out-
puts of the first network are added, and another
neural network processes the final vector. The role
of the first network is to infer relations among each
pair of objects. In Palm et al. (2017) the authors

propose a recurrent extension to the RN. By al-
lowing multiple steps of relational reasoning, the
model can learn to solve more complex tasks. The
main issue with the RN architecture is that its scale
very poorly for larger problems. That is because
it operates on O(n2) pairs, where n is the num-
ber of input objects (for instance, sentences in the
case of textual question answering). This becomes
quickly prohibitive for tasks involving many input
objects.

3.4 Cognitive Science

The concept of working memory has been exten-
sively developed in cognitive psychology. It con-
sists of a limited capacity system that allows tem-
porary storage and manipulation of information
and is crucial to any reasoning task. One of the
most influential models of working memory is the
multi-component model of working memory pro-
posed by Baddeley and Hitch (1974). This model
is composed both of a supervisory attentional con-
troller (the central executive) and two short-term
storage systems: The phonological loop, capable
of holding speech-based information, and the vi-
suospatial sketchpad, concerned with visual stor-
age. The central executive plays various functions,
including the capacity to focus attention, to di-
vide attention and to control access to long-term
memory. Later modifications to the model (Bad-
deley, 2000) include an episodic buffer that is ca-
pable of integrating and holding information from
different sources. Connections of the working
memory model to memory augmented neural net-
works have been already studied in Graves et al.
(2014). We follow this effort and subdivide our
model into components that resemble (in a ba-
sic way) the multi-component model of working
memory. Note, however, that we use the term
working memory buffer instead of episodic buffer.
That is because the episodic buffer has an integra-
tion function that our model does not cover. How-
ever, that can be an interesting source of inspira-
tion for next versions of the model that integrate
both visual and textual information for question
answering.

4 Experiments

4.1 Textual Question Answering

To evaluate our model on textual question answer-
ing we used the Facebook bAbI-10k dataset (We-
ston et al., 2015). The bAbI dataset is a textual
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LSTM MN-S MN SDNC WMN WMN†

1: 1 supporting fact 0.0 0.0 0.0 0.0 0.0 0.0
2: 2 supporting facts 81.9 0.0 1.0 0.6 0.7 0.3
3: 3 supporting facts 83.1 0.0 6.8 0.7 5.3 4.6
4: 2 argument relations 0.2 0.0 0.0 0.0 0.0 0.0
5: 3 argument relations 1.2 0.3 6.1 0.3 0.6 0.4
6: yes/no questions 51.8 0.0 0.1 0.0 0.0 0.0
7: counting 24.9 3.3 6.6 0.2 0.6 0.5
8: lists/sets 34.1 1.0 2.7 0.2 0.2 0.3
9: simple negation 20.2 0.0 0.0 0.0 0.0 0.0
10: indefinite knowledge 30.1 0.0 0.5 0.2 0.5 0.0
11: basic coreference 10.3 0.0 0.0 0.0 0.3 0.0
12: conjunction 23.4 0.0 0.1 0.1 0.0 0.0
13: compound coreference 6.1 0.0 0.0 0.1 0.0 0.0
14: time reasoning 81.0 0.0 0.0 0.1 0.0 0.0
15: basic deduction 78.7 0.0 0.2 0.0 0.0 0.0
16: basic induction 51.9 0.0 0.2 54.1 0.0 0.3
17: positional reasoning 50.1 24.6 41.8 0.3 0.3 0.1
18: size reasoning 6.8 2.1 8.0 0.1 0.1 0.4
19: path finding 90.3 31.9 75.7 1.2 0.6 0.0
20: agent’s motivations 2.1 0. 0.0 0.0 0.0 0.0

Mean Error (%) 36.4 3.2 7.5 2.8 0.4 0.3
Failed tasks (err. > 5%) 16 2 6 1 1 0

Table 1: Test accuracies on the jointly trained bAbI-10k dataset. MN-S stands for strongly supervised
Memory Network, MN-U for end-to-end Memory Network without supervision, and WMN for Working
Memory Network. Results for LSTM, MN-U, and MN-S are took from Sukhbaatar et al. (2015). Results
for SDNC are took from Rae et al. (2016). WMN† is an ensemble of two Working Memory Networks.

QA benchmark composed of 20 different tasks.
Each task is designed to test a different reason-
ing skill, such as deduction, induction, and coref-
erence resolution. Some of the tasks need rela-
tional reasoning, for instance, to compare the size
of different entities. Each sample is composed of
a question, an answer, and a set of facts. There
are two versions of the dataset, referring to dif-
ferent dataset sizes: bAbI-1k and bAbI-10k. In
this work, we focus on the bAbI-10k version of
the dataset which consists of 10, 000 training sam-
ples per task. A task is considered solved if a
model achieves greater than 95% accuracy. Note
that training can be done per-task or joint (by train-
ing the model on all tasks at the same time). Some
models (Liu and Perez, 2017) have focused in the
per-task training performance, including the Ent-
Net model (Henaff et al., 2016) that solves all the
tasks in the per-task training version. We choose to
focus on the joint training version since we think
is more indicative of the generalization properties
of the model. A detailed analysis of the dataset

can be found in Lee et al. (2015).

Model Details
To encode the input facts we used a word embed-
ding that projected each word in a sentence into
a real vector of size d. We defined d = 30 and
used a GRU with 30 units to process each sen-
tence. We used the 30 sentences in the support set
that were immediately prior to the question. The
question was processed using the same configura-
tion but with a different GRU. We used 8 heads
in the Multi-Head attention mechanism. For the
transition networks ft, which operates in the out-
put of each hop, we used a two-layer MLP consist-
ing of 15 and 30 hidden units (so the output pre-
serves the memory dimension). We used H = 4
hops (or equivalently, a working memory buffer
of size 4). In the reasoning module, we used a 3-
layer MLP consisting of 128 units in each layer
and with ReLU non-linearities for gθ. We omitted
the fφ network since we did not observe improve-
ments when using it. The final layer was a linear
layer that produced logits for a softmax over the
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answer vocabulary.

Training Details
We trained our model end-to-end with a cross-
entropy loss function and using the Adam opti-
mizer (Kingma and Ba, 2014). We used a learning
rate of ν = 1e−3. We trained the model during
400 epochs. For training, we used a batch size
of 32. As in Sukhbaatar et al. (2015) we did not
average the loss over a batch. Also, we clipped
gradients with norm larger than 40 (Pascanu et al.,
2013). For all the dense layers we used `2 regular-
ization with value 1e−3. All weights were initial-
ized using Glorot normal initialization (Glorot and
Bengio, 2010). 10% of the training set was held-
out to form a validation set that we used to select
the architecture and for hyperparameter tunning.
In some cases, we found useful to restart training
after the 400 epochs with a smaller learning rate
of 1e−5 and anneals every 5 epochs by ν/2 until
20 epochs were reached.

bAbI-10k Results
On the jointly trained bAbI-10k dataset our best
model (out of 10 runs) achieves an accuracy of
99.58%. That is a 2.38% improvement over
the previous state-of-the-art that was obtained
by the Sparse Differential Neural Computer
(SDNC) (Rae et al., 2016). The best model of the
10 runs solves almost all tasks of the bAbI-10k
dataset (by a 0.3% margin). However, a simple
ensemble of the best two models solves all 20
tasks and achieves an almost perfect accuracy of
99.7%. We list the results for each task in Table 1.
Other authors have reported high variance in the
results, for instance, the authors of the SDNC
report a mean accuracy and standard deviation
over 15 runs of 93.6± 2.5 (with 15.9± 1.6 passed
tasks). In contrast, our model achieves a mean
accuracy of 98.3 ± 1.2 (with 18.6 ± 0.4 passed
tasks), which is better and more stable than the
average results obtained by the SDNC.
The Relation Network solves 18/20 tasks. We
achieve even better performance, and with con-
siderably fewer computations, as is explained in
Section 4.3. We think that by including the atten-
tion mechanism, the relation reasoning module
can focus on learning the relation among relevant
objects, instead of learning spurious relations
among irrelevant objects. For that, the Multi-Head
attention mechanism was very helpful.

The Effect of the Relational Reasoning Module
When compared to the original Memory Network,
our model substantially improves the accuracy of
tasks 17 (positional reasoning) and 19 (path find-
ing). Both tasks require the analysis of multiple
relations (Lee et al., 2015). For instance, the task
19 needs that the model reasons about the rela-
tion of different positions of the entities, and in
that way find a path to arrive from one to an-
other. The accuracy improves in 75.1% for task
19 and in 41.5% for task 17 when compared with
the MemN2N model. Since both tasks require rea-
soning about relations, we hypothesize that the re-
lational reasoning module of the W-MemNN was
of great help to improve the performance on both
tasks.
The Relation Network, on the other hand, fails in
the tasks 2 (2 supporting facts) and 3 (3 support-
ing facts). Both tasks require handling a signifi-
cant number of facts, especially in task 3. In those
cases, the attention mechanism is crucial to filter
out irrelevant facts.

4.2 Visual Question Answering
To further study our model we evaluated its per-
formance on a visual question answering dataset.
For that, we used the recently proposed NLVR
dataset (Suhr et al., 2017). Each sample in the
NLVR dataset is composed of an image with three
sub-images and a statement. The task consists in
judging if the statement is true or false for that im-
age. Evaluating the statement requires reasoning
about the sets of objects in the image, comparing
objects properties, and reasoning about spatial re-
lations. The dataset is interesting for us for two
reasons. First, the statements evaluation requires
complex relational reasoning about the objects in
the image. Second, unlike the bAbI dataset, the
statements are written in natural language. Be-
cause of that, each statement displays a range of
syntactic and semantic phenomena that are not
present in the bAbI dataset.

Model details
Our model can be easily adapted to deal with vi-
sual information. Following the idea from Santoro
et al. (2017), instead of processing each input us-
ing a recurrent neural network, we use a Convolu-
tional Neural Network (CNN). The CNN takes as
input each sub-image and convolved them through
convolutional layers. The output of the CNN con-
sists of k feature maps (where k is the number
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One tower with one block block at the top | Answer:False / Pred: False At least one square closely touching one box edge | Answer:True / Pred: True

Story (2 supporting facts) Support Hop 1 Hop 2 Hop 3 Hop 4
Mary moved to the office. 0.79 0.30 0.15 0.15
Sandra travelled to the bedroom. True 0.02 2.64 2.75 0.39
Daniel dropped the football. 0.03 0.13 0.16 0.41
Sandra left the milk there. True 1.01 0.07 0.16 0.38
Daniel grabbed the football there. 0.08 0.31 0.07 0.27
Question: Where is the milk? Answer: bedroom, Pred: bedroom

Story (2 supporting facts) Support Hop 1 Hop 2 Hop 3 Hop 4
Brian is white. 0.46 0.36 0.35 0.89
Bernhard is white. 0.07 0.13 0.19 0.81
Julius is a frog. True 0.16 2.03 0.39 0.26
Julius is white. True 0.09 0.23 2.42 1.32
Greg is a frog. True 1.95 1.60 0.77 0.25
Question: What color is greg? Answer: white, Pred: white

Table 2: Examples of visualizations of attention for textual and visual QA. Top: Visualization of attention
values for the NLVR dataset. To get more aesthetic figures we applied a gaussian blur to the attention
matrix. Bottom: Attention values for the bAbI dataset. In each cell, the sum of the attention for all heads
is shown.

of kernels in the final convolutional layer) of size
d× d. Then, each memory is built from the vector
composed by the concatenation of the cells in the
same position of each feature map. Consequently,
d × d memories of size k are stored in the short-
term storage. The statement is processed using a
GRU neural network as in the textual reasoning
task. Then, we can proceed using the same archi-
tecture for the reasoning and attention module that
the one used in the textual QA model. However,
for the visual QA task, we used an additive atten-
tion mechanism. The additive attention computes
the attention weight using a feed-forward neural
network applied to the concatenation of the mem-
ory vector and statement vector.

Results
Our model achieves a validation / test accuracy
of 65.6%/65.8%. Notably, we achieved a per-
formance comparable to the results of the Mod-
ule Neural Networks (Andreas et al., 2016) that
make use of standard NLP tools to process the
statements into structured representations. Unlike
the Module Neural Networks, we achieved our re-
sults using only raw input statements, allowing the
model to learn how to process the textual input by
itself. Note that given the more complex nature of
the language used in the NLVR dataset we needed
to use a larger embedding size and GRU hidden
layer than in the bAbI dataset (100 and 128 respec-
tively). That, however, is a nice feature of sepa-
rating the input from the reasoning and attention
component: One way to process more complex
language statements is increasing the capacity of

the input module.

4.3 From O(n2) to O(n)

One of the major limitations of RNs is that they
need to process each one of the memories in pairs.
To do that, the RN must perform O(n2) forward
and backward passes (where n is the number of
memories). That becomes quickly prohibitive for
a larger number of memories. In contrast, the
dependence of the W-MemNN run times on the
number of memories is linear. Note, however,
that computation times in the W-MemNN depend
quadratically on the size of the working memory
buffer. Nonetheless, this number is expected to be
much smaller than the number of memories. To
compare both models we measured the wall-clock
time for a forward and backward pass for a single
batch of size 32. We performed these experiments
on a GPU NVIDIA K80. Figure 2 shows the re-
sults.

4.4 Memory Visualizations

One nice feature from Memory Networks is that
they allow some interpretability of the reasoning
procedure by looking at the attention weights. At
each hop, the attention weights show which parts
of the memory the model found relevant to pro-
duce the output. RNs, on the contrary, lack of this
feature. Table 2 shows the attention values for vi-
sual and textual question answering.
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Figure 2: Wall-clock times for a forward and back-
ward pass for a single batch. The batch size used is
32. While for 5 memories the times are compara-
ble, for 30 memories the W-MemNN takes around
50s while the RN takes 930s, a speedup of almost
20×.

5 Conclusion

We have proposed a novel Working Memory Net-
work architecture that introduces improved rea-
soning abilities to the original MemNN model. We
demonstrated that by augmenting the MemNN ar-
chitecture with a Relation Network, the computa-
tional complexity of the RN can be reduced, with-
out loss of performance. That opens the opportu-
nity for using RNs in larger problems, something
that may be very useful, given the many tasks re-
quiring a significant amount of memories.
Although we have used RN as the reasoning mod-
ule in this work, other options can be tested. It
might be interesting to analyze how other reason-
ing modules can improve different weaknesses of
the model.
We presented results on the jointly trained bAbI-
10k dataset, where we achieve a new state-of-the-
art, with an average error of less than 0.5%. Also,
we showed that our model can be easily adapted
for visual question answering.
Our architecture combines perceptual input pro-
cessing, short-term memory storage, an attention
mechanism, and a reasoning module. While other
models have focused on different parts of these
components, we think that is important to find
ways to combine these different mechanisms if we
want to build models capable of complex reason-
ing. Evidence from cognitive sciences seems to
show that all these abilities are needed in order to
achieve human-level complex reasoning.
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Abstract

Sarcasm is a sophisticated speech act
which commonly manifests on social
communities such as Twitter and Reddit.
The prevalence of sarcasm on the social
web is highly disruptive to opinion min-
ing systems due to not only its tendency
of polarity flipping but also usage of figu-
rative language. Sarcasm commonly man-
ifests with a contrastive theme either be-
tween positive-negative sentiments or be-
tween literal-figurative scenarios. In this
paper, we revisit the notion of model-
ing contrast in order to reason with sar-
casm. More specifically, we propose an
attention-based neural model that looks in-
between instead of across, enabling it to
explicitly model contrast and incongruity.
We conduct extensive experiments on six
benchmark datasets from Twitter, Reddit
and the Internet Argument Corpus. Our
proposed model not only achieves state-
of-the-art performance on all datasets but
also enjoys improved interpretability.

1 Introduction

Sarcasm, commonly defined as ‘An ironical taunt
used to express contempt’, is a challenging NLP
problem due to its highly figurative nature. The us-
age of sarcasm on the social web is prevalent and
can be frequently observed in reviews, microblogs
(tweets) and online forums. As such, the battle
against sarcasm is also regularly cited as one of the
key challenges in sentiment analysis and opinion
mining applications (Pang et al., 2008). Hence, it
is both imperative and intuitive that effective sar-
casm detectors can bring about numerous benefits
to opinion mining applications.

Sarcasm is often associated to several linguis-
tic phenomena such as (1) an explicit contrast be-
tween sentiments or (2) disparity between the con-
veyed emotion and the author’s situation (context).
Prior work has considered sarcasm to be a contrast
between a positive and negative sentiment (Riloff
et al., 2013). Consider the following examples:

1. I absolutely love to be ignored!

2. Yay!!! The best thing to wake up to is my
neighbor’s drilling.

3. Perfect movie for people who can’t fall
asleep.

Given the examples, we make a crucial obser-
vation - Sarcasm relies a lot on the semantic rela-
tionships (and contrast) between individual words
and phrases in a sentence. For instance, the rela-
tionships between phrases {love, ignored}, {best,
drilling} and {movie, asleep} (in the examples
above) richly characterize the nature of sarcasm
conveyed, i.e., word pairs tend to be contradictory
and more often than not, express a juxtaposition
of positive and negative terms. This concept is
also explored in (Joshi et al., 2015) in which the
authors refer to this phenomena as ‘incongruity’.
Hence, it would be useful to capture the relation-
ships between selected word pairs in a sentence,
i.e., looking in-between.

State-of-the-art sarcasm detection systems
mainly rely on deep and sequential neural net-
works (Ghosh and Veale, 2016; Zhang et al.,
2016). In these works, compositional encoders
such as gated recurrent units (GRU) (Cho et al.,
2014) or long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997) are often
employed, with the input document being parsed
one word at a time. This has several shortcomings
for the sarcasm detection task. Firstly, there is
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no explicit interaction between word pairs, which
hampers its ability to explicitly model contrast, in-
congruity or juxtaposition of situations. Secondly,
it is difficult to capture long-range dependencies.
In this case, contrastive situations (or sentiments)
which are commonplace in sarcastic language
may be hard to detect with simple sequential
models.

To overcome the weaknesses of standard se-
quential models such as recurrent neural networks,
our work is based on the intuition that model-
ing intra-sentence relationships can not only im-
prove classification performance but also pave the
way for more explainable neural sarcasm detec-
tion methods. In other words, our key intuition
manifests itself in the form of an attention-based
neural network. While the key idea of most neu-
ral attention mechanisms is to focus on relevant
words and sub-phrases, it merely looks across and
does not explicitly capture word-word relation-
ships. Hence, it suffers from the same shortcom-
ings as sequential models.

In this paper, our aim is to combine the effec-
tiveness of state-of-the-art recurrent models while
harnessing the intuition of looking in-between. We
propose a multi-dimensional intra-attention recur-
rent network that models intricate similarities be-
tween each word pair in the sentence. In other
words, our novel deep learning model aims to cap-
ture ‘contrast’ (Riloff et al., 2013) and ‘incon-
gruity’ (Joshi et al., 2015) within end-to-end neu-
ral networks. Our model can be thought of self-
targeted co-attention (Xiong et al., 2016), which
allows our model to not only capture word-word
relationships but also long-range dependencies.
Finally, we show that our model produces inter-
pretable attention maps which aid in the explain-
ability of model outputs. To the best of our knowl-
edge, our model is the first attention model that
can produce explainable results in the sarcasm de-
tection task.

Briefly, the prime contributions of this work can
be summarized as follows:

• We propose a new state-of-the-art method for
sarcasm detection. Our proposed model, the
Multi-dimensional Intra-Attention Recurrent
Network (MIARN) is strongly based on the
intuition of compositional learning by lever-
aging intra-sentence relationships. To the
best of our knowledge, none of the existing
state-of-the-art models considered exploiting

intra-sentence relationships, solely relying on
sequential composition.

• We conduct extensive experiments on mul-
tiple benchmarks from Twitter, Reddit and
the Internet Argument Corpus. Our proposed
MIARN achieves highly competitive perfor-
mance on all benchmarks, outperforming ex-
isting state-of-the-art models such as GRNN
(Zhang et al., 2016) and CNN-LSTM-DNN
(Ghosh and Veale, 2016).

2 Related Work

Sarcasm is a complex linguistic phenomena that
have long fascinated both linguists and NLP re-
searchers. After all, a better computational un-
derstanding of this complicated speech act could
potentially bring about numerous benefits to ex-
isting opinion mining applications. Across the
rich history of research on sarcasm, several theo-
ries such as the Situational Disparity Theory (Wil-
son, 2006) and the Negation Theory (Giora, 1995)
have emerged. In these theories, a common theme
is a motif that is strongly grounded in contrast,
whether in sentiment, intention, situation or con-
text. (Riloff et al., 2013) propagates this premise
forward, presenting an algorithm strongly based
on the intuition that sarcasm arises from a juxta-
position of positive and negative situations.

2.1 Sarcasm Detection
Naturally, many works in this area have treated
the sarcasm detection task as a standard text clas-
sification problem. An extremely comprehensive
overview can be found at (Joshi et al., 2017). Fea-
ture engineering approaches were highly popular,
exploiting a wide diverse range of features such
as syntactic patterns (Tsur et al., 2010), senti-
ment lexicons (González-Ibánez et al., 2011), n-
gram (Reyes et al., 2013), word frequency (Barbi-
eri et al., 2014), word shape and pointedness fea-
tures (Ptáček et al., 2014), readability and flips
(Rajadesingan et al., 2015), etc. Notably, there
have been quite a reasonable number of works
that propose features based on similarity and con-
trast. (Hernández-Farı́as et al., 2015) measured
the Wordnet based semantic similarity between
words. (Joshi et al., 2015) proposed a framework
based on explicit and implicit incongruity, utiliz-
ing features based on positive-negative patterns.
(Joshi et al., 2016) proposed similarity features
based on word embeddings.
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2.2 Deep Learning for Sarcasm Detection

Deep learning based methods have recently gar-
nered considerable interest in many areas of NLP
research. In our problem domain, (Zhang et al.,
2016) proposed a recurrent-based model with a
gated pooling mechanism for sarcasm detection
on Twitter. (Ghosh and Veale, 2016) proposed
a convolutional long-short-term memory network
(CNN-LSTM-DNN) that achieves state-of-the-art
performance.

While our work focuses on document-only sar-
casm detection, several notable works have pro-
posed models that exploit personality information
(Ghosh and Veale, 2017) and user context (Amir
et al., 2016). Novel methods for sarcasm de-
tection such as gaze / cognitive features (Mishra
et al., 2016, 2017) have also been explored. (Peled
and Reichart, 2017) proposed a novel framework
based on neural machine translation to convert a
sequence from sarcastic to non-sarcastic. (Felbo
et al., 2017) proposed a layer-wise training scheme
that utilizes emoji-based distant supervision for
sentiment analysis and sarcasm detection tasks.

2.3 Attention Models for NLP

In the context of NLP, the key idea of neural
attention is to soft select a sequence of words
based on their relative importance to the task at
hand. Early innovations in attentional paradigms
mainly involve neural machine translation (Luong
et al., 2015; Bahdanau et al., 2014) for aligning
sequence pairs. Attention is also commonplace
in many NLP applications such as sentiment clas-
sification (Chen et al., 2016; Yang et al., 2016),
aspect-level sentiment analysis (Tay et al., 2018s,
2017b; Chen et al., 2017) and entailment classifi-
cation (Rocktäschel et al., 2015). Co-attention /
Bi-Attention (Xiong et al., 2016; Seo et al., 2016)
is a form of pairwise attention mechanism that was
proposed to model query-document pairs. Intra-
attention can be interpreted as a self-targetted co-
attention and is seeing a lot promising results in
many recent works (Vaswani et al., 2017; Parikh
et al., 2016; Tay et al., 2017a; Shen et al., 2017).
The key idea is to model a sequence against itself,
learning to attend while capturing long term de-
pendencies and word-word level interactions. To
the best of our knowledge, our work is not only
the first work that only applies intra-attention to
sarcasm detection but also the first attention model
for sarcasm detection.

3 Our Proposed Approach

In this section, we describe our proposed model.
Figure 1 illustrates our overall model architecture.

3.1 Input Encoding Layer
Our model accepts a sequence of one-hot encoded
vectors as an input. Each one-hot encoded vec-
tor corresponds to a single word in the vocabulary.
In the input encoding layer, each one-hot vector is
converted into a low-dimensional vector represen-
tation (word embedding). The word embeddings
are parameterized by an embedding layer W ∈
Rn×|V |. As such, the output of this layer is a se-
quence of word embeddings, i.e., {w1, w2, · · ·w`}
where ` is a predefined maximum sequence length.

3.2 Multi-dimensional Intra-Attention
In this section, we describe our multi-dimensional
intra-attention mechanism for sarcasm detec-
tion. We first begin by describing the standard
single-dimensional intra-attention. The multi-
dimensional adaptation will be introduced later in
this section. The key idea behind this layer is
to look in-between, i.e., modeling the semantics
between each word in the input sequence. We
first begin by modeling the relationship of each
word pair in the input sequence. A simple way to
achieve this is to use a linear1 transformation layer
to project the concatenation of each word embed-
ding pair into a scalar score as follows:

sij =Wa([wi;wj ]) + ba (1)

where Wa ∈ R2n×1, ba ∈ R are the parameters
of this layer. [.; .] is the vector concatenation op-
erator and sij is a scalar representing the affinity
score between word pairs (wi, wj). We can easily
observe that s is a symmetrical matrix of `× ` di-
mensions. In order to learn attention vector a, we
apply a row-wise max-pooling operator on matrix
s.

a = softmax(max
row

s) (2)

where a ∈ R` is a vector representing the
learned intra-attention weights. Then, the vector
a is employed to learn weighted representation of
{w1, w2 · · ·w`} as follows:

va =
∑̀

i=1

wiai (3)

1Early experiments found that adding nonlinearity here
may degrade performance.
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where v ∈ Rn is the intra-attentive representa-
tion of the input sequence. While other choices
of pooling operators may be also employed (e.g.,
mean-pooling over max-pooling), the choice of
max-pooling is empirically motivated. Intuitively,
this attention layer learns to pay attention based on
a word’s largest contribution to all words in the se-
quence. Since our objective is to highlight words
that might contribute to the contrastive theories of
sarcasm, a more discriminative pooling operator
is desirable. Notably, we also mask values of s
where i = j such that we do not allow the rela-
tionship scores of a word with respect to itself to
influence the overall attention weights.

Furthermore, our network can be considered as
an ‘inner’ adaptation of neural attention, model-
ing intra-sentence relationships between the raw
word representations instead of representations
that have been compositionally manipulated. This
allows word-to-word similarity to be modeled ‘as
it is’ and not be influenced by composition. For
example, when using the outputs of a composi-
tional encoder (e.g., LSTM), matching words n
and n + 1 might not be meaningful since they
would be relatively similar in terms of semantic
composition. For relatively short documents (such
as tweets), it is also intuitive that attention typi-
cally focuses on the last hidden representation.

Intuitively, the relationships between two words
is often not straightforward. Words are complex
and often hold more than one meanings (or word
senses). As such, it might be beneficial to model
multiple views between two words. This can be
modeled by representing the word pair interac-
tion with a vector instead of a scalar. As such,
we propose a multi-dimensional adaptation of the
intra-attention mechanism. The key idea here is
that each word pair is projected down to a low-
dimensional vector before we compute the affin-
ity score, which allows it to not only capture one
view (one scalar) but also multiple views. A mod-
ification to Equation (1) constitutes our Multi-
Dimensional Intra-Attention variant.

sij =Wp(ReLU(Wq([wi;wj ]) + bq)) + bp (4)

where Wq ∈ Rn×k,Wp ∈ Rk×1, bq ∈ Rk, bp ∈ R
are the parameters of this layer. The final intra-
attentive representation is then learned with Equa-
tion (2) and Equation (3) which we do not repeat
here for the sake of brevity.
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Figure 1: High level overview of our proposed MIARN ar-
chitecture. MIARN learns two representations, one based
on intra-sentence relationships (intra-attentive) and another
based on sequential composition (LSTM). Both views are
used for prediction.

3.3 Long Short-Term Memory Encoder
While we are able to simply use the learned repre-
sentation v for prediction, it is clear that v does not
encode compositional information and may miss
out on important compositional phrases such as
‘not happy’. Clearly, our intra-attention mecha-
nism simply considers a word-by-word interaction
and does not model the input document sequen-
tially. As such, it is beneficial to use a separate
compositional encoder for this purpose, i.e., learn-
ing compositional representations. To this end,
we employ the standard Long Short-Term Mem-
ory (LSTM) encoder. The output of an LSTM en-
coder at each time-step can be briefly defined as:

hi = LSTM(w, i), ∀i ∈ [1, . . . `] (5)

where ` represents the maximum length of the se-
quence and hi ∈ Rd is the hidden output of the
LSTM encoder at time-step i. d is the size of the
hidden units of the LSTM encoder. LSTM en-
coders are parameterized by gating mechanisms
learned via nonlinear transformations. Since
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LSTMs are commonplace in standard NLP appli-
cations, we omit the technical details for the sake
of brevity. Finally, to obtain a compositional rep-
resentation of the input document, we use vc = h`
which is the last hidden output of the LSTM en-
coder. Note that the inputs to the LSTM en-
coder are the word embeddings right after the in-
put encoding layer and not the output of the intra-
attention layer. We found that applying an LSTM
on the intra-attentively scaled representations do
not yield any benefits.

3.4 Prediction Layer
The inputs to the final prediction layer are two
representations, namely (1) the intra-attentive rep-
resentation (va ∈ Rn) and (2) the compositional
representation (vc ∈ Rd). This layer learns a joint
representation of these two views using a nonlin-
ear projection layer.

v = ReLU(Wz([va; vc]) + bz) (6)

where Wz ∈ R(d+n)×d and bz ∈ Rd. Finally, we
pass v into a Softmax classification layer.

ŷ = Softmax(Wf v + bf ) (7)

where Wf ∈ Rd×2, bf ∈ R2 are the parameters
of this layer. ŷ ∈ R2 is the output layer of our
proposed model.

3.5 Optimization and Learning
Our network is trained end-to-end, optimizing the
standard binary cross-entropy loss function.

J = −
N∑

i=1

[yi log ŷi + (1− yi) log(1− ŷi)] +R (8)

where J is the cost function, ŷ is the output of the
network, R = ||θ||L2 is the L2 regularization and
λ is the weight of the regularizer.

4 Empirical Evaluation

In this section, we describe our experimental setup
and results. Our experiments were designed to an-
swer the following research questions (RQs).

• RQ1 - Does our proposed approach outper-
form existing state-of-the-art models?

• RQ2 - What are the impacts of some
of the architectural choices of our model?
How much does intra-attention contribute

to the model performance? Is the Multi-
Dimensional adaptation better than the
Single-Dimensional adaptation?

• RQ3 - What can we interpret from the intra-
attention layers? Does this align with our hy-
pothesis about looking in-between and mod-
eling contrast?

4.1 Datasets
We conduct our experiments on six publicly avail-
able benchmark datasets which span across three
well-known sources.

• Tweets - Twitter2 is a microblogging plat-
form which allows users to post statuses
of less than 140 characters. We use two
collections for sarcasm detection on tweets.
More specifically, we use the dataset ob-
tained from (1) (Ptáček et al., 2014) in which
tweets are trained via hashtag based semi-
supervised learning, i.e., hashtags such as
#not, #sarcasm and #irony are marked as sar-
castic tweets and (2) (Riloff et al., 2013) in
which Tweets are hand annotated and manu-
ally checked for sarcasm. For both datasets,
we retrieve. Tweets using the Twitter API us-
ing the provided tweet IDs.

• Reddit - Reddit3 is a highly popular social
forum and community. Similar to Tweets,
sarcastic posts are obtained via the tag ‘/s’
which are marked by the authors themselves.
We use two Reddit datasets which are ob-
tained from the subreddits /r/movies and
/r/technology respectively. Datasets are sub-
sets from (Khodak et al., 2017).

• Debates - We use two datasets4 from the In-
ternet Argument Corpus (IAC) (Lukin and
Walker, 2017) which have been hand anno-
tated for sarcasm. This dataset, unlike the
first two, is mainly concerned with long text
and provides a diverse comparison from the
other datasets. The IAC corpus was designed
for research on political debates on online fo-
rums. We use the V1 and V2 versions of the
sarcasm corpus which are denoted as IAC-V1
and IAC-V2 respectively.

The statistics of the datasets used in our experi-
ments is reported in Table 1.

2https://twitter.com
3https://reddit.com
4https://nlds.soe.ucsc.edu/sarcasm1
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Dataset Train Dev Test Avg `
Tweets (Ptáček et al.) 44017 5521 5467 18
Tweets (Riloff et al.) 1369 195 390 14
Reddit (/r/movies) 5895 655 1638 12

Reddit (/r/technology) 16146 1793 4571 11
Debates IAC-V1 3716 464 466 54
Debates IAC-V2 1549 193 193 64

Table 1: Statistics of datasets used in our experiments.

4.2 Compared Methods
We compare our proposed model with the follow-
ing algorithms.

• NBOW is a simple neural bag-of-words
baseline that sums all the word embeddings
and passes the summed vector into a simple
logistic regression layer.

• CNN is a vanilla Convolutional Neural Net-
work with max-pooling. CNNs are con-
sidered as compositional encoders that cap-
ture n-gram features by parameterized sliding
windows. The filter width is 3 and number of
filters f = 100.

• LSTM is a vanilla Long Short-Term Memory
Network. The size of the LSTM cell is set to
d = 100.

• ATT-LSTM (Attention-based LSTM) is a
LSTM model with a neural attention mecha-
nism applied to all the LSTM hidden outputs.
We use a similar adaptation to (Yang et al.,
2016), albeit only at the document-level.

• GRNN (Gated Recurrent Neural Network)
is a Bidirectional Gated Recurrent Unit
(GRU) model that was proposed for sarcasm
detection by (Zhang et al., 2016). GRNN
uses a gated pooling mechanism to aggregate
the hidden representations from a standard
BiGRU model. Since we only compare on
document-level sarcasm detection, we do not
use the variant of GRNN that exploits user
context.

• CNN-LSTM-DNN (Convolutional LSTM
+ Deep Neural Network), proposed by
(Ghosh and Veale, 2016), is the state-of-the-
art model for sarcasm detection. This model
is a combination of a CNN, LSTM and Deep
Neural Network via stacking. It stacks two
layers of 1D convolution with 2 LSTM lay-
ers. The output passes through a deep neural
network (DNN) for prediction.

Both CNN-LSTM-DNN (Ghosh and Veale, 2016)
and GRNN (Zhang et al., 2016) are state-of-
the-art models for document-level sarcasm de-
tection and have outperformed numerous neu-
ral and non-neural baselines. In particular, both
works have well surpassed feature-based mod-
els (Support Vector Machines, etc.), as such we
omit comparisons for the sake of brevity and fo-
cus comparisons with recent neural models in-
stead. Moreover, since our work focuses only on
document-level sarcasm detection, we do not com-
pare against models that use external information
such as user profiles, context, personality informa-
tion (Ghosh and Veale, 2017) or emoji-based dis-
tant supervision (Felbo et al., 2017).

For our model, we report results on both
multi-dimensional and single-dimensional intra-
attention. The two models are named as MIARN
and SIARN respectively.

4.3 Implementation Details and Metrics

We adopt standard the evaluation metrics for
the sarcasm detection task, i.e., macro-averaged
F1 and accuracy score. Additionally, we also
report precision and recall scores. All deep
learning models are implemented using Tensor-
Flow (Abadi et al., 2015) and optimized on a
NVIDIA GTX1070 GPU. Text is preprocessed
with NLTK5’s Tweet tokenizer. Words that only
appear once in the entire corpus are removed and
marked with the UNK token. Document lengths
are truncated at 40, 20, 80 tokens for Twitter, Red-
dit and Debates dataset respectively. Mentions of
other users on the Twitter dataset are replaced by
‘@USER’. Documents with URLs (i.e., contain-
ing ‘http’) are removed from the corpus. Docu-
ments with less than 5 tokens are also removed.
The learning optimizer used is the RMSProp with
an initial learning rate of 0.001. The L2 regu-
larization is set to 10−8. We initialize the word
embedding layer with GloVe (Pennington et al.,
2014). We use the GloVe model trained on 2B
Tweets for the Tweets and Reddit dataset. The
Glove model trained on Common Crawl is used
for the Debates corpus. The size of the word em-
beddings is fixed at d = 100 and are fine-tuned
during training. In all experiments, we use a de-
velopment set to select the best hyperparameters.
Each model is trained for a total of 30 epochs
and the model is saved each time the performance

5https://nltk.org
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Tweets (Ptáček et al., 2014) Tweets (Riloff et al., 2013)
Model P R F1 Acc P R F1 Acc
NBOW 80.02 79.06 79.43 80.39 71.28 62.37 64.13 79.23
Vanilla CNN 82.13 79.67 80.39 81.65 71.04 67.13 68.55 79.48
Vanilla LSTM 84.62 83.21 83.67 84.50 67.33 67.20 67.27 76.27
Attention LSTM 84.16 85.10 83.67 84.40 68.78 68.63 68.71 77.69
GRNN (Zhang et al.) 84.06 83.02 83.43 84.20 66.32 64.74 65.40 76.41
CNN-LSTM-DNN (Ghosh and Veale) 84.06 83.45 83.74 84.39 69.76 66.62 67.81 78.72
SIARN (this paper) 85.02 84.27 84.59 85.24 73.82 73.26 73.24 82.31
MIARN (this paper) 86.13 85.79 86.00 86.47 73.34 68.34 70.10 80.77

Table 2: Experimental Results on Tweets datasets. Best result in is boldface and second best is underlined. Best performing
baseline is in italics.

Reddit (/r/movies) Reddit (/r/technology)
Model P R F1 Acc P R F1 Acc
NBOW 67.33 66.56 66.82 67.52 65.45 65.62 65.52 66.55
Vanilla CNN 65.97 65.97 65.97 66.24 65.88 62.90 62.85 66.80
Vanilla LSTM 67.57 67.67 67.32 67.34 66.94 67.22 67.03 67.92
Attention LSTM 68.11 67.87 67.94 68.37 68.20 68.78 67.44 67.22
GRNN (Zhang et al.) 66.16 66.16 66.16 66.42 66.56 66.73 66.66 67.65
CNN-LSTM-DNN (Ghosh and Veale) 68.27 67.87 67.95 68.50 66.14 66.73 65.74 66.00
SIARN (this paper) 69.59 69.48 69.52 69.84 69.35 70.05 69.22 69.57
MIARN (this paper) 69.68 69.37 69.54 69.90 68.97 69.30 69.09 69.91

Table 3: Experimental results on Reddit datasets. Best result in is boldface and second best is underlined. Best performing
baseline is in italics.

Debates (IAC-V1) Debates (IAC-V2)
Model P R F1 Acc P R F1 Acc
NBOW 57.17 57.03 57.00 57.51 66.01 66.03 66.02 66.09
Vanilla CNN 58.21 58.00 57.95 58.55 68.45 68.18 68.21 68.56
Vanilla LSTM 54.87 54.89 54.84 54.92 68.30 63.96 60.78 62.66
Attention LSTM 58.98 57.93 57.23 59.07 70.04 69.62 69.63 69.96
GRNN (Zhang et al.) 56.21 56.21 55.96 55.96 62.26 61.87 61.21 61.37
CNN-LSTM-DNN (Ghosh and Veale) 55.50 54.60 53.31 55.96 64.31 64.33 64.31 64.38
SIARN (this paper) 63.94 63.45 62.52 62.69 72.17 71.81 71.85 72.10
MIARN (this paper) 63.88 63.71 63.18 63.21 72.92 72.93 72.75 72.75

Table 4: Experimental results on Debates datasets. Best result in is boldface and second best is underlined. Best performing
baseline is in italics.

on the development set is topped. The batch size
is tuned amongst {128, 256, 512} for all datasets.
The only exception is the Tweets dataset from
(Riloff et al., 2013), in which a batch size of 16 is
used in lieu of the much smaller dataset size. For
fair comparison, all models have the same hidden
representation size and are set to 100 for both re-
current and convolutional based models (i.e., num-
ber of filters). For MIARN, the size of intra-
attention hidden representation is tuned amongst
{4, 8, 10, 20}.

4.4 Experimental Results

Table 2, Table 3 and Table 4 reports a perfor-
mance comparison of all benchmarked models on
the Tweets, Reddit and Debates datasets respec-
tively. We observe that our proposed SIARN and
MIARN models achieve the best results across

all six datasets. The relative improvement differs
across domain and datasets. On the Tweets dataset
from (Ptáček et al., 2014), MIARN achieves about
≈ 2% − 2.2% improvement in terms of F1 and
accuracy score when compared against the best
baseline. On the other Tweets dataset from (Riloff
et al., 2013), the performance gain of our pro-
posed model is larger, i.e., 3%− 5% improvement
on average over most baselines. Our proposed
SIARN and MIARN models achieve very compet-
itive performance on the Reddit datasets, with an
average of ≈ 2% margin improvement over the
best baselines. Notably, the baselines we compare
against are extremely competitive state-of-the-art
neural network models. This further reinforces
the effectiveness of our proposed approach. Ad-
ditionally, the performance improvement on De-
bates (long text) is significantly larger than short

1016



text (i.e., Twitter and Reddit). For example, MI-
ARN outperforms GRNN and CNN-LSTM-DNN
by ≈ 8%− 10% on both IAC-V1 and IAC-V2. At
this note, we can safely put RQ1 to rest.

Overall, the performance of MIARN is often
marginally better than SIARN (with some ex-
ceptions, e.g., Tweets dataset from (Riloff et al.,
2013)). We believe that this is attributed to the
fact that more complex word-word relationships
can be learned by using multi-dimensional values
instead of single-dimensional scalars. The per-
formance brought by our additional intra-attentive
representations can be further observed by com-
paring against the vanilla LSTM model. Clearly,
removing the intra-attention network reverts our
model to the standard LSTM. The performance
improvements are encouraging, leading to almost
10% improvement in terms of F1 and accuracy.
On datasets with short text, the performance im-
provement is often a modest ≈ 2% − 3% (RQ2).
Notably, our proposed models also perform much
better on long text, which can be attributed to the
intra-attentive representations explicitly modeling
long range dependencies. Intuitively, this is prob-
lematic for models that only capture sequential de-
pendencies (e.g., word by word).

Finally, the relative performance of competitor
methods are as expected. NBOW performs the
worse, since it is just a naive bag-of-words model
without any compositional or sequential informa-
tion. On short text, LSTMs are overall better than
CNNs. However, this trend is reversed on long
text (i.e., Debates) since the LSTM model may
be overburdened by overly long sequences. On
short text, we also found that attention (or the
gated pooling mechanism from GRNN) did not re-
ally help make any significant improvements over
the vanilla LSTM model and a qualitative expla-
nation to why this is so is deferred to the next
section. However, attention helps for long text
(such as debates), resulting in Attention LSTMs
becoming the strongest baseline on the Debates
datasets. However, our proposed intra-attentive
model is both effective on short text and long text,
outperforming Attention LSTMs consistently on
all datasets.

4.5 In-depth Model Analysis

In this section, we present an in-depth analysis
of our proposed model. More specifically, we
not only aim to showcase the interpretability of

our model but also explain how representations
are formed. More specifically, we test our model
(trained on Tweets dataset by (Ptáček et al., 2014))
on two examples. We extract the attention maps of
three models, namely MIARN, Attention LSTM
(ATT-LSTM) and applying Attention mechanism
directly on the word embeddings without using a
LSTM encoder (ATT-RAW). Table 5 shows the vi-
sualization of the attention maps.

Label Model Sentence

True
MIARN I totally love being ignored !!

ATT-LSTM I totally love being ignored !!
ATT-RAW I totally love being ignored !!

False
MIARN Being ignored sucks big time

ATT-LSTM Being ignored sucks big time
ATT-RAW Being ignored sucks big time

Table 5: Visualization of normalized attention weights on
three different attention models (Best viewed in color). The
intensity denotes the strength of the attention weight on the
word.

In the first example (true label), we notice that
the attention maps of MIARN are focusing on the
words ‘love’ and ‘ignored’. This is in concert with
our intuition about modeling contrast and incon-
gruity. On the other hand, both ATT-LSTM and
ATT-RAW learn very different attention maps. As
for ATT-LSTM, the attention weight is focused
completely on the last representation - the token
‘!!’. Additionally, we also observed that this is
true for many examples in the Tweets and Red-
dit dataset. We believe that this is the reason why
standard neural attention does not help as what the
attention mechanism is learning is to select the
last representation (i.e., vanilla LSTM). Without
the LSTM encoder, the attention weights focus on
‘love’ but not ‘ignored’. This fails to capture any
concept of contrast or incongruity.

Next, we consider the false labeled example.
This time, the attention maps of MIARN are not
as distinct as before. However, they focus on
sentiment-bearing words, composing the words
‘ignored sucks’ to form the majority of the intra-
attentive representation. This time, passing the
vector made up of ‘ignored sucks’ allows the sub-
sequent layers to recognize that there is no con-
trasting situation or sentiment. Similarly, ATT-
LSTM focuses on the last word time which is to-
tally non-interpretable. On the other hand, ATT-
RAW focuses on relatively non-meaningful words
such as ‘big’.

Overall, we analyzed two cases (positive and
negative labels) and found that MIARN produces
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very explainable attention maps. In general, we
found that MIARN is able to identify contrast and
incongruity in sentences, allowing our model to
better detect sarcasm. This is facilitated by model-
ing intra-sentence relationships. Notably, the stan-
dard vanilla attention is not explainable or inter-
pretable.

5 Conclusion

Based on the intuition of intra-sentence similar-
ity (i.e., looking in-between), we proposed a new
neural network architecture for sarcasm detection.
Our network incorporates a multi-dimensional
intra-attention component that learns an intra-
attentive representation of the sentence, enabling
it to detect contrastive sentiment, situations and
incongruity. Extensive experiments over six pub-
lic benchmarks confirm the empirical effective-
ness of our proposed model. Our proposed MI-
ARN model outperforms strong state-of-the-art
baselines such as GRNN and CNN-LSTM-DNN.
Analysis of the intra-attention scores shows that
our model learns highly interpretable attention
weights, paving the way for more explainable neu-
ral sarcasm detection methods.
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Paolo Rosso. 2015. Applying basic features from
sentiment analysis for automatic irony detection. In
Iberian Conference on Pattern Recognition and Im-
age Analysis. Springer, pages 337–344.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

1018



Aditya Joshi, Pushpak Bhattacharyya, and Mark J Car-
man. 2017. Automatic sarcasm detection: A survey.
ACM Computing Surveys (CSUR) 50(5):73.

Aditya Joshi, Vinita Sharma, and Pushpak Bhat-
tacharyya. 2015. Harnessing context incongruity for
sarcasm detection. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers). volume 2, pages 757–762.

Aditya Joshi, Vaibhav Tripathi, Kevin Patel, Pushpak
Bhattacharyya, and Mark Carman. 2016. Are word
embedding-based features useful for sarcasm detec-
tion? arXiv preprint arXiv:1610.00883 .

Mikhail Khodak, Nikunj Saunshi, and Kiran Vodra-
halli. 2017. A large self-annotated corpus for sar-
casm. arXiv preprint arXiv:1704.05579 .

Stephanie Lukin and Marilyn Walker. 2017. Really?
well. apparently bootstrapping improves the perfor-
mance of sarcasm and nastiness classifiers for online
dialogue. arXiv preprint arXiv:1708.08572 .

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025 .

Abhijit Mishra, Kuntal Dey, and Pushpak Bhat-
tacharyya. 2017. Learning cognitive features from
gaze data for sentiment and sarcasm classification
using convolutional neural network. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics, ACL 2017, Vancouver,
Canada, July 30 - August 4, Volume 1: Long Papers.
pages 377–387. https://doi.org/10.18653/v1/P17-
1035.

Abhijit Mishra, Diptesh Kanojia, Seema Nagar, Kuntal
Dey, and Pushpak Bhattacharyya. 2016. Harness-
ing cognitive features for sarcasm detection. In Pro-
ceedings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics, ACL 2016, Au-
gust 7-12, 2016, Berlin, Germany, Volume 1: Long
Papers. http://aclweb.org/anthology/P/P16/P16-
1104.pdf.

Bo Pang, Lillian Lee, et al. 2008. Opinion mining and
sentiment analysis. Foundations and Trends R© in In-
formation Retrieval 2(1–2):1–135.
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Tim Rocktäschel, Edward Grefenstette, Karl Moritz
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Abstract

Learning by contrasting positive and neg-
ative samples is a general strategy adopted
by many methods. Noise contrastive
estimation (NCE) for word embeddings
and translating embeddings for knowledge
graphs are examples in NLP employing
this approach. In this work, we view
contrastive learning as an abstraction of
all such methods and augment the neg-
ative sampler into a mixture distribution
containing an adversarially learned sam-
pler. The resulting adaptive sampler finds
harder negative examples, which forces
the main model to learn a better represen-
tation of the data. We evaluate our pro-
posal on learning word embeddings, order
embeddings and knowledge graph embed-
dings and observe both faster convergence
and improved results on multiple metrics.

1 Introduction

Many models learn by contrasting losses on ob-
served positive examples with those on some fic-
titious negative examples, trying to decrease some
score on positive ones while increasing it on neg-
ative ones. There are multiple reasons why such
contrastive learning approach is needed. Com-
putational tractability is one. For instance, in-
stead of using softmax to predict a word for learn-
ing word embeddings, noise contrastive estima-
tion (NCE) (Dyer, 2014; Mnih and Teh, 2012)
can be used in skip-gram or CBOW word em-
bedding models (Gutmann and Hyvärinen, 2012;
Mikolov et al., 2013; Mnih and Kavukcuoglu,
2013; Vaswani et al., 2013). Another reason is

∗authors contributed equally
†Work done while author was an intern at Borealis AI

modeling need, as certain assumptions are best ex-
pressed as some score or energy in margin based
or un-normalized probability models (Smith and
Eisner, 2005). For example, modeling entity re-
lations as translations or variants thereof in a vec-
tor space naturally leads to a distance-based score
to be minimized for observed entity-relation-entity
triplets (Bordes et al., 2013).

Given a scoring function, the gradient of the
model’s parameters on observed positive examples
can be readily computed, but the negative phase
requires a design decision on how to sample data.
In noise contrastive estimation for word embed-
dings, a negative example is formed by replacing
a component of a positive pair by randomly select-
ing a sampled word from the vocabulary, resulting
in a fictitious word-context pair which would be
unlikely to actually exist in the dataset. This nega-
tive sampling by corruption approach is also used
in learning knowledge graph embeddings (Bordes
et al., 2013; Lin et al., 2015; Ji et al., 2015; Wang
et al., 2014; Trouillon et al., 2016; Yang et al.,
2014; Dettmers et al., 2017), order embeddings
(Vendrov et al., 2016), caption generation (Dai and
Lin, 2017), etc.

Typically the corruption distribution is the same
for all inputs like in skip-gram or CBOW NCE,
rather than being a conditional distribution that
takes into account information about the input
sample under consideration. Furthermore, the cor-
ruption process usually only encodes a human
prior as to what constitutes a hard negative sam-
ple, rather than being learned from data. For these
two reasons, the simple fixed corruption process
often yields only easy negative examples. Easy
negatives are sub-optimal for learning discrimina-
tive representation as they do not force the model
to find critical characteristics of observed positive
data, which has been independently discovered in
applications outside NLP previously (Shrivastava
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et al., 2016). Even if hard negatives are occasion-
ally reached, the infrequency means slow conver-
gence. Designing a more sophisticated corruption
process could be fruitful, but requires costly trial-
and-error by a human expert.

In this work, we propose to augment the sim-
ple corruption noise process in various embedding
models with an adversarially learned conditional
distribution, forming a mixture negative sampler
that adapts to the underlying data and the em-
bedding model training progress. The resulting
method is referred to as adversarial contrastive es-
timation (ACE). The adaptive conditional model
engages in a minimax game with the primary em-
bedding model, much like in Generative Adversar-
ial Networks (GANs) (Goodfellow et al., 2014a),
where a discriminator net (D), tries to distinguish
samples produced by a generator (G) from real
data (Goodfellow et al., 2014b). In ACE, the main
model learns to distinguish between a real posi-
tive example and a negative sample selected by
the mixture of a fixed NCE sampler and an adver-
sarial generator. The main model and the genera-
tor takes alternating turns to update their parame-
ters. In fact, our method can be viewed as a con-
ditional GAN (Mirza and Osindero, 2014) on dis-
crete inputs, with a mixture generator consisting of
a learned and a fixed distribution, with additional
techniques introduced to achieve stable and con-
vergent training of embedding models.

In our proposed ACE approach, the conditional
sampler finds harder negatives than NCE, while
being able to gracefully fall back to NCE when-
ever the generator cannot find hard negatives. We
demonstrate the efficacy and generality of the pro-
posed method on three different learning tasks,
word embeddings (Mikolov et al., 2013), order
embeddings (Vendrov et al., 2016) and knowledge
graph embeddings (Ji et al., 2015).

2 Method

2.1 Background: contrastive learning
In the most general form, our method applies to
supervised learning problems with a contrastive
objective of the following form:

L(ω) = Ep(x+,y+,y−) lω(x+, y+, y−) (1)

where lω(x
+, y+, y−) captures both the model

with parameters ω and the loss that scores a
positive tuple (x+, y+) against a negative one
(x+, y−). Ep(x+,y+,y−)(.) denotes expectation

with respect to some joint distribution over pos-
itive and negative samples. Furthermore, by
the law of total expectation, and the fact that
given x+, the negative sampling is not depen-
dent on the positive label, i.e. p(y+, y−|x+) =
p(y+|x+)p(y−|x+), Eq. 1 can be re-written as

Ep(x+)[Ep(y+|x+)p(y−|x+) lω(x
+, y+, y−)] (2)

Separable loss
In the case where the loss decomposes into a sum
of scores on positive and negative tuples such as
lω(x

+, y+, y−) = sω (x
+, y+)−s̃ω (x+, y−), then

Expression. 2 becomes

Ep+(x)[Ep+(y|x) sω (x, y)− Ep−(y|x) s̃ω (x, y)]
(3)

where we moved the + and − to p for notational
brevity. Learning by stochastic gradient descent
aims to adjust ω to pushing down sω (x, y) on
samples from p+ while pushing up s̃ω (x, y) on
samples from p−. Note that for generality, the
scoring function for negative samples, denoted by
s̃ω, could be slightly different from sω. For in-
stance, s̃ could contain a margin as in the case of
Order Embeddings in Sec. 4.2.

Non separable loss
Eq. 1 is the general form that we would like to
consider because for certain problems, the loss
function cannot be separated into sums of terms
containing only positive (x+, y+) and terms with
negatives (x+, y−). An example of such a non-
separable loss is the triplet ranking loss (Schroff
et al., 2015): lω = max(0, η + sω (x

+, y+) −
sω (x

+, y−)), which does not decompose due to
the rectification.

Noise contrastive estimation
The typical NCE approach in tasks such as word
embeddings (Mikolov et al., 2013), order embed-
dings (Vendrov et al., 2016), and knowledge graph
embeddings can be viewed as a special case of Eq.
2 by taking p(y−|x+) to be some unconditional
pnce(y).

This leads to efficient computation during train-
ing, however, pnce(y) sacrifices the sampling effi-
ciency of learning as the negatives produced using
a fixed distribution are not tailored toward x+, and
as a result are not necessarily hard negative exam-
ples. Thus, the model is not forced to discover
discriminative representation of observed positive
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data. As training progresses, more and more neg-
ative examples are correctly learned, the probabil-
ity of drawing a hard negative example diminishes
further, causing slow convergence.

2.2 Adversarial mixture noise

To remedy the above mentioned problem of a
fixed unconditional negative sampler, we propose
to augment it into a mixture one, λpnce(y) + (1−
λ)gθ(y|x), where gθ is a conditional distribution
with a learnable parameter θ and λ is a hyper-
parameter. The objective in Expression. 2 can
then be written as (conditioned on x for notational
brevity):

L(ω, θ;x) = λEp(y+|x)pnce(y−) lω(x, y
+, y−)

+ (1− λ)Ep(y+|x)gθ(y−|x) lω(x, y+, y−) (4)

We learn (ω, θ) in a GAN-style minimax game:

min
ω

max
θ
V (ω, θ) = min

ω
max
θ

Ep+(x) L(ω, θ;x)

(5)
The embedding model behind lω(x, y

+, y−) is
similar to the discriminator in (conditional) GAN
(or critic in Wasserstein (Arjovsky et al., 2017)
or Energy-based GAN (Zhao et al., 2016), while
gθ(y|x) acts as the generator. Henceforth, we
will use the term discriminator (D) and embedding
model interchangeably, and refer to gθ as the gen-
erator.

2.3 Learning the generator

There is one important distinction to typical GAN:
gθ(y|x) defines a categorical distribution over pos-
sible y values, and samples are drawn accordingly;
in contrast to typical GAN over continuous data
space such as images, where samples are gener-
ated by an implicit generative model that warps
noise vectors into data points. Due to the discrete
sampling step, gθ cannot learn by receiving gradi-
ent through the discriminator. One possible solu-
tion is to use the Gumbel-softmax reparametriza-
tion trick (Jang et al., 2016; Maddison et al.,
2016), which gives a differentiable approximation.
However, this differentiability comes at the cost of
drawing N Gumbel samples per each categorical
sample, where N is the number of categories. For
word embeddings, N is the vocabulary size, and
for knowledge graph embeddings, N is the num-
ber of entities, both leading to infeasible computa-
tional requirements.

Instead, we use the REINFORCE (Williams,
1992) gradient estimator for∇θL(θ, x):

(1−λ)E
[
−lω(x, y+, y−)∇θ log(gθ(y−|x))

]
(6)

where the expectation E is with respect to
p(y+, y−|x) = p(y+|x)gθ(y−|x), and the dis-
criminator loss lω(x, y+, y−) acts as the reward.

With a separable loss, the (conditional) value
function of the minimax game is:

L(ω, θ;x) = Ep+(y|x) sω (x, y)

− Epnce(y) s̃ω (x, y)− Egθ(y|x) s̃ω (x, y) (7)

and only the last term depends on the generator
parameter ω. Hence, with a separable loss, the re-
ward is −s̃(x+, y−). This reduction does not hap-
pen with a non-separable loss, and we have to use
lω(x, y

+, y−).

2.4 Entropy and training stability
GAN training can suffer from instability and de-
generacy where the generator probability mass
collapses to a few modes or points. Much work
has been done to stabilize GAN training in the
continuous case (Arjovsky et al., 2017; Gulrajani
et al., 2017; Cao et al., 2018). In ACE, if the
generator gθ probability mass collapses to a few
candidates, then after the discriminator success-
fully learns about these negatives, gθ cannot adapt
to select new hard negatives, because the REIN-
FORCE gradient estimator Eq. 6 relies on gθ being
able to explore other candidates during sampling.
Therefore, if the gθ probability mass collapses, in-
stead of leading to oscillation as in typical GAN,
the min-max game in ACE reaches an equilibrium
where the discriminator wins and gθ can no longer
adapt, then ACE falls back to NCE since the nega-
tive sampler has another mixture component from
NCE.

This behavior of gracefully falling back to NCE
is more desirable than the alternative of stalled
training if p−(y|x) does not have a simple pnce
mixture component. However, we would still like
to avoid such collapse, as the adversarial samples
provide greater learning signals than NCE sam-
ples. To this end, we propose to use a regularizer
to encourage the categorical distribution gθ(y|x)
to have high entropy. In order to make the the reg-
ularizer interpretable and its hyperparameters easy
to tune, we design the following form:

Rent(x) = min(0, c−H(gθ(y|x))) (8)
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whereH(gθ(y|x)) is the entropy of the categorical
distribution gθ(y|x), and c = log(k) is the entropy
of a uniform distribution over k choices, and k is
a hyper-parameter. Intuitively, Rent expresses the
prior that the generator should spread its mass over
more than k choices for each x.

2.5 Handling false negatives
During negative sampling, p−(y|x) could actually
produce y that forms a positive pair that exists in
the training set, i.e., a false negative. This possi-
bility exists in NCE already, but since pnce is not
adaptive, the probability of sampling a false nega-
tive is low. Hence in NCE, the score on this false
negative (true observation) pair is pushed up less
in the negative term than in the positive term.

However, with the adaptive sampler, gω(y|x),
false negatives become a much more severe issue.
gω(y|x) can learn to concentrate its mass on a few
false negatives, significantly canceling the learn-
ing of those observations in the positive phase.
The entropy regularization reduces this problem as
it forces the generator to spread its mass, hence re-
ducing the chance of a false negative.

To further alleviate this problem, whenever
computationally feasible, we apply an additional
two-step technique. First, we maintain a hash map
of the training data in memory, and use it to effi-
ciently detect if a negative sample (x+, y−) is an
actual observation. If so, its contribution to the
loss is given a zero weight in ω learning step. Sec-
ond, to upate θ in the generator learning step, the
reward for false negative samples are replaced by
a large penalty, so that the REINFORCE gradient
update would steer gθ away from those samples.
The second step is needed to prevent null compu-
tation where gθ learns to sample false negatives
which are subsequently ignored by the discrimi-
nator update for ω.

2.6 Variance Reduction
The basic REINFORCE gradient estimator is
poised with high variance, so in practice one of-
ten needs to apply variance reduction techniques.
The most basic form of variance reduction is to
subtract a baseline from the reward. As long as
the baseline is not a function of actions (i.e., sam-
ples y− being drawn), the REINFORCE gradi-
ent estimator remains unbiased. More advanced
gradient estimators exist that also reduce vari-
ance (Grathwohl et al., 2017; Tucker et al., 2017;
Liu et al., 2018), but for simplicity we use the

self-critical baseline method (Rennie et al., 2016),
where the baseline is b(x) = lω(y

+, y?, x), or
b(x) = −s̃ω(y?, x) in the separable loss case, and
y? = argmaxigθ(yi|x). In other words, the base-
line is the reward of the most likely sample accord-
ing to the generator.

2.7 Improving exploration in gθ by
leveraging NCE samples

In Sec. 2.4 we touched on the need for sufficient
exploration in gθ. It is possible to also leverage
negative samples from NCE to help the gener-
ator learn. This is essentially off-policy explo-
ration in reinforcement learning since NCE sam-
ples are not drawn according to gθ(y|x). The gen-
erator learning can use importance re-weighting
to leverage those samples. The resulting REIN-
FORCE gradient estimator is basically the same
as Eq. 6 except that the rewards are reweighted by
gθ(y

−|x)/pnce(y−), and the expectation is with
respect to p(y+|x)pnce(y−). This additional off-
policy learning term provides gradient informa-
tion for generator learning if gθ(y−|x) is not zero,
meaning that for it to be effective in helping ex-
ploration, the generator cannot be collapsed at the
first place. Hence, in practice, this term is only
used to further help on top of the entropy regular-
ization, but it does not replace it.

3 Related Work

Smith and Eisner (2005) proposed contrastive es-
timation as a way for unsupervised learning of
log-linear models by taking implicit evidence from
user-defined neighborhoods around observed dat-
apoints. Gutmann and Hyvärinen (2010) intro-
duced NCE as an alternative to the hierarchical
softmax. In the works of Mnih and Teh (2012) and
Mnih and Kavukcuoglu (2013), NCE is applied to
log-bilinear models and Vaswani et al. (2013) ap-
plied NCE to neural probabilistic language models
(Yoshua et al., 2003). Compared to these previous
NCE methods that rely on simple fixed sampling
heuristics, ACE uses an adaptive sampler that pro-
duces harder negatives.

In the domain of max-margin estimation for
structured prediction (Taskar et al., 2005), loss
augmented MAP inference plays the role of find-
ing hard negatives (the hardest). However, this in-
ference is only tractable in a limited class of mod-
els such structured SVM (Tsochantaridis et al.,
2005). Compared to those models that use exact
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maximization to find the hardest negative config-
uration each time, the generator in ACE can be
viewed as learning an approximate amortized in-
ference network. Concurrently to this work, Tu
and Gimpel (2018) proposes a very similar frame-
work, using a learned inference network for Struc-
tured prediction energy networks (SPEN) (Be-
langer and McCallum, 2016).

Concurrent with our work, there have been
other interests in applying the GAN to NLP prob-
lems (Fedus et al., 2018; Wang et al., 2018; Cai
and Wang, 2017). Knowledge graph models natu-
rally lend to a GAN setup, and has been the sub-
ject of study in Wang et al. (2018) and Cai and
Wang (2017). These two concurrent works are
most closely related to one of the three tasks on
which we study ACE in this work. Besides a more
general formulation that applies to problems be-
yond those considered in Wang et al. (2018) and
Cai and Wang (2017), the techniques introduced
in our work on handling false negatives and en-
tropy regularization lead to improved experimen-
tal results as shown in Sec. 5.4.

4 Application of ACE on three tasks

4.1 Word Embeddings

Word embeddings learn a vector representation of
words from co-occurrences in a text corpus. NCE
casts this learning problem as a binary classifica-
tion where the model tries to distinguish positive
word and context pairs, from negative noise sam-
ples composed of word and false context pairs.
The NCE objective in Skip-gram (Mikolov et al.,
2013) for word embeddings is a separable loss of
the form:

L = −
∑

wt∈V
[log p(y = 1|wt, w+

c )

+
K∑

c=1

log p(y = 0|wt, w−c )]
(9)

Here, w+
c is sampled from the set of true con-

texts and w−c ∼ Q is sampled k times from a
fixed noise distribution. Mikolov et al. (2013) in-
troduced a further simplification of NCE, called
“Negative Sampling” (Dyer, 2014). With respect
to our ACE framework, the difference between
NCE and Negative Sampling is inconsequential,
so we continue the discussion using NCE. A draw-
back of this sampling scheme is that it favors
more common words as context. Another issue

is that the negative context words are sampled in
the same way, rather than tailored toward the ac-
tual target word. To apply ACE to this problem
we first define the value function for the minimax
game, V (D,G), as follows:

V (D,G) = Ep+(wc)[logD(wc, wt)]

−Epnce(wc)[− log(1−D(wc, wt))]

−Egθ(wc|wt)[− log(1−D(wc, wt))]

(10)

with D = p(y = 1|wt, wc) and G = gθ(wc|wt).

Implementation details
For our experiments, we train all our models on
a single pass of the May 2017 dump of the En-
glish Wikipedia with lowercased unigrams. The
vocabulary size is restricted to the top 150k most
frequent words when training from scratch while
for finetuning we use the same vocabulary as Pen-
nington et al. (2014), which is 400k of the most
frequent words. We use 5 NCE samples for each
positive sample and 1 adversarial sample in a win-
dow size of 10 and the same positive subsampling
scheme proposed by Mikolov et al. (2013). Learn-
ing for both G and D uses Adam (Kingma and
Ba, 2014) optimizer with its default parameters.
Our conditional discriminator is modeled using
the Skip-Gram architecture, which is a two layer
neural network with a linear mapping between the
layers. The generator network consists of an em-
bedding layer followed by two small hidden lay-
ers, followed by an output softmax layer. The first
layer of the generator shares its weights with the
second embedding layer in the discriminator net-
work, which we find really speeds up convergence
as the generator does not have to relearn its own set
of embeddings. The difference between the dis-
criminator and generator is that a sigmoid nonlin-
earity is used after the second layer in the discrim-
inator, while in the generator, a softmax layer is
used to define a categorical distribution over nega-
tive word candidates. We find that controlling the
generator entropy is critical for finetuning exper-
iments as otherwise the generator collapses to its
favorite negative sample. The word embeddings
are taken to be the first dense matrix in the dis-
criminator.

4.2 Order Embeddings Hypernym Prediction

As introduced in Vendrov et al. (2016), ordered
representations over hierarchy can be learned by
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order embeddings. An example task for such or-
dered representation is hypernym prediction. A
hypernym pair is a pair of concepts where the first
concept is a specialization or an instance of the
second.

For completeness, we briefly describe order em-
beddings, then analyze ACE on the hypernym pre-
diction task. In order embeddings, each entity is
represented by a vector in RN , the score for a
positive ordered pair of entities (x, y) is defined
by sω(x, y) = ||max(0, y − x)||2 and, score for
a negative ordered pair (x+, y−) is defined by
s̃ω(x

+, y−) = max{0, η−s(x+, y−)}, where is η
is the margin. Let f(u) be the embedding function
which takes an entity as input and outputs en em-
bedding vector. We define P as a set of positive
pairs and N as negative pairs, the separable loss
function for order embedding task is defined by:

L=
∑

(u,v)∈P
sω(f(u), f(v)))+

∑

(u,v)∈N
s̃(f(u), f(v))

(11)

Implementation details
Our generator for this task is just a linear fully con-
nected softmax layer, taking an embedding vector
from discriminator as input and outputting a cate-
gorical distribution over the entity set. For the dis-
criminator, we inherit all model setting from Ven-
drov et al. (2016): we use 50 dimensions hidden
state and bash size 1000, a learning rate of 0.01
and the Adam optimizer. For the generator, we use
a batch size of 1000, a learning rate 0.01 and the
Adam optimizer. We apply weight decay with rate
0.1 and entropy loss regularization as described in
Sec. 2.4. We handle false negative as described in
Sec. 2.5. After cross validation, variance reduc-
tion and leveraging NCE samples does not greatly
affect the order embedding task.

4.3 Knowledge Graph Embeddings

Knowledge graphs contain entity and relation data
of the form (head entity, relation, tail entity), and
the goal is to learn from observed positive entity
relations and predict missing links (a.k.a. link
prediction). There have been many works on
knowledge graph embeddings, e.g. TransE (Bor-
des et al., 2013), TransR (Lin et al., 2015), TransH
(Wang et al., 2014), TransD (Ji et al., 2015), Com-
plex (Trouillon et al., 2016), DistMult (Yang et al.,
2014) and ConvE (Dettmers et al., 2017). Many of
them use a contrastive learning objective. Here we

take TransD as an example, and modify its noise
contrastive learning to ACE, and demonstrate sig-
nificant improvement in sample efficiency and link
prediction results.

Implementation details
Let a positive entity-relation-entity triplet be de-
noted by ξ+ = (h+, r+, t+), and a negative triplet
could either have its head or tail be a negative sam-
ple, i.e. ξ− = (h−, r+, t+) or ξ− = (h+, r+, t−).
In either case, the general formulation in Sec. 2.1
still applies. The non-separable loss function takes
on the form:

l = max(0, η + sω(ξ
+)− sω(ξ−)) (12)

The scoring rule is:

s = ‖h⊥ + r− t⊥‖ (13)

where r is the embedding vector for r, and h⊥ is
projection of the embedding of h onto the space
of r by h⊥ = h + rph

>
p h, where rp and hp are

projection parameters of the model. t⊥ is defined
in a similar way through parameters t, tp and rp.

The form of the generator gθ(t−|r+, h+) is cho-
sen to be fθ(h⊥,h⊥ + r), where fθ is a feedfor-
ward neural net that concatenates its two input ar-
guments, then propagates through two hidden lay-
ers, followed by a final softmax output layer. As a
function of (r+, h+), gθ shares parameter with the
discriminator, as the inputs to fθ are the embed-
ding vectors. During generator learning, only θ is
updated and the TransD model embedding param-
eters are frozen.

5 Experiments

We evaluate ACE with experiments on word
embeddings, order embeddings, and knowledge
graph embeddings tasks. In short, whenever
the original learning objective is contrastive (all
tasks except Glove fine-tuning) our results con-
sistently show that ACE improves over NCE. In
some cases, we include additional comparisons to
the state-of-art results on the task to put the sig-
nificance of such improvements in context: the
generic ACE can often make a reasonable base-
line competitive with SOTA methods that are op-
timized for the task.

For word embeddings, we evaluate models
trained from scratch as well as fine-tuned Glove
models (Pennington et al., 2014) on word similar-
ity tasks that consist of computing the similarity
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Figure 1: Left: Order embedding Accuracy plot.
Right: Order embedding discriminator Loss plot on NCE
sampled negative pairs and positive pairs.

Figure 2: loss curve on NCE negative pairs and ACE
negative pairs. Left: without entropy and weight decay.
Right: with entropy and weight decay

Figure 3: Left: Rare Word, Right: WS353 similarity scores during the first
epoch of training.

Figure 4: Training from scratch losses
on the Discriminator

between word pairs where the ground truth is an
average of human scores. We choose the Rare
word dataset (Luong et al., 2013) and WordSim-
353 (Finkelstein et al., 2001) by virtue of our hy-
pothesis that ACE learns better representations for
both rare and frequent words. We also qualita-
tively evaluate ACE word embeddings by inspect-
ing the nearest neighbors of selected words.

For the hypernym prediction task, following
Vendrov et al. (2016), hypernym pairs are created
from the WordNet hierarchy’s transitive closure.
We use the released random development split and
test split from Vendrov et al. (2016), which both
contain 4000 edges.

For knowledge graph embeddings, we use
TransD (Ji et al., 2015) as our base model, and
perform ablation study to analyze the behavior of
ACE with various add-on features, and confirm
that entropy regularization is crucial for good per-
formance in ACE. We also obtain link prediction
results that are competitive or superior to the state-
of-arts on the WN18 dataset (Bordes et al., 2014).

5.1 Training Word Embeddings from scratch

In this experiment, we empirically observe that
training word embeddings using ACE converges
significantly faster than NCE after one epoch. As
shown in Fig. 3 both ACE (a mixture of pnce and
gθ) and just gθ (denoted by ADV) significantly
outperforms the NCE baseline, with an absolute
improvement of 73.1% and 58.5% respectively on
RW score. We note similar results on WordSim-
353 dataset where ACE and ADV outperforms

NCE by 40.4% and 45.7%. We also evaluate
our model qualitatively by inspecting the nearest
neighbors of selected words in Table. 1. We first
present the five nearest neighbors to each word to
show that both NCE and ACE models learn sen-
sible embeddings. We then show that ACE em-
beddings have much better semantic relevance in
a larger neighborhood (nearest neighbor 45-50).

5.2 Finetuning Word Embeddings

We take off-the-shelf pre-trained Glove embed-
dings which were trained using 6 billion tokens
(Pennington et al., 2014) and fine-tune them us-
ing our algorithm. It is interesting to note that the
original Glove objective does not fit into the con-
trastive learning framework, but nonetheless we
find that they benefit from ACE. In fact, we ob-
serve that training such that 75% of the words ap-
pear as positive contexts is sufficient to beat the
largest dimensionality pre-trained Glove model on
word similarity tasks. We evaluate our perfor-
mance on the Rare Word and WordSim353 data.
As can be seen from our results in Table 2, ACE on
RW is not always better and for the 100d and 300d
Glove embeddings is marginally worse. How-
ever, on WordSim353 ACE does considerably bet-
ter across the board to the point where 50d Glove
embeddings outperform the 300d baseline Glove
model.

5.3 Hypernym Prediction

As shown in Table 3, with ACE training, our
method achieves a 1.5% improvement on accu-
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Queen King Computer Man Woman
Skip-Gram NCE Top 5 princess prince computers woman girl

king queen computing boy man
empress kings software girl prostitute
pxqueen emperor microcomputer stranger person
monarch monarch mainframe person divorcee

Skip-Gram NCE Top 45-50 sambiria eraric hypercard angiomata suitor
phongsri mumbere neurotechnology someone nymphomaniac
safrit empress lgp bespectacled barmaid
mcelvoy saxonvm pcs hero redheaded
tsarina pretender keystroke clown jew

Skip-Gram ACE Top 5 princess prince software woman girl
prince vi computers girl herself
elizabeth kings applications tells man
duke duke computing dead lover
consort iii hardware boy tells

Skip-Gram ACE Top 45-50 baron earl files kid aunt
abbey holy information told maid
throne cardinal device revenge wife
marie aragon design magic lady
victoria princes compatible angry bride

Table 1: Top 5 Nearest Neighbors of Words followed by Neighbors 45-50 for different Models.

RW WS353
Skipgram Only NCE baseline 18.90 31.35

Skipgram + Only ADV 29.96 58.05

Skipgram + ACE 32.71 55.00

Glove-50 (Recomputed based on(Pennington et al., 2014)) 34.02 49.51

Glove-100 (Recomputed based on(Pennington et al., 2014)) 36.64 52.76

Glove-300 (Recomputed based on(Pennington et al., 2014)) 41.18 60.12

Glove-50 + ACE 35.60 60.46

Glove-100 + ACE 36.51 63.29

Glove-300 + ACE 40.57 66.50

Table 2: Spearman score (ρ ∗ 100) on RW and
WS353 Datasets. We trained a skipgram model
from scratch under various settings for only 1
epoch on wikipedia. For finetuned models we re-
computed the scores based on the publicly avail-
able 6B tokens Glove models and we finetuned un-
til roughly 75% of the vocabulary was seen.

racy over Vendrov et al. (2016) without tunning
any of the discriminator’s hyperparameters. We
further report training curve in Fig. 1, we report
loss curve on randomly sampled pairs. We stress
that in the ACE model, we train random pairs and
generator generated pairs jointly, as shown in Fig.
2, hard negatives help the order embedding model
converges faster.

5.4 Ablation Study and Improving TransD

To analyze different aspects of ACE, we perform
an ablation study on the knowledge graph em-
bedding task. As described in Sec. 4.3, the base

Method Accuracy (%)
order-embeddings 90.6
order-embeddings + Our ACE 92.0

Table 3: Order Embedding Performance

model (discriminator) we apply ACE to is TransD
(Ji et al., 2015). Fig. 5 shows validation per-
formance as training progresses. All variants of
ACE converges to better results than base NCE.
Among ACE variants, all methods that include en-
tropy regularization significantly outperform with-
out entropy regularization. Without the self crit-
ical baseline variance reduction, learning could
progress faster at the beginning but the final per-
formance suffers slightly. The best performance is
obtained without the additional off-policy learning
of the generator.

Table. 4 shows the final test results on WN18
link prediction task. It is interesting to note that
ACE improves MRR score more significantly than
hit@10. As MRR is a lot more sensitive to the top
rankings, i.e., how the correct configuration ranks
among the competitive alternatives, this is consis-
tent with the fact that ACE samples hard negatives
and forces the base model to learn a more discrim-
inative representation of the positive examples.
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Figure 5: Ablation study: measuring validation
Mean Reciprocal Rank (MRR) on WN18 dataset
as training progresses.

MRR hit@10

ACE(Ent+SC) 0.792 0.945
ACE(Ent+SC+IW) 0.768 0.949
NCE TransD (ours) 0.527 0.947
NCE TransD ((Ji et al., 2015)) - 0.925
KBGAN(DISTMULT) ((Cai and Wang, 2017)) 0.772 0.948
KBGAN(COMPLEX) ((Cai and Wang, 2017)) 0.779 0.948
Wang et al. ((Wang et al., 2018)) - 0.93

COMPLEX ((Trouillon et al., 2016)) 0.941 0.947

Table 4: WN18 experiments: the first portion of
the table contains results where the base model is
TransD, the last separated line is the COMPLEX
embedding model (Trouillon et al., 2016), which
achieves the SOTA on this dataset. Among all
TransD based models (the best results in this group
is underlined), ACE improves over basic NCE and
another GAN based approach KBGAN. The gap
on MRR is likely due to the difference between
TransD and COMPLEX models.

5.5 Hard Negative Analysis

To better understand the effect of the adversarial
samples proposed by the generator we plot the dis-
criminator loss on both pnce and gθ samples. In
this context, a harder sample means a higher loss
assigned by the discriminator. Fig. 4 shows that
discriminator loss for the word embedding task on
gθ samples are always higher than on pnce sam-
ples, confirming that the generator is indeed sam-
pling harder negatives.
For Hypernym Prediction task, Fig.2 shows dis-
criminator loss on negative pairs sampled from
NCE and ACE respectively. The higher the loss
the harder the negative pair is. As indicated in the
left plot, loss on the ACE negative terms collapses

faster than on the NCE negatives. After adding
entropy regularization and weight decay, the gen-
erator works as expected.

6 Limitations

When the generator softmax is large, the current
implementation of ACE training is computation-
ally expensive. Although ACE converges faster
per iteration, it may converge more slowly on
wall-clock time depending on the cost of the soft-
max. However, embeddings are typically used as
pre-trained building blocks for subsequent tasks.
Thus, their learning is usually the pre-computation
step for the more complex downstream models
and spending more time is justified, especially
with GPU acceleration. We believe that the com-
putational cost could potentially be reduced via
some existing techniques such as the “augment
and reduce” variational inference of (Ruiz et al.,
2018), adaptive softmax (Grave et al., 2016), or
the “sparsely-gated” softmax of Shazeer et al.
(2017), but leave that to future work.

Another limitation is on the theoretical front.
As noted in Goodfellow (2014), GAN learning
does not implement maximum likelihood estima-
tion (MLE), while NCE has MLE as an asymp-
totic limit. To the best of our knowledge, more
distant connections between GAN and MLE train-
ing are not known, and tools for analyzing the
equilibrium of a min-max game where players are
parametrized by deep neural nets are currently not
available to the best of our knowledge.

7 Conclusion

In this paper, we propose Adversarial Contrastive
Estimation as a general technique for improving
supervised learning problems that learn by con-
trasting observed and fictitious samples. Specifi-
cally, we use a generator network in a conditional
GAN like setting to propose hard negative exam-
ples for our discriminator model. We find that a
mixture distribution of randomly sampling neg-
ative examples along with an adaptive negative
sampler leads to improved performances on a va-
riety of embedding tasks. We validate our hypoth-
esis that hard negative examples are critical to op-
timal learning and can be proposed via our ACE
framework. Finally, we find that controlling the
entropy of the generator through a regularization
term and properly handling false negatives is cru-
cial for successful training.
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Abstract

This paper focuses on detection tasks in
information extraction, where positive in-
stances are sparsely distributed and mod-
els are usually evaluated using F-measure
on positive classes. These characteristics
often result in deficient performance of
neural network based detection models. In
this paper, we propose adaptive scaling,
an algorithm which can handle the pos-
itive sparsity problem and directly opti-
mize over F-measure via dynamic cost-
sensitive learning. To this end, we bor-
row the idea of marginal utility from eco-
nomics and propose a theoretical frame-
work for instance importance measuring
without introducing any additional hyper-
parameters. Experiments show that our
algorithm leads to a more effective and
stable training of neural network based
detection models.

1 Introduction

Detection problems, aiming to identify occur-
rences of specific kinds of information (e.g.,
events, relations, or entities) in documents, are
fundamental and widespread in information ex-
traction (IE). For instance, an event detec-
tion (Walker et al., 2006) system may want to
detect triggers for “Attack” events, such as “shot”
in sentence “He was shot”. In relation detec-
tion (Hendrickx et al., 2009), we may want to
identify all instances of a specific relation, such as
“Jane joined Google” for “Employment” relation.

Recently, a number of researches have em-
ployed neural network models to solve detection
problems, and have achieved significant improve-
ment in many tasks, such as event detection (Chen
et al., 2015; Nguyen and Grishman, 2015), relation

Classification Detection
Target
Instances

All instances Sparse positive
instances

Evaluation Accuracy or F-measure
on all classes

F-measure on only
positive classes

Typical
Tasks

Text Classification,
Sentiment
Classification

Event Detection,
Relation Detection

Table 1: Comparison between standard classifica-
tion tasks and detection problems.

detection (Zeng et al., 2014; Santos et al., 2015)
and named entity recognition (Huang et al., 2015;
Chiu and Nichols, 2015; Lample et al., 2016).
These methods usually regard detection problems
as standard classification tasks, with several posi-
tive classes for targets to detect and one negative
class for irrelevant (background) instances. For
example, an event detection model will identify
event triggers in sentence “He was shot” by classi-
fying word “shot” into positive class “Attack”, and
classifying all other words into the negative class
“NIL”. To optimize classifiers, cross-entropy loss
function is commonly used in this paradigm.

However, different from standard classification
tasks, detection tasks have unique class inequality
characteristic, which stems from both data dis-
tribution and applied evaluation metric. Table 1
shows their differences. First, positive instances
are commonly sparsely distributed in detection
tasks. For example, in event detection, less than
2% of words are a trigger of an event in RichERE
dataset (Song et al., 2015). Furthermore, detection
tasks are commonly evaluated using F-measure on
positive classes, rather than accuracy or F-measure
on all classes. Therefore positive and negative
classes play different roles in the evaluation: the
performance is evaluated by only considering how
well we can detect positive instances, while cor-
rect predictions of negative instances are ignored.

Due to the class inequality characteristic, re-
ported results indicate that simply applying stan-
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dard classification paradigm to detection tasks will
result in deficient performance (Anand et al.,
1993; Carvajal et al., 2004; Lin et al., 2017). This
is because minimizing cross-entropy loss function
corresponds to maximize the accuracy of neural
networks on all training instances, rather than F-
measure on positive classes. Furthermore, due to
the positive sparsity problem, training procedure
will easily achieve a high accuracy on negative
class, but is difficult to converge on positive class-
es and often leads to a low recall rate. Although
simple sampling heuristics can alleviate this prob-
lem to some extent, they either suffer from losing
inner class information or over-fitting positive in-
stances (He and Garcia, 2009; Fernández-Navarro
et al., 2011), which often result in instability
during the training procedure.

Some previous approaches (Joachims, 2005;
Jansche, 2005, 2007; Dembczynski et al., 2011;
Chinta et al., 2013; Narasimhan et al., 2014;
Natarajan et al., 2016) tried to solve this problem
by directly optimizing F-measure. Parambath
et al. (2014) proved that it is sufficient to solve
F-measure optimization problem via cost-sensitive
learning, where class-specific cost factors are ap-
plied to indicate the importance of different class-
es to F-measure. However, optimal factors are not
known a priori so ε-search needs to be applied,
which is too time consuming for the optimization
of neural networks.

To solve the class inequality problem for sparse
detection model optimization, this paper proposes
a theoretical framework to quantify the importance
of positive/negative instances during training. We
borrow the idea of marginal utility from Eco-
nomics (Stigler, 1950), and regard the evaluation
metric (i.e., F-measure commonly) as the utility to
optimize. Based on the above idea, the importance
of an instance is measured using the marginal
utility of correctly predicting it. For standard
classification tasks evaluated using accuracy, our
framework proves that correct predictions of pos-
itive and negative instances will have equal and
unchanged marginal utility, i.e., all instances are
with the same importance. For detection problems
evaluated using F-measure, our framework proves
that the utility of correctly predicting one more
positive instance (marginal positive utility) and
that of correctly predicting one more negative
instance (marginal negative utility) are different
and dynamically changed during model training.

That is, the importance of instances of each class
is not only determined by their data distribution,
but also affected by how well the current model
can converge on different classes.

Based on the above framework, we propose
adaptive scaling, a dynamic cost-sensitive learn-
ing algorithm which adaptively scales costs of
instances of different classes with above quantified
importance during the training procedure, and
thus can make the optimization criteria consistent
with the evaluation metric. Furthermore, a batch-
wise version of our adaptive scaling algorithm
is proposed to make it directly applicable as a
plug-in of conventional neural network training
algorithms. Compared with previous methods,
adaptive scaling is designed based on marginal
utility framework and doesn’t introduce any ad-
ditional hyper-parameter, and therefore is more
efficient and stable to transfer among datasets and
models.

Generally, the main contributions of this paper
are:

• We propose a marginal utility based frame-
work for detection model optimization,
which can dynamically quantify instance im-
portance to different evaluation metrics.

• Based on the above framework, we present
adaptive scaling, a plug-in algorithm which
can effectively resolve the class inequality
problem in neural detection model optimiza-
tion via dynamic cost-sensitive learning.

We conducted experimental studies1 on event
detection, a typical sparse detection task in IE. We
thoroughly compared various methods for adapt-
ing classical neural network models into detection
problems. Experiment results show that our adap-
tive scaling algorithm not only achieves a better
performance, but also is more stable and more
adaptive for training neural networks on various
models and datasets.

2 Background

Relation between Accuracy Metric and Cross-
Entropy Loss. Recent neural network method-
s usually regard detection problems as standard
classification tasks, with several positive classes to
detect, and one negative class for other irrelevant

1Our source code is openly available at github.com/
sanmusunrise/AdaScaling.
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instances. Formally, given P positive training
instances P = {(xi, yi)Pi=1}, and N negative
instances N = {(xi, yi)Ni=1} (due to positive
sparsity, P � N ), the training of neural net-
work classifiers usually involves in minimizing the
softmax cross-entropy loss function regarding to
model parameters θ:

LCE(θ) = − 1

P +N

∑

(xi,yi)∈P
⋃N

log p(yi|xi; θ) (1)

and if P,N →∞, we have

lim
P,N→∞

LCE(θ) = −E[log p(y|x; θ)] = − log(Accuracy)

(2)

which reveals that minimizing cross-entropy loss
corresponds to maximize the expected accuracy of
the classifier on training data.
Divergence between F-Measure and Cross-
Entropy Loss. However, detection tasks are most-
ly evaluated using F-measure computed on posi-
tive classes, which makes it unsuitable to optimize
classifiers using cross-entropy loss. For instance,
due to the positive sparsity, simply classifying all
instances into negative class will achieve a high
accuracy but zero F-measure.

To show where this divergence comes from, let
c1, c2, ..., ck−1 denote k−1 positive classes and ck
is the negative class, we define TP =

∑k−1
i=1 TPi,

where TPi is the population of correctly predicted
instances of positive class ci. TN denotes the
number of correctly predicted negative instances.
PE represents positive-positive error, where an
instance is classified into one positive class ci but
its golden label is another positive class cj . Then
we have following metrics2:

Accuracy =
TP + TN

P +N
(3)

Precision =
TP

N − TN + PE + TP
(4)

Recall =
TP

P
(5)

Fβ = (1 + β2)
Precision · Recall

β2 · Precision + Recall

= (1 + β2)
TP

β2P +N − TN + PE + TP

(6)

where β in Fβ is a factor indicating the metric
attaches β times as much importance to recall as

2This paper considers micro-averaged metrics. But our
conclusions can be easily extended to macro-averaged met-
rics by scaling above-mentioned coefficients with sample
sizes of each class.

precision. We can easily see that for accuracy
metric, correct predictions of positive and negative
instances are equally regarded (i.e., TP and TN
are symmetric), which is consistent with cross-
entropy loss function. However, when measuring
using F-measure, this condition is no longer hold-
ing. The importance varies from different classes
(i.e., TP and TN are asymmetric). Therefore,
to make the training procedure consistent with
F-measure, it is critical to take this importance
difference into consideration.
F-measure Optimization via Cost-sensitive
Learning. Parambath et al. (2014) have shown
that F-measure can be optimized via cost-sensitive
learning, where a cost (importance) is set for each
class for adjusting their impact on model learning.
However, most previous studies set such costs
manually (Anand et al., 1993; Domingos, 1999;
Krawczyk et al., 2014) or search them on large
scale dataset (Nan et al., 2012; Parambath et al.,
2014), whose best settings are not transferable and
very time-consuming to find for neural network
models. This motivates us to develop a theoretical
framework for measuring such importance.

3 Adaptive Scaling for Sparse Detection

This section describes how to effectively opti-
mize neural network detection models via dy-
namic cost-sensitive learning. Specifically, we
first propose a marginal utility based theoretical
framework for measuring the importance of pos-
itive/negative instances. Then we present our
adaptive scaling algorithm, which can leverage the
importance of each class for effective and robust
training of neural network detection models. Fi-
nally, a batch-wise version of our algorithm is
proposed to make it can be applied as a plug-in of
batch-based neural network training algorithms.

3.1 Marginal Utility based Importance
Measuring

Conventional methods commonly deal with the
class inequality problem in sparse detection by
deemphasizing the importance of negative in-
stances during training. This raises two questions:
1) How to quantify the importance of instances
of each class? As mentioned by Parambath et al.
(2014), that importance is related to the conver-
gence ability of models, which means that this
problem cannot be solved by only considering
the distribution of training data. 2) Is the im-
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portance of positive/negative instances remaining
unchanged during the entire training process? If
not, how it changes according to the convergence
of the model?

To this end, we borrow the idea of marginal
utility from economics, which means the change
of utility from consuming one more unit of prod-
uct. In detection tasks, we regard its evaluation
metric (F-measure) as the utility function. The
increment of utility from correctly predicting one
more positive instance (marginal positive utility)
can be regarded as the relative importance of posi-
tive classes, and that from correctly predicting one
more negative instance (marginal negative utility)
is look upon as the relative importance of the neg-
ative class. If marginal positive utility overweighs
marginal negative utility, positive instances should
be considered more important during optimization
because it can lead to more improvement on the
evaluation metric. In contrast, if marginal negative
utility is higher, training procedure should incline
to negative instances since it is more effective for
optimizing the evaluation metric.

Formally, we derive marginal positive u-
tility MU(TP ) and marginal negative utility
MU(TN) by computing the partial derivative of
the evaluation metric with respect to TP and TN
respectively. For instance, the marginal positive
utilityMUacc(TP ) and the marginal negative util-
ity MUacc(TN) regarding to accuracy metric are:

MUacc(TP ) =
∂(Accuracy)
∂(TP )

=
1

P +N
(7)

MUacc(TN) =
∂(Accuracy)
∂(TN)

=
1

P +N
(8)

We can see thatMUacc(TP ) andMUacc(TN) are
equal and constant regardless of the values of TP
and TN . This indicates that, to optimize accuracy,
we can simply treat positive and negative instances
equally during the training phase, and this is what
we exactly do when optimizing cross-entropy loss
in Equation 1. For detection problems evaluated
using F-measure, we can obtain the marginal util-
ities from Equation 6 as:

MUFβ (TP ) =
(1 + β2)(β2P +N − TN + PE)

(β2P +N − TN + PE + TP )2
(9)

MUFβ (TN) =
(1 + β2) · TP

(β2P +N − TN + PE + TP )2
(10)

This result is different from that of accuracy
metric. First, MUFβ (TP ) and MUFβ (TN) is

no longer equal, indicating that the importance
of positive/negative instances to F-measure are
different. Besides, it is notable that MUFβ (TP )
and MUFβ (TN) are dynamically changed during
the training phase and are highly related to how
well current model can fit positive instances and
negative instances, i.e., TP and TN .

3.2 Adaptive Scaling Algorithm
In this section, we describe how to incorporate
the above importance measures into the training
procedure of neural networks, so that it can dy-
namically adjust weights of positive and negative
instances regarding to F-measure.

Specifically, given the current model of neural
networks parameterized by θ, let wβ(θ) denote
the relative importance of negative instances to
positive instances for Fβ-measure. Then wβ(θ)
can be computed as the ratio of marginal negative
utility MUFβ (TN(θ)) to the marginal positive
utility MUFβ (TP (θ)), where TP (θ) and TN(θ)
are TP and TN on training data with respect to
θ-parameterized model:

wβ(θ) =
MUFβ (TN(θ))

MUFβ (TP (θ))
=

TP (θ)

β2P +N − TN(θ) + PE
(11)

Then at each iteration of the model optimization
(i.e., each step of gradient descending), we want
the model to take next update step proportional to
the gradient of the wβ-scaled cross-entropy loss
function LAS(θ) at the current point:

LAS(θ) =−
∑

(xi,yi)∈P
log p(yi|xi; θ)

−
∑

(xi,yi)∈N
wβ(θ) · log p(yi|xi; θ)

(12)

Consequently, based on the contributions that cor-
rectly predicting one more instances of each class
bringing to F-measure, the training procedure dy-
namically adjusts its attention between positive
and negative instances. Thus our adaptive scaling
algorithm can take the class inequality characteris-
tic of detection problems into consideration with-
out introducing any additional hyper-parameter3.

3.3 Properties and Relations to Previous
Empirical Conclusions

In this section, we investigate the properties of our
adaptive scaling algorithm. By investigating the

3Note that β is set according to the applied Fβ evaluation
metric and therefore is not a hyper-parameter.
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change of scaling coefficient wβ(θ) during train-
ing, we find that our method has a tight relation
to previous empirical conclusions on solving the
class inequality problem.

Property 1. The relative importance of pos-
itive/negative instances is related to the ratio of
the instance number of each class, as well as
how well current model can fit each class. It
is easy to derive that if we fix the accuracies of
each classes, wβ(θ) will be smaller if the ratio
of the size of negative instances to that of the
positive instances (i.e., N

P ) increases. This indi-
cates that the training procedure should pay more
attention to positive instances if the empirical dis-
tribution inclines more severely towards negative
class, which is identical to conventional practice
that we should deemphasize more on negative
instances if the positive sparsity problem is more
severe (Japkowicz and Stephen, 2002). Besides,
wβ(θ) highly depends on TP and TN , which is
identical to previous conclusion that the best cost
factors are related to the convergence ability of
models (Parambath et al., 2014).

Property 2. For micro-averaged F-measure, all
positive instances are equally weighted regardless
of the sample size of its class. Let MU(TPi) be
the marginal utility of positive class ci, we have:

MUFβ (TPi) =
∂(Fβ)

∂(TP )
· ∂(TP )

∂(TPi)
=MUFβ (TP )

(13)

This corresponds to the applied micro-averaged
F-measure, in which all positive instances are
equally considered regardless of the sample size
of its class. Thus correctly predicting one more
positive instance of any class will result in the
same increment of micro-averaged F-measure.

Property 3. The importance of negative in-
stances increases with the rise of accuracy on
positive classes. This is a straightforward conse-
quence because if the model has higher accuracy
on positive instances then it should shift more
of its attention to negative ones. Besides, if
the accuracy of positive class is close to zero,
F-measure will also be close to zero no matter
how high the accuracy on negative class is, i.e.,
correctly predicting negative instances can result
in little F-measure increment. Therefore negative
instances are inconsequential when the accuracy
on positive class is low. And with the increment of
positive accuracy, the importance of negative class
also increases.

Property 4. The importance of negative in-
stances increased with the rise of accuracy on the
negative class. This can make the training proce-
dure incline to hard negative instances, which is
similar to Focal Loss (Lin et al., 2017). During
model convergence, easy negative instances can
be correctly classified at the very beginning of
training and its loss (negative log probability)
will reduce very quickly. This is analogical
to removing easy negative instances out of the
training procedure and the hard negative instances
remaining become more balanced proportional to
positive instances. Therefore the importance wβ
of remaining hard negative instances are increased
to make the model fit them better.

Property 5. The importance of negative in-
stances increases when more attention is paid to
precision than recall. We can see that wβ decreas-
es with the rise of β, which indicates we focus
more on recall than precision. This is identical to
practice in sampling heuristics that models should
attach more attention to negative instances and
sub-sample more of them if evaluation metrics
incline more to precision than recall.

3.4 Batch-wise Adaptive Scaling

In large-scale machine learning, batch-wise gradi-
ent based algorithm is more popular and efficient
for neural network training. This section presents
a batch-wise version of our adaptive scaling algo-
rithm, which uses batch-based estimator ŵβ(θ) to
replace wβ(θ) in Equation 12.

First, because the main challenge of detec-
tion tasks is to identify positive instances from
background ones, rather than distinguish between
positive classes, we ignore the positive-positive
error PE in our experiments. In fact, we found
that compared with P and N − TN , PE is much
smaller and has very limited impact on the final
result. Besides, for TP and TN , we approximate
them using their expectation on the current batch,
which can produce a robust estimation even when
the batch size is not large enough. Specifically, let
PB = {(xi, yi)PBi=1} denotes PB positive instances
andNB = {(xi, yi)NB

i=1} is NB negative instances
in the batch, we estimate TP (θ) and TN(θ) as:

TPB(θ) =
∑

(xi,yi)∈PB
p(yi|xi; θ) (14)

TNB(θ) =
∑

(xi,yi)∈NB
p(yi|xi; θ) (15)

1037



Then we can compute the estimator ŵβ(θ) for
wβ(θ) as:

ŵβ(θ) =
TPB(θ)

β2PB +NB − TNB(θ)
(16)

where ŵβ(θ) is computed using only the instances
in a batch, which makes it can be directly applied
as a plug-in of conventional batch-based neural
network optimization algorithm where the loss of
negative instances in batch are scaled by ŵβ(θ).

4 Experiments

4.1 Data Preparation

To assess the effectiveness of our method, we
conducted experiments on event detection, which
is a typical detection task in IE. We used the offi-
cial evaluation datasets of TAC KBP 2017 Event
Nugget Detection Evaluation (LDC2017E55) as
test sets, which contains 167 English documents
and 167 Chinese documents annotated with Rich
ERE annotation standard. For English, we used
previously annotated RichERE datasets, includ-
ing LDC2015E29, LDC2015E68, LDC2016E31
and TAC KBP 2015-2016 Evaluation datasets
in LDC2017E02 as the training set. For Chi-
nese, the training set includes LDC2015E105,
LDC2015E112, LDC2015E78 and the Chinese
part of LDC2017E02. For both Chinese and
English, we sampled 20 documents from the e-
valuation dataset of 2016 year as the development
set. Finally, there are 866/20/167 documents in
English train/development/test set and 506/20/167
documents in Chinese train/development/test set
respectively. We used Stanford CoreNLP toolk-
it (Manning et al., 2014) for sentence splitting and
word segmentation in Chinese.

4.2 Baselines

To verify the effectiveness of our adaptive s-
caling algorithm, we conducted experiments on
two state-of-the-art neural network event detec-
tion models. The first one is Dynamic Multi-
pooling Convolutional Neural network (DMCNN)
proposed by Chen et al. (2015), a one-layer CNN
model with a dynamic multi-pooling operation
over convolutional feature maps. The second one
is BiLSTM used by Feng et al. (2016) and Yang
and Mitchell (2017), where a bidirectional LSTM
layer is firstly applied to the input sentence and
then word-wise classification is directly conducted
on the output of the BiLSTM layer of each word.

We compared our method with following base-
lines upon above-mentioned two models:

1) Vanilla models (Vanilla), which used the
original cross-entropy loss function without any
additional treatment for class inequality problem.

2) Under-sampling (Sampling), which sam-
ples only part of negative instances as the training
data. This is the most widely used solution in
event detection (Chen et al., 2015).

3) Static scaling (Scaling), which scales loss of
negative instances with a constant. This is a simple
but effective cost-sensitive learning method.

4) Focal Loss (Focal) (Lin et al., 2017), which
scales loss of an instance with a factor proportional
to the probability of incorrectly predicting it. This
method proves to be effective in some detection
problems such as Object Detection.

5) Softmax-Margin Loss (CLUZH) (Makarov
and Clematide, 2017), which sets additional costs
for false-negative error and positive-positive error.
This method was used in the 5-model ensembling
CLUZH system in TAC KBP 2017 Evaluation.
Besides, it also introduced several strong hand-
craft features, which makes it achieve the best
performance on Chinese and very competitive
performance on English in the evaluation.

We evaluated all systems with micro-F1 metric
computed using the official evaluation toolkit4.
We reported the average performance of 10 runs
(Mean) of each system on the official type classi-
fication task.5 We also reported the variance (Var)
of the performance to evaluate the stabilities of d-
ifferent methods. As TAC KBP2017 allowed each
team to submit 3 different runs, to make our results
comparable with evaluation results, we selected 3
best runs of each system on the development set
and reported the best test set performance among
them, which is referred as Best3 in this paper. We
applied grid search (Hsu et al., 2003) to find best
hyper-parameters for all methods.

4.3 Overall results

Table 2 shows the overall results on both English
and Chinese. From this table, we can see that:

1) The class inequality problem is crucial
for sparse detection tasks and requires special
consideration. Compared with vanilla models, all

4github.com/hunterhector/EvmEval/
tarball/master

5Realis classification, another task in the evaluation, can
be regarded as a standard classification task without back-
ground class, so we didn’t include it here.
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Model English Chinese
Mean Var Best3 Mean Var Best3

CLUZH* - - 48.60 - - 50.14
BiLSTM

Vanilla 41.91 1.40 43.27 44.23 1.88 47.13
Focal 43.23 0.52 44.65 44.37 4.45 46.90
Sampling 46.66 0.27 47.70 48.97 0.97 50.24
Scaling 46.61 0.35 47.71 48.87 0.83 49.99
A-Scaling 47.48 0.20 48.11 49.19 0.46 50.40

DMCNN
Vanilla 44.41 2.21 47.12 44.85 5.63 48.16
Focal 45.24 1.38 47.33 44.61 7.59 49.74
Sampling 46.83 0.23 47.65 50.77 2.34 52.50
Scaling 47.06 1.92 48.07 51.38 0.74 52.49
A-Scaling 47.60 0.16 48.31 51.87 0.39 52.99

Table 2: Experiment results on TAC KBP 2017
evaluation datasets. * indicates the best (ensem-
bling) results reported in the original paper. “A-
Scaling” is batch-wise adaptive scaling algorithm.

other methods trying to tackle this problem have
shown significant improvements on both models
and both languages, especially on Chinese dataset
where the positive sparsity problem is more se-
vere (Makarov and Clematide, 2017).

2) It is critical to take the different roles of
classes into consideration for F-measure opti-
mization. Even down-weighting the loss assigned
to well-classified examples can alleviate the posi-
tive sparsity problem by deemphasizing easy neg-
ative instances during optimization, Focal Loss
cannot achieve competitive performance because
it does not distinguish between different classes.

3) Marginal Utility based framework pro-
vides a solid foundation for measuring instance
importance, thus makes our adaptive scal-
ing algorithm steadily outperform all heuristic
baselines. No matter on mean or Best3 met-
ric, adaptive scaling steadily outperforms other
baselines on both BiLSTM and DMCNN model.
Furthermore, we can see that simple models with
adaptive scaling outperform the state-of-the-art
CLUZH system on Chinese (which has more se-
vere positive sparsity problem) and achieve com-
parable results with it on English. Please note
that CLUZH is an ensemble of five models and
uses extra hand-crafted features. This verified the
effectiveness of our adaptive scaling algorithm.

4) Our adaptive scaling algorithm doesn’t
need additional hyper-parameters and the im-
portance of instances is dynamically estimated.
This leads to a more stable and transferable
solution for detection model optimization. First,
we can see that adaptive scaling has the lowest
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Figure 1: Box plots of three different methods. *
indicates outliers not shown in the figure exist.

variance among all methods, which means that
it is more stable than other methods. Besides,
adaptive scaling doesn’t introduce any additional
hyper-parameters. In contrast, in experiment we
found that the best hyper-parameters for under-
sampling (the ratio of sampled negative instances
to positive instances) and static scaling (the pri-
or cost for negative instances) remarkably varied
from models and datasets.

4.4 Stability Analysis

This section investigated the stability of different
methods. Table 2 have shown that adaptive scaling
has a much smaller variance than other baselines.
To investigate its reason, Figure 1 shows the box
plots of adaptive scaling and other heuristic meth-
ods on both models and both languages.

We can see that interquartile ranges (i.e., the
difference between 75th and 25th percentiles of
data) of the performances of adaptive scaling are
smaller than other methods. In all groups of exper-
iments, the performances of our adaptive scaling
algorithm are with a smaller fluctuation. This
demonstrates the stability of adaptive scaling al-
gorithm. Furthermore, we found that conventional
methods are more instable on Chinese dataset
where the data distribution is more skewed. We
believe that this is because:

1) Under-Sampling might undermine the inner
sub-concept structure of negative class by simply
dropping negative instances, and its performance
depends on the quality of sampled data, which can
result in the instability.

2) Static scaling sets the importance of negative
instances statically in the entire training proce-
dure. However, as shown in Section 3, the rel-
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Figure 2: Change of Precision, Recall and F1
regarding to β using adaptive scaling on DMCNN.

ative importance between different classes is dy-
namically changed during the training procedure,
which makes static scaling incapable of achieving
stable performance in different phases of training.

3) Adaptive scaling achieves more stable perfor-
mance during the entire training procedure. First,
it doesn’t drop any instances, so it can maintain
the inner structure of negative class without any
information loss. Besides, our algorithm can dy-
namically adjust the scaling factor during training,
therefore can automatically shift attention between
positive and negative classes according to the
convergence state of the model.

4.5 Adaptability on Different β

Figure 2 shows the change of Precision, Recall and
F1 measures regarding to different β. We can see
that when β increases, the precision decreased and
the recall increased by contrast. This is identical
to the nature of Fβ where β represents the relative
importance of precision and recall. Furthermore,
adaptive scaling with β = 1 achieved the best
performance on F1 measure. This further demon-
strates that wβ derived from our marginal utility
framework is a good and adaptive estimator for
the relative importance of the negative class to
positive classes of Fβ measure.

5 Related Work

This paper proposes adaptive scaling algorithm for
sparse detection problem. Related work to this
paper mainly includes:
Classification on Imbalanced Data. Conven-
tional approaches addressed data imbalance from
either data-level or algorithm-level. Data-level
approaches resample the training data to maintain
the balance between different classes (Japkow-
icz and Stephen, 2002; Drummond et al., 2003).
Further improvements on this direction involve
how to better sampling data with minimum in-

formation loss (Carvajal et al., 2004; Estabrooks
et al., 2004; Han et al., 2005; Fernández-Navarro
et al., 2011). Algorithm-level approaches attempt
to choose an appropriate inductive bias on models
or algorithms to make them more suitable on data
imbalance condition, including instance weight-
ing (Ting, 2002; Lin et al., 2017), cost-sensitive
learning (Anand et al., 1993; Domingos, 1999;
Sun et al., 2007; Krawczyk et al., 2014) and active
learning approaches (Ertekin et al., 2007a,b; Zhu
and Hovy, 2007).
F-Measure Optimization. Previous research
on F-measure optimization mainly fell into t-
wo paradigms (Nan et al., 2012): 1) Decision-
theoretic approaches (DTA), which first estimate a
probability model and find the optimal predictions
according to that model (Joachims, 2005; Jansche,
2005, 2007; Dembczynski et al., 2011; Busa-
Fekete et al., 2015; Natarajan et al., 2016). The
main drawback of these methods is that they need
to estimate the joint probability with exponentially
many combinations, thus make them hard to use in
practice; 2) Empirical utility maximization (EUM)
approaches, which adapt approximate methods to
find a best classifier in hypothesises (Musicant
et al., 2003; Chinta et al., 2013; Parambath et al.,
2014; Narasimhan et al., 2014). However, EUM
methods depend on thresholds or costs that are not
known a priori so time-consuming searching on
large development set is required. Our adaptive
scaling algorithm is partially inspired by EUM
approaches, but is based on the marginal utility
framework, which doesn’t introduce any addition-
al hyper-parameter or searching procedure.
Neural Network based Event Detection. Event
detection is a typical task of detection problem-
s. Recently neural network based methods have
achieved significant progress in Event Detection.
CNNs (Chen et al., 2015; Nguyen and Grish-
man, 2015) and Bi-LSTMs (Zeng et al., 2016;
Yang and Mitchell, 2017) are two effective and
widely used models. Some improvements have
been made by jointly predicting triggers and argu-
ments (Nguyen et al., 2016) or introducing more
complicated architectures to capture larger scale of
contexts (Feng et al., 2016; Nguyen and Grishman,
2016; Ghaeini et al., 2016).

6 Conclusions

This paper proposes adaptive scaling algorithm for
detection tasks, which can deal with its positive
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sparsity problem and directly optimize F-measure
by adaptively scaling the influence of negative
instances in loss function. Based on the marginal
utility theory framework, our method leads to
more effective, stable and transferable optimiza-
tion of neural networks without introducing ad-
ditional hyper-parameters. Experiments on event
detection verified the effectiveness and stability of
our adaptive scaling algorithm.

The divergence between loss functions and e-
valuation metrics is common in NLP and machine
learning. In the future we want to apply our
marginal utility based framework to other metrics,
such as Mean Average Precision (MAP).
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Abstract

Novel neural models have been proposed
in recent years for learning under domain
shift. Most models, however, only evaluate
on a single task, on proprietary datasets, or
compare to weak baselines, which makes
comparison of models difficult. In this pa-
per, we re-evaluate classic general-purpose
bootstrapping approaches in the context of
neural networks under domain shifts vs. re-
cent neural approaches and propose a novel
multi-task tri-training method that reduces
the time and space complexity of classic
tri-training. Extensive experiments on two
benchmarks are negative: while our novel
method establishes a new state-of-the-art
for sentiment analysis, it does not fare con-
sistently the best. More importantly, we
arrive at the somewhat surprising conclu-
sion that classic tri-training, with some ad-
ditions, outperforms the state of the art. We
conclude that classic approaches constitute
an important and strong baseline.

1 Introduction

Deep neural networks (DNNs) excel at learning
from labeled data and have achieved state of the
art in a wide array of supervised NLP tasks such as
dependency parsing (Dozat and Manning, 2017),
named entity recognition (Lample et al., 2016), and
semantic role labeling (He et al., 2017).

In contrast, learning from unlabeled data, es-
pecially under domain shift, remains a challenge.
This is common in many real-world applications
where the distribution of the training and test data
differs. Many state-of-the-art domain adaptation
approaches leverage task-specific characteristics
such as sentiment words (Blitzer et al., 2006; Wu
and Huang, 2016) or distributional features (Schn-

abel and Schütze, 2014; Yin et al., 2015) which
do not generalize to other tasks. Other approaches
that are in theory more general only evaluate on
proprietary datasets (Kim et al., 2017) or on a sin-
gle benchmark (Zhou et al., 2016), which carries
the risk of overfitting to the task. In addition, most
models only compare against weak baselines and,
strikingly, almost none considers evaluating against
approaches from the extensive semi-supervised
learning (SSL) literature (Chapelle et al., 2006).

In this work, we make the argument that such al-
gorithms make strong baselines for any task in line
with recent efforts highlighting the usefulness of
classic approaches (Melis et al., 2017; Denkowski
and Neubig, 2017). We re-evaluate bootstrapping
algorithms in the context of DNNs. These are
general-purpose semi-supervised algorithms that
treat the model as a black box and can thus be used
easily—with a few additions—with the current gen-
eration of NLP models. Many of these methods,
though, were originally developed with in-domain
performance in mind, so their effectiveness in a
domain adaptation setting remains unexplored.

In particular, we re-evaluate three traditional
bootstrapping methods, self-training (Yarowsky,
1995), tri-training (Zhou and Li, 2005), and tri-
training with disagreement (Søgaard, 2010) for
neural network-based approaches on two NLP
tasks with different characteristics, namely, a se-
quence prediction and a classification task (POS
tagging and sentiment analysis). We evaluate the
methods across multiple domains on two well-
established benchmarks, without taking any further
task-specific measures, and compare to the best
results published in the literature.

We make the somewhat surprising observation
that classic tri-training outperforms task-agnostic
state-of-the-art semi-supervised learning (Laine
and Aila, 2017) and recent neural adaptation ap-
proaches (Ganin et al., 2016; Saito et al., 2017).
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In addition, we propose multi-task tri-training,
which reduces the main deficiency of tri-training,
namely its time and space complexity. It establishes
a new state of the art on unsupervised domain adap-
tation for sentiment analysis but it is outperformed
by classic tri-training for POS tagging.

Contributions Our contributions are: a) We pro-
pose a novel multi-task tri-training method. b) We
show that tri-training can serve as a strong and ro-
bust semi-supervised learning baseline for the cur-
rent generation of NLP models. c) We perform an
extensive evaluation of bootstrapping1 algorithms
compared to state-of-the-art approaches on two
benchmark datasets. d) We shed light on the task
and data characteristics that yield the best perfor-
mance for each model.

2 Neural bootstrapping methods

We first introduce three classic bootstrapping meth-
ods, self-training, tri-training, and tri-training with
disagreement and detail how they can be used with
neural networks. For in-depth details we refer the
reader to (Abney, 2007; Chapelle et al., 2006; Zhu
and Goldberg, 2009). We introduce our novel multi-
task tri-training method in §2.3.

2.1 Self-training
Self-training (Yarowsky, 1995; McClosky et al.,
2006b) is one of the earliest and simplest boot-
strapping approaches. In essence, it leverages the
model’s own predictions on unlabeled data to ob-
tain additional information that can be used during
training. Typically the most confident predictions
are taken at face value, as detailed next.

Self-training trains a model m on a labeled train-
ing set L and an unlabeled data set U . At each
iteration, the model provides predictions m(x) in
the form of a probability distribution over classes
for all unlabeled examples x in U . If the proba-
bility assigned to the most likely class is higher
than a predetermined threshold τ , x is added to the
labeled examples with p(x) = argmaxm(x) as
pseudo-label. This instantiation is the most widely
used and shown in Algorithm 1.

Calibration It is well-known that output prob-
abilities in neural networks are poorly calibrated
(Guo et al., 2017). Using a fixed threshold τ is thus

1We use the term bootstrapping as used in the semi-
supervised learning literature (Zhu, 2005), which should not
be confused with the statistical procedure of the same name
(Efron and Tibshirani, 1994).

Algorithm 1 Self-training (Abney, 2007)
1: repeat
2: m← train_model(L)
3: for x ∈ U do
4: if maxm(x) > τ then
5: L← L ∪ {(x, p(x))}
6: until no more predictions are confident

not the best choice. While the absolute confidence
value is inaccurate, we can expect that the relative
order of confidences is more robust.

For this reason, we select the top n unlabeled
examples that have been predicted with the high-
est confidence after every epoch and add them to
the labeled data. This is one of the many variants
for self-training, called throttling (Abney, 2007).
We empirically confirm that this outperforms the
classic selection in our experiments.

Online learning In contrast to many classic al-
gorithms, DNNs are trained online by default. We
compare training setups and find that training until
convergence on labeled data and then training until
convergence using self-training performs best.

Classic self-training has shown mixed success.
In parsing it proved successful only with small
datasets (Reichart and Rappoport, 2007) or when
a generative component is used together with a
reranker in high-data conditions (McClosky et al.,
2006b; Suzuki and Isozaki, 2008). Some success
was achieved with careful task-specific data se-
lection (Petrov and McDonald, 2012), while oth-
ers report limited success on a variety of NLP
tasks (Plank, 2011; Van Asch and Daelemans,
2016; van der Goot et al., 2017). Its main down-
side is that the model is not able to correct its own
mistakes and errors are amplified, an effect that is
increased under domain shift.

2.2 Tri-training

Tri-training (Zhou and Li, 2005) is a classic method
that reduces the bias of predictions on unlabeled
data by utilizing the agreement of three indepen-
dently trained models. Tri-training (cf. Algorithm
2) first trains three models m1, m2, and m3 on
bootstrap samples of the labeled data L. An unla-
beled data point is added to the training set of a
modelmi if the other two modelsmj andmk agree
on its label. Training stops when the classifiers do
not change anymore.

Tri-training with disagreement (Søgaard, 2010)
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Algorithm 2 Tri-training (Zhou and Li, 2005)

1: for i ∈ {1..3} do
2: Si ← bootstrap_sample(L)
3: mi ← train_model(Si)
4: repeat
5: for i ∈ {1..3} do
6: Li ← ∅
7: for x ∈ U do
8: if pj(x) = pk(x)(j, k 6= i) then
9: Li ← Li ∪ {(x, pj(x))}

mi ← train_model(L ∪ Li)
10: until none of mi changes
11: apply majority vote over mi

is based on the intuition that a model should only
be strengthened in its weak points and that the
labeled data should not be skewed by easy data
points. In order to achieve this, it adds a simple
modification to the original algorithm (altering line
8 in Algorithm 2), requiring that for an unlabeled
data point on which mj and mk agree, the other
model mi disagrees on the prediction. Tri-training
with disagreement is more data-efficient than tri-
training and has achieved competitive results on
part-of-speech tagging (Søgaard, 2010).

Sampling unlabeled data Both tri-training and
tri-training with disagreement can be very expen-
sive in their original formulation as they require to
produce predictions for each of the three models
on all unlabeled data samples, which can be in the
millions in realistic applications. We thus propose
to sample a number of unlabeled examples at every
epoch. For all traditional bootstrapping approaches
we sample 10k candidate instances in each epoch.
For the neural approaches we use a linearly grow-
ing candidate sampling scheme proposed by (Saito
et al., 2017), increasing the candidate pool size as
the models become more accurate.

Confidence thresholding Similar to self-
training, we can introduce an additional require-
ment that pseudo-labeled examples are only added
if the probability of the prediction of at least one
model is higher than some threshold τ . We did not
find this to outperform prediction without threshold
for traditional tri-training, but thresholding proved
essential for our method (§2.3).

The most important condition for tri-training and
tri-training with disagreement is that the models
are diverse. Typically, bootstrap samples are used

Figure 1: Multi-task tri-training (MT-Tri).

to create this diversity (Zhou and Li, 2005; Sø-
gaard, 2010). However, training separate models
on bootstrap samples of a potentially large amount
of training data is expensive and takes a lot of time.
This drawback motivates our approach.

2.3 Multi-task tri-training
In order to reduce both the time and space com-
plexity of tri-training, we propose Multi-task Tri-
training (MT-Tri). MT-Tri leverages insights from
multi-task learning (MTL) (Caruana, 1993) to share
knowledge across models and accelerate training.
Rather than storing and training each model sepa-
rately, we propose to share the parameters of the
models and train them jointly using MTL.2 All
models thus collaborate on learning a joint repre-
sentation, which improves convergence.

The output softmax layers are model-specific
and are only updated for the input of the respective
model. We show the model in Figure 1 (as instan-
tiated for POS tagging). As the models leverage
a joint representation, we need to ensure that the
features used for prediction in the softmax layers
of the different models are as diverse as possible,
so that the models can still learn from each other’s
predictions. In contrast, if the parameters in all
output softmax layers were the same, the method
would degenerate to self-training.

To guarantee diversity, we introduce an orthog-
onality constraint (Bousmalis et al., 2016) as an
additional loss term, which we define as follows:

Lorth = ‖W>m1
Wm2‖2F (1)

where | · ‖2F is the squared Frobenius norm and
Wm1 and Wm2 are the softmax output parameters

2Note: we use the term multi-task learning here albeit all
tasks are of the same kind, similar to work on multi-lingual
modeling treating each language (but same label space) as
separate task e.g., (Fang and Cohn, 2017). It is interesting to
point out that our model is further doing implicit multi-view
learning by way of the orthogonality constraint.

1046



of the two source and pseudo-labeled output layers
m1 and m2, respectively. The orthogonality con-
straint encourages the models not to rely on the
same features for prediction. As enforcing pair-
wise orthogonality between three matrices is not
possible, we only enforce orthogonality between
the softmax output layers of m1 and m2,3 while
m3 is gradually trained to be more target-specific.
We parameterize Lorth by γ=0.01 following (Liu
et al., 2017). We do not further tune γ.

More formally, let us illustrate the model by
taking the sequence prediction task (Figure 1) as il-
lustration. Given an utterance with labels y1, .., yn,
our Multi-task Tri-training loss consists of three
task-specific (m1,m2,m3) tagging loss functions
(where ~h is the uppermost Bi-LSTM encoding):

L(θ) = −
∑

i

∑

1,..,n

logPmi(y|~h) + γLorth (2)

In contrast to classic tri-training, we can train
the multi-task model with its three model-specific
outputs jointly and without bootstrap sampling on
the labeled source domain data until convergence,
as the orthogonality constraint enforces different
representations between models m1 and m2. From
this point, we can leverage the pair-wise agreement
of two output layers to add pseudo-labeled exam-
ples as training data to the third model. We train the
third output layerm3 only on pseudo-labeled target
instances in order to make tri-training more robust
to a domain shift. For the final prediction, major-
ity voting of all three output layers is used, which
resulted in the best instantiation, together with con-
fidence thresholding (τ = 0.9, except for high-
resource POS where τ = 0.8 performed slightly
better). We also experimented with using a domain-
adversarial loss (Ganin et al., 2016) on the jointly
learned representation, but found this not to help.
The full pseudo-code is given in Algorithm 3.

Computational complexity The motivation for
MT-Tri was to reduce the space and time complex-
ity of tri-training. We thus give an estimate of
its efficiency gains. MT-Tri is ~3× more space-
efficient than regular tri-training; tri-training stores
one set of parameters for each of the three mod-
els, while MT-Tri only stores one set of parameters
(we use three output layers, but these make up a
comparatively small part of the total parameter bud-
get). In terms of time efficiency, tri-training first

3We also tried enforcing orthogonality on a hidden layer
rather than the output layer, but this did not help.

Algorithm 3 Multi-task Tri-training

1: m← train_model(L)
2: repeat
3: for i ∈ {1..3} do
4: Li ← ∅
5: for x ∈ U do
6: if pj(x) = pk(x)(j, k 6= i) then
7: Li ← Li ∪ {(x, pj(x))}
8: if i = 3 then mi = train_model(Li)
9: elsemi ← train_model(L ∪ Li)

10: until end condition is met
11: apply majority vote over mi

requires to train each of the models from scratch.
The actual tri-training takes about the same time as
training from scratch and requires a separate for-
ward pass for each model, effectively training three
independent models simultaneously. In contrast,
MT-Tri only necessitates one forward pass as well
as the evaluation of the two additional output lay-
ers (which takes a negligible amount of time) and
requires about as many epochs as tri-training until
convergence (see Table 3, second column) while
adding fewer unlabeled examples per epoch (see
Section 3.4). In our experiments, MT-Tri trained
about 5-6× faster than traditional tri-training.

MT-Tri can be seen as a self-ensembling tech-
nique, where different variations of a model are
used to create a stronger ensemble prediction. Re-
cent approaches in this line are snapshot ensem-
bling (Huang et al., 2017) that ensembles models
converged to different minima during a training run,
asymmetric tri-training (Saito et al., 2017) (ASYM)
that leverages agreement on two models as informa-
tion for the third, and temporal ensembling (Laine
and Aila, 2017), which ensembles predictions of a
model at different epochs. We tried to compare to
temporal ensembling in our experiments, but were
not able to obtain consistent results.4 We compare
to the closest most recent method, asymmetric tri-
training (Saito et al., 2017). It differs from ours
in two aspects: a) ASYM leverages only pseudo-
labels from data points on which m1 and m2 agree,
and b) it uses only one task (m3) as final predictor.
In essence, our formulation of MT-Tri is closer to
the original tri-training formulation (agreements
on two provide pseudo-labels to the third) thereby
incorporating more diversity.

4We suspect that the sparse features in NLP and the domain
shift might be detrimental to its unsupervised consistency loss.
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Domain # labeled # unlabeled

PO
S

ta
gg

in
g Answers 3,489 27,274

Emails 4,900 1,194,173
Newsgroups 2,391 1,000,000
Reviews 3,813 1,965,350
Weblogs 2,031 524,834
WSJ 30,060 100,000

Se
nt

im
en

t Book 2,000 4,465
DVD 2,000 3,586
Electronics 2,000 5,681
Kitchen 2,000 5,945

Table 1: Number of labeled and unlabeled sen-
tences for each domain in the SANCL 2012 dataset
(Petrov and McDonald, 2012) for POS tagging
(above) and the Amazon Reviews dataset (Blitzer
et al., 2006) for sentiment analysis (below).

3 Experiments

In order to ascertain which methods are ro-
bust across different domains, we evaluate on
two widely used unsupervised domain adaptation
datasets for two tasks, a sequence labeling and a
classification task, cf. Table 1 for data statistics.

3.1 POS tagging

For POS tagging we use the SANCL 2012 shared
task dataset (Petrov and McDonald, 2012) and com-
pare to the top results in both low and high-data
conditions (Schnabel and Schütze, 2014; Yin et al.,
2015). Both are strong baselines, as the FLORS tag-
ger has been developed for this challenging dataset
and it is based on contextual distributional features
(excluding the word’s identity), and hand-crafted
suffix and shape features (including some language-
specific morphological features). We want to gauge
to what extent we can adopt a nowadays fairly stan-
dard (but more lexicalized) general neural tagger.

Our POS tagging model is a state-of-the-art
Bi-LSTM tagger (Plank et al., 2016) with word
and 100-dim character embeddings. Word embed-
dings are initialized with the 100-dim Glove em-
beddings (Pennington et al., 2014). The BiLSTM
has one hidden layer with 100 dimensions. The
base POS model is trained on WSJ with early stop-
ping on the WSJ development set, using patience
2, Gaussian noise with σ = 0.2 and word dropout
with p = 0.25 (Kiperwasser and Goldberg, 2016).

Regarding data, the source domain is the
Ontonotes 4.0 release of the Penn treebank Wall
Street Journal (WSJ) annotated for 48 fine-grained
POS tags. This amounts to 30,060 labeled sen-

tences. We use 100,000 WSJ sentences from 1988
as unlabeled data, following Schnabel and Schütze
(2014).5 As target data, we use the five SANCL
domains (answers, emails, newsgroups, reviews,
weblogs). We restrict the amount of unlabeled data
for each SANCL domain to the first 100k sentences,
and do not do any pre-processing. We consider the
development set of ANSWERS as our only target
dev set to set hyperparameters. This may result in
suboptimal per-domain settings but better resem-
bles an unsupervised adaptation scenario.

3.2 Sentiment analysis

For sentiment analysis, we evaluate on the Amazon
reviews dataset (Blitzer et al., 2006). Reviews with
1 to 3 stars are ranked as negative, while reviews
with 4 or 5 stars are ranked as positive. The dataset
consists of four domains, yielding 12 adaptation
scenarios. We use the same pre-processing and
architecture as used in (Ganin et al., 2016; Saito
et al., 2017): 5,000-dimensional tf-idf weighted
unigram and bigram features as input; 2k labeled
source samples and 2k unlabeled target samples
for training, 200 labeled target samples for valida-
tion, and between 3k-6k samples for testing. The
model is an MLP with one hidden layer with 50
dimensions, sigmoid activations, and a softmax
output. We compare against the Variational Fair
Autoencoder (VFAE) (Louizos et al., 2015) model
and domain-adversarial neural networks (DANN)
(Ganin et al., 2016).

3.3 Baselines

Besides comparing to the top results published on
both datasets, we include the following baselines:

a) the task model trained on the source domain;
b) self-training (Self);
c) tri-training (Tri);
d) tri-training with disagreement (Tri-D); and
e) asymmetric tri-training (Saito et al., 2017).

Our proposed model is multi-task tri-training (MT-
Tri). We implement our models in DyNet (Neu-
big et al., 2017). Reporting single evaluation
scores might result in biased results (Reimers and
Gurevych, 2017). Throughout the paper, we re-
port mean accuracy and standard deviation over
five runs for POS tagging and over ten runs for

5Note that our unlabeled data might slightly differ from
theirs. We took the first 100k sentences from the 1988 WSJ
dataset from the BLLIP 1987-89 WSJ Corpus Release 1.
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Figure 2: Average results for unsupervised domain adaptation on the Amazon dataset. Domains: B (Book),
D (DVD), E (Electronics), K (Kitchen). Results for VFAE, DANN, and Asym are from Saito et al. (2017).

sentiment analysis. Significance is computed using
bootstrap test. The code for all experiments is re-
leased at: https://github.com/bplank/
semi-supervised-baselines.

3.4 Results

Sentiment analysis We show results for senti-
ment analysis for all 12 domain adaptation sce-
narios in Figure 2. For clarity, we also show the
accuracy scores averaged across each target domain
as well as a global macro average in Table 2.

Model D B E K Avg

VFAE* 76.57 73.40 80.53 82.93 78.36
DANN* 75.40 71.43 77.67 80.53 76.26
Asym* 76.17 72.97 80.47 83.97 78.39

Src 75.91 73.47 75.61 79.58 76.14
Self 78.00 74.55 76.54 80.30 77.35
Tri 78.72 75.64 78.60 83.26 79.05
Tri-D 76.99 74.44 78.30 80.59 77.58
MT-Tri 78.14 74.86 81.45 82.14 79.15

Table 2: Average accuracy scores for each SA tar-
get domain. *: result from Saito et al. (2017).

Self-training achieves surprisingly good results
but is not able to compete with tri-training. Tri-
training with disagreement is only slightly better
than self-training, showing that the disagreement
component might not be useful when there is a
strong domain shift. Tri-training achieves the best

average results on two target domains and clearly
outperforms the state of the art on average.

MT-Tri finally outperforms the state of the art
on 3/4 domains, and even slightly traditional tri-
training, resulting in the overall best method. This
improvement is mainly due to the B->E and D->E
scenarios, on which tri-training struggles. These
domain pairs are among those with the highest A-
distance (Blitzer et al., 2007), which highlights
that tri-training has difficulty dealing with a strong
shift in domain. Our method is able to mitigate this
deficiency by training one of the three output layers
only on pseudo-labeled target domain examples.

In addition, MT-Tri is more efficient as it adds a
smaller number of pseudo-labeled examples than
tri-training at every epoch. For sentiment analysis,
tri-training adds around 1800-1950/2000 unlabeled
examples at every epoch, while MT-Tri only adds
around 100-300 in early epochs. This shows that
the orthogonality constraint is useful for inducing
diversity. In addition, adding fewer examples poses
a smaller risk of swamping the learned represen-
tations with useless signals and is more akin to
fine-tuning, the standard method for supervised
domain adaptation (Howard and Ruder, 2018).

We observe an asymmetry in the results between
some of the domain pairs, e.g. B->D and D->B.
We hypothesize that the asymmetry may be due to
properties of the data and that the domains are rela-
tively far apart e.g., in terms of A-distance. In fact,
asymmetry in these domains is already reflected
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Target domains
Model ep Answers Emails Newsgroups Reviews Weblogs Avg WSJ µpseudo

Src (+glove) 87.63 ±.37 86.49 ±.35 88.60 ±.22 90.12 ±.32 92.85 ±.17 89.14 ±.28 95.49 ±.09 —
Self (5) 87.64 ±.18 86.58 ±.30 88.42 ±.24 90.03 ±.11 92.80 ±.19 89.09 ±.20 95.36 ±.07 .5k
Tri (4) 88.42 ±.16 87.46 ±.20 87.97 ±.09 90.72 ±.14 93.40 ±.15 89.56 ±.16 95.94 ±.07 20.5k
Tri-D (7) 88.50 ±.04 87.63 ±.15 88.12 ±.05 90.76 ±.10 93.51 ±.06 89.70 ±.08 95.99 ±.03 7.7K
Asym (3) 87.81 ±.19 86.97 ±.17 87.74 ±.24 90.16 ±.17 92.73 ±.16 89.08 ±.19 95.55 ±.12 1.5k
MT-Tri (4) 87.92 ±.18 87.20 ±.23 87.73 ±.37 90.27 ±.10 92.96 ±.07 89.21 ±.19 95.50 ±.06 7.6k

FLORS 89.71 88.46 89.82 92.10 94.20 90.86 95.80 —

Table 3: Accuracy scores on dev set of target domain for POS tagging for 10% labeled data. Avg: average
over the 5 SANCL domains. Hyperparameter ep (epochs) is tuned on Answers dev. µpseudo: average
amount of added pseudo-labeled data. FLORS: results for Batch (u:big) from (Yin et al., 2015) (see §3).

Target domains dev sets Avg on
Model Answers Emails Newsgroups Reviews Weblogs targets WSJ
TnT* 88.55 88.14 88.66 90.40 93.33 89.82 95.75
Stanford* 88.92 88.68 89.11 91.43 94.15 90.46 96.83

Src 88.84 ±.15 88.24 ±.12 89.45 ±.23 91.24 ±.03 93.92 ±.17 90.34 ±.14 96.69 ±.08
Tri 89.34 ±.18 88.83 ±.07 89.32 ±.21 91.62 ±.06 94.40 ±.06 90.70 ±.12 96.84 ±.04
Tri-D 89.35 ±.16 88.66 ±.09 89.29 ±.12 91.58 ±.05 94.32 ±.05 90.62 ±.09 96.85 ±.06

Src (+glove) 89.35 ±.16 88.55 ±.14 90.12 ±.31 91.48 ±.15 94.48 ±.07 90.80 ±.17 96.90 ±.04
Tri 90.00 ±.03 89.06 ±.16 90.04 ±.25 91.98 ±.11 94.74 ±.06 91.16 ±.12 96.99 ±.02
Tri-D 89.80 ±.19 88.85 ±.10 90.03 ±.22 91.98 ±.09 94.70 ±.05 91.01 ±.13 96.95 ±.05
Asym 89.51 ±.15 88.47 ±.19 89.26 ±.16 91.60 ±.20 94.28 ±.15 90.62 ±.17 96.56 ±.01
MT-Tri 89.45 ±.05 88.65 ±.04 89.40 ±.22 91.63 ±.23 94.41 ±.05 90.71 ±.12 97.37 ±.07

FLORS* 90.30 89.44 90.86 92.95 94.71 91.66 96.59
Target domains test sets Avg on

Model Answers Emails Newsgroups Reviews Weblogs targets WSJ
TnT* 89.36 87.38 90.85 89.67 91.37 89.73 96.57
Stanford* 89.74 87.77 91.25 90.30 92.32 90.28 97.43

Src (+glove) 90.43 ±.13 87.95 ±.18 91.83 ±.20 90.04 ±.11 92.44 ±.14 90.54 ±.15 97.50 ±.03
Tri 91.21 ±.06 88.30 ±.19 92.18 ±.19 90.06 ±.10 92.85 ±.02 90.92 ±.11 97.45 ±.03
Asym 90.62 ±.26 87.71 ±.07 91.40 ±.05 89.89 ±.22 92.37 ±.27 90.39 ±.17 97.19 ±.03
MT-Tri 90.53 ±.15 87.90 ±.07 91.45 ±.19 89.77 ±.26 92.35 ±.09 90.40 ±.15 97.37 ±.07

FLORS* 91.17 88.67 92.41 92.25 93.14 91.53 97.11

Table 4: Accuracy for POS tagging on the dev and test sets of the SANCL domains, models trained on
full source data setup. Values for methods with * are from (Schnabel and Schütze, 2014).

in the results of Blitzer et al. (2007) and is cor-
roborated in the results for asymmetric tri-training
(Saito et al., 2017) and our method.

We note a weakness of this dataset is high vari-
ance. Existing approaches only report the mean,
which makes an objective comparison difficult. For
this reason, we believe it is essential to evaluate
proposed approaches also on other tasks.

POS tagging Results for tagging in the low-data
regime (10% of WSJ) are given in Table 3.

Self-training does not work for the sequence
prediction task. We report only the best instantia-

tion (throttling with n=800). Our results contribute
to negative findings regarding self-training (Plank,
2011; Van Asch and Daelemans, 2016).

In the low-data setup, tri-training with disagree-
ment works best, reaching an overall average ac-
curacy of 89.70, closely followed by classic tri-
training, and significantly outperforming the base-
line on 4/5 domains. The exception is newsgroups,
a difficult domain with high OOV rate where none
of the approches beats the baseline (see §3.4). Our
proposed MT-Tri is better than asymmetric tri-
training, but falls below classic tri-training. It beats
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Ans Email Newsg Rev Webl
% unk tag 0.25 0.80 0.31 0.06 0.0
% OOV 8.53 10.56 10.34 6.84 8.45
% UWT 2.91 3.47 2.43 2.21 1.46

Accuracy on OOV tokens
Src 54.26 57.48 61.80 59.26 80.37
Tri 55.53 59.11 61.36 61.16 79.32
Asym 52.86 56.78 56.58 59.59 76.84
MT-Tri 52.88 57.22 57.28 58.99 77.77

Accuracy on unknown word-tag (UWT) tokens
Src 17.68 11.14 17.88 17.31 24.79
Tri 16.88 10.04 17.58 16.35 23.65
Asym 17.16 10.43 17.84 16.92 22.74
MT-Tri 16.43 11.08 17.29 16.72 23.13

FLORS* 17.19 15.13 21.97 21.06 21.65

Table 5: Accuracy scores on dev sets for OOV and
unknown word-tag (UWT) tokens.

the baseline significantly on only 2/5 domains (an-
swers and emails). The FLORS tagger (Yin et al.,
2015) fares better. Its contextual distributional fea-
tures are particularly helpful on unknown word-tag
combinations (see § 3.4), which is a limitation of
the lexicalized generic bi-LSTM tagger.

For the high-data setup (Table 4) results are simi-
lar. Disagreement, however, is only favorable in the
low-data setups; the effect of avoiding easy points
no longer holds in the full data setup. Classic tri-
training is the best method. In particular, traditional
tri-training is complementary to word embedding
initialization, pushing the non-pre-trained baseline
to the level of SRC with Glove initalization. Tri-
training pushes performance even further and re-
sults in the best model, significantly outperform-
ing the baseline again in 4/5 cases, and reaching
FLORS performance on weblogs. Multi-task tri-
training is often slightly more effective than asym-
metric tri-training (Saito et al., 2017); however,
improvements for both are not robust across do-
mains, sometimes performance even drops. The
model likely is too simplistic for such a high-data
POS setup, and exploring shared-private models
might prove more fruitful (Liu et al., 2017). On the
test sets, tri-training performs consistently the best.

POS analysis We analyze POS tagging accu-
racy with respect to word frequency6 and unseen
word-tag combinations (UWT) on the dev sets.
Table 5 (top rows) provides percentage of un-

6The binned log frequency was calculated with base 2 (bin
0 are OOVs, bin 1 are singletons and rare words etc).

Figure 3: POS accuracy per binned log frequency.

known tags, OOVs and unknown word-tag (UWT)
rate. The SANCL dataset is overall very chal-
lenging: OOV rates are high (6.8-11% compared
to 2.3% in WSJ), so is the unknown word-tag
(UWT) rate (answers and emails contain 2.91%
and 3.47% UWT compared to 0.61% on WSJ) and
almost all target domains even contain unknown
tags (Schnabel and Schütze, 2014) (unknown tags:
ADD,GW,NFP,XX), except for weblogs. Email is
the domain with the highest OOV rate and highest
unknown-tag-for-known-words rate. We plot ac-
curacy with respect to word frequency on email in
Figure 3, analyzing how the three methods fare in
comparison to the baseline on this difficult domain.

Regarding OOVs, the results in Table 5 (second
part) show that classic tri-training outperforms the
source model (trained on only source data) on 3/5
domains in terms of OOV accuracy, except on two
domains with high OOV rate (newsgroups and we-
blogs). In general, we note that tri-training works
best on OOVs and on low-frequency tokens, which
is also shown in Figure 3 (leftmost bins). Both
other methods fall typically below the baseline in
terms of OOV accuracy, but MT-Tri still outper-
forms Asym in 4/5 cases. Table 5 (last part) also
shows that no bootstrapping method works well
on unknown word-tag combinations. UWT tokens
are very difficult to predict correctly using an un-
supervised approach; the less lexicalized and more
context-driven approach taken by FLORS is clearly
superior for these cases, resulting in higher UWT
accuracies for 4/5 domains.

4 Related work

Learning under Domain Shift There is a large
body of work on domain adaptation. Studies
on unsupervised domain adaptation include early
work on bootstrapping (Steedman et al., 2003;
McClosky et al., 2006a), shared feature represen-
tations (Blitzer et al., 2006, 2007) and instance
weighting (Jiang and Zhai, 2007). Recent ap-
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proaches include adversarial learning (Ganin et al.,
2016) and fine-tuning (Sennrich et al., 2016). There
is almost no work on bootstrapping approaches
for recent neural NLP, in particular under domain
shift. Tri-training is less studied, and only recently
re-emerged in the vision community (Saito et al.,
2017), albeit is not compared to classic tri-training.

Neural network ensembling Related work on
self-ensembling approaches includes snapshot en-
sembling (Huang et al., 2017) or temporal ensem-
bling (Laine and Aila, 2017). In general, the line be-
tween “explicit” and “implicit” ensembling (Huang
et al., 2017), like dropout (Srivastava et al., 2014)
or temporal ensembling (Saito et al., 2017), is more
fuzzy. As we noted earlier our multi-task learning
setup can be seen as a form of self-ensembling.

Multi-task learning in NLP Neural networks
are particularly well-suited for MTL allowing for
parameter sharing (Caruana, 1993). Recent NLP
conferences witnessed a “tsunami” of deep learn-
ing papers (Manning, 2015), followed by what
we call a multi-task learning “wave”: MTL has
been successfully applied to a wide range of NLP
tasks (Cohn and Specia, 2013; Cheng et al., 2015;
Luong et al., 2015; Plank et al., 2016; Fang and
Cohn, 2016; Søgaard and Goldberg, 2016; Ruder
et al., 2017; Augenstein et al., 2018). Related to
it is the pioneering work on adversarial learning
(DANN) (Ganin et al., 2016). For sentiment analy-
sis we found tri-training and our MT-Tri model to
outperform DANN. Our MT-Tri model lends itself
well to shared-private models such as those pro-
posed recently (Liu et al., 2017; Kim et al., 2017),
which extend upon (Ganin et al., 2016) by having
separate source and target-specific encoders.

5 Conclusions

We re-evaluate a range of traditional general-
purpose bootstrapping algorithms in the context
of neural network approaches to semi-supervised
learning under domain shift. For the two examined
NLP tasks classic tri-training works the best and
even outperforms a recent state-of-the-art method.
The drawback of tri-training it its time and space
complexity. We therefore propose a more efficient
multi-task tri-training model, which outperforms
both traditional tri-training and recent alternatives
in the case of sentiment analysis. For POS tag-
ging, classic tri-training is superior, performing
especially well on OOVs and low frequency to-

kens, which suggests it is less affected by error
propagation. Overall we emphasize the importance
of comparing neural approaches to strong baselines
and reporting results across several runs.
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Abstract

Most of the neural sequence-to-sequence
(seq2seq) models for grammatical error
correction (GEC) have two limitations: (1)
a seq2seq model may not be well gen-
eralized with only limited error-corrected
data; (2) a seq2seq model may fail to
completely correct a sentence with mul-
tiple errors through normal seq2seq infer-
ence. We attempt to address these limita-
tions by proposing a fluency boost learn-
ing and inference mechanism. Fluency
boosting learning generates fluency-boost
sentence pairs during training, enabling
the error correction model to learn how to
improve a sentence’s fluency from more
instances, while fluency boosting infer-
ence allows the model to correct a sen-
tence incrementally through multi-round
seq2seq inference until the sentence’s flu-
ency stops increasing. Experiments show
our approaches improve the performance
of seq2seq models for GEC, achieving
state-of-the-art results on both CoNLL-
2014 and JFLEG benchmark datasets.

1 Introduction

Sequence-to-sequence (seq2seq) models (Cho
et al., 2014; Sutskever et al., 2014) for grammati-
cal error correction (GEC) have drawn growing at-
tention (Yuan and Briscoe, 2016; Xie et al., 2016;
Ji et al., 2017; Schmaltz et al., 2017; Sakaguchi
et al., 2017; Chollampatt and Ng, 2018) in recent
years. However, most of the seq2seq models for
GEC have two flaws. First, the seq2seq models
are trained with only limited error-corrected sen-
tence pairs like Figure 1(a). Limited by the size
of training data, the models with millions of pa-
rameters may not be well generalized. Thus, it is

She	see	Tom	is	catched	by	policeman	in	park	at	last	night.

She	saw	Tom	caught	by	a	policeman	in	the	park	last	night.

She	sees	Tom	is	catched	by	policeman	in	park	at	last	night.

She	sees	Tom	caught	by	a	policeman	in	the	park	last	night.

She	sees	Tom	caught	by	a	policeman	in	the	park	last	night.

She	saw	Tom	caught	by	a	policeman	in	the	park	last	night.

(a)

(b)

(c)

seq2seq inference

seq2seq inference

Figure 1: (a) an error-corrected sentence pair;
(b) if the sentence becomes slightly different, the
model fails to correct it perfectly; (c) single-round
seq2seq inference cannot perfectly correct the sen-
tence, but multi-round inference can.

common that the models fail to correct a sentence
perfectly even if the sentence is slightly different
from the training instance, as illustrated by Figure
1(b). Second, the seq2seq models usually cannot
perfectly correct a sentence with many grammati-
cal errors through single-round seq2seq inference,
as shown in Figure 1(b) and 1(c), because some
errors in a sentence may make the context strange,
which confuses the models to correct other errors.

To address the above-mentioned limitations in
model learning and inference, this paper proposes
a novel fluency boost learning and inference mech-
anism, illustrated in Figure 2.

For fluency boosting learning, not only is
a seq2seq model trained with original error-
corrected sentence pairs, but also it generates less
fluent sentences (e.g., from its n-best outputs) to
establish new error-corrected sentence pairs by
pairing them with their correct sentences during
training, as long as the sentences’ fluency1 is be-

1A sentence’s fluency score is defined to be inversely pro-
portional to the sentence’s cross entropy, as is in Eq (3).
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She	see	Tom	is	catched	by	policeman	in	park	at	last	night.

She	saw	Tom	caught	by	a	policeman	in	the	park	last	night.

She	see	Tom	is	caught	by	a	policeman	in	park	last	night.

She	sees	Tom	caught	by	a	policeman	in	the	park	last	night.

She	saw	Tom	caught	by	a	policeman	in	the	park	last	night.

She	saw	Tom	was	caught	by	a	policeman	in	the	park	last	night.

She	sees	Tom	is	catched	by	policeman	in	park	at	last	night.
……

0.119

0.147

0.144

0.135

0.181

0.121

0.147

n-best outputs

original sentence pair fluency boost sentence pair

She	sees	Tom	is	catched	by	policeman	in	park	at	last	night.

She	sees	Tom	caught	by	a	policeman	in	the	park	last	night.

She	saw	Tom	caught	by	a	policeman	in	the	park	last	night.

She	saw	Tom	caught	by	a	policeman	in	the	park	last	night.

1st round seq2seq inference

2nd round seq2seq inference

3rd round seq2seq inference

0.121

0.144

0.147

0.147

boost

no boost

(a) (b)

boost

sentence fluency fluency sentence

seq2seq inference

Figure 2: Fluency boost learning and inference: (a) given a training instance (i.e., an error-corrected sen-
tence pair), fluency boost learning establishes multiple fluency boost sentence pairs from the seq2seq’s
n-best outputs during training. The fluency boost sentence pairs will be used as training instances in sub-
sequent training epochs, which helps expand the training set and accordingly benefits model learning;
(b) fluency boost inference allows an error correction model to correct a sentence incrementally through
multi-round seq2seq inference until its fluency score stops increasing.

low that of their correct sentences, as Figure 2(a)
shows. Specifically, we call the generated error-
corrected sentence pairs fluency boost sentence
pairs because the sentence in the target side al-
ways improves fluency over that in the source side.
The generated fluency boost sentence pairs dur-
ing training will be used as additional training in-
stances during subsequent training epochs, allow-
ing the error correction model to see more gram-
matically incorrect sentences during training and
accordingly improving its generalization ability.

For model inference, fluency boost inference
mechanism allows the model to correct a sentence
incrementally with multi-round inference as long
as the proposed edits can boost the sentence’s flu-
ency, as Figure 2(b) shows. For a sentence with
multiple grammatical errors, some of the errors
will be corrected first. The corrected parts will
make the context clearer, which may benefit the
model to correct the remaining errors.

Experiments demonstrate fluency boost learn-
ing and inference enable neural seq2seq models to
perform better for GEC and achieve state-of-the-
art results on multiple GEC benchmarks.

Our contributions are summarized as follows:

• We present a novel learning and inference
mechanism to address the limitations in pre-
vious seq2seq models for GEC.

• We propose and compare multiple novel flu-
ency boost learning strategies, exploring the
learning methodology for neural GEC.

• Our approaches are proven to be effective
to improve neural seq2seq GEC models to
achieve state-of-the-art results on CoNLL-
2014 and JFLEG benchmark datasets.

2 Background: Neural grammatical
error correction

As neural machine translation (NMT), a typical
neural GEC approach uses a Recurrent Neural
Network (RNN) based encoder-decoder seq2seq
model (Sutskever et al., 2014; Cho et al., 2014)
with attention mechanism (Bahdanau et al., 2014)
to edit a raw sentence into the grammatically cor-
rect sentence it should be, as Figure 1(a) shows.

Given a raw sentence xr = (xr1, · · · , xrM )
and its corrected sentence xc = (xc1, · · · , xcN )
in which xrM and xcN are the M -th and N -th
words of sentence xr and xc respectively, the er-
ror correction seq2seq model learns a probabilis-
tic mapping P (xc|xr) from error-corrected sen-
tence pairs through maximum likelihood estima-
tion (MLE), which learns model parameters Θcrt

to maximize the following equation:

Θ∗crt = argmax
Θcrt

∑

(xr ,xc)∈S∗
logP (xc|xr;Θcrt) (1)

where S∗ denotes the set of error-corrected sen-
tence pairs.

For model inference, an output sequence xo =
(xo1, · · · , xoi , · · · , xoL) is selected through beam
search, which maximizes the following equation:

P (xo|xr) =
L∏

i=1

P (xoi |xr,xo
<i;Θcrt) (2)
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xr

seq2seq 
error correction

xo1 xo2 xo3 xo4

xc

0.142

0.150

0.150 0.152 0.143 0.140

xc

seq2seq 
error generation

xo1 xo2 xo3 xo4

xc

0.150

0.150

0.141 0.151 0.153 0.144

(xo1, xc)  (xo4,xc)

seq2seq 
error correction (xo3, xc) (xo4,xc)

xr

seq2seq 
error correction

xo5 xo6 xo7 xo8

xc

0.142

0.150

0.150 0.152 0.143 0.140

xc

seq2seq 
error generation

xo1 xo2 xo3 xo4

xc

0.150

0.150

0.141 0.151 0.153 0.144

(xo1, xc)  (xo4,xc) (xo7, xc)   (xo8,xc)

(a) (b) (c)

Figure 3: Three fluency boost learning strategies: (a) back-boost, (b) self-boost, (c) dual-boost; all of
them generate fluency boost sentence pairs (the pairs in the dashed boxes) to help model learning during
training. The numbers in this figure are fluency scores of their corresponding sentences.

3 Fluency boost learning

Conventional seq2seq models for GEC learns
model parameters only from original error-
corrected sentence pairs. However, such error-
corrected sentence pairs are not sufficiently avail-
able. As a result, many neural GEC models are not
very well generalized.

Fortunately, neural GEC is different from NMT.
For neural GEC, its goal is improving a sentence’s
fluency2 without changing its original meaning;
thus, any sentence pair that satisfies this condition
(we call it fluency boost condition) can be used
as a training instance.

In this paper, we define f(x) as the fluency
score of a sentence x:

f(x) =
1

1 +H(x)
(3)

H(x) = −
∑|x|

i=1 logP (xi|x<i)

|x| (4)

where P (xi|x<i) is the probability of xi given
context x<i, computed by a language model, and
|x| is the length of sentence x. H(x) is actually
the cross entropy of the sentence x, whose range is
[0,+∞). Accordingly, the range of f(x) is (0, 1].

The core idea of fluency boost learning is to
generate fluency boost sentence pairs that satisfy
the fluency boost condition during training, as Fig-
ure 2(a) illustrates, so that these pairs can further
help model learning.

In this section, we present three fluency boost
learning strategies: back-boost, self-boost, and

2Fluency of a sentence in this paper refers to how likely
the sentence is written by a native speaker. In other words, if
a sentence is very likely to be written by a native speaker, it
should be regarded highly fluent.

dual-boost that generate fluency boost sentence
pairs in different ways, as illustrated in Figure 3.

3.1 Back-boost learning

Back-boost learning borrows the idea from back
translation (Sennrich et al., 2016) in NMT, refer-
ring to training a backward model (we call it error
generation model, as opposed to error correction
model) that is used to convert a fluent sentence to a
less fluent sentence with errors. Since the less flu-
ent sentences are generated by the error generation
seq2seq model trained with error-corrected data,
they usually do not change the original sentence’s
meaning; thus, they can be paired with their cor-
rect sentences, establishing fluency boost sentence
pairs that can be used as training instances for er-
ror correction models, as Figure 3(a) shows.

Specifically, we first train a seq2seq error gener-
ation model Θgen with S̃∗ which is identical to S∗
except that the source sentence and the target sen-
tence are interchanged. Then, we use the model
Θgen to predict n-best outputs xo1, · · · , xon
given a correct sentence xc. Given the fluency
boost condition, we compare the fluency of each
output xok (where 1 ≤ k ≤ n) to that of its cor-
rect sentence xc. If an output sentence’s fluency
score is much lower than its correct sentence, we
call it a disfluency candidate of xc.

To formalize this process, we first define
Yn(x;Θ) to denote the n-best outputs predicted
by model Θ given the input x. Then, disfluency
candidates of a correct sentence xc can be derived:

Dback(x
c) = {xok |xok ∈ Yn(xc;Θgen) ∧ f(xc)

f(xok)
≥ σ}

(5)
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Algorithm 1 Back-boost learning
1: Train error generation model Θgen with S̃∗;
2: for each sentence pair (xr,xc) ∈ S do
3: Compute Dback(x

c) according to Eq (5);
4: end for
5: for each training epoch t do
6: S ′ ← ∅;
7: Derive a subset St by randomly sampling |S∗| ele-

ments from S;
8: for each (xr,xc) ∈ St do
9: Establish a fluency boost pair (x′,xc) by ran-

domly sampling x′ ∈ Dback(x
c);

10: S ′ ← S ′ ∪ {(x′,xc)};
11: end for
12: Update error correction model Θcrt with S∗ ∪ S ′;
13: end for

where Dback(xc) denotes the disfluency candidate
set for xc in back-boost learning. σ is a thresh-
old to determine if xok is less fluent than xc and it
should be slightly larger3 than 1.0, which helps fil-
ter out sentence pairs with unnecessary edits (e.g.,
I like this book. → I like the book.).

In the subsequent training epochs, the error cor-
rection model will not only learn from the original
error-corrected sentence pairs (xr,xc), but also
learn from fluency boost sentence pairs (xok ,xc)
where xok is a sample of Dback(xc).

We summarize this process in Algorithm 1
where S∗ is the set of original error-corrected sen-
tence pairs, and S can be tentatively considered
identical to S∗ when there is no additional native
data to help model training (see Section 3.4). Note
that we constrain the size of St not to exceed |S∗|
(the 7th line in Algorithm 1) to avoid that too many
fluency boost pairs overwhelm the effects of the
original error-corrected pairs on model learning.

3.2 Self-boost learning
In contrast to back-boost learning whose core
idea is originally from NMT, self-boost learning
is original, which is specially devised for neu-
ral GEC. The idea of self-boost learning is il-
lustrated by Figure 3(b) and was already briefly
introduced in Section 1 and Figure 2(a). Un-
like back-boost learning in which an error gen-
eration seq2seq model is trained to generate dis-
fluency candidates, self-boost learning allows the
error correction model to generate the candidates
by itself. Since the disfluency candidates gener-
ated by the error correction seq2seq model trained
with error-corrected data rarely change the input

3In this paper, we set σ = 1.05 since the corrected sen-
tence in our training data improves its corresponding raw sen-
tence about 5% fluency on average.

Algorithm 2 Self-boost learning
1: for each sentence pair (xr,xc) ∈ S do
2: Dself (x

c)← ∅;
3: end for
4: S ′ ← ∅
5: for each training epoch t do
6: Update error correction model Θcrt with S∗ ∪ S ′;
7: S ′ ← ∅
8: Derive a subset St by randomly sampling |S∗| ele-

ments from S;
9: for each (xr,xc) ∈ St do

10: Update Dself (x
c) according to Eq (6);

11: Establish a fluency boost pair (x′,xc) by ran-
domly sampling x′ ∈ Dself (x

c);
12: S ′ ← S ′ ∪ {(x′,xc)};
13: end for
14: end for

sentence’s meaning; thus, they can be used to es-
tablish fluency boost sentence pairs.

For self-boost learning, given an error corrected
pair (xr,xc), an error correction model Θcrt first
predicts n-best outputs xo1 , · · · ,xon for the raw
sentence xr. Among the n-best outputs, any out-
put that is not identical to xc can be considered as
an error prediction. Instead of treating the error
predictions useless, self-boost learning fully ex-
ploits them. Specifically, if an error predictionxok
is much less fluent than that of its correct sentence
xc, it will be added to xc’s disfluency candidate
set Dself (xc), as Eq (6) shows:

Dself (x
c) = Dself (x

c) ∪

{xok |xok ∈ Yn(xr;Θcrt) ∧ f(xc)

f(xok)
≥ σ} (6)

In contrast to back-boost learning, self-boost
generates disfluency candidates from a different
perspective – by editing the raw sentence xr rather
than the correct sentence xc. It is also notewor-
thy that Dself (xc) is incrementally expanded be-
cause the error correction model Θcrt is dynami-
cally updated, as shown in Algorithm 2.

3.3 Dual-boost learning

As introduced above, back- and self-boost learn-
ing generate disfluency candidates from different
perspectives to create more fluency boost sentence
pairs to benefit training the error correction model.
Intuitively, the more diverse disfluency candidates
generated, the more helpful for training an error
correction model. Inspired by He et al. (2016)
and Zhang et al. (2018), we propose a dual-boost
learning strategy, combining both back- and self-
boost’s perspectives to generate disfluency candi-
dates.
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Algorithm 3 Dual-boost learning
1: for each (xr,xc) ∈ S do
2: Ddual(x

c)← ∅;
3: end for
4: S ′ ← ∅; S ′′ ← ∅;
5: for each training epoch t do
6: Update error correction model Θcrt with S∗ ∪ S ′;
7: Update error generation model Θgen with S̃∗ ∪ S ′′;
8: S ′ ← ∅; S ′′ ← ∅;
9: Derive a subset St by randomly sampling |S∗| ele-

ments from S;
10: for each (xr,xc) ∈ St do
11: Update Ddual(x

c) according to Eq (7);
12: Establish a fluency boost pair (x′,xc) by ran-

domly sampling x′ ∈ Ddual(x
c);

13: S ′ ← S ′ ∪ {(x′,xc)};
14: Establish a reversed fluency boost pair (xc,x′′)

by randomly sampling x′′ ∈ Ddual(x
c);

15: S ′′ ← S ′′ ∪ {(xc,x′′)};
16: end for
17: end for

As Figure 3(c) shows, disfluency candidates in
dual-boost learning are from both the error gener-
ation model and the error correction model :

Ddual(x
c) = Ddual(x

c) ∪

{xok |xok ∈ Yn(xr;Θcrt) ∪ Yn(xc;Θgen) ∧ f(xc)

f(xok)
≥ σ}
(7)

Moreover, the error correction model and the er-
ror generation model are dual and both of them
are dynamically updated, which improves each
other: the disfluency candidates produced by er-
ror generation model can benefit training the error
correction model, while the disfluency candidates
created by error correction model can be used as
training data for the error generation model. We
summarize this learning approach in Algorithm 3.

3.4 Fluency boost learning with large-scale
native data

Our proposed fluency boost learning strategies can
be easily extended to utilize the huge volume of
native data which is proven to be useful for GEC.

As discussed in Section 3.1, when there is no
additional native data, S in Algorithm 1–3 is iden-
tical to S∗. In the case where additional native data
is available to help model learning, S becomes:

S = S∗ ∪ C
where C = {(xc,xc)} denotes the set of self-
copied sentence pairs from native data.

4 Fluency boost inference

As we discuss in Section 1, some sentences with
multiple grammatical errors usually cannot be per-
fectly corrected through normal seq2seq inference

Corpus #sent pair
Lang-8 1,114,139
CLC 1,366,075

NUCLE 57,119
Total 2,537,333

Table 1: Error-corrected training data.

which does only single-round inference. Fortu-
nately, neural GEC is different from NMT: its
source and target language are the same. The char-
acteristic allows us to edit a sentence more than
once through multi-round model inference, which
motivates our fluency boost inference. As Fig-
ure 2(b) shows, fluency boost inference allows a
sentence to be incrementally edited through multi-
round seq2seq inference as long as the sentence’s
fluency can be improved. Specifically, an error
correction seq2seq model first takes a raw sen-
tence xr as an input and outputs a hypothesis xo1 .
Instead of regarding xo1 as the final prediction,
fluency boost inference will then take xo1 as the
input to generate the next output xo2 . The pro-
cess will not terminate unless xot does not im-
prove xot−1 in terms of fluency.

5 Experiments

5.1 Dataset and evaluation

As previous studies (Ji et al., 2017), we use the
public Lang-8 Corpus (Mizumoto et al., 2011;
Tajiri et al., 2012), Cambridge Learner Cor-
pus (CLC) (Nicholls, 2003) and NUS Corpus
of Learner English (NUCLE) (Dahlmeier et al.,
2013) as our original error-corrected training data.
Table 1 shows the stats of the datasets. In addi-
tion, we also collect 2,865,639 non-public error-
corrected sentence pairs from Lang-8.com. The
native data we use for fluency boost learning is
English Wikipedia that contains 61,677,453 sen-
tences.

We use CoNLL-2014 shared task dataset with
original annotations (Ng et al., 2014), which con-
tains 1,312 sentences, as our main test set for eval-
uation. We use MaxMatch (M2) precision, recall
andF0.5 (Dahlmeier and Ng, 2012b) as our evalua-
tion metrics. As previous studies, we use CoNLL-
2013 test data as our development set.

5.2 Experimental setting

We set up experiments in order to answer the fol-
lowing questions:
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Model seq2seq fluency boost seq2seq (+LM) fluency boost (+LM)
P R F0.5 P R F0.5 P R F0.5 P R F0.5

normal seq2seq 61.06 18.49 41.81 61.56 18.85 42.37 61.75 23.30 46.42 61.94 23.70 46.83
back-boost 61.66 19.54 43.09 61.43 19.61 43.07 61.47 24.74 47.40 61.24 25.01 47.48
self-boost 61.64 19.83 43.35 61.50 19.90 43.36 62.13 24.45 47.49 61.67 24.76 47.51
dual-boost 62.03 20.82 44.44 61.64 21.19 44.61 62.22 25.49 48.30 61.64 26.45 48.69

back-boost (+native) 63.93 22.03 46.31 63.95 22.12 46.40 62.04 27.43 49.54 61.98 27.70 49.68
self-boost (+native) 64.33 22.10 46.54 64.14 22.19 46.54 62.18 27.59 49.71 61.64 28.37 49.93
dual-boost (+native) 65.77 21.92 46.98 65.82 22.14 47.19 62.64 27.40 49.83 62.70 27.69 50.04

back-boost (+native)? 67.37 24.31 49.75 67.25 24.35 49.73 64.61 28.44 51.51 64.46 28.78 51.66
self-boost (+native)? 66.52 25.13 50.03 66.78 25.33 50.31 63.82 30.15 52.17 63.34 31.63 52.21
dual-boost (+native)? 66.34 25.39 50.16 66.45 25.51 50.30 64.72 30.06 52.59 64.47 30.48 52.72

Table 2: Performance of seq2seq for GEC with different learning (row) and inference (column) meth-
ods on CoNLL-2014 dataset. (+LM) denotes decoding with the RNN language model through shallow
fusion. The last 3 systems (with ?) use the additional non-public Lang-8 data for training.

• Whether is fluency boost learning mechanism
helpful for training the error correction model,
and which of the strategies (back-boost, self-
boost, dual-boost) is the most effective?

• Whether does our fluency boost inference im-
prove normal seq2seq inference for GEC?

• Whether can our approach improve neural
GEC to achieve state-of-the-art results?

The training details for our seq2seq error cor-
rection model and error generation model are as
follows: the encoder of the seq2seq models is a
2-layer bidirectional GRU RNN and the decoder
is a 2-layer GRU RNN with the general attention
mechanism (Luong et al., 2015). Both the dimen-
sionality of word embeddings and the hidden size
of GRU cells are 500. The vocabulary sizes of the
encoder and decoder are 100,000 and 50,000 re-
spectively. The models’ parameters are uniformly
initialized in [-0.1,0.1]. We train the models with
an Adam optimizer with a learning rate of 0.0001
up to 40 epochs with batch size = 128. Dropout is
applied to non-recurrent connections at a ratio of
0.15. For fluency boost learning, we generate dis-
fluency candidates from 10-best outputs. During
model inference, we set beam size to 5 and decode
1-best result with a 2-layer GRU RNN language
model (Mikolov et al., 2010) through shallow fu-
sion (Gülçehre et al., 2015) with weight β = 0.15.
The RNN language model is trained from the na-
tive data mentioned in Section 5.1, which is also
used for computing fluency score in Eq (3). UNK
tokens are replaced with the source token with the
highest attention weight.

We resolve spelling errors with a public spell
checker4 as preprocessing, as Xie et al. (2016) and
Sakaguchi et al. (2017) do.

4https://azure.microsoft.com/en-us/services/cognitive-
services/spell-check/

5.3 Experimental results

5.3.1 Effectiveness of fluency boost learning

Table 2 compares the performance of seq2seq er-
ror correction models with different learning and
inference methods. By comparing by row, one can
observe that our fluency boost learning approaches
improve the performance over normal seq2seq
learning, especially on the recall metric, since the
fluency boost learning approaches generate a va-
riety of grammatically incorrect sentences, allow-
ing the error correction model to learn to correct
much more sentences than the conventional learn-
ing strategy. Among the proposed three fluency
boost learning strategies, dual-boost achieves the
best result in most cases because it produces more
diverse incorrect sentences (average |Ddual| ≈
9.43) than either back-boost (avg |Dback| ≈ 1.90)
or self-boost learning (avg |Dself | ≈ 8.10). With
introducing large amounts of native text data, the
performance of all the fluency boost learning ap-
proaches gets improved. One reason is that our
learning approaches produce more error-corrected
sentence pairs to let the model be better general-
ized. In addition, the huge volume of native data
benefits the decoder to learn better to generate a
fluent and error-free sentence.

We test the effect of hyper-parameter σ in Eq
(5–7) on fluency boost learning and show the re-
sult in Table 3. When σ is slightly larger than 1.0
(e.g., σ = 1.05), the model achieves the best per-
formance because it effectively avoids generating
sentence pairs with unnecessary or undesirable ed-
its that affect the performance, as we discussed in
Section 3.1. When σ continues increasing, the dis-
fluency candidate set |Ddual| drastically decreases,
making the dual-boost learning gradually degrade
to normal seq2seq learning.

Table 4 shows some examples of disfluency
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σ 0 0.95 1.0 1.05 1.1 2.0
|Ddual| 41.18 39.21 29.40 9.43 3.87 0.01
F0.5 43.20 43.30 43.39 44.44 43.30 41.78

Table 3: The effect of σ on dual-boost learning
with normal seq2seq inference. |Ddual| is the av-
erage size of dual-boost disfluency candidate sets.

Correct sentence How autism occurs is not well understood.

Disfluency candidates

How autism occurs is not good understood.
How autism occur is not well understood.

What autism occurs is not well understood.
How autism occurs is not well understand.

How autism occurs does not well understood.

Table 4: Examples of disfluency candidates for a
correct sentence in dual-boost learning.

candidates5 generated in dual-boost learning given
a correct sentence in the native data. It is clear that
our approach can generate less fluent sentences
with various grammatical errors and most of them
are typical mistakes that a human learner tends to
make. Therefore, they can be used to establish
high-quality training data with their correct sen-
tence, which will be helpful for increasing the size
of training data to numbers of times, accounting
for the improvement by fluency boost learning.

5.3.2 Effectiveness of fluency boost inference
The effectiveness of various inference approaches
can be observed by comparing the results in Table
2 by column. Compared to the normal seq2seq
inference and seq2seq (+LM) baselines, fluency
boost inference brings about on average 0.14 and
0.18 gain on F0.5 respectively, which is a signif-
icant6 improvement, demonstrating multi-round
edits by fluency boost inference is effective.

Take our best system (the last row in Table
2) as an example, among 1,312 sentences in
the CoNLL-2014 dataset, seq2seq inference with
shallow fusion LM edits 566 sentences. In con-
trast, fluency boost inference additionally edits 23
sentences during the second round inference, im-
proving F0.5 from 52.59 to 52.72.

5.3.3 Towards the state-of-the-art for GEC
Now, we answer the last question raised in Section
5.2 by testing if our approaches achieve the state-
of-the-art result.

We first compare our best models – dual-boost
learning (+native) with fluency boost inference
and shallow fusion LM – to top-performing GEC
systems evaluated on CoNLL-2014 dataset:

5We give more details about disfluency candidates, in-
cluding error type proportion, in the supplementary notes.

6p < 0.0005 according to Wilcoxon Signed-Rank Test.

System P R F0.5

Spell check 53.01 8.16 25.25
CAMB14 39.71 30.10 37.33

CAMB16SMT 45.39 21.82 37.33
CAMB16NMT - - 39.90

CAMB17 (CAMB16SMT based) 51.09 25.30 42.44
CAMB17 (AMU16 based) 59.88 32.16 51.08

AMU14 41.62 21.40 35.01
AMU16 61.27 27.98 49.49

AMU16? 63.52 30.49 52.21
CUUI 41.78 24.88 36.79
VT16? 60.17 25.64 47.40
NUS14 53.55 19.14 39.39
NUS16 - - 44.27
NUS17 62.74 32.96 53.14

Char-seq2seq 49.24 23.77 40.56
Nested-seq2seq - - 45.15
Adapt-seq2seq - - 41.37

dual-boost (single) 62.70 27.69 50.04
dual-boost (AMU16 based) 60.57 36.02 53.30

dual-boost (single)? 64.47 30.48 52.72
dual-boost (AMU16 based)? 61.24 37.86 54.51

Table 5: Performance of systems on CoNLL-2014
dataset. The system with bold fonts are based on
seq2seq models. ? denotes the system uses the
non-public error-corrected data from Lang-8.com.

• CAMB14, CAMB16SMT, CAMB16NMT and
CAMB17: GEC systems (Felice et al., 2014;
Yuan et al., 2016; Yuan and Briscoe, 2016;
Yannakoudakis et al., 2017) developed by
Cambridge University.

• AMU14 and AMU16: SMT-based GEC sys-
tems (Junczys-Dowmunt and Grundkiewicz,
2014, 2016) developed by AMU.

• CUUI and VT16: the former system (Ro-
zovskaya et al., 2014) uses a classifier-based
approach, which is improved by the latter sys-
tem (Rozovskaya and Roth, 2016) through
combining with an SMT-based approach.

• NUS14, NUS16 and NUS17: GEC systems
(Susanto et al., 2014; Chollampatt et al., 2016a;
Chollampatt and Ng, 2017) that combine SMT
with other techniques (e.g., classifiers).

• Char-seq2seq: a character-level seq2seq model
(Xie et al., 2016). It uses a rule-based method
to synthesize errors for data augmentation.

• Nested-seq2seq: a nested attention neural hy-
brid seq2seq model (Ji et al., 2017).

• Adapt-seq2seq: a seq2seq model adapted to
incorporate edit operations (Schmaltz et al.,
2017).

Table 5 shows the evaluation results on the
CoNLL-2014 dataset. Without using the non-
public training data from Lang-8.com, our sin-
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gle model obtains 50.04 F0.5, larlgely outperform-
ing the other seq2seq models and only inferior to
CAMB17 (AMU16 based) and NUS17. It should
be noted, however, that the CAMB17 and NUS17
are actually re-rankers built on top of an SMT-
based GEC system (AMU16’s framework); thus,
they are ensemble models. When we build our ap-
proach on top of AMU16 (i.e., we take AMU16’s
outputs as the input to our GEC system to edit
on top of its outputs), we achieve 53.30 F0.5

score. With introducing the non-public training
data, our single and ensemble system obtain 52.72
and 54.51 F0.5 score respectively, which is a state-
of-the-art result7 on CoNLL-2014 dataset.

Moreover, we evaluate our approach on JFLEG
corpus (Napoles et al., 2017). JFLEG is the latest
released dataset for GEC evaluation and it contains
1,501 sentences (754 in dev set and 747 in test set).
To test our approach’s generalization ability, we
evaluate our single models used for CoNLL eval-
uation (in Table 5) on JFLEG without re-tuning.

Table 6 shows the JFLEG leaderboard. Instead
of M2 score, JFLEG uses GLEU (Napoles et al.,
2015) as its evaluation metric, which is a fluency-
oriented GEC metric based on a variant of BLEU
(Papineni et al., 2002) and has several advantages
over M2 for GEC evaluation. It is observed that
our single models consistently perform well on
JFLEG, outperforming most of the CoNLL-2014
top-performing systems and yielding a state-of-
the-art result8 on this benchmark, demonstrating
that our models are well generalized and perform
stably on multiple datasets.

6 Related work

Most of advanced GEC systems are classifier-
based (Chodorow et al., 2007; De Felice and Pul-
man, 2008; Han et al., 2010; Leacock et al., 2010;
Tetreault et al., 2010a; Dale and Kilgarriff, 2011)

7The state-of-the-art result on CoNLL-2014 dataset has
been recently advanced by Chollampatt and Ng (2018)
(F0.5=54.79) and Grundkiewicz and Junczys-Dowmunt
(2018) (F0.5=56.25), which are contemporaneous to this pa-
per. In contrast to the basic seq2seq model in this paper, they
used advanced approaches for modeling (e.g., convolutional
seq2seq with pre-trained word embedding, using edit opera-
tion features, ensemble decoding and advanced model combi-
nations). It should be noted that their approaches are orthog-
onal to ours, making it possible to apply our fluency boost
learning and inference mechanism to their models.

8The recently proposed SMT-NMT hybrid system
(Grundkiewicz and Junczys-Dowmunt, 2018), which is tuned
towards GLEU on JFLEG Dev set, reports a higher result
(GLEU=61.50 on JFLEG test set).

System JFLEG Dev JFLEG Test
GLEU GLEU

Source 38.21 40.54
CAMB14 42.81 46.04

CAMB16SMT 46.10 -
CAMB16NMT 47.20 52.05

CAMB17 (CAMB16SMT based) 47.72 -
CAMB17 (AMU16 based) 43.26 -

NUS16 46.27 50.13
NUS17 51.01 56.78

AMU16∗ 49.74 51.46
Nested-seq2seq 48.93 53.41

Sakaguchi et al. (2017)∗ 49.82 53.98
Ours 51.35 56.33

Ours (with non-public Lang-8 data) 52.93 57.74
Human 55.26 62.37

Table 6: JFLEG Leaderboard. Ours denote the
single dual-boost models in Table 5. The systems
with bold fonts are based on seq2seq models. ∗

denotes the system is tuned on JFLEG.

or MT-based (Brockett et al., 2006; Dahlmeier
and Ng, 2011, 2012a; Yoshimoto et al., 2013;
Yuan and Felice, 2013; Behera and Bhattacharyya,
2013). For example, top-performing systems (Fe-
lice et al., 2014; Rozovskaya et al., 2014; Junczys-
Dowmunt and Grundkiewicz, 2014) in CoNLL-
2014 shared task (Ng et al., 2014) use either of the
methods. Recently, many novel approaches (Su-
santo et al., 2014; Chollampatt et al., 2016b,a; Ro-
zovskaya and Roth, 2016; Junczys-Dowmunt and
Grundkiewicz, 2016; Mizumoto and Matsumoto,
2016; Yuan et al., 2016; Hoang et al., 2016; Yan-
nakoudakis et al., 2017) have been proposed for
GEC. Among them, seq2seq models (Yuan and
Briscoe, 2016; Xie et al., 2016; Ji et al., 2017; Sak-
aguchi et al., 2017; Schmaltz et al., 2017; Chol-
lampatt and Ng, 2018) have caught much atten-
tion. Unlike the models trained only with origi-
nal error-corrected data, we propose a novel flu-
ency boost learning mechanism for dynamic data
augmentation along with training for GEC, despite
some previous studies that explore artificial error
generation for GEC (Brockett et al., 2006; Foster
and Andersen, 2009; Rozovskaya and Roth, 2010,
2011; Rozovskaya et al., 2012; Felice and Yuan,
2014; Xie et al., 2016; Rei et al., 2017). More-
over, we propose fluency boost inference which
allows the model to repeatedly edit a sentence as
long as the sentence’s fluency can be improved.
To the best of our knowledge, it is the first to
conduct multi-round seq2seq inference for GEC,
while similar ideas have been proposed for NMT
(Xia et al., 2017).

In addition to the studies on GEC, there is
also much research on grammatical error detection
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(Leacock et al., 2010; Rei and Yannakoudakis,
2016; Kaneko et al., 2017) and GEC evaluation
(Tetreault et al., 2010b; Madnani et al., 2011;
Dahlmeier and Ng, 2012c; Napoles et al., 2015;
Sakaguchi et al., 2016; Napoles et al., 2016;
Bryant et al., 2017; Asano et al., 2017). We do
not introduce them in detail because they are not
much related to this paper’s contributions.

7 Conclusion

We propose a novel fluency boost learning and
inference mechanism to overcome the limitations
of previous neural GEC models. Our proposed
fluency boost learning fully exploits both error-
corrected data and native data, largely improv-
ing the performance over normal seq2seq learn-
ing, while fluency boost inference utilizes the
characteristic of GEC to incrementally improve a
sentence’s fluency through multi-round inference.
The powerful learning and inference mechanism
enables the seq2seq models to achieve state-of-
the-art results on both CoNLL-2014 and JFLEG
benchmark datasets.
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Abstract

The International Classification of Dis-
eases (ICD) provides a hierarchy of di-
agnostic codes for classifying diseases.
Medical coding – which assigns a sub-
set of ICD codes to a patient visit – is
a mandatory process that is crucial for
patient care and billing. Manual coding
is time-consuming, expensive, and error-
prone. In this paper, we build a neural ar-
chitecture for automated coding. It takes
the diagnosis descriptions (DDs) of a pa-
tient as inputs and selects the most rele-
vant ICD codes. This architecture con-
tains four major ingredients: (1) tree-of-
sequences LSTM encoding of code de-
scriptions (CDs), (2) adversarial learning
for reconciling the different writing styles
of DDs and CDs, (3) isotonic constraints
for incorporating the importance order
among the assigned codes, and (4) atten-
tional matching for performing many-to-
one and one-to-many mappings from DDs
to CDs. We demonstrate the effective-
ness of the proposed methods on a clinical
datasets with 59K patient visits.

1 Introduction

The International Classification of Diseases (ICD)
is a healthcare classification system maintained
by the World Health Organization (Organization
et al., 1978). It provides a hierarchy of diagnos-
tic codes of diseases, disorders, injuries, signs,
symptoms, etc. It is widely used for reporting
diseases and health conditions, assisting in medi-
cal reimbursement decisions, collecting morbidity
and mortality statistics, to name a few.

While ICD codes are important for making
clinical and financial decisions, medical coding

– which assigns proper ICD codes to a patient
visit – is time-consuming, error-prone, and expen-
sive. Medical coders review the diagnosis descrip-
tions written by physicians in the form of textual
phrases and sentences, and (if necessary) other in-
formation in the electronic health record of a clin-
ical episode, then manually attribute the appro-
priate ICD codes by following the coding guide-
lines (O’malley et al., 2005). Several types of er-
rors frequently occur. First, the ICD codes are
organized in a hierarchical structure. For a node
representing a disease C, the children of this node
represent the subtypes of C. In many cases, the
difference between disease subtypes is very sub-
tle. It is common that human coders select in-
correct subtypes. Second, when writing diagno-
sis descriptions, physicians often utilize abbrevia-
tions and synonyms, which causes ambiguity and
imprecision when the coders are matching ICD
codes to those descriptions (Sheppard et al., 2008).
Third, in many cases, several diagnosis descrip-
tions are closely related and should be mapped to a
single ICD code. However, unexperienced coders
may code each disease separately. Such errors are
called unbundling. The cost incurred by coding
errors and the financial investment spent on im-
proving coding quality are estimated to be $25 bil-
lion per year in the US (Lang, 2007; Farkas and
Szarvas, 2008).

To reduce coding errors and cost, we aim at
building an ICD coding model which automati-
cally and accurately translates the free-text diag-
nosis descriptions into ICD codes. To achieve this
goal, several technical challenges need to be ad-
dressed. First, there exists a hierarchical structure
among the ICD codes. This hierarchy can be lever-
aged to improve coding accuracy. On one hand,
if code A and B are both children of C, then it
is unlikely to simultaneously assign A and B to
a patient. On the other hand, if the distance be-
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tween A and B in the code tree is smaller than that
between A and C and we know A is the correct
code, then B is more likely to be a correct code
than C, since codes with smaller distance are more
clinically relevant. How to explore this hierarchi-
cal structure for better coding is technically de-
manding. Second, the diagnosis descriptions and
the textual descriptions of ICD codes are written
in quite different styles even if they refer to the
same disease. In particular, the textual description
of an ICD code is formally and precisely worded,
while diagnosis descriptions are usually written
by physicians in an informal and ungrammatical
way, with telegraphic phrases, abbreviations, and
typos. Third, it is required that the assigned ICD
codes are ranked according to their relevance to
the patient. How to correctly determine this or-
der is technically nontrivial. Fourth, as stated ear-
lier, there does not necessarily exist an one-to-
one mapping between diagnosis descriptions and
ICD codes, and human coders should consider the
overall health condition when assigning codes. In
many cases, two closely related diagnosis descrip-
tions need to be mapped onto a single combina-
tion ICD code. On the other hand, physicians may
write two health conditions into one diagnosis de-
scription which should be mapped onto two ICD
codes under such circumstances.

Contributions In this paper, we design a neural
architecture to automatically perform ICD coding
given the diagnosis descriptions. Specifically, we
make the following contributions:

• We propose a tree-of-sequences LSTM archi-
tecture to simultaneously capture the hierarchi-
cal relationship among codes and the semantics
of each code.

• We use an adversarial learning approach to rec-
oncile the heterogeneous writing styles of diag-
nosis descriptions and ICD code descriptions.

• We use isotonic constraints to preserve the im-
portance order among codes and develop an al-
gorithm based on ADMM and isotonic projec-
tion to solve the constrained problem.

• We use an attentional matching mechanism to
perform many-to-one and one-to-many map-
pings between diagnosis descriptions and codes.

• On a clinical datasets with 59K patient visits,
we demonstrate the effectiveness of the pro-
posed methods.

The rest of the paper is organized as follows.
Section 2 introduces related works. Section 3 and
4 present the dataset and methods. Section 5 gives
experimental results. Section 6 presents conclu-
sions and discussions.

2 Related Works

Larkey and Croft (1996) studied the automatic as-
signment of ICD-9 codes to dictated inpatient dis-
charge summaries, using a combination of three
classifiers: k-nearest neighbors, relevance feed-
back, and Bayesian independence classifiers. This
method assigns a single code to each patient
visit. However, in clinical practice, each patient
is usually assigned with multiple codes. Franz
et al. (2000) investigated the automated coding
of German-language free-text diagnosis phrases.
This approach performs one-to-one mapping be-
tween diagnosis descriptions and ICD codes. This
is not in accordance with the coding practice
where one-to-many and many-to-one mappings
widely exist (O’malley et al., 2005). Pestian et al.
(2007) studied the assignment of ICD-9 codes to
radiology reports. Kavuluru et al. (2013) proposed
an unsupervised ensemble approach to automati-
cally perform ICD-9 coding based on textual nar-
ratives in electronic health records (EHRs) Kavu-
luru et al. (2015) developed multi-label classifi-
cation, feature selection, and learning to rank ap-
proaches for ICD-9 code assignment of in-patient
visits based on EHRs. Koopman et al. (2015) ex-
plored the automatic ICD-10 classification of can-
cers from free-text death certificates. These meth-
ods did not consider the hierarchical relationship
or importance order among codes.

The tree LSTM network was first proposed
by (Tai et al., 2015) to model the constituent
or dependency parse trees of sentences. Teng
and Zhang (2016) extended the unidirectional tree
LSTM to a bidirectional one. Xie and Xing (2017)
proposed a sequence-of-trees LSTM network to
model a passage. In this network, a sequential
LSTM is used to compose a sequence of tree
LSTMs. The tree LSTMs are built on the con-
stituent parse trees of individual sentences and the
sequential LSTM is built on the sequence of sen-
tences. Our proposed tree-of-sequences LSTM
network differs from the previous works in two-
fold. First, it is applied to a code tree to capture
the hierarchical relationship among codes. Sec-
ond, it uses a tree LSTM to compose a hierarchy
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Diagnosis Descriptions
1. Prematurity at 35 4/7 weeks gestation
2. Twin number two of twin gestation
3. Respiratory distress secondary to transient tachypnea

of the newborn
4. Suspicion for sepsis ruled out
Assigned ICD Codes
1. V31.00 (Twin birth, mate liveborn, born in hospital,

delivered without mention of cesarean section)
2. 765.18 (Other preterm infants, 2,000-2,499 grams)
3. 775.6 (Neonatal hypoglycemia)
4. 770.6 (Transitory tachypnea of newborn)
5. V29.0 (Observation for suspected infectious condition)
6. V05.3 (Need for prophylactic vaccination and inoculation

against viral hepatitis)

Table 1: The diagnosis descriptions of a patient
visit and the assigned ICD codes. Inside the paren-
theses are the descriptions of the codes. The codes
are ranked according to descending importance.

of sequential LSTMs.
Adversarial learning (Goodfellow et al., 2014)

has been widely applied to image genera-
tion (Goodfellow et al., 2014), domain adap-
tion (Ganin and Lempitsky, 2015), feature learn-
ing (Donahue et al., 2016), text generation (Yu
et al., 2017), to name a few. In this paper, we use
adversarial learning for mitigating the discrepancy
among the writing styles of a pair of sentences.

The attention mechanism was widely used in
machine translation (Bahdanau et al., 2014), im-
age captioning (Xu et al., 2015), reading compre-
hension (Seo et al., 2016), text classification (Yang
et al., 2016), etc. In this work, we compute at-
tention between sentences to perform many-to-one
and one-to-many mappings.

3 Dataset and Preprocessing

We performed the study on the publicly available
MIMIC-III dataset (Johnson et al., 2016), which
contains de-identified electronic health records
(EHRs) of 58,976 patient visits in the Beth Israel
Deaconess Medical Center from 2001 to 2012.
Each EHR has a clinical note called discharge
summary, which contains multiple sections of in-
formation, such as ‘discharge diagnosis’, ‘past
medical history’, etc. From the ‘discharge diag-
nosis’ and ‘final diagnosis’ sections, we extracted
the diagnosis descriptions (DDs) written by physi-
cians. Each DD is a short phrase or a sentence,
articulating a certain disease or condition. Med-
ical coders perform ICD coding mainly based on
DDs. Following such a practice, in this paper, we
set the inputs of the automated coding model to be

Encoder of diagnosis
description

Tree-of-sequences
LSTM encoder of ICD-
code description

Adversarial
reconciliation module

Attentional matching
moduleIsotonic constraints

1. Pneumonia
2. Acute kidney failure
......

Diagnosis descriptions

V31.00 775.6
765.18 770.6

Assigned ICD codes

Figure 1: Architecture of the ICD Coding Model

the DDs while acknowledging that other informa-
tion in the EHRs is also valuable and is referred to
by coders for code assignment. For simplicity, we
leave the incorporation of non-DD information to
future study.

Each patient visit is assigned with a list of ICD
codes, ranked in descending order of importance
and relevance. For each visit, the number of codes
is usually not equal to the number of diagnosis de-
scriptions. These ground-truth codes serve as the
labels to train our coding model. The entire dataset
contains 6,984 unique codes, each of which has
a textual description, describing a disease, symp-
tom, or condition. The codes are organized into a
hierarchy where the top-level codes correspond to
general diseases while the bottom-level ones rep-
resent specific diseases. In the code tree, children
of a node represent subtypes of a disease. Table 1
shows the DDs and codes of an exemplar patient.

4 Methods

In this section, we present a neural architecture for
ICD coding.

4.1 Overview
Figure 1 shows the overview of our approach. The
proposed ICD coding model consists of five mod-
ules. The model takes the ICD-code tree and
diagnosis descriptions (DDs) of a patient as in-
puts and assigns a set of ICD codes to the pa-
tient. The encoder of DDs generates a latent rep-
resentation vector for a DD. The encoder of ICD
codes is a tree-of-sequences long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
network. It takes the textual descriptions of the
ICD codes and their hierarchical structure as in-
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Neonatal Necrotizing Enterocolitis

Seq LSTM

Sequential LSTM
Seq LSTM Seq LSTM

Seq LSTM

Seq LSTM

Figure 2: Tree-of-Sequences LSTM

puts and produces a latent representation for each
code. The representation aims at simultaneously
capturing the semantics of each code and the hi-
erarchical relationship among codes. By incor-
porating the code hierarchy, the model can avoid
selecting codes that are subtypes of the same dis-
ease and promote the selection of codes that are
clinically correlated. The writing styles of DDs
and code descriptions (CDs) are largely different,
which makes the matching between a DD and a
CD error-prone. To address this issue, we develop
an adversarial learning approach to reconcile the
writing styles. On top of the latent representa-
tion vectors of the descriptions, we build a dis-
criminative network to distinguish which ones are
DDs and which are CDs. The encoders of DDs
and CDs try to make such a discrimination impos-
sible. By doing this, the learned representations
are independent of the writing styles and facilitate
more accurate matching. The representations of
DDs and CDs are fed into an attentional match-
ing module to perform code assignment. This at-
tentional mechanism allows multiple DDs to be
matched to a single code and allows a single DD to
be matched to multiple codes. During training, we
incorporate the order of importance among codes
as isotonic constraints. These constraints regu-
late the model’s weight parameters so that codes
with higher importance are given larger prediction
scores.

4.2 Tree-of-Sequences LSTM Encoder

This section introduces the encoder of ICD codes.
Each code has a description (a sequence of words)
that tells the semantics of this code. We use
a sequential LSTM (SLSTM) (Hochreiter and
Schmidhuber, 1997) to encode this description. To
capture the hierarchical relationship among codes,
we build a tree LSTM (TLSTM) (Tai et al., 2015)
along the code tree. At each TLSTM node, the
input vector is the latent representation generated

by the SLSTM. Combining these two types of
LSTMs together, we obtain a tree-of-sequences
LSTM network (Figure 2).

Sequential LSTM A sequential LSTM
(SLSTM) (Hochreiter and Schmidhuber, 1997)
network is a special type of recurrent neural
network that (1) learns the latent representation
(which usually reflects certain semantic infor-
mation) of words, and (2) models the sequential
structure among words. In the word sequence,
each word t is allocated with an SLSTM unit,
which consists of the following components: an
input gate it, a forget gate ft, an output gate ot,
a memory cell ct, and a hidden state st. These
components (vectors) are computed as follows:

it = σ(W(i)st−1 + U(i)xt + b(i))

ft = σ(W(f)st−1 + U(f)xt + b(f))

ot = σ(W(o)st−1 + U(o)xt + b(o))

ct = it � tanh(W(c)st−1 + U(c)xt + b(c))
+ft � ct−1

st = ot � tanh(ct)
(1)

where xt is the embedding vector of word t. W,
U are component-specific weight matrices and b
are bias vectors.

Tree-of-sequences LSTM We use a bidirec-
tional tree LSTM (TLSTM) (Tai et al., 2015; Xie
and Xing, 2017) to capture the hierarchical rela-
tionships among codes. The inputs of this LSTM
include the code hierarchy and hidden states of in-
dividual codes produced by the SLSTMs. It con-
sists of a bottom-up TLSTM and a top-down TL-
STM, which produce two hidden states h↑ and h↓
at each node in the tree.

In the bottom-up TLSTM, an internal node (rep-
resenting a code C, having M children) is com-
prised of these components: an input gate i↑, an
output gate o↑, a memory cell c↑, a hidden state
h↑ and M child-specific forget gates {f (m)

↑ }Mm=1

where f
(m)
↑ corresponds to the m-th child. The

transition equations among components are:

i↑ = σ(
∑M

m=1 W
(i,m)
↑ h

(m)
↑ + U(i)s + b

(i)
↑ )

∀m, f (m)
↑ = σ(W

(f,m)
↑ h

(m)
↑ + U(f,m)s + b

(f,m)
↑ )

o↑ = σ(
∑M

m=1 W
(o,m)
↑ h

(m)
↑ + U(o)s + b

(o)
↑ )

u↑ = tanh(
∑M

m=1 W
(u,m)
↑ h

(m)
↑ + U(u)s + b

(u)
↑ )

c↑ = i↑ � u↑ +
∑M

m=1 f
(m)
↑ � c

(m)
↑

h↑ = o↑ � tanh(c↑)
(2)
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where s is the SLSTM hidden state that en-
codes the description of code C; {h(m)

↑ }Mm=1 and

{c(m)
↑ }Mm=1 are the bottom-up TLSTM hidden

states and memory cells of the children. W, U, b
are component-specific weight matrices and bias
vectors. For a leaf node having no children, its
only input is the SLSTM hidden state s and no for-
get gates are needed.

In the top-down TLSTM, for a non-root node,
it has such components: an input gate i↓, a forget
gate f↓, an output gate o↓, a memory cell c↓ and a
hidden state h↓. The transition equations are:

i↓ = σ(W
(i)
↓ h

(p)
↓ + b

(i)
↓ )

f↓ = σ(W
(f)
↓ h

(p)
↓ + b

(f)
↓ )

o↓ = σ(W
(o)
↓ h

(p)
↓ + b

(o)
↓ )

u↓ = tanh(W
(u)
↓ h

(p)
↓ + b

(u)
↓ )

c↓ = i↓ � u↓ + f↓ � c
(p)
↓

h↓ = o↓ � tanh(c↓)

(3)

where h(p)
↓ and c

(p)
↓ are the top-down TLSTM hid-

den state and memory cell of the parent of this
node. For the root node which has no parent, h↓
cannot be computed using the above equations. In-
stead, we set h↓ to h↑ (the bottom-up TLSTM hid-
den state generated at the root node). h↑ captures
the semantics of all codes in this hierarchy, which
is then propagated downwards to each individual
code via the top-down TLSTM dynamics.

We concatenate the hidden states of the two di-
rections to obtain the bidirectional TLSTM encod-
ing of each code h = [h↑;h↓]. The bottom-up TL-
STM composes the semantics of children (repre-
senting sub-diseases) and merge them into the cur-
rent node, which hence captures child-to-parent
relationship. The top-down TLSTM makes each
node inherit the semantics of its parent, which cap-
tures parent-to-child relation. As a result, the hier-
archical relationship among codes are encoded in
the hidden states.

For the diagnosis descriptions of a patient, we
use an SLSTM network to encode each descrip-
tion individually. The weight parameters of this
SLSTM are tied with those of the SLSTM used
for encoding code descriptions.

4.3 Attentional Matching
Next, we introduce how to map the DDs to codes.
We denote the hidden representations of DDs and
codes as {hm}Mm=1 and {un}Nn=1 respectively,
where M is the number of DDs of one patient and

N is the total number of codes in the dataset. The
mapping from DDs to codes is not one-to-one. In
many cases, a code is assigned only when a certain
combination of K (1 < K ≤ M ) diseases simul-
taneously appear within the M DDs and the value
of K depends on this code. Among the K dis-
eases, their importance of determining the assign-
ment of this code is different. For the rest M −K
DDs, we can consider their importance score to
be zero. We use a soft-attention mechanism (Bah-
danau et al., 2014) to calculate these importance
scores. For a code un, the importance of a DD
hm to un is calculated as anm = u>nhm. We
normalize the scores {anm}Mm=1 of all DDs into
a probabilistic simplex using the softmax opera-
tion: ãnm = exp(anm)/

∑M
l=1 exp(anl). Given

these normalized importance scores {ãnm}Mm=1,
we use them to weight the representations of DDs
and get a single attentional vector of the M DDs:
ĥn =

∑M
m=1 ãnmhm. Then we concatenate ĥn

and un, and use a linear classifier to predict the
probability that code n should be assigned: pn =
sigmoid(w>n [ĥn;un] + bn), where the coefficients
wn and bias bn are specific to code n.

We train the weight parameters Θ of the pro-
posed model using the data of L patient visits. Θ
includes the sequential LSTM weights Ws, tree
LSTM weights Wt and weights Wp in the final
prediction layer. Let c(l) ∈ RN be a binary vector
where c(l)

n = 1 if the n-th code is assigned to this
patient and c(l)

n = 0 if otherwise. Θ can be learned
by minimizing the following prediction loss:

minΘ Lpred(Θ) =
L∑

l=1

N∑

n=1

CE(p(l)
n , c

(l)
n ) (4)

where p(l)
n is the predicted probability that code n

is assigned to patient visit l and p(l)
n is a function

of Θ. CE(·, ·) is the cross-entropy loss.

4.4 Adversarial Reconciliation of Writing
Styles

We use an adversarial learning (Goodfellow et al.,
2014) approach to reconcile the different writing
styles of diagnosis descriptions (DDs) and code
descriptions (CDs). The basic idea is: after en-
coded, if a description cannot be discerned to be
a DD or a CD, then the difference in their writ-
ing styles is eliminated. We build a discriminative
network which takes the encoding vector of a de-
scription as input and tries to identify it as a DD
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or CD. The encoders of DDs and CDs adjust their
weight parameters so that such a discrimination is
difficult to be achieved by the discriminative net-
work. Consider all the descriptions {tr, yr}Rr=1

where tr is a description and yr is a binary label.
yr = 1 if tr is a DD and yr = 0 if otherwise. Let
f(tr;Ws) denote the sequential LSTM (SLSTM)
encoder parameterized by Ws. This encoder is
shared by the DDs and CDs. Note that for CDs, a
tree LSTM is further applied on top of the encod-
ings produced by the SLSTM. We use the SLSTM
encoding vectors of CDs as the input of the dis-
criminative network rather than using the TLSTM
encodings since the latter are irrelevant to writing
styles. Let g(f(tr;Ws);Wd) denote the discrim-
inative network parameterized by Wd. It takes the
encoding vector f(tr;Ws) as input and produces
the probability that tr is a DD. Adversarial learn-
ing is performed by solving this problem:

max
Ws

min
Wd

Ladv =
R∑

r=1

CE(g(f(tr;Ws);Wd), yr)

(5)
The discriminative network tries to differentiate
DDs from CDs by minimizing this classification
loss while the encoder maximizes this loss so that
DDs and CDs are not distinguishable.

4.5 Isotonic Constraints

Next, we incorporate the importance order among
ICD codes. For the D(l) codes assigned to patient
l, without loss of generality, we assume the order
is 1 � 2 · · · � D(l) (the order is given by human
coders as ground-truth in the MIMIC-III dataset).
We use the predicted probability pi (1 ≤ i ≤ D(l))
defined in Section 4.3 to characterize the impor-
tance of code i. To incorporate the order, we im-
pose an isotonic constraint on the probabilities:
p

(l)
1 � p

(l)
2 · · · � p

(l)

D(l) , and solve the following
problem:

minΘ Lpred(Θ) + maxWd
(−λLadv(Ws,Wd))

s.t. p
(l)
1 � p

(l)
2 · · · � p

(l)

D(l)

∀l = 1, · · · , L
(6)

where the probabilities p(l)
i are functions of Θ and

λ is a tradeoff parameter.
We develop an algorithm based on the

alternating direction method of multiplier
(ADMM) (Boyd et al., 2011) to solve the problem
defined in Eq.(6). Let p(l) be a |D(l)|-dimensional

vector where the i-th element is p(l)
i . We first

write the problem into an equivalent form

minΘ Lpred(Θ) + maxWd
(−λLadv(Ws,Wd))

s.t. p(l) = q(l)

q
(l)
1 � q

(l)
2 · · · � q

(l)

|D(l)|
∀l = 1, · · · , L

(7)
Then we write down the augmented Lagrangian

min
Θ,q,v

Lpred(Θ) + maxWd
(−λLadv(Ws,Wd))

+〈p(l) − q(l),v(l)〉+ ρ
2‖p(l) − q(l)‖22

s.t. q
(l)
1 � q

(l)
2 · · · � q

(l)

|D(l)|
∀l = 1, · · · , L

(8)
We solve this problem by alternating between
{p(l)}Ll=1, {q(l)}Ll=1 and {v(l)}Ll=1 The sub-
problem defined over q(l) is

minq(l) −〈q(l),v(l)〉+ ρ
2‖p(l) − q(l)‖22

s.t. q
(l)
1 � q

(l)
2 · · · � q

(l)

|D(l)|
(9)

which is an isotonic projection problem and can
be solved via the algorithm proposed in (Yu
and Xing, 2016). With {q(l)}Ll=1 and {v(l)}Ll=1

fixed, the sub-problem is minΘ Lpred(Θ) +
maxWd

(−λLadv(Ws,Wd)) which can be solved
using stochastic gradient descent (SGD). The up-
date of v(l) is simple: v(l) = v(l) + ρ(p(l)−q(l)).

5 Experiments

In this section, we present experiment results.

5.1 Experimental Settings
Out of the 6,984 unique codes, we selected 2,833
codes that have the top frequencies to perform the
study. We split the data into a train/validation/test
dataset with 40k/7k/12k patient visits respectively.
The hyperparameters were tuned on the valida-
tion set. The SLSTMs were bidirectional and
dropout with 0.5 probability (Srivastava et al.,
2014) was used. The size of hidden states in all
LSTMs was set to 100. The word embeddings
were trained on the fly and their dimension was
set to 200. The tradeoff parameter λ was set to
0.1. The parameter ρ in the ADMM algorithm
was set to 1. In the SGD algorithm for solving
minΘ Lpred(Θ)+maxWd

(−λLadv(Ws,Wd)), we
used the ADAM (Kingma and Ba, 2014) optimizer
with an initial learning rate 0.001 and a mini-
batch size 20. Sensitivity (true positive rate) and
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specificity (true negative rate) were used to eval-
uate the code assignment performance. We cal-
culated these two scores for each individual code
on the test set, then took a weighted (proportional
to codes’ frequencies) average across all codes.
To evaluate the ranking performance of codes,
we used normalized discounted cumulative gain
(NDCG) (Järvelin and Kekäläinen, 2002).

5.2 Ablation Study

We perform ablation study to verify the effective-
ness of each module in our model. To evaluate
module X, we remove it from the model without
changing other modules and denote such a base-
line by No-X. The comparisons of No-X with the
full model are given in Table 2.

Tree-of-sequences LSTM To evaluate this
module, we compared with the two configu-
rations: (1) No-TLSTM, which removes the
tree LSTM and directly uses the hidden states
produced by the sequential LSTM as final rep-
resentations of codes; (2) Bottom-up TLSTM,
which removes the hidden states generated by
the top-down TLSTM. In addition, we compared
with four hierarchical classification baselines
including (1) hierarchical network (HierNet) (Yan
et al., 2015), (2) HybridNet (Hou et al., 2017),
(3) branch network (BranchNet) (Zhu and Bain,
2017), (4) label embedding tree (LET) (Bengio
et al., 2010), by using them to replace the bidirec-
tional tree LSTM while keeping other modules
untouched. Table 2 shows the average sensitivity
and specificity scores achieved by these methods
on the test set. We make the following observa-
tions. First, removing tree LSTM largely degrades
performance: the sensitivity and specificity of
No-TLSTM is 0.23 and 0.28 respectively while
our full model (which uses bidirectional TLSTM)
achieves 0.29 and 0.33 respectively. The reason is
No-TLSTM ignores the hierarchical relationship
among codes. Second, bottom-up tree LSTM
alone performs less well than bidirectional tree
LSTM. This demonstrates the necessity of the
top-down TLSTM, which ensures every two
codes are connected by directed paths and can
more expressively capture code-relations in the
hierarchy. Third, our method outperforms the four
baselines. The possible reason is our method di-
rectly builds codes’ hierarchical relationship into
their representations while the baselines perform
representation-learning and relationship-capturing

Sensitivity Specificity
(Larkey and Croft, 1996) 0.15 0.17
(Franz et al., 2000) 0.19 0.21
(Pestian et al., 2007) 0.12 0.21
(Kavuluru et al., 2013) 0.09 0.11
(Kavuluru et al., 2015) 0.21 0.25
(Koopman et al., 2015) 0.18 0.20
LET 0.23 0.29
HierNet 0.26 0.30
HybridNet 0.25 0.31
BranchNet 0.25 0.29
No-TLSTM 0.23 0.28
Bottom-up TLSTM 0.27 0.31
No-AL 0.26 0.31
No-IC 0.24 0.29
No-AM 0.27 0.29
Our full model 0.29 0.33

Table 2: Sensitivity and Specificity on the Test Set

separately.

Next, we present some qualitative results. For
a patient (admission ID 147798) having a DD ‘E
Coli urinary tract infection’, without using tree
LSTM, two sibling codes 585.2 (chronic kidney
disease, stage II (mild)) – which is the ground-
truth – and 585.4 (chronic kidney disease, stage
IV (severe)) are simultaneously assigned possibly
because their textual descriptions are very similar
(only differ in the level of severity). This is in-
correct because 585.2 and 585.4 are the children
of 585 (chronic kidney disease) and the severity
level of this disease cannot simultaneously be mild
and severe. After tree LSTM is added, the false
prediction of 585.4 is eliminated, which demon-
strates the effectiveness of tree LSTM in incorpo-
rating one constraint induced by the code hierar-
chy: among the nodes sharing the same parent,
only one should be selected.

For patient 197205, No-TLSTM assigns the
following codes: 462 (subacute sclerosing pa-
nencephalitis), 790.29 (other abnormal glucose),
799.9 (unspecified viral infection), and 285.21
(anemia in chronic kidney disease). Among these
codes, the first three are ground-truth and the
fourth one is incorrect (the ground-truth is 401.9
(unspecified essential hypertension)). Adding tree
LSTM fixes this error. The average distance be-
tween 401.9 and the rest of ground-truth codes
is 6.2. For the incorrectly assigned code 285.21,
such a distance is 7.9. This demonstrates that tree
LSTM is able to capture another constraint im-
posed by the hierarchy: codes with smaller tree-
distance are more likely to be assigned together.
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Position 2 4 6 8
No-IC 0.27 0.26 0.23 0.20
IC 0.32 0.29 0.27 0.23

Table 3: Comparison of NDCG Scores in the Ab-
lation Study of Isotonic Constraints.

Adversarial learning To evaluate the efficacy
of adversarial learning (AL), we remove it from
the full model and refer to this baseline as
No-AL. Specifically, in Eq.(6), the loss term
maxWd

(−Ladv(Ws,Wd)) is taken away. Table 2
shows the results, from which we observe that af-
ter AL is removed, the sensitivity and specificity
are dropped from 0.29 and 0.33 to 0.26 and 0.31
respectively. No-AL does not reconcile different
writing styles of diagnosis descriptions (DDs) and
code descriptions (CDs). As a result, a DD and
a CD that have similar semantics may be mis-
matched because their writing styles are differ-
ent. For example, a patient (admission ID 147583)
has a DD ‘h/o DVT on anticoagulation’, which
contains abbreviation DVT (deep vein thrombo-
sis). Due to the presence of this abbreviation,
it is difficult to assign a proper code to this DD
since the textual descriptions of codes do not con-
tain abbreviations. With adversarial learning, our
model can correctly map this DD to a ground-truth
code: 443.9 (peripheral vascular disease, unspec-
ified). Without AL, this code is not selected. As
another example, a DD ‘coronary artery disease,
STEMI, s/p 2 stents placed in RCA’ was given to
patient 148532. This DD is written informally and
ungrammatically, and contains too much detailed
information, e.g., ‘s/p 2 stents placed in RCA’.
Such a writing style is quite different from that of
CDs. With AL, our model successfully matches
this DD to a ground-truth code: 414.01 (coronary
atherosclerosis of native coronary artery). On the
contrary, No-AL fails to achieve this.

Isotonic constraint (IC) To evaluate this in-
gredient, we remove the ICs from Eq.(6) during
training and denote this baseline as No-IC. We
use NDCG to measure the ranking performance,
which is calculated in the following way. Consider
a testing patient-visit lwhere the ground-truth ICD
codes are M(l). For any code c, we define the
relevance score of c to l as 0 if c /∈ M(l) and
as |M(l)| − r(c) if otherwise, where r(c) is the
ground-truth rank of c inM(l). We rank codes in
descending order of their corresponding prediction

probabilities and obtain the predicted rank for each
code. We calculate the NDCG scores at position 2,
4, 6, 8 based on the relevance scores and predicted
ranks, which are shown in Table 3. As can be seen,
using IC achieves much higher NDCG than No-
IC, which demonstrates the effectiveness of IC in
capturing the importance order among codes.

We also evaluate how IC affects the sensitivity
and specificity of code assignment. As can be seen
from Table 2, No-IC degrades the two scores from
0.29 and 0.33 to 0.24 and 0.29 respectively, which
indicates that IC is helpful in training a model that
can more correctly assign codes. This is because
IC encourages codes that are highly relevant to the
patients to be ranked at top positions, which pre-
vents the selection of irrelevant codes.

Attentional matching (AM) In the evaluation
of this module, we compare with a baseline –
No-AM, which performs an unweighted average
of the M DDs: ĥn = 1

M

∑M
m=1 hm, concate-

nates ĥn with un and feeds the concatenated vec-
tor into the final prediction layer. From Table 2,
we can see our full model (with AM) outperforms
No-AM, which demonstrates the effectiveness of
attentional matching. In determining whether a
code should be assigned, different DDs have dif-
ferent importance weights. No-AM ignores such
weights, therefore performing less well.

AM can correctly perform many-to-one map-
ping from multiple DDs to a CD. For example,
patient 190236 was given two DDs: ‘renal insuffi-
ciency’ and ‘acute renal failure’. AM maps them
to a combined ICD code: 403.91 (hypertensive
chronic kidney disease, unspecified, with chronic
kidney disease stage V or end stage renal disease),
which is in the ground-truth provided by medical
coders. On the contrary, No-AM fails to assign
this code. On the other hand, AM is able to cor-
rectly map a DD to multiple CDs. For example, a
DD ‘congestive heart failure, diastolic’ was given
to patient 140851. AM successfully maps this
DD to two codes: (1) 428.0 (congestive heart fail-
ure, unspecified); (2) 428.30 (diastolic heart fail-
ure, unspecified). Without AM, this DD is mapped
only to 428.0.

5.3 Holistic Comparison with Other
Baselines

In addition to evaluating the four modules individ-
ually, we also compared our full model with four
other baselines proposed by (Larkey and Croft,
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1996; Franz et al., 2000; Pestian et al., 2007;
Kavuluru et al., 2013, 2015; Koopman et al., 2015)
for ICD coding. Table 2 shows the results. As can
be seen, our approach achieves much better sensi-
tivity and specificity scores. The reason that our
model works better is two-fold. First, our model
is based on deep neural network, which has ar-
guably better modeling power than linear methods
used in the baselines. Second, our model is able
to capture the hierarchical relationship and impor-
tance order among codes, can alleviate the discrep-
ancy in writing styles and allows flexible many-to-
one and one-to-many mappings from DDs to CDs.
These merits are not possessed by the baselines.

6 Conclusions and Discussions

In this paper, we build a neural network model
for automated ICD coding. Evaluations on the
MIMIC-III dataset demonstrate the following.
First, the tree-of-sequences LSTM network effec-
tively discourages the co-selection of sibling codes
and promotes the co-assignment of clinically-
relevant codes. Adversarial learning improves the
matching accuracy by alleviating the discrepancy
among the writing styles of DDs and CDs. Third,
isotonic constraints promote the correct ranking of
codes. Fourth, the attentional matching mecha-
nism is able to perform many-to-one and one-to-
many mappings.

In the coding practice of human coders, in addi-
tion to the diagnosis descriptions, other informa-
tion contained in nursing notes, lab values, and
medical procedures are also leveraged for code as-
signment. We have initiated preliminary investi-
gation along this line and added two new input
sources: (1) the rest of discharge summary and (2)
lab values. The sensitivity is improved from 0.29
to 0.32 and the specificity is improved from 0.33
to 0.35. A full study is ongoing.

At present, the major limitations of this work
include: (1) it does not perform well on infrequent
codes; (2) it is less capable of dealing with abbre-
viations. We will address these two issues in fu-
ture by investigating diversity-promoting regular-
ization (Xie et al., 2017) and leveraging an exter-
nal knowledge base that maps medical abbrevia-
tions into their full names.

The proposed methods can be applied to other
tasks in NLP. The tree-of-sequences model can
be applied for ontology annotation. It takes the
textual descriptions of concepts in the ontology

and their hierarchical structure as inputs and pro-
duces a latent representation for each concept.
The representations can simultaneously capture
the semantics of codes and their relationships.
The proposed adversarial reconciliation of writ-
ing styles and attentional matching can be applied
for knowledge mapping or entity linking. For ex-
ample, in tweets, we can use the method to map
an informally written mention ‘nbcbightlynews’
to a canonical entity ‘NBC Nightly News’ in the
knowledge base.
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2016. Adversarial feature learning. arXiv preprint
arXiv:1605.09782.
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Abstract

The success of deep neural networks
(DNNs) is heavily dependent on the avail-
ability of labeled data. However, obtain-
ing labeled data is a big challenge in many
real-world problems. In such scenarios, a
DNN model can leverage labeled and un-
labeled data from a related domain, but it
has to deal with the shift in data distribu-
tions between the source and the target do-
mains. In this paper, we study the problem
of classifying social media posts during a
crisis event (e.g., Earthquake). For that,
we use labeled and unlabeled data from
past similar events (e.g., Flood) and unla-
beled data for the current event. We pro-
pose a novel model that performs adver-
sarial learning based domain adaptation
to deal with distribution drifts and graph
based semi-supervised learning to lever-
age unlabeled data within a single uni-
fied deep learning framework. Our exper-
iments with two real-world crisis datasets
collected from Twitter demonstrate signif-
icant improvements over several baselines.

1 Introduction

The application that motivates our work is the
time-critical analysis of social media (Twitter)
data at the sudden-onset of an event like natural or
man-made disasters (Imran et al., 2015). In such
events, affected people post timely and useful in-
formation of various types such as reports of in-
jured or dead people, infrastructure damage, ur-
gent needs (e.g., food, shelter, medical assistance)
on these social networks. Humanitarian organiza-
tions believe timely access to this important infor-
mation from social networks can help significantly
and reduce both human loss and economic dam-

age (Varga et al., 2013; Vieweg et al., 2014; Power
et al., 2013).

In this paper, we consider the basic task of
classifying each incoming tweet during a crisis
event (e.g., Earthquake) into one of the prede-
fined classes of interest (e.g., relevant vs. non-
relevant) in real-time. Recently, deep neural net-
works (DNNs) have shown great performance in
classification tasks in NLP and data mining. How-
ever the success of DNNs on a task depends heav-
ily on the availability of a large labeled dataset,
which is not a feasible option in our setting (i.e.,
classifying tweets at the onset of an Earthquake).
On the other hand, in most cases, we can have ac-
cess to a good amount of labeled and abundant un-
labeled data from past similar events (e.g., Floods)
and possibly some unlabeled data for the current
event. In such situations, we need methods that
can leverage the labeled and unlabeled data in a
past event (we refer to this as a source domain),
and that can adapt to a new event (we refer to
this as a target domain) without requiring any la-
beled data in the new event. In other words, we
need models that can do domain adaptation to deal
with the distribution drift between the domains
and semi-supervised learning to leverage the un-
labeled data in both domains.

Most recent approaches to semi-supervised
learning (Yang et al., 2016) and domain adapta-
tion (Ganin et al., 2016) use the automatic fea-
ture learning capability of DNN models. In this
paper, we extend these methods by proposing a
novel model that performs domain adaptation and
semi-supervised learning within a single unified
deep learning framework. In this framework, the
basic task-solving network (a convolutional neu-
ral network in our case) is put together with two
other networks – one for semi-supervised learning
and the other for domain adaptation. The semi-
supervised component learns internal representa-
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tions (features) by predicting contextual nodes in a
graph that encodes similarity between labeled and
unlabeled training instances. The domain adap-
tation is achieved by training the feature extractor
(or encoder) in adversary with respect to a domain
discriminator, a binary classifier that tries to dis-
tinguish the domains. The overall idea is to learn
high-level abstract representation that is discrim-
inative for the main classification task, but is in-
variant across the domains. We propose a stochas-
tic gradient descent (SGD) algorithm to train the
components of our model simultaneously.

The evaluation of our proposed model is con-
ducted using two Twitter datasets on scenarios
where there is only unlabeled data in the target do-
main. Our results demonstrate the following.

1. When the network combines the semi-
supervised component with the supervised
component, depending on the amount of la-
beled data used, it gives 5% to 26% absolute
gains in F1 compared to when it uses only the
supervised component.

2. Domain adaptation with adversarial training
improves over the adaptation baseline (i.e., a
transfer model) by 1.8% to 4.1% absolute F1.

3. When the network combines domain adver-
sarial training with semi-supervised learning,
we get further gains ranging from 5% to 7%
absolute in F1 across events.

Our source code is available on Github1 and the
data is available on CrisisNLP2.

The rest of the paper is organized as follows. In
Section 2, we present the proposed method, i.e.,
domain adaptation and semi-supervised graph em-
bedding learning. In Section 3, we present the ex-
perimental setup and baselines. The results and
analysis are presented in Section 4. In Section 5,
we present the works relevant to this study. Fi-
nally, conclusions appear in Section 6.

2 The Model

We demonstrate our approach for domain adapta-
tion with adversarial training and graph embed-
ding on a tweet classification task to support cri-
sis response efforts. Let DlS = {ti, yi}Lsi=1 and
DuS = {ti}Usi=1 be the set of labeled and un-
labeled tweets for a source crisis event S (e.g.,

1https://github.com/firojalam/
domain-adaptation

2http://crisisnlp.qcri.org

Nepal earthquake), where yi ∈ {1, . . . ,K} is the
class label for tweet ti, Ls and Us are the num-
ber of labeled and unlabeled tweets for the source
event, respectively. In addition, we have unla-
beled tweets DuT = {ti}Uti=1 for a target event T
(e.g., Queensland flood) with Ut being the num-
ber of unlabeled tweets in the target domain. Our
ultimate goal is to train a cross-domain model
p(y|t, θ) with parameters θ that can classify any
tweet in the target event T without having any in-
formation about class labels in T .

Figure 1 shows the overall architecture of our
neural model. The input to the network is a tweet
t = (w1, . . . , wn) containing words that come
from a finite vocabulary V defined from the train-
ing set. The first layer of the network maps each
of these words into a distributed representation Rd

by looking up a shared embedding matrix E ∈
R|V |×d. We initialize the embedding matrix E in
our network with word embeddings that are pre-
trained on a large crisis dataset (Subsection 2.5).
However, embedding matrix E can also be initial-
ize randomly. The output of the look-up layer is
a matrix X ∈ Rn×d, which is passed through a
number of convolution and pooling layers to learn
higher-level feature representations. A convolu-
tion operation applies a filter u ∈ Rk.d to a win-
dow of k vectors to produce a new feature ht as

ht = f(u.Xt:t+k−1) (1)

where Xt:t+k−1 is the concatenation of k look-up
vectors, and f is a nonlinear activation; we use
rectified linear units or ReLU. We apply this fil-
ter to each possible k-length windows in X with
stride size of 1 to generate a feature map hj as:

hj = [h1, . . . , hn+k−1] (2)

We repeat this process N times with N different
filters to get N different feature maps. We use
a wide convolution (Kalchbrenner et al., 2014),
which ensures that the filters reach the entire
tweet, including the boundary words. This is
done by performing zero-padding, where out-of-
range (i.e., t<1 or t>n) vectors are assumed to
be zero. With wide convolution, o zero-padding
size and 1 stride size, each feature map contains
(n + 2o − k + 1) convoluted features. After the
convolution, we apply a max-pooling operation to
each of the feature maps,

m = [µp(h
1), · · · , µp(hN )] (3)
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Figure 1: The system architecture of the domain adversarial network with graph-based semi-supervised
learning. The shared components part is shared by supervised, semi-supervised and domain classifier.

where µp(hj) refers to the max operation applied
to each window of p features with stride size of
1 in the feature map hi. Intuitively, the convolu-
tion operation composes local features into higher-
level representations in the feature maps, and max-
pooling extracts the most important aspects of
each feature map while reducing the output dimen-
sionality. Since each convolution-pooling opera-
tion is performed independently, the features ex-
tracted become invariant in order (i.e., where they
occur in the tweet). To incorporate order infor-
mation between the pooled features, we include a
fully-connected (dense) layer

z = f(Vm) (4)

where V is the weight matrix. We choose a con-
volutional architecture for feature composition be-
cause it has shown impressive results on similar
tasks in a supervised setting (Nguyen et al., 2017).

The network at this point splits into three
branches (shaded with three different colors in
Figure 1) each of which serves a different purpose
and contributes a separate loss to the overall loss
of the model as defined below:

L(Λ,Φ,Ω,Ψ) = LC(Λ,Φ) + λgLG(Λ,Ω) + λdLD(Λ,Ψ) (5)

where Λ = {U, V } are the convolutional filters
and dense layer weights that are shared across the
three branches. The first componentLC(Λ,Φ) is a
supervised classification loss based on the labeled
data in the source event. The second component
LG(Λ,Ω) is a graph-based semi-supervised loss
that utilizes both labeled and unlabeled data in the

source and target events to induce structural simi-
larity between training instances. The third com-
ponent LD(Λ,Ω) is an adversary loss that again
uses all available data in the source and target do-
mains to induce domain invariance in the learned
features. The tunable hyperparameters λg and λd
control the relative strength of the components.

2.1 Supervised Component
The supervised component induces label informa-
tion (e.g., relevant vs. non-relevant) directly in the
network through the classification loss LC(Λ,Φ),
which is computed on the labeled instances in the
source event, DlS . Specifically, this branch of the
network, as shown at the top in Figure 1, takes
the shared representations z as input and pass it
through a task-specific dense layer

zc = f(Vcz) (6)

where Vc is the corresponding weight matrix. The
activations zc along with the activations from the
semi-supervised branch zs are used for classifica-
tion. More formally, the classification layer de-
fines a Softmax

p(y = k|t, θ) =
exp

(
W T
k [zc; zs]

)
∑

k′ exp
(
W T
k′ [zc; zs]

) (7)

where [.; .] denotes concatenation of two column
vectors, Wk are the class weights, and θ =
{U, V, Vc,W} defines the relevant parameters for
this branch of the network with Λ = {U, V } being
the shared parameters and Φ = {Vc,W} being the
parameters specific to this branch. Once learned,
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we use θ for prediction on test tweets. The classi-
fication loss LC(Λ,Φ) (or LC(θ)) is defined as

LC(Λ,Φ) = − 1

Ls

Ls∑

i=1

I(yi = k) log p(yi = k|ti,Λ,Φ) (8)

where I(.) is an indicator function that returns 1
when the argument is true, otherwise it returns 0.

2.2 Semi-supervised Component

The semi-supervised branch (shown at the mid-
dle in Figure 1) induces structural similarity be-
tween training instances (labeled or unlabeled)
in the source and target events. We adopt the
recently proposed graph-based semi-supervised
deep learning framework (Yang et al., 2016),
which shows impressive gains over existing semi-
supervised methods on multiple datasets. In this
framework, a “similarity” graph G first encodes
relations between training instances, which is then
used by the network to learn internal representa-
tions (i.e., embeddings).

2.2.1 Learning Graph Embeddings
The semi-supervised branch takes the shared rep-
resentation z as input and learns internal represen-
tations by predicting a node in the graph context of
the input tweet. Following (Yang et al., 2016), we
use negative sampling to compute the loss for pre-
dicting the context node, and we sample two types
of contextual nodes: (i) one is based on the graph
G to encode structural information, and (ii) the
second is based on the labels in DlS to incorpo-
rate label information through this branch of the
network. The ratio of positive and negative sam-
ples is controlled by a random variable ρ1 ∈ (0, 1),
and the proportion of the two context types is con-
trolled by another random variable ρ2 ∈ (0, 1);
see Algorithm 1 of (Yang et al., 2016) for details
on the sampling procedure.

Let (j, γ) is a tuple sampled from the distribu-
tion p(j, γ|i,DlS , G), where j is a context node
of an input node i and γ ∈ {+1,−1} denotes
whether it is a positive or a negative sample;
γ = +1 if ti and tj are neighbors in the graph
(for graph-based context) or they both have same
labels (for label-based context), otherwise γ =
−1. The negative log loss for context prediction
LG(Λ,Ω) can be written as

LG(Λ,Ω) = − 1

Ls + Us

Ls+Us∑

i=1

E(j,γ) log σ
(
γCTj zg(i)

)
(9)

where zg(i) = f(Vgz(i)) defines another dense
layer (marked as Dense (zg) in Figure 1) having
weights Vg, and Cj is the weight vector associ-
ated with the context node tj . Note that here
Λ = {U, V } defines the shared parameters and
Ω = {Vg, C} defines the parameters specific to
the semi-supervised branch of the network.

2.2.2 Graph Construction
Typically graphs are constructed based on a re-
lational knowledge source, e.g., citation links in
(Lu and Getoor, 2003), or distance between in-
stances (Zhu, 2005). However, we do not have ac-
cess to such a relational knowledge in our setting.
On the other hand, computing distance between
n(n−1)/2 pairs of instances to construct the graph
is also very expensive (Muja and Lowe, 2014).
Therefore, we choose to use k-nearest neighbor-
based approach as it has been successfully used in
other study (Steinbach et al., 2000).

The nearest neighbor graph consists of n ver-
tices and for each vertex, there is an edge set con-
sisting of a subset of n instances, i.e., tweets in
our training set. The edge is defined by the dis-
tance measure d(i, j) between tweets ti and tj ,
where the value of d represents how similar the
two tweets are. We used k-d tree data structure
(Bentley, 1975) to efficiently find the nearest in-
stances. To construct the graph, we first represent
each tweet by averaging the word2vec vectors of
its words, and then we measure d(i, j) by com-
puting the Euclidean distance between the vectors.
The number of nearest neighbor k was set to 10.
The reason of averaging the word vectors is that it
is computationally simpler and it captures the rel-
evant semantic information for our task in hand.
Likewise, we choose to use Euclidean distance in-
stead of cosine for computational efficiency.

2.3 Domain Adversarial Component

The network described so far can learn abstract
features through convolutional and dense lay-
ers that are discriminative for the classification
task (relevant vs. non-relevant). The super-
vised branch of the network uses labels in the
source event to induce label information directly,
whereas the semi-supervised branch induces sim-
ilarity information between labeled and unlabeled
instances. However, our goal is also to make these
learned features invariant across domains or events
(e.g., Nepal Earthquake vs. Queensland Flood).
We achieve this by domain adversarial training of
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neural networks (Ganin et al., 2016).
We put a domain discriminator, another branch

in the network (shown at the bottom in Figure 1)
that takes the shared internal representation z as
input, and tries to discriminate between the do-
mains of the input — in our case, whether the in-
put tweet is from DS or from DT . The domain
discriminator is defined by a sigmoid function:

δ̂ = p(d = 1|t,Λ,Ψ) = sigm(wT
d zd) (10)

where d ∈ {0, 1} denotes the domain of the input
tweet t, wd are the final layer weights of the dis-
criminator, and zd = f(Vdz) defines the hidden
layer of the discriminator with layer weights Vd.
Here Λ = {U, V } defines the shared parameters,
and Ψ = {Vd,wd} defines the parameters specific
to the domain discriminator. We use the negative
log-probability as the discrimination loss:

Ji(Λ,Ψ) = −di log δ̂ − (1− di) log
(

1− δ̂
)

(11)

We can write the overall domain adversary loss
over the source and target domains as

LD(Λ,Ψ) = − 1

Ls + Us

Ls+Us∑

i=1

Ji(Λ,Ψ)− 1

Ut

Ut∑

i=1

Ji(Λ,Ψ) (12)

where Ls + Us and Ut are the number of training
instances in the source and target domains, respec-
tively. In adversarial training, we seek parameters
(saddle point) such that

θ∗ = argmin
Λ,Φ,Ω

max
Ψ
L(Λ,Φ,Ω,Ψ) (13)

which involves a maximization with respect to Ψ
and a minimization with respect to {Λ,Φ,Ω}. In
other words, the updates of the shared parameters
Λ = {U, V } for the discriminator work adversari-
ally to the rest of the network, and vice versa. This
is achieved by reversing the gradients of the dis-
crimination loss LD(Λ,Ψ), when they are back-
propagated to the shared layers (see Figure 1).

2.4 Model Training
Algorithm 1 illustrates the training algorithm
based on stochastic gradient descent (SGD). We
first initialize the model parameters. The word
embedding matrixE is initialized with pre-trained
word2vec vectors (see Subsection 2.5) and is kept
fixed during training.3 Other parameters are ini-
tialized with small random numbers sampled from

3Tuning E on our task by backpropagation increased the
training time immensely (3 days compared to 5 hours on a
Tesla GPU) without any significant performance gain.

Algorithm 1: Model Training with SGD
Input : data DlS , DuS , DuT ; graph G
Output: learned parameters θ = {Λ,Φ}
1. Initialize model parameters {E,Λ,Φ,Ω,Ψ};
2. repeat

// Semi-supervised

for each batch sampled from p(j, γ|i,DlS , G) do
a) Compute loss LG(Λ,Ω)
b) Take a gradient step for LG(Λ,Ω);

end
// Supervised & domain adversary

for each batch sampled from DlS do
a) Compute LC(Λ,Φ) and LD(Λ,Ψ)
b) Take gradient steps for LC(Λ,Φ) and
LD(Λ,Ψ);

end
// Domain adversary
for each batch sampled from DuS and DuT do

a) Compute LD(Λ,Ψ)
b) Take a gradient step for LD(Λ,Ψ);

end
until convergence;

a uniform distribution (Bengio and Glorot, 2010).
We use AdaDelta (Zeiler, 2012) adaptive update to
update the parameters.

In each iteration, we do three kinds of gradi-
ent updates to account for the three different loss
components. First, we do an epoch over all the
training instances updating the parameters for the
semi-supervised loss, then we do an epoch over
the labeled instances in the source domain, each
time updating the parameters for the supervised
and the domain adversary losses. Finally, we do
an epoch over the unlabeled instances in the two
domains to account for the domain adversary loss.

The main challenge in adversarial training is
to balance the competing components of the net-
work. If one component becomes smarter than the
other, its loss to the shared layer becomes useless,
and the training fails to converge (Arjovsky et al.,
2017). Equivalently, if one component becomes
weaker, its loss overwhelms that of the other, caus-
ing the training to fail. In our experiments, we
observed the domain discriminator is weaker than
the rest of the network. This could be due to the
noisy nature of tweets, which makes the job for
the domain discriminator harder. To balance the
components, we would want the error signals from
the discriminator to be fairly weak, also we would
want the supervised loss to have more impact than
the semi-supervised loss. In our experiments, the
weight of the domain adversary loss λd was fixed
to 1e − 8, and the weight of the semi-supervised
loss λg was fixed to 1e − 2. Other sophisticated
weighting schemes have been proposed recently

1081



(Ganin et al., 2016; Arjovsky et al., 2017; Metz
et al., 2016). It would be interesting to see how
our model performs using these advanced tuning
methods, which we leave as a future work.

2.5 Crisis Word Embedding

As mentioned, we used word embeddings that are
pre-trained on a crisis dataset. To train the word-
embedding model, we first pre-processed tweets
collected using the AIDR system (Imran et al.,
2014) during different events occurred between
2014 and 2016. In the preprocessing step, we
lowercased the tweets and removed URLs, digit,
time patterns, special characters, single character,
username started with the @ symbol. After pre-
processing, the resulting dataset contains about
364 million tweets and about 3 billion words.

There are several approaches to train word
embeddings such as continuous bag-of-words
(CBOW) and skip-gram models of wrod2vec
(Mikolov et al., 2013), and Glove (Pennington
et al., 2014). For our work, we trained the CBOW
model from word2vec. While training CBOW, we
filtered out words with a frequency less than or
equal to 5, and we used a context window size
of 5 and k = 5 negative samples. The resulting
embedding model contains about 2 million words
with vector dimensions of 300.

3 Experimental Settings

In this section, we describe our experimental set-
tings – datasets used, settings of our models, com-
pared baselines, and evaluation metrics.

3.1 Datasets

To conduct the experiment and evaluate our sys-
tem, we used two real-world Twitter datasets col-
lected during the 2015 Nepal earthquake (NEQ)
and the 2013 Queensland floods (QFL). These
datasets are comprised of millions of tweets col-
lected through the Twitter streaming API4 using
event-specific keywords/hashtags.

To obtain the labeled examples for our task we
employed paid workers from the Crowdflower5 –
a crowdsourcing platform. The annotation con-
sists of two classes relevant and non-relevant. For
the annotation, we randomly sampled 11,670 and
10,033 tweets from the Nepal earthquake and the
Queensland floods datasets, respectively. Given a

4https://dev.twitter.com/streaming/overview
5http://crowdflower.com

Dataset Relevant Non-relevant Train Dev Test

NEQ 5,527 6,141 7,000 1,167 3,503

QFL 5,414 4,619 6,019 1,003 3,011

Table 1: Distribution of labeled datasets for Nepal
earthquake (NEQ) and Queensland flood (QFL).

tweet, we asked crowdsourcing workers to assign
the “relevant” label if the tweet conveys/reports
information useful for crisis response such as a re-
port of injured or dead people, some kind of in-
frastructure damage, urgent needs of affected peo-
ple, donations requests or offers, otherwise assign
the “non-relevant” label. We split the labeled data
into 60% as training, 30% as test and 10% as de-
velopment. Table 1 shows the resulting datasets
with class-wise distributions. Data preprocessing
was performed by following the same steps used
to train the word2vec model (Subsection 2.5). In
all the experiments, the classification task consists
of two classes: relevant and non-relevant.

3.2 Model Settings and Baselines

In order to demonstrate the effectiveness of our
joint learning approach, we performed a series of
experiments. To understand the contribution of
different network components, we performed an
ablation study showing how the model performs
as a semi-supervised model alone and as a do-
main adaptation model alone, and then we com-
pare them with the combined model that incorpo-
rates all the components.

3.2.1 Settings for Semi-supervised Learning
As a baseline for the semi-supervised experi-
ments, we used the self-training approach (Scud-
der, 1965). For this purpose, we first trained a su-
pervised model using the CNN architecture (i.e.,
shared components followed by the supervised
part in Figure 1). The trained model was then
used to automatically label the unlabeled data. In-
stances with a classifier confidence score ≥ 0.75
were then used to retrain a new model.

Next, we run experiments using our graph-
based semi-supervised approach (i.e., shared com-
ponents followed by the supervised and semi-
supervised parts in Figure 1), which exploits unla-
beled data. For reducing the computational cost,
we randomly selected 50K unlabeled instances
from the same domain. For our semi-supervised
setting, one of the main goals was to understand
how much labeled data is sufficient to obtain a
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reasonable result. Therefore, we experimented
our system by incrementally adding batches of in-
stances, such as 100, 500, 2000, 5000, and all in-
stances from the training set. Such an understand-
ing can help us design the model at the onset of a
crisis event with sufficient amount of labeled data.
To demonstrate that the semi-supervised approach
outperforms the supervised baseline, we run su-
pervised experiments using the same number of la-
beled instances. In the supervised setting, only zc
activations in Figure 1 are used for classification.

3.2.2 Settings for Domain Adaptation
To set a baseline for the domain adaptation experi-
ments, we train a CNN model (i.e., shared compo-
nents followed by the supervised part in Figure 1)
on one event (source) and test it on another event
(target). We call this as transfer baseline.

To assess the performance of our domain adap-
tation technique alone, we exclude the semi-
supervised component from the network. We train
and evaluate models with this network configura-
tion using different source and target domains.

Finally, we integrate all the components of the
network as shown in Figure 1 and run domain
adaptation experiments using different source and
target domains. In all our domain adaptation ex-
periments, we only use unlabeled instances from
the target domain. In domain adaption literature,
this is known as unsupervised adaptation.

3.2.3 Training Settings
We use 100, 150, and 200 filters each having the
window size of 2, 3, and 4, respectively, and pool-
ing length of 2, 3, and 4, respectively. We do not
tune these hyperparameters in any experimental
setting since the goal was to have an end-to-end
comparison with the same hyperparameter setting
and understand whether our approach can outper-
form the baselines or not. Furthermore, we do not
filter out any vocabulary item in any settings.

As mentioned before in Subsection 2.4, we used
AdaDelta (Zeiler, 2012) to update the model pa-
rameters in each SGD step. The learning rate was
set to 0.1 when optimizing on the classification
loss and to 0.001 when optimizing on the semi-
supervised loss. The learning rate for domain ad-
versarial training was set to 1.0. The maximum
number of epochs was set to 200, and dropout rate
of 0.02 was used to avoid overfitting (Srivastava
et al., 2014). We used validation-based early stop-
ping using the F-measure with a patience of 25,

Experiments AUC P R F1

NEPAL EARTHQUAKE

Supervised 61.22 62.42 62.31 60.89

Semi-supervised (Self-training) 61.15 61.53 61.53 61.26

Semi-supervised (Graph-based) 64.81 64.58 64.63 65.11

QUEENSLAND FLOODS

Supervised 80.14 80.08 80.16 80.16

Semi-supervised (Self-training) 81.04 80.78 80.84 81.08

Semi-supervised (Graph-based) 92.20 92.60 94.49 93.54

Table 2: Results using supervised, self-training,
and graph-based semi-supervised approaches in
terms of Weighted average AUC, precision (P), re-
call (R) and F-measure (F1).

i.e., we stop training if the score does not increase
for 25 consecutive epochs.

3.2.4 Evaluation Metrics
To measure the performance of the trained mod-
els using different approaches described above, we
use weighted average precision, recall, F-measure,
and Area Under ROC-Curve (AUC), which are
standard evaluation measures in the NLP and ma-
chine learning communities. The rationale behind
choosing the weighted metric is that it takes into
account the class imbalance problem.

4 Results and Discussion

In this section, we present the experimental results
and discuss our main findings.

4.1 Semi-supervised Learning

In Table 2, we present the results obtained from the
supervised, self-training based semi-supervised,
and our graph-based semi-supervised experiments
for the both datasets. It can be clearly observed
that the graph-based semi-supervised approach
outperforms the two baselines – supervised and
self-training based semi-supervised. Specifically,
the graph-based approach shows 4% to 13% ab-
solute improvements in terms of F1 scores for the
Nepal and Queensland datasets, respectively.

To determine how the semi-supervised ap-
proach performs in the early hours of an event
when only fewer labeled instances are available,
we mimic a batch-wise (not to be confused with
minibatch in SGD) learning setting. In Table 3,
we present the results using different batch sizes –
100, 500, 1,000, 2,000, and all labels.

From the results, we observe that models’ per-
formance improve as we include more labeled data
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Exp. 100 500 1000 2000 All L

NEPAL EARTHQUAKE

L 43.63 52.89 56.37 60.11 60.89

L+50kU 52.32 59.95 61.89 64.05 65.11

QUEENSLAND FLOOD

L 48.97 76.62 80.62 79.16 80.16

L+∼21kU 75.08 85.54 89.08 91.54 93.54

Table 3: Weighted average F-measure for the
graph-based semi-supervised settings using differ-
ent batch sizes. L refers to labeled data, U refers to
unlabeled data, All L refers to all labeled instances
for that particular dataset.

— from 43.63 to 60.89 for NEQ and from 48.97
to 80.16 for QFL in the case of labeled only (L).
When we compare supervised vs. semi-supervised
(L vs. L+U), we observe significant improvements
in F1 scores for the semi-supervised model for all
batches over the two datasets. As we include un-
labeled instances with labeled instances from the
same event, performance significantly improves
in each experimental setting giving 5% to 26%
absolute improvements over the supervised mod-
els. These improvements demonstrate the effec-
tiveness of our approach. We also notice that our
semi-supervised approach can perform above 90%
depending on the event. Specifically, major im-
provements are observed from batch size 100 to
1,000, however, after that the performance im-
provements are comparatively minor. The results
obtained using batch sizes 500 and 1,000 are rea-
sonably in the acceptable range when labeled and
unlabeled instances are combined (i.e., L+50kU
for Nepal and L+∼21kU for Queensland), which
is also a reasonable number of training examples
to obtain at the onset of an event.

4.2 Domain Adaptation

In Table 4, we present domain adaptation results.
The first block shows event-specific (i.e., train and
test on the same event) results for the supervised
CNN model. These results set the upper bound
for our domain adaptation methods. The trans-
fer baselines are shown in the next block, where
we train a CNN model in one domain and test
it on a different domain. Then, the third block
shows the results for the domain adversarial ap-
proach without the semi-supervised loss. These
results show the importance of domain adversarial
component. After that, the fourth block presents
the performance of the model trained with graph

Source Target AUC P R F1

IN-DOMAIN SUPERVISED MODEL

Nepal Nepal 61.22 62.42 62.31 60.89

Queensland Queensland 80.14 80.08 80.16 80.16
TRANSFER BASELINES

Nepal Queensland 58.99 59.62 60.03 59.10

Queensland Nepal 54.86 56.00 56.21 53.63
DOMAIN ADVERSARIAL

Nepal Queensland 60.15 60.62 60.71 60.94

Queensland Nepal 57.63 58.05 58.05 57.79
GRAPH EMBEDDING WITHOUT DOMAIN ADVERSARIAL

Nepal Queensland 60.38 60.86 60.22 60.54

Queensland Nepal 54.60 54.58 55.00 54.79
GRAPH EMBEDDING WITH DOMAIN ADVERSARIAL

Nepal Queensland 66.49 67.48 65.90 65.92

Queensland Nepal 58.81 58.63 59.00 59.05

Table 4: Domain adaptation experimental results.
Weighted average AUC, precision (P), recall (R)
and F-measure (F1).

embedding without domain adaptation to show the
importance of semi-supervised learning. The final
block present the results for the complete model
that includes all the loss components.

The results with domain adversarial training
show improvements across both events – from
1.8% to 4.1% absolute gains in F1. These re-
sults attest that adversarial training is an effective
approach to induce domain invariant features in
the internal representation as shown previously by
Ganin et al. (2016).

Finally, when we do both semi-supervised
learning and unsupervised domain adaptation, we
get further improvements in F1 scores ranging
from 5% to 7% absolute gains. From these im-
provements, we can conclude that domain adap-
tation with adversarial training along with graph-
based semi-supervised learning is an effective
method to leverage unlabeled and labeled data
from a different domain.

Note that for our domain adaptation methods,
we only use unlabeled data from the target do-
main. Hence, we foresee future improvements of
this approach by utilizing a small amount of target
domain labeled data.

5 Related Work

Two lines of research are directly related to our
work: (i) semi-supervised learning and (ii) do-
main adaptation. Several models have been pro-
posed for semi-supervised learning. The earli-
est approach is self-training (Scudder, 1965), in
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which a trained model is first used to label un-
labeled data instances followed by the model re-
training with the most confident predicted labeled
instances. The co-training (Mitchell, 1999) ap-
proach assumes that features can be split into two
sets and each subset is then used to train a classi-
fier with an assumption that the two sets are con-
ditionally independent. Then each classifier clas-
sifies the unlabeled data, and then most confident
data instances are used to re-train the other classi-
fier, this process repeats multiple times.

In the graph-based semi-supervised approach,
nodes in a graph represent labeled and unlabeled
instances and edge weights represent the similar-
ity between them. The structural information en-
coded in the graph is then used to regularize a
model (Zhu, 2005). There are two paradigms in
semi-supervised learning: 1) inductive – learning
a function with which predictions can be made on
unobserved instances, 2) transductive – no explicit
function is learned and predictions can only be
made on observed instances. As mentioned be-
fore, inductive semi-supervised learning is prefer-
able over the transductive approach since it avoids
building the graph each time it needs to infer the
labels for the unlabeled instances.

In our work, we use a graph-based inductive
deep learning approach proposed by Yang et al.
(2016) to learn features in a deep learning model
by predicting contextual (i.e., neighboring) nodes
in the graph. However, our approach is different
from Yang et al. (2016) in several ways. First, we
construct the graph by computing the distance be-
tween tweets based on word embeddings. Second,
instead of using count-based features, we use a
convolutional neural network (CNN) to compose
high-level features from the distributed represen-
tation of the words in a tweet. Finally, for context
prediction, instead of performing a random walk,
we select nodes based on their similarity in the
graph. Similar similarity-based graph has shown
impressive results in learning sentence representa-
tions (Saha et al., 2017).

In the literature, the proposed approaches
for domain adaptation include supervised, semi-
supervised and unsupervised. It also varies from
linear kernelized approach (Blitzer et al., 2006) to
non-linear deep neural network techniques (Glo-
rot et al., 2011; Ganin et al., 2016). One direction
of research is to focus on feature space distribu-
tion matching by reweighting the samples from

the source domain (Gong et al., 2013) to map
source into target. The overall idea is to learn a
good feature representation that is invariant across
domains. In the deep learning paradigm, Glo-
rot et al. (Glorot et al., 2011) used Stacked De-
noising Auto-Encoders (SDAs) for domain adap-
tation. SDAs learn a robust feature representation,
which is artificially corrupted with small Gaussian
noise. Adversarial training of neural networks
has shown big impact recently, especially in areas
such as computer vision, where generative unsu-
pervised models have proved capable of synthe-
sizing new images (Goodfellow et al., 2014; Rad-
ford et al., 2015; Makhzani et al., 2015). Ganin
et al. (2016) proposed domain adversarial neural
networks (DANN) to learn discriminative but at
the same time domain-invariant representations,
with domain adaptation as a target. We extend this
work by combining with semi-supervised graph
embedding for unsupervised domain adaptation.

In a recent work, Kipf and Welling (2016)
present CNN applied directly on graph-structured
datasets - citation networks and on a knowledge
graph dataset. Their study demonstrate that graph
convolution network for semi-supervised classifi-
cation performs better compared to other graph
based approaches.

6 Conclusions

In this paper, we presented a deep learning frame-
work that performs domain adaptation with adver-
sarial training and graph-based semi-supervised
learning to leverage labeled and unlabeled data
from related events. We use a convolutional neu-
ral network to compose high-level representation
from the input, which is then passed to three com-
ponents that perform supervised training, semi-
supervised learning and domain adversarial train-
ing. For domain adaptation, we considered a sce-
nario, where we have only unlabeled data in the
target event. Our evaluation on two crisis-related
tweet datasets demonstrates that by combining
domain adversarial training with semi-supervised
learning, our model gives significant improve-
ments over their respective baselines. We have
also presented results of batch-wise incremen-
tal training of the graph-based semi-supervised
approach and show approximation regarding the
number of labeled examples required to get an ac-
ceptable performance at the onset of an event.
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Abstract

Existing automated essay scoring (AES)
models rely on rated essays for the tar-
get prompt as training data. Despite their
successes in prompt-dependent AES, how
to effectively predict essay ratings under
a prompt-independent setting remains a
challenge, where the rated essays for the
target prompt are not available. To close
this gap, a two-stage deep neural network
(TDNN) is proposed. In particular, in the
first stage, using the rated essays for non-
target prompts as the training data, a shal-
low model is learned to select essays with
an extreme quality for the target prompt,
serving as pseudo training data; in the sec-
ond stage, an end-to-end hybrid deep mod-
el is proposed to learn a prompt-dependent
rating model consuming the pseudo train-
ing data from the first step. Evaluation
of the proposed TDNN on the standard
ASAP dataset demonstrates a promising
improvement for the prompt-independent
AES task.

1 Introduction

Automated essay scoring (AES) utilizes natural
language processing and machine learning tech-
niques to automatically rate essays written for a
target prompt (Dikli, 2006). Currently, the AES
systems have been widely used in large-scale En-
glish writing tests, e.g. Graduate Record Exami-
nation (GRE), to reduce the human efforts in the
writing assessments (Attali and Burstein, 2006).

Existing AES approaches are prompt-
dependent, where, given a target prompt,
rated essays for this particular prompt are required
for training (Dikli, 2006; Williamson, 2009; Foltz
et al., 1999). While the established models are

effective (Chen and He, 2013; Taghipour and
Ng, 2016; Alikaniotis et al., 2016; Cummins
et al., 2016; Dong et al., 2017), we argue that
the models for prompt-independent AES are
also desirable to allow for better feasibility and
flexibility of AES systems especially when the
rated essays for a target prompt are difficult to
obtain or even unaccessible. For example, in
a writing test within a small class, students are
asked to write essays for a target prompt without
any rated examples, where the prompt-dependent
methods are unlikely to provide effective AES due
to the lack of training data. Prompt-independent
AES, however, has drawn little attention in the
literature, where there only exists unrated essays
written for the target prompt, as well as the rated
essays for several non-target prompts.

We argue that it is not straightforward,
if possible, to apply the established prompt-
dependent AES methods for the mentioned
prompt-independent scenario. On one hand, es-
says for different prompts may differ a lot in the
uses of vocabulary, the structure, and the gram-
matic characteristics; on the other hand, howev-
er, established prompt-dependent AES models are
designed to learn from these prompt-specific fea-
tures, including the on/off-topic degree, the tf -
idf weights of topical terms (Attali and Burstein,
2006; Dikli, 2006), and the n-gram features ex-
tracted from word semantic embeddings (Dong
and Zhang, 2016; Alikaniotis et al., 2016). Conse-
quently, the prompt-dependent models can hardly
learn generalized rules from rated essays for non-
target prompts, and are not suitable for the prompt-
independent AES.

Being aware of this difficulty, to this end, a two-
stage deep neural network, coined as TDNN, is
proposed to tackle the prompt-independent AES
problem. In particular, to mitigate the lack of the
prompt-dependent labeled data, at the first stage,
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a shallow model is trained on a number of rated
essays for several non-target prompts; given a tar-
get prompt and a set of essays to rate, the trained
model is employed to generate pseudo training da-
ta by selecting essays with the extreme quality. At
the second stage, a novel end-to-end hybrid deep
neural network learns prompt-dependent features
from these selected training data, by considering
semantic, part-of-speech, and syntactic features.

The contributions in this paper are threefold:
1) a two-stage learning framework is proposed to
bridge the gap between the target and non-target
prompts, by only consuming rated essays for non-
target prompts as training data; 2) a novel deep
model is proposed to learn from pseudo labels by
considering semantic, part-of-speech, and syntac-
tic features; and most importantly, 3) to the best
of our knowledge, the proposed TDNN is actual-
ly the first approach dedicated to addressing the
prompt-independent AES. Evaluation on the stan-
dard ASAP dataset demonstrates the effectiveness
of the proposed method.

The rest of this paper is organized as follows.
In Section 2, we describe our novel TDNN mod-
el, including the two-stage framework and the pro-
posed deep model. Following that, we describe the
setup of our empirical study in Section 3, there-
after present the results and provide analyzes in
Section 4. Section 5 recaps existing literature and
put our work in context, before drawing final con-
clusions in Section 6.

2 Two-stage Deep Neural Network for
AES

In this section, the proposed two-stage deep neu-
ral network (TDNN) for prompt-independent AES
is described. To accurately rate an essay, on one
hand, we need to consider its pertinence to the giv-
en prompt; on the other hand, the organization,
the analyzes, as well as the uses of the vocabu-
lary are all crucial for the assessment. Henceforth,
both prompt-dependent and -independent factors
should be considered, but the latter ones actual-
ly do not require prompt-dependent training da-
ta. Accordingly, in the proposed framework, a
supervised ranking model is first trained to learn
from prompt-independent data, hoping to rough-
ly assess essays without considering the promp-
t; subsequently, given the test dataset, namely, a
set of essays for a target prompt, a subset of es-
says are selected as positive and negative training

data based on the prediction of the trained model
from the first stage; ultimately, a novel deep mod-
el is proposed to learn both prompt-dependent and
-independent factors on this selected subset. As
indicated in Figure 1, the proposed framework in-
cludes two stages.

2.1 Overview

Figure 1: The architecture of the TDNN frame-
work for prompt-independent AES.

Prompt-independent stage. Only the prompt-
independent factors are considered to train a shal-
low model, aiming to recognize the essays with the
extreme quality in the test dataset, where the rated
essays for non-target prompts are used for training.
Intuitively, one could recognize essays with the
highest and the lowest scores correctly by solely
examining their quality of writing, e.g., the num-
ber of typos, without even understanding them,
and the prompt-independent features such as the
number of grammatic and spelling errors should
be sufficient to fulfill this screening procedure.
Accordingly, a supervised model trained solely
on prompt-independent features is employed to i-
dentify the essays with the highest and lowest s-
cores in a given set of essays for the target prompt,
which are used as the positive and negative train-
ing data in the follow-up prompt-dependent learn-
ing phase.

Prompt-dependent stage. Intuitively, most es-
says are with a quality in between the extremes, re-
quiring a good understanding of their meaning to
make an accurate assessment, e.g., whether the ex-
amples from the essay are convincing or whether
the analyzes are insightful, making the consider-
ation of prompt-dependent features crucial. To
achieve that, a model is trained to learn from the
comparison between essays with the highest and
lowest scores for the target prompt according to
the predictions from the first step. Akin to the
settings in transductive transfer learning (Pan and
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Yang, 2010), given essays for a particular prompt,
quite a few confident essays at two extremes are
selected and are used to train another model for a
fine-grained content-based prompt-dependent as-
sessment. To enable this, a powerful deep mod-
el is proposed to consider the content of the es-
says from different perspectives using semantic,
part-of-speech (POS) and syntactic network. Af-
ter being trained with the selected essays, the deep
model is expected to memorize the properties of a
good essay in response to the target prompt, there-
after accurately assessing all essays for it. In Sec-
tion 2.2, building blocks for the selection of the
training data and the proposed deep model are de-
scribed in details.

2.2 Building Blocks

Select confident essays as training data. The i-
dentification of the extremes is relatively simple,
where a RankSVM (Joachims, 2002) is trained on
essays for different non-target prompts, avoiding
the risks of over-fitting some particular prompts.
A set of established prompt-independent features
are employed, which are listed in Table 2. Giv-
en a prompt and a set of essays for evaluation, to
begin with, the trained RankSVM is used to as-
sign prediction scores to individual prompt-essay
pairs, which are uniformly transformed into a 10-
point scale. Thereafter, the essays with predict-
ed scores in [0, 4] and [8, 10] are selected as nega-
tive and positive examples respectively, serving as
the bad and good templates for training in the nex-
t stage. Intuitively, an essay with a score beyond
eight out of a 10-point scale is considered good,
while the one receiving less than or equal to four,
is considered to be with a poor quality.

A hybrid deep model for fine-grained assess-
ment. To enable a prompt-dependent assessmen-
t, a model is desired to comprehensively capture
the ways in which a prompt is described or dis-
cussed in an essay. In this paper, semantic mean-
ing, part-of-speech (POS), and the syntactic tag-
gings of the token sequence from an essay are
considered, grasping the quality of an essay for
a target prompt. The model architecture is sum-
marized in Figure 2. Intuitively, the model learns
the semantic meaning of an essay by encoding it
in terms of a sequence of word embeddings, de-
noted as −→e sem, hoping to understand what the
essay is about; in addition, the part-of-speech in-
formation is encoded as a sequence of POS tag-

gings, coined as −→e pos; ultimately, the structural
connections between different components in an
essay (e.g., terms or phrases) are further captured
via syntactic network, leading to −→e synt, where the
model learns the organization of the essay. Akin
to (Li et al., 2015) and (Zhou and Xu, 2015), bi-
LSTM is employed as a basic component to en-
code a sequence. Three features are separate-
ly captured using the stacked bi-LSTM layers as
building blocks to encode different embeddings,
whose outputs are subsequently concatenated and
fed into several dense layers, generating the ulti-
mate rating. In the following, the architecture of
the model is described in details.

- Semantic embedding. Akin to the existing
works (Alikaniotis et al., 2016; Taghipour and
Ng, 2016), semantic word embeddings, namely,
the pre-trained 50-dimension GloVe (Pennington
et al., 2014), are employed. On top of the word
embeddings, two bi-LSTM layers are stacked,
namely, the essay layer is constructed on top of the
sentence layer, ending up with the semantic repre-
sentation of the whole essay, which is denoted as
−→e sem in Figure 2.

- Part-Of-Speech (POS) embeddings for individu-
al terms are first generated by the Stanford Tag-
ger (Toutanova et al., 2003), where 36 differen-
t POS tags present. Accordingly, individual words
are embedded with 36-dimensional one-hot repre-
sentation, and is transformed to a 50-dimensional
vector through a lookup layer. After that, two bi-
LSTM layers are stacked, leading to −→e pos. Take
Figure 3 for example, given a sentence “Attention
please, here is an example.”, it is first converted in-
to a POS sequence using the tagger, namely, VB,
VBP, RB, VBZ, DT, NN; thereafter it is further
mapped to vector space through one-hot embed-
ding and a lookup layer.

- Syntactic embedding aims at encoding an essay
in terms of the syntactic relationships among d-
ifferent syntactic components, by encoding an es-
say recursively. The Stanford Parser (Socher et al.,
2013) is employed to label the syntactic structure
of words and phrases in sentences, accounting for
59 different types in total. Similar to (Tai et al.,
2015), we opt for three stacked bi-LSTM, aiming
at encoding individual phrases, sentences, and ul-
timately the whole essay in sequence. In partic-
ular, according to the hierarchical structure from
a parsing tree, the phrase-level bi-LSTM first en-
codes different phrases by consuming syntactic
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Figure 2: The model architecture of the proposed hybrid deep learning model.

embeddings (
−→
Sti in Figure 2) from a lookup ta-

ble of individual syntactic units in the tree; there-
after, the encoded dense layers in individual sen-
tences are further consumed by a sentence-level
bi-LSTM, ending up with sentence-level syntac-
tic representations, which are ultimately combined
by the essay-level bi-LSTM, resulting in −→e synt.
For example, the parsed tree for a sentence “At-
tention please, here is an example.” is displayed
in Figure 3. To start with, the sentence is parsed
into ((NP VP)(NP VP NP)), and the dense embed-
dings are fetched from a lookup table for all to-
kens, namely, NP and VP; thereafter, the phrase-
level bi-LSTM encodes (NP VP) and (NP VP N-
P) separately, which are further consumed by the
sentence-level bi-LSTM. Afterward, essay-level
bi-LSTM further combines the representations of
different sentences into −→e synt.

(ROOT
(S

(S
(NP (VB Attention))
(VP (VBP please)))

(, ,)
(NP (RB here))
(VP (VBZ is)

(NP (DT an) (NN example)))
(. .)))

Figure 3: An example of the context-free phrase
structure grammar tree.

- Combination. A feed-forward network linearly
transforms the concatenated representations of an
essay from the mentioned three perspectives into a
scalar, which is further normalized into [0, 1] with
a sigmoid function.

2.3 Objective and Training
Objective. Mean square error (MSE) is opti-
mized, which is widely used as a loss function in
regression tasks. Given N pairs of a target promp-
t pi and an essay ei, MSE measures the average
value of square error between the normalized gold
standard rating r∗(pi, ei) and the predicted rating
r(pi, ei) assigned by the AES model, as summa-
rized in Equation 1.

1

N

N∑

i=1

(
r(pi, ei) − r∗(pi, ei)

)2 (1)

Optimization. Adam (Kingma and Ba, 2014)
is employed to minimize the loss over the train-
ing data. The initial learning rate η is set to
0.01 and the gradient is clipped between [−10, 10]
during training. In addition, dropout (Srivasta-
va et al., 2014) is introduced for regularization
with a dropout rate of 0.5, and 64 samples are
used in each batch with batch normalization (Ioffe
and Szegedy, 2015). 30% of the training data are
reserved for validation. In addition, early stop-
ping (Yao et al., 2007) is employed according to
the validation loss, namely, the training is termi-
nated if no decrease of the loss is observed for
ten consecutive epochs. Once training is finished,
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Prompt #Essays Avg Length Score Range

1 1783 350 2-12
2 1800 350 1-6
3 1726 150 0-3
4 1772 150 0-3
5 1805 150 0-4
6 1800 150 0-4
7 1569 250 0-30
8 723 650 0-60

Table 1: Statistics for the ASAP dataset.

akin to (Dong et al., 2017), the model with the best
quadratic weighted kappa on the validation set is
selected.

3 Experimental Setup

Dataset. The Automated Student Assessmen-
t Prize (ASAP) dataset has been widely used for
AES (Alikaniotis et al., 2016; Chen and He, 2013;
Dong et al., 2017), and is also employed as the
prime evaluation instrument herein. In total, AS-
AP consists of eight sets of essays, each of which
associates to one prompt, and is originally written
by students between Grade 7 and Grade 10. As
summarized in Table 1, essays from different sets
differ in their rating criteria, length, as well as the
rating distribution1.
Cross-validation. To fully employ the rated data,
a prompt-wise eight-fold cross validation on the
ASAP is used for evaluation. In each fold, essays
corresponding to a prompt is reserved for testing,
and the remaining essays are used as training data.
Evaluation metric. The model outputs are first u-
niformly re-scaled into [0, 10], mirroring the range
of ratings in practice. Thereafter, akin to (Yan-
nakoudakis et al., 2011; Chen and He, 2013; A-
likaniotis et al., 2016), we report our results pri-
marily based on the quadratic weighted Kappa
(QWK), examining the agreement between the
predicted ratings and the ground truth. Pearson
correlation coefficient (PCC) and Spearman rank-
order correlation coefficient (SCC) are also re-
ported. The correlations obtained from individual
folds, as well as the average over all eight folds,
are reported as the ultimate results.
Competing models. Since the prompt-
independent AES is of interests in this work,
the existing AES models are adapted for
prompt-independent rating prediction, serving
as baselines. This is due to the facts that the

1Details of this dataset can be found at https://www.
kaggle.com/c/asap-aes.

No. Feature

1 Mean & variance of word length in characters
2 Mean & variance of sentence length in words
3 Essay length in characters and words
4 Number of prepositions and commas
5 Number of unique words in an essay
6 Mean number of clauses per sentence
7 Mean length of clauses
8 Maximum number of clauses of a sentence in

an essay
9 Number of spelling errors
10 Average depth of the parser tree of each sen-

tence in an essay
11 Average depth of each leaf node in the parser

tree of each sentence

Table 2: Handcrafted features used in learning the
prompt-independent RankSVM.

prompt-dependent and -independent models differ
a lot in terms of problem settings and model
designs, especially in their requirements for the
training data, where the latter ones release the
prompt-dependent requirements and thereby are
accessible to more data.
- RankSVM, using handcrafted features for
AES (Yannakoudakis et al., 2011; Chen et al.,
2014), is trained on a set of pre-defined prompt-
independent features as listed in Table 2, where the
features are standardized beforehand to remove
the mean and variance. The RankSVM is also
used for the prompt-independent stage in our pro-
posed TDNN model. In particular, the linear ker-
nel RankSVM2 is employed, where C is set to 5
according to our pilot experiments.
- 2L-LSTM. Two-layer bi-LSTM with GloVe for
AES (Alikaniotis et al., 2016) is employed as an-
other baseline. Regularized word embeddings are
dropped to avoid over-fitting the prompt-specific
features.
- CNN-LSTM. This model (Taghipour and Ng,
2016) employs a convolutional (CNN) layer over
one-hot representations of words, followed by an
LSTM layer to encode word sequences in a given
essay. A linear layer with sigmoid activation func-
tion is then employed to predict the essay rating.
- CNN-LSTM-ATT. This model (Dong et al.,
2017) employs a CNN layer to encode word se-
quences into sentences, followed by an LSTM lay-
er to generate the essay representation. An atten-
tion mechanism is added to model the influence of
individual sentences on the final essay representa-
tion.

2http://svmlight.joachims.org/
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For the proposed TDNN model, as introduced
in Section 2.2, different variants of TDNN are ex-
amined by using one or multiple components out
of the semantic, POS and the syntactic network-
s. The combinations being considered are listed
in the following. In particular, the dimensions of
POS tags and syntactic network are fixed to 50,
whereas the sizes of the hidden units in LSTM,
as well as the output units of the linear layers are
tuned by grid search.
- TDNN(Sem) only includes the semantic build-
ing block, which is similar to the two-layer LSTM
neural network from (Alikaniotis et al., 2016) but
without regularizing the word embeddings;
- TDNN(Sem+POS) employs the semantic and
the POS building blocks;
- TDNN(Sem+Synt) uses the semantic and the
syntactic network building blocks;
- TDNN(POS+Synt) includes the POS and the
syntactic network building blocks;
- TDNN(ALL) employs all three building blocks.

The use of POS or syntactic network alone is
not presented for brevity given the facts that they
perform no better than TDNN(POS+Synt) in our
pilot experiments. Source code of the TDNN mod-
el is publicly available to enable further compari-
son3.

4 Results and Analyzes

In this section, the evaluation results for differ-
ent competing methods are compared and ana-
lyzed in terms of their agreements with the manu-
al ratings using three correlation metrics, namely,
QWK, PCC and SCC, where the best results for
each prompt is highlighted in bold in Table 3.

It can be seen that, for seven out of all eight
prompts, the proposed TDNN variants outperfor-
m the baselines by a margin in terms of QWK,
and the TDNN variant with semantic and syn-
tactic features, namely, TDNN(Sem+Synt), con-
sistently performs the best among different com-
peting methods. More precisely, as indicated in
the bottom right corner in Table 3, on average,
TDNN(Sem+Synt) outperforms the baselines by
at least 25.52% under QWK, by 10.28% under
PCC, and by 15.66% under SCC, demonstrating
that the proposed model not only correlates bet-
ter with the manual ratings in terms of QWK, but
also linearly (PCC) and monotonically (SCC) cor-
relates better with the manual ratings. As for the

3https://github.com/ucasir/TDNN4AES

four baselines, note that, the relatively underper-
formed deep models suffer from larger variances
of performance under different prompts, e.g., for
prompts two and eight, 2L-LSTM’s QWK is low-
er than 0.3. This actually confirms our choice
of RankSVM for the first stage in TDNN, since
a more complicated model (like 2L-LSTM) may
end up with learning prompt-dependent signals,
making it unsuitable for the prompt-independent
rating prediction. As a comparison, RankSVM
performs more stable among different prompts.

As for the different TDNN variants, it turns out
that the joint uses of syntactic network with se-
mantic or POS features can lead to better perfor-
mances. This indicates that, when learning the
prompt-dependent signals, apart from the widely-
used semantic features, POS features and the sen-
tence structure taggings (syntactic network) are al-
so essential in learning the structure and the ar-
rangement of an essay in response to a particu-
lar prompt, thereby being able to improve the re-
sults. It is also worth mentioning, however, when
using all three features, the TDNN actually per-
forms worse than when only using (any) two fea-
tures. One possible explanation is that the uses
of all three features result in a more complicated
model, which over-fits the training data.

In addition, recall that the prompt-independent
RankSVM model from the first stage enables the
proposed TDNN in learning prompt-dependent in-
formation without manual ratings for the target
prompt. Therefore, one would like to understand
how good the trained RankSVM is in feeding
training data for the model in the second stage.
In particular, the precision, recall and F-score
(P/R/F) of the essays selected by RanknSVM,
namely, the negative ones rated between [0, 4], and
the positive ones rated between [8, 10], are dis-
played in Figure 4. It can be seen that the P/R/F
scores of both positive and negative classes differ
a lot among different prompts. Moreover, it turns
out that the P/R/F scores do not necessarily cor-
relate with the performance of the TDNN model.
Take TDNN(Sem+Synt), the best TDNN variant,
as an example: as indicated in Table 4, the perfor-
mance and the P/R/F scores of the pseudo exam-
ples are only weakly correlated in most cases.

To gain a better understanding in how the qual-
ity of pseudo examples affects the performance
of TDNN, the sanctity of the selected essays are
examined. In Figure 5, the relative precision of
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Eval. Metric QWK PCC SCC QWK PCC SCC QWK PCC SCC
Method Prompt 1 Prompt 2 Prompt 3
RankSVM .7371 .6915 .6726 .4666 .4956 .4993 .4637 .5584 .5357
2L-LSTM .4687 .6570 .4213 .2788 .6202 .6337 .5018 .6410 .6197
CNN-LSTM .4320 .6933 .5108 .3230 .6513 .6395 .5454 .6844 .6541
CNN-LSTM-ATT .6256 .7430 .6612 .4348 .7200 .6724 .4219 .5927 .6327
TDNN(Sem) .7292 .7366 .7190 .6220 .7138 .7372 .6038 .6613 .6714
TDNN(Sem+POS) .7305 .7413 .7209 .6551 .7276 .7469 .6112 .6706 .6809
TDNN(Sem+Synt) .7688 .7759 .7318 .6859 .7292 .7593 .6281 .6759 .7028
TDNN(POS+Synt) .7663 .7700 .7310 .6808 .7225 .7581 .6219 .6803 .6984
TDNN(All) .7310 .7584 .7300 .6596 .7210 .7496 .6146 .6772 .6943
Method Prompt 4 Prompt 5 Prompt 6
RankSVM .5112 .6250 .6325 .6690 .7103 .6651 .5285 .5443 .5239
2L-LSTM .5754 .6527 .6354 .5128 .7375 .7360 .4951 .6528 .6669
CNN-LSTM .7065 .7564 .7346 .6594 .6722 .6536 .5810 .6460 .6447
CNN-LSTM-ATT .4665 .7224 .7383 .5348 .6531 .6505 .5149 .6291 .6637
TDNN(Sem) .7398 .7412 .6934 .6874 .7585 .7323 .6278 .6524 .7205
TDNN(Sem+POS) .7450 .7601 .7119 .6943 .7716 .7341 .6540 .6780 .7239
TDNN(Sem+Synt) .7578 .7616 .7492 .7366 .7993 .7960 .6752 .6903 .7434
TDNN(POS+Synt) .7561 .7591 .7440 .7332 .7983 .7866 .6593 .6759 .7354
TDNN(All) .7527 .7609 .7251 .7302 .7974 .7794 .6557 .6874 .7350
Method Prompt 7 Prompt 8 Average
RankSVM .5858 .6436 .6429 .4075 .5889 .6087 .5462 .6072 .5976
2L-LSTM .6690 .7637 .7607 .2486 .5137 .4979 .4687 .6548 .6214
CNN-LSTM .6609 .6849 .6865 .3812 .4666 .3872 .5362 .6569 .6139
CNN-LSTM-ATT .6002 .6314 .6223 .4468 .5358 .4536 .5057 .6535 .6368
TDNN(Sem) .5482 .6957 .6902 .5003 .6083 .6545 .5875 .6779 .6795
TDNN(Sem+POS) .6239 .7111 .7243 .5519 .6219 .6614 .6582 .7103 .7130
TDNN(Sem+Synt) .6587 .7201 .7380 .5741 .6324 .6713 .6856 .7244 .7365
TDNN(POS+Synt) .6464 .7172 .7349 .5631 .6281 .6698 .6784 .7189 .7322
TDNN(All) .6396 .7114 .7300 .5622 .6267 .6631 .6682 .7176 .7258

Table 3: Correlations between AES and manual ratings for different competing methods are reported for
individual prompts. The average results among different prompts are summarized in the bottom right.
The best results are highlighted in bold for individual prompts.

Neg/Pos Metric QWK PCC SCC

[0, 4]
Precision +0.5151 +0.4286 +0.4471
Recall - 0.2362 - 0.1363 - 0.3491
F-score +0.4135 +0.4062 +0.1703

[8, 10]
Precision +0.3526 +0.3224 +0.3885
Recall +0.0063 - 0.0415 - 0.2112
F-score +0.8339 +0.6905 +0.4221

Table 4: Linear correlations between the performance of
TDNN(Sem+Synt) and the precision, recall, and F-score of
the selected pseudo examples.

Prpt 1 2 3 4 5 6 7 8

Neg 191 245 847 428 501 209 454 60
Pos 623 470 65 295 277 426 267 418

Table 5: The numbers of the selected positive and negative
essays for each prompt.

the selected positive and negative training data by
RankSVM are displayed for all eight prompts in
terms of their concordance with the manual rat-
ings, by computing the number of positive (nega-
tive) essays that are better (worse) than all negative
(positive) essays. It can be seen that, such relative
precision is at least 80% and mostly beyond 90%
on different prompts, indicating that the overlap of
the selected positive and negative essays are fairly
small, guaranteeing that the deep model in the sec-
ond stage at least learns from correct labels, which
are crucial for the success of our TDNN model.

Beyond that, we further investigate the class
balance of the selected training data from the first
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(a) Negative (b) Positive

Figure 4: The precision, recall and F-score of the pseudo negative or positive examples, which are rated within [0, 4] or [8, 10]
by RankSVM.

Figure 5: The sanctity of the selected positive and negative
essays by RankSVM. The x-axis indicates different prompts
and the y-axis is the relative precision.

stage, which could also influence the ultimate re-
sults. The number of selected positive and neg-
ative essays are reported in Table 5, where for
prompts three and eight the training data suffer-
s from serious imbalanced problem, which may
explain their lower performance (namely, the two
lowest QWKs among different prompts). On one
hand, this is actually determined by real distribu-
tion of ratings for a particular prompt, e.g., how
many essays are with an extreme quality for a giv-
en prompt in the target data. On the other hand,
a fine-grained tuning of the RankSVM (e.g., tun-
ing C+ and C− for positive and negative exam-

ples separately) may partially resolve the problem,
which is left for the future work.

5 Related Work

Classical regression and classification algorithm-
s are widely used for learning the rating mod-
el based on a variety of text features including
lexical, syntactic, discourse and semantic features
(Larkey, 1998; Rudner, 2002; Attali and Burstein,
2006; Mcnamara et al., 2015; Phandi et al., 2015).
There are also approaches that see AES as a pref-
erence ranking problem by applying learning to
ranking algorithms to learn the rating model. Re-
sults show improvement of learning to rank ap-
proaches over classical regression and classifica-
tion algorithms (Chen et al., 2014; Yannakoudakis
et al., 2011). In addition, Chen & He propose
to incorporate the evaluation metric into the loss
function of listwise learning to rank for AES
(Chen and He, 2013).

Recently, there have been efforts in develop-
ing AES approaches based on deep neural net-
works (DNN), for which feature engineering is
not required. Taghipour & Ng explore a variety
of neural network model architectures based on
recurrent neural networks which can effectively
encode the information required for essay scor-
ing and learn the complex connections in the da-
ta through the non-linear neural layers (Taghipour
and Ng, 2016). Alikaniotis et al. introduce a neu-
ral network model to learn the extent to which spe-
cific words contribute to the text’s score, which
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is embedded in the word representations. Then a
two-layer bi-directional Long-Short Term Memo-
ry networks (bi-LSTM) is used to learn the mean-
ing of texts, and finally the essay score is predict-
ed through a mutli-layer feed-forward network (A-
likaniotis et al., 2016). Dong & Zhang employ
a hierarchical convolutional neural network (CN-
N) model, with a lower layer representing sen-
tence structure and an upper layer representing es-
say structure based on sentence representations,
to learn features automatically (Dong and Zhang,
2016). This model is later improved by employ-
ing attention layers. Specifically, the model learns
text representation with LSTMs which can model
the coherence and co-reference among sequences
of words and sentences, and uses attention pool-
ing to capture more relevant words and sentences
that contribute to the final quality of essays (Dong
et al., 2017). Song et al. propose a deep model
for identifying discourse modes in an essay (Song
et al., 2017).

While the literature has shown satisfactory
performance of prompt-dependent AES, how to
achieve effective essay scoring in a prompt-
independent setting remains to be explored.
Chen & He studied the usefulness of prompt-
independent text features and achieved a human-
machine rating agreement slightly lower than the
use of all text features (Chen and He, 2013) for
prompt-dependent essay scoring prediction. A
constrained multi-task pairwise preference learn-
ing approach was proposed in (Cummins et al.,
2016) to combine essays from multiple prompt-
s for training. However, as shown by (Dong and
Zhang, 2016; Zesch et al., 2015; Phandi et al.,
2015), straightforward applications of existing
AES methods for prompt-independent AES lead
to a poor performance.

6 Conclusions & Future Work

This study aims at addressing the prompt-
independent automated essay scoring (AES),
where no rated essay for the target prompt is avail-
able. As demonstrated in the experiments, two
kinds of established prompt-dependent AES mod-
els, namely, RankSVM for AES (Yannakoudakis
et al., 2011; Chen et al., 2014) and the deep mod-
els for AES (Alikaniotis et al., 2016; Taghipour
and Ng, 2016; Dong et al., 2017), fail to pro-
vide satisfactory performances, justifying our ar-
guments in Section 1 that the application of estab-

lished prompt-dependent AES models on prompt-
independent AES is not straightforward. There-
fore, a two-stage TDNN learning framework was
proposed to utilize the prompt-independent fea-
tures to generate pseudo training data for the target
prompt, on which a hybrid deep neural network
model is proposed to learn a rating model consum-
ing semantic, part-of-speech, and syntactic signal-
s. Through the experiments on the ASAP dataset,
the proposed TDNN model outperforms the base-
lines, and leads to promising improvement in the
human-machine agreement.

Given that our approach in this paper is simi-
lar to the methods for transductive transfer learn-
ing (Pan and Yang, 2010), we argue that the pro-
posed TDNN could be further improved by mi-
grating the non-target training data to the target
prompt (Busto and Gall, 2017). Further study of
the uses of transfer learning algorithms on prompt-
independent AES needs to be undertaken.
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Abstract

The encoder-decoder dialog model is one
of the most prominent methods used
to build dialog systems in complex do-
mains. Yet it is limited because it can-
not output interpretable actions as in tra-
ditional systems, which hinders humans
from understanding its generation process.
We present an unsupervised discrete sen-
tence representation learning method that
can integrate with any existing encoder-
decoder dialog models for interpretable re-
sponse generation. Building upon vari-
ational autoencoders (VAEs), we present
two novel models, DI-VAE and DI-VST
that improve VAEs and can discover inter-
pretable semantics via either auto encod-
ing or context predicting. Our methods
have been validated on real-world dialog
datasets to discover semantic representa-
tions and enhance encoder-decoder mod-
els with interpretable generation.1

1 Introduction

Classic dialog systems rely on developing a mean-
ing representation to represent the utterances from
both the machine and human users (Larsson and
Traum, 2000; Bohus et al., 2007). The dialog
manager of a conventional dialog system outputs
the system’s next action in a semantic frame that
usually contains hand-crafted dialog acts and slot
values (Williams and Young, 2007). Then a natu-
ral language generation module is used to gener-
ate the system’s output in natural language based
on the given semantic frame. This approach suf-
fers from generalization to more complex do-
mains because it soon become intractable to man-

1Data and code are available at https://github.
com/snakeztc/NeuralDialog-LAED.

ually design a frame representation that covers
all of the fine-grained system actions. The re-
cently developed neural dialog system is one of
the most prominent frameworks for developing di-
alog agents in complex domains. The basic model
is based on encoder-decoder networks (Cho et al.,
2014) and can learn to generate system responses
without the need for hand-crafted meaning repre-
sentations and other annotations.

Figure 1: Our proposed models learn a set of dis-
crete variables to represent sentences by either au-
toencoding or context prediction.

Although generative dialog models have ad-
vanced rapidly (Serban et al., 2016; Li et al.,
2016; Zhao et al., 2017), they cannot provide inter-
pretable system actions as in the conventional dia-
log systems. This inability limits the effectiveness
of generative dialog models in several ways. First,
having interpretable system actions enables hu-
man to understand the behavior of a dialog system
and better interpret the system intentions. Also,
modeling the high-level decision-making policy
in dialogs enables useful generalization and data-
efficient domain adaptation (Gašić et al., 2010).
Therefore, the motivation of this paper is to de-
velop an unsupervised neural recognition model
that can discover interpretable meaning represen-
tations of utterances (denoted as latent actions) as
a set of discrete latent variables from a large un-
labelled corpus as shown in Figure 1. The dis-
covered meaning representations will then be inte-
grated with encoder decoder networks to achieve
interpretable dialog generation while preserving
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all the merit of neural dialog systems.
We focus on learning discrete latent represen-

tations instead of dense continuous ones because
discrete variables are easier to interpret (van den
Oord et al., 2017) and can naturally correspond to
categories in natural languages, e.g. topics, dia-
log acts and etc. Despite the difficulty of learn-
ing discrete latent variables in neural networks, the
recently proposed Gumbel-Softmax offers a reli-
able way to back-propagate through discrete vari-
ables (Maddison et al., 2016; Jang et al., 2016).
However, we found a simple combination of sen-
tence variational autoencoders (VAEs) (Bowman
et al., 2015) and Gumbel-Softmax fails to learn
meaningful discrete representations. We then
highlight the anti-information limitation of the ev-
idence lowerbound objective (ELBO) in VAEs
and improve it by proposing Discrete Information
VAE (DI-VAE) that maximizes the mutual infor-
mation between data and latent actions. We further
enrich the learning signals beyond auto encoding
by extending Skip Thought (Kiros et al., 2015)
to Discrete Information Variational Skip Thought
(DI-VST) that learns sentence-level distributional
semantics. Finally, an integration mechanism is
presented that combines the learned latent actions
with encoder decoder models.

The proposed systems are tested on several real-
world dialog datasets. Experiments show that
the proposed methods significantly outperform the
standard VAEs and can discover meaningful latent
actions from these datasets. Also, experiments
confirm the effectiveness of the proposed integra-
tion mechanism and show that the learned latent
actions can control the sentence-level attributes
of the generated responses and provide human-
interpretable meaning representations.

2 Related Work

Our work is closely related to research in latent
variable dialog models. The majority of mod-
els are based on Conditional Variational Autoen-
coders (CVAEs) (Serban et al., 2016; Cao and
Clark, 2017) with continuous latent variables to
better model the response distribution and encour-
age diverse responses. Zhao et al., (2017) fur-
ther introduced dialog acts to guide the learning
of the CVAEs. Discrete latent variables have also
been used for task-oriented dialog systems (Wen
et al., 2017), where the latent space is used to rep-
resent intention. The second line of related work

is enriching the dialog context encoder with more
fine-grained information than the dialog history.
Li et al., (2016) captured speakers’ characteristics
by encoding background information and speak-
ing style into the distributed embeddings. Xing et
al., (2016) maintain topic encoding based on La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003)
of the conversation to encourage the model to out-
put more topic coherent responses.

The proposed method also relates to sentence
representation learning using neural networks.
Most work learns continuous distributed repre-
sentations of sentences from various learning sig-
nals (Hill et al., 2016), e.g. the Skip Thought
learns representations by predicting the previous
and next sentences (Kiros et al., 2015). An-
other area of work focused on learning regular-
ized continuous sentence representation, which
enables sentence generation by sampling the la-
tent space (Bowman et al., 2015; Kim et al., 2017).
There is less work on discrete sentence repre-
sentations due to the difficulty of passing gradi-
ents through discrete outputs. The recently devel-
oped Gumbel Softmax (Jang et al., 2016; Maddi-
son et al., 2016) and vector quantization (van den
Oord et al., 2017) enable us to train discrete vari-
ables. Notably, discrete variable models have
been proposed to discover document topics (Miao
et al., 2016) and semi-supervised sequence trans-
action (Zhou and Neubig, 2017)

Our work differs from these as follows: (1)
we focus on learning interpretable variables; in
prior research the semantics of latent variables are
mostly ignored in the dialog generation setting.
(2) we improve the learning objective for discrete
VAEs and overcome the well-known posterior col-
lapsing issue (Bowman et al., 2015; Chen et al.,
2016). (3) we focus on unsupervised learning
of salient features in dialog responses instead of
hand-crafted features.

3 Proposed Methods

Our formulation contains three random variables:
the dialog context c, the response x and the la-
tent action z. The context often contains the dis-
course history in the format of a list of utterances.
The response is an utterance that contains a list of
word tokens. The latent action is a set of discrete
variables that define high-level attributes of x. Be-
fore introducing the proposed framework, we first
identify two key properties that are essential in or-
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der for z to be interpretable:

1. z should capture salient sentence-level fea-
tures about the response x.

2. The meaning of latent symbols z should be
independent of the context c.

The first property is self-evident. The second can
be explained: assume z contains a single discrete
variable with K classes. Since the context c can
be any dialog history, if the meaning of each class
changes given a different context, then it is diffi-
cult to extract an intuitive interpretation by only
looking at all responses with class k ∈ [1,K].
Therefore, the second property looks for latent ac-
tions that have context-independent semantics so
that each assignment of z conveys the same mean-
ing in all dialog contexts.

With the above definition of interpretable latent
actions, we first introduce a recognition network
R : qR(z|x) and a generation network G. The
role of R is to map an sentence to the latent vari-
able z and the generator G defines the learning
signals that will be used to train z’s representa-
tion. Notably, our recognition network R does
not depend on the context c as has been the case
in prior work (Serban et al., 2016). The motiva-
tion of this design is to encourage z to capture
context-independent semantics, which are further
elaborated in Section 3.4. With the z learned by
R and G, we then introduce an encoder decoder
network F : pF(x|z, c) and and a policy net-
work π : pπ(z|c). At test time, given a context
c, the policy network and encoder decoder will
work together to generate the next response via
x̃ = pF(x|z ∼ pπ(z|c), c). In short, R, G, F and
π are the four components that comprise our pro-
posed framework. The next section will first focus
on developing R and G for learning interpretable
z and then will move on to integrating R with F
and π in Section 3.3.

3.1 Learning Sentence Representations from
Auto-Encoding

Our baseline model is a sentence VAE with dis-
crete latent space. We use an RNN as the recog-
nition network to encode the response x. Its last
hidden state hR|x| is used to represent x. We de-
fine z to be a set of K-way categorical variables
z = {z1...zm...zM}, where M is the number of
variables. For each zm, its posterior distribution
is defined as qR(zm|x) = Softmax(Wqh

R
|x| + bq).

During training, we use the Gumbel-Softmax trick
to sample from this distribution and obtain low-
variance gradients. To map the latent samples to
the initial state of the decoder RNN, we define
{e1...em...eM} where em ∈ RK×D and D is the
generator cell size. Thus the initial state of the
generator is: hG0 =

∑M
m=1 em(zm). Finally, the

generator RNN is used to reconstruct the response
given hG0 . VAEs is trained to maxmimize the evi-
dence lowerbound objective (ELBO) (Kingma and
Welling, 2013). For simplicity, later discussion
drops the subscript m in zm and assumes a sin-
gle latent z. Since each zm is independent, we can
easily extend the results below to multiple vari-
ables.

3.1.1 Anti-Information Limitation of ELBO
It is well-known that sentence VAEs are hard to
train because of the posterior collapse issue. Many
empirical solutions have been proposed: weaken-
ing the decoder, adding auxiliary loss etc. (Bow-
man et al., 2015; Chen et al., 2016; Zhao et al.,
2017). We argue that the posterior collapse issue
lies in ELBO and we offer a novel decomposition
to understand its behavior. First, instead of writ-
ing ELBO for a single data point, we write it as an
expectation over a dataset:

LVAE = Ex[EqR(z|x)[log pG(x|z)]
− KL(qR(z|x)‖p(z))]

(1)

We can expand the KL term as Eq. 2 (derivations
in Appendix A.1) and rewrite ELBO as:

Ex[KL(qR(z|x)‖p(z))] = (2)

I(Z,X)+KL(q(z)‖p(z))

LVAE =Eq(z|x)p(x)[log p(x|z)]
− I(Z,X)− KL(q(z)‖p(z))

(3)

where q(z) = Ex[qR(z|x)] and I(Z,X) is the mu-
tual information between Z and X . This expan-
sion shows that the KL term in ELBO is trying
to reduce the mutual information between latent
variables and the input data, which explains why
VAEs often ignore the latent variable, especially
when equipped with powerful decoders.

3.1.2 VAE with Information Maximization
and Batch Prior Regularization

A natural solution to correct the anti-information
issue in Eq. 3 is to maximize both the data likeli-
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hood lowerbound and the mutual information be-
tween z and the input data:

LVAE + I(Z,X) =

EqR(z|x)p(x)[log pG(x|z)]− KL(q(z)‖p(z)) (4)

Therefore, jointly optimizing ELBO and mutual
information simply cancels out the information-
discouraging term. Also, we can still sample from
the prior distribution for generation because of
KL(q(z)‖p(z)). Eq. 4 is similar to the objec-
tives used in adversarial autoencoders (Makhzani
et al., 2015; Kim et al., 2017). Our derivation pro-
vides a theoretical justification to their superior
performance. Notably, Eq. 4 arrives at the same
loss function proposed in infoVAE (Zhao S et al.,
2017). However, our derivation is different, offer-
ing a new way to understand ELBO behavior.

The remaining challenge is how to minimize
KL(q(z)‖p(z)), since q(z) is an expectation over
q(z|x). When z is continuous, prior work has
used adversarial training (Makhzani et al., 2015;
Kim et al., 2017) or Maximum Mean Discrepancy
(MMD) (Zhao S et al., 2017) to regularize q(z). It
turns out that minimizing KL(q(z)‖p(z)) for dis-
crete z is much simpler than its continuous coun-
terparts. Let xn be a sample from a batch of N
data points. Then we have:

q(z) ≈ 1

N

N∑

n=1

q(z|xn) = q′(z) (5)

where q′(z) is a mixture of softmax from the pos-
teriors q(z|xn) of each xn. We can approximate
KL(q(z)‖p(z)) by:

KL(q′(z)‖p(z)) =
K∑

k=1

q′(z = k) log
q′(z = k)

p(z = k)

(6)

We refer to Eq. 6 as Batch Prior Regularization
(BPR). When N approaches infinity, q′(z) ap-
proaches the true marginal distribution of q(z).
In practice, we only need to use the data from
each mini-batch assuming that the mini batches
are randomized. Last, BPR is fundamentally dif-
ferent from multiplying a coefficient < 1 to an-
neal the KL term in VAE (Bowman et al., 2015).
This is because BPR is a non-linear operation
log sum exp. For later discussion, we denote our
discrete infoVAE with BPR as DI-VAE.

3.2 Learning Sentence Representations from
the Context

DI-VAE infers sentence representations by recon-
struction of the input sentence. Past research in
distributional semantics has suggested the mean-
ing of language can be inferred from the adjacent
context (Harris, 1954; Hill et al., 2016). The dis-
tributional hypothesis is especially applicable to
dialog since the utterance meaning is highly con-
textual. For example, the dialog act is a well-
known utterance feature and depends on dialog
state (Austin, 1975; Stolcke et al., 2000). Thus,
we introduce a second type of latent action based
on sentence-level distributional semantics.

Skip thought (ST) is a powerful sentence
representation that captures contextual informa-
tion (Kiros et al., 2015). ST uses an RNN to en-
code a sentence, and then uses the resulting sen-
tence representation to predict the previous and
next sentences. Inspired by ST’s robust perfor-
mance across multiple tasks (Hill et al., 2016), we
adapt our DI-VAE to Discrete Information Varia-
tional Skip Thought (DI-VST) to learn discrete la-
tent actions that model distributional semantics of
sentences. We use the same recognition network
from DI-VAE to output z’s posterior distribution
qR(z|x). Given the samples from qR(z|x), two
RNN generators are used to predict the previous
sentence xp and the next sentences xn. Finally,
the learning objective is to maximize:

LDI-VST = EqR(z|x)p(x))[log(p
n
G(xn|z)ppG(xp|z))]

− KL(q(z)‖p(z))
(7)

3.3 Integration with Encoder Decoders
We now describe how to integrate a given qR(z|x)
with an encoder decoder and a policy network. Let
the dialog context c be a sequence of utterances.
Then a dialog context encoder network can en-
code the dialog context into a distributed represen-
tation he = Fe(c). The decoder Fd can generate
the responses x̃ = Fd(he, z) using samples from
qR(z|x). Meanwhile, we train π to predict the
aggregated posterior Ep(x|c)[qR(z|x)] from c via
maximum likelihood training. This model is re-
ferred as Latent Action Encoder Decoder (LAED)
with the following objective.

LLAED(θF , θπ) =

EqR(z|x)p(x,c)[logpπ(z|c) + log pF(x|z, c)]
(8)
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Also simply augmenting the inputs of the decoders
with latent action does not guarantee that the gen-
erated response exhibits the attributes of the give
action. Thus we use the controllable text gener-
ation framework (Hu et al., 2017) by introducing
LAttr, which reuses the same recognition network
qR(z|x) as a fixed discriminator to penalize the de-
coder if its generated responses do not reflect the
attributes in z.

LAttr(θF) = EqR(z|x)p(c,x)[log qR(z|F(c, z))]
(9)

Since it is not possible to propagate gradients
through the discrete outputs at Fd at each word
step, we use a deterministic continuous relax-
ation (Hu et al., 2017) by replacing output of Fd
with the probability of each word. Let ot be
the normalized probability at step t ∈ [1, |x|],
the inputs to qR at time t are then the sum of
word embeddings weighted by ot, i.e. hRt =
RNN(hRt−1,Eot) and E is the word embedding
matrix. Finally this loss is combined with LLAED
and a hyperparameter λ to have Attribute Forcing
LAED.

LattrLAED = LLAED + λLAttr (10)

3.4 Relationship with Conditional VAEs
It is not hard to see LLAED is closely related to the
objective of CVAEs for dialog generation (Serban
et al., 2016; Zhao et al., 2017), which is:

LCVAE = Eq[log p(x|z, c)]−KL(q(z|x, c)‖p(z|c))
(11)

Despite their similarities, we highlight the key dif-
ferences that prohibit CVAE from achieving inter-
pretable dialog generation. First LCVAE encour-
ages I(x, z|c) (Agakov, 2005), which learns z that
capture context-dependent semantics. More in-
tuitively, z in CVAE is trained to generate x via
p(x|z, c) so the meaning of learned z can only be
interpreted along with its context c. Therefore this
violates our goal of learning context-independent
semantics. Our methods learn qR(z|x) that only
depends on x and trains qR separately to ensure
the semantics of z are interpretable standalone.

4 Experiments and Results

The proposed methods are evaluated on four
datasets. The first corpus is Penn Treebank
(PTB) (Marcus et al., 1993) used to evaluate sen-
tence VAEs (Bowman et al., 2015). We used

the version pre-processed by Mikolov (Mikolov
et al., 2010). The second dataset is the Stanford
Multi-Domain Dialog (SMD) dataset that contains
3,031 human-Woz, task-oriented dialogs collected
from 3 different domains (navigation, weather and
scheduling) (Eric and Manning, 2017). The other
two datasets are chat-oriented data: Daily Dialog
(DD) and Switchboard (SW) (Godfrey and Hol-
liman, 1997), which are used to test whether our
methods can generalize beyond task-oriented di-
alogs but also to to open-domain chatting. DD
contains 13,118 multi-turn human-human dialogs
annotated with dialog acts and emotions. (Li et al.,
2017). SW has 2,400 human-human telephone
conversations that are annotated with topics and
dialog acts. SW is a more challenging dataset be-
cause it is transcribed from speech which contains
complex spoken language phenomenon, e.g. hesi-
tation, self-repair etc.

4.1 Comparing Discrete Sentence
Representation Models

The first experiment used PTB and DD to eval-
uate the performance of the proposed methods
in learning discrete sentence representations. We
implemented DI-VAE and DI-VST using GRU-
RNN (Chung et al., 2014) and trained them using
Adam (Kingma and Ba, 2014). Besides the pro-
posed methods, the following baselines are com-
pared. Unregularized models: removing the
KL(q|p) term from DI-VAE and DI-VST leads
to a simple discrete autoencoder (DAE) and dis-
crete skip thought (DST) with stochastic discrete
hidden units. ELBO models: the basic discrete
sentence VAE (DVAE) or variational skip thought
(DVST) that optimizes ELBO with regularization
term KL(q(z|x)‖p(z)). We found that standard
training failed to learn informative latent actions
for either DVAE or DVST because of the poste-
rior collapse. Therefore, KL-annealing (Bowman
et al., 2015) and bag-of-word loss (Zhao et al.,
2017) are used to force these two models learn
meaningful representations. We also include the
results for VAE with continuous latent variables
reported on the same PTB (Zhao et al., 2017). Ad-
ditionally, we report the perplexity from a stan-
dard GRU-RNN language model (Zaremba et al.,
2014).

The evaluation metrics include reconstruction
perplexity (PPL), KL(q(z)‖p(z)) and the mutual
information between input data and latent vari-
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ables I(x, z). Intuitively a good model should
achieve low perplexity and KL distance, and si-
multaneously achieve high I(x, z). The discrete
latent space for all models are M=20 and K=10.
Mini-batch size is 30.

Dom Model PPL KL(q‖p) I(x, z)
PTB RNNLM 116.22 - -

VAE 73.49 15.94* -
DAE 66.49 2.20 0.349
DVAE 70.84 0.315 0.286
DI-VAE 52.53 0.133 1.18

DD RNNLM 31.15 - -
DST xp:28.23

xn:28.16
0.588 1.359

DVST xp:30.36
xn:30.71

0.007 0.081

DI-VST xp:28.04
xn:27.94

0.088 1.028

Table 1: Results for various discrete sentence rep-
resentations. The KL for VAE is KL(q(z|x)‖p(z))
instead of KL(q(z)‖p(z)) (Zhao et al., 2017)

Table 1 shows that all models achieve better per-
plexity than an RNNLM, which shows they man-
age to learn meaningful q(z|x). First, for auto-
encoding models, DI-VAE is able to achieve the
best results in all metrics compared other meth-
ods. We found DAEs quickly learn to reconstruct
the input but they are prone to overfitting dur-
ing training, which leads to lower performance
on the test data compared to DI-VAE. Also, since
there is no regularization term in the latent space,
q(z) is very different from the p(z) which pro-
hibits us from generating sentences from the la-
tent space. In fact, DI-VAE enjoys the same lin-
ear interpolation properties reported in (Bowman
et al., 2015) (See Appendix A.2). As for DVAEs, it
achieves zero I(x, z) in standard training and only
manages to learn some information when train-
ing with KL-annealing and bag-of-word loss. On
the other hand, our methods achieve robust per-
formance without the need for additional process-
ing. Similarly, the proposed DI-VST is able to
achieve the lowest PPL and similar KL compared
to the strongly regularized DVST. Interestingly, al-
though DST is able to achieve the highest I(x, z),
but PPL is not further improved. These results
confirm the effectiveness of the proposed BPR in
terms of regularizing q(z) while learning mean-
ingful posterior q(z|x).

In order to understand BPR’s sensitivity to
batch size N , a follow-up experiment varied the
batch size from 2 to 60 (If N=1, DI-VAE is equiv-
alent to DVAE). Figure 2 show that asN increases,

Figure 2: Perplexity and I(x, z) on PTB by vary-
ing batch size N . BPR works better for larger N .

perplexity, I(x, z) monotonically improves, while
KL(q‖p) only increases from 0 to 0.159. After
N > 30, the performance plateaus. Therefore,
using mini-batch is an efficient trade-off between
q(z) estimation and computation speed.

The last experiment in this section investigates
the relation between representation learning and
the dimension of the latent space. We set a fixed
budget by restricting the maximum number of
modes to be about 1000, i.e. KM ≈ 1000. We
then vary the latent space size and report the same
evaluation metrics. Table 2 shows that models
with multiple small latent variables perform sig-
nificantly better than those with large and few la-
tent variables.

K, M KM PPL KL(q‖p) I(x, z)

1000, 1 1000 75.61 0.032 0.335
10, 3 1000 71.42 0.071 0.607
4, 5 1024 68.43 0.088 0.809

Table 2: DI-VAE on PTB with different latent di-
mensions under the same budget.

4.2 Interpreting Latent Actions
The next question is to interpret the meaning of the
learned latent action symbols. To achieve this, the
latent action of an utterance xn is obtained from a
greedy mapping: an = argmaxk qR(z = k|xn).
We set M=3 and K=5, so that there are at most
125 different latent actions, and each xn can now
be represented by a1-a2-a3, e.g. “How are you?”
→ 1-4-2. Assuming that we have access to man-
ually clustered data according to certain classes
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(e.g. dialog acts), it is unfair to use classic clus-
ter measures (Vinh et al., 2010) to evaluate the
clusters from latent actions. This is because the
uniform prior p(z) evenly distribute the data to all
possible latent actions, so that it is expected that
frequent classes will be assigned to several latent
actions. Thus we utilize the homogeneity met-
ric (Rosenberg and Hirschberg, 2007) that mea-
sures if each latent action contains only members
of a single class. We tested this on the SW and DD,
which contain human annotated features and we
report the latent actions’ homogeneity w.r.t these
features in Table 3. On DD, results show DI-VST

SW DD
Act Topic Act Emotion

DI-VAE 0.48 0.08 0.18 0.09
DI-VST 0.33 0.13 0.34 0.12

Table 3: Homogeneity results (bounded [0, 1]).

works better than DI-VAE in terms of creating ac-
tions that are more coherent for emotion and dia-
log acts. The results are interesting on SW since
DI-VST performs worse on dialog acts than DI-
VAE. One reason is that the dialog acts in SW are
more fine-grained (42 acts) than the ones in DD
(5 acts) so that distinguishing utterances based on
words in x is more important than the information
in the neighbouring utterances.

We then apply the proposed methods to SMD
which has no manual annotation and contains task-
oriented dialogs. Two experts are shown 5 ran-
domly selected utterances from each latent action
and are asked to give an action name that can de-
scribe as many of the utterances as possible. Then
an Amazon Mechanical Turk study is conducted
to evaluate whether other utterances from the same
latent action match these titles. 5 workers see the
action name and a different group of 5 utterances
from that latent action. They are asked to select all
utterances that belong to the given actions, which
tests the homogeneity of the utterances falling in
the same cluster. Negative samples are included to
prevent random selection. Table 4 shows that both
methods work well and DI-VST achieved better
homogeneity than DI-VAE.

Since DI-VAE is trained to reconstruct its input
and DI-VST is trained to model the context, they
group utterances in different ways. For example,
DI-VST would group “Can I get a restaurant”, “I
am looking for a restaurant” into one action where

Model Exp Agree Worker κ Match Rate
DI-VAE 85.6% 0.52 71.3%
DI-VST 93.3% 0.48 74.9%

Table 4: Human evaluation results on judging the
homogeneity of latent actions in SMD.

DI-VAE may denote two actions for them. Finally,
Table 4.2 shows sample annotation results, which
show cases of the different types of latent actions
discovered by our models.

Model Action Sample utterance
DI-VAE scheduling - sys: okay, scheduling a yoga

activity with Tom for the 8th at
2pm.
- sys: okay, scheduling a meet-
ing for 6 pm on Tuesday with
your boss to go over the quar-
terly report.

requests - usr: find out if it ’s supposed
to rain
- usr: find nearest coffee shop

DI-VST ask sched-
ule info

- usr: when is my football ac-
tivity and who is going with
me?
- usr: tell me when my dentist
appointment is?

requests - usr: how about other coffee?
- usr: 11 am please

Table 5: Example latent actions discovered in
SMD using our methods.

4.3 Dialog Response Generation with Latent
Actions

Finally we implement an LAED as follows. The
encoder is a hierarchical recurrent encoder (Ser-
ban et al., 2016) with bi-directional GRU-RNNs
as the utterance encoder and a second GRU-RNN
as the discourse encoder. The discourse encoder
output its last hidden state he|x|. The decoder is
another GRU-RNN and its initial state of the de-
coder is obtained by hd0 = he|x| +

∑M
m=1 em(zm),

where z comes from the recognition network of
the proposed methods. The policy network π is a
2-layer multi-layer perceptron (MLP) that models
pπ(z|he|x|). We use up to the previous 10 utter-
ances as the dialog context and denote the LAED
using DI-VAE latent actions as AE-ED and the one
uses DI-VST as ST-ED.

First we need to confirm whether an LAED
can generate responses that are consistent with
the semantics of a given z. To answer this, we
use a pre-trained recognition network R to check
if a generated response carries the attributes in
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the given action. We generate dialog responses
on a test dataset via x̃ = F(z ∼ π(c), c)
with greedy RNN decoding. The generated re-
sponses are passed into the R and we measure at-
tribute accuracy by counting x̃ as correct if z =
argmaxk qR(k|x̃). Table 4.3 shows our generated

Domain AE-ED +Lattr ST-ED +Lattr

SMD 93.5% 94.8% 91.9% 93.8%
DD 88.4% 93.6% 78.5% 86.1%
SW 84.7% 94.6% 57.3% 61.3%

Table 6: Results for attribute accuracy with and
without attribute loss.

responses are highly consistent with the given la-
tent actions. Also, latent actions from DI-VAE
achieve higher attribute accuracy than the ones
from DI-VST, because z from auto-encoding is ex-
plicitly trained for x reconstruction. Adding Lattr
is effective in forcing the decoder to take z into ac-
count during its generation, which helps the most
in more challenging open-domain chatting data,
e.g. SW and DD. The accuracy of ST-ED on SW
is worse than the other two datasets. The reason
is that SW contains many short utterances that can
be either a continuation of the same speaker or a
new turn from the other speaker, whereas the re-
sponses in the other two domains are always fol-
lowed by a different speaker. The more complex
context pattern in SW may require special treat-
ment. We leave it for future work.

The second experiment checks if the policy net-
work π is able to predict the right latent action
given just the dialog context. We report both accu-
racy, i.e. argmaxk qR(k|x) = argmaxk′ pπ(k

′|c)
and perplexity of pπ(z|c). The perplexity mea-
sure is more useful for open domain dialogs be-
cause decision-making in complex dialogs is often
one-to-many given a similar context (Zhao et al.,
2017). Table 7 shows the prediction scores on

SMD
AE-ED 3.045 (51.5% sys 52.4% usr 50.5%)
ST-ED 1.695 (75.5% sys 82.1% usr 69.2%)

DD SW
AE-ED 4.47 (35.8%) 4.46 (31.68%)
ST-ED 3.89 (47.5%) 3.68 (33.2%)

Table 7: Performance of policy network. Lattr is
included in training.

the three dialog datasets. These scores provide

useful insights to understand the complexity of a
dialog dataset. For example, accuracy on open-
domain chatting is harder than the task-oriented
SMD data. Also, it is intuitive that predicting sys-
tem actions is easier than predicting user actions
on SMD. Also, in general the prediction scores for
ST-ED are higher the ones for AE-ED. The rea-
son is related to our previous discussion about the
granularity of the latent actions. Since latent ac-
tions from DI-VST mainly model the the type of
utterances used in certain types of context, it is
easier for the policy network to predict latent ac-
tions from DI-VST. Therefore, choosing the type
of latent actions is a design choice and depends on
the type of interpretability that is needed. We fin-
ish with an example generated from the two vari-
ants of LAED on SMD as shown in Table 8. Given
a dialog context, our systems are able to output
a probability distribution over different latent ac-
tions that have interpretable meaning along with
their natural language realizations.

c usr: Where does my friend live?
Model Action Generated Responses
AE-
ED

give loc info - Tom is at 753 University Ave,
and a road block.

p(z|c)=0.34 - Comfort Inn is at 7 miles
away.

give user info - Your home address is 5671
barringer street.

p(z|c)=0.22 - Your home is at 10 ames
street.

ST-
ED

give loc info - Jill’s house is 8 miles away at
347 Alta Mesa Ave.

p(z|c)=0.93 - Jill lives at 347 Alta Mesa
Ave.

Table 8: Interpretable dialog generation on SMD
with top probable latent actions. AE-ED predicts
more fine-grained but more error-prone actions.

5 Conclusion and Future Work

This paper presents a novel unsupervised frame-
work that enables the discovery of discrete latent
actions and interpretable dialog response genera-
tion. Our main contributions reside in the two
sentence representation models DI-VAE and DI-
VST, and their integration with the encoder de-
coder models. Experiments show the proposed
methods outperform strong baselines in learning
discrete latent variables and showcase the effec-
tiveness of interpretable dialog response gener-
ation. Our findings also suggest promising fu-
ture research directions, including learning better
context-based latent actions and using reinforce-
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ment learning to adapt policy networks. We be-
lieve that this work is an important step forward
towards creating generative dialog models that can
not only generalize to large unlabelled datasets in
complex domains but also be explainable to hu-
man users.
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Abstract

In conversation, a general response (e.g.,
“I don’t know”) could correspond to a
large variety of input utterances. Previ-
ous generative conversational models usu-
ally employ a single model to learn the
relationship between different utterance-
response pairs, thus tend to favor gen-
eral and trivial responses which appear
frequently. To address this problem,
we propose a novel controlled response
generation mechanism to handle different
utterance-response relationships in terms
of specificity. Specifically, we introduce
an explicit specificity control variable into
a sequence-to-sequence model, which in-
teracts with the usage representation of
words through a Gaussian Kernel layer, to
guide the model to generate responses at
different specificity levels. We describe
two ways to acquire distant labels for
the specificity control variable in learning.
Empirical studies show that our model can
significantly outperform the state-of-the-
art response generation models under both
automatic and human evaluations.

1 Introduction

Human-computer conversation is a critical and
challenging task in AI and NLP. There have been
two major streams of research in this direction,
namely task oriented dialog and general purpose
dialog (i.e., chit-chat). Task oriented dialog aims
to help people complete specific tasks such as buy-
ing tickets or shopping, while general purpose dia-
log attempts to produce natural and meaningful
conversations with people regarding a wide range
of topics in open domains (Perez-Marin, 2011;
Sordoni et al.). In recent years, the latter has at-

Must support! Cheer!

Support! It’s good.

My friends and I are shocked!

Figure 1: Rank-frequency distribution of the responses in the
chit-chat corpus, with x and y axes being lg(rank order) and
lg(frequency) respectively.

tracted much attention in both academia and in-
dustry as a way to explore the possibility in de-
veloping a general purpose AI system in language
(e.g., chatbots).

A widely adopted approach to general pur-
pose dialog is learning a generative conversational
model from large scale social conversation data.
Most methods in this line are constructed within
the statistical machine translation (SMT) frame-
work, where a sequence-to-sequence (Seq2Seq)
model is learned to “translate” an input utterance
into a response. However, general purpose dialog
is intrinsically different from machine translation.
In machine translation, since every sentence and
its translation are semantically equivalent, there
exists a 1-to-1 relationship between them. How-
ever, in general purpose dialog, a general response
(e.g., “I don’t know”) could correspond to a large
variety of input utterances. For example, in the
chit-chat corpus used in this study (as shown in
Figure 1), the top three most frequently appeared
responses are “Must support! Cheer!”, “Support!
It’s good.”, and “My friends and I are shocked!”,
where the response “Must support! Cheer!” is
used for 1216 different input utterances. Previ-
ous Seq2Seq models, which treat all the utterance-
response pairs uniformly and employ a single
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model to learn the relationship between them, will
inevitably favor such general responses with high
frequency. Although these responses are safe for
replying different utterances, they are boring and
trivial since they carry little information, and may
quickly lead to an end of the conversation.

There have been a few efforts attempting to ad-
dress this issue in literature. Li et al. (2016a)
proposed to use the Maximum Mutual Informa-
tion (MMI) as the objective to penalize general re-
sponses. It could be viewed as a post-processing
approach which did not solve the generation of
trivial responses fundamentally. Xing et al. (2017)
pre-defined a set of topics from an external cor-
pus to guide the generation of the Seq2Seq model.
However, it is difficult to ensure that the top-
ics learned from the external corpus are consist-
ent with that in the conversation corpus, leading
to the introduction of additional noises. Zhou
et al. (2017) introduced latent responding factors
to model multiple responding mechanisms. How-
ever, these latent factors are usually difficult in in-
terpretation and it is hard to decide the number of
the latent factors.

In our work, we propose a novel controlled re-
sponse generation mechanism to handle different
utterance-response relationships in terms of spe-
cificity. The key idea is inspired by our observa-
tion on everyday conversation between humans. In
human-human conversation, people often actively
control the specificity of responses depending on
their own response purpose (which might be af-
fected by a variety of underlying factors like their
current mood, knowledge state and so on). For
example, they may provide some interesting and
specific responses if they like the conversation,
or some general responses if they want to end it.
They may provide very detailed responses if they
are familiar with the topic, or just “I don’t know”
otherwise. Therefore, we propose to simulate the
way people actively control the specificity of the
response.

We employ a Seq2Seq framework and further
introduce an explicit specificity control variable
to represent the response purpose of the agent.
Meanwhile, we assume that each word, beyond
the semantic representation which relates to its
meaning, also has another representation which
relates to the usage preference under different re-
sponse purpose. We name this representation as
the usage representation of words. The specificity

control variable then interacts with the usage rep-
resentation of words through a Gaussian Kernel
layer, and guides the Seq2Seq model to generate
responses at different specificity levels. We refer
to our model as Specificity Controlled Seq2Seq
model (SC-Seq2Seq). Note that unlike the work
by (Xing et al., 2017), we do not rely on any ex-
ternal corpus to learn our model. All the model
parameters are learned on the same conversation
corpus in an end-to-end way.

We employ distant supervision to train our SC-
Seq2Seq model since the specificity control vari-
able is unknown in the raw data. We describe two
ways to acquire distant labels for the specificity
control variable, namely Normalized Inverse Re-
sponse Frequency (NIRF) and Normalized Inverse
Word Frequency (NIWF). By using normalized
values, we restrict the specificity control variable
to be within a pre-defined continuous value range
with each end has very clear meaning on the spe-
cificity. This is significantly different from the dis-
crete latent factors in (Zhou et al., 2017) which are
difficult in interpretation.

We conduct an empirical study on a large pub-
lic dataset, and compare our model with several
state-of-the-art response generation methods. Em-
pirical results show that our model can generate
either general or specific responses, and signi-
ficantly outperform existing methods under both
automatic and human evaluations.

2 Related Work

In this section, we briefly review the related work
on conversational models and response specificity.

2.1 Conversational Models

Automatic conversation has attracted increasing
attention over the past few years. At the very be-
ginning, people started the research using hand-
crafted rules and templates (Walker et al., 2001;
Williams et al., 2013; Henderson et al., 2014).
These approaches required little data for train-
ing but huge manual effort to build the model,
which is very time-consuming. For now, con-
versational models fall into two major categories:
retrieval-based and generation-based. Retrieval-
based conversational models search the most suit-
able response from candidate responses using dif-
ferent schemas (Kearns, 2000; Wang et al., 2013;
Yan et al., 2016). These methods rely on pre-
existing responses, thus are difficult to be exten-
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ded to open domains (Zhou et al., 2017). With the
large amount of conversation data available on the
Internet, generation-based conversational models
developed within a SMT framework (Ritter et al.,
2011; Cho et al., 2014; Bahdanau et al., 2015)
show promising results. Shang et al. (2015)
generated replies for short-text conversation by
encoder-decoder-based neural network with local
and global attentions. Serban et al. (2016) built an
end-to-end dialogue system using generative hier-
archical neural network. Gu et al. (2016) intro-
duced copynet to simulate the repeating behavior
of humans in conversation. Similarly, our model
is also based on the encoder-decoder framework.

2.2 Response Specificity

Some recent studies began to focus on generat-
ing more specific or informative responses in con-
versation. It is also called a diversity problem
since if each response is more specific, it would
be more diverse between responses of different ut-
terances. As an early work, Li et al. (2016a) used
Maximum Mutual Information (MMI) as the ob-
jective to penalize general responses. Later, Li
et al. (2017) proposed a data distillation method,
which trains a series of generative models at differ-
ent levels of specificity and uses a reinforcement
learning model to choose the model best suited for
decoding depending on the conversation context.
These methods circumvented the general response
issue by using either a post-processing approach
or a data selection approach.

Besides, Li et al. (2016b) tried to build a per-
sonalized conversation engine by adding extra per-
sonal information. Xing et al. (2017) incorpor-
ated the topic information from an external corpus
into the Seq2Seq framework to guide the genera-
tion. However, external dataset may not be always
available or consistent with the conversation data-
set in topics. Zhou et al. (2017) introduced latent
responding factors to the Seq2Seq model to avoid
generating safe responses. However, these latent
factors are usually difficult in interpretation and
hard to decide the number.

Moreover, Mou et al. (2016) proposed a
content-introducing approach to generate a re-
sponse based on a predicted keyword. Yao et al.
(2016) attempted to improve the specificity with
the reinforcement learning framework by using the
averaged IDF score of the words in the response
as a reward. Shen et al. (2017) presented a con-

ditional variational framework for generating spe-
cific responses based on specific attributes. Un-
like these existing methods, we introduce an ex-
plicit specificity control variable into a Seq2Seq
model to handle different utterance-response rela-
tionships in terms of specificity.

3 Specificity Controlled Seq2Seq Model

In this section, we present the Specificity Con-
trolled Seq2Seq model (SC-Seq2Seq), a novel
Seq2Seq model designed for actively controlling
the generated responses in terms of specificity.

3.1 Model Overview
The basic idea of a generative conversational
model is to learn the mapping from an input ut-
terance to its response, typically using an encoder-
decoder framework. Formally, given an input ut-
terance sequence X = (x1, x2, . . . , xT ) and a
target response sequence Y = (y1, y2, . . . , yT ′),
a neural Seq2Seq model is employed to learn
p(Y|X) based on the training corpus D =
{(X,Y)|Y is the response of X}. By maximizing
the likelihood of all the utterance-response pairs
with a single mapping mechanism, the learned
Seq2Seq model will inevitably favor those general
responses that can correspond to a large variety of
input utterances.

To address this issue, we assume that there are
different mapping mechanisms between utterance-
response pairs with respect to their specificity re-
lation. Rather than involving some latent factors,
we propose to introduce an explicit variable s into
a Seq2Seq model to handle different utterance-
response mappings in terms of specificity. By do-
ing so, we hope that (1) s would have explicit
meaning on specificity, and (2) s could not only
interpret but also actively control the generation
of the response Y given the input utterance X. The
goal of our model becomes to learn p(Y|X, s) over
the corpus D, where we acquire distant labels for
s from the same corpus for learning. The overall
architecture of SC-Seq2Seq is depicted in Figure
2, and we will detail our model as follows.

3.1.1 Encoder
The encoder is to map the input utterance X into a
compact vector that can capture its essential top-
ics. Specifically, we use a bi-directional GRU
(Cho et al., 2014) as the utterance encoder, and
each word xi is firstly represented by its semantic
representation ei mapped by semantic embedding
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Figure 2: The overall architecture of SC-Seq2Seq model.

matrix E as the input of the encoder. Then, the en-
coder represents the utterance X as a series of hid-
den vectors {ht}Tt=1 modeling the sequence from
both forward and backward directions. Finally, we
use the final backward hidden state as the initial
hidden state of the decoder.

3.1.2 Decoder
The decoder is to generate a response Y given the
hidden representations of the input utterance X un-
der some specificity level denoted by the control
variable s. Specifically, at step t, we define the
probability of generating any target word yt by a
“mixture” of probabilities:

p(yt) = βpM (yt) + γpS(yt), (1)

where pM (yt) denotes the semantic-based gener-
ation probability, pS(yt) denotes the specificity-
based generation probability, β and γ are the coef-
ficients.

Specifically, pM (yt) is defined the same as that
in traditional Seq2Seq model (Sutskever et al.,
2014):

pM (yt = w) = wT(Wh
M ·hyt +We

M ·et−1+bM ),
(2)

where w is a one-hot indicator vector of the word
w and et−1 is the semantic representation of the
t − 1-th generated word in decoder. Wh

M , We
M

and bM are parameters. hyt is the t-th hidden state
in the decoder which is computed by:

hyt = f(yt−1,hyt−1 , ct), (3)

where f is a GRU unit and ct is the context vec-
tor to allow the decoder to pay different attention
to different parts of input at different steps (Bah-
danau et al., 2015).

pS(yt) denotes the generation probability of the
target word given the specificity control variable
s. Here we introduce a Gaussian Kernel layer to
define this probability. Specifically, we assume
that each word, beyond its semantic representation
e, also has a usage representation u mapped by us-
age embedding matrix U. The usage representa-
tion of a word denotes its usage preference under
different specificity. The specificity control vari-
able s then interacts with the usage representations
through the Gaussian Kernel layer to produce the
specificity-based generation probability pS(yt):

pS(yt = w) =
1√
2πσ

exp(−(ΨS(U,w)− s)2
2σ2

),

ΨS(U,w) = σ(wT(U ·WU + bU )),
(4)

where σ2 is the variance, and ΨS(·) maps the word
usage representation into a real value with the spe-
cificity control variable s as the mean of the Gaus-
sian distribution. WU and bU are parameters to be
learned. Note here in general we can use any real-
value function to define ΨS(U,w). In this work,
we use the sigmoid function σ(·) for ΨS(U,w)
since we want to define s within the range [0,1] so
that each end has very clear meaning on the spe-
cificity, i.e., 0 denotes the most general response
while 1 denotes the most specific response. In the
next section, we will also keep this property when
we define the distant label for the control variable.

3.2 Distant Supervision
We train our SC-Seq2Seq model by maximizing
the log likelihood of generating responses over the
training set D:

L =
∑

(X,Y)∈D
logP (Y|X, s; θ). (5)
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where θ denotes all the model parameters. Note
here since s is an explicit control variable in our
model, we need the triples (X,Y, s) for training.
However, s is not directly available in the raw con-
versation corpus, thus we acquire distant labels for
s to learn our model. We introduce two ways of
distant supervision on the specificity control vari-
able s, namely Normalized Inverse Response Fre-
quency (NIRF) and Normalized Inverse Word Fre-
quency (NIWF).

3.2.1 Normalized Inverse Response
Frequency

Normalized Inverse Response Frequency (NIRF)
is based on the assumption that a response is more
general if it corresponds to more input utterances
in the corpus. Therefore, we use the inverse fre-
quency of a response in a conversation corpus to
indicate its specificity level. Specifically, we first
build the response collection R by extracting all
the responses from D. For a response Y ∈ R, let
fY denote its corpus frequency in R, we compute
its Inverse Response Frequency (IRF) as:

IRFY = log(1 + |R|)/fY, (6)

where |R| denotes the size of the response col-
lection R. Next, we use the min-max normaliz-
ation method (Jain et al., 2005) to obtain the NIRF
value. Namely,

NIRFY =
IRFY −minY′∈R(IRFY′)

maxY′∈R(IRFY′)−minY′∈R(IRFY′)
.

(7)
where max(IRFR) and min(IRFR) denotes the
maximal and minimum IRF value in R respect-
ively. The NIRF value is then used as the distant
label of s in training. Note here by using nor-
malized values, we aim to constrain the specificity
control variable s to be within the pre-defined con-
tinuous value range [0,1].

3.2.2 Normalized Inverse Word Frequency
Normalized Inverse Word Frequency (NIWF) is
based on the assumption that the specificity level
of a response depends on the collection of words
it contains, and the sentence is more specific if it
contains more specific words. Hence, we can use
the inverse corpus frequency of the words to indic-
ate the specificity level of a response. Specifically,
for a word y in the response Y, we first obtain its
Inverse Word Frequency (IWF) by:

IWFy = log(1 + |R|)/fy, (8)

where fy denotes the number of responses in R
containing the word y. Since a response usu-
ally contains a collection of words, there would
be multiple ways to define the response-level IWF
value, e.g., sum, average, minimum or maximum
of the IWF values of all the words. In our work,
we find that the best performance can be achieved
by using the maximum of the IWF of all the words
in Y to represent the response-level IWF by

IWFY = maxy∈Y(IWFy). (9)

This is reasonable since a response is specific as
long as it contains some specific words. We do not
require all the words in a response to be specific,
thus sum, average, and minimum would not be
appropriate operators for computing the response-
level IWF. Again, we use min-max normalization
to obtain the NIWF value for the response Y.

3.3 Specificity Controlled Response
Generation

Given a new input utterance, we can employ the
learned SC-Seq2Seq model to generate responses
at different specificity levels by varying the con-
trol variable s. In this way, we can simulate hu-
man conversations where one can actively con-
trol the response specificity depending on his/her
own mind. When we apply our model to a chat-
bot, there might be different ways to use the con-
trol variable for conversation in practice. If we
want the agent to always generate informative re-
sponses, we can set s to 1 or some values close
to 1. If we want the agent to be more dynamic,
we can sample s within the range [0,1] to en-
rich the styles in the response. We may further
employ some reinforcement learning technique to
learn to adjust the control variable depending on
users’ feedbacks. This would make the agent even
more vivid, and we leave this as our future work.

4 Experiment

In this section, we conduct experiments to verify
the effectiveness of our proposed model.

4.1 Dataset Description
We conduct our experiments on the public Short
Text Conversation (STC) dataset1 released in
NTCIR-13. STC maintains a large reposit-
ory of post-comment pairs from the Sina Weibo
which is one of the popular Chinese social sites.

1http://ntcirstc.noahlab.com.hk/STC2/stc-cn.htm
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Utterance-response pairs 3,788,571

Utterance vocabulary #w 120,930

Response vocabulary #w 524,791

Utterance max #w 38

Utterance avg #w 13

Response max #w 74

Response avg #w 10

Table 1: Short Text Conversation (STC) data statistics: #w
denotes the number of Chinese words.

STC dataset contains roughly 3.8 million post-
comment pairs, which could be used to simu-
late the utterance-response pairs in conversation.
We employ the Jieba Chinese word segmenter2

to tokenize the utterances and responses into se-
quences of Chinese words, and the detailed data-
set statistics are shown in Table 1. We randomly
selected two subsets as the development and test
dataset, each containing 10k pairs. The left pairs
are used for training.

4.2 Baselines Methods

We compare our proposed SC-Seq2Seq model
against several state-of-the-art baselines: (1)
Seq2Seq-att: the standard Seq2Seq model with
the attention mechanism (Bahdanau et al., 2015);
(2) MMI-bidi: the Seq2Seq model using Max-
imum Mutual Information (MMI) as the object-
ive function to reorder the generated responses (Li
et al., 2016a); (3) MARM: the Seq2Seq model
with a probabilistic framework to model the lat-
ent responding mechanisms (Zhou et al., 2017);
(4) Seq2Seq+IDF: an extension of Seq2Seq-att
by optimizing specificity under the reinforcement
learning framework, where the reward is calcu-
lated as the sentence level IDF score of the gen-
erated response (Yao et al., 2016). We refer to
our model trained using NIRF and NIWF as SC-
Seq2SeqNIRF and SC-Seq2SeqNIWF respectively.

4.3 Implementation Details

As suggested in (Shang et al., 2015), we con-
struct two separate vocabularies for utterances and
responses by using 40,000 most frequent words
on each side in the training data, covering 97.7%
words in utterances and 96.1% words in responses
respectively. All the remaining words are replaced
by a special token <UNK> symbol.

We implemented our model in Tensorflow3. We
2https://pypi.python.org/pypi/jieba
3https://www.tensorflow.org/

tuned the hyper-parameters via the development
set. Specifically, we use one layer of bi-directional
GRU for encoder and another uni-directional GRU
for decoder, with the GRU hidden unit size set as
300 in both the encoder and decoder. The dimen-
sion of semantic word embeddings in both utter-
ances and responses is 300, while the dimension
of usage word embeddings in responses is 50. We
apply the Adam algorithm (Kingma and Ba, 2015)
for optimization, where the parameters of Adam
are set as in (Kingma and Ba, 2015). The variance
σ2 of the Gaussian Kernel layer is set as 1, and all
other trainable parameters are randomly initialized
by uniform distribution within [-0.08,0.08]. The
mini-batch size for the update is set as 128. We
clip the gradient when its norm exceeds 5.

Our model is trained on a Tesla K80 GPU card,
and we run the training for up to 12 epochs,
which takes approximately five days. We select
the model that achieves the lowest perplexity on
the development dataset, and we report results on
the test dataset.

4.4 Evaluation Methodologies

For evaluation, we follow the existing work and
employ both automatic and human evaluations:
(1) distinct-1 & distinct-2 (Li et al., 2016a):
we count numbers of distinct unigrams and bi-
grams in the generated responses, and divide
the numbers by total number of generated uni-
grams and bigrams. Distinct metrics (both the
numbers and the ratios) can be used to evalu-
ate the specificity/diversity of the responses. (2)
BLEU (Papineni et al., 2002): BLEU has been
proved strongly correlated with human evalu-
ations. BLEU-n measures the average n-gram pre-
cision on a set of reference sentences. (3) Average
& Extrema (Serban et al., 2017): Average and
Extrema projects the generated response and the
ground truth response into two separate vectors by
taking the mean over the word embeddings or tak-
ing the extremum of each dimension respectively,
and then computes the cosine similarity between
them. (4) Human evaluation: Three labelers with
rich Weibo experience were recruited to conduct
evaluation. Responses from different models are
randomly mixed for labeling. Labelers refer to
300 random sampled test utterances and score the
quality of the responses with the following cri-
teria: 1) +2: the response is not only semantic-
ally relevant and grammatical, but also informat-
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Models distinct-1 distinct-2 BLEU-1 BLEU-2 Average Extrema

SC-Seq2SeqNIRF

s = 1 5258/0.064 16195/0.269 15.109 7.023 0.578 0.380
s = 0.8 5337/0.065 16105/0.271 15.112 7.003 0.578 0.381
s = 0.5 5318/0.065 16183/0.269 15.054 7.001 0.578 0.380
s = 0.2 5323/0.065 16087/0.270 15.168 7.032 0.580 0.380
s = 0 5397/0.066 16319/0.271 15.093 7.011 0.577 0.380

SC-Seq2SeqNIWF

s = 1 11588/0.116 27144/0.347 12.392 5.869 0.554 0.353
s = 0.8 6006/0.051 17843/0.257 11.492 5.703 0.553 0.350
s = 0.5 2835/0.050 9537/0.235 16.122 7.674 0.609 0.399
s = 0.2 1534/0.048 5117/0.218 8.313 4.058 0.542 0.335
s = 0 1038/0.046 3154/0.211 4.417 3.283 0.549 0.334

Table 2: Model analysis of our SC-Seq2Seq under the automatic evaluation.

Models distinct-1 distinct-2 BLEU-1 BLEU-2 Average Extrema
Seq2Seq-att 5048/0.060 15976/0.168 15.062 6.964 0.575 0.376
MMI-bidi 5074/0.082 12162/0.287 15.772 7.215 0.586 0.381
MARM 2566/0.096 3294/0.312 7.321 3.774 0.512 0.336
Seq2Seq+IDF 4722/0.052 15384/0.229 14.423 6.743 0.572 0.369
SC-Seq2SeqNIWF,s=1 11588/0.116 27144/0.347 12.392 5.869 0.554 0.353
SC-Seq2SeqNIWF,s=0.5 2835/0.050 9537/0.235 16.122 7.674 0.609 0.399

Table 3: Comparisons between our SC-Seq2Seq and the baselines under the automatic evaluation.

ive and interesting; 2) +1: the response is gram-
matical and can be used as a response to the utter-
ance, but is too trivial (e.g., “I don’t know”); 3) +0:
the response is semantically irrelevant or ungram-
matical (e.g., grammatical errors or UNK). Agree-
ments to measure inter-rater consistency among
three labelers are calculated with the Fleiss’ kappa
(Fleiss and Cohen, 1973).

4.5 Evaluation Results

Model Analysis: We first analyze our models
trained with different distant supervision inform-
ation. For each model, given a test utterance, we
vary the control variable s by setting it to five dif-
ferent values (i.e., 0, 0.2, 0.5, 0.8, 1) to check
whether the learned model can actually achieve
different specificity levels. As shown in Table 2,
we find that: (1) The SC-Seq2Seq model trained
with NIRF cannot work well. The test perform-
ances are almost the same with different s value.
This is surprising since the NIRF definition seems
to be directly corresponding to the specificity of
a response. By conducting further analysis, we
find that even though the conversation dataset is
large, it is still limited and a general response
could appear very few times in this corpus. In
other words, the inverse frequency of a response
is very weakly correlated with its response spe-

cificity. (2) The SC-Seq2Seq model trained with
NIWF can achieve our purpose. By varying the
control variable s from 0 to 1, the generated re-
sponses turn from general to specific as measured
by the distinct metrics. The results indicate that
the max inverse word frequency in a response is a
good distant label for the response specificity. (3)
When we compare the generated responses against
ground truth data, we find the SC-Seq2SeqNIWF
model with the control variable s set to 0.5 can
achieve the best performances. The results indic-
ate that there are diverse responses in real data in
terms of specificity, and it is necessary to take a
balanced setting if we want to fit the ground truth.

Baseline Comparison: The performance com-
parisons between our model and the baselines are
shown in Table 3. We have the following ob-
servations: (1) By using MMI as the objective,
MMI-bidi can improve the specificity (in terms
of distinct ratios) over the traditional Seq2Seq-att
model. (2) MARM can achieve the best distinct
ratios among the baseline methods, but the worst
in terms of the distinct numbers. The results indic-
ate that MARM tends to generate specific but very
short responses. Meanwhile, its low BLEU scores
also show that the responses generated by MARM
deviate from the ground truth significantly. (3) By
using the IDF information as the reward to train
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+2 +1 +0 kappa

Seq2Seq-att 29.32% 25.27% 45.41% 0.448
MMI-bidi 30.40% 24.85% 44.75% 0.471
MARM 20.11% 27.96% 51.93% 0.404
Seq2Seq+IDF 28.81% 23.87% 47.33% 0.418

SC-Seq2SeqNIWF,s=1 42.47% 14.29% 43.24% 0.507
SC-Seq2SeqNIWF,s=0.5 20.62% 40.16% 39.22% 0.451
SC-Seq2SeqNIWF,s=0 14.34% 46.38% 39.28% 0.526

Table 4: Results on the human evaluation.

the Seq2Seq model, the Seq2Seq+IDF does not
show much advantages, but only achieves compar-
able results as MMI-bidi. (4) By setting the con-
trol variable s to 1, our SC-Seq2SeqNIWF model
can achieve the best specificity performance as
evaluated by the distinct metrics. By setting the
control variable s to 0.5, our SC-Seq2SeqNIWF
model can best fit the ground truth data as eval-
uated by the BLEU scores, Average and Extrema.
All the improvements over the baseline models are
statistically significant (p-value < 0.01). These
results demonstrate the effectiveness as well as the
flexibility of our controlled generation model.

Table 4 shows the human evaluation results. We
can observe that: (1) SC-Seq2SeqNIWF,s=1 gen-
erates the most informative responses and inter-
esting (labeled as “+2”) and the least general re-
sponses than all the baseline models. Meanwhile,
SC-Seq2SeqNIWF,s=0 generates the most general
responses (labeled as “+1”); (2) MARM gener-
ates the most bad responses (labeled as “+0”),
which indicates the drawbacks of the unknown lat-
ent responding mechanisms; (3) The kappa values
of our models are all larger than 0.4, considered
as “moderate agreement” regarding quality of re-
sponses. The largest kappa value is achieved
by SC-Seq2SeqNIWF,s=0, which seems reasonable
since it is easy to reach an agreement on general
responses. Sign tests demonstrate the improve-
ments of SC-Seq2SeqNIWF,s=1 to the baseline mod-
els are statistically significant (p-value < 0.01).
All the human judgement results again demon-
strate the effectiveness of our controlled genera-
tion mechanism.

4.6 Case Study

To better understand how different models per-
form, we conduct some case studies. We randomly
sample three utterances from the test dataset, and
show the responses generated by different models.

Utterance: 三室一厅的帐篷，你值得拥有！A tent with three rooms and
one hall, you’re worth it!
Seq2Seq-att:这个不错，很好！It looks good, very good!
MMI-bidi:这个不错，我喜欢。It looks good, I like it.
MARM:不错。Good.
Seq2Seq+IDF:帐篷不错。The tent is good.

s=1:我想知道这帐篷是什么牌子的？I want to know what the brand of this
tent is?
s=0.8:我想知道这是在哪买的？I want to know where to buy it?
s=0.5:我也想买一个,可惜买不起！I want one too, but it’s a pity that I can’t
afford it.
s=0.2:不错不错！Good, good.
s=0:真的吗？Really?

Utterance:哎哟!被发现了!汤唯有必要那么美吗? Oh! Got caught! Why
is Tang Wei so beautiful?
Seq2Seq-att:我超喜欢她！I really like her!
MMI-bidi:好美。我超喜欢她！So beautiful. I really like her!
MARM:我不喜欢汤唯。I don’t like Tang Wei.
Seq2Seq+IDF:我超喜欢她的，我喜欢。I really like her, I like.

s=1:我超喜欢她的眼妆，她的气质很美！I really like her eye make-up, and
her temperament is so beautiful!
s=0.8:我超喜欢她的，她的眼睛很雪亮！I really like her, and her eyes are
so bright!
s=0.5:我觉得她很美，很喜欢她！I think she is very beautiful, and I really
like her!
s=0.2:我觉得她很美！I think she is very beautiful.
s=0:是的。Yes.

Utterance:将来也要养一只这么乖的的萨摩，让它陪着孩子一起长大。I
will keep such a sweet samoyed, and let it accompany my children to grow up.
Seq2Seq-att:这不是萨摩吗？Is it a samoyed?
MMI-bidi:好可爱的萨摩。What a lovely samoyed.
MARM:好可爱啊。So lovely.
Seq2Seq+IDF:好可爱的狗狗。What a lovely dog.

s=1: 萨摩耶好可爱，真想养一只! The samoyed is so lovely, and I really
want to keep one!
s=0.8:萨摩好可爱，好想掐掐。The samoyed is so lovely, and I really want
to pinch it.
s=0.5: 好可爱的狗狗，好可爱的狗狗。What a lovely dog, what a lovely
dog.
s=0.2:好可爱！好可爱！So lovely, so lovely!
s=0:好可爱！So lovely!

Table 5: Examples of response generation from the STC
test data. s = 1, 0.8, 0.5, 0.2, 0 are the outputs of our
SC-Seq2SeqNIWF with different s values.

As shown in Table 5, we can find that: (1) The re-
sponses generated by the four baselines are often
quite general and short, which may quickly lead to
an end of the conversation. (2) SC-Seq2SeqNIWF
with large control variable values (i.e., s > 0.5)
can generate very long and specific responses. In
these responses, we can find many informative
words. For example, in case 2 with s as 1 and 0.8,
we can find words like “眼妆(eye make-up)”, “气
质(temperament)” and “雪亮(bright)” which are
quite specific and strongly related to the conversa-
tion topic of “beauty”. (3) When we decrease the
control variable value, the generated responses be-
come more and more general and shorter from our
SC-Seq2SeqNIWF model.
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爸爸(dad) 水果(fruits) 脂肪肝(fatty liver) 单反相机(DSLR)

Usage Semantic Usage Semantic Usage Semantic Usage Semantic

更好(better) 妈妈(mother) 尝试(attempt) 蔬菜(vegetables) 坐久(outsit) 胖(fat) 亚洲杯(Asian Cup) 照相机(camera)

睡觉(sleep) 哥哥(brother) 诱惑(tempt) 牛奶(milk) 素食主义(vegetarian) 减肥(diet) 读取(read) 摄影(photography)

快乐(happy) 老公(husband) 表现(express) 西瓜(watermelon) 散步(walk) 高血压(hypertension) 半球(hemispherical) 镜头(shot)

无聊(boring) 爷爷(grandfather) 拥有(own) 米饭(rice) 因果关系(causality) 亚健康(sub-health) 防辐射(anti-radiation) 影楼(studio)

电影(movie) 姑娘(girl) 梦想(dream) 巧克力(chocolate) 哑铃(dumbbell) 呕吐(emesis) 无人机(UAV) 写真(image)

Table 6: Target words and their top-5 similar words under usage and semantic representations respectively.

fatty liveroutsit

fat

fatty liver fat

outsit

(a)  usage (b)  semantic

Figure 3: t-SNE embeddings of usage and semantic vectors.

4.7 Analysis on Usage Representations

We also conduct some analysis to understand the
usage representations of words introduced in our
model. We randomly sample 500 words from
our SC-Seq2SeqNIWF and apply t-SNE (Maaten
and Hinton, 2008) to visualize both usage and se-
mantic embeddings. As shown in Figure 3, we
can see that the two distributions are significantly
different. In the usage space, words like “脂
肪肝(fatty liver)” and “久坐(outsit)” lie closely
which are both specific words, and both are far
from the general words like “胖(fat)”. On the
contrary, in the semantic space, “脂肪肝(fatty
liver)” is close to “胖(fat)” since they are se-
mantically related, and both are far from the word
“久坐(outsit)”. Furthermore, given some sampled
target words, we also show the top-5 similar words
based on cosine similarity under both represent-
ations in Table 6. Again, we can see that the
nearest neighbors of a same word are quite differ-
ent under two representations. Neighbors based
on semantic representations are semantically re-
lated, while neighbors based on usage representa-
tions are not so related but with similar specificity
levels.

5 Conclusion

We propose a novel controlled response gener-
ation mechanism to handle different utterance-
response relationships in terms of specificity. We
introduce an explicit specificity control variable

into the Seq2Seq model, which interacts with
the usage representation of words to generate re-
sponses at different specificity levels. Empirical
results showed that our model can generate either
general or specific responses, and significantly
outperform state-of-the-art generation methods.
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Abstract

Human generates responses relying on se-
mantic and functional dependencies, in-
cluding coreference relation, among dia-
logue elements and their context. In this
paper, we investigate matching a response
with its multi-turn context using depen-
dency information based entirely on atten-
tion. Our solution is inspired by the re-
cently proposed Transformer in machine
translation (Vaswani et al., 2017) and we
extend the attention mechanism in two
ways. First, we construct representations
of text segments at different granularities
solely with stacked self-attention. Second,
we try to extract the truly matched seg-
ment pairs with attention across the con-
text and response. We jointly introduce
those two kinds of attention in one uni-
form neural network. Experiments on two
large-scale multi-turn response selection
tasks show that our proposed model sig-
nificantly outperforms the state-of-the-art
models.

1 Introduction

Building a chatbot that can naturally and con-
sistently converse with human-beings on open-
domain topics draws increasing research interests
in past years. One important task in chatbots is
response selection, which aims to select the best-
matched response from a set of candidates given
the context of a conversation. Besides playing a
critical role in retrieval-based chatbots (Ji et al.,
2014), response selection models have been used
in automatic evaluation of dialogue generation

∗Equally contributed.
†Work done as a visiting scholar at Baidu. Wayne Xin

Zhao is an associate professor of Renmin University of China
and can be reached at batmanfly@ruc.edu.cn.

(Lowe et al., 2017) and the discriminator of GAN-
based (Generative Adversarial Networks) neural
dialogue generation (Li et al., 2017).

Conversation Context

Speaker A: Hi I am looking to see what packages are installed on my system,  
  I don’t see a path, is the list being held somewhere else? 
Speaker B: Try dpkg - get-selections 
Speaker A: What is that like? A database for packages instead of  a flat file  
structure? 
Speaker B: dpkg is the debian package manager - get-selections simply shows  
you what packages are handed by it 

Response of Speaker A: No clue what do you need it for, its just reassurance 
as I don’t know the debian package manager

Figure 1: Example of human conversation on Ubuntu sys-
tem troubleshooting. Speaker A is seeking for a solution of
package management in his/her system and speaker B recom-
mend using, the debian package manager, dpkg. But speaker
A does not know dpkg, and asks a backchannel-question
(Stolcke et al., 2000), i.e., “no clue what do you need it for?”,
aiming to double-check if dpkg could solve his/her problem.
Text segments with underlines in the same color across con-
text and response can be seen as matched pairs.

Early studies on response selection only use
the last utterance in context for matching a reply,
which is referred to as single-turn response selec-
tion (Wang et al., 2013). Recent works show that
the consideration of a multi-turn context can fa-
cilitate selecting the next utterance (Zhou et al.,
2016; Wu et al., 2017). The reason why richer
contextual information works is that human gen-
erated responses are heavily dependent on the pre-
vious dialogue segments at different granularities
(words, phrases, sentences, etc), both semanti-
cally and functionally, over multiple turns rather
than one turn (Lee et al., 2006; Traum and Hee-
man, 1996). Figure 1 illustrates semantic con-
nectivities between segment pairs across context
and response. As demonstrated, generally there
are two kinds of matched segment pairs at dif-
ferent granularities across context and response:
(1) surface text relevance, for example the lexi-
cal overlap of words “packages”-“package” and
phrases “debian package manager”-“debian pack-
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age manager”. (2) latent dependencies upon which
segments are semantically/functionally related to
each other. Such as the word “it” in the response,
which refers to “dpkg” in the context, as well as
the phrase “its just reassurance” in the response,
which latently points to “what packages are in-
stalled on my system”, the question that speaker
A wants to double-check.

Previous studies show that capturing those
matched segment pairs at different granularities
across context and response is the key to multi-
turn response selection (Wu et al., 2017). How-
ever, existing models only consider the textual
relevance, which suffers from matching response
that latently depends on previous turns. More-
over, Recurrent Neural Networks (RNN) are con-
veniently used for encoding texts, which is too
costly to use for capturing multi-grained seman-
tic representations (Lowe et al., 2015; Zhou et al.,
2016; Wu et al., 2017). As an alternative, we
propose to match a response with multi-turn con-
text using dependency information based entirely
on attention mechanism. Our solution is inspired
by the recently proposed Transformer in machine
translation (Vaswani et al., 2017), which addresses
the issue of sequence-to-sequence generation only
using attention, and we extend the key attention
mechanism of Transformer in two ways:

self-attention By making a sentence attend to it-
self, we can capture its intra word-level de-
pendencies. Phrases, such as “debian pack-
age manager”, can be modeled with word-
level self-attention over word-embeddings,
and sentence-level representations can be
constructed in a similar way with phrase-
level self-attention. By hierarchically stack-
ing self-attention from word embeddings, we
can gradually construct semantic representa-
tions at different granularities.

cross-attention By making context and response
attend to each other, we can generally capture
dependencies between those latently matched
segment pairs, which is able to provide com-
plementary information to textual relevance
for matching response with multi-turn con-
text.

We jointly introduce self-attention and cross-
attention in one uniform neural matching network,
namely the Deep Attention Matching Network

(DAM), for multi-turn response selection. In prac-
tice, DAM takes each single word of an utter-
ance in context or response as the centric-meaning
of an abstractive semantic segment, and hierar-
chically enriches its representation with stacked
self-attention, gradually producing more and more
sophisticated segment representations surround-
ing the centric-word. Each utterance in context
and response are matched based on segment pairs
at different granularities, considering both textual
relevance and dependency information. In this
way, DAM generally captures matching informa-
tion between the context and the response from
word-level to sentence-level, important matching
features are then distilled with convolution & max-
pooling operations, and finally fused into one sin-
gle matching score via a single-layer perceptron.

We test DAM on two large-scale public multi-
turn response selection datasets, the Ubuntu Cor-
pus v1 and Douban Conversation Corpus. Exper-
imental results show that our model significantly
outperforms the state-of-the-art models, and the
improvement to the best baseline model on R10@1
is over 4%. What is more, DAM is expected
to be convenient to deploy in practice because
most attention computation can be fully paral-
lelized (Vaswani et al., 2017). Our contributions
are two-folds: (1) we propose a new matching
model for multi-turn response selection with self-
attention and cross-attention. (2) empirical results
show that our proposed model significantly out-
performs the state-of-the-art baselines on public
datasets, demonstrating the effectiveness of self-
attention and cross-attention.

2 Related Work

2.1 Conversational System

To build an automatic conversational agent is a
long cherished goal in Artificial Intelligence (AI)
(Turing, 1950). Previous researches include task-
oriented dialogue system, which focuses on com-
pleting tasks in vertical domain, and chatbots,
which aims to consistently and naturally converse
with human-beings on open-domain topics. Most
modern chatbots are data-driven, either in a fash-
ion of information-retrieval (Ji et al., 2014; Banchs
and Li, 2012; Nio et al., 2014; Ameixa et al.,
2014) or sequence-generation (Ritter et al., 2011).
The retrieval-based systems enjoy the advantage
of informative and fluent responses because it
searches a large dialogue repository and selects
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Figure 2: Overview of Deep Attention Matching Network.

candidate that best matches the current context.
The generation-based models, on the other hand,
learn patterns of responding from dialogues and
can directly generalize new responses.

2.2 Response Selection

Researches on response selection can be generally
categorized into single-turn and multi-turn. Most
early studies are single-turn that only consider the
last utterance for matching response (Wang et al.,
2013, 2015). Recent works extend it to multi-
turn conversation scenario, Lowe et al.,(2015) and
Zhou et al.,(2016) use RNN to read context and
response, use the last hidden states to represent
context and response as two semantic vectors, and
measure their relevance. Instead of only consider-
ing the last states of RNN, Wu et al.,(2017) take
hidden state at each time step as a text segment
representation, and measure the distance between
context and response via segment-segment match-
ing matrixes. Nevertheless, matching with depen-
dency information is generally ignored in previous
works.

2.3 Attention

Attention has been proven to be very effective in
Natural Language Processing (NLP) (Bahdanau
et al., 2015; Yin et al., 2016; Lin et al., 2017) and
other research areas (Xu et al., 2015). Recently,
Vaswani et al.,(2017) propose a novel sequence-
to-sequence generation network, the Transformer,

which is entirely based on attention. Not only
Transformer can achieve better translation results
than convenient RNN-based models, but also it is
very fast in training/predicting as the computation
of attention can be fully parallelized. Previous
works on attention mechanism show the superior
ability of attention to capture semantic dependen-
cies, which inspires us to improve multi-turn re-
sponse selection with attention mechanism.

3 Deep Attention Matching Network

3.1 Problem Formalization
Given a dialogue data set D = {(c, r, y)Z}NZ=1,
where c = {u0, ..., un−1} represents a conversa-
tion context with {ui}n−1i=0 as utterances and r as
a response candidate. y ∈ {0, 1} is a binary la-
bel, indicating whether r is a proper response for
c. Our goal is to learn a matching model g(c, r)
with D, which can measure the relevance between
any context c and candidate response r.

3.2 Model Overview
Figure 2 gives an overview of DAM, which
generally follows the representation-matching-
aggregation framework to match response with
multi-turn context. For each utterance ui =
[wui,k]

nui−1
k=0 in a context and its response candi-

date r = [wr,t]
nr−1
t=0 , where nui and nr stand for

the numbers of words, DAM first looks up a shared
word embedding table and represents ui and r as
sequences of word embeddings, namely U0

i =
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[e0ui,0, ..., e
0
ui,nui−1] and R0 = [e0r,0, ..., e

0
r,nr−1]

respectively, where e ∈ Rd denotes a d-dimension
word embedding.

A representation module then starts to construct
semantic representations at different granularities
for ui and r. Practically, L identical layers of
self-attention are hierarchically stacked, each lth

self-attention layer takes the output of the l − 1th

layer as its input, and composites the input se-
mantic vectors into more sophisticated represen-
tations based on self-attention. In this way, multi-
grained representations of ui and r are gradually
constructed, denoted as [Ul

i]
L
l=0 and [Rl]Ll=0 re-

spectively.
Given [U0

i , ...,UL
i ] and [R0, ...,RL], utterance

ui and response r are then matched with each
other in a manner of segment-segment similar-
ity matrix. Practically, for each granularity l ∈
[0...L], two kinds of matching matrixes are con-
structed, i.e., the self-attention-match Mui,r,l

self and
cross-attention-match Mui,r,l

cross , measuring the rele-
vance between utterance and response with textual
information and dependency information respec-
tively.

Those matching scores are finally merged into
a 3D matching image Q1. Each dimension of Q
represents each utterance in context, each word
in utterance and each word in response respec-
tively. Important matching information between
segment pairs across multi-turn context and can-
didate response is then extracted via convolution
with max-pooling operations, and further fused
into one matching score via a single-layer percep-
tron, representing the matching degree between
the response candidate and the whole context.

Specifically, we use a shared component,
the Attentive Module, to implement both self-
attention in representation and cross-attention in
matching. We will discuss in detail the implemen-
tation of Attentive Module and how we used it to
implement both self-attention and cross-attention
in following sections.

3.3 Attentive Module
Figure 3 shows the structure of Attentive Mod-
ule, which is similar to that used in Transformer
(Vaswani et al., 2017). Attentive Module has
three input sentences: the query sentence, the key
sentence and the value sentence, namely Q =
[ei]

nQ−1
i=0 ,K = [ei]

nK−1
i=0 ,V = [ei]

nV−1
i=0 respec-

1We refer to it as Q because it is like a cube.

query

Attention Weighted Sum

key value

Sum & Norm

Feed-Forward

Sum & Norm

Figure 3: Attentive Module.

tively, where nQ, nK and nV denote the number
of words in each sentence and ei stands for a d-
dimension embedding, nK is equal to nV . The At-
tentive Module first takes each word in the query
sentence to attend to words in the key sentence
via Scaled Dot-Product Attention (Vaswani et al.,
2017), then applies those attention results upon the
value sentence, which is defined as:

Att(Q,K) =
[
softmax(

Q[i] · KT√
d

)
]nQ−1
i=0

(1)

Vatt = Att(Q,K) · V ∈ RnQ×d (2)

where Q[i] is the ith embedding in the query sen-
tence Q. Each row of Vatt, denoted as Vatt[i],
stores the fused semantic information of words in
the value sentence that possibly have dependen-
cies to the ith word in query sentence. For each i,
Vatt[i] and Q[i] are then added up together, com-
positing them into a new representation that con-
tains their joint meanings. A layer normalization
operation (Ba et al., 2016) is then applied, which
prevents vanishing or exploding of gradients. A
feed-forward network FFN with RELU (LeCun
et al., 2015) activation is then applied upon the
normalization result, in order to further process the
fused embeddings, defined as:

FFN(x) = max(0, xW1 + b1)W2 + b2 (3)

where, x is a 2D-tensor in the same shape of query
sentence Q and W1, b1,W2, b2 are learnt parame-
ters. This kind of activation is empirically useful
in other works, and we also adapt it in our model.
The result FFN(x) is a 2D-tensor that has the same
shape as x, FFN(x) is then residually added (He
et al., 2016) to x, and the fusion result is then nor-
malized as the final outputs. We refer to the whole
Attentive Module as:

AttentiveModule(Q,K,V) (4)
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As described, Attentive Module can capture de-
pendencies across query sentence and key sen-
tence, and further use the dependency information
to composite elements in the query sentence and
the value sentence into compositional representa-
tions. We exploit this property of the Attentive
Module to construct multi-grained semantic rep-
resentations as well as match with dependency in-
formation.

3.4 Representation
Given U0

i or R0, the word-level embedding rep-
resentations for utterance ui or response r, DAM
takes U0

i ro R0 as inputs and hierarchically stacks
the Attentive Module to construct multi-grained
representations of ui and r, which is formulated
as:

Ul+1
i = AttentiveModule(Ul

i,U
l
i,U

l
i) (5)

Rl+1 = AttentiveModule(Rl,Rl,Rl) (6)

where l ranges from 0 to L − 1, denoting the dif-
ferent levels of granularity. By this means, words
in each utterance or response repeatedly function
together to composite more and more holistic rep-
resentations, we refer to those multi-grained rep-
resentations as [U0

i , ...,UL
i ] and [R0, ...,RL] here-

after.

3.5 Utterance-Response Matching
Given [Ul

i]
L
l=0 and [Rl]Ll=0, two kinds of segment-

segment matching matrixes are constructed at each
level of granularity l, i.e., the self-attention-match
Mui,r,l

self and cross-attention-match Mui,r,l
cross . Mui,r,l

self

is defined as:

Mui,r,l
self = {Ul

i[k]
T · Rl[t]}nui×nr (7)

in which, each element in the matrix is the dot-
product of Ul

i[k] and Rl[t], the kth embedding in
Ul
i and the tth embedding in Rl, reflecting the tex-

tual relevance between the kth segment in ui and
tth segment in r at the lth granularity. The cross-
attention-match matrix is based on cross-attention,
which is defined as:

Ũ
l

i = AttentiveModule(Ul
i,R

l,Rl) (8)

R̃
l
= AttentiveModule(Rl,Ul

i,U
l
i) (9)

Mui,r,l
cross = {Ũ

l

i[k]
T
· R̃l

[t]}nui×nr (10)

where we use Attentive Module to make Ul
i and

Rl crossly attend to each other, constructing two

new representations for both of them, written as
Ũ
l

i and R̃
l

respectively. Both Ũ
l

i and R̃
l

implicitly
capture semantic structures that cross the utterance
and response. In this way, those inter-dependent
segment pairs are close to each other in represen-
tations, and dot-products between those latently
inter-dependent pairs could get increased, provid-
ing dependency-aware matching information.

3.6 Aggregation

DAM finally aggregates all the segmental match-
ing degrees across each utterance and response
into a 3D matching image Q, which is defined as:

Q = {Qi,k,t}n×nui×nr (11)

where each pixel Qi,k,t is formulated as:

Qi,k,t =

[Mui,r,l
self [k, t]]Ll=0 ⊕ [Mui,r,l

cross [k, t]]
L
l=0

(12)

⊕ is concatenation operation, and each pixel has
2(L + 1) channels, storing the matching degrees
between one certain segment pair at different lev-
els of granularity. DAM then leverages two-
layered 3D convolution with max-pooling opera-
tions to distill important matching features from
the whole image. The operation of 3D convo-
lution with max-pooling is the extension of typi-
cal 2D convolution, whose filters and strides are
3D cubes2. We finally compute matching score
g(c, r) based on the extracted matching features
fmatch(c, r) via a single-layer perceptron, which
is formulated as:

g(c, r) = σ(W3fmatch(c, r) + b3) (13)

where W3 and b3 are learnt parameters, and σ is
sigmoid function that gives the probability if r is a
proper candidate to c. The loss function of DAM
is the negative log likelihood, defined as:

p(y|c, r) = g(c, r)y + (1− g(c, r))(1− y) (14)

L(·) = −
∑

(c,r,y)∈D
log(p(y|c, r)) (15)

4 Experiment

2https://www.tensorflow.org/api docs/python/tf/nn/conv3d
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Ubuntu Corpus Douban Conversation Corpus
R2@1 R10@1 R10@2 R10@5 MAP MRR P@1 R10@1 R10@2 R10@5

DualEncoderlstm 0.901 0.638 0.784 0.949 0.485 0.527 0.320 0.187 0.343 0.720
DualEncoderbilstm 0.895 0.630 0.780 0.944 0.479 0.514 0.313 0.184 0.330 0.716
MV-LSTM 0.906 0.653 0.804 0.946 0.498 0.538 0.348 0.202 0.351 0.710
Match-LSTM 0.904 0.653 0.799 0.944 0.500 0.537 0.345 0.202 0.348 0.720
Multiview 0.908 0.662 0.801 0.951 0.505 0.543 0.342 0.202 0.350 0.729
DL2R 0.899 0.626 0.783 0.944 0.488 0.527 0.330 0.193 0.342 0.705
SMNdynamic 0.926 0.726 0.847 0.961 0.529 0.569 0.397 0.233 0.396 0.724
DAM 0.938 0.767 0.874 0.969 0.550 0.601 0.427 0.254 0.410 0.757
DAMfirst 0.927 0.736 0.854 0.962 0.528 0.579 0.400 0.229 0.396 0.741
DAMlast 0.932 0.752 0.861 0.965 0.539 0.583 0.408 0.242 0.407 0.748
DAMself 0.931 0.741 0.859 0.964 0.527 0.574 0.382 0.221 0.403 0.750
DAMcross 0.932 0.749 0.863 0.966 0.535 0.585 0.400 0.234 0.411 0.733

Table 1: Experimental results of DAM and other comparison approaches on Ubuntu Corpus V1 and
Douban Conversation Corpus.

4.1 Dataset

We test DAM on two public multi-turn response
selection datasets, the Ubuntu Corpus V1 (Lowe
et al., 2015) and the Douban Conversation Corpus
(Wu et al., 2017). The former one contains multi-
turn dialogues about Ubuntu system troubleshoot-
ing in English and the later one is crawled from a
Chinese social networking on open-domain topics.
The Ubuntu training set contains 0.5 million multi-
turn contexts, and each context has one positive re-
sponse that generated by human and one negative
response which is randomly sampled. Both vali-
dation and testing sets of Ubuntu Corpus have 50k
contexts, where each context is provided with one
positive response and nine negative replies. The
Douban corpus is constructed in a similar way to
the Ubuntu Corpus, except that its validation set
contains 50k instances with 1:1 positive-negative
ratios and the testing set of Douban corpus is con-
sisted of 10k instances, where each context has 10
candidate responses, collected via a tiny inverted-
index system (Lucene3), and labels are manually
annotated.

4.2 Evaluation Metric

We use the same evaluation metrics as in pre-
vious works (Wu et al., 2017). Each compari-
son model is asked to select k best-matched re-
sponse from n available candidates for the given
conversation context c, and we calculate the re-
call of the true positive replies among the k se-
lected ones as the main evaluation metric, denoted
as Rn@k =

∑k
i=1 yi∑n
i=1 yi

, where yi is the binary la-
bel for each candidate. In addition to Rn@k,
we use MAP (Mean Average Precision) (Baeza-

3https://lucenent.apache.org/

Yates et al., 1999), MRR (Mean Reciprocal Rank)
(Voorhees et al., 1999), and Precision-at-one P@1
especially for Douban corpus, following the set-
ting of previous works (Wu et al., 2017).

4.3 Comparison Methods
RNN-based models : Previous best performing

models are based on RNNs, we choose
representative models as baselines, includ-
ing SMNdynamic(Wu et al., 2017), Multi-
view(Zhou et al., 2016), DualEncoderlstm
and DualEncoderbilstm (Lowe et al., 2015),
DL2R (Yan et al., 2016), Match-LSTM
(Wang and Jiang, 2017) and MV-LSTM
(Pang et al., 2016), where SMNdynamic

achieves the best scores against all the other
published works, and we take it as our state-
of-the-art baseline.

Ablation : To verify the effects of multi-grained
representation, we setup two comparison
models, i.e., DAMfirst and DAMlast, which
dispense with the multi-grained representa-
tions in DAM, and use representation re-
sults from the 0th layer and Lth layer of
self-attention instead. Moreover, we setup
DAMself and DAMcross, which only use
self-attention-match or cross-attention-match
respectively, in order to examine the ef-
fectiveness of both self-attention-match and
cross-attention-match.

4.4 Model Training
We copy the reported evaluation results of all base-
lines for comparison. DAM is implemented in
tensorflow4, and the used vocabularies, word em-

4https://www.tensorflow.org. Our code and data will be
available at https://github.com/baidu/Dialogue/DAM
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bedding sizes for Ubuntu corpus and Douban cor-
pus are all set as same as the SMN (Wu et al.,
2017). We consider at most 9 turns and 50 words
for each utterance (response) in our experiments,
word embeddings are pre-trained using training
sets via word2vec (Mikolov et al., 2013), simi-
lar to previous works. We use zero-pad to han-
dle the variable-sized input and parameters in FFN
are set to 200, same as word-embedding size. We
test stacking 1-7 self-attention layers, and reported
our results with 5 stacks of self-attention because
it gains the best scores on validation set. The
1st convolution layer has 32 [3,3,3] filters with
[1,1,1] stride, and its max-pooling size is [3,3,3]
with [3,3,3] stride. The 2nd convolution layer has
16 [3,3,3] filters with [1,1,1] stride, and its max-
pooling size is also [3,3,3] with [3,3,3] stride. We
tune DAM and the other ablation models with
adam optimizer (Le et al., 2011) to minimize loss
function defined in Eq 15. Learning rate is initial-
ized as 1e-3 and gradually decreased during train-
ing, and the batch-size is 256. We use validation
sets to select the best models and report their per-
formances on test sets.

4.5 Experiment Result

Table 1 shows the evaluation results of DAM as
well as all comparison models. As demonstrated,
DAM significantly outperforms other competitors
on both Ubuntu Corpus and Douban Conversa-
tion Corpus, including SMNdynamic, which is the
state-of-the-art baseline, demonstrating the supe-
rior power of attention mechanism in matching re-
sponse with multi-turn context. Besides, both the
performances of DAMfirst and DAMself decrease
a lot compared with DAM, which shows the effec-
tiveness of self-attention and cross-attention. Both
DAMfirst and DAMlast underperform DAM,
which demonstrates the benefits of using multi-
grained representations. Also the absence of
self-attention-match brings down the precision, as
shown in DAMcross, exhibiting the necessity of
jointly considering textual relevance and depen-
dency information in response selection.

One notable point is that, while DAMfirst is
able to achieve close performance to SMNdynamic,
it is about 2.3 times faster than SMNdynamic in our
implementation as it is very simple in computa-
tion. We believe that DAMfirst is more suitable
to the scenario that has limitations in computation
time or memories but requires high precise, such

as industry application or working as an compo-
nent in other neural networks like GANs.

5 Analysis

We use the Ubuntu Corpus for analyzing how self-
attention and cross-attention work in DAM from
both quantity analysis as well as visualization.

5.1 Quantity Analysis

We first study how DAM performs in different ut-
terance number of context. The left part in Fig-
ure 4 shows the changes of R10@1 on Ubuntu
Corpus across contexts with different number of
utterance. As demonstrated, while being good at
matching response with long context that has more
than 4 utterances, DAM can still stably deal with
short context that only has 2 turns.
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f w
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number of turns in context

Figure 4: DAM’s performance on Ubuntu Corpus across
different contexts. The left part shows the performance in
different utterance number of context. The right part shows
performance in different average utterance text length of con-
text as well as self-attention stack depth.

Moreover, the right part of Figure 4 gives the
comparison of performance across different con-
texts with different average utterance text length
and self-attention stack depth. As demonstrated,
stacking self-attention can consistently improve
matching performance for contexts having differ-
ent average utterance text length, implying the
stability advantage of using multi-grained seman-
tic representations. The performance of matching
short utterances, that have less than 10 words, is
obviously lower than the other longer ones. This
is because the shorter the utterance text is, the
fewer information it contains, and the more dif-
ficult for selecting the next utterance, while stack-
ing self-attention can still help in this case. How-
ever for long utterances like containing more than
30 words, stacking self-attention can significantly
improve the matching performance, which means
that the more information an utterance contains,
the more stacked self-attention it needs to capture
its intra semantic structures.
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Figure 5: Visualization of self-attention-match, cross-attention-match as well as the distribution of self-attention and cross-
attention in matching response with the first utterance in Figure 1. Each colored grid represents the matching degree or attention
score between two words. The deeper the color is, the more important this grid is.

5.2 Visualization

We study the case in Figure 1 for analyzing in de-
tail how self-attention and cross-attention work.
Practically, we apply a softmax operation over
self-attention-match and cross-attention-match, to
examine the variance of dominating matching
pairs during stacking self-attention or applying
cross-attention. Figure 5 gives the visualization
results of the 0th, 2nd and 4th self-attention-match
matrixes, the 4th cross-attention-match matrix, as
well as the distribution of self-attention and cross-
attention in the 4th layer in matching response with
the first utterance (turn 0) due to space limitation.
As demonstrated, important matching pairs in self-
attention-match in stack 0 are nouns, verbs, like
“package” and “packages”, those are similar in
topics. However matching scores between prepo-
sitions or pronouns pairs, such as “do” and “what”,
become more important in self-attention-match in
stack 4. The visualization results of self-attention
show the reason why matching between preposi-
tions or pronouns matters, as demonstrated, self-
attention generally capture the semantic structure
of “no clue what do you need package manager”
for “do” in response and “what packages are in-
stalled” for “what” in utterance, making segments
surrounding “do” and “what” close to each other
in representations, thus increases their dot-product
results.

Also as shown in Figure 5, self-attention-
match and cross-attention-match capture com-
plementary information in matching utterance
with response. Words like “reassurance” and
“its” in response significantly get larger match-
ing scores in cross-attention-match compared with
self-attention-match. According to the visual-
ization of cross-attention, “reassurance” generally
depends on “system” “don’t” and “held” in utter-
ance, which makes it close to words like “list”,
“installed” or “held” of utterance. Scores of cross-
attention-match trend to centralize on several seg-
ments, which probably means that those segments
in response generally capture structure-semantic
information across utterance and response, ampli-
fying their matching scores against the others.

5.3 Error Analysis

To understand the limitations of DAM and where
the future improvements might lie, we analyze 100
strong bad cases from test-set that fail in R10@5.
We find two major kinds of bad cases: (1) fuzzy-
candidate, where response candidates are basi-
cally proper for the conversation context, except
for a few improper details. (2) logical-error,
where response candidates are wrong due to logi-
cal mismatch, for example, given a conversation
context A: “I just want to stay at home tomor-
row.”, B: “Why not go hiking? I can go with
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you.”, response candidate like “Sure, I was plan-
ning to go out tomorrow.” is logically wrong be-
cause it is contradictory to the first utterance of
speaker A. We believe generating adversarial ex-
amples, rather than randomly sampling, during
training procedure may be a good idea for address-
ing both fuzzy-candidate and logical-error, and
to capture logic-level information hidden behind
conversation text is also worthy to be studied in
the future.

6 Conclusion

In this paper, we investigate matching a response
with its multi-turn context using dependency in-
formation based entirely on attention. Our solu-
tion extends the attention mechanism of Trans-
former in two ways: (1) using stacked self-
attention to harvest multi-grained semantic repre-
sentations. (2) utilizing cross-attention to match
with dependency information. Empirical results
on two large-scale datasets demonstrate the ef-
fectiveness of self-attention and cross-attention in
multi-turn response selection. We believe that
both self-attention and cross-attention could bene-
fit other research area, including spoken language
understanding, dialogue state tracking or seq2seq
dialogue generation. We would like to explore
in depth how attention can help improve neu-
ral dialogue modeling for both chatbots and task-
oriented dialogue systems in our future work.
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Abstract

Generating emotional language is a key
step towards building empathetic natural
language processing agents. However, a
major challenge for this line of research
is the lack of large-scale labeled training
data, and previous studies are limited to
only small sets of human annotated sen-
timent labels. Additionally, explicitly con-
trolling the emotion and sentiment of gen-
erated text is also difficult. In this paper,
we take a more radical approach: we ex-
ploit the idea of leveraging Twitter data
that are naturally labeled with emojis.

We collect a large corpus of Twitter con-
versations that include emojis in the re-
sponse and assume the emojis convey the
underlying emotions of the sentence. We
investigate several conditional variational
autoencoders training on these conversa-
tions, which allow us to use emojis to con-
trol the emotion of the generated text. Ex-
perimentally, we show in our quantitative
and qualitative analyses that the proposed
models can successfully generate high-
quality abstractive conversation responses
in accordance with designated emotions.

1 Introduction

A critical research problem for artificial intelli-
gence is to design intelligent agents that can per-
ceive and generate human emotions. In the past
decade, there has been significant progress in sen-
timent analysis (Pang et al., 2002, 2008; Liu,
2012) and natural language understanding—e.g.,
classifying the sentiment of online reviews. To
build empathetic conversational agents, machines
must also have the ability to learn to generate emo-
tional sentences.

Figure 1: An example Twitter conversation with
emoji in the response (top). We collected a large
amount of these conversations, and trained a rein-
forced conditional variational autoencoder model
to automatically generate abstractive emotional re-
sponses given any emoji.

One of the major challenges is the lack of large-
scale, manually labeled emotional text datasets.
Due to the cost and complexity of manual anno-
tation, most prior research studies primarily focus
on small-sized labeled datasets (Pang et al., 2002;
Maas et al., 2011; Socher et al., 2013), which are
not ideal for training deep learning models with a
large number of parameters.

In recent years, a handful of medium to large
scale, emotional corpora in the area of emotion
analysis (Go et al., 2016) and dialog (Li et al.,
2017b) are proposed. However, all of them are
limited to a traditional, small set of labels, for ex-
ample, “happiness,” “sadness,” “anger,” etc. or
simply binary “positive” and “negative.” Such
coarse-grained classification labels make it diffi-
cult to capture the nuances of human emotion.

To avoid the cost of human annotation, we
propose the use of naturally-occurring emoji-rich
Twitter data. We construct a dataset using Twit-
ter conversations with emojis in the response. The
fine-grained emojis chosen by the users in the re-
sponse can be seen as the natural label for the emo-
tion of the response.

We assume that the emotions and nuances of
emojis are established through the extensive us-
age by Twitter users. If we can create agents that
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are able to imitate Twitter users’ language style
when using those emojis, we claim that, to some
extent, we have captured those emotions. Using a
large collection of Twitter conversations, we then
trained a conditional generative model to automat-
ically generate the emotional responses. Figure 1
shows an example.

To generate emotional responses in dialogs, an-
other technical challenge is to control the tar-
get emotion labels. In contrast to existing
work (Huang et al., 2017) that uses information
retrieval to generate emotional responses, the re-
search question we are pursuing in this paper, is
to design novel techniques that can generate ab-
stractive responses of any given arbitrary emo-
tions, without having human annotators to label a
huge amount of training data.

To control the target emotion of the response,
we investigate several encoder-decoder genera-
tion models, including a standard attention-based
SEQ2SEQ model as the base model, and a more so-
phisticated CVAE model (Kingma and Welling,
2013; Sohn et al., 2015), as VAE is recently
found convenient in dialog generation (Zhao et al.,
2017).

To explicitly improve emotion expression, we
then experiment with several extensions to the
CVAE model, including a hybrid objective with
policy gradient. The performance in emotion ex-
pression is automatically evaluated by a separate
sentence-to-emoji classifier (Felbo et al., 2017).
Additionally, we conducted a human evaluation to
assess the quality of the generated emotional text.

Results suggest that our method is capable of
generating state-of-the-art emotional text at scale.
Our main contributions are three-fold:

• We provide a publicly available, large-scale
dataset of Twitter conversation-pairs natu-
rally labeled with fine-grained emojis.

• We are the first to use naturally labeled emo-
jis for conducting large-scale emotional re-
sponse generation for dialog.

• We apply several state-of-the-art generative
models to train an emotional response gener-
ation system, and analysis confirms that our
models deliver strong performance.

In the next section, we outline related work on
sentiment analysis and emoji on Twitter data, as
well as neural generative models. Then, we will

introduce our new emotional research dataset and
formalize the task. Next, we will describe the neu-
ral models we applied for the task. Finally, we
will show automatic evaluation and human evalua-
tion results, and some generated examples. Exper-
iment details can be found in supplementary ma-
terials.

2 Related Work

In natural language processing, sentiment anal-
ysis (Pang et al., 2002) is an area that in-
volves designing algorithms for understanding
emotional text. Our work is aligned with
some recent studies on using emoji-rich Twit-
ter data for sentiment classification. Eisner
et al. (2016) proposes a method for training
emoji embedding EMOJI2VEC, and combined with
word2vec (Mikolov et al., 2013), they apply the
embeddings for sentiment classification. Deep-
Moji (Felbo et al., 2017) is closely related to
our study: It makes use of a large, naturally la-
beled Twitter emoji dataset, and train an atten-
tive bi-directional long short-term memory net-
work (Hochreiter and Schmidhuber, 1997) model
for sentiment analysis. Instead of building a sen-
timent classifier, our work focuses on generating
emotional responses, given the context and the tar-
get emoji.

Our work is also in line with the recent progress
of the application of Variational Autoencoder
(VAE) (Kingma and Welling, 2013) in dialog gen-
eration. VAE (Kingma and Welling, 2013) en-
codes data in a probability distribution, and then
samples from the distribution to generate exam-
ples. However, the original frameworks do not
support end-to-end generation. Conditional VAE
(CVAE) (Sohn et al., 2015; Larsen et al., 2015)
was proposed to incorporate conditioning option
in the generative process. Recent research in di-
alog generation shows that language generated
by VAE models enjoy significantly greater di-
versity than traditional SEQ2SEQ models (Zhao
et al., 2017), which is a preferable property toward
building a true-to-life dialog agents.

In dialog research, our work aligns with
recent advances in sequence-to-sequence mod-
els (Sutskever et al., 2014) using long short-
term memory networks (Hochreiter and Schmid-
huber, 1997). A slightly altered version of this
model serves as our base model. Our modifica-
tion enabled it to condition on single emojis. Li
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184,500 9,505 5,558 2,771

38,479 9,455 5,114 2,532

30,447 9,298 5,026 2,332

25,018 8,385 4,738 2,293

19,832 8,341 4,623 1,698

16,934 8,293 4,531 1,534

17,009 8,144 4,287 1,403

15,563 7,101 4,205 1,258

15,046 6,939 4,066 1,091

14,121 6,769 3,973 698

13,887 6,625 3,841 627

13,741 6,558 3,863 423

13,147 6,374 3,236 250

10,927 6,031 3,072 243

10,104 5,849 3,088 154

9,546 5,624 2,969 130

Table 1: All 64 emoji labels, and number of con-
versations labeled by each emoji.

et al. (2016) use a reinforcement learning algo-
rithm to improve the vanilla sequence-to-sequence
model for non-task-oriented dialog systems, but
their reinforced and its follow-up adversarial mod-
els (Li et al., 2017a) also do not model emotions
or conditional labels. Zhao et al. (2017) recently
introduced conditional VAE for dialog modeling,
but neither did they model emotions in the con-
versations, nor explore reinforcement learning to
improve results. Given a dialog history, Xie et.
al.’s work recommends suitable emojis for current
conversation. Xie et. al. (2016)compress the dia-
log history to vector representation through a hi-
erarchical RNN and then map it to a emoji by a
classifier, while in our model, the representation
for original tweet, combined with the emoji em-
bedding, is used to generate a response.

3 Dataset

We start by describing our dataset and approaches
to collecting and processing the data. Social me-
dia is a natural source of conversations, and people
use emojis extensively within their posts. How-
ever, not all emojis are used to express emotion
and frequency of emojis are unevenly distributed.
Inspired by DeepMoji (Felbo et al., 2017), we use
64 common emojis as labels (see Table 1), and col-
lect a large corpus of Twitter conversations con-

Before: @amy miss you soooo much!!!

After: miss you soo much!
Label:

Figure 2: An artificial example illustrating prepro-
cess procedure and choice of emoji label. Note
that emoji occurrences in responses are counted
before the deduplication process.

taining those emojis. Note that emojis with the dif-
ference only in skin tone are considered the same
emoji.

3.1 Data Collection

We crawled conversation pairs consisting of an
original post and a response on Twitter from 12th
to 14th of August, 2017. The response to a con-
versation must include at least one of the 64 emoji
labels. Due to the limit of Twitter streaming API,
tweets are filtered on the basis of words. In our
case, a tweet can be reached only if at least one
of the 64 emojis is used as a word, meaning it has
to be a single character separated by blank space.
However, this kind of tweets is arguably cleaner,
as it is often the case that this emoji is used to wrap
up the whole post and clusters of repeated emojis
are less likely to appear in such tweets.

For both original tweets and responses, only En-
glish tweets without multimedia contents (such as
URL, image or video) are allowed, since we as-
sume that those contents are as important as the
text itself for the machine to understand the con-
versation. If a tweet contains less than three alpha-
betical words, the conversation is not included in
the dataset.

3.2 Emoji Labeling

Then we label responses with emojis. If there are
multiple types of emoji in a response, we use the
emoji with most occurrences inside the response.
Among those emojis with same occurrences, we
choose the least frequent one across the whole cor-
pus, on the hypothesis that less frequent tokens
better represent what the user wants to express.
See Figure 2 for example.
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3.3 Data Preprocessing
During preprocessing, all mentions and hashtags
are removed, and punctuation1 and emojis are sep-
arated if they are adjacent to words. Words with
digits are all treated as the same special token.

In some cases, users use emojis and symbols
in a cluster to express emotion extensively. To
normalize the data, words with more than two re-
peated letters, symbol strings of more than one re-
peated punctuation symbols or emojis are short-
ened, for example, ‘!!!!’ is shortened to ‘!’, and
‘yessss’ to ‘yess’. Note that we do not reduce du-
plicate letters completely and convert the word to
the ‘correct’ spelling (‘yes’ in the example) since
the length of repeated letters represents the inten-
sity of emotion. By distinguishing ‘yess’ from
‘yes’, the emotional intensity is partially preserved
in our dataset.

Then all symbols, emojis, and words are tok-
enized. Finally, we build a vocabulary of size 20K
according to token frequency. Any tokens outside
the vocabulary are replaced by the same special
token.

We randomly split the corpus into 596,959
/32,600/32,600 conversation pairs for train /vali-
dation/test set2. Distribution of emoji labels within
the corpus is presented in Table 1.

4 Generative Models

In this work, our goal is to generate emotional re-
sponses to tweets with the emotion specified by
an emoji label. We assembled several generative
models and trained them on our dataset.

4.1 Base: Attention-Based
Sequence-to-Sequence Model

Traditional studies use deep recurrent architecture
and encoder-decoder models to generate conver-
sation responses, mapping original texts to target
responses. Here we use a sequence-to-sequence
(SEQ2SEQ) model (Sutskever et al., 2014) with
global attention mechanism (Luong et al., 2015)
as our base model (See Figure 3).

We use randomly initialized embedding vectors
to represent each word. To specifically model the

1Emoticons (e.g. ‘:)’, ‘(-:’) are made of mostly punctua-
tion marks. They are not examined in this paper. Common
emoticons are treated as words during preprocessing.

2We will release the dataset with all tweets in its original
form before preprocessing. To comply with Twitter’s policy,
we will include the tweet IDs in our release, and provide a
script for downloading the tweets using the official API. No
information of the tweet posters is collected.

Figure 3: From bottom to top is a forward pass of
data during training. Left: the base model encodes
the original tweets in vo, and generates responses
by decoding from the concatenation of vo and the
embedded emoji, ve. Right: In the CVAE model,
all additional components (outlined in gray) can be
added incrementally to the base model. A separate
encoder encodes the responses in x. Recognition
network inputs x and produces the latent variable z
by reparameterization trick. During training, The
latent variable z is concatenated with vo and ve and
fed to the decoder.

emotion, we compute the embedding vector of the
emoji label the same way as word embeddings.
The emoji embedding is further reduced to smaller
size vector ve through a dense layer. We pass the
embeddings of original tweets through a bidirec-
tional RNN encoder of GRU cells (Schuster and
Paliwal, 1997; Chung et al., 2014). The encoder
outputs a vector vo that represents the original
tweet. Then vo and ve are concatenated and fed to
a 1-layer RNN decoder of GRU cells. A response
is then generated from the decoder.

4.2 Conditional Variational Autoencoder
(CVAE)

Having similar encoder-decoder structures,
SEQ2SEQ can be easily extended to a Conditional
Variational Autoencoder (CVAE) (Sohn et al.,
2015). Figure 3 illustrates the model: response
encoder, recognition network, and prior network
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are added on top of the SEQ2SEQ model. Re-
sponse encoder has the same structure to original
tweet encoder, but it has separate parameters. We
use embeddings to represent Twitter responses
and pass them through response encoder.

Mathematically, CVAE is trained by maximiz-
ing a variational lower bound on the conditional
likelihood of x given c, according to:

p(x|c) =
∫
p(x|z, c)p(z|c)dz (1)

z, c and x are random variables. z is the la-
tent variable. In our case, the condition c =
[vo; ve], target x represents the response. De-
coder is used to approximate p(x|z, c), denoted
as pD(x|z, c). Prior network is introduced to ap-
proximate p(z|c), denoted as pP (z|c). Recogni-
tion network qR(z|x, c) is introduced to approx-
imate true posterior p(z|x, c) and will be absent
during generation phase. By assuming that the la-
tent variable has a multivariate Gaussian distribu-
tion with a diagonal covariance matrix, the lower
bound to log p(x|c) can then be written by:

−L(θD, θP , θR;x, c) = KL(qR(z|x, c)||pP (z|c))
−EqR(z|x,c)(log pD(x|z, c))

(2)

θD, θP , θR are parameters of those networks.
In recognition/prior network, we first pass the

variables through an MLP to get the mean and log
variance of z’s distribution. Then we run a repa-
rameterization trick (Kingma and Welling, 2013)
to sample latent variables. During training, z by
the recognition network is passed to the decoder
and trained to approximate z′ by the prior network.
While during testing, the target response is absent,
and z′ by the prior network is passed to the de-
coder.

Our CVAE inherits the same attention mecha-
nism from the base model connecting the original
tweet encoder to the decoder, which makes our
model deviate from previous works of CVAE on
text data. Based on the attention memory as well
as c and z, a response is finally generated from the
decoder.

When handling text data, the VAE models that
apply recurrent neural networks as the structure
of their encoders/decoders may first learn to ig-
nore the latent variable, and explain the data with
the more easily optimized decoder. The latent

variables lose its functionality, and the VAE de-
teriorates to a plain SEQ2SEQ model mathemati-
cally (Bowman et al., 2015). Some previous meth-
ods effectively alleviate this problem. Such meth-
ods are also important to keep a balance between
the two items of the loss, namely KL loss and re-
construction loss. We use techniques of KL an-
nealing, early stopping (Bowman et al., 2015) and
bag-of-word loss (Zhao et al., 2017) in our models.
The general loss with bag-of-word loss (see sup-
plementary materials for details) is rewritten as:

L′ = L+ Lbow (3)

4.3 Reinforced CVAE

In order to further control the emotion of our gen-
eration more explicitly, we combine policy gradi-
ent techniques on top of the CVAE above and pro-
posed Reinforced CVAE model for our task. We
first train an emoji classifier on our dataset sepa-
rately and fix its parameters thereafter. The classi-
fier is used to produce reward for the policy train-
ing. It is a skip connected model of Bidirectional
GRU-RNN layers (Felbo et al., 2017).

During the policy training, we first get the gen-
erated response x′ by passing x and c through the
CVAE, then feeding generation x′ to classifier and
get the probability of the emoji label as reward R.
Let θ be parameters of our network, REINFORCE

algorithm (Williams, 1992) is used to maximize
the expected reward of generated responses:

J (θ) = Ep(x|c)(Rθ(x, c)) (4)

The gradient of Equation 4 is approximated using
the likelihood ratio trick (Glynn, 1990; Williams,
1992):

∇J (θ) = (R− r)∇
|x|∑

t

log p(xt|c, x1:t−1) (5)

r is the baseline value to keep estimate unbiased
and reduce its variance. In our case, we directly
pass x through emoji classifier and compute the
probability of the emoji label as r. The model then
encourages response generation that has R > r.

As REINFORCE objective is unrelated to re-
sponse generation, it may make the generation
model quickly deteriorate to some generic re-
sponses. To stabilize the training process, we pro-
pose two straightforward techniques to constrain
the policy training:
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1. Adjust rewards according to the position of
the emoji label when all labels are ranked
from high to low in order of the probabil-
ity given by the emoji classifier. When the
probability of the emoji label is of high rank
among all possible emojis, we assume that
the model has succeeded in emotion expres-
sion, thus there is no need to adjust param-
eters toward higher probability in this re-
sponse. Modified policy gradient is written
as:

∇J ′(θ) = α(R− r)∇
|x|∑

t

log p(xt|c, x1:t−1)

(6)

where α ∈ [0, 1] is a variant coefficient. The
higher R ranks in all types of emoji label, the
closer α is to 0.

2. Train Reinforced CVAE by a hybrid objective
of REINFORCE and variational lower bound
objective, learning towards both emotion ac-
curacy and response appropriateness:

minθL′′ = L′ − λJ ′ (7)

λ is a balancing coefficient, which is set to 1
in our experiments.

The algorithm outlining the training process of
Reinforced CVAE can be found in the supplemen-
tary materials.

5 Experimental Results and Analyses

We conducted several experiments to finalize the
hyper-parameters of our models (Table 2). During
training, fully converged base SEQ2SEQ model is
used to initialize its counterparts in CVAE models.
Pretraining is vital to the success of our models
since it is essentially hard for them to learn a latent
variable space from total randomness. For more
details, please refer to the supplementary materi-
als.

In this section, we first report and analyze the
general results of our models, including perplex-
ity, loss and emotion accuracy. Then we take a
closer look at the generation quality as well as our
models’ capability of expressing emotion.

5.1 General
To generally evaluate the performance of our mod-
els, we use generation perplexity and top-1/top-5

Emoji Accuracy
Model Perplexity Top1 Top5

Development
Base 127.0 34.2% 57.6%
CVAE 37.1 40.7% 75.3%
Reinforced CVAE 38.1 42.2% 76.9%

Test
Base 130.6 33.9% 58.1%
CVAE 36.9 41.4% 75.1%
Reinforced CVAE 38.3 42.1% 77.3%

Table 2: Generation perplexity and emoji accuracy
of the three models.

emoji accuracy on the test set. Perplexity indicates
how much difficulty the model is having when
generating responses. We also use top-5 emoji ac-
curacy, since the meaning of different emojis may
overlap with only a subtle difference. The ma-
chine may learn that similarity and give multiple
possible labels as the answer.

Note that we use the same emoji classifier for
evaluation. Its accuracy (see supplementary ma-
terials) may not seem perfect, but it is the state-
of-the-art emoji classifier given so many classes.
Also, it’s reasonable to use the same classifier in
training for automated evaluation, as is in (Hu
et al., 2017). We can obtain meaningful results
as long as the classifier is able to capture the se-
mantic relationship between emojis (Felbo et al.,
2017).

As is shown in Table 2, CVAE significantly re-
duces the perplexity and increases the emoji ac-
curacy over base model. Reinforced CVAE also
adds to the emoji accuracy at the cost of a slight
increase in perplexity. These results confirm that
proposed methods are effective toward the gener-
ation of emotional responses.

When converged, the KL loss is 27.0/25.5 for
the CVAE/Reinforced CVAE respectively, and re-
construction loss 42.2/40.0. The models achieved
a balance between the two items of loss, confirm-
ing that they have successfully learned a meaning-
ful latent variable.

5.2 Generation Diversity
SEQ2SEQ generates in a monotonous way, as
several generic responses occur repeatedly, while
the generation of CVAE models is of much
more diversity. To showcase this disparity,
we calculated the type-token ratios of uni-
grams/bigrams/trigrams in generated responses as
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Figure 4: Top5 emoji accuracy of the first 32 emoji
labels. Each bar represents an emoji and its length
represents how many of all responses to the origi-
nal tweets are top5 accurate. Different colors rep-
resent different models. Emojis are numbered in
the order of frequencies in the dataset. No.0 is ,
for instance, No.1 and so on.
Top: CVAE v. Base.
Bottom: Reinforced CVAE v. CVAE. If Rein-
forced CVAE scores higher, the margin is marked
in orange. If lower, in black.

the diversity score.
As shown in Table 3, results show that CVAE

models beat the base models by a large margin.
Diversity scores of Reinforced CVAE are reason-
ably compromised since it’s generating more emo-
tional responses.

5.3 Controllability of Emotions
There are potentially multiple types of emotion in
reaction to an utterance. Our work makes it possi-
ble to generate a response to an arbitrary emotion
by conditioning the generation on a specific type
of emoji. In this section, we generate one response
in reply to each original tweet in the dataset and
condition on each emoji of the selected 64 emo-

Model Unigram Bi- Tri-

Base 0.0061 0.0199 0.0362
CVAE 0.0191 0.131 0.365
Reinforced CVAE 0.0160 0.118 0.337

Target responses 0.0353 0.370 0.757

Table 3: Type-token ratios of the generation by
the three models. Scores of tokenized human-
generated target responses are given for reference.

Setting Model v. Base Win Lose Tie

reply CVAE 42.4% 43.0% 14.6%
reply Reinforced CVAE 40.6% 39.6% 19.8%
emoji CVAE 48.4% 26.2% 25.4%
emoji Reinforced CVAE 50.0% 19.6% 30.4%

Table 4: Results of human evaluation. Tests are
conducted pairwise between CVAE models and
the base model.

jis. We may have recorded some original tweets
with different replies in the dataset, but an original
tweet only need to be used once for each emoji,
so we eliminate duplicate original tweets in the
dataset. There are 30,299 unique original tweets
in the test set.

Figure 4 shows the top-5 accuracy of each type
of the first 32 emoji labels when the models gen-
erates responses from the test set conditioning on
the same emoji. The results show that CVAE mod-
els increase the accuracy over every type of emoji
label. Reinforced CVAE model sees a bigger in-
crease on the less common emojis, confirming the
effect of the emoji-specified policy training.

5.4 Human Evaluation

We employed crowdsourced judges to evaluate a
random sample of 100 items (Table 4), each be-
ing assigned to 5 judges on the Amazon Mechan-
ical Turk. We present judges original tweets and
generated responses. In the first setting of human
evaluation, judges are asked to decide which one
of the two generated responses better reply the
original tweet. In the second setting, the emoji
label is presented with the item discription, and
judges are asked to pick one of the two generated
responses that they decide better fits this emoji.
(These two settings of evaluation are conducted
separately so that it will not affect judges’ ver-
dicts.) Order of two generated responses under
one item is permuted. Ties are permitted for an-
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Content sorry guys , was gunna stream tonight but i ’m still feeling like crap and my voice disappeared .
i will make it up to you

Target Emotion

Base i ’m sorry you ’re going to be
missed it

i ’m sorry for your loss i ’m sorry you ’re going to be
able to get it

CVAE hope you are okay hun ! hi jason , i ’ll be praying for you im sorry u better suck u off

Reinforced
CVAE

hope you ’re feeling it hope you had a speedy recovery
man ! hope you feel better soon
, please get well soon

dude i ’m so sorry for that i
wanna hear it and i ’m sorry i
can ’t go to canada with you but
i wanna be away from canada

Content add me in there my bro

Target Emotion

Base i ’m not sure you ’ll be there i ’m here for you i ’m not ready for you

CVAE you know , you need to tell me
in your hometown !

you will be fine bro , i ’ll be in
the gym for you

i can ’t wait

Reinforced
CVAE

you might have to get me hip
hop off .

good luck bro ! this is about to
be healthy

i ’m still undecided and i ’m still
waiting

Content don ’t tell me match of the day is delayed because of this shit

Target Emotion

Base i ’m not even a fan of the game i ’m not sure if you ever have
any chance to talk to someone
else

i ’m sorry i ’m not doubting you

CVAE you can ’t do it bc you ’re in my
mentions

see now a good point hiya , unfortunately , it ’s not

Reinforced
CVAE

oh my god i ’m saying this as
long as i remember my twitter

fab mate , you ’ll enjoy the
game and you ’ll get a win

it ’s the worst

Content g i needed that laugh lmfaoo

Target Emotion

Base i ’m glad you enjoyed it i ’m not gonna lie i ’m sorry i ’m not laughing

CVAE good ! have a good time i don ’t plan on that me too . but it ’s a lot of me .

Reinforced
CVAE

thank you for your tweet , you
didn ’t know how much i guess

that ’s a bad idea , u gotta hit me
up on my phone

i feel bad at this and i hope you
can make a joke

Table 5: Some examples from our generated emotional responses. Context is the original tweet, and
target emotion is specified by the emoji. Following are the responses generated by each of the three
models based on the context and the target emotion.

swers. We batch five items as one assignment and
insert an item with two identical outputs as the
sanity check. Anyone who failed to choose “tie”
for that item is considered as a careless judge and
is therefore rejected from our test.

We then conducted a simplified Turing test.
Each item we present judges an original tweet, its
reply by a human, and its response generated from
Reinforced CVAE model. We ask judges to de-
cide which of the two given responses is written
by a human. Other parts of the setting are similar
to above-mentioned tests. It turned out 18% of the
test subjects mistakenly chose machine-generated
responses as human written, and 27% stated that

they were not able to distinguish between the two
responses.

In regard of the inter-rater agreement, there are
four cases. The ideal situation is that all five
judges choose the same answer for a item, and in
the worst-case scenario, at most two judges choose
the same answer. In light of this, we have counted
that 32%/33%/31%/5% of all items have 5/4/3/2
judges in agreement, showing that our experiment
has a reasonably reliable inter-rater agreement.

5.5 Case Study

We sampled some generated responses from all
three models, and list them in Figure 5. Given
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an original tweet, we would like to generate re-
sponses with three different target emotions.

SEQ2SEQ only chooses to generate most fre-
quent expressions, forming a predictable pattern
for its generation (See how every sampled re-
sponse by the base model starts with “I’m”). On
the contrary, generation from the CVAE model is
diverse, which is in line with previous quantita-
tive analysis. However, the generated responses
are sometimes too diversified and unlikely to re-
ply to the original tweet.

Reinforced CVAE somtetimes tends to gener-
ate a lengthy response by stacking up sentences
(See the responses to the first tweet when condi-
tioning on the ‘folded hands’ emoji and the ‘sad
face’ emoji). It learns to break the length limit of
sequence generation during hybrid training, since
the variational lower bound objective is competing
with REINFORCE objective. The situation would
be more serious is λ in Equation 7 is set higher.
However, this phenomenon does not impair the
fluency of generated sentences, as can be seen in
Figure 5.

6 Conclusion and Future Work

In this paper, we investigate the possibility of
using naturally annotated emoji-rich Twitter data
for emotional response generation. More specifi-
cally, we collected more than half a million Twit-
ter conversations with emoji in the response and
assumed that the fine-grained emoji label chosen
by the user expresses the emotion of the tweet.
We applied several state-of-the-art neural models
to learn a generation system that is capable of giv-
ing a response with an arbitrarily designated emo-
tion. We performed automatic and human evalu-
ations to understand the quality of generated re-
sponses. We trained a large scale emoji classifier
and ran the classifier on the generated responses
to evaluate the emotion accuracy of the generated
response. We performed an Amazon Mechanical
Turk experiment, by which we compared our mod-
els with a baseline sequence-to-sequence model
on metrics of relevance and emotion. Experimen-
tally, it is shown that our model is capable of gen-
erating high-quality emotional responses, without
the need of laborious human annotations. Our
work is a crucial step towards building intelli-
gent dialog agents. We are also looking forward
to transferring the idea of naturally-labeled emo-
jis to task-oriented dialog and multi-turn dialog

generation problems. Due to the nature of social
media text, some emotions, such as fear and dis-
gust, are underrepresented in the dataset, and the
distribution of emojis is unbalanced to some ex-
tent. We will keep accumulating data and increase
the ratio of underrepresented emojis, and advance
toward more sophisticated abstractive generation
methods.
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Abstract

Taylor’s law describes the fluctuation char-
acteristics underlying a system in which
the variance of an event within a time
span grows by a power law with respect
to the mean. Although Taylor’s law has
been applied in many natural and social
systems, its application for language has
been scarce. This article describes a new
quantification of Taylor’s law in natural
language and reports an analysis of over
1100 texts across 14 languages. The Tay-
lor exponents of written natural language
texts were found to exhibit almost the
same value. The exponent was also com-
pared for other language-related data, such
as the child-directed speech, music, and
programming language code. The results
show how the Taylor exponent serves to
quantify the fundamental structural com-
plexity underlying linguistic time series.
The article also shows the applicability of
these findings in evaluating language mod-
els.

1 Introduction

Taylor’s law characterizes how the variance of the
number of events for a given time and space grows
with respect to the mean, forming a power law. It
is a quantification method for the clustering behav-
ior of a system. Since the pioneering studies of this
concept (Smith, 1938; Taylor, 1961), a substan-
tial number of studies have been conducted across
various domains, including ecology, life science,
physics, finance, and human dynamics, as well
summarized in (Eisler, Bartos, and Kertész, 2007).

∗kobayashi@cl.rcast.u-tokyo.ac.jp
†kumiko@cl.rcast.u-tokyo.ac.jp

More recently, Cohen and Xu (2015) reported Tay-
lor exponents for random sampling from various
distributions, and Calif and Schmitt (2015) re-
ported Taylor’s law in wind energy data using a
non-parametric regression. Those two papers also
refer to research about Taylor’s law in a wide range
of fields.

Despite such diverse application across do-
mains, there has been little analysis based on Tay-
lor’s law in studying natural language. The only
such report, to the best of our knowledge, is Ger-
lach and Altmann (2014), but they measured the
mean and variance by means of the vocabulary
size within a document. This approach essen-
tially differs from the original concept of Taylor
analysis, which fundamentally counts the number
of events, and thus the theoretical background of
Taylor’s law as presented in Eisler, Bartos, and
Kertész (2007) cannot be applied to interpret the
results.

For the work described in this article, we ap-
plied Taylor’s law for texts, in a manner close
to the original concept. We considered lexical
fluctuation within texts, which involves the co-
occurrence and burstiness of word alignment. The
results can thus be interpreted according to the an-
alytical results of Taylor’s law, as described later.
We found that the Taylor exponent is indeed a
characteristic of texts and is universal across vari-
ous kinds of texts and languages. These results are
shown here for data including over 1100 single-
author texts across 14 languages and large-scale
newspaper data.

Moreover, we found that the Taylor expo-
nents for other symbolic sequential data, includ-
ing child-directed speech, programming language
code, and music, differ from those for written nat-
ural language texts, thus distinguishing different
kinds of data sources. The Taylor exponent in this
sense could categorize and quantify the structural

1138



complexity of language. The Chomsky hierarchy
(Chomsky, 1956) is, of course, the most important
framework for such categorization. The Taylor ex-
ponent is another way to quantify the complexity
of natural language: it allows for continuous quan-
tification based on lexical fluctuation.

Since the Taylor exponent can quantify and
characterize one aspect of natural language, our
findings are applicable in computational linguis-
tics to assess language models. At the end of
this article, in §5, we report how the most basic
character-based long short-term memory (LSTM)
unit produces texts with a Taylor exponent of 0.50,
equal to that of a sequence of independent and
identically distributed random variables (an i.i.d.
sequence). This shows how such models are lim-
ited in producing consistent co-occurrence among
words, as compared with a real text. Taylor analy-
sis thus provides a possible direction to reconsider
the limitations of language models.

2 Related Work

This work can be situated as a study to quan-
tify the complexity underlying texts. As sum-
marized in (Tanaka-Ishii and Aihara, 2015), mea-
sures for this purpose include the entropy rate
(Takahira, Tanaka-Ishii, and Lukasz, 2016; Bentz
et al., 2017) and those related to the scaling behav-
iors of natural language. Regarding the latter, cer-
tain power laws are known to hold universally in
linguistic data. The most famous among these are
Zipf’s law (Zipf, 1965) and Heaps’ law (Heaps,
1978). Other, different kinds of power laws from
Zipf’s law are obtained through various methods
of fluctuation analysis, but the question of how to
quantify the fluctuation existing in language data
has been controversial. Our work is situated as
one such case of fluctuation analysis.

In real data, the occurrence timing of a particu-
lar event is often biased in a bursty, clustered man-
ner, and fluctuation analysis quantifies the degree
of this bias. Originally, this was motivated by a
study of how floods of the Nile River occur in
clusters (i.e., many floods coming after an initial
flood) (Hurst, 1951). Such clustering phenomena
have been widely reported in both natural and so-
cial domains (Eisler, Bartos, and Kertész, 2007).

Fluctuation analysis for language originates in
(Ebeling and Pöeschel, 1994), which applied the
approach to characters. That work corresponds
to observing the average of the variances of each

character’s number of occurrences within a time
span. Their method is strongly related to ours but
different from two viewpoints: (1) Taylor analysis
considers the variance with respect to the mean,
rather than time; and (2) Taylor analysis does not
average results over all elements. Because of these
differences, the method in (Ebeling and Pöeschel,
1994) cannot distinguish real texts from an i.i.d.
process when applied to word sequences (Taka-
hashi and Tanaka-Ishii, 2018).

Event clustering phenomena cause a sequence
to resemble itself in a self-similar manner. There-
fore, studies of the fluctuation underlying a se-
quence can take another form of long-range corre-
lation analysis, to consider the similarity between
two subsequences underlying a time series. This
approach requires a function to calculate the sim-
ilarity of two sequences, and the autocorrelation
function (ACF) is the main function considered.
Since the ACF only applies to numerical data, both
Altmann, Pierrehumbert, and Motter (2009) and
Tanaka-Ishii and Bunde (2016) applied long-range
correlation analysis by transforming text into in-
tervals and showed how natural language texts are
long-range correlated. Another recent work (Lin
and Tegmark, 2016) proposed using mutual infor-
mation instead of the ACF. Mutual information,
however, cannot detect the long-range correlation
underlying texts. All these works studied correla-
tion phenomena via only a few texts and did not
show any underlying universality with respect to
data and language types. One reason is that anal-
ysis methods for long-range correlation are non-
trivial to apply to texts.

Overall, the analysis based on Taylor’s law in
the present work belongs to the former approach
of fluctuation analysis and shows the law’s vast ap-
plicability and stability for written texts and even
beyond, quantifying universal complexity under-
lying human linguistic sequences.

3 Measuring the Taylor Exponent

3.1 Proposed method

Given a set of elements W (words), let X =
X1, X2, . . . , XN be a discrete time series of length
N , where Xi ∈ W for all i = 1, 2, . . . , N , i.e.,
each Xi represents a word. For a given segment
length ∆t ∈ N (a positive integer), a data sample
X is segmented by the length ∆t. The number of
occurrences of a specific word wk ∈ W is counted
for every segment, and the mean µk and standard
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deviation σk across segments are obtained. Doing
this for all word kinds w1, . . . , w|W | ∈ W gives
the distribution of σ with respect to µ. Following a
previous work (Eisler, Bartos, and Kertész, 2007),
in this article Taylor’s law is defined to hold when
µ and σ are correlated by a power law in the fol-
lowing way:

σ ∝ µα. (1)

Experimentally, the Taylor exponent α is known
to take a value within the range of 0.5 ≤ α ≤
1.0 across a wide variety of domains as reported
in (Eisler, Bartos, and Kertész, 2007), includ-
ing finance, meteorology, agriculture, and biol-
ogy. Mathematically, it is analytically proven that
α = 0.5 for an i.i.d process, and the proof is in-
cluded as Supplementary Material.

On the other hand, α = 1.0 when all segments
always contain the same proportion of the ele-
ments of W . For example, suppose that W =
{a, b}. If b always occurs twice as often as a in all
segments (e.g., three a and six b in one segment,
two a and four b in another, etc.), then both the
mean and standard deviation for b are twice those
for a, so the exponent is 1.0.

In a real text, this cannot occur for all W ,
so α < 1.0 for natural language text. Never-
theless, for a subset of words in W , this could
happen, especially for a template-like sequence.
For instance, consider a programming statement:
while (i < 1000) do i-. Here, the words
while and do always occur once, whereas i al-
ways occurs twice. This example shows that the
exponent indicates how consistently words depend
on each other in W , i.e., how words co-occur sys-
tematically in a coherent manner, thus indicating
that the Taylor exponent is partly related to gram-
maticality.

To measure the Taylor exponent α, the mean
and standard deviation are computed for every
word kind1 and then plotted in log-log coordi-
nates. The number of points in this work was the
number of different words. We fitted the points
to a linear function in log-log coordinates by the
least-squares method. We naturally took the loga-
rithm of both cµα and σ to estimate the exponent,
because Taylor’s law is a power law. The coeffi-
cient ĉ, and exponent α̂ are then estimated as the

1 In this work, words are not lemmatized, e.g. “say,”
“said,” and “says” are all considered different words. This
was chosen so in this work because the Taylor exponent
considers systematic co-occurrence of words, and idiomatic
phrases should thus be considered in their original forms.

following:

ĉ, α̂ = arg min
c,α

ϵ(c, α),

ϵ(c, α) =

√√√√ 1

|W |

|W |∑

k=1

(log σk − log cµα
k )2.

This fit function could be a problem depending on
the distribution of errors between the data points
and the regression line. As seen later, the er-
ror distribution seems to differ with the kind of
data: for a random source the error seems Gaus-
sian, and so the above formula is relevant, whereas
for real data, the distribution is biased. Chang-
ing the fit function according to the data source,
however, would cause other essential problems for
fair comparison. Here, because Cohen and Xu
(2015) reported that most empirical works on Tay-
lor’s law used least-squares regression (including
their own), this work also uses the above scheme2,
with the error defined as ϵ(ĉ, α̂).

3.2 Data
Table 1 lists all the data used for this article. The
data consisted of natural language texts, language-
related sequences, and randomized data, listed as
different blocks in the table. The natural lan-
guage texts consisted of 1142 single-author long
texts (first block, extracted from Project Guten-
berg and Aozora Bunko across 14 languages3,
with the second block listing individual sam-
ples taken from Project Gutenberg together with
the complete works of Shakespeare), and news-
papers (third block, from the Gigaword corpus,
available from the Linguistic Data Consortium
in English, Chinese, and other major languages).
Other sequences appear in the fourth block: the
enwiki8 100-MB dump dataset (consisting of
tag-annotated text from English Wikipedia), the
10 longest child-directed speech utterances in
CHILDES data4 (preprocessed by extracting only
children’s utterances), four program sources (in
Lisp, Haskell, C++, and Python, crawled from

2The code for estimating the exponent is available from
https://github.com/Group-TanakaIshii/
word_taylor.

3All texts above a size threshold (1 megabyte) were ex-
tracted from the two archives, resulting in 1142 texts.

4Child Language Data Exchange System (MacWhinney,
2000; Bol, 1995; Lieven, Salomo, and Tomasello, 2009; Ron-
dal, 1985; Behrens, 2006; Gil and Tadmor, 2007; Oshima-
Takane et al., 1995; Smoczynska, 1985; And̄elković, Ševa,
and Moskovljević, 2001; Benedet et al., 2004; Plunkett and
Strömqvist, 1992)
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Table 1: Data we used in this article. For each dataset, length is the number of words, vocabulary is the
number of different words. For detail of the data kind, see §3.2.

Texts Language α̂ Number Length Vocabulary

mean of samples Mean Min Max Mean Min Max

English 0.58 910 313127.4 185939 2488933 17237.7 7321 69812

French 0.57 66 197519.3 169415 1528177 22098.3 14106 57193

Finnish 0.55 33 197519.3 149488 396920 33597.1 26275 47263

Chinese 0.61 32 629916.8 315099 4145117 15352.9 9153 60950

Dutch 0.57 27 256859.2 198924 435683 19159.1 13880 31595

German 0.59 20 236175.0 184321 331322 24242.3 11079 37228

Gutenberg Italian 0.57 14 266809.0 196961 369326 29103.5 18641 45032

Spanish 0.58 12 363837.2 219787 903051 26111.1 18111 36507

Greek 0.58 10 159969.2 119196 243953 22805.7 15877 31386

Latin 0.57 2 505743.5 205228 806259 59667.5 28739 90596

Portuguese 0.56 1 261382.0 261382 261382 24719.0 24719 24719

Hungarian 0.57 1 198303.0 198303 198303 38384.0 38384 38384

Tagalog 0.59 1 208455.0 208455 208455 26335.0 26335 26335

Aozora Japanese 0.59 13 616677.2 105343 2951320 19760.0 6620 49100

Moby Dick English 0.58 1 254655.0 254655 254655 20473.0 20473 20473

Hong Lou Meng Chinese 0.59 1 701256.0 701256 701256 18451.0 18451 18451

Les Miserables French 0.57 1 691407.0 690417 690417 31956.0 31956 31956

Shakespeare (All) English 0.59 1 1000238.0 1000238 1000238 40840.0 40840 40840

WSJ English 0.56 1 22679513.0 22679513 22679513 137467.0 137467 137467

NYT English 0.58 1 1528137194.0 1528137194 1528137194 3155495.0 3155495 3155495

People’s Daily Chinese 0.58 1 19420853.0 19420853 19420853 172140.0 172140 172140

Mainichi Japanese 0.56 24 (yrs) 31321594.3 24483331 40270706 145534.5 127290 169270

enwiki8 tag-annotated 0.63 1 14647848.0 14647848 14647848 1430791.0 1430791 1430791

CHILDES various 0.68 10 193434.0 48952 448772 9908.0 5619 17893

Programs - 0.79 4 34161018.8 3697199 68622162 838907.8 127653 1545127

Music - 0.79 12 135993.4 76629 215480 9187.9 907 27043

Moby Dick (shuffled) - 0.50 10 254655.0 254655 254655 20473.0 20473 20473

Moby Dick (bigram) - 0.50 10 300001.0 300001 300001 16963.8 16893 17056

3-layer stacked LSTM
(English) 0.50 1 256425.0 256425 256425 50115.0 50115 50115

(character-based)

Neural MT (English) 0.57 1 623235.0 623235 623235 27370.0 27370 27370

large representative archives, parsed, and stripped
of natural language comments), and 12 pieces of
musical data (long symphonies and so forth, trans-
formed from MIDI into text with the software
SMF2MML5, with annotations removed).

As for the randomized data listed in the last
block, we took the text of Moby Dick and gen-
erated 10 different shuffled samples and bigram-
generated sequences. We also introduced LSTM-
generated texts to consider the utility of our find-
ings, as explained in §5.

4 Taylor Exponents for Real Data

Figure 1 shows typical distributions for natural
language texts, with two single-author texts ((a)

5http://shaw.la.coocan.jp/smf2mml/

and (b)) and two multiple-author texts (newspa-
pers, (c) and (d)), in English and Chinese, respec-
tively. The segment size was ∆t = 5620 words6,
i.e., each segment had 5620 words and the hori-
zontal axis indicates the averaged frequency of a
specific word within a segment of 5620 words.

The points at the upper right represent the most
frequent words, whereas those at the lower left
represent the least frequent. Although the plots
exhibited different distributions, they could glob-
ally be considered roughly aligned in a power-law

6 In comparison, Figure 6 shows the effect on the expo-
nent of varying ∆t. As seen in that figure, larger ∆t increased
the differences in exponent among different data sets, making
the differences more distinguishable. Thus, ∆t had better be
as large as possible while keeping µ and σ computable. For
this article, we chose ∆t = 5620, which was one of the ∆t
values used in Figure 6.
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(a) Moby Dick (b) Hong Lou Meng

(c) Wall Street Journal (d) People’s Daily

Figure 1: Examples of Taylor’s law for natu-
ral language texts. Moby Dick and Hong Lou
Meng are representative of single-author texts, and
the two newspapers are representative of multiple-
author texts, in English and Chinese, respectively.
Each point represents a kind of word. The values
of σ and µ for each word kind are plotted across
texts within segments of size ∆t = 5620. The
Taylor exponents obtained by the least-squares
method were all around 0.58.

manner. This finding is non-trivial, as seen in other
analyses based on Taylor’s law (Eisler, Bartos, and
Kertész, 2007). The exponent α was almost the
same even though English and Chinese are differ-
ent languages using different kinds of script.

As explained in §3.1, the Taylor exponent in-
dicates the degree of consistent co-occurrence
among words. The value of 0.58 obtained here
suggests that the words of natural language texts
are not strongly or consistently coherent with re-
spect to each other. Nevertheless, the value is well
above 0.5, and for the real data listed in Table 1
(first to third blocks), not a single sample gave an
exponent as low as 0.5.

Although the overall global tendencies in Fig-
ure 1 followed power laws, many points deviated
significantly from the regression lines. The words
with the greatest fluctuation were often keywords.
For example, among words in Moby Dick with
large µ, those with the largest σ included whale,
captain, and sailor, whereas those with the small-
est σ included functional words such as to, that,
and with.

The Taylor exponent depended only slightly on
the data size. Figure 2 shows this dependency

Figure 2: Taylor exponent α̂ (vertical axis) cal-
culated for the two largest texts: The New York
Times and The Mainichi newspapers. To evaluate
the exponent’s dependence on the text size, parts
of each text were taken and the exponents were
calculated for those parts, with points taken log-
arithmically. The window size was ∆t = 5620.
As the text size grew, the Taylor exponent slightly
decreased.

for the two largest data sets used, The New York
Times (NYT, 1.5 billion words) and The Mainichi
(24 years) newspapers. When the data size was in-
creased, the exponent exhibited a slight tendency
to decrease. For the NYT, the decrease seemed to
have a lower limit, as the figure shows that the ex-
ponent stabilized at around 107 words.

The reason for this decrease can be explained
as follows. The Taylor exponent becomes larger
when some words occur in a clustered manner.
Making the text size larger increases the number of
segments (since ∆t was fixed in this experiment).
If the number of clusters does not increase as fast
as the increase in the number of segments, then the
number of clusters per segment becomes smaller,
leading to a smaller exponent. In other words, the
influence of each consecutive co-occurrence of a
particular word decays slightly as the overall text
size grows.

Analysis of different kinds of data showed how
the Taylor exponent differed according to the data
source. Figure 3 shows plots for samples from
enwiki8 (tagged Wikipedia), the child-directed
speech of Thomas (taken from CHILDES), pro-
gramming language data sets, and music. The dis-
tributions appear different from those for the natu-
ral language texts, and the exponents were signifi-
cantly larger. This means that these data sets con-
tained expressions with fixed forms much more
frequently than did the natural language texts.

1142



(a) enwiki8 (Wikipedia,
tagged)

(b) Thomas (CHILDES)

(c) Lisp (d) Bach’s St Matthew
Passion

Figure 3: Examples of Taylor’s law for alternative
data sets listed in Table 1: enwiki8 (tag-annotated
Wikipedia), Thomas (longest in CHILDES), Lisp
source code, and the music of Bach’s St Matthew
Passion. These examples exhibited larger Taylor
exponents than did typical natural language texts.

Figure 4 summarizes the overall picture among
the different data sources. The median and quan-
tiles of the Taylor exponent were calculated for the
different kinds of data listed in Table 1. The first
two boxes show results with an exponent of 0.50.
These results were each obtained from 10 random
samples of the randomized sequences. We will re-
turn to these results in the next section.

The remaining boxes show results for real data.
The exponents for texts from Project Gutenberg
ranged from 0.53 to 0.68. Figure 5 shows a his-
togram of these texts with respect to the value of
α̂. The number of texts decreased significantly at
a value of 0.63, showing that the distribution of
the Taylor exponent was rather tight. The kinds
of texts at the upper limit of exponents for Project
Gutenberg included structured texts of fixed style,
such as dictionaries, lists of histories, and Bibles.

The majority of texts were in English, followed
by French and then other languages, as listed in
Table 1. Whether α distinguishes languages is
a difficult question. The histogram suggests that
Chinese texts exhibited larger values than did texts
in Indo-European languages. We conducted a
statistical test to evaluate whether this difference
was significant as compared to English. Since
the numbers of texts were very different, we used
the non-parametric statistical test of the Brunner-

Munzel method, among various possible methods,
to test a null hypothesis of whether α was equal for
the two distributions (Brunner and Munzel, 2000).
The p-value for Chinese was p = 1.24 × 10−16,
thus rejecting the null hypothesis at the signifi-
cance level of 0.01. This confirms that α was
generally larger for Chinese texts than for En-
glish texts. Similarly, the null hypothesis was re-
jected for Finnish and French, but it was accepted
for German and Japanese at the 0.01 significance
level. Since Japanese was accepted despite its
large difference from English, we could not con-
clude whether the Taylor exponent distinguishes
languages.

Turning to the last four columns of Figure 4,
representing the enwiki8, child-directed speech
(CHILDES), programming language, and music
data, the Taylor exponents clearly differed from
those of the natural language texts. Given the
template-like nature of these four data sources,
the results were somewhat expected. The kind of
data thus might be distinguishable using the Tay-
lor exponent. To confirm this, however, would re-
quire assembling a larger data set. Applying this
approach with Twitter data and adult utterances
would produce interesting results and remains for
our future work.

The Taylor exponent also differed according to
∆t, and Figure 6 shows the dependence of α̂ on
∆t. For each kind of data shown in Figure 4,
the mean exponent is plotted for various ∆t. As
reported in (Eisler, Bartos, and Kertész, 2007),
the exponent is known to grow when the segment
size gets larger. The reason is that words occur
in a bursty, clustered manner at all length scales:
no matter how large the segment size becomes,
a segment will include either many or few in-
stances of a given word, leading to larger variance
growth. This phenomenon suggests how word co-
occurrences in natural language are self-similar.
The Taylor exponent is initially 0.5 when the seg-
ment size is very small. This can be analytically
explained as follows (Eisler, Bartos, and Kertész,
2007). Consider the case of ∆t=1. Let n be the
frequency of a particular word in a segment. We
have ⟨n⟩ ≪ 1.0, because the possibility of a spe-
cific word appearing in a segment becomes very
small. Because ⟨n⟩2 ≈ 0, σ2 = ⟨n2⟩ − ⟨n⟩2 ≈
⟨n2⟩. Because n = 1 or 0 (with ∆t=1), ⟨n2⟩ =
⟨n⟩ = µ. Thus, σ2 ≈ µ.

Overall, the results show the possibility of ap-
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Figure 4: Box plots of the Taylor exponents for different kinds of data. Each point represents one sample,
and samples from the same kind of data are contained in each box plot. The first two boxes are for the
randomized data, while the remaining boxes are for real data, including both the natural language texts
and language-related sequences. Each box ranges between the quantiles, with the middle line indicating
the median, the whiskers showing the maximum and minimum, and some extreme values lying beyond.

Figure 5: Histogram of Taylor exponents for long
texts in Project Gutenberg (1129 texts). The leg-
end indicates the languages, in frequency order.
Each bar shows the number of texts with that value
of α̂. Because of the skew of languages in the orig-
inal conception of Project Gutenberg, the majority
of the texts are in English, shown in blue, whereas
texts in other languages are shown in other col-
ors. The histogram shows how the Taylor expo-
nent ranged fairly tightly around the mean, and
natural language texts with an exponent larger than
0.63 were rare.

plying Taylor’s exponent to quantify the complex-
ity underlying coherence among words. Grammat-
ical complexity was formalized by Chomsky via
the Chomsky hierarchy (Chomsky, 1956), which
describes grammar via rewriting rules. The con-
straints placed on the rules distinguish four dif-
ferent levels of grammar: regular, context-free,
context-sensitive, and phrase structure. As indi-
cated in (Badii and Politi, 1997), however, this
does not quantify the complexity on a continuous
scale. For example, we might want to quantify
the complexity of child-directed speech as com-
pared to that of adults, and this could be addressed
in only a limited way through the Chomsky hi-
erarchy. Another point is that the hierarchy is
sentence-based and does not consider fluctuation
in the kinds of words appearing.

5 Evaluation of Machine-Generated Text
by the Taylor Exponent

The main contribution of this paper is the findings
of Taylor’s law behavior for real texts as presented
thus far. This section explains the applicability of
these findings, through results obtained with base-
line language models.

As mentioned previously, i.i.d. mathematical
processes have a Taylor exponent of 0.50. We
show here that, even if a process is not trivially
i.i.d., the exponent often takes a value of 0.50
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Figure 6: Growth of α̂ with respect to ∆t, aver-
aged across data sets within each data kind. The
plot labeled “random” shows the average for the
two datasets of randomized text from Moby Dick
(shuffled and bigrams, as explained in §5). Since
this analysis required a large amount of compu-
tation, for the large data sets (such as newspa-
per and programming language data), 4 million
words were taken from each kind of data and used
here. When ∆t was small, the Taylor exponent
was close to 0.5, as theoretically described in the
main text. As ∆t was increased, the value of α̂
grew. The maximum ∆t was about 10,000, or
about one-tenth of the length of one long literary
text. For the kinds of data investigated here, α̂
grew almost linearly. The results show that, at a
given ∆t, the Taylor exponent has some capabil-
ity to distinguish different kinds of text data.

(a) Moby Dick (shuffled) (b) Moby Dick (bigram)

Figure 7: Taylor analysis of a shuffled text of
Moby Dick and a randomized text generated by
a bigram model. Both exhibited an exponent of
0.50.

for random processes, including texts produced by
standard language models such as n-gram based
models. A more complete work in this direction is
reported in (Takahashi and Tanaka-Ishii, 2018).

Figure 7 shows samples from each of two sim-
ple random processes. Figure 7a shows the behav-
ior of a shuffled text of Moby Dick. Obviously,

(a) Text produced by
LSTM (3-layer stacked
character-based)

(b) Machine-translated
text using neural language
model

Figure 8: Taylor analysis for two texts produced
by standard neural language models: (a) a stacked
LSTM model that learned the complete works of
Shakespeare; and (b) a machine translation of Les
Misérables (originally in French, translated into
English), from a neural language model.

since the sequence was almost i.i.d. following
Zipf distribution, the Taylor exponent was 0.50.
Given that the Taylor exponent becomes larger for
a sequence with words dependent on each other,
as explained in §3, we would expect that a se-
quence generated by an n-gram model would ex-
hibit an exponent larger than 0.50. The simplest
such model is the bigram model, so a sequence
of 300,000 words was probabilistically generated
using a bigram model of Moby Dick. Figure 7b
shows the Taylor analysis, revealing that the expo-
nent remained 0.50.

This result does not depend much on the qual-
ity of the individual samples. The first and second
box plots in Figure 4 show the distribution of ex-
ponents for 10 different samples for the shuffled
and bigram-generated texts, respectively. The ex-
ponents were all around 0.50, with small variance.

State-of-the-art language models are based on
neural models, and they are mainly evaluated by
perplexity and in terms of the performance of in-
dividual applications. Since their architecture is
complex, quality evaluation has become an is-
sue. One possible improvement would be to
use an evaluation method that qualitatively dif-
fers from judging application performance. One
such method is to verify whether the properties un-
derlying natural language hold for texts generated
by language models. The Taylor exponent is one
such possibility, among various properties of nat-
ural language texts.

As a step toward this approach, Figure 8 shows
two results produced by neural language mod-
els. Figure 8a shows the result for a sam-
ple of 2 million characters produced by a stan-
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dard (three-layer) stacked character-based LSTM
unit that learned the complete works of Shake-
speare. The model was optimized to minimize
the cross-entropy with a stochastic gradient algo-
rithm to predict the next character from the previ-
ous 128 characters. See (Takahashi and Tanaka-
Ishii, 2017) for the details of the experimental set-
tings. The Taylor exponent of the generated text
was 0.50. This indicates that the character-level
language model could not capture or reproduce
the word-level clustering behavior in text. This
analysis sheds light on the quality of the language
model, separate from the prediction accuracy.

The application of Taylor’s law for a wider
range of language models appears in (Takahashi
and Tanaka-Ishii, 2018). Briefly, state-of-the-
art word-level language models can generate text
whose Taylor exponent is larger than 0.50 but
smaller than that of the dataset used for train-
ing. This indicates both the capability of modeling
burstiness in text and the room for improvement.
Also, the perplexity values correlate well with
the Taylor exponents. Therefore, Taylor expo-
nent can reasonably serve for evaluating machine-
generated text.

In contrast to character-level neural language
models, neural-network-based machine transla-
tion (NMT) models are, in fact, capable of main-
taining the burstiness of the original text. Fig-
ure 8b shows the Taylor analysis for a machine-
translated text of Les Misérables (from French to
English), obtained from Google NMT (Wu et al.,
2016). We split the text into 5000-character por-
tions because of the API’s limitation (See (Taka-
hashi and Tanaka-Ishii, 2017) for the details). As
is expected and desirable, the translated text re-
tains the clustering behavior of the original text,
as the Taylor exponent of 0.57 is equivalent to that
of the original text.

6 Conclusion

We have proposed a method to analyze whether a
natural language text follows Taylor’s law, a scal-
ing property quantifying the degree of consistent
co-occurrence among words. In our method, a se-
quence of words is divided into given segments,
and the mean and standard deviation of the fre-
quency of every kind of word are measured. The
law is considered to hold when the standard devi-
ation varies with the mean according to a power
law, thus giving the Taylor exponent.

Theoretically, an i.i.d. process has a Taylor
exponent of 0.5, whereas larger exponents indi-
cate sequences in which words co-occur systemat-
ically. Using over 1100 texts across 14 languages,
we showed that written natural language texts fol-
low Taylor’s law, with the exponent distributed
around 0.58. This value differed greatly from
the exponents for other data sources: enwiki8
(tagged Wikipedia, 0.63), child-directed speech
(CHILDES, around 0.68), and programming lan-
guage and music data (around 0.79). These Taylor
exponents imply that a written text is more com-
plex than programming source code or music with
regard to fluctuation of its components. None of
the real data exhibited an exponent equal to 0.5.
We conducted more detailed analysis varying the
data size and the segment size.

Taylor’s law and its exponent can also be ap-
plied to evaluate machine-generated text. We
showed that a character-based LSTM language
model generated text with a Taylor exponent of
0.5. This indicates one limitation of that model.

Our future work will include an analysis using
other kinds of data, such as Twitter data and adult
utterances, and a study of how Taylor’s law re-
lates to grammatical complexity for different se-
quences. Another direction will be to apply fluc-
tuation analysis in formulating a statistical test to
evaluate the structural complexity underlying a se-
quence.
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Abstract

Language variation and change are driven
both by individuals’ internal cognitive pro-
cesses and by the social structures through
which language propagates. A wide range
of computational frameworks have been
proposed to connect these drivers. We
compare the strengths and weaknesses of
existing approaches and propose a new
analytic framework which combines pre-
vious network models’ ability to capture
realistic social structure with practically
and more elegant computational proper-
ties. The framework privileges the pro-
cess of language acquisition and embeds
learners in a social network but is mod-
ular so that population structure can be
combined with different acquisition mod-
els. We demonstrate two applications for
the framework: a test of practical concerns
that arise when modeling acquisition in a
population setting and an application of
the framework to recent work on phono-
logical mergers in progress.

1 Introduction

The process of language change should be thought
of as a two-step cycle in which 1) individuals
acquire their native languages from their prede-
cessors then 2) pass them on to their successors.
Small changes accrue over time this way and cre-
ate both small-scale interpersonal variation and
large-scale typological differences. It is easy to
draw a strong analogy here between linguistic evo-
lution and biological evolution. Both feature clas-
sic descent with modification, except while phe-
notypes are transmitted through genes and acted
on by natural selection, language is both trans-
mitted through and constrained by the individual

(Cavalli-Sforza and Feldman, 1981; Ritt, 2004,
etc.).

But while evolution, linguistic or otherwise, is
driven by forces acting on the individual, it un-
folds on the level of populations (Cavalli-Sforza
and Feldman, 1981). The influence of community-
level social factors on the path of language change
is a major focus of sociolinguistics (Labov, 2001;
Milroy and Milroy, 1985; Rogers Everett, 1995).
Ideally, one could observe population-level vari-
ation unfold in real time while testing out indi-
vidual factors, but this is impossible because no-
body can travel back in time or fit entire natu-
ral environments into a lab. Change that has al-
ready happened is out of reach, and change in
progress is buried in a world of confounds. The
classic sociolinguistic method instead approaches
the problem by inferring causal factors from pat-
terns discovered in field interviews and corpora
(Labov, 1994; Labov et al., 2005, etc.). This is
the primary source of empirical data in the field
and the only way to look at language change in a
naturalistic setting, but it is limited in that it can-
not test cause and effect directly. More recently,
controlled experimental studies have emerged as
a complementary line of research which manipu-
late causal factors directly (Johnson et al., 1999;
Campbell-Kibler, 2009, etc.), but are inherently
removed natural time and scale. A third approach,
the one we build upon here, relies on computa-
tional modeling to simulate how sociolinguistic
factors might work together in larger populations
(Klein, 1966; Blythe and Croft, 2012; Kauhanen,
2016, etc.).

It has long been argued that language acqui-
sition is the primary cause of language change
(Sweet, 1899; Lightfoot, 1979; Niyogi, 1998,
etc.). In the last few decades, this connection
has been modeled computationally (Gibson and
Wexler, 1994; Kirby et al., 2000; Yang, 2000,
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etc.), leading to the strong conclusion that change
is the inevitable consequence of mixed linguis-
tic input or finite learning periods (Niyogi and
Berwick, 1996), even if children are “perfect”
learners. An important result connecting the
learner and population emphasizes the need for
this line of work: the space of paths of change
available in populations is formally larger than the
paths available to linear chains of iterated learn-
ers. Niyogi and Berwick (2009) prove formally
that even perfectly-mixed (i.e., uniform and homo-
geneous social network) populations admit phase
transitions in the path of change unavailable to
chains of single learners commonly implemented
in iterated learning (Kirby et al., 2000). This sug-
gests that small-population experimental studies in
sociolinguistics and in child language acquisition
do not paint the full picture of language change.

We introduce a new framework for modeling
language change in populations. It has an outer
loop to represent generational progression, but it
replaces the inner loop which calculates random-
ized interactions between agents with a single for-
mula that is defined generally enough to allow
the simulation of a wide range of scenarios. It
builds upon the principled formalism described by
Niyogi and Berwick (1996, et seq.), privileging the
acquisition model and separating it from the pop-
ulation model. The resulting modular framework
is described in the following sections. First, Sec-
tion 1.1 presents a survey of previous simulation
work followed by a description of the new popula-
tion model in Section 2. Next, Section 3 addresses
practical concerns relating population size to as-
sumptions about language acquisition. Finally,
Section 4 introduces a case study on phonological
change which demonstrates the need for appropri-
ate models both of acquisition and populations.

1.1 Related Work

Computational models for the propagation of lin-
guistic variation have been employed with a vari-
ety of research goals in mind. Every paper imple-
ments its own framework with few exceptions, so
comparison across studies is difficult. Addition-
ally, since each model is essentially ‘boutique,’ it
is always possible that models are designed con-
sciously or unconsciously to achieve a specific
outcome rather driven by underlying principles.
We group these frameworks into three classes ac-
cording to their implementation, swarm, network,

and algebraic, and discusses their strengths and
weaknesses.

The first class, called swarm here, models
populations as collections of agents placed on a
grid. They “swarm” around randomly accord-
ing to some movement function, and “interact”
when they occupy adjacent grid spaces (Satter-
field, 2001; Harrison et al., 2002; Ke et al., 2008;
Stanford and Kenny, 2013). This tends toward
concrete interpretation, for example, more mobile
populations are expressed directly by more mo-
bile agents. They capture Bloomfield (1933)’s
“principle of density” which describes the obser-
vation that geographically or socially close indi-
viduals interact more frequently than those far-
ther away. On the other hand, they provide little
control over network structure, relying on series
of explicit movement constraints in order to di-
rect their agents, and since each one moves ran-
domly at each iteration, these models have poten-
tially thousands of degrees of freedom. Such sim-
ulations should be run many times if any sort of
statistically expected results are to be computed.

The second class, network frameworks, model
speakers as nodes and interaction probabilities as
weighted edges on network graphs (Minett and
Wang, 2008; Baxter et al., 2009; Fagyal et al.,
2010; Blythe and Croft, 2012; Kauhanen, 2016).
These frameworks offer precise control over social
network structure and can test specific community
models from within sociolinguistics. However,
implementations usually proceed by some kind
of iterative probabilistic node-pair selection pro-
cess, and in this way suffer from the same statis-
tical pitfalls as swarm frameworks. In contrast to
swarm models, interaction is rigidly restricted to
immediately connected nodes, so to achieve gra-
dient interaction probabilities, edges must be fre-
quently updated or nearly fully-connected graphs
with carefully assigned edge weights would need
to be constructed and motivated.

The third class, algebraic frameworks, present
analytic methods for determining the state of the
network at the end of each iteration rather than re-
lying on stochastic simulation of individual agents
(Niyogi and Berwick, 1996, 1997; Yang, 2000;
Baxter et al., 2006; Minett and Wang, 2008;
Niyogi and Berwick, 2009). Removing that inner
loop is a more mathematically elegant approach
and avoids dealing unnecessarily with statistics
behind random trials. Removing that loop speeds
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up calculation as well, making larger simulations
more tractable than with network or swarm frame-
works. But this power is achieved by sacrificing
the social network. Up to this point, such models
have, to our knowledge, only been defined over
perfectly-mixed (i.e., no network effects) popu-
lations. That assumption is useful for reasoning
about the mathematical theory behind language
change, but it hinders such models’ utility in em-
pirical studies. For example, though Baxter et al.
(2006) and Minett and Wang (2008) implement al-
gebraic models for perfectly mixed populations,
they fall back on network models to model net-
work effects.

2 Framework for Transmission in Social
Networks

Algebraic frameworks have their mathematical
advantage, but network frameworks provide a
richer model for representing real-world popula-
tion structures and swarm models capture density
effects by default. An ideal framework would
combine the benefits of all three of these. Here we
do just that. We introduce a framework that instan-
tiates Niyogi and Berwick (1996)’s acquisition-
driven formalism where change is handled explic-
itly as a two-step alternation between individual
learners learning and populations interacting. It
provides an analytic solution to the state of a net-
work structure over which swarm-like behavior
can be modeled.

We begin by conceptualizing the framework in
terms of agents traveling probabilistically over a
network structure as in Algo. 1 before introduc-
ing the analytic solution. There is an individual
standing at every node in the graph, and at every
iteration, each individual begins at some location
and travels along the network’s edges, at each step
deciding to continue on or to stop and interact with
the agent at that node. Any two agents with a non-
zero weight path between them could potentially
interact, so the overall probability of an interaction
is a function of the shape of the network and the
decay rate of the step probability. The shorter and
higher weighted the path between two agents, the
more likely they are to interact. This corresponds
to the gradient interaction probabilities of swarm
frameworks.

Algorithm 1: One iteration of the propagation
model conceptualized on the level of an indi-
vidual agent

for each individual node do
Begin traveling;
while traveling do

Randomly select an outgoing edge by
weight and follow it OR stop travel;

increase chance of stopping next time;
end
Interact with the individual at the current
node;

end

2.1 Representing the Network

Social networks are typically conceived of as
graph structures with individuals as vertices and
the social or geographical connections between
individuals as edges, and this allows for a great
deal of flexibility. If edges are undirected, then
all interactions are equal and bidirectional, but if
edges are directed, interactions may or may not
be. Edges can be weighted to represent likelihood
of interaction or some measure of social valuation,
and this too can vary over time. Lastly, it is possi-
ble to add and remove nodes themselves to capture
births, deaths, or migration.

The network structure is represented computa-
tionally here as an adjacency matrix A. In a pop-
ulation of n individuals, this is n × n where each
element aij is the weight of the connection from
individual j to individual i. The matrix must be
column stochastic (all columns sum to 1 and con-
tain only positive elements) so that edge weights
can be interpreted as probabilities. The special
case where the matrix is symmetric (every aij =
aji) models undirected edges, and more strongly,
the model reduces to perfectly-mixed populations
when each aij = 1

n .

We define a notion of communities over the
nodes of the network in order to add the option
to categorize groups of individuals. Membership
among c communities is identified with an n × c
indicator matrix C. Depending on the problem at
hand, it is possible to calculate the average behav-
ior of the learners within each community directly
without having to calculate the behavior of each
individual member.
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2.2 Propagation in the Network

In a typical network model, the edge weights be-
tween nodes in A are interpreted directly as inter-
action probabilities, meaning that individuals only
ever interact with their immediate graph neigh-
bors. We take a different approach by allowing
the agents to “travel” and potentially interact with
any other agent whose node is connected by a path
of non-zero edges. If the number of traveling steps
were fixed at k, the probability of each pair inter-
acting would be defined as Ak. It is more compli-
cated for us since the number of steps traveled is a
random variable. The probability of j interacting
with i (p(ij)) is the probability of them interact-
ing after k steps times the probability of k for all
values of k as in Eqn. 1. Combining this intuition
with A yields the interaction probabilities for all
i, j pairs.

p(ij) =
∑

k

p(ij|k steps) p(k steps) (1)

The pattern of linguistic variants or grammars
(in the formal sense where grammar g is the inten-
sional equivalent of languageLg) within a network
unfolds as a dynamical system over the course of
many iterations, and learners’ positions within the
network mediate which ones they eventually ac-
quire. In a system with g grammars and n indi-
viduals, a n × g row-stochastic matrix G spec-
ifies the probability with which each community
expresses each grammar. Given this notion of in-
teraction and the specification of grammars ex-
pressed within a network, it is possible to compute
the distribution of grammars presented to each
learner. This is the learners’ linguistic environ-
ment and is represented by a matrix E in the same
form as G>.

An environment function En(Gt,A) = Et+1

shown in Eqn. 2 calculates E by first calculating
all the interaction probabilities in the network then
multiplying those by the grammars which every
agent expresses to get the environment E. The α
parameter from the geometric distribution1 defines
the travel decay rate. A lower α defines conceptu-
ally more mobile agents.

More generally, En is a special case of
E(Gt,Ct,At) = Et+1 where the number of com-
munities equals the number of individuals (c = n).

1In this paper, jump probabilities decay according to a
geometric distribution, but other distributions including the
Poisson have been implemented as well.

C becomes the identity matrix without loss of gen-
erality, so the network’s initial condition does not
have to be defined explicitly. For any other com-
munity definition, an initial condition has to be de-
fined as in Eqn. 3 which specifies the starting point
in the network that each agent conceptually begins
traveling from. The output of E is a g × c ma-
trix giving the environment of the average agent in
each community.2

En(Gt,A) = G>t α (I− (1− α)A)−1 (2)

E(Gt,C,A) = En(Gt,A)C(C>C)−1 (3)

The output of E must be broadcast to g × n,
which would result in the loss of some informa-
tion unless the assumption can be made that each
community is internally uniform. However, when
that assumption can be made, the n×n adjacency
matrix admits a c× c equitable partition Aπ (Eqn.
4) (Schaub et al., 2016) which permits an alter-
nate environment function EEP (Gt,C,A) shown
in Eqn. 5 that is equivalent to the lossless En if A.
If n� c, EEP is much faster to calculate because
it only inverts a small c × c matrix rather than a
large n × n. This makes it feasible to run much
larger simulations than what has been done in the
past.

Aπ = (C>C)−1C>AC (4)

EEP = αG>C (I− (1− α)Aπ)−1 (C>C)−1 (5)

2.3 Learning in the Network

The environment function describes what inputs
Et+1 are available to learners given the language
expressed by the mature speakers of the previ-
ous age cohort with grammars Gt. The second
component of the framework describes the learn-
ing algorithm A(Et+1) = Gt+1, how individu-
als respond to their input environment. The result-
ing Gt+1 describes which grammars those learn-
ers will eventually contribute to the subsequent
generation’s environment Et+2. This back-and-
forth between adults’ grammars G and childrens’
environment E is the two-step cycle of language
change (Fig. 1).

In neutral change, learners would acquire gram-
mars at the rates that they are expressed in their
environments, but there is good reason to believe

2(I− (1− α)A)−1 and C(C>C)−1 can be pre-
computed if network structure does not change over time.
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. . .Gt → Et+1 → Gt+1 . . .Gt+i → Et+i+1 . . .

Figure 1: Language change as an alternation be-
tween G and E matrices

that most language change involves differential fit-
ness between competing variants, and most non-
trivial learning algorithms yield some kind of fit-
ness (Kroch, 1989; Yang, 2000; Blythe and Croft,
2012, etc.), so A is rarely neutral. A neutral and
simple advantaged model are both considered in
Section 3, and a more complex learning algorithm
is described for Section 4.

3 Application: Testing Assumptions

The general nature of the framework described
here renders it suitable for reproducing the results
of previous works and evaluating their assump-
tions. To demonstrate this, we reproduce the ma-
jor result from Kauhanen (2016), which tested the
behavior of neutral change in networks of single-
grammar learners, in order to dissect two of its
primary assumptions. Implemented in a typical
network framework, the original setup contains
n = 200 individuals in probabilistically generated
centralized networks in which individuals mature
categorically to the single most frequent grammar
in their input. The author found that categorical
neutral change produced chaotic paths of change
regardless of network shape and that periodically
“rewiring” some of the network edges smoothed
this out. Without commenting on rewiring, we find
that the combination of n and choice of categorical
learners conspire to create the chaotic results.

We create two communities, both centralized
along the lines of the single cluster in Kauhanen
(2016), initialize all members of cluster 1 with
grammar g1 and all members of cluster 2 with
grammar g2, and additional edges are added be-
tween members of clusters 1 and 2 to allow inter-
action. G is converted to an indicator matrix at the
end of each learning iteration by rounding values
to 0 and 1 in order to model categorical learners
who only internalize the most common grammar
in their inputs as in the original model.

In a pair of infinitely large clusters or two clus-
ters where individuals are permitted to learn a
probabilistic distribution of grammars, each clus-
ter should homogenize to a 50/50 distribution of

g1 and g2 after some number of iterations depend-
ing on the specifics of the network shape and set-
ting for α creating the red curves in Fig. 2. At
n = 20000, each of 10 trials roughly follows the
path of the predicted curve, but when run at the
original n = 200 for 10 trials, this produces the
type of chaotic behavior which Kauhanen (2016)
attempts to repair. The outcome appears to be the
result of an assumption made out of convenience
(n = 200) rather than a principled decision.

Figure 2: Predicted curve (red); neutral change at
n = 200 (left; Kauhanen (2016)); neutral change
at n = 20000 (right)

To further explore the impact of the population
size assumption, we experiment on a model of
advantaged change, which is typically contrasted
with neutral change because of its tendency to
produce “well-behaved” S-curve change (Blythe
and Croft, 2012; Kauhanen, 2016). This time,
only a single cluster is created, and the advantaged
grammar is initially assigned to 1% of the pop-
ulation. As seen in Figure 3, results are chaotic
for n = 200 once again and near predicted for
n = 20000. This is important because at n = 200,
advantaged change is chaotic, and most simula-
tions both rise and fall. An experimenter who
only studied advantaged change in small popula-
tion might concluded that it is as ill-behaved as
neutral change. While the conclusions that Kauha-
nen (2016) draws appear valid for n = 200, it
is not clear to what extent they can be projected
onto larger populations. This demonstrates the
need for carefully choosing one’s modeling as-
sumptions and testing them out when possible.

4 Application: Mergers in Progress

The acquisition of phonological mergers in mixed
input settings presents an interesting problem. It
appears that mergers have an inherent advantage
because they tend to spread at the expense of dis-
tinctions, and once they begin, they are rarely re-
versed (Labov, 1994). Yang (2009)’s acquisition
model quantifies this advantage as the relatively

1153



Figure 3: predicted curve (red); advantaged
change at n = 200 (left; cf. Kauhanen (2016));
advantaged change at n = 20000 (right)

lower chance of misinterpretation if a listener as-
sumes the merged grammar instead of the non-
merged grammar once a sufficient proportion of
the environment is merged. Applied to Johnson
(2007)’s detailed population study of the frontier
of the COT-CAUGHT merger in the small towns
along the border between Rhode Island and Mas-
sachusetts, this accurately predicts the ratio of
merged input for a child to acquire the merged
grammar, however when applied to a perfectly
mixed population of learners, it fails to model the
spread of the merged grammar in the population.
Yang’s model is input-driven, so it is conducive
to simulation with minimal assumptions past those
drawn from the empirical data. We test the behav-
ior of this learning model in a typical population
network and demonstrate that it produces a rea-
sonable path of change.

4.1 Background

The COT-CAUGHT merger, also called the low
back merger describes the phenomenon present
in varieties of North American English spoken in
eastern New England, western Pennsylvania, the
American West, and Canada among others where
the vowel in words like cot and the vowel in
words like caught have come to be pronounced
the same (Labov et al., 2005, pp. 58-65). The
geographical extent of the merger is currently ex-
panding, which might be expected if the merger
has a cognitive or social advantage associated with
it. Johnson (2007)’s study of the merger’s fron-
tier on the border Rhode Island and Massachusetts
uncovered an interesting social dynamic that il-
lustrates the merger’s speed: there are families
where the parents and older siblings non-merged,
but the younger siblings are. The merger has swept
through in only a few years and passed between
the siblings.

Yang (2009) seeks to understand why mergers
have an advantage from a cognitive perspective,
and his model treats the acquisition of mergers
as an evolutionary process. Learners who receive
both merged (M+) and non-merged (M−) input
entertain both a merged (g+) and non-merged (g−)
grammar and reward whichever grammar success-
fully parses the input. This kind of variational
learner (Yang, 2000) is essentially an adaptation
of the classic evolutionary Linear Reward Punish-
ment model (Bush and Mosteller, 1953). The fit-
ness of each grammar is the probability in the limit
that it will fail to parse any given input, and since
it is virtually always the case that this probabil-
ity is different for both grammars, fitness is virtu-
ally always asymmetric. The variational learner is
characterized as follows.

Given two grammars and an input token s, The
learner parses s with g1 with probability p and
with g2 with probability q = 1− p. p is rewarded
according to whether the choice of g successfully
parses s (g → s) or it fails to (g 9 s), where γ is
some small constant.

p′ =

{
p+ γq, g → s

(1− γ)p, g 9 s

Given a specific problem, one can calculate a
penalty probability C for each g, the proportion
of input that would cause g 9 s. The grammar
with the lower C has the advantage, so the other
one will be driven down in the long run. C can be
estimated from type frequencies in a corpus, and
the model is non-parametric because these values
do not depend on γ.

lim
t→∞

pt =
C2

C1 + C2
lim
t→∞

qt =
C1

C1 + C2

To understand the COT-CAUGHT merger empir-
ically, one must reason about what kind of in-
put would trigger a penalty and then calculate the
penalty probabilities of the merged grammar C+

and non-merged grammar C− from a corpus. This
model considers parsing failure to be the rate of
initial misinterpretation, and for a vowel merger,
the only inputs that could create an initial misinter-
pretation are minimal pairs because they become
homophones. Examples of COT-CAUGHT minimal
pairs include cot-caught, Don-Dawn, stock-stalk,
odd-awed, collar-caller, and so on.

The merged g+ grammar collapses would-be
minimal pairs into homophones, so the penalty
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rate C+ comes down to lexical access. Under
the observation that more frequent homophones
are retrieved first regardless of syntactic context
(Caramazza et al., 2001), g+ listeners only suf-
fer initial misinterpretation when the less frequent
member of a pair is uttered regardless of the rate of
M+. If H is the sum token frequency of all mini-
mal pairs and hio, h

i
oh are the frequencies of the ith

pair’s members, then C+ is calculated by Eqn. 6.
In contrast, g− listeners are sensitive to the

phonemic distinction, so they misinterpret M− in-
put at the rate of mishearing one vowel for the
other ε (Peterson and Barney, 1952) (second half
of Eqn. 7). And given M+ input, they misinter-
pret whenever they hear the phoneme which g−
does not expect (e.g., a merged speaker pronounc-
ing cot with the CAUGHT vowel) times the prob-
ability of not mishearing that vowel (1-ε) plus ε
times the probability of hearing the right vowel
(i.e., the merged speaker pronounces cot with the
COT vowel but it is misheard anyway) (first half
of Eqn. 7). Since g− misinterpretation rates are a
function of the rate of M+ (p) in the environment,
there is a threshold of M+ speakers above which
the merged grammar has a fitness advantage over
the non-merged one.

C+ =
1

H

∑

i

min(hio, h
i
oh) (6)

C− =
1

H

∑

i

[
p0((1− εoh)hio + εohh

i
oh) (7)

+q0(εohh
i
o + εohh

i
oh)
]

Calculating this threshold for the frequent min-
imal pairs that Yang extracts from the Wortschatz
project (Biemann et al., 2004) corpus3 and mis-
hearing rates from Peterson and Barney (1952),
the Yang model predicts that a learner exposed
to at least ∼ 17% COT-CAUGHT-merged input
will acquire the merger. This threshold repre-
sents a strong advantage for M+ because it is
well under the 50% threshold expected for neu-
tral (non-advantaged) change and it is very close
to what was found in Johnson (2007)’s sociolin-
guistic study. It predicts that younger children may
have g+ while their parents and even older siblings

3Don (1052) – Dawn (736); collar (403) – caller (23);
knotty (25) – naughty (195); odd (830) – awed (80); Otto
(67) – auto (260); tot (9) – taught (1327); cot (39) – caught
(2444); pond (258) – pawned (31); hock (25) – hawk (127);
nod (180) – gnawed (53); sod (30) – sawed (37)

have g− if the 17% threshold was crossed in E af-
ter the acquisition period of the older sibling but
before that of the younger sibling.

4.2 Model Setup

All the mechanics behind the learning model re-
duce to a simple statement: learners acquires g+
iff > 17% of their input is M+ and they acquire
g− otherwise. However, this kind of categorical
learner in a perfectly-mixed population leads to
immediate fixation at either g− or g+ in a single it-
eration, since the proportion of g+ speakers in the
population is equivalent to the proportion of M+

input in every learner’s environment. This is not
realistic change. Clearly, social network structure
is at least as important as the learning algorithm in
modeling the spread of the merger.

We model the change in a non-uniform social
network of 100 centralized clusters of 75 individu-
als each. 75 was chosen as half Dunbar’s number,
the maximum number of reliable social connec-
tions that an adult can maintain (Dunbar, 2010).
There are two grammars, g+ and g−, and learn-
ers internalize one or the other according to the
17% threshold of M+ in their input. One cluster
represents the source of the merger and is initial-
ized at 100% g+, while the rest begin 100% g−.
Inter-cluster connections are chosen randomly so
that some connections are between central mem-
bers of the clusters and some are between periph-
eral members. The one merged cluster is con-
nected to half the other clusters representing those
at the frontier of the change, and each other clus-
ter is connected to five randomly chosen ones.4

This network structure echoes work in sociolin-
guistics, in particular, Milroy and Milroy (1985)’s
notion of strong and weak connections in language
change, where weak connections between social
clusters are particularly important for propagation
of a change.

Propagation of the merged grammar is calcu-
lated by En because we are interested in the behav-
ior of individuals without loss of precision and be-
cause it cannot be assumed that each cluster is in-
ternally uniform.5 Since the spread of the merger
has been rapid enough to detect over a period of a
few years, iterations are modeled as short age co-

4Originally, the clusters were set up as a “stepping-stone”
chain with the merged community at one end, and that pro-
duced a similar S-curve. The structure presented here is more
geographically plausible but not crucial for the results.

5α = 0.45.
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horts rather than full generations in the first exper-
iments by updating only a randomly chosen 10%
of nodes at each iteration because only a fraction
of the population is learning at any given time. A
model where every node is updated is investigated
as well.

4.3 Results

The behavior of this simulation is shown graphi-
cally in Figure 4. The fine/colored lines indicate
the rate of M+ within each initially non-merged
cluster, and the bold/black line shows the average
rate across all initially non-merged. The merger
spreads from cluster to cluster in succession over
the “weak” inter-cluster connections and through
each cluster over the ‘strong’ connections before
moving on to the next ones.

Figure 4: Spread of merger across communities
(fine/colored) and population average (bold/black)

Most individual clusters exhibit a period of time
in which only a few early adopter (Rogers Everett,
1995) members have the merger, a period of rapid
diffusion of the merger, then some time where a
few laggards resist the merger. As a result, most
clusters exhibit an S-like shape. A few clusters
change rapidly because of their especially well-
connected positions in the network, and some lag
behind the rest because they are poorly connected
to the rest of the network. More interestingly,
the population-wide average, the population-level
data at the kind of granularity that is often studied,
yields a smooth S-curve with a shallower slope
than the individual clusters. The fact that it arises
naturally here in a network that conforms with typ-
ical network shapes but was otherwise randomly
generated is encouraging because the experiment
was not set up so that it would produce such a
curve, and the steep rate of change in individual

clusters is what is expected for a change that is
rapid enough to affect siblings differently.

In the above simulation, only a fraction of nodes
were updated at each iteration in order to model a
rapid change. In order to confirm that this choice
is not affecting the results and to test a purer imple-
mentation of the framework presented here, we re-
move that constraint and update every node at each
iteration. Figure 5 shows what happens over 20 it-
erations in a network that is otherwise identical but
with 2/5 as many inter-cluster connections as the
original. A qualitatively similar pattern arises, so
the choice to update only a fraction of the popula-
tion is not crucially affecting the results.

Figure 5: Spread of merger across communities
(fine/colored) and population average (bold/black)

In all experiments so far, social connections
were fixed at the first iteration even though con-
nections in real populations tend to change over
time. To investigate that modeling assumption, we
perform another simulation in which connections
are randomly updated both within and across clus-
ters at each iteration akin to Kauhanen (2016)’s
rewiring. The result as shown in Figure 6 is simi-
lar to before, with one major difference. The in-
dividual clusters transition more closely in time
because no individual cluster remains poorly con-
nected or especially well connected throughout the
entire simulation.

Finally, we test our assumptions about popula-
tion size by repeating the experiments on a smaller
network of 40 clusters of 18 individuals. The re-
sults are qualitatively similar, but the S-curve ap-
pears to be more sensitive to probabilistic connec-
tions in the network. To explore this, we present
the average network-wide rate of (M+) across 10
trials, revealing that an S-like curve is formed each
time but that its slope varies. A few trials never
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Figure 6: Spread of merger within commu-
nities (fine/colored) and as population average
(bold/black). Network updated.

reach 100% because some of the clusters are not
connected to the innovative one. The slope varies
between trials, indicating that the rate of change is
a function of both the population structure and the
learning algorithm, but the network size does not
substantially affect these results.

Figure 7: Single small network trial (left); average
curves from 10 trials (right)

5 Discussion

The algebraic-network framework for modeling
population-level language change presented here
has substantial practical and theoretical advan-
tages over previous ones. It is much simpler com-
putationally than previous frameworks because
it calculates the statistically expected behavior
of each generation analytically and therefore re-
moves the entire inner loop of calculating stochas-
tic inter-agent interactions from the simulation. It
follows the Niyogi and Berwick (1996) formalism
for language change which presents a clean and
modular way of reasoning about the problem and
promotes the centrality of language acquisition.

In addition to the core algorithm, the framework
offers enough flexibility to represent a wide va-
riety of processes from the highly abstract (e.g.,
Kauhanen (2016)) to those grounded in soci-

olinguistic and acquisition research (e.g., Yang
(2009)). In our investigation of Kauhanen’s basic
assumptions, we discover how seemingly innocu-
ous decisions about population size and learning
conspire to drive simulation results. If learners are
conceived as categorical learners, population size
becomes a deciding factor in the path of change.
So while the original results are interesting and
meaningful, they may only valid for small (on the
order of 102) populations.

In our simulation of the spread of the COT-
CAUGHT merger, we show how a cognitively-
motivated model of acquisition requires a network
model in order to represent population-level lan-
guage change. The population is represented as
a collection of individual clusters based on socio-
logical work, but the clusters themselves are con-
nected randomly. The fact that S-curves arise nat-
urally from these networks underscores their cen-
trality to language change.

One problem that this line of simulation work
has always faced has been the lack of viable com-
parison between models because every study im-
plements its own learning, network, and interac-
tion models. The modular nature of our frame-
work advances against this trend since it is now
possible to hold the population model constant
while slotting in various learning models to test
them against one another and vice-versa. Fi-
nally, since this framework reduces to Niyogi &
Berwick’s models in perfectly-mixed populations,
it can be used to reason about the formal dynamics
of language change as well.

Without simulation, it would be difficult or im-
possible to undercover the interplay between ac-
quisition and social structure on the propagation
of language change. Neither factor alone can ac-
count for the theoretical or empirically observed
patterns. Simulations of this kind which explic-
itly model both simultaneously is well equipped
to provide insights that fieldwork and laboratory
work cannot. As such, it is an invaluable comple-
ment to those more traditional methodologies.
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Abstract

We show that an ε-free, chain-free syn-
chronous context-free grammar (SCFG)
can be converted into a weakly equiva-
lent synchronous tree-adjoining grammar
(STAG) which is prefix lexicalized. This
transformation at most doubles the gram-
mar’s rank and cubes its size, but we show
that in practice the size increase is only
quadratic. Our results extend Greibach
normal form from CFGs to SCFGs and
prove new formal properties about SCFG,
a formalism with many applications in nat-
ural language processing.

1 Introduction

Greibach normal form (GNF; Greibach, 1965)
is an important construction in formal language
theory which allows every context-free grammar
(CFG) to be rewritten so that the first charac-
ter of each rule is a terminal symbol. A gram-
mar in GNF is said to be prefix lexicalized, be-
cause the prefix of every production is a lexi-
cal item. GNF has a variety of theoretical and
practical applications, including for example the
proofs of the famous theorems due to Shamir and
Chomsky-Schützenberger (Shamir, 1967; Chom-
sky and Schützenberger, 1963; Autebert et al.,
1997). Other applications of prefix lexicaliza-
tion include proving coverage of parsing algo-
rithms (Gray and Harrison, 1972) and decidability
of equivalence problems (Christensen et al., 1995).

By using prefix lexicalized synchronous
context-free grammars (SCFGs), Watanabe et al.
(2006) and Siahbani et al. (2013) obtain asymp-
totic and empirical speed improvements on a
machine translation task. Using a prefix lexical-
ized grammar ensures that target sentences can be
generated from left to right, which allows the use
of beam search to constrain their decoder’s search
space as it performs a left-to-right traversal of
translation hypotheses. To achieve these results,

new grammars had to be heuristically constrained
to include only prefix lexicalized productions, as
there is at present no way to automatically convert
an existing SCFG to a prefix lexicalized form.

This work investigates the formal properties of
prefix lexicalized synchronous grammars as em-
ployed by Watanabe et al. (2006) and Siahbani
et al. (2013), which have received little theoreti-
cal attention compared to non-synchronous prefix
lexicalized grammars. To this end, we first prove
that SCFG is not closed under prefix lexicaliza-
tion. Our main result is that there is a method
for prefix lexicalizing an SCFG by converting it
to an equivalent grammar in a different formal-
ism, namely synchronous tree-adjoining grammar
(STAG) in regular form. Like the GNF transfor-
mation for CFGs, our method at most cubes the
grammar size, but we show empirically that the
size increase is only quadratic for grammars used
in existing NLP tasks. The rank is at most dou-
bled, and we maintain O(n3k) parsing complex-
ity for grammars of rank k. We conclude that al-
though SCFG does not have a prefix lexicalized
normal form like GNF, our conversion to prefix
lexicalized STAG offers a practical alternative.

2 Background

2.1 SCFG
An SCFG is a tuple G = (N,Σ, P, S) where N is
a finite nonterminal alphabet, Σ is a finite termi-
nal alphabet, S ∈ N is a distinguished nontermi-
nal called the start symbol, and P is a finite set of
synchronous rules of the form

(1) 〈A1 → α1, A2 → α2〉

for some A1, A2 ∈ N and strings α1, α2 ∈ (N ∪
Σ)∗.1 Every nonterminal which appears in α1

1A variant formalism exists which requires thatA1 = A2;
this is called syntax-directed transduction grammar (Lewis
and Stearns, 1968) or syntax-directed translation schemata
(Aho and Ullman, 1969). This variant is weakly equivalent
to SCFG, but SCFG has greater strong generative capacity
(Crescenzi et al., 2015).
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A 1

A↓ 2a

B 2

B↓ 1b

A

cA∗

B

d
〈 〉 〈 〉

〈 A

A

a A ↓ 1

c ,

B 1

b B

d

〉

Figure 1: An example of synchronous rewriting in an STAG (left) and the resulting tree pair (right).

must be linked to exactly one nonterminal in α2,
and vice versa. We write these links using numer-
ical annotations, as in (2).

(2) 〈A→ A 1 B 2 , B → B 2 A 1 〉

An SCFG has rank k if no rule in the grammar
contains more than k pairs of linked nodes.

In every step of an SCFG derivation, we rewrite
one pair of linked nonterminals with a rule from
P , in essentially the same way we would rewrite
a single nonterminal in a non-synchronous CFG.
For example, (3) shows linked A and B nodes be-
ing rewritten using (2):
(3)
〈X 1 A 2 , B 2 Y 1 〉 ⇒ 〈X 1 A 2 B 3 , B 3 A 2 Y 1 〉

Note how the 1 and 2 in rule (2) are renumbered
to 2 and 3 during rewriting, to avoid an ambigu-
ity with the 1 already present in the derivation.

An SCFG derivation is complete when it con-
tains no more nonterminals to rewrite. A com-
pleted derivation represents a string pair generated
by the grammar.

2.2 STAG
An STAG (Shieber, 1994) is a tuple G =
(N,Σ, T, S) where N is a finite nonterminal al-
phabet, Σ is a finite terminal alphabet, S ∈ N is a
distinguished nonterminal called the start symbol,
and T is a finite set of synchronous tree pairs of
the form

(4) 〈t1, t2〉

where t1 and t2 are elementary trees as defined in
Joshi et al. (1975). A substitution site is a leaf
node marked by ↓ which may be rewritten by an-
other tree; a foot node is a leaf marked by ∗ that
may be used to rewrite a tree-internal node. Ev-
ery substitution site in t1 must be linked to ex-
actly one nonterminal in t2, and vice versa. As
in SCFG, we write these links using numbered an-
notations; rank is defined for STAG the same way
as for SCFG.

In every step of an STAG derivation, we rewrite
one pair of linked nonterminals with a tree pair
from T , using the same substitution and adjunc-
tion operations defined for non-synchronous TAG.
For example, Figure 1 shows linked A and B
nodes being rewritten and the tree pair resulting
from this operation. See Joshi et al. (1975) for de-
tails about the underlying TAG formalism.

2.3 Terminology

We use synchronous production as a cover term
for either a synchronous rule in an SCFG or a syn-
chronous tree pair in an STAG.

Following Siahbani et al. (2013), we refer to
the left half of a synchronous production as the
source side, and the right half as the target side;
this terminology captures the intuition that syn-
chronous grammars model translational equiva-
lence between a source phrase and its translation
into a target language. Other authors refer to
the two halves as the left and right components
(Crescenzi et al., 2015) or, viewing the grammar
as a transducer, the input and the output (Engel-
friet et al., 2017).

We call a grammar ε-free if it contains no pro-
ductions whose source or target side produces only
the empty string ε.

2.4 Synchronous Prefix Lexicalization

Previous work (Watanabe et al., 2006; Siahbani
et al., 2013) has shown that it is useful for the tar-
get side of a synchronous grammar to start with a
terminal symbol. For this reason, we define a syn-
chronous grammar to be prefix lexicalized when
the leftmost character of the target side2 of every
synchronous production in that grammar is a ter-
minal symbol.

Formally, this means that every synchronous
rule in a prefix lexicalized SCFG (PL-SCFG) is

2All of the proofs in this work admit a symmetrical variant
which prefix lexicalizes the source side instead of the target.
We are not aware of any applications in NLP where source-
side prefix lexicalization is useful, so we do not address this
case.
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of the form

(5) 〈A1 → α1, A2 → aα2〉

whereA1, A2 ∈ N , α1, α2 ∈ (N∪Σ)∗ and a ∈ Σ.
Every synchronous tree pair in a prefix lexical-

ized STAG (PL-STAG) is of the form

(6)

〈
A1

α1

,
A2

aα2

〉

whereA1, A2 ∈ N , α1, α2 ∈ (N∪Σ)∗ and a ∈ Σ.

3 Closure under Prefix Lexicalization

We now prove that the class SCFG is not closed
under prefix lexicalization.

Theorem 1. There exists an SCFG which cannot
be converted to an equivalent PL-SCFG.

Proof. The SCFG in (7) generates the language
L = {〈aibjci, bjai〉| i ≥ 0, j ≥ 1}, but this lan-
guage cannot be generated by any PL-SCFG:

(7)

〈S → A 1 , S → A 1 〉
〈A→ aA 1 c, A→ A 1 a〉
〈A→ bB 1 , A→ bB 1 〉
〈A→ b, A→ b〉
〈B → bB 1 , B → bB 1 〉
〈B → b, B → b〉

Suppose, for the purpose of contradiction, that
some PL-SCFG does generate L; call this gram-
mar G. Then the following derivations must all be
possible in G for some nontermials U, V,X, Y :

i) 〈U 1 , V 1 〉 ⇒∗ 〈bkU 1 bm, bnV 1 bp〉,
where k +m = n+ p and n ≥ 1

ii) 〈X 1 , Y 1 〉 ⇒∗ 〈aqX 1 cq, arY 1 as〉,
where q = r + s and r ≥ 1

iii) 〈S 1 , S 1 〉 ⇒∗ 〈α1X 1 α2, bα3Y 1 α4〉,
where α1, ..., α4 ∈ (N ∪ Σ)∗

iv) 〈X 1 , Y 1 〉 ⇒∗ 〈α5U 1 α6, α7V 1 α8〉,
where α5, α6, α8 ∈ (N ∪ Σ)∗, α7 ∈ Σ(N ∪
Σ)∗

i and ii follow from the same arguments used
in the pumping lemma for (non-synchronous)
context free languages (Bar-Hillel et al., 1961):
strings in L can contain arbitrarily many as, bs,
and cs, so there must exist some pumpable cycles

which generate these characters. In i, k + m =
n + p because the final derived strings must con-
tain an equal number of bs, and n ≥ 1 because
G is prefix lexicalized; in ii the constraints on q, r
and s follow likewise from L. iii follows from the
fact that, in order to pump on the cycle in ii, this
cycle must be reachable from the start symbol. iv
follows from the fact that a context-free produc-
tion cannot generate a discontinuous span. Once
the cycle in i has generated a b, it is impossible
for ii to generate an a on one side of the b and a c
on the other. Therefore i must always be derived
strictly later than ii, as shown in iv.

Now we obtain a contradiction. Given that G
can derive all of i through iv, the following deriva-
tion is also possible:
(8)

〈S 1 , S 1 〉
⇒∗ 〈α1X 1 α2, bα3Y 1 α4〉
⇒∗ 〈α1a

qX 1 cqα2, bα3a
rY 1 asα4〉

⇒∗ 〈α1a
qα5U 1 α6c

qα2, bα3a
rα7V 1 α8a

sα4〉
⇒∗ 〈α1a

qα5b
kU 1 bmα6c

qα2,
bα3a

rα7b
nV 1 bpα8a

sα4〉
But since n, r ≥ 1, the target string derived this
way contains an a before a b and does not belong
to L.

This is a contradiction: if G is a PL-SCFG then
it must generate i through iv, but if so then it also
generates strings which do not belong to L. Thus
no PL-SCFG can generate L, and SCFG must not
be closed under prefix lexicalization. �

There also exist grammars which cannot be pre-
fix lexicalized because they contain cyclic chain
rules. If an SCFG can derive something of the
form 〈X 1 , Y 1 〉 ⇒∗ 〈xX 1 , Y 1 〉, then it can
generate arbitrarily many symbols in the source
string without adding anything to the target string.
Prefix lexicalizing the grammar would force it to
generate some terminal symbol in the target string
at each step of the derivation, making it unable
to generate the original language where a source
string may be unboundedly longer than its corre-
sponding target. We call an SCFG chain-free if it
does not contain a cycle of chain rules of this form.
The remainder of this paper focuses on chain-free
grammars, like (7), which cannot be converted to
PL-SCFG despite containing no such cycles.

4 Prefix Lexicalization using STAG

We now present a method for prefix lexicalizing
an SCFG by converting it to an STAG.
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〈X 1 , A 1 〉 ⇒ 〈α1Y1 1 β1, B1 1 γ1〉 ⇒ 〈α1α2Y2 1 β2β1, B2 1 γ2γ1〉

⇒∗ 〈α1 · · ·αtYt 1 βt · · ·β1, Bt 1 γt · · · γ1〉 ⇒ 〈α1 · · ·αtαt+1βt · · ·β1, aγt+1γt · · · γ1〉
Figure 2: A target-side terminal leftmost derivation. a ∈ Σ; X,A, Yi, Bi ∈ N ; and αi, βi, γi ∈ (N ∪ Σ)∗.

〈
SXA

α1

,
SXA

aα2

〉

(a) 〈X → α1, A→ aα2〉

〈 SXA

YXA 1

α1

,
SXA

aα2BXA ↓ 1

〉

(b) 〈Y → α1, B → aα2〉〈 ZXA

YXA 1

α1 ZXA∗ β1

,
CXA

α2 BXA ↓ 1

〉

(c) 〈Y → α1Z 1 β1, B → C 1 α2〉

〈
YXA

α1 YXA∗ β1

,
CXA

α2

〉

(d) 〈X → α1Y 1 β1, A→ C 1 α2〉
Figure 3: Tree-pairs in GXA and the rules in G from which they derive.

Theorem 2. Given a rank-k SCFG G which is ε-
free and chain-free, an STAGH exists such thatH
is prefix lexicalized and L(G) = L(H). The rank
of H is at most 2k, and |H| = O(|G|3).

Proof. Let G = (N,Σ, P, S) be an ε-free, chain-
free SCFG. We provide a constructive method for
prefix lexicalizing the target side of G.

We begin by constructing an intermediate
grammar GXA for each pair of nonterminals
X,A ∈ N \ {S}. For each pair X,A ∈ N \ {S},
GXA will be constructed to generate the language
of sentential forms derivable from 〈X 1 , A 1 〉
via a target-side terminal leftmost derivation
(TTLD). A TTLD is a derivation of the form
in Figure 2, where the leftmost nontermi-
nal in the target string is expanded until it
produces a terminal symbol as the first char-
acter. We write 〈X 1 , A 1 〉 ⇒∗TTLD 〈u, v〉
to mean that 〈X 1 , A 1 〉 derives 〈u, v〉 by
way of a TTLD; in this notation, LXA =
{〈u, v〉|〈X 1 , A 1 〉 ⇒∗TTLD 〈u, v〉} is the
language of sentential forms derivable from
〈X 1 , A 1 〉 via a TTLD.

Given X,A ∈ N \ {S} we formally de-
fine GXA as an STAG over the terminal alpha-
bet ΣXA = N ∪ Σ and nonterminal alphabet
NXA = {YXA|Y ∈ N}, with start symbol SXA.
NXA contains nonterminals indexed by XA to
ensure that two intermediate grammars GXA and
GY B do not interact as long as 〈X,A〉 6= 〈Y,B〉.

GXA contains four kinds of tree pairs: 3

• For each rule in G of the form
〈X → α1, A→ aα2〉, a ∈ Σ, αi ∈ (N∪Σ)∗,
we add a tree pair of the form in Figure 3(a).

• For each rule in G of the form
〈Y → α1, B → aα2〉, a ∈ Σ, αi ∈ (N∪Σ)∗,
Y,B ∈ N \ {S}, we add a tree pair of the
form in Figure 3(b).

• For each rule in G of the form
〈Y → α1Z 1 β1, B → C 1 α2〉, Y, Z,B,C ∈
N \ {S}, αi, βi ∈ (N ∪ Σ)∗, we add a tree
pair of the form in Figure 3(c).

As a special case, if Y = Z we collapse the
root node and adjunction site to produce a
tree pair of the following form:

(9)

〈
ZXA 1

α1ZXA ∗ β1

,
CXA

α2BXA ↓ 1

〉

• For each rule in G of the form
〈X → α1Y 1 β1, A→ C 1 α2〉, Y,C ∈ N ,
αi, βi ∈ (N ∪ Σ)∗, we add a tree pair of the
form in Figure 3(d).

3In all cases, we assume that symbols inN (notNXA) re-
tain any links they bore in the original grammar, even though
they belong to the terminal alphabet in GXA and therefore
do not participate in rewriting operations. In the final con-
structed grammar, these symbols will belong to the nonter-
minal alphabet again, and the links will function normally.
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〈A→ B 2 cA 1 , A→ A 1 cB 2 〉

〈
AAA 1

B ↓ 2 c AAA∗
,

AAA

c B ↓ 2 AAA ↓ 1

〉

Figure 4: An SCFG rule and a tree pair based off that rule,
taken from an intermediate grammar GAA. The tree pair is
formed according to the pattern illustrated in Figure 3(c). Ob-
serve that theB nodes retain the link they bore in the original
rule. This link is not functional in the intermediate grammar
(that is, it cannot be used for synchronous rewriting) because
B /∈ NAA, but it will be functional when this tree pair is
added to the final grammar H .

Figure 4 gives a concrete example of construct-
ing an intermediate grammar tree pair on the basis
of an SCFG rule.

Lemma 1. GXA generates the language LXA.

Proof. This can be shown by induction over
derivations of increasing length. The proof is
straightforward but very long, so we provide only
a sketch; the complete proof is provided in the sup-
plementary material.

As a base case, observe that a tree of the shape
in Figure 3(a) corresponds straightforwardly to the
derivation

(10) 〈X 1 , A 1 〉 ⇒ 〈α1, aα2〉

which is a TTLD starting from 〈X,A〉. By con-
struction, therefore, every TTLD of the shape in
(10) corresponds to some tree in GXA of shape
3(a); likewise every derivation inGXA comprising
a single tree of shape 3(a) corresponds to a TTLD
of the shape in (10).

As a second base case, note that a tree of the
shape in Figure 3(b) corresponds to the last step of
a TTLD like (11):

(11) 〈X 1 , A 1 〉 ⇒∗TTLD 〈uY 1 v,B 1 w〉
⇒ 〈uα1v, aα2w〉

In the other direction, the last step of any TTLD
of the shape in (11) will involve some rule of the
shape 〈Y → α1, B → aα2〉; by construction
GXA must contain a corresponding tree pair of
shape 3(b).

Together, these base cases establish a one-to-
one correspondence between single-tree deriva-
tions in GXA and the last step of a TTLD starting
from 〈X,A〉.

Now, assume that the last n steps of every
TTLD starting from 〈X,A〉 correspond to some
derivation over n trees in GXA, and vice versa.
Then the last n + 1 steps of that TTLD will also
correspond to some n+ 1 tree derivation in GXA,
and vice versa.

To see this, consider the step n+ 1 steps before
the end of the TTLD. This step may be in the mid-
dle of the derivation, or it may be the first step of
the derivation. If it is in the middle, then this step
must involve a rule of the shape

(12) 〈Y → α1Z 1 β1, B → C 1 α2〉

The existence of such a rule in G implies the exis-
tence of a corresponding tree in GXA of the shape
in Figure 3(c). Adding this tree to the existing
n-tree derivation yields a new n + 1 tree deriva-
tion corresponding to the last n + 1 steps of the
TTLD.4 In the other direction, if the n+ 1th tree5

of a derivation in GXA is of the shape in Figure
3(c), then this implies the existence of a produc-
tion in G of the shape in (12). By assumption the
first n trees of the derivation in GXA correspond
to some TTLD in G; by prepending the rule from
(12) to this TTLD we obtain a new TTLD of length
n + 1 which corresponds to the entire n + 1 tree
derivation in GXA.

Finally, consider the case where the TTLD is
only n + 1 steps long. The first step must involve
a rule of the form

(13) 〈X → α1Y 1 β1, A→ C 1 α2〉

The existence of such a rule implies the existence
of a corresponding tree in GXA of the shape in
Figure 3(d). Adding this tree to the derivation
which corresponds to the last n steps of the TTLD
yields a new n+1 tree derivation corresponding to
the entire n+ 1 step TTLD. In the other direction,
if the last tree of an n + 1 tree derivation in GA
is of the shape in Figure 3(d), then this implies the

4It is easy to verify by inspection of Figure 3 that when-
ever one rule from G can be applied to the output of another
rule, then the tree pairs in GXA which correspond to these
rules can compose with one another. Thus we can add the
new tree to the existing derivation and be assured that it will
compose with one of the trees that is already present.

5Although trees in GXA may contain symbols from the
nonterminal alphabet of G, these symbols belong to the ter-
minal alphabet in GXA. Only nonterminals in NXA will
be involved in this derivation, and by construction there is
at most one such nonterminal per tree. Thus a well-formed
derivation structure in GXA will never branch, and we can
refer to the n+ 1th tree pair as the one which is at depth n in
the derivation structure.
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existence of a production inG of the shape in (13).
By assumption the first n trees of the derivation in
GXA correspond to some TTLD inG; by prepend-
ing the rule from (13) to this TTLD we obtain a
new TTLD of length n + 1 which corresponds to
the entire n+ 1 tree derivation in GXA.

Taken together, these cases establish a one-to-
one correspondence between derivations in GXA
and TTLDs which start from 〈X,A〉; in turn they
confirm that GXA generates the desired language
LXA.

Once we have constructed an intermediate
grammar GXA for each X,A ∈ N \ {S}, we ob-
tain the final STAG H as follows:

1. Convert the input SCFG G to an equivalent
STAG. For each rule 〈A1 → α1, A2 → α2〉,
where Ai ∈ N , αi ∈ (N ∪ Σ)∗, create a tree
pair of the form

(14)

〈
A1

α1

,
A2

α2

〉

where each pair of linked nonterminals in the
original rule become a pair of linked substi-
tution sites in the tree pair. The terminal and
nonterminal alphabets and start symbol are
unchanged. Call the resulting STAG H .

2. For all X,A ∈ N \ {S}, add all of the tree
pairs from the intermediate grammar GXA to
the new grammar H . Expand N to include
the new nonterminal symbols in NXA.

3. For every X,A ∈ N , in all tree pairs where
the target tree’s leftmost leaf is labeled with
A and this node is linked to anX , replace this
occurrence of A with SXA. Also replace the
linked node in the source tree.

4. For every X,A ∈ N , let RXA be the set of
all tree pairs rooted in SXA, and let TXA be
the set of all tree pairs whose target tree’s
leftmost leaf is labeled with SXA. For ev-
ery 〈s, t〉 ∈ TXA and every 〈s′, t′〉 ∈ RXA,
substitute or adjoin s′ and t′ into the linked
SXA nodes in s and t, respectively. Add the
derived trees to H .

5. For all X,A ∈ N , let TXA be defined as
above. Remove all tree pairs in TXA from
H .

6. For all X,A ∈ N , let RXA be defined as
above. Remove all tree pairs in RXA from
H .

We now claim that H generates the same lan-
guage as the original grammar G, and all of the
target trees in H are prefix lexicalized.

The first claim follows directly from the con-
struction. Step 1 merely rewrites the grammar in
a new formalism. From Lemma 1 it is clear that
steps 2–3 do not change the generated language:
the set of string pairs generable from a pair of SXA
nodes is identical to the set generable from 〈X,A〉
in the original grammar. Step 4 replaces some
nonterminals by all possible alternatives; steps 5–
6 then remove the trees which were used in step 4,
but since all possible combinations of these trees
have already been added to the grammar, remov-
ing them will not alter the language.

The second claim follows from inspection of the
tree pairs generated in Figure 3. Observe that, by
construction, for all X,A ∈ N every target tree
rooted in SXA is prefix lexicalized. Thus the trees
created in step 4 are all prefix lexicalized variants
of non-lexicalized tree pairs; steps 5–6 then re-
move the non-lexicalized trees from the grammar.

�

Figure 5 gives an example of this transformation
applied to a small grammar. Note how A nodes at
the left edge of the target trees end up rewritten as
SAA nodes, as per step 4 of the transformation.

5 Complexity & Formal Properties
Our conversion generates a subset of the class of
prefix lexicalized STAGs in regular form, which
we abbreviate to PL-RSTAG (regular form for
TAG is defined in Rogers 1994). This section dis-
cusses some formal properties of PL-RSTAG.

Generative Capacity PL-RSTAG is weakly
equivalent to the class of ε-free, chain-free
SCFGs: this follows immediately from the proof
that our transformation does not change the lan-
guage generated by the input SCFG. Note that ev-
ery TAG in regular form generates a context-free
language (Rogers, 1994).

Alignments and Reordering PL-RSTAG gen-
erates the same set of reorderings (alignments) as
SCFG. Observe that our transformation does not
cause nonterminals which were linked in the orig-
inal grammar to become unlinked, as noted for ex-
ample in Figure 4. Thus subtrees which are gener-
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〈S → B 2 cA 1 , S → A 1 cB 2 〉
〈A→ B 2 cA 1 , A→ A 1 cB 2 〉
〈A→ a, A→ a〉
〈B → b, B → b〉

〈 S

B ↓ 1 c SAA

a

,

S

SAA

a

c B ↓ 1

〉 〈 A

B ↓ 1 c SAA

AAA 2

a

,

A

SAA

a AAA ↓ 2

c B ↓ 1

〉

〈 S

B ↓ 1 c SAA

AAA 2

a

,

S

SAA

a AAA ↓ 2

c B ↓ 1

〉 〈 A

B ↓ 1 c SAA

a

,

A

SAA

a

c B ↓ 1

〉
〈

AAA 1

B ↓ 2 c AAA∗
,

AAA

c B ↓ 2 AAA ↓ 1

〉

〈
AAA

B ↓ 1 c AAA∗
,

AAA

c B ↓ 1

〉 〈
B

b

,
B

b

〉 〈
A

a

,
A

a

〉

Figure 5: An SCFG and the STAG which prefix lexicalizes it. Non-productive trees have been omitted.

Grammar |G| |H| % of G prefix lexicalized log|G|(|H|)
Siahbani and Sarkar (2014a) (Zh-En) 18.5M 23.6T 63% 1.84
Example (7) 6 14 66% 1.47
ITG (10000 translation pairs) 10,003 170,000 99.97% 1.31

Table 1: Grammar sizes before and after prefix lexicalization, showing O(n2) size increase instead of the worst case O(n3).
|G| and |H| give the grammar size before and after prefix lexicalization; log|G| |H| is the increase as a power of the initial size.
We also show the percentage of productions which are already prefix lexicalized in G.

ated by linked nonterminals in the original gram-
mar will still be generated by linked nonterminals
in the final grammar, so no reordering information
is lost or added.6 This result holds despite the fact
that our transformation is only applicable to chain-
free grammars: chain rules cannot introduce any
reorderings, since by definition they involve only
a single pair of linked nonterminals.

Grammar Rank If the input SCFG G has rank
k, then the STAG H produced by our transforma-
tion has rank at most 2k. To see this, observe that
the construction of the intermediate grammars in-
creases the rank by at most 1 (see Figure 3(b)).
When a prefix lexicalized tree is substituted at the
left edge of a non-lexicalized tree, the link on the
substitution site will be consumed, but up to k+ 1
new links will be introduced by the substituting
tree, so that the final tree will have rank at most
2k.

In the general case, rank-k STAG is more pow-
erful than rank-k SCFG; for example, a rank-4
SCFG is required to generate the reordering in
〈S → A 1 B 2 C 3 D 4 , S → C 3 A 1 D 4 B 2 〉
(Wu, 1997), but this reordering is captured by the

6Although we consume one link whenever we substitute a
prefix lexicalized tree at the left edge of an unlexicalized tree,
that link can still be remembered and used to reconstruct the
reorderings which occurred between the two sentences.

following rank-3 STAG:〈 S

X

A ↓ 1 X 2

C ↓ 3

,
S

C ↓ 3 A ↓ 1 X ↓ 2

〉

〈
X

B ↓ 1 X∗ D ↓ 2

,
X

D ↓ 2 B ↓ 1

〉

For this reason, we speculate that it is possible to
further transform the grammars produced by our
lexicalization in order to reduce their rank, but
the details of this transformation remain as future
work.

This potentially poses a solution to an issue
raised by Siahbani and Sarkar (2014b). On a
Chinese-English translation task, they find that
sentences like (15) involve reorderings which can-
not be captured by a rank-2 prefix lexicalized
SCFG:
(15)
Tā bǔchōng shuō , liánhé zhèngfǔ mùqián zhuàngkuàng wěndı̀ng ...

He added that the coalition government is now in stable condition ...

If rank-k PL-RSTAG is more powerful than rank-k
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SCFG, using a PL-RSTAG here would permit cap-
turing more reorderings without using grammars
of higher rank.

Parse Complexity Because the grammar pro-
duced is in regular form, each side can be parsed
in time O(n3) (Rogers, 1994), for an overall parse
complexity of O(n3k), where n is sentence length
and k is the grammar rank.

Grammar Size and Experiments If H is the
PL-RSTAG produced by applying our transforma-
tion to an SCFG G, then H contains O(|G|3) el-
ementary tree pairs, where |G| is the number of
synchronous productions in G. When the set of
nonterminalsN is small compared to |G|, a tighter
bound is given by O(|G|2|N |2).

Table 1 shows the actual size increase on a vari-
ety of grammars: here |G| is the size of the ini-
tial grammar, |H| is the size after applying our
transformation, and the increase is expressed as a
power of the original grammar size. We apply our
transformation to the grammar from Siahbani and
Sarkar (2014a), which was created for a Chinese-
English translation task known to involve complex
reorderings that cannot be captured by PL-SCFG
(Siahbani and Sarkar, 2014b). We also consider
the grammar in (7) and an ITG (Wu, 1997) con-
taining 10,000 translation pairs, which is a gram-
mar of the sort that has previously been used for
word alignment tasks (cf Zhang and Gildea 2005).
We always observe an increase within O(|G|2)
rather than the worst-case O(|G|3), because |N |
is small relative to |G| in most grammars used for
NLP tasks.

We also investigated how the proportion of pre-
fix lexicalized rules in the original grammar affects
the overall size increase. We sampled grammars
with varying proportions of prefix lexicalized rules
from the grammar in Siahbani and Sarkar (2014a);
Table 2 shows the result of lexicalizing these sam-
ples. We find that the worst case size increase
occurs when 50% of the original grammar is al-
ready prefix lexicalized. This is because the size
increase depends on both the number of prefix lex-
icalized trees in the intermediate grammars (which
grows with the proportion of lexicalized rules) and
the number of productions which need to be lexi-
calized (which shrinks as the proportion of prefix
lexicalized rules increases). At 50%, both factors
contribute appreciably to the grammar size, anal-
ogous to how the function f(x) = x(1− x) takes

its maximum at x = 0.5.

|G| |H| % of G prefix lexicalized log|G|(|H|)
15k 42.4M 10% 1.83
15k 74.9M 20% 1.89
15k 97.8M 30% 1.91
15k 112M 40% 1.93
15k 118M 50% 1.93
15k 114M 60% 1.93
15k 102M 70% 1.92
15k 78.2M 80% 1.89
15k 43.6M 90% 1.83

Table 2: Effect of prefix lexicalized rules in G on final gram-
mar size.

6 Applications

The LR decoding algorithm from Watanabe et al.
(2006) relies on prefix lexicalized rules to gener-
ate a prefix of the target sentence during machine
translation. At each step, a translation hypoth-
esis is expanded by rewriting the leftmost non-
terminal in its target string using some grammar
rule; the prefix of this rule is appended to the ex-
isting translation and the remainder of the rule is
pushed onto a stack, in reverse order, to be pro-
cessed later. Translation hypotheses are stored in
stacks according to the length of their translated
prefix, and beam search is used to traverse these
hypotheses and find a complete translation. Dur-
ing decoding, the source side is processed by an
Earley-style parser, with the dot moving around to
process nonterminals in the order they appear on
the target side.

Since the trees on the target side of our trans-
formed grammar are all of depth 1, and none of
these trees can compose via the adjunction oper-
ation, they can be treated like context-free rules
and used as-is in this decoding algorithm. The
only change required to adapt LR decoding to use
a PL-RSTAG is to make the source side use a TAG
parser instead of a CFG parser; an Earley-style
parser for TAG already exists (Joshi and Schabes,
1997), so this is a minor adjustment.

Combined with the transformation in Section
4, this suggests a method for using LR decoding
without sacrificing translation quality. Previously,
LR decoding required the use of heuristically gen-
erated PL-SCFGs, which cannot model some re-
orderings (Siahbani and Sarkar, 2014a). Now, an
SCFG tailored for a translation task can be trans-
formed directly to PL-RSTAG and used for decod-
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ing; unlike a heuristically induced PL-SCFG, the
transformed PL-RSTAG will generate the same
language as the original SCFG which is known to
handle more reorderings.

Note that, since applying our transformation
may double the rank of a grammar, this method
may prove prohibitively slow. This highlights
the need for future work to examine the genera-
tive power of rank-k PL-RSTAG relative to rank-
k SCFG in the interest of reducing the rank of the
transformed grammar.

7 Related Work

Our work continues the study of TAGs and lexical-
ization (e.g. Joshi et al. 1975; Schabes and Waters
1993). Schabes and Waters (1995) show that TAG
can strongly lexicalize CFG, whereas CFG only
weakly lexicalizes itself; we show a similar re-
sult for SCFGs. Kuhlmann and Satta (2012) show
that TAG is not closed under strong lexicalization,
and Maletti and Engelfriet (2012) show how to
strongly lexicalize TAG using simple context-free
tree grammars (CFTGs).

Other extensions of GNF to new grammar for-
malisms include Dymetman (1992) for definite
clause grammars, Fernau and Stiebe (2002) for CF
valence grammars, and Engelfriet et al. (2017) for
multiple CFTGs. Although multiple CFTG sub-
sumes SCFG (and STAG), Engelfriet et al.’s re-
sult appears to guarantee only that some side of
every synchronous production will be lexicalized,
whereas our result guarantees that it is always the
target side that will be prefix lexicalized.

Lexicalization of synchronous grammars was
addressed by Zhang and Gildea (2005), but they
consider lexicalization rather than prefix lexical-
ization, and they only consider SCFGs of rank 2.
They motivate their results using a word alignment
task, which may be another possible application
for our lexicalization.

Analogous to our closure result, Aho and Ull-
man (1969) prove that SCFG does not admit a nor-
mal form with bounded rank like Chomsky normal
form.

Blum and Koch (1999) use intermediate gram-
mars like our GXAs to transform a CFG to GNF.
Another GNF transformation (Rosenkrantz, 1967)
is used by Schabes and Waters (1995) to define
Tree Insertion Grammars (which are also weakly
equivalent to CFG).

We rely on Rogers (1994) for the claim that

our transformed grammars generate context-free
languages despite allowing wrapping adjunction;
an alternative proof could employ the results of
Swanson et al. (2013), who develop their own
context-free TAG variant known as osTAG.

Kaeshammer (2013) introduces the class of syn-
chronous linear context-free rewriting systems to
model reorderings which cannot be captured by a
rank-2 SCFG. In the event that rank-k PL-RSTAG
is more powerful than rank-k SCFG, our work can
be seen as an alternative approach to the same
problem.

Finally, Nesson et al. (2008) present an algo-
rithm for reducing the rank of an STAG on-the-fly
during parsing; this presents a promising avenue
for proving a smaller upper bound on the rank in-
crease caused by our transformation.

8 Conclusion and Future Work

We have demonstrated a method for prefix lexi-
calizing an SCFG by converting it to an equiv-
alent STAG. This process is applicable to any
SCFG which is ε- and chain-free. Like the original
GNF transformation for CFGs our construction at
most cubes the grammar size, though when ap-
plied to the kinds of synchronous grammars used
in machine translation the size is merely squared.
Our transformation preserves all of the alignments
generated by SCFG, and retains properties such as
O(n3k) parsing complexity for grammars of rank
k. We plan to verify whether rank-k PL-RSTAG is
more powerful than rank-k SCFG in future work,
and to reduce the rank of the transformed grammar
if possible. We further plan to empirically evalu-
ate our lexicalization on an alignment task and to
offer a comparison against the lexicalization due
to Zhang and Gildea (2005).
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Abstract

In this work, we propose a novel con-
stituency parsing scheme. The model
predicts a vector of real-valued scalars,
named syntactic distances, for each split
position in the input sentence. The syn-
tactic distances specify the order in which
the split points will be selected, recur-
sively partitioning the input, in a top-down
fashion. Compared to traditional shift-
reduce parsing schemes, our approach is
free from the potential problem of com-
pounding errors, while being faster and
easier to parallelize. Our model achieves
competitive performance amongst single
model, discriminative parsers in the PTB
dataset and outperforms previous models
in the CTB dataset.

1 Introduction

Devising fast and accurate constituency pars-
ing algorithms is an important, long-standing
problem in natural language processing. Pars-
ing has been useful for incorporating linguistic
prior in several related tasks, such as relation
extraction, paraphrase detection (Callison-Burch,
2008), and more recently, natural language infer-
ence (Bowman et al., 2016) and machine transla-
tion (Eriguchi et al., 2017).

Neural network-based approaches relying
on dense input representations have recently
achieved competitive results for constituency
parsing (Vinyals et al., 2015; Cross and Huang,
2016; Liu and Zhang, 2017b; Stern et al., 2017a).
Generally speaking, either these approaches
produce the parse tree sequentially, by governing

∗Equal contribution. Corresponding authors: yi-
kang.shen@umontreal.ca, zhouhan.lin@umontreal.ca.

†Work done while at Microsoft Research, Montreal.

Figure 1: An example of how syntactic distances
(d1 and d2) describe the structure of a parse tree:
consecutive words with larger predicted distance
are split earlier than those with smaller distances,
in a process akin to divisive clustering.

the sequence of transitions in a transition-based
parser (Nivre, 2004; Zhu et al., 2013; Chen and
Manning, 2014; Cross and Huang, 2016), or use a
chart-based approach by estimating non-linear po-
tentials and performing exact structured inference
by dynamic programming (Finkel et al., 2008;
Durrett and Klein, 2015; Stern et al., 2017a).

Transition-based models decompose the struc-
tured prediction problem into a sequence of lo-
cal decisions. This enables fast greedy decoding
but also leads to compounding errors because the
model is never exposed to its own mistakes dur-
ing training (Daumé et al., 2009). Solutions to
this problem usually complexify the training pro-
cedure by using structured training through beam-
search (Weiss et al., 2015; Andor et al., 2016)
and dynamic oracles (Goldberg and Nivre, 2012;
Cross and Huang, 2016). On the other hand, chart-
based models can incorporate structured loss func-
tions during training and benefit from exact infer-
ence via the CYK algorithm but suffer from higher
computational cost during decoding (Durrett and
Klein, 2015; Stern et al., 2017a).

In this paper, we propose a novel, fully-parallel
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model for constituency parsing, based on the con-
cept of “syntactic distance”, recently introduced
by (Shen et al., 2017) for language modeling. To
construct a parse tree from a sentence, one can
proceed in a top-down manner, recursively split-
ting larger constituents into smaller constituents,
where the order of the splits defines the hierar-
chical structure. The syntactic distances are de-
fined for each possible split point in the sentence.
The order induced by the syntactic distances fully
specifies the order in which the sentence needs to
be recursively split into smaller constituents (Fig-
ure 1): in case of a binary tree, there exists a one-
to-one correspondence between the ordering and
the tree. Therefore, our model is trained to re-
produce the ordering between split points induced
by the ground-truth distances by means of a mar-
gin rank loss (Weston et al., 2011). Crucially, our
model works in parallel: the estimated distance
for each split point is produced independently
from the others, which allows for an easy paral-
lelization in modern parallel computing architec-
tures for deep learning, such as GPUs. Along with
the distances, we also train the model to produce
the constituent labels, which are used to build the
fully labeled tree.

Our model is fully parallel and thus does not
require computationally expensive structured in-
ference during training. Mapping from syntac-
tic distances to a tree can be efficiently done in
O(n log n), which makes the decoding compu-
tationally attractive. Despite our strong condi-
tional independence assumption on the output pre-
dictions, we achieve good performance for single
model discriminative parsing in PTB (91.8 F1) and
CTB (86.5 F1) matching, and sometimes outper-
forming, recent chart-based and transition-based
parsing models.

2 Syntactic Distances of a Parse Tree

In this section, we start from the concept of syn-
tactic distance introduced in Shen et al. (2017) for
unsupervised parsing via language modeling and
we extend it to the supervised setting. We propose
two algorithms, one to convert a parse tree into
a compact representation based on distances be-
tween consecutive words, and another to map the
inferred representation back to a complete parse
tree. The representation will later be used for su-
pervised training. We formally define the syntactic
distances of a parse tree as follows:

Algorithm 1 Binary Parse Tree to Distance
(∪ represents the concatenation operator of lists)

1: function DISTANCE(node)
2: if node is leaf then
3: d← []
4: c← []
5: t← [node.tag]
6: h← 0
7: else
8: childl, childr ← children of node
9: dl, cl, tl, hl ← Distance(childl)

10: dr, cr, tr, hr ← Distance(childr)
11: h← max(hl, hr) + 1
12: d← dl ∪ [h] ∪ dr
13: c← cl ∪ [node.label] ∪ cr
14: t← tl ∪ tr
15: end if
16: return d, c, t, h
17: end function

Definition 2.1. Let T be a parse tree that contains
a set of leaves (w0, ..., wn). The height of the low-
est common ancestor for two leaves (wi, wj) is
noted as d̃ij . The syntactic distances of T can be
any vector of scalars d = (d1, ..., dn) that satisfy:

sign(di − dj) = sign(d̃i−1i − d̃j−1j ) (1)

In other words, d induces the same rank-
ing order as the quantities d̃ji computed between
pairs of consecutive words in the sequence, i.e.
(d̃01, ..., d̃

n−1
n ). Note that there are n − 1 syntac-

tic distances for a sentence of length n.

Example 2.1. Consider the tree in Fig. 1 for which
d̃01 = 2, d̃12 = 1. An example of valid syntactic
distances for this tree is any d = (d1, d2) such
that d1 > d2.

Given this definition, the parsing model pre-
dicts a sequence of scalars, which is a more nat-
ural setting for models based on neural networks,
rather than predicting a set of spans. For compari-
son, in most of the current neural parsing methods,
the model needs to output a sequence of transi-
tions (Cross and Huang, 2016; Chen and Manning,
2014).

Let us first consider the case of a binary parse
tree. Algorithm 1 provides a way to convert it to a
tuple (d, c, t), where d contains the height of the
inner nodes in the tree following a left-to-right (in
order) traversal, c the constituent labels for each
node in the same order and t the part-of-speech
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(a) Boxes in the bottom are words and their corresponding POS tags pre-
dicted by an external tagger. The vertical bars in the middle are the syn-
tactic distances, and the brackets on top of them are labels of constituents.
The bottom brackets are the predicted unary label for each words, and the
upper brackets are predicted labels for other constituent. (b) The corresponding inferred grammar tree.

Figure 2: Inferring the parse tree with Algorithm 2 given distances, constituent labels, and POS tags.
Starting with the full sentence, we pick split point 1 (as it is assigned to the larger distance) and assign
label S to span (0,5). The left child span (0,1) is assigned with a tag PRP and a label NP, which produces
an unary node and a terminal node. The right child span (1,5) is assigned the label ∅, coming from
implicit binarization, which indicates that the span is not a real constituent and all of its children are
instead direct children of its parent. For the span (1,5), the split point 4 is selected. The recursion of
splitting and labeling continues until the process reaches a terminal node.

Algorithm 2 Distance to Binary Parse Tree

1: function TREE(d,c,t)
2: if d = [] then
3: node← Leaf(t)
4: else
5: i← argmaxi(d)
6: childl ← Tree(d<i, c<i, t<i)
7: childr ← Tree(d>i, c>i, t≥i)
8: node← Node(childl, childr, ci)
9: end if

10: return node
11: end function

(POS) tags of each word in the left-to-right order.
d is a valid vector of syntactic distances satisfying
Definition 2.1.

Once a model has learned to predict these vari-
ables, Algorithm 2 can reconstruct a unique bi-
nary tree from the output of the model (d̂, ĉ, t̂).
The idea in Algorithm 2 is similar to the top-down
parsing method proposed by Stern et al. (2017a),
but differs in one key aspect: at each recursive call,
there is no need to estimate the confidence for ev-
ery split point. The algorithm simply chooses the
split point i with the maximum d̂i, and assigns to
the span the predicted label ĉi. This makes the

running time of our algorithm to be inO(n log n),
compared to theO(n2) of the greedy top-down al-
gorithm by (Stern et al., 2017a). Figure 2 shows an
example of the reconstruction of parse tree. Alter-
natively, the tree reconstruction process can also
be done in a bottom-up manner, which requires the
recursive composition of adjacent spans according
to the ranking induced by their syntactic distance,
a process akin to agglomerative clustering.

One potential issue is the existence of unary
and n-ary nodes. We follow the method proposed
by Stern et al. (2017a) and add a special empty
label ∅ to spans that are not themselves full con-
stituents but simply arise during the course of im-
plicit binarization. For the unary nodes that con-
tains one nonterminal node, we take the common
approach of treating these as additional atomic la-
bels alongside all elementary nonterminals (Stern
et al., 2017a). For all terminal nodes, we deter-
mine whether it belongs to a unary chain or not
by predicting an additional label. If it is predicted
with a label different from the empty label, we
conclude that it is a direct child of a unary con-
stituent with that label. Otherwise if it is predicted
to have an empty label, we conclude that it is a
child of a bigger constituent which has other con-
stituents or words as its siblings.
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An n-ary node can arbitrarily be split into bi-
nary nodes. We choose to use the leftmost split
point. The split point may also be chosen based
on model prediction during training. Recover-
ing an n-ary parse tree from the predicted binary
tree simply requires removing the empty nodes
and split combined labels corresponding to unary
chains.

Algorithm 2 is a divide-and-conquer algorithm.
The running time of this procedure is O(n log n).
However, the algorithm is naturally adapted for
execution in a parallel environment, which can fur-
ther reduce its running time to O(log n).

3 Learning Syntactic Distances

We use neural networks to estimate the vector of
syntactic distances for a given sentence. We use a
modified hinge loss, where the target distances are
generated by the tree-to-distance conversion given
by Algorithm 1. Section 3.1 will describe in detail
the model architecture, and Section 3.2 describes
the loss we use in this setting.

3.1 Model Architecture
Given input words w = (w0, w1, ..., wn), we pre-
dict the tuple (d, c, t). The POS tags t are given
by an external Part-Of-Speech (POS) tagger. The
syntactic distances d and constituent labels c are
predicted using a neural network architecture that
stacks recurrent (LSTM (Hochreiter and Schmid-
huber, 1997)) and convolutional layers.

Words and tags are first mapped to sequences
of embeddings ew0 , ..., e

w
n and et0, ..., e

t
n. Then the

word embeddings and the tag embeddings are con-
catenated together as inputs for a stack of bidirec-
tional LSTM layers:

hw
0 , ...,h

w
n = BiLSTMw([e

w
0 , e

t
0], ..., [e

w
n , e

t
n])

(2)
where BiLSTMw(·) is the word-level bidirectional
layer, which gives the model enough capacity to
capture long-term syntactical relations between
words.

To predict the constituent labels for each
word, we pass the hidden states representations
hw
0 , ...,h

w
n through a 2-layer network FFw

c , with
softmax output:

p(cwi |w) = softmax(FFw
c (h

w
i )) (3)

To compose the necessary information for infer-
ring the syntactic distances and the constituency

label information, we perform an additional con-
volution:

gs
1, . . . ,g

s
n = CONV(hw

0 , ...,h
w
n ) (4)

where gs
i can be seen as a draft representation for

each split position in Algorithm 2. Note that the
subscripts of gsi s start with 1, since we have n− 1
positions as non-terminal constituents. Then, we
stack a bidirectional LSTM layer on top of gs

i :

hs
1, ...,h

s
n = BiLSTMs(g

s
1, . . . ,g

s
n) (5)

where BiLSTMs fine-tunes the representation by
conditioning on other split position representa-
tions. Interleaving between LSTM and convolu-
tion layers turned out empirically to be the best
choice over multiple variations of the model, in-
cluding using self-attention (Vaswani et al., 2017)
instead of LSTM.

To calculate the syntactic distances for each
position, the vectors hs

1, . . . ,h
s
n are transformed

through a 2-layer feed-forward network FFd with
a single output unit (this can be done in parallel
with 1x1 convolutions), with no activation func-
tion at the output layer:

d̂i = FFd(hsi ), (6)

For predicting the constituent labels, we pass the
same representations hs

1, . . . ,h
s
n through another

2-layer network FFs
c, with softmax output.

p(csi |w) = softmax(FFs
c(h

s
i)) (7)

The overall architecture is shown in Figure 2a.
Since the output (d, c, t) can be unambiguously
transfered to a unique parse tree, the model im-
plicitly makes all parsing decisions inside the re-
current and convolutional layers.

3.2 Objective
Given a set of training examples D =
{〈dk, ck, tk,wk〉}Kk=1, the training objective is the
sum of the prediction losses of syntactic distances
dk and constituent labels ck.

Due to the categorical nature of variable c, we
use a standard softmax classifier with a cross-
entropy loss Llabel for constituent labels, using the
estimated probabilities obtained in Eq. 3 and 7.

A naïve loss function for estimating syntactic
distances is the mean-squared error (MSE):

Lmse
dist =

∑

i

(di − d̂i)2 (8)
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Figure 3: The overall visualization of our model. Circles represent hidden states, triangles represent
convolution layers, block arrows represent feed-forward layers, arrows represent recurrent connections.
The bottom part of the model predicts unary labels for each input word. The ∅ is treated as a special label
together with other labels. The top part of the model predicts the syntactic distances and the constituent
labels. The inputs of model are the word embeddings concatenated with the POS tag embeddings. The
tags are given by an external Part-Of-Speech tagger.

The MSE loss forces the model to regress on the
exact value of the true distances. Given that only
the ranking induced by the ground-truth distances
in d is important, as opposed to the absolute values
themselves, using an MSE loss over-penalizes the
model by ignoring ranking equivalence between
different predictions.

Therefore, we propose to minimize a pair-wise
learning-to-rank loss, similar to those proposed in
(Burges et al., 2005). We define our loss as a vari-
ant of the hinge loss as:

Lrank
dist =

∑

i,j>i

[1− sign(di − dj)(d̂i − d̂j)]+, (9)

where [x]+ is defined as max(0, x). This loss en-
courages the model to reproduce the full ranking
order induced by the ground-truth distances. The
final loss for the overall model is just the sum of
individual losses L = Llabel + Lrank

dist .

4 Experiments

We evaluate our model described above on 2 dif-
ferent datasets, the standard Wall Street Journal
(WSJ) part of the Penn Treebank (PTB) dataset,
and the Chinese Treebank (CTB) dataset.

For evaluating the F1 score, we use the standard
evalb1 tool. We provide both labeled and unla-
beled F1 score, where the former takes into con-
sideration the constituent label for each predicted

1http://nlp.cs.nyu.edu/evalb/

constituent, while the latter only considers the po-
sition of the constituents. In the tables below, we
report the labeled F1 scores for comparison with
previous work, as this is the standard metric usu-
ally reported in the relevant literature.

4.1 Penn Treebank

For the PTB experiments, we follow the standard
train/valid/test separation and use sections 2-21 for
training, section 22 for development and section
23 for test set. Following this split, the dataset
has 45K training sentences and 1700, 2416 sen-
tences for valid/test respectively. The placeholders
with the -NONE- tag are stripped from the dataset
during preprocessing. The POS tags are predicted
with the Stanford Tagger (Toutanova et al., 2003).

We use a hidden size of 1200 for each direction
on all LSTMs, with 0.3 dropout in all the feed-
forward connections, and 0.2 recurrent connection
dropout (Merity et al., 2017). The convolutional
filter size is 2. The number of convolutional chan-
nels is 1200. As a common practice for neural
network based NLP models, the embedding layer
that maps word indexes to word embeddings is
randomly initialized. The word embeddings are
sized 400. Following (Merity et al., 2017), we
randomly swap an input word embedding during
training with the zero vector with probability of
0.1. We found this helped the model to general-
ize better. Training is conducted with Adam al-
gorithm with l2 regularization decay 1 × 10−6.
We pick the result obtaining the highest labeled F1
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Model LP LR F1
Single Model
Vinyals et al. (2015) - - 88.3
Zhu et al. (2013) 90.7 90.2 90.4
Dyer et al. (2016) - - 89.8
Watanabe and Sumita (2015) - - 90.7
Cross and Huang (2016) 92.1 90.5 91.3
Liu and Zhang (2017b) 92.1 91.3 91.7
Stern et al. (2017a) 93.2 90.3 91.8
Liu and Zhang (2017a) - - 91.8
Gaddy et al. (2018) - - 92.1
Stern et al. (2017b) 92.5 92.5 92.5
Our Model 92.0 91.7 91.8
Ensemble
Shindo et al. (2012) - - 92.4
Vinyals et al. (2015) - - 90.5
Semi-supervised
Zhu et al. (2013) 91.5 91.1 91.3
Vinyals et al. (2015) - - 92.8
Re-ranking
Charniak and Johnson (2005) 91.8 91.2 91.5
Huang (2008) 91.2 92.2 91.7
Dyer et al. (2016) - - 93.3

Table 1: Results on the PTB dataset WSJ test set,
Section 23. LP, LR represents labeled precision
and recall respectively.

on the validation set, and report the corresponding
test F1, together with other statistics. We report
our results in Table 1. Our best model obtains a
labeled F1 score of 91.8 on the test set (Table 1).
Detailed dev/test set performances, including label
accuracy is reported in Table 3.

Our model performs achieves good perfor-
mance for single-model constituency parsing
trained without external data. The best result
from (Stern et al., 2017b) is obtained by a genera-
tive model. Very recently, we came to knowledge
of Gaddy et al. (2018), which uses character-level
LSTM features coupled with chart-based parsing
to improve performance. Similar sub-word fea-
tures can be also used in our model. We leave this
investigation for future works. For comparison,
other models obtaining better scores either use en-
sembles, benefit from semi-supervised learning, or
recur to re-ranking of a set of candidates.

4.2 Chinese Treebank

We use the Chinese Treebank 5.1 dataset, with ar-
ticles 001-270 and 440-1151 for training, articles

Model LP LR F1
Single Model
Charniak (2000) 82.1 79.6 80.8
Zhu et al. (2013) 84.3 82.1 83.2
Wang et al. (2015) - - 83.2
Watanabe and Sumita (2015) - - 84.3
Dyer et al. (2016) - - 84.6
Liu and Zhang (2017b) 85.9 85.2 85.5
Liu and Zhang (2017a) - - 86.1
Our Model 86.6 86.4 86.5
Semi-supervised
Zhu et al. (2013) 86.8 84.4 85.6
Wang and Xue (2014) - - 86.3
Wang et al. (2015) - - 86.6
Re-ranking
Charniak and Johnson (2005) 83.8 80.8 82.3
Dyer et al. (2016) - - 86.9

Table 2: Test set performance comparison on the
CTB dataset

301-325 as development set, and articles 271-300
for test set. This is a standard split in the literature
(Liu and Zhang, 2017b). The -NONE- tags are
stripped as well. The hidden size for the LSTM
networks is set to 1200. We use a dropout rate
of 0.4 on the feed-forward connections, and 0.1
recurrent connection dropout. The convolutional
layer has 1200 channels, with a filter size of 2.
We use 400 dimensional word embeddings. Dur-
ing training, input word embeddings are randomly
swapped with the zero vector with probability of
0.1. We also apply a l2 regularization weighted by
1×10−6 on the parameters of the network. Table 2
reports our results compared to other benchmarks.
To the best of our knowledge, we set a new state-
of-the-art for single-model parsing achieving 86.5
F1 on the test set. The detailed statistics are shown
in Table 3.

4.3 Ablation Study

We perform an ablation study by removing com-
ponents from a network trained with the best set
of hyperparameters, and re-train the ablated ver-
sion from scratch. This gives an idea of the rela-
tive contributions of each of the components in the
model. Results are reported in Table 4. It seems
that the top LSTM layer has a relatively big im-
pact on performance. This may give additional ca-
pacity to the model for capturing long-term depen-
dencies useful for label prediction. We also exper-
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dev/test result Prec. Recall F1 label accuracy

PTB
labeled 91.7/92.0 91.8/91.7 91.8/91.8

94.9/95.4%
unlabeled 93.0/93.2 93.0/92.8 93.0/93.0

CTB
labeled 89.4/86.6 89.4/86.4 89.4/86.5

92.2/91.1%
unlabeled 91.1/88.9 91.1/88.6 91.1/88.8

Table 3: Detailed experimental results on PTB and CTB datasets

Model LP LR F1
Full model 92.0 91.7 91.8
w/o top LSTM 91.0 90.5 90.7
w. embedding 91.9 91.6 91.7
w. MSE loss 90.3 90.0 90.1

Table 4: Ablation test on the PTB dataset. “w/o
top LSTM” is the full model without the top
LSTM layer. “w. embedding” stands for the full
model using the pretrained word embeddings. “w.
MSE loss” stands for the full model trained with
MSE loss.

imented by using 300D GloVe (Pennington et al.,
2014) embedding for the input layer but this didn’t
yield improvements over the model’s best perfor-
mance. Unsurprisingly, the model trained with
MSE loss underperforms considerably a model
trained with the rank loss.

4.4 Parsing Speed

The prediction of syntactic distances can be
batched in modern GPU architectures. The dis-
tance to tree conversion is a O(n log n) (n stand
for the number of words in the input sentence)
divide-and-conquer algorithm. We compare the
parsing speed of our parser with other state-of-
the-art neural parsers in Table 5. As the syntactic
distance computation can be performed in paral-
lel within a GPU, we first compute the distances
in a batch, then we iteratively decode the tree with
Algorithm 2. It is worth to note that this compar-
ison may be unfair since some of the reported re-
sults may use very different hardware settings. We
couldn’t find the source code to re-run them on our
hardware, to give a fair enough comparison. In our
setting, we use an NVIDIA TITAN Xp graphics
card for running the neural network part, and the
distance to tree inference is run on an Intel Core
i7-6850K CPU, with 3.60GHz clock speed.

Model # sents/sec
Petrov and Klein (2007) 6.2
Zhu et al. (2013) 89.5
Liu and Zhang (2017b) 79.2
Stern et al. (2017a) 75.5
Our model 111.1
Our model w/o tree inference 351

Table 5: Parsing speed in sentences per second on
the PTB dataset.

5 Related Work

Parsing natural language with neural network
models has recently received growing attention.
These models have attained state-of-the-art re-
sults for dependency parsing (Chen and Manning,
2014) and constituency parsing (Dyer et al., 2016;
Cross and Huang, 2016; Coavoux and Crabbé,
2016). Early work in neural network based
parsing directly use a feed-forward neural net-
work to predict parse trees (Chen and Manning,
2014). Vinyals et al. (2015) use a sequence-to-
sequence framework where the decoder outputs a
linearized version of the parse tree given an input
sentence. Generally, in these models, the correct-
ness of the output tree is not strictly ensured (al-
though empirically observed).

Other parsing methods ensure structural con-
sistency by operating in a transition-based set-
ting (Chen and Manning, 2014) by parsing either
in the top-down direction (Dyer et al., 2016; Liu
and Zhang, 2017b), bottom-up (Zhu et al., 2013;
Watanabe and Sumita, 2015; Cross and Huang,
2016) and recently in-order (Liu and Zhang,
2017a). Transition-based methods generally suf-
fer from compounding errors due to exposure bias:
during testing, the model is exposed to a very
different regime (i.e. decisions sampled from the
model itself) than what was encountered during
training (i.e. the ground-truth decisions) (Daumé
et al., 2009; Goldberg and Nivre, 2012). This can
have catastrophic effects on test performance but
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can be mitigated to a certain extent by using beam-
search instead of greedy decoding. (Stern et al.,
2017b) proposes an effective inference method
for generative parsing, which enables direct de-
coding in those models. More complex training
methods have been devised in order to alleviate
this problem (Goldberg and Nivre, 2012; Cross
and Huang, 2016). Other efforts have been put
into neural chart-based parsing (Durrett and Klein,
2015; Stern et al., 2017a) which ensure structural
consistency and offer exact inference with CYK
algorithm. (Gaddy et al., 2018) includes a simpli-
fied CYK-style inference, but the complexity still
remains in O(n3).

In this work, our model learns to produce a par-
ticular representation of a tree in parallel. Rep-
resentations can be computed in parallel, and the
conversion from representation to a full tree can
efficiently be done with a divide-and-conquer al-
gorithm. As our model outputs decisions in par-
allel, our model doesn’t suffer from the exposure
bias. Interestingly, a series of recent works, both
in machine translation (Gu et al., 2018) and speech
synthesis (Oord et al., 2017), considered the se-
quence of output variables conditionally indepen-
dent given the inputs.

6 Conclusion

We presented a novel constituency parsing scheme
based on predicting real-valued scalars, named
syntactic distances, whose ordering identify the
sequence of top-down split decisions. We employ
a neural network model that predicts the distances
d and the constituent labels c. Given the algo-
rithms presented in Section 2, we can build an un-
ambiguous mapping between each (d, c, t) and a
parse tree. One peculiar aspect of our model is
that it predicts split decisions in parallel. Our ex-
periments show that our model can achieve strong
performance compare to previous models, while
being significantly more efficient. Since the archi-
tecture of model is no more than a stack of stan-
dard recurrent and convolution layers, which are
essential components in most academic and indus-
trial deep learning frameworks, the deployment of
this method would be straightforward.
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Abstract

We introduce Latent Vector Grammars
(LVeGs), a new framework that extends la-
tent variable grammars such that each non-
terminal symbol is associated with a con-
tinuous vector space representing the set
of (infinitely many) subtypes of the non-
terminal. We show that previous models
such as latent variable grammars and com-
positional vector grammars can be inter-
preted as special cases of LVeGs. We then
present Gaussian Mixture LVeGs (GM-
LVeGs), a new special case of LVeGs that
uses Gaussian mixtures to formulate the
weights of production rules over subtypes
of nonterminals. A major advantage of us-
ing Gaussian mixtures is that the partition
function and the expectations of subtype
rules can be computed using an extension
of the inside-outside algorithm, which en-
ables efficient inference and learning. We
apply GM-LVeGs to part-of-speech tag-
ging and constituency parsing and show
that GM-LVeGs can achieve competitive
accuracies. Our code is available at
https://github.com/zhaoyanpeng/lveg.

1 Introduction

In constituency parsing, refining coarse syntactic
categories of treebank grammars (Charniak, 1996)
into fine-grained subtypes has been proven effec-
tive in improving parsing results. Previous ap-
proaches to refining syntactic categories use tree
annotations (Johnson, 1998), lexicalization (Char-
niak, 2000; Collins, 2003), or linguistically mo-
tivated category splitting (Klein and Manning,
2003). Matsuzaki et al. (2005) introduce latent
variable grammars, in which each syntactic cate-
gory (represented by a nonterminal) is split into

a fixed number of subtypes and a discrete latent
variable is used to indicate the subtype of the
nonterminal when it appears in a specific parse
tree. Since the latent variables are not observ-
able in treebanks, the grammar is learned using
expectation-maximization. Petrov et al. (2006)
present a split-merge approach to learning la-
tent variable grammars, which hierarchically splits
each nonterminal and merges ineffective splits.
Petrov and Klein (2008b) further allow a nonter-
minal to have different splits in different produc-
tion rules, which results in a more compact gram-
mar.

Recently, neural approaches become very pop-
ular in natural language processing (NLP). An im-
portant technique in neural approaches to NLP
is to represent discrete symbols such as words
and syntactic categories with continuous vectors
or embeddings. Since the distances between
such vector representations often reflect the sim-
ilarity between the corresponding symbols, this
technique facilitates more informed smoothing in
learning functions of symbols (e.g., the probability
of a production rule). In addition, what a symbol
represents may subtly depend on its context, and a
continuous vector representation has the potential
of representing each instance of the symbol in a
more precise manner. For constituency parsing,
recursive neural networks (Socher et al., 2011)
and their extensions such as compositional vector
grammars (Socher et al., 2013) can be seen as rep-
resenting nonterminals in a context-free grammar
with continuous vectors. However, exact inference
in these models is intractable.

In this paper, we introduce latent vector gram-
mars (LVeGs), a novel framework of grammars
with fine-grained nonterminal subtypes. A LVeG
associates each nonterminal with a continuous
vector space that represents the set of (infinitely
many) subtypes of the nonterminal. For each in-

1181



stance of a nonterminal that appears in a parse
tree, its subtype is represented by a latent vector.
For each production rule over nonterminals, a non-
negative continuous function specifies the weight
of any fine-grained production rule over subtypes
of the nonterminals. Compared with latent vari-
able grammars which assume a small fixed num-
ber of subtypes for each nonterminal, LVeGs as-
sume an unlimited number of subtypes and are
potentially more expressive. By having weight
functions of varying smoothness for different pro-
duction rules, LVeGs can also control the level
of subtype granularity for different productions,
which has been shown to improve the parsing ac-
curacy (Petrov and Klein, 2008b). In addition,
similarity between subtypes of a nonterminal can
be naturally modeled by the distance between the
corresponding vectors, so by using continuous and
smooth weight functions we can ensure that simi-
lar subtypes will have similar syntactic behaviors.

We further present Gaussian Mixture LVeGs
(GM-LVeGs), a special case of LVeGs that uses
mixtures of Gaussian distributions as the weight
functions of fine-grained production rules. A ma-
jor advantage of GM-LVeGs is that the partition
function and the expectations of fine-grained pro-
duction rules can be computed using an extension
of the inside-outside algorithm. This makes it pos-
sible to efficiently compute the gradients during
discriminative learning of GM-LVeGs. We evalu-
ate GM-LVeGs on part-of-speech tagging and con-
stituency parsing on a variety of languages and
corpora and show that GM-LVeGs achieve com-
petitive results.

It shall be noted that many modern state-of-
the-art constituency parsers predict how likely a
constituent is based on not only local information
(such as the production rules used in composing
the constituent), but also contextual information
of the constituent. For example, the neural CRF
parser (Durrett and Klein, 2015) looks at the words
before and after the constituent; and RNNG (Dyer
et al., 2016) looks at the constituents that are al-
ready predicted (in the stack) and the words that
are not processed (in the buffer). In this paper,
however, we choose to focus on the basic frame-
work and algorithms of LVeGs and leave the in-
corporation of contextual information for future
work. We believe that by laying a solid foundation
for LVeGs, our work can pave the way for many
interesting extensions of LVeGs in the future.

2 Latent Vector Grammars

A latent vector grammar (LVeG) considers sub-
types of nonterminals as continuous vectors and
associates each nonterminal with a latent vector
space representing the set of its subtypes. For each
production rule, the LVeG defines a weight func-
tion over the subtypes of the nonterminal involved
in the production rule. In this way, it models the
space of refinements of the production rule.

2.1 Model Definition

A latent vector grammar is defined as a 5-tuple
G = (N,S,Σ, R,W ), where N is a finite set of
nonterminal symbols, S ∈ N is the start sym-
bol, Σ is a finite set of terminal symbols such that
N∩Σ = ∅,R is a set production rules of the form
X � γ where X ∈ N and γ ∈ (N ∪ Σ)∗, W is a
set of rule weight functions indexed by production
rules in R (to be defined below). In the following
discussion, we consider R in the Chomsky normal
form (CNF) for clarity of presentation. However,
it is straightforward to extend our formulation to
the general case.

Unless otherwise specified, we always use cap-
ital letters A,B,C, . . . for nonterminal symbols
and use bold lowercase letters a,b, c, . . . for their
subtypes. Note that subtypes are represented
by continuous vectors. For a production rule
of the form A � BC, its weight function is
WA�BC(a,b, c). For a production rule of the
form A � w where w ∈ Σ, its weight func-
tion is WA�w(a). The weight functions should
be non-negative, continuous and smooth, and
hence fine-grained production rules of similar sub-
types of a nonterminal would have similar weight
assignments. Rule weights can be normalized
such that

∑
B,C

∫
b,cWA�BC(a,b, c)dbdc = 1,

which leads to a probabilistic context-free gram-
mar (PCFG). Whether the weights are normalized
or not leads to different model classes and accord-
ingly different estimation methods. However, the
two model classes are proven equivalent by Smith
and Johnson (2007).

2.2 Relation to Other Models

Latent variable grammars (LVGs) (Matsuzaki
et al., 2005; Petrov et al., 2006) associate
each nonterminal with a discrete latent vari-
able, which is used to indicate the subtype
of the nonterminal when it appears in a parse
tree. Through nonterminal-splitting and the
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expectation-maximization algorithm, fine-grained
production rules can be automatically induced
from a treebank.

We show that LVGs can be seen as a special case
of LVeGs. Specifically, we can use one-hot vec-
tors in LVeGs to represent latent variables in LVGs
and define weight functions in LVeGs accordingly.
Consider a production rule r : A � BC. In a
LVG, each nonterminal is split into a number of
subtypes. Suppose A, B, and C are split into nA,
nB , and nC subtypes respectively. ax is the x-th
subtype of A, by is the y-th subtype of B, and cz
is the z-th subtype of C. ax � bycz is a fine-
grained production rule of A � BC, where x =
1, . . . , nA, y = 1, . . . , nB , and z = 1, . . . , nC .
The probabilities of all the fine-grained produc-
tion rules can be represented by a rank-3 tensor
ΘA�BC ∈ RnA×nB×nC . To cast the LVG as a
LVeG, we require that the latent vectors in the
LVeG must be one-hot vectors. We achieve this by
defining weight functions that output zero if any
of the input vectors is not one-hot. Specifically,
we define the weight function of the production
rule A � BC as:

Wr(a,b, c) =
∑

x,y,z

ΘA�BCcba× (δ(a− ax)

× δ(b− by)× δ(c− cz)) , (1)

where δ(·) is the Dirac delta function, ax ∈ RnA ,
by ∈ RnB , cz ∈ RnC are one-hot vectors (which
are zero everywhere with the exception of a single
1 at the x-th index of ax, the y-th index of by,
and the z-th index of cz) and ΘA�BC is multiplied
sequentially by c, b, and a.

Compared with LVGs, LVeGs have the follow-
ing advantages. While a LVG contains a finite,
typically small number of subtypes for each non-
terminal, a LVeG uses a continuous space to rep-
resent an infinite number of subtypes. When
equipped with weight functions of sufficient com-
plexity, LVeGs can represent more fine-grained
syntactic categories and production rules than
LVGs. By controlling the complexity and smooth-
ness of the weight functions, a LVeG is also ca-
pable of representing any level of subtype gran-
ularity. Importantly, this allows us to change the
level of subtype granularity for the same nonter-
minal in different production rules, which is sim-
ilar to multi-scale grammars (Petrov and Klein,
2008b). In addition, with a continuous space of
subtypes in a LVeG, similarity between subtypes

can be naturally modeled by their distance in the
space and can be automatically learned from data.
Consequently, with continuous and smooth weight
functions, fine-grained production rules over simi-
lar subtypes would have similar weights in LVeGs,
eliminating the need for the extra smoothing steps
that are necessary in training LVGs.

Compositional vector grammars (CVGs)
(Socher et al., 2013), an extension of recursive
neural networks (RNNs) (Socher et al., 2011),
can also be seen as a special case of LVeGs.
For a production rule r : A � BC, a CVG can
be interpreted as specifying its weight function
Wr(a,b, c) in the following way. First, a neural
network f indexed byB and C is used to compute
a parent vector p = fBC(b, c). Next, the score of
the parent vector is computed using a base PCFG
and a vector vBC :

s(p) = vTBCp + logP (A � BC) , (2)

where P (A � BC) is the rule probability from
the base PCFG. Then, the weight function of the
production rule A � BC is defined as:

Wr(a,b, c) = exp (s(p))× δ(a− p) . (3)

This form of weight functions in CVGs leads
to point estimation of latent vectors in a parse
tree, i.e., for each nonterminal in a given parse
tree, only one subtype in the whole subtype space
would lead to a non-zero weight of the parse. In
addition, different parse trees of the same sub-
string typically lead to different point estimations
of the subtype vector at the root nonterminal. Con-
sequently, CVGs cannot use dynamic program-
ming for inference and hence have to resort to
greedy search or beam search.

3 Gaussian Mixture LVeGs

A major challenge in applying LVeGs to parsing is
that it is impossible to enumerate the infinite num-
ber of subtypes. Previous work such as CVGs re-
sorts to point estimation and greedy search. In this
section we present Gaussian Mixture LVeGs (GM-
LVeGs), which use mixtures of Gaussian distribu-
tions as the weight functions in LVeGs. Because
Gaussian mixtures have the nice property of being
closed under product, summation, and marginal-
ization, we can compute the partition function and
the expectations of fine-grained production rules
using dynamic programming. This in turn makes
efficient learning and parsing possible.
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3.1 Representation

In a GM-LVeG, the weight function of a produc-
tion rule r is defined as a Gaussian mixture con-
taining Kr mixture components:

Wr(r) =

Kr∑

k=1

ρr,kN (r|µr,k,Σr,k) , (4)

where r is the concatenation of the latent vectors
of the nonterminals in r, which denotes a fine-
grained production rule of r. ρr,k > 0 is the k-th
mixture weight (the mixture weights do not nec-
essarily sum up to 1), N (r|µr,k,Σr,k) is the k-th
Gaussian distribution parameterized by mean µr,k
and covariance matrix Σr,k, and Kr is the num-
ber of mixture components, which can be differ-
ent for different production rules. Below we write
N (r|µr,k,Σr,k) as Nr,k(r) for brevity. Given a
production rule of the form A � BC, the GM-
LVeG expects r = [a; b; c] and a,b, c ∈ Rd,
where d is the dimension of the vectors a,b, c. We
use the same dimension for all the subtype vectors.

For the sake of computational efficiency, we
use diagonal or spherical Gaussian distributions,
whose covariance matrices are diagonal, so that
the inverse of covariance matrices in Equation 15–
16 can be computed in linear time. A spherical
Gaussian has a diagonal covariance matrix where
all the diagonal elements are equal, so it has fewer
free parameters than a diagonal Gaussian and re-
sults in faster learning and parsing. We empiri-
cally find that spherical Gaussians lead to slightly
better balance between the efficiency and the pars-
ing accuracy than diagonal Gaussians.

3.2 Parsing

The goal of parsing is to find the most probable
parse tree T ∗ with unrefined nonterminals for a
sentence w of n words w1:n = w1 . . . wn. This
is formally defined as:

T ∗ = argmax
T∈G(w)

P (T |w) , (5)

where G(w) denotes the set of parse trees with
unrefined nonterminals for w. In a PCFG, T ∗ can
be found using dynamic programming such as the
CYK algorithm. However, parsing becomes in-
tractable with LVeGs, and even with LVGs, the
special case of LVeGs.

A common practice in parsing with LVGs is to
use max-rule parsing (Petrov et al., 2006; Petrov

and Klein, 2007). The basic idea of max-rule
parsing is to decompose the posteriors over parses
into the posteriors over production rules approx-
imately. This requires calculating the expected
counts of unrefined production rules in parsing
the input sentence. Since Gaussian mixtures are
closed under product, summation, and marginal-
ization, in GM-LVeGs the expected counts can be
calculated using the inside-outside algorithm in
the following way. Given a sentence w1:n, we
first calculate the inside score sAI (a, i, j) and out-
side score sAO(a, i, j) for a nonterminal A over a
span wi:j using Equation 6 and Equation 7 in Ta-
ble 1 respectively. Note that both sAI (a, i, j) and
sAO(a, i, j) are mixtures of Gaussian distributions
of the subtype vector a. Next, using Equation 8 in
Table 1, we calculate the score s(A � BC, i, k, j)
(1 ≤ i ≤ k < j ≤ n), where 〈A � BC, i, k, j〉
represents a production ruleA � BC with nonter-
minalsA,B, andC spanning wordswi:j ,wi,k, and
wk+1:j respectively in the sentence w1:n. Then the
expected count (or posterior) of 〈A � BC, i, k, j〉
is calculated as:

q(A � BC, i, k, j) =
s(A � BC, i, k, j)

sI(S, 1, n)
, (9)

where sI(S, 1, n) is the inside score for the start
symbol S spanning the whole sentence w1:n. Af-
ter calculating all the expected counts, we can use
the MAX-RULE-PRODUCT algorithm (Petrov and
Klein, 2007) for parsing, which returns a parse
with the highest probability that all the production
rules are correct. Its objective function is given by

T ∗q = argmax
T∈G(w)

∏

e∈T
q(e) , (10)

where e ranges over all the 4-tuples
〈A � BC, i, k, j〉 in the parse tree T . This
objective function can be efficiently solved
by dynamic programming such as the CYK
algorithm.

Although the time complexity of the inside-
outside algorithm with GM-LVeGs is polynomial
in the sentence length and the nonterminal num-
ber, in practice the algorithm is still slow because
the number of Gaussian components in the inside
and outside scores increases dramatically with the
recursion depth. To speed up the computation, we
prune Gaussian components in the inside and out-
side scores using the following technique. Sup-
pose we have a minimum pruning threshold kmin
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sAI (a, i, j) =
∑

A�BC∈R

∑
k=i,··· ,j−1

∫∫
WA�BC(a,b, c)× sBI (b, i, k)× sCI (c, k + 1, j) dbdc .(6)

sAO(a, i, j) =
∑

B�CA∈R

∑
k=1,··· ,i−1

∫∫
WB�CA(b, c,a)× sBO(b, k, j)× sCI (c, k, i− 1) dbdc

+
∑

B�AC∈R

∑
k=j+1,··· ,n

∫∫
WB�AC(b,a, c)× sBO(b, i, k)× sCI (c, j + 1, k) dbdc .(7)

s(A � BC, i, k, j) =

∫∫∫
WA�BC(a,b, c)× sAO(a, i, j)× sBI (b, i, k)× sCI (c, k + 1, j) dadbdc .(8)

Table 1: Equation 6: sAI (a, i, j) is the inside score of a nonterminal A over a span wi:j in the sentence w1:n, where 1 ≤
i < j ≤ n. Equation 7: sAO (a, i, j) is the outside score of a nonterminal A over a span wi:j in the sentence w1:n, where
1 ≤ i ≤ j ≤ n. Equation 8: s(A � BC, i, k, j) is the score of a production rule A � BC with nonterminals A, B, and C
spanning words wi:j , wi,k, and wk+1:j respectively in the sentence w1:n, where 1 ≤ i ≤ k < j ≤ n.

and a maximum pruning threshold kmax. Given
an inside or outside score with kc Gaussian com-
ponents, if kc ≤ kmin, then we do not prune
any Gaussian component; otherwise, we compute
kallow = min{kmin + floor(kϑc ), kmax} (0 ≤ ϑ ≤
1 is a constant) and keep only kallow components
with the largest mixture weights.

In addition to component pruning, we also em-
ploy two constituent pruning techniques to reduce
the search space during parsing. The first tech-
nique is used by Petrov et al. (2006). Before
parsing a sentence with a GM-LVeG, we run the
inside-outside algorithm with the treebank gram-
mar and calculate the posterior probability of ev-
ery nonterminal spanning every substring. Then
a nonterminal would be pruned from a span if
its posterior probability is below a pre-specified
threshold pmin. When parsing with GM-LVeGs,
we only consider the unpruned nonterminals for
each span.

The second constituent pruning technique is
similar to the one used by Socher et al. (2013).
Note that for a strong constituency parser such as
the Berkeley parser (Petrov and Klein, 2007), the
constituents in the top 200 best parses of a sen-
tence can cover almost all the constituents in the
gold parse tree. So we first use an existing con-
stituency parser to run k-best parsing with k =
200 on the input sentence. Then we parse with a
GM-LVeG and only consider the constituents that
appear in the top 200 parses. Note that this method
is different from the re-ranking technique because
it may produce a parse different from the top 200
parses.

3.3 Learning
Given a training dataset D = {(Ti,wi) | i =
1, . . . ,m} containing m samples, where Ti is the
gold parse tree with unrefined nonterminals for the
sentence wi, the objective of discriminative learn-
ing is to minimize the negative log conditional
likelihood:

L(Θ) = − log
m∏

i=1

P (Ti|wi; Θ) , (11)

where Θ represents the set of parameters of the
GM-LVeG.

We optimize the objective function using the
Adam (Kingma and Ba, 2014) optimization algo-
rithm. The derivative with respect to Θr, the pa-
rameters of the weight function Wr(r) of an un-
refined production rule r, is calculated as follows
(the derivation is in the supplementary material):

∂L(Θ)

∂Θr
=

m∑

i=1

∫ (
∂Wr(r)

∂Θr
(12)

×
EP (t|wi)[fr(t)]− EP (t|Ti)[fr(t)]

Wr(r)

)
dr ,

where t indicates a parse tree with nonterminal
subtypes, and fr(t) is the number of occurrences
of the unrefined rule r in the unrefined parse tree
that is obtained by replacing all the subtypes in t
with the corresponding nonterminals. The two ex-
pectations in Equation 12 can be efficiently com-
puted using the inside-outside algorithm. Because
the second expectation is conditioned on the parse
tree Ti, in Equation 6 and Equation 7 we can skip
all the summations and assign the values of B, C,
and k according to Ti.
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In GM-LVeGs, Θr is the set of parameters in a
Gaussian mixture:

Θr = {(ρr,k,µr,k,Σr,k)|k = 1, . . . ,Kr} . (13)

According to Equation 12, we need to take the
derivatives ofWr(r) respect to ρr,k,µr,k, and Σr,k

respectively:

∂Wr(r)/∂ρr,k = Nr,k(r) , (14)

∂Wr(r)/∂µr,k = ρr,kNr,k(r)Σ−1r,k(r− µr,k) ,(15)

∂Wr(r)/∂Σr,k = ρr,kNr,k(r)Σ−1r,k
1

2

(
− I (16)

+ (r− µr,k)(r− µr,k)TΣ−1r,k

)
.

Substituting Equation 14–16 into Equation 12, we
have the full gradient formulations of all the pa-
rameters. In spite of the integral in Equation 12,
we can derive a closed-form solution for the gradi-
ent of each parameter, which is shown in the sup-
plementary material.

In order to keep each mixture weight ρr,k posi-
tive, we do not directly optimize ρr,k; instead, we
set ρr,k = exp(θρr,k) and optimize θρr,k by gradi-
ent descent. We use a similar trick to keep each
covariance matrix Σr,k positive definite.

Since we use the inside-outside algorithm de-
scribed in Section 3.2 to calculate the two ex-
pectations in Equation 12, we face the same ef-
ficiency problem that we encounter in parsing. To
speed up the computation,we again use both com-
ponent pruning and constituent pruning introduced
in Section 3.2.

Because gradient descent is often sensitive to
the initial values of the parameters, we employ the
following informed initialization method. Mixture
weights are initialized using the treebank gram-
mar. Suppose in the treebank grammar P (r) is
the probability of a production rule r. We initial-
ize the mixture weights in the weight function Wr

by ρr,k = α · P (r) where α > 1 is a constant.
We initialize all the covariance matrices to iden-
tity matrices and initialize each mean with a value
uniformly sampled from [−0.05, 0.05].

4 Experiment

We evaluate the GM-LVeG on part-of-speech
(POS) tagging and constituency parsing and com-
pare it against its special cases such as LVGs and
CVGs. It shall be noted that in this paper we focus
on the basic framework of LVeGs and aim to show

its potential advantage over previous special cases.
It is therefore not our goal to compete with the
latest state-of-the-art approaches to tagging and
parsing. In particular, we currently do not incor-
porate contextual information of words and con-
stituents during tagging and parsing, while such
information is critical in achieving state-of-the-art
accuracy. We will discuss future improvements of
LVeGs in Section 5.

4.1 Datasets
Parsing. We use the Wall Street Journal corpus
from the Penn English Treebank (WSJ) (Marcus
et al., 1994). Following the standard data splitting,
we use sections 2 to 21 for training, section 23 for
testing, and section 22 for development. We pre-
process the treebank using a right-branching bina-
rization procedure to obtain an unannotated X-bar
grammar, so that there are only binary and unary
production rules. To deal with the problem of un-
known words in testing, we adopt the unknown
word features used in the Berkeley parser and set
the unknown word threshold to 1. Specifically, any
word occurring less than two times is replaced by
one of the 60 unknown word categories.
Tagging. (1) We use Wall Street Journal corpus
from the Penn English Treebank (WSJ) (Marcus
et al., 1994). Following the standard data split-
ting, we use sections 0 to 18 for training, sections
22 to 24 for testing, and sections 19 to 21 for de-
velopment. (2) The Universal Dependencies tree-
bank 1.4 (UD) (Nivre et al., 2016), in which En-
glish, French, German, Russian, Spanish, Indone-
sian, Finnish, and Italian treebanks are used. We
use the original data splitting of these corpora for
training and testing. For both WSJ and UD En-
glish treebanks, we deal with unknown words in
the same way as we do in parsing. For the rest of
the data, we use only one unknown word category
and the unknown word threshold is also set to 1.

4.2 POS Tagging
POS tagging is the task of labeling each word in
a sentence with the most probable part-of-speech
tag. Here we focus on POS tagging with Hidden
Markov Models (HMMs). Because HMMs are
equivalent to probabilistic regular grammars, we
can extend HMMs with both LVGs and LVeGs.
Specifically, the hidden states in HMMs can be
seen as nonterminals in regular grammars and
therefore can be associated with latent variables
or latent vectors.
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We implement two training methods for LVGs.
The first (LVG-G) is generative training us-
ing expectation-maximization that maximizes the
joint probability of the sentence and the tags. The
second (LVG-D) is discriminative training using
gradient descent that maximizes the conditional
probability of the tags given the sentence. In both
cases, each nonterminal is split into a fixed num-
ber of subtypes. In our experiments we test 1, 2,
4, 8, and 16 subtypes of each nonterminal. Due
to the limited space, we only report experimental
results of LVG with 16 subtypes for each nonter-
minal. Full experimental results can be found in
the supplementary material.

We experiment with two different GM-LVeGs:
GM-LVeG-D with diagonal Gaussians and GM-
LVeG-S with spherical Gaussians. In both cases,
we fix the number of Gaussian components Kr to
4 and the dimension of the latent vectors d to 3.
We do not use any pruning techniques in learning
and inference because we find that our algorithm
is fast enough with the current setting of Kr and
d. We train the GM-LVeGs for 20 epoches and se-
lect the models with the best token accuracy on the
development data for the final testing.

We report both token accuracy and sentence ac-
curacy of POS tagging in Table 2. It can be seen
that, on all the testing data, GM-LVeGs consis-
tently surpass LVGs in terms of both token ac-
curacy and sentence accuracy. GM-LVeG-D is
slightly better than GM-LVeG-S in sentence ac-
curacy, producing the best sentence accuracy on
5 of the 9 testing datasets. GM-LVeG-S performs
slightly better than GM-LVeG-D in token accuracy
on 5 of the 9 datasets. Overall, there is not sig-
nificant difference between GM-LVeG-D and GM-
LVeG-S. However, GM-LVeG-S admits more effi-
cient learning than GM-LVeG-D in practice since
it has fewer parameters.

4.3 Parsing

For efficiency, we train GM-LVeGs only on sen-
tences with no more than 50 words (totally 39115
sentences). Since we have found that spherical
Gaussians are better than diagonal Gaussians con-
sidering both model performance and learning ef-
ficiency, here we use spherical Gaussians in the
weight functions. The dimension of latent vectors
d is set to 3, and all the Gaussian mixtures have
Kr = 4 components. We use α = 8 in initializing
mixture weights. We train the GM-LVeG for 15

epoches and select the model with the highest F1
score on the development data for the final testing.
We use component pruning in both learning and
parsing, with kmax = 50 and ϑ = 0.35 in both
learning and parsing, kmin = 40 in learning and
kmin = 20 in parsing. During learning we use the
first constituent pruning technique with the prun-
ing threshold pmin = 1e − 5, and during parsing
we use the second constituent pruning technique
based on the Berkeley parser which produced 133
parses on average for each testing sentence. As
can be seen, we use weaker pruning during train-
ing than during testing. This is because in training
stronger pruning (even if accurate) results in worse
estimation of the first expectation in Equation 12,
which makes gradient computation less accurate.

We compare LVeGs with CVGs and several
variants of LVGs: (1) LVG-G-16 and LVG-D-16,
which are LVGs with 16 subtypes for each nonter-
minal with discriminative and generative training
respectively (accuracies obtained from Petrov and
Klein (2008a)); (2) Multi-scale grammars (Petrov
and Klein, 2008b), trained without using the
span features in order for a fair comparison; (3)
Berkeley parser (Petrov and Klein, 2007) (accura-
cies obtained from Petrov and Klein (2008b) be-
cause Petrov and Klein (2007) do not report exact
match scores). The experimental results are shown
in Table 3. It can be seen that GM-LVeG-S pro-
duces the best F1 scores on both the development
data and the testing data. It surpasses the Berkeley
parser by 0.92% in F1 score on the testing data.
Its exact match score on the testing data is only
slightly lower than that of LVG-D-16.

We further investigate the influence of the la-
tent vector dimension and the Gaussian compo-
nent number on the efficiency and the parsing ac-
curacy . We experiment on a small dataset (statis-
tics of this dataset are in the supplemental mate-
rial). We first fix the component number to 4 and
experiment with the dimension 2, 3, 4, 5, 6, 7, 8,
9. Then we fix the dimension to 3 and experiment
with the component number 2, 3, 4, 5, 6, 7, 8, 9.
F1 scores on the development data are shown in
the first row in Figure 1. Average time consumed
per epoch in learning is shown in the second row
in Figure 1. When Kr = 4, the best dimension is
5; when d = 3, the best Gaussian component num-
ber is 3. A higher dimension or a larger Gaussian
component number hurts the model performance
and requires much more time for learning. Thus
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Model
WSJ English French German Russian Spanish Indonesian Finnish Italian

T S T S T S T S T S T S T S T S T S

LVG-D-16 96.62 48.74 92.31 52.67 93.75 34.90 87.38 20.98 81.91 12.25 92.47 24.82 89.27 20.29 83.81 19.29 94.81 45.19
LVG-G-16 96.78 50.88 93.30 57.54 94.52 34.90 88.92 24.05 84.03 16.63 93.21 27.37 90.09 21.19 85.01 20.53 95.46 48.26

GM-LVeG-D 96.99 53.10 93.66 59.46 94.73 39.60 89.11 24.77 84.21 17.84 93.76 32.48 90.24 21.72 85.27 23.30 95.61 50.72
GM-LVeG-S 97.00 53.11 93.55 58.11 94.74 39.26 89.14 25.58 84.06 18.44 93.52 30.66 90.12 21.72 85.35 22.07 95.62 49.69

Table 2: Token accuracy (T) and sentence accuracy (S) for POS tagging on the testing data.

Model
dev (all) test ≤ 40 test (all)

F1 F1 EX F1 EX

LVG-G-16 88.70 35.80
LVG-D-16 89.30 39.40
Multi-Scale 89.70 39.60 89.20 37.20

Berkeley Parser 90.60 39.10 90.10 37.10
CVG (SU-RNN) 91.20 91.10 90.40

GM-LVeG-S 91.24 91.38 41.51 91.02 39.24

Table 3: Parsing accuracy on the testing data of WSJ. EX
indicates the exact match score.

our choice ofKr = 4 and d = 3 in GM-LVeGs for
parsing is a good balance between the efficiency
and the parsing accuracy.
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Figure 1: F1 score and average time (min) consumed per
epoch in learning. Left: # of Gaussian components fixed to
4 with different dimensions; Right: dimension of Gaussians
fixed to 3 with different # of Gaussian components.

5 Discussion

It shall be noted that in this paper we choose to
focus on the basic framework and algorithms of
LVeGs, and therefore we leave a few important
extensions for future work. One extension is to
incorporate contextual information of words and
constituents. which is a crucial technique that can
be found in most state-of-the-art approaches to
parsing or POS tagging. One possible way to uti-

lize contextual information in LVeGs is to allow
the words in the context of an anchored produc-
tion rule to influence the rule’s weight function.
For example, we may learn neural networks to pre-
dict the parameters of the Gaussian mixture weight
functions in a GM-LVeG from the pre-trained em-
beddings of the words in the context.

In GM-LVeGs, we currently use the same num-
ber of Gaussian components for all the weight
functions. A more desirable way would be au-
tomatically determining the number of Gaussian
components for each production rule based on the
ideal refinement granularity of the rule, e.g., we
may need more Gaussian components for NP �
DT NN than for NP � DT JJ, since the latter is
rarely used. There are a few possible ways to learn
the component numbers such as greedy addition
and removal, the split-merge method, and sparsity
priors over mixture weights.

An interesting extension beyond LVeGs is to
have a single continuous space for subtypes of all
the nonterminals. Ideally, subtypes of the same
nonterminal or similar nonterminals are close to
each other. The benefit is that similarity between
nonterminals can now be modeled.

6 Conclusion

We present Latent Vector Grammars (LVeGs) that
associate each nonterminal with a latent continu-
ous vector space representing the set of subtypes
of the nonterminal. For each production rule, a
LVeG defines a continuous weight function over
the subtypes of the nonterminals involved in the
rule. We show that LVeGs can subsume latent vari-
able grammars and compositional vector gram-
mars as special cases. We then propose Gaus-
sian mixture LVeGs (GM-LVeGs). which formu-
late weight functions of production rules by mix-
tures of Gaussian distributions. The partition func-
tion and the expectations of fine-grained produc-
tion rules in GM-LVeGs can be efficiently com-
puted using dynamic programming, which makes
learning and inference with GM-LVeGs feasible.
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We empirically show that GM-LVeGs can achieve
competitive accuracies on POS tagging and con-
stituency parsing.
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Abstract

We revisit domain adaptation for parsers
in the neural era. First we show that recent
advances in word representations greatly
diminish the need for domain adaptation
when the target domain is syntactically
similar to the source domain. As evidence,
we train a parser on the Wall Street Jour-
nal alone that achieves over 90% F1 on the
Brown corpus. For more syntactically dis-
tant domains, we provide a simple way to
adapt a parser using only dozens of partial
annotations. For instance, we increase the
percentage of error-free geometry-domain
parses in a held-out set from 45% to 73%
using approximately five dozen training
examples. In the process, we demon-
strate a new state-of-the-art single model
result on the Wall Street Journal test set
of 94.3%. This is an absolute increase of
1.7% over the previous state-of-the-art of
92.6%.

1 Introduction

Statistical parsers are often criticized for their per-
formance outside of the domain they were trained
on. The most straightforward remedy would be
more training data in the target domain, but build-
ing treebanks (Marcus et al., 1993) is expensive.

In this paper, we revisit this issue in light of re-
cent developments in neural natural language pro-
cessing. Our paper rests on two observations:

1. It is trivial to train on partial annotations
using a span-focused model. Stern et al.
(2017a) demonstrated that a parser with min-
imal dependence between the decisions that
produce a parse can achieve state-of-the-art
performance. We modify their parser, hence-

Given [ the circle [ at the right ] with [
designated center, designated perpendicu-
lar, and radius 5 ] ] .

In [ the figure above ] , [ [ AD = 4 ] , [ AB =
3 ] and [ CD = 9 ] ] .

[ Diameter AC ] is perpendicular [ to chord
BD ] [ at E ] .

Figure 1: An example of partial annotations. An-
notators indicate that a span is a constituent by en-
closing it in square brackets.

forth MSP, so that it trains directly on individ-
ual labeled spans instead of parse trees. This
results in a parser that can be trained, with no
adjustments to the training regime, from par-
tial sentence bracketings.

2. The use of contextualized word represen-
tations (Peters et al., 2017; McCann et al.,
2017) greatly reduces the amount of data
needed to train linguistic models. Contex-
tualized word representations, which encode
tokens conditioned on their context in a sen-
tence, have been shown to give significant
boosts across a variety of NLP tasks, and also
to reduce the amount of data needed by an or-
der of magnitude in some tasks.

Taken together, this suggests a way to rapidly ex-
tend a newswire-trained parser to new domains.
Specifically, we will show it is possible to achieve
large out-of-domain performance improvements
using only dozens of partially annotated sentences,
like those shown in Figure 1. The resulting
parser also does not suffer any degradation on the
newswire domain.
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Along the way, we provide several other notable
contributions:

• We raise the state-of-the-art single-model F1-
score for constituency parsing from 92.6% to
94.3% on the Wall Street Journal (WSJ) test
set. A trained model is publicly available.1

• We show that, even without domain-specific
training data, our parser has much less out-of-
domain degradation than previous parsers on
“newswire-adjacent” domains like the Brown
corpus.

• We provide a version of MSP which pre-
dicts its own POS tags (rather than requiring
a third-party tagger).

2 The Reconciled Span Parser (RSP)

When we allow annotators to selectively anno-
tate important phenomena, we make the process
faster and simpler (Mielens et al., 2015). Unfor-
tunately, this produces a disconnect between the
model (which typically asserts the probability of a
full parse tree) and the annotation task (which as-
serts the correctness of some subcomponent, like
a constituent span or a dependency arc). There is
a body of research (Hwa, 1999; Li et al., 2016)
that discusses how to bridge this gap by modifying
the training data, training algorithm, or the train-
ing objective.

Alternatively, we could just better align the
model with the annotation task. Specifically, we
could train a parser whose base model predicts ex-
actly what we ask the annotator to annotate, e.g.
whether a particular span is a constituent. This
makes it trivial to train with partial or full anno-
tations, because the training data reduces to a col-
lection of span labels in either case.

Luckily, recent state-of-the-art results that
model NLP tasks as independently classified spans
(Stern et al., 2017a) suggest this strategy is cur-
rently viable. In this section, we present the Rec-
onciled Span Parser (RSP), a modified version of
the Minimal Span Parser (MSP) of Stern et al.
(2017a). RSP differs from MSP in the following
ways:

• It is trained on a span classification task.
MSP trains on a maximum margin objec-
tive; that is, the loss function penalizes the

1http://allennlp.org/models

violation of a margin between the scores of
the gold parse and the next highest scoring
parse decoded. This couples its training pro-
cedure with its decoding procedure, result-
ing in two versions, a top-down parser and a
chart parser. To allow our model to be trained
on partial annotations, we change the train-
ing task to be the span classification task de-
scribed below.

• It uses contextualized word representa-
tions instead of predicted part-of-speech
tags. Our model uses contextualized word
representations as described in Peters et al.
(2018). It does not take part-of-speech-tags
as input, eliminating the dependence of the
parser on a newswire-trained POS-tagger.

2.1 Overview
We will view a parse tree as a labeling of all the
spans of a sentence such that:

• Every constituent span is labeled with the se-
quence of non-terminals assigned to it in the
parse tree. For instance, span (2, 4) in Fig-
ure 2b is labeled with the sequence 〈S,VP〉,
as shown in Figure 2a.

• Every non-constituent is labeled with the
empty sequence.

Given a sentence represented by a sequence of to-
kens x of length n, define spans(x) = {(i, j) |
0 ≤ i < j ≤ n}. Define a parse for sentence x as
a function π : spans(x) 7→ L where L is the set of
all sequences of non-terminal tags, including the
empty sequence.

We model the probability of a parse as the inde-
pendent product of its span labels:

Pr(π|x) =
∏

s∈spans(x)
Pr(π(s) | x, s)

⇒ logPr(π|x) =
∑

s∈spans(x)
logPr(π(s) | x, s)

Hence, we will train a base model σ(l | x, s) to
estimate the log probability of label l for span s
(given sentence x), and we will score the overall
parse with:

score(π|x) =
∑

s∈spans(x)
σ(π(s) | x, s)
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(a) Spans classified by the parsing procedure. Note that leaves
have their part-of-speech tags predicted in addition to their se-
quence of non-terminals.
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(b) The resulting parse tree.

Figure 2: The correspondence between labeled spans and a parse tree. This diagram is adapted from
figure 1 in (Stern et al., 2017a).

Note that this probability model accords mass to
mis-structured trees (e.g. overlapping spans like
(2, 5) and (3, 7) cannot both be constituents of a
well-formed tree). We solve the following Integer
Linear Program (ILP)2 to find the highest scoring
parse that admits a well-formed tree:

max
δ

∑

(i,j)∈spans(x)
v+(i,j)δ(i,j) + v−(i,j)(1− δ(i,j))

subject to:

i < k < j < m =⇒ δ(i,j) + δ(k,m) ≤ 1

(i, j) ∈ spans(x) =⇒ δ(i,j) ∈ {0, 1}

where:

v+(i,j) = max
l s.t. l 6=∅

σ(l | x, (i, j))

v−(i,j) = σ(∅ | x, (i, j))
2There are a number of ways to reconcile the span con-

flicts, including an adaptation of the standard dynamic pro-
gramming chart parsing algorithm to work with spans of an
unbinarized tree. However it turns out that the classification
model rarely produces span conflicts, so all methods we tried
performed equivalently well.

2.2 Classification Model

For our span classification model σ(l | x, s),
we use the model from (Stern et al., 2017a),
which leverages a method for encoding spans from
(Wang and Chang, 2016; Cross and Huang, 2016).
First, it creates a sentence encoding by running a
two-layer bidirectional LSTM over the sentence
to obtain forward and backward encodings for
each position i, denoted by fi and bi respec-
tively. Then, spans are encoded by the difference
in LSTM states immediately before and after the
span; that is, span (i, j) is encoded as the con-
catenation of the vector differences fj − fi−1 and
bi−bj+1. A one-layer feedforward network maps
each span representation to a distribution over la-
bels.

Classification Model Parameters and
Initializations

We preserve the settings used in Stern et al.
(2017a) where possible. As a result, the size of
the hidden dimensions of the LSTM and the feed-
forward network is 250. The dropout ratio for the
LSTM is set to 0.4 . Unlike the model it is based
on, our model uses word embeddings of length
1124. These result from concatenating a 100 di-
mension learned word embedding, with a 1024 di-
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Parser Rec Prec F1

RNNG (Dyer et al., 2016) - - 91.7
MSP (Stern et al., 2017a) 90.6 93.0 91.8

(Stern et al., 2017b) 92.6 92.6 92.6
RSP 93.8 94.8 94.3

Table 1: Parsing performance on WSJTEST,
along with the results of other recent single-model
parsers trained without external parse data.

Recall Precision F1
all features 94.20 94.77 94.48

–ELMo 91.63 93.05 92.34

Table 2: Feature ablation on WSJDEV.

mension learned linear combination of the internal
states of a bidirectional language model run on the
input sentence as described in Peters et al. (2018).
We refer to them below as ELMo (Embeddings
from Language Models). For the learned em-
beddings, words with n occurrences in the train-
ing data are replaced by 〈UNK〉 with probability
1+ n

10
1+n . This does not affect the ELMo component

of the word embeddings. As a result, even com-
mon words are replaced with probability at least
1
10 , making the model rely on the ELMo embed-
dings instead of the learned embeddings. To make
the model self-contained, it does not take part-of-
speech tags as input. Using a linear layer over the
last hidden layer of the classification model, part-
of-speech tags are predicted for spans containing
single words.

3 Analysis of RSP

3.1 Performance on Newswire

On WSJTEST3, RSP outperforms (see Table 1) all
previous single models trained on WSJTRAIN by
a significant margin, raising the state-of-the-art re-
sult from 92.6% to 94.3%. Additionally, our pre-
dicted part-of-speech tags achieve 97.72%4 accu-
racy on WSJTEST.

3For all our experiments on the WSJ component of the
Penn Treebank (Marcus et al., 1993), we use the standard
split which is sections 2-21 for training, henceforth WSJ-
TRAIN, section 22 for development, henceforth WSJDEV,
and 23 for testing, henceforth WSJTEST.

4The split we used is not standard for part-of-speech tag-
ging. As a result, we do not compare to part-of-speech tag-
gers.

3.2 Beyond Newswire

The Brown Corpus
The Brown corpus (Marcus et al., 1993) is a
standard benchmark used to assess WSJ-trained
parsers outside of the newswire domain. When
(Kummerfeld et al., 2012) parsed the various
Brown verticals with the (then state-of-the-art)
Charniak parser (Charniak, 2000; Charniak and
Johnson, 2005; McClosky et al., 2006a), it
achieved F1 scores between 83% and 86%, even
though its F1 score on WSJTEST was 92.1%.

In Table 3, we discover that RSP does not suf-
fer nearly as much degradation, with an average
F1-score of 90.3%. To determine whether this in-
creased portability is because of the parser archi-
tecture or the use of ELMo vectors, we also run
MSP on the Brown verticals. We used the Stan-
ford tagger5 (Toutanova et al., 2003) to tag WSJ-
TRAIN and the Brown verticals so that MSP could
be given these at train and test time. We learned
that most of the improvement can be attributed to
the ELMo word representations. In fact, even if
we use MSP with gold POS tags, the average per-
formance is 3.4% below RSP.

Question Bank and Genia
Despite being a standard benchmark for parsing
domain adaptation, the Brown corpus has con-
siderable commonality with newswire text. It
is primarily composed of well-formed sentences
with similar syntactic phenomena. Perhaps the
main challenge with the Brown corpus is a dif-
ference in vocabulary, rather than a difference
in syntax, which may explain the success of
RSP, which leverages contextualized embeddings
learned from a large corpus.

If we try to run RSP on a more syntactically di-
vergent corpus like QuestionBank6 (Judge et al.,
2006), we find much more performance degrada-
tion. This is unsurprising, since WSJTRAIN does
not contain many examples of question syntax.
But how many examples do we need, to get good
performance?

5We used the english-left3words-distsim.tagger model
from the 2017-06-09 release of the Stanford POS tagger since
it achieved the best accuracy on the Brown corpus.

6For all our experiments on QuestionBank, we use the fol-
lowing split: sentences 1-1000 and 2001-3000 for training,
henceforth QBANKTRAIN, 1001-1500 and 3001-3500 for
development, henceforth QBANKDEV, and 1501-2000 and
2501-4000 for testing, henceforth QBANKTEST. This split
is described at https://nlp.stanford.edu/data/QuestionBank-
Stanford.shtml.
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Section F1

RSP MSP + Stanford POS tags MSP + gold POS tags Charniak

F (popular) 91.42 87.01 87.84 85.91
G (biographies) 90.04 86.14 86.91 84.56

K (general) 90.08 85.53 86.46 84.09
L (mystery) 89.65 85.61 86.47 83.95
M (science) 90.52 86.91 87.52 84.65

N (adventure) 91.00 86.53 87.53 85.2
P (romance) 89.76 85.77 86.59 84.09
R (humor) 89.54 84.98 85.69 83.60

average 90.25 86.06 86.88 84.51

Table 3: Parsing performance on Brown verticals. MSP refers to the Minimal Span Parser (Stern et al.,
2017a). Charniak refers to the Charniak parser with reranking and self-training (Charniak, 2000; Char-
niak and Johnson, 2005; McClosky et al., 2006a). MSP + Stanford POS tags refers to MSP trained and
tested using part-of-speech tags predicted by the Stanford tagger (Toutanova et al., 2003).

Training Data Rec. Prec. F1

WSJ QBANK

40k 0 91.07 88.77 89.91
0 2k 94.44 96.23 95.32

40k 2k 95.84 97.02 96.43
40k 50 93.85 95.91 94.87
40k 100 95.08 96.06 95.57
40k 400 94.94 97.05 95.99

Table 4: Performance of RSP on QBANKDEV.

Training Data Rec Prec F1

WSJ GENIA

40k 0 72.51 88.84 79.85
0k 14k 88.04 92.30 90.12
40k 14k 88.24 92.33 90.24
40k 50 82.30 90.55 86.23
40k 100 83.94 89.97 86.85
40k 500 85.52 91.01 88.18

Table 5: Performance of RSP on GENIADEV.

For the experiments summarized in table 4 and
table 5 involving 40k sentences from WSJTRAIN,
we started with RSP trained on WSJTRAIN, and
fine-tuned it on minibatches containing an equal
number of target domain and WSJTRAIN sen-
tences.

Surprisingly, with only 50 annotated questions
(see Table 4), performance on QBANKDEV jumps
5 points, from 89.9% to 94.9%. This is only

1.5% below training with all of WSJTRAIN and
QBANKTRAIN. The resulting system improves
slightly on WSJTEST getting 94.38%.

On the more difficult GENIA corpus of biomed-
ical abstracts (Tateisi et al., 2005), we see a simi-
lar, if somewhat less dramatic, trend. See Table 5.
With 50 annotated sentences, performance on GE-
NIADEV jumps from 79.5% to 86.2%, outper-
forming all but one parser from David McClosky’s
thesis (McClosky, 2010) – the one that trains on all
14k sentences from GENIATRAIN and self-trains
using 270k sentences from PubMed. That parser
achieves 87.6%, which we outperform with just
500 sentences from GENIATRAIN.

These results suggest that it is currently feasi-
ble to extend a parser to a syntactically distant do-
main (for which no gold parses exist) with a cou-
ple hours of effort. We explore this possibility in
the next section.

4 Rapid Parser Extension

To create a parser for their geometry question an-
swering system, (Seo et al., 2015) did the follow-
ing:

• Designed regular expressions to identify
mathematical expressions.

• Replaced the identified expressions with
dummy words.

• Parsed the resulting sentences.
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Figure 3: The top-level split for the development
sentence “In the rhombus PQRS, PR = 24 and QS
= 10.” before and after retraining RSP on 63 par-
tially annotated geometry statements.

• Substituted the regex-analyzed expressions
for the dummy words in the parses.

It is clear why this was necessary. Figure 3 (top)
shows how RSP (trained only on WSJTRAIN)
parses the sentence “In the rhombus PQRS, PR =
24 and QS = 10.” The result is completely wrong,
and useless to a downstream application.

Still, beyond just the inconvenience of build-
ing additional infrastructure, there are downsides
to the “regex-and-replace” strategy:

1. It assumes that each expression always
maps to the same constituent label. Con-
sider “2x = 3y”. This is a verb phrase in
the sentence “In the above figure, x is prime
and 2x = 3y.” However, it is a noun phrase
in the sentence “The equation 2x = 3y has 2
solutions.” If we replace both instances with
the same dummy word, the parser will almost
certainly become confused in one of the two
instances.

2. It assumes that each expression is always
a constituent. Suppose that we replace the
expression “AB < 30” with a dummy word.
This means we cannot properly parse a sen-
tence like “When angle AB < 30, the lines
are parallel,” because the constituent “angle
AB” no longer exists in the resulting sen-
tence.

3. It does not handle other syntactic varia-
tion. As we will see in the next section, the

geometry domain has a propensity for using
right-attaching participial adjective phrases,
like “labeled x” in the phrase “the segment
labeled x.” Encouraging a parser to recognize
this syntactic construct is out-of-scope for the
“regex-and-replace” strategy.

Instead, we propose directly extending the parser
by providing a few domain-specific examples like
those in Figure 1. Because RSP’s model directly
predicts span constituency, we can simply mark
up a sentence with the “tricky” domain-specific
constituents that the model will not already have
learned from WSJTRAIN. For instance, we mark
up NOUN-LABEL constructs like “chord BD”, and
equations like “AD = 4”.

From these marked-up sentences, we can ex-
tract training instances declaring the constituency
of certain spans (like “to chord BD” in the third
example) and the implied non-constituency of cer-
tain spans (like “perpendicular to chord” in the
third example). We also allow annotators to ex-
plicitly declare the non-constituency of a span via
an alternative markup (not shown).

We do not require annotators to provide span
labels (although they can if desired). If a training
instance merely declares a span to be a constituent
(but does not provide a particular label), then the
loss function only records loss when that span is
classified as a non-constituent (i.e. any label is
ok).

5 Experiments

5.1 Geometry Questions

We took the publicly available training data from
(Seo et al., 2015), split the data into sentences,
and then annotated each sentence as in Figure 1.
Next, we randomly split these sentences into GEO-
TRAIN and GEODEV7. After removing duplicate
sentences spanning both sets, we ended up with
63 annotated sentences in GEOTRAIN and 62 in
GEODEV. In GEOTRAIN, we made an average of
2.8 constituent declarations and 0.3 (explicit) non-
constituent declarations per sentence.

After preparing the data, we started with RSP
trained on WSJTRAIN, and fine-tuned it on mini-
batches containing 50 randomly selected WSJ-
TRAIN sentences, plus all of GEOTRAIN. The re-
sults are in table 6. After fine-tuning, the model

7GEOTRAIN and GEODEV are available at
https://github.com/vidurj/parser-adaptation/tree/master/data.
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Training Data GEODEV WSJTEST

correct constituents % error-free % F1

WSJTRAIN 71.9 45.2 94.28
WSJTRAIN + GEOTRAIN 87.0 72.6 94.30

Table 6: RSP performance on GEODEV.

Training Data BIOCHEMDEV WSJTEST

correct constituents % error-free % F1

WSJTRAIN 70.1 27.0 94.28
WSJTRAIN + BIOCHEMTRAIN 79.5 46.7 94.23

Table 7: RSP performance on BIOCHEMDEV.

• Given [ a circle with [ the tangent
shown ] ] .

• Find the hypotenuse of [ the triangle
labeled t ] .

• Examine [ the following diagram with
[ the square highlighted ] ] .

Figure 4: Three partial annotations targeting
right-attaching participial adjectives.

gets 87% of the 185 annotations on GEODEV cor-
rect, compared with 71.9% before fine-tuning8.
Moreover, the fraction of sentences with no er-
rors increases from 45.2% to 72.6%. With only
a few dozen partially-annotated training exam-
ples, not only do we see a large increase in do-
main performance, but there is also no degradation
in the parser’s performance on newswire. Some
GEODEV parses have enormous qualitative differ-
ences, like the example shown in Figure 3.

For the GEODEV sentences on which we get
errors after retraining, the errors fall predomi-
nantly into three categories. First, approximately
44% have some mishandled math syntax, like
failing to recognize “dimensions 16 by 8” as a
constituent, or providing a flat structuring of the
equation “BAC = 1/4 * ACB” (instead of recog-
nizing “1/4 * ACB” as a subconstituent). Sec-
ond, approximately 19% have PP-attachment er-
rors. Third, another 19% fail to correctly analyze
right-attaching participial adjectives like “labeled
x” in the noun phrase “the segment labeled x” or

8This improvement has a p-value of 10−4 under the one-
sided, two-sample difference between proportions test.

“indicated” in the noun phrase “the center indi-
cated.” This phenomenon is unusually frequent in
geometry but was insufficiently marked-up in our
training examples. For instance, while we have
a training instance “Find [ the measure of [ the
angle designated by x ] ],” it does not explicitly
highlight the constituency of “designated by x”.
This suggests that in practice, this domain adap-
tation method could benefit from an iterative cy-
cle in which a user assesses the parser’s errors on
their target domain, creates some partial annota-
tions that address these issues, retrains the parser,
and then repeats the process until satisfied. As a
proof-of-concept, we invented 3 additional sen-
tences with right-attaching participial adjectives
(shown in Figure 4), added them to GEOTRAIN,
and then retrained. Indeed, the handling of par-
ticipial adjectives in GEODEV improved, increas-
ing the overall percentage of correctly identified
constituents to 88.6% and the percentage of error-
free sentences to 75.8%.

5.2 Biomedicine and Chemistry
We ran a similar experiment using biomedical
and chemistry text, taken from the unannotated
data provided by (Nivre et al., 2007). We par-
tially annotated 134 sentences and randomly split
them into BIOCHEMTRAIN (72 sentences) and
BIOCHEMDEV (62 sentences)9. In BIOCHEM-
TRAIN, we made an average of 4.2 constituent
declarations per sentence. We made no non-
constituent declarations.

Again, we started with RSP trained on WSJ-
TRAIN, and fine-tuned it on minibatches contain-
ing annotations from 50 randomly selected WSJ-

9BIOCHEMTRAIN and BIOCHEMDEV are available at
https://github.com/vidurj/parser-adaptation/tree/master/data.
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TRAIN sentences, plus all of BIOCHEMTRAIN.
Table 7 shows the improvement in the percent-
age of correctly-identified annotated constituents
and the percentage of test sentences for which
the parse agrees with every annotation. As with
the geometry domain, we get significant improve-
ments using only dozens of partially annotated
training sentences.

6 Related Work

The two major themes of this paper, domain adap-
tation and learning from partial annotation, each
have a long tradition in natural language process-
ing.

6.1 Domain Adaptation

Domain adaptation has been recognized as a ma-
jor NLP problem for over a decade (Ben-David
et al., 2006; Blitzer et al., 2006; Daumé, 2007;
Finkel and Manning, 2009). In particular, domain
adaptation for parsers (Plank, 2011; Ma and Xia,
2013) has received considerable attention. Much
of this work (McClosky et al., 2006b; Reichart and
Rappoport, 2007; Sagae and Tsujii, 2007; Kawa-
hara and Uchimoto, 2008; McClosky et al., 2010;
Sagae, 2010; Baucom et al., 2013; Yu et al., 2015)
has focused on how to best use co-training (Blum
and Mitchell, 1998) or self-training to augment
a small domain corpus, or how to best combine
models to perform well on a particular domain.

In this work, we focus on the direct impact that
just a few dozen partially annotated out-of-domain
examples can have, when using a particular neural
model with contextualized word representations.
Co-training, self-training, and model combination
are orthogonal to our approach. Our work is a spir-
itual successor to (Garrette and Baldridge, 2013),
which shows how to train a part-of-speech tagger
with a minimal amount of annotation effort.

6.2 Learning from Partial Annotation

Most literature on training parsers from partial an-
notations (Sassano and Kurohashi, 2010; Spreyer
et al., 2010; Flannery et al., 2011; Flannery and
Mori, 2015; Mielens et al., 2015) focuses on de-
pendency parsing. (Li et al., 2016) provides a good
overview. Here we highlight three important high-
level strategies.

The first is “complete-then-train” (Mirroshan-
del and Nasr, 2011; Majidi and Crane, 2013),
which “completes” every partially annotated de-

pendency parse by finding the most likely parse
(according to an already trained parser model) that
respects the constraints of the partial annotations.
These “completed” parses are then used to train a
new parser.

The second strategy (Nivre et al., 2014; Li et al.,
2016) is similar to “complete-then-train,” but inte-
grates parse completion into the training process.
At each iteration, new “complete” parses are cre-
ated using the parser model from the most recent
training iteration.

The third strategy (Li et al., 2014, 2016) trans-
forms each partial annotation into a forest of
parses that encodes all fully-specified parses per-
mitted by the partial annotation. Then, the training
objective is modified to support optimization over
these forests.

Our work differs from these in two respects.
First, since we are training a constituency parser,
our partial annotations are constituent bracketings
rather than dependency arcs. Second, and more
importantly, we can use the partial annotations for
training without modifying either the training al-
gorithm or the training data.

While the bulk of the literature on training from
partial annotations focuses on dependency pars-
ing, the earliest papers (Pereira and Schabes, 1992;
Hwa, 1999) focus on constituency parsing. These
leverage an adapted version of the inside-outside
algorithm for estimating the parameters of a prob-
abilistic context-free grammar (PCFG). Our work
is not tied to PCFG parsing, nor does it require
a specialized training algorithm when going from
full annotations to partial annotations.

7 Conclusion

Recent developments in neural natural language
processing have made it very easy to build cus-
tom parsers. Not only do contextualized word rep-
resentations help parsers learn the syntax of new
domains with very few examples, but they also
work extremely well with parsing models that cor-
respond directly with a granular and intuitive an-
notation task (like identifying whether a span is a
constituent). This allows you to train with either
full or partial annotations without any change to
the training process.

This work provides a convenient path forward
for the researcher who requires a parser for their
domain, but laments that “parsers don’t work out-
side of newswire.” With a couple hours of effort
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(and a layman’s understanding of syntactic build-
ing blocks), they can get significant performance
improvements. We envision an iterative use case
in which a user assesses a parser’s errors on their
target domain, creates some partial annotations to
teach the parser how to fix these errors, then re-
trains the parser, repeating the process until they
are satisfied.
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Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The conll 2007 shared task on depen-
dency parsing. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL).

Fernando Pereira and Yves Schabes. 1992. Inside-
outside reestimation from partially bracketed cor-
pora. In ACL.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner,
C. Clark, K. Lee, and L. Zettlemoyer. 2018. Deep
contextualized word representations. ArXiv e-prints
.

Matthew E. Peters, Waleed Ammar, Chandra Bhaga-
vatula, and Russell Power. 2017. Semi-supervised
sequence tagging with bidirectional language mod-
els. In ACL.

Barbara Plank. 2011. Domain adaptation for parsing.
Citeseer.

Roi Reichart and Ari Rappoport. 2007. Self-training
for enhancement and domain adaptation of statistical
parsers trained on small datasets. In ACL.

Kenji Sagae. 2010. Self-training without reranking for
parser domain adaptation and its impact on semantic
role labeling.

Kenji Sagae and Jun’ichi Tsujii. 2007. Dependency
parsing and domain adaptation with lr models and
parser ensembles. In EMNLP-CoNLL.

Manabu Sassano and Sadao Kurohashi. 2010. Using
smaller constituents rather than sentences in active
learning for japanese dependency parsing. In ACL.

Min Joon Seo, Hannaneh Hajishirzi, Ali Farhadi, Oren
Etzioni, and Clint Malcolm. 2015. Solving geome-
try problems: Combining text and diagram interpre-
tation. In EMNLP.

Kathrin Spreyer, Lilja Ovrelid, and Jonas Kuhn. 2010.
Training parsers on partial trees: A cross-language
comparison. In LREC.

Mitchell Stern, Jacob Andreas, and Dan Klein.
2017a. A minimal span-based neural con-
stituency parser. CoRR abs/1705.03919.
http://arxiv.org/abs/1705.03919.

Mitchell Stern, Daniel Fried, and Dan Klein.
2017b. Effective inference for generative neu-
ral parsing. In Proceedings of the 2017
Conference on Empirical Methods in Natural
Language Processing, EMNLP 2017, Copen-
hagen, Denmark, September 9-11, 2017. pages
1695–1700. https://aclanthology.info/papers/D17-
1178/d17-1178.

Yuka Tateisi, Akane Yakushiji, Tomoko Ohta, and
Jun’ichi Tsujii. 2005. Syntax annotation for the ge-
nia corpus. In Companion Volume to the Proceed-
ings of Conference including Posters/Demos and tu-
torial abstracts.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich part-
of-speech tagging with a cyclic dependency net-
work. In Human Language Technology Confer-
ence of the North American Chapter of the Asso-
ciation for Computational Linguistics, HLT-NAACL
2003, Edmonton, Canada, May 27 - June 1, 2003.
http://aclweb.org/anthology/N/N03/N03-1033.pdf.

Wenhui Wang and Baobao Chang. 2016. Graph-based
dependency parsing with bidirectional lstm. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers). volume 1, pages 2306–2315.

Juntao Yu, Mohab Elkaref, and Bernd Bohnet. 2015.
Domain adaptation for dependency parsing via self-
training. In IWPT .

1199



Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 1200–1211
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

Paraphrase to Explicate:
Revealing Implicit Noun-Compound Relations

Vered Shwartz Ido Dagan
Computer Science Department, Bar-Ilan University, Ramat-Gan, Israel
vered1986@gmail.com dagan@cs.biu.ac.il

Abstract

Revealing the implicit semantic rela-
tion between the constituents of a noun-
compound is important for many NLP ap-
plications. It has been addressed in the
literature either as a classification task to
a set of pre-defined relations or by pro-
ducing free text paraphrases explicating
the relations. Most existing paraphras-
ing methods lack the ability to generalize,
and have a hard time interpreting infre-
quent or new noun-compounds. We pro-
pose a neural model that generalizes better
by representing paraphrases in a contin-
uous space, generalizing for both unseen
noun-compounds and rare paraphrases.
Our model helps improving performance
on both the noun-compound paraphrasing
and classification tasks.

1 Introduction

Noun-compounds hold an implicit semantic rela-
tion between their constituents. For example, a
‘birthday cake’ is a cake eaten on a birthday, while
‘apple cake’ is a cake made of apples. Interpreting
noun-compounds by explicating the relationship is
beneficial for many natural language understand-
ing tasks, especially given the prevalence of noun-
compounds in English (Nakov, 2013).

The interpretation of noun-compounds has been
addressed in the literature either by classifying
them to a fixed inventory of ontological relation-
ships (e.g. Nastase and Szpakowicz, 2003) or by
generating various free text paraphrases that de-
scribe the relation in a more expressive manner
(e.g. Hendrickx et al., 2013).

Methods dedicated to paraphrasing noun-
compounds usually rely on corpus co-occurrences
of the compound’s constituents as a source of ex-
plicit relation paraphrases (e.g. Wubben, 2010;
Versley, 2013). Such methods are unable to gen-
eralize for unseen noun-compounds. Yet, most
noun-compounds are very infrequent in text (Kim
and Baldwin, 2007), and humans easily interpret
the meaning of a new noun-compound by general-
izing existing knowledge. For example, consider
interpreting parsley cake as a cake made of pars-
ley vs. resignation cake as a cake eaten to cele-
brate quitting an unpleasant job.

We follow the paraphrasing approach and pro-
pose a semi-supervised model for paraphras-
ing noun-compounds. Differently from previ-
ous methods, we train the model to predict ei-
ther a paraphrase expressing the semantic rela-
tion of a noun-compound (predicting ‘[w2] made
of [w1]’ given ‘apple cake’), or a missing con-
stituent given a combination of paraphrase and
noun-compound (predicting ‘apple’ given ‘cake
made of [w1]’). Constituents and paraphrase tem-
plates are represented as continuous vectors, and
semantically-similar paraphrase templates are em-
bedded in proximity, enabling better generaliza-
tion. Interpreting ‘parsley cake’ effectively re-
duces to identifying paraphrase templates whose
“selectional preferences” (Pantel et al., 2007) on
each constituent fit ‘parsley’ and ‘cake’.

A qualitative analysis of the model shows that
the top ranked paraphrases retrieved for each
noun-compound are plausible even when the con-
stituents never co-occur (Section 4). We evalu-
ate our model on both the paraphrasing and the
classification tasks (Section 5). On both tasks,
the model’s ability to generalize leads to improved
performance in challenging evaluation settings.1

1The code is available at github.com/vered1986/panic
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2 Background

2.1 Noun-compound Classification
Noun-compound classification is the task con-
cerned with automatically determining the seman-
tic relation that holds between the constituents of
a noun-compound, taken from a set of pre-defined
relations.

Early work on the task leveraged information
derived from lexical resources and corpora (e.g.
Girju, 2007; Ó Séaghdha and Copestake, 2009;
Tratz and Hovy, 2010). More recent work broke
the task into two steps: in the first step, a noun-
compound representation is learned from the dis-
tributional representation of the constituent words
(e.g. Mitchell and Lapata, 2010; Zanzotto et al.,
2010; Socher et al., 2012). In the second step, the
noun-compound representations are used as fea-
ture vectors for classification (e.g. Dima and Hin-
richs, 2015; Dima, 2016).

The datasets for this task differ in size, num-
ber of relations and granularity level (e.g. Nastase
and Szpakowicz, 2003; Kim and Baldwin, 2007;
Tratz and Hovy, 2010). The decision on the re-
lation inventory is somewhat arbitrary, and sub-
sequently, the inter-annotator agreement is rela-
tively low (Kim and Baldwin, 2007). Specifi-
cally, a noun-compound may fit into more than
one relation: for instance, in Tratz (2011), busi-
ness zone is labeled as CONTAINED (zone con-
tains business), although it could also be labeled
as PURPOSE (zone whose purpose is business).

2.2 Noun-compound Paraphrasing
As an alternative to the strict classification to pre-
defined relation classes, Nakov and Hearst (2006)
suggested that the semantics of a noun-compound
could be expressed with multiple prepositional
and verbal paraphrases. For example, apple cake
is a cake from, made of, or which contains apples.

The suggestion was embraced and resulted
in two SemEval tasks. SemEval 2010 task 9
(Butnariu et al., 2009) provided a list of plau-
sible human-written paraphrases for each noun-
compound, and systems had to rank them with the
goal of high correlation with human judgments.
In SemEval 2013 task 4 (Hendrickx et al., 2013),
systems were expected to provide a ranked list of
paraphrases extracted from free text.

Various approaches were proposed for this task.
Most approaches start with a pre-processing step
of extracting joint occurrences of the constituents

from a corpus to generate a list of candidate para-
phrases. Unsupervised methods apply information
extraction techniques to find and rank the most
meaningful paraphrases (Kim and Nakov, 2011;
Xavier and Lima, 2014; Pasca, 2015; Pavlick
and Pasca, 2017), while supervised approaches
learn to rank paraphrases using various features
such as co-occurrence counts (Wubben, 2010; Li
et al., 2010; Surtani et al., 2013; Versley, 2013)
or the distributional representations of the noun-
compounds (Van de Cruys et al., 2013).

One of the challenges of this approach is the
ability to generalize. If one assumes that suffi-
cient paraphrases for all noun-compounds appear
in the corpus, the problem reduces to ranking the
existing paraphrases. It is more likely, however,
that some noun-compounds do not have any para-
phrases in the corpus or have just a few. The ap-
proach of Van de Cruys et al. (2013) somewhat
generalizes for unseen noun-compounds. They
represented each noun-compound using a compo-
sitional distributional vector (Mitchell and Lap-
ata, 2010) and used it to predict paraphrases from
the corpus. Similar noun-compounds are expected
to have similar distributional representations and
therefore yield the same paraphrases. For exam-
ple, if the corpus does not contain paraphrases for
plastic spoon, the model may predict the para-
phrases of a similar compound such as steel knife.

In terms of sharing information between
semantically-similar paraphrases, Nulty and
Costello (2010) and Surtani et al. (2013) learned
“is-a” relations between paraphrases from the
co-occurrences of various paraphrases with each
other. For example, the specific ‘[w2] extracted
from [w1]’ template (e.g. in the context of olive
oil) generalizes to ‘[w2] made from [w1]’. One of
the drawbacks of these systems is that they favor
more frequent paraphrases, which may co-occur
with a wide variety of more specific paraphrases.

2.3 Noun-compounds in other Tasks

Noun-compound paraphrasing may be considered
as a subtask of the general paraphrasing task,
whose goal is to generate, given a text fragment,
additional texts with the same meaning. How-
ever, general paraphrasing methods do not guar-
antee to explicate implicit information conveyed
in the original text. Moreover, the most notable
source for extracting paraphrases is multiple trans-
lations of the same text (Barzilay and McKeown,
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(4145) cake
...

(7891) of

(1) [w1]

(2) [w2]

(3) [p]
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(78) [w2] containing [w1]
...

(131) [w2] made of [w1]
...

[p]cake apple

MLPp

p̂i = 78

Figure 1: An illustration of the model predictions for w1 and p given the triplet (cake, made of, apple).
The model predicts each component given the encoding of the other two components, successfully pre-
dicting ‘apple’ given ‘cake made of [w1]’, while predicting ‘[w2] containing [w1]’ for ‘cake [p] apple’.

2001; Ganitkevitch et al., 2013; Mallinson et al.,
2017). If a certain concept can be described by
an English noun-compound, it is unlikely that a
translator chose to translate its foreign language
equivalent to an explicit paraphrase instead.

Another related task is Open Information Ex-
traction (Etzioni et al., 2008), whose goal is to ex-
tract relational tuples from text. Most system fo-
cus on extracting verb-mediated relations, and the
few exceptions that addressed noun-compounds
provided partial solutions. Pal and Mausam
(2016) focused on segmenting multi-word noun-
compounds and assumed an is-a relation between
the parts, as extracting (Francis Collins, is, NIH
director) from “NIH director Francis Collins”.
Xavier and Lima (2014) enriched the corpus with
compound definitions from online dictionaries, for
example, interpreting oil industry as (industry,
produces and delivers, oil) based on the Word-
Net definition “industry that produces and delivers
oil”. This method is very limited as it can only
interpret noun-compounds with dictionary entries,
while the majority of English noun-compounds
don’t have them (Nakov, 2013).

3 Paraphrasing Model

As opposed to previous approaches, that focus on
predicting a paraphrase template for a given noun-
compound, we reformulate the task as a multi-
task learning problem (Section 3.1), and train the
model to also predict a missing constituent given
the paraphrase template and the other constituent.
Our model is semi-supervised, and it expects as
input a set of noun-compounds and a set of con-
strained part-of-speech tag-based templates that
make valid prepositional and verbal paraphrases.

Section 3.2 details the creation of training data,
and Section 3.3 describes the model.

3.1 Multi-task Reformulation

Each training example consists of two constituents
and a paraphrase (w2, p, w1), and we train the
model on 3 subtasks: (1) predict p given w1 and
w2, (2) predict w1 given p and w2, and (3) predict
w2 given p and w1. Figure 1 demonstrates the pre-
dictions for subtasks (1) (right) and (2) (left) for
the training example (cake, made of, apple). Ef-
fectively, the model is trained to answer questions
such as “what can cake be made of?”, “what can
be made of apple?”, and “what are the possible re-
lationships between cake and apple?”.

The multi-task reformulation helps learning bet-
ter representations for paraphrase templates, by
embedding semantically-similar paraphrases in
proximity. Similarity between paraphrases stems
either from lexical similarity and overlap between
the paraphrases (e.g. ‘is made of’ and ‘made of’),
or from shared constituents, e.g. ‘[w2] involved in
[w1]’ and ‘[w2] in [w1] industry’ can share [w1]
= insurance and [w2] = company. This allows the
model to predict a correct paraphrase for a given
noun-compound, even when the constituents do
not occur with that paraphrase in the corpus.

3.2 Training Data

We collect a training set of (w2, p, w1, s) exam-
ples, where w1 and w2 are constituents of a noun-
compound w1w2, p is a templated paraphrase, and
s is the score assigned to the training instance.2

2We refer to “paraphrases” and “paraphrase templates” in-
terchangeably. In the extracted templates, [w2] always pre-
cedes [w1], probably because w2 is normally the head noun.
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We use the 19,491 noun-compounds found in
the SemEval tasks datasets (Butnariu et al., 2009;
Hendrickx et al., 2013) and in Tratz (2011). To ex-
tract patterns of part-of-speech tags that can form
noun-compound paraphrases, such as ‘[w2] VERB

PREP [w1]’, we use the SemEval task training data,
but we do not use the lexical information in the
gold paraphrases.

Corpus. Similarly to previous noun-compound
paraphrasing approaches, we use the Google N-
gram corpus (Brants and Franz, 2006) as a source
of paraphrases (Wubben, 2010; Li et al., 2010;
Surtani et al., 2013; Versley, 2013). The cor-
pus consists of sequences of n terms (for n ∈
{3, 4, 5}) that occur more than 40 times on the
web. We search for n-grams following the ex-
tracted patterns and containing w1 and w2’s lem-
mas for some noun-compound in the set. We re-
move punctuation, adjectives, adverbs and some
determiners to unite similar paraphrases. For ex-
ample, from the 5-gram ‘cake made of sweet ap-
ples’ we extract the training example (cake, made
of, apple). We keep only paraphrases that occurred
at least 5 times, resulting in 136,609 instances.

Weighting. Each n-gram in the corpus is accom-
panied with its frequency, which we use to assign
scores to the different paraphrases. For instance,
‘cake of apples’ may also appear in the corpus, al-
though with lower frequency than ‘cake from ap-
ples’. As also noted by Surtani et al. (2013), the
shortcoming of such a weighting mechanism is
that it prefers shorter paraphrases, which are much
more common in the corpus (e.g. count(‘cake
made of apples’)� count(‘cake of apples’)). We
overcome this by normalizing the frequencies for
each paraphrase length, creating a distribution of
paraphrases in a given length.

Negative Samples. We add 1% of negative sam-
ples by selecting random corpus words w1 and
w2 that do not co-occur, and adding an exam-
ple (w2, [w2] is unrelated to [w1], w1, sn), for
some predefined negative samples score sn. Sim-
ilarly, for a word wi that did not occur in a para-
phrase p we add (wi, p, UNK, sn) or (UNK, p,
wi, sn), where UNK is the unknown word. This
may help the model deal with non-compositional
noun-compounds, where w1 and w2 are unrelated,
rather than forcibly predicting some relation be-
tween them.

3.3 Model
For a training instance (w2, p, w1, s), we predict
each item given the encoding of the other two.

Encoding. We use the 100-dimensional pre-
trained GloVe embeddings (Pennington et al.,
2014), which are fixed during training. In addi-
tion, we learn embeddings for the special words
[w1], [w2], and [p], which are used to represent
a missing component, as in “cake made of [w1]”,
“[w2] made of apple”, and “cake [p] apple”.

For a missing component x ∈ {[p], [w1], [w2]}
surrounded by the sequences of words v1:i−1 and
vi+1:n, we encode the sequence using a bidirec-
tional long-short term memory (bi-LSTM) net-
work (Graves and Schmidhuber, 2005), and take
the ith output vector as representing the missing
component: bLS(v1:i, x, vi+1:n)i.

In bi-LSTMs, each output vector is a concate-
nation of the outputs of the forward and backward
LSTMs, so the output vector is expected to con-
tain information on valid substitutions both with
respect to the previous words v1:i−1 and the sub-
sequent words vi+1:n.

Prediction. We predict a distribution of the vo-
cabulary of the missing component, i.e. to predict
w1 correctly we need to predict its index in the
word vocabulary Vw, while the prediction of p is
from the vocabulary of paraphrases in the training
set, Vp. We predict the following distributions:

p̂ = softmax(Wp · bLS( ~w2, [p], ~w1)2)

ŵ1 = softmax(Ww · bLS( ~w2, ~p1:n, [w1])n+1)

ŵ2 = softmax(Ww · bLS([w2], ~p1:n, ~w1)1)

(1)

where Ww ∈ R|Vw|×2d, Wp ∈ R|Vp|×2d, and d is
the embeddings dimension.

During training, we compute cross-entropy loss
for each subtask using the gold item and the pre-
diction, sum up the losses, and weight them by the
instance score. During inference, we predict the
missing components by picking the best scoring
index in each distribution:3

p̂i = argmax(p̂)

ŵ1i = argmax(ŵ1)

ŵ2i = argmax(ŵ2)

(2)

The subtasks share the pre-trained word embed-
dings, the special embeddings, and the biLSTM
parameters. Subtasks (2) and (3) also share Ww,
the MLP that predicts the index of a word.

3In practice, we pick the k best scoring indices in each
distribution for some predefined k, as we discuss in Section 5.
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[w1] [w2] Predicted Paraphrases [w2] Paraphrase Predicted [w1] Paraphrase [w1] Predicted [w2]

cataract surgery

[w2] of [w1]

surgery [w2] to treat [w1]

heart

[w2] to treat [w1] cataract

surgery
[w2] on [w1] brain drug

[w2] to remove [w1] back patient
[w2] in patients with [w1] knee transplant

software company

[w2] of [w1]

company [w2] engaged in [w1]

management

[w2] engaged in [w1] software

company
[w2] to develop [w1] production firm
[w2] in [w1] industry computer engineer
[w2] involved in [w1] business industry

stone wall

[w2] is of [w1]

meeting [w2] held in [w1]

spring

[w2] held in [w1] morning

party
[w2] of [w1] afternoon meeting

[w2] is made of [w1] hour rally
[w2] made of [w1] day session

Table 1: Examples of top ranked predicted components using the model: predicting the paraphrase given
w1 and w2 (left), w1 given w2 and the paraphrase (middle), and w2 given w1 and the paraphrase (right).

[w2] is for [w1]

[w2] belongs to [w1]

[w2] pertaining to [w1]

[w2] issued by [w1]

[w2] related to [w1]

[w2] by way of [w1]

[w2] in terms of [w1]

[w2] done by [w1]

[w2] to produce [w1]

[w2] involved in [w1]

[w2] with [w1]

[w2] composed of [w1]
[w2] employed in [w1]

[w2] owned by [w1]

[w2] by means of [w1]

[w2] to make [w1]

[w2] produced by [w1]

[w2] source of [w1]

[w2] found in [w1]

[w2] offered by [w1]

[w2] out of [w1]

[w2] held by [w1]

[w2] for use in [w1][w2] consists of [w1]

[w2] relating to [w1]

[w2] devoted to [w1]

[w2] engaged in [w1]

[w2] occur in [w1][w2] caused by [w1]

[w2] supplied by [w1]

[w2] part of [w1]

[w2] provided by [w1]

[w2] generated by [w1]

[w2] made of [w1]

[w2] consisting of [w1]

[w2] is made of [w1]

[w2] for [w1]

[w2] from [w1]

[w2] created by [w1]

[w2] given by [w1] [w2] of providing [w1]

[w2] belonging to [w1]

[w2] aimed at [w1]

[w2] conducted by [w1]

[w2] dedicated to [w1]

[w2] made by [w1]

[w2] because of [w1]

[w2] included in [w1]

[w2] with respect to [w1]

[w2] given to [w1]

Figure 2: A t-SNE map of a sample of paraphrases, using the paraphrase vectors encoded by the biLSTM,
for example bLS([w2] made of [w1]).

Implementation Details. The model is imple-
mented in DyNet (Neubig et al., 2017). We dedi-
cate a small number of noun-compounds from the
corpus for validation. We train for up to 10 epochs,
stopping early if the validation loss has not im-
proved in 3 epochs. We use Momentum SGD
(Nesterov, 1983), and set the batch size to 10 and
the other hyper-parameters to their default values.

4 Qualitative Analysis

To estimate the quality of the proposed model, we
first provide a qualitative analysis of the model
outputs. Table 1 displays examples of the model
outputs for each possible usage: predicting the
paraphrase given the constituent words, and pre-
dicting each constituent word given the paraphrase
and the other word.

The examples in the table are from among the
top 10 ranked predictions for each component-
pair. We note that most of the (w2, paraphrase,
w1) triplets in the table do not occur in the training

data, but are rather generalized from similar exam-
ples. For example, there is no training instance for
“company in the software industry” but there is a
“firm in the software industry” and a company in
many other industries.

While the frequent prepositional paraphrases
are often ranked at the top of the list, the model
also retrieves more specified verbal paraphrases.
The list often contains multiple semantically-
similar paraphrases, such as ‘[w2] involved in
[w1]’ and ‘[w2] in [w1] industry’. This is a result
of the model training objective (Section 3) which
positions the vectors of semantically-similar para-
phrases close to each other in the embedding
space, based on similar constituents.

To illustrate paraphrase similarity we compute
a t-SNE projection (Van Der Maaten, 2014) of
the embeddings of all the paraphrases, and draw a
sample of 50 paraphrases in Figure 2. The projec-
tion positions semantically-similar but lexically-
divergent paraphrases in proximity, likely due to
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many shared constituents. For instance, ‘with’,
‘from’, and ‘out of’ can all describe the relation
between food words and their ingredients.

5 Evaluation: Noun-Compound
Interpretation Tasks

For quantitative evaluation we employ our model
for two noun-compound interpretation tasks. The
main evaluation is on retrieving and ranking para-
phrases (§5.1). For the sake of completeness, we
also evaluate the model on classification to a fixed
inventory of relations (§5.2), although it wasn’t de-
signed for this task.

5.1 Paraphrasing
Task Definition. The general goal of this task
is to interpret each noun-compound to multiple
prepositional and verbal paraphrases. In SemEval
2013 Task 4,4 the participating systems were
asked to retrieve a ranked list of paraphrases for
each noun-compound, which was automatically
evaluated against a similarly ranked list of para-
phrases proposed by human annotators.

Model. For a given noun-compound w1w2, we
first predict the k = 250 most likely paraphrases:
p̂1, ..., p̂k = argmaxk p̂, where p̂ is the distribution
of paraphrases defined in Equation 1.

While the model also provides a score for each
paraphrase (Equation 1), the scores have not been
optimized to correlate with human judgments. We
therefore developed a re-ranking model that re-
ceives a list of paraphrases and re-ranks the list to
better fit the human judgments.

We follow Herbrich (2000) and learn a pair-
wise ranking model. The model determines which
of two paraphrases of the same noun-compound
should be ranked higher, and it is implemented
as an SVM classifier using scikit-learn (Pedregosa
et al., 2011). For training, we use the available
training data with gold paraphrases and ranks pro-
vided by the SemEval task organizers. We extract
the following features for a paraphrase p:
1. The part-of-speech tags contained in p
2. The prepositions contained in p
3. The number of words in p
4. Whether p ends with the special [w1] symbol

5. cosine(bLS([w2], p, [w1])2, ~Vp
p̂i
) · p̂p̂i

where ~Vp
p̂i is the biLSTM encoding of the pre-

dicted paraphrase computed in Equation 1 and p̂p̂i

4
https://www.cs.york.ac.uk/semeval-2013/task4

is its confidence score. The last feature incorpo-
rates the original model score into the decision, as
to not let other considerations such as preposition
frequency in the training set take over.

During inference, the model sorts the list of
paraphrases retrieved for each noun-compound ac-
cording to the pairwise ranking. It then scores
each paraphrase by multiplying its rank with its
original model score, and prunes paraphrases with
final score < 0.025. The values for k and the
threshold were tuned on the training set.

Evaluation Settings. The SemEval 2013 task
provided a scorer that compares words and n-
grams from the gold paraphrases against those in
the predicted paraphrases, where agreement on
a prefix of a word (e.g. in derivations) yields
a partial scoring. The overall score assigned to
each system is calculated in two different ways.
The ‘isomorphic’ setting rewards both precision
and recall, and performing well on it requires ac-
curately reproducing as many of the gold para-
phrases as possible, and in much the same order.
The ‘non-isomorphic’ setting rewards only preci-
sion, and performing well on it requires accurately
reproducing the top-ranked gold paraphrases, with
no importance to order.

Baselines. We compare our method with the
published results from the SemEval task. The
SemEval 2013 baseline generates for each noun-
compound a list of prepositional paraphrases in
an arbitrary fixed order. It achieves a moder-
ately good score in the non-isomorphic setting by
generating a fixed set of paraphrases which are
both common and generic. The MELODI sys-
tem performs similarly: it represents each noun-
compound using a compositional distributional
vector (Mitchell and Lapata, 2010) which is then
used to predict paraphrases from the corpus. The
performance of MELODI indicates that the sys-
tem was rather conservative, yielding a few com-
mon paraphrases rather than many specific ones.
SFS and IIITH, on the other hand, show a more
balanced trade-off between recall and precision.

As a sanity check, we also report the results of a
baseline that retrieves ranked paraphrases from the
training data collected in Section 3.2. This base-
line has no generalization abilities, therefore it is
expected to score poorly on the recall-aware iso-
morphic setting.
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Method isomorphic non-isomorphic

Baselines

SFS (Versley, 2013) 23.1 17.9
IIITH (Surtani et al., 2013) 23.1 25.8

MELODI (Van de Cruys et al., 2013) 13.0 54.8
SemEval 2013 Baseline (Hendrickx et al., 2013) 13.8 40.6

This paper Baseline 3.8 16.1
Our method 28.2 28.4

Table 2: Results of the proposed method and the baselines on the SemEval 2013 task.

Category %

False Positive
(1) Valid paraphrase missing from gold 44%
(2) Valid paraphrase, slightly too specific 15%
(3) Incorrect, common prepositional paraphrase 14%
(4) Incorrect, other errors 14%
(5) Syntactic error in paraphrase 8%
(6) Valid paraphrase, but borderline grammatical 5%

False Negative
(1) Long paraphrase (more than 5 words) 30%
(2) Prepositional paraphrase with determiners 25%
(3) Inflected constituents in gold 10%
(4) Other errors 35%

Table 3: Categories of false positive and false neg-
ative predictions along with their percentage.

Results. Table 2 displays the performance of the
proposed method and the baselines in the two eval-
uation settings. Our method outperforms all the
methods in the isomorphic setting. In the non-
isomorphic setting, it outperforms the other two
systems that score reasonably on the isomorphic
setting (SFS and IIITH) but cannot compete with
the systems that focus on achieving high precision.

The main advantage of our proposed model
is in its ability to generalize, and that is also
demonstrated in comparison to our baseline per-
formance. The baseline retrieved paraphrases only
for a third of the noun-compounds (61/181), ex-
pectedly yielding poor performance on the isomor-
phic setting. Our model, which was trained on the
very same data, retrieved paraphrases for all noun-
compounds. For example, welfare system was not
present in the training data, yet the model pre-
dicted the correct paraphrases “system of welfare
benefits”, “system to provide welfare” and others.

Error Analysis. We analyze the causes of the
false positive and false negative errors made by the
model. For each error type we sample 10 noun-
compounds. For each noun-compound, false pos-
itive errors are the top 10 predicted paraphrases
which are not included in the gold paraphrases,
while false negative errors are the top 10 gold
paraphrases not found in the top k predictions
made by the model. Table 3 displays the manu-

ally annotated categories for each error type.

Many false positive errors are actually valid
paraphrases that were not suggested by the hu-
man annotators (error 1, “discussion by group”).
Some are borderline valid with minor grammati-
cal changes (error 6, “force of coalition forces”)
or too specific (error 2, “life of women in commu-
nity” instead of “life in community”). Common
prepositional paraphrases were often retrieved al-
though they are incorrect (error 3). We conjec-
ture that this error often stem from an n-gram that
does not respect the syntactic structure of the sen-
tence, e.g. a sentence such as “rinse away the oil
from baby ’s head” produces the n-gram “oil from
baby”.

With respect to false negative examples, they
consisted of many long paraphrases, while our
model was restricted to 5 words due to the source
of the training data (error 1, “holding done in the
case of a share”). Many prepositional paraphrases
consisted of determiners, which we conflated with
the same paraphrases without determiners (error
2, “mutation of a gene”). Finally, in some para-
phrases, the constituents in the gold paraphrase
appear in inflectional forms (error 3, “holding of
shares” instead of “holding of share”).

5.2 Classification

Noun-compound classification is defined as a mul-
ticlass classification problem: given a pre-defined
set of relations, classify w1w2 to the relation that
holds between w1 and w2. Potentially, the cor-
pus co-occurrences of w1 and w2 may contribute
to the classification, e.g. ‘[w2] held at [w1]’ in-
dicates a TIME relation. Tratz and Hovy (2010) in-
cluded such features in their classifier, but ablation
tests showed that these features had a relatively
small contribution, probably due to the sparseness
of the paraphrases. Recently, Shwartz and Wa-
terson (2018) showed that paraphrases may con-
tribute to the classification when represented in a
continuous space.
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Model. We generate a paraphrase vector repre-
sentation ~par(w1w2) for a given noun-compound
w1w2 as follows. We predict the indices of the k
most likely paraphrases: p̂1, ..., p̂k = argmaxk p̂,
where p̂ is the distribution on the paraphrase vo-
cabulary Vp, as defined in Equation 1. We then
encode each paraphrase using the biLSTM, and
average the paraphrase vectors, weighted by their
confidence scores in p̂:

~par(w1w2) =

∑k
i=1 p̂

p̂i · ~Vp
p̂i

∑k
i=1 p̂

p̂i
(3)

We train a linear classifier, and represent w1w2

in a feature vector f(w1w2) in two variants: para-
phrase: f(w1w2) = ~par(w1w2), or integrated:
concatenated to the constituent word embeddings
f(w1w2) = [ ~par(w1w2), ~w1, ~w2]. The classifier
type (logistic regression/SVM), k, and the penalty
are tuned on the validation set. We also pro-
vide a baseline in which we ablate the paraphrase
component from our model, representing a noun-
compound by the concatenation of its constituent
embeddings f(w1w2) = [ ~w1, ~w2] (distributional).

Datasets. We evaluate on the Tratz (2011)
dataset, which consists of 19,158 instances, la-
beled in 37 fine-grained relations (Tratz-fine) or
12 coarse-grained relations (Tratz-coarse).

We report the performance on two different
dataset splits to train, test, and validation: a ran-
dom split in a 75:20:5 ratio, and, following con-
cerns raised by Dima (2016) about lexical mem-
orization (Levy et al., 2015), on a lexical split in
which the sets consist of distinct vocabularies. The
lexical split better demonstrates the scenario in
which a noun-compound whose constituents have
not been observed needs to be interpreted based on
similar observed noun-compounds, e.g. inferring
the relation in pear tart based on apple cake and
other similar compounds. We follow the random
and full-lexical splits from Shwartz and Waterson
(2018).

Baselines. We report the results of 3 baselines
representative of different approaches:
1) Feature-based (Tratz and Hovy, 2010): we re-
implement a version of the classifier with features
from WordNet and Roget’s Thesaurus.
2) Compositional (Dima, 2016): a neural archi-
tecture that operates on the distributional represen-
tations of the noun-compound and its constituents.
Noun-compound representations are learned with

Dataset & Split Method F1

Tratz
fine

Random

Tratz and Hovy (2010) 0.739
Dima (2016) 0.725

Shwartz and Waterson (2018) 0.714
distributional 0.677
paraphrase 0.505
integrated 0.673

Tratz
fine

Lexical

Tratz and Hovy (2010) 0.340
Dima (2016) 0.334

Shwartz and Waterson (2018) 0.429
distributional 0.356
paraphrase 0.333
integrated 0.370

Tratz
coarse
Random

Tratz and Hovy (2010) 0.760
Dima (2016) 0.775

Shwartz and Waterson (2018) 0.736
distributional 0.689
paraphrase 0.557
integrated 0.700

Tratz
coarse
Lexical

Tratz and Hovy (2010) 0.391
Dima (2016) 0.372

Shwartz and Waterson (2018) 0.478
distributional 0.370
paraphrase 0.345
integrated 0.393

Table 4: Classification results. For each dataset
split, the top part consists of baseline methods and
the bottom part of methods from this paper. The
best performance in each part appears in bold.

the Full-Additive (Zanzotto et al., 2010) and Ma-
trix (Socher et al., 2012) models. We report the
results from Shwartz and Waterson (2018).
3) Paraphrase-based (Shwartz and Waterson,
2018): a neural classification model that learns
an LSTM-based representation of the joint occur-
rences of w1 and w2 in a corpus (i.e. observed
paraphrases), and integrates distributional infor-
mation using the constituent embeddings.

Results. Table 4 displays the methods’ perfor-
mance on the two versions of the Tratz (2011)
dataset and the two dataset splits. The paraphrase
model on its own is inferior to the distributional
model, however, the integrated version improves
upon the distributional model in 3 out of 4 settings,
demonstrating the complementary nature of the
distributional and paraphrase-based methods. The
contribution of the paraphrase component is espe-
cially noticeable in the lexical splits.

As expected, the integrated method in Shwartz
and Waterson (2018), in which the paraphrase
representation was trained with the objective of
classification, performs better than our integrated
model. The superiority of both integrated models
in the lexical splits confirms that paraphrases are
beneficial for classification.
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Example Noun-compounds Gold Distributional Example Paraphrases

printing plant PURPOSE OBJECTIVE [w2] engaged in [w1]

marketing expert
development expert TOPICAL OBJECTIVE

[w2] in [w1]
[w2] knowledge of [w1]

weight/job loss OBJECTIVE CAUSAL [w2] of [w1]

rubber band
rice cake CONTAINMENT PURPOSE

[w2] made of [w1]
[w2] is made of [w1]

laboratory animal LOCATION/PART-WHOLE ATTRIBUTE [w2] in [w1], [w2] used in [w1]

Table 5: Examples of noun-compounds that were correctly classified by the integrated model while being
incorrectly classified by distributional, along with top ranked indicative paraphrases.

Analysis. To analyze the contribution of the
paraphrase component to the classification, we fo-
cused on the differences between the distributional
and integrated models on the Tratz-Coarse lexical
split. Examination of the per-relation F1 scores
revealed that the relations for which performance
improved the most in the integrated model were
TOPICAL (+11.1 F1 points), OBJECTIVE (+5.5), AT-

TRIBUTE (+3.8) and LOCATION/PART WHOLE (+3.5).
Table 5 provides examples of noun-compounds

that were correctly classified by the integrated
model while being incorrectly classified by the dis-
tributional model. For each noun-compound, we
provide examples of top ranked paraphrases which
are indicative of the gold label relation.

6 Compositionality Analysis

Our paraphrasing approach at its core assumes
compositionality: only a noun-compound whose
meaning is derived from the meanings of its con-
stituent words can be rephrased using them. In
§3.2 we added negative samples to the train-
ing data to simulate non-compositional noun-
compounds, which are included in the classifi-
cation dataset (§5.2). We assumed that these
compounds, more often than compositional ones
would consist of unrelated constituents (spelling
bee, sacred cow), and added instances of random
unrelated nouns with ‘[w2] is unrelated to [w1]’.
Here, we assess whether our model succeeds to
recognize non-compositional noun-compounds.

We used the compositionality dataset of Reddy
et al. (2011) which consists of 90 noun-
compounds along with human judgments about
their compositionality in a scale of 0-5, 0 be-
ing non-compositional and 5 being compositional.
For each noun-compound in the dataset, we pre-
dicted the 15 best paraphrases and analyzed the er-
rors. The most common error was predicting para-
phrases for idiomatic compounds which may have

a plausible concrete interpretation or which origi-
nated from one. For example, it predicted that sil-
ver spoon is simply a spoon made of silver and that
monkey business is a business that buys or raises
monkeys. In other cases, it seems that the strong
prior on one constituent leads to ignoring the other,
unrelated constituent, as in predicting “wedding
made of diamond”. Finally, the “unrelated” para-
phrase was predicted for a few compounds, but
those are not necessarily non-compositional (ap-
plication form, head teacher). We conclude that
the model does not address compositionality and
suggest to apply it only to compositional com-
pounds, which may be recognized using compo-
sitionality prediction methods as in Reddy et al.
(2011).

7 Conclusion

We presented a new semi-supervised model for
noun-compound paraphrasing. The model differs
from previous models by being trained to predict
both a paraphrase given a noun-compound, and a
missing constituent given the paraphrase and the
other constituent. This results in better general-
ization abilities, leading to improved performance
in two noun-compound interpretation tasks. In the
future, we plan to take generalization one step fur-
ther, and explore the possibility to use the biL-
STM for generating completely new paraphrase
templates unseen during training.
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Abstract

We explore the notion of subjectivity, and
hypothesize that word embeddings learnt
from input corpora of varying levels of
subjectivity behave differently on natural
language processing tasks such as classi-
fying a sentence by sentiment, subjectiv-
ity, or topic. Through systematic com-
parative analyses, we establish this to be
the case indeed. Moreover, based on the
discovery of the outsized role that senti-
ment words play on subjectivity-sensitive
tasks such as sentiment classification, we
develop a novel word embedding SentiVec
which is infused with sentiment informa-
tion from a lexical resource, and is shown
to outperform baselines on such tasks.

1 Introduction

Distributional analysis methods such as Word2Vec
(Mikolov et al., 2013) and GloVe (Pennington
et al., 2014) have been critical for the success
of many large-scale natural language processing
(NLP) applications (Collobert et al., 2011; Socher
et al., 2013; Goldberg, 2016). These methods em-
ploy distributional hypothesis (i.e., words used in
the same contexts tend to have similar meaning) to
derive distributional meaning via context predic-
tion tasks and produce dense word embeddings.

While there have been active and ongoing re-
search on improving word embedding methods
(see Section 5), there is a relative dearth of study
on the impact that an input corpus may have on
the quality of the word embeddings. The previous
preoccupation centers around corpus size, i.e., a
larger corpus is perceived to be richer in statistical
information. For instance, popular corpora include
Wikipedia, Common Crawl, and Google News.

We postulate that there may be variations across
corpora owing to factors that affect language use.
Intuitively, the many things we write (a work
email, a product review, an academic publication,
etc.) may each involve certain stylistic, syntactic,
and lexical choices, resulting in meaningfully dif-
ferent distributions of word cooccurrences. Con-
sequently, such factors may be encoded in the
word embeddings, and input corpora may be dif-
ferentially informative towards various NLP tasks.

In this work, we are interested in the notion
of subjectivity. Some NLP tasks, such as senti-
ment classification, revolve around subjective ex-
pressions of likes or dislikes. Others, such as topic
classification, revolve around more objective ele-
ments of whether a document belongs to a topic
(e.g., science, politics). Our central hypothesis is
that word embeddings learnt from input corpora
of contrasting levels of subjectivity perform dif-
ferently when classifying sentences by sentiment,
subjectivity, or topic. As the first contribution, we
outline an experimental scheme to explore this hy-
pothesis in Section 2, and conduct a series of con-
trolled experiments in Section 3 establishing that
there exists a meaningful difference between word
embeddings derived from objective vs. subjective
corpora. We further systematically investigate fac-
tors that could potentially explain the differences.

Upon discovering from the investigation that
sentiment words play a particularly important role
in subjectivity-sensitive NLP tasks, such as sen-
timent classification, as the second contribution,
in Section 4 we develop SentiVec, a novel word
embedding method infused with information from
lexical resources such as a sentiment lexicon. We
further identify two alternative lexical objectives:
Logistic SentiVec based on discriminative logistic
regression, and Spherical SentiVec based on soft
clustering effect of von Mises-Fisher distributions.
In Section 6, the proposed word embeddings show
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evident improvements on sentiment classification,
as compared to the base model Word2Vec and
other baselines using the same lexical resource.

2 Data and Methodology

We lay out the methodology for generating word
embeddings of contrasting subjectivity, whose ef-
fects are tested on several text classification tasks.

2.1 Generating Word Embeddings

As it is difficult to precisely quantify the degree
of subjectivity of a corpus, we resort to generat-
ing word embeddings from two corpora that con-
trast sharply in subjectivity, referring to them as
the Objective Corpus and the Subjective Corpus.

Objective Corpus As virtually all contents
are written by humans, an absolutely objective
corpus (in the philosophical sense) may prove elu-
sive. There are however exemplars where, by
construction, a corpus aspires to be as objective
as possible, and probably achieves that in prac-
tical terms. We postulate that one such corpus
is Wikipedia. Its list of policies and guidelines1,
assiduously enforced by an editorial team, spec-
ify that an article must be written from a neutral
point of view, which among other things means
“representing fairly, proportionately, and, as far
as possible, without editorial bias, all of the sig-
nificant views that have been published by reliable
sources on a topic.”. Moreover, it is a common
resource for training distributional word embed-
dings and adopted widely by the research commu-
nity to solve various NLP problems. Hence, in this
study, we use Wikipedia as the Objective Corpus.

Subjective Corpus By extension, one may
then deem a corpus subjective if its content does
not at least meet Wikipedia’s neutral point of view
requirement. In other words, if the content is re-
plete with personal feelings and opinions. We
posit that product reviews would be one such cor-
pus. For instance, Amazon’s Community Guide-
line2 states that “Amazon values diverse opin-
ions”, and that “Content you submit should be rel-
evant and based on your own honest opinions and
experience.”. Reviews consist of expressive con-
tent written by customers, and may not strive for
the neutrality of an encyclopedia. We rely on a

1https://en.wikipedia.org/wiki/
Wikipedia:List_of_policies_and_
guidelines

2https://www.amazon.com/gp/help/
customer/display.html?nodeId=201929730

large corpus of Amazon reviews from various cat-
egories (e.g., electronics, jewelry, books, and etc.)
(McAuley et al., 2015) as the Subjective Corpus.

Word Embeddings For the comparative anal-
ysis in Section 3, we employ Word2Vec (reviewed
below) to generate word embeddings from each
corpus. Later on in Section 4, we will propose a
new word embedding method called SentiVec.

For Word2Vec, we use the Skip-gram model to
train distributional word embeddings on the Ob-
jective Corpus and the Subjective Corpus respec-
tively. Skip-gram aims to find word embeddings
that are useful for predicting nearby words. The
objective is to maximize the context probability:

logL(W ;C) =
∑

w∈W

∑

w′∈C(w)

log P(w′|w), (1)

where W is an input corpus and C(w) is the con-
text of token w. The probability of context word
w′, given observed word w is defined via softmax:

P(w′|w) = exp (vw′ · vw)∑
ŵ∈V exp (vŵ · vw)

, (2)

where vw and vw′ are corresponding embeddings
and V is the corpus vocabulary. Though theoret-
ically sound, the formulation is computationally
impractical and requires tractable approximation.

Mikolov et al. (2013) propose two efficient pro-
cedures to optimize (1): Hierarchical Softmax and
Negative Sampling (NS). In this work we focus
on the widely adopted NS. The intuition is that a
“good” model should be able to differentiate ob-
served data from noise. The differentiation task
is defined using logistic regression; the goal is to
tell apart real context-word pair (w′, w) from ran-
domly generated noise pair (ŵ, w). Formally,

logL[w‘,w] = log σ (vw′ · vw) +
k∑

i=1

log σ (−vŵi · vw),

(3)

where σ( · ) is a sigmoid function, and {ŵi}ki=1

are negative samples. Summing up all the context-
word pairs, we derive the NS Skip-gram objective:

logLword2vec(W ;C) =
∑

w∈W

∑

w′∈C(w)

logL[w‘,w]. (4)

Training word embeddings with Skip-gram, we
keep the same hyperparameters across all the runs:
300 dimensions for embeddings, k = 5 negative
samples, and window of 5 tokens. The Objective
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and Subjective corpora undergo the same prepro-
cessing, i.e., discarding short sentences (< 5 to-
kens) and rare words (< 10 occurrences), remov-
ing punctuation, normalizing Unicode symbols.

2.2 Evaluation Tasks

To compare word embeddings, we need a com-
mon yardstick. It is difficult to define an inherent
quality to word embeddings. Instead, we put them
through several evaluation tasks that can leverage
word embeddings and standardize their formula-
tions as binary classification tasks. To boil the
comparisons down to the essences of word em-
beddings (which is our central focus), we rely on
standardized techniques so as to attribute as much
of the differences as possible to the word embed-
dings. We use logistic regression for classification,
and represent a text snippet (e.g., a sentence) in
the feature space as the average of the word em-
beddings of tokens in the snippet (ignoring out-of-
vocabulary tokens). The evaluation metric is the
average accuracy from 10-fold cross validation.

There are three evaluation tasks of varying de-
grees of hypothetical subjectivity, as outlined be-
low. Each may involve multiple datasets.

Sentiment Classification Task This task clas-
sifies a sentence into either positive or negative.
We use two groups of datasets as follows.

The first group consists of 24 datasets from
UCSD Amazon product data3 corresponding to
various product categories. Each review has a rat-
ing from 1 to 5, which is transformed into pos-
itive (ratings 4 or 5) or negative (ratings 1 or 2)
class. For each dataset respectively, we sample
5000 sentences each from the positive and nega-
tive reviews. Note that these sentences used for
this evaluation task have not participated in the
generation of word embeddings. Due to space
constraint, in most cases we present the average
accuracy across the datasets, but where appropri-
ate we enumerate the results for each dataset.

The second is Cornell’s sentence polarity
dataset v1.04 (Pang and Lee, 2005), made up of
5331 each of positive and negative sentences from
Rotten Tomatoes movie reviews. The inclusion of
this out-of-domain evaluation dataset is useful for
examining whether the performance of word em-
beddings from the Subjective Corpus on the first

3http://jmcauley.ucsd.edu/data/amazon/
4http://www.cs.cornell.edu/people/

pabo/movie-review-data/rt-polaritydata.
README.1.0.txt

group above may inadvertently be affected by in-
domain advantage arising from its Amazon origin.

Subjectivity Classification Task This task
classifies a sentence into subjective or objective.
The dataset is Cornell’s subjectivity dataset v1.05,
consisting of 5000 subjective sentences derived
from Rotten Tomatoes (RT) reviews and 5000 ob-
jective sentences derived from IMDB plot sum-
maries (Pang and Lee, 2004). This task is prob-
ably less sensitive to the subjectivity within word
embeddings than sentiment classification, as de-
termining whether a sentence is subjective or ob-
jective should ideally be an objective undertaking.

Topic Classification Task We use the 20
Newsgroups dataset6 (“bydate” version), whereby
the newsgroups are organized into six subject mat-
ter groupings. We extract the message body and
split them into sentences. Each group’s sentences
then form the in-topic class, and we randomly
sample an equivalent number of sentences from
the remaining newsgroups to form the out-of-topic
class. This results in six datasets, each correspond-
ing to a binary classification task. In most cases,
we present the average results, and where appro-
priate we enumerate the results for each dataset.
Hypothetically, this task is the least affected by the
subjectivity within word embeddings.

3 Comparative Analyses of Subjective vs.
Objective Corpora

We conduct a series of comparative analyses under
various setups. For each, we compare the perfor-
mance in the evaluation tasks when using the Ob-
jective Corpus and the Subjective Corpus. Table 1
shows the results for this series of analyses.

Initial Condition Setup I seeks to answer
whether there is any difference between word em-
beddings derived from the Objective Corpus and
the Subjective Corpus. The word embeddings
were trained on the whole data respectively. Ta-
ble 1 shows the corpus statistics and classification
accuracies. Evidently, the Subjective word embed-
dings outperform the Objective word embeddings
on all the evaluation tasks. The margins are largest
for sentiment classification (86.5% vs. 81.5% or
+5% Amazon, and 78.2% vs. 75.4% or +2.8% on
Rotten Tomatoes or RT). For subjectivity and topic
classifications, the differences are smaller.

5http://www.cs.cornell.edu/people/
pabo/movie-review-data/subjdata.README.
1.0.txt

6http://qwone.com/˜jason/20Newsgroups/
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Setup Corpus
Corpus Statistics Classification (Accuracy)

# types # tokens # sentences
Sentiment

Subjectivity Topic
Amazon RT

I
Objective 1.34M 1.81B 89M 81.5 75.4 90.5 83.2
Subjective 1.47M 5.49B 313M 86.5 78.2 91.1 83.4

II
Objective 1.34M 1.81B

89M
81.5 75.4 90.5 83.2

Subjective 0.59M 1.56B 85.5 77.9 90.7 82.8

III
Objective

0.29M
1.75B

89M
81.6 75.6 90.6 83.4

Subjective 1.54B 85.4 77.9 90.6 82.8

Table 1: Controlled comparison of Objective and Subjective corpora

As earlier hypothesized, the sentiment classifi-
cation task is more sensitive to subjectivity within
word embeddings than the other tasks. Therefore,
training word embeddings on a subjective corpus
may confer an advantage for such tasks. On the
other hand, the corpus statistics show a substan-
tial difference in corpus size, which could be an
alternative explanation for the outperformance by
the Subjective Corpus if the larger corpus contains
more informative distributional statistics.

Controlling for Corpus Size In Setup II, we
keep the number of sentences in both corpora the
same, by randomly downsampling sentences in the
Subjective Corpus. This procedure consequently
reduces the number of types and tokens (see Ta-
ble 1, Setup II, Corpus Statistics). Note that the
number of tokens in the Subjective corpus is now
fewer than in the Objective, the latter suffers no
change. Yet, even after a dramatic reduction in
size, the Subjective embeddings still outperform
the Objective significantly on both datasets of the
sentiment classification task (+4% on Amazon and
+2.5% on RT), while showing similar performance
on subjectivity and topic classifications.

This bolsters the earlier observation that senti-
ment classification is more sensitive to subjectiv-
ity. While there is a small effect due to corpus size
difference, the gap in performance between Sub-
jective and Objective embeddings on sentiment
classification is still significant and cannot be ex-
plained away by the corpus size alone.

Controlling for Vocabulary While the Sub-
jective Corpus has a much smaller vocabulary
(i.e., # types), we turn a critical eye on whether
its apparent advantage lies in having access to spe-
cial word types that do not exist in the Objective
Corpus. In Setup III, we keep the training vocabu-
lary the same for both, removing the types that are

Objective Corpus Subjective Corpus
waste, money, return, love,
great, and, loves, refund,
Great, This, product,
recommend, this, even,
Very, returned, easy, not,
send, sent, customer, item,
broke, defective, her

money, waste, return, and,
Great, love, refund,
recommend, great, this,
loves, even, product, This,
Very, easy, item, junk,
anyone, Don’t, horrible,
gift, poor, Do, returned

Table 2: Top words of misclassified sentences

present in one corpus but not in the other, so that
out-of-vocabulary words are ignored in the train-
ing phase. Table 1, Setup III, shows significant
reduction in types for both corpora. Yet, the out-
performance by the Subjective embeddings on the
sentiment classification task still stands (+3.8% on
Amazon and +2.3% on RT). Moreover, it is so for
both Amazon and Rotten Tomatoes datasets, im-
plying that it is not due to close in-domain sim-
ilarity between the corpora used for training the
word embeddings and the classification tasks.

Significant Words To get more insights on
the difference between the Subjective and Objec-
tive corpora, we analyze the mistakes word em-
beddings make on the development folds. At this
point we focus on the sentiment classification task
and specifically on the Amazon data, which in-
dicates the largest performance differences in the
controlled experiments (see Table 1, Setup III).

As words are still the main unit of informa-
tion in distributional word embeddings, we extract
words strongly associated with misclassified sen-
tences. We employed log-odds ratio with informa-
tive Dirichlet prior method (Monroe et al., 2008)
to quantify this association. It is used to contrast
the words in misclassified vs. correctly classified
sentences, and accounts for the variance of words
and their prior counts taken from a large corpus.
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Table 2 shows the top 25 words most associated
with the misclassified sentences, sorted by their
association scores. On average 50% of the mis-
takes overlap for both word embeddings, there-
fore, some of the words are included in both lists.
40 − 44% of these words carry positive or neg-
ative sentiment connotations in general (see the
underlined words in Table 2), while other words
like return or send may carry sentiment connota-
tion in e-commerce context. We check if a word
carries sentiment connotation using sentiment lex-
icon compiled by Hu and Liu (2004), including
6789 words along with positive or negative labels.

We also observe linguistic negations (i.e., not,
Don’t). For instance, the word most associ-
ated with the Objective-specific mistakes (exclud-
ing the Subjective misclassified sentences) is not,
which suggests that perhaps Subjective word em-
bedding accommodates better understanding of
linguistic negations, which may partially explain
the difference. However, our methodology as out-
lined in Section 2.2 permits exchangeable word or-
der and is not intended to analyze structural inter-
action between words. We focus on further anal-
ysis of sentiment words, leaving linguistic nega-
tions in word embeddings for future investigation.

Controlling for Sentiment Words To con-
trol for the “amount” of sentiment in the Subjec-
tive and Objective corpora, we use sentiment lex-
icon compiled by Hu and Liu (2004). For each
corpus, we create two subcorpora: With Sentiment
contains only the sentences with at least one word
from the sentiment lexicon, while Without Senti-
ment is the complement. We match the corpora on
the number of sentences, downsampling the larger
corpus, train word embeddings on each subcorpus,
and proceed with the classification experiments.
Table 3 shows the results, including that of random
word embeddings for reference. Sentiment lexi-
con has a significant impact on the performance
of sentiment and subjectivity classifications, and
a smaller impact on topic classification. Without
sentiment, the Subjective embeddings prove more
robust, still outperforming the Objective on senti-
ment classification, while the Objective performs
close to random word embeddings on Amazon .

In summary, evidences from the series of con-
trolled experiments support the existence of some
X-factor to the Subjective embeddings, which con-
fers superior performance in subjectivity-sensitive
tasks such as sentiment classification.

Corpus Subcorpus Sentiment Subject- Topic
Sentiment? Amazon RT ivity

Objective With 81.8 75.2 90.7 83.1
Without 76.1 67.2 87.8 82.6

Subjective With 85.5 78.0 90.3 82.5
Without 79.8 71.0 89.1 82.2

Random Embeddings 76.1 62.2 80.1 71.5

Table 3: With and without sentiment

4 Sentiment-Infused Word Embeddings

To leverage the consequential sentiment informa-
tion, we propose a family of methods, called
SentiVec, for training distributional word embed-
dings that are infused with information on the sen-
timent polarity of words. The methods are built
upon Word2Vec optimization algorithm and make
use of available lexical sentiment resources such
as SentiWordNet (Baccianella et al., 2010), senti-
ment lexicon by Hu and Liu (2004), and etc.

SentiVec seeks to satisfy two objectives, namely
context prediction and lexical category prediction:

logL = logLword2vec(W ;C) + λ logLlex(W,L), (5)

where Lword2vec(W ;C) is the Skip-gram objec-
tive as in (4); Llex(W,L) is a lexical objective for
corpus W and lexical resource L; and λ is a trade-
off parameter. Lexical resource L = {Xi}ni=1

comprises of n word sets, each Xi contains words
of the same category. For sentiment classification,
we consider positive and negative word categories.

4.1 Logistic SentiVec
Logistic SentiVec admits lexical resource in the
form of two disjoint word sets, L = {X1, X2},
X1 ∩X2 = ∅. The objective is to tell apart which
word set of L word w belongs to:

logLlex(W,L) (6)

=
∑

w∈X1

log P(w ∈ X1) +
∑

w∈X2

log P(w ∈ X2).

We further tie these probabilities together, and cast
the objective as a logistic regression problem:

P(w ∈ X1) = 1− P(w ∈ X2) = σ(vw · τ), (7)

where vw is a word embedding and τ is a direc-
tion vector. Since word embeddings are gener-
ally invariant to scaling and rotation when used
as downstream feature representations, τ can be
chosen randomly and fixed during training. We
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experiment with randomly sampled unit length di-
rections. For simplicity, we also scale embedding
vw to its unit length when computing vw ·τ , which
now equals to cosine similarity between vw and τ .

When vw is completely aligned with τ , the co-
sine similarity between them is 1, which maxi-
mizes P(w ∈ X1) and favors words in X1. When
vw is opposite to τ , the cosine similarity equals to
−1, which maximizes P(w ∈ X2) and predicts
vectors from X2. Orthogonal vectors have cosine
similarity of 0, which makes both w ∈ X1 and
w ∈ X2 equally probable. Optimizing (6) makes
the corresponding word embeddings ofX1 andX2

gravitate to the opposite semispaces and simulates
clustering effect for the words of the same cate-
gory, while the Word2Vec objective prevents words
from collapsing to the same directions.

Optimization The objective in (6) permits
simple stochastic gradient ascent optimization and
can be combined with negative sampling proce-
dure for Skip-gram in (5). The gradient for un-
normalized embedding vw is solved as follows:
(
logL[w∈X1](D,L)

)′
vwi

= (log P (x ∈ X1))
′
vwi

=
1

‖vw‖2
σ

(
−vw · τ‖vw‖

)(
τi ‖vw‖ − vwi

vw · τ
‖vw‖

)

(8)

The optimization equation for vw, when w ∈ X2,
can be derived analogously.

4.2 Spherical SentiVec
Spherical SentiVec extends Logistic SentiVec by
dealing with any number of lexical categories,
L = {Xi}ni=1. As such, the lexical objective takes
on generic form:

logLlex(W,L) =
n∑

i=1

∑

w∈Xi
log P (w ∈ Xi), (9)

Each P (w ∈ Xi) defines embedding generating
process. We assume each length-normalized vw
for w of L is generated w.r.t. a mixture model
of von Mises-Fisher (vMF) distributions. vMF is
a probability distribution on a multidimensional
sphere, characterized by parameters µ (mean di-
rection) and κ (concentration parameter). Sam-
pled points are concentrated around µ; the greater
the κ, the closer the sampled points are to µ.
We consider only unimodal vMF distributions, re-
stricting concentration parameters to be strictly
positive. Hereby, each Xi ∈ L is assigned to vMF

distribution parameters (µi, κi) and the member-
ship probabilities are defined as follows:

P(w ∈ Xi) = P (vw;µi, κi) =
1

Zκi
eκiµi·vw ,

(10)

where Zκ is the normalization factor.
The Spherical SentiVec lexical objective forces

words of every Xi ∈ L to gravitate towards and
concentrate around their direction mean µi. As in
Logistic SentiVec, it simulates clustering effect for
the words of the same set. In comparison to the
direction vector of Logistic SentiVec, mean direc-
tions of Spherical SentiVec when fixed can sub-
stantially influence word embeddings training and
must be carefully selected. We optimize the mean
directions along with the word embeddings using
alternating procedure resembling K-means clus-
tering algorithm. For simplicity, we keep concen-
tration parameters tied, κ1 = κ2 = ... = κn = κ,
and treat κ as a hyperparameter of this algorithm.

Optimization We derive optimization pro-
cedure for updating word embeddings assuming
fixed direction means. Like Logistic SentiVec,
Spherical SentiVec can be combined with the neg-
ative sampling procedure of Skip-gram. The gra-
dient for unnormalized word embedding vw is
solved by the following equation:

(
logL[w∈Xi] (W,L)

)′
vwj

= κi

(
µij ‖vw‖ − vwj vw·µi

‖vw‖

)

‖vw‖2
(11)

Once word embedding vw (w ∈ Xi) is updated,
we revise direction mean µi w.r.t. maximum like-
lihood estimator:

µi =

∑
w∈Xi

vw∥∥∥
∑
w∈Xi

vw

∥∥∥
. (12)

Updating the direction means in such a way en-
sures that the lexical objective is non-decreasing.
Assuming the stochastic optimization procedure
for Lword2vec complies with the same non-
decreasing property, the proposed alternating pro-
cedure converges.

5 Related Work

There have been considerable research on im-
proving the quality of distributional word em-
beddings. Bolukbasi et al. (2016) seek to de-
bias word embeddings from gender stereotypes.
Rothe and Schütze (2017) incorporate WordNet

1217



lexeme and synset information. Mrkšic et al.
(2016) encode antonym-synonym relations. Liu
et al. (2015) encode ordinal relations such as hy-
pernym and hyponym. Kiela et al. (2015) augment
Skip-gram to enforce lexical similarity or related-
ness constraints, Bollegala et al. (2016) modify
GloVe optimization procedure for the same pur-
pose. Faruqui et al. (2015) employ semantic re-
lations of PPDB, WordNet, FrameNet to retrofit
word embeddings for various prediction tasks. We
use this Retrofitting method7 as a baseline.

Socher et al. (2011) derive multi-word embed-
dings for sentiment distribution prediction, while
we focus on lexical distributional analysis. Maas
et al. (2011) and Tang et al. (2016) use document-
level sentiment annotations to fit word embed-
dings, but document annotation might not always
be available for distributional analysis on neutral
corpora such as Wikipedia. SentiVec relies on
simple sentiment lexicon instead. Refining (Yu
et al., 2018) aligns the sentiment scores taken from
lexical resource and the cosine similarity scores
of corresponding word embeddings. The method
generally requires fine-grained sentiment scores
for the words, which may not be available in some
settings. We use Refining as a baseline and adopt
coarse-grained sentiment lexicon for this method.

Villegas et al. (2016) compare various distri-
butional word embeddings arising from the same
corpus for sentiment classification, whereas we fo-
cus on the differentiation in input corpora and pro-
pose novel sentiment-infused word embeddings.

6 Experiments

The objective of experiments is to study the ef-
ficacy of Logistic SentiVec and Spherical SentiVec
word embeddings on the aforementioned text clas-
sification tasks. One natural baseline is Word2Vec,
as SentiVec subsumes its context prediction objec-
tive, while further incorporating lexical category
prediction. We include two other baselines that
can leverage the same lexical resource but in man-
ners different from SentiVec, namely: Retrofitting
(Faruqui et al., 2015) and Refining (Yu et al.,
2018). For these methods, we generate their word
embeddings based on Setup III (see Section 3).
All the methods were run multiple times with var-
ious hyperparameters, optimized via grid-search;
for each we present the best performing setting.

7Original code is available at: https://github.
com/mfaruqui/retrofitting

First, we discuss the sentiment classification
task. Table 4 shows the unfolded results for the 24
classification datasets of Amazon, as well as for
Rotten Tomatoes. For each classification dataset
(row), and for the Objective and Subjective em-
bedding corpora respectively, the best word em-
bedding methods are shown in bold. An aster-
isk indicates statistically significant8 results at 5%
in comparison to Word2Vec. Both SentiVec vari-
ants outperform Word2Vec in the vast majority of
the cases. The degree of outperformance is higher
for the Objective than the Subjective word embed-
dings. This is a reasonable trend given our previ-
ous findings in Section 3. As the Objective Corpus
encodes less information than the Subjective Cor-
pus for sentiment classification, the former is more
likely to benefit from the infusion of sentiment in-
formation from additional lexical resources. Note
that the sentiment infusion into the word embed-
dings comes from separate lexical resources, and
does not involve any sentiment classification label.

SentiVec also outperforms the two baselines
that benefit from the same lexical resources.
Retrofitting does not improve upon Word2Vec,
with the two embeddings essentially indistinguish-
able (the difference is only noticeable at the sec-
ond decimal point). Refining makes the word em-
beddings perform worse on the sentiment classifi-
cation task. One possible explanation is that Refin-
ing normally requires fine-grained labeled lexicon,
where the words are scored w.r.t. the sentiment
scale, whereas we use sentiment lexicon of two la-
bels (i.e., positive or negative). SentiVec accepts
coarse-grained sentiment lexicons, and potentially
could be extended to deal with fine-grained labels.

As previously alluded to, topic and subjectivity
classifications are less sensitive to the subjectiv-
ity within word embeddings than sentiment clas-
sification. One therefore would not expect much,
if any, performance gain from infusion of senti-
ment information. However, such infusion should
not subtract or harm the quality of word embed-
dings either. Table 5 shows that the unfolded re-
sults for topic classification on the six datasets, and
the result for subjectivity classification are similar
across methods. Neither the SentiVec variants, nor
Retrofitting and Refining, change the subjectivity
and topic classification capabilities much, which
means that the used sentiment lexicon is targeted
only at the sentiment subspace of embeddings.

8We use paired t-test to compute p-value.
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Corpus/Category
Objective Embeddings Subjective Embeddings

Word2Vec Retrofitting Refining SentiVec Word2Vec Retrofitting Refining SentiVec
Spherical Logistic Spherical Logistic

Amazon
Instant Video 84.1 84.1 81.9 84.9∗ 84.9∗ 87.8 87.8 86.9 88.1 88.2
Android Apps 83.0 83.0 80.9 84.0∗ 84.0∗ 86.3 86.3 85.0 86.6 86.5
Automotive 80.7 80.7 78.8 81.0 81.3 85.1 85.1 83.8 84.9 85.0
Baby 80.9 80.9 78.6 82.1 82.2∗ 84.2 84.2 82.8 84.4 84.6
Beauty 81.8 81.8 79.8 82.4 82.7∗ 85.2 85.2 83.5 85.2 85.4
Books 80.9 80.9 78.9 81.0 81.3 85.3 85.3 83.6 85.3 85.5
CD & Vinyl 79.4 79.4 77.6 79.4 79.9 83.5 83.5 81.9 83.7 83.6
Cell Phones 82.2 82.2 80.0 82.9 83.0∗ 86.8 86.8 85.3 86.8 87.0
Clothing 82.6 82.6 80.7 83.8 84.0∗ 86.3 86.3 84.7 86.4 86.8
Digital Music 82.3 82.3 80.5 82.8 83.0∗ 86.3 86.3 84.6 86.1 86.3
Electronics 81.0 81.0 78.8 80.9 81.3 85.2 85.2 83.6 85.3 85.3
Grocery & Food 81.7 81.7 79.4 83.1∗ 83.1∗ 85.0 85.0 83.7 85.1 85.6∗
Health 79.7 79.7 77.9 80.4∗ 80.4 84.0 84.0 82.3 84.0 84.3
Home & Kitchen 81.6 81.6 79.5 82.1 82.1 85.4 85.4 83.9 85.3 85.4
Kindle Store 84.7 84.7 83.2 85.2 85.4∗ 88.3 88.3 87.2 88.3 88.6
Movies & TV 81.4 81.4 78.5 81.9 81.9 85.2 85.2 83.5 85.4 85.5
Musical Instruments 81.7 81.6 79.7 82.4 82.4 85.8 85.8 84.1 85.9 85.7
Office 82.0 82.0 80.0 83.0∗ 82.9 86.1 86.1 84.5 86.4 86.5∗
Garden 80.4 80.4 77.9 81.0 81.5 84.1 84.1 82.5 84.3 84.6∗
Pet Supplies 79.7 79.7 77.5 80.4 80.2 83.2 83.2 81.5 83.4 83.8
Sports & Outdoors 80.8 80.8 79.1 81.3∗ 81.2 84.6 84.6 83.1 84.3 84.7
Tools 81.0 81.0 79.3 81.0 81.3 84.7 84.7 83.2 84.8 84.9
Toys & Games 83.8 83.8 82.0 84.7 84.9∗ 87.2 87.2 85.7 87.1 87.5
Video Games 80.3 80.3 77.4 81.5 81.7∗ 84.9 84.9 83.2 85.0 84.9

Average 81.6 81.6 79.5 82.2 82.4 85.4 85.4 83.9 85.5 85.7

Rotten Tomatoes 75.6 75.6 73.4 75.8∗ 75.4 77.9 77.9 76.7 77.7 77.9

Table 4: Comparison of Sentiment-Infused Word Embeddings on Sentiment Classification Task

Corpus/Category
Objective Embeddings Subjective Embeddings

Word2Vec Retrofitting Refining SentiVec Word2Vec Retrofitting Refining SentiVec
Spherical Logistic Spherical Logistic

Topic
Computers 79.8 79.8 79.6 79.6 79.8 79.8 79.8 79.8 79.7 79.7
Misc 89.8 89.8 89.7 89.8 90.0 90.4 90.4 90.6 90.4 90.3
Politics 84.6 84.6 84.4 84.5 84.6 83.8 83.8 83.5 83.6 83.5
Recreation 83.4 83.4 83.1 83.1 83.2 82.6 82.6 82.5 82.7 82.8
Religion 84.6 84.6 84.5 84.5 84.6 84.2 84.2 84.2 84.1 84.2
Science 78.2 78.2 78.2 78.1 78.3 76.4 76.4 76.1 76.7 76.6

Average 83.4 83.4 83.2 83.3 83.4 82.8 82.8 82.8 82.9 82.8

Subjectivity 90.6 90.6 90.0 90.6 90.6 90.6 90.6 90.3 90.7 90.8

Table 5: Comparison of Word Embeddings on Subjectivity and Topic Classification Tasks

Illustrative Changes in Embeddings To give
more insights on the difference between SentiVec
and Word2Vec, we show “flower” diagrams in Fig-
ure 1 for Logistic SentiVec and Figure 2 for Spher-
ical SentiVec. Each is associated with a reference
word (e.g., good for Figure 1a), and indicates rel-
ative changes in cosine distances between the ref-
erence word and the testing words surrounding the
“flower”. Every testing word is associated with a
“petal” or black axis extending from the center of
the circle. The “petal” length is proportional to the
relative distance change in two word embeddings:
κ =

dSentiV ec(wref ,wtesting)
dword2vec(wref ,wtesting)

, where dSentiV ec and
dword2vec are cosine distances between reference
wref and testing wtesting words in SentiVec and
Word2Vec embeddings correspondingly. If the dis-
tance remains unchanged (κ = 1), then the “petal”
points at the circumference; if the reference and
testing words are closer in the SentiVec embedding

than they are in Word2Vec (κ < 1), the “petal”
lies inside the circle; when the distance increases
(κ > 1), the “petal” goes beyond the circle.

The diagrams are presented for Objective Em-
beddings9. We use three reference words: good
(positive), bad (negative), time (neutral); as well
as three groups of testing words: green for words
randomly sampled from positive lexicon (Sec-
tor I-II), red for words randomly sampled from
negative lexicon (Sector II-III), and gray for fre-
quent neutral common nouns (Sector III-I).

Figure 1 shows changes produced by Logistic
SentiVec. For the positive reference word (Fig-
ure 1a), the average distance to the green words is
shortened, whereas the distance to the red words
increases. The reverse is observed for the nega-
tive reference word (Figure 1b). This observation

9The diagrams for Subjective Embeddings show the same
trend, with the moderate changes.

1219



I

IIIII

(a) Reference word: good (positive)

I

IIIII

(b) Reference word: bad (negative)

I

IIIII

(c) Reference word: time (neutral)

Figure 1: Relative changes in cosine distances in Logistic SentiVec contrasted with Word2Vec

I

IIIII

(a) Reference word: good (positive)

I

IIIII

(b) Reference word: bad (negative)

I

IIIII

(c) Reference word: time (neutral)

Figure 2: Relative changes in cosine distances in Spherical SentiVec contrasted with Word2Vec

complies with the lexical objective (7) of Logistic
SentiVec, which aims to separate the words of two
different classes. Note that the gray words suffer
only moderate change with respect to positive and
negative reference words. For the neutral refer-
ence word (Figure 1c), the distances are only mod-
erately affected across all testing groups.

Figure 2 shows that Spherical SentiVec tends
to make embeddings more compact than Logistic
SentiVec. As the former’s lexical objective (9) is
designed for clustering, but not for separation, we
look at the comparative strength of the clustering
effect on the testing words. For the positive refer-
ence word (Figure 2a), the largest clustering effect
is achieved for the green words. For the negative
reference word (Figure 2b), as expected, the red
words are affected the most. The gray words suf-
fer the least change for all the reference words.

In summary, SentiVec effectively provides an
advantage for subjectivity-sensitive task such as
sentiment classification, while not harming the
performance of other text classification tasks.

7 Conclusion

We explore the differences between objective and
subjective corpora for generating word embed-
dings, and find that there is indeed a difference in
the embeddings’ classification task performances.
Identifying the presence of sentiment words as one
key factor for the difference, we propose a novel
method SentiVec to train word embeddings that
are infused with the sentiment polarity of words
derived from a separate sentiment lexicon. We
further identify two lexical objectives: Logistic
SentiVec and Spherical SentiVec. The proposed
word embeddings show improvements in senti-
ment classification, while maintaining their per-
formance on subjectivity and topic classifications.
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lay, Juan Pablo Fernández, Miguel A Álvarez Car-
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Abstract

Metaphoric expressions are widespread in
natural language, posing a significant chal-
lenge for various natural language pro-
cessing tasks such as Machine Translation.
Current word embedding based metaphor
identification models cannot identify the
exact metaphorical words within a sen-
tence. In this paper, we propose an un-
supervised learning method that identi-
fies and interprets metaphors at word-level
without any preprocessing, outperforming
strong baselines in the metaphor identifi-
cation task. Our model extends to inter-
pret the identified metaphors, paraphras-
ing them into their literal counterparts, so
that they can be better translated by ma-
chines. We evaluated this with two popu-
lar translation systems for English to Chi-
nese, showing that our model improved
the systems significantly.

1 Introduction
Metaphor enriches language, playing a significant
role in communication, cognition, and decision
making. Relevant statistics illustrate that about
one third of sentences in typical corpora contain
metaphor expressions (Cameron, 2003; Martin,
2006; Steen et al., 2010; Shutova, 2016). Linguis-
tically, metaphor is defined as a language expres-
sion that uses one or several words to represent an-
other concept, rather than taking their literal mean-
ings of the given words in the context (Lagerwerf
and Meijers, 2008). Computational metaphor pro-
cessing refers to modelling non-literal expressions
(e.g., metaphor, metonymy, and personification)
and is useful for improving many NLP tasks such
as Machine Translation (MT) and Sentiment Anal-
ysis (Rentoumi et al., 2012). For instance, Google

Translate failed in translating devour within a sen-
tence, “She devoured his novels.” (Mohammad
et al., 2016), into Chinese. The term was translated
into吞噬, which takes the literal sense of swallow
and is not understandable in Chinese. Interpreting
metaphors allows us to paraphrase them into literal
expressions which maintain the intended meaning
and are easier to translate.

Metaphor identification approaches based on
word embeddings have become popular (Tsvetkov
et al., 2014; Shutova et al., 2016; Rei et al.,
2017) as they do not rely on hand-crafted knowl-
edge for training. These models follow a sim-
ilar paradigm in which input sentences are first
parsed into phrases and then the metaphoricity
of the phrases is identified; they do not tackle
word-level metaphor. E.g., given the former sen-
tence “She devoured his novels.”, the aforemen-
tioned methods will first parse the sentence into a
verb-direct object phrase devour novel, and then
detect the clash between devour and novel, flag-
ging this phrase as a likely metaphor. However,
which component word is metaphorical cannot be
identified, as important contextual words in the
sentence were excluded while processing these
phrases. Discarding contextual information also
leads to a failure to identify a metaphor when both
words in the phrase are metaphorical, but taken out
of context they appear literal. E.g., “This young
man knows how to climb the social ladder.” (Mo-
hammad et al., 2016) is a metaphorical expression.
However, when the sentence is parsed into a verb-
direct object phrase, climb ladder, it appears lit-
eral.

In this paper, we propose an unsupervised
metaphor processing model which can identify
and interpret linguistic metaphors at the word-
level. Specifically, our model is built upon word
embedding methods (Mikolov et al., 2013) and
uses WordNet (Fellbaum, 1998) for lexical re-
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lation acquisition. Our model is distinguished
from existing methods in two aspects. First, our
model is generic which does not constrain the
source domain of metaphor. Second, the devel-
oped model does not rely on any labelled data for
model training, but rather captures metaphor in
an unsupervised, data-driven manner. Linguistic
metaphors are identified by modelling the distance
(in vector space) between the target word’s literal
and metaphorical senses. The metaphorical sense
within a sentence is identified by its surrounding
context within the sentence, using word embed-
ding representations and WordNet. This novel ap-
proach allows our model to operate at the sentence
level without any preprocessing, e.g., dependency
parsing. Taking contexts into account also ad-
dresses the issue that a two-word phrase appears
literal, but it is metaphoric within a sentence (e.g.,
the climb ladder example).

We evaluate our model against three strong
baselines (Melamud et al., 2016; Shutova et al.,
2016; Rei et al., 2017) on the task of metaphor
identification. Extensive experimentation con-
ducted on a publicly available dataset (Moham-
mad et al., 2016) shows that our model sig-
nificantly outperforms the unsupervised learning
baselines (Melamud et al., 2016; Shutova et al.,
2016) on both phrase and sentence evaluation, and
achieves equivalent performance to the state-of-
the-art deep learning baseline (Rei et al., 2017)
on phrase-level evaluation. In addition, while
most of the existing works on metaphor processing
solely evaluate the model performance in terms of
metaphor classification accuracy, we further con-
ducted another set of experiments to evaluate how
metaphor processing can be used for supporting
the task of MT. Human evaluation shows that our
model improves the metaphoric translation sig-
nificantly, by testing on two prominent transla-
tion systems, namely, Google Translate1 and Bing
Translator2. To our best knowledge, this is the
first metaphor processing model that is evaluated
on MT.

To summarise, the contributions of this paper
are two-fold: (1) we proposed a novel frame-
work for metaphor identification which does not
require any preprocessing or annotated corpora
for training; (2) we conducted, to our knowledge,
the first metaphor interpretation study of apply-

1https://translate.google.co.uk
2https://www.bing.com/translator

ing metaphor processing for supporting MT. We
describe related work in §2, followed by our la-
belling method in §4, experimental design in §5,
results in §6 and conclusions in §7.

2 Related Work
A wide range of methods have been applied for
computational metaphor processing. Turney et al.
(2011); Neuman et al. (2013); Assaf et al. (2013)
and Tsvetkov et al. (2014) identified metaphors
by modelling the abstractness and concreteness
of metaphors and non-metaphors, using a ma-
chine usable dictionary called MRC Psycholin-
guistic Database (Coltheart, 1981). They be-
lieved that metaphorical words would be more ab-
stract than literal ones. Some researchers used
topic models to identify metaphors. For instance,
Heintz et al. (2013) used Latent Dirichlet Alloca-
tion (LDA) (Blei et al., 2003) to model source and
target domains, and assumed that sentences con-
taining words from both domains are metaphor-
ical. Strzalkowski et al. (2013) assumed that
metaphorical terms occur out of the topic chain,
where a topic chain is constructed by topical
words that reveal the core discussion of the text.
Shutova et al. (2017) performed metaphorical con-
cept mappings between the source and target do-
mains in multi-languages using both unsupervised
and semi-supervised learning approaches. The
source and target domains are represented by se-
mantic clusters, which are derived through the dis-
tribution of the co-occurrences of words. They
also assumed that when contextual vocabularies
are from different domains then there is likely to
be a metaphor.

There is another line of approaches based on
word embeddings. Generally, these works are not
limited by conceptual domains and hand-crafted
knowledge. Shutova et al. (2016) proposed a
model that identified metaphors by employing
word and image embeddings. The model first
parses sentences into phrases which contain target
words. In their word embedding based approach,
the metaphoricity of a phrase was identified by
measuring the cosine similarity of two component
words in the phrase, based on their input vectors
from Skip-gram word embeddings. If the cosine
similarity is higher than a threshold, the phrase is
identified as literal; otherwise metaphorical. Rei
et al. (2017) identified metaphors by introducing a
deep learning architecture. Instead of using word
input vectors directly, they filtered out noisy in-
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Figure 1: CBOW and Skip-gram framework.

formation in the vector of one word in a phrase,
projecting the word vector into another space via
a sigmoid activation function. The metaphoricity
of the phrases was learnt via training a supervised
deep neural network.

The above word embedding based models,
while demonstrating some success in metaphor
identification, only explored using input vectors,
which might hinder their performance. In addi-
tion, metaphor identification is highly dependent
on its context. Therefore, phrase-level models
(e.g., Tsvetkov et al. (2014); Shutova et al. (2016);
Rei et al. (2017)) are likely to fail in the metaphor
identification task if important contexts are ex-
cluded. In contrast, our model can operate at the
sentence level which takes into account rich con-
text and hence can improve the performance of
metaphor identification.

3 Preliminary: CBOW and Skip-gram
Our metaphor identification framework is built
upon word embedding, which is based on Con-
tinuous Bag of Words (CBOW) and Skip-gram
(Mikolov et al., 2013).

In CBOW (see Figure 1), the input and output lay-
ers are context (C) and centre word (T) one-hot
encodings, respectively. The model is trained by
maximizing the probability of predicting a centre
word, given its context (Rong, 2014):

argmax p(t|c1, ..., cn, ..., cm) (1)

where t is a centre word, cn is the nth context word
of t within a sentence, totally m context words.
CBOW’s hidden layer is defined as:

HCBOW =
1

m
×W i> ×

m∑

n=1

Cn

=
1

m
×

m∑

n=1

vi>c,n (2)

where Cn is the one-hot encoding of the nth con-
text word, vic,n is the nth context word row vec-
tor (input vector) in W i which is a weight matrix
between input and hidden layers. Thus, the hid-
den layer is the transpose of the average of input
vectors of context words. The probability of pre-
dicting a centre word in its context is given by a
softmax function below:

ut =W o
t
> ×HCBOW = vot

> ×HCBOW (3)

p(t|c1, ..., cn, ..., cm) =
exp(ut)∑V
j=1 exp(uj)

(4)

where W o
t is equivalent to the output vector vot

which is essentially a column vector in a weight
matrix W o that is between hidden and output lay-
ers, aligning with the centre word t. V is the size
of vocabulary in the corpus.

The output is a one-hot encoding of the centre
word. W i and W o are updated via back propa-
gation of errors. Therefore, only the value of the
position that represents the centre word’s probabil-
ity, i.e., p(t|c1, ..., cn, ..., cm), will get close to the
value of 1. In contrast, the probability of the rest
of the words in the vocabulary will be close to 0
in every centre word training. W i embeds context
words. Vectors within W i can be viewed as con-
text word embeddings. W o embeds centre words,
vectors in W o can be viewed as centre word em-
beddings.

Skip-gram is the reverse of CBOW (see Fig-
ure 1). The input and output layers are centre word
and context word one-hot encodings, respectively.
The target is to maximize the probability of pre-
dicting each context word, given a centre word:

argmax p(c1, ..., cn, ..., cm|t) (5)

Skip-gram’s hidden layer is defined as:

HSG =W i> × T = vi>t (6)

where T is the one-hot encoding of the centre
word t. Skip-gram’s hidden layer is equal to the
transpose of a centre word’s input vector vt, as
only the tth row are kept by the operation. The
probability of a context word is:

uc,n =W o>
c,n ×HSG = vo>c,n ×HSG (7)

p(cn|t) =
exp(uc,n)∑V
j=1 exp(uj)

(8)
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Figure 2: Metaphor identification framework. NB: w∗ =
best fit word, wt = target word.

where c, n is the nth context word, given a centre
word. In Skip-gram, W i aligns to centre words,
while W o aligns to context words. Because the
names of centre word and context word embed-
dings are reversed in CBOW and Skip-gram, we
will uniformly call vectors in W i input vectors vi,
and vectors inW o output vectors vo in the remain-
ing sections. Word embeddings represent both in-
put and output vectors.

4 Methodology
In this section, we present the technical details of
our metaphor processing framework, built upon
two hypotheses. Our first hypothesis (H1) is
that a metaphorical word can be identified, if the
sense the word takes within its context and its lit-
eral sense come from different domains. Such a
hypothesis is based on the theory of Selectional
Preference Violation (Wilks, 1975, 1978) that a
metaphorical item can be found in a violation of
selectional restrictions, where a word does not sat-
isfy its semantic constrains within a context. Our
second hypothesis (H2) is that the literal senses of
words occur more commonly in corpora than their
metaphoric senses (Cameron, 2003; Martin, 2006;
Steen et al., 2010; Shutova, 2016).

Figure 2 depicts an overview of our metaphor
identification framework. The workflow of our
framework is as follows. Step (1) involves training
word embeddings based on a Wikipedia dump3

for obtaining input and output vectors of words.
3https://dumps.wikimedia.org/enwiki/

20170920/

She devoured his novels.
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Figure 3: Given CBOW trained input and output vec-
tors, a target word of devoured, and a context of
She [ ] his novels, cos(vodevoured, v

i
context) = −0.01,

cos(voenjoyed, v
i
context) = 0.02.

In Step (2), given an input sentence, the target
word (i.e., the word in the original text whose
metaphoricity is to be determined) and its con-
text words (i.e., all other words in the sentence
excluding the target word) are separated. We con-
struct a candidate word set W which represents
all the possible senses of the target word. This is
achieved by first extracting the synonyms and di-
rect hypernyms of the target word from WordNet,
and then augmenting the set with the inflections
of the extracted synonyms and hypernyms, as well
as the target word and its inflections. Auxiliary
verbs are excluded from this set, as these words
frequently appear in most sentences with little lex-
ical meaning. In Step (3), we identify the best fit
word, which is defined as the word that represents
the literal sense that the target word is most likely
taking given its context. Finally, in Step (4), we
compute the cosine similarity between the target
word and the best fit word. If the similarity is
above a threshold, the target word will be identi-
fied as literal, otherwise metaphoric (i.e., based on
H1). We will discuss in detail Step (3) and Step (4)
in §4.1.

4.1 Metaphor identification

Step (3): One of the key steps of our metaphor
identification framework is to identify the best fit
word for a target word given its surrounding con-
text. The intuition is that the best fit word will rep-
resent the literal sense that the target word is most
likely taking. E.g., for the sentence “She devoured
his novels.” and the corresponding target word de-
voured, the best fit word is enjoyed, as shown in
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Figure 3. Also note that the best fit word could
be the target word itself if the target word is used
literally.

Given a sentence s, let wt be the target word
of the sentence, w∗ ∈ W the best fit word for
wt, and wcontext the surrounding context for wt,
i.e., all the words in s excluding wt. We compute
the context embedding vicontext by averaging out
the input vectors of each context word of wcontext,
based on Eq. 2. Next, we rank each candidate
word k ∈ W by measuring its similarity to the
context input vector vicontext in the vector space.
The candidate word with the highest similarity to
the context is then selected as the best fit word.

w∗ = argmax
k

SIM(vk, vcontext) (9)

where vk is the vector of a candidate word k ∈
W . In contrast to existing word embedding based
methods for metaphor identification which only
make use of input vectors (Shutova et al., 2016;
Rei et al., 2017), we explore using both input
and output vectors of CBOW and Skip-gram em-
beddings when measuring the similarity between
a candidate word and the context. We expect
that using a combination of input and output vec-
tors might work better. Specifically, we have ex-
perimented with four different model variants as
shown below.

SIM-CBOWI = cos(vik,cbow, v
i
context,cbow)

(10)

SIM-CBOWI+O = cos(vok,cbow, v
i
context,cbow)

(11)

SIM-SGI = cos(vik,sg, v
i
context,sg) (12)

SIM-SGI+O = cos(vok,sg, v
i
context,sg) (13)

Here, cos(·) is cosine similarity, cbow is CBOW
word embeddings, sg is Skip-gram word embed-
dings. We have also tried other model variants us-
ing output vectors for vcontext. However, we found
that the models using output vectors for vcontext
(both CBOW and Skip-gram embeddings) do not
improve our framework performance. Due to the
page limit we omitted the results of those models
in this paper.

Step (4): Given a predicted best fit word w∗

identified in Step (3), we then compute the cosine
similarity between the lemmatizations of w∗ and
the target word wt using their input vectors.

SIM(w∗, wt) = cos(viw∗ , v
i
wt
) (14)

We give a detailed discussion in §4.2 of our ratio-
nale for using input vectors for Eq. 14.

If the similarity is higher than a threshold (τ )
the target word is considered as literal, otherwise,
metaphorical (based on H1). One benefit of our
approach is that it allows one to paraphrase the
identified metaphorical target word into the best fit
word, representing its literal sense in the context.
Such a feature is useful for supporting other NLP
tasks such as Machine Translation, which we will
explore in §6. In terms of the value of threshold
(τ ), it is empirically determined based on a devel-
opment set. Please refer to §5 for details.

To better explain the workflow of our frame-
work, we now go through an example as illus-
trated in Figure 3. The target word of the input
sentence, “She devoured his novels.” is devoured,
and its the lemmatised form devour has four verbal
senses in WordNet, i.e., destroy completely, enjoy
avidly, eat up completely with great appetite, and
eat greedily. Each of these senses has a set of cor-
responding synonyms and hypernyms. E.g., Sense
3 (eat up completely with great appetite) has syn-
onyms demolish, down, consume, and hypernyms
go through, eat up, finish, and polish off. We then
construct a candidate word setW by including the
synonyms and direct hypernyms of the target word
from WordNet, and then augmenting the set with
the inflections of the extracted synonyms and hy-
pernyms, as well as the target word devour and
its inflections. We then identify the best fit word
given the context she [ ] his novels based on Eq. 9.
Based on H2, literal expressions are more com-
mon than metaphoric ones in corpora. Therefore,
the best fit word is expected to frequently appear
within the given context, and thus represents the
most likely sense of the target word. For exam-
ple, the similarity between enjoy (i.e., the best fit
word) and the the context is higher than that of de-
vour (i.e., the target word), as shown in Figure 3.

4.2 Word embedding: output vectors vs. in-
put vectors

Typically, input vectors are used after training
CBOW and Skip-gram, with output vectors be-
ing abandoned by practical models, e.g., original
word2vec model (Mikolov et al., 2013) and Gen-
sim toolkit (Řehůřek and Sojka, 2010), as these
models are designed for modelling similarities in
semantics. However, we found that using input
vectors to measure cosine similarity between two
words with different POS types in a phrase is sub-
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Figure 4: Input and output vector visualization. The bluer,
the more negative. The redder, the more positive.

optimal, as words with different POS normally
have different semantics. They tend to be distant
from each other in the input vector space. Tak-
ing Skip-gram for example, empirically, input vec-
tors of words with the same POS, occurring within
the same contexts tend to be close in the vector
space (Mikolov et al., 2013), as they are frequently
updated by back propagating the errors from the
same context words. In contrast, input vectors
of words with different POS, playing different se-
mantic and syntactic roles tend to be distant from
each other, as they seldom occur within the same
contexts, resulting in their input vectors rarely be-
ing updated equally. Our observation is also in line
with Nalisnick et al. (2016), who examine IN-IN,
OUT-OUT and IN-OUT vectors to measure simi-
larity between two words. Nalisnick et al. discov-
ered that two words which are similar by function
or type have higher cosine similarity with IN-IN or
OUT-OUT vectors, while using input and output
vectors for two words (IN-OUT) that frequently
co-occur in the same context (e.g., a sentence) can
obtain a higher similarity score.

For illustrative purpose, we visualize the
CBOW and Skip-gram updates between 4-
dimensional input and output vectors by Wevi4

(Rong, 2014), using a two-sentence corpus,
“Drink apple juice.” and “Drink orange juice.”.
We feed these two sentences to CBOW and Skip-
gram with 500 iterations. As seen Figure 4, the in-
put vectors of apple and orange are similar in both
CBOW and Skip-gram, which are different from
the input vectors of their context words (drink and
juice). However, the output vectors of apple and
orange are similar to the input vectors of drink and
juice.

To summarise, using input vectors to compare
similarity between the best fit word and the tar-
get word is more appropriate (cf. Eq.14), as they

4https://ronxin.github.io/wevi/

tend to have the same types of POS. When measur-
ing the similarity between candidate words and the
context, using output vectors for the former and in-
put vectors for the latter seems to better predict the
best fit word.

5 Experimental settings
Baselines. We compare the performance of
our framework for metaphor identification against
three strong baselines, namely, an unsupervised
word embedding based model by Shutova et al.
(2016), a supervised deep learning model by Rei
et al. (2017), and the Context2Vec model5 (Mela-
mud et al., 2016) which achieves the best perfor-
mance on Microsoft Sentence Completion Chal-
lenge (Zweig and Burges, 2011). Context2Vec
was not designed for processing metaphors, in or-
der to use it for this we plug it into a very similar
framework to that described in Figure 2. We use
Context2Vec to predict the best fit word from the
candidate set, as it similarly uses context to predict
the most likely centre word but with bidirectional
LSTM based context embedding method. After
locating the best fit word with Context2Vec, we
identify the metaphoricity of a target word with
the same method (see Step (4) in §4), so that
we can also apply it for metaphor interpretation.
Note that while Shutova et al. and Rei et al. de-
tect metaphors at the phrase level by identifying
metaphorical phrases, Melamud et al.’s model can
perform metaphor identification and interpretation
on sentences.
Dataset. Evaluation was conducted based on a
dataset developed by Mohammad et al. (2016).
This dataset6, containing 1,230 literal and 409
metaphor sentences, has been widely used for
metaphor identification related research (Shutova
et al., 2016; Rei et al., 2017). There is a verbal tar-
get word annotated by 10 annotators in each sen-
tence. We use two subsets of the Mohammad et al.
set, one for phrase evaluation and one for sentence
evaluation. The phrase evaluation dataset was
kindly provided by Shutova, which consists of 316
metaphorical and 331 literal phrases (subject-verb
and verb-direct object word pairs), parsed from
Mohammad et al.’s dataset. Similar to Shutova
et al. (2016), we use 40 metaphoric and 40 literal
phrases as a development set and the rest as a test

5http://u.cs.biu.ac.il/˜nlp/resources/
downloads/context2vec/

6http://saifmohammad.com/WebPages/
metaphor.html
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Method P R F1

Phrase

Shutova et al. (2016) 0.67 0.76 0.71
Rei et al. (2017) 0.74 0.76 0.74
SIM-CBOWI+O 0.66 0.78 0.72

SIM-SGI+O 0.68 0.82 0.74*

Sent.

Melamud et al. (2016) 0.60 0.80 0.69
SIM-SGI 0.56 0.95 0.70

SIM-SGI+O 0.62 0.89 0.73
SIM-CBOWI 0.59 0.91 0.72

SIM-CBOWI+O 0.66 0.88 0.75*

Table 1: Metaphor identification results. NB: * denotes that
our model outperforms the baseline significantly, based on
two-tailed paired t-test with p < 0.001.

set.
For sentence evaluation, we select 212

metaphorical sentences whose target words are
annotated with at least 70% agreement. We
also add 212 literal sentences with the highest
agreement. Among the 424 sentences, we form
our development set with 12 randomly selected
metaphoric and 12 literal instances to identify the
threshold for detecting metaphors. The remaining
400 sentences are our testing set.
Word embedding training. We train CBOW and
Skip-gram models on a Wikipedia dump with the
same settings as Shutova et al. (2016) and Rei et al.
(2017). That is, CBOW and Skip-gram models
are trained iteratively 3 times on Wikipedia with
a context window of 5 to learn 100-dimensional
word input and output vectors. We exclude words
with total frequency less than 100. 10 negative
samples are randomly selected for each centre
word training. The word down-sampling rate is
10-5. We use Stanford CoreNLP (Manning et al.,
2014) lemmatized Wikipedia to train word embed-
dings for phrase level evaluation, which is in line
with Shutova et al. (2016). In sentence evaluation,
we use the original Wikipedia for training word
embeddings.

6 Experimental Results

6.1 Metaphor identification

Table 1 shows the performance of our model and
the baselines on the task of metaphor identifica-
tion. All the results for our models are based
on a threshold of 0.6, which is empirically de-
termined based on the developing set. For sen-
tence level metaphor identification, it can be ob-
served that all our models outperform the baseline
(Melamud et al., 2016), with SIM-CBOWI+O giv-
ing the highest F1 score of 75% which is a 6%
gain over the baseline. We also see that mod-

els based on both input and output vectors (i.e.,
SIM-CBOWI+O and SIM-SGI+O) yield better per-
formance than the models based on input vectors
only (i.e., SIM-CBOWI and SIM-SGI ). Such an ob-
servation supports our assumption that using in-
put and output vectors can better model similarity
between words that have different types of POS,
than simply using input vectors. When compar-
ing CBOW and Skip-gram based models, we see
that CBOW based models generally achieve bet-
ter performance in precision whereas Skip-gram
based models perform better in recall.

In terms of phrase level metaphor identifica-
tion, we compare our best performing models (i.e.,
SIM-CBOWI+O and SIM-SGI+O) against the ap-
proaches of Shutova et al. (2016) and Rei et al.
(2017). In contrast to the sentence level eval-
uation in which SIM-CBOWI+O gives the best
performance, SIM-SGI+O performs best for the
phrase level evaluation. This is likely due to the
fact that Skip-gram is trained by using a centre
word to maximise the probability of each context
word, whereas CBOW uses the average of context
word input vectors to maximise the probability of
the centre word. Thus, Skip-gram performs bet-
ter in modelling one-word context, while CBOW
has better performance in modelling multi-context
words. When comparing to the baselines, our
model SIM-SGI+O significantly outperforms the
word embedding based approach by Shutova et al.
(2016), and gives the same performance as the
deep supervised method (Rei et al., 2017) which
requires a large amount of labelled data for train-
ing and cost in training time.

SIM-CBOWI+O and SIM-SGI+O are also evalu-
ated with different thresholds for both phrase and
sentence level metaphor identification. As can be
seen from Table 2, the results are fairly stable
when the threshold is set between 0.5 and 0.9 in
terms of F1.

6.2 Metaphor processing for MT

We believe that one of the key purposes of
metaphor processing is to support other NLP
tasks. Therefore, we conducted another set of ex-
periments to evaluate how metaphor processing
can be used to support English-Chinese machine
translation.

The evaluation task was designed as follows.
From the test set for sentence-level metaphor
identification which contains 200 metaphoric and
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τ
Sentence Phrase

P R F1 F1SIM-CBOWI+O F1SIM-SGI+O

0.3 0.75 0.60 0.67 0.56 0.46
0.4 0.69 0.75 0.72 0.65 0.63
0.5 0.67 0.82 0.74 0.71 0.72
0.6 0.66 0.88 0.75 0.72 0.74
0.7 0.64 0.88 0.74 0.72 0.73
0.8 0.63 0.89 0.74 0.72 0.73
0.9 0.63 0.89 0.74 0.71 0.73
1.0 0.50 1.00 0.67 0.65 0.65

Table 2: Model performance vs. different threshold (τ )
settings. NB: the sentence level results are based on
SIM-CBOWI+O .
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Figure 5: Accuracy of metaphor interpretation, evaluated on
Google and Bing Translation.

200 literal sentences, we randomly selected 50
metaphoric and 50 literal sentences to construct a
set SM for the Machine Translation (MT) evalu-
ation task. For each sentence in SM, if it is pre-
dicted as literal by our model, the sentence is kept
unchanged; otherwise, the target word of the sen-
tence is paraphrased with the best fit word (refer to
§4.1 for details). The metaphor identification step
resulted in 42 True Positive (TP) instances where
the ground truth label is metaphoric and 19 False
Positive (FP) instances where the ground truth la-
bel is literal, resulting in a total of 61 instances
predicted as metaphorical by our model. We also
run one of our baseline models, Context2Vec, on
the 61 sentences to predict the best fit words for
comparison. Our hypothesis is that by paraphras-
ing the metaphorically used target word with the
best fit word which expresses the target word’s real
meaning, the performance of translation engines
can be improved.

We test our hypothesis on two popular English-
Chinese MT systems, i.e., the Google and Bing
Translators. We recruited from a UK university 5
Computing Science postgraduate students who are
Chinese native speakers to participate the English-
Chinese MT evaluation task. During the evalua-
tion, subjects were presented with a questionnaire

The ex-boxer's job is to bounce people who want to enter this 
private club.
bounce: eject from the premises
1. 前拳击手的工作是反弹人谁想要进入这个私人俱乐部。
2. 前拳击手的工作是让想要进入这个私人俱乐部的人弹跳。
3. 前拳击手的工作是拒绝谁想要进入这个私人俱乐部的人。
4. 前拳击手的工作是拒绝那些想进入这个私人俱乐部的人。
5. 前拳击手的工作是打人谁想要进入这个私人俱乐部。
6. 前拳击手的工作是打击那些想进入这个私人俱乐部的人。

Good / Bad

Sample Questionnaire

Figure 6: MT-based metaphor interpretation questionnaire.

Acc-met. Acc-lit. Acc-overall

G
oo

gl
e Orig. Sent. 0.34 0.68 0.51

Context2Vec 0.50 0.66 0.58
SIM-CBOWI+O 0.60 0.64 0.62

B
in

g Orig. Sent. 0.42 0.70 0.56
Context2Vec 0.60 0.66 0.63
SIM-CBOWI+O 0.66 0.64 0.65

Table 3: Accuracy of metaphor interpretation, evaluated on
Google and Bing Translation.

containing English-Chinese translations of each of
the 100 randomly selected sentences. For each
sentence predicted as literal (39 out of 100 sen-
tences), there are two corresponding translations
by Google and Bing respectively. For each sen-
tence predicted as metaphoric (61 out of 100 sen-
tences), there are 6 corresponding translations.

An example of the evaluation task is shown
in Figure 6, in which “The ex-boxer’s job is to
bounce people who want to enter this private
club.” is the original sentence, followed by an
WordNet explanation of the target word of the
sentence (i.e., bounce: eject from the premises).
There are 6 translations. No. 1-2 are the orig-
inal sentence translations, translated by Google
Translate (GT) and Bing Translator (BT). The tar-
get word, bounce, is translated, taking the sense
of (1) physically rebounding like a ball (反弹),
(2) jumping (弹跳). No. 3-4 are SIM-CBOWI+O

paraphrased sentences, translated by GT and BT,
respectively, taking the sense of refusing (拒绝).
No. 5-6 are Context2Vec paraphrased sentences,
translated by GT and BT, respectively, taking the
sense of hitting (5.打; 6.打击).

Subjects were instructed to determine if the
translation of a target word can correctly represent
its sense within the translated sentence, matching
its context (cohesion) in Chinese. Note that we
evaluate the translation of the target word, there-
fore, errors in context word translations are ig-
nored by the subjects. Finally, a label is taken
agreed by more than half annotators. Noticeably,
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based on our observation, there is always a Chi-
nese word corresponding to an English target word
in MT, as the annotated target word normally rep-
resents important information in the sentence in
the applied dataset.

We use translation accuracy as a measure to
evaluate the improvement on MT systems after
metaphor processing. The accuracy is calcu-
lated by dividing the number of correctly trans-
lated instances by the total number of instances.
As can be seen in Figure 5 and Table 3, after
paraphrasing the metaphorical sentences with the
SIM-CBOWI+O model, the translation improve-
ment for the metaphorical class is dramatic for
both MT systems, i.e., 26% improvement for
Google Translate and 24% for Bing Translate.
In terms of the literal class, there is some small
drop (i.e., 4-6%) in accuracy. This is due to the
fact that some literals were wrongly identified as
metaphors and hence error was introduced dur-
ing paraphrasing. Nevertheless, with our model,
the overall translation performance of both Google
and Bing Translate are significantly improved by
11% and 9%, respectively. Our baseline model
Context2Vec also improves the translation accu-
racy, but is 2-4 % lower than our model in terms of
overall accuracy. In summary, the experimental re-
sults show the effectiveness of applying metaphor
processing for supporting Machine Translation.

7 Conclusion
We proposed a framework that identifies and in-
terprets metaphors at word-level with an unsuper-
vised learning approach. Our model outperforms
the unsupervised baselines in both sentence and
phrase evaluations. The interpretation of the iden-
tified metaphorical words given by our model also
contributes to Google and Bing translation sys-
tems with 11% and 9% accuracy improvements.

The experiments show that using words’ hy-
pernyms and synonyms in WordNet can para-
phrase metaphors into their literal counterparts, so
that the metaphors can be correctly identified and
translated. To our knowledge, this is the first study
that evaluates a metaphor processing method on
Machine Translation. We believe that compared
with simply identifying metaphors, metaphor pro-
cessing applied in practical tasks, can be more
valuable in the real world. Additionally, our ex-
periments demonstrate that using a candidate word
output vector instead of its input vector to model
the similarity between the candidate word and its

context yields better results in the best fit word (the
literal counterpart of the metaphor) identification.

CBOW and Skip-gram do not consider the dis-
tance between a context word and a centre word
in a sentence, i.e., context word contributes to pre-
dict the centre word equally. Future work will in-
troduce weighted CBOW and Skip-gram to learn
positional information within sentences.
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Abstract

Traditional word embedding approaches
learn semantic information at word level
while ignoring the meaningful internal
structures of words like morphemes.
Furthermore, existing morphology-based
models directly incorporate morphemes
to train word embeddings, but still neglect
the latent meanings of morphemes. In this
paper, we explore to employ the latent
meanings of morphological compositions
of words to train and enhance word
embeddings. Based on this purpose,
we propose three Latent Meaning Mod-
els (LMMs), named LMM-A, LMM-S
and LMM-M respectively, which adopt
different strategies to incorporate the
latent meanings of morphemes during
the training process. Experiments on
word similarity, syntactic analogy and text
classification are conducted to validate
the feasibility of our models. The results
demonstrate that our models outperform
the baselines on five word similarity
datasets. On Wordsim-353 and RG-65
datasets, our models nearly achieve 5%
and 7% gains over the classic CBOW
model, respectively. For the syntactic
analogy and text classification tasks, our
models also surpass all the baselines
including a morphology-based model.

1 Introduction

Word embedding, which is also termed distributed
word representation, has been a hot topic in the
area of Natural Language Processing (NLP).
The derived word embeddings have been used
in plenty of tasks such as text classification (Liu

∗This is the corresponding author.

et al., 2015), information retrieval (Manning et al.,
2008), sentiment analysis (Shin et al., 2016),
machine translation (Cho et al., 2014) and so on.
Recently, some classic word embedding methods
have been proposed, like Continuous Bag-of-
Word (CBOW), Skip-gram (Mikolov et al.,
2013a), Global Vectors (GloVe) (Pennington
et al., 2014). These methods can usually capture
word-level semantic information but ignore the
meaningful inner structures of words like English
morphemes or Chinese characters.

The effectiveness of exploiting the internal
compositions of words has been validated by
some previous work (Luong et al., 2013; Botha
and Blunsom, 2014; Chen et al., 2015; Cotterell
et al., 2016). Some of them compute the word
embeddings by directly adding the representations
of morphemes/characters to context words or
optimizing a joint objective over distributional
statistics and morphological properties (Qiu
et al., 2014; Botha and Blunsom, 2014; Chen
et al., 2015; Luong et al., 2013; Lazaridou et al.,
2013), while others introduce some probabilistic
graphical models to build relationship between
words and their internal compositions. e.g., Bhatia
et al. (2016) treat word embeddings as latent
variables for a prior distribution, which reflects
words’ morphological properties, and feed the
latent variables into a neural sequence model to
obtain final word embeddings. Cotterell et al.
(2016) construct a Gaussian graphical model that
binds the morphological analysis to pre-trained
word embeddings, which can help to smooth the
noisy embeddings. Besides, these two methods
also have the ability to predict embeddings for
unseen words.

Different from all the above models (we
regard them as Explicit models in Fig. 1) where
internal compositions are directly used to encode
morphological regularities into words and the
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Explicit models

directly use morphemes

 

Our models

employ the latent meanings 

of morphemes

Corpus

Lookup table

Figure 1: An illustration of explicit models and our models in an English corpus. Although incredible
and unbelievable have different morphemes, their morphemes have the same latent meanings.

composition embeddings like morpheme embed-
dings are generated as by-products, we explore
a new way to employ the latent meanings of
morphological compositions rather than the com-
positions themselves to train word embeddings.
As shown in Fig. 1, according to the distributional
semantics hypothesis (Sahlgren, 2008), incredible
and unbelievable probably have similar word
embeddings because they have similar context.
As a matter of fact, incredible is a synonym of
unbelievable and their embeddings are expected
to be close enough. Since the morphemes of
the two words are different, especially the roots
cred and believ, the explicit models may not
significantly shorten the distance between the
words in the vector space. Fortunately, the latent
meanings of the different morphemes are the
same (e.g., the latent meanings of roots cred,
believ are “believe”) as listed in the lookup
table (derived from the resources provided by
Michigan State University),1 which evidently
implies that incredible and unbelievable share
the same meanings. In addition, by replacing
morphemes with their latent meanings, we can
directly and simply quantize the similarities
between words and their sub-compositions with
the same metrics used in most NLP tasks, e.g.,
cosine similarity. Subsequently, the similarities
are utilized to calculate the weights of latent
meanings of morphemes for each word.

In this paper, we try different strategies to

1https://msu.edu/˜defores1/gre/roots/
gre_rts_afx1.htm

modify the input layer and update rules of a
neural language model, e.g., CBOW, Skip-
gram, and propose three lightweight and efficient
models, which are termed Latent Meaning Models
(LMMs), to not only encode morphological pro-
perties into words but also enhance the semantic
similarities among word embeddings. Usually, the
vocabulary derived from the corpus contains vast
majority or even all of the latent meanings. Rather
than generating and training extra embeddings
for latent meanings, we directly override the
embeddings of the corresponding words in the
vocabulary. Moreover, a word map is created
to describe the relations between words and the
latent meanings of their morphemes.

For comparison, our models together with
the state-of-the-art baselines are tested on two
basic NLP tasks, which are word similarity and
syntactic analogy, and one downstream text
classification task. The results show that LMMs
outperform the baselines and get satisfactory
improvement on these tasks. In all, the main
contributions of this paper are summarized as
follows.

• Rather than directly incorporating the mor-
phological compositions (surface forms)
of words, we decide to employ the latent
meanings of the compositions (underlying
forms) to train the word embeddings. To
validate the feasibility of our purpose, three
specific models, named LMMs, are proposed
with different strategies to incorporate the
latent meanings.
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• We utilize a medium-sized English corpus
to train LMMs and the state-of-the-art
baselines, and evaluate their performance on
two basic NLP tasks, i.e., word similarity
and syntactic analogy, and one downstream
text classification task. The results show
that LMMs outperform the baselines on
five word similarity datasets. On the golden
standard Wordsim-353 and RG-65, LMMs
approximately achieve 5% and 7% gains
over CBOW, respectively. For the syntactic
analogy and text classification tasks, LMMs
also surpass all the baselines.

• We conduct experiments to analyze the
impacts of parameter settings, and the results
demonstrate that the performance of LMMs
on the smallest corpus is similar to the
performance of CBOW on the corpus that is
five times as large, which convinces us that
LMMs are of great advantages to enhance
word embeddings compared with traditional
methods.

2 Background and Related Work

Considering the high efficiency of CBOW pro-
posed by Mikolov et al. (2013a), our LMMs
are built upon CBOW. Here, we first review
some backgrounds of CBOW, and then present
some related work on recent word-level and
morphology-based word embedding methods.

CBOW with Negative Sampling With a
sliding window, CBOW utilizes the context words
in the window to predict the target word. Given a
sequence of tokens T = {t1, t2, · · · , tn}, where
n is the size of a training corpus, the objective of
CBOW is to maximize the following average log
probability equation:

L =
1

n

n∑

i=1

log p
(
ti|context(ti)

)
, (1)

where context(ti) represents the context words
of ti in the slide window, p

(
ti|context(ti)

)

is derived by softmax. Due to huge size of
English vocabulary, p

(
ti|context(ti)

)
can not be

calculated in a tolerable time. Therefore, negative
sampling and hierarchical softmax are proposed
to solve this problem. Owing to the efficiency
of negative sampling, all our models are trained
based on it. In terms of negative sampling, the log

probability log p(tO|tI) is transformed as:

log δ
(
vec′(tO)T vec(tI)

)
+

m∑

i=1

log
[
1− δ

(
vec′(ti)T vec(tI)

)]
,

(2)

where m denotes the number of negative samples,
and δ(·) is the sigmoid function. The first item
of Eq. (2) is the probability of target word when
its context is given. The second item indicates the
probability that negative samples do not share the
same context as the target word.

Word-level Word Embedding In general,
word embedding models can mainly be divided
into two branches. One is based on neural network
like the classic CBOW model (Mikolov et al.,
2013a), while the other is based on matrix fac-
torization. Besides CBOW, Skip-gram (Mikolov
et al., 2013a) is another widely used neural-
network-based model, which predicts the context
by using the target word (Mikolov et al., 2013a).
As for matrix factorization, Dhillon et al. (2015)
proposed a spectral word embedding method to
measure the correlation between word information
matrix and context information matrix. In order
to combine the advantages of models based
on neural network and matrix factorization,
Pennington et al. (2014) proposed a famous
word embedding model named GloVe, which is
reported to outperform the CBOW and Skip-gram
models on some tasks. These models are effective
to capture word-level semantic information while
neglecting inner structures of words. In contrast,
the unheeded inner structures are utilized in both
our LMMs and other morphology-based models.

Morphology-based Word Embedding Recent-
ly, some more fine-grained word embedding mod-
els are proposed by exploiting the morphological
compositions of words, e.g., root and affixes.
These morphology-based models can be divided
into two main categories.

The first category directly adds the representa-
tions of internal structures to word embeddings
or optimizes a joint objective over distributional
statistics and morphological properties (Luong
et al., 2013; Qiu et al., 2014; Botha and Blunsom,
2014; Lazaridou et al., 2013; Chen et al., 2015;
Kim et al., 2016; Cotterell and Schütze, 2015).
Chen et al. (2015) proposed a character-enhanced
Chinese word embedding model, which splits a
Chinese word into several characters and add the
characters into the input layer of their models.
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Luong et al. (2013) utilized the morpheme seg-
ments produced by Morfessor (Creutz and Lagus,
2007) and constructed morpheme trees for words
to learn morphologically-aware word embeddings
by the recursive neural network. Kim et al.
(2016) incorporated the convolutional character
information into English words. Their model can
learn character-level semantic information for
embeddings, which is proved to be effective for
some morpheme-rich languages. However, with a
huge size architecture, it’s very time-consuming.
Cotterell et al. (2015) augmented the log linear
model to make the words, which share similar
morphemes, gather together in vector space.

The other category tries to use probabilistic
graphical models to connect words with their
morphological compositions, and further learns
word embeddings (Bhatia et al., 2016; Cotterell
et al., 2016). Bhatia et al. (2016) employed
morphemes and made them as prior knowledge
of the latent word embeddings, then fed the latent
variables into a neural sequence model to obtain
final word embeddings. Cotterell et al. (2016)
proposed a morpheme-based post-processor for
pre-trained word embeddings. They constructed a
Gaussian graphical model which can extrapolate
continuous representations for unknown words.

However, these morphology-based models
directly exploit the internal compositions of
words to encode morphological regularities into
word embeddings, and some by-products are also
produced like morpheme embeddings. In contrast,
we employ the latent meanings of morphological
compositions to provide deeper insights for
training better word embeddings. Furthermore,
since the latent meanings are included in the
vocabulary, there is no extra embedding being
generated.

3 Our Latent Meaning Models

We leverage different strategies to modify the
input layer and update rules of CBOW when
incorporating the latent meanings of morphemes.
Three specific models, named Latent Meaning
Model-Average (LMM-A), LMM-Similarity
(LMM-S) and LMM-Max (LMM-M), are pro-
posed. It should be stated that, for now, our mod-
els mainly concern the derivational morphemes,
which can be interpreted to some meaningful
words or phrases (i.e., latent meanings), not
the inflectional morphemes like tense, number,

not
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Root

Suffix

it
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incredible
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SUM
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capable

believe

able

An item of the Word Map

incredible notin believe able capable
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1/5

1/5

1/5

Figure 2: A paradigm of LMM-A. The sentence
“it is an incredible thing” is selected as an exam-
ple. When calculating the input vector of “incred-
ible”, we first find out the latent meanings of its
morphemes in the word map, and add the vectors
of all latent meanings to the vector of “incredible”
with equal weights.

gender, etc.
LMM-A assumes that all latent meanings of

morphemes of a word have equal contributions
to the word. LMM-A is applicable to the condi-
tion where words are correctly segmented into
morphemes and each morpheme is interpreted to
appropriate latent meanings. However, refining
the latent meanings for morphemes is time-
consuming and needs vast human annotations.
To address this concern, LMM-S is proposed.
Motivated by the attention scheme, LMM-S holds
the assumption that all latent meanings have
different contributions, and assigns the outliers
small weights to let them have little impact on the
representation of the target word. Furthermore,
in LMM-M, we only keep the latent meanings
which have the greatest contributions to the
corresponding word. In what follows, we are
going to introduce each of our LMMs in detail.
At the end of this section, we will introduce the
update rules of the models.

3.1 LMM-A

Given a sequence of tokens T = {t1, t2, · · · , tn},
LMM-A assumes that morphemes’ latent mean-
ings of token ti (i ∈ [1, n]) have equal contribu-
tions to ti, as shown in Fig. 2. The item for ti in
the word map is ti 7→ Mi. Mi is a set of latent
meanings of ti’s morphemes, and it consists of
three sub-parts Pi, Ri and Si corresponding to
the latent meanings of prefixes, roots and suffixes
of ti, respectively. Hence, at the input layer, the
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Figure 3: A paradigm of LMM-S. In this model,
all latent meanings of morphemes of “incredible”
are added together with different weights.

modified embedding of ti can be expressed as

v̂ti =
1

2

(
vti +

1

Ni

∑

w∈Mi

vw
)
, (3)

where vti is the original word embedding of ti,
Ni denotes the length of Mi and vw indicates
the embedding of latent meaning w. Meanwhile,
we assume the original word embedding and the
average embeddings of vw (w ∈ Mi) have equal
weights, i.e., 0.5. Eventually, v̂ti rather than vti is
utilized for training in CBOW.

3.2 LMM-S
This model is proposed based on the attention
scheme. We observe that many morphemes have
more than one latent meaning. For instance,
prefix in- means “in” and “not”, and suffix
-ible means “able” and “capable”.2 As Fig.
3 shows, for the item incredible 7→

{
[in, not],

[believe], [able, capable]
}

in the word map, the
latent meanings have different biases towards
“incredible”. Therefore, we assign different
weights to latent meanings. We measure the
weights of latent meanings by calculating the
normalized similarities between token ti and the
corresponding latent meanings. For LMM-S, the
modified embedding of ti can be rewritten as

v̂ti =
1

2

[
vti +

∑

w∈Mi

ω<ti,w> · vw
]
, (4)

where vti is the original vector of ti, and ω<ti,w>
denotes the weight between ti and the latent mean-
ing w (w ∈Mi). We use cos(va, vb) to denote the

2All the latent meanings of roots and affixes are referred
to the resources we mentioned before.
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Figure 4: A paradigm of LMM-M. The latent
meanings with maximum similarities towards “in-
credible” are selected.

cosine similarity between va and vb, then ω<ti,w>
is expressed as follows:

ω<ti,w> =
cos(vti , vw)∑

x∈Mi

cos(vti , vx)
. (5)

3.3 LMM-M

To further eliminate the impacts of some uncor-
related latent meanings to a word, in LMM-M,
we only select the latent meanings that have
maximum similarities to the token ti from Pi,
Ri and Si. As is shown in Fig. 4, the latent
meaning “not” of prefix in is finally selected since
the similarity between “not” and “incredible” is
larger than that between “in” and “incredible”.
For token ti, LMM-M is mathematically defined
as

v̂ti =
1

2

[
vti +

∑

w∈M i
max

ω<ti,w> · vw
]
, (6)

where M i
max = {P imax, Rimax, Simax} is the set

of latent meanings with maximum similarities
towards token ti, and P imax, Rimax, Simax are
obtained by the following equations:

P imax = argmax
w

cos(vti , vw), w ∈ Pi,

Rimax = argmax
w

cos(vti , vw), w ∈ Ri, (7)

Simax = argmax
w

cos(vti , vw), w ∈ Si.

The normalized weight ω<ti,w> (w ∈ M i
max) can

similarly be derived like Eq. (5).
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3.4 Update Rules for LMMs
After modifying the input layer of CBOW, Eq. (1)
can be rewritten as

L̂ =
1

n

n∑

i=1

log p
(
vti |

∑

tj∈context(ti)
v̂tj
)
, (8)

where v̂tj is the modified vector of vtj (tj ∈
context(ti)). Since the word map describes
top-level relations between words and the latent
meanings, these relations don’t change during
the training period. All parameters introduced
by our models can be directly derived using
the word map and word vectors, thus no extra
parameter needs to be trained. When the gradient
is propagated back to the input layer, we update
not just the word vector vtj (tj ∈ context(ti))
but the vectors of the latent meanings in the
vocabulary with the same weights as they are
added to the vector vtj .

4 Experimental Setup

Before conducting experiments, some experimen-
tal settings are firstly introduced in this section.

4.1 Corpus and Word Map
We utilize a medium-sized English corpus to train
all word embedding models. The corpus stems
from the website of the 2013 ACL Workshop
on Machine Translation3 and is used in (Kim
et al., 2016). We choose the news corpus of
2009 whose size is about 1.7GB. It contains
approximately 500 million tokens and 600,000
words in the vocabulary. To get better quality of
the word embeddings, we filter all digits and some
punctuation marks out of the corpus.

For many languages, there exist large morpho-
logical lexicons or morphological tools that can
analyze any word form (Cotterell and Schütze,
2015). To create the word map, we need to
obtain the morphemes of each word and interpret
them with the lookup table mentioned above to
get the latent meanings. Usually, the lookup
table can also be derived from the morphological
lexicons for different languages, although it costs
some time and manpower, we can create the
lookup table once for all since it represents the
common knowledge with respect to a certain
language. Specifically, we first perform an

3http://www.statmt.org/wmt13/
translation-task.html

unsupervised morpheme segmentation using
Morefessor (Creutz and Lagus, 2007) for the
vocabularies. Then we execute matching between
the segmentation results and the morphological
compositions in the lookup table, and the char-
acter sequence with largest overlap ratio will
be viewed as a final morpheme and further be
replaced by its latent meanings. Although the
lookup table employed in this paper contains
latent meanings for only 90 prefixes, 382 roots
and 67 suffixes, we focus on validating the
feasibility of enhancing word embeddings with
the latent meanings of morphemes, and expending
the lookup table is left as future work.

4.2 Baselines
For comparison, we choose three word-level
state-of-the-art word embedding models including
CBOW, Skip-gram (Mikolov et al., 2013a) and
GloVe (Pennington et al., 2014), and we also
implement an Explicitly Morpheme-related
Model (EMM), which is a variant version of the
previous work (Qiu et al., 2014). The architecture
of EMM is based on our LMM-A, where latent
meanings are replaced back to morphemes and
the embeddings of morphemes are also learned
when training word embeddings. This enables
our evaluation to focus on the critical difference
between our models and the explicit model
(Bhatia et al., 2016). We utilize the source code
of word2vec4 to train CBOW and Skip-gram.
GloVe is trained based on the code5 provided by
Pennington et al. (2014). We modify the source
of word2vec and train our models and EMM.

4.3 Parameter Settings
Parameter settings have a great effect on the
performance of word embeddings (Levy et al.,
2015). For fairness, all models are trained based
on equal parameter settings. In order to accelerate
the training process, CBOW, Skip-gram and EMM
together with our models are trained by using the
negative sampling technique. It is suggested that
the number of negative samples in the range 5-20
is useful for small corpus (Mikolov et al., 2013b).
If large corpus is used, the number of negative
samples can be as small as 2-5. According to the
size of corpus we used, the number of negative
samples is empirically set to be 20 in this paper.

4https://github.com/dav/word2vec
5http://nlp.stanford.edu/projects/

glove
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Name Pairs Name Pairs
RG-65 65 RW 2034
SCWS 2003 Men-3k 3000

Wordsim-353 353 WS-353-REL 252

Table 1: Details of datasets. The column “Pairs”
shows the number of word pairs in each dataset.

The dimension of word embedding is set as 200
like that in (Dhillon et al., 2015). We set the
context window size as 5 which is equal to the
setting in (Mikolov et al., 2013b).

4.4 Evaluation Benchmarks

4.4.1 Word Similarity

This experiment is conducted to evaluate the
ability of word embeddings to capture semantic
information from corpus. For English word
similarity, we employ two gold standard datasets
including Wordsim-353 (Finkelstein et al., 2001)
and RG-65 (Rubenstein and Goodenough, 1965)
as well as some other widely-used datasets
including Rare-Word (Luong et al., 2013), SCWS
(Huang et al., 2012), Men-3k (Bruni et al., 2014)
and WS-353-Related (Agirre et al., 2009). More
details of these datasets are shown in Table 1.
Each dataset consists of three columns. The
first two columns stand for word pairs and the
last column is human score. We utilize the
cosine similarity, which is used in many previous
works (Mikolov et al., 2013b; Pennington et al.,
2014), as the metric to measure the distance
between two words. The Spearman’s rank
correlation coefficient (ρ) is employed to evaluate
the similarity between our results and human
scores. Higher ρ means better performance.

4.4.2 Syntactic Analogy

Based on the learned word embeddings, the core
task of syntactic analogy is to answer the analogy
question “a is to b as c is to ”. We utilize
the Microsoft Research Syntactic Analogies
dataset, which is created by Mikolov (Mikolov
et al., 2013c) with size of 8000. To answer the
syntactic analogy question “a is to b as c is to
d” where d is unknown, we assume that the
word representations of a, b, c, d are va, vb,
vc, vd, respectively. To get d, we first calculate
v̂d = vb − va + vc. Then, we find out the word
d′ whose cosine similarity to v̂d is the largest.
Finally, we set d as d′.

4.4.3 Text Classification
To further evaluate the learned word embeddings,
we also conduct 4 text classification tasks using
the 20 Newsgroups dataset.6 The dataset totally
contains around 19000 documents of 20 different
newsgroups, and each corresponding to a different
topic, such as guns, motorcycles, electronics
and so on. For each task, we randomly select
the documents of 10 topics and split them into
training/validation/test subsets at the ratio of
6:2:2, which are emplyed to train, validate and
test an L2-regularized 10-categorization logistic
regression (LR) classifier. As mentioned in
(Tsvetkov et al., 2015), here we also regard the
average word embedding of words (excluding
stop words and out-of-vocabulary words) in each
document as the feature vector (the input of the
classifier) of that document. The LR classifier
is implemented with the scikit-learn toolkit
(Pedregosa et al., 2011), which is an open-source
Python module integrating many state-of-the-art
machine learning algorithms.

5 Experimental Results

5.1 The Results on Word Similarity

Word similarity is conducted to test the semantic
information which is encoded in word embed-
dings, and the results are listed in Table 2 (first 6
rows). We observe that our models surpass the
comparative baselines on five datasets. Compared
with the base model CBOW, it is remarkable that
our models approximately achieve improvements
of more than 5% and 7%, respectively, in the
performance on the golden standard Wordsim-353
and RG-65. On WS-353-REL, the difference
between CBOW and LMM-S even reaches 8%.
The advantage demonstrates the effectiveness
of our methods. Based on our strategy, more
semantic information will be captured in corpus
when adding more latent meanings in the context
window. By incorporating mophemes, EMM also
performs better than other baselines but fails to
get the performance as well as ours. Actually,
EMM mainly tunes the distributions of words in
vector space to let the morpheme-similar words
gather closer, which means it just encodes more
morphological properties into word embeddings
but lacks the ability to capture more semantic
information. Specially, because of the medium-

6http://qwone.com/˜jason/20Newsgroups
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CBOW Skip-gram GloVe EMM LMM-A LMM-S LMM-M
Wordsim-353 58.77 61.94 49.40 60.01 62.05 63.13 61.54

RW 40.58 36.42 33.40 40.83 43.12 42.14 40.51
RG-65 56.50 62.81 59.92 60.85 62.51 62.49 63.07
SCWS 63.13 60.20 47.98 60.28 61.86 61.71 63.02
Men-3k 68.07 66.30 60.56 66.76 66.26 68.36 64.65

WS-353-REL 49.72 57.05 47.46 54.48 56.14 58.47 55.19
Syntactic Analogy 13.46 13.14 13.94 17.34 20.38 17.59 18.30
Text Classification 78.26 79.40 77.01 80.00 80.67 80.59 81.28

Table 2: Performance comparison (%) of our LMMs and the baselines on two basic NLP tasks (word
similarity & syntactic analogy) and one downstream task (text classification). The bold digits indicate
the best performances.

size corpus and the experimental settings, GloVe
doesn’t perform as well as that described in
(Pennington et al., 2014).

5.2 The Results on Syntactic Analogy

In (Mikolov et al., 2013c), the dataset is divided
into adjectives, nouns and verbs. For brevity, we
only report performance on the whole dataset. As
the middle row of Table 2 shows, all of our models
outperform the comparative baselines to a great
extent. Compared with CBOW, the advantage of
LMM-A even reaches to 7%. Besides, we observe
that the suffix of “b” usually is the same as the
suffix of “d” when answering question “a is to b
as c is to d”. Based on our strategy, morpheme-
similar words will not only gather closer but have
a trend to group near the latent meanings of their
morphemes, which makes our embeddings have
the advantage to deal with the syntactic analogy
problem. EMM also performs well on this task
but is still weaker than our models. Actually,
syntactic analogy is also a semantics-related task
because “c” and “d” are with similar meanings.
Since our models are better to capture semantic
information, they lead to higher performance than
the explicitly morphology-based models.

5.3 The Results on Text Classification

For each one of the 4 text classification tasks,
we report the classification accuracy over the test
set. The average classification accuracy across
the 4 tasks is utilized as the evaluation metric for
different models. The results are displayed in
the bottom row of Table 2. Since we simply use
the average embedding of words as the feature
vector for 10-categorization classification, the
overall classification accuracies of all models
are merely aroud 80%. However, the classi-
fication accuracies of our LMMs still surpass
all the baselines, especailly CBOW and GloVe.

Moreover, it can be found that incorporating
morphological knowledge (morphemes or latent
meanings of morphemes) into word embeddings
can contribute to enhancing the performance of
word embeddings in the downstream NLP tasks.

5.4 The Impacts of Parameter Settings

Parameter settings can affect the performance
of word embeddings. For example, the corpus
with larger corpus size (the ratio of tokens used
for training) contains more semantic information,
which can improve the performance on word
similarity. We analyze the impacts of corpus
size and window size on the performance of
word embeddings. In the analysis of corpus
size, we hold the same parameter settings as
before. The sizes of tokens used for training
are separately 1/5, 2/5, 3/5, 4/5 and 5/5 of the
entire corpus mentioned above. We utilize the
result of word similarity on Wordsim-353 as the
evaluation criterion. From Fig. 5, we observe
several phenomena. Firstly, the performance of
our LMMs is better than CBOW at each corpus
size. Secondly, the performance of CBOW is
sensitive to the corpus size. In contrast, LMMs’
performance is more stable than CBOW. As
we analyzed in word similarity experiment,
LMMs can increase the semantic information
of word embeddings. It is worth noting that the
performance of LMMs on the smallest corpus
is even better than CBOW’s performance on the
largest corpus. In the analysis of window size,
we observe that the performance of all word
embeddings trained by different models has a
trend to ascend with the increasing of window size
as illustrated in Fig. 6. Our LMMs outperform
CBOW under all the pre-set conditions. Besides,
the worst performance of LMMs is nearly equal
to the best performance of CBOW.
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Figure 5: Parameter analysis of corpus size. X-
axis denotes the ratio of tokens used for training,
and Y-axis denotes the Spearman rank (%) of word
similarity.
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Figure 6: Parameter analysis of window size. X-
axis and Y-axis denote the window size and Spear-
man rank (%) of word similarity, respectively.

5.5 Word Embedding Visualization

To visualize the embeddings of our models, we
randomly select several words from the results of
LMM-A. The dimensions of the selected word
embeddings are reduced from 200 to 2 using
Principal Component Analysis (PCA), and the
2-D word embeddings are illustrated in Fig. 7.
The words with different colors reflect that they
have different morphemes. It is apparent that
words with similar morphemes have a trend to
group together and stay near the latent meanings
of their morphemes. In addition, we can also
find some syntactic regularities in Fig. 7, for
example, “physics” is to “physicist” as “science”
is to “scientist”, and “physicist” and “scientist”
stay near the latent meaning, i.e., “human”, of the
suffix -ist.

anthropologist

biologist
physicist

scientist

microscope 
microorganism

premier

preview

agreeable 

prescient

prefix

edible

capablevisible

human

small

before

physics
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−15 −10 −5 0 5
x

y

Figure 7: The visualization of word embeddings.
Based on PCA, we randomly select several words
from word embedding of LMM-A and illustrate
them in this figure, “�” indicates the latent mean-
ings of morphemes.

6 Conclusion

In this paper, we explored a new direction to
employ the latent meanings of morphological
compositions rather than the internal compo-
sitions themselves to train word embeddings.
Three specific models named LMM-A, LMM-S
and LMM-M were proposed by modifying the
input layer and update rules of CBOW. The
source code of LMMs is avaliable at https:
//github.com/Y-Xu/lmm.

To test the performance of our models, we
chose three word-level word embedding models
and implemented an Explicitly Morpheme-related
Model (EMM) as comparative baselines, and
tested them on two basic NLP tasks of word simi-
larity and syntactic analogy, and one downstream
text classification task. The experimental results
demonstrate that our models outperform the
baselines on five word similarity datasets. On the
syntactic analogy as well as the text classification
tasks, our models also surpass all the baselines
including the EMM. In the future, we intend to
evaluate our models for some morpheme-rich
languages like Russian, German and so on.
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Abstract

The process of translation is ambiguous, in
that there are typically many valid trans-
lations for a given sentence. This gives
rise to significant variation in parallel cor-
pora, however, most current models of
machine translation do not account for
this variation, instead treating the prob-
lem as a deterministic process. To this
end, we present a deep generative model
of machine translation which incorporates
a chain of latent variables, in order to ac-
count for local lexical and syntactic varia-
tion in parallel corpora. We provide an in-
depth analysis of the pitfalls encountered
in variational inference for training deep
generative models. Experiments on sev-
eral different language pairs demonstrate
that the model consistently improves over
strong baselines.

1 Introduction

Neural architectures have taken the field of ma-
chine translation by storm and are in the pro-
cess of replacing phrase-based systems. Based on
the encoder-decoder framework (Sutskever et al.,
2014) increasingly complex neural systems are
being developed at the moment. These systems
find new ways of extracting information from the
source sentence and the target sentence prefix for
example by using convolutions (Gehring et al.,
2017) or stacked self-attention layers (Vaswani
et al., 2017). These architectural changes have led
to great performance improvements over classical
RNN-based neural translation systems (Bahdanau
et al., 2014).

∗Code and a workflow that reproduces the experiments
are available at https://github.com/philschulz/
stochastic-decoder.

†Work done prior to joining Amazon.

Surprisingly, there have been almost no efforts
to change the probabilistic model wich is used to
train the neural architectures. A notable exception
is the work of Zhang et al. (2016) who introduce a
sentence-level latent Gaussian variable.
In this work, we propose a more expressive

latent variable model that extends the attention-
based architecture of Bahdanau et al. (2014). Our
model is motivated by the following observation:
translations by professional translators vary across
translators but also within a single translator (the
same translator may produce different translations
on different days, depending on his state of health,
concentration etc.). Neural machine translation
(NMT) models are incapable of capturing this
variation, however. This is because their likeli-
hood function incorporates the statistical assump-
tion that there is one (and only one) output1 for a
given source sentence, i.e.,

P (yn
1 |xm

1 ) =

n∏

i=1

P (yi|xm
1 , y<i) . (1)

Our proposal is to augment this model with la-
tent sources of variation that are able to represent
more of the variation present in the training data.
The noise sources are modelled as Gaussian ran-
dom variables.
The contributions of this work are:
• The introduction of an NMT system that is
capable of capturing word-level variation in
translation data.

• A thorough discussions of issues encountered
when training this model. In particular, we
motivate the use of KL scaling as introduced
by Bowman et al. (2016) theoretically.

1Notice that from a statistical perspective the output of an
NMT system is a distribution over target sentences and not
any particular sentence. The mapping from the output dis-
tribution to a sentence is performed by a decision rule (e.g.
argmax decoding) which can be chosen independently of the
NMT system.
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• An empirical demonstration of the improve-
ments achievable with the proposed model.

2 Neural Machine Translation

The NMT system upon which we base our exper-
iments is based on the work of Bahdanau et al.
(2014). The likelihood of the model is given in
Equation (1). We briefly describe its architecture.
Let xm

1 = (x1, . . . , xm) be the source sentence
and yn

1 the target sentence. Let RNN (·) be any
function computed by a recurrent neural network
(we use a bi-LSTM for the encoder and an LSTM
for the decoder). We call the decoder state at the
ith target position ti; 1 ≤ i ≤ n. The computation
performed by the baseline system is summarised
below.

[
h1, . . . , hm

]
= RNN (xm

1 ) (2a)
t̃i = RNN (ti−1, yi−1) (2b)

eij = v⊤
a tanh

(
Wa[t̃i, hj ]

⊤ + ba

)

(2c)

αij =
exp (eij)∑m

j=1 exp (eij)
(2d)

ci =
m∑

j=1

αijhj (2e)

ti = Wt[t̃i, ci]
⊤ + bt (2f)

ϕi = softmax(Woti + bo) (2g)

The parameters {Wa,Wt,Wo, ba, bt, bo, va} ⊆
θ are learned during training. The model is trained
usingmaximum likelihood estimation. Thismeans
that we employ a cross-entropy loss whose input is
the probability vector returned by the softmax.

3 Stochastic Decoder

This section introduces our stochastic decoder
model for capturing word-level variation in trans-
lation data.

3.1 Motivation
Imagine an idealised translator whose translations
are always perfectly accurate and fluent. If an MT
systemwas providedwith training data from such a
translator, it would still encounter variation in that
data. After all, there are several perfectly accurate
and fluent translations for each source sentence.
These can be highly different in both their lexical
as well as their syntactic realisations.

In practice, of course, human translators’ per-
formance varies according to their level of educa-
tion, their experience on the job, their familiarity
with the textual domain and myriads of other fac-
tors. Even within a single translator variation may
occur due to level of stress, tiredness or status of
health. That translation corpora contain variation
is acknowledged by the machine translation com-
munity in the design of their evaluation metrics
which are geared towards comparing onemachine-
generated translation against several human trans-
lations (see e.g. Papineni et al., 2002).

Prior to our work, the only attempt at mod-
elling the latent variation underlying these differ-
ent translations was made by Zhang et al. (2016)
who introduced a sentence level Gaussian variable.
Intuitively, however, there is more to latent varia-
tion than a unimodal density can capture, for ex-
ample, there may be several highly likely clusters
of plausible variations. A cluster may e.g. consist
of identical syntactic structures that differ in word
choice, another may consist of different syntactic
constructs such as active or passive constructions.
Multimodal modelling of these variations is thus
called for—and our results confirm this intuition.

An example of variation comes from free word
order and agreement phenomena in morphologi-
cally rich languages. An English sentence with
rigid word order may be translated into several or-
derings in German. However, all orderings need
to respect the agreement relationship between the
main verb and the subject (indicated by underlin-
ing) as well as the dative case of the direct object
(dashes) and the accusative of the indirect object
(dots). The agreement requirements are fixed and
independent of word order.

1. I can’t imagine you naked.
(a) Ich kann mir . . . .dich nicht nackt vorstellen.
(b) Ich kann . . . . .dich mir nicht nackt vorstellen.
(c) . . . . .Dich kann ichmir nicht nackt vorstellen.

Stochastically encoding the word order variation
allows the model to learn the same agreement phe-
nomenon from different translation variants as it
does not need to encode the word order and agree-
ment relationships jointly in the decoder state.

Further examples of VP and NP variation from
an actual translation corpus are shown in Figure 1.

We aim to address these word-level variation
phenomena with a stochastic decoder model.
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预计听证会将进⾏两天。 VOM19981105_0700_0262

The hearing is expected to last two days.
The hearing will last two days.
The hearings are expected to last two days.
It is expected that the hearing will go on for two days.

众议院共和党的起诉⼈则希望传唤莱温斯基等多达15个⼈出庭作证。 VOM19981230_0700_0515

However, the Republican complainant in the House wanted to summon 15 people including Lewinsky
to testify in court.
The prosecutor of Republican Party in House of Representative hoped to summons more than 15
persons, including Lewinsky, to court.
The House of Representatives republican prosecution hopes to summon over fifteen witnesses includ-
ing Monica Lewinsky to appear in court.

Figure 1: Examples from the multiple-translation Chinese corpus (LDC2002T01), where the translations
come from different translators. These demonstrate the lexical variation of the verb and variation between
passive and raising structures (top), and lexical variation on the agent NP (bottom). Both examples also
exhibit appreciable length variation.

3.2 Model formulation
The model contains a latent Gaussian variable for
each target position. This variable depends on
the previous latent states and the decoder state.
Through the use of recurrent networks, the condi-
tioning context does not need to be restricted and
the likelihood factorises exactly.

P (yn
1 |xm

1 ) =

∫
dzn

0 p(z0|xm
1 )×

n∏

i=1

p(zi|z<i, y<i, x
m
1 )P (yi|zi

1, y<i, x
m
1 )

(3)

As can be seen from Equation (3), the model
also contains a 0th latent variable that is meant to
initialise the chain of latent variables based solely
on the source sentence. Contrast this with the
model of Zhang et al. (2016) which uses only that
0th variable.
A graphical representation of the stochastic de-

coder model is given in Figure 2a. Its generative
story is as follows

Z0|xm
1 ∼ N (µ0, σ

2
0) (4a)

Zi|z<i, y<i, x
m
1 ∼ N (µi, σ

2
i ) (4b)

Yi|zi
0, y<i, x

m
1 ∼ Cat(ϕi) (4c)

where i = 1, . . . , n and both the Gaussian and
the Categorical parameters are predicted by neural
network architectures whose inputs vary per time
step. This probabilistic formulation can be imple-
mented with a multitude of different architectures.
We present ours in the next section.

3.3 Neural Architecture

Since the model contains latent variables and is
parametrised by a neural network, it falls into the
class of deep generative models (DGMs). We
use a reparametrisation of the Gaussian variables
(Kingma and Welling, 2014; Rezende et al., 2014;
Titsias and Lázaro-Gredilla, 2014) to enable back-
propagation inside a stochastic computation graph
(Schulman et al., 2015). In order to sample d-
dimensional Gaussian variable z ∈ Rd with mean
µ and variance σ2, we first sample from a standard
Gaussian distribution and then transform the sam-
ple,

z = µ + σ ⊙ ϵ ϵ ∼ N (0, I) . (5)

Here µ, σ ∈ Rd and ⊙ denotes element-wise
multiplication (also known as Hadamard product).
See the supplement for details on the Gaussian
reparametrisation.
We use neural networks with one hidden layer

with a tanh activation to compute the mean and
standard deviation of each Gaussian distribution.
A softplus transformation is applied to the output
of the standard deviation’s network to ensure pos-
itivity. Let us denote the functions that these net-
works compute by f .
For the initial latent state z0 we compute the

mean and standard deviation as

µ0 = fµ0 (hm) σ0 = fσ0 (hm) . (6)
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Figure 2: Graphical representation of 2a the generative model and 2b the inference model. Black lines
indicate generative parameters (θ) and red lines variational parameters (λ). Dashed red-black lines indi-
cate that the inference model uses feature representations computed by the generative model as inputs.
Through the recurrent net, the generative model (2a) also conditions its outputs on all previous latent
assignments. We omit these arrows to avoid clutter. The inference model (2b) is only used at training
time. Dots indicate further conditioning context.

The parameters of all other latent distributions are
computed by functions fµ and fσ whose inputs
vary per target position.

µi = fµ (ti−1, zi−1) σi = fσ (ti−1, zi−1) (7)

Using these values, each latent variable is sam-
pled according to Equation (5). The sampled latent
variables are then used to modify the update of the
decoder hidden state (Equation (2b)) as follows:

t̃i = RNN (ti−1, yi−1, zi) (8)

The remaining computations stay unchanged.
Notice that the latent values are used directly in up-
dating the decoder state. This makes the decoder
state a function of a random variable and thus the
decoder state is itself random. Applying this ar-
gument recursively shows that also the attention
mechanism is random, making the decoder entirely
stochastic.

4 Inference and Training

We use variational inference (see e.g. Blei et al.,
2017) to train the model. In variational inference,
we employ a variational distribution q(z) that ap-
proximates the true posterior p(z|x) over the latent
variables. The distribution q(z) has its own set of
parameters λ that is disjoint from the set of model
parameters θ. It is used to maximise the evidence
lower bound (ELBO) which is a lower bound on
the marginal likelihood p(x). The ELBO is max-
imised with respect to both the model parameters
θ and the variational parameters λ.
Most NLP models that use DGMs only use one

latent variable (e.g. Bowman et al., 2016). Models

that use several variables usually employ a mean
field approximation under which all latent vari-
ables are independent. This turns the ELBO into a
sum of expectations (e.g. Zhou and Neubig, 2017).
For our stochastic decoder we design a more flexi-
ble approximation posterior family which respects
the dependencies between the latent variables,

q(zn
0 ) = q(z0)

n∏

i=1

q(zi|z<i) . (9)

Our stochastic decoder can be viewed as a stack of
conditional DGMs (Sohn et al., 2015) in which the
latent variables depend on one another. The ELBO
thus consists of nested positional ELBOs,

ELBO0 + Eq(z0)[ELBO1

+Eq(z1)[ELBO2 + . . .]] ,
(10)

where for a given target position i the ELBO is

ELBOi = Eq(zi) [log p(yi|xm
1 , y<i, z<i, zi)]

−KL (q(zi) || p(zi|xm
1 , y<i, z<i)) .

(11)
The first term is often called reconstruction or like-
lihood term whereas the second term is called the
KL term. Since the KL term is a function of two
Gaussian distributions, and the Gaussian is an ex-
ponential family, we can compute it analytically
(Michalowicz et al., 2014), without the need for
sampling. This is very similar to the hierarchical
latent variable model of Rezende et al. (2014).
Following common practice in DGM research,

we employ a neural network to compute the vari-
ational distributions. To discriminate it from the

1246



generative model, we call this neural net the in-
ference model. At training time both the source
and target sentence are observed. We exploit this
by endowing our inference model with a “look-
ahead” mechanism. Concretely, samples from the
inference network condition on the information
available to the generation network (Section 3.3)
and also on the target words that are yet to be pro-
cessed by the generative decoder. This allows the
latent distribution to not only encode information
about the currently modelled word but also about
the target words that follow it. The conditioning
of the inference network is illustrated graphically
in Figure 2b.
The inference network produces additional rep-

resentations of the target sentence. One represen-
tation encodes the target sentence bidirectionally
(12a), in analogy to the source sentence encoding.
The second representation is built by encoding the
target sentence in reverse (12b). This reverse en-
coding can be used to provide information about
future context to the decoder. We use the sym-
bols b and r for the bidirectional and reverse target
encodings, respectively. In our experiments, we
again use LSTMs to compute these encodings.

[
b1, . . . , bn

]
= RNN (yn

1 ) (12a)
[
r1, . . . , rn

]
= RNN (yn

1 ) (12b)

In analogy to the generativemodel (Section 3.3),
the inference network uses single hidden layer net-
works to compute the mean and standard devia-
tions of the latent variable distributions. We denote
these functions g and again employ different func-
tions for the initial latent state and all other latent
states.

µ0 = gµ0 (hm, bn) (13a)
σ0 = gσ0 (hm, bn) (13b)
µi = gµ (ti−1, zi−1, ri, yi) (13c)
σi = gσ (ti−1, zi−1, ri, yi) (13d)

As before, we use Equation (5) to sample from the
variational distribution.
During training, all samples are obtained from

the inference network. Only at test time do we
sample from the generator. Notice that since the
inference network conditions on representations
produced by the generator network, a naïve appli-
cation of backpropagation would update parts of
the generator network with gradients computed for

the inference network. We prevent this by block-
ing gradient flow from the inference net into the
generator.

4.1 Analysis of the Training Procedure

The training procedure as outlined above does not
work well empirically. This is because our model
uses a strong generator. By this we mean that
the generation model (that is the baseline NMT
model) is a very good density model in and by it-
self and does not need to rely on latent informa-
tion to achieve acceptable likelihood values dur-
ing training. DGMs with strong generators have
a tendency to not make use of latent information
(Bowman et al., 2016). This problem went ini-
tially unnoticed because early DGMs (Kingma and
Welling, 2014; Rezende et al., 2014) used weak
generators2, i.e. models that made very strong in-
dependence assumptions and were not able to cap-
ture contextual information without making use of
the information encoded by the latent variable.
WhyDGMswould ignore the latent information

can be understood by considering the KL-term of
the ELBO. In order for the latent variable to be in-
formative about the observed data, we need them
to have high mutual information I(Z; Y ).

I(Z; Y ) = Ep(z,y)

[
log

p(Z, Y )

p(Z)p(Y )

]
(14)

Observe that we can rewrite the mutual informa-
tion as an expected KL divergence by applying the
definition of conditional probability.

I(Z; Y ) = Ep(y) [KL (p(Z|Y ) || p(Z))] (15)

Since we cannot compute the posterior p(z|y)
exactly, we approximate it with the variational
distribution q(z|y) (the joint is approximated by
q(z|y)p(y) where the latter factor is the data dis-
tribution). To the extent that the variational distri-
bution recovers the true posterior, the mutual in-
formation can be computed this way. In fact, if
we take the learned prior p(z) to be an approxima-
tion of themarginal

∫
q(z|y)p(y)dy it can easily be

shown that the thus computed KL term is an upper
bound on mutual information (Alemi et al., 2017).
The trouble is that the ELBO (Equation (11))

can be trivially maximised by setting the KL-term
to 0 and maximising only the reconstruction term.

2The term weak generator has first been coined by Alemi
et al. (2017).
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This is especially likely at the beginning of train-
ing when the variational approximation does not
yet encode much useful information. We can only
hope to learn a useful variational distribution if a)
the variational approximation is allowed to move
away from the prior and b) the resulting increase in
the reconstruction term is higher than the increase
in the KL-term (i.e. the ELBO increases overall).
Several schemes have been proposed to en-

able better learning of the variational distribution
(Bowman et al., 2016; Kingma et al., 2016; Alemi
et al., 2017). Here we use KL scaling and increase
the scale gradually until the original objective is
recovered. This has the following effect: during
the initial learning stage, the KL-term barely con-
tributes to the objective and thus the updates to
the variational parameters are driven by the signal
from the reconstruction term and hardly restricted
by the prior.
Once the scale factor approaches 1 the varia-

tional distribution will be highly informative to the
generator (assuming sufficiently slow increase of
the scale factor). The KL-term can now be min-
imised by matching the prior to the variational dis-
tribution. Notice that up to this point, the prior
has hardly been updated. Thus moving the varia-
tional approximation back to the prior would likely
reduce the reconstruction term since the standard
normal prior is not useful for inference purposes.
This is in stark contrast to Bowman et al. (2016)
whose prior was a fixed standard normal distri-
bution. Although they used KL scaling, the KL
term could only be decreased by moving the varia-
tional approximation back to the fixed prior. This
problem disappears in our model where priors are
learned.
Moving the prior towards the variational ap-

proximation has another desirable effect. The prior
can now learn to emulate the variational “look-
ahead” mechanism without having access to future
contexts itself (recall that the inference model has
access to future target tokens). At test time we can
thus hope to have learned latent variable distribu-
tions that encode information not only about the
output at the current position but about future out-
puts as well.

5 Experiments

We report experiments on the IWSLT 2016 data
set which contains transcriptions of TED talks and
their respective translations. We trained models to

Data Arabic Czech French German

Train 224,125 114,389 220,399 196,883
Dev 6,746 5,326 5,937 6,996
Test 2,762 2,762 2,762 2,762

Table 1: Number of parallel sentence pairs for each
language paired with English for IWSLT data.

translate from English into Arabic, Czech, French
and German. The number of sentences for each
language after preprocessing is shown in Table 1.
The vocabulary was split into 50,000 subword

units using Google’s sentence piece3 software in
its standard settings. As our baseline NMT sys-
tems we use Sockeye (Hieber et al., 2017)4. Sock-
eye implements several different NMT models
but here we use the standard recurrent attentional
model described in Section 2. We report baselines
with and without dropout (Srivastava et al., 2014).
For dropout a retention probability of 0.5 was used.
As a second baseline we use our own implemen-

tation of the model of Zhang et al. (2016) which
contains a single sentence-level Gaussian latent
variable (SENT). Our implementation differs from
theirs in three aspects. First, we feed the last hid-
den state of the bidirectional encoding into encod-
ing of the source and target sentence into the in-
ference network (Zhang et al. (2016) use the av-
erage of all states). Second, the latent variable is
smaller in size than the one used by (Zhang et al.,
2016).5 This was done to make their model and
the stochastic decoder proposed here as similar as
possible. Finally, their implementation was based
on groundhog whereas ours builds on Sockeye.
Our stochastic decoder model (SDEC) is also

built on top of the basic Sockeyemodel. It adds the
components described in Sections 3 and 4. Recall
that the functions that compute the means and stan-
dard deviations are implemented by neural nets
with a single hidden layer with tanh activation.
The width of that layer is twice the size of the la-
tent variable. In our experiments we tested differ-
ent latent variable sizes and used KL scaling (see
Section 4.1). The scale started from 0 and was in-
creased by 1/20,000 after each mini-batch. Thus, at
iteration t the scale is min(t/20,000, 1).
All models use 1028 units for the LSTM hid-
3https://github.com/google/sentencepiece
4https://github.com/awslabs/sockeye
5We did, however, find that increasing the latent variable

size actually hurt performance in our implementation.
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den state (or 512 for each direction in the bidirec-
tional LSTMs) and 256 for the attention mechan-
sim. Training is done with Adam (Kingma and
Ba, 2015). In decoding we use a beam of size 5
and output the most likely word at each position.
We deterministically set all latent variables to their
mean values during decoding. Monte Carlo decod-
ing (Gal, 2016) is difficult to apply to our setting
as it would require sampling entire translations.

Results We show the BLEU scores for all mod-
els that we tested on the IWSLT data set in Ta-
ble 2. The stochastic decoder dominates the Sock-
eye baseline across all 4 languages, and outper-
forms SENT on most languages. Except on Ger-
man, there is a trend towards smaller latent vari-
able sizes being more helpful. This is in line with
findings by Chung et al. (2015) and Fraccaro et al.
(2016) who also used relatively small latent vari-
ables. This observation also implies that our model
does not improve simply because it has more pa-
rameters than the baseline.
That the margin between the SDEC and SENT

models is not large was to be expected for two
reasons. First, Chung et al. (2015) and Fraccaro
et al. (2016) have shown that stochastic RNNs lead
to enormous improvements in modelling continu-
ous sequences but only modest increases in perfor-
mance for discrete sequences (such as natural lan-
guage). Second, translation performance is mea-
sured in BLEU score. We observed that SDEC of-
ten reached better ELBO values than SENT indi-
cating a better model fit. How to fully leverage the
better modelling ability of stochastic RNNs when
producing discrete outputs is a matter of future re-
search.

Qualitative Analysis Finally, we would like to
demonstrate that our model does indeed capture
variation in translation. To this end, we randomly
picked sentences from the IWSLT test set and had
our model translate them several times, however,
the values of the latent variables were sampled in-
stead of fixed. Contrary to the BLEU-based evalu-
ation, beam search was not used in this evaluation
in order to avoid interaction between different la-
tent variable samples. See Figure 3 for examples
of syntactic and lexical variation. It is important
to note that we do not sample from the categori-
cal output distribution. For each target position we
pick the most likely word. A non-stochastic NMT
system would always yield the same translation in

this scenario. Interestingly, when we applied the
sampling procedure to the SENT model it did not
produce any variation at all, thus behaving like a
deterministic NMT system. This supports our ini-
tial point that the SENT model is likely insensitive
to local variation, a problem that our model was
designed to address. Like the model of Bowman
et al. (2016), SENT presumably tends to ignore the
latent variable.

6 Related Work

The stochastic decoder is strongly influenced by
previous work on stochastic RNNs. The first
such proposal was made by Bayer and Osendorfer
(2015) who introduced i.i.d. Gaussian latent vari-
ables at each output position. Since their model
neglects any sequential dependence of the noise
sources, it underperformed on several sequence
modeling tasks. Chung et al. (2015) made the la-
tent variables depend on previous information by
feeding the previous decoder state into the latent
variable sampler. Their inference model did not
make use of future elements in the sequence.
Using a “look-ahead” mechanism in the infer-

ence net was proposed by Fraccaro et al. (2016)
who had a separate stochastic and deterministic
RNN layer which both influence the output. Since
the stochastic layer in their model depends on the
deterministic layer but not vice versa, they could
first run the deterministic layer at inference time
and then condition the inference net’s encoding of
the future on the thus obtained features. Like us,
they used KL scaling during training.
More recently, Goyal et al. (2017) proposed an

auxiliary loss that has the inference net predict fu-
ture feature representations. This approach yields
state-of-the-art results but is still in need of a the-
oretical justification.
Within translation, Zhang et al. (2016) were

the first to incorporate Gaussian variables into
an NMT model. Their approach only uses one
sentence-level latent variable (corresponding to
our z0) and can thus not deal with word-level vari-
ation directly. Concurrently to our work, Su et al.
(2018) have also proposed a recurrent latent vari-
able model for NMT. Their approach differs from
ours in that they do not use a 0th latent variable nor
a look-ahead mechanism during inference time.
Furthermore, their underlying recurrent model is
a GRU.
In the wider field of NLP, deep generative mod-
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Model Dropout LatentDim Arabic Czech French German

Sockeye None None 8.2 6.9 23.5 14.3
Sockeye 0.5 None 8.4 7.4 24.4 15.1

SENT 0.5 64 8.4 7.3 24.8 15.3
SENT 0.5 128 8.7 7.4 24.0 15.7
SENT 0.5 256 8.9 7.4 24.7 15.5

SDEC 0.5 64 8.2 7.7 25.3 15.4
SDEC 0.5 128 8.8 7.5 24.2 15.6
SDEC 0.5 256 8.7 7.5 23.2 15.9

Table 2: BLEU scores for different models on the IWSLT data for translation into English. Recall that
all SDEC and SENT models used KL scaling during training.

Source Coincidentally, at the same time, the first easy-to-use clinical tests for diagnosing autism
were introduced.

SENT Im gleichen Zeitraum wurden die ersten einfachen klinischen Tests für Diagnose getestet.
SDEC Übrigens, zur gleichen Zeit, wurden die ersten einfache klinische Tests für die Diagnose

von Autismus eingeführt.
SDEC Übrigens, zur gleichen Zeit, waren die ersten einfache klinische Tests für die Diagnose von

Autismus eingeführt worden.

Source They undertook a study of autism prevalence in the general population.

SENT Sie haben eine Studie von Autismus in der allgemeinen Population übernommen.
SDEC Sie entwarfen eine Studie von Autismus in der allgemeinen Bevölkerung.
SDEC Sie führten eine Studie von Autismus in der allgemeinen Population ein.

Figure 3: Sampled translations from our model (SDEC) and the sentent-level latent variable model
(SENT). The first SDEC example shows alternation between the German simple past and past perfect.
The past perfect introduces a long range dependency between the main and auxiliary verb (underlined)
that the model handles well. The second example shows variation in the lexical realisation of the verb.
The second variant uses a particle verb and we again observe a long range dependency between the main
verb and its particle (underlined).

els have been applied mostly in monolingual set-
tings such as text generation (Bowman et al.,
2016; Semeniuta et al., 2017), morphological anal-
ysis (Zhou and Neubig, 2017), dialogue modelling
(Wen et al., 2017), question selection (Miao et al.,
2016) and summarisation (Miao and Blunsom,
2016).

7 Conclusion and Future Work

Wehave presented a recurrent decoder formachine
translation that uses word-level Gaussian variables
to model underlying sources of variation observed
in translation corpora. Our experiments confirm
our intuition that modelling variation is crucial to
the success of machine translation. The proposed
model consistently outperforms strong baselines

on several language pairs.
As this is the first work that systematically con-

siders word-level variation in NMT, there are lots
of research ideas to explore in the future. Here, we
list the three which we believe to be most promis-
ing.

• Latent factor models: our model only con-
tains one source of variation per word. A
latent factor model such as DARN (Gregor
et al., 2014) would consider several sources
simultaneously. This would also allow us to
perform a better analysis of the model be-
haviour as we could correlate the factors with
observed linguistic phenomena.

• Richer prior and variational distributions:
The diagonal Gaussian is likely too simple a
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distribution to appropriately model the vari-
ation in our data. Richer distributions com-
puted by normalising flows (Rezende and
Mohamed, 2015; Kingma et al., 2016) will
likely improve our model.

• Extension to other architectures: Introduc-
ing latent variables into non-autoregressive
translation models such as the transformer
(Vaswani et al., 2017) should increase their
translation ability further.
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Abstract

Tree-based neural machine translation
(NMT) approaches, although achieved im-
pressive performance, suffer from a ma-
jor drawback: they only use the 1-best
parse tree to direct the translation, which
potentially introduces translation mistakes
due to parsing errors. For statistical
machine translation (SMT), forest-based
methods have been proven to be effec-
tive for solving this problem, while for
NMT this kind of approach has not been
attempted. This paper proposes a forest-
based NMT method that translates a lin-
earized packed forest within a simple
sequence-to-sequence framework (i.e., a
forest-to-string NMT model). The BLEU
score of the proposed method is higher
than that of the string-to-string NMT, tree-
based NMT, and forest-based SMT sys-
tems.

1 Introduction

NMT has witnessed promising improvements re-
cently. Depending on the types of input and out-
put, these efforts can be divided into three cate-
gories: string-to-string systems (Sutskever et al.,
2014; Bahdanau et al., 2014); tree-to-string sys-
tems (Eriguchi et al., 2016, 2017); and string-to-
tree systems (Aharoni and Goldberg, 2017; Nade-
jde et al., 2017). Compared with string-to-string
systems, tree-to-string and string-to-tree systems
(henceforth, tree-based systems) offer some attrac-
tive features. They can use more syntactic infor-
mation (Li et al., 2017), and can conveniently in-
corporate prior knowledge (Zhang et al., 2017).
Because of these advantages, tree-based methods

∗ Contribution during internship at National Institute of
Information and Communications Technology.

become the focus of many researches of NMT
nowadays.

Based on how to represent trees, there are two
main categories of tree-based NMT methods: rep-
resenting trees by a tree-structured neural network
(Eriguchi et al., 2016; Zaremoodi and Haffari,
2017), representing trees by linearization (Vinyals
et al., 2015; Dyer et al., 2016; Ma et al., 2017).
Compared with the former, the latter method has a
relatively simple model structure, so that a larger
corpus can be used for training and the model can
be trained within reasonable time, hence is pre-
ferred from the viewpoint of computation. There-
fore we focus on this kind of methods in this paper.

In spite of impressive performance of tree-based
NMT systems, they suffer from a major draw-
back: they only use the 1-best parse tree to di-
rect the translation, which potentially introduces
translation mistakes due to parsing errors (Quirk
and Corston-Oliver, 2006). For SMT, forest-based
methods have employed a packed forest to address
this problem (Huang, 2008), which represents ex-
ponentially many parse trees rather than just the
1-best one (Mi et al., 2008; Mi and Huang, 2008).
But for NMT, (computationally efficient) forest-
based methods are still being explored.1

Because of the structural complexity of forests,
the lack of appropriate topological ordering, and
the hyperedge-attachment nature of weights (see
Section 3.1 for details), it is not trivial to linearize
a forest. This hinders the development of forest-
based NMT to some extent.

Inspired by the tree-based NMT methods based
on linearization, we propose an efficient forest-
based NMT approach (Section 3), which can en-
code the syntactic information of a packed for-

1Zaremoodi and Haffari (2017) have proposed a forest-
based NMT method based on a forest-structured neural net-
work recently, but it is computationally inefficient (see Sec-
tion 5).
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est on the basis of a novel weighted lineariza-
tion method for a packed forest (Section 3.1), and
can decode the linearized packed forest within the
simple sequence-to-sequence framework (Section
3.2). Experiments demonstrate the effectiveness
of our method (Section 4).

2 Preliminaries

We first review the general sequence-to-sequence
model (Section 2.1), then describe tree-based
NMT systems based on linearization (Section 2.2),
and finally introduce the packed forest, through
which exponentially many trees can be repre-
sented in a compact manner (Section 2.3).

2.1 Sequence-to-sequence model

Current NMT systems usually resort to a sim-
ple framework, i.e., the sequence-to-sequence
model (Cho et al., 2014; Sutskever et al., 2014).
Given a source sequence (x0, . . . , xT ), in order
to find a target sequence (y0, . . . , yT ′) that max-
imizes the conditional probability p(y0, . . . , yT ′ |
x0, . . . , xT ), the sequence-to-sequence model
uses one RNN to encode the source sequence into
a fixed-length context vector c and another RNN
to decode this vector and generate the target se-
quence. Formally, the probability of the target se-
quence can be calculated as follows:

p(y0, . . . ,yT ′ | x0, . . . , xT )

=

T ′∏

t=0

p(yt | c, y0, . . . , yt−1),
(1)

where

p(yt | c, y0, . . . , yt−1) = g(yt−1, st, c), (2)

st = f(st−1, yt−1, c), (3)

c = q(h0, . . . , hT ), (4)

ht = f(et, ht−1). (5)

Here, g, f , and q are nonlinear functions; ht and
st are the hidden states of the source-side RNN
and target-side RNN, respectively, c is the context
vector, and et is the embedding of xt.

Bahdanau et al. (2014) introduced an attention
mechanism to deal with the issues related to long
sequences (Cho et al., 2014). Instead of encod-
ing the source sequence into a fixed vector c, the
attention model uses different ci when calculating

the target-side output yi at time step i:

ci =

T∑

j=0

αijhj , (6)

αij =
exp(a(si−1, hj))∑T
k=0 exp(a(si−1, hk))

. (7)

The function a(si−1, hj) can be regarded as the
soft alignment between the target-side RNN hid-
den state si−1 and the source-side RNN hidden
state hj .

Depending on the format of the source/target
sequences, this framework can be regarded as
a string-to-string NMT system (Sutskever et al.,
2014), a tree-to-string NMT system (Li et al.,
2017), or a string-to-tree NMT system (Aharoni
and Goldberg, 2017).

2.2 Linear-structured tree-based NMT
systems

Regarding the linearization adopted for tree-to-
string NMT (i.e., linearization of the source side),
Sennrich and Haddow (2016) encoded the se-
quence of dependency labels and the sequence of
words simultaneously, partially utilizing the syn-
tax information, while Li et al. (2017) traversed
the constituent tree of the source sentence and
combined this with the word sequence, utilizing
the syntax information completely.

Regarding the linearization used for string-to-
tree NMT (i.e., linearization of the target side),
Nadejde et al. (2017) used a CCG supertag se-
quence as the target sequence, while Aharoni and
Goldberg (2017) applied a linearization method
in a top-down manner, generating a sequence en-
semble for the annotated tree in the Penn Tree-
bank (Marcus et al., 1993). Wu et al. (2017) used
transition actions to linearize a dependency tree,
and employed the sequence-to-sequence frame-
work for NMT.

All the current tree-based NMT systems use
only one tree for encoding or decoding. In con-
trast, we hope to utilize multiple trees (i.e., a for-
est). This is not trivial, on account of the lack of
a fixed traversal order and the need for a compact
representation.

2.3 Packed forest

The packed forest gives a representation of expo-
nentially many parse trees, and can compactly en-
code many more candidates than the n-best list
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Figure 1: An example of (a) a packed forest. The numbers in the brackets located at the upper-left corner
of each node in the packed forest show one correct topological ordering of the nodes. The packed forest
is a compact representation of two trees: (b) the correct constituent tree, and (c) an incorrect constituent
tree. Note that the terminal nodes (i.e., words in the sentence) in the packed forest are shown only for
illustration, and they do not belong to the packed forest.

(Huang, 2008). Figure 1a shows a packed forest,
which can be unpacked into two constituent trees
(Figure 1b and Figure 1c).

Formally, a packed forest is a pair 〈V,E〉, where
V is the set of nodes and E is the set of hyper-
edges. Each v ∈ V has the form Xi,j , where X
is a constituent label and i, j ∈ [0, n] are indices
of words, showing that the node spans the words
ranging from i (inclusive) to j (exclusive). Here, n
is the length of the input sentence. Each e ∈ E is
a three-tuple 〈head(e), tails(e), score(e)〉, where
head(e) ∈ V is similar to the head node in a con-
stituent tree, and tails(e) ∈ V ∗ is similar to the set
of child nodes in a constituent tree. score(e) ∈ R
is the log probability that tails(e) represents the
tails of head(e) calculated by the parser. Based
on score(e), the score of a constituent tree T can
be calculated as follows:

score(T ) = −λn+
∑

e∈E(T )
score(e), (8)

where E(T ) is the set of hyperedges appearing in
tree T , and λ is a regularization coefficient for the
sentence length.2

2Following the configuration of Charniak and Johnson

3 Forest-based NMT

We first propose a linearization method for the
packed forest (Section 3.1), then describe how to
encode the linearized forest (Section 3.2), which
can then be translated by the conventional decoder
(see Section 2.1).

3.1 Forest linearization

Recently, several studies have focused on the lin-
earization methods of a syntax tree, both in the
area of tree-based NMT (Section 2.2) and pars-
ing (Vinyals et al., 2015; Dyer et al., 2016; Ma
et al., 2017). Basically, these methods follow a
fixed traversal order (e.g., depth-first). This does
not exist for the packed forest which is a directed
acyclic graph (DAG). Furthermore, the weights
are attached to edges of a packed forest instead of
the nodes. This further increases the difficulty of
linearization.

Topological ordering algorithms for DAG
(Kahn, 1962; Tarjan, 1976) are not good solutions,
because the topological ordering outputted by al-
gorithms is not always optimal for machine trans-

(2005), for all the experiments in this paper, we fixed λ to
log2 600.
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Algorithm 1 Linearization of a packed forest
1: function LINEARIZEFOREST(〈V,E〉,w)
2: v ← FINDROOT(V )
3: r← []
4: EXPANDSEQ(v, r, 〈V,E〉,w)
5: return r
6: function FINDROOT(V )
7: for v ∈ V do
8: if v has no parent then
9: return v

10: procedure EXPANDSEQ(v, r, 〈V,E〉,w)
11: for e ∈ E do
12: if head(e) = v then
13: if tails(e) 6= ∅ then
14: for t ∈ SORT(tails(e)) do . Sort

tails(e) by word indices.
15: EXPANDSEQ(t, r, 〈V,E〉,w)
16: l← LINEARIZEEDGE(head(e),w)
17: r.append(〈l, σ(0.0)〉) . σ is the sigmoid

function, i.e., σ(x) = 1
1+e−x , x ∈ R.

18: l ← c©LINEARIZEEDGES(tails(e),w)
. c© is a unary operator.

19: r.append(〈l, σ(score(e))〉)
20: else
21: l← LINEARIZEEDGE(head(e),w)
22: r.append(〈l, σ(0.0)〉)
23: function LINEARIZEEDGE(Xi,j ,w)
24: return X ⊗ (�j−1

k=iwk)

25: function LINEARIZEEDGES(v,w)
26: return ⊕v∈vLINEARIZEEDGE(v,w)

lation. In particular, a topological ordering could
ignore “word sequential information” and “parent-
child information.”

For example, for the packed forest in Figure 1a,
although “[10]→[1]→[2]→ · · · →[9]→[11]” is a
valid topological ordering, the word sequential in-
formation of the words (e.g., “John” should be lo-
cated ahead of the period), which is fairly crucial
for translation of languages with fixed pragmatic
word order such as Chinese or English, is lost.

As another example, for the packed forest
above, nodes [2], [9], and [10] are all the children
of node [11]. However, in the topological order
“[1]→[2]→ · · · →[9]→[10]→[11],” node [2] is
quite far from node [11], while nodes [9] and [10]
are both close to node [11]. The parent-child in-
formation cannot be reflected in this topological
order, which is not what we would expect.

To address the above two problems, we pro-
pose a novel linearization algorithm for a packed
forest (Algorithm 1). The algorithm linearizes
the packed forest from the root node (Line 2) to
leaf nodes by calling the EXPANDSEQ procedure
(Line 15) recursively, while preserving the word
order in the sentence (Line 14). In this way, word
sequential information is preserved. Within the

NNP⊗John / NP⊗John / c©NNP⊗John / VBZ⊗has / DT⊗a /
NN⊗dog / NP⊗a�dog / c©DT⊗a⊕NN⊗dog / NP⊗a�dog /
c©DT⊗a⊕NN⊗dog / S⊗a�dog / c©NP⊗a�dog /

VP⊗has�a�dog / c©VBZ⊗has⊕NP⊗a�dog /
c©VBZ⊗has⊕S⊗a�dog / .⊗. / S⊗John�has�a�dog�. /
c©NP⊗John⊕VP⊗has�a�dog⊕.⊗.

Figure 2: Linearization result of the packed forest
in Figure 1a.

EXPANDSEQ procedure, once a hyperedge is lin-
earized (Line 16), the tails are also linearized im-
mediately (Line 18). In this way, parent-child in-
formation is preserved. Intuitively, different parts
of constituent trees should be combined in differ-
ent ways, therefore we define different operators
( c©, ⊗, ⊕, or �) to represent the relationships,
so that the representations of these parts can be
combined in different ways (see Section 3.2 for
details). Words are concatenated by the operator
“�” with each other, a word and a constituent la-
bel is concatenated by the operator “⊗”, the lin-
earization results of child nodes are concatenated
by the operator “⊕” with each other, while the
unary operator “ c©” is used to indicate that the
node is the child node of the previous part. Fur-
thermore, each token in the linearized sequence is
related to a score, representing the confidence of
the parser.

The linearization result of the packed forest in
Figure 1a is shown in Figure 2. Tokens in the lin-
earized sequence are separated by slashes. Each
token in the sequence is composed of different
types of symbols and combined by different op-
erators. We can see that word sequential infor-
mation is preserved. For example, “NNP⊗John”
(linearization result of node [1]) is in front of
“VBZ⊗has” (linearization result of node [3]),
which is in front of “DT⊗a” (linearization result
of node [4]). Moreover, parent-child informa-
tion is also preserved. For example, “NP⊗John”
(linearization result of node [2]) is followed by
“ c©NNP⊗John” (linearization result of node [1],
the child of node [2]).

Note that our linearization method does not out-
put fully recoverable packed forests. What we
do want to do is to encode syntax information as
much as possible, so that we can improve the per-
formance of NMT.

Also note that there is one more advantage of
our linearization method: the linearized sequence
is a weighted sequence, while all the previous
studies ignored the weights during linearization.
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Figure 3: The architecture of the forest-based NMT system.

By preserving only the nodes and hyperedges
in the 1-best tree and removing all others, our
linearization method can be regarded as a tree-
linearization method. Compared with other tree-
linearization methods, our method combines sev-
eral different kinds of information within one sym-
bol, retaining the parent-child information, and
incorporating the confidence of the parser in the
sequence. We examine whether the weights can
be useful not only for linear structured tree-based
NMT but also for our forest-based NMT in Sec-
tion 4.

Furthermore, although our method is non-
reversible for packed forests, it is reversible for
constituent trees, in that the linearization is pro-
cessed exactly in the depth-first traversal order and
all necessary information in the tree nodes has
been encoded. As far as we know, there is no pre-
vious work on linearization of packed forests.

3.2 Encoding the linearized forest

The linearized packed forest forms the input of
the encoder, which has two major differences from
the input of a sequence-to-sequence NMT system.
First, the input sequence of the encoder consists of
two parts: the symbol sequence and the score se-
quence. Second, the symbol sequence consists of
three types of symbols: words, constituent labels,
and operators ( c©, ⊗, ⊕, or �) that connect the
other two types of symbols. Based on these char-
acteristics, we propose a method of encoding the
linearized forest.

Formally, the input layer receives two se-
quences: the symbol sequence l = (l0, . . . , lT )

and the score sequence ξ = (ξ0, . . . , ξT ), where
li denotes the i-th symbol and ξi its score. Then,
the two sequences are fed into the symbol layer
and the score layer, respectively. Any item l ∈ l in
the symbol layer has the form

l = o0x1o1 . . . xm−1om−1xm, (9)

where each xk (k = 1, . . . ,m) is a word or a con-
stituent label, m is the total number of words and
constituent labels in a symbol, o0 is “ c©” or empty,
and each ok (k = 1, . . . ,m − 1) is either “⊗”,
“⊕”, or “�”. Then, in the node/operator layer,
these x and o are separated and rearranged as x =
(x1, . . . , xm, o0, . . . , om−1), which is fed to the
pre-embedding layer. The pre-embedding layer
generates a sequence p = (p1, . . . , pm, . . . , p2m),
which is calculated as follows:

p =Wemb[I(x)]. (10)

Here, the function I(x) returns a list of the indices
in the dictionary for all the elements in x, includ-
ing words, constituent labels, and operators. In
addition, Wemb is the embedding matrix of size
(|wword|+|wlabel|+4)×dword, where |wword| and
|wlabel| are the vocabulary size of words and con-
stituent labels, respectively, dword is the dimen-
sion of the word embedding, and there are four
possible operators: “ c©,” “⊗,” “⊕,” and “�.” Note
that p is a list of 2m vectors, and the dimension
of each vector is dword. Hereafter, p for the k-th
symbol lk is denoted by pk.

Depending on where the score layer is incor-
porated, we propose two frameworks: Score-on-
Embedding (SoE) and Score-on-Attention (SoA),
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which are illustrated in Figure 3. In SoE, the k-
th element of the embedding layer is calculated as
follows:

ek = ξk
∑

p∈pk

p, (11)

while in SoA, the k-th element of the embedding
layer is calculated as

ek =
∑

p∈pk

p, (12)

where k = 0, . . . , T . Note that ek ∈ Rdword . In
this manner, the proposed forest-to-string NMT
framework is connected with the conventional
sequence-to-sequence NMT framework.

After calculating the embedding vectors in the
embedding layer, the hidden vectors are calculated
using Equation (5). When calculating the context
vector ci, SoE and SoA differ from each other. For
SoE, the ci is calculated using Equations (6) and
(7), while for SoA, the αij used to calculate the ci
is determined as follows:

αij =
exp(ξja(si−1, hj))∑T
k=0 exp(ξka(si−1, hk))

. (13)

Then, using the decoder of the sequence-to-
sequence framework, the sentence of the target
language can be generated.

4 Experiments

4.1 Setup

We evaluated the effectiveness of our forest-based
NMT systems on English-to-Chinese and English-
to-Japanese translation tasks.3 The statistics of the
corpora used in our experiments are summarized
in Table 1.

The packed forests of English sentences were
obtained by the constituent parser proposed by
Huang (2008).4 We filtered out the sentences for
which the parser was not able to generate any
packed forests and those longer than 80 words. For
NIST datasets, we simply chose the first reference
among the four English references of NIST cor-
pora. For Chinese sentences, we used Stanford

3English is commonly chosen as the target language.
We chose English as the source language because a high-
performance forest parser is not available for other languages.

4http://web.engr.oregonstate.edu/
˜huanlian/software/forest-reranker/
forest-charniak-v0.8.tar.bz2

Language Corpus Usage #Sent.

English-Japanese ASPEC
train 100,000
dev. 1790
test 1812

English-Chinese

LDC7
train 1,423,695

FBIS 233,510
NIST MT 02 dev. 876
NIST MT 03

test
919

NIST MT 04 1,788
NIST MT 05 1,082

Table 1: Statistics of the corpora.

segmenter5 for segmentation. For Japanese sen-
tences, we followed the preprocessing steps rec-
ommended in WAT 2017.6

We implemented our framework based on
nematus8 (Sennrich et al., 2017). For optimiza-
tion, following previous research such as (Bah-
danau et al., 2014), we used the ADADELTA al-
gorithm (Zeiler, 2012). In order to avoid over-
fitting, we used dropout (Srivastava et al., 2014)
on the embedding layer and hidden layer, with the
dropout probability set to 0.2. We used the gated
recurrent unit (Cho et al., 2014) as the recurrent
unit of RNNs, which are bi-directional, with one
hidden layer.

Based on the tuning result, we set the maxi-
mum length of the input sequence to 300, the hid-
den layer size as 512, the dimension of word em-
bedding as 620, and the batch size for training as
40. We pruned the packed forest using the algo-
rithm of Huang (2008), removing all hyperedges e
which satisfy δ(e) > 10−5, where δ(e) is the dif-
ference between the cost of hyperedge e and that
of the globally best derivation. If the lineariza-
tion of the pruned forest is still longer than 300,
then we linearize the 1-best parsing tree instead of
the forest. As for the stopping criterion of train-
ing process, we evaluated the BLEU score on the
development set every 10,000 updates. If BLEU
score was not increased in ten consecutive evalua-
tions, then training was stopped. During decoding,
we performed beam search with the beam size of
12.

5https://nlp.stanford.edu/software/
stanford-segmenter-2017-06-09.zip

6http://lotus.kuee.kyoto-u.ac.jp/WAT/
WAT2017/baseline/dataPreparationJE.html

7LDC2002E18, LDC2003E07, LDC2003E14, Hansards
portion of LDC2004T07, LDC2004T08, and LDC2005T06

8https://github.com/EdinburghNLP/
nematus
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System Systems & MT 03 MT 04 MT 05 p value p value
Types Configurations FBIS LDC FBIS LDC FBIS LDC (w.r.t. s2s) (w.r.t. 1-best)

Previous

FS Mi et al. (2008) 27.10 28.21 28.67 30.09 26.57 28.36 - -

TN
Eriguchi et al. (2016) 29.00 29.71 30.24 31.56 28.38 30.33 - -

Chen et al. (2017) 28.34 29.64 30.00 31.25 28.14 29.59 - -
Li et al. (2017) 28.40 29.60 29.66 31.96 27.74 29.84 - -

Ours

SN s2s 27.44 29.18 29.73 30.53 27.32 28.80 - -

TN
1-best (No score) 28.61 29.38 30.07 31.58 28.59 30.01 < 0.01 -

1-best (SoE) 28.78 30.65 30.36 32.22 29.31 30.16 < 0.05 -
1-best (SoA) 29.39 30.80 30.25 32.39 29.30 30.61 < 0.005 -

FN
Forest (No score) 28.06 29.63 29.51 31.41 28.48 29.75 < 0.01 < 0.1

Forest (SoE) 29.58 31.07 30.67 32.69 29.26 30.41 < 0.001 No
Forest (SoA) 29.63 31.35 30.31 33.14 29.87 31.23 < 0.001 < 0.05

Table 2: English-Chinese experimental results (character-level BLEU). “FS,” “SN,” “TN,” and “FN”
denote forest-based SMT, string-based NMT, tree-based NMT, and forest-based NMT systems, respec-
tively. The p values were obtained by the paired bootstrap resampling significance test (Koehn, 2004)
over the NIST MT 03 to 05 corpus, with respect to the baselines: s2s or 1-best.

System Systems & BLEU p value p value
Types Configurations (test) (w.r.t. s2s) (w.r.t. 1-best)

Previous

FS Mi et al. (2008) 34.13 - -

TN
Eriguchi et al. (2016) 37.52 - -

Chen et al. (2017) 36.94 - -
Li et al. (2017) 36.21 - -

Ours

SN s2s 37.10 - -

TN
1-best (No score) 38.01 < 0.05 -

1-best (SoE) 38.53 < 0.01 -
1-best (SoA) 39.42 < 0.001 -

FN
Forest (No score) 37.92 < 0.1 No

Forest (SoE) 41.35 < 0.01 < 0.1
Forest (SoA) 42.17 < 0.005 < 0.05

Table 3: English-Japanese experimental results (character-level BLEU).

4.2 Experimental results

Tables 2 and 3 summarize the experimental re-
sults. To avoid the effect of segmentation errors,
the performance was evaluated by character-level
BLEU (Papineni et al., 2002). We compared our
proposed models (i.e., Forest (SoE) and Forest
(SoA)) with three types of baseline: a string-to-
string model (s2s), forest-based models that do not
use score sequences (Forest (No score)), and tree-
based models that use the 1-best parsing tree (1-
best (No score, SoE, SoA)). For the 1-best models,
we preserved the nodes and hyperedges that were
used in the 1-best constituent tree in the packed
forest, while removing all other nodes and hy-
peredges. For the “No score” configurations, we
forced the input score sequence to be a sequence
of 1.0 with the same length as the input symbol
sequence, so that neither the embedding layer nor
the attention layer were affected by the score se-
quence.

In addition, we also made a comparison with
some state-of-the-art tree-based systems. As the

SMT system, we examined Mi et al. (2008).
Specifically, we used the implementation of
cicada.9 For NMT systems, we compared with
three systems: Eriguchi et al. (2016)10 and Chen
et al. (2017),11 both are publicly available, and we
reimplemented the “Mixed RNN Encoder” model
of Li et al. (2017), because of its outstanding per-
formance on the NIST MT corpus.

We can see that for both English-Chinese and
English-Japanese, compared with the s2s baseline
system, both the 1-best and forest-based configu-
rations yield better results. This indicates syntac-
tic information contained in the constituent trees
or forests is indeed useful for machine translation.
Specifically, we observed the following facts.

First, among the three different frameworks,
i.e., SoE, SoA, and No-score, the SoA framework
performed the best, while the No-score framework

9https://github.com/tarowatanabe/
cicada

10https://github.com/tempra28/tree2seq
11https://github.com/howardchenhd/

Syntax-awared-NMT
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[Source] In the Czech Republic , which was ravaged by serious floods last summer , the temperatures in its border region adjacent to neighboring Slovakia plunged to minus 18 degrees Celsius .
[Reference] 去年 夏季 曾 出现 严重 水患 的 捷克 共和国 ， 其 邻近 斯洛伐克 的 边界 地区 气温 低 至 摄氏 零下 18 度 。

last summer ever appear serious floods of Czech Republic , its adjacent Slovakia of border region temperature decrease to Celsius minus 18 degree .
[s2s] 去年 夏天 ， 捷克 地区 遭受 严重 洪灾 的 捷克 边境 地区 气温 下降 了 18 摄氏 度 。

last summer , Czech region suffer serious floods of Czech border region temperature decrease -ed 18 Celsius degree .
[1best Tree] 去年 夏天 ， 遭受 特大 洪灾 的 捷克 边境 地区 的 气温 下降 了 18 摄氏 度 。

last summer , suffer serious floods of Czech border region of temperature decrease -ed 18 Celsius degree .
[Forest] 去年 夏天 发生 严重 水灾 的 捷克 共和国 ， 毗邻 斯洛伐克 的 边境 地区 温度 下降 至 零下 18 度 。

last summer occur serious floods of Czech Republic , adjacent Slovakia of border region temperature decrease to minus 18 degree .

Figure 4: Chinese translation results of an English sentence.

performed the worst. This indicates that the scores
of the edges in constituent trees or packed forests,
which reflect the confidence of the correctness of
the edges, are indeed useful. In fact, for the 1-
best constituent parsing tree, the score of the edge
reflects the confidence of the parser. With this in-
formation, the NMT system succeeded to learn a
better attention, paying more attention to the confi-
dent structure and less attention to the unconfident
structure, which improved the translation perfor-
mance. This fact was ignored by previous stud-
ies on tree-based NMT. Furthermore, it is better to
use the scores to adjust the values of attention in-
stead of rescaling the word embeddings, because
modifying word embeddings may alter the seman-
tic meanings of words.

Second, compared with the cases that only
use the 1-best constituent trees, with some ex-
ceptions, using packed forests yielded statistical
significantly better results for the SoE and SoA
frameworks. This shows the effectiveness of us-
ing more syntactic information. Compared with
one constituent tree, the packed forest, which con-
tains multiple different trees, describes the syntac-
tic structure of the sentence in different aspects,
which together increase the accuracy of machine
translation. However, without using the scores, the
1-best constituent tree is preferred. This is because
without using the scores, all trees in the packed
forest are treated equally, which makes it easy to
import noise into the encoder.

Compared with other types of state-of-the-art
systems, our systems using only the 1-best tree (1-
best (SoE, SoA)) were better than the other tree-
based systems. Moreover, our NMT systems using
the packed forests achieved the best performance.
These results also support the usefulness of the
scores of the edges and packed forests in NMT.

As for the efficiency, the training time of the
SoA system was slightly longer than that of the
SoE system, which was about twice of the s2s
baseline. The training time of the tree-based sys-
tem was about 1.5 times of the baseline. For the

case of Forest (SoA), with 1 core of Tesla P100
GPU and LDC corpus as the training data, train-
ing spent about 10 days, and decoding speed was
about 10 sentences per second. The reason for the
relatively low efficiency is that the linearized se-
quences of packed forests were much longer than
word sequences, enlarging the scale of the inputs.
Despite this, the training process ended within rea-
sonable time.

4.3 Qualitative analysis

Figure 4 shows the translation results of an En-
glish sentence using several different configura-
tions: the s2s baseline, using only the 1-best tree
(SoE), and using the packed forest (SoE). This is a
sentence from NIST MT 03, and the training cor-
pus is the LDC corpus.

For the s2s case, no syntactic information was
utilized, and therefore the output of the system was
not a grammatical Chinese sentence. The attribu-
tive phrase of “Czech border region” (i.e., “last
summer ... floods”) is a complete sentence. How-
ever, this is not grammatically allowed in Chinese.

For the case of using 1-best constituent tree,
the output was a grammatical Chinese sentence.
However, the phrase “adjacent to neighboring Slo-
vakia” was completely ignored in the translation
result. Analysis of the constituent tree revealed
that this phrase was incorrectly parsed as an “ad-
verb phrase,” and consequently the NMT system
paid a little attention to it, because of the low con-
fidence given by the parser.

In contrast, the packed forest did not ignore this
phrase and translated it correctly. Actually, be-
sides “adverb phrase,” this phrase was also cor-
rectly parsed as an “adjective phrase,” and covered
by multiple different nodes in the forest. Because
of the wide coverage, it is difficult for the encoder
to ignore the phrase.

We also noticed that our method performed bet-
ter on learning attention. For example, in Figure 4,
we observed that for s2s model, the decoder paid
attention to the word “Czech” twice, which caused
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the output sentence containing the corresponding
Chinese translation twice. On the other hand, for
our forest model, by using the syntax information,
the decoder paid an attention to the phrase “In the
Czech Republic” only once; therefore the decoder
generated the correct output.

5 Related work

Incorporating syntactic information into NMT
systems is attracting widespread attention nowa-
days. Compared with conventional string-to-string
NMT systems, tree-based systems demonstrate a
better performance with the help of constituent
trees or dependency trees.

The first noteworthy study was Eriguchi et al.
(2016), which used Tree-structured LSTM (Tai
et al., 2015) to encode the HPSG syntax tree of the
sentence in the source-side in a bottom-up man-
ner. Then, Chen et al. (2017) enhanced the en-
coder with a top-down tree encoder.

As a simple extension of Eriguchi et al. (2016),
very recently, Zaremoodi and Haffari (2017) pro-
posed a forest-based NMT method by represent-
ing the packed forest with a forest-structured neu-
ral network. However, their method was evaluated
in small-scale MT settings (each training dataset
consists of under 10k parallel sentences). In con-
trast, our proposed method is effective in a large-
scale MT setting, and we present qualitative anal-
ysis regarding the effectiveness of using forests in
NMT.

Although these methods obtained good results,
the tree-structured network used by the encoder
made the training and decoding relatively slow, re-
stricting the scope of application.

Other attempts at encoding syntactic trees have
also been proposed. Eriguchi et al. (2017) com-
bined the Recurrent Neural Network Grammar
(Dyer et al., 2016) with NMT systems, while Li
et al. (2017) linearized the constituent tree and
encoded it using RNNs. The training of these
methods is fast, because of the linear structures of
RNNs. However, all these syntax-based NMT sys-
tems used only the 1-best parsing tree, making the
systems sensitive to parsing errors.

Instead of using trees to represent syntactic in-
formation, some studies used other data structures
to represent the latent syntax of the input sen-
tence. For example, Hashimoto and Tsuruoka
(2017) proposed translating using a latent graph.
However, such systems do not enjoy the benefit of

handcrafted syntactic knowledge, because they do
not use a parser trained from a large treebank with
human annotations.

Compared with these related studies, our frame-
work utilizes a linearized packed forest, meaning
the encoder can encode exponentially many trees
in an efficient manner. The experimental results
demonstrated these advantages.

6 Conclusion and future work

We proposed a new encoding method for NMT,
which encodes a packed forest for the source
sentence using linear-structured neural networks,
such as RNN. When introducing packed forest, we
confirmed that the score of each edge is indispens-
able. Compared with conventional string-to-string
NMT systems and tree-to-string NMT systems,
our framework can utilize exponentially many lin-
earized parsing trees during encoding, without sig-
nificantly decreasing the efficiency. This repre-
sents the first attempt to use a forest within the
string-to-string NMT framework. The experimen-
tal results demonstrate the effectiveness of our
method.

As future work, we plan to design some more
elaborate structures to incorporate the score layer
into the encoder. We will also apply the proposed
linearization method to other tasks.

Acknowledgements

We are grateful to the anonymous reviewers for
their insightful comments and suggestions. We
thank Lemao Liu from Tencent AI Lab for his
suggestions about the experiments. We thank At-
sushi Fujita whose suggestions greatly improve
the readability and the logical soundness of this
paper. This work was done during the intern-
ship of Chunpeng Ma at NICT. Akihiro Tamura
is supported by JSPS KAKENHI Grant Num-
ber JP18K18110. Tiejun Zhao is supported by
the National Natural Science Foundation of China
(NSFC) via grant 91520204 and State High-Tech
Development Plan of China (863 program) via
grant 2015AA015405.

References
Roee Aharoni and Yoav Goldberg. 2017. Towards

string-to-tree neural machine translation. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 132–140.

1261



Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and MaxEnt discriminative
reranking. In Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguistics
(ACL’05), pages 173–180.

Huadong Chen, Shujian Huang, David Chiang, and Ji-
ajun Chen. 2017. Improved neural machine trans-
lation with a syntax-aware encoder and decoder. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1936–1945.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
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Abstract

Standard machine translation systems pro-
cess sentences in isolation and hence ig-
nore extra-sentential information, even
though extended context can both prevent
mistakes in ambiguous cases and improve
translation coherence. We introduce a
context-aware neural machine translation
model designed in such way that the flow
of information from the extended con-
text to the translation model can be con-
trolled and analyzed. We experiment with
an English-Russian subtitles dataset, and
observe that much of what is captured
by our model deals with improving pro-
noun translation. We measure correspon-
dences between induced attention distri-
butions and coreference relations and ob-
serve that the model implicitly captures
anaphora. It is consistent with gains for
sentences where pronouns need to be gen-
dered in translation. Beside improvements
in anaphoric cases, the model also im-
proves in overall BLEU, both over its
context-agnostic version (+0.7) and over
simple concatenation of the context and
source sentences (+0.6).

1 Introduction

It has long been argued that handling discourse
phenomena is important in translation (Mitkov,
1999; Hardmeier, 2012). Using extended con-
text, beyond the single source sentence, should
in principle be beneficial in ambiguous cases and
also ensure that generated translations are coher-
ent. Nevertheless, machine translation systems
typically ignore discourse phenomena and trans-
late sentences in isolation.

Earlier research on this topic focused on han-
dling specific phenomena, such as translating pro-
nouns (Le Nagard and Koehn, 2010; Hardmeier
and Federico, 2010; Hardmeier et al., 2015), dis-
course connectives (Meyer et al., 2012), verb
tense (Gong et al., 2012), increasing lexical con-
sistency (Carpuat, 2009; Tiedemann, 2010; Gong
et al., 2011), or topic adaptation (Su et al., 2012;
Hasler et al., 2014), with special-purpose features
engineered to model these phenomena. How-
ever, with traditional statistical machine transla-
tion being largely supplanted with neural machine
translation (NMT) models trained in an end-to-
end fashion, an alternative is to directly provide
additional context to an NMT system at training
time and hope that it will succeed in inducing rel-
evant predictive features (Jean et al., 2017; Wang
et al., 2017; Tiedemann and Scherrer, 2017; Baw-
den et al., 2018).

While the latter approach, using context-aware
NMT models, has demonstrated to yield perfor-
mance improvements, it is still not clear what
kinds of discourse phenomena are successfully
handled by the NMT systems and, importantly,
how they are modeled. Understanding this would
inform development of future discourse-aware
NMT models, as it will suggest what kind of in-
ductive biases need to be encoded in the archi-
tecture or which linguistic features need to be ex-
ploited.

In our work we aim to enhance our un-
derstanding of the modelling of selected dis-
course phenomena in NMT. To this end, we con-
struct a simple discourse-aware model, demon-
strate that it achieves improvements over the
discourse-agnostic baseline on an English-Russian
subtitles dataset (Lison et al., 2018) and study
which context information is being captured in
the model. Specifically, we start with the Trans-
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former (Vaswani et al., 2017), a state-of-the-art
model for context-agnostic NMT, and modify it in
such way that it can handle additional context. In
our model, a source sentence and a context sen-
tence are first encoded independently, and then a
single attention layer, in a combination with a gat-
ing function, is used to produce a context-aware
representation of the source sentence. The infor-
mation from context can only flow through this at-
tention layer. When compared to simply concate-
nating input sentences, as proposed by Tiedemann
and Scherrer (2017), our architecture appears both
more accurate (+0.6 BLEU) and also guarantees
that the contextual information cannot bypass the
attention layer and hence remain undetected in our
analysis.

We analyze what types of contextual informa-
tion are exploited by the translation model. While
studying the attention weights, we observe that
much of the information captured by the model
has to do with pronoun translation. It is not en-
tirely surprising, as we consider translation from
a language without grammatical gender (English)
to a language with grammatical gender (Russian).
For Russian, translated pronouns need to agree in
gender with their antecedents. Moreover, since in
Russian verbs agree with subjects in gender and
adjectives also agree in gender with pronouns in
certain frequent constructions, mistakes in trans-
lating pronouns have a major effect on the words
in the produced sentences. Consequently, the stan-
dard cross-entropy training objective sufficiently
rewards the model for improving pronoun transla-
tion and extracting relevant information from the
context.

We use automatic co-reference systems and hu-
man annotation to isolate anaphoric cases. We ob-
serve even more substantial improvements in per-
formance on these subsets. By comparing atten-
tion distributions induced by our model against
co-reference links, we conclude that the model
implicitly captures coreference phenomena, even
without having any kind of specialized features
which could help it in this subtask. These obser-
vations also suggest potential directions for future
work. For example, effective co-reference systems
go beyond relying simply on embeddings of con-
texts. One option would be to integrate ‘global’
features summarizing properties of groups of men-
tions predicted as linked in a document (Wiseman
et al., 2016), or to use latent relations to trace en-

tities across documents (Ji et al., 2017). Our key
contributions can be summarized as follows:

• we introduce a context-aware neural model,
which is effective and has a sufficiently sim-
ple and interpretable interface between the
context and the rest of the translation model;

• we analyze the flow of information from the
context and identify pronoun translation as
the key phenomenon captured by the model;

• by comparing to automatically predicted or
human-annotated coreference relations, we
observe that the model implicitly captures
anaphora.

2 Neural Machine Translation

Given a source sentence x = (x1, x2, . . . , xS)
and a target sentence y = (y1, y2, . . . , yT ), NMT
models predict words in the target sentence, word
by word.

Current NMT models mainly have an encoder-
decoder structure. The encoder maps an in-
put sequence of symbol representations x to
a sequence of distributed representations z =
(z1, z2, . . . , zS). Given z, a neural decoder gener-
ates the corresponding target sequence of symbols
y one element at a time.

Attention-based NMT The encoder-decoder
framework with attention has been proposed by
Bahdanau et al. (2015) and has become the de-
facto standard in NMT. The model consists of en-
coder and decoder recurrent networks and an at-
tention mechanism. The attention mechanism se-
lectively focuses on parts of the source sentence
during translation, and the attention weights spec-
ify the proportions with which information from
different positions is combined.

Transformer Vaswani et al. (2017) proposed
an architecture that avoids recurrence completely.
The Transformer follows an encoder-decoder ar-
chitecture using stacked self-attention and fully
connected layers for both the encoder and decoder.
An important advantage of the Transformer is that
it is more parallelizable and faster to train than re-
current encoder-decoder models.

From the source tokens, learned embeddings are
generated and then modified using positional en-
codings. The encoded word embeddings are then
used as input to the encoder which consists of N
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layers each containing two sub-layers: (a) a multi-
head attention mechanism, and (b) a feed-forward
network.

The self-attention mechanism first computes at-
tention weights: i.e., for each word, it computes a
distribution over all words (including itself). This
distribution is then used to compute a new repre-
sentation of that word: this new representation is
set to an expectation (under the attention distribu-
tion specific to the word) of word representations
from the layer below. In multi-head attention, this
process is repeated h times with different repre-
sentations and the result is concatenated.

The second component of each layer of the
Transformer network is a feed-forward network.
The authors propose using a two-layered network
with the ReLU activations.

Analogously, each layer of the decoder contains
the two sub-layers mentioned above as well as
an additional multi-head attention sub-layer that
receives input from the corresponding encoding
layer.

In the decoder, the attention is masked to pre-
vent future positions from being attended to, or in
other words, to prevent illegal leftward informa-
tion flow. See Vaswani et al. (2017) for additional
details.

The proposed architecture reportedly improves
over the previous best results on the WMT 2014
English-to-German and English-to-French trans-
lation tasks, and we verified its strong perfor-
mance on our data set in preliminary experiments.
Thus, we consider it a strong state-of-the-art base-
line for our experiments. Moreover, as the Trans-
former is attractive in practical NMT applications
because of its parallelizability and training effi-
ciency, integrating extra-sentential information in
Transformer is important from the engineering
perspective. As we will see in Section 4, previ-
ous techniques developed for recurrent encoder-
decoders do not appear effective for the Trans-
former.

3 Context-aware model architecture

Our model is based on Transformer architecture
(Vaswani et al., 2017). We leave Transformer’s
decoder intact while incorporating context infor-
mation on the encoder side (Figure 1).

Source encoder: The encoder is composed of a
stack of N layers. The first N − 1 layers are iden-
tical and represent the original layers of Trans-

Figure 1: Encoder of the discourse-aware model

former’s encoder. The last layer incorporates con-
textual information as shown in Figure 1. In ad-
dition to multi-head self-attention it has a block
which performs multi-head attention over the out-
put of the context encoder stack. The outputs of
the two attention mechanisms are combined via
a gated sum. More precisely, let c(s−attn)i be the
output of the multi-head self-attention, c(c−attn)i

the output of the multi-head attention to context,
ci their gated sum, and σ the logistic sigmoid
function, then

gi = σ
(
Wg

[
c
(s−attn)
i , c

(c−attn)
i

]
+ bg

)
(1)

ci = gi � c(s−attn)i + (1− gi)� c(c−attn)i (2)

Context encoder: The context encoder is com-
posed of a stack of N identical layers and repli-
cates the original Transformer encoder. In con-
trast to related work (Jean et al., 2017; Wang et al.,
2017), we found in preliminary experiments that
using separate encoders does not yield an accurate
model. Instead we share the parameters of the first
N − 1 layers with the source encoder.

Since major proportion of the context encoder’s
parameters are shared with the source encoder, we
add a special token (let us denote it <bos>) to
the beginning of context sentences, but not source
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sentences, to let the shared layers know whether it
is encoding a source or a context sentence.

4 Experiments

4.1 Data and setting

We use the publicly available OpenSubtitles2018
corpus (Lison et al., 2018) for English and Rus-
sian.1 As described in the appendix, we apply
data cleaning and randomly choose 2 million train-
ing instances from the resulting data. For devel-
opment and testing, we randomly select two sub-
sets of 10000 instances from movies not encoun-
tered in training.2 Sentences were encoded using
byte-pair encoding (Sennrich et al., 2016), with
source and target vocabularies of about 32000 to-
kens. We generally used the same parameters and
optimizer as in the original Transformer (Vaswani
et al., 2017). The hyperparameters, preprocessing
and training details are provided in the supplemen-
tary material.

5 Results and analysis

We start by experiments motivating the setting and
verifying that the improvements are indeed gen-
uine, i.e. they come from inducing predictive fea-
tures of the context. In subsequent section 5.2,
we analyze the features induced by the context en-
coder and perform error analysis.

5.1 Overall performance

We use the traditional automatic metric BLEU on
a general test set to get an estimate of the over-
all performance of the discourse-aware model, be-
fore turning to more targeted evaluation in the next
section. We provide results in Table 1.3 The
‘baseline’ is the discourse-agnostic version of the
Transformer. As another baseline we use the stan-
dard Transformer applied to the concatenation of
the previous and source sentences, as proposed
by Tiedemann and Scherrer (2017). Tiedemann
and Scherrer (2017) only used a special symbol
to mark where the context sentence ends and the
source sentence begins. This technique performed
badly with the non-recurrent Transformer archi-
tecture in preliminary experiments, resulting in

1http://opus.nlpl.eu/
OpenSubtitles2018.php

2The resulting data sets are freely available at http://
data.statmt.org/acl18_contextnmt_data/

3We use bootstrap resampling (Riezler and Maxwell,
2005) for significance testing

model BLEU
baseline 29.46
concatenation (previous sentence) 29.53
context encoder (previous sentence) 30.14
context encoder (next sentence) 29.31
context encoder (random context) 29.69

Table 1: Automatic evaluation: BLEU. Signifi-
cant differences at p < 0.01 are in bold.

a substantial degradation of performance (over 1
BLEU). Instead, we use a binary flag at every word
position in our concatenation baseline telling the
encoder whether the word belongs to the context
sentence or to the source sentence.

We consider two versions of our discourse-
aware model: one using the previous sentence as
the context, another one relying on the next sen-
tence. We hypothesize that both the previous and
the next sentence provide a similar amount of ad-
ditional clues about the topic of the text, whereas
for discourse phenomena such as anaphora, dis-
course relations and elliptical structures, the pre-
vious sentence is more important.

First, we observe that our best model is the
one using a context encoder for the previous sen-
tence: it achieves 0.7 BLEU improvement over the
discourse-agnostic model. We also notice that, un-
like the previous sentence, the next sentence does
not appear beneficial. This is a first indicator that
discourse phenomena are the main reason for the
observed improvement, rather than topic effects.
Consequently, we focus solely on using the previ-
ous sentence in all subsequent experiments.

Second, we observe that the concatenation base-
line appears less accurate than the introduced
context-aware model. This result suggests that our
model is not only more amendable to analysis but
also potentially more effective than using concate-
nation.

In order to verify that our improvements are
genuine, we also evaluate our model (trained with
the previous sentence as context) on the same test
set with shuffled context sentences. It can be seen
that the performance drops significantly when a
real context sentence is replaced with a random
one. This confirms that the model does rely on
context information to achieve the improvement in
translation quality, and is not merely better regu-
larized. However, the model is robust towards be-
ing shown a random context and obtains a perfor-
mance similar to the context-agnostic baseline.

1267



5.2 Analysis
In this section we investigate what types of con-
textual information are exploited by the model.
We study the distribution of attention to context
and perform analysis on specific subsets of the test
data. Specifically the research questions we seek
to answer are as follows:

• For the translation of which words does the
model rely on contextual history most?

• Are there any non-lexical patterns affecting
attention to context, such as sentence length
and word position?

• Can the context-aware NMT system implic-
itly learn coreference phenomena without
any feature engineering?

Since all the attentions in our model are multi-
head, by attention weights we refer to an average
over heads of per-head attention weights.

First, we would like to identify a useful attention
mass coming to context. We analyze the attention
maps between source and context, and find that the
model mostly attends to <bos> and <eos> con-
text tokens, and much less often attends to words.
Our hypothesis is that the model has found a way
to take no information from context by looking at
uninformative tokens, and it attends to words only
when it wants to pass some contextual information
to the source sentence encoder. Thus we define
useful contextual attention mass as sum of atten-
tion weights to context words, excluding <bos>
and <eos> tokens and punctuation.

5.2.1 Top words depending on context
We analyze the distribution of attention to context
for individual source words to see for which words
the model depends most on contextual history. We
compute the overall average attention to context
words for each source word in our test set. We
do the same for source words at positions higher
than first. We filter out words that occurred less
than 10 times in a test set. The top 10 words with
the highest average attention to context words are
provided in Table 2.

An interesting finding is that contextual atten-
tion is high for the translation of “it”, “yours”,
“ones”, “you” and “I”, which are indeed very am-
biguous out-of-context when translating into Rus-
sian. For example, “it” will be translated as third
person singular masculine, feminine or neuter, or
third person plural depending on its antecedent.

word attn pos word attn pos
it 0.376 5.5 it 0.342 6.8

yours 0.338 8.4 yours 0.341 8.3
yes 0.332 2.5 ones 0.318 7.5

i 0.328 3.3 ’m 0.301 4.8
yeah 0.314 1.4 you 0.287 5.6
you 0.311 4.8 am 0.274 4.4
ones 0.309 8.3 i 0.262 5.2
’m 0.298 5.1 ’s 0.260 5.6

wait 0.281 3.8 one 0.259 6.5
well 0.273 2.1 won 0.258 4.6

Table 2: Top-10 words with the highest average
attention to context words. attn gives an average
attention to context words, pos gives an average
position of the source word. Left part is for words
on all positions, right — for words on positions
higher than first.

“You” can be second person singular impolite or
polite, or plural. Also, verbs must agree in gender
and number with the translation of “you”.

It might be not obvious why “I” has high con-
textual attention, as it is not ambiguous itself.
However, in past tense, verbs must agree with “I”
in gender, so to translate past tense sentences prop-
erly, the source encoder must predict speaker gen-
der, and the context may provide useful indicators.

Most surprising is the appearance of “yes”,
“yeah”, and “well” in the list of context-dependent
words, similar to the finding by Tiedemann and
Scherrer (2017). We note that these words mostly
appear in sentence-initial position, and in rela-
tively short sentences. If only words after the first
are considered, they disappear from the top-10 list.
We hypothesize that the amount of attention to
context not only depends on the words themselves,
but also on factors such as sentence length and po-
sition, and we test this hypothesis in the next sec-
tion.

5.2.2 Dependence on sentence length and
position

We compute useful attention mass coming to con-
text by averaging over source words. Figure 2 il-
lustrates the dependence of this average attention
mass on sentence length. We observe a dispro-
portionally high attention on context for short sen-
tences, and a positive correlation between the av-
erage contextual attention and context length.

It is also interesting to see the importance given
to the context at different positions in the source
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Figure 2: Average attention to context words vs.
both source and context length

Figure 3: Average attention to context vs. source
token position

sentence. We compute an average attention mass
to context for a set of 1500 sentences of the same
length. As can be seen in Figure 3, words at
the beginning of a source sentence tend to attend
to context more than words at the end of a sen-
tence. This correlates with standard view that En-
glish sentences present hearer-old material before
hearer-new.

There is a clear (negative) correlation between
sentence length and the amount of attention placed
on contextual history, and between token position
and the amount of attention to context, which sug-
gests that context is especially helpful at the be-
ginning of a sentence, and for shorter sentences.
However, Figure 4 shows that there is no straight-
forward dependence of BLEU improvement on
source length. This means that while attention
on context is disproportionally high for short sen-
tences, context does not seem disproportionally
more useful for these sentences.

5.3 Analysis of pronoun translation

The analysis of the attention model indicates that
the model attends heavily to the contextual history
for the translation of some pronouns. Here, we
investigate whether this context-aware modelling
results in empirical improvements in translation

Figure 4: BLEU score vs. source sentence length

quality, and whether the model learns structures
related to anaphora resolution.

5.3.1 Ambiguous pronouns and translation
quality

Ambiguous pronouns are relatively sparse in a
general-purpose test set, and previous work has
designed targeted evaluation of pronoun transla-
tion (Hardmeier et al., 2015; Miculicich Werlen
and Popescu-Belis, 2017; Bawden et al., 2018).
However, we note that in Russian, grammati-
cal gender is not only marked on pronouns, but
also on adjectives and verbs. Rather than us-
ing a pronoun-specific evaluation, we present re-
sults with BLEU on test sets where we hypothe-
size context to be relevant, specifically sentences
containing co-referential pronouns. We feed Stan-
ford CoreNLP open-source coreference resolution
system (Manning et al., 2014a) with pairs of sen-
tences to find examples where there is a link be-
tween one of the pronouns under consideration
and the context. We focus on anaphoric instances
of “it” (this excludes, among others, pleonastic
uses of ”it”), and instances of the pronouns “I”,
“you”, and “yours” that are coreferent with an ex-
pression in the previous sentence. All these pro-
nouns express ambiguity in the translation into
Russian, and the model has learned to attend to
context for their translation (Table 2). To combat
data sparsity, the test sets are extracted from large
amounts of held-out data of OpenSubtitles2018.
Table 3 shows BLEU scores for the resulting sub-
sets.

First of all, we see that most of the antecedents
in these test sets are also pronouns. Antecedent
pronouns should not be particularly informative
for translating the source pronoun. Nevertheless,
even with such contexts, improvements are gener-
ally larger than on the overall test set.

When we focus on sentences where the an-
tecedent for pronoun under consideration contains
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pronoun N #pronominal antecedent baseline our model difference
it 11128 6604 25.4 26.6 +1.2
you 6398 5795 29.7 30.8 +1.1
yours 2181 2092 24.1 25.2 +1.1
I 8205 7496 30.1 30.0 -0.1

Table 3: BLEU for test sets with coreference between pronoun and a word in context sentence. We show
both N, the total number of instances in a particular test set, and number of instances with pronominal
antecedent. Significant BLEU differences are in bold.

word N baseline our model diff.
it 4524 23.9 26.1 +2.2
you 693 29.9 31.7 +1.8
I 709 29.1 29.7 +0.6

Table 4: BLEU for test sets of pronouns having a
nominal antecedent in context sentence. N: num-
ber of examples in the test set.

type N baseline our model diff.
masc. 2509 26.9 27.2 +0.3
fem. 2403 21.8 26.6 +4.8
neuter 862 22.1 24.0 +1.9
plural 1141 18.2 22.5 +4.3

Table 5: BLEU for test sets of pronoun “it” hav-
ing a nominal antecedent in context sentence. N:
number of examples in the test set.

a noun, we observe even larger improvements (Ta-
ble 4). Improvement is smaller for “I”, but we note
that verbs with first person singular subjects mark
gender only in the past tense, which limits the im-
pact of correctly predicting gender. In contrast,
different types of “you” (polite/impolite, singu-
lar/plural) lead to different translations of the pro-
noun itself plus related verbs and adjectives, lead-
ing to a larger jump in performance. Examples
of nouns co-referent with “I” and “you” include
names, titles (“Mr.”, “Mrs.”, “officer”), terms de-
noting family relationships (“Mom”, “Dad”), and
terms of endearment (“honey”, “sweetie”). Such
nouns can serve to disambiguate number and gen-
der of the speaker or addressee, and mark the level
of familiarity between them.

The most interesting case is translation of “it”,
as “it” can have many different translations into
Russian, depending on the grammatical gender of
the antecedent. In order to disentangle these cases,
we train the Berkeley aligner on 10m sentences
and use the trained model to divide the test set
with “it” referring to a noun into test sets specific
to each gender and number. Results are in Table 5.

pronoun agreement (in %)
random first last attention

it 69 66 72 69
you 76 85 71 80
I 74 81 73 78

Table 6: Agreement with CoreNLP for test sets of
pronouns having a nominal antecedent in context
sentence (%).

We see an improvement of 4-5 BLEU for sen-
tences where “it” is translated into a feminine or
plural pronoun by the reference. For cases where
“it” is translated into a masculine pronoun, the im-
provement is smaller because the masculine gen-
der is more frequent, and the context-agnostic
baseline tends to translate the pronoun “it” as mas-
culine.

5.3.2 Latent anaphora resolution

The results in Tables 4 and 5 suggest that the
context-aware model exploits information about
the antecedent of an ambiguous pronoun. We hy-
pothesize that we can interpret the model’s atten-
tion mechanism as a latent anaphora resolution,
and perform experiments to test this hypothesis.

For test sets from Table 4, we find an antecedent
noun phrase (usually a determiner or a posses-
sive pronoun followed by a noun) using Stanford
CoreNLP (Manning et al., 2014b). We select only
examples where a noun phrase contains a single
noun to simplify our analysis. Then we identify
which token receives the highest attention weight
(excluding <bos> and <eos> tokens and punc-
tuation). If this token falls within the antecedent
span, then we treat it as agreement (see Table 6).

One natural question might be: does the atten-
tion component in our model genuinely learn to
perform anaphora resolution, or does it capture
some simple heuristic (e.g., pointing to the last
noun)? To answer this question, we consider sev-
eral baselines: choosing a random, last or first
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pronoun agreement (in %)
random first last attention

it 40 36 52 58
you 42 63 29 67
I 39 56 35 62

Table 7: Agreement with CoreNLP for test sets of
pronouns having a nominal antecedent in context
sentence (%). Examples with ≥1 noun in context
sentence.

noun from the context sentence as an antecedent.
Note that an agreement of the last noun for “it”

or the first noun for “you” and “I” is very high.
This is partially due to the fact that most context
sentences have only one noun. For these examples
a random and last predictions are always correct,
meanwhile attention does not always pick a noun
as the most relevant word in the context. To get
a more clear picture let us now concentrate only
on examples where there is more than one noun in
the context (Table 7). We can now see that the at-
tention weights are in much better agreement with
the coreference system than any of the heuristics.
This indicates that the model is indeed performing
anaphora resolution.

While agreement with CoreNLP is encourag-
ing, we are aware that coreference resolution by
CoreNLP is imperfect and partial agreement with
it may not necessarily indicate that the attention is
particularly accurate. In order to control for this,
we asked human annotators to manually evaluate
500 examples from the test sets where CoreNLP
predicted that “it” refers to a noun in the con-
text sentence. More precisely, we picked random
500 examples from the test set with “it” from Ta-
ble 7. We marked the pronoun in a source which
CoreNLP found anaphoric. Assessors were given
the source and context sentences and were asked to
mark an antecedent noun phrase for a marked pro-
noun in a source sentence or say that there is no
antecedent at all. We then picked those examples
where assessors found a link from “it” to some
noun in context (79% of all examples). Then we
evaluated agreement of CoreNLP and our model
with the ground truth links. We also report the
performance of the best heuristic for “it” from our
previous analysis (i.e. last noun in context). The
results are provided in Table 8.

The agreement between our model and the
ground truth is 72%. Though 5% below the coref-
erence system, this is a lot higher than the best

agreement (in %)
CoreNLP 77
attention 72
last noun 54

Table 8: Performance of CoreNLP and our
model’s attention mechanism compared to human
assessment. Examples with ≥1 noun in context
sentence.

Figure 5: An example of an attention map between
source and context. On the y-axis are the source
tokens, on the x-axis the context tokens. Note
the high attention between “it” and its antecedent
“heart”.

CoreNLP
right wrong

attn right 53 19
attn wrong 24 4

Table 9: Performance of CoreNLP and our
model’s attention mechanism compared to human
assessment (%). Examples with ≥1 noun in con-
text sentence.

heuristic (+18%). This confirms our conclusion
that our model performs latent anaphora resolu-
tion. Interestingly, the patterns of mistakes are
quite different for CoreNLP and our model (Ta-
ble 9). We also present one example (Figure 5)
where the attention correctly predicts anaphora
while CoreNLP fails. Nevertheless, there is room
for improvement, and improving the attention
component is likely to boost translation perfor-
mance.

6 Related work

Our analysis focuses on how our context-aware
neural model implicitly captures anaphora. Early
work on anaphora phenomena in statistical ma-
chine translation has relied on external systems
for coreference resolution (Le Nagard and Koehn,
2010; Hardmeier and Federico, 2010). Results
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were mixed, and the low performance of corefer-
ence resolution systems was identified as a prob-
lem for this type of system. Later work by Hard-
meier et al. (2013) has shown that cross-lingual
pronoun prediction systems can implicitly learn
to resolve coreference, but this work still relied
on external feature extraction to identify anaphora
candidates. Our experiments show that a context-
aware neural machine translation system can im-
plicitly learn coreference phenomena without any
feature engineering.

Tiedemann and Scherrer (2017) and Bawden
et al. (2018) analyze the attention weights of
context-aware NMT models. Tiedemann and
Scherrer (2017) find some evidence for above-
average attention on contextual history for the
translation of pronouns, and our analysis goes fur-
ther in that we are the first to demonstrate that our
context-aware model learns latent anaphora reso-
lution through the attention mechanism. This is
contrary to Bawden et al. (2018), who do not ob-
serve increased attention between a pronoun and
its antecedent in their recurrent model. We deem
our model more suitable for analysis, since it has
no recurrent connections and fully relies on the at-
tention mechanism within a single attention layer.

7 Conclusions

We introduced a context-aware NMT system
which is based on the Transformer architecture.
When evaluated on an En-Ru parallel corpus, it
outperforms both the context-agnostic baselines
and a simple context-aware baseline. We observe
that improvements are especially prominent for
sentences containing ambiguous pronouns. We
also show that the model induces anaphora rela-
tions. We believe that further improvements in
handling anaphora, and by proxy translation, can
be achieved by incorporating specialized features
in the attention model. Our analysis has focused
on the effect of context information on pronoun
translation. Future work could also investigate
whether context-aware NMT systems learn other
discourse phenomena, for example whether they
improve the translation of elliptical constructions,
and markers of discourse relations and informa-
tion structure.
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Abstract

We present a document-level neural ma-
chine translation model which takes both
source and target document context into
account using memory networks. We
model the problem as a structured pre-
diction problem with interdependencies
among the observed and hidden variables,
i.e., the source sentences and their unob-
served target translations in the document.
The resulting structured prediction prob-
lem is tackled with a neural translation
model equipped with two memory com-
ponents, one each for the source and tar-
get side, to capture the documental inter-
dependencies. We train the model end-
to-end, and propose an iterative decod-
ing algorithm based on block coordinate
descent. Experimental results of English
translations from French, German, and Es-
tonian documents show that our model is
effective in exploiting both source and tar-
get document context, and statistically sig-
nificantly outperforms the previous work
in terms of BLEU and METEOR.

1 Introduction

Neural machine translation (NMT) has proven to
be powerful (Sutskever et al., 2014; Bahdanau
et al., 2015). It is on-par, and in some cases,
even surpasses the traditional statistical MT (Lu-
ong et al., 2015) while enjoying more flexibil-
ity and significantly less manual effort for fea-
ture engineering. Despite their flexibility, most
neural MT models translate sentences indepen-
dently. Discourse phenomenon such as pronomi-
nal anaphora and lexical consistency, may depend
on long-range dependency going farther than a

few previous sentences, are neglected in sentence-
based translation (Bawden et al., 2017).

There are only a handful of attempts to
document-wide machine translation in statistical
and neural MT camps. Hardmeier and Federico
(2010); Gong et al. (2011); Garcia et al. (2014)
propose document translation models based on
statistical MT but are restrictive in the way they
incorporate the document-level information and
fail to gain significant improvements. More re-
cently, there have been a few attempts to incorpo-
rate source side context into neural MT (Jean et al.,
2017; Wang et al., 2017; Bawden et al., 2017);
however, these works only consider a very local
context including a few previous source/target sen-
tences, ignoring the global source and target docu-
mental contexts. The latter two report deteriorated
performance when using the target-side context.

In this paper, we present a document-level ma-
chine translation model which combines sentence-
based NMT (Bahdanau et al., 2015) with mem-
ory networks (Sukhbaatar et al., 2015). We cap-
ture the global source and target document con-
text with two memory components, one each for
the source and target side, and incorporate it into
the sentence-based NMT by changing the decoder
to condition on it as the sentence translation is
generated. We conduct experiments on three lan-
guage pairs: French-English, German-English and
Estonian-English. The experimental results and
analysis demonstrate that our model is effective in
exploiting both source and target document con-
text, and statistically significantly outperforms the
previous work in terms of BLEU and METEOR.

2 Background

2.1 Neural Machine Translation (NMT)

Our document NMT model is grounded on
sentence-based NMT model (Bahdanau et al.,
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2015) which contains an encoder to read the
source sentence as well as an attentional decoder
to generate the target translation.

Encoder It is a bidirectional RNN consisting of
two RNNs running in opposite directions over the
source sentence:
−→
hi =

−−→
RNN(

−→
h i−1,ES [xi]),

←−
h i =

←−−
RNN(

←−
h i+1,ES [xi])

where ES [xi] is embedding of the word xi from
the embedding table ES of the source language,
and
−→
h i and

←−
h i are the hidden states of the for-

ward and backward RNNs which can be based on
the LSTM (Hochreiter and Schmidhuber, 1997) or
GRU (Cho et al., 2014) units. Each word in the
source sentence is then represented by the concate-
nation of the corresponding bidirectional hidden
states, hi = [

−→
h i;
←−
h i].

Decoder The generation of each word yj is con-
ditioned on all of the previously generated words
y<j via the state of the RNN decoder sj , and the
source sentence via a dynamic context vector cj :

yj ∼ softmax(Wy · rj + br)

rj = tanh(sj +Wrc · cj +Wrj ·ET [yj−1])

sj = tanh(Ws · sj−1 +Wsj ·ET [yj−1] +Wsc · cj)

where ET [yj ] is embedding of the word yj from
the embedding table ET of the target language,
and W matrices and br vector are the parame-
ters. The dynamic context vector cj is computed
via cj =

∑
i αjihi, where

αj = softmax(aj)

aji = v · tanh(Wae · hi +Wat · sj−1)

This is known as the attention mechanism which
dynamically attends to relevant parts of the source
necessary for generating the next target word.

2.2 Memory Networks (MemNets)
Memory Networks (Weston et al., 2015) are a
class of neural models that use external memo-
ries to perform inference based on long-range de-
pendencies. A memory is a collection of vec-
tors M = {m1, ..,mK} constituting the mem-
ory cells, where each cell mk may potentially
correspond to a discrete object xk. The mem-
ory is equipped with a read and optionally a
write operation. Given a query vector q, the out-
put vector generated by reading from the mem-
ory is

∑|M |
i=1 pimi, where pi represents the rele-

vance of the query to the i-th memory cell p =

Figure 1: Factor graph for document-level MT

softmax(qT ·M). For the rest of the paper, we
denote the read operation by MemNet(M , q).

3 Document NMT as Structured
Prediction

We formulate document-wide machine translation
as a structured prediction problem. Given a set
of sentences {x1, . . . ,x|d|} in a source document
d, we are interested in generating the collection
of their translations {y1, . . . ,y|d|} taking into ac-
count interdependencies among them imposed by
the document. We achieve this by the factor graph
in Figure 1 to model the probability of the target
document given the source document. Our model
has two types of factors:

• fθ(yt;xt,x−t) to capture the interdependen-
cies between the translation yt, the corre-
sponding source sentence xt and all the other
sentences in the source document x−t, and

• gθ(yt;y−t) to capture the interdependencies
between the translation yt and all the other
translations in the document y−t.

Hence, the probability of a document translation
given the source document is

P (y1, . . . ,y|d||x1, . . . ,x|d|) ∝
exp

(∑

t

fθ(yt;xt,x−t) + gθ(yt;y−t)
)
.

The factors fθ and gθ are realised by neural ar-
chitectures whose parameters are collectively de-
noted by θ.

Training It is challenging to train the model
parameters by maximising the (regularised) like-
lihood since computing the partition function is
hard. This is due to the enormity of factors
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gθ(yt;y−t) over a large number of translation
variables yt’s (i.e., the number of sentences in
the document) as well as their unbounded domain
(i.e., all sentences in the target language). Thus,
we resort to maximising the pseudo-likelihood
(Besag, 1975) for training the parameters:

argmax
θ

∏

d∈D

|d|∏

t=1

Pθ(yt|xt,y−t,x−t) (1)

whereD is the set of bilingual training documents,
and |d| denotes the number of (bilingual) sen-
tences in the document d = {(xt,yt)}|d|t=1. We
directly model the document-conditioned NMT
model Pθ(yt|xt,y−t,x−t) using a neural archi-
tecture which subsumes both the fθ and gθ factors
(covered in the next section).

Decoding To generate the best translation for
a document according to our model, we need to
solve the following optimisation problem:

arg max
y1,...,y|d|

|d|∏

t=1

Pθ(yt|xt,y−t,x−t)

which is hard (due to similar reasons as mentioned
earlier). We hence resort to a block coordinate de-
scent optimisation algorithm. More specifically,
we initialise the translation of each sentence using
the base neural MT model P (yt|xt). We then re-
peatedly visit each sentence in the document, and
update its translation using our document-context
dependent NMT model P (yt|xt,y−t,x−t) while
the translations of other sentences are kept fixed.

4 Context Dependent NMT with
MemNets

We augment the sentence-level attentional NMT
model by incorporating the document context
(both source and target) using memory networks
when generating the translation of a sentence, as
shown in Figure 2.

Our model generates the target translation
word-by-word from left to right, similar to the
vanilla attentional neural translation model. How-
ever, it conditions the generation of a target word
not only on the previously generated words and
the current source sentence (as in the vanilla NMT
model), but also on all the other source sentences
of the document and their translations. That is, the

generation process is as follows:

Pθ(yt|xt,y−t,x−t) =

|yt|∏

j=1

Pθ(yt,j |yt,<j ,xt,y−t,x−t)

(2)

where yt,j is the j-th word of the t-th target sen-
tence, yt,<j are the previously generated words,
and x−t and y−t are as introduced previously.

Our model represents the source and target doc-
ument contexts as external memories, and at-
tends to relevant parts of these external memo-
ries when generating the translation of a sentence.
Let M [x−t] and M [y−t] denote external memo-
ries representing the source and target document
context, respectively. These contain memory cells
corresponding to all sentences in the document ex-
cept the t-th sentence (described shortly). Let ht
and st be representations of the t-th source sen-
tence and its current translation, from the encoder
and decoder respectively. We make use of ht
as the query to get the relevant context from the
source external memory:

csrct = MemNet(M [x−t],ht)

Furthermore, for the t-th sentence, we get the rel-
evant information from the target context:

ctrgt = MemNet(M [y−t], st +Wat · ht)

where the query consists of the representation of
the translation st from the decoder endowed with
that of the source sentence ht from the encoder
to make the query robust to potential noises in the
current translation and circumvent error propaga-
tion, and Wat projects the source representation
into the hidden state space.

Now that we have representations of the rele-
vant source and target document contexts, Eq. 2
can be re-written as:

Pθ(yt|xt,y−t,x−t) =

|yt|∏

j=1

Pθ(yt,j |yt,<j ,xt, c
trg
t , csrct )

(3)

More specifically, the memory contexts csrct and
ctrgt are incorporated into the NMT decoder as:

• Memory-to-Context in which the memory
contexts are incorporated when computing
the next decoder hidden state:

st,j = tanh(Ws · st,j−1 +Wsj ·ET [yt,j ] +
Wsc · ct,j +Wsm · csrct +Wst · ctrgt )
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Figure 2: Our Memory-to-Context document-
NMT model consisting of sentence-based NMT
model with source and target external memories.

• Memory-to-Output in which the memory
contexts are incorporated in the output layer:

yt,j ∼ softmax(Wy · rt,j +Wym · csrct +

Wyt · ctrgt + br)

where Wsm, Wst, Wym, and Wyt are the new
parameter matrices. We use only the source, only
the target, or both external memories as the ad-
ditional conditioning contexts. Furthermore, we
use either the Memory-to-Context or Memory-to-
Output architectures for incorporating the docu-
ment contexts. In the experiments, we will explore
these different options to investigate the most ef-
fective combination. We now turn our attention to
the construction of the external memories for the
source and target sides of a document.

The Source Memory We make use of a hierar-
chical 2-level RNN architecture to construct the
external memory of the source document. More
specifically, we pass each sentence of the docu-
ment through a sentence-level bidirectional RNN
to get the representation of the sentence (by con-
catenating the last hidden states of the forward
and backward RNNs). We then pass the sentence
representations through a document-level bidirec-
tional RNN to propagate sentences’ information
across the document. We take the hidden states

of the document-level bidirectional RNNs as the
memory cells of the source external memory.

The source external memory is built once for
each minibatch, and does not change through-
out the document translation. To be able to fit
the computational graph of the document NMT
model within GPU memory limits, we pre-train
the sentence-level bidirectional RNN using the
language modelling training objective. However,
the document-level bidirectional RNN is trained
together with other parameters of the document
NMT model by back-propagating the document
translation training objective.

The Target Memory The memory cells of the
target external memory represent the current trans-
lations of the document. Recall from the previous
section that we use coordinate descent iteratively
to update these translations. Let {y1, . . . ,y|d|} be
the current translations, and let {s|y1|, . . . , s|y|d||}
be the last states of the decoder when these trans-
lations were generated. We use these last de-
coder states as the cells of the external target mem-
ory. We could make use of hierarchical sentence-
document RNNs to transform the document trans-
lations into memory cells (similar to what we do
for the source memory); however, it would have
been computationally expensive and may have re-
sulted in error propagation. We will show in the
experiments that our efficient target memory con-
struction is indeed effective.

5 Experiments and Analysis

Datasets. We conducted experiments on three
language pairs: French-English, German-English
and Estonian-English. Table 1 shows the statis-
tics of the datasets used in our experiments.
The French-English dataset is based on the TED
Talks corpus1 (Cettolo et al., 2012) where each
talk is considered a document. The Estonian-
English data comes from the Europarl v7 corpus2

(Koehn, 2005). Following Smith et al. (2013),
we split the speeches based on the SPEAKER
tag and treat them as documents. The French-
English and Estonian-English corpora were ran-
domly split into train/dev/test sets. For German-
English, we use the News Commentary v9 corpus3

for training, news-dev2009 for development,
1https://wit3.fbk.eu/
2http://www.statmt.org/europarl/
3http://statmt.org/wmt14/news-commentary-v9-by-

document.tgz
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# docs # sents doc len src/tgt vocab
Fr-En 10/1.2/1.5 123/15/19 123/128/124 25.1/21
Et-En 150/10/18 209/14/25 14/14/14 48.6/24.9
De-En 49/.9/1.1/1.6 191/2/3/3 39/23/27/19 45.1/34.7

Table 1: Training/dev/test corpora statistics: num-
ber of documents (×100) and sentences (×1000),
average document length (in sentences) and
source/target vocabulary size (×1000). For De-
En, we report statistics of the two test sets
news-test2011 and news-test2016.

and news-test2011 and news-test2016
as the test sets. The news-commentary corpus has
document boundaries already provided.

We pre-processed all corpora to remove very
short documents and those with missing trans-
lations. Out-of-vocabulary and rare words (fre-
quency less than 5) are replaced by the <UNK>
token, following Cohn et al. (2016).4

Evaluation Measures We use BLEU (Papineni
et al., 2002) and METEOR (Lavie and Agarwal,
2007) scores to measure the quality of the gen-
erated translations. We use bootstrap resampling
(Clark et al., 2011) to measure statistical signifi-
cance, p < 0.05, comparing to the baselines.

Implementation and Hyperparameters We
implement our document-level neural machine
translation model in C++ using the DyNet li-
brary (Neubig et al., 2017), on top of the basic
sentence-level NMT implementation in mantis
(Cohn et al., 2016). For the source memory, the
sentence and document-level bidirectional RNNs
use LSTM and GRU units, respectively. The
translation model uses GRU units for the bidi-
rectional RNN encoder and the 2-layer RNN de-
coder. GRUs are used instead of LSTMs to re-
duce the number of parameters in the main model.
The RNN hidden dimensions and word embed-
ding sizes are set to 512 in the translation and
memory components, and the alignment dimen-
sion is set to 256 in the translation model.

Training We use a stage-wise method to train
the variants of our document context NMT
model. Firstly, we pre-train the Memory-to-
Context/Memory-to-Output models, setting their
readings from the source and target memories to

4We do not split words into subwords using BPE (Sen-
nrich et al., 2016) as that increases sentence lengths resulting
in removing long documents due to GPU memory limitations,
which would heavily reduce the amount of data that we have.

the zero vector. This effectively learns parame-
ters associated with the underlying sentence-based
NMT model, which is then used as initialisation
when training all parameters in the second stage
(including the ones from the first stage). For the
first stage, we make use of stochastic gradient de-
scent (SGD)5 with initial learning rate of 0.1 and
a decay factor of 0.5 after the fourth epoch for a
total of ten epochs. The convergence occurs in
6-8 epochs. For the second stage, we use SGD
with an initial learning rate of 0.08 and a decay
factor of 0.9 after the first epoch for a total of 15
epochs6. The best model is picked based on the
dev-set perplexity. To avoid overfitting, we em-
ploy dropout with the rate 0.2 for the single mem-
ory model. For the dual memory model, we set
dropout for Document RNN to 0.2 and for the en-
coder and decoder to 0.5. Mini-batching is used
in both stages to speed up training. For the largest
dataset, the document NMT model takes about 4.5
hours per epoch to train on a single P100 GPU,
while the sentence-level model takes about 3 hours
per epoch for the same settings.

When training the document NMT model in the
second stage, we need the target memory. One op-
tion would be to use the ground truth translations
for building the memory. However, this may re-
sult in inferior training, since at the test time, the
decoder iteratively updates the translation of sen-
tences based on the noisy translations of other sen-
tences (accessed via the target memory). Hence,
while training the document NMT model, we con-
struct the target memory from the translations gen-
erated by the pre-trained sentence-level model7.
This effectively exposes the model to its potential
test-time mistakes during the training time, result-
ing in more robust learned parameters.

5.1 Main Results

We have three variants of our model, using: (i)
only the source memory (S-NMT+src mem), (ii)
only the target memory (S-NMT+trg mem), or

5In our initial experiments, we found SGD to be more ef-
fective than Adam/Adagrad; an observation also made by Ba-
har et al. (2017).

6For the document NMT model training, we did some pre-
liminary experiments using different learning rates and used
the scheme which converged to the best perplexity in the least
number of epochs while for sentence-level training we follow
Cohn et al. (2016).

7We report results for two-pass decoding, i.e., we only
update the translations once using the initial translations gen-
erated from the base model. We tried multiple passes of de-
coding at test-time but it was not helpful.
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Memory-to-Context Memory-to-Output
BLEU METEOR BLEU METEOR

Fr→En De→En Et→En Fr→En De→En Et→En Fr→En De→En Et→En Fr→En De→En Et→En
NC-11 NC-16 NC-11 NC-16 NC-11 NC-16 NC-11 NC-16

S-NMT 20.85 5.24 9.18 20.42 23.27 10.90 14.35 24.65 20.85 5.24 9.18 20.42 23.27 10.90 14.35 24.65
+src 21.91† 6.26† 10.20† 22.10† 24.04† 11.52† 15.45† 25.92† 21.80† 6.10† 9.98† 21.50† 23.99† 11.53† 15.29† 25.44†

+trg 21.74† 6.24† 9.97† 21.94† 23.98† 11.58† 15.32† 25.89† 21.76† 6.31† 10.04† 21.82† 24.06† 12.10† 15.75† 25.93†

+both 22.00† 6.57† 10.54† 22.32† 24.40† 12.24† 16.18† 26.34† 21.77† 6.20† 10.23† 22.20† 24.27† 11.84† 15.82† 26.10†

Table 2: BLEU and METEOR scores for the sentence-level baseline (S-NMT) vs. variants of our Docu-
ment NMT model. bold: Best performance, †: Statistically significantly better than the baseline.

Memory-to-Context Memory-to-Output
Lang. Pair Fr→En De→En Et→En Fr→En De→En Et→En

S-NMT 42.5 66.8 58.4 42.5 66.8 58.5
+src mem 48.8 73.1 64.8 68.7 107.1 88.7
+trg mem 43.8 68.1 59.8 53.8 85.1 71.8
+both mems 50.1 74.4 66.1 80 125.4 102

Table 3: Number of model parameters (millions).

(iii) both the source and target memories (S-
NMT+both mems). We compare these variants
against the standard sentence-level NMT model
(S-NMT). We also compare the source memory
variants of our model to the local context-NMT
models8 of Jean et al. (2017) and Wang et al.
(2017), which use a few previous source sentences
as context, added to the decoder hidden state (sim-
ilar to our Memory-to-Context model).

Memory-to-Context We consistently observe
+1.15/+1.13 BLEU/METEOR score improve-
ments across the three language pairs upon com-
paring our best model to S-NMT (see Table 2).
Overall, our document NMT model with both
memories has been the most effective variant for
all of the three language pairs.

We further experiment to train the target mem-
ory variants using gold translations instead of
the generated ones for German-English. This
led to −0.16 and −0.25 decrease9 in the BLEU
scores for the target-only and both-memory vari-
ants, which confirms the intuition of constructing
the target memory by exposing the model to its
noises during training time.

Memory-to-Output From Table 2, we consis-
tently see +.95/+1.00 BLEU/METEOR improve-
ments between the best variants of our model and
the sentence-level baseline across the three lan-

8We implemented and trained the baseline local context
models using the same hyperparameters and training proce-
dure that we used for training our memory models.

9Latter is statistically significant decrease w.r.t. the both
memory model trained on generated target translations.
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Figure 3: METEOR scores on De→En (NC-11)
while training S-NMT with smaller vs. larger cor-
pus.

guage pairs. For French→English, all variants of
document NMT model show comparable perfor-
mance when using BLEU; however, when eval-
uated using METEOR, the dual memory model
is the best. For German→English, the target
memory variants give comparable results, whereas
for Estonian→English, the dual memory variant
proves to be the best. Overall, the Memory-to-
Context model variants perform better than their
Memory-to-Output counterparts. We attribute this
to the large number of parameters in the latter ar-
chitecture (Table 3) and limited amount of data.

We further experiment with more data for train-
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BLEU METEOR
Fr→En De→En Et→EnFr→En De→En Et→En

NC-11 NC-16 NC-11 NC-16

Jean et al. (2017) 21.95 6.04 10.26 21.67 24.10 11.61 15.56 25.77
Wang et al. (2017) 21.87 5.49 10.14 22.06 24.13 11.05 15.20 26.00
S-NMT 20.85 5.24 9.18 20.42 23.27 10.90 14.35 24.65
+src mem 21.91† 6.26♣ 10.20 22.10♠ 24.04† 11.52♣15.45♣ 25.92♠

+both mems 22.00† 6.57♦10.54♣ 22.32♦ 24.40♦ 12.24♦16.18♦ 26.34♦

Table 4: Our Memory-to-Context Source Memory NMT
variants vs. S-NMT and Source context NMT baselines.
bold: Best performance, †, ♠, ♣, ♦: Statistically signifi-
cantly better than only S-NMT, S-NMT & Jean et al. (2017),
S-NMT & Wang et al. (2017), all baselines, respectively.

BLEU-1
Fr→En De→En Et→En

NC-11NC-16

Jean et al. (2017) 52.8 30.6 39.2 51.9
Wang et al. (2017) 52.6 28.2 38.3 52.3
S-NMT 51.4 28.7 36.9 50.4

+src mem 53.0 30.5 39.1 52.6
+both mems 53.5 33.1 41.3 53.2

Table 5: Unigram BLEU for our
Memory-to-Context Document NMT
models vs. S-NMT and Source con-
text NMT baselines. bold: Best per-
formance.

ing the sentence-based NMT to investigate the ex-
tent to which document context is useful in this
setting. We randomly choose an additional 300K
German-English sentence pairs from WMT’14
data to train the base NMT model in stage 1. In
stage 2, we use the same document corpus as be-
fore to train the document-level models. As seen
from Figure 3, the document MT variants still
benefit from the document context even when the
base model is trained on a larger bilingual corpus.
For the Memory-to-Context model, we see mas-
sive improvements of +0.72 and +1.44 METEOR
scores for the source memory and dual memory
model respectively, when compared to the base-
line. On the other hand, for the Memory-to-Output
model, the target memory model’s METEOR
score increases significantly by +1.09 compared
to the baseline, slightly differing from the corre-
sponding model using the smaller corpus (+1.2).

Local Source Context Models Table 4 shows
comparison of our Memory-to-Context model
variants to local source context-NMT mod-
els (Jean et al., 2017; Wang et al., 2017).
For French→English, our source memory
model is comparable to both baselines. For
German→English, our S-NMT+src mem model is
comparable to Jean et al. (2017) but outperforms
Wang et al. (2017) for one test set according
to BLEU, and for both test sets according to
METEOR. For Estonian→English, our model
outperforms Jean et al. (2017). Our global source
context model has only surface-level sentence in-
formation, and is oblivious to the individual words
in the context since we do an offline training to
get the sentence representations (as previously
mentioned). However, the other two context
baselines have access to that information, yet our

model’s performance is either better or quite close
to those models. We also look into the unigram
BLEU scores to see how much our global source
memory variants lead to improvement at the
word-level. From Table 5, it can be seen that our
model’s performance is better than the baselines
for majority of the cases. The S-NMT+both mems
model gives the best results for all three language
pairs, showing that leveraging both source and
target document context is indeed beneficial for
improving MT performance.

5.2 Analysis

Using Global/Local Target Context We first
investigate whether using a local target context
would have been equally sufficient in comparison
to our global target memory model for the three
datasets. We condition the decoder on the previ-
ous target sentence representation (obtained from
the last hidden state of the decoder) by adding it as
an additional input to all decoder states (PrevTrg)
similar to our Memory-to-Context model. From
Table 6, we observe that for French→English and
Estonian→English, using all sentences in the tar-
get context or just the previous target sentence
gives comparable results. We may attribute this
to these specific datasets, that is documents from
TED talks or European Parliament Proceedings
may depend more on the local than on the global
context. However, for German→English (NC-11),
the target memory model performs the best show-

BLEU METEOR
Lang. Pair Fr→En De→En Et→En Fr→En De→En Et→En
S-NMT 20.85 5.24 20.42 23.27 10.90 24.65

+prev trg 21.75 5.93 22.08 24.03 11.40 25.94
+trg mem 21.74 6.24 21.94 23.98 11.58 25.89

Table 6: Analysis of target context model.
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ing that for documents with richer context (e.g.
news articles) we do need the global target doc-
ument context to improve MT performance.

Output Analysis To better understand the dual
memory model, we look at the first sentence exam-
ple in Table 7. It can be seen that the source sen-
tence has the noun “Qimonda” but the sentence-
level NMT model fails to attend to it when gener-
ating the translation. On the other hand, the single
memory models are better in delivering some, if
not all, of the underlying information in the source
sentence but the dual memory model’s transla-
tion quality surpasses them. This is because the
word “Qimonda” was being repeated in this spe-
cific document, providing a strong contextual sig-
nal to our global document context model while
the local context model by Wang et al. (2017) is
still unable to correctly translate the noun even
when it has access to the word-level information
of previous sentences.

We resort to manual evaluation as there is no
standard metric which evaluates document-level
discourse information like consistency or pronom-
inal anaphora. By manual inspection, we observe
that our models can identify nouns in the source
sentence to resolve coreferent pronouns, as shown
in the second example of Table 7. Here the topic
of the sentence is “the country under the dictator-
ship of Lukashenko” and our target and dual mem-
ory models are able to generate the appropriate
pronoun/determiner as well as accurately translate
the word ‘diktatuur’, hence producing much better
translation as compared to both baselines. Apart
from these improvements, our models are better in
improving the readability of sentences by gener-
ating more context appropriate grammatical struc-
tures such as verbs and adverbs.

Furthermore, to validate that our model im-
proves the consistency of translations, we look
at five documents (roughly 70 sentences) from
the test set of Estonian-English, each of which
had a word being repeated in the gold translation.
Our model is able to resolve the consistency in
22 out of 32 cases as compared to the sentence-
based model which only accurately translates 16
of those. Following Wang et al. (2017), we also
investigate the extent to which our model can cor-
rect errors made by the baseline system. We ran-
domly choose five documents from the test set.
Out of the 20 words/phrases which were incor-
rectly translated by the sentence-based model, our

model corrects 85% of them while also generating
10% new errors.

Source qimonda täidab lissaboni strateegia eesmärke.
Target qimonda meets the objectives of the lisbon strategy.
S-NMT <UNK> is the objectives of the lisbon strategy.
+Src Mem the millennium development goals are fulfilling the

millennium goals of the lisbon strategy.
+Trg Mem in writing. - (ro) the lisbon strategy is fulfilling the

objectives of the lisbon strategy.
+Both Mems qimonda fulfils the aims of the lisbon strategy.
Wang et al. (2017) <UNK> fulfils the objectives of the lisbon strategy.
Source ... et riigis kehtib endiselt lukašenka diktatuur,

mis rikub inim- ning etnilise vähemuse õigusi.
Target ... this country is still under the dictatorship of

lukashenko, breaching human rights and the rights
of ethnic minorities.

S-NMT ... the country still remains in a position of lukashenko
to violate human rights and ethnic minorities.

+Src Mem ... the country still applies to the brutal dictatorship of
human and ethnic minority rights.

+Trg Mem ... the country still keeps the <UNK> dictatorship that
violates human rights and ethnic rights.

+Both Mems ... the country still persists in lukashenko’s dictatorship
that violate human rights and ethnic minority rights.

Wang et al. (2017) ... there is still a regime in the country that is
violating the rights of human and ethnic minority
in the country.

Table 7: Example Et→En sentence translations
(Memory-to-Context) from two test documents.

6 Related Work

Document-level Statistical MT There have
been a few SMT-based attempts to document MT,
but they are either restrictive or do not lead to sig-
nificant improvements. Hardmeier and Federico
(2010) identify links among words in the source
document using a word-dependency model to im-
prove translation of anaphoric pronouns. Gong
et al. (2011) make use of a cache-based sys-
tem to save relevant information from the previ-
ously generated translations and use that to en-
hance document-level translation. Garcia et al.
(2014) propose a two-pass approach to improve
the translations already obtained by a sentence-
level model.

Docent is an SMT-based document-level de-
coder (Hardmeier et al., 2012, 2013), which tries
to modify the initial translation generated by
the Moses decoder (Koehn et al., 2007) through
stochastic local search and hill-climbing. Garcia
et al. (2015) make use of neural-based continuous
word representations to incorporate distributional
semantics into Docent. In another work, Garcia
et al. (2017) incorporate new word embedding fea-
tures into Docent to improve the lexical consis-
tency of translations. The proposed methods fail
to yield improvements upon automatic evaluation.

Larger Context Neural MT Jean et al. (2017)
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extend the vanilla attention-based neural MT
model (Bahdanau et al., 2015) by conditioning
the decoder on the previous sentence via atten-
tion over its words. Extending their model to con-
sider the global source document context would
be challenging due to the large size of computa-
tion graph over all the words in the source docu-
ment. Wang et al. (2017) employ a 2-level hier-
arichal RNN to summarise three previous source
sentences, which is then used as an additional in-
put to the decoder hidden state. Bawden et al.
(2017) use multi-encoder NMT models to exploit
context from the previous source and target sen-
tence. They highlight the importance of target-
side context but report deteriorated BLEU scores
when using it. All these works consider a very
local source/target context and completely ignore
the global source and target document contexts.

7 Conclusion

We have proposed a document-level neural MT
model that captures global source and target doc-
ument context. Our model augments the vanilla
sentence-based NMT model with external memo-
ries to incorporate documental interdependencies
on both source and target sides. We show statis-
tically significant improvements of the translation
quality on three language pairs. For future work,
we intend to investigate models which incorporate
specific discourse-level phenomena.
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Abstract

The purpose of text geolocation is to as-
sociate geographic information contained
in a document with a set (or sets) of co-
ordinates, either implicitly by using lin-
guistic features and/or explicitly by us-
ing geographic metadata combined with
heuristics. We introduce a geocoder (loca-
tion mention disambiguator) that achieves
state-of-the-art (SOTA) results on three di-
verse datasets by exploiting the implicit
lexical clues. Moreover, we propose a
new method for systematic encoding of
geographic metadata to generate two dis-
tinct views of the same text. To that end,
we introduce the Map Vector (MapVec),
a sparse representation obtained by plot-
ting prior geographic probabilities, de-
rived from population figures, on a World
Map. We then integrate the implicit (lan-
guage) and explicit (map) features to sig-
nificantly improve a range of metrics. We
also introduce an open-source dataset for
geoparsing of news events covering global
disease outbreaks and epidemics to help
future evaluation in geoparsing.

1 Introduction

Geocoding1 is a specific case of text geoloca-
tion, which aims at disambiguating place refer-
ences in text. For example, Melbourne can refer to
more than ten possible locations and a geocoder’s
task is to identify the place coordinates for the
intended Melbourne in a context such as “Mel-
bourne hosts one of the four annual Grand Slam
tennis tournaments.” This is central to the success
of tasks such as indexing and searching documents
by geography (Bhargava et al., 2017), geospatial

1Also called Toponym Resolution in related literature.

analysis of social media (Buchel and Penning-
ton, 2017), mapping of disease risk using inte-
grated data (Hay et al., 2013), and emergency re-
sponse systems (Ashktorab et al., 2014). Previ-
ous geocoding methods (Section 2) have lever-
aged lexical semantics to associate the implicit
geographic information in natural language with
coordinates. These models have achieved good
results in the past. However, focusing only on
lexical features, to the exclusion of other feature
spaces such as the Cartesian Coordinate System,
puts a ceiling on the amount of semantics we are
able to extract from text. Our proposed solution
is the Map Vector (MapVec), a sparse, geographic
vector for explicit modelling of geographic dis-
tributions of location mentions. As in previous
work, we use population data and geographic co-
ordinates, observing that the most populous Mel-
bourne is also the most likely to be the intended
location. However, MapVec is the first instance, to
our best knowledge, of the topological semantics
of context locations explicitly isolated into a stan-
dardized vector representation, which can then be
easily transferred to an independent task and com-
bined with other features. MapVec is able to en-
code the prior geographic distribution of any num-
ber of locations into a single vector. Our extensive
evaluation shows how this representation of con-
text locations can be integrated with linguistic fea-
tures to achieve a significant improvement over a
SOTA lexical model. MapVec can be deployed as
a standalone neural geocoder, significantly beating
the population baseline, while remaining effective
with simpler machine learning algorithms.

This paper’s contributions are: (1) Lexical
Geocoder outperforming existing systems by
analysing only the textual context; (2) MapVec,
a geographic representation of locations using a
sparse, probabilistic vector to extract and isolate
spatial features; (3) CamCoder, a novel geocoder
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that exploits both lexical and geographic knowl-
edge producing SOTA results across multiple
datasets; and (4) GeoVirus, an open-source dataset
for the evaluation of geoparsing (Location Recog-
nition and Disambiguation) of news events cover-
ing global disease outbreaks and epidemics.

2 Background

Depending on the task objective, geocoding
methodologies can be divided into two distinct
categories: (1) document geocoding, which aims
at locating a piece of text as a whole, for example
geolocating Twitter users (Rahimi et al., 2016,
2017; Roller et al., 2012; Rahimi et al., 2015),
Wikipedia articles and/or web pages (Cheng
et al., 2010; Backstrom et al., 2010; Wing and
Baldridge, 2011; Dredze et al., 2013; Wing and
Baldridge, 2014). This is an active area of NLP
research (Hulden et al., 2015; Melo and Martins,
2017, 2015; Iso et al., 2017); (2) geocoding of
place mentions, which focuses on the disambigua-
tion of location (named) entities i.e. this paper
and (Karimzadeh et al., 2013; Tobin et al., 2010;
Grover et al., 2010; DeLozier et al., 2015; Santos
et al., 2015; Speriosu and Baldridge, 2013; Zhang
and Gelernter, 2014). Due to the differences in
evaluation and objective, the categories cannot be
directly or fairly compared. Geocoding is typi-
cally the second step in Geoparsing. The first step,
usually referred to as Geotagging, is a Named
Entity Recognition component which extracts all
location references in a given text. This phase
may optionally include metonymy resolution, see
(Zhang and Gelernter, 2015; Gritta et al., 2017a).
The goal of geocoding is to choose the correct
coordinates for a location mention from a set of
candidates. Gritta et al. (2017b) provided a com-
prehensive survey of five recent geoparsers. The
authors established an evaluation framework, with
a new dataset, for their experimental analysis. We
use this evaluation framework in our experiments.
We briefly describe the methodology of each
geocoder featured in our evaluation (names are
capitalised and appear in italics) as well as survey
the related work in geocoding.

Computational methods in geocoding broadly
divide into rule-based, statistical and machine
learning-based. Edinburgh Geoparser (Tobin
et al., 2010; Grover et al., 2010) is a fully rule-
based geocoder that uses hand-built heuristics

combined with large lists from Wikipedia and the
Geonames2 gazetteer. It uses metadata (feature
type, population, country code) with heuristics
such as contextual information, spatial clustering
and user locality to rank candidates. GeoTxT
(Karimzadeh et al., 2013) is another rule-based
geocoder with a free web service3 for identifying
locations in unstructured text and grounding them
to coordinates. Disambiguation is driven by
multiple heuristics and uses the administrative
level (country, province, city), population size, the
Levenshtein Distance of the place referenced and
the candidate’s name and spatial minimisation
to resolve ambiguous locations. (Dredze et al.,
2013) is a rule-based Twitter geocoder using
only metadata (coordinates in tweets, GPS tags,
user’s reported location) and custom place lists
for fast and simple geocoding. CLAVIN (Car-
tographic Location And Vicinity INdexer)4 is
an open-source geocoder, which offers context-
based entity recognition and linking. It seems
to be mostly rule-based though details of its
algorithm are underspecified, short of reading the
source code. Unlike the Edinburgh Parser, this
geocoder seems to overly rely on population data,
seemingly mirroring the behaviour of a naive
population baseline. Rule-based systems can
perform well though the variance in performance
is high (see Table 1). Yahoo! Placemaker is a free
web service with a proprietary geo-database and
algorithm from Yahoo!5 letting anyone geoparse
text in a globally-aware and language-independent
manner. It is unclear how geocoding is performed,
however, the inclusion of proprietary methods
makes evaluation broader and more informative.

The statistical geocoder Topocluster (DeLozier
et al., 2015) divides the world surface into a grid
(0.5 x 0.5 degrees, approximately 60K tiles) and
uses lexical features to model the geographic dis-
tribution of context words over this grid. Building
on the work of Speriosu and Baldridge (2013), it
uses a window of 15 words (our approach scales
this up by more than 20 times) to perform hot spot
analysis using Getis-Ord Local Statistic of indi-
vidual words’ association with geographic space.
The classification decision was made by finding
the grid square with the strongest overlap of

2http://www.geonames.org/
3http://www.geotxt.org/
4https://clavin.bericotechnologies.com
5https://developer.yahoo.com/geo/
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individual geo-distributions. Hulden et al. (2015)
used Kernel Density Estimation to learn the word
distribution over a world grid with a resolution of
0.5 x 0.5 degrees and classified documents with
Kullback-Leibler divergence or a Naive Bayes
model, reminiscent of an earlier approach by
Wing and Baldridge (2011). Roller et al. (2012)
used the Good-Turing Frequency Estimation to
learn document probability distributions over the
vocabulary with Kullback-Leibler divergence as
the similarity function to choose the correct bucket
in the k-d tree (world representation). Iso et al.
(2017) combined Gaussian Density Estimation
with a CNN-model to geolocate Japanese tweets
with Convolutional Mixture Density Networks.

Among the recent machine learning methods,
bag-of-words representations combined with a
Support Vector Machine (Melo and Martins, 2015)
or Logistic Regression (Wing and Baldridge,
2014) have also achieved good results. For
Twitter-based geolocation (Zhang and Gelern-
ter, 2014), bag-of-words classifiers were success-
fully augmented with social network data (Jur-
gens et al., 2015; Rahimi et al., 2016, 2015).
The machine learning-based geocoder by Santos
et al. (2015) supplemented lexical features, repre-
sented as a bag-of-words, with an exhaustive set of
manually generated geographic features and spa-
tial heuristics such as geospatial containment and
geodesic distances between entities. The rank-
ing of locations was learned with LambdaMART
(Burges, 2010). Unlike our geocoder, the addition
of geographic features did not significantly im-
prove scores, reporting: “The geo-specific features
seem to have a limited impact over a strong base-
line system.” Unable to obtain a codebase, their re-
sults feature in Table 1. The latest neural network
approaches (Rahimi et al., 2017) with normalised
bag-of-word representations have achieved SOTA
scores when augmented with social network data
for Twitter document (user’s concatenated tweets)
geolocation (Bakerman et al., 2018).

3 Methodology

Figure 1 shows our new geocoder CamCoder im-
plemented in Keras (Chollet, 2015). The lexical
part of the geocoder has three inputs, from the
top: Context Words (location mentions excluded),
Location Mentions (context words excluded) and
the Target Entity (up to 15 words long) to be

Figure 1: The CamCoder neural architecture. It
is possible to split CamCoder into a Lexical (top 3
inputs) model and a MapVec model (see Table 2).

geocoded. Consider an example disambiguation
of Cairo in a sentence: “The Giza pyramid com-
plex is an archaeological site on the Giza Plateau,
on the outskirts of Cairo, Egypt.”. Here, Cairo is
the Target Entity; Egypt, Giza and Giza Plateau
are the Location Mentions; the rest of the sentence
forms the Context Words (excluding stopwords).
The context window is up to 200 words each side
of the Target Entity, approximately an order of
magnitude larger than most previous approaches.

We used separate layers, convolutional and/or
dense (fully-connected), with ReLu activations
(Nair and Hinton, 2010) to break up the task into
smaller, focused modules in order to learn distinct
lexical feature patterns, phrases and keywords for
different types of inputs, concatenating only at a
higher level of abstraction. Unigrams and bigrams
were learned for context words and location men-
tions (1,000 filters of size 1 and 2 for each input),
trigrams for the target entity (1,000 filters of size
3). Convolutional Neural Networks (CNNs) with
Global Maximum Pooling were chosen for their
position invariance (detecting location-indicative
words anywhere in context) and efficient input size
scaling. The dense layers have 250 units each,
with a dropout layer (p = 0.5) to prevent overfit-
ting. The fourth input is MapVec, the geographic
vector representation of location mentions. It
feeds into two dense layers with 5,000 and 1,000
units respectively. The concatenated hidden lay-
ers then get fully connected to the softmax layer.
The model is optimised with RMSProp (Tieleman
and Hinton, 2012). We approach geocoding as a
classification task where the model predicts one of

1287



7,823 classes (units in the softmax layer in Fig-
ure 1), each being a 2x2 degree tile representing
part of the world’s surface, slightly coarser than
MapVec (see Section 3.1 next). The coordinates of
the location candidate with the smallest FD (Equa-
tion 1) are the model’s final output.

FD = error − error candidatePop
maximumPop

Bias (1)

FD for each candidate is computed by reducing
the prediction error (the distance from predicted
coordinates to candidate coordinates) by the value
of error multiplied by the estimated prior proba-
bility (candidate population divided by maximum
population) multiplied by the Bias parameter. The
value ofBias = 0.9 was determined to be optimal
for highest development data scores and is identi-
cal for all highly diverse test datasets. Equation 1
is designed to bias the model towards more popu-
lated locations to reflect real-world data.

3.1 The Map Vector (MapVec)

Word embeddings and/or distributional vectors
encode a word’s meaning in terms of its linguistic
context. However, location (named) entities also
carry explicit topological semantic knowledge
such as a coordinate position and a population
count for all places with an identical name. Until
now, this knowledge was only used as part of
simple disparate heuristics and manual disam-
biguation procedures. However, it is possible
to plot this spatial data on a world map, which
can then be reshaped into a 1D feature vector, or
a Map Vector, the geographic representation of
location mentions. MapVec is a novel standard-
ised method for generating geographic features
from text documents beyond lexical features.
This enables a strong geocoding classification
performance gain by extracting additional spatial
knowledge that would normally be ignored.
Geographic semantics cannot be inferred from
language alone (too imprecise and incomplete).
Word embeddings and distributional vectors
use language/words as an implicit container of
geographic information. Map Vector uses a low-
resolution, probabilistic world map as an explicit
container of geographic information, giving us
two types of semantic features from the same text.
In related papers on the generation of location
representations, Rahimi et al. (2017) inverted the
task of geocoding Twitter users to predict word

Figure 2: MapVec visualisation (before reshaping
into a 1D vector) for Melbourne, Perth and New-
castle, showing their combined prior geographic
probabilities. Darker tiles have higher probability.

probability from a set of coordinates. A contin-
uous representation of a region was generated
by using the hidden layer of the neural network.
However, all locations in the same region will be
assigned an identical vector, which assumes that
their semantics are also identical. Another way to
obtain geographic representations is by generating
embeddings directly from Geonames data using
heuristics-driven DeepWalk (Perozzi et al., 2014)
with geodesic distances (Kejriwal and Szekely,
2017). However, to assign a vector, places must
first be disambiguated (catch-22). While these
generation methods are original and interesting
in theory, deploying them in the real-world is
infeasible, hence we invented the Map Vector.

MapVec initially begins as a 180x360 world
map of geodesic tiles. There are other ways of
representing the surface of the Earth such as using
nested hierarchies (Melo and Martins, 2015) or
k-dimensional trees (Roller et al., 2012), however,
this is beyond the scope of this work. The 1x1
tile size, in degrees of geographic coordinates,
was empirically determined to be optimal to
keep MapVec’s size computationally efficient
while maintaining meaningful resolution. This
map is then populated with the prior geographic
distribution of each location mentioned in context
(see Figure 2 for an example). We use population
count to estimate a location’s prior probability
as more populous places are more likely to
be mentioned in common discourse. For each
location mention and for each of its ambiguous
candidates, their prior probability is added to the
correct tile indicating its geographic position (see
Algorithm 1). Tiles that cover areas of open water
(64.1%) were removed to reduce size. Finally,
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Data: Text← article, paragraph, tweet, etc.
Result: MapVec location(s) representation

Locs← extractLocations(Text);
MapVec← new array(length=23,002);
for each l in Locs do

Cands← queryCandidatesFromDB(l);
maxPop← maxPopulationOf(Cands);
for each c in Cands do

prior← populationOf(c) / maxPop;
i← coordinatesToIndex(c);
MapVec[i]←MapVec[i] + prior;

end
end
m← max(MapVec);
return MapVec / m;

Algorithm 1: MapVec generation. For each ex-
tracted location l in Locs, estimate the prior prob-
ability of each candidate c. Add c’s prior proba-
bility to the appropriate array position at index i
representing its geographic position/tile. Finally,
normalise the array (to a [0− 1] range) by divid-
ing by the maximum value of the MapVec array.

this world map is reshaped into a one-dimensional
Map Vector of length 23,002.

The following features of MapVec are the most
salient: Interpretability: Word vectors typically
need intrinsic (Gerz et al., 2016) and extrinsic
tasks (Senel et al., 2017) to interpret their se-
mantics. MapVec generation is a fully transpar-
ent, human readable and modifiable method. Ef-
ficiency: MapVec is an efficient way of embed-
ding any number of locations using the same stan-
dardised vector. The alternative means creating,
storing, disambiguating and computing with mil-
lions of unique location vectors. Domain Inde-
pendence: Word vectors vary depending on the
source, time, type and language of the training
data and the parameters of generation. MapVec
is language-independent and stable over time, do-
main, size of dataset since the world geography is
objectively measured and changes very slowly.

3.2 Data and Preprocessing

Training data was generated from geographically
annotated Wikipedia pages (dumped February
2017). Each page provided up to 30 training in-
stances, limited to avoid bias from large pages.
This resulted in collecting approximately 1.4M

training instances, which were uniformly subsam-
pled down to 400K to shorten training cycles as
further increases offer diminishing returns. We
used the Python-based NLP toolkit Spacy6 (Hon-
nibal and Johnson, 2015) for text preprocessing.
All words were lowercased, lemmatised, any stop-
words, dates, numbers and so on were replaced
with a special token (“0”). Word vectors were ini-
tialised with pretrained word embeddings7 (Pen-
nington et al., 2014). We do not employ ex-
plicit feature selection as in (Bo et al., 2012), only
a minimum frequency count, which was shown
to work almost as well as deliberate selection
(Van Laere et al., 2014). The vocabulary size was
limited to the most frequent 331K words, mini-
mum ten occurrences for words and two for loca-
tion references in the 1.4M training corpus. A fi-
nal training instance comprises four types of con-
text information: Context Words (excluding lo-
cation mentions, up to 2x200 words), Location
Mentions (excluding context words, up to 2x200
words), Target Entity (up to 15 words) and the
MapVec geographic representation of context lo-
cations. We have also checked for any over-
laps between our Wikipedia-based training data
and the WikToR dataset. Those examples were
removed. The aforementioned 1.4M Wikipedia
training corpus was once again uniformly sub-
sampled to generate a disjoint development set
of 400K instances. While developing our models
mainly on this data, we also used small subsets of
LGL (18%), GeoVirus (26%) and WikToR (9%)
described in Section 4.2 to verify that development
set improvements generalised to target domains.

4 Evaluation

Our evaluation compares the geocoding perfor-
mance of six systems from Section 2, our geocoder
(CamCoder) and the population baseline. Among
these, our CNN-based model is the only neural
approach. We have included all open-source/free
geocoders in working order we were able to find
and they are the most up-to-date versions. Ta-
bles 1 and 2 feature several machine learning
algorithms including Long-Short Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) to
reproduce context2vec (Melamud et al., 2016),
Naive Bayes (Zhang, 2004) and Random Forest
(Breiman, 2001) using three diverse datasets.

6https://spacy.io/
7https://nlp.stanford.edu/
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Figure 3: The AUC (range [0 − 1]) is calculated
using the Trapezoidal Rule. Smaller errors mean
a smaller (blue) area, which means a lower score
and therefore better geocoding results.

4.1 Geocoding Metrics

We use the three standard and comprehensive
metrics, each measuring an important aspect of
geocoding, giving an accurate, holistic evalu-
ation of performance. A more detailed cost-
benefit analysis of geocoding metrics is available
in (Karimzadeh, 2016) and (Gritta et al., 2017b).
(1) Average (Mean) Error is the sum of all geocod-
ing errors per dataset divided by the number of er-
rors. It is an informative metric as it also indicates
the total error but treats all errors as equivalent
and is sensitive to outliers; (2) Accuracy@161km
is the percentage of errors that are smaller than
161km (100 miles). While it is easy to interpret,
giving fast and intuitive understanding of geocod-
ing performance in percentage terms, it ignores
all errors greater than 161km; (3) Area Under
the Curve (AUC) is a comprehensive metric, ini-
tially introduced for geocoding in (Jurgens et al.,
2015). AUC reduces the importance of large er-
rors (1,000km+) since accuracy on successfully
resolved places is more desirable. While it is not
an intuitive metric, AUC is robust to outliers and
measures all errors. A versatile geocoder should
be able to maximise all three metrics.

4.2 Evaluation Datasets

News Corpus: The Local Global Corpus (LGL)
by Lieberman et al. (2010) contains 588 news ar-
ticles (4460 test instances), which were collected
from geographically distributed newspaper sites.

This is the most frequently used geocoding eval-
uation dataset to date. The toponyms are mostly
smaller places no larger than a US state. Approxi-
mately 16% of locations in the corpus do not have
any coordinates assigned; hence, we do not use
those in the evaluation, which is also how the pre-
vious figures were obtained. Wikipedia Corpus:
This corpus was deliberately designed for ambi-
guity hence the population heuristic is not effec-
tive. Wikipedia Toponym Retrieval (WikToR) by
Gritta et al. (2017b) is a programmatically created
corpus and although not necessarily representative
of the real world distribution, it is a test of am-
biguity for geocoders. It is also a large corpus
(25,000+ examples) containing the first few para-
graphs of 5,000 Wikipedia pages. High quality,
free and open datasets are not readily available
(GeoVirus tries to address this). The following
corpora could not be included: WoTR (DeLozier
et al., 2016) due to limited coverage (southern US)
and domain type (historical language, the 1860s),
(De Oliveira et al., 2017) contains fewer than
180 locations, GeoCorpora (Wallgrün et al., 2017)
could not be retrieved in full due to deleted Twit-
ter users/tweets, GeoText (Eisenstein et al., 2010)
only allows for user geocoding, SpatialML (Mani
et al., 2010) involves prohibitive costs, GeoSem-
Cor (Buscaldi and Rosso, 2008) was annotated
with WordNet senses (rather than coordinates).

4.3 GeoVirus: a New Test Dataset
We now introduce GeoVirus, an open-source test
dataset for the evaluation of geoparsing of news
events covering global disease outbreaks and epi-
demics. It was constructed from free WikiNews8

and collected during 08/2017 - 09/2017. The
dataset is suitable for the evaluation of Geo-
tagging/Named Entity Recognition and Geocod-
ing/Toponym Resolution. Articles were identi-
fied using the WikiNews search box and keywords
such as Ebola, Bird Flu, Swine Flu, AIDS, Mad
Cow Disease, West Nile Disease, etc. Off-topic
articles were not included. Buildings, POIs, street
names and rivers were not annotated.

Annotation Process. (1) The WikiNews con-
tributor(s) who wrote the article annotated most,
but not all location references. The first author
checked those annotations and identified further
references, then proceeded to extract the place
name, indices of the start and end characters in

8https://en.wikinews.org
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Geocoder Area Under Curve† Average Error‡ Accuracy@161km

LGL WIK GEO LGL WIK GEO LGL WIK GEO

CamCoder 22 (18) 33 (37) 31 (32) 7 (5) 11 (9) 3 (3) 76 (83) 65 (57) 82 (80)
Edinburgh 25 (22) 53 (58) 33 (34) 8 (8) 31 (30) 5 (4) 76 (80) 42 (36) 78 (78)
Yahoo! 34 (35) 44 (53) 40 (44) 6 (5) 23 (25) 3 (3) 72 (75) 52 (39) 70 (65)
Population 27 (22) 68 (71) 32 (32) 12 (10) 45 (42) 5 (3) 70 (79) 22 (14) 80 (80)
CLAVIN 26 (20) 70 (69) 32 (33) 13 (9) 43 (39) 6 (5) 71 (80) 16 (16) 79 (80)
GeoTxt 29 (21) 70 (71) 33 (34) 14 (9) 47 (45) 6 (5) 68 (80) 18 (14) 79 (79)
Topocluster 38 (36) 63 (66) NA 12 (8) 38 (35) NA 63 (71) 26 (20) NA

Santos et al. NA NA NA 8 NA NA 71 NA NA

Table 1: Results on LGL, WikToR (WIK) and GeoVirus (GEO). Lower AUC and Average Error are
better while higher Acc@161km is better. Figures in brackets are scores on identical subsets of each
dataset. †Only the AUC decimal part shown. ‡Average Error rounded up to the nearest 100km.

text, assigned coordinates and the Wikipedia page
URL for each location. (2) A second pass over
the entire dataset by the first author to check
and/or remedy annotations. (3) A computer pro-
gram checked that locations were tagged cor-
rectly, checking coordinates against the Geonames
Database, URL correctness, eliminating any du-
plicates and validating XML formatting. Places
without a Wikipedia page (0.6%) were assigned
Geonames coordinates. (4) The second author
annotated a random 10% sample to obtain an
Inter-Annotator Agreement, which was 100% for
geocoding and an F-Score of 92.3 for geotag-
ging. GeoVirus in Numbers: Annotated locations:
2,167, Unique: 685, Continents: 94, Number of
articles: 229, Most frequent places (21% of to-
tal): US, Canada, China, California, UK, Mexico,
Kenya, Africa, Australia, Indonesia; Mean loca-
tion occurrence: 3.2, Total word count: 63,205.

5 Results

All tested models (except CamCoder) operate as
end-to-end systems; therefore, it is not possible to
perform geocoding separately. Each system geop-
arses its particular majority of the dataset to ob-
tain a representative data sample, shown in Table
1 as strongly correlated scores for subsets of dif-
ferent sizes, with which to assess model perfor-
mance. Table 1 also shows scores in brackets for
the overlapping partition of all systems in order
to compare performance on identical instances:
GeoVirus 601 (26%), LGL 787 (17%) and Wik-
ToR 2,202 (9%). The geocoding difficulty based
on the ambiguity of each dataset is: LGL (moder-
ate to hard), WIK (very hard), GEO (easy to mod-

erate). A population baseline also features in the
evaluation. The baseline is conceptually simple:
choose the candidate with the highest population,
akin to the most frequent word sense in WSD.
Table 1 shows the effectiveness of this heuristic,
which is competitive with many geocoders, even
outperforming some. However, the baseline is
not effective on WikToR as the dataset was de-
liberately constructed as a tough ambiguity test.
Table 1 shows how several geocoders mirror the
behaviour of the population baseline. This sim-
ple but effective heuristic is rarely used in system
comparisons, and where evaluated (Santos et al.,
2015; Leidner, 2008), it is inconsistent with ex-
pected figures (due to unpublished resources, we
are unable to investigate).

We note that no single computational paradigm
dominates Table 1. The rule-based (Edinburgh,
GeoTxt, CLAVIN), statistical (Topocluster),
machine learning (CamCoder, Santos) and other
(Yahoo!, Population) geocoders occupy different
ranks across the three datasets. Due to space
constraints, Table 1 does not show figures for an-
other type of scenario we tested, a shorter lexical
context, using 200 words instead of the standard
400. CamCoder proved to be robust to reduced
context, with only a small performance decline.
Using the same format as Table 1, AUC errors for
LGL increased from 22 (18) to 23 (19), WIK from
33 (37) to 37 (40) and GEO remained the same
at 31 (32). This means that reducing model input
size to save computational resources would still
deliver accurate results. Our CNN-based lexical
model performs at SOTA levels (Table 2) proving
the effectiveness of linguistic features while being
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Geocoder System configuration Dataset Average
Language Features + MapVec Features LGL WIK GEO

CamCoder CNN MLP 0.22 0.33 0.31 0.29
Lexical Only CNN − 0.23 0.39 0.33 0.32
MapVec Only − MLP 0.25 0.41 0.32 0.33

Context2vec† LSTM MLP 0.24 0.38 0.33 0.32
Context2vec LSTM − 0.27 0.47 0.39 0.38

Random Forest MapVec features only, no lexical input 0.26 0.36 0.33 0.32
Naive Bayes MapVec features only, no lexical input 0.28 0.56 0.36 0.40
Population − − 0.27 0.68 0.32 0.42

Table 2: AUC scores for CamCoder and its Lexical and MapVec components (model ablation). Lower
AUC scores are better. †Standard context2vec model augmented with MapVec representation.

the outstanding geocoder on the highly ambiguous
WikToR data. The Multi-Layer Perceptron (MLP)
model using only MapVec with no lexical features
is almost as effective but more importantly, it is
significantly better than the population baseline
(Table 2). This is because the Map Vector benefits
from wide contextual awareness, encoded in
Algorithm 1, while a simple population baseline
does not. When we combined the lexical and
geographic feature spaces in one model (Cam-
Coder9), we observed a substantial increase in
the SOTA scores. We have also reproduced the
context2vec model to obtain a continuous context
representation using bidirectional LSTMs to
encode lexical features, denoted as LSTM10 in
Table 2. This enabled us to test the effect of
integrating MapVec into another deep learning
model as opposed to CNNs. Supplemented with
MapVec, we observed a significant improvement,
demonstrating how enriching various neural
models with a geographic vector representation
boosts classification results.

Deep learning is the dominant paradigm in
our experiments. However, it is important that
MapVec is still effective with simpler machine
learning algorithms. To that end, we have evalu-
ated it with the Random Forest without using any
lexical features. This model was well suited to
the geocoding task despite training with only half
of the 400K training data (due to memory con-
straints, partial fit is unavailable for batch training
in SciKit Learn). Scores were on par with more so-
phisticated systems. The Naive Bayes was less ef-

9Single model settings/parameters for all tests.
10https://keras.io/layers/recurrent/

fective with MapVec though still somewhat viable
as a geocoder given the lack of lexical features
and a naive algorithm, narrowly beating popula-
tion. GeoVirus scores remain highly competitive
across most geocoders. This is due to the nature of
the dataset; locations skewed towards their domi-
nant “senses” simulating ideal geocoding condi-
tions, enabling high accuracy for the population
baseline. GeoVirus alone may not serve as the
best scenario to assess a geocoder’s performance,
however, it is nevertheless important and valu-
able to determine behaviour in a standard envi-
ronment. For example, GeoVirus helped us diag-
nose Yahoo! Placemaker’s lower accuracy in what
should be an easy test for a geocoder. The fig-
ures show that while the average error is low, the
accuracy@161km is noticeably lower than most
systems. When coupled with other complemen-
tary datasets such as LGL and WikToR, it fa-
cilitates a comprehensive assessment of geocod-
ing behaviour in many types of scenarios, expos-
ing potential domain dependence. We note that
GeoVirus has a dual function, NER (not evaluated
but useful for future work) and Geocoding. We
made all of our resources freely available11 for full
reproducibility (Goodman et al., 2016).

5.1 Discussion and Errors

The Pearson correlation coefficient of the target
entity ambiguity and the error size was only r ≈
0.2 suggesting that CamCoder’s geocoding errors
do not simply rise with location ambiguity. Errors
were also not correlated (r ≈ 0.0) with population
size with all types of locations geocoded to vari-
ous degrees of accuracy. All error curves follow

11https://github.com/milangritta/
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a power law distribution with between 89% and
96% of errors less than 1500km, the rest rapidly
increasing into thousands of kilometers. Errors
also appear to be uniformly geographically dis-
tributed across the world. The strong lexical com-
ponent shown in Table 2 is reflected by the lack
of a relationship between error size and the num-
ber of locations found in the context. The num-
ber of total words in context is also independent
of geocoding accuracy. This suggests that Cam-
Coder learns strong linguistic cues beyond simple
association of place names with the target entity
and is able to cope with flexible-sized contexts.
A CNN Geocoder would expect to perform well
for the following reasons: Our context window
is 400 words rather than 10-40 words as in pre-
vious approaches. The model learns 1,000 fea-
ture maps per input and per feature type, tracking
5,000 different word patterns (unigrams, bigrams
and trigrams), a significant text processing capa-
bility. The lexical model also takes advantage of
our own 50-dimensional word embeddings, tuned
on geographic Wikipedia pages only, allowing for
greater generalisation than bag-of-unigrams mod-
els; and the large training/development datasets
(400K each), optimising geocoding over a diverse
global set of places allowing our model to gener-
alise to unseen instances. We note that MapVec
generation is sensitive to NER performance with
higher F-Scores leading to better quality of the ge-
ographic vector representation(s). Precision errors
can introduce noise while recall errors may with-
hold important locations. The average F-Score for
the featured geoparsers is F ≈ 0.7 (standard de-
viation ≈ 0.1). Spacy’s NER performance over
the three datasets is also F ≈ 0.7 with a simi-
lar variation between datasets. In order to further
interpret scores in Tables 1 and 2, with respect
to maximising geocoding performance, we briefly
discuss the Oracle score. Oracle is the geocod-
ing performance upper bound given by the Geon-
ames data, i.e. the highest possible score(s) us-
ing Geonames coordinates as the geocoding out-
put. In other words, it quantifies the minimum er-
ror for each dataset given the perfect location dis-
ambiguation. This means it quantifies the differ-
ence between “gold standard” coordinates and the
coordinates in the Geonames database. The fol-
lowing are the Oracle scores for LGL (AUC=0.04,
a@161km=99) annotated with Geonames, Wik-
ToR (AUC=0.14, a@161km=92) and GeoVirus

(AUC=0.27, a@161km=88), which are annotated
with Wikipedia data. Subtracting the Oracle score
from a geocoder’s score quantifies the scope of its
theoretical future improvement, given a particular
database/gazetteer.

6 Conclusions and Future Work

Geocoding methods commonly employ lexical
features, which have proved to be very effec-
tive. Our lexical model was the best language-
only geocoder in extensive tests. It is possible,
however, to go beyond lexical semantics. Loca-
tions also have a rich topological meaning, which
has not yet been successfully isolated and de-
ployed. We need a means of extracting and en-
coding this additional knowledge. To that end,
we introduced MapVec, an algorithm and a con-
tainer for encoding context locations in geodesic
vector space. We showed how CamCoder, us-
ing lexical and MapVec features, outperformed
both approaches, achieving a new SOTA. MapVec
remains effective with various machine learning
frameworks (Random Forest, CNN and MLP) and
substantially improves accuracy when combined
with other neural models (LSTMs). Finally, we
introduced GeoVirus, an open-source dataset that
helps facilitate geoparsing evaluation across more
diverse domains with different lexical-geographic
distributions (Flatow et al., 2015; Dredze et al.,
2016). Tasks that could benefit from our meth-
ods include social media placing tasks (Choi et al.,
2014), inferring user location on Twitter (Zheng
et al., 2017), geolocation of images based on de-
scriptions (Serdyukov et al., 2009) and detect-
ing/analyzing incidents from social media (Berlin-
gerio et al., 2013). Future work may see our
methods applied to document geolocation to as-
sess the effectiveness of scaling geodesic vectors
from paragraphs to entire documents.
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Abstract

People go to different places to engage
in activities that reflect their goals. For
example, people go to restaurants to eat,
libraries to study, and churches to pray.
We refer to an activity that represents a
common reason why people typically go
to a location as a prototypical goal activ-
ity (goal-act). Our research aims to learn
goal-acts for specific locations using a
text corpus and semi-supervised learning.
First, we extract activities and locations
that co-occur in goal-oriented syntactic
patterns. Next, we create an activity profile
matrix and apply a semi-supervised label
propagation algorithm to iteratively revise
the activity strengths for different loca-
tions using a small set of labeled data. We
show that this approach outperforms sev-
eral baseline methods when judged against
goal-acts identified by human annotators.

1 Introduction

Every day, people go to different places to accom-
plish goals. People go to stores to buy clothing,
go to restaurants to eat, and go to the doctor for
medical services. People travel to specific destina-
tions to enjoy the beach, go skiing, or see historical
sites. For most places, people typically go there
for a common set of reasons, which we will re-
fer to as prototypical goal activities (goal-acts) for
a location. For example, a prototypical goal-act
for restaurants would be “eat food” and for IKEA
would be “buy furniture”.

Previous research has established that recogniz-
ing people’s goals is essential for narrative text un-
derstanding and story comprehension (Schank and
Abelson, 1977; Wilensky, 1978; Lehnert, 1981;
Elson and McKeown, 2010; Goyal et al., 2013).

Goals and plans are essential to understand peo-
ple’s behavior and we use our knowledge of pro-
totypical goals to make inferences when reading.
For example, consider the following pair of sen-
tences: “Mary went to the supermarket. She
needed milk.” Most people will infer that Mary
purchased milk, unless told otherwise. But a pur-
chase event is not explicitly mentioned. In con-
trast, a similar sentence pair “Mary went to the
theatre. She needed milk.” feels incongruent
and does not produce that inference. Recognizing
goals is also critical for conversational dialogue
systems. For example, if a friend tells you that
they went to a restaurant, you might reply “What
did you eat?”, but if a friend says that they went
to Yosemite, a more appropriate response might be
“Did you hike?” or “Did you see the waterfalls?”.

Our knowledge of prototypical goal activities
also helps us resolve semantic ambiguity. For ex-
ample, consider the following sentences:

(a) She went to the kitchen and got chicken.
(b) She went to the supermarket and got chicken.
(c) She went to the restaurant and got chicken.

In sentence (a), we infer that she retrieved
chicken (e.g., from the refrigerator) but did not pay
for it. In (b), we infer that she paid for the chicken
but probably did not eat it at the supermarket. In
(c), we infer that she ate the chicken at the restau-
rant. Note how the verb “got” maps to different
presumed events depending on the location.

Our research aims to learn the prototypical goal-
acts for locations using a text corpus. First, we ex-
tract activities that co-occur with locations in goal-
oriented syntactic patterns. Next, we construct
an activity profile matrix that consists of an activ-
ity vector (profile) for each of the locations. We
then apply a semi-supervised label propagation
algorithm to iteratively revise the activity profile
strengths based on a small set of labeled locations.
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Figure 1: Dependency relation structure for “go to” pattern.

We also incorporate external resources to measure
similarity between different activity expressions.
Our results show that this semi-supervised learn-
ing approach outperforms several baseline meth-
ods in identifying the prototypical goal activities
for locations.

2 Related Work

Recognizing plans and goals is fundamental to
narrative story understanding (Schank and Abel-
son, 1977; Bower, 1982). Conceptual knowledge
structures developed in prior work have shown
the importance of this type of knowledge, includ-
ing plans (Wilensky, 1978), goal trees (Carbonell,
1979), and plot units (Lehnert, 1981). Wilensky’s
research aimed to understand the actions of char-
acters in stories by analyzing their goals, and their
plans to accomplish those goals. For example,
someone’s goal might be to obtain food with a plan
to go to a restaurant. Our work aims to learn proto-
typical goals associated with a location, to support
similar inference capabilities during story under-
standing.

Goals and plans can also function to trigger
scripts (Cullingford, 1978), such as the $RESTAU-
RANT script. There has been growing interest in
learning narrative event chains and script knowl-
edge from large text corpora (e.g., (Chambers and
Jurafsky, 2008, 2009; Jans et al., 2012; Pichotta
and Mooney, 2014, 2016)). In addition, Goyal et
al. (2010; 2013) developed a system to automat-
ically produce plot unit representations for short
stories. A manual analysis of their stories revealed
that 61% of Positive/Negative Affect States orig-
inated from completed plans and goals, and 46%
of Mental Affect States originated from explicitly
stated or inferred plans and goals.

Elson & McKeown (2010) included plans and
goals in their work on creating extensive story
bank annotations that capture the knowledge
needed to understand narrative structure. Re-
searchers have also begun to explore NLP meth-
ods for recognizing the goals, desires, and plans

of characters in stories. Recent work has explored
techniques to detect wishes (desires) in natural
language text (Goldberg et al., 2009) and identify
desire fulfillment (Chaturvedi et al., 2016; Rahim-
toroghi et al., 2017).

Graph-based semi-supervised learning has been
successfully used for many tasks, including senti-
ment analysis (Rao and Ravichandran, 2009; Feng
et al., 2013), affective event recognition (Ding and
Riloff, 2016) and class-instance extraction (Taluk-
dar and Pereira, 2010). The semi-supervised
learning algorithm used in this paper is modeled
after a framework developed by Zhu et al. (2003)
based on harmonic energy minimization and a la-
bel propagation algorithm described in (Zhu and
Ghahramani, 2002).

3 Learning Prototypical Goal Activities

Our aim is to learn the most prototypical goal-acts
for locations. To tackle this problem, we first ex-
tract locations and related activities from a large
text corpus. Then we use a semi-supervised learn-
ing method to identify the goal activities for in-
dividual locations. In the following sections we
describe these processes in detail.

3.1 Location and Activity Extraction

To collect information about locations and activ-
ities, we use the 2011 Spinn3r dataset (Burton
et al., 2011). Since our interest is learning about
the activities of ordinary people in their daily lives,
we use the Weblog subset of the Spinn3r corpus,
which contains over 133 million blog posts.

We use the text data to identify activities that are
potential goal-acts for a location. However we also
need to identify locations and want to include both
proper names (e.g., Disneyland) as well as nomi-
nals (e.g., store, beach), so Named Entity Recog-
nition will not suffice. Consequently, we extract
(Loc,Act) pairs using syntactic patterns.

First, we apply the Stanford dependency parser
(Manning et al., 2014). We then extract sentences
that match the pattern “go to X to Y ” with the
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a1 = buy book a2 = eat burger ... am = pray
l1 = McDonald’s .10 .30 .01
l2 = Burger King .12 .50 .02
l3 = bookstore .40 .02 .04

...
...

ln = church .05 .01 .70

Table 1: An illustration of the activity profile matrix Y .

following conditions: (1) there exists a subject
connecting to “go”, (2) X has an nmod (nominal
modifier) relation to “go” (lemma), (3)X is a noun
or noun compound, (4) Y has an xcomp relation
(open clausal complement) with “go”, and (5) Y
is a verb. Figure 1 depicts the intended syntactic
structure, which we will informally call the “go to”
pattern. For sentences that match this pattern, we
extract X as a location and Y as an activity. If the
verb is followed by a particle and/or noun phrase
(NP), then we also include the particle and head
noun of the NP. For example, we extract activities
such as “pray”, “clean up”, and “buy sweater”.

This syntactic structure was chosen to identify
activities that are described as being the reason
why someone went to the location. However it is
not perfect. In some cases, X is not a location
(e.g., “go to great lengths to ...” yields “lengths”
as a location), or Y is not a goal-act for X (e.g.,
“go to the office to retrieve my briefcase ...” yields
“retrieve briefcase” which is not a prototypical
goal for “office”). Interestingly, the pattern ex-
tracts some nominals that are not locations in a
strict sense, but behave as locations. For example,
“go to the doctor” extracts “doctor” as a location.
Literally a doctor is a person, but in this context it
really refers to the doctor’s office, which is a lo-
cation. The pattern also extracts entities such as
“roof”, which are not generally thought of as loca-
tions but do have a fixed physical location. Other
extracted entities are virtual but function as loca-
tions, such as “Internet”. For the purposes of this
work, we use the term location in a general sense
to include any place or object that has a physical,
virtual or implied location.

The “go to” pattern worked quite well at extract-
ing (Loc,Act) pairs, but in relatively small quanti-
ties due to the very specific nature of the syntactic
structure. So we tried to find additional activities
for those locations. Initially, we tried harvesting
activities that occurred in close proximity (within
5 words) to a known location, but the results were

too noisy. Instead, we used the pattern “Y in/at
X” with the same syntactic constraints for Y (the
extracted activity) and X (a location extracted by
the “go to” pattern).

We discovered many sentences in the corpus
that were exactly or nearly the same, differing only
by a few words, which resulted in artificially high
frequency counts for some (Loc,Act) pairs. So
we filtered duplicate or near-duplicate sentences
by computing the longest common substring of
sentence pairs that extracted the same (Loc,Act).
If the shared substring had length ≥ 5, then we
discarded the “duplicate” sentence.

Finally, we applied three filters. To keep the
size of the data manageable, we discarded loca-
tions and activities that were each extracted with
frequency < 30 by our patterns. And we manu-
ally filtered locations that are Named Entities cor-
responding to cities or larger geo-political regions
(e.g., provinces or countries). Large regions de-
fined by government boundaries fall outside the
scope of our task because the set of activities that
typically occur in (say) a city or country is so
broad. Finally, we added a filter to try to remove
extremely general activities that can occur almost
anywhere (e.g., visit). If an activity co-occurred
with > 20% of the extracted (distinct) locations,
then we discarded it.

After these filters, we extracted 451 distinct lo-
cations, 5143 distinct activities, roughly 200, 000
distinct (Loc,Act) pairs, and roughly 500, 000 in-
stances of (Loc,Act) pairs.

3.2 Activity Profiles for Locations
We define an activity profile matrix Y of size
n×m, where n is the number of distinct locations
andm is the number of distinct activities. Yi,j rep-
resents the strength of the jth activity aj being a
goal-act for li. We use yi ∈ Rm to denote the ith
row of Y . Table 1 shows an illustration of (partial)
activity profiles for four locations.1 Our goal is

1Not actual values, for illustration only.
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to learn the Yi,j values so that activities with high
strength are truly goal-acts for location li.

We could build the activity profile for location
li using the co-occurrence data extracted from the
blog corpus. For example, we could estimate
P (aj | li) directly from the frequency counts of
the activities extracted for li. However, a high
co-occurrence frequency doesn’t necessarily mean
that the activity represents a prototypical goal.
For example, the activity “have appointment” fre-
quently co-occurs with “clinic” but doesn’t re-
veal the underlying reason for going to the clinic
(e.g., probably to see a doctor or undergo a med-
ical test). To appreciate the distinction, imagine
that you asked a friend why she went to a health
clinic, and she responded with “because I had an
appointment”. You would likely view her response
as being snarky or evasive (i.e., she didn’t want to
tell you the reason). In Section 4, we will evaluate
this approach as a baseline and show that it does
not perform well.

3.3 Semi-Supervised Learning of Goal-Act
Probabilities

Our aim is to learn the activity profiles for lo-
cations using a small amount of labeled data, so
we frame this problem as a semi-supervised learn-
ing task. Given a small number of “seed” loca-
tions coupled with predefined goal-acts, we want
to learn the goal-acts for new locations.

3.3.1 Location Similarity Graph
We use li ∈ L to represent location li, where |L| =
n. We define an undirected graph G = (V,E)
with vertices representing locations (|V | = n) and
edgesE = V ×V , such that each pair of vertices vi
and vk is connected with an edge eik whose weight
represents the similarity between li and lk.

We can then represent the edge weights as an
n × n symmetric weight matrix W indicating the
similarity between locations. There could be many
ways to define the weights, but for now we use the
following definition from (Zhu et al., 2003), where
σ2 is a hyper-parameter2:

Wi,k = exp

(
− 1

σ2
(1− sim (li, lk))

)
(1)

To assess the similarity between locations, we
measure the cosine similarity between vectors
of their co-occurrence frequencies with activi-
ties. Specifically, let matrix Fn×m = [f1, ..., fn]

T

2We use the same value σ2 = 0.03 as (Zhu et al., 2003).

where fi is a vector of length m capturing the
co-occurrence frequencies between location li and
each activity aj in the extracted data (i.e., Fi,j is
the number of times that activity aj occurred with
location li). We then define location similarity as:

sim(li, lk) =
fT
i fk

‖fi‖‖fk‖
(2)

3.3.2 Initializing Activity Profiles
We use semi-supervised learning with a set of
“seed” locations from human annotations, and
another set of locations that are unlabeled. So
we subdivide the set of locations into S =
{l1, ..., ls}, which are the seed locations, and U =
{ls+1, ..., ls+u}, which are the unlabeled loca-
tions, such that s + u = n. For an unlabeled
location li ∈ U , the initial activity profile is the
normalized co-occurrence frequency vector f i.

For each seed location li ∈ S, we first automat-
ically construct an activity profile vector hi based
on the gold goal-acts which were obtained from
human annotators as described in Section 4.1. All
activities not in the gold set are assigned a value of
zero. Each activity aj in the gold set is assigned a
probability P (aj | li) based on the gold answers.
However, the gold goal-acts may not match the ac-
tivity phrases found in the corpus (see discussion
in Section 4.3), so we smooth the vector created
with the gold goal-acts by averaging it with the
normalized co-occurrence frequency vector f i ex-
tracted from the corpus.

The activity profiles of seed locations stay con-
stant through the learning process. We use y0

i to
denote the initial activity profiles. So when li ∈ S,
y0
i = (f i + hi)/2.

3.3.3 Learning Goal-Act Strengths
We apply a learning framework developed by (Zhu
et al., 2003) based on harmonic energy minimiza-
tion and extend it to multiple labels. Intuitively,
we assume that similar locations should share sim-
ilar activity profiles,3 which motivates the follow-
ing objective function over matrix Y :

argmin
Y

∑

i,k

Wi,k‖yi − yk‖2,

s.t. yi = y0
i for each li ∈ S

(3)

Let D = (di) denote an n × n diagonal matrix
where di =

∑n
k=1Wi,k. Let’s split Y by the sth

3This is a heuristic but is not always true.
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row: Y =

[
Ys
Yu

]
, then split W (similarly for D)

into four blocks by the sth row and column:

W =

[
Wss Wsu

Wus Wuu

]
(4)

From (Zhu et al., 2003), Eq (3) is given by:

Yu = (Duu −Wuu)
−1WusYs (5)

We then use the label propagation algorithm de-
scribed in (Zhu and Ghahramani, 2002) to com-
pute Y :

Algorithm 1
repeat
Y ← D−1WY
Clamp yi = y0

i for each li ∈ S
until convergence

3.3.4 Activity Similarity
One problem with the above algorithm is that it
only takes advantage of relations between vertices
(i.e., locations). If there are intrinsic relations
between activities, they could be exploited as a
complementary source of information to benefit
the learning. Intuitively, different pairs of activi-
ties share different similarities, e.g., “eat burgers”
should be more similar to “have lunch” than “read
books”.

Under this idea, similar to the previous loca-
tion similarity weight matrixW , we want to define
an activity similarity weight matrix Am×m where
Ai,k indicates the similarity weight between activ-
ity ai and ak:

Ai,k = exp

(
− 1

σ2
(1− sim (ai, ak))

)
(6)

where σ2 is the same as in Eq (1).
We explore 3 different similarity functions

sim(ai, ak) based on co-occurrence with loca-
tions, word matching, and embedding similarities.

First, similar to Eq (2), we can use each activ-
ity’s co-occurrence frequency with all locations as
its location profile and define a similarity score
based on cosine values of location profile vectors:

simL(ai, ak) =
gT
i gk

‖gi‖‖gk‖
(7)

where the predefined co-occurrence frequency
matrix F = [f1, ..., fn]

T = [g1, ...,gm].

As a second option, the similarity between ac-
tivities can often be implied by their lexical over-
lap, e.g., two activities sharing the same verb or
noun might be related. For each word belonging
to any of our activities, we use WordNet (Miller,
1995) to find its synonyms. We also include the
word itself in the synonym set. If the synonym
sets of two words overlap, we call these two words
“match”. Then we define the lexical overlap sim-
ilarity function between ai and ak:

simO(ai, ak) =





1 if verb and noun match
0.5 if verb or noun match
0 otherwise

(8)
As a third option, we can use 300-dimension

word embedding vectors (Pennington et al., 2014)
trained on 840 billion tokens of web data to com-
pute semantic similarity. We compute an activity’s
embedding as the average of its words’ embed-
dings. Let simE(ai, ak) be the cosine value be-
tween the embedding vectors of ai and ak:

simE(ai, ak) = cos〈Embed(ai),Embed(ak)〉
(9)

Finally, we can plug these similarity functions
into Eq (6). We use AL, AO, AE to denote the
corresponding matrix. We can also plug in mul-
tiple similarity metrics such as (simL + simE)/2
and use combination symbols AL+E to denote the
matrix.

3.3.5 Injecting Activity Similarity
Once we have a similarity matrix for activities, the
next question is how will it help with the activ-
ity profile computation? Recall from Eq (5), we
know that the activity profile of an unlabeled loca-
tion can be represented by a linear combination of
other locations’ activity profiles. The activity pro-
file matrix Y is an n ×m matrix where each row
is the activity profile for a location. We can also
view Y as a matrix whose each column is the lo-
cation profile for an activity. Using the same idea,
we can make each column approximate a linear
combination of its highly related columns (i.e., the
location profile of an activity will become more
similar to the location profiles of its similar activ-
ities). Our expectation is that this approximation
will help improve the quality of Y .

By being right multiplied by matrix A, Y gets
updated from manipulating its columns (activities)
as well. We modify the algorithm accordingly as
below:
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Figure 2: Percentage of locations that have at least
one goal-act assigned by multiple annotators.

Algorithm 2
repeat
Y ← D−1WYA
Clamp yi = y0

i for each li ∈ S
until convergence

4 Evaluation

4.1 Gold Standard Data

Since this is a new task and there is no existing
dataset for evaluation, we use crowd-sourcing via
Amazon Mechanical Turk (AMT) to acquire gold
standard data. First, we released a qualification
test containing 15 locations along with detailed an-
notation guidelines. 25 AMT workers finished our
assignment, and we chose 15 of them who did the
best job following our guidelines to continue. We
gave the 15 qualified workers 200 new locations,
consisting of 152 nominals and 48 proper names,4

randomly selected from our extracted data and set
aside as test data. For each location, we asked the
AMT workers to complete the following sentence:

People go to LOC to
VERB NOUN

LOC was replaced by one of the 200 locations.
Annotators were asked to provide an activity that
is the primary reason why a person would go to
that location, in the form of just a VERB or a VERB

NOUN pair. Annotators also had the option to la-
bel a location as an “ERROR” if they felt that the
provided term is not a location, since our location
extraction was not perfect.

4Same distribution as in the whole location set.

Only 10 annotators finished labeling our test
cases, so we used their answers as the gold stan-
dard. We discarded 12 locations that were labeled
as an “ERROR” by ≥ 3 workers.5 This resulted in
a test set of 188 locations paired with 10 manually
defined goal-acts for each one.

A key question that we wanted to investigate
through this manual annotation effort is to know
whether people truly do associate the same pro-
totypical goal activities with locations. To what
extent do people agree when asked to list goal-
acts? Also, some places clearly have a smaller set
of goal-acts than others. For example, the primary
reason to go to an airport is to catch a flight, but
there’s a larger set of common reasons why peo-
ple go to Yosemite (e.g.,“hiking camping”, “rock
climbing”, “see waterfalls”, etc.).

Complicating matters, the AMT workers often
described the same activity with different words
(e.g., “buy book” vs. “purchase book”). Automat-
ically recognizing synonymous event phrases is a
difficult NLP problem in its own right.6 So solely
for the purpose of analysis, we manually merged
activities that have a nearly identical meaning. We
were extremely conservative and did not merge
similar or related phrases that were not synony-
mous because the granularity of terms may matter
for this task (e.g., we did not merge “eat burger”
and “eat lunch” because one may apply to a spe-
cific location while the other does not).

Figure 2 shows the results of our analysis. Only
1 location was assigned exactly the same goal-act
by all 10 annotators. But at least half (5) of the
annotators listed the same goal-act for 40% of the
locations. And nearly 80% of locations had one
or more goal-acts listed by ≥ 3 people. These re-
sults show that people often do share the same as-
sociations between prototypical goal-acts and lo-
cations. These results are also very conservative
because many different answers were also similar
(e.g. “eat burger”, “eat meal”).

In Table 2 we show examples of locations and
the goal-acts listed for them by the human an-
notators. If multiple people gave the same an-
swer, we show the number in parentheses. For
example, given the location “Toys R Us”, 9 peo-
ple listed “buy toys” as a goal-act and 1 person
listed “browse gifts”. We see from Table 2 that

5We found that the workers rarely used the “ERROR” la-
bel, so setting this threshold to be 3 was a strong signal.

6We tried using WordNet synsets to conflate phrases, but
it didn’t help much.
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Location Gold Goal-Acts
Toys R Us buy toys (9), browse gifts
sink wash hands (7), wash dishes (3)
airport catch flight (7), board planes, take air-

plane, take trips
bookstore buy books (6), browse books (2),

browse bestsellers, read book
lake go fishing (3), go swimming (3), drive

boat (2), ride boat, see scenery
chiropractor get treatment (3), adjust backs (3), al-

leviate pain (2), get adjustment, get
aligned

Chinatown buy goods (2), buy duck, buy sou-
venirs, eat dim sum, eat rice, eat won-
tons, find Chinese, speak Chinese,
visit restaurants

Table 2: Goal-acts provided by human annotators.

some locations yield very similar sets of goal-acts
(e.g., sink, airport, bookstore), while other loca-
tions show more diversity (e.g., lake, chiropractor,
Chinatown).

4.2 Baselines
To assess the difficulty of this NLP task, we cre-
ated 3 baseline systems for comparison with our
learning approach. All of these methods take the
list of activities that co-occurred with a location li
in our extracted data and rank them.

The first baseline, FREQ, ranks the activities
based on the co-occurrence frequency Fi,j be-
tween li and aj in our patterns. The second base-
line, PMI, ranks the activities using point-wise
mutual information. The third baseline, EMBED,
ranks the activities based on the cosine similar-
ity of the semantic embedding vectors for li and
aj . We use GloVe (Pennington et al., 2014) 300-
dimension embedding vectors pre-trained on 840
billion tokens of web data. For locations and ac-
tivities with multiple words, we create an embed-
ding by averaging the vectors of their constituent
words.

4.3 Matching Activities
The gold standard contains a set of goal-acts for
each location. Since the same activity can be ex-
pressed with many different phrases, the only way
to truly know whether two phrases refer to the
same activity is manual evaluation, which is ex-
pensive. Furthermore, many activities are very
similar or highly related, but not exactly the same.
For example, “eat burger” and “eat food” both
describe eating activities, but the latter is more
general than the former. Considering them to
be the same is not always warranted (e.g., “eat

MRRE MRRP TOP1 TOP2 TOP3
EMBED 0.02 0.09 0.05 0.08 0.12
PMI 0.20 0.33 0.25 0.36 0.41
FREQ 0.23 0.34 0.23 0.32 0.40
AP 0.28 0.38 0.29 0.41 0.47
AP+AL 0.28 0.40 0.32 0.44 0.49
AP+AO 0.23 0.33 0.24 0.35 0.43
AP+AE 0.25 0.36 0.28 0.40 0.47
AP+AL+E 0.29 0.42 0.35 0.44 0.52

Table 3: Scores for MRR and Top k results.

burger” is a logical goal-act for McDonald’s but
not for Baskin-Robbins which primarily sells ice
cream). As another example, “buy chicken” and
“eat chicken” refer to different events (buying and
eating) so they are clearly not the same semanti-
cally. But at a place like KFC, buying chicken im-
plies eating chicken, and vice versa, so they seem
like equally good answers as goal-acts for KFC.
Due to the complexities of determining which gold
standard answers belong in equivalence classes,
we considered all of the goal-acts provided by the
human annotators to be acceptable answers.

To determine whether an activity aj produced
by our system matches any of the gold goal-acts
for a location li, we report results using two types
of matching criteria. Exact Match judges aj to be
a correct answer for li if (1) it exactly matches (af-
ter lemmatization) any activity in li’s gold set, or
(2) aj’s verb and noun both appear in li’s gold set,
though possibly in different phrases. For example,
if a gold set contains “buy novels” and “browse
books”, then “buy books” will be a match.

Since Exact Match is very conservative, we
also define a Partial Match criterion to give 50%
credit for answers that partially overlap with a gold
answer. An activity aj is a partial match for li if
either its verb or noun matches any of the activi-
ties in li’s gold set of goal-acts. For example, “buy
burger” would be a partial match with “buy food”
because their verbs match.

4.4 Evaluation Metrics

All of our methods produce a ranked list of hy-
pothesized goal-acts for a location. So we use
Mean Reciprocal Rank (MRR) to judge the qual-
ity of the top 10 activities in each ranked list. We
report two types of MRR scores.

MRR based on the Exact Match criteria
(MRRE) is computed as follows, where n is the
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number of locations in the test set:

MRRE =
1

n

n∑

i=1

1

rank of 1st Exact Match
(10)

We also compute MRR using both the Exact
Match and Partial Match criteria. First, we need
to identify the “best” answer among the 10 ac-
tivities in the ranked list, which depends both on
each activity’s ranking and its matching score. The
matching score for activity aj is defined as:

score(aj) =





1 if aj is an Exact Match
0.5 if aj is a Partial Match
0 otherwise

Given 10 ranked activities a1 ... a10 for li, we then
compute:

best score(li) = max
j=1..10

score(aj)
rank(aj)

And then finally define MRRP as follows:

MRRP =
1

n

n∑

i=1

best score(li) (11)

4.5 Experimental Results
Unless otherwise noted, all of our experiments re-
port results using 4-fold cross-validation on the
200 locations in our test set. We used 4 folds to
ensure 50 seed locations for each run (i.e., 1 fold
for training and 3 folds for testing).

The first two columns of Table 3 show the MRR
results under Exact Match and Partial Match con-
ditions. The first 3 rows show the results for the
baseline systems, and the remaining rows show re-
sults for our Activity Profile (AP) semi-supervised
learning method. We show results for 5 varia-
tions of the algorithm: AP uses Algorithm 1, and
the others use Algorithm 2 with different Activ-
ity Similarity measures: AP+AL (location profile
similarity), AP+AO (overlap similarity), AP+AE

(embedding similarity), and AP+AL+E (location
profiles plus embeddings).

Table 3 shows that our AP algorithm outper-
forms all 3 baseline methods. When adding Activ-
ity Similarity into the algorithm, we find that AL

slightly improves performance, butAO andAE do
not. However, we also tried combining them and
obtained improved results by usingAL andAE to-
gether, yielding an MRRP score of 0.42.

To gain more insight about the behavior of the
models, Table 3 also shows results for the top-
ranked 1, 2, and 3 answers. For these experiments,
the system gets full credit if any of its top k an-
swers exactly matches the gold standard, or 50%
credit if a partial match is among its top k answers.
These results show that our AP method produces
more correct answers at the top of the list than the
baseline methods.

Table 4 shows six locations with their gold an-
swers and the Top 3 goal-acts hypothesized by
our best AP system and the PMI and FREQ base-
lines. The activities in boldface were deemed
correct (including Partial Match). For “book-
store” and “pharmacy”, all of the methods perform
well. Note the challenge of recognizing that differ-
ent phrases mean essentially the same thing (e.g.,
“fill prescription”, “pick up prescription”, “find
medicine”). For “university” and “Meijer”, the AP
method produces more appropriate answers than
the baseline methods. For “market” and “phone”,
all three methods struggle to produce good an-
swers. Since “market” is polysemous, we see ac-
tivities related to both stores and financial markets.
And “phone” arguably is not a location at all, but
most human annotators treated it as a virtual loca-
tion, listing goal-acts related to telephones. How-
ever our algorithm considered phones to be sim-
ilar to computers, which makes sense for today’s
smartphones. In general, we also observed that In-
ternet sites behave as virtual locations in language
(e.g., “I went to YouTube...”).

4.6 Discussion

The goal-acts learned by our system were ex-
tracted from the Spinn3r dataset, while the gold
standard answers were provided by human anno-
tators, so the same (or very similar) activities are
often expressed in different ways (see Section 4.3).
This raises the question: what is the upper bound
on system performance when evaluating against
human-provided goal-acts? To answer this, we
compared all of the activities that co-occurred with
each location in the corpus against its gold goal-
acts. Only 36% of locations had at least one
gold goal-act among its extracted activities when
matching identical strings (after lemmatization).
Because of this issue, our Exact Match criteria also
allowed for combining verbs and nouns from dif-
ferent gold answers. Under this Exact Match crite-
ria, 73% of locations had at least one gold goal-act
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Location Gold Activity List AP+AL+E Top 3 PMI Top 3 FREQ Top 3

bookstore

buy book (6)
browse book (2)
browse bestseller

read book

buy book
purchase book

see book

buy copy
purchase book

buy book

buy book
browse

find book

pharmacy

get drug (4)
fill prescription (3)
get prescription (2)

buy medicine

find medicine
get prescription

pick up prescription

buy pill
fill prescription

pick up prescription

buy pill
fill prescription

pick up prescription

university
get degree (4)

gain education (5)
watch sport

gain education
further education
gain knowledge

study law
study psychology

pursue study

enrol7

enroll
take class

Meijer
buy grocery (8)

buy cream
obtain grocery

buy item
go shopping

get item

check out deal
have shopping

post today

get item
save money
check out

market
buy grocery (6)

buy fresh, buy goods
buy shirt, find produce

make money
eat out

eat lunch

have demand
increase competition

lead player

trade
intervene

make money

phone

make call (4), ERROR (2)
answer call, call friend

have conversation
stop ring

play game
browse website
view website

put number
have number

put card

plug
glance

have number

Table 4: Examples of Top 3 hypothesized prototypical goal activities.

among the extracted activities, so this represents
an upper bound on performance using this metric.
Under the Partial Match criteria, 98% of locations
had at least one gold goal-act among the extracted
activities, but only 50% credit was awarded for
these cases so the maximum score possible would
be ∼86%.

We also manually inspected 200 gold loca-
tions to analyze their types. We discovered some
related groups, but substantial diversity overall.
The largest group contains ∼20% of the loca-
tions, which are many kinds of stores (e.g., Ikea,
WalMart, Apple store, shoe store). Even within a
group, different locations often have quite differ-
ent sets of co-occurring activities. In fact, we dis-
covered some spelling variants (e.g., “WalMart”
and “wal mart”), but they also have substan-
tially different activity vectors (e.g., because one
spelling is much more frequent), so the model
learns about them independently.8 Other groups
include restaurants (∼5%), home-related (e.g.,
bathroom) (∼5%), education (∼5%), virtual (e.g.,
Wikipedia) (∼3%), medical (∼3%) and landscape
(e.g., hill) (∼3%). It is worth noting that our loca-
tions were extracted by two syntactic patterns and
it remains to be seen if this has brought in any bias
— detecting location nouns (especially nominals)

7A lemmatization error for the verb “enrolled”.
8Of course normalizing location names beforehand may

be beneficial in future work.

is a challenging problem in its own right.

5 Conclusions and Future Work

We introduced the problem of learning prototypi-
cal goal activities for locations. We obtained hu-
man annotations and showed that people do as-
sociate prototypical goal-acts with locations. We
then created an activity profile framework and ap-
plied a semi-supervised label propagation algo-
rithm to iteratively update the activity strengths for
locations. We demonstrated that our learning algo-
rithm identifies goal-acts for locations more accu-
rately than several baseline methods.

However, this problem is far from solved. Chal-
lenges also remain in how to evaluate the accu-
racy of goal knowledge extracted from text cor-
pora. Nevertheless, our work represents a first
step toward learning goal knowledge about lo-
cations, and we believe that learning knowledge
about plans and goals is an important direction for
natural language understanding research. In future
work, we hope to see if we can take advantage of
more contextual information as well as other exter-
nal knowledge to improve the recognition of goal-
acts.
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Abstract

Acronyms are abbreviations formed from
the initial components of words or phrases.
In enterprises, people often use acronyms
to make communications more efficient.
However, acronyms could be difficult to
understand for people who are not fa-
miliar with the subject matter (new em-
ployees, etc.), thereby affecting produc-
tivity. To alleviate such troubles, we
study how to automatically resolve the true
meanings of acronyms in a given con-
text. Acronym disambiguation for enter-
prises is challenging for several reasons.
First, acronyms may be highly ambigu-
ous since an acronym used in the enter-
prise could have multiple internal and ex-
ternal meanings. Second, there are usu-
ally no comprehensive knowledge bases
such as Wikipedia available in enterprises.
Finally, the system should be generic to
work for any enterprise. In this work
we propose an end-to-end framework to
tackle all these challenges. The frame-
work takes the enterprise corpus as input
and produces a high-quality acronym dis-
ambiguation system as output. Our dis-
ambiguation models are trained via dis-
tant supervised learning, without requiring
any manually labeled training examples.
Therefore, our proposed framework can be
deployed to any enterprise to support high-
quality acronym disambiguation. Experi-
mental results on real world data justified
the effectiveness of our system.

1 Introduction

Acronyms are abbreviations formed from the ini-
tial components of words or phrases (e.g., “AI”
from “Artificial Intelligence”). As acronyms can
shorten long names and make communications

∗Work done while authors were at Microsoft Research.

more efficient, they are widely used at almost ev-
erywhere in enterprises, including notifications,
emails, reports and social network posts. Figure 1
shows a sample enterprise social network post. As
we can see, acronyms are frequently used there.

Someone

Figure 1: Acronyms in Enterprises
Despite the fact that acronyms can make com-

munications more efficient, sometimes they could
be difficult to understand, especially for people
who are not familiar with the specific areas, such
as new employees and patent lawyers. We ran-
domly sampled 1000 documents from a Microsoft
question answering forum and found out that only
7% of the acronyms co-occur with the corre-
sponding meanings in the same document, which
means 93% of the time when the user does not
understand an acronym, she will need to find clues
outside of the document. Therefore, it is partic-
ularly useful to develop a system that can auto-
matically resolve the true meanings of acronyms
in enterprise documents. Such system could be
run online as a querying tool to handle any ad-
hoc document, or run offline to annotate acronyms
with their true meanings in a large corpus. In the
offline mode, the true meanings can be further in-
dexed by an enterprise search engine, so that when
users search for the true meaning, documents con-
taining the acronym can also be found.

The enterprise acronym disambiguation task
is challenging due to the high ambiguity of
acronyms, e.g., “SP” could stand for “Service
Pack”, “SharePoint” or “Surface Pro” in Mi-
crosoft. And there is one additional challenge
compared with previous disambiguation tasks: in
an enterprise document, an acronym could refer
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to either an internal meaning (concepts created by
the enterprise that may or may not be found out-
side) or an external meaning (all concepts that are
not internal). For example, regarding the acronym
“AI”, “Asset Intelligence” is an internal meaning
mainly used only in Microsoft, while “Artificial
Intelligence” is an external meaning widely used
in public. A good acronym disambiguation sys-
tem should be able to handle both internal and ex-
ternal meanings. As we will explain in details, it
is important to make such distinction and different
strategies are needed for such two cases.

For internal meanings, there are some previ-
ous work on word sense disambiguation (Navigli,
2009) and acronym disambiguation (Feng et al.,
2009; Pakhomov et al., 2005; Pustejovsky et al.,
2001; Stevenson et al., 2009; Yu et al., 2006) on
a closed-domain corpus. The main challenge here
is that there are rarely any domain-specific knowl-
edge bases available in enterprises, therefore all
the signals for disambiguation (including poten-
tial meanings, and their popularity scores, context
representations, etc.) need to be mined from plain
text. Training data should also be automatically
generated to make the system easily scale out to all
enterprises. Compared with previous work, we de-
veloped a more comprehensive and advanced set
of features in the disambiguation model, and also
used a much less restrictive way to discover mean-
ing candidates and training data, so that both pre-
cision and recall can be improved. Moreover, one
main limitation of all previous work is that they
do not distinguish internal and external meanings.
They merely rely on the enterprise corpus to dis-
cover information about external meanings, which
we observe is quite ineffective. The reason is that
for popular external meaning like “Artificial Intel-
ligence”, people often directly use its acronym in
enterprises without explanation, therefore there is
limited information about the connection between
the acronym and the external meaning in the en-
terprise corpus. On the other hand, there are much
more such information available in the public do-
main, which should be leveraged by the system.

If we consider utilizing a public knowledge base
such as Wikipedia to better handle external mean-
ings of acronyms, the problem becomes very re-
lated to the well studied Entity Linking (Ji and
Grishman, 2011; Cucerzan, 2007; Dredze et al.,
2010; Hoffart et al., 2011; Li et al., 2013, 2016;
Ratinov et al., 2011; Shen et al., 2012) prob-

lem, which is to map entity mentions in texts to
their corresponding entities in a reference knowl-
edge base (e.g. Wikipedia). But our disam-
biguation task is different from the entity link-
ing task, because the system also needs to handle
internal meanings which are not covered by any
knowledge bases, and ultimately needs to decide
whether an acronym refers to an internal meaning
or an external meaning. It is nontrivial to combine
the information mined from the enterprise corpus
and the public knowledge base so that the system
can get the best of both worlds. For instance, we
have tried to run an internal disambiguator (lever-
aging information mined from enterprise corpus)
and then resort to a public entity linking system if
the internal one’s confidence is low, but the perfor-
mance is very poor. Even for external meanings,
it is important to leverage signals from the enter-
prise corpus since the context surrounding them
could be quite different from that in the external
world, and context is one of the most important
factor for disambiguation. For example, in pub-
lic world, when people mention “Operating Sys-
tem” they mainly talk about how to install or use
it; while within Microsoft, when people mention
“Operating System” most of the time they focus
on how to design or implement it.

In this work, we design a novel, end-to-end
framework to address all the above challenges.
Our framework takes the enterprise corpus and
certain public knowledge base as input and pro-
duces a high-quality acronym disambiguation sys-
tem as output. The models are all trained via dis-
tant supervised learning, therefore our system re-
quires no manually labeled training examples and
can be easily deployed to any enterprises.

2 Problem Statement

The Enterprise Acronym Disambiguation prob-
lem is comprised of two sub-problems. The first
one is Acronym Meaning Mining (Adar, 2004; Ao
and Takagi, 2005; Park and Byrd, 2001; Schwartz
and Hearst, 2002; Jain et al., 2007; Larkey et al.,
2000; Nadeau and Turney, 2005; Taneva et al.,
2013), which aims at mining acronym/meaning
pairs from the enterprise corpus. Each meaning
m should contain the full name expansion e, pop-
ularity score p (indicating how often m is used
as the genuine meaning of acronym a) and con-
text words W (i.e. words frequently used in con-
text of the meaning). The popularity score and
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context words can provide critical information for
making disambiguation decisions. The second one
is Meaning Candidate Ranking, whose goal is to
rank the candidate meanings associated with the
target acronym a and select the genuine meaning
m based on the given context.

In this paper we assume the acronyms for dis-
ambiguation are provided as input to the system,
either by the user or by an existing acronym de-
tection module. We do not try to optimize the
performance of acronym detection (e.g. identify-
ing acronyms beyond the simple capitalized rule,
or distinguishing cases where a capitalized term is
not an acronym but a regular English word, such
as “OK”). The task of acronym detection is also
interesting and important. But due to the space
limit, it is beyond the scope of this paper.

3 Framework

We propose a novel end-to-end framework to solve
the Enterprise Acronym Disambiguation problem.
Our framework takes the enterprise corpus as input
and produces a high-quality acronym disambigua-
tion system as output. Figure 2 shows the details
of our proposed framework. In the mining module,
we will sequentially perform Candidates Genera-
tion, Popularity Calculation, Candidates Dedupli-
cation and Context Harvesting on the input enter-
prise corpus. The details of these steps will be dis-
cussed in Section 4. After mining steps, we will
get an acronym/meaning repository storing all the
mined acronym/meaning pairs. Feed this reposi-
tory together with the training data (automatically
generated via distant supervision from the enter-
prise corpus) to the training module, we will get a
candidate ranking model, a confidence estimation
model and a final selection model. These models
form the final acronym disambiguator and will be
used in the testing module for actual acronym dis-
ambiguation. In the testing module, given the tar-
get acronym along with some context as input, the
system will output the predicted meaning. Note
that the mining and training module run offline
once for the entire corpus or periodically when the
corpus update, while the testing can be run online
repeatedly for processing new documents.

4 Acronym Meaning Mining

4.1 Candidates Generation
As there is no reference dictionary or knowledge
base available in enterprise telling us the potential

Figure 2: Framework
meanings of acronyms, we have to extract them
from plain text. We propose a strategy called
Hybrid Generation to balance extraction accuracy
and coverage. Namely, we treat a phrase as a
meaning candidate for an acronym if: (1) the ini-
tial letters of the phrase match the acronym and
the phrase and the acronym co-occur in at least
one document in the enterprise corpus; or (2) it is
a valid candidate for the acronym in public knowl-
edge bases (e.g. Wikipedia). The insight of this
strategy is that the valid candidates missed by con-
dition (1) are mainly public meanings which can
be found in public knowledge bases. With this
strategy we can make our system understand both
the internal world and the external world.

4.2 Popularity Calculation
As mentioned in Section 2, for each candidate
meaning, we need to calculate its popularity score,
which reveals how often the candidate meaning is
used as the genuine meaning of the acronym. In
previous research on Entity Linking, popularity is
calculated as the fraction of times a candidate be-
ing the target page for an anchor text in a reference
knowledge base (e.g. Wikipedia). However, in en-
terprises, we do not have a knowledge base with
anchor links. Thus we cannot calculate popularity
in the same way. Here we propose to calculate two
types of popularity to mimic the effect.

1. Marginal Popularity.
MP (mi) =

Count(mi)∑n
j=1Count(mj)

, (1)

where m1, m2, . . ., mn are the meaning can-
didates of acronym a and Count(mi) is the
number of occurrences for mi in the corpus.

2. Conditional Popularity.

CP (mi) =
Count(mi, a)∑n
j=1Count(mj , a)

, (2)

where m1, m2, . . ., mn are the meaning
candidates of acronym a and Count(mi, a)
is the number of document-level co-
occurrences for mi and a in the corpus.
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Conditional Popularity can more reasonably re-
veal how often the acronym is used to represent
each meaning candidate. However, due to the data
sparsity issue in enterprises, many valid candi-
dates may get zero value for conditional popularity
since they may never co-occur with the acronyms
in the enterprise corpus. The Marginal Popular-
ity does not have this problem since it is calcu-
lated from the raw counts of the candidates. Yet
on the other hand, high marginal popularity score
does not necessarily indicate high correlation be-
tween the candidate and the acronym. It is unclear
how to combine the two scores into one popular-
ity score, so we use both of them as features in the
disambiguation model.

4.3 Candidates Deduplication
In enterprises, people often create many vari-
ants (including abbreviations, plurals or even mis-
spellings) for the same meaning, therefore many
mined meaning candidates are actually equivalent.
For example, for the meaning “Certificate Author-
ity” of the acronym “CA”, the variants include
“Cert Auth”, “Certificate Authorities” and many
others. It is important to deduplicate these vari-
ants before sending them to the disambiguation
module. The deduplication helps aggregate disam-
biguation evidences and reduce noises. We design
several heuristic rules1 to perform the deduplica-
tion. Experiments show that the rules can accu-
rately group the variants together. After grouping,
we sort the variants within the same group based
on their marginal popularity. The candidate with
the largest marginal popularity is selected as the
canonical candidate for the group. Other variants
in the group will be deleted from the candidate list
and their popularity scores will be aggregated to
the canonical candidate. We maintain a table to
record the variants for each canonical candidate.

4.4 Context Harvesting
In this step, we aim to harvest context words for
each meaning candidate. These context words
could be used to calculate context similarity with
the query context. For each meaning candidate m,
we put its canonical form and all its variants (from
the variants table in Section 4.3) into set S. Then
we scan the enterprise corpus, each time we find
a match of any e ∈ S, we harvest the words in a

1Due to space limitations, the detailed rules are omitted.
Example rules are “word overlap percentage after stemming
> 0.8”, “corresponding component words share same prefix”.

... Basically,     

using direct AD 

Import fails 

if Sharepoint 

Code Analysis

is configured to 

run over SSL ...

Acronym: CA

Ground Truth: Code Analysis

Context:

... Basically, using   

direct AD Import  

fails if Sharepoint 

CA is configured to 

run over SSL ...

Figure 3: Distant Supervision Example

width-W word window surrounding e as the con-
text words of m. In our experiments we set win-
dow size as 30 after trying to vary the window size
from 10 to 50 and finding 30 gives the best result.

As mentioned before, some popular public
meanings might be mentioned very rarely by their
full names in the enterprise corpus since people di-
rectly use their acronyms most of the time. There-
fore, the above context harvesting process can
only get very few context words for those public
meanings. To alleviate this, for each public mean-
ing we add its Wikipedia page’s content as com-
plementary context. By doing so, we ensure al-
most all valid candidates get a reasonable amount
of context words.

5 Meaning Candidate Ranking

5.1 Candidate Ranking

We first train a candidate ranking model to rank
candidates with respect to the likelihood of being
the genuine meaning for the target acronym.

5.1.1 Training Data Generation

In order to train a robust ranking model, we need
to get adequate amount of labeled training data.
Manually labeling is obviously too expensive and
it requires a lot of domain knowledge, which
severely limits our framework’s generalization ca-
pability. To tackle this problem, we propose to au-
tomatically generate training data via distant su-
pervision. The intuition is that since acronyms
and the corresponding meanings are semantically
equivalent, people use them interchangeably in en-
terprises. Therefore we can fetch documents con-
taining the meaning, replace the meaning with the
corresponding acronym and treat the meaning as
ground truth. Figure 3 shows an example of this
automatic training data generation process.

5.1.2 Training Algorithm

Any learning-to-rank algorithms can be used here.
In our system we utilize the LambdaMART algo-
rithm (Burges, 2010) to train the model.
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5.1.3 Features
Now we explain the features we developed for
the candidate ranking model. First, we have the
Marginal Popularity score and Conditional Popu-
larity score as two context-independent features,
which could compensate for each other. However,
as discussed in the previous section, some popu-
lar public meanings (e.g., “Artificial Intelligence”)
can be rarely mentioned in enterprise corpus by
their full names, therefore both their marginal pop-
ularity score and conditional popularity score can
be very low. To address this, we add a third feature
called Wiki Popularity, which is calculated from
Wikipedia anchor texts to capture how often an
acronym refers to a public meaning in Wikipedia.
The fourth feature we adopt is Context Similarity.
We convert the harvested context for the mean-
ing and the query context of the target acronym
into TFIDF vectors and then compute their co-
sine similarity2. We also include two features
(i.e. LeftNeighborScore and RightNeighborScore)
to capture the effect of the immediate neighbor-
ing words, which are more important than further
context words since immediate words could form
phrases with the acronym. For example, if we see
an acronym “SP” followed by the word “2”, then
likely it stands for “Service Pack”. However, if
we see “SP” followed by “2003”, then probably its
genuine meaning is “SharePoint”. The last feature
we use is FullNamePercentage. This feature is de-
fined as the percentage of the meaning candidate’s
component words appearing in the context of the
target acronym. Table 1 summarizes the features
used to train the candidate ranking model.

5.2 Confidence Estimation
After getting the ranking results, we propose to ap-
ply a confidence estimation step to decide whether
to trust the top ranked answer. There are two moti-
vations behind. First, our candidate generation ap-
proach is not perfect, therefore we could encounter
cases in which the genuine meaning is not in our
candidates. For such cases, the top ranked answer
is obviously incorrect. Second, our training data is
biased towards the internal meanings since exter-
nal meanings may rarely appear with full names.

2One popular alternative to measure context similarity is
using word embeddings (Mikolov et al., 2013; Li et al., 2015).
In our system we experimented replacing TFIDF cosine sim-
ilarity with word embedding similarity, or adding word em-
bedding similarity as an additional feature, but both hurt the
disambiguation accuracy. So we only included the TFIDF co-
sine similarity as the context similarity feature in our system.

As a result, the learned ranking model may lack
the capability to properly rank the external mean-
ings. In such cases, we would better have the sys-
tem return nothing rather than directly provide a
wrong answer to mislead the user. In this step, we
train a confidence estimation model, which will
estimate the top result’s confidence.

5.2.1 Training Data Generation
Similar to the ranker training, here the training
data is also automatically generated. We run the
learned ranker on some distant labeled data (gen-
erated from a different corpus), and then check if
the top ranked answer is correct or not. If it is
correct, we generate a positive training example;
otherwise we make a negative training example.

5.2.2 Training Algorithm
Any classification algorithms can be used here. In
our system we utilize the MART boosted tree al-
gorithm (Friedman, 2000) to train the model.

5.2.3 Features
We design 7 features (summarized in Table 2) to
train the confidence estimation model. There are
two intuitions behind: (1) If the top-ranked an-
swer’s ranking score is very small, or the top-
ranked answer’s score is close to the second-
ranked answer’s score, then the ranking is not
very confident; (2) If the acronym has a domi-
nating candidate in the public domain (e.g., “Per-
sonal Computer” is the dominating candidate
for “PC”), and the candidates’ Wiki popularity
distribution is significantly different from their
marginal/conditional popularity distributions, then
the ranker’s output is not very confident. The first
intuition covers the first 3 features, while the sec-
ond intuition covers the last 4 features.

5.3 Final Selection
We have discussed that one particular motivation
for confidence estimation is that the candidate
ranking stage has some bias so it does not always
rank public meanings at top when they are cor-
rect. Therefore, assuming the confidence estima-
tion model can remove incorrect top-ranked result,
we still need one additional step to decide if any
public meaning is correct, which we call a final se-
lection model. In this step, we determine whether
to return the most popular public meaning (based
on Wiki Popularity) as the final answer, and this
step is only triggered when the confidence estima-
tor judges that the ranking result is unconfident.
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Feature Description
MarginalPopularity The meaning candidate’s marginal popularity score

ConditionalPopularity The meaning candidate’s conditional popularity score
WikiPopularity The meaning candidate’s Wiki popularity score

ContextSimilarity TFIDF cosine similarity between meaning context and acronym context
LeftNeighborScore Probability of acronym and meaning sharing the same immediate left word

RightNeighborScore Probability of acronym and meaning sharing the same immediate right word
FullNamePercentage Percentage of meaning candidate’s component words appearing in acronym context

Table 1: Candidate Ranking Features

Feature Description
Top1Score Top 1 ranked meaning candidate’s ranking score

Top1&2ScoreDiff Difference between 1st and 2nd ranked meaning candidates’ ranking score
Top1&2CtxSimDiff Difference between 1st and 2nd ranked meaning candidates’ context similarity score
Top1WikiPopularity Top 1 ranked meaning candidate’s Wiki popularity score
MaxWikiPopularity Max Wiki popularity score among all the meaning candidates
MaxWP&MPGap Max gap between Wiki and marginal popularity among all the meaning candidates
MaxWP&CPGap Max gap between Wiki and conditional popularity among all the meaning candidates

Table 2: Confidence Estimation Features

The goal of the final selection model is simi-
lar to that of the confidence estimation model. In
confidence estimation, we judge whether the top-
ranked answer is correct; while in final selection,
we check whether the most popular external mean-
ing is correct. Thanks to this similarity, we can
reuse the data, features and training algorithm in
confidence estimation model. We take the same
training data in Section 5.2.1 and update the labels
correspondingly: if the genuine answer is the most
popular external meaning, we generate a positive
example; otherwise we make a negative one.

6 Experiments

6.1 Data

6.1.1 Mining and Training Corpus
We use both the Microsoft Answer Corpus (MAC)
and the Microsoft Yammer Corpus (MYC) as the
mining corpus. These corpus are kindly shared
to us by Microsoft for research purpose. MAC
contains 0.3 million web pages from a Microsoft
internal question answering forum. MYC is con-
sisted of 6.8 million posts from Microsoft’s Yam-
mer social network. In total, our mining module
harvested 5287 acronyms and 17258 meaning can-
didates from this joint corpus.

For model training, the confidence estimation
model and final selection model need to be trained
on a different corpus than the candidate ranking
model. So we train the candidate ranking model

on MAC, with 12500 training examples being au-
tomatically generated; and train the confidence es-
timation and final selection model on MYC, with
40000 training instances being generated.

6.1.2 Evaluation Datasets
We prepared four datasets3 for evaluation pur-
poses. The first one Manual is obtained from the
recent pages of Microsoft answer forum. Note
these pages are disjoint from those used as min-
ing/training corpus. We randomly sampled 300
pages and filtered out pages which do not con-
tain ambiguous acronyms. After filtering, 240 test
cases were left and we manually labeled them.

The second one Distant is generated via distant
labeling on Microsoft Office365 documents. We
sampled 2000 documents which contain at least
one occurrence of a meaning candidate. Then
we replaced the meanings with the corresponding
acronyms and treat the meanings as ground truths.
We manually checked through this dataset to re-
move some bad cases (e.g., “AS” for “App Store”).
This resulted in a test set of 1949 test cases.

Comparing the Manual dataset with the Dis-
tant dataset, the Manual one, though in smaller
size, can more accurately evaluate the system per-
formance, since the target acronyms in it are sam-
pled from the real distribution, while in the Distant
dataset acronyms are artificially generated from

3Due to data confidentiality issue, we were unable to di-
rectly release these datasets.
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randomly sampled meanings.
We also want to compare our method with the

state-of-the-art Entity Linking (EL) systems based
on public knowledge bases such as Wikipedia.
However, it is unfair to directly compare as most
enterprise specific meanings are unknown to them.
Therefore, we need to only consider cases where
the true meaning is a public meaning covered by
both our system and the compared system. By fil-
tering the distant dataset from Office365, we get
the third dataset JoinW (1659 test cases) for com-
paring with the Wikifier (Ratinov et al., 2011), and
the fourth dataset JoinA (237 test cases) for com-
paring with AIDA (Hoffart et al., 2011).

6.2 Compared Methods

6.2.1 Ablations of Our System
We compare the following ablations of our system,
to illustrate the effectiveness of the features and
components.

• Internal Popularity (IP): Only the internal
popularity features (i.e., marginal popularity
and conditional popularity).

• Popularity (P): The internal popularity features
plus Wiki popularity features.

• Popularity+Context (P+C): The popularity
features plus context similarity feature.

• Popularity+Context+Neighbbor (P+C+N):
The popularity features, context similarity
feature and immediate neighbor features.

• Popularity+ Context+ Neighbbor+ Fullname
(a.k.a. Candidate Ranker, or CR): Using all
the features in candidate ranking module.

• Candidate Ranker + Confidence Estimator
(CR+ CE): Using the candidate ranking model
plus the confidence estimation model.

• Candidate Ranker + Confidence Estimator +
Final Selector (a.k.a. Acronym Disambigua-
tor, or AD): Using the candidate ranking model,
the confidence estimation model and the final
selection model. Full version of our system.

6.2.2 State-of-the-art EL Systems
We also compare our method with two state-of-
the-art Entity Linking (EL) systems.

• Wikifier: a popular EL system using machine
learning to combine various features together.

• AIDA: a robust EL system using mention-entity
graph to find the best mention-entity mapping.

6.3 Quality of Mined Acronyms/Meanings

We first conduct experiments to evaluate the
quality of the acronym/meaning pairs harvested
through our offline mining module. Out of the
17258 mined pairs, we randomly sampled 2000
of them and asked 5 domain experts to manually
check their validness. An acronym/meaning pair
is considered as valid if the majority of the ex-
perts think the acronym is indeed used to abbrevi-
ate the meaning. For example, (AS, Analysis Ser-
vice) is a valid pair, but (AS, App Store) is consid-
ered as invalid because people will not actually use
AS to represent App Store. Among the sampled
2000 pairs, 94.5% are labeled as valid, indicat-
ing our offline mining module can accurately ex-
tract acronym/meaning pairs from enterprise cor-
pus. It is hard to precisely evaluate the cover-
age/recall of our mining method, since it is very
difficult to obtain the complete meaning list for a
given acronym. To get a rough idea, we randomly
picked up 100 acronyms and asked the 5 domain
experts to enumerate the valid meanings for these
acronyms. In total we got 230 valid meanings and
all of them are covered by the mined pairs.

6.4 Disambiguation Performance

We first conduct experiments to evaluate the dis-
ambiguation performance of our ranking model,
and compare the helpfulness of the features used
in the model. Figure 4 shows the precision
(i.e., percentage of correctly disambiguated cases
among all predicted cases), recall (i.e., percentage
of correctly disambiguated cases among all test
cases) and F1 (i.e., harmonic mean of precision
and recall) of the compared methods on the Man-
ual dataset and the Distant dataset. In terms of the
helpfulness of the features, the context similarity
feature and the immediate neighbor features con-
tribute most to the performance gain. Other fea-
tures are less helpful, yet still bring improvements
to the overall performance.

Next we conduct experiments to illustrate the
effectiveness of the confidence estimation module
and the final selection module in our system. Fig-
ure 5 shows the precision, recall and F1 of the
compared system configurations on the Manual
and Distant dataset. As can be seen, the confi-
dence estimation module can improve precision at
the cost of hurting recall. Fortunately, the final
selection module can recover some recall losses
without sacrificing too much on precision. In
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Figure 4: Ranking Performance
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Figure 5: Effectiveness of Confidence Estimator and Final Selector

terms of the F1 measure, the final system achieves
the best performance.

Note that the ablation P+C naturally corre-
sponds to the existing acronym disambiguation
approaches (Feng et al., 2009; Pakhomov et al.,
2005; Pustejovsky et al., 2001; Stevenson et al.,
2009; Yu et al., 2006) mainly relying on context
words and domain specific resources. These ap-
proaches do not specifically distinguish internal
and external meanings. They merely rely on the
internal corpus to discover information about ex-
ternal meanings, which is quite ineffective in the
scenario of enterprise acronym disambiguation (as
discussed in Section 1). In comparison, our system
(AD) is able to leverage public resources together
with the internal corpus to better handle the prob-
lem and therefore significantly outperforms them.
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Figure 6: Comparison with EL Systems

6.5 Comparison with EL Systems

We also compare our system (AD) with two state-
of-the-art Entity Linking (EL) systems: Wikifier
and AIDA. As explained in Section 6.1.2, we

made two datasets (i.e., JoinW and JoinA) for fair
comparisons. Figure 6(a) and Figure 6(b) present
the comparison of our AD system against Wikifer
and AIDA, respectively. As we can see from the
figures, AD significantly outperforms both Wiki-
fier and AIDA on all three measures. The reason is
that even for public meanings (e.g., Operating Sys-
tem) indexed by Wikifier and AIDA, the usage of
them could be quite different in enterprises (e.g.,
inside Microsoft people talk more about design-
ing Operating System rather than how to install it).
Wikifier and AIDA utilize information from public
knowledge bases (e.g., Wikipedia) to generate fea-
tures, therefore can hardly capture such enterprise-
specific signals. In contrast, our AD system mines
disambiguation features directly from the enter-
prise corpus and utilizes them together with the
public signals. As a result, it can more accurately
represent the characteristics of the enterprise and
lead to much better disambiguation performances.

7 Related Work

Acronym meaning discovery has received a lot of
attentions in vertical domains (mainly in biomed-
ical). Most of the proposed approaches (Adar,
2004; Ao and Takagi, 2005; Park and Byrd, 2001;
Schwartz and Hearst, 2002; Wren et al., 2002) uti-
lized generic rules or text patterns (e.g. brack-
ets, colons) to discover acronym meanings. These
methods are usually based on the assumption that
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acronyms are co-mentioned with the correspond-
ing meanings in the same document. However, in
enterprises, this assumption rarely holds. Enter-
prises themselves are closed ecosystems, so it is
very common for people to define the acronyms
somewhere and use them elsewhere. As a result,
such methods cannot be used for acronym mean-
ing discovery in enterprises.

Recently, there have been a few works (Jain
et al., 2007; Larkey et al., 2000; Nadeau and Tur-
ney, 2005; Taneva et al., 2013) on automatically
mining acronym meanings by leveraging Web data
(e.g., query sessions, click logs). However, it is
hard to apply them directly to enterprises, since
most data in enterprises are raw text and therefore
the query sessions/click logs are rarely available.

Acronym disambiguation can be seen as a spe-
cial case for the Entity Linking (EL) (Ji and Gr-
ishman, 2011; Dredze et al., 2010) problem. Ap-
proaches that link entity mentions to Wikipedia
date back to Bunescu et. al’s work (Bunescu and
Paşca, 2006). They computed the cosine similar-
ity between the text around the mention and the
entity candidate’s Wikipedia page. The referent
entity with the maximum similarity score is se-
lected as the disambiguation result. Cucerzan’s
work (Cucerzan, 2007) is the first one to real-
ize the effectiveness of using topical coherence to
globally perform EL. In that work, the topical co-
herence between the referent entity candidate and
other entities within the same context is calculated
based on their overlaps in categories and incom-
ing links in Wikipedia. Recently, several meth-
ods (Hoffart et al., 2011; Li et al., 2013, 2016;
Ratinov et al., 2011; Shen et al., 2012; Cheng and
Roth, 2013) also tried to enrich “context similar-
ity” and “topical coherence” using hybrid strate-
gies. Shen et. al (Shen et al., 2015) provided
a comprehensive survey for the techniques used
in EL. However, these EL techniques cannot be
used for acronym disambiguation in enterprises,
since most enterprise meanings are not covered by
public knowledge bases, and there are rarely any
domain-specific knowledge bases available in en-
terprises. Automatic knowledge base construction
(Suchanek et al., 2013) is promising, but the qual-
ity is far from applicable. Moreover, the struc-
tural information (e.g. entity taxonomy, cross-
document hyperlinks) within Wikipedia, is rarely
available in enterprises.

Most of the previous work (Feng et al., 2009;

Pakhomov et al., 2005; Pustejovsky et al., 2001;
Stevenson et al., 2009; Yu et al., 2006) on acronym
disambiguation heavily rely on context words
and domain specific resources. In comparison,
our method explored a more comprehensive set
of domain-independent features. Moreover, our
method used a much less restrictive way to dis-
cover meaning candidates and training data, which
is far more general than the methods relying on
strict definition patterns (Schwartz and Hearst,
2002). Another particular limitation of all these
previous work is that they do not distinguish inter-
nal and external meanings. They merely rely on
the internal corpus to discover information about
external meanings, which is quite ineffective.

8 Conclusions

In this paper, we studied the Acronym Disam-
biguation for Enterprises problem. We proposed
a novel, end-to-end framework to solve this prob-
lem. Our framework takes the enterprise cor-
pus as input and produces a high-quality acronym
disambiguation system as output. The disam-
biguation models are trained via distant supervised
learning, without requiring any manually labeled
training examples. Different from all the previ-
ous acronym disambiguation approaches, our sys-
tem is capable of accurately resolving acronyms
to both enterprise-specific meanings and public
meanings. Experimental results on Microsoft en-
terprise data demonstrated that our system can
effectively construct acronym/meaning reposito-
ries from scratch and accurately disambiguate
acronyms to their meanings with over 90% pre-
cision. Furthermore, our proposed framework can
be easily deployed to any enterprises without re-
quiring any domain knowledge.
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cyclopedic knowledge for named entity disambigua-
tion. In Proceedings of EACL, pages 9–16.

Christopher JC Burges. 2010. From ranknet to lamb-
darank to lambdamart: An overview. Learning,
11:23–581.

1316



Xiao Cheng and Dan Roth. 2013. Relational inference
for wikification. In Proceedings of EMNLP, pages
1787–1796.

Silviu Cucerzan. 2007. Large-scale named entity dis-
ambiguation based on wikipedia data. In Proceed-
ings of EMNLP-CoNLL, pages 708–716.

Mark Dredze, Paul McNamee, Delip Rao, Adam Ger-
ber, and Tim Finin. 2010. Entity disambiguation
for knowledge base population. In Proceedings of
COLING, pages 277–285.

Shicong Feng, Yuhong Xiong, Conglei Yao, Liwei
Zheng, and Wei Liu. 2009. Acronym extraction and
disambiguation in large-scale organizational web
pages. In Proceedings of CIKM, pages 1693–1696.

Jerome H Friedman. 2000. Greedy function approx-
imation: A gradient boosting machine. Annals of
Statistics, 29:1189–1232.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bor-
dino, Hagen Fürstenau, Manfred Pinkal, Marc Span-
iol, Bilyana Taneva, Stefan Thater, and Gerhard
Weikum. 2011. Robust disambiguation of named
entities in text. In Proceedings of EMNLP, pages
782–792.

Alpa Jain, Silviu Cucerzan, and Saliha Azzam. 2007.
Acronym-expansion recognition and ranking on the
web. In Information Reuse and Integration, pages
209–214.

Heng Ji and Ralph Grishman. 2011. Knowledge base
population: Successful approaches and challenges.
In Proceedings of ACL, pages 1148–1158.

Leah S Larkey, Paul Ogilvie, M Andrew Price, and
Brenden Tamilio. 2000. Acrophile: an automated
acronym extractor and server. In Proceedings of
ACM conference on Digital libraries, pages 205–
214.

Chao Li, Lei Ji, and Jun Yan. 2015. Acronym disam-
biguation using word embedding. In Proceedings of
AAAI, pages 4178–4179.

Yang Li, Shulong Tan, Huan Sun, Jiawei Han, Dan
Roth, and Xifeng Yan. 2016. Entity disambiguation
with linkless knowledge bases. In Proceedings of
WWW, pages 1261–1270.

Yang Li, Chi Wang, Fangqiu Han, Jiawei Han, Dan
Roth, and Xifeng Yan. 2013. Mining evidences
for named entity disambiguation. In Proceedings of
SIGKDD, pages 1070–1078.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in NIPS, pages 3111–3119.

David Nadeau and Peter D Turney. 2005. A supervised
learning approach to acronym identification. In Pro-
ceedings of CSCSI, pages 319–329.

Roberto Navigli. 2009. Word sense disambiguation: A
survey. ACM Comput. Surv., 41(2):10:1–10:69.

Serguei Pakhomov, Ted Pedersen, and Christopher G
Chute. 2005. Abbreviation and acronym disam-
biguation in clinical discourse. In AMIA Annual
Symposium Proceedings, pages 589–593.

Youngja Park and Roy J Byrd. 2001. Hybrid text min-
ing for finding abbreviations and their definitions. In
Proceedings of EMNLP, pages 126–133.

James Pustejovsky, Jose Castano, Brent Cochran,
Maciej Kotecki, Michael Morrell, and Anna
Rumshisky. 2001. Extraction and disambiguation
of acronym-meaning pairs in medline. Medinfo,
10(2001):371–375.

Lev Ratinov, Dan Roth, Doug Downey, and Mike An-
derson. 2011. Local and global algorithms for dis-
ambiguation to wikipedia. In Proceedings of ACL,
pages 1375–1384.

Ariel S Schwartz and Marti A Hearst. 2002. A simple
algorithm for identifying abbreviation definitions in
biomedical text. In Biocomputing, pages 451–462.

Wei Shen, Jianyong Wang, and Jiawei Han. 2015. En-
tity linking with a knowledge base: Issues, tech-
niques, and solutions. Knowledge and Data Engi-
neering, IEEE Transactions on, 27(2):443–460.

Wei Shen, Jianyong Wang, Ping Luo, and Min Wang.
2012. Linden: linking named entities with knowl-
edge base via semantic knowledge. In Proceedings
of WWW, pages 449–458.

Mark Stevenson, Yikun Guo, Abdulaziz Al Amri,
and Robert Gaizauskas. 2009. Disambiguation of
biomedical abbreviations. In Proceedings of the
Workshop on Current Trends in Biomedical Natural
Language Processing, pages 71–79.

Fabian Suchanek, James Fan, Raphael Hoffmann, Se-
bastian Riedel, and Partha Pratim Talukdar. 2013.
Advances in automated knowledge base construc-
tion. SIGMOD Records.

Bilyana Taneva, Tao Cheng, Kaushik Chakrabarti, and
Yeye He. 2013. Mining acronym expansions and
their meanings using query click log. In Proceed-
ings of WWW, pages 1261–1272.

Jonathan D Wren, Harold R Garner, et al. 2002.
Heuristics for identification of acronym-definition
patterns within text: towards an automated construc-
tion of comprehensive acronym-definition dictionar-
ies. Methods of information in medicine, 41(5):426–
434.

Hong Yu, Won Kim, Vasileios Hatzivassiloglou, and
John Wilbur. 2006. A large scale, corpus-based ap-
proach for automatically disambiguating biomedical
abbreviations. ACM Transactions on Information
Systems, 24(3):380–404.

1317



Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 1318–1328
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

A Multi-Axis Annotation Scheme for Event Temporal Relations

Qiang Ning,1 Hao Wu,2 Dan Roth1,2

Department of Computer Science
1University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

2University of Pennsylvania, Philadelphia, PA 19104, USA
qning2@illinois.edu, {haowu4,danroth}@seas.upenn.edu

Abstract

Existing temporal relation (TempRel) an-
notation schemes often have low inter-
annotator agreements (IAA) even between
experts, suggesting that the current anno-
tation task needs a better definition. This
paper proposes a new multi-axis modeling
to better capture the temporal structure of
events. In addition, we identify that event
end-points are a major source of confu-
sion in annotation, so we also propose to
annotate TempRels based on start-points
only. A pilot expert annotation effort us-
ing the proposed scheme shows signifi-
cant improvement in IAA from the con-
ventional 60’s to 80’s (Cohen’s Kappa).
This better-defined annotation scheme fur-
ther enables the use of crowdsourcing to
alleviate the labor intensity for each anno-
tator. We hope that this work can foster
more interesting studies towards event un-
derstanding.1

1 Introduction

Temporal relation (TempRel) extraction is an im-
portant task for event understanding, and it has
drawn much attention in the natural language
processing (NLP) community recently (UzZaman
et al., 2013; Chambers et al., 2014; Llorens et al.,
2015; Minard et al., 2015; Bethard et al., 2015,
2016, 2017; Leeuwenberg and Moens, 2017; Ning
et al., 2017, 2018a,b).

Initiated by TimeBank (TB) (Pustejovsky et al.,
2003b), a number of TempRel datasets have been
collected, including but not limited to the verb-
clause augmentation to TB (Bethard et al., 2007),

1The dataset is publicly available at https://
cogcomp.org/page/publication_view/834.

TempEval1-3 (Verhagen et al., 2007, 2010; UzZa-
man et al., 2013), TimeBank-Dense (TB-Dense)
(Cassidy et al., 2014), EventTimeCorpus (Reimers
et al., 2016), and datasets with both temporal
and other types of relations (e.g., coreference and
causality) such as CaTeRs (Mostafazadeh et al.,
2016) and RED (O’Gorman et al., 2016). These
datasets were annotated by experts, but most
still suffered from low inter-annotator agreements
(IAA). For instance, the IAAs of TB-Dense, RED
and THYME-TimeML (Styler IV et al., 2014)
were only below or near 60% (given that events
are already annotated). Since a low IAA usually
indicates that the task is difficult even for humans
(see Examples 1-3), the community has been look-
ing into ways to simplify the task, by reducing
the label set, and by breaking up the overall, com-
plex task into subtasks (e.g., getting agreement on
which event pairs should have a relation, and then
what that relation should be) (Mostafazadeh et al.,
2016; O’Gorman et al., 2016). In contrast to other
existing datasets, Bethard et al. (2007) achieved
an agreement as high as 90%, but the scope of its
annotation was narrowed down to a very special
verb-clause structure.

(e1, e2), (e3, e4), and (e5, e6): TempRels that are diffi-
cult even for humans. Note that only relevant events are
highlighted here.
Example 1: Serbian police tried to eliminate the pro-
independence Kosovo Liberation Army and (e1:restore) or-
der. At least 51 people were (e2:killed) in clashes between
Serb police and ethnic Albanians in the troubled region.
Example 2: Service industries (e3:showed) solid job gains,
as did manufacturers, two areas expected to be hardest
(e4:hit) when the effects of the Asian crisis hit the Amer-
ican economy.
Example 3: We will act again if we have evidence he is
(e5:rebuilding) his weapons of mass destruction capabili-
ties, senior officials say. In a bit of television diplomacy,
Iraq’s deputy foreign minister (e6:responded) from Bagh-
dad in less than one hour, saying that . . .

This paper proposes a new approach to handling
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these issues in TempRel annotation. First, we in-
troduce multi-axis modeling to represent the tem-
poral structure of events, based on which we an-
chor events to different semantic axes; only events
from the same axis will then be temporally com-
pared (Sec. 2). As explained later, those event
pairs in Examples 1-3 are difficult because they
represent different semantic phenomena and be-
long to different axes. Second, while we repre-
sent an event pair using two time intervals (say,
[t1start, t

1
end] and [t2start, t

2
end]), we suggest that

comparisons involving end-points (e.g., t1end vs.
t2end) are typically more difficult than comparing
start-points (i.e., t1start vs. t2start); we attribute this
to the ambiguity of expressing and perceiving du-
rations of events (Coll-Florit and Gennari, 2011).
We believe that this is an important consideration,
and we propose in Sec. 3 that TempRel annotation
should focus on start-points. Using the proposed
annotation scheme, a pilot study done by experts
achieved a high IAA of .84 (Cohen’s Kappa) on
a subset of TB-Dense, in contrast to the conven-
tional 60’s.

In addition to the low IAA issue, TempRel
annotation is also known to be labor intensive.
Our third contribution is that we facilitate, for
the first time, the use of crowdsourcing to col-
lect a new, high quality (under multiple metrics
explained later) TempRel dataset. We explain
how the crowdsourcing quality was controlled and
how vague relations were handled in Sec. 4, and
present some statistics and the quality of the new
dataset in Sec. 5. A baseline system is also shown
to achieve much better performance on the new
dataset, when compared with system performance
in the literature (Sec. 6). The paper’s results are
very encouraging and hopefully, this work would
significantly benefit research in this area.

2 Temporal Structure of Events

Given a set of events, one important question in
designing the TempRel annotation task is: which
pairs of events should have a relation? The answer
to it depends on the modeling of the overall tem-
poral structure of events.

2.1 Motivation

TimeBank (Pustejovsky et al., 2003b) laid the
foundation for many later TempRel corpora, e.g.,
(Bethard et al., 2007; UzZaman et al., 2013; Cas-

sidy et al., 2014).2 In TimeBank, the annotators
were allowed to label TempRels between any pairs
of events. This setup models the overall structure
of events using a general graph, which made an-
notators inadvertently overlook some pairs, result-
ing in low IAAs and many false negatives.

Example 4: Dense Annotation Scheme.
Serbian police (e7:tried) to (e8:eliminate) the pro-
independence Kosovo Liberation Army and (e1:restore) or-
der. At least 51 people were (e2:killed) in clashes between
Serb police and ethnic Albanians in the troubled region.
Given 4 NON-GENERIC events above, the dense scheme
presents 6 pairs to annotators one by one: (e7, e8), (e7,
e1), (e7, e2), (e8, e1), (e8, e2), and (e1, e2). Apparently,
not all pairs are well-defined, e.g., (e8, e2) and (e1, e2),
but annotators are forced to label all of them.

To address this issue, Cassidy et al. (2014)
proposed a dense annotation scheme, TB-Dense,
which annotates all event pairs within a slid-
ing, two-sentence window (see Example 4). It
requires all TempRels between GENERIC3 and
NON-GENERIC events to be labeled as vague,
which conceptually models the overall structure
by two disjoint time-axes: one for the NON-
GENERIC and the other one for the GENERIC.

However, as shown by Examples 1-3 in which
the highlighted events are NON-GENERIC, the
TempRels may still be ill-defined: In Example 1,
Serbian police tried to restore order but ended up
with conflicts. It is reasonable to argue that the at-
tempt to e1:restore order happened before the con-
flict where 51 people were e2:killed; or, 51 people
had been killed but order had not been restored
yet, so e1:restore is after e2:killed. Similarly,
in Example 2, service industries and manufactur-
ers were originally expected to be hardest e4:hit
but actually e3:showed gains, so e4:hit is before
e3:showed; however, one can also argue that the
two areas had showed gains but had not been hit,
so e4:hit is after e3:showed. Again, e5:rebuilding
is a hypothetical event: “we will act if rebuild-
ing is true”. Readers do not know for sure if
“he is already rebuilding weapons but we have
no evidence”, or “he will be building weapons in
the future”, so annotators may disagree on the re-
lation between e5:rebuilding and e6:responded.
Despite, importantly, minimizing missing annota-

2EventTimeCorpus (Reimers et al., 2016) is based on
TimeBank, but aims at anchoring events onto explicit
time expressions in each document rather than annotating
TempRels between events, which can be a good complemen-
tary to other TempRel datasets.

3For example, lions eat meat is GENERIC.
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tions, the current dense scheme forces annotators
to label many such ill-defined pairs, resulting in
low IAA.

2.2 Multi-Axis Modeling

Arguably, an ideal annotator may figure out the
above ambiguity by him/herself and mark them
as vague, but it is not a feasible requirement for
all annotators to stay clear-headed for hours; let
alone crowdsourcers. What makes things worse
is that, after annotators spend a long time figur-
ing out these difficult cases, whether they disagree
with each other or agree on the vagueness, the final
decisions for such cases will still be vague.

As another way to handle this dilemma, TB-
Dense resorted to a 80% confidence rule: anno-
tators were allowed to choose a label if one is 80%
sure that it was the writer’s intent. However, as
pointed out by TB-Dense, annotators are likely to
have rather different understandings of 80% confi-
dence and it will still end up with disagreements.

In contrast to these annotation difficulties, hu-
mans can easily grasp the meaning of news arti-
cles, implying a potential gap between the diffi-
culty of the annotation task and the one of under-
standing the actual meaning of the text. In Ex-
amples 1-3, the writers did not intend to explain
the TempRels between those pairs, and the orig-
inal annotators of TimeBank4 did not label rela-
tions between those pairs either, which indicates
that both writers and readers did not think the
TempRels between these pairs were crucial. In-
stead, what is crucial in these examples is that
“Serbian police tried to restore order but killed
51 people”, that “two areas were expected to be
hit but showed gains”, and that “if he rebuilds
weapons then we will act.” To “restore order”,
to be “hardest hit”, and “if he was rebuilding”
were only the intention of police, the opinion of
economists, and the condition to act, respectively,
and whether or not they actually happen is not the
focus of those writers.

This discussion suggests that a single axis is too
restrictive to represent the complex structure of
NON-GENERIC events. Instead, we need a model-
ing which is more restrictive than a general graph
so that annotators can focus on relation annota-
tion (rather than looking for pairs first), but also
more flexible than a single axis so that ill-defined

4Recall that they were given the entire article and only
salient relations would be annotated.

Event Type Category
INTENTION, OPINION On an orthogonal axis

HYPOTHESIS, GENERIC On a parallel axis
NEGATION Not on any axis

STATIC, RECURRENT Other

Table 1: The interpretation of various event types that
are not on the main axis in the proposed multi-axis
modeling. The names are rather straightforward; see
examples for each in Appendix A.

relations are not forcibly annotated. Specifically,
we need axes for intentions, opinions, hypotheses,
etc. in addition to the main axis of an article. We
thus argue for multi-axis modeling, as defined in
Table 1. Following the proposed modeling, Ex-
amples 1-3 can be represented as in Fig. 1. This
modeling aims at capturing what the author has
explicitly expressed and it only asks annotators to
look at comparable pairs, rather than forcing them
to make decisions on often vaguely defined pairs.

tried e2: killed

e1:restore order

Main axis

Intention axis of “tried”

e5:rebuilding have evidence act

e6:responded
saying

officials say
Main axis

Hypothetical axis

crisis hit America

e3:showed

e4:hardest hit

Main axis

Opinion axis of “expected”

expectedAsian crisis

Figure 1: A multi-axis view of Examples 1-3. Only
events on the same axis are compared.

In practice, we annotate one axis at a time: we
first classify if an event is anchorable onto a given
axis (this is also called the anchorability anno-
tation step); then we annotate every pair of an-
chorable events (i.e., the relation annotation step);
finally, we can move to another axis and repeat the
two steps above. Note that ruling out cross-axis re-
lations is only a strategy we adopt in this paper to
separate well-defined relations from ill-defined re-
lations. We do not claim that cross-axis relations
are unimportant; instead, as shown in Fig. 2, we
think that cross-axis relations are a different se-
mantic phenomenon that requires additional inves-
tigation.
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2.3 Comparisons with Existing Work

There have been other proposals of temporal struc-
ture modelings (Bramsen et al., 2006; Bethard
et al., 2012), but in general, the semantic phenom-
ena handled in our work are very different and
complementary to them. (Bramsen et al., 2006) in-
troduces “temporal segments” (a fragment of text
that does not exhibit abrupt changes) in the med-
ical domain. Similarly, their temporal segments
can also be considered as a special temporal struc-
ture modeling. But a key difference is that (Bram-
sen et al., 2006) only annotates inter-segment re-
lations, ignoring intra-segment ones. Since those
segments are usually large chunks of text, the se-
mantics handled in (Bramsen et al., 2006) is in a
very coarse granularity (as pointed out by (Bram-
sen et al., 2006)) and is thus different from ours.

(Bethard et al., 2012) proposes a tree struc-
ture for children’s stories, which “typically have
simpler temporal structures”, as they pointed out.
Moreover, in their annotation, an event can only
be linked to a single nearby event, even if multiple
nearby events may exist, whereas we do not have
such restrictions.

In addition, some of the semantic phenomena
in Table 1 have been discussed in existing work.
Here we compare with them for a better position-
ing of the proposed scheme.

2.3.1 Axis Projection
TB-Dense handled the incomparability between
main-axis events and HYPOTHESIS/NEGATION

by treating an event as having occurred if the
event is HYPOTHESIS/NEGATION.5 In our multi-
axis modeling, the strategy adopted by TB-Dense
falls into a more general approach, “axis pro-
jection”. That is, projecting events across dif-
ferent axes to handle the incomparability be-
tween any two axes (not limited to HYPOTHE-
SIS/NEGATION). Axis projection works well for
certain event pairs like Asian crisis and e4:hardest
hit in Example 2: as in Fig. 1, Asian crisis is be-
fore expected, which is again before e4:hardest
hit, so Asian crisis is before e4:hardest hit.

Generally, however, since there is no direct ev-
idence that can guide the projection, annotators
may have different projections (imagine project-
ing e5:rebuilding onto the main axis: is it in the
past or in the future?). As a result, axis projec-

5In the case of Example 3, it is to treat rebuilding as actu-
ally happened and then link it to responded.

tion requires many specially designed guidelines
or strong external knowledge. Annotators have
to rigidly follow the sometimes counter-intuitive
guidelines or “guess” a label instead of looking for
evidence in the text.

When strong external knowledge is involved in
axis projection, it becomes a reasoning process
and the resulting relations are a different type. For
example, a reader may reason that in Example 3,
it is well-known that they did “act again”, imply-
ing his e5:rebuilding had happened and is before
e6:responded. Another example is in Fig. 2. It is
obvious that relations based on these projections
are not the same with and more challenging than
those same-axis relations, so in the current stage,
we should focus on same-axis relations only.

worked hard attended

submit a paper

Main axis

Intention axis

Figure 2: In I worked hard to submit a paper . . . I at-
tended the conference, the projection of submit a paper
onto the main axis is clearly before attended. However,
this projection requires strong external knowledge that
a paper should be submitted before attending a confer-
ence. Again, this projection is only a guess based on
our external knowledge and it is still open whether the
paper is submitted or not.

2.3.2 Introduction of the Orthogonal Axes
Another prominent difference to earlier work is
the introduction of orthogonal axes, which has not
been used in any existing work as we know. A spe-
cial property is that the intersection event of two
axes can be compared to events from both, which
can sometimes bridge events, e.g., in Fig. 1, Asian
crisis is seemingly before hardest hit due to their
connections to expected. Since Asian crisis is on
the main axis, it seems that e4:hardest hit is on
the main axis as well. However, the “hardest hit”
in “Asian crisis before hardest hit” is only a pro-
jection of the original e4:hardest hit onto the real
axis and is valid only when this OPINION is true.

Nevertheless, OPINIONS are not always true
and INTENTIONS are not always fulfilled. In Ex-
ample 5, e9:sponsoring and e10:resolve are the
opinions of the West and the speaker, respectively;
whether or not they are true depends on the au-

1321



thors’ implications or the readers’ understandings,
which is often beyond the scope of TempRel an-
notation.6 Example 6 demonstrates a similar sit-
uation for INTENTIONS: when reading the sen-
tence of e11:report, people are inclined to believe
that it is fulfilled. But if we read the sentence of
e12:report, we have reason to believe that it is not.
When it comes to e13:tell, it is unclear if everyone
told the truth. The existence of such examples in-
dicates that orthogonal axes are a better modeling
for INTENTIONS and OPINIONS.

Example 5: Opinion events may not always be true.
He is ostracized by the West for (e9:sponsoring) terrorism.
We need to (e10:resolve) the deep-seated causes that have
resulted in these problems.
Example 6: Intentions may not always be fulfilled.
A passerby called the police to (e11:report) the body.
A passerby called the police to (e12:report) the body. Un-
fortunately, the line was busy.
I asked everyone to (e13:tell) the truth.

2.3.3 Differences from Factuality
Event modality have been discussed in many exist-
ing event annotation schemes, e.g., Event Nugget
(Mitamura et al., 2015), Rich ERE (Song et al.,
2015), and RED. Generally, an event is classified
as Actual or Non-Actual, a.k.a. factuality (Saurı́
and Pustejovsky, 2009; Lee et al., 2015).

The main-axis events defined in this paper seem
to be very similar to Actual events, but with sev-
eral important differences: First, future events are
Non-Actual because they indeed have not hap-
pened, but they may be on the main axis. Sec-
ond, events that are not on the main axis can also
be Actual events, e.g., intentions that are fulfilled,
or opinions that are true. Third, as demonstrated
by Examples 5-6, identifying anchorability as de-
fined in Table 1 is relatively easy, but judging if an
event actually happened is often a high-level un-
derstanding task that requires an understanding of
the entire document or external knowledge.

Interested readers are referred to Appendix B
for a detailed analysis of the difference between
Anchorable (onto the main axis) and Actual on a
subset of RED.

3 Interval Splitting

All existing annotation schemes adopt the interval
representation of events (Allen, 1984) and there

6For instance, there is undoubtedly a causal link between
e9:sponsoring and ostracized.

are 13 relations between two intervals (for read-
ers who are not familiar with it, please see Fig. 4
in the appendix). To reduce the burden of annota-
tors, existing schemes often resort to a reduced set
of the 13 relations. For instance, Verhagen et al.
(2007) merged all the overlap relations into a sin-
gle relation, overlap. Bethard et al. (2007); Do
et al. (2012); O’Gorman et al. (2016) all adopted
this strategy. In Cassidy et al. (2014), they further
split overlap into includes, included and equal.

Let [t1start, t
1
end] and [t2start, t

2
end] be the time in-

tervals of two events (with the implicit assumption
that tstart  tend). Instead of reducing the rela-
tions between two intervals, we try to explicitly
compare the time points (see Fig. 3). In this way,
the label set is simply before, after and equal,7

while the expressivity remains the same. This in-
terval splitting technique has also been used in
(Raghavan et al., 2012).

[!"#$%#& , !()*& ] [!"#$%#+ , !()*+ ]

time

Figure 3: The comparison of two event time intervals,
[t1start, t

1
end] and [t2start, t

2
end], can be decomposed into

four comparisons t1start vs. t2start, t1start vs. t2end, t1end

vs. t2start, and t1end vs. t2end, without loss of generality.

In addition to same expressivity, interval split-
ting can provide even more information when the
relation between two events is vague. In the con-
ventional setting, imagine that the annotators find
that the relation between two events can be either
before or before and overlap. Then the result-
ing annotation will have to be vague, although the
annotators actually agree on the relation between
t1start and t2start. Using interval splitting, however,
such information can be preserved.

An obvious downside of interval splitting is the
increased number of annotations needed (4 point
comparisons vs. 1 interval comparison). In prac-
tice, however, it is usually much fewer than 4 com-
parisons. For example, when we see t1end < t2start

(as in Fig. 3), the other three can be skipped be-
cause they can all be inferred. Moreover, although
the number of annotations is increased, the work
load for human annotators may still be the same,
because even in the conventional scheme, they still
need to think of the relations between start- and

7We will discuss vague in Sec. 4.
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end-points before they can make a decision.

3.1 Ambiguity of End-Points
During our pilot annotation, the annotation quality
dropped significantly when the annotators needed
to reason about relations involving end-points of
events. Table 2 shows four metrics of task diffi-
culty when only t1start vs. t2start or t1end vs. t2end

are annotated. Non-anchorable events were re-
moved for both jobs. The first two metrics, quali-
fying pass rate and survival rate are related to the
two quality control protocols (see Sec. 4.1 for de-
tails). We can see that when annotating the re-
lations between end-points, only one out of ten
crowdsourcers (11%) could successfully pass our
qualifying test; and even if they had passed it, half
of them (56%) would have been kicked out in the
middle of the task. The third line is the overall
accuracy on gold set from all crowdsourcers (ex-
cluding those who did not pass the qualifying test),
which drops from 67% to 37% when annotating
end-end relations. The last line is the average re-
sponse time per annotation and we can see that it
takes much longer to label an end-end TempRel
(52s) than a start-start TempRel (33s). This im-
portant discovery indicates that the TempRels be-
tween end-points is probably governed by a differ-
ent linguistic phenomenon.

Metric t1start vs. t2start t1end vs. t2end

Qualification pass rate 50% 11%
Survival rate 74% 56%

Accuracy on gold 67% 37%
Avg. response time 33s 52s

Table 2: Annotations involving the end-points of events
are found to be much harder than only comparing the
start-points.

We hypothesize that the difficulty is a mixture
of how durative events are expressed (by authors)
and perceived (by readers) in natural language.
In cognitive psychology, Coll-Florit and Gennari
(2011) discovered that human readers take longer
to perceive durative events than punctual events,
e.g., owe 50 bucks vs. lost 50 bucks. From the
writer’s standpoint, durations are usually fuzzy
(Schockaert and De Cock, 2008), or assumed to
be a prior knowledge of readers (e.g., college
takes 4 years and watching an NBA game takes a
few hours), and thus not always written explicitly.
Given all these reasons, we ignore the comparison
of end-points in this work, although event duration
is indeed, another important task.

4 Annotation Scheme Design

To summarize, with the proposed multi-axis mod-
eling (Sec. 2) and interval splitting (Sec. 3), our
annotation scheme is two-step. First, we mark
every event candidate as being temporally An-
chorable or not (based on the time axis we are
working on). Second, we adopt the dense annota-
tion scheme to label TempRels only between An-
chorable events. Note that we only work on verb
events in this paper, so non-verb event candidates
are also deleted in a preprocessing step. We design
crowdsourcing tasks for both steps and as we show
later, high crowdsourcing quality was achieved on
both tasks. In this section, we will discuss some
practical issues.

4.1 Quality Control for Crowdsourcing

We take advantage of the quality control feature
in CrowdFlower in our crowdsourcing jobs. For
any job, a set of examples are annotated by ex-
perts beforehand, which is considered gold and
will serve two purposes. (i) Qualifying test: Any
crowdsourcer who wants to work on this job has to
pass with 70% accuracy on 10 questions randomly
selected from the gold set. (ii) Surviving test:
During the annotation process, questions from the
gold set will be randomly given to crowdsourcers
without notice, and one has to maintain 70% accu-
racy on the gold set till the end of the annotation;
otherwise, he or she will be forbidden from work-
ing on this job anymore and all his/her annotations
will be discarded. At least 5 different annotators
are required for every judgement and by default,
the majority vote will be the final decision.

4.2 Vague Relations

How to handle vague relations is another issue in
temporal annotation. In non-dense schemes, anno-
tators usually skip the annotation of a vague pair.
In dense schemes, a majority agreement rule is ap-
plied as a postprocessing step to back off a deci-
sion to vague when annotators cannot pass a ma-
jority vote (Cassidy et al., 2014), which reminds
us that annotators often label a vague relation as
non-vague due to lack of thinking.

We decide to proactively reduce the possibil-
ity of such situations. As mentioned earlier, our
label set for t1start vs. t2start is before, after,
equal and vague. We ask two questions: Q1=Is
it possible that t1start is before t2start? Q2=Is it
possible that t2start is before t1start? Let the an-
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swers be A1 and A2. Then we have a one-
to-one mapping as follows: A1=A2=yes7!vague,
A1=A2=no7!equal, A1=yes, A2=no 7!before, and
A1=no, A2=yes 7!after. An advantage is that one
will be prompted to think about all possibilities,
thus reducing the chance of overlook.

Finally, the annotation interface we used is
shown in Appendix C.

5 Corpus Statistics and Quality

In this section, we first focus on annotations on
the main axis, which is usually the primary story-
line and thus has most events. Before launching
the crowdsourcing tasks, we checked the IAA be-
tween two experts on a subset of TB-Dense (about
100 events and 400 relations). A Cohen’s Kappa
of .85 was achieved in the first step: anchorabil-
ity annotation. Only those events that both ex-
perts labeled Anchorable were kept before they
moved onto the second step: relation annotation,
for which the Cohen’s Kappa was .90 for Q1 and
.87 for Q2. Table 3 furthermore shows the distri-
bution, Cohen’s Kappa, and F1 of each label. We
can see the Kappa and F1 of vague (=.75, F1=.81)
are generally lower than those of the other labels,
confirming that temporal vagueness is a more dif-
ficult semantic phenomenon. Nevertheless, the
overall IAA shown in Table 3 is a significant im-
provement compared to existing datasets.

b a e v Overall
Distribution .49 .23 .02 .26 1

IAA: Cohen’s  .90 .87 1 .75 .84
IAA: F1 .92 .93 1 .81 .90

Table 3: IAA of two experts’ annotations in a pilot
study on the main axis. Notations: before, after, equal,
and vague.

With the improved IAA confirmed by experts,
we sequentially launched the two-step crowd-
sourcing tasks through CrowdFlower on top of
the same 36 documents of TB-Dense. To evalu-
ate how well the crowdsourcers performed on our
task, we calculate two quality metrics: accuracy
on the gold set and the Worker Agreement with
Aggregate (WAWA). WAWA indicates the average
number of crowdsourcers’ responses agreed with
the aggregate answer (we used majority aggrega-
tion for each question). For example, if N individ-
ual responses were obtained in total, and n of them
were correct when compared to the aggregate an-
swer, then WAWA is simply n/N . In the first step,

crowdsourcers labeled 28% of the events as Non-
Anchorable to the main axis, with an accuracy on
the gold of .86 and a WAWA of .79.

With Non-Anchorable events filtered, the re-
lation annotation step was launched as another
crowdsourcing task. The label distribution is
b=.50, a=.28, e=.03, and v=.19 (consistent with
Table 3). In Table 4, we show the annotation
quality of this step using accuracy on the gold set
and WAWA. We can see that the crowdsourcers
achieved a very good performance on the gold set,
indicating that they are consistent with the authors
who created the gold set; these crowdsourcers also
achieved a high-level agreement under the WAWA
metric, indicating that they are consistent among
themselves. These two metrics indicate that the
annotation task is now well-defined and easy to
understand even by non-experts.

No. Metric Q1 Q2 All
1 Accuracy on Gold .89 .88 .88
2 WAWA .82 .81 .81

Table 4: Quality analysis of the relation annotation step
of MATRES. “Q1” and “Q2” refer to the two ques-
tions crowdsourcers were asked (see Sec. 4.2 for de-
tails). Line 1 measures the level of consistency be-
tween crowdsourcers and the authors and line 2 mea-
sures the level of consistency among the crowdsourcers
themselves.

We continued to annotate INTENTION and
OPINION which create orthogonal branches on
the main axis. In the first step, crowdsourcers
achieved an accuracy on gold of .82 and a WAWA
of .89. Since only 16% of the events are in this cat-
egory and these axes are usually very short (e.g.,
allocate funds to build a museum.), the annotation
task is relatively small and two experts took the
second step and achieved an agreement of .86 (F1).

We name our new dataset MATRES for Multi-
Axis Temporal RElations for Start-points. Each
individual judgement cost us $0.01 and MATRES
in total cost about $400 for 36 documents.

5.1 Comparison to TB-Dense
To get another checkpoint of the quality of the new
dataset, we compare with the annotations of TB-
Dense. TB-Dense has 1.1K verb events, between
which 3.4K event-event (EE) relations are anno-
tated. In the new dataset, 72% of the events (0.8K)
are anchored onto the main axis, resulting in 1.6K
EE relations, and 16% (0.2K) are anchored onto
orthogonal axes, resulting in 0.2K EE relations.
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The following comparison is based on the 1.8K EE
relations in common. Moreover, since TB-Dense
annotations are for intervals instead of start-points
only, we converted TB-Dense’s interval relations
to start-point relations (e.g., if A includes B, then
tAstart is before tBstart).

b a e v All
b 455 11 5 42 513
a 45 309 16 68 438
e 13 7 2 10 32
v 450 138 20 192 800

All 963 465 43 312 1783

Table 5: An evaluation of MATRES against TB-Dense.
Horizontal: MATRES. Vertical: TB-Dense (with inter-
val relations mapped to start-point relations). Please
see explanation of these numbers in text.

The confusion matrix is shown in Table 5.
A few remarks about how to understand it:
First, when TB-Dense labels before or after,
MATRES also has a high-probability of having
the same label (b=455/513=.89, a=309/438=.71);
when MATRES labels vague, TB-Dense is also
very likely to label vague (v=192/312=.62). This
indicates the high agreement level between the two
datasets if the interval- or point-based annotation
difference is ruled out. Second, many vague re-
lations in TB-Dense are labeled as before, after
or equal in MATRES. This is expected because
TB-Dense annotates relations between intervals,
while MATRES annotates start-points. When du-
rative events are involved, the problem usually be-
comes more difficult and interval-based annotation
is more likely to label vague (see earlier discus-
sions in Sec. 3). Example 7 shows three typical
cases, where e14:became, e17:backed, e18:rose
and e19:extending can be considered durative. If
only their start-points are considered, the crowd-
sourcers were correct in labeling e14 before e15,
e16 after e17, and e18 equal to e19, although TB-
Dense says vague for all of them. Third, equal
seems to be the relation that the two dataset mostly
disagree on, which is probably due to crowd-
sourcers’ lack of understanding in time granularity
and event coreference. Although equal relations
only constitutes a small portion in all relations, it
needs further investigation.

6 Baseline System

We develop a baseline system for TempRel ex-
traction on MATRES, assuming that all the events
and axes are given. The following commonly-

Example 7: Typical cases that TB-Dense annotated
vague but MATRES annotated before, after, and equal,
respectively.
At one point , when it (e14:became) clear controllers could
not contact the plane, someone (e15:said) a prayer.
TB-Dense: vague; MATRES: before
The US is bolstering its military presence in the gulf, as
President Clinton (e16:discussed) the Iraq crisis with the
one ally who has (e17:backed) his threat of force, British
prime minister Tony Blair.
TB-Dense: vague; MATRES: after
Average hourly earnings of nonsupervisory employees
(e18:rose) to $12.51. The gain left wages 3.8 percent higher
than a year earlier, (e19:extending) a trend that has given
back to workers some of the earning power they lost to in-
flation in the last decade.
TB-Dense: vague; MATRES: equal

used features for each event pair are used: (i) The
part-of-speech (POS) tags of each individual event
and of its neighboring three words. (ii) The sen-
tence and token distance between the two events.
(iii) The appearance of any modal verb between
the two event mentions in text (i.e., will, would,
can, could, may and might). (iv) The appear-
ance of any temporal connectives between the two
event mentions (e.g., before, after and since).
(v) Whether the two verbs have a common syn-
onym from their synsets in WordNet (Fellbaum,
1998). (vi) Whether the input event mentions
have a common derivational form derived from
WordNet. (vii) The head words of the preposition
phrases that cover each event, respectively. And
(viii) event properties such as Aspect, Modality,
and Polarity that come with the TimeBank dataset
and are commonly used as features.

The proposed baseline system uses the averaged
perceptron algorithm to classify the relation be-
tween each event pair into one of the four relation
types. We adopted the same train/dev/test split of
TB-Dense, where there are 22 documents in train,
5 in dev, and 9 in test. Parameters were tuned on
the train-set to maximize its F1 on the dev-set, af-
ter which the classifier was retrained on the union
of train and dev. A detailed analysis of the base-
line system is provided in Table 6. The perfor-
mance on equal and vague is lower than on be-
fore and after, probably due to shortage in these
labels in the training data and the inherent dif-
ficulty in event coreference and temporal vague-
ness. We can see, though, that the overall perfor-
mance on MATRES is much better than those in
the literature for TempRel extraction, which used
to be in the low 50’s (Chambers et al., 2014; Ning
et al., 2017). The same system was also retrained
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and tested on the original annotations of TB-Dense
(Line “Original”), which confirms the significant
improvement if the proposed annotation scheme
is used. Note that we do not mean to say that
the proposed baseline system itself is better than
other existing algorithms, but rather that the pro-
posed annotation scheme and the resulting dataset
lead to better defined machine learning tasks. In
the future, more data can be collected and used
with advanced techniques such as ILP (Do et al.,
2012), structured learning (Ning et al., 2017) or
multi-sieve (Chambers et al., 2014).

Training Testing
P R F1 P R F1

Before .74 .91 .82 .71 .80 .75
After .73 .77 .75 .55 .64 .59
Equal 1 .05 .09 - - -
Vague .75 .28 .41 .29 .13 .18
Overall .73 .81 .77 .66 .72 .69
Original .44 .67 .53 .40 .60 .48

Table 6: Performance of the proposed baseline sys-
tem on MATRES. Line “Original” is the same system
retrained on the original TB-Dense and tested on the
same subset of event pairs. Due to the limited number
of equal examples, the system did not make any equal
predictions on the testset.

7 Conclusion

This paper proposes a new scheme for TempRel
annotation between events, simplifying the task by
focusing on a single time axis at a time. We have
also identified that end-points of events is a major
source of confusion during annotation due to rea-
sons beyond the scope of TempRel annotation, and
proposed to focus on start-points only and handle
the end-points issue in further investigation (e.g.,
in event duration annotation tasks). Pilot study by
expert annotators shows significant IAA improve-
ments compared to literature values, indicating a
better task definition under the proposed scheme.
This further enables the usage of crowdsourcing
to collect a new dataset, MATRES, at a lower time
cost. Analysis shows that MATRES, albeit crowd-
sourced, has achieved a reasonably good agree-
ment level, as confirmed by its performance on the
gold set (agreement with the authors), the WAWA
metric (agreement with the crowdsourcers them-
selves), and consistency with TB-Dense (agree-
ment with an existing dataset). Given the fact that
existing schemes suffer from low IAAs and lack of
data, we hope that the findings in this work would

provide a good start towards understanding more
sophisticated semantic phenomena in this area.
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Abstract

In this paper we present the Exemplar
Encoder-Decoder network (EED), a novel
conversation model that learns to uti-
lize similar examples from training data
to generate responses. Similar conver-
sation examples (context-response pairs)
from training data are retrieved using a
traditional TF-IDF based retrieval model.
The retrieved responses are used to cre-
ate exemplar vectors that are used by the
decoder to generate the response. The
contribution of each retrieved response is
weighed by the similarity of correspond-
ing context with the input context. We
present detailed experiments on two large
data sets and find that our method out-
performs state of the art sequence to se-
quence generative models on several re-
cently proposed evaluation metrics. We
also observe that the responses generated
by the proposed EED model are more in-
formative and diverse compared to exist-
ing state-of-the-art method.

1 Introduction

With the availability of large datasets and
the recent progress made by neural meth-
ods, variants of sequence to sequence learning
(seq2seq) (Sutskever et al., 2014) architectures
have been successfully applied for building con-
versational systems (Serban et al., 2016, 2017b).
However, despite these methods being the state-
of-the art frameworks for conversation generation,
they suffer from problems such as lack of diver-
sity in responses and generation of short, repetitive
and uninteresting responses (Liu et al., 2016; Ser-
ban et al., 2016, 2017b). A large body of recent

literature has focused on overcoming such chal-
lenges (Li et al., 2016a; Lowe et al., 2017).

In part, such problems arise as all information
required to generate responses needs to be cap-
tured as part of the model parameters learnt from
the training data. These model parameters alone
may not be sufficient for generating natural con-
versations. Therefore, despite providing enormous
amount of data, neural generative systems have
been found to be ineffective for use in real world
applications (Liu et al., 2016).

In this paper, we focus our attention on closed
domain conversations. A characteristic feature of
such conversations is that over a period of time,
some conversation contexts1 are likely to have oc-
curred previously (Lu et al., 2017b). For instance,
Table 1 shows some contexts from the Ubuntu dia-
log corpus. Each row presents an input dialog con-
text with its corresponding gold response followed
by a similar context and response seen in train-
ing data – as can be seen, contexts for “installing
dms”, “sharing files”, “blocking ufw ports” have
all occurred in training data. We hypothesize that
being able to refer to training responses for pre-
viously seen similar contexts could be a helpful
signal to use while generating responses.

In order to exploit this aspect of closed do-
main conversations we build our neural encoder-
decoder architecture called the Exemplar Encoder
Decoder (EED), that learns to generate a response
for a given context by exploiting similar contexts
from training conversations. Thus, instead of hav-
ing the seq2seq model learn patterns of language
only from aligned parallel corpora, we assist the
model by providing it closely related (similar)
samples from the training data that it can refer to
while generating text.

Specifically, given a context c, we retrieve a set
1We use the phrase “dialog context”, “conversation con-

text” and “context” interchangeably throughout the paper.
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Input Context Gold Response Similar Context in training data Associated Response

U1 if you want autologin install a dm of
some sort

lightdm, gdm, kdm,
xdm, slim, etc. U1 if you’re running a dm, it will probably

restart x e.g. gdm, kdm, xdm

U2 what is a dm U2 whats a dm?

U1 is it possible to share a file in one user’s
home directory with another user?

so chmod 777
should do it, right? U1 howto set right permission for my home

directory?
chmod and chown? u mean
that sintax

U2 if you set permissions (to ’group’,’other’
or with an acl) U2 but which is the syntax to set permission

for my user in my home user directory ?

U1
is there a way to block all ports in ufw
and only allow the ports that have been
allowed?

do i need to use ipt-
ables in order to use
ufw?

U1 is ufw blocking connections to all ports
by default?

how do i block all ports with
ufw?

U2 try to get familiar with configuring ip-
tables U2 no, all ports are open by default.

U1
how do i upgrade on php beyond 5.3.2 on
ubuntu using apt-get ? ? ? this version is
a bit old

lucid, 10.04 ubuntu
10.04.4 lts U1

hello!, how can i upgrade apt-get?(i have
version 0.7.9 installed but i need to up-
date to latest)

I’m using ubuntu server 10.04
64

U2 which version of ubuntu are you using? U2 sudo apt-get upgrade apt-get
U1 what version of ubuntu do you have?

Table 1: Sample input contexts and corresponding gold responses from Ubuntu validation dataset along
with similar contexts seen in training data and their corresponding responses. We refer to training data
as training data for the Ubuntu corpus. The highlighted words are common between the gold response
and the exemplar response.

of context-response pairs (c(k), r(k)), 1 ≤ k ≤ K
using an inverted index of training data. We create
an exemplar vector e(k) by encoding the response
r(k) (also referred to as exemplar response) along
with an encoded representation of the current con-
text c. We then learn the importance of each ex-
emplar vector e(k) based on the likelihood of it be-
ing able to generate the ground truth response. We
believe that e(k) may contain information that is
helpful in generating the response. Table 1 high-
lights the words in exemplar responses that appear
in the ground truth response as well.

Contributions: We present a novel Exemplar
Encoder-Decoder (EED) architecture that makes
use of similar conversations, fetched from an
index of training data. The retrieved context-
response pairs are used to create exemplar vec-
tors which are used by the decoder in the
EED model, to learn the importance of train-
ing context-response pairs, while generating re-
sponses. We present detailed experiments on the
publicly benchmarked Ubuntu dialog corpus data
set (Lowe et al., 2015) as well a large collection
of more than 127,000 technical support conversa-
tions. We compare the performance of the EED
model with the existing state of the art generative
models such as HRED (Serban et al., 2016) and
VHRED (Serban et al., 2017b). We find that our
model out-performs these models on a wide vari-
ety of metrics such as the recently proposed Activ-
ity Entity metrics (Serban et al., 2017a) as well as
Embedding-based metrics (Lowe et al., 2015). In
addition, we present qualitative insights into our
results and we find that exemplar based responses

are more informative and diverse.
The rest of the paper is organized as follows.

Section 2 briefly describes the recent works in neu-
ral dialogue generation The details of the proposed
EED model for dialogue generation are described
in detail in Section 3. In Section 4, we describe
the datasets as well as the details of the models
used during training. We present quantitative and
qualitative results of EED model in Section 5.

2 Related Work

In this section, we compare our work against other
data-driven end-to-end conversation models. End-
to-end conversation models can be further classi-
fied into two broad categories — generation based
models and retrieval based models.

Generation based models cast the problem of
dialogue generation as a sequence to sequence
learning problem. Initial works treat the entire
context as a single long sentence and learn an
encoder-decoder framework to generate response
word by word (Shang et al., 2015; Vinyals and
Le, 2015). This was followed by work that mod-
els context better by breaking it into conversation
history and last utterance (Sordoni et al., 2015b).
Context was further modeled effectively by us-
ing a hierarchical encoder decoder (HRED) model
which first learns a vector representation of each
utterance and then combines these representations
to learn vector representation of context (Serban
et al., 2016). Later, an alternative hierarchical
model called VHRED (Serban et al., 2017b) was
proposed, where generated responses were condi-
tioned on latent variables. This leads to more in-
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formative responses and adds diversity to response
generation. Models that explicitly incorporate di-
versity in response generation have also been stud-
ied in literature (Li et al., 2016b; Vijayakumar
et al., 2016; Cao and Clark, 2017; Zhao et al.,
2017).

Our work differs from the above as none of
these above approaches utilize similar conversa-
tion contexts observed in the training data explic-
itly.

Retrieval based models on the other hand treat
the conversation context as a query and obtain a
set of responses using information retrieval (IR)
techniques from the conversation logs (Ji et al.,
2014). There has been further work where the
responses are further ranked using a deep learn-
ing based model (Yan et al., 2016a,b; Qiu et al.,
2017). On the other hand of the spectrum, end-
to-end deep learning based rankers have also been
employed to generate responses (Wu et al., 2017;
Henderson et al., 2017). Recently a framework has
also been proposed that uses a discriminative di-
alog network that ranks the candidate responses
received from a response generator network and
trains both the networks in an end to end manner
(Lu et al., 2017a).

In contrast to the above models, we use the in-
put contexts as well as the retrieved responses for
generating the final responses. Contemporaneous
to our work, a generative model for machine trans-
lation that employs retrieved translation pairs has
also been proposed (Gu et al., 2017). We note that
while the underlying premise of both the papers
remains the same, the difference lies in the mech-
anism of incorporating the retrieved data.

3 Exemplar Encoder Decoder

3.1 Overview

A conversation consists of a sequence of utter-
ances. At a given point in the conversation, the ut-
terances expressed prior to it are jointly referred to
as the context. The utterance that immediately fol-
lows the context is referred to as the response. As
discussed in Section 1, given a conversational con-
text, we wish to to generate a response by utiliz-
ing similar context-response pairs from the train-
ing data. We retrieve a set of K exemplar context-
response pairs from an inverted index created us-
ing the training data in an off-line manner. The
input and the retrieved context-response pairs are
then fed to the Exemplar Encoder Decoder (EED)

network. A schematic illustration of the EED net-
work is presented in Figure 1. The EED encoder
combines the input context and the retrieved re-
sponses to create a set of exemplar vectors. The
EED decoder then uses the exemplar vectors based
on the similarity between the input context and re-
trieved contexts to generate a response. We now
provide details of each of these modules.

3.2 Retrieval of Similar Context-Response
Pairs

Given a large collection of conversations as
(context, response) pairs, we index each re-
sponse and its corresponding context in tf − idf
vector space. We further extract the last turn of a
conversation and index it as an additional attribute
of the context-response document pairs so as to al-
low directed queries based on it.

Given an input context c, we construct a query
that weighs the last utterance in the context twice
as much as the rest of the context and use it to
retrieve the top-k similar context-response pairs
from the index based on a BM25 (Robertson
et al., 2009) retrieval model. These retrieved
pairs form our exemplar context-response pairs
(c(k), r(k)), 1 ≤ k ≤ K.

3.3 Exemplar Encoder Network

Given the exemplar pairs (c(k), r(k)), 1 ≤ k ≤
K and an input context-response pair (c, r), we
feed the input context c and the exemplar contexts
c(1), . . . , c(K) through an encoder to generate the
embeddings as given below:

ce = Encodec(c)

c(k)e = Encodec(c
(k)), 1 ≤ k ≤ K

Note that we do not constrain our choice of en-
coder and that any parametrized differentiable ar-
chitecture can be used as the encoder to gener-
ate the above embeddings. Similarly, we feed the
exemplar responses r(1), . . . , r(K) through a re-
sponse encoder to generate response embeddings
r
(1)
e , . . . , r

(K)
e , that is,

r(k)e = Encoder(r
(k)), 1 ≤ k ≤ K (1)

Next, we concatenate the exemplar response en-
coding r(k)e with an encoded representation of cur-
rent context ce as shown in equation 2 to create the
exemplar vector e(k). This allows us to include in-
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Figure 1: A schematic illustration of the EED network. The input context-response pair is (c, r), while
the exemplar context-response pairs are (c(k), r(k)), 1 ≤ k ≤ K.

formation about similar responses along with the
encoded input context representation.

e(k) = [ce; r
(k)
e ], 1 ≤ k ≤ K (2)

The exemplar vectors e(k), 1 ≤ k ≤ K are fur-
ther used by the decoder for generating the ground
truth response as described in the next section.

3.4 Exemplar Decoder Network
Recall that we want the exemplar responses to help
generate the responses based on how similar the
corresponding contexts are with the input context.
More similar an exemplar context is to the input
context, higher should be its effect in generating
the response. To this end, we compute the similar-
ity scores s(k), 1 ≤ k ≤ K using the encodings
computed in Section 3.3 as shown below.

s(k) =
exp(cTe c

(k)
e )

∑K
l=1 exp(c

T
e c

(l)
e )

(3)

Next, each exemplar vector e(k) computed in
Section 3.3, is fed to a decoder, where the decoder
is responsible for predicting the ground truth re-
sponse from the exemplar vector. Let pdec(r|e(k))
be the distribution of generating the ground truth
response given the exemplar embedding. The ob-
jective function to be maximized, is expressed as a

function of the scores s(k), the decoding distribu-
tion pdec and the exemplar vectors e(k) as shown
below:

ll =
K∑

k=1

s(k) log pdec(r|e(k)) (4)

Note that we weigh the contribution of each exem-
plar vector to the final objective based on how sim-
ilar the corresponding context is to the input con-
text. Moreover, the similarities are differentiable
function of the input and hence, trainable by back
propagation. The model should learn to assign
higher similarities to the exemplar contexts, whose
responses are helpful for generating the correct re-
sponse.

The model description uses encoder and de-
coder networks that can be implemented using any
differentiable parametrized architecture. We dis-
cuss our choices for the encoders and decoder in
the next section.

3.5 The Encoders and Decoder
In this section, we discuss the various encoders
and the decoder used by our model. The con-
versation context consists of an ordered sequence
of utterances and each utterance can be further
viewed as a sequence of words. Thus, con-
text can be viewed as having multiple levels of
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hierarchies—at the word level and then at the ut-
terance (sentence) level. We use a hierarchical re-
current encoder—popularly employed as part of
the HRED framework for generating responses
and query suggestions (Sordoni et al., 2015a; Ser-
ban et al., 2016, 2017b). The word-level encoder
encodes the vector representations of words of
an utterance to an utterance vector. Finally, the
utterance-level encoder encodes the utterance vec-
tors to a context vector.

Let (u1, . . . ,uN ) be the utterances present in
the context. Furthermore, let (wn1, . . . , wnMn) be
the words present in the nth utterance for 1 ≤ n ≤
N . For each word in the utterance, we retrieve
its corresponding embedding from an embedding
matrix. The word embedding for wnm will be de-
noted as wenm. The encoding of the nth utterance
can be computed iteratively as follows:

hnm = f1(hnm−1, wenm), 1 ≤ m ≤Mn (5)

We use an LSTM (Hochreiter and Schmidhuber,
1997) to model the above equation. The last hid-
den state hnMn is referred to as the utterance en-
coding and will be denoted as hn.

The utterance-level encoder takes the utterance
encodings h1, . . . , hN as input and generates the
encoding for the context as follows:

cen = f2(cen−1, hn), 1 ≤ n ≤ N (6)

Again, we use an LSTM to model the above equa-
tion. The last hidden state ceN is referred to as the
context embedding and is denoted as ce.

A single level LSTM is used for embedding the
response. In particular, let (w1, . . . , wM ) be the
sequence of words present in the response. For
each word w, we retrieve the corresponding word
embedding we from a word embedding matrix.
The response embedding is computed from the
word embeddings iteratively as follows:

rem = g(rem−1, wem), 1 ≤ m ≤M (7)

Again, we use an LSTM to model the above equa-
tion. The last hidden state rem is referred to as the
response embedding and is denoted as re.

4 Experimental Setup

4.1 Datasets
4.1.1 Ubuntu Dataset
We conduct experiments on Ubuntu Dialogue Cor-
pus (Lowe et al., 2015)(v2.0)2. Ubuntu dialogue
corpus has about 1M context response pairs along
with a label. The label value 1 indicates that the
response associated with a context is the correct
response and is incorrect otherwise. As we are
only interested in positive labeled data we work
with label = 1. Table 2 depicts some statistics for
the dataset.

Size
Training Pairs 499,873
Validation Pairs 19,560
Test Pairs 18,920

|V | 538,328

Table 2: Dataset statistics for Ubuntu Dialog Cor-
pus v2.0 (Lowe et al., 2015), where |V | represents
the size of vocabulary.

4.1.2 Tech Support Dataset
We also conduct our experiments on a large tech-
nical support dataset with more than 127K con-
versations. We will refer to this dataset as Tech
Support dataset in the rest of the paper. Tech
Support dataset contains conversations pertaining
to an employee seeking assistance from an agent
(technical support) — to resolve problems such
as password reset, software installation/licensing,
and wireless access. In contrast to Ubuntu dataset,
this dataset has clearly two distinct users — em-
ployee and agent. In our experiments we model
the agent responses only.

For each conversation in the tech support data,
we sample context and response pairs to create a
dataset similar to the Ubuntu dataset format. Note
that multiple context-response pairs can be gen-
erated from a single conversation. For each con-
versation, we sample 25% of the possible context-
response pairs. We create validation pairs by
selecting 5000 conversations randomly and sam-
pling context response pairs). Similarly, we create
test pairs from a different subset of 5000 conver-
sations. The remaining conversations are used to

2https://github.com/rkadlec/
ubuntu-ranking-dataset-creator
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create training context-response pairs. Table 3 de-
picts some statistics for this dataset:

Size
Conversations 127,466

Training Pairs 204,808
Validation Pairs 8,738
Test Pairs 8,756

|V | 293,494

Table 3: Dataset statistics for Tech Support
dataset.

4.2 Model and Training Details
The EED and HRED models were implemented
using the PyTorch framework (Paszke et al.,
2017). We initialize the word embedding matrix
as well as the weights of context and response en-
coders from the standard normal distribution with
mean 0 and variance 0.01. The biases of the en-
coders and decoder are initialized with 0. The
word embedding matrix is shared by the context
and response encoders. For Ubuntu dataset, we
use a word embedding size of 600, whereas the
size of the hidden layers of the LSTMs in context
and response encoders and the decoder is fixed at
1200. For Tech support dataset, we use a word em-
bedding size of 128. Furthermore, the size of the
hidden layers of the multiple LSTMs in context
and response encoders and the decoder is fixed at
256. A smaller embedding size was chosen for
the Tech Support dataset since we observed much
less diversity in the responses of the Tech Support
dataset as compared to Ubuntu dataset.

Two different encoders are used for encoding
the input context (not shown in Figure 1 for sim-
plicity). The output of the first context encoder is
concatenated with the exemplar response vectors
to generate exemplar vectors as detailed in Sec-
tion 3.3. The output of the second context encoder
is used to compute the scoring function as detailed
in Section 3.4. For each input context, we re-
trieve 5 similar context-response pairs for Ubuntu
dataset and 3 context-response pairs for Tech sup-
port dataset using the tf-idf mechanism discussed
in Section 3.2.

We use the Adam optimizer (Kingma and Ba,
2014) with a learning rate of 1e − 4 for training
the model. A batch size of 20 samples was used

during training. In order to prevent overfitting, we
use early stopping with log-likelihood on valida-
tion set as the stopping criteria. In order to gen-
erate the samples using the proposed EED model,
we identify the exemplar context that is most sim-
ilar to the input context based on the learnt scor-
ing function discussed in Section 3.4. The cor-
responding exemplar vector is fed to the decoder
to generate the response. The samples are gener-
ated using a beam search with width 5. The av-
erage per-word log-likelihood is used to score the
beams.

5 Results & Evaluation

5.1 Quantitative Evaluation

5.1.1 Activity and Entity Metrics

A traditional and popular metric used for compar-
ing a generated sentence with a ground truth sen-
tence is BLEU (Papineni et al., 2002) and is fre-
quently used to evaluate machine translation. The
metric has also been applied to compute scores
for predicted responses in conversations, but it has
been found to be less indicative of actual perfor-
mance (Liu et al., 2016; Sordoni et al., 2015a; Ser-
ban et al., 2017a), as it is extremely sensitive to
the exact words in the ground truth response, and
gives equal importance to stop words/phrases and
informative words.

Serban et al. (2017a) recently proposed a new
set of metrics for evaluating dialogue responses
for the Ubuntu corpus. It is important to highlight
that these metrics have been specifically designed
for the Ubuntu corpus and evaluate a generated
response with the ground truth response by com-
paring the coarse level representation of an utter-
ance (such as entities, activities, Ubuntu OS com-
mands). Here is a brief description of each metric:

• Activity: Activity metric compares the ac-
tivities present in a predicted response with
the ground truth response. Activity can be
thought of as a verb. Thus, all the verbs in
a response are mapped to a set of manually
identified list of 192 verbs.

• Entity: This compares the technical entities
that overlap with the ground truth response.
A total of 3115 technical entities is identified
using public resources such as Debian pack-
age manager APT.
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Activity Entity Tense Cmd
Model P R F1 P R F1 Acc. Acc.
LSTM* 1.7 1.03 1.18 1.18 0.81 0.87 14.57 94.79
VHRED* 6.43 4.31 4.63 3.28 2.41 2.53 20.2 92.02
HRED* 5.93 4.05 4.34 2.81 2.16 2.22 22.2 92.58

EED 6.42 4.77 4.87 3.8 2.91 2.99 31.73 95.06

Table 4: Activity & Entity metrics for the Ubuntu corpus. LSTM*, HRED* & VHRED* as reported by
Serban et al. (2017a).

• Tense: This measure compares the time tense
of ground truth with predicted response.

• Cmd: This metric computes accuracy by
comparing commands identified in ground
truth utterance with a predicted response.

Table 4 compares our model with other re-
cent generative models (Serban et al., 2017a) —
LSTM (Shang et al., 2015), HRED (Serban et al.,
2016) & VHRED (Serban et al., 2017b).We do not
compare our model with Multi-Resolution RNN
(MRNN) (Serban et al., 2017a), as MRNN explic-
itly utilizes the activities and entities during the
generation process. In contrast, the proposed EED
model and the other models used for comparison
are agnostic to the activity and entity information.
We use the standard script3 to compute the met-
rics.

The EED model scores better than generative
models on almost all of the metrics, indicating
that we generate more informative responses than
other state-of-the-art generative based approaches
for Ubuntu corpus. The results show that re-
sponses associated with similar contexts may con-
tain the activities and entities present in the ground
truth response, and thus help in response genera-
tion. This is discussed further in Section 5.2. Ad-
ditionally, we compared our proposed EED with
a retrieval only baseline. The retrieval baseline
achieves an activity F1 score of 4.23 and entity
F1 score of 2.72 compared to 4.87 and 2.99 re-
spectively achieved by our method on the Ubuntu
corpus.

The Tech Support dataset is not evaluated using
the above metrics, since activity and entity infor-
mation is not available for this dataset.

3https://github.com/julianser/Ubuntu-Multiresolution-
Tools/blob/master/ActEntRepresentation/eval file.sh

5.1.2 Embedding Metrics
Embedding metrics (Lowe et al., 2017) were pro-
posed as an alternative to word by word compar-
ison metrics such as BLEU. We use pre-trained
Google news word embeddings4 similar to Ser-
ban et al. (2017b), for easy reproducibility as these
metrics are sensitive to the word embeddings used.
The three metrics of interest utilize the word vec-
tors in ground truth response and a predicted re-
sponse and are discussed below:

• Average: Average word embedding vec-
tors are computed for the candidate response
and ground truth. The cosine similarity is
computed between these averaged embed-
dings. High similarity gives as indication
that ground truth and predicted response have
similar words.

• Greedy: Greedy matching score finds the
most similar word in predicted response to
ground truth response using cosine similarity.

• Extrema: Vector extrema score computes the
maximum or minimum value of each dimen-
sion of word vectors in candidate response
and ground truth.

Of these, the embedding average metric is the
most reflective of performance for our setup. The
extrema representation, for instance, is very sensi-
tive to text length and becomes ineffective beyond
single length sentences(Forgues et al., 2014). We
use the publicly available script5 for all our com-
putations. As the test outputs for HRED are not
available for Technical Support dataset, we use our

4GoogleNews-vectors-negative300.bin from https://
code.google.com/archive/p/word2vec/

5https://github.com/julianser/
hed-dlg-truncated/blob/master/
Evaluation/embedding_metrics.py
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Ubuntu Tech Support
Model Average Greedy Extrema Average Greedy Extrema
HRED 0.5131 0.4103 0.3263 0.6372 0.5100 0.4355
EED 0.5528 0.4172 0.3134 0.6420 0.5125 0.4356

Table 5: Embedding Metrics (Lowe et al., 2015) for Ubuntu and Technical Support Corpus.

Ubuntu Tech Support
Model distinct-1 distinct-2 distinct-3 distinct-1 distinct-2 distinct-3
HRED 1154 8668 22417 645 3510 6365
EED 1173 9572 29447 732 4149 7877

Table 6: The number of unique tokens, token-pairs and token-triplets for Ubuntu and Technical Support
Corpus.

Input Context (C) and exemplar response (R) Generated/Ground Truth Responses

1

C: i want to check ntfs file systems. is fsck ok with ntfs.
→ no , you ’d need to use chkdsk from windows. →
R: i already symlinked ntfsfix to fsck. ntfs and am
scanning the unmounted devices

HRED: i know , but i dont know how to do that
VHRED: how can i do that ?
EED: i am trying to use ntfs 3g i have a windows partition.
GT: i dont have windows installed

2

C: anyone help me ? → seems that its detecting grub ,
have you tried checking continue without installing
grub ?
R: try the live cd... you ca n’t boot into linux
unless grub install

HRED: yes i did , but i have no idea how to fix it
VHRED: yes i did. i dont know how to do it
EED: nope not yet. grub install cd is not working
GT: no i did not.

3
C: any ideas on my mplayer problem ? → reinstall.
apt-get purge mplayer then reinstall
R: but half my system depends on this package ...

HRED: I did that , but it didn’t work
VHRED: I dont know how to do that
EED: does n t work. package does n t work
GT: that does n’t seem as a solution

4

C: any of you guys in here know how to take a package
on launchpad and recompile it and submit to your
own ppa ? https : //launchpad.net/ mojocode/+archive
/ppa ¡ ¡ i ’m trying to take the nginx package and install
the rtmp module→ could n’t you download the source
and just commit it to your own ?
R: i need prop . drivers

HRED: I don’t know how to do that ,
I just want to know if there is a way to do it
VHRED: no , I just want to make it so I can use it
EED: i need to get the source package. package
manager is not available
GT: so i figured how how to copy into my private ppa .
any idea how to download those source files maybe and make
modifications to resubmit and recompile ? https :
//launchpad.net / blendedbyus/+archive/master/+packages

5

C: hi people , can you help me uninstall a package ?
i did dpkg -i virtualbox-4.2 4.2.2-81494 ubuntu precise
amd64.deb. how do i uninstall it , i ca n’t find the

package from apt-get→ sudo apt-get purge virtualbox
should work fine→ package virtualbox is not installed
, so not removed→ does n’t work : (
R: sudo dpkg – remove – force < package >

HRED: what version of ubuntu ?
VHRED: did you try sudo apt-get install virtualbox-ose
EED: sudo dpkg reconfigure package package manager
GT: if you ca n’t find the package ; sudo aptitude search virtualbox

Table 7: Contexts, exemplar responses and responses generated by HRED, VHRED and the proposed
EED model. We use the published responses for HRED and VHRED. GT indicates the ground truth
response. The change of turn is indicated by →. The highlighted words in bold are common between
the exemplar response and the response predicted by EED.

own implementation of HRED. Table 5 compares
our model with HRED, and depicts that our model
scores better on all metrics for Technical Support

dataset, and on majority of the metrics for Ubuntu
dataset.

We note that the improvement achieved by the

1336



EED model on activity and entity metrics are
much more significant than those on embedding
metrics. This suggests that the EED model is bet-
ter able to capture the specific information (objects
and actions) present in the conversations.

Finally, we evaluate the diversity of the gener-
ated responses for EED against HRED by count-
ing the number of unique tokens, token-pairs and
token-triplets present in the generated responses
on Ubuntu and Tech Support dataset. The results
are shown in Table 6. As can be observed, the re-
sponses in EED have a larger number of distinct
tokens, token-pairs and token-triplets than HRED,
and hence, are arguably more diverse.

5.2 Qualitative Evaluation

Table 7 presents the responses generated by
HRED, VHRED and the proposed EED for a few
selected contexts along with the corresponding
similar exemplar responses. As can be observed
from the table, the responses generated by EED
tend to be more specific to the input context as
compared to the responses of HRED and VHRED.
For example, in conversations 1 and 2 we find that
both HRED and VHRED generate simple generic
responses whereas EED generates responses with
additional information such as the type of disk par-
tition used or a command not working. This is
also confirmed by the quantitative results obtained
using activity and entity metrics in the previous
section. We further observe that the exemplar re-
sponses contain informative words that are utilized
by the EED model for generating the responses as
highlighted in Table 7.

6 Conclusions

In this work, we propose a deep learning method,
Exemplar Encoder Decoder (EED), that given a
conversation context uses similar contexts and cor-
responding responses from training data for gen-
erating a response. We show that by utilizing this
information the system is able to outperform state
of the art generative models on publicly available
Ubuntu dataset. We further show improvements
achieved by the proposed method on a large col-
lection of technical support conversations.

While in this work, we apply the exemplar en-
coder decoder network on conversational task, the
method is generic and could be used with other
tasks such as question answering and machine
translation. In our future work we plan to extend

the proposed method to these other applications.
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Abstract

The recent advance in deep learning and
semantic parsing has significantly im-
proved the translation accuracy of natural
language questions to structured queries.
However, further improvement of the ex-
isting approaches turns out to be quite
challenging. Rather than solely rely-
ing on algorithmic innovations, in this
work, we introduce DialSQL, a dialogue-
based structured query generation frame-
work that leverages human intelligence to
boost the performance of existing algo-
rithms via user interaction. DialSQL is
capable of identifying potential errors in a
generated SQL query and asking users for
validation via simple multi-choice ques-
tions. User feedback is then leveraged to
revise the query. We design a generic sim-
ulator to bootstrap synthetic training di-
alogues and evaluate the performance of
DialSQL on the WikiSQL dataset. Using
SQLNet as a black box query generation
tool, DialSQL improves its performance
from 61.3% to 69.0% using only 2.4 vali-
dation questions per dialogue.

1 Introduction

Building natural language interfaces to databases
(NLIDB) is a long-standing open problem and has
significant implications for many application do-
mains. It can enable users without SQL program-
ming background to freely query the data they
have. For this reason, generating SQL queries
from natural language questions has gained a re-
newed interest due to the recent advance in deep
learning and semantic parsing (Yaghmazadeh
et al., 2017; Zhong et al., 2017; Xu et al., 2017;
Iyer et al., 2017).

While new methods race to achieve the state-
of-the-art performance on NLIDB datasets such
as WikiSQL (Xu et al., 2017; Zhong et al., 2017),
the accuracy is still not high enough for real use.
For example, SQLNet (Xu et al., 2017) achieves
61.3% accuracy on WikiSQL. After analyzing the
error cases of Seq2SQL (Zhong et al., 2017) and
SQLNet, we recognized that many wrong transla-
tions cannot be easily corrected due to the lack of
external knowledge and semantic understanding.

In this paper, we aim to alleviate the aforemen-
tioned problem by putting human users in the loop.
Previous human-in-the-loop NLIDBs (Li and Ja-
gadish, 2014; Yaghmazadeh et al., 2017) rely on
users to carefully go through a generated SQL
query and revise it accordingly, which is not feasi-
ble for users who do not know the SQL language.
Instead, we resort to a different approach by intro-
ducing a goal-oriented dialogue model, DialSQL,
that interacts with users to extract and correct po-
tential errors in the generated queries.

Given a SQL query generated from a natural
language question, we assume any segment, or
span, of the generated query such as a WHERE
clause can be potentially erroneous. The goal of
DialSQL is to extract the erroneous spans and ask
users multi-choice questions to validate and cor-
rect these errors. DialSQL is based on a hier-
archical encoder-decoder architecture with atten-
tion and pointer mechanisms. The model first en-
codes each turn of interaction and runs a dialogue
level RNN network on the dialogue history. The
output of the network is then used to predict the
error category, i.e., whether it is a selection, pro-
jection, or aggregation error. Conditioned on the
error category, the output of a second RNN is used
to predict the start and end positions of the er-
ror span by pointing to the query tokens. Finally,
candidate choices are decoded from the error cate-
gory and span representations. Following previous
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Natural Language Question : What are the countries that joined the NATO before 2004 ?
Ground Truth SQL Query : SELECT country WHERE date of join < 2004
Initial SQL Query : SELECT count ( country ) WHERE date of join = 2004

Turn Side NL Expression using Rule-Based Templates Response
System: Could you please confirm if you are asking total number of the results? validate agg (1, 2)
User: No, that’s not true. negate()

System:
Could you please select one of the following options :

(i) average number of results, (ii) all the results? offer agg (average, no agg)

User: It should be all the results. select(2)
System: Could you please confirm if date of join is 2004 ? validate where change(6, 11)
User: That’s wrong. negate()

System:
Could you please select one of the following options :

(i) date of join is before 2004, (ii) date of invitation is before 2004? offer where (date of join < 2004, date of invitation < 2004)

User: Date of join is before 2004. select(1)

Table 1: DialSQL model running example. Initial SQL query is generated by running a black box
model on the question. Natural language (NL) expressions are generated using a template based method.
Substrings in red represent the error spans and substrings in blue represent the choices offered. Each
response is accompanied with natural language utterances for clarity.

work (Zhong et al., 2017; Xu et al., 2017), we only
use column names and do not utilize table values.

How to train and evaluate DialSQL become two
challenging issues due to the lack of error data
and interaction data. In this work, we construct a
simulator to generate simulated dialogues, a gen-
eral approach practiced by many dialogue stud-
ies. Inspired by the agenda-based methods for user
simulation (Schatzmann et al., 2007), we keep an
agenda of pending actions that are needed to in-
duce the ground truth query. At the start of the
dialogue, a new query is carefully synthesized by
randomly altering the ground truth query and the
agenda is populated by the sequence of altering ac-
tions. Each action consists of three sub-actions: (i)
Pick an error category and extract a span; (ii) Raise
a question; (iii) Update the query by randomly al-
tering the span and remove the action from the
agenda. Consider the example in Figure 1: Step-
1 synthesizes the initial query by randomly alter-
ing the WHERE clause and AGGREGATION; Step-
2 generates the simulated dialogue by validating
the altered spans and offering the correct choice.

To evaluate our model, we first train DialSQL
on the simulated dialogues. Initial queries for new
questions are manufactured by running a black
box SQL generation system on the new questions.
When tested on the WikiSQL (Zhong et al., 2017)
dataset, our model increases the query match ac-
curacy of SQLNet (Xu et al., 2017) from 61.3% to
69.0% using on average 2.4 validation questions
per query.

2 Related Work

Research on natural language interfaces to
databases (NLIDBs), or semantic parsing, has
spanned several decades. Early rule-based
NLIDBs (Woods, 1973; Androutsopoulos et al.,
1995; Popescu et al., 2003) employ carefully de-
signed rules to map natural language questions to
formal meaning representations like SQL queries.
While having a high precision, rule-based sys-
tems are brittle when facing with language vari-
ations. The rise of statistical models (Zettlemoyer
and Collins, 2005; Kate et al., 2005; Berant et al.,
2013), especially the ongoing wave of neural net-
work models (Yih et al., 2015; Dong and Lapata,
2016; Sun et al., 2016; Zhong et al., 2017; Xu
et al., 2017; Guo and Gao, 2018; Yavuz et al.,
2016), has enabled NLIDBs that are more ro-
bust to language variations. Such systems allow
users to formulate questions with greater flexibil-
ity. However, although state-of-the-art systems
have achieved a high accuracy of 80% to 90%
(Dong and Lapata, 2016) on well-curated datasets
like GEO (Zelle and Ray, 1996) and ATIS (Zettle-
moyer and Collins, 2007), the best accuracies on
datasets with questions formulated by real human
users, e.g., WebQuestions (Berant et al., 2013),
GraphQuestions (Su et al., 2016), and WikiSQL
(Zhong et al., 2017), are still far from enough for
real use, typically in the range of 20% to 60%.

Human-in-the-loop systems are a promising
paradigm for building practical NLIDBs. A num-
ber of recent studies have explored this paradigm
with two types of user interaction: coarse-grained
and fine-grained. Iyer et al. (2017) and Li et
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Figure 1: An instantiation of our dialogue simulation process. Step-1 synthesizes the initial query (top)
by randomly altering the ground truth query (bottom). Step-2 generates the dialogue by validating the
sequence of actions populated in Step-1 with the user. Each action is defined by the error category, start
and end positions of the error span, and the random replacement, ex. AGG (1, 2, count).

al. (2016) incorporate coarse-grained user inter-
action, i.e., asking the user to verify the correct-
ness of the final results. However, for real-world
questions, it may not always be possible for users
to verify result correctness, especially in the ab-
sence of supporting evidence. Li and Jagadish
(2014) and Yaghmazadeh et al. (2017) have shown
that incorporating fine-grained user interaction can
greatly improve the accuracy of NLIDBs. How-
ever, they require that the users have intimate
knowledge of SQL, an assumption that does not
hold for general users. Our method also enables
fine-grained user interaction for NLIDBs, but we
solicit user feedback via a dialogue between the
user and the system.

Our model architecture is inspired by recent
studies on hierarchical neural network models
(Sordoni et al., 2015; Serban et al., 2015; Gur
et al., 2017). Recently, Saha et al. (2018) propose
a hierarchical encoder-decoder model augmented
with key-value memory network for sequential
question answering over knowledge graphs. Users
ask a series of questions, and their system finds
the answers by traversing a knowledge graph and
resolves coreferences between questions. Our in-
teractive query generation task significantly differs
from their setup in that we aim to explicitly detect
and correct the errors in the generated SQL query
via a dialogue between our model and the user.

Agenda based user simulations have been inves-
tigated in goal-oriented dialogues for model train-
ing (Schatzmann et al., 2007). Recently, Seq2seq
neural network models are proposed for user sim-
ulation (Asri et al., 2016) that utilize additional
state tracking signals and encode dialogue turns

in a more coarse way. We design a simulation
method for the proposed task where we generate
dialogues with annotated errors by altering queries
and tracking the sequence of alteration steps.

3 Problem Setup and Datasets

We study the problem of building an interactive
natural language interface to databases (INLIDB)
for synthesizing SQL queries from natural lan-
guage questions. In particular, our goal is to de-
sign a dialogue system to extract and validate po-
tential errors in generated queries by asking users
multi-choice questions over multiple turns. We
will first define the problem formally and then ex-
plain our simulation strategy.

3.1 Interactive Query Generation

At the beginning of each dialogue, we are given a
question Q = {q1, q2, · · · , qN}, a table with col-
umn names T = {T1, T2, · · · , TK} where each
name is a sequence of words, and an initial SQL
query U generated using a black box SQL genera-
tion system. Each turn t is represented by a tuple
of system and user responses, (St, Rt), and aug-
mented with the dialogue history (list of previous
turns), Ht. Each system response is a triplet of er-
ror category c, error span s, and a set of candidate
choices C, i.e., St = (c, s, C). An error category
(Table 2) denotes the type of the error that we seek
to correct and an error span is the segment of the
current query that indicates the actual error. Can-
didate choices depend on the error category and
range over the following possibilities: (i) a column
name, (ii) an aggregation operator, or (iii) a where
condition. User responses are represented by ei-

1341



Error Category Meaning in a dialogue
validate sel Validate the select clause
validate agg Validate the aggregation operator
validate where changed Validate if a segment of a where clause is incorrect
validate where removed Validate if a new where clause is needed
validate where added Validate if an incorrect where clause exists
no error Validate if there is no remaining error

Table 2: The list of error categories and their explanations for our interactive query generation task.

ther an affirmation or a negation answer and an in-
dex c′ to identify a choice. We define the interac-
tive query generation task as a list of subtasks: at
each turn t, (i) predict c, (ii) extract s from U , and
(iii) decode C. The task is supervised and each
subtask is annotated with labeled data.

Consider the example dialogue in Table 1. We
first predict validate agg as the error cate-
gory and error span (start = 1, end = 2) is
decoded by pointing to the aggregation segment
of the query. Candidate choices, (average,
no agg), are decoded using the predicted error
category, predicted error span, and dialogue his-
tory. We use a template based natural language
generation (NLG) component to convert system
and user responses into natural language.

3.2 Dialogue Simulation for INLIDB

In our work, we evaluate our model on the Wik-
iSQL task. Each example in WikiSQL consists of
a natural language question and a table to query
from. The task is to generate a SQL query that
correctly maps the question to the given table. Un-
fortunately, the original WikiSQL lacks error data
and user interaction data to train and evaluate Dial-
SQL. We work around this problem by designing a
simulator to bootstrap training dialogues and eval-
uate DialSQL on the test questions of WikiSQL.

Inspired by the agenda-based methods (Schatz-
mann et al., 2007), we keep an agenda of pend-
ing actions that are needed to induce the ground
truth query. At the start of the dialogue, we synthe-
size a new query by randomly altering the ground
truth query and populating the agenda by the se-
quence of altering actions. Each action launches
a sequence of sub-actions: (i) Randomly select
an error category and extract a related span from
the current query, (ii) randomly generate a valid
choice for the chosen span, and (iii) update the cur-
rent query by replacing the span with the choice.
The dialogue is initiated with the final query and a
rule-based system interacts with a rule-based user

simulator to populate the dialogue. The rule-based
system follows the sequence of altering actions
previously generated and asks the user simulator
a single question at each turn. The user simulator
has access to the ground truth query and answers
each question by comparing the question (error
span and the choice) with the ground truth.

Consider the example in Figure 1 where Step-
1 synthesizes the initial query and Step-2 simu-
lates a dialogue using the outputs of Step-1. Step-1
first randomly alters the WHERE clause; the oper-
ator is replaced with a random operator. The up-
dated query is further altered and the final query
is passed to Step-2. In Step-2, the system starts
with validating the aggregation with the user sim-
ulator. In this motivating example, the aggregation
is incorrect and the user simulator negates and se-
lects the offered choice. During training, there is
only a single choice offered and DialSQL trains
to produce this choice; however, during testing, it
can offer multiple choices. In the next step, the
system validates the WHERE clause and generates
a no error action to issue the generated query.
At the end of this process, we generate a set of
labeled dialogues by executing Step-1 and Step-
2 consecutively. DialSQL interacts with the same
rule-based simulator during testing and the SQL
queries obtained at the end of the dialogues are
used to evaluate the model.

4 Dialogue Based SQL Generation

In this section, we present our DialSQL model and
describe its operation in a fully supervised setting.
DialSQL is composed of three layers linked in a
hierarchical structure where each layer solves a
different subtask : (i) Predicting error category,
(ii) Decoding error span, and (iii) Decoding can-
didate choices (illustrated in Figure 2). Given a
(Q,T, U) triplet, the model first encodes Q, each
column name Ti ∈ T , and query U into vector
representations in parallel using Recurrent Neu-
ral Networks (RNN). Next, the first layer of the

1342



model encodes the dialogue history with an RNN
and predicts the error category from this encoding.
The second layer is conditioned on the error cate-
gory and decodes the start and end positions of the
error span by attending over the outputs of query
encoder. Finally, the last layer is conditioned on
both error category and error span and decodes a
list of choices to offer to the user.

4.1 Preliminaries and Notation
Each token w is associated with a vector ew from
rows of an embeddings matrix E. We aim at ob-
taining vector representations for question, table
headers, and query, then generating error category,
error span, and candidate choices.

For our purposes, we use GRU units (Cho et al.,
2014) in our RNN encoders which are defined as

ht = f(xt;ht−1)

where ht is the hidden state at time t. f is a nonlin-
ear function operating on input vector xt and pre-
vious state ht−1. We refer to the last hidden state
of an RNN encoder as the encoding of a sequence.

4.2 Encoding
The core of our model is a hierarchical encoder-
decoder neural network that encodes dialogue
history and decodes errors and candidate choices
at the end of each user turn. The input to the
model is the previous system turn and the current
user turn and the output is the next system ques-
tion.

Encoding Question, Column Names, and
Query. Using decoupled RNNs (Enc), we
encode natural language question, column names,
and query sequences in parallel and produce
outputs and hidden states. oQ, oTi , and oU denote
the sequence of hidden states at each step and
hQ, hTi , and hU denote the last hidden states
of question, column name, and query encoders,
respectively. Parameters of the encoders are
decoupled and only the word embedding matrix
E is shared.

Encoding System and User Turns Since there
is only a single candidate choice during training,
we ignore the index and encode user turn by
doing an embedding lookup using the validation
answer (affirmation or negation). Each element
(error category, error span, and candidate choice)
of the system response is encoded by doing an

embedding lookup and different elements are used
as input at different layers of our model.

Encoding Dialogue History At the end of each
user turn, we first concatenate the previous error
category and the current user turn encodings to
generate the turn level input. We employ an RNN
to encode dialogue history and current turn into a
fixed length vector as

hD1
0 = hQ

oD1
t , gD1

t = Enc([Ec, Ea])

hD1
t = [Attn(gD1

t , HT ), oDt ]

where [.] is vector concatenation, Ec is the error
category encoding, Ea is the user turn encoding,
hD1
0 is the initial hidden state, and hD1

t is the cur-
rent hidden state. Attn is an attention layer with a
bilinear product defined as in (Luong et al., 2015)

Attn(h,O) =
∑

softmax(tanh(hWO)) ∗O
where W is attention parameter.

4.3 Predicting Error Category
We predict the error category by attending over
query states using the output of the dialogue en-
coder as

ct = tanh(Lin([Attn(hD1
t , OU ), hD1

t ]))

lt = softmax(ct · E(C))

where Lin is a linear transformation, E(C) is a
matrix with error category embeddings, and lt is
the probability distribution over categories.

4.4 Decoding Error Span
Consider the case in which there are more than
one different WHERE clauses in the query and each
clause has an error. In this case, the model needs
to monitor previous error spans to avoid decod-
ing the same error. DialSQL runs another RNN
to generate a new dialogue encoding to solve the
aforementioned problem as

hD2
0 = hQ

oD2
t , gD2

t = Enc(Ec)

hD2
t = [Attn(gD2

t , HT )oD2
t ]

where hD2
0 is the initial hidden state, and hD2

t is
the current hidden state. Start position i of the er-
ror span is decoded using the following probability
distribution over query tokens

pi = softmax(tanh(hD2
t L1H

U ))
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Figure 2: DialSQL model: Boxes are RNN cells, colors indicate parameter sharing. Dashed lines denote
skip connections, dashed boxes denote classifications, and black circles denote vector concatenation.
Blue boxes with capital letters and numbers (X.1, X.2) denote that the embeddings of predicted token
at X.1 is passed as input to X.2. Each component in the pipeline is numbered according to execution
order. <GO> is a special token to represent the start of a sequence and ST and ED denote the start and
end indices of a span, respectively.

where pi is the probability of start position over the
ith query token. End position j of the error span is
predicted by conditioning on the start position

ci =
∑

pi ∗HU

p̂j = softmax(tanh([hD2
t , ci]L2H

U ))

where p̂j is the probability of end position over
the jth query token. Conditioning on the error cat-
egory will localize the span prediction problem as
each category is defined by only a small segment
of the query.

4.5 Decoding Candidate Choices

Given error category c and error span (i, j) , Di-
alSQL decodes a list of choices that will poten-
tially replace the error span based on user feed-
back. Inspired by SQLNet (Xu et al., 2017), we
describe our candidate choice decoding approach
as follows.
Select column choice. We define the following

scores over column names,

h = Attn(Lin([oUi−1, o
U
j , Ec]), H

T )

ssel = uT ∗ tanh(Lin([HT , h]))

where oUi−1 is the output vector of the query en-
coder preceding the start position, and oUj is the
output of query encoder at the end position.
Aggregation choice. Conditioned on the encod-
ing e of the select column, we define the follow-
ing scores over the set of aggregations (MIN, MAX,
COUNT, NO AGGREGATION)

sagg = vT ∗ tanh(Lin(Attn(e,HQ)))

Where condition choice. We first decode the con-
dition column name similar to decoding select col-
umn. Given the encoding e of condition column,
we define the following scores over the set of op-
erators (=, <, >)

sop = wT ∗ tanh(Lin(Attn(e,HQ)))
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Next, we define the following scores over question
tokens for the start and end positions of the condi-
tion value

sst = Attn(e,HQ)

sed = Attn([e, hst, H
Q])

where hst is the context vector generated from the
first attention. We denote the number of candidate
choices to be decoded by k. We train DialSQL
with k = 1. The list of k > 1 candidate choices is
decoded similar to beam search during testing. As
an example, we select k column names that have
the highest scores as the candidate where column
choices. For each column name, we first generate
k different operators and from the set of k ∗ 2 col-
umn name and operator pairs; select k operators
that have the highest joint probability. Ideally, Di-
alSQL should be able to learn the type of errors
present in the generated query, extract precise er-
ror spans by pointing to query tokens, and using
the location of the error spans, generate a set of
related choices.

5 Experimental Results and Discussion

In this section, we evaluate DialSQL on Wik-
iSQL using several evaluation metrics by compar-
ing with previous literature.

5.1 Evaluation Setup and Metrics
We measure the query generation accuracy as well
as the complexity of the questions and the length
of the user interactions.
Query-match accuracy. We evaluate DialSQL
on WikiSQL using query-match accuracy (Zhong
et al., 2017; Xu et al., 2017). Query-match ac-
curacy is the proportion of testing examples for
which the generated query is exactly the same as
the ground truth, except the ordering of the WHERE
clauses.
Dialogue length. We count the number of turns
to analyze whether DialSQL generates any redun-
dant validation questions.
Question complexity. We use the average number
of tokens in the generated validation questions to
evaluate if DialSQL can generate simple questions
without overwhelming users.

Since SQLNet and Seq2SQL are single-step
models, we can not analyze DialSQL’s perfor-
mance by comparing against these on the last
two metrics. We overcome this issue by gener-
ating simulated dialogues using an oracle system

that has access to the ground truth query. The
system compares SELECT and AGGREGATION
clauses of the predicted query and the ground
truth; asks a validation question if they differ.
For each WHERE clause pairs of generated query
and the ground truth, the system counts the num-
ber of matching segments namely COLUMN, OP,
and VALUE. The system takes all the pairs with
the highest matching scores and asks a validation
question until one of the queries has no remaining
WHERE clause. If both queries have no remain-
ing clauses, the dialogue terminates. Otherwise,
the system asks a validate where added
(validate where removed) question when
the generated query (ground truth query) has more
remaining clauses. We call this strategy Oracle-
Matching (OM). OM ensures that the generated
dialogues have the minimum number of turns pos-
sible.

5.2 Training Details
We implement DialSQL in TensorFlow (Abadi
et al., 2016) using the Adam optimizer (Kingma
and Ba, 2014) for the training with a learning
rate of 1e−4. We use an embedding size of 300,
RNN state size of 50, and a batch size of 64.
The embeddings are initialized from pretrained
GloVe embeddings (Pennington et al., 2014) and
fine-tuned during training. We use bidirectional
RNN encoders with two layers for questions, col-
umn names, and queries. Stanford CoreNLP to-
kenizer (Manning et al., 2014) is used to parse
questions and column names. Parameters of each
layer are decoupled from each other and only the
embedding matrix is shared. The total number
of turns is limited to 10 and 10 simulated di-
alogues are generated for each example in the
WikiSQL training set. SQLNet and Seq2SQL
models are trained on WikiSQL using the exist-
ing implemention provided by their authors. The
code is available at https://github.com/
izzeddingur/DialSQL.

5.3 Evaluation on the WikiSQL Dataset
Table 3 presents the results of query match accu-
racy. We observe that DialSQL model with a num-
ber of 5 choices improves the performance of both
SQLNet and Seq2SQL by 7.7% and 9.4%, respec-
tively. The higher gain on Seq2SQL model can
be attributed that the single-step Seq2SQL makes
more errors: DialSQL has more room for improve-
ment. We also show the results of DialSQL where
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Model QM-Dev QM-Test
Seq2SQL (Xu et al., 2017) 53.5% 51.6%
SQLNet (Xu et al., 2017) 63.2% 61.3%
BiAttn (Guo and Gao, 2018) 64.1% 62.5%
Seq2SQL - DialSQL 62.2% 61%
SQLNet - DialSQL 70.9% 69.0%
Seq2SQL - DialSQL+ 68.9% 67.8%
SQLNet - DialSQL+ 74.8% 73.9%
Seq2SQL - DialSQL* 84.4% 84%
SQLNet - DialSQL* 82.9% 83.7%

Table 3: Query-match accuracy on the WikiSQL
development and test sets. The first two scores
of our model are generated using 5 candidate
choices, (+) denotes a variant where users can re-
visit their previous answers, and (*) denotes a vari-
ant with more informative user responses.

users are allowed to revisit their previous answers
and with more informative user responses; instead
the model only validates the error span and the
user directly gives the correct choice. In this sce-
nario, the performance further improves on both
development and test sets. It seems decoding can-
didate choices is a hard task and has room for
improvement. For the rest of the evaluation, we
present results with multi-choice questions.

5.4 Query Complexity and Dialogue Length

In Table 4, we compare DialSQL to the OM strat-
egy on query complexity (QC) and dialogue length
(DL) metrics. DialSQL and SQLNet-OM both
have very similar query complexity scores show-
ing that DialSQL produces simple questions. The
number of questions DialSQL asks is around 3
for both query generation models. Even though
SQLNet-OM dialogues have much smaller dia-
logue lengths, we attribute this to the fact that
61.3% of the dialogues have empty interactions
since OM will match every segment in the gen-
erated query and the ground truth. The average
number of turns in dialogues with non-empty in-
teractions, on the other hand, is 3.10 which is close
to DialSQL.

5.5 A Varying Number of Choices

In Figure 3, we plot the accuracy of DialSQL on
WikiSQL with a varying number of choices at
each turn. We train DialSQL once and generate a
different number of choices at each turn by offer-
ing top-k candidates during testing. We observe
that offering even a single candidate improves the
performance of SQLNet remarkably, 1.9% and

Model QC Dev DL Dev QC Test DL Test
Seq2SQL - OM 3.47 (2.25) 0.84 (1.77) 3.51 (2.41) 0.88 (1.8)
SQLNet - OM 3.37 (2.63) 0.61 (1.45) 3.34 (2.51) 0.63 (1.49)
Seq2SQL - DialSQL 3.53 (1.79) 5.54 (2.32) 3.55 (1.81) 5.55 (2.34)
SQLNet - DialSQL 3.6 (1.86) 5.57 (2.34) 3.17 (1.55) 4.77 (1.57)

Table 4: Average query complexity and dialogue
length on the WikiSQL datasets (values in paran-
thesis are standard deviations). Metrics for SQL-
Net and Seq2SQL models are generated by the
OM strategy as described earlier.

Figure 3: DialSQL performance on WikiSQL with
a varying number of choices at each turn.

2.5% for development and test sets, respectively.
As the number of choices increases, the perfor-
mance of DialSQL improves in all the cases. Par-
ticularly, for the SQLNet-DialSQL model we ob-
serve more accuray gain. We increased the num-
ber of choices to 10 and observed no notable fur-
ther improvement in the development set which
suggests that 5 is a good value for the number of
choices.

5.6 Error Distribution

We examine the error distribution of Dial-
SQL and SQLNet. In DialSQL, almost all
the errors are caused by validate sel and
validate where change, while in SQLNet
validate where change is the major cause
of error and other errors are distributed uniformly.

5.7 Human Evaluation

We extend our evaluation of DialSQL using hu-
man subject experiment so that real users in-
teract with the system instead of our simulated
user. We randomly pick 100 questions from Wik-
iSQL development set and run SQLNet to gen-
erate initial candidate queries. Next, we run Di-
alSQL using these candidate queries to gener-
ate 100 dialogues, each of which is evaluated
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Model Accuracy
SQLNet 58
DialSQL w/ User Simulation 75
DialSQL w/ Real Users 65 (1.4)

Table 5: QM accuracies of SQLNet, DialSQL
with user simulation, and DialSQL with real users
(value in paranthesis is standard deviation).

Figure 4: Distribution of user preference for Dial-
SQL ranking (scaled to 1-6 with 6 is None of the
above.).

by 3 different users. At each turn, we show
users the headers of the corresponding table, orig-
inal question, system response, and list of can-
didate choices for users to pick. For each error
category, we generate 5 choices except for the
validate where added category for which
we only show 2 choices (YES or NO). Also, we
add an additional choice of None of the above so
that users can keep the previous prediction un-
changed. At the end of each turn, we also ask users
to give an overall score between 1 and 3 to evalu-
ate whether they had a successful interaction with
the DialSQL for the current turn. On average, the
length of the generated dialogues is 5.6.

In Table 5, we compare the performance of
SQLNet, DialSQL with user simulation, and Dial-
SQL with real users using QM metric. We present
the average performance across 3 different users
with the standard deviation estimated over all di-
alogues. We observe that when real users interact
with our system, the overall performance of the
generated queries are better than SQLNet model
showing that DialSQL can improve the perfor-
mance of a strong NLIDB system in a real setting.
However, there is still a large room for improve-
ment between simulated dialogues and real users.

In Figure 4, we present the correlation between
DialSQL ranking of the candidate choices and user
preferences. We observe that, user answers and

DialSQL rankings are positively correlated; most
of the time users prefer the top-1 choice. Inter-
estingly, 15% of the user answers is None of the
above. This commonly happens in the scenario
where DialSQL response asks to replace a correct
condition and users prefer to keep the original pre-
diction unchanged. Another scenario where users
commonly select None of the above is when ta-
ble headers without the content remain insufficient
for users to correctly disambiguate condition val-
ues from questions. We also compute the Mean
Reciprocal Rank (MMR) for each user to measure
the correlation between real users and DialSQL.
Average MMR is 0.69 with standard deviation of
0.004 which also shows that users generally prefer
the choices ranked higher by DialSQL. The over-
all score of each turn also suggests that users had a
reasonable conversation with DialSQL. The aver-
age score is 2.86 with standard deviation of 0.14,
showing users can understand DialSQL responses
and can pick a choice confidently.

6 Conclusion

We demonstrated the efficacy of the DialSQL, im-
proving the state of the art accuracy from 62.5%
to 69.0% on the WikiSQL dataset. DialSQL suc-
cessfully extracts error spans from queries and of-
fers several alternatives to users. It generates sim-
ple questions over a small number of turns with-
out overwhelming users. The model learns from
only simulated data which makes it easy to adapt
to new domains. We further investigate the usabil-
ity of DialSQL in a real life setting by conducting
human evaluations. Our results suggest that the
accuracy of the generated queries can be improved
via real user feedback.
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Abstract

One of the main challenges online social
systems face is the prevalence of antiso-
cial behavior, such as harassment and per-
sonal attacks. In this work, we introduce
the task of predicting from the very start
of a conversation whether it will get out
of hand. As opposed to detecting undesir-
able behavior after the fact, this task aims
to enable early, actionable prediction at a
time when the conversation might still be
salvaged.

To this end, we develop a framework
for capturing pragmatic devices—such
as politeness strategies and rhetorical
prompts—used to start a conversation, and
analyze their relation to its future trajec-
tory. Applying this framework in a con-
trolled setting, we demonstrate the feasi-
bility of detecting early warning signs of
antisocial behavior in online discussions.

1 Introduction
“Or vedi l’anime di color cui vinse l’ira.”1

– Dante Alighieri, Divina Commedia, Inferno

Online conversations have a reputation for go-
ing awry (Hinds and Mortensen, 2005; Gheitasy
et al., 2015): antisocial behavior (Shepherd et al.,
2015) or simple misunderstandings (Churchill and
Bly, 2000; Yamashita and Ishida, 2006) hamper
the efforts of even the best intentioned collabo-
rators. Prior computational work has focused on
characterizing and detecting content exhibiting an-
tisocial online behavior: trolling (Cheng et al.,
2015, 2017), hate speech (Warner and Hirschberg,
2012; Davidson et al., 2017), harassment (Yin
et al., 2009), personal attacks (Wulczyn et al.,

∗ Corresponding senior author.
1“Now you see the souls of those whom anger overcame.”

2017) or, more generally, toxicity (Chandrasekha-
ran et al., 2017; Pavlopoulos et al., 2017b).

Our goal is crucially different: instead of identi-
fying antisocial comments after the fact, we aim to
detect warning signs indicating that a civil conver-
sation is at risk of derailing into such undesirable
behaviors. Such warning signs could provide po-
tentially actionable knowledge at a time when the
conversation is still salvageable.

As a motivating example, consider the pair of
conversations in Figure 1. Both exchanges took
place in the context of the Wikipedia discussion
page for the article on the Dyatlov Pass Incident,
and both show (ostensibly) civil disagreement be-
tween the participants. However, only one of these
conversations will eventually turn awry and de-
volve into a personal attack (“Wow, you’re com-
ing off as a total d**k. [...] What the hell is wrong
with you?”), while the other will remain civil.

As humans, we have some intuition about which
conversation is more likely to derail.2 We may
note the repeated, direct questioning with which
A1 opens the exchange, and that A2 replies
with yet another question. In contrast, B1’s
softer, hedged approach (“it seems”, “I don’t
think”) appears to invite an exchange of ideas,
and B2 actually addresses the question instead of
stonewalling. Could we endow artificial systems
with such intuitions about the future trajectory of
conversations?

In this work we aim to computationally cap-
ture linguistic cues that predict a conversation’s
future health. Most existing conversation mod-
eling approaches aim to detect characteristics of
an observed discussion or predict the outcome af-
ter the discussion concludes—e.g., whether it in-
volves a present dispute (Allen et al., 2014; Wang
and Cardie, 2014) or contributes to the even-

2In fact, humans achieve an accuracy of 72% on this bal-
anced task, showing that it is feasible, but far from trivial.
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A1: Why there’s no mention of it here? Namely, an altercation
with a foreign intelligence group? True, by the standards of
sources some require it wouln’t even come close, not to men-
tion having some really weak points, but it doesn’t mean that it
doesn’t exist.

A2: So what you’re saying is we should put a bad
source in the article because it exists?

B1: Is the St. Petersberg Times considered a reliable source by
wikipedia? It seems that the bulk of this article is coming from
that one article, which speculates about missile launches and
UFOs. I’m going to go through and try and find corroborating
sources and maybe do a rewrite of the article. I don’t think this
article should rely on one so-so source.

B2: I would assume that it’s as reliable as any other
mainstream news source.

Figure 1: Two examples of initial exchanges from conversations concerning disagreements between
editors working on the Wikipedia article about the Dyatlov Pass Incident. Only one of the conversations
will eventually turn awry, with an interlocutor launching into a personal attack.

tual solution of a problem (Niculae and Danescu-
Niculescu-Mizil, 2016). In contrast, for this new
task we need to discover interactional signals of
the future trajectory of an ongoing conversation.

We make a first approach to this problem by an-
alyzing the role of politeness (or lack thereof) in
keeping conversations on track. Prior work has
shown that politeness can help shape the course
of offline (Clark, 1979; Clark and Schunk, 1980),
as well as online interactions (Burke and Kraut,
2008), through mechanisms such as softening the
perceived force of a message (Fraser, 1980), act-
ing as a buffer between conflicting interlocutor
goals (Brown and Levinson, 1987), and enabling
all parties to save face (Goffman, 1955). This sug-
gests the potential of politeness to serve as an in-
dicator of whether a conversation will sustain its
initial civility or eventually derail, and motivates
its consideration in the present work.

Recent studies have computationally opera-
tionalized prior formulations of politeness by
extracting linguistic cues that reflect politeness
strategies (Danescu-Niculescu-Mizil et al., 2013;
Aubakirova and Bansal, 2016). Such research
has additionally tied politeness to social fac-
tors such as individual status (Danescu-Niculescu-
Mizil et al., 2012; Krishnan and Eisenstein, 2015),
and the success of requests (Althoff et al., 2014)
or of collaborative projects (Ortu et al., 2015).
However, to the best of our knowledge, this is the
first computational investigation of the relation be-
tween politeness strategies and the future trajec-
tory of the conversations in which they are de-
ployed. Furthermore, we generalize beyond pre-
defined politeness strategies by using an unsu-
pervised method to discover additional rhetorical
prompts used to initiate different types of conver-
sations that may be specific to online collaborative
settings, such as coordinating work (Kittur and
Kraut, 2008) or conducting factual checks.

We explore the role of such pragmatic and
rhetorical devices in foretelling a particularly per-
plexing type of conversational failure: when par-
ticipants engaged in previously civil discussion
start to attack each other. This type of derailment
“from within” is arguably more disruptive than
other forms of antisocial behavior, such as vandal-
ism or trolling, which the interlocutors have less
control over or can choose to ignore.

We study this phenomenon in a new dataset of
Wikipedia talk page discussions, which we com-
pile through a combination of machine learning
and crowdsourced filtering. The dataset consists
of conversations which begin with ostensibly civil
comments, and either remain healthy or derail into
personal attacks. Starting from this data, we con-
struct a setting that mitigates effects which may
trivialize the task. In particular, some topical con-
texts (such as politics and religion) are naturally
more susceptible to antisocial behavior (Kittur
et al., 2009; Cheng et al., 2015). We employ tech-
niques from causal inference (Rosenbaum, 2010)
to establish a controlled framework that focuses
our study on topic-agnostic linguistic cues.

In this controlled setting, we find that prag-
matic cues extracted from the very first exchange
in a conversation (i.e., the first comment-reply
pair) can indeed provide some signal of whether
the conversation will subsequently go awry. For
example, conversations prompted by hedged re-
marks sustain their initial civility more so than
those prompted by forceful questions, or by direct
language addressing the other interlocutor.

In summary, our main contributions are:

• We articulate the new task of detecting early
on whether a conversation will derail into
personal attacks;

• We devise a controlled setting and build a la-
beled dataset to study this phenomenon;
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• We investigate how politeness strategies and
other rhetorical devices are tied to the future
trajectory of a conversation.

More broadly, we show the feasibility of auto-
matically detecting warning signs of future mis-
behavior in collaborative interactions. By provid-
ing a labeled dataset together with basic method-
ology and several baselines, we open the door to
further work on understanding factors which may
derail or sustain healthy online conversations. To
facilitate such future explorations, we distrubute
the data and code as part of the Cornell Conversa-
tional Analysis Toolkit.3

2 Further Related Work

Antisocial behavior. Prior work has studied a
wide range of disruptive interactions in various on-
line platforms like Reddit and Wikipedia, exam-
ining behaviors like aggression (Kayany, 1998),
harassment (Chatzakou et al., 2017; Vitak et al.,
2017), and bullying (Akbulut et al., 2010; Kwak
et al., 2015; Singh et al., 2017), as well as their im-
pact on aspects of engagement like user retention
(Collier and Bear, 2012; Wikimedia Support and
Safety Team, 2015) or discussion quality (Arazy
et al., 2013). Several studies have sought to de-
velop machine learning techniques to detect sig-
natures of online toxicity, such as personal in-
sults (Yin et al., 2009), harassment (Sood et al.,
2012) and abusive language (Nobata et al., 2016;
Gambäck and Sikdar, 2017; Pavlopoulos et al.,
2017a; Wulczyn et al., 2017). These works fo-
cus on detecting toxic behavior after it has al-
ready occurred; a notable exception is Cheng et al.
(2017), which predicts future community enforce-
ment against users in news-based discussions. Our
work similarly aims to understand future antiso-
cial behavior; however, our focus is on studying
the trajectory of a conversation rather than the be-
havior of individuals across disparate discussions.
Discourse analysis. Our present study builds on a
large body of prior work in computationally mod-
eling discourse. Both unsupervised (Ritter et al.,
2010) and supervised (Zhang et al., 2017a) ap-
proaches have been used to categorize behavioral
patterns on the basis of the language that ensues in
a conversation, in the particular realm of online
discussions. Models of conversational behavior
have also been used to predict conversation out-
comes, such as betrayal in games (Niculae et al.,

3http://convokit.infosci.cornell.edu

2015), and success in team problem solving set-
tings (Fu et al., 2017) or in persuading others (Tan
et al., 2016; Zhang et al., 2016).

While we are inspired by the techniques em-
ployed in these approaches, our work is concerned
with predicting the future trajectory of an ongoing
conversation as opposed to a post-hoc outcome.
In this sense, we build on prior work in modeling
conversation trajectory, which has largely consid-
ered structural aspects of the conversation (Kumar
et al., 2010; Backstrom et al., 2013). We comple-
ment these structural models by seeking to extract
potential signals of future outcomes from the lin-
guistic discourse within the conversation.

3 Finding Conversations Gone Awry

We develop our framework for understanding lin-
guistic markers of conversational trajectories in
the context of Wikipedia’s talk page discussions—
public forums in which contributors convene to
deliberate on editing matters such as evaluating
the quality of an article and reviewing the com-
pliance of contributions with community guide-
lines. The dynamic of conversational derailment
is particularly intriguing and consequential in this
setting by virtue of its collaborative, goal-oriented
nature. In contrast to unstructured commenting fo-
rums, cases where one collaborator turns on an-
other over the course of an initially civil exchange
constitute perplexing pathologies. In turn, these
toxic attacks are especially disruptive in Wikipedia
since they undermine the social fabric of the com-
munity as well as the ability of editors to con-
tribute (Henner and Sefidari, 2016).

To approach this domain we reconstruct a com-
plete view of the conversational process in the edit
history of English Wikipedia by translating se-
quences of revisions of each talk page into struc-
tured conversations. This yields roughly 50 mil-
lion conversations across 16 million talk pages.

Roughly one percent of Wikipedia comments
are estimated to exhibit antisocial behavior (Wul-
czyn et al., 2017). This illustrates a challenge
for studying conversational failure: one has to sift
through many conversations in order to find even
a small set of examples. To avoid such a pro-
hibitively exhaustive analysis, we first use a ma-
chine learning classifier to identify candidate con-
versations that are likely to contain a toxic contri-
bution, and then use crowdsourcing to vet the re-
sulting labels and construct our controlled dataset.
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Job 1: Ends in personal attack. We show three annotators a
conversation and ask them to determine if its last comment is
a personal attack toward someone else in the conversation.

Annotators Conversations Agreement
367 4,022 67.8%

Job 2: Civil start. We split conversations into snip-
pets of three consecutive comments. We ask three annotators
to determine whether any of the comments in a snippet is toxic.

Annotators Conversations Snippets Agreement
247 1,252 2,181 87.5%

Table 1: Descriptions of crowdsourcing jobs, with relevant statistics. More details in Appendix A.

Candidate selection. Our goal is to analyze how
the start of a civil conversation is tied to its poten-
tial future derailment into personal attacks. Thus,
we only consider conversations that start out as os-
tensibly civil, i.e., where at least the first exchange
does not exhibit any toxic behavior,4 and that con-
tinue beyond this first exchange. To focus on the
especially perplexing cases when the attacks come
from within, we seek examples where the attack is
initiated by one of the two participants in the ini-
tial exchange.

To select candidate conversations to include in
our collection, we use the toxicity classifier pro-
vided by the Perspective API,5 which is trained on
Wikipedia talk page comments that have been an-
notated by crowdworkers (Wulczyn et al., 2016).
This provides a toxicity score t for all comments
in our dataset, which we use to preselect two sets
of conversations: (a) candidate conversations that
are civil throughout, i.e., conversations in which
all comments (including the initial exchange) are
not labeled as toxic (t < 0.4); and (b) candidate
conversations that turn toxic after the first (civil)
exchange, i.e., conversations in which the N -th
comment (N > 2) is labeled toxic (t ≥ 0.6), but
all the preceding comments are not (t < 0.4).
Crowdsourced filtering. Starting from these can-
didate sets, we use crowdsourcing to vet each con-
versation and select a subset that are perceived
by humans to either stay civil throughout (“on-
track” conversations), or start civil but end with
a personal attack (“awry-turning” conversations).
To inform the design of this human-filtering pro-
cess and to check its effectiveness, we start from
a seed set of 232 conversations manually ver-
ified by the authors to end in personal attacks
(more details about the selection of the seed set
and its role in the crowd-sourcing process can be
found in Appendix A). We take particular care to
not over-constrain crowdworker interpretations of

4For the sake of generality, in this work we focus on this
most basic conversational unit: the first comment-reply pair
starting a conversation.

5https://www.perspectiveapi.com/

what personal attacks may be, and to separate tox-
icity from civil disagreement, which is recognized
as a key aspect of effective collaborations (Coser,
1956; De Dreu and Weingart, 2003).

We design and deploy two filtering jobs using
the CrowdFlower platform, summarized in Table 1
and detailed in Appendix A. Job 1 is designed to
select conversations that contain a “rude, insulting,
or disrespectful” comment towards another user in
the conversation—i.e., a personal attack. In con-
trast to prior work labeling antisocial comments in
isolation (Sood et al., 2012; Wulczyn et al., 2017),
annotators are asked to label personal attacks in
the context of the conversations in which they oc-
cur, since antisocial behavior can often be context-
dependent (Cheng et al., 2017). In fact, in order to
ensure that the crowdworkers read the entire con-
versation, we also ask them to indicate who is the
target of the attack. We apply this task to the set
of candidate awry-turning conversations, selecting
the 14% which all three annotators perceived as
ending in a personal attack.6

Job 2 is designed to filter out conversations that
do not actually start out as civil. We run this
job to ensure that the awry-turning conversations
are civil up to the point of the attack—i.e., they
turn awry—discarding 5% of the candidates that
passed Job 1. We also use it to verify that the
candidate on-track conversations are indeed civil
throughout, discarding 1% of the respective candi-
dates. In both cases we filter out conversations in
which three annotators could identify at least one
comment that is “rude, insulting, or disrespectful”.
Controlled setting. Finally, we need to construct
a setting that affords for meaningful comparison
between conversations that derail and those that
stay on track, and that accounts for trivial topical
confounds (Kittur et al., 2009; Cheng et al., 2015).
We mitigate topical confounds using matching, a
technique developed for causal inference in obser-
vational studies (Rubin, 2007). Specifically, start-

6We opted to use unanimity in this task to account for the
highly subjective nature of the phenomenon.
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ing from our human-vetted collection of conver-
sations, we pair each awry-turning conversation,
with an on-track conversation, such that both took
place on the same talk page. If we find multi-
ple such pairs, we only keep the one in which the
paired conversations take place closest in time, to
tighten the control for topic. Conversations that
cannot be paired are discarded.

This procedure yields a total of 1,270 paired
awry-turning and on-track conversations (includ-
ing our initial seed set), spanning 582 distinct talk
pages (averaging 1.1 pairs per page, maximum 8)
and 1,876 (overlapping) topical categories. The
average length of a conversation is 4.6 comments.

4 Capturing Pragmatic Devices

We now describe our framework for capturing lin-
guistic cues that might inform a conversation’s fu-
ture trajectory. Crucially, given our focus on con-
versations that start seemingly civil, we do not ex-
pect overtly hostile language—such as insults (Yin
et al., 2009)—to be informative. Instead, we seek
to identify pragmatic markers within the initial ex-
change of a conversation that might serve to reveal
or exacerbate underlying tensions that eventually
come to the fore, or conversely suggest sustainable
civility. In particular, in this work we explore how
politeness strategies and rhetorical prompts reflect
the future health of a conversation.
Politeness strategies. Politeness can reflect
a-priori good will and help navigate potentially
face-threatening acts (Goffman, 1955; Lakoff,
1973), and also offers hints to the underlying in-
tentions of the interlocutors (Fraser, 1980). Hence,
we may naturally expect certain politeness strate-
gies to signal that a conversation is likely to stay
on track, while others might signal derailment.

In particular, we consider a set of pragmatic
devices signaling politeness drawn from Brown
and Levinson (1987). These linguistic features re-
flect two overarching types of politeness. Posi-
tive politeness strategies encourage social connec-
tion and rapport, perhaps serving to maintain co-
hesion throughout a conversation; such strategies
include gratitude (“thanks for your help”), greet-
ings (“hey, how is your day so far”) and use of
“please”, both at the start (“Please find sources for
your edit...”) and in the middle (“Could you please
help with...?”) of a sentence. Negative politeness
strategies serve to dampen an interlocutor’s impo-
sition on an addressee, often through conveying

indirectness or uncertainty on the part of the com-
menter. Both commenters in example B (Fig. 1)
employ one such strategy, hedging, perhaps seek-
ing to soften an impending disagreement about
a source’s reliability (“I don’t think...”, “I would
assume...”). We also consider markers of impo-
lite behavior, such as the use of direct questions
(“Why’s there no mention of it?’) and sentence-
initial second person pronouns (“Your sources
don’t matter...”), which may serve as forceful-
sounding contrasts to negative politeness markers.
Following Danescu-Niculescu-Mizil et al. (2013),
we extract such strategies by pattern matching on
the dependency parses of comments.

Types of conversation prompts. To complement
our pre-defined set of politeness strategies, we
seek to capture domain-specific rhetorical patterns
used to initiate conversations. For instance, in a
collaborative setting, we may expect conversations
that start with an invitation for working together to
signal less tension between the participants than
those that start with statements of dispute. We dis-
cover types of such conversation prompts in an un-
supervised fashion by extending a framework used
to infer the rhetorical role of questions in (offline)
political debates (Zhang et al., 2017b) to more
generally extract the rhetorical functions of com-
ments. The procedure follows the intuition that the
rhetorical role of a comment is reflected in the type
of replies it is likely to elicit. As such, comments
which tend to trigger similar replies constitute a
particular type of prompt.

To implement this intuition, we derive two dif-
ferent low-rank representations of the common
lexical phrasings contained in comments (agnos-
tic to the particular topical content discussed), au-
tomatically extracted as recurring sets of arcs in
the dependency parses of comments. First, we
derive reply-vectors of phrasings, which reflect
their propensities to co-occur. In particular, we
perform singular value decomposition on a term-
document matrix R of phrasings and replies as
R ≈ R̂ = URSV T

R , where rows of UR are low-
rank reply-vectors for each phrasing.

Next, we derive prompt-vectors for the phras-
ings, which reflect similarities in the subsequent
replies that a phrasing prompts. We construct a
prompt-reply matrix P = (pij) where pij = 1 if
phrasing j occurred in a reply to a comment con-
taining phrasing i. We project P into the same
space as UR by solving for P̂ in P = P̂SV T

R as
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Prompt Type Description Examples

Factual check Statements about article content, pertaining to or The terms are used interchangeably in the US.
contending issues like factual accuracy. The census is not talking about families here.

Moderation Rebukes or disputes concerning moderation decisions If you continue, you may be blocked from editing.
such as blocks and reversions. He’s accused me of being a troll.

Coordination Requests, questions, and statements of intent It’s a long list so I could do with your help.
pertaining to collaboratively editing an article. Let me know if you agree with this and I’ll go ahead [...]

Casual remark Casual, highly conversational aside-remarks. What’s with this flag image?
I’m surprised there wasn’t an article before.

Action statement Requests, statements, and explanations about Please consider improving the article to address the issues [...]
various editing actions. The page was deleted as self-promotion.

Opinion Statements seeking or expressing opinions about I think that it should be the other way around.
editing challenges and decisions. This article seems to have a lot of bias.

Table 2: Prompt types automatically extracted from talk page conversations, with interpretations and
examples from the data. Bolded text indicate common prompt phrasings extracted by the framework.
Further examples are shown in Appendix B, Table 4.

P̂ = PVRS−1. Each row of P̂ is then a prompt-
vector of a phrasing, such that the prompt-vector
for phrasing i is close to the reply-vector for phras-
ing j if comments with phrasing i tend to prompt
replies with phrasing j. Clustering the rows of P̂
then yields k conversational prompt types that are
unified by their similarity in the space of replies.
To infer the prompt type of a new comment, we
represent the comment as an average of the repre-
sentations of its constituent phrasings (i.e., rows of
P̂) and assign the resultant vector to a cluster.7

To determine the prompt types of comments in
our dataset, we first apply the above procedure to
derive a set of prompt types from a disjoint (un-
labeled) corpus of Wikipedia talk page conversa-
tions (Danescu-Niculescu-Mizil et al., 2012). Af-
ter initial examination of the framework’s output
on this external data, we chose to extract k = 6
prompt types, shown in Table 2 along with our in-
terpretations.8 These prompts represent signatures
of conversation-starters spanning a wide range of
topics and contexts which reflect core elements of
Wikipedia, such as moderation disputes and co-
ordination (Kittur et al., 2007; Kittur and Kraut,
2008). We assign each comment in our present
dataset to one of these types.9

7We scale rows of UR and P̂ to unit norm. We assign
comments whose vector representation has (ℓ2) distance ≥ 1
to all cluster centroids to an extra, infrequently-occurring null
type which we ignore in subsequent analyses.

8We experimented with more prompt types as well, find-
ing that while the methodology recovered finer-grained types,
and obtained qualitatively similar results and prediction ac-
curacies as described in Sections 5 and 6, the assignment of
comments to types was relatively sparse due to the small data
size, resulting in a loss of statistical power.

9While the particular prompt types we discover are spe-

5 Analysis

We are now equipped to computationally explore
how the pragmatic devices used to start a con-
versation can signal its future health. Concretely,
to quantify the relative propensity of a linguistic
marker to occur at the start of awry-turning ver-
sus on-track conversations, we compute the log-
odds ratio of the marker occurring in the initial
exchange—i.e., in the first or second comments—
of awry-turning conversations, compared to initial
exchanges in the on-track setting. These quantities
are depicted in Figure 2A.10

Focusing on the first comment (represented
as ♦s), we find a rough correspondence between
linguistic directness and the likelihood of future
personal attacks. In particular, comments which
contain direct questions, or exhibit sentence-
initial you (i.e., “2nd person start”), tend to start
awry-turning conversations significantly more of-
ten than ones that stay on track (both p < 0.001).11

This effect coheres with our intuition that direct-
ness signals some latent hostility from the conver-
sation’s initiator, and perhaps reinforces the force-
fulness of contentious impositions (Brown and
Levinson, 1987). This interpretation is also sug-

cific to Wikipedia, the methodology for inferring them is un-
supervised and is applicable in other conversational settings.

10To reduce clutter we only depict features which occur a
minimum of 50 times and have absolute log-odds ≥ 0.2 in at
least one of the data subsets. The markers indicated as statis-
tically significant for Figure 2A remain so after a Bonferroni
correction, with the exception of factual checks, hedges (lex-
icon, ♦), gratitude (♦), and opinion.

11All p values in this section are computed as two-tailed bi-
nomial tests, comparing the proportion of awry-turning con-
versations exhibiting a particular device to the proportion of
on-track conversations.
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Figure 2: Log-odds ratios of politeness strategies and prompt types exhibited in the first and second
comments of conversations that turn awry, versus those that stay on-track. All: Purple and green markers
denote log-odds ratios in the first and second comments, respectively; points are solid if they reflect
significant (p < 0.05) log-odds ratios with an effect size of at least 0.2. A: ♦s and !s denote first
and second comment log-odds ratios, respectively; * denotes statistically significant differences at the
p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***) levels for the first comment (two-tailed binomial test); +
denotes corresponding statistical significance for the second comment. B and C: ▽s and ⃝s correspond
to effect sizes in the comments authored by the attacker and non-attacker, respectively, in attacker
initiated (B) and non-attacker initiated (C) conversations.

gested by the relative propensity of the factual
check prompt, which tends to cue disputes re-
garding an article’s factual content (p < 0.05).

In contrast, comments which initiate on-track
conversations tend to contain gratitude (p < 0.05)
and greetings (p < 0.001), both positive polite-
ness strategies. Such conversations are also
more likely to begin with coordination
prompts (p < 0.05), signaling active efforts to
foster constructive teamwork. Negative polite-
ness strategies are salient in on-track conversa-
tions as well, reflected by the use of hedges
(p < 0.01) and opinion prompts (p < 0.05),
which may serve to soften impositions or factual
contentions (Hübler, 1983).

These effects are echoed in the second
comment—i.e., the first reply (represented
as !s). Interestingly, in this case we note that
the difference in pronoun use is especially marked.
First replies in conversations that eventually de-

rail tend to contain more second person pro-
nouns (p < 0.001), perhaps signifying a replier
pushing back to contest the initiator; in con-
trast, on-track conversations have more sentence-
initial I/We (i.e., “1st person start”, p < 0.001), po-
tentially indicating the replier’s willingness to step
into the conversation and work with—rather than
argue against—the initiator (Tausczik and Pen-
nebaker, 2010).

Distinguishing interlocutor behaviors. Are the
linguistic signals we observe solely driven by the
eventual attacker, or do they reflect the behavior of
both actors? To disentangle the attacker and non-
attackers’ roles in the initial exchange, we exam-
ine their language use in these two possible cases:
when the future attacker initiates the conversation,
or is the first to reply. In attacker-initiated con-
versations (Figure 2B, 608 conversations), we see
that both actors exhibit a propensity for the lin-
guistically direct markers (e.g., direct questions)
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that tend to signal future attacks. Some of these
markers are used particularly often by the non-
attacking replier in awry-turning conversations
(e.g., second person pronouns, p < 0.001, ⃝s),
further suggesting the dynamic of the replier push-
ing back at—and perhaps even escalating—the at-
tacker’s initial hint of aggression. Among conver-
sations initiated instead by the non-attacker (Fig-
ure 2C, 662 conversations), the non-attacker’s lin-
guistic behavior in the first comment (⃝s) is less
distinctive from that of initiators in the on-track
setting (i.e., log-odds ratios closer to 0); mark-
ers of future derailment are (unsurprisingly) more
pronounced once the eventual attacker (▽s) joins
the conversation in the second comment.12

More broadly, these results reveal how differ-
ent politeness strategies and rhetorical prompts de-
ployed in the initial stages of a conversation are
tied to its future trajectory.

6 Predicting Future Attacks

We now show that it is indeed feasible to predict
whether a conversation will turn awry based on
linguistic properties of its very first exchange, pro-
viding several baselines for this new task. In do-
ing so, we demonstrate that the pragmatic devices
examined above encode signals about the future
trajectory of conversations, capturing some of the
intuition humans are shown to have.

We consider the following balanced prediction
task: given a pair of conversations, which one
will eventually lead to a personal attack? We ex-
tract all features from the very first exchange in
a conversation—i.e., a comment-reply pair, like
those illustrated in our introductory example (Fig-
ure 1). We use logistic regression and report ac-
curacies on a leave-one-page-out cross validation,
such that in each fold, all conversation pairs from
a given talk page are held out as test data and pairs
from all other pages are used as training data (thus
preventing the use of page-specific information).
Prediction results are summarized in Table 3.
Language baselines. As baselines, we con-
sider several straightforward features: word count
(which performs at chance level), sentiment lexi-
con (Liu et al., 2005) and bag of words.
Pragmatic features. Next, we test the predic-
tive power of the prompt types and politeness

12As an interesting avenue for future work, we note that
some markers used by non-attacking initiators potentially still
anticipate later attacks, suggested by, e.g., the relative preva-
lence of sentence-initial you (p < 0.05, ⃝s).

Feature set # features Accuracy

Bag of words 5,000 56.7%
Sentiment lexicon 4 55.4%

Politeness strategies 38 60.5%
Prompt types 12 59.2%
Pragmatic (all) 50 61.6%

Interlocutor features 5 51.2%
Trained toxicity 2 60.5%
Toxicity + Pragmatic 52 64.9%
Humans 72.0%

Table 3: Accuracies for the balanced future-
prediction task. Features based on pragmatic de-
vices are bolded, reference points are italicized.

strategies features introduced in Section 4. The
12 prompt type features (6 features for each com-
ment in the initial exchange) achieve 59.2% accu-
racy, and the 38 politeness strategies features (19
per comment) achieve 60.5% accuracy. The prag-
matic features combine to reach 61.6% accuracy.
Reference points. To better contextualize the per-
formance of our features, we compare their pre-
dictive accuracy to the following reference points:
Interlocutor features: Certain kinds of interlocu-
tors are potentially more likely to be involved in
awry-turning conversations. For example, perhaps
newcomers or anonymous participants are more
likely to derail interactions than more experienced
editors. We consider a set of features representing
participants’ experience on Wikipedia (i.e., num-
ber of edits) and whether the comment authors are
anonymous. In our task, these features perform at
the level of random chance.
Trained toxicity: We also compare with the tox-
icity score of the exchange from the Perspective
API classifier—a perhaps unfair reference point,
since this supervised system was trained on addi-
tional human-labeled training examples from the
same domain and since it was used to create the
very data on which we evaluate. This results in
an accuracy of 60.5%; combining trained toxicity
with our pragmatic features achieves 64.9%.
Humans: A sample of 100 pairs were labeled by
(non-author) volunteer human annotators. They
were asked to guess, from the initial exchange,
which conversation in a pair will lead to a personal
attack. Majority vote across three annotators was
used to determine the human labels, resulting in an
accuracy of 72%. This confirms that humans have
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some intuition about whether a conversation might
be heading in a bad direction, which our features
can partially capture. In fact, the classifier using
pragmatic features is accurate on 80% of the ex-
amples that humans also got right.
Attacks on the horizon. Finally, we seek to un-
derstand whether cues extracted from the first ex-
change can predict future discussion trajectory be-
yond the immediate next couple of comments. We
thus repeat the prediction experiments on the sub-
set of conversations in which the first personal at-
tack happens after the fourth comment (282 pairs),
and find that the pragmatic devices used in the first
exchange maintain their predictive power (67.4%
accuracy), while the sentiment and bag of words
baselines drop to the level of random chance.

Overall, these initial results show the feasibil-
ity of reconstructing some of the human intuition
about the future trajectory of an ostensibly civil
conversation in order to predict whether it will
eventually turn awry.

7 Conclusions and Future Work

In this work, we started to examine the intriguing
phenomenon of conversational derailment, study-
ing how the use of pragmatic and rhetorical de-
vices relates to future conversational failure. Our
investigation centers on the particularly perplex-
ing scenario in which one participant of a civil
discussion later attacks another, and explores the
new task of predicting whether an initially healthy
conversation will derail into such an attack. To
this end, we develop a computational framework
for analyzing how general politeness strategies
and domain-specific rhetorical prompts deployed
in the initial stages of a conversation are tied to its
future trajectory.

Making use of machine learning and crowd-
sourcing tools, we formulate a tightly-controlled
setting that enables us to meaningfully compare
conversations that stay on track with those that go
awry. The human accuracy on predicting future at-
tacks in this setting (72%) suggests it is feasible at
least at the level of human intuition. We show that
our computational framework can recover some of
that intuition, hinting at the potential of automated
methods to identify signals of the future trajecto-
ries of online conversations.

Our approach has several limitations which
open avenues for future work. Our correlational
analyses do not provide any insights into causal

mechanisms of derailment, which randomized ex-
periments could address. Additionally, since our
procedure for collecting and vetting data focused
on precision rather than recall, it might miss more
subtle attacks that are overlooked by the toxicity
classifier. Supplementing our investigation with
other indicators of antisocial behavior, such as ed-
itors blocking one another, could enrich the range
of attacks we study. Noting that our framework
is not specifically tied to Wikipedia, it would also
be valuable to explore the varied ways in which
this phenomenon arises in other (possibly non-
collaborative) public discussion venues, such as
Reddit and Facebook Pages.

While our analysis focused on the very first ex-
change in a conversation for the sake of general-
ity, more complex modeling could extend its scope
to account for conversational features that more
comprehensively span the interaction. Beyond the
present binary classification task, one could ex-
plore a sequential formulation predicting whether
the next turn is likely to be an attack as a discus-
sion unfolds, capturing conversational dynamics
such as sustained escalation.

Finally, our study of derailment offers only
one glimpse into the space of possible conversa-
tional trajectories. Indeed, a manual investiga-
tion of conversations whose eventual trajectories
were misclassified by our models—as well as by
the human annotators—suggests that interactions
which initially seem prone to attacks can nonethe-
less maintain civility, by way of level-headed in-
terlocutors, as well as explicit acts of reparation.
A promising line of future work could consider the
complementary problem of identifying pragmatic
strategies that can help bring uncivil conversations
back on track.
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Abstract

One of possible ways of obtaining contin-
uous-space sentence representations is by
training neural machine translation (NMT)
systems. The recent attention mechanism
however removes the single point in the
neural network from which the source sen-
tence representation can be extracted. We
propose several variations of the attentive
NMT architecture bringing this meeting
point back. Empirical evaluation suggests
that the better the translation quality, the
worse the learned sentence representations
serve in a wide range of classification and
similarity tasks.

1 Introduction

Deep learning has brought the possibility of au-
tomatically learning continuous representations of
sentences. On the one hand, such representations
can be geared towards particular tasks such as
classifying the sentence in various aspects (e.g.
sentiment, register, question type) or relating the
sentence to other sentences (e.g. semantic sim-
ilarity, paraphrasing, entailment). On the other
hand, we can aim at “universal” sentence repre-
sentations, that is representations performing rea-
sonably well in a range of such tasks.

Regardless the evaluation criterion, the repre-
sentations can be learned either in an unsuper-
vised way (from simple, unannotated texts) or su-
pervised, relying on manually constructed training
sets of sentences equipped with annotations of the
appropriate type. A different approach is to ob-
tain sentence representations from training neural
machine translation models (Hill et al., 2016).

Since Hill et al. (2016), NMT has seen substan-
tial advances in translation quality and it is thus

natural to ask how these improvements affect the
learned representations.

One of the key technological changes was
the introduction of “attention” (Bahdanau et al.,
2014), making it even the very central component
in the network (Vaswani et al., 2017). Attention
allows the NMT system to dynamically choose
which parts of the source are most important when
deciding on the current output token. As a conse-
quence, there is no longer a static vector represen-
tation of the sentence available in the system.

In this paper, we remove this limitation by
proposing a novel encoder-decoder architecture
with a structured fixed-size representation of the
input that still allows the decoder to explicitly fo-
cus on different parts of the input. In other words,
our NMT system has both the capacity to attend
to various parts of the input and to produce static
representations of input sentences.

We train this architecture on English-to-German
and English-to-Czech translation and evaluate the
learned representations of English on a wide range
of tasks in order to assess its performance in learn-
ing “universal” meaning representations.

In Section 2, we briefly review recent efforts in
obtaining sentence representations. In Section 3,
we introduce a number of variants of our novel
architecture. Section 4 describes some standard
and our own methods for evaluating sentence rep-
resentations. Section 5 then provides experimental
results: translation and representation quality. The
relation between the two is discussed in Section 6.

2 Related Work

The properties of continuous sentence representa-
tions have always been of interest to researchers
working on neural machine translation. In the
first works on RNN sequence-to-sequence mod-
els, Cho et al. (2014) and Sutskever et al. (2014)
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Bahdanau et al. Sutskever et al. Cho et al. Compound attention

ATTN FINAL FINAL-CTX *POOL *POOL-CTX ATTN-CTX ATTN-ATTN
Encoder states used all final final all all all all
Combined using . . . — — — pooling pooling inner att. inner att.
Sent. emb. available ✗ ✓ ✓ ✓ ✓ ✓ ✓
Dec. attends to enc. states ✓ ✗ ✗ ✗ ✗ ✗ ✗
Dec. attends to sent. emb. ✗ ✗ ✗ ✗ ✗ ✗ ✓
Sent. emb. used in . . . — init init+ctx init init+ctx init+ctx input for att.

Table 1: Different RNN-based architectures and their properties. Legend: “pooling” – vectors combined
by mean or max (AVGPOOL, MAXPOOL); “sent. emb.” – sentence embedding, i.e. the fixed-size sentence
representation computed by the encoder. “init” – initial decoder state. “ctx” – context vector, i.e. input
for the decoder cell. “input for att.” – input for the decoder attention.

provided visualizations of the phrase and sentence
embedding spaces and observed that they reflect
semantic and syntactic structure to some extent.

Hill et al. (2016) perform a systematic evalua-
tion of sentence representation in different models,
including NMT, by applying them to various sen-
tence classification tasks and by relating semantic
similarity to closeness in the representation space.

Shi et al. (2016) investigate the syntactic prop-
erties of representations learned by NMT systems
by predicting sentence- and word-level syntactic
labels (e.g. tense, part of speech) and by generat-
ing syntax trees from these representations.

Schwenk and Douze (2017) aim to learn
language-independent sentence representations
using NMT systems with multiple source and tar-
get languages. They do not consider the atten-
tion mechanism and evaluate primarily by similar-
ity scores of the learned representations for similar
sentences (within or across languages).

3 Model Architectures

Our proposed model architectures differ in
(a) which encoder states are considered in subse-
quent processing, (b) how they are combined, and
(c) how they are used in the decoder.

Table 1 summarizes all the examined config-
urations of RNN-based models. The first three
(ATTN, FINAL, FINAL-CTX) correspond roughly to
the standard sequence-to-sequence models, Bah-
danau et al. (2014), Sutskever et al. (2014) and
Cho et al. (2014), resp. The last column (ATTN-
ATTN) is our main proposed architecture: com-
pound attention, described here in Section 3.1.

In addition to RNN-based models, we experi-
ment with the Transformer model, see Section 3.3.

s1 s2 s3 sT �

+

c3

−→
h1

←−
h1

−→
h2

←−
h2

−→
h3

←−
h3

−→
hT

←−
hT

+

α21 α22 α23 α2T. . .

M2M1 M3 M4

β31 β32 β33 β34

= M�

= H

decoder
encoder

x1 x2 x3 xT. . .

Figure 1: An illustration of compound attention
with 4 attention heads. The figure shows the com-
putations that result in the decoder state s3 (in ad-
dition, each state si depends on the previous target
token yi−1). Note that the matrix M is the same
for all positions in the output sentence and it can
thus serve as the source sentence representation.

3.1 Compound Attention

Our compound attention model incorporates atten-
tion in both the encoder and the decoder, Fig. 1.

Encoder with inner attention. First, we pro-
cess the input sequence x1, x2, . . . , xT using a bi-
directional recurrent network with gated recurrent
units (GRU, Cho et al., 2014):

−→
ht =

−−→
GRU(xt,

−−→
ht−1),

←−
ht =

←−−
GRU(xt,

←−−
ht+1),

ht = [
−→
ht ,
←−
ht ].
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We denote by u the combined number of units in
the two RNNs, i.e. the dimensionality of ht.

Next, our goal is to combine the states
(h1, h2, . . . , hT ) = H of the encoder into a vector
of fixed dimensionality that represents the entire
sentence. Traditional seq2seq models concatenate
the final states of both encoder RNNs (

−→
hT and

←−
h1)

to obtain the sentence representation (denoted as
FINAL in Table 1). Another option is to combine
all encoder states using the average or maximum
over time (Collobert and Weston, 2008; Schwenk
and Douze, 2017) (AVGPOOL and MAXPOOL in
Table 1 and following).

We adopt an alternative approach, which is to
use inner attention1 (Liu et al., 2016; Li et al.,
2016) to compute several weighted averages of the
encoder states (Lin et al., 2017). The main moti-
vation for incorporating these multiple “views” of
the state sequence is that it removes the need for
the RNN cell to accumulate the representation of
the whole sentence as it processes the input, and
therefore it should have more capacity for model-
ing local dependencies.

Specifically, we fix a number r, the number of
attention heads, and compute an r×T matrix A of
attention weights αjt, representing the importance
of position t in the input for the jth attention head.
We then use this matrix to compute r weighted
sums of the encoder states, which become the rows
of a new matrix M :

M = AH. (1)

A vector representation of the source sentence (the
“sentence embedding”) can be obtained by flatten-
ing the matrix M . In our experiments, we project
the encoder states h1, h2, . . . , hT down to a given
dimensionality before applying Eq. (1), so that we
can control the size of the representation.

Following Lin et al. (2017), we compute the at-
tention matrix by feeding the encoder states to a
two-layer feed-forward network:

A = softmax(U tanh(WH�)), (2)

where W and U are weight matrices of dimen-
sions d × u and r × d, respectively (d is the num-
ber of hidden units); the softmax function is ap-
plied along the second dimension, i.e. across the
encoder states.

1Some papers call the same or similar approach self-
attention or single-time attention.

Attentive decoder. In vanilla seq2seq models
with a fixed-size sentence representation, the de-
coder is usually conditioned on this representation
via the initial RNN state. We propose to instead
leverage the structured sentence embedding by ap-
plying attention to its components. This is no dif-
ferent from the classical attention mechanism used
in NMT (Bahdanau et al., 2014), except that it acts
on this fixed-size representation instead of the se-
quence of encoder states.

In the ith decoding step, the attention mecha-
nism computes a distribution {βij}r

j=1 over the r
components of the structured representation. This
is then used to weight these components to obtain
the context vector ci, which in turn is used to up-
date the decoder state. Again, we can write this in
matrix form as

C = BM, (3)

where B = (βij)
T �,r
i=1,j=1 is the attention matrix

and C = (ci, c2, . . . , cT �) are the context vectors.
Note that by combining Eqs. (1) and (3), we get

C = (BA)H. (4)

Hence, the composition of the encoder and de-
coder attentions (the “compound attention”) de-
fines an implicit alignment between the source
and the target sequence. From this viewpoint, our
model can be regarded as a restriction of the con-
ventional attention model.

The decoder uses a conditional GRU cell
(cGRUatt; Sennrich et al., 2017), which consists of
two consecutively applied GRU blocks. The first
block processes the previous target token yi−1,
while the second block receives the context vec-
tor ci and predicts the next target token yi.

3.2 Constant Context
Compared to the FINAL model, the compound at-
tention architecture described in the previous sec-
tion undoubtedly benefits from the fact that the
decoder is presented with information from the
encoder (i.e. the context vectors ci) in every de-
coding step. To investigate this effect, we include
baseline models where we replace all context vec-
tors ci with the entire sentence embedding (indi-
cated by the suffix “-CTX” in Table 1). Specifi-
cally, we provide either the flattened matrix M (for
models with inner attention; ATTN or ATTN-CTX),
the final state of the encoder (FINAL-CTX), or the
result of mean- or max-pooling (*POOL-CTX) as a
constant input to the decoder cell.
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Name Cl. Train Test Task Example Input and Label
MR 2 11k — sentiment (movies) an idealistic love story that brings out the latent 15-year-old

romantic in everyone. (+)
CR 2 4k — product review polarity no way to contact their customer service. (−)
SUBJ 2 10k — subjectivity a little weak – and it isn’t that funny. (subjective)
MPQA 2 11k — opinion polarity was hoping (+), breach of the very constitution (−)
SST2 2 68k 2k sentiment (movies) contains very few laughs and even less surprises (−)
SST5 5 10k 2k sentiment (movies) it’s worth taking the kids to. (4)
TREC 6 5k 500 question type What was Einstein s IQ? (NUM)
MRPC 2 4k 2k semantic equivalence Lawtey is not the first faith-based program in Florida’s

prison system. / But Lawtey is the first entire prison to take
that path. (−)

SNLI 3 559k 10k natural language inference Two doctors perform surgery on patient. / Two surgeons are
having lunch. (contradiction)

SICK-E 3 5k 5k natural language inference A group of people is near the ocean / A crowd of people is
near the water (entailment)

Table 2: SentEval classification tasks. Tasks without a test set use 10-fold cross-validation.

Name Train Test Method
SICK-R 5k 5k regression
STSB 7k 1k regression
STS12 — 3k cosine similarity
STS13 — 2k cosine similarity
STS14 — 4k cosine similarity
STS15 — 9k cosine similarity
STS16 — 9k cosine similarity

Table 3: SentEval semantic relatedness tasks.

3.3 Transformer with Inner Attention

The Transformer (Vaswani et al., 2017) is a re-
cently proposed model based entirely on feed-
forward layers and attention. It consists of an en-
coder and a decoder, each with 6 layers, consisting
of multi-head attention on the previous layer and a
position-wise feed-forward network.

In order to introduce a fixed-size sentence rep-
resentation into the model, we modify it by adding
inner attention after the last encoder layer. The at-
tention in the decoder then operates on the com-
ponents of this representation (i.e. the rows of the
matrix M ). This variation on the Transformer
model corresponds to the ATTN-ATTN column in
Table 1 and is therefore denoted TRF-ATTN-ATTN.

4 Representation Evaluation

Continuous sentence representations can be eval-
uated in many ways, see e.g. Kiros et al. (2015),
Conneau et al. (2017) or the RepEval workshops.2

We evaluate our learned representations with
classification and similarity tasks from SentEval
(Section 4.1) and by examining clusters of sen-
tence paraphrase representations (Section 4.2).

4.1 SentEval
We perform evaluation on 10 classification and
7 similarity tasks using the SentEval3 (Conneau
et al., 2017) evaluation tool. This is a superset of
the tasks from Kiros et al. (2015).

Table 2 describes the classification tasks (num-
ber of classes, data size, task type and an example)
and Table 3 lists the similarity tasks. The simi-
larity (relatedness) datasets contain pairs of sen-
tences labeled with a real-valued similarity score.
A given sentence representation model is evalu-
ated either by learning to directly predict this score
given the respective sentence embeddings (“re-
gression”), or by computing the cosine similarity
of the embeddings (“similarity”) without the need
of any training. In both cases, Pearson and Spear-
man correlation of the predictions with the gold
ratings is reported.

See Dolan et al. (2004) for details on MRPC and
Hill et al. (2016) for the remaining tasks.

4.2 Paraphrases
We also evaluate the representation of para-
phrases. We use two paraphrase sources for this
purpose: COCO and HyTER Networks.

COCO (Common Objects in Context; Lin et al.,
2014) is an object recognition and image caption-
ing dataset, containing 5 captions for each image.
We extracted the captions from its validation set to
form a set of 5 × 5k = 25k sentences grouped by
the source image. The average sentence length is
11 tokens and the vocabulary size is 9k types.

HyTER Networks (Dreyer and Marcu, 2014)
are large finite-state networks representing a sub-

2https://repeval2017.github.io/
3https://github.com/facebookresearch/

SentEval/
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set of all possible English translations of 102 Ara-
bic and 102 Chinese sentences. The networks
were built by manually based on reference sen-
tences in Arabic, Chinese and English. Each net-
work contains up to hundreds of thousands of pos-
sible translations of the given source sentence.
We randomly generated 500 translations for each
source sentence, obtaining a corpus of 102k sen-
tences grouped into 204 clusters, each containing
500 paraphrases. The average length of the 102k
English sentences is 28 tokens and the vocabulary
size is 11k token types.

For every model, we encode each dataset to ob-
tain a set of sentence embeddings with cluster la-
bels. We then compute the following metrics:

Cluster classification accuracy (denoted
“Cl”). We remove 1 point (COCO) or half of
the points (HyTER) from each cluster, and fit an
LDA classifier on the rest. We then compute the
accuracy of the classifier on the removed points.

Nearest-neighbor paraphrase retrieval accu-
racy (NN). For each point, we find its nearest
neighbor according to cosine or L2 distance, and
count how often the neighbor lies in the same clus-
ter as the original point.

Inverse Davies-Bouldin index (iDB). The
Davies-Bouldin index (Davies and Bouldin, 1979)
measures cluster separation. For every pair of
clusters, we compute the ratio Rij of their com-
bined scatter (average L2 distance to the centroid)
Si + Sj and the L2 distance of their centroids dij ,
then average the maximum values for all clusters:

Rij =
Si + Sj

dij
(5)

DB =
1

N

N�

i=1

max
j �=i

Rij (6)

The lower the DB index, the better the separation.
To match with the rest of our metrics, we take its
inverse: iDB = 1

DB .

5 Experimental Results

We trained English-to-German and English-to-
Czech NMT models using Neural Monkey4 (Helcl
and Libovický, 2017a). In the following, we dis-
tinguish these models using the code of the target
language, i.e. de or cs.

The de models were trained on the Multi30K
multilingual image caption dataset (Elliott et al.,

4https://github.com/ufal/neuralmonkey

2016), extended by Helcl and Libovický (2017b),
who acquired additional parallel data using back-
translation (Sennrich et al., 2016) and perplexity-
based selection (Yasuda et al., 2008). This ex-
tended dataset contains 410k sentence pairs, with
the average sentence length of 12 ± 4 tokens in
English. We train each model for 20 epochs with
the batch size of 32. We truecased the training
data as well as all data we evaluate on. For Ger-
man, we employed Neural Monkey’s reversible
pre-processing scheme, which expands contrac-
tions and performs morphological segmentation of
determiners. We used a vocabulary of at most 30k
tokens for each language (no subword units).

The cs models were trained on CzEng 1.7 (Bo-
jar et al., 2016).5 We used byte-pair encoding
(BPE) with a vocabulary of 30k sub-word units,
shared for both languages. For English, the aver-
age sentence length is 15±19 BPE tokens and the
original vocabulary size is 1.9M. We performed 1
training epoch with the batch size of 128 on the
entire training section (57M sentence pairs).

The datasets for both de and cs models come
with their respective development and test sets of
sentence pairs, which we use for the evaluation of
translation quality. (We use 1k randomly selected
sentence pairs from CzEng 1.7 dtest as a develop-
ment set. For evaluation, we use the entire etest.)

We also evaluate the InferSent model6 (Con-
neau et al., 2017) as pre-trained on the natu-
ral language inference (NLI) task. InferSent has
been shown to achieve state-of-the-art results on
the SentEval tasks. We also include a bag-of-
words baseline (GloVe-BOW) obtained by averag-
ing GloVe7 word vectors (Pennington et al., 2014).

5.1 Translation Quality

We estimate translation quality of the vari-
ous models using single-reference case-sensitive
BLEU (Papineni et al., 2002) as implemented in
Neural Monkey (the reference implementation is
mteval-v13a.pl from NIST or Moses).

Tables 4 and 5 provide the results on the two
datasets. The cs dataset is much larger and the
training takes much longer. We were thus able
to experiment with only a subset of the possible
model configurations.

5http://ufal.mff.cuni.cz/czeng/czeng17
6https://github.com/facebookresearch/

InferSent
7https://nlp.stanford.edu/projects/

glove/
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Model Size Heads BLEU
dev test

de-ATTN — — 37.6 36.2
de-TRF — — 38.2 36.1
de-ATTN-ATTN 2400 12 36.2 34.8
de-ATTN-ATTN 1200 12 35.6 34.3
de-ATTN-ATTN 600 8 35.4 33.7
de-ATTN-ATTN 600 12 35.3 33.4
de-ATTN-ATTN 1200 6 35.0 33.2
de-ATTN-ATTN 600 6 35.1 33.2
de-TRF-ATTN-ATTN 600 3 32.3 30.1
de-ATTN-ATTN 600 3 31.4 29.4
de-ATTN-CTX 1200 12 30.6 29.2
de-ATTN-CTX 600 12 29.8 29.1
de-ATTN-CTX 600 8 29.8 28.9
de-ATTN-CTX 600 6 29.5 28.8
de-TRF-ATTN-ATTN 2400 12 30.6 28.5
de-MAXPOOL-CTX 600 — 27.8 28.1
de-FINAL-CTX 600 — 28.1 26.9
de-ATTN-CTX 600 3 27.8 26.9
de-AVGPOOL-CTX 600 — 27.1 26.5
de-ATTN-ATTN 600 1 27.2 26.0
de-TRF-ATTN-ATTN 600 6 26.5 25.8
de-TRF-ATTN-ATTN 1200 12 26.6 25.3
de-FINAL 600 — 23.9 23.8

Table 4: Translation quality of de models.

Model Size Heads BLEU Manual
dev test > others

cs-ATTN — — 22.8 22.2 89.1
cs-ATTN-ATTN 1000 8 19.1 18.4 78.8
cs-ATTN-ATTN 4000 4 18.4 17.9 —
cs-ATTN-ATTN 1000 4 17.5 17.1 —
cs-ATTN-CTX 1000 4 16.6 16.1 58.8
cs-FINAL-CTX 1000 — 16.1 15.5 —
cs-ATTN-ATTN 1000 1 15.3 14.8 49.1
cs-FINAL 1000 — 11.2 10.8 —
cs-AVGPOOL 1000 — 11.1 10.6 —
cs-MAXPOOL 1000 — 5.4 5.4 3.0

Table 5: Translation quality of cs models.

The columns “Size” and “Heads” specify the to-
tal size of sentence representation and the number
of heads of encoder inner attention.

In both cases, the best performing is the ATTN

Bahdanau et al. model, followed by Transformer
(de only) and our ATTN-ATTN (compound atten-
tion). The non-attentive FINAL Cho et al. is the
worst, except cs-MAXPOOL.

For 5 selected cs models, we also performed
the WMT-style 5-way manual ranking on 200 sen-
tence pairs. The annotations are interpreted as
simulated pairwise comparisons. For each model,
the final score is the number of times the model
was judged better than the other model in the pair.
Tied pairs are excluded. The results, shown in Ta-
ble 5, confirm the automatic evaluation results.

We also checked the relation between BLEU
and the number of heads and representation size.
While there are many exceptions, the general ten-

dency is that the larger the representation or the
more heads, the higher the BLEU score. The Pear-
son correlation between BLEU and the number of
heads is 0.87 for cs and 0.31 for de.

5.2 SentEval

Due to the large number of SentEval tasks, we
present the results abridged in two different ways:
by reporting averages (Table 6) and by showing
only the best models in comparison with other
methods (Table 7). The full results can be found
in the supplementary material.

Table 6 provides averages of the classification
and similarity results, along with the results of
selected tasks (SNLI, SICK-E). As the baseline
for classifications tasks, we assign the most fre-
quent class to all test examples.8 The de models
are generally worse, most likely due to the higher
OOV rate and overall simplicity of the training
sentences. On cs, we see a clear pattern that more
heads hurt the performance. The de set has more
variations to consider but the results are less con-
clusive.

For the similarity results, it is worth noting that
cs-ATTN-ATTN performs very well with 1 atten-
tion head but fails miserably with more heads.
Otherwise, the relation to the number of heads is
less clear.

Table 7 compares our strongest models with
other approaches on all tasks. Besides InferSent
and GloVe-BOW, we include SkipThought as
evaluated by Conneau et al. (2017), and the NMT-
based embeddings by Hill et al. (2016) trained on
the English-French WMT15 dataset (this is the
best result reported by Hill et al. for NMT).

We see that the supervised InferSent clearly out-
performs all other models in all tasks except for
MRPC and TREC. Results by Hill et al. are al-
ways lower than our best setups, except MRPC
and TREC again. On classification tasks, our mod-
els are outperformed even by GloVe-BOW, except
for the NLI tasks (SICK-E and SNLI) where cs-
FINAL-CTX is better.

5.3 Paraphrase Scores

Table 6 also provides our measurements based
on sentence paraphrases. For paraphrase retrieval
(NN), we found cosine distance to work better

8For MR, CR, SUBJ, and MPQA, where there is no dis-
tinct test set, the class is established on the whole collection.
For other tasks, the class is learned from the training set.
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Name Size H. SNLI SICK-E AvgAcc AvgSim Hy-Cl Hy-NN Hy-iDB CO-Cl CO-NN CO-iDB
InferSent 4096 — 83.7 86.4 81.7 .70 99.99 100.00 0.579 31.58 26.21 0.367
GloVe-BOW 300 — 66.0 78.2 75.8 .59 99.94 100.00 0.654 34.28 19.72 0.352
cs-FINAL-CTX 1000 — 70.2 82.1 74.4 .60 99.92 100.00 0.406 23.20 16.07 0.346
cs-ATTN-ATTN 1000 1 69.3 80.8 73.4 .54 99.88 99.91 0.347 21.54 11.50 0.331
cs-FINAL 1000 — 69.2 81.1 73.2 .60 99.91 100.00 0.439 22.40 14.63 0.340
cs-MAXPOOL 1000 — 68.5 81.7 73.0 .60 99.86 100.00 0.447 21.76 16.34 0.348
cs-AVGPOOL 1000 — 67.8 79.7 72.4 .50 99.80 99.99 0.387 17.90 8.61 0.311
cs-ATTN-CTX 1000 4 66.0 79.5 72.2 .45 99.75 99.74 0.287 14.60 7.54 0.318
cs-ATTN-ATTN 4000 4 65.2 78.0 71.2 .39 99.54 98.98 0.252 11.52 5.51 0.303
cs-ATTN-ATTN 1000 4 64.6 78.0 70.8 .39 99.26 98.93 0.253 10.84 5.20 0.299
cs-ATTN-ATTN 1000 8 63.2 76.6 70.0 .36 99.41 98.09 0.243 10.24 4.64 0.287
de-MAXPOOL-CTX 600 — 68.0 78.8 67.1 .50 98.42 99.90 0.343 21.54 15.62 0.341
de-ATTN-CTX 1200 12 65.0 77.4 66.7 .52 98.88 99.91 0.347 20.06 16.68 0.348
de-ATTN-CTX 600 8 64.0 75.7 65.8 .51 98.11 99.90 0.348 21.64 17.32 0.349
de-AVGPOOL-CTX 600 — 65.2 77.5 65.6 .48 97.72 99.60 0.312 20.04 14.27 0.337
de-ATTN-CTX 600 12 61.9 76.0 65.5 .50 97.79 99.89 0.360 20.22 16.10 0.344
de-FINAL 600 — 64.7 77.0 65.3 .47 97.01 99.30 0.305 19.88 12.40 0.328
de-ATTN-CTX 600 3 63.3 76.0 65.3 .50 97.81 99.87 0.328 19.74 16.43 0.343
de-ATTN-ATTN 600 1 63.8 76.9 64.8 .50 97.70 99.73 0.352 19.74 16.26 0.340
de-ATTN-ATTN 600 3 61.5 74.7 64.5 .47 97.42 99.75 0.314 17.36 14.35 0.333
de-FINAL-CTX 600 — 62.6 76.2 64.5 .48 96.65 99.70 0.323 17.22 12.84 0.333
de-ATTN-ATTN 1200 6 59.6 72.3 64.3 .41 98.05 99.80 0.289 11.90 10.69 0.327
de-TRF-ATTN-ATTN 600 3 61.4 72.5 63.9 .49 95.79 99.64 0.315 15.76 14.04 0.340
de-ATTN-ATTN 1200 12 58.2 72.5 63.4 .43 97.15 99.65 0.283 12.18 11.97 0.330
de-ATTN-ATTN 2400 12 59.8 73.9 63.2 .41 98.69 99.77 0.287 10.26 10.94 0.326
de-TRF-ATTN-ATTN 2400 12 59.0 71.2 63.0 .46 95.82 99.03 0.307 5.66 14.53 0.339
de-ATTN-ATTN 600 6 57.5 70.9 62.6 .40 96.03 99.71 0.287 12.22 10.59 0.323
de-ATTN-ATTN 600 8 55.6 68.6 62.1 .39 95.32 99.73 0.275 10.22 10.58 0.325
de-TRF-ATTN-ATTN 600 6 59.5 71.0 61.9 .45 90.24 98.44 0.313 9.06 13.64 0.332
de-ATTN-ATTN 600 12 55.2 70.5 61.5 .40 95.16 99.64 0.278 9.62 10.47 0.323
de-TRF-ATTN-ATTN 1200 12 58.2 68.8 61.1 .46 90.71 98.22 0.301 7.06 13.70 0.333
de-ATTN-CTX 600 6 62.9 68.7 61.0 .43 98.11 99.86 0.358 20.44 15.57 0.342
LM perplexity (cs) 190.6 299.4 1150.2 1224.2 668.5 238.5
% OOV (cs) 0.3 0.2 2.3 2.6 1.2 0.1
LM perplexity (de) 38.8 65.0 3578.2 2010.6 3354.8 86.3
% OOV (de) 1.5 1.7 17.8 16.2 19.3 1.9

Table 6: Abridged SentEval and paraphrase evaluation results. Full results in supplementary material.
AvgAcc is the average of all 10 SentEval classification tasks (see Table S1 in supplementary material),
AvgSim averages all 7 similarity tasks (see Table S2). Hy- and CO- stand for HyTER and COCO,
respectively. “H.” is the number of attention heads. We give the out-of-vocabulary (OOV) rate and the
perplexity of a 4-gram language model (LM) trained on the English side of the respective parallel corpus
and evaluated on all available data for a given task.

Name Size H. MR CR SUBJ MPQA SST2 SST5 TREC MRPC SICK-E SNLI AvgAcc

Most frequent baseline 50.0 63.8 50.0 68.8 49.9 23.1 18.8 66.5 56.7 34.3 48.19
InferSent 4096 — 81.5 86.7 92.7 90.6 85.0 45.8 88.2 76.6 86.4 (83.7) 81.7
Hill et al. en→fr† 2400 — 64.7 70.1 84.9 81.5 — — 82.8 96.1 — — —
SkipThought-LN† — — 79.4 83.1 93.7 89.3 82.9 — 88.4 — 79.5 — —
GloVe-BOW 300 — 77.0 78.2 91.1 87.9 81.0 44.4 82.0 72.3 78.2 66.0 75.8
cs-FINAL-CTX 1000 — 68.7 77.4 88.5 85.5 73.0 38.2 88.6 71.8 82.1 70.2 74.4
cs-ATTN-ATTN 1000 1 68.2 76.0 86.9 84.9 72.0 35.7 89.0 70.7 80.8 69.3 73.4
Name Size H. SICK-R STSB STS12 STS13 STS14 STS15 STS16 AvgSim

InferSent 4096 — .88/.83 .76/.75 .59/.60 .59/.59 .70/.67 .71/.72 .71/.73 .70
SkipThought-LN† — — .85/ — — — — .44/.45 — — —
GloVe-BOW 300 — .80/.72 .64/.62 .52/.53 .50/.51 .55/.56 .56/.59 .51/.58 .59
cs-FINAL-CTX 1000 — .82/.76 .74/.74 .51/.53 .44/.44 .52/.50 .62/.61 .57/.58 .60
cs-ATTN-ATTN 1000 1 .81/.76 .73/.73 .46/.49 .32/.33 .45/.44 .53/.52 .47/.48 .54

Table 7: Comparison of state-of-the-art SentEval results with our best models and the Glove-BOW base-
line. “H.” is the number of attention heads. Reprinted results are marked with †, others are our measure-
ments.

1368



B
L
E

U
M

R
C

R
S
U

B
J

M
P

Q
A

S
S
T

2
S
S
T

5
T

R
E

C
M

R
P

C
S
IC

K
-E

S
N

L
I

A
v
g
A

cc
S
IC

K
-R

S
T

S
B

S
T

S
1
2

S
T

S
1
3

S
T

S
1
4

S
T

S
1
5

S
T

S
1
6

A
v
g
S
im

H
y
-C

l
H

y
-N

N
H

y
-i
D

B
C

O
-C

l
C

O
-N

N
C

O
-i
D

B

BLEU
MR
CR

SUBJ
MPQA

SST2
SST5

TREC
MRPC

SICK-E
SNLI

AvgAcc
SICK-R

STSB
STS12
STS13
STS14
STS15
STS16

AvgSim
Hy-Cl

Hy-NN
Hy-iDB
CO-Cl

CO-NN
CO-iDB

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

Figure 2: Pearson correlations. Upper triangle: de
models, lower triangle: cs models. Positive val-
ues shown in shades of green. For similarity tasks,
only the Pearson (not Spearman) coefficient is rep-
resented.

than L2 distance. We therefore do not list L2-
based results (except in the supplementary mate-
rial).

This evaluation seems less stable and discern-
ing than the previous two, but we can again con-
firm the victory of InferSent followed by our non-
attentive cs models. cs and de models are no
longer clearly separated.

6 Discussion

To assess the relation between the various mea-
sures of sentence representations and translation
quality as estimated by BLEU, we plot a heatmap
of Pearson correlations in Fig. 2. As one exam-
ple, Fig. 3 details the cs models’ BLEU scores and
AvgAcc.

A good sign is that on the cs dataset, most met-
rics of representation are positively correlated (the
pairwise Pearson correlation is 0.78 ± 0.32 on av-
erage), the outlier being TREC (−0.16±0.16 cor-
relation with the other metrics on average)

On the other hand, most representation metrics
correlate with BLEU negatively (−0.57±0.31) on
cs. The pattern is less pronounced but still clear
also on the de dataset.

A detailed understanding of what the learned
representations contain is difficult. We can only
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Figure 3: BLEU vs. AvgAcc for cs models.

speculate that if the NMT model has some capabil-
ity for following the source sentence superficially,
it will use it and spend its capacity on closely
matching the target sentences rather than on deriv-
ing some representation of meaning which would
reflect e.g. semantic similarity. We assume that
this can be a direct consequence of NMT being
trained for cross entropy: putting the exact word
forms in exact positions as the target sentence re-
quires. Performing well in single-reference BLEU
is not an indication that the system understands
the meaning but rather that it can maximize the
chance of producing the n-grams required by the
reference.

The negative correlation between the number
of attention heads and the representation metrics
from Fig. 3 (−0.81±0.12 for cs and−0.18±0.19
for de, on average) can be partly explained by
the following observation. We plotted the induced
alignments (e.g. Fig. 4) and noticed that the heads
tend to “divide” the sentence into segments. While
one would hope that the segments correspond to
some meaningful units of the sentence (e.g. sub-
ject, predicate, object), we failed to find any such
interpretation for ATTN-ATTN and for cs models in
general. Instead, the heads divide the source sen-
tence more or less equidistantly, as documented
by Fig. 5. Such a multi-headed sentence repre-
sentation is then less fit for representing e.g. para-
phrases where the subject and object swap their
position due to passivization, because their rep-
resentations are then accessed by different heads,
and thus end up in different parts of the sentence
embedding vector.

For de-ATTN-CTX models, we observed a much
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Figure 4: Alignment between a source sentence
(left) and the output (right) as represented in the
ATTN-ATTN model with 8 heads and size of 1000.
Each color represents a different head; the stroke
width indicates the alignment weight; weights ≤
0.01 pruned out. (Best viewed in color.)

flatter distribution of attention weights for each
head and, unlike in the other models, we were of-
ten able to identify a head focusing on the main
verb. This difference between ATTN-ATTN and
some ATTN-CTX models could be explained by the
fact that in the former, the decoder is oblivious to
the ordering of the heads (because of decoder at-
tention), and hence it may not be useful for a given
head to look for a specific syntactic or semantic
role.

7 Conclusion

We presented a novel variation of attentive NMT
models (Bahdanau et al., 2014; Vaswani et al.,
2017) that again provides a single meeting point
with a continuous representation of the source sen-
tence. We evaluated these representations with a
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Figure 5: Attention weight by relative position in
the source sentence (average over dev set exclud-
ing sentences shorter than 8 tokens). Same model
as in Fig. 4. Each plot corresponds to one head.

number of measures reflecting how well the mean-
ing of the source sentence is captured.

While our proposed “compound attention”
leads to translation quality not much worse than
the fully attentive model, it generally does not per-
form well in the meaning representation. Quite on
the contrary, the better the BLEU score, the worse
the meaning representation.

We believe that this observation is important for
representation learning where bilingual MT now
seems less likely to provide useful data, but per-
haps more so for MT itself, where the struggle
towards a high single-reference BLEU score (or
even worse, cross entropy) leads to systems that
refuse to consider the meaning of the sentence.
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Abstract

Metric validation in Grammatical Error
Correction (GEC) is currently done by
observing the correlation between hu-
man and metric-induced rankings. How-
ever, such correlation studies are costly,
methodologically troublesome, and suffer
from low inter-rater agreement. We pro-
pose MAEGE, an automatic methodology
for GEC metric validation, that overcomes
many of the difficulties with existing prac-
tices. Experiments with MAEGE shed a
new light on metric quality, showing for
example that the standard M2 metric fares
poorly on corpus-level ranking. Moreover,
we use MAEGE to perform a detailed anal-
ysis of metric behavior, showing that cor-
recting some types of errors is consistently
penalized by existing metrics.

1 Introduction

Much recent effort has been devoted to auto-
matic evaluation, both within GEC (Napoles et al.,
2015; Felice and Briscoe, 2015; Ng et al., 2014;
Dahlmeier and Ng, 2012, see §2), and more gen-
erally in text-to-text generation tasks. Within Ma-
chine Translation (MT), an annual shared task is
devoted to automatic metric development, accom-
panied by an extensive analysis of metric behav-
ior (Bojar et al., 2017). Metric validation is also
raising interest in GEC, with several recent works
on the subject (Grundkiewicz et al., 2015; Napoles
et al., 2015, 2016b; Sakaguchi et al., 2016), all us-
ing correlation with human rankings (henceforth,
CHR) as their methodology.

Human rankings are often considered as ground
truth in text-to-text generation, but using them re-
liably can be challenging. Other than the costs of
compiling a sizable validation set, human rank-

ings are known to yield poor inter-rater agree-
ment in MT (Bojar et al., 2011; Lopez, 2012; Gra-
ham et al., 2012), and to introduce a number of
methodological problems that are difficult to over-
come, notably the treatment of ties in the rankings
and uncomparable sentences (see §3). These dif-
ficulties have motivated several proposals to alter
the MT metric validation protocol (Koehn, 2012;
Dras, 2015), leading to a recent abandoning of
evaluation by human rankings due to its unreli-
ability (Graham et al., 2015; Bojar et al., 2016).
These conclusions have not yet been implemented
in GEC, despite their relevance. In §3 we show
that human rankings in GEC also suffer from low
inter-rater agreement, motivating the development
of alternative methodologies.

The main contribution of this paper is an auto-
matic methodology for metric validation in GEC
called MAEGE (Methodology for Automatic Eval-
uation of GEC Evaluation), which addresses these
difficulties. MAEGE requires no human rankings,
and instead uses a corpus with gold standard GEC
annotation to generate lattices of corrections with
similar meanings but varying degrees of grammat-
icality. For each such lattice, MAEGE generates a
partial order of correction quality, a quality score
for each correction, and the number and types of
edits required to fully correct each. It then com-
putes the correlation of the induced partial order
with the metric-induced rankings.

MAEGE addresses many of the problems with
existing methodology:
• Human rankings yield low inter-rater and

intra-rater agreement (§3). Indeed, Choshen
and Abend (2018a) show that while annota-
tors often generate different corrections given
a sentence, they generally agree on whether
a correction is valid or not. Unlike CHR,
MAEGE bases its scores on human correc-
tions, rather than on rankings.
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• CHR uses system outputs to obtain human
rankings, which may be misleading, as sys-
tems may share similar biases, thus neglect-
ing to evaluate some types of valid correc-
tions (§7). MAEGE addresses this issue by
systematically traversing an inclusive space
of corrections.

• The difficulty in handling ties is addressed
by only evaluating correction pairs where one
contains a sub-set of the errors of the other,
and is therefore clearly better.

• MAEGE uses established statistical tests for
determining the significance of its results,
thereby avoiding ad-hoc methodologies used
in CHR to tackle potential biases in human
rankings (§5, §6).

In experiments on the standard NUCLE test set
(Dahlmeier et al., 2013), we find that MAEGE often
disagrees with CHR as to the quality of existing
metrics. For example, we find that the standard
GEC metric, M2, is a poor predictor of corpus-
level ranking, but a good predictor of sentence-
level pair-wise rankings. The best predictor of
corpus-level quality by MAEGE is the reference-
less LT metric (Miłkowski, 2010; Napoles et al.,
2016b), while of the reference-based metrics,
GLEU (Napoles et al., 2015) fares best.

In addition to measuring metric reliability,
MAEGE can also be used to analyze the sensitivi-
ties of the metrics to corrections of different types,
which to our knowledge is a novel contribution
of this work. Specifically, we find that not only
are valid edits of some error types better rewarded
than others, but that correcting certain error types
is consistently penalized by existing metrics (Sec-
tion 7). The importance of interpretability and de-
tail in evaluation practices (as opposed to just pro-
viding bottom-line figures), has also been stressed
in MT evaluation (e.g., Birch et al., 2016).

2 Examined Metrics

We turn to presenting the metrics we experiment
with. The standard practice in GEC evaluation is
to define differences between the source and a cor-
rection (or a reference) as a set of edits (Dale et al.,
2012). An edit is a contiguous span of tokens to be
edited, a substitute string, and the corrected error
type. For example: “I want book” might have an
edit (2-3, “a book”, ArtOrDet); applying the edit

results in “I want a book”. Edits are defined (by
the annotation guidelines) to be maximally inde-
pendent, so that each edit can be applied indepen-
dently of the others. We denote the examined set
of metrics with METRICS.

BLEU. BLEU (Papineni et al., 2002) is a
reference-based metric that averages the output-
reference n-gram overlap precision values over
different ns. While commonly used in MT and
other text generation tasks (Sennrich et al., 2017;
Krishna et al., 2017; Yu et al., 2017), BLEU was
shown to be a problematic metric in monolingual
translation tasks, in which much of the source sen-
tence should remain unchanged (Xu et al., 2016).
We use the NLTK implementation of BLEU, using
smoothing method 3 by Chen and Cherry (2014).

GLEU. GLEU (Napoles et al., 2015) is a
reference-based GEC metric inspired by BLEU.
Recently, it was updated to better address multi-
ple references (Napoles et al., 2016a). GLEU re-
wards n-gram overlap of the correction with the
reference and penalizes unchanged n-grams in the
correction that are changed in the reference.

iBLEU. iBLEU (Sun and Zhou, 2012) was in-
troduced to monolingual translation in order to
balance BLEU, by averaging it with the BLEU
score of the source and the output. This yields a
metric that rewards similarity to the source, and
not only overlap with the reference:

iBLEU(S,R,O) = αBLEU(O,R)−(1−α)BLEU(O,S)

We set α = 0.8 as suggested by Sun and Zhou.

F -Score computes the overlap of edits to the
source in the reference, and in the output. As
system edits can be constructed in multiple ways,
the standard M2 scorer (Dahlmeier and Ng, 2012)
computes the set of edits that yields the maximum
F -score. As M2 requires edits from the source to
the reference, and as MAEGE generates new source
sentences, we use an established protocol to auto-
matically construct edits from pairs of strings (Fe-
lice et al., 2016; Bryant et al., 2017). The protocol
was shown to produce similar M2 scores to those
produced with manual edits. Following common
practice, we use the Precision-oriented F0.5.

SARI. SARI (Xu et al., 2016) is a reference-
based metric proposed for sentence simplification.
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SARI averages three scores, measuring the ex-
tent to which n-grams are correctly added to the
source, deleted from it and retained in it. Where
multiple references are present, SARI’s score is
determined not as the maximum single-reference
score, but some averaging over them. As this
may lead to an unintuitive case, where a correction
which is identical to the output gets a score of less
than 1, we experiment with an additional metric,
MAX-SARI, which coincides with SARI for a sin-
gle reference, and computes the maximum single-
reference SARI score for multiple-references.

Levenshtein Distance. We use the Levenshtein
distance (Kruskal and Sankoff, 1983), i.e., the
number of character edits needed to convert one
string to another, between the correction and its
closest reference (MinLDO→R). To enrich the
discussion, we also report results with a measure
of conservatism, LDS→O, i.e., the Levenshtein
distance between the correction and the source.
Both distances are normalized by the number of
characters in the second string (R,O respectively).
In order to convert these distance measures into
measures of similarity, we report 1− LD(c1,c2)

len(c1) .

Grammaticality is a reference-less metric,
which uses grammatical error detection tools to
assess the grammaticality of GEC system outputs.
We use LT (Miłkowski, 2010), the best performing
non-proprietary grammaticality metric (Napoles
et al., 2016b). The detection tool at the base of
LT can be much improved. Indeed, Napoles et al.
(2016b) reported that the proprietary tool they
used detected 15 times more errors than LT. A
sentence’s score is defined to be 1− #errors

#tokens . See
(Asano et al., 2017; Choshen and Abend, 2018b)
for additional reference-less measures, published
concurrently with this work.

I-Measure. I-Measure (Felice and Briscoe,
2015) is a weighted accuracy metric over tokens.
I-measure rank determines whether a correction is
better than the source and to what extent. Unlike
in this paper, I-measure assumes that every pair of
intersecting edits (i.e., edits whose spans of tokens
overlap) are alternating, and that non-intersecting
edits are independent. Consequently, where multi-
ple references are present, it extends the set of ref-
erences, by generating every possible combination
of independent edits. As the number of combina-
tions is generally exponential in the number of ref-
erences, the procedure can be severely inefficient.

Figure 1: Histogram and rug plot of the log number of ref-
erences under I-measure assumptions, i.e. overlapping edits
alternate as valid corrections of the same error. There are bil-
lions of ways to combine 8 references on average.

Indeed, a sentence in the test set has 3.5 billion
references on average, where the median is 512
(See Figure 1). I-measure can also be run without
generating new references, but despite paralleliza-
tion efforts, this version did not terminate after 140
CPU days, while the cumulative CPU time of the
rest of the metrics was less than 1.5 days.

3 Human Ranking Experiments

Correlation with human rankings (CHR) is the
standard methodology for assessing the validity
of GEC metrics. While informative, human rank-
ings are costly to produce, present low inter-rater
agreement (shown for MT evaluation in (Bojar
et al., 2011; Dras, 2015)), and introduce method-
ological difficulties that are hard to overcome. We
begin by showing that existing sets of human rank-
ings produce inconsistent results with respect to
the quality of different metrics, and proceed by
proposing an improved protocol for computing
this correlation in the future.

There are two existing sets of human rankings
for GEC that were compiled concurrently: GJG15
by Grundkiewicz et al. (2015), and NSPT15 by
Napoles et al. (2015). Both sets are based
on system outputs from the CoNLL 2014 (Ng
et al., 2014) shared task, using sentences from
the NUCLE test set. We compute CHR against
each. System-level correlations are computed by
TrueSkill (Sakaguchi et al., 2014), which adopts
its methodology from MT.1

1There’s a minor problem in the output of the NTHU sys-
tem: a part of the input is given as sentence 39 and sentence
43 is missing. We corrected it to avoid unduly penalizing
NTHU for all the sentences in this range.
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Table 1 shows CHR with Spearman ρ (Pear-
son r shows similar trends). Results on the two
datasets diverge considerably, despite their use of
the same systems and corpus (albeit a different
sub-set thereof). For example, BLEU receives a
high positive correlation on GJG15, but a nega-
tive one on NSPT15; GLEU receives a correlation
of 0.51 against GJG15 and 0.76 against NSPT15;
and M2 ranges between 0.4 (GJG15) and 0.7
(NSPT15). In fact, this variance is already appar-
ent in the published correlations of GLEU, e.g.,
Napoles et al. (2015) reported a ρ of 0.56 against
NSPT15 and Napoles et al. (2016b) reported a ρ
of 0.85 against GJG15.2 This variance in the met-
rics’ scores is an example of the low agreement be-
tween human rankings, echoing similar findings in
MT (Bojar et al., 2011; Lopez, 2012; Dras, 2015).

Another source of inconsistency in CHR is that
the rankings are relative and sampled, so datasets
rank different sets of outputs (Lopez, 2012). For
example, if a system is judged against the best sys-
tems more often then others, it may unjustly re-
ceive a lower score. TrueSkill is the best known
practice to tackle such issues (Bojar et al., 2014),
but it produces a probabilistic corpus-level score,
which can vary between runs (Sakaguchi et al.,
2016).3 This makes CHR more difficult to inter-
pret, compared to classic correlation coefficients.

We conclude by proposing a practice for report-
ing CHR in future work. First, we combine both
sets of human judgments to arrive at the statis-
tically most powerful test. Second, we compute
the metrics’ corpus-level rankings according to the
same subset of sentences used for human rankings.
The current practice of allowing metrics to rank
systems based on their output on the entire CoNLL
test set (while human rankings are only collected
for a sub-set thereof), may bias the results due to
potential non-uniform system performance on the
test set. We report CHR according to the proposed
protocol in Table 1 (left column).

4 Constructing Lattices of Corrections

In the following sections we present MAEGE an al-
ternative methodology to CHR, which uses human
corrections to induce more reliable and scalable
rankings to compare metrics against. We begin
our presentation by detailing the method MAEGE

2The difference between our results and previously re-
ported ones is probably due to a recent update in GLEU to
better tackles multiple references (Napoles et al., 2016a).

3The standard deviation of the results is about 0.02.

Combined GJG15 NSPT15
ρ P-val ρ Rank ρ Rank

GLEU 0.771 0.001 0.512 1 0.758 1
LT 0.692 0.006 0.358 4 0.615 3
M2 0.626 0.017 0.398 3 0.703 2
SARI 0.596 0.025 0.323 6 0.599 4
MAX-SARI 0.552 0.041 0.292 7 0.577 5
MinLDO→R 0.191 0.513 0.350 5 -0.187 7
BLEU 0.143 0.626 0.455 2 -0.126 6
iBLEU -0.059 0.840 0.226 8 -0.462 8

LDS→O -0.481 0.081 -0.178 -0.505

Table 1: Metrics correlation with human judgments. The
Combined column presents the Spearman correlation coef-
ficient (ρ) according to the combined set of human rank-
ings, with its associated P-value. The GJG15 and NSPT15
columns present the Spearman correlation according to the
two sets of human rankings, as well as the rank of the metric
according to this correlation. Measures are ordered by their
rank in the combined human judgments. The discrepancy
between the ρ values obtained against GJG15 and NSPT15
demonstrate low inter-rater agreement in human rankings.
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· · ·
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· · ·
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Figure 2: An illustration of the generated corrections lattices.
The Ois are the original sentences, directed edges represent
an application of an edit andR(i)

j is the j-th perfect correction
of Oi (i.e., the perfect correction that result from applying all
the edits of the j-th annotation of Oi).

uses to generate source-correction pairs and a par-
tial order between them. MAEGE operates by us-
ing a corpus with gold annotation, given as edits,
to generate lattices of corrections, each defined by
a sub-set of the edits. Within the lattice, every pair
of sentences can be regarded as a potential source
and a potential output. We create sentence chains,
in an increasing order of quality, taking a source
sentence and applying edits in some order one af-
ter the other (see Figure 2 and 3).

Formally, for each sentence s in the corpus and
each annotation a, we have a set of typed edits
edits(s, a) = {e(1)s,a, . . . , e(ns,a)s,a } of size ns,a. We
call 2edits(s,a) the corrections lattice, and denote it
with Es,a. We call, s, the correction correspond-
ing to ∅ the original. We define a partial order
relation between x, y ∈ Es,a such that x < y if
x ⊂ y. This order relation is assumed to be the
gold standard ranking between the corrections.

For our experiments, we use the NUCLE test
data (Ng et al., 2014). Each sentence is paired
with two annotations. The other eight available
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Social media makes our life patten so fast
and left us less time to think about our life.

Social media makes our life patten so fast
and leave us less time to think about our life.

Social media make our life patten so fast
and leave us less time to think about our life.

Social media make our pace of life so fast
and leave us less time to think about our life.

left leave

makes make

life patten pace of life

Figure 3: An example chain from a corrections lattice – each
sentence is the result of applying a single edit to the sentence
below it. The top sentence is a perfect correction, while the
bottom is the original.

Figure 4: A scatter plot of the corpus-level correlation of
metrics according to the different methodologies. The x-axis
corresponds to the correlation according to human rankings
(Combined setting), and the y-axis corresponds to the correla-
tion according to MAEGE. While some get similar correlation
(e.g., GLEU), other metrics change drastically (e.g., SARI).

references, produced by Bryant and Ng (2015), are
used as references for the reference-based metrics.
Denote the set of references for s with Rs.

Sentences which require no correction accord-
ing to at least one of the two annotations are dis-
carded. In 26 cases where two edit spans intersect
in the same annotation (out of a total of about 40K
edits), the edits are manually merged or split.

5 Corpus-level Analysis

We conduct a corpus-level analysis, namely test-
ing the ability of metrics to determine which cor-
pus of corrections is of better quality. In practice,
this procedure is used to rank systems based on
their outputs on the test corpus.

In order to compile corpora corresponding to
systems of different quality levels, we define sev-

eral corpus models, each applying a different ex-
pected number of edits to the original. Models are
denoted with the expected number of edits they
apply to the original which is a positive number
M ∈ R+. Given a corpus model M , we generate
a corpus of corrections by traversing the original
sentences, and for each sentence s uniformly sam-
ple an annotation a (i.e., a set of edits that results
in a perfect correction), and the number of edits
applied nedits, which is sampled from a clipped
binomial probability with mean M and variance
0.9. Given nedits, we uniformly sample from the
latticeEs,a a sub-set of edits of size nedits, and ap-
ply this set of edits to s. The corpus of M = 0 is
the set of originals.

The corpus of source sentences, against which
all other corpora are compared, is sampled by
traversing the original sentences, and for each sen-
tence s, uniformly sample an annotation a, and
given s, a, uniformly sample a sentence fromEs,a.

Given a metric m ∈ METRICS, we compute
its score for each sampled corpus. Where corpus-
level scores are not defined by the metrics them-
selves, we use the average sentence score instead.
We compare the rankings induced by the scores of
m and the ranking of systems according to their
corpus model (i.e., systems that have a higher M
should be ranked higher), and report the correla-
tion between these rankings.

5.1 Experiments
Setup. For each model, we sample one correc-
tion per NUCLE sentence, noting that it is possi-
ble to reduce the variance of the metrics’ corpus-
level scores by sampling more. Corpus models of
integer values between 0 and 10 are taken. We re-
port Spearman ρ, commonly used for system-level
rankings (Bojar et al., 2017).4

Results. Results, presented in Table 2 (left part),
shows that LT correlates best with the rankings in-
duced by MAEGE, where GLEU is second. M2’s
correlation is only 0.06. We note that the LT re-
quires a complementary metric to penalize gram-
matical outputs that diverge in meaning from the
source (Napoles et al., 2016b). See §8.

Comparing the metrics’ quality in corpus-level
evaluation with their quality according to CHR
(§3), we find they are often at odds. Figure 4 plots
the Spearman correlation of the different metrics
according to the two validation methodologies,

4Using Pearson correlation shows similar trends.
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Corpus-level Sentence-level
ρ P-val r P-val τ P-val

iBLEU 0.418 0.200 0.230 † 0.050 †
M2 0.060 0.853 -0.025 0.024 0.213 †
LT 0.973 † 0.167 † 0.222 †
BLEU 0.564 0.071 0.214 † 0.111 †
MinLDO→R -0.867 † 0.011 0.327 -0.183 †
GLEU 0.736 0.001 0.189 † -0.028 †
MAX-SARI -0.809 0.003 0.027 0.015 -0.070 †
SARI -0.545 0.080 0.061 † -0.039 †
LDS→O -0.118 0.729 0.109 † 0.094 †

Table 2: Corpus-level Spearman ρ, sentence-level Pearson r and Kendall τ with the metrics (left). † represents P-value< 0.001.
LT correlates best at the corpus level and has the highest sentence-level τ , while iBLEU has the highest sentence-level r.

Figure 5: Average GLEU score of originals (y-axis), plotted
against the number of errors they contain (x-axis). Their sub-
stantial correlation indicates that GLEU is globally reliable.

showing correlations are slightly correlated, but
disagreements as to metric quality are frequent and
substantial (e.g., with iBLEU or SARI).

6 Sentence-level Analysis

We proceed by presenting a method for assessing
the correlation between metric-induced scores of
corrections of the same sentence, and the scores
given to these corrections by MAEGE. Given a
sentence s and an annotation a, we sample a ran-
dom permutation over the edits in edits(s, a). We
denote the permutation with σ ∈ Sns,a , where
Sns,a is the permutation group over {1, · · · , ns,a}.
Given σ, we define a monotonic chain in Ei,j as:

chain(s, a, σ) =
(
∅ < {e(σ(1))s,a } < {e(σ(1))s,a , e(σ(2))s,a } <

. . . < edits(s, a)
)

For each chain, we uniformly sample one of its el-
ements, mark it as the source, and denote it with
src. In order to generate a set of chains, MAEGE

traverses the original sentences and annotations,
and for each sentence-annotation pair, uniformly
samples nch chains without repetition. It then uni-
formly samples a source sentence from each chain.
If the number of chains inEs,a is smaller than nch,
MAEGE selects all the chains.

Given a metric m ∈ METRICS, we compute
its score for every correction in each sampled
chain against the sampled source and available ref-
erences. We compute the sentence-level correla-
tion of the rankings induced by the scores of m
and the rankings induced by <. For computing
rank correlation (such as Spearman ρ or Kendall
τ ), such a relative ranking is sufficient.

We report Kendall τ , which is only sensitive to
the relative ranking of correction pairs within the
same chain. Kendall is minimalistic in its assump-
tions, as it does not require numerical scores, but
only assuming that < is well-motivated, i.e., that
applying a set of valid edits is better in quality than
applying only a subset of it.

As < is a partial order, and as Kendall τ is stan-
dardly defined over total orders, some modifica-
tion is required. τ is a function of the number of
compared pairs and of discongruent pairs (ordered
differently in the compared rankings):

τ = 1− 2 |discongruent pairs|
|all pairs| .

To compute these quantities, we extract all
unique pairs of corrections that can be compared
with < (i.e., one applies a sub-set of the edits of
the other), and count the number of discongruent
ones between the metric’s ranking and <. Signif-
icance is modified accordingly.5 Spearman ρ is

5Code can be found in https://github.com/
borgr/EoE
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less applicable in this setting, as it compares total
orders whereas here we compare partial orders.

To compute linear correlation with Pearson r,
we make the simplifying assumption that all edits
contribute equally to the overall quality. Specifi-
cally, we assume that a perfect correction (i.e., the
top of a chain) receives a score of 1. Each original
sentence s (the bottom of a chain), for which there
exists annotations a1, . . . , an, receives a score of

1−min
i

|edits(s, ai)|
|tokens(s)| .

The scores of partial (non-perfect) corrections
in each chain are linearly spaced between the score
of the perfect correction and that of the original.
This scoring system is well-defined, as a partial
correction receives the same score according to all
chains it is in, as all paths between a partial cor-
rection and the original have the same length.

6.1 Experiments

Setup. We experiment with nch = 1, yielding
7936 sentences in 1312 chains (same as the num-
ber of original sentences in the NUCLE test set).
We report the Pearson correlation over the scores
of all sentences in all chains (r), and Kendall τ
over all pairs of corrections within the same chain.

Results. Results are presented in Table 2 (right
part). No metric scores very high, neither ac-
cording to Pearson r nor according to Kendall τ .
iBLEU correlates best with < according to r, ob-
taining a correlation of 0.23, whereas LT fares best
according to τ , obtaining 0.222.

Results show a discrepancy between the low
corpus-level and sentence-level r correlations of
M2 and its high sentence-level τ . It seems that
although M2 orders pairs of corrections well, its
scores are not a linear function of MAEGE’s scores.
This may be due to M2’s assignment of the min-
imal possible score to the source, regardless of its
quality. M2 thus seems to predict well the rela-
tive quality of corrections of the same sentence,
but to be less effective in yielding a globally co-
herent score (cf. Felice and Briscoe (2015)).

GLEU shows the inverse behaviour, failing to
correctly order pairs of corrections of the same
sentence, while managing to produce globally co-
herent scores. We test this hypothesis by comput-
ing the average difference in GLEU score between
all pairs in the sampled chains, and find it to be
slightly negative (-0.00025), which is in line with

GLEU’s small negative τ . On the other hand, plot-
ting the GLEU scores of the originals grouped by
the number of errors they contain, we find they
correlate well (Figure 5), indicating that GLEU
performs well in comparing the quality of correc-
tions of different sentences. Four sentences with
considerably more errors than the others were con-
sidered outliers and removed.

7 Metric Sensitivity by Error Type

MAEGE’s lattice can be used to analyze how the
examined metrics reward corrections of errors of
different types. For each edit type t, we denote
with St the set of correction pairs from the lattice
that only differ in an edit of type t. For each such
pair (c, c′) and for each metric m, we compute the
difference in the score assigned by m to c and c′.
The average difference is denoted with ∆m,t.

∆m,t =
1

|St|
∑

(c,c′)∈St

[
m(src, c, R)−m(src, c′, R)

]

R is the corresponding reference set. A neg-
ative (positive) ∆m,t indicates that m penalizes
(awards) valid corrections of type t.

7.1 Experiments
Setup. We sample chains using the same sam-
pling method as in §6, and uniformly sample a
source from each chain. For each edit type t,
we detect all pairs of corrections in the sampled
chains that only differ in an edit of type t, and use
them to compute ∆m,t. We use the set of 27 edit
types given in the NUCLE corpus.

Results. Table 3 presents the results, showing
that under all metrics, some edits types are penal-
ized and others rewarded. iBLEU and LT penalize
the least edit types, and GLEU penalizes the most,
providing another perspective on GLEU’s negative
Kendall τ (§6). Certain types are penalized by al-
most all metrics. One such type is Vm, wrong verb
modality (e.g., “as they [∅ ; may] not want to
know”). Another such type is Npos, a problem in
noun possessive (e.g., “their [facebook’s ; Face-
book] page”). Other types, such as Mec, mechani-
cal (e.g., “[real-life ; real life]”), and V0, missing
verb (e.g., “’Privacy’, this is the word that [∅; is]
popular”), are often rewarded by the metrics.

In general, the tendency of reference-based met-
rics (the vast majority of GEC metrics) to penal-
ize edits of various types suggests that many edit
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Type iBLEU M2 LT BLEU MinLDO→R GLEU MAX-SARI SARI LDS→O

WOinc 0.016 −0.000 −0.002 −0.005 −0.026 −0.051 −0.075 −0.046 0.063
Nn 0.033 −0.001 0.004 0.029 −0.007 0.025 0.043 0.037 0.017
Npos −0.001 0.001 −0.004 −0.011 −0.007 −0.030 −0.023 −0.009 0.014
Sfrag −0.025 −0.003 −0.000 −0.067 −0.068 −0.143 −0.177 −0.142 0.076
Wtone −0.013 −0.002 −0.008 −0.024 −0.021 −0.026 −0.086 −0.055 0.018
Srun −0.027 −0.004 −0.004 −0.048 −0.014 −0.078 −0.039 −0.030 0.020
ArtOrDet 0.028 −0.001 0.001 0.019 −0.006 −0.003 −0.022 −0.003 0.024
Vt 0.054 −0.001 0.005 0.046 −0.002 0.011 0.003 0.018 0.025
Wa 0.041 −0.002 −0.002 −0.013 0.006 −0.028 −0.073 −0.090 0.071
Wform 0.049 −0.001 0.002 0.044 −0.003 0.010 0.004 0.020 0.022
WOadv 0.007 0.000 0.009 0.011 0.012 0.006 0.088 0.054 −0.014
V0 0.015 −0.001 0.019 0.005 −0.003 −0.006 −0.010 −0.004 0.015
Trans −0.011 0.000 0.005 −0.022 −0.029 −0.031 −0.019 −0.004 0.013
Pform 0.021 −0.001 0.003 0.011 −0.012 −0.019 −0.003 0.005 0.030
Smod −0.052 0.001 0.004 −0.093 −0.072 −0.126 −0.062 −0.043 0.055
Ssub −0.005 0.000 −0.011 −0.024 −0.027 −0.052 −0.072 −0.038 0.026
Wci −0.008 −0.001 0.004 −0.022 −0.029 −0.045 −0.049 −0.032 0.017
Vm −0.007 −0.001 −0.001 −0.029 −0.027 −0.075 −0.070 −0.059 0.030
Pref −0.003 −0.001 0.002 −0.015 −0.022 −0.045 −0.048 −0.035 0.018
Mec 0.012 0.001 0.014 0.004 −0.013 −0.014 0.000 0.002 0.018
Vform 0.043 −0.001 0.006 0.044 0.000 0.030 0.033 0.043 0.013
Prep 0.018 −0.000 0.004 0.011 −0.008 −0.001 −0.010 0.005 0.014
Um −0.038 −0.001 −0.007 −0.043 −0.100 −0.037 −0.046 −0.032 0.009
Others −0.048 −0.000 0.007 −0.063 −0.054 −0.060 −0.040 −0.024 −0.000
Rloc- 0.004 −0.001 −0.004 −0.006 −0.027 −0.023 −0.028 −0.019 0.022
Spar 0.041 0.001 0.003 0.035 −0.012 −0.003 0.008 0.026 0.024
SVA 0.045 −0.001 −0.001 0.037 −0.005 −0.002 0.012 0.015 0.021

Table 3: Average change in metric score by metric and edit types (∆m,t; see text). Rows correspond to edit types (abbreviations
in Dahlmeier et al. (2013)); columns correspond to metrics. Some edit types are consistently penalized.

types are under-represented in available reference
sets. Automatic evaluation of systems that per-
form these edit types may, therefore, be unreliable.
Moreover, not addressing these biases in the met-
rics may hinder progress in GEC. Indeed, M2 and
GLEU, two of the most commonly used metrics,
only award a small sub-set of edit types, thus of-
fering no incentive for systems to improve perfor-
mance on such types.6

8 Discussion

We revisit the argument that using system outputs
to perform metric validation poses a methodolog-
ical difficulty. Indeed, as GEC systems are de-
veloped, trained and tested using available met-
rics, and as metrics tend to reward some correc-
tion types and penalize others (§7), it is possible
that GEC development adjusts to the metrics, and
neglects some error types. Resulting tendencies
in GEC systems would then yield biased sets of
outputs for human rankings, which in turn would
result in biases in the validation process.

To make this concrete, GEC systems are often
precision-oriented: trained to prefer not to cor-
rect than to invalidly correct. Indeed, Choshen and

6LDS→O tends to award valid corrections of almost all
types. As source sentences are randomized across chains, this
indicates that on average, corrections with more applied ed-
its tend to be more similar to comparable corrections on the
lattice. This is also reflected by the slightly positive sentence-
level correlation of LDS→O (§6).

Abend (2018a) show that modern systems tend to
be highly conservative, often performing an order
of magnitude fewer changes to the source than ref-
erences do. Validating metrics on their ability to
rank conservative system outputs (as is de facto the
common practice) may produce a different picture
of metric quality than when considering a more in-
clusive set of corrections.

We use MAEGE to mimic a setting of ranking
against precision-oriented outputs. To do so, we
perform corpus-level and sentence-level analyses,
but instead of randomly sampling a source, we in-
variably take the original sentence as the source.
We thereby create a setting where all edits applied
are valid (but not all valid edits are applied).

Comparing the results to the regular MAEGE

correlation (Table 4), we find that LT remains re-
liable, while M2, that assumes the source receives
the worst possible score, gains from this unbal-
anced setting. iBLEU drops, suggesting it may
need to be retuned to this setting and give less
weight toBLEU(O,S), thus becoming more like
BLEU and GLEU. The most drastic change we
see is in SARI and MAX-SARI, which flip their
sign and present strong performance. Interest-
ingly, the metrics that benefit from this precision-
oriented setting in the corpus-level are the same
metrics that perform better according to CHR than
to MAEGE (Figure 4). This indicates the different
trends produced by MAEGE and CHR, may result
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Corpus-level Sentence-level
ρ P-val r P-val τ P-val

iBLEU -0.872 (0.418) † 0.235 (0.230) † 0.053 (0.050) †
M2 0.882 (0.060) † -0.014 (-0.025) 0.223 0.223 (0.213) †
LT 0.836 (0.973) 0.001 0.175 (0.167) 0.019 0.184 (0.222) †
BLEU 0.845 (0.564) 0.001 0.217 (0.214) † 0.115 (0.111) †
MinLDO→R -0.909 (-0.867) † 0.022 (0.011) † -0.180 (-0.183) †
GLEU 0.945 (0.736) † 0.208 (0.189) † 0.003 (-0.028) †
MAX-SARI 0.772 (-0.809) 0.005 0.053 (0.027) † 0.004 (-0.070) 0.6
SARI 0.800 (-0.545) 0.003 0.084 (0.061) † 0.022 (-0.039) 0.001

LDS→O -0.972 (-0.118) † 0.025 (0.109) 0.027 0.070 (0.094) †

Table 4: Corpus-level Spearman ρ, sentence-level Pearson r and Kendall τ correlations using origin as the source with the
various metrics (left). Correlations using a random source are found in parenthesis. † represents P − value < 0.001. LT is the
best corpus correlated, and has the best τ while iBLEU has the best r

from the latter’s use of precision-oriented outputs.

Drawbacks. Like any methodology MAEGE has
its simplifying assumptions and drawbacks; we
wish to make them explicit. First, any biases in-
troduced in the generation of the test corpus are in-
herited by MAEGE (e.g., that edits are contiguous
and independent of each other). Second, MAEGE

does not include errors that a human will not per-
form but machines might, e.g., significantly al-
tering the meaning of the source. This partially
explains why LT, which measures grammaticality
but not meaning preservation, excels in our ex-
periments. Third, MAEGE’s scoring system (§6)
assumes that all errors damage the score equally.
While this assumption is made by GEC metrics,
we believe it should be refined in future work by
collecting user information.

9 Conclusion

In this paper, we show how to leverage existing
annotation in GEC for performing validation re-
liably. We propose a new automatic methodol-
ogy, MAEGE, which overcomes many of the short-
comings of the existing methodology. Experi-
ments with MAEGE reveal a different picture of
metric quality than previously reported. Our anal-
ysis suggests that differences in observed metric
quality are partly due to system outputs sharing
consistent tendencies, notably their tendency to
under-predict corrections. As existing methodol-
ogy ranks system outputs, these shared tendencies
bias the validation process. The difficulties in bas-
ing validation on system outputs may be applica-
ble to other text-to-text generation tasks, a ques-
tion we will explore in future work.
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Abstract

Statistical significance testing is a standard sta-
tistical tool designed to ensure that experimen-
tal results are not coincidental. In this opin-
ion/theoretical paper we discuss the role of statis-
tical significance testing in Natural Language Pro-
cessing (NLP) research. We establish the funda-
mental concepts of significance testing and discuss
the specific aspects of NLP tasks, experimental se-
tups and evaluation measures that affect the choice
of significance tests in NLP research. Based on
this discussion, we propose a simple practical pro-
tocol for statistical significance test selection in
NLP setups and accompany this protocol with a
brief survey of the most relevant tests. We then
survey recent empirical papers published in ACL
and TACL during 2017 and show that while our
community assigns great value to experimental re-
sults, statistical significance testing is often ig-
nored or misused. We conclude with a brief dis-
cussion of open issues that should be properly ad-
dressed so that this important tool can be applied
in NLP research in a statistically sound manner1.

1 Introduction

The field of Natural Language Processing (NLP)
has recently made great progress due to the data
revolution that has made abundant amounts of tex-
tual data from a variety of languages and linguis-
tic domains (newspapers, scientific journals, so-
cial media etc.) available. This, together with the
emergence of a new generation of computing re-
sources and the related development of Deep Neu-
ral Network models, have resulted in dramatic im-
provements in the capabilities of NLP algorithms.

1The code for all statistical tests detailed in this pa-
per is found on: https://github.com/rtmdrr/
testSignificanceNLP.git

The extended reach of NLP algorithms has also
resulted in NLP papers giving much more empha-
sis to the experiment and result sections by show-
ing comparisons between multiple algorithms on
various datasets from different languages and do-
mains. This emphasis on empirical results high-
lights the role of statistical significance testing in
NLP research: if we rely on empirical evalua-
tion to validate our hypotheses and reveal the cor-
rect language processing mechanisms, we better
be sure that our results are not coincidental.

This paper aims to discuss the various aspects of
proper statistical significance testing in NLP and
to provide a simple and sound guide to the way this
important tool should be used. We also discuss the
particular challenges of statistical significance in
the context of language processing tasks.

To facilitate a clear and coherent presentation,
our (somewhat simplified) model of an NLP paper
is one that presents a new algorithm and makes the
hypothesis that this algorithm is better than a pre-
vious strong algorithm, which serves as the base-
line. This hypothesis is verified in experiments
where the two algorithms are applied to the same
datasets (test sets), reasoning that if one algorithm
is consistently better than the other, hopefully with
a sufficiently large margin, then it should also be
better on future, currently unknown, datasets. Yet,
the experimental differences might be coinciden-
tal. Here comes statistical significance testing into
the picture: we have to make sure that the prob-
ability of falsely concluding that one algorithm is
better than the other is very small.

We note that in this paper we do not deal with
the problem of drawing valid conclusions from
multiple comparisons between algorithms across a
large number of datasets , a.k.a. replicability anal-
ysis (see (Dror et al., 2017)). Instead, our focus
is on a single comparison: how can we make sure
that the difference between the two algorithms, as
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observed in an individual comparison, is not coin-
cidental. Statistical significance testing of each in-
dividual comparison is the basic building block of
replicability analysis – its accurate performance is
a pre-condition for any multiple dataset analysis.

Statistical significance testing (§ 2) is a well re-
searched problem in the statistical literature. How-
ever, the unique structured nature of natural lan-
guage data is reflected in specialized evaluation
measures such as BLEU (machine translation, (Pa-
pineni et al., 2002)), ROUGE (extractive summa-
rization, (Lin, 2004)), UAS and LAS (dependency
parsing, (Kübler et al., 2009)). The distribution of
these measures is of great importance to statistical
significance testing. Moreover, certain properties
of NLP datasets and the community’s evaluation
standards also affect the way significance testing
should be performed. An NLP-specific discussion
of significance testing is hence in need.

In § 3 we discuss the considerations to be made
in order to select the proper statistical significance
test in NLP setups. We propose a simple deci-
sion tree algorithm for this purpose, and survey the
prominent significance tests – parametric and non-
parametric – for NLP tasks and data.

In § 4 we survey the current evaluation and sig-
nificance testing practices of the community. We
provide statistics collected from the long papers
of the latest ACL proceedings (Barzilay and Kan,
2017) as well as from the papers published in the
TACL journal during 2017. Our analysis reveals
that there is still a room for improvement in the
way statistical significance is used in papers pub-
lished in our top-tier publication venues. Particu-
larly, a large portion of the surveyed papers do not
test the significance of their results, or use incor-
rect tests for this purpose.

Finally, in § 5 we discuss open issues. A par-
ticularly challenging problem is that while most
significance tests assume the test set consists of
independent observations, most NLP datasets con-
sist of dependent data points. For example, many
NLP standard evaluation sets consist of sentences
coming from the same source (e.g. newspaper) or
document (e.g. newspaper article) or written by
the same author. Unfortunately, the nature of these
dependencies is hard to characterize, let alone to
quantify. Another important problem is how to test
significance when cross-validation, a popular eval-
uation methodology in NLP papers, is performed.

Besides its practical value, we hope this paper

will encourage further research into the role of
statistical significance testing in NLP and on the
questions that still remain open.

2 Preliminaries

In this section we provide the required preliminar-
ies for our discussion. We start with a formal def-
inition of statistical significance testing and pro-
ceed with an overview of the prominent evaluation
measures in NLP.

2.1 Statistical Significance Testing

In this paper we focus on the setup where the per-
formance of two algorithms,A andB, on a dataset
X , is compared using an evaluation measure M.
Let us denote M(ALG,X) as the value of the
evaluation measure M when algorithm ALG is
applied to the dataset X . Without loss of gener-
ality, we assume that higher values of the measure
are better. We define the difference in performance
between the two algorithms according to the mea-
sureM on the dataset X as:

δ(X) =M(A,X)−M(B,X). (1)

In this paper we will refer to δ(X) as our test
statistic. Using this notation we formulate the fol-
lowing statistical hypothesis testing problem:2

H0 :δ(X) ≤ 0

H1 :δ(X) > 0.

In order to decide whether or not to reject the
null hypothesis, that is reaching the conclusion
that δ(X) is indeed greater than 0, we usually
compute a p−value for the test. The p−value is
defined as the probability, under the null hypoth-
esis H0, of obtaining a result equal to or more
extreme than what was actually observed. For
the one-sided hypothesis testing defined here, the
p−value is defined as:

Pr(δ(X) ≥ δobserved|H0).

Where δobserved is the performance difference be-
tween the algorithms (according toM) when ap-
plied to X . The smaller the p-value, the higher
the significance, or, in other words, the stronger

2For simplicity we consider a one-sided hypothesis, it can
be easily re-formulated as a double-sided hypothesis.
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the indication provided by the data that the null-
hypothesis, H0, does not hold. In order to de-
cide whetherH0 should be rejected, the researcher
should pre-define an arbitrary, fixed threshold
value α, a.k.a the significance level. Only if
p−value < α then the null hypothesis is rejected.

In significance (or hypothesis) testing we con-
sider two error types. Type I error refers to the
case where the null hypothesis is rejected when it
is actually true. Type II error refers to the case
where the null hypothesis is not rejected although
it should be. A common approach in hypothe-
sis testing is to choose a test that guarantees that
the probability of making a type I error is up-
per bounded by the test significance level α, men-
tioned above, while achieving the highest possible
power: i.e. the lowest possible probability of mak-
ing a type II error.

2.2 Evaluation Measures in NLP

Evaluation
Measure

ACL 17 TACL 17

F-scores 78 (39.8%) 9 (25.71%)
Accuracy 67 (34.18%) 13 (37.14%)
Precision/
Recall

44 (22.45%) 6 (17.14%)

BLEU 26 (13.27%) 4 (11.43%)
ROUGE 12 (6.12%) 0 (0%)
Pearson/ Spear-
man correla-
tions

4 (2.04%) 6 (17.14%)

Perplexity 7 (3.57%) 2 (5.71%)
METEOR 6 (3.06%) 1 (2.86%)
UAS+LAS 1 (0.51%) 3 (8.57%)

Table 1: The most common evaluation measures
in (long) ACL and TACL 2017 papers, ordered by
ACL frequency. For each measure we present the
total number of papers where it is used and the
fraction of papers in the corresponding venue.

In order to draw valid conclusions from the ex-
periments formulated in § 2.1 it is crucial to ap-
ply the correct statistical significance test. In § 3
we explain that the choice of the significance test
is based, among other considerations, on the dis-
tribution of the test statistics, δ(X). From equa-
tion 1 it is clear that δ(X) depends on the evalu-
ation measure M. We hence turn to discuss the
evaluation measures employed in NLP.

In § 4 we analyze the (long) ACL and TACL

2017 papers, and observe that the most commonly
used evaluation measures are the 12 measures that
appear in Table 1. Notice that seven of these
measures: Accuracy, Precision, Recall, F-score,
Pearson and Spearman correlations and Perplexity,
are not specific to NLP. The other five measures:
BLEU (Papineni et al., 2002), ROUGE (Lin,
2004), METEOR (Banerjee and Lavie, 2005),
UAS and LAS (Kübler et al., 2009), are unique
measures that were developed for NLP applica-
tions. BLEU and METEOR are standard evalu-
ation measures for machine translation, ROUGE
for extractive summarization, and UAS and LAS
for dependency parsing. While UAS and LAS are
in fact accuracy measures, BLEU, ROUGE and
METEOR are designed for tasks where there are
several possible outputs - a characteristic property
of several NLP tasks. In machine translation, for
example, a sentence in one language can be trans-
lated in multiple ways to another language. Conse-
quently, BLEU takes an n-gram based approach on
the surface forms, while METEOR considers only
unigram matches but uses stemming and controls
for synonyms.

All 12 measures return a real number, either in
[0, 1] or in R. Notice though that accuracy may
reflect an average over a set of categorical scores
(observations), e.g., in document-level binary sen-
timent analysis where every document is tagged as
either positive or negative. In other cases, the in-
dividual observations are also continuous. For ex-
ample, when comparing two dependency parsers,
we may want to understand how likely it is, given
our results, that one parser will do better than the
other on a new sentence. In such a case we will
consider the sentence-level UAS or LAS differ-
ences between the two parsers on all the sentences
in the test set. Such sentence level UAS or LAS
scores - the individual observations to be consid-
ered in the significance test - are real-valued.

With the basic concepts clarified, we are ready
to discuss the considerations to be made when
choosing a statistical significance test.

3 Statistical Significance in NLP

The goal of this section is to detail the considera-
tions involved in the selection of a statistical sig-
nificance test for an NLP application. Based on
these considerations we provide a practical recipe
that can be applied in order to make a good choice.
In order to make this paper a practical guide for
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the community, we also provide a short descrip-
tion of the significance tests that are most relevant
for NLP setups.

3.1 Parametric vs. Non-parametric Tests

As noted above, a major consideration in the se-
lection of a statistical significance test is the dis-
tribution of the test statistic, δ(X), under the null
hypothesis. If the distribution is known, then the
suitable test will come from the family of para-
metric tests, that uses this distribution in order to
achieve powerful results (i.e., low probability of
making a type II error, see § 2). If the distribu-
tion is unknown then any assumption made by a
test may lead to erroneous conclusions and hence
we should rely on non-parametric tests that do not
make any such assumption. While non-parametric
tests may be less powerful than their paramet-
ric counterparts, they do not make unjustified as-
sumptions and are hence statistically sound even
when the test statistic distribution is unknown.

But how can one know the test statistic dis-
tribution? One possibility is to apply tests de-
signed to evaluate the distribution of a sample of
observations. For example, the Shapiro-Wilk test
(Shapiro and Wilk, 1965) tests the null hypothesis
that a sample comes from a normally distributed
population, the Kolmogorov-Smirnov test quanti-
fies the distance between the empirical distribu-
tion function of the sample and the cumulative
distribution function of the reference distribution,
and the Anderson-Darling test (Anderson and Dar-
ling, 1954) tests whether a given sample of data is
drawn from a given probability distribution. As
discussed below, there seems to be other heuris-
tics that are used in practice but are not often men-
tioned in research papers.

In what follows we discuss the prominent para-
metric and non-parametric tests for NLP setups.
Based on this discussion we end this section with
a simple decision tree that aims to properly guide
the significance test choice process.

3.2 Prominent Significance Tests

3.2.1 Parametric Tests
Parametric significance tests assume that the test
statistic is distributed according to a known dis-
tribution with defined parameters, typically the
normal distribution. While this assumption may
be hard to verify (see discussion above), when it
holds, these parametric tests have stronger statis-

tical power compared to non-parametric tests that
do not make this assumption (Fisher, 1937).

Here we discuss the prominent parametric test
for NLP setups - the paired student’s t-test.

Paired Student’s t-test This test assesses
whether the population means of two sets of mea-
surements differ from each other, and is based on
the assumption that both samples come from a nor-
mal distribution (Fisher, 1937).

In practice, t-test is often applied with evalua-
tion measures such as accuracy, UAS and LAS,
that compute the mean number of correct predic-
tions per input example. When comparing two de-
pendency parsers, for example, we can apply the
test to check if the averaged difference of their
UAS scores is significantly larger than zero, which
can serve as an indication that one parser is better
than the other.

Although we have not seen this discussed in
NLP papers, we believe that the decision to use
the t-test with these measures is based on the Cen-
tral Limit Theorem (CLT). CLT establishes that, in
most situations, when independent random vari-
ables are added, their properly normalized sum
tends toward a normal distribution even if the orig-
inal variables themselves are not normally dis-
tributed. That is, accuracy measures in structured
tasks tend to be normally distributed when the
number individual predictions (e.g. number of
words in a sentence when considering sentence-
level UAS) is large enough.

One case where it is theoretically justified to
employ the t-test is described in (Sethuraman,
1963). The authors prove that for large enough
data, the sampling distribution of a certain func-
tion of the Pearson’s correlation coefficient fol-
lows the Student’s t-distribution with n − 2 de-
grees of freedom. With the recent surge in word
similarity research with word embedding models,
this result is of importance to our community.

For other evaluation measures, such as F-score,
BLEU, METEOR and ROUGE that do not com-
pute means, the common practice is to assume
that they are not normally distributed (Yeh, 2000;
Berg-Kirkpatrick et al., 2012). We believe this
issue requires a further investigation and suggest
that it may be best to rely on the normality tests
discussed in § 3.1 when deciding whether or not to
employ the t-test.
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3.2.2 Non-parametric Tests
When the test statistic distribution is unknown,
non-parametric significance testing should be
used. The non-parametric tests that are com-
monly used in NLP setups can be divided into two
families that differ with respect to their statistical
power and computational complexity.

The first family consists of tests that do not con-
sider the actual values of the evaluation measures.
The second family do consider the values of the
measures: it tests repeatedly sample from the test
data, and estimates the p-value based on the test
statistic values in the samples. We refer to the first
family as the family of sampling-free tests and to
the second as the family of sampling-based tests.

The two families of tests reflect different pref-
erences with respect to the balance between
statistical power and computational efficiency.
Sampling-free tests do not consider the evaluation
measure values, only higher level statistics of the
results such as the number of cases in which each
of the algorithms performs better than the other.
Consequently, their statistical power is lower than
that of sampling-based tests that do consider the
evaluation measure values. Sampling-based tests,
however, compensate for the lack of distributional
assumptions over the data with re-sampling – a
computationally intensive procedure. Sampling-
based methods are hence not the optimal candi-
dates for very large datasets.

We consider here four commonly used
sampling-free tests: the sign test and two of its
variants, and the wilcoxon signed-rank test.

Sign test This test tests whether matched pair
samples are drawn from distributions with equal
medians. The test statistic is the number of exam-
ples for which algorithm A is better than algorithm
B, and the null hypothesis states that given a new
pair of measurements (e.g. evaluations (ai, bi) of
the two algorithms on a new test example), then ai
and bi are equally likely to be larger than the other
(Gibbons and Chakraborti, 2011).

The sign test has limited practical implications
since it only checks if algorithm A is better than
B and ignores the extent of the difference. Yet,
it has been used in a variety of NLP papers (e.g.
(Collins et al., 2005; Chan et al., 2007; Rush et al.,
2012)). The assumptions of this test is that the
data samples are i.i.d, the differences come from
a continuous distribution (not necessarily normal)
and that the values are ordered.

The next test is a special case of the sign test for
binary classification (or a two-tailed sign test).

McNemar’s test (McNemar, 1947) This test is
designed for paired nominal observations (binary
labels). The test is applied to a 2× 2 contingency
table, which tabulates the outcomes of two algo-
rithms on a sample of n examples. The null hy-
pothesis for this test states that the marginal prob-
ability for each outcome (label one or label two)
is the same for both algorithms. That is, when ap-
plying both algorithms on the same data we would
expect them to be correct/incorrect on the same
proportion of items. Under the null hypothesis,
with a sufficiently large number of disagreements
between the algorithms, the test statistic has a dis-
tribution of χ2 with one degree of freedom. This
test is appropriate for binary classification tasks,
and has been indeed used in such NLP works
(e.g. sentiment classificaiton, (Blitzer et al., 2006;
Ziser and Reichart, 2017)). The Cochran’s Q test
(Cochran, 1950) generalizes the McNemar’s test
for multi-class classification setups.

The sign test and its variants consider only pair-
wise ranks: which algorithm performs better on
each test example. In NLP setups, however, we
also have access to the evaluation measure val-
ues, and this allows us to rank the differences be-
tween the algorithms. The Wilcoxon signed-rank
test makes use of such a rank and hence, while it
does not consider the evaluation measure values, it
is more powerful than the sign test and its variants.

Wilcoxon signed-rank test (Wilcoxon, 1945)
Like the sign test variants, this test is used when
comparing two matched samples (e.g. UAS values
of two dependency parsers on a set of sentences).
Its null hypothesis is that the differences follow a
symmetric distribution around zero. First, the ab-
solute values of the differences are ranked. Then,
each rank gets a sign according to the sign of the
difference. The Wilcoxon test statistic sums these
signed ranks. The test is actually applicable for
most NLP setups and it has been used widely (e.g.
(Søgaard et al., 2014; Søgaard, 2013; Yang and
Mitchell, 2017)) due to its improved power com-
pared to the sign test variants.

As noted above, sampling-free tests trade sta-
tistical power for efficiency. Sampling-based
methods take the opposite approach. This
family includes two main methods: permuta-
tion/randomization tests (Noreen, 1989) and the
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paired bootstrap (Efron and Tibshirani, 1994).

Pitman’s permutation test This test estimates
the test statistic distribution under the null hypoth-
esis by calculating the values of this statistic un-
der all possible labellings (permutations) of the
test set. The (two-sided) p-value of the test is
calculated as the proportion of these permutations
where the absolute difference was greater than or
equal to the absolute value of the difference in the
output of the algorithm.

Obviously, permutation tests are computation-
ally intensive due to the exponentially large num-
ber of possible permutations. In practice, ap-
proximate randomization tests are used where a
pre-defined limited number of permutations are
drawn from the space of all possible permuta-
tions, without replacements (see, e.g. (Riezler and
Maxwell, 2005) in the context of machine trans-
lation). The bootstrap test (Efron and Tibshirani,
1994) is based on a closely related idea.

Paired bootstrap test This test is very similar
to approximate randomization of the permutation
test, with the difference that the sampling is done
with replacements (i.e., an example from the orig-
inal test data can appear more than once in a sam-
ple). The idea of bootstrap is to use the samples as
surrogate populations, for the purpose of approx-
imating the sampling distribution of the statistic.
The p-value is calculated in a similar manner to
the permutation test.

Bootstrap was used with a variety of NLP tasks,
including machine translation, text summarization
and semantic parsing (e.g. (Koehn, 2004; Li et al.,
2017; Wu et al., 2017; Ouchi et al., 2017)). The
test is less effective for small test sets, as it as-
sumes that the test set distribution does not deviate
too much from the population distribution.

Clearly, Sampling-based methods are computa-
tionally intensive and can be intractable for large
datasets, even with modern computing power. In
such cases, sampling-free methods form an avail-
able alternative.

3.3 Significance Test Selection

With the discussion of significance test families
- parametric vs. non-parametric (§ 3.1), and the
properties of the actual significance tests (§ 3.2)
we are now ready to provide a simple recipe for
significance test selection in NLP setups. The de-
cision tree in Figure 1 provides an illustration.

Does the test
statistic come
from a known
distribution?

Use a para-
metric test

Is the data
size small ?

Use bootstrap
or random-
ization test

Use sampling-
free non-

parametric test

Yes No

Yes No

Figure 1: Decision tree for statistical significance
test selection.

If the distribution of the test statistic is
known, then parametric tests are most appropri-
ate. These tests are more statistically powerful
and less computationally intensive compared to
their non-parametric counterparts. The stronger
statistical power of parametric tests stems from
the stronger, parametric assumptions they make,
while the higher computational demand of some
non-parametric tests is the result of their sampling
process.

When the distribution of the test statistic is un-
known, the first non-parametric family of choice
is that of sampling-based tests. These tests con-
sider the actual values of the evaluation measures
and are not restricted to higher order properties
(e.g. ranks) of the observed values – their statis-
tical power is hence higher. As noted in (Riezler
and Maxwell, 2005), in the case where the distri-
butional assumptions of the parametric tests are vi-
olated, sampling-based tests have more statistical
power than parametric tests.

Nonetheless, sampling-based tests are compu-
tationally intensive – the exact permutation test,
for example, requires the generation of all 2n data
permutations (where n is the number of points in
the dataset). To overcome this, approximate ran-
domization can be used, as was done, e.g., by
Yeh (2000) for test sets of more than 20 points.
The other alternative for very large datasets are
sampling-free tests that are less powerful but are
computationally feasible.

In what follows we check whether recent ACL
and TACL papers follow these guidelines.
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4 Survey of ACL and TACL papers

General Statistics ACL ’17 TACL ’17
Total number of pa-
pers

196 37

# relevant (experimen-
tal) papers

180 33

# different tasks 36 15
# different evaluation
measures

24 19

Average number of
measures per paper

2.34 2.1

# papers that do not
report significance

117 15

# papers that report
significance

63 18

# papers that report
significance but use
the wrong statistical
test

6 0

# papers that report
significance but do not
mention the test name

21 3

# papers that have to
report replicability

110 19

# papers that report
replicability

3 4

# papers that perform
cross validation

23 5

Table 2: Statistical significance statistics for em-
pirical ACL and TACL 2017 papers.

We analyzed the long papers from the pro-
ceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (ACL17,
(Barzilay and Kan, 2017)), a total of 196 pa-
pers, and the papers from the Transactions of the
Association of Computational Linguistics journal
(TACL17), Volume 5, Issue 1, a total of 37 pa-
pers. We have focused on empirical papers where
at least one comparison between methods was per-
formed.

Table 2 presents the main results from our sur-
vey. The top part of the table presents general
statistics of our dataset. In both conference and
journal papers, the variety of different NLP tasks
is quite large: 36 tasks in ACL 2017 and 15 tasks
in TACL. Interestingly, in almost every paper in
our survey the researchers chose to analyze their
results using more than one evaluation measure,

Statistical Test ACL ’17 TACL ’17
Bootstrap 6 1
t-test 17 2
Wilcoxon 3 0
Chi square 3 1
Randomization 3 1
McNemar 2 3
Sign 2 3
Permutation 1 4

Table 3: Number of times each of the prominent
statistical significance tests in ACL and TACL
2017 papers was used. 42 ACL and 15 TACL pa-
pers reported the significance test name. 5 ACL
papers mentioned an unrecognized test name.

with an average of 2.34 (ACL) and 2.1 (TACL).
Table 1 presents the most common of these evalu-
ation measures.

The lower part of Table 2 depicts the disturb-
ing reality of statistical significance testing in our
research community. Out of the 180 experimen-
tal long papers of ACL 2017, only 63 papers in-
cluded a statistical significance test. Moreover, out
of these 63 papers 21 did not mention the name
of the significance test they employed. Of the 42
papers that did mention the name of the signifi-
cance test, 6 used the wrong test according to the
considerations discussed in § 3.3 In TACL, where
the review process is presumably more strict and
of higher quality, out of 33 experimental papers,
15 did not include statistical significance testing,
and all the papers that report significance and men-
tioned the name of the test used a valid test.

While this paper focuses on the correct choice
of a significance test, we also checked whether the
papers in our sample account for the effect of mul-
tiple hypothesis testing when testing statistical sig-
nificance (see (Dror et al., 2017)). When testing
multiple hypotheses, as in the case of comparing
the participating algorithms across a large number
of datasets, the probability of making one or more
false claims may be very high, even if the proba-
bility of drawing an erroneous conclusion in each
individual comparison is small. In ACL 2017, out

3We considered the significance test to be inappropriate in
three cases: 1. Using the t-test when the evaluation measure
is not an average measure; 2. Using the t-test for a classifi-
cation task (i.e. when the observations are categorical rather
then continuous), even if the evaluation measure is an aver-
age measure; and 3. Using a Boostrap test with a small test
set size.
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of 110 papers that used multiple datasets only 3
corrected for multiplicity (all using the Bonferroni
correction). In TACL, the situation is slightly bet-
ter with 4 papers correcting for multiplicity out of
19 that should have done that.

Regarding the statistical tests that were used in
the papers that did report significance (Table 3), in
ACL 2017 most of the papers used the Student’s
t-test that assumes the data is i.i.d and that the test
statistics are normally distributed. As discussed in
§ 3 this is not the case in many NLP applications.
Gladly, in TACL, t-test is not as prominent.

One final note is about the misuse of the word
significant. We noticed that in a considerable
number of papers this word was used as a syn-
onym for words such as important, considerable,
meaningful, substantial, major, notable etc. We
believe that we should be more careful when us-
ing this word, ideally keeping its statistical sense
and using other, more general words to indicate a
substantial impact.

We close this discussion with two important
open issues.

5 Open Questions

In this section we would like to point on two issues
that remain open even after our investigation. We
hope that bringing these issues to the attention of
the research community will encourage our fellow
researchers to come up with appropriate solutions.

The first open issue is that of dependent obser-
vations. An assumption shared by the statistical
significance tests described in § 3, that are com-
monly used in NLP setups, is that the data samples
are independent and identically distributed. This
assumption, however, is rarely true in NLP setups.

For example, the popular WSJ Penn Treebank
corpus (Marcus et al., 1993) consists of 2,499 ar-
ticles from a three year Wall Street Journal (WSJ)
collection of 98,732 stories. Obviously, some of
the sentences included in the corpus come from
the same article, were written by the same author
or were reviewed before publication by the same
editor. As another example, many sentences in the
Europarl parallel corpus (Koehn, 2005) that is very
popular in the machine translation literature are
taken from the same parliament discussion. An in-
dependence assumption between the sentences in
these corpora is not likely to hold.

This dependence between test examples vio-
lates the conditions under which the theoretical

guarantees of the various tests were developed.
The impact of this phenomenon on our results
is hard to quantify, partly because it is hard to
quantify the nature of the dependence between
test set examples in NLP datasets. Some papers
are even talking about abandoning the null hy-
pothesis statistical significance test approach due
to this hard-to-meet assumption (Koplenig, 2017;
McShane et al., 2017; Carver, 1978; Leek et al.,
2017). In our opinion, this calls for a future col-
laboration with statisticians in order to better un-
derstand the extent to which existing popular sig-
nificance tests are relevant for NLP, and to develop
alternative tests if necessary.

Another issue that deserves some thought is that
of cross-validation. To increase the validity of re-
ported results, it is customary in NLP papers to
create a number of random splits of the experimen-
tal corpus into train, development and test portions
(see Table 2). For each such split (fold), the tested
algorithms are trained and tuned on the training
and development datasets, respectively, and their
results on the test data are recorded. The final re-
ported result is typically the average of the test set
results across the splits. Some papers also report
the fraction of the folds for which one algorithm
was better than the others. While cross-validation
is surely a desired practice, it is challenging to re-
port statistical significance when it is employed.
Particularly, the test sets of the different folds are
obviously not independent – their content is even
likely to overlap.

One solution we would like to propose here
is based on replicability analysis (Dror et al.,
2017). This paper proposes a statistical sig-
nificance framework for multiple comparisons
performed with dependent test sets, using the
KBonferroni estimator for the number of datasets
with significant effect. One statistically sound way
to test for significance when a cross-validation
protocol is employed is hence to calculate the p-
value for each fold separately, and then to per-
form replicability analysis for dependent datasets
with KBonferroni. Only if this analysis rejects
the null hypothesis in all folds (or in more than a
predefined threshold number of folds), the results
should be declared significant. Here again, further
statistical investigation may lead to additional, po-
tentially better, solutions.
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6 Conclusions

We discussed the use of significance testing in
NLP. We provided the main considerations for sig-
nificance test selection, and proposed a simple test
selection protocol. We then surveyed the state of
significance testing in recent top venue papers and
concluded with open issues. We hope this paper
will serve as a guide for NLP researchers and,
not less importantly, that it will encourage discus-
sions and collaborations that will contribute to the
soundness and correctness of our research.
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Abstract

Many natural language processing tasks
can be modeled into structured prediction
and solved as a search problem. In this
paper, we distill an ensemble of multiple
models trained with different initialization
into a single model. In addition to learning
to match the ensemble’s probability out-
put on the reference states, we also use the
ensemble to explore the search space and
learn from the encountered states in the
exploration. Experimental results on two
typical search-based structured prediction
tasks – transition-based dependency pars-
ing and neural machine translation show
that distillation can effectively improve the
single model’s performance and the final
model achieves improvements of 1.32 in
LAS and 2.65 in BLEU score on these
two tasks respectively over strong base-
lines and it outperforms the greedy struc-
tured prediction models in previous litera-
tures.

1 Introduction

Search-based structured prediction models the
generation of natural language structure (part-of-
speech tags, syntax tree, translations, semantic
graphs, etc.) as a search problem (Collins and
Roark, 2004; Liang et al., 2006; Zhang and Clark,
2008; Huang et al., 2012; Sutskever et al., 2014;
Goodman et al., 2016). It has drawn a lot of re-
search attention in recent years thanks to its com-
petitive performance on both accuracy and run-
ning time. A stochastic policy that controls the
whole search process is usually learned by imitat-
ing a reference policy. The imitation is usually ad-
dressed as training a classifier to predict the ref-

∗* Email corresponding.
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data

Reference
policy

Exploration
policy

Reference
states

NLL
loss

Exploration
states

Distillation
loss

Distilled
model
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Ensemble model
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Figure 1: Workflow of our knowledge distillation
for search-based structured prediction. The yel-
low bracket represents the ensemble of multiple
models trained with different initialization. The
dashed red line shows our distillation from refer-
ence (§3.2). The solid blue line shows our distilla-
tion from exploration (§3.3).

erence policy’s search action on the encountered
states when performing the reference policy. Such
imitation process can sometimes be problematic.
One problem is the ambiguities of the reference
policy, in which multiple actions lead to the op-
timal structure but usually, only one is chosen as
training instance (Goldberg and Nivre, 2012). An-
other problem is the discrepancy between train-
ing and testing, in which during the test phase,
the learned policy enters non-optimal states whose
search action is never learned (Ross and Bagnell,
2010; Ross et al., 2011). All these problems harm
the generalization ability of search-based struc-
tured prediction and lead to poor performance.

Previous works tackle these problems from two
directions. To overcome the ambiguities in data,
techniques like ensemble are often adopted (Di-
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Dependency parsing Neural machine translation
st (σ, β,A), where σ is a stack, β is a buffer, andA is the

partially generated tree
($, y1, y2, ..., yt), where $ is the start symbol.

A {SHIFT, LEFT, RIGHT} pick one word w from the target side vocabularyW .
S0 {([ ], [1, .., n], ∅)} {($)}
ST {([ROOT], [ ], A)} {($, y1, y2, ..., ym)}

T (s, a) • SHIFT: (σ, j|β)→ (σ|j, β) ($, y1, y2, ..., yt)→ ($, y1, y2, ..., yt, yt+1 = w)
• LEFT: (σ|i j, β)→ (σ|j, β) A← A ∪ {i← j}
• RIGHT: (σ|i j, β)→ (σ|i, β) A← A ∪ {i→ j}

Table 1: The search-based structured prediction view of transition-based dependency parsing (Nivre,
2008) and neural machine translation (Sutskever et al., 2014).

etterich, 2000). To mitigate the discrepancy, ex-
ploration is encouraged during the training process
(Ross and Bagnell, 2010; Ross et al., 2011; Gold-
berg and Nivre, 2012; Bengio et al., 2015; Good-
man et al., 2016). In this paper, we propose to con-
sider these two problems in an integrated knowl-
edge distillation manner (Hinton et al., 2015). We
distill a single model from the ensemble of sev-
eral baselines trained with different initialization
by matching the ensemble’s output distribution on
the reference states. We also let the ensemble
randomly explore the search space and learn the
single model to mimic ensemble’s distribution on
the encountered exploration states. Combing the
distillation from reference and exploration further
improves our single model’s performance. The
workflow of our method is shown in Figure 1.

We conduct experiments on two typical search-
based structured prediction tasks: transition-based
dependency parsing and neural machine transla-
tion. The results of both these two experiments
show the effectiveness of our knowledge distilla-
tion method by outperforming strong baselines. In
the parsing experiments, an improvement of 1.32
in LAS is achieved and in the machine translation
experiments, such improvement is 2.65 in BLEU.
Our model also outperforms the greedy models in
previous works.

Major contributions of this paper include:

• We study the knowledge distillation in
search-based structured prediction and pro-
pose to distill the knowledge of an en-
semble into a single model by learning to
match its distribution on both the reference
states (§3.2) and exploration states encoun-
tered when using the ensemble to explore the
search space (§3.3). A further combination
of these two methods is also proposed to im-
prove the performance (§3.4).

• We conduct experiments on two search-based
structured prediction problems: transition-
based dependency parsing and neural ma-
chine translation. In both these two problems,
the distilled model significantly improves
over strong baselines and outperforms other
greedy structured prediction (§4.2). Compre-
hensive analysis empirically shows the feasi-
bility of our distillation method (§4.3).

2 Background

2.1 Search-based Structured Prediction
Structured prediction maps an input x =
(x1, x2, ..., xn) to its structural output y =
(y1, y2, ..., ym), where each component of y has
some internal dependencies. Search-based struc-
tured prediction (Collins and Roark, 2004; Daumé
III et al., 2005; Daumé III et al., 2009; Ross and
Bagnell, 2010; Ross et al., 2011; Doppa et al.,
2014; Vlachos and Clark, 2014; Chang et al.,
2015) models the generation of the structure as a
search problem and it can be formalized as a tu-
ple (S,A, T (s, a),S0,ST ), in which S is a set of
states, A is a set of actions, T is a function that
maps S × A → S, S0 is a set of initial states, and
ST is a set of terminal states. Starting from an ini-
tial state s0 ∈ S0, the structured prediction model
repeatably chooses an action at ∈ A by follow-
ing a policy π(s) and applies at to st and enter a
new state st+1 as st+1 ← T (st, at), until a final
state sT ∈ ST is achieved. Several natural lan-
guage structured prediction problems can be mod-
eled under the search-based framework including
dependency parsing (Nivre, 2008) and neural ma-
chine translation (Liang et al., 2006; Sutskever
et al., 2014). Table 1 shows the search-based struc-
tured prediction view of these two problems.

In the data-driven settings, π(s) controls the
whole search process and is usually parameterized
by a classifier p(a | s) which outputs the proba-
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Algorithm 1: Generic learning algorithm for
search-based structured prediction.

Input: training data: {x(n),y(n)}Nn=1; the
reference policy: πR(s,y).

Output: classifier p(a|s).
1 D ← ∅;
2 for n← 1...N do
3 t← 0;
4 st ← s0(x

(n));
5 while st /∈ ST do
6 at ← πR(st,y(n));
7 D ← D ∪ {st};
8 st+1 ← T (st, at);
9 t← t+ 1;

10 end
11 end
12 optimize LNLL;

bility of choosing an action a on the given state
s. The commonly adopted greedy policy can be
formalized as choosing the most probable action
with π(s) = argmaxa p(a | s) at test stage. To
learn an optimal classifier, search-based structured
prediction requires constructing a reference policy
πR(s,y), which takes an input state s, gold struc-
ture y and outputs its reference action a, and train-
ing p(a | s) to imitate the reference policy. Algo-
rithm 1 shows the common practices in training
p(a | s), which involves: first, using πR(s,y) to
generate a sequence of reference states and actions
on the training data (line 1 to line 11 in Algorithm
1); second, using the states and actions on the ref-
erence sequences as examples to train p(a | s)
with negative log-likelihood (NLL) loss (line 12
in Algorithm 1),

LNLL =
∑

s∈D

∑

a

−1{a = πR} · log p(a | s)

where D is a set of training data.
The reference policy is sometimes sub-optimal

and ambiguous which means on one state, there
can be more than one action that leads to the
optimal prediction. In transition-based depen-
dency parsing, Goldberg and Nivre (2012) showed
that one dependency tree can be reached by sev-
eral search sequences using Nivre (2008)’s arc-
standard algorithm. In machine translation, the
ambiguity problem also exists because one source
language sentence usually has multiple semanti-
cally correct translations but only one reference

translation is presented. Similar problems have
also been observed in semantic parsing (Goodman
et al., 2016). According to Frénay and Verleysen
(2014), the widely used NLL loss is vulnerable to
ambiguous data which make it worse for search-
based structured prediction.

Besides the ambiguity problem, training and
testing discrepancy is another problem that lags
the search-based structured prediction perfor-
mance. Since the training process imitates the ref-
erence policy, all the states in the training data are
optimal which means they are guaranteed to reach
the optimal structure. But during the test phase,
the model can predict non-optimal states whose
search action is never learned. The greedy search
which is prone to error propagation also worsens
this problem.

2.2 Knowledge Distillation
A cumbersome model, which could be an en-
semble of several models or a single model with
larger number of parameters, usually provides bet-
ter generalization ability. Knowledge distillation
(Buciluǎ et al., 2006; Ba and Caruana, 2014; Hin-
ton et al., 2015) is a class of methods for trans-
ferring the generalization ability of the cumber-
some teacher model into a small student model.
Instead of optimizing NLL loss, knowledge distil-
lation uses the distribution q(y | x) outputted by
the teacher model as “soft target” and optimizes
the knowledge distillation loss,

LKD =
∑

x∈D

∑

y

−q(y | x) · log p(y | x).

In search-based structured prediction scenario, x
corresponds to the state s and y corresponds to the
action a. Through optimizing the distillation loss,
knowledge of the teacher model is learned by the
student model p(y | x). When correct label is pre-
sented, NLL loss can be combined with the distil-
lation loss via simple interpolation as

L = αLKD + (1− α)LNLL (1)

3 Knowledge Distillation for
Search-based Structured Prediction

3.1 Ensemble
As Hinton et al. (2015) pointed out, although the
real objective of a machine learning algorithm is
to generalize well to new data, models are usu-
ally trained to optimize the performance on train-
ing data, which bias the model to the training data.
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In search-based structured prediction, such biases
can result from either the ambiguities in the train-
ing data or the discrepancy between training and
testing. It would be more problematic to train
p(a | s) using the loss which is in-robust to am-
biguities and only considering the optimal states.

The effect of ensemble on ambiguous data has
been studied in Dietterich (2000). They empiri-
cally showed that ensemble can overcome the am-
biguities in the training data. Daumé III et al.
(2005) also use weighted ensemble of parame-
ters from different iterations as their final structure
prediction model. In this paper, we consider to
use ensemble technique to improve the generaliza-
tion ability of our search-based structured predic-
tion model following these works. In practice, we
train M search-based structured prediction mod-
els with different initialized weights and ensemble
them by the average of their output distribution as
q(a | s) = 1

M

∑
m qm(a | s). In Section 4.3.1, we

empirically show that the ensemble has the ability
to choose a good search action in the optimal-yet-
ambiguous states and the non-optimal states.

3.2 Distillation from Reference
As we can see in Section 4, ensemble indeed im-
proves the performance of baseline models. How-
ever, real world deployment is usually constrained
by computation and memory resources. Ensemble
requires running the structured prediction models
for multiple times, and that makes it less appli-
cable in real-world problem. To take the advan-
tage of the ensemble model while avoid running
the models multiple times, we use the knowledge
distillation technique to distill a single model from
the ensemble. We started from changing the NLL
learning objective in Algorithm 1 into the distil-
lation loss (Equation 1) as shown in Algorithm 2.
Since such method learns the model on the states
produced by the reference policy, we name it as
distillation from reference. Blocks connected by
in dashed red lines in Figure 1 show the workflow
of our distillation from reference.

3.3 Distillation from Exploration
In the scenario of search-based structured predic-
tion, transferring the teacher model’s generaliza-
tion ability into a student model not only includes
matching the teacher model’s soft targets on the
reference search sequence, but also imitating the
search decisions made by the teacher model. One
way to accomplish the imitation can be sampling

Algorithm 2: Knowledge distillation for
search-based structured prediction.

Input: training data: {x(n),y(n)}Nn=1; the
reference policy: πR(s,y); the
exploration policy: πE(s) which
samples an action from the annealed
ensemble q(a | s) 1

T

Output: classifier p(a | s).
1 D ← ∅;
2 for n← 1...N do
3 t← 0;
4 st ← s0(x

(n));
5 while st /∈ ST do
6 if distilling from reference then
7 at ← πR(st,y(n));
8 else
9 at ← πE(st);

10 end
11 D ← D ∪ {st};
12 st+1 ← T (st, at);
13 t← t+ 1;
14 end
15 end
16 if distilling from reference then
17 optimize αLKD + (1− α)LNLL;
18 else
19 optimize LKD;
20 end

search sequence from the ensemble and learn from
the soft target on the sampled states. More con-
cretely, we change πR(s,y) into a policy πE(s)
which samples an action a from q(a | s) 1

T , where
T is the temperature that controls the sharpness
of the distribution (Hinton et al., 2015). The algo-
rithm is shown in Algorithm 2. Since such distilla-
tion generate training instances from exploration,
we name it as distillation from exploration. Blocks
connected by in solid blue lines in Figure 1 show
the workflow of our distillation from exploration.

On the sampled states, reference decision from
πR is usually non-trivial to achieve, which makes
learning from NLL loss infeasible. In Section 4,
we empirically show that fully distilling from the
soft target, i.e. setting α = 1 in Equation 1,
achieves comparable performance with that both
from distillation and NLL.
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3.4 Distillation from Both
Distillation from reference can encourage the
model to predict the action made by the reference
policy and distillation from exploration learns the
model on arbitrary states. They transfer the gener-
alization ability of the ensemble from different as-
pects. Hopefully combining them can further im-
prove the performance. In this paper, we combine
distillation from reference and exploration with
the following manner: we use πR and πE to gener-
ate a set of training states. Then, we learn p(a | s)
on the generated states. If one state was generated
by the reference policy, we minimize the interpre-
tation of distillation and NLL loss. Otherwise, we
minimize the distillation loss only.

4 Experiments

We perform experiments on two tasks: transition-
based dependency parsing and neural machine
translation. Both these two tasks are converted to
search-based structured prediction as Section 2.1.

For the transition-based parsing, we use the
stack-lstm parsing model proposed by Dyer et al.
(2015) to parameterize the classifier.1 For the neu-
ral machine translation, we parameterize the clas-
sifier as an LSTM encoder-decoder model by fol-
lowing Luong et al. (2015).2 We encourage the
reader of this paper to refer corresponding papers
for more details.

4.1 Settings
4.1.1 Transition-based Dependency Parsing
We perform experiments on Penn Treebank (PTB)
dataset with standard data split (Section 2-21 for
training, Section 22 for development, and Sec-
tion 23 for testing). Stanford dependencies are
converted from the original constituent trees us-
ing Stanford CoreNLP 3.3.03 by following Dyer
et al. (2015). Automatic part-of-speech tags are
assigned by 10-way jackknifing whose accuracy is
97.5%. Labeled attachment score (LAS) exclud-
ing punctuation are used in evaluation. For the
other hyper-parameters, we use the same settings
as Dyer et al. (2015). The best iteration and α is
determined on the development set.

1The code for parsing experiments is available at:
https://github.com/Oneplus/twpipe.

2We based our NMT experiments on OpenNMT (Klein
et al., 2017). The code for NMT experiments is available at:
https://github.com/Oneplus/OpenNMT-py.

3stanfordnlp.github.io/CoreNLP/
history.html
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Figure 2: The effect of using different Ks when
approximating distillation loss with K-most prob-
able actions in the machine translation experi-
ments.

Reimers and Gurevych (2017) and others have
pointed out that neural network training is nonde-
terministic and depends on the seed for the random
number generator. To control for this effect, they
suggest to report the average of M differently-
seeded runs. In all our dependency parsing, we
set n = 20.

4.1.2 Neural Machine Translation
We conduct our experiments on a small ma-
chine translation dataset, which is the German-
to-English portion of the IWSLT 2014 machine
translation evaluation campaign. The dataset con-
tains around 153K training sentence pairs, 7K de-
velopment sentence pairs, and 7K testing sentence
pairs. We use the same preprocessing as Ranzato
et al. (2015), which leads to a German vocabu-
lary of about 30K entries and an English vocabu-
lary of 25K entries. One-layer LSTM for both en-
coder and decoder with 256 hidden units are used
by following Wiseman and Rush (2016). BLEU
(Papineni et al., 2002) was used to evaluate the
translator’s performance.4 Like in the dependency
parsing experiments, we run M = 10 differently-
seeded runs and report the averaged score.

Optimizing the distillation loss in Equation 1 re-
quires enumerating over the action space. It is ex-
pensive for machine translation since the size of
the action space (vocabulary) is considerably large
(25K in our experiments). In this paper, we use
the K-most probable actions (translations on tar-
get side) on one state to approximate the whole
probability distribution of q(a | s) as

∑
a q(a |

s) · log p(a | s) ≈ ∑K
k q(âk | s) · log p(âk | s),

where âk is the k-th probable action. We fix α to

4We use multi-bleu.perl to evaluate our model’s
performance
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LAS
Baseline 90.83
Ensemble (20) 92.73
Distill (reference, α=1.0) 91.99
Distill (exploration, T=1.0) 92.00
Distill (both) 92.14
Ballesteros et al. (2016) (dyn. oracle) 91.42
Andor et al. (2016) (local, B=1) 91.02
Buckman et al. (2016) (local, B=8) 91.19
Andor et al. (2016) (local, B=32) 91.70
Andor et al. (2016) (global, B=32) 92.79
Dozat and Manning (2016) 94.08
Kuncoro et al. (2016) 92.06
Kuncoro et al. (2017) 94.60

Table 2: The dependency parsing results. Signif-
icance test (Nilsson and Nivre, 2008) shows the
improvement of our Distill (both) over Baseline is
statistically significant with p < 0.01.

1 and vary K and evaluate the distillation model’s
performance. These results are shown in Figure
2 where there is no significant difference between
different Ks and in speed consideration, we set K
to 1 in the following experiments.

4.2 Results

4.2.1 Transition-based Dependency Parsing
Table 2 shows our PTB experimental results. From
this result, we can see that the ensemble model
outperforms the baseline model by 1.90 in LAS.
For our distillation from reference, when setting
α = 1.0, best performance on development set is
achieved and the test LAS is 91.99.

We tune the temperature T during exploration
and the results are shown in Figure 3. Sharpen the
distribution during the sampling process generally
performs better on development set. Our distilla-
tion from exploration model gets almost the same
performance as that from reference, but simply
combing these two sets of data outperform both
models by achieving an LAS of 92.14.

We also compare our parser with the other
parsers in Table 2. The second group shows the
greedy transition-based parsers in previous litera-
tures. Andor et al. (2016) presented an alternative
state representation and explored both greedy and
beam search decoding. (Ballesteros et al., 2016)
explores training the greedy parser with dynamic
oracle. Our distillation parser outperforms all
these greedy counterparts. The third group shows

BLEU
Baseline 22.79
Ensemble (10) 26.26
Distill (reference, α=0.8) 24.76
Distill (exploration, T=0.1) 24.64
Distill (both) 25.44
MIXER 20.73
BSO (local, B=1) 22.53
BSO (global, B=1) 23.83

Table 3: The machine translation results. MIXER
denotes that of Ranzato et al. (2015), BSO denotes
that of Wiseman and Rush (2016). Significance
test (Koehn, 2004) shows the improvement of our
Distill (both) over Baseline is statistically signifi-
cant with p < 0.01.
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Figure 3: The effect of T on PTB (above) and
IWSLT 2014 (below) development set.

parsers trained on different techniques includ-
ing decoding with beam search (Buckman et al.,
2016; Andor et al., 2016), training transition-
based parser with beam search (Andor et al.,
2016), graph-based parsing (Dozat and Manning,
2016), distilling a graph-based parser from the
output of 20 parsers (Kuncoro et al., 2016), and
converting constituent parsing results to depen-
dencies (Kuncoro et al., 2017). Our distillation
parser still outperforms its transition-based coun-
terparts but lags the others. We attribute the gap
between our parser with the other parsers to the
difference in parsing algorithms.
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4.2.2 Neural Machine Translation

Table 3 shows the experimental results on IWSLT
2014 dataset. Similar to the PTB parsing results,
the ensemble 10 translators outperforms the base-
line translator by 3.47 in BLEU score. Distill-
ing from the ensemble by following the reference
leads to a single translator of 24.76 BLEU score.

Like in the parsing experiments, sharpen the
distribution when exploring the search space is
more helpful to the model’s performance but the
differences when T ≤ 0.2 is not significant as
shown in Figure 3. We set T = 0.1 in our
distillation from exploration experiments since it
achieves the best development score. Table 3
shows the exploration result of a BLEU score of
24.64 and it slightly lags the best reference model.
Distilling from both the reference and exploration
improves the single model’s performance by a
large margin and achieves a BLEU score of 25.44.

We also compare our model with other trans-
lation models including the one trained with re-
inforcement learning (Ranzato et al., 2015) and
that using beam search in training (Wiseman and
Rush, 2016). Our distillation translator outper-
forms these models.

Both the parsing and machine translation exper-
iments confirm that it’s feasible to distill a rea-
sonable search-based structured prediction model
by just exploring the search space. Combining
the reference and exploration further improves the
model’s performance and outperforms its greedy
structured prediction counterparts.

4.3 Analysis

In Section 4.2, improvements from distilling
the ensemble have been witnessed in both the
transition-based dependency parsing and neural
machine translation experiments. However, ques-
tions like “Why the ensemble works better? Is
it feasible to fully learn from the distillation loss
without NLL? Is learning from distillation loss sta-
ble?” are yet to be answered. In this section,
we first study the ensemble’s behavior on “prob-
lematic” states to show its generalization ability.
Then, we empirically study the feasibility of fully
learning from the distillation loss by studying the
effect of α in the distillation from reference set-
ting. Finally, we show that learning from dis-
tillation loss is less sensitive to initialization and
achieves a more stable model.

optimal-yet-
ambiguous

non-optimal

Baseline 68.59 89.59
Ensemble 74.19 90.90
Distill (both) 81.15 91.38

Table 4: The ranking performance of parsers’ out-
put distributions evaluated in MAP on “problem-
atic” states.

4.3.1 Ensemble on “Problematic” States

As mentioned in previous sections, “problematic”
states which is either ambiguous or non-optimal
harm structured prediciton’s performance. Ensem-
ble shows to improve the performance in Section
4.2, which indicates it does better on these states.
To empirically testify this, we use dependency
parsing as a testbed and study the ensemble’s out-
put distribution using the dynamic oracle.

The dynamic oracle (Goldberg and Nivre, 2012;
Goldberg et al., 2014) can be used to efficiently
determine, given any state s, which transition ac-
tion leads to the best achievable parse from s; if
some errors may have already made, what is the
best the parser can do, going forward? This allows
us to analyze the accuracy of each parser’s indi-
vidual decisions, in the “problematic” states. In
this paper, we evaluate the output distributions of
the baseline and ensemble parser against the ref-
erence actions suggested by the dynamic oracle.
Since dynamic oracle yields more than one refer-
ence actions due to ambiguities and previous mis-
takes and the output distribution can be treated as
their scoring, we evaluate them as a ranking prob-
lem. Intuitively, when multiple reference actions
exist, a good parser should push probability mass
to these actions. We draw problematic states by
sampling from our baseline parser. The compar-
ison in Table 4 shows that the ensemble model
significantly outperforms the baseline on ambigu-
ous and non-optimal states. This observation in-
dicates the ensemble’s output distribution is more
“informative”, thus generalizes well on problem-
atic states and achieves better performance. We
also observe that the distillation model perform
better than both the baseline and ensemble. We
attribute this to the fact that the distillation model
is learned from exploration.
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Figure 4: The effect of α on PTB (above) and
IWSLT 2014 (below) development set.

4.3.2 Effect of α

Over our distillation from reference model, we
study the effect of α in Equation 1. We vary α
from 0 to 1 by a step of 0.1 in both the transition-
based dependency parsing and neural machine
translation experiments and plot the model’s per-
formance on development sets in Figure 4. Similar
trends are witnessed in both these two experiments
that model that’s configured with larger α gener-
ally performs better than that with smaller α. For
the dependency parsing problem, the best develop-
ment performance is achieved when we set α = 1,
and for the machine translation, the best α is 0.8.
There is only 0.2 point of difference between the
best α model and the one with α equals to 1. Such
observation indicates that when distilling from the
reference policy paying more attention to the dis-
tillation loss rather than the NLL is more benefi-
cial. It also indicates that fully learning from the
distillation loss outputted by the ensemble is rea-
sonable because models configured with α = 1
generally achieves good performance.

4.3.3 Learning Stability

Besides the improved performance, knowledge
distillation also leads to more stable learning. The
performance score distributions of differently-
seed runs are depicted as violin plot in Figure 5.
Table 5 also reveals the smaller standard deriva-
tions are achieved by our distillation methods. As
Keskar et al. (2016) pointed out that the general-
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Figure 5: The distributions of scores for the
baseline model and our distillation from both on
PTB test (left) and IWSLT 2014 test (right) on
differently-seeded runs.

system seeds min max σ

PTB test
Baseline 20 90.45 91.14 0.17

Distill (both) 20 92.00 92.37 0.09
IWSLT 2014 test
Baseline 10 21.63 23.67 0.55

Distill (both) 10 24.22 25.65 0.12

Table 5: The minimal, maximum, and standard
derivation values on differently-seeded runs.

ization gap is not due to overfit, but due to the net-
work converge to sharp minimizer which general-
izes worse, we attribute the more stable training
from our distillation model as the distillation loss
presents less sharp minimizers.

5 Related Work

Several works have been proposed to applying
knowledge distillation to NLP problems. Kim and
Rush (2016) presented a distillation model which
focus on distilling the structured loss from a large
model into a small one which works on sequence-
level. In contrast to their work, we pay more at-
tention to action-level distillation and propose to
do better action-level distillation by both from ref-
erence and exploration.

Freitag et al. (2017) used an ensemble of 6-
translators to generate training reference. Explo-
ration was tried in their work with beam-search.
We differ their work by training the single model
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to match the distribution of the ensemble.
Using ensemble in exploration was also stud-

ied in reinforcement learning community (Osband
et al., 2016). In addition to distilling the ensem-
ble on the labeled training data, a line of semi-
supervised learning works show that it’s effective
to transfer knowledge of cumbersome model into
a simple one on the unlabeled data (Liang et al.,
2008; Li et al., 2014). Their extensions to knowl-
edge distillation call for further study.

Kuncoro et al. (2016) proposed to compile the
knowledge from an ensemble of 20 transition-
based parsers into a voting and distill the knowl-
edge by introducing the voting results as a regu-
larizer in learning a graph-based parser. Different
from their work, we directly do the distillation on
the classifier of the transition-based parser.

Besides the attempts for directly using the
knowledge distillation technique, Stahlberg and
Byrne (2017) propose to first build the ensemble
of several machine translators into one network
by unfolding and then use SVD to shrink its pa-
rameters, which can be treated as another kind of
knowledge distillation.

6 Conclusion

In this paper, we study knowledge distillation for
search-based structured prediction and propose to
distill an ensemble into a single model both from
reference and exploration states. Experiments
on transition-based dependency parsing and ma-
chine translation show that our distillation method
significantly improves the single model’s perfor-
mance. Comparison analysis gives empirically
guarantee for our distillation method.
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Abstract

We introduce a novel architecture for de-
pendency parsing: stack-pointer networks
(STACKPTR). Combining pointer net-
works (Vinyals et al., 2015) with an in-
ternal stack, the proposed model first
reads and encodes the whole sentence,
then builds the dependency tree top-down
(from root-to-leaf) in a depth-first fashion.
The stack tracks the status of the depth-
first search and the pointer networks se-
lect one child for the word at the top of
the stack at each step. The STACKPTR

parser benefits from the information of the
whole sentence and all previously derived
subtree structures, and removes the left-
to-right restriction in classical transition-
based parsers. Yet, the number of steps for
building any (including non-projective)
parse tree is linear in the length of the sen-
tence just as other transition-based parsers,
yielding an efficient decoding algorithm
with O(n2) time complexity. We evalu-
ate our model on 29 treebanks spanning 20
languages and different dependency anno-
tation schemas, and achieve state-of-the-
art performance on 21 of them.

1 Introduction

Dependency parsing, which predicts the existence
and type of linguistic dependency relations be-
tween words, is a first step towards deep language
understanding. Its importance is widely recog-
nized in the natural language processing (NLP)
community, with it benefiting a wide range of
NLP applications, such as coreference resolu-
tion (Ng, 2010; Durrett and Klein, 2013; Ma et al.,

∗Work done while at Carnegie Mellon University.

2016), sentiment analysis (Tai et al., 2015), ma-
chine translation (Bastings et al., 2017), informa-
tion extraction (Nguyen et al., 2009; Angeli et al.,
2015; Peng et al., 2017), word sense disambigua-
tion (Fauceglia et al., 2015), and low-resource lan-
guages processing (McDonald et al., 2013; Ma and
Xia, 2014). There are two dominant approaches to
dependency parsing (Buchholz and Marsi, 2006;
Nivre et al., 2007): local and greedy transition-
based algorithms (Yamada and Matsumoto, 2003;
Nivre and Scholz, 2004; Zhang and Nivre, 2011;
Chen and Manning, 2014), and the globally opti-
mized graph-based algorithms (Eisner, 1996; Mc-
Donald et al., 2005a,b; Koo and Collins, 2010).

Transition-based dependency parsers read
words sequentially (commonly from left-to-right)
and build dependency trees incrementally by
making series of multiple choice decisions. The
advantage of this formalism is that the number of
operations required to build any projective parse
tree is linear with respect to the length of the sen-
tence. The challenge, however, is that the decision
made at each step is based on local information,
leading to error propagation and worse perfor-
mance compared to graph-based parsers on root
and long dependencies (McDonald and Nivre,
2011). Previous studies have explored solutions
to address this challenge. Stack LSTMs (Dyer
et al., 2015; Ballesteros et al., 2015, 2016) are
capable of learning representations of the parser
state that are sensitive to the complete contents of
the parser’s state. Andor et al. (2016) proposed a
globally normalized transition model to replace
the locally normalized classifier. However, the
parsing accuracy is still behind state-of-the-art
graph-based parsers (Dozat and Manning, 2017).

Graph-based dependency parsers, on the other
hand, learn scoring functions for parse trees and
perform exhaustive search over all possible trees
for a sentence to find the globally highest scoring
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tree. Incorporating this global search algorithm
with distributed representations learned from neu-
ral networks, neural graph-based parsers (Kiper-
wasser and Goldberg, 2016; Wang and Chang,
2016; Kuncoro et al., 2016; Dozat and Manning,
2017) have achieved the state-of-the-art accura-
cies on a number of treebanks in different lan-
guages. Nevertheless, these models, while accu-
rate, are usually slow (e.g. decoding is O(n3)
time complexity for first-order models (McDonald
et al., 2005a,b) and higher polynomials for higher-
order models (McDonald and Pereira, 2006; Koo
and Collins, 2010; Ma and Zhao, 2012b,a)).

In this paper, we propose a novel neural net-
work architecture for dependency parsing, stack-
pointer networks (STACKPTR). STACKPTR is
a transition-based architecture, with the corre-
sponding asymptotic efficiency, but still main-
tains a global view of the sentence that proves es-
sential for achieving competitive accuracy. Our
STACKPTR parser has a pointer network (Vinyals
et al., 2015) as its backbone, and is equipped
with an internal stack to maintain the order of
head words in tree structures. The STACKPTR

parser performs parsing in an incremental, top-
down, depth-first fashion; at each step, it gener-
ates an arc by assigning a child for the head word
at the top of the internal stack. This architecture
makes it possible to capture information from the
whole sentence and all the previously derived sub-
trees, while maintaining a number of parsing steps
linear in the sentence length.

We evaluate our parser on 29 treebanks across
20 languages and different dependency annotation
schemas, and achieve state-of-the-art performance
on 21 of them. The contributions of this work are
summarized as follows:

(i) We propose a neural network architecture for
dependency parsing that is simple, effective,
and efficient.

(ii) Empirical evaluations on benchmark datasets
over 20 languages show that our method
achieves state-of-the-art performance on 21
different treebanks1.

(iii) Comprehensive error analysis is conducted
to compare the proposed method to a strong
graph-based baseline using biaffine atten-
tion (Dozat and Manning, 2017).

1Source code is publicly available at https://
github.com/XuezheMax/NeuroNLP2

2 Background

We first briefly describe the task of dependency
parsing, setup the notation, and review Pointer
Networks (Vinyals et al., 2015).

2.1 Dependency Parsing and Notations
Dependency trees represent syntactic relationships
between words in the sentences through labeled
directed edges between head words and their de-
pendents. Figure 1 (a) shows a dependency tree
for the sentence, “But there were no buyers”.

In this paper, we will use the following notation:
Input: x = {w1, . . . , wn} represents a generic

sentence, where wi is the ith word.
Output: y = {p1, p2, · · · , pk} represents a

generic (possibly non-projective) dependency tree,
where each path pi = $, wi,1, wi,2, · · · , wi,li is a
sequence of words from the root to a leaf. “$” is
an universal virtual root that is added to each tree.

Stack: σ denotes a stack configuration, which
is a sequence of words. We use σ|w to represent
a stack configuration that pushes word w into the
stack σ.

Children: ch(wi) denotes the list of all the chil-
dren (modifiers) of word wi.

2.2 Pointer Networks
Pointer Networks (PTR-NET) (Vinyals et al.,
2015) are a variety of neural network capable of
learning the conditional probability of an output
sequence with elements that are discrete tokens
corresponding to positions in an input sequence.
This model cannot be trivially expressed by stan-
dard sequence-to-sequence networks (Sutskever
et al., 2014) due to the variable number of input
positions in each sentence. PTR-NET solves the
problem by using attention (Bahdanau et al., 2015;
Luong et al., 2015) as a pointer to select a member
of the input sequence as the output.

Formally, the words of the sentence x are fed
one-by-one into the encoder (a multiple-layer bi-
directional RNN), producing a sequence of en-
coder hidden states si. At each time step t, the
decoder (a uni-directional RNN) receives the input
from last step and outputs decoder hidden state ht.
The attention vector at is calculated as follows:

eti = score(ht, si)
at = softmax (et)

(1)

where score(·, ·) is the attention scoring function,
which has several variations such as dot-product,
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Figure 1: Neural architecture for the STACKPTR network, together with the decoding procedure of an
example sentence. The BiRNN of the encoder is elided for brevity. For the inputs of decoder at each
time step, vectors in red and blue boxes indicate the sibling and grandparent.

concatenation, and biaffine (Luong et al., 2015).
PTR-NET regards the attention vector at as a prob-
ability distribution over the source words, i.e. it
uses ati as pointers to select the input elements.

3 Stack-Pointer Networks

3.1 Overview

Similarly to PTR-NET, STACKPTR first reads the
whole sentence and encodes each word into the
encoder hidden state si. The internal stack σ is
always initialized with the root symbol $. At each
time step t, the decoder receives the input vector
corresponding to the top element of the stack σ
(the head wordwp where p is the word index), gen-
erates the hidden state ht, and computes the atten-
tion vector at using Eq. (1). The parser chooses a
specific position c according to the attention scores
in at to generate a new dependency arc (wh, wc)
by selecting wc as a child of wh. Then the parser
pushes wc onto the stack, i.e. σ → σ|wc, and goes
to the next step. At one step if the parser points wh
to itself, i.e. c = h, it indicates that all children
of the head word wh have already been selected.
Then the parser goes to the next step by popping
wh out of σ.

At test time, in order to guarantee a valid de-
pendency tree containing all the words in the in-
put sentences exactly once, the decoder maintains
a list of “available” words. At each decoding step,
the parser selects a child for the current head word,

and removes the child from the list of available
words to make sure that it cannot be selected as a
child of other head words.

For head words with multiple children, it is pos-
sible that there is more than one valid selection
for each time step. In order to define a determin-
istic decoding process to make sure that there is
only one ground-truth choice at each step (which
is necessary for simple maximum likelihood esti-
mation), a predefined order for each ch(wi) needs
to be introduced. The predefined order of chil-
dren can have different alternatives, such as left-
to-right or inside-out2. In this paper, we adopt
the inside-out order3 since it enables us to utilize
second-order sibling information, which has been
proven beneficial for parsing performance (Mc-
Donald and Pereira, 2006; Koo and Collins, 2010)
(see § 3.4 for details). Figure 1 (b) depicts the ar-
chitecture of STACKPTR and the decoding proce-
dure for the example sentence in Figure 1 (a).

3.2 Encoder

The encoder of our parsing model is based on the
bi-directional LSTM-CNN architecture (BLSTM-
CNNs) (Chiu and Nichols, 2016; Ma and Hovy,
2016) where CNNs encode character-level infor-
mation of a word into its character-level repre-

2Order the children by the distances to the head word on
the left side, then the right side.

3We also tried left-to-right order which obtained worse
parsing accuracy than inside-out.

1405



sentation and BLSTM models context informa-
tion of each word. Formally, for each word, the
CNN, with character embeddings as inputs, en-
codes the character-level representation. Then the
character-level representation vector is concate-
nated with the word embedding vector to feed into
the BLSTM network. To enrich word-level infor-
mation, we also use POS embeddings. Finally, the
encoder outputs a sequence of hidden states si.

3.3 Decoder

The decoder for our parser is a uni-directional
LSTM. Different from previous work (Bahdanau
et al., 2015; Vinyals et al., 2015) which uses word
embeddings of the previous word as the input to
the decoder, our decoder receives the encoder hid-
den state vector (si) of the top element in the stack
σ (see Figure 1 (b)). Compared to word embed-
dings, the encoder hidden states contain more con-
textual information, benefiting both the training
and decoding procedures. The decoder produces a
sequence of decoder hidden states hi, one for each
decoding step.

3.4 Higher-order Information

As mentioned before, our parser is capable of uti-
lizing higher-order information. In this paper, we
incorporate two kinds of higher-order structures
— grandparent and sibling. A sibling structure
is a head word with two successive modifiers, and
a grandparent structure is a pair of dependencies
connected head-to-tail:
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To utilize higher-order information, the de-

coder’s input at each step is the sum of the encoder
hidden states of three words:

βt = sh + sg + ss

where βt is the input vector of decoder at time
t and h, g, s are the indices of the head word
and its grandparent and sibling, respectively. Fig-
ure 1 (b) illustrates the details. Here we use the
element-wise sum operation instead of concatena-
tion because it does not increase the dimension of
the input vector βt, thus introducing no additional
model parameters.

3.5 Biaffine Attention Mechanism
For attention score function (Eq. (1)), we adopt the
biaffine attention mechanism (Luong et al., 2015;
Dozat and Manning, 2017):

eti = hTt Wsi +UTht +VT si + b

where W,U,V, b are parameters, denoting the
weight matrix of the bi-linear term, the two weight
vectors of the linear terms, and the bias vector.

As discussed in Dozat and Manning (2017), ap-
plying a multilayer perceptron (MLP) to the out-
put vectors of the BLSTM before the score func-
tion can both reduce the dimensionality and over-
fitting of the model. We follow this work by using
a one-layer perceptron to si and hi with elu (Clev-
ert et al., 2015) as its activation function.

Similarly, the dependency label classifier also
uses a biaffine function to score each label, given
the head word vector ht and child vector si as in-
puts. Again, we use MLPs to transform ht and si
before feeding them into the classifier.

3.6 Training Objectives
The STACKPTR parser is trained to optimize the
probability of the dependency trees given sen-
tences: Pθ(y|x), which can be factorized as:

Pθ(y|x) =
k∏
i=1

Pθ(pi|p<i,x)

=
k∏
i=1

li∏
j=1

Pθ(ci,j |ci,<j , p<i,x),
(2)

where θ represents model parameters. p<i denotes
the preceding paths that have already been gener-
ated. ci,j represents the jth word in pi and ci,<j
denotes all the proceeding words on the path pi.
Thus, the STACKPTR parser is an autoregressive
model, like sequence-to-sequence models, but it
factors the distribution according to a top-down
tree structure as opposed to a left-to-right chain.
We define Pθ(ci,j |ci,<j , p<i,x) = at, where atten-
tion vector at (of dimension n) is used as the dis-
tribution over the indices of words in a sentence.

Arc Prediction Our parser is trained by optimiz-
ing the conditional likelihood in Eq (2), which is
implemented as the cross-entropy loss.

Label Prediction We train a separated multi-
class classifier in parallel to predict the depen-
dency labels. Following Dozat and Manning
(2017), the classifier takes the information of the
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head word and its child as features. The label clas-
sifier is trained simultaneously with the parser by
optimizing the sum of their objectives.

3.7 Discussion

Time Complexity. The number of decoding
steps to build a parse tree for a sentence of length
n is 2n−1, linear in n. Together with the attention
mechanism (at each step, we need to compute the
attention vector at, whose runtime is O(n)), the
time complexity of decoding algorithm is O(n2),
which is more efficient than graph-based parsers
that have O(n3) or worse complexity when using
dynamic programming or maximum spanning tree
(MST) decoding algorithms.

Top-down Parsing. When humans comprehend
a natural language sentence, they arguably do it
in an incremental, left-to-right manner. How-
ever, when humans consciously annotate a sen-
tence with syntactic structure, they rarely ever pro-
cess in fixed left-to-right order. Rather, they start
by reading the whole sentence, then seeking the
main predicates, jumping back-and-forth over the
sentence and recursively proceeding to the sub-
tree structures governed by certain head words.
Our parser follows a similar kind of annotation
process: starting from reading the whole sentence,
and processing in a top-down manner by finding
the main predicates first and only then search for
sub-trees governed by them. When making latter
decisions, the parser has access to the entire struc-
ture built in earlier steps.

3.8 Implementation Details

Pre-trained Word Embeddings. For all the
parsing models in different languages, we initial-
ize word vectors with pretrained word embed-
dings. For Chinese, Dutch, English, German and
Spanish, we use the structured-skipgram (Ling
et al., 2015) embeddings. For other languages we
use Polyglot embeddings (Al-Rfou et al., 2013).

Optimization. Parameter optimization is per-
formed with the Adam optimizer (Kingma and Ba,
2014) with β1 = β2 = 0.9. We choose an ini-
tial learning rate of η0 = 0.001. The learning
rate η is annealed by multiplying a fixed decay
rate ρ = 0.75 when parsing performance stops in-
creasing on validation sets. To reduce the effects
of “gradient exploding”, we use gradient clipping
of 5.0 (Pascanu et al., 2013).

Dropout Training. To mitigate overfitting, we
apply dropout (Srivastava et al., 2014; Ma et al.,
2017). For BLSTM, we use recurrent dropout (Gal
and Ghahramani, 2016) with a drop rate of 0.33
between hidden states and 0.33 between layers.
Following Dozat and Manning (2017), we also use
embedding dropout with a rate of 0.33 on all word,
character, and POS embeddings.

Hyper-Parameters. Some parameters are cho-
sen from those reported in Dozat and Manning
(2017). We use the same hyper-parameters across
the models on different treebanks and languages,
due to time constraints. The details of the chosen
hyper-parameters for all experiments are summa-
rized in Appendix A.

4 Experiments

4.1 Setup

We evaluate our STACKPTR parser mainly on
three treebanks: the English Penn Treebank
(PTB version 3.0) (Marcus et al., 1993), the
Penn Chinese Treebank (CTB version 5.1) (Xue
et al., 2002), and the German CoNLL 2009 cor-
pus (Hajič et al., 2009). We use the same experi-
mental settings as Kuncoro et al. (2016).

To make a thorough empirical comparison with
previous studies, we also evaluate our system on
treebanks from CoNLL shared task and the Uni-
versal Dependency (UD) Treebanks4. For the
CoNLL Treebanks, we use the English treebank
from CoNLL-2008 shared task (Surdeanu et al.,
2008) and all 13 treebanks from CoNLL-2006
shared task (Buchholz and Marsi, 2006). The ex-
perimental settings are the same as Ma and Hovy
(2015). For UD Treebanks, we select 12 lan-
guages. The details of the treebanks and experi-
mental settings are in § 4.5 and Appendix B.

Evaluation Metrics Parsing performance is
measured with five metrics: unlabeled attachment
score (UAS), labeled attachment score (LAS), un-
labeled complete match (UCM), labeled complete
match (LCM), and root accuracy (RA). Following
previous work (Kuncoro et al., 2016; Dozat and
Manning, 2017), we report results excluding punc-
tuations for Chinese and English. For each experi-
ment, we report the mean values with correspond-
ing standard deviations over 5 repetitions.

4http://universaldependencies.org/
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Figure 2: Parsing performance of different variations of our model on the test sets for three languages,
together with baseline BIAF. For each of our STACKPTR models, we perform decoding with beam size
equal to 1 and 10. The improvements of decoding with beam size 10 over 1 are presented by stacked
bars with light colors.

Baseline For fair comparison of the parsing per-
formance, we re-implemented the graph-based
Deep Biaffine (BIAF) parser (Dozat and Manning,
2017), which achieved state-of-the-art results on a
wide range of languages. Our re-implementation
adds character-level information using the same
LSTM-CNN encoder as our model (§ 3.2) to the
original BIAF model, which boosts its perfor-
mance on all languages.

4.2 Main Results

We first conduct experiments to demonstrate the
effectiveness of our neural architecture by compar-
ing with the strong baseline BIAF. We compare
the performance of four variations of our model
with different decoder inputs — Org, +gpar, +sib
and Full — where the Org model utilizes only the
encoder hidden states of head words, while the
+gpar and +sib models augments the original one
with grandparent and sibling information, respec-
tively. The Full model includes all the three infor-
mation as inputs.

Figure 2 illustrates the performance (five met-
rics) of different variations of our STACKPTR

parser together with the results of baseline BIAF
re-implemented by us, on the test sets of the three

languages. On UAS and LAS, the Full variation
of STACKPTR with decoding beam size 10 outper-
forms BIAF on Chinese, and obtains competitive
performance on English and German. An interest-
ing observation is that the Full model achieves the
best accuracy on English and Chinese, while per-
forms slightly worse than +sib on German. This
shows that the importance of higher-order infor-
mation varies in languages. On LCM and UCM,
STACKPTR significantly outperforms BIAF on all
languages, showing the superiority of our parser
on complete sentence parsing. The results of our
parser on RA are slightly worse than BIAF. More
details of results are provided in Appendix C.

4.3 Comparison with Previous Work

Table 1 illustrates the UAS and LAS of the
four versions of our model (with decoding beam
size 10) on the three treebanks, together with
previous top-performing systems for comparison.
Note that the results of STACKPTR and our re-
implementation of BIAF are the average of 5 rep-
etitions instead of a single run. Our Full model
significantly outperforms all the transition-based
parsers on all three languages, and achieves bet-
ter results than most graph-based parsers. Our
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English Chinese German
System UAS LAS UAS LAS UAS LAS
Chen and Manning (2014) T 91.8 89.6 83.9 82.4 – –
Ballesteros et al. (2015) T 91.63 89.44 85.30 83.72 88.83 86.10
Dyer et al. (2015) T 93.1 90.9 87.2 85.7 – –
Bohnet and Nivre (2012) T 93.33 91.22 87.3 85.9 91.4 89.4
Ballesteros et al. (2016) T 93.56 91.42 87.65 86.21 – –
Kiperwasser and Goldberg (2016) T 93.9 91.9 87.6 86.1 – –
Weiss et al. (2015) T 94.26 92.41 – – – –
Andor et al. (2016) T 94.61 92.79 – – 90.91 89.15
Kiperwasser and Goldberg (2016) G 93.1 91.0 86.6 85.1 – –
Wang and Chang (2016) G 94.08 91.82 87.55 86.23 – –
Cheng et al. (2016) G 94.10 91.49 88.1 85.7 – –
Kuncoro et al. (2016) G 94.26 92.06 88.87 87.30 91.60 89.24
Ma and Hovy (2017) G 94.88 92.98 89.05 87.74 92.58 90.54
BIAF: Dozat and Manning (2017) G 95.74 94.08 89.30 88.23 93.46 91.44
BIAF: re-impl G 95.84 94.21 90.43 89.14 93.85 92.32
STACKPTR: Org T 95.77 94.12 90.48 89.19 93.59 92.06
STACKPTR: +gpar T 95.78 94.12 90.49 89.19 93.65 92.12
STACKPTR: +sib T 95.85 94.18 90.43 89.15 93.76 92.21
STACKPTR: Full T 95.87 94.19 90.59 89.29 93.65 92.11

Table 1: UAS and LAS of four versions of our model on test sets for three languages, together with top-
performing parsing systems. “T” and “G” indicate transition- and graph-based models, respectively. For
BIAF, we provide the original results reported in Dozat and Manning (2017) and our re-implementation.
For STACKPTR and our re-implementation of BiAF, we report the average over 5 runs.

(a) (b) (c)

Figure 3: Parsing performance of BIAF and STACKPTR parsers relative to length and graph factors.

POS UAS LAS UCM LCM
Gold 96.12±0.03 95.06±0.05 62.22±0.33 55.74±0.44
Pred 95.87±0.04 94.19±0.04 61.43±0.49 49.68±0.47
None 95.90±0.05 94.21±0.04 61.58±0.39 49.87±0.46

Table 2: Parsing performance on the test data of
PTB with different versions of POS tags.

re-implementation of BIAF obtains better perfor-
mance than the original one in Dozat and Man-
ning (2017), demonstrating the effectiveness of the
character-level information. Our model achieves
state-of-the-art performance on both UAS and
LAS on Chinese, and best UAS on English.
On German, the performance is competitive with
BIAF, and significantly better than other models.

4.4 Error Analysis

In this section, we characterize the errors made by
BIAF and STACKPTR by presenting a number of
experiments that relate parsing errors to a set of
linguistic and structural properties. For simplicity,

we follow McDonald and Nivre (2011) and report
labeled parsing metrics (either accuracy, precision,
or recall) for all experiments.

4.4.1 Length and Graph Factors
Following McDonald and Nivre (2011), we ana-
lyze parsing errors related to structural factors.

Sentence Length. Figure 3 (a) shows the ac-
curacy of both parsing models relative to sen-
tence lengths. Consistent with the analysis in Mc-
Donald and Nivre (2011), STACKPTR tends to
perform better on shorter sentences, which make
fewer parsing decisions, significantly reducing the
chance of error propagation.

Dependency Length. Figure 3 (b) measures
the precision and recall relative to dependency
lengths. While the graph-based BIAF parser
still performs better for longer dependency arcs
and transition-based STACKPTR parser does bet-
ter for shorter ones, the gap between the two sys-
tems is marginal, much smaller than that shown
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Bi-Att NeuroMST BIAF STACKPTR Best Published
UAS [LAS] UAS [LAS] UAS [LAS] UAS [LAS] UAS LAS

ar 80.34 [68.58] 80.80 [69.40] 82.15±0.34 [71.32±0.36] 83.04±0.29 [72.94±0.31] 81.12 –
bg 93.96 [89.55] 94.28 [90.60] 94.62±0.14 [91.56±0.24] 94.66±0.10 [91.40±0.08] 94.02 –
zh – 93.40 [90.10] 94.05±0.27 [90.89±0.22] 93.88±0.24 [90.81±0.55] 93.04 –
cs 91.16 [85.14] 91.18 [85.92] 92.24±0.22 [87.85±0.21] 92.83±0.13 [88.75±0.16] 91.16 85.14
da 91.56 [85.53] 91.86 [87.07] 92.80±0.26 [88.36±0.18] 92.08±0.15 [87.29±0.21] 92.00 –
nl 87.15 [82.41] 87.85 [84.82] 90.07±0.18 [87.24±0.17] 90.10±0.27 [87.05±0.26] 87.39 –
en – 94.66 [92.52] 95.19±0.05 [93.14±0.05] 93.25±0.05 [93.17±0.05] 93.25 –
de 92.71 [89.80] 93.62 [91.90] 94.52±0.11 [93.06±0.11] 94.77±0.05 [93.21±0.10] 92.71 89.80
ja 93.44 [90.67] 94.02 [92.60] 93.95±0.06 [92.46±0.07] 93.38±0.08 [91.92±0.16] 93.80 –
pt 92.77 [88.44] 92.71 [88.92] 93.41±0.08 [89.96±0.24] 93.57±0.12 [90.07±0.20] 93.03 –
sl 86.01 [75.90] 86.73 [77.56] 87.55±0.17 [78.52±0.35] 87.59±0.36 [78.85±0.53] 87.06 –
es 88.74 [84.03] 89.20 [85.77] 90.43±0.13 [87.08±0.14] 90.87±0.26 [87.80±0.31] 88.75 84.03
sv 90.50 [84.05] 91.22 [86.92] 92.22±0.15 [88.44±0.17] 92.49±0.21 [89.01±0.22] 91.85 85.26
tr 78.43 [66.16] 77.71 [65.81] 79.84±0.23 [68.63±0.29] 79.56±0.22 [68.03±0.15] 78.43 66.16

Table 3: UAS and LAS on 14 treebanks from CoNLL shared tasks, together with several state-of-the-art
parsers. Bi-Att is the bi-directional attention based parser (Cheng et al., 2016), and NeuroMST is the
neural MST parser (Ma and Hovy, 2017). “Best Published” includes the most accurate parsers in term of
UAS among Koo et al. (2010), Martins et al. (2011), Martins et al. (2013), Lei et al. (2014), Zhang et al.
(2014), Zhang and McDonald (2014), Pitler and McDonald (2015), and Cheng et al. (2016).

in McDonald and Nivre (2011). One possible
reason is that, unlike traditional transition-based
parsers that scan the sentence from left to right,
STACKPTR processes in a top-down manner, thus
sometimes unnecessarily creating shorter depen-
dency arcs first.

Root Distance. Figure 3 (c) plots the precision
and recall of each system for arcs of varying dis-
tance to the root. Different from the observation
in McDonald and Nivre (2011), STACKPTR does
not show an obvious advantage on the precision
for arcs further away from the root. Furthermore,
the STACKPTR parser does not have the tendency
to over-predict root modifiers reported in McDon-
ald and Nivre (2011). This behavior can be ex-
plained using the same reasoning as above: the
fact that arcs further away from the root are usu-
ally constructed early in the parsing algorithm of
traditional transition-based parsers is not true for
the STACKPTR parser.

4.4.2 Effect of POS Embedding
The only prerequisite information that our pars-
ing model relies on is POS tags. With the goal of
achieving an end-to-end parser, we explore the ef-
fect of POS tags on parsing performance. We run
experiments on PTB using our STACKPTR parser
with gold-standard and predicted POS tags, and
without tags, respectively. STACKPTR in these ex-
periments is the Full model with beam=10.

Table 2 gives results of the parsers with differ-
ent versions of POS tags on the test data of PTB.

The parser with gold-standard POS tags signifi-
cantly outperforms the other two parsers, show-
ing that dependency parsers can still benefit from
accurate POS information. The parser with pre-
dicted (imperfect) POS tags, however, performs
even slightly worse than the parser without us-
ing POS tags. It illustrates that an end-to-end
parser that doesn’t rely on POS information can
obtain competitive (or even better) performance
than parsers using imperfect predicted POS tags,
even if the POS tagger is relative high accuracy
(accuracy > 97% in this experiment on PTB).

4.5 Experiments on Other Treebanks

4.5.1 CoNLL Treebanks

Table 3 summarizes the parsing results of our
model on the test sets of 14 treebanks from the
CoNLL shared task, along with the state-of-the-
art baselines. Along with BIAF, we also list the
performance of the bi-directional attention based
Parser (Bi-Att) (Cheng et al., 2016) and the neural
MST parser (NeuroMST) (Ma and Hovy, 2017)
for comparison. Our parser achieves state-of-the-
art performance on both UAS and LAS on eight
languages — Arabic, Czech, English, German,
Portuguese, Slovene, Spanish, and Swedish. On
Bulgarian and Dutch, our parser obtains the best
UAS. On other languages, the performance of our
parser is competitive with BIAF, and significantly
better than others. The only exception is Japanese,
on which NeuroMST obtains the best scores.
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Dev Test
BIAF STACKPTR BIAF STACKPTR

UAS LAS UAS LAS UAS LAS UAS LAS
bg 93.92±0.13 89.05±0.11 94.09±0.16 89.17±0.14 94.30±0.16 90.04±0.16 94.31±0.06 89.96±0.07
ca 94.21±0.05 91.97±0.06 94.47±0.02 92.51±0.05 94.36±0.06 92.05±0.07 94.47±0.02 92.39±0.02
cs 94.14±0.03 90.89±0.04 94.33±0.04 91.24±0.05 94.06±0.04 90.60±0.05 94.21±0.06 90.94±0.07
de 91.89±0.11 88.39±0.17 92.26±0.11 88.79±0.15 90.26±0.19 86.11±0.25 90.26±0.07 86.16±0.01
en 92.51±0.08 90.50±0.07 92.47±0.03 90.46±0.02 91.91±0.17 89.82±0.16 91.93±0.07 89.83±0.06
es 93.46±0.05 91.13±0.07 93.54±0.06 91.34±0.05 93.72±0.07 91.33±0.08 93.77±0.07 91.52±0.07
fr 95.05±0.04 92.76±0.07 94.97±0.04 92.57±0.06 92.62±0.15 89.51±0.14 92.90±0.20 89.88±0.23
it 94.89±0.12 92.58±0.12 94.93±0.09 92.90±0.10 94.75±0.12 92.72±0.12 94.70±0.07 92.55±0.09
nl 93.39±0.08 90.90±0.07 93.94±0.11 91.67±0.08 93.44±0.09 91.04±0.06 93.98±0.05 91.73±0.07
no 95.44±0.05 93.73±0.05 95.52±0.08 93.80±0.08 95.28±0.05 93.58±0.05 95.33±0.03 93.62±0.03
ro 91.97±0.13 85.38±0.03 92.06±0.08 85.58±0.12 91.94±0.07 85.61±0.13 91.80±0.11 85.34±0.21
ru 93.81±0.05 91.85±0.06 94.11±0.07 92.29±0.10 94.40±0.03 92.68±0.04 94.69±0.04 93.07±0.03

Table 4: UAS and LAS on both the development and test datasets of 12 treebanks from UD Treebanks,
together with BIAF for comparison.

4.5.2 UD Treebanks
For UD Treebanks, we select 12 languages — Bul-
garian, Catalan, Czech, Dutch, English, French,
German, Italian, Norwegian, Romanian, Russian
and Spanish. For all the languages, we adopt the
standard training/dev/test splits, and use the uni-
versal POS tags (Petrov et al., 2012) provided in
each treebank. The statistics of these corpora are
provided in Appendix B.

Table 4 summarizes the results of the
STACKPTR parser, along with BIAF for compari-
son, on both the development and test datasets for
each language. First, both BIAF and STACKPTR

parsers achieve relatively high parsing accuracies
on all the 12 languages — all with UAS are higher
than 90%. On nine languages — Catalan, Czech,
Dutch, English, French, German, Norwegian,
Russian and Spanish — STACKPTR outperforms
BIAF for both UAS and LAS. On Bulgarian,
STACKPTR achieves slightly better UAS while
LAS is slightly worse than BIAF. On Italian
and Romanian, BIAF obtains marginally better
parsing performance than STACKPTR.

5 Conclusion

In this paper, we proposed STACKPTR, a
transition-based neural network architecture, for
dependency parsing. Combining pointer networks
with an internal stack to track the status of the
top-down, depth-first search in the decoding pro-
cedure, the STACKPTR parser is able to capture
information from the whole sentence and all the
previously derived subtrees, removing the left-
to-right restriction in classical transition-based
parsers, while maintaining linear parsing steps,
w.r.t the length of the sentences. Experimental re-

sults on 29 treebanks show the effectiveness of our
parser across 20 languages, by achieving state-of-
the-art performance on 21 corpora.

There are several potential directions for future
work. First, we intend to consider how to conduct
experiments to improve the analysis of parsing er-
rors qualitatively and quantitatively. Another in-
teresting direction is to further improve our model
by exploring reinforcement learning approaches to
learn an optimal order for the children of head
words, instead of using a predefined fixed order.
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Bertomeu Castelló, and Jungmee Lee. 2013. Uni-
versal dependency annotation for multilingual pars-
ing. In Proceedings of ACL-2013. Sofia, Bulgaria,
pages 92–97.

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In Proceeding of EACL-2006.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajic. 2005b. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceedings
of HLT/EMNLP-2005. Vancouver, Canada, pages
523–530.

Vincent Ng. 2010. Supervised noun phrase coreference
research: The first fifteen years. In Proceedings of
ACL-2010. Association for Computational Linguis-
tics, Uppsala, Sweden, pages 1396–1411.

Truc-Vien T. Nguyen, Alessandro Moschitti, and
Giuseppe Riccardi. 2009. Convolution kernels on
constituent, dependency and sequential structures
for relation extraction. In Proceedings of EMNLP-
2009. Singapore, pages 1378–1387.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan
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Abstract

Due to the presence of both Twitter-
specific conventions and non-standard and
dialectal language, Twitter presents a sig-
nificant parsing challenge to current de-
pendency parsing tools. We broaden En-
glish dependency parsing to handle social
media English, particularly social media
African-American English (AAE), by de-
veloping and annotating a new dataset of
500 tweets, 250 of which are in AAE,
within the Universal Dependencies 2.0
framework. We describe our standards
for handling Twitter- and AAE-specific
features and evaluate a variety of cross-
domain strategies for improving parsing
with no, or very little, in-domain labeled
data, including a new data synthesis ap-
proach. We analyze these methods’ impact
on performance disparities between AAE
and Mainstream American English tweets,
and assess parsing accuracy for specific
AAE lexical and syntactic features. Our
annotated data and a parsing model are
available at: http://slanglab.cs.umass.edu/
TwitterAAE/.

1 Introduction

Language on Twitter diverges from well-edited
Mainstream American English (MAE, also called
Standard American English) in a number of ways,
presenting significant challenges to current NLP
tools. It contains, among other phenomena, non-
standard spelling, punctuation, capitalization, and
syntax, as well as Twitter-specific conventions
such as hashtags, usernames, and retweet to-
kens (Eisenstein, 2013). Additionally, it con-
tains an abundance of dialectal language, includ-

ing African-American English (AAE), a dialect of
American English spoken by millions of individu-
als, which contains lexical, phonological, and syn-
tactic features not present in MAE (Green, 2002;
Stewart, 2014; Jones, 2015).

Since standard English NLP tools are typically
trained on well-edited MAE text, their perfor-
mance is degraded on Twitter, and even more
so for AAE tweets compared to MAE tweets—
gaps exist for part-of-speech tagging (Jørgensen
et al., 2016), language identification, and depen-
dency parsing (Blodgett et al., 2016; Blodgett and
O’Connor, 2017). Expanding the linguistic cov-
erage of NLP tools to include minority and col-
loquial dialects would help support equitable lan-
guage analysis across sociolinguistic communi-
ties, which could help information retrieval, trans-
lation, or opinion analysis applications (Jurgens
et al., 2017). For example, sentiment analysis sys-
tems ought to count the opinions of all types of
people, whether they use standard dialects or not.

In this work, we broaden Universal Dependen-
cies (Nivre et al., 2016) parsing1 to better han-
dle social media English, in particular social me-
dia AAE. First, we develop standards to handle
Twitter-specific and AAE-specific features within
Universal Dependencies 2.0 (§3), by selecting and
annotating a new dataset of 500 tweets, 250 of
which are in AAE.

Second, we evaluate several state-of-the-art de-
pendency parsers, finding that, as expected, they
perform poorly on our dataset relative to the UD
English Treebank (§4). Third, since the UD En-
glish Treebank contains substantial amounts of
traditional MAE data for training, we investigate
cross-domain training methods to improve Twitter
AAE dependency parsing with no, or very little,

1http://universaldependencies.org/
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in-domain labeled data, by using Twitter-specific
taggers, embeddings, and a novel heuristic train-
ing data synthesis procedure. This helps close
some of the gap between MAE and AAE perfor-
mance. Finally, we provide an error analysis of the
parsers’ performance on AAE lexical and syntac-
tic constructions in our dataset (§5.4).2

2 Related Work

2.1 Parsing for Twitter

Parsing for noisy social media data presents in-
teresting and significant challenges. Foster et al.
(2011) develop a dataset of 519 constituency-
annotated English tweets, which were converted
to Stanford dependencies. Their analysis found a
substantial drop in performance of an off-the-shelf
dependency parser on the new dataset compared to
a WSJ test set. Sanguinetti et al. (2017) annotated
a dataset of 6,738 Italian tweets according to UD
2.0 and examined the performance of two parsers
on the dataset, finding that they lagged consid-
erably relative to performance on the Italian UD
Treebank.

Kong et al. (2014) develop an English depen-
dency parser designed for Twitter, annotating a
dataset of 929 tweets (TWEEBANK V1) accord-
ing to the unlabeled FUDG dependency formalism
(Schneider et al., 2013). It has substantially differ-
ent structure than UD (for example, prepositions
head PPs, and auxiliaries govern main verbs).

More recently, Liu et al. (2018) developed
TWEEBANK V2, fully annotating TWEEBANK V1
according to UD 2.0 and annotating addition-
ally sampled tweets, for a total of 3,550 tweets.
They found that creating consistent annotations
was challenging, due to frequent ambiguities in in-
terpreting tweets; nevertheless, they were able to
train a pipeline for tokenizing, tagging, and pars-
ing the tweets, and develop ensemble and distil-
lation models to improve parsing accuracy. Our
work encounters similar challenges; in our ap-
proach, we intentionally oversample AAE-heavy
messages for annotation, detail specific annotation
decisions for AAE-specific phenomena (§3.2), and
analyze parser performance between dialects and
for particular constructions (§5.3–5.4). Future
work may be able to combine these annotations for
effective multi-dialect Twitter UD parsers, which

2Our annotated dataset and trained dependency parser are
available at http://slanglab.cs.umass.edu/TwitterAAE/ and
annotations are available in the public Universal Dependen-
cies repository.

may allow for the use of pre-existing downstream
tools like semantic relation extractors (e.g. White
et al. (2016)).

One line of work for parsing noisy social media
data, including Khan et al. (2013) and Nasr et al.
(2016), examines the effects of the domain mis-
matches between traditional sources of training
data and social media data, finding that matching
the data as closely as possible aids performance.
Other work focuses on normalization, including
Daiber and van der Goot (2016) and van der Goot
and van Noord (2017), which develop a dataset
of 500 manually normalized and annotated tweets,
and uses normalization within a parser. Separately,
Zhang et al. (2013) created a domain-adaptable,
parser-focused system by directly linking parser
performance to normalization performance.

2.2 Parsing for Dialects

For Arabic dialects, Chiang et al. (2006) parse
Levantine Arabic by projecting parses from Mod-
ern Standard Arabic translations, while Green and
Manning (2010) conduct extensive error analysis
of Arabic constituency parsers and the Penn Ara-
bic Treebank. Scherrer (2011) parse Swiss Ger-
man dialects by transforming Standard German
phrase structures. We continue in this line of
work in our examination of AAE-specific syntac-
tic structures and generation of synthetic data with
such structures (§4.2.1).

Less work has examined parsing dialectal lan-
guage on social media. Recently, Wang et al.
(2017) annotate 1,200 Singlish (Singaporean En-
glish) sentences from a Singaporean talk fo-
rum, selecting sentences containing uniquely Sin-
gaporean vocabulary items. Like other work,
they observe a drop in performance on dialectal
Singlish text, but increase performance through a
stacking-based domain adaptation method.

3 Dataset and Annotation

3.1 Dataset

Our dataset contains 500 tweets, with a total of
5,951 non-punctuation edges, sampled from the
publicly available TwitterAAE corpus.3 Each
tweet in that corpus is accompanied by a model’s
demographically-aligned topic model probabili-
ties jointly inferred from Census demographics
and word likelihood by Blodgett et al. (2016), in-
cluding the African-American and White topics.

3http://slanglab.cs.umass.edu/TwitterAAE/
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We create a balanced sample to get a range of di-
alectal language, sampling 250 tweets from those
where the African-American topic has at least
80% probability, and 250 from those where the
White topic has at least 80% probability. We refer
to these two subcorpora as AA and WH; Blodgett
et al. (2016) showed the former exhibits linguistic
features typical of AAE.

The 250 AA tweets include many alternate
spellings of common words that correspond to
well-known phonological phenomena—including
da, tha (the), dat, dhat (that), dis, dhis (this), ion,
iont (I don’t), ova (over), yo (your), dere, der
(there), den, dhen (then), ova (over), and nall,
null (no, nah)—where each of the mentioned ital-
icized AAE terms appears in the AAE data, but
never in the MAE data. We examine these lexi-
cal variants more closely in §5.4. Across the AA
tweets, 18.0% of tokens were not in a standard En-
glish dictionary, while the WH tweets’ OOV rate
was 10.7%.4 We further observe a variety of AAE
syntactic phenomena in our AA tweets, several of
which are described in §3.2 and §5.4.

3.2 Annotation

To effectively measure parsing quality and develop
better future models, we first focus on developing
high-quality annotations for our dataset, for which
we faced a variety of challenges. We detail our
annotation principles using Universal Dependency
2.0 relations (Nivre et al., 2016).

All tweets were initially annotated by two an-
notators, and disagreements resolved by one of
the annotators. Annotation decisions for several
dozen tweets were discussed in a group of three
annotators early in the annotation process.

Our annotation principles are in alignment with
those proposed by Liu et al. (2018), with the ex-
ception of contraction handling, which we discuss
briefly in §3.2.2.

3.2.1 Null Copulas

The AAE dialect is prominently characterized by
the drop of copulas, which can occur when the
copula is present tense, not first person, not ac-
cented, not negative, and expressing neither the
habitual nor the remote present perfect tenses
(Green, 2002). We frequently observed null copu-
las, as in:

4The dictionary of 123,377 words with American
spellings was generated using http://wordlist.aspell.net/.

If u wit me den u pose to RESPECT ME

nsubjnsubj

“If you (are) with me, then you (are)
supposed to respect me”

The first dropped are is a null copula; UD2.0
would analyze the MAE version as you nsubj←−− me
cop−→ are, which we naturally extend to analyze the
null copula by simply omitting cop (which is now
over a null element, so cannot exist in a depen-
dency graph). The second are is a null auxiliary
(in MAE, you nsubj←−− supposed aux−→ are), a tightly
related phenomenon (for example, Green et al.
(2007) studies both null copulas and null auxiliary
be in infant AAE), which we analyze similarly by
simply omitting the aux edge.

3.2.2 AAE Verbal Auxiliaries
We observed AAE verbal auxiliaries, e.g.,

fees be looking upside my head

aux

Now we gone get fucked up

aux

damnnn I done let alot of time pass by

aux

including habitual be (“Continually, over and over,
fees are looking at me...”), future gone (“we are
going to get...”), and completive done (“I did let
time pass by,” emphasizing the speaker completed
a time-wasting action).

We attach the auxiliary to the main verb with
the aux relation, as UD2.0 analyzes other English
auxiliaries (e.g. would or will).

3.2.3 Verbs: Auxiliaries vs. Main Verbs
We observed many instances of quasi-auxiliary, “-
to” shortened verbs such as wanna, gotta, finna,
bouta, tryna, gonna, which can be glossed as want
to, got to, fixing to, about to, etc. They control
modality, mood and tense—for example, finna and
bouta denote an immediate future tense; Green
(2002, ch. 2) describes finna as a preverbal marker.
From UD’s perspective, it is difficult to decide
if they should be subordinate auxiliaries or main
verbs. In accordance with the UD Treebank’s han-
dling of MAE want to X and going to X as main
verbs (want xcomp−−→ X), we analyzed them similarly,
e.g.

Lol he bouta piss me off  “He is about to piss me off”

xcomp

1417



This is an instance of a general principle that, if
there is a shortening of an MAE multiword phrase
into a single word, the annotations on that word
should mirror the edges in and out of the original
phrase’s subgraph (as in Schneider et al. (2013)’s
fudge expressions).

However, in contrast to the UD Treebank, we
did not attempt to split up these words into their
component words (e.g. wanna → want to), since
to do this well, it would require a more involved
segmentation model over the dozens or even hun-
dreds of alternate spellings each of the above can
take;5 we instead rely on Owoputi et al. (2013);
O’Connor et al. (2010)’s rule-based tokenizer that
never attempts to segment within such shorten-
ings. This annotation principle is in contrast to
that of Liu et al. (2018), which follows UD tok-
enization for contractions.

3.2.4 Non-AAE Twitter issues
We also encountered many issues general to Twit-
ter but not AAE; these are still important to deal
with since AAE tweets include more non-standard
linguistic phenomena overall. When possible,
we adapted Kong et al. (2014)’s annotation con-
ventions into the Universal Dependencies con-
text, which are the only published conventions we
know of for Twitter dependencies (for the FUDG
dependency formalism). Issues include:

• @-mentions, which require different treat-
ment when they are terms of address, versus
nominal elements within a sentence.

• Hashtags, which in their tag-like usage are
utterances by themselves (#tweetliketheoppo-
sitegender Oh damn .). or sometimes can
be words with standard syntactic relations
within the sentence (#She’s A Savage, having
#She’s nsubj←−− Savage). Both hashtag and @-
mention ambiguities are handled by Owoputi
et al. (2013)’s POS tagger.

• Multiple utterances, since we do not attempt
sentence segmentation, and in many cases
sentential utterances are not separated by ex-
plicit punctuation. FUDG allows for multiple
roots for a text, but UD does not; instead we
follow UD’s convention of the parataxis re-
lation for what they describe as “side-by-side
run-on sentences.”

5For example, Owoputi et al. (2013)’s Twitter word clus-
ter 0011000 has 36 forms of gonna alone: http://www.cs.
cmu.edu/∼ark/TweetNLP/cluster viewer.html

• Emoticons and emoji, which we attach as dis-
course relations to the utterance root, follow-
ing UD’s treatment of interjections.

• Collapsed phrases, like omw for “on my
way.” When possible, we used the principle
of annotating according to the root of the sub-
tree of the original phrase. For example, UD
2.0 prescribes way xcomp−−→ get for the sentence
On my way to get...; therefore we use omw
xcomp−−→ get for omw to get.

• Separated words, like uh round for “around,”
which we analyze as multiword phrases (flat
or compound).

We discuss details for these and other cases in the
online appendix.

4 Experiments

4.1 Models

Our experiments use the following two parsers.
UDPipe (Straka et al., 2016) is a neural pipeline

containing a tokenizer, morphological analyzer,
tagger, and transition-based parser intended to be
easily retrainable. The parser attains 80.2% LAS
(labeled attachment score) on the UD English tree-
bank with automatically generated POS tags, and
was a baseline system used in the CoNLL 2017
Shared Task (Zeman et al., 2017).6

Deep Biaffine (Dozat et al., 2017; Dozat and
Manning, 2016) is a graph-based parser incorpo-
rating neural attention and biaffine classifiers for
arcs and labels. We used the version of the parser
in the Stanford CoNLL 2017 Shared Task submis-
sion, which attained 82.2% LAS on the UD En-
glish treebank with automatically generated tags,
and achieved the best performance in the task. The
model requires pre-trained word embeddings. 7

4.2 Experimental Setup

We considered a series of experiments within
both a cross-domain scenario (§4.2.1), where we
trained only on UD Treebank data, and an in-
domain scenario (§4.2.2) using small amounts of
our labeled data. We use the parsing systems’
default hyperparameters (e.g. minibatch size and
learning rate) and the default training/development
split of the treebank (both systems perform early
stopping based on development set performance).

6https://github.com/ufal/udpipe
7https://github.com/tdozat/UnstableParser/
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4.2.1 Cross-Domain Settings
Morpho-Tagger vs. ARK POS tags: The UD
Treebank contains extensive fine-grained POS and
morphological information, on which UDPipe’s
morphological analyzer and tagging system is
originally trained. This rich information should be
useful for parsing, but the analyzers may be highly
error-prone on out-of-domain, dialectal Twitter
data, and contribute to poor parsing performance.
We hypothesize that higher quality, even if coarser,
POS information should improve parsing.

To test this, we retrain UDPipe in two differ-
ent settings. We first retrain the parser compo-
nent with fine-grained PTB-style POS tags and
morphological information provided by the tagger
component;8 we call this the Morpho-Tagger set-
ting. Second, we retrain the parser with morpho-
logical information stripped and its tags predicted
from the ARK Twitter POS tagger (Owoputi et al.,
2013), which is both tailored for Twitter and dis-
plays a smaller AAE vs MAE performance gap
than traditional taggers (Jørgensen et al., 2016);
we call this the ARK Tagger setting.9 The ARK
Tagger’s linguistic representation is impoverished
compared to Morpho-Tagger: its coarse-grained
POS tag system does not include tense or number
information, for example.10

Synthetic Data: Given our knowledge of
Twitter- and AAE-specific phenomena that do not
occur in the UD Treebank, we implemented a rule-
based method to help teach the machine-learned
parser these phenomena; we generated synthetic
data for three Internet-specific conventions and
one set of AAE syntactic features. (This is in-
spired by Scherrer (2011)’s rule transforms be-
tween Standard and Swiss German.) We per-
formed each of the following transformations sep-
arately on a copy of the UD Treebank data and
concatenated the transformed files together for the
final training and development files, so that each
final file contained several transformed copies of
the original UD Treebank data.

1. @-mentions, emojis, emoticons, expressions,
and hashtags: For each sentence in the UD Tree-
bank we inserted at least one @-mention, emoji,
emoticon, expression (Internet-specific words and

8We also retrained this component, to maintain consis-
tency of training and development split. We also remove the
universal (coarse) POS tags it produces, replacing them with
the same PTB tags.

9We strip lemmas from training and development files for
both settings.

10Derczynski et al. (2013)’s English Twitter tagger, which
outputs PTB-style tags, may be of interest for future work.

abbreviations such as lol, kmsl, and xoxo), or hash-
tag, annotated with the correct relation, at the be-
ginning of the sentence. An item of the same
type was repeated with 50% probability, and a sec-
ond item was inserted with 50% probability. @-
mentions were inserted using the ATMENTION to-
ken and emojis using the EMOJI token. Emoti-
cons were inserted from a list of 20 common
emoticons, expressions were inserted from a list of
16 common expressions, and hashtags were sam-
pled for insertion according to their frequency in
a list of all hashtags observed in the TwitterAAE
corpus.

2. Syntactically participating @-mentions: To
replicate occurrences of syntactically participating
@-mentions, for each sentence in the UD Tree-
bank with at least one token annotated with an
nsubj or obj relation and an NNP POS tag, we re-
placed one at random with the ATMENTION to-
ken.

3. Multiple utterances: To replicate occur-
rences of multiple utterances, we randomly col-
lapsed pairs of two short sentences (< 15 tokens)
together, attaching the root of the second to the
root of the first with the parataxis relation.

4. AAE preverbal markers and auxiliaries:
We introduced instances of verbal constructions
present in AAE that are infrequent or non-existent
in the UD Treebank data. First, constructions
such as going to, about to, and want to are fre-
quently collapsed to gonna, bouta, and wanna,
respectively (see §3.2.2); for each sentence with
at least one of these constructions, we randomly
chose one to collapse. Second, we randomly re-
placed instances of going to with finna, a prever-
bal marker occurring in AAE and in the Ameri-
can South (Green, 2002). Third, we introduced
the auxiliaries gone and done, which denote fu-
ture tense and past tense, respectively; for the for-
mer, for each sentence containing at least one aux-
iliary will, we replace it with gone, and for the lat-
ter, for each sentence containing at least one non-
auxiliary, non-passive, past-tense verb, we choose
one and insert done before it. Finally, for each sen-
tence containing at least one copula, we delete one
at random.

Word Embeddings: Finally, since a tremen-
dous variety of Twitter lexical items are not
present in the UD Treebank, we use 200-
dimensional word embeddings that we trained
with word2vec11 (Mikolov et al., 2013) on the

11https://github.com/dav/word2vec
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TwitterAAE corpus, which contains 60.8 million
tweets. Before training, we processed the cor-
pus by replacing @-mentions with ATMENTION,
replacing emojis with EMOJI, and replacing se-
quences of more than two repeated letters with two
repeated letters (e.g. partyyyyy → partyy). This
resulted in embeddings for 487,450 words.

We retrain and compare UDPipe on each of
the Morpho-Tagger and ARK Tagger settings with
synthetic data and pre-trained embeddings, and
without. We additionally retrain Deep Biaffine
with and without synthetic data and embeddings.12

4.2.2 In-domain Training
We additionally investigate the effects of small
amounts of in-domain training data from our
dataset. We perform 2-fold cross-validation, ran-
domly partitioning our dataset into two sets of 250
tweets. We compare two different settings (all us-
ing the UDPipe ARK Tagger setting):

Twitter-only: To explore the effect of training
with Twitter data alone, for each set of 250 we
trained on that set alone, along with our Twitter
embeddings, and tested on the remaining 250.

UDT+Twitter: To explore the additional signal
provided by the UD Treebank, for each set of 250
we trained on the UD Treebank concatenated with
that set (with the tweets upweighted to approxi-
mately match the size of the UD Treebank, in or-
der to use similar hyperparameters) and tested on
the remaining 250.

5 Results and Analysis

In our evaluation, we ignored punctuation tokens
(labeled with punct) in our LAS calculation.

5.1 Effects of Cross-Domain Settings

Morpho-Tagger vs. ARK Tagger: As hypothe-
sized, UDPipe’s ARK Tagger setting outperformed
the Morpho-Tagger across all settings, ranging
from a 2.8% LAS improvement when trained only
on the UD Treebank with no pre-trained word em-
beddings, to 4.7% and 5.4% improvements when
trained with Twitter embeddings and both Twitter
embeddings and synthetic data, respectively. The
latter improvements suggest that the ARK Tagger
setup is able to take better advantage of Twitter-
specific lexical information from the embeddings

12As the existing implementation of Deep Biaffine requires
pre-trained word embeddings, for the Deep Biaffine base-
line experiments we use the CoNLL 2017 Shared Task 100-
dimensional embeddings that were pretrained on the English
UD Treebank.

Model LAS
(1) UDPipe, Morpho-Tagger, UDT 50.5
(2) + Twitter embeddings 53.9
(3) + synthetic, Twitter embeddings 58.9
(4) UDPipe, ARK Tagger, UDT 53.3
(5) + Twitter embeddings 58.6
(6) + synthetic, Twitter embeddings 64.3
Deep Biaffine, UDT
(7) + CoNLL MAE embeddings 62.3
(8) + Twitter embeddings 63.7
(9) + synthetic, Twitter embeddings 65.0

Table 1: Results from cross-domain training set-
tings (see §4.2.1).

Model LAS
(10) UDPipe, Twitter embeddings 62.2
(11) + UDT 70.3

Table 2: Results from in-domain training settings
(with the ARK Tagger setting, see §4.2.2).

and syntactic patterns from the synthetic data. Ta-
ble 1 shows the LAS for our various settings.

After observing the better performance of the
ARK Tagger setting, we opted not to retrain the
Deep Biaffine parser in any Morpho-Tagger set-
tings due to the model’s significantly longer train-
ing time; all our Deep Biaffine results are reported
for models trained with an ARK Tagger setting.

Synthetic data and embeddings: We observed
that synthetic data and Twitter-trained embeddings
were independently helpful; embeddings provided
a 1.4–5.3% boost across the UDPipe and Deep Bi-
affine models, while synthetic data provided a 1.3–
5.7% additional boost (Table 1).

UDPipe vs. Deep Biaffine: While the base-
line models for UDPipe and Deep Biaffine are not
directly comparable (since the latter required pre-
trained embeddings), in the Twitter embeddings
setting Deep Biaffine outperformed UDPipe by
5.1%. However, given access to both synthetic
data and Twitter embeddings, UDPipe’s perfor-
mance approached that of Deep Biaffine.

5.2 Effects of In-Domain Training
Perhaps surprisingly, training with even limited
amounts of in-domain training data aided in pars-
ing performance; training with just in-domain data
produced an LAS comparable to that of the base-
line Deep Biaffine model, and adding UD Tree-
bank data further increased LAS by 8.1%, indicat-
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Model AA LAS WH LAS Gap
(1) UDPipe, Morpho-Tagger 43.0 57.0 14.0
(2) + Twitter embeddings 45.5 61.2 15.7
(3) + synthetic, Twitter embeddings 50.7 66.2 15.5
(4) UDPipe, ARK Tagger 50.2 56.1 5.9
(5) + Twitter embeddings 54.1 62.5 8.4
(6) + synthetic, Twitter embeddings 59.9 68.1 8.2
Deep Biaffine, ARK Tagger
(7) + CoNLL MAE embeddings 56.1 67.7 11.6
(8) + Twitter embeddings 58.7 66.7 8.0
(9) + synthetic, Twitter embeddings 59.9 70.8 10.9

Table 3: AA and WH tweets’ labeled attachment scores for UD Treebank-trained models (see §5.3 for
discussion); Gap is the WH− AA difference in LAS.

ing that they independently provide critical signal.

5.3 AAE/MAE Performance Disparity
For each model in each of the cross-domain set-
tings, we calculated the LAS on the 250 tweets
drawn from highly African-American tweets and
the 250 from highly White tweets (see §3 for de-
tails); we will refer to these as the AA and WH
tweets, respectively. We observed clear dispari-
ties in performance between the two sets of tweets,
ranging from 5.9% to 15.7% (Table 3). Addition-
ally, across settings, we observed several patterns.

First, the UDPipe ARK Tagger settings pro-
duced significantly smaller gaps (5.9–8.4%) than
the corresponding Morpho-Tagger settings (14.0–
15.7%). Indeed, most of the performance im-
provement of the ARK Tagger setting comes from
the AA tweets; the LAS on the AA tweets jumps
7.2–9.2% from each Morpho-Tagger setting to the
corresponding ARK Tagger setting, compared to
differences of −0.9–1.9% for the WH tweets.

Second, the Deep Biaffine ARK Tagger settings
produced larger gaps (8.0–11.6%) than the UD-
Pipe ARK Tagger settings, with the exception of
the embeddings-only setting.

Finally, we observed the surprising result that
adding Twitter-trained embeddings and synthetic
data, which contains both Twitter-specific and
AAE-specific features, increases the performance
gap across both UDPipe settings. We hypothesize
that while UDPipe is able to effectively make use
of both Twitter-specific lexical items and annota-
tion conventions within MAE-like syntactic struc-
tures, it continues to be stymied by AAE-like syn-
tactic structures, and is therefore unable to make
use of the additional information.

We further calculated recall for each relation

type across the AA tweets and WH tweets, and
the resulting performance gap, under the UDPipe
Morpho-Tagger and ARK Tagger models trained
with synthetic data and embeddings. Table 4
shows these calculations for the 15 relation types
for which the performance gap was highest and
which had at least 15 instances in each of the AA
and WH tweet sets, along with the correspond-
ing calculation under the ARK Tagger model. The
amount by which the performance gap is reduced
from the first setting to the second setting is also
reported. Of the 15 relations shown, the gap was
reduced for 14, and 7 saw a reduction of at least
10%.

5.4 Lexical and Syntactic Analysis of AAE

In this section, we discuss AAE lexical and syn-
tactic variations observed in our dataset, with the
aim of providing insight into decreased AA pars-
ing accuracy, and the impact of various parser set-
tings on their parsing accuracy.

AAE contains a variety of phonological features
which present themselves on Twitter through a
number of lexical variations (Green, 2002; Jones,
2015), many of which are listed in §3.1, instances
of which occur a total of 80 times in the AA
tweets; notably, none occur in the WH tweets.

We investigated the accuracy of various cross-
domain parser settings on these lexical variants;
for each of the baseline Morpho-Tagger, baseline
ARK Tagger, ARK Tagger with embeddings, and
ARK Tagger with synthetic data and embeddings
models, we counted the number of instances of
lexical variants from §3.1 for which the model
gave the correct head with the correct label.

While the lexical variants challenged all four
models, switching from the Morpho-Tagger set-
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Morpho-Tagger ARK Tagger
Relation AA

Recall
WH

Recall
Gap (WH - AA) AA

Recall
WH

Recall
Gap (WH - AA) Reduction

compound 36.4 71.2 34.8 42.4 72.9 30.5 4.4
obl:tmod 25.0 51.7 26.7 43.8 55.2 11.4 15.3

nmod 28.6 54.4 25.8 45.7 51.5 5.8 20.1
cop 56.5 82.1 25.6 65.2 79.1 13.9 11.7
obl 41.4 65.4 24.0 56.8 62.5 5.7 18.3
cc 56.9 79.0 22.1 78.5 82.7 4.3 17.8

ccomp 33.3 54.2 20.8 40.5 54.2 13.7 7.1
obj 61.3 81.5 20.2 72.8 83.5 10.7 9.5
case 60.5 79.8 19.3 75.2 83.4 8.2 11.1
det 73.1 90.7 17.5 83.4 92.2 8.8 8.7

advmod 53.8 71.2 17.3 62.9 72.1 9.1 8.2
advcl 31.5 46.8 15.3 25.9 46.8 20.9 -5.6
root 56.4 71.6 15.2 62.8 74.0 11.2 4.0

xcomp 40.0 54.9 14.9 51.2 50.0 1.2 13.7
discourse 30.7 44.9 14.2 46.0 51.4 5.4 8.8

Table 4: Recall by relation type under UDPipe’s Morpho-Tagger and ARK Tagger settings (+syn-
thetic+embeddings; (3) and (6) from Table 3; §5.3). Reduction is the reduction in performance gap
from the Morpho-Tagger setting to the ARK Tagger setting; bolded numbers indicate a gap reduction of
≥ 10.0.

Feature AA Count WH Count Example
Dropped copula 44 0 MY bestfrienddd mad at me tho

Habitual be, describing
repeated actions

10 0 fees be looking upside my head likee ion kno
wat be goingg on .
I kno that clown, u don’t be around tho

Dropped possessive marker 5 0 ATMENTION on Tv...tawkn bout dat man gf
Twink rude lol can’t be calling ppl ugly that’s
somebody child lol...

Dropped 3rd person singular 5 0 When a female owe you sex you don’t even
wanna have a conversation with her

Future gone 4 0 she gone dance without da bands lol
it is instead of there is 2 1 It was too much goin on in dat mofo .

Completive done 1 0 damnnn I done let alot of time pass by . .

Table 5: Examples of AAE syntactic phenomena and occurrence counts in the 250 AA and 250 WH
tweet sets.

ting to the ARK Tagger settings produced signif-
icant accuracy increases (Table 6). We observed
that the greatest improvement came from using
the ARK Tagger setting with Twitter-trained em-
beddings; the Twitter-specific lexical information
provided by the embeddings was critical to rec-
ognizing the variants. Surprisingly, adding syn-
thetic data decreased the model’s ability to parse
the variants.

We next investigated the presence of AAE syn-
tactic phenomena in our dataset. Table 5 shows ex-
amples of seven well-documented AAE morpho-
logical and syntactic features and counts of their
occurrences in our AA and WH tweet sets; again,
while several of the phenomena, such as dropped

copulas and habitual be, occur frequently in our
AA tweets, there is only one instance of any of
these features occurring in the WH tweet set.

We measured the parsing accuracy for the two
most frequent syntactic features, dropped copulas
and habitual be, across the four models; accura-
cies are given in Table 6. For dropped copulas,
we measured parsing correctness by checking if
the parser correctly attached the subject to the cor-
rect predicate word via the nsubj relation; for the
first example in Table 5, for example, we consid-
ered the parser correct if it attached bestfrienddd
to mad via the nsubj relation. For habitual be, we
checked for correct attachment via the aux or cop
relations as in the first and second examples in Ta-
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AAE Feature Morpho-Tagger
Baseline

ARK Tagger
Baseline

ARK Tagger
with

Embeddings

ARK Tagger
with Synthetic,

Embeddings
Lexical Variants

(§3.1)
16.3 (13/80) 61.3 (49/80) 63.8 (51/80) 57.5 (46/80)

Dropped copula 54.5 (24/44) 70.5 (31/44) 61.4 (27/44) 68.2 (30/44)
Habitual be 50.0 (5/10) 80.0 (8/10) 90.0 (9/10) 90.0 (9/10)

Table 6: Parsing accuracies of syntactic and lexical variations across four UDPipe models (see §5.4).

ble 5, respectively.
As before, we observed significant increases in

accuracy moving from the Morpho-Tagger to the
ARK Tagger settings. However, neither adding
embeddings nor synthetic data appeared to signif-
icantly increase accuracy for these features. From
manual inspection, most of the dropped copu-
las errors appear to arise either from challenging
questions (e.g. ATMENTION what yo number ?)
or from mis-identification of the word to which to
attach the subject (e.g. He claim he in love llh,
where he was attached to llh rather than to love).

6 Conclusion

While current neural dependency parsers are
highly accurate on MAE, our analyses suggest that
AAE text presents considerable challenges due to
lexical and syntactic features which diverge sys-
tematically from MAE. While the cross-domain
strategies we presented can greatly increase ac-
curate parsing of these features, narrowing the
performance gap between AAE- and MAE-like
tweets, much work remains to be done for accurate
parsing of even linguistically well-documented
features.

It remains an open question whether it is bet-
ter to use a model with a smaller accuracy dis-
parity (e.g. UDPipe), or a model with higher av-
erage accuracy, but a worse disparity (e.g. Deep
Biaffine). The emerging literature on fairness in
algorithms suggests interesting further challenges;
for example, Kleinberg et al. (2017) and Corbett-
Davies et al. (2017) argue that as various com-
monly applied notions of fairness are mutually
incompatible, algorithm designers must grapple
with such trade-offs. Regardless, the modeling de-
cision should be made in light of the application
of interest; for example, applications like opin-
ion analysis and information retrieval may bene-
fit from equal (and possibly weaker) performance
between groups, so that concepts or opinions in-

ferred from groups of authors (e.g. AAE speak-
ers) are not under-counted or under-represented in
results returned to a user or analyst.
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Abstract

Language exhibits hierarchical structure,
but recent work using a subject-verb
agreement diagnostic argued that state-of-
the-art language models, LSTMs, fail to
learn long-range syntax-sensitive depen-
dencies. Using the same diagnostic, we
show that, in fact, LSTMs do succeed
in learning such dependencies—provided
they have enough capacity. We then ex-
plore whether models that have access to
explicit syntactic information learn agree-
ment more effectively, and how the way
in which this structural information is in-
corporated into the model impacts perfor-
mance. We find that the mere presence of
syntactic information does not improve ac-
curacy, but when model architecture is de-
termined by syntax, number agreement is
improved. Further, we find that the choice
of how syntactic structure is built affects
how well number agreement is learned:
top-down construction outperforms left-
corner and bottom-up variants in capturing
long-distance structural dependencies.

1 Introduction

Recurrent neural networks (RNNs) are remarkably
effective models of sequential data. Recent years
have witnessed the widespread adoption of recur-
rent architectures such as LSTMs (Hochreiter and
Schmidhuber, 1997) in various NLP tasks, with
state of the art results in language modeling (Melis
et al., 2018) and conditional generation tasks like
machine translation (Bahdanau et al., 2015) and
text summarization (See et al., 2017).

Here we revisit the question asked by Linzen
et al. (2016): as RNNs model word sequences
without explicit notions of hierarchical structure,

Figure 1: An example of the number agreement
task with two attractors and a subject-verb dis-
tance of five.

to what extent are these models able to learn
non-local syntactic dependencies in natural lan-
guage? Identifying number agreement between
subjects and verbs—especially in the presence of
attractors—can be understood as a cognitively-
motivated probe that seeks to distinguish hierar-
chical theories from sequential ones, as models
that rely on sequential cues like the most recent
noun would favor the incorrect verb form. We
provide an example of this task in Fig. 1, where
the plural form of the verb have agrees with the
distant subject parts, rather than the adjacent at-
tractors (underlined) of the singular form.

Contrary to the findings of Linzen et al. (2016),
our experiments suggest that sequential LSTMs
are able to capture structural dependencies to a
large extent, even for cases with multiple attrac-
tors (§2). Our finding suggests that network capac-
ity plays a crucial role in capturing structural de-
pendencies with multiple attractors. Nevertheless,
we find that a strong character LSTM language
model—which lacks explicit word representation
and has to capture much longer sequential depen-
dencies in order to learn non-local structural de-
pendencies effectively—performs much worse in
the number agreement task.

Given the strong performance of word-based
LSTM language models, are there are any sub-
stantial benefits, in terms of number agreement ac-
curacy, to explicitly modeling hierarchical struc-
tures as an inductive bias? We discover that a
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certain class of LSTM language models that ex-
plicitly models syntactic structures, the recurrent
neural network grammars (Dyer et al., 2016, RN-
NGs), considerably outperforms sequential LSTM
language models for cases with multiple attrac-
tors (§3). We present experiments affirming that
this gain is due to an explicit composition op-
erator rather than the presence of predicted syn-
tactic annotations. Rather surprisingly, syntactic
LSTM language models without explicit compo-
sition have no advantage over sequential LSTMs
that operate on word sequences, although these
models can nevertheless be excellent predictors of
phrase structures (Choe and Charniak, 2016).

Having established the importance of model-
ing structures, we explore the hypothesis that how
we build the structure affects the model’s abil-
ity to identify structural dependencies in English.
As RNNGs build phrase-structure trees through
top-down operations, we propose extensions to
the structure-building sequences and model archi-
tecture that enable left-corner (Henderson, 2003,
2004) and bottom-up (Chelba and Jelinek, 2000;
Emami and Jelinek, 2005) generation orders (§4).

Extensive prior work has characterized top-
down, left-corner, and bottom-up parsing strate-
gies in terms of cognitive plausibility (Pulman,
1986; Abney and Johnson, 1991; Resnik, 1992)
and neurophysiological evidence in human sen-
tence processing (Nelson et al., 2017). Here we
move away from the realm of parsing and eval-
uate the three strategies as models of generation
instead, and address the following empirical ques-
tion: which generation order is most appropri-
ately biased to model structural dependencies in
English, as indicated by number agreement accu-
racy? Our key finding is that the top-down gener-
ation outperforms left-corner and bottom-up vari-
ants for difficult cases with multiple attractors.

In theory, the three traversal strategies approxi-
mate the same chain rule that decompose the joint
probability of words and phrase-structure trees,
denoted as p(x,y), differently and as such will
impose different biases on the learner. In §4.3, we
show that the three variants achieve similar per-
plexities on a held-out validation set. As we ob-
serve different patterns in number agreement, this
demonstrates that while perplexity can be a use-
ful diagnostic tool, it may not be sensitive enough
for comparing models in terms of how well they
capture grammatical intuitions.

2 Number Agreement with LSTM
Language Models

We revisit the number agreement task with LSTMs
trained on language modeling objectives, as pro-
posed by Linzen et al. (2016).

Experimental Settings. We use the same
parsed Wikipedia corpus, verb inflectors, prepro-
cessing steps, and dataset split as Linzen et al.
(2016).1 Word types beyond the most frequent
10,000 are converted to their respective POS tags.
We summarize the corpus statistics of the dataset,
along with the test set distribution of the num-
ber of attractors, in Table 1. Similar to Linzen
et al. (2016), we only include test cases where
all intervening nouns are of the opposite number
forms than the subject noun. All models are im-
plemented using the DyNet library (Neubig et al.,
2017).

Train Test
Sentences 141,948 1,211,080
Types 10,025 10,025
Tokens 3,159,622 26,512,851

# Attractors # Instances % Instances
n = 0 1,146,330 94.7%
n = 1 52,599 4.3%
n = 2 9,380 0.77%
n = 3 2,051 0.17%
n = 4 561 0.05%
n = 5 159 0.01%

Table 1: Corpus statistics of the Linzen et al.
(2016) number agreement dataset.

Training was done using a language modeling
objective that predicts the next word given the pre-
fix; at test time we compute agreement error rates
by comparing the probability of the correct verb
form with the incorrect one. We report perfor-
mance of a few different LSTM hidden layer con-
figurations, while other hyper-parameters are se-
lected based on a grid search.2 Following Linzen

1The dataset and scripts are obtained from https://
github.com/TalLinzen/rnn_agreement.

2Based on the grid search results, we used the following
hyper-parameters that work well across different hidden layer
sizes: 1-layer LSTM, SGD optimizers with an initial learn-
ing rate of 0.2, a learning rate decay of 0.10 after 10 epochs,
LSTM dropout rates of 0.2, an input embedding dimension
of 50, and a batch size of 10 sentences. Our use of single-
layer LSTMs and 50-dimensional word embedding (learned
from scratch) as one of the baselines is consistent with the
experimental settings of Linzen et al. (2016).
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n=0 n=1 n=2 n=3 n=4
Random 50.0 50.0 50.0 50.0 50.0
Majority 32.0 32.0 32.0 32.0 32.0
LSTM, H=50† 6.8 32.6 ≈50 ≈65 ≈70
Our LSTM, H=50 2.4 8.0 15.7 26.1 34.65
Our LSTM, H=150 1.5 4.5 9.0 14.3 17.6
Our LSTM, H=250 1.4 3.3 5.9 9.7 13.9
Our LSTM, H=350 1.3 3.0 5.7 9.7 13.8
1B Word LSTM (repl) 2.8 8.0 14.0 21.8 20.0
Char LSTM 1.2 5.5 11.8 20.4 27.8

Table 2: Number agreement error rates for vari-
ous LSTM language models, broken down by the
number of attractors. The top two rows represent
the random and majority class baselines, while the
next row (†) is the reported result from Linzen
et al. (2016) for an LSTM language model with
50 hidden units (some entries, denoted by ≈, are
approximately derived from a chart, since Linzen
et al. (2016) did not provide a full table of results).
We report results of our LSTM implementations of
various hidden layer sizes, along with our re-run of
the Jozefowicz et al. (2016) language model, in the
next five rows. We lastly report the performance of
a state of the art character LSTM baseline with a
large model capacity (Melis et al., 2018).

et al. (2016), we include the results of our repli-
cation3 of the large-scale language model of Joze-
fowicz et al. (2016) that was trained on the One
Billion Word Benchmark.4 Hyper-parameter tun-
ing is based on validation set perplexity.

Discussion. Table 2 indicates that, given
enough capacity, LSTM language models without
explicit syntactic supervision are able to perform
well in number agreement. For cases with mul-
tiple attractors, we observe that the LSTM lan-
guage model with 50 hidden units trails behind
its larger counterparts by a substantial margin de-
spite comparable performance for zero attractor
cases, suggesting that network capacity plays an
especially important role in propagating relevant
structural information across a large number of
steps.5 Our experiment independently derives the

3When evaluating the large-scale language model, the pri-
mary difference is that we do not map infrequent word types
to their POS tags and that we subsample to obtain 500 test in-
stances of each number of attractor due to computation cost;
both preprocessing were also done by Linzen et al. (2016).

4The pretrained large-scale language model is obtained
from https://github.com/tensorflow/models/
tree/master/research/lm_1b.

5This trend is also observed by comparing results with
H=150 and H=250. While both models achieve near-identical
performance for zero attractor, the model with H=250 per-

same finding as the recent work of Gulordava et al.
(2018), who also find that LSTMs trained with lan-
guage modeling objectives are able to learn num-
ber agreement well; here we additionally identify
model capacity as one of the reasons for the dis-
crepancy with the Linzen et al. (2016) results.

While the pretrained large-scale language
model of Jozefowicz et al. (2016) has certain ad-
vantages in terms of model capacity, more train-
ing data, and richer vocabulary, we suspect that the
poorer performance is due to differences between
their training domain and the number agreement
testing domain, although the model still performs
reasonably well in the number agreement test set.

Prior work has confirmed the notion that, in
many cases, statistical models are able to achieve
good performance under some aggregate metric by
overfitting to patterns that are predictive in most
cases, often at the expense of more difficult, infre-
quent instances that require deeper language un-
derstanding abilities (Rimell et al., 2009; Jia and
Liang, 2017). In the vast majority of cases, struc-
tural dependencies between subjects and verbs
highly overlap with sequential dependencies (Ta-
ble 1). Nevertheless, the fact that number agree-
ment accuracy gets worse as the number of attrac-
tors increases is consistent with a sequential re-
cency bias in LSTMs: under this conjecture, iden-
tifying the correct structural dependency becomes
harder when there are more adjacent nouns of dif-
ferent number forms than the true subject.

If the sequential recency conjecture is correct,
then LSTMs would perform worse when the struc-
tural dependency is more distant in the sequences,
compared to cases where the structural depen-
dency is more adjacent. We empirically test this
conjecture by running a strong character-based
LSTM language model of Melis et al. (2018) that
achieved state of the art results on EnWiki8 from
the Hutter Prize dataset (Hutter, 2012), with 1,800
hidden units and 10 million parameters. The char-
acter LSTM is trained, validated, and tested6 on
the same split of the Linzen et al. (2016) number
agreement dataset.

A priori, we expect that number agreement is
harder for character LSTMs for two reasons. First,
character LSTMs lack explicit word representa-

forms much better for cases with multiple attractors.
6For testing, we similarly evaluate number agreement ac-

curacy by comparing the probability of the correct and incor-
rect verb form given the prefix, as represented by the respec-
tive character sequences.

1428



tions, thus succeeding in this task requires iden-
tifying structural dependencies between two se-
quences of character tokens, while word-based
LSTMs only need to resolve dependencies be-
tween word tokens. Second, by nature of model-
ing characters, non-local structural dependencies
are sequentially further apart than in the word-
based language model. On the other hand, char-
acter LSTMs have the ability to exploit and share
informative morphological cues, such as the fact
that plural nouns in English tend to end with ‘s’.

As demonstrated on the last row of Table 2,
we find that the character LSTM language model
performs much worse at number agreement with
multiple attractors compared to its word-based
counterparts. This finding is consistent with that
of Sennrich (2017), who find that character-level
decoders in neural machine translation perform
worse than subword models in capturing mor-
phosyntactic agreement. To some extent, our
finding demonstrates the limitations that character
LSTMs face in learning structure from language
modeling objectives, despite earlier evidence that
character LSTM language models are able to im-
plicitly acquire a lexicon (Le Godais et al., 2017).

3 Number Agreement with RNNGs

Given the strong performance of sequential
LSTMs in number agreement, is there any further
benefit to explicitly modeling hierarchical struc-
tures? We focus on recurrent neural network
grammars (Dyer et al., 2016, RNNGs), which
jointly model the probability of phrase-structure
trees and strings, p(x,y), through structure-
building actions and explicit compositions for rep-
resenting completed constituents.

Our choice of RNNGs is motivated by the find-
ings of Kuncoro et al. (2017), who find evidence
for syntactic headedness in RNNG phrasal repre-
sentations. Intuitively, the ability to learn heads
is beneficial for this task, as the representation for
the noun phrase “The flowers in the vase” would
be similar to the syntactic head flowers rather than
vase. In some sense, the composition operator
can be understood as injecting a structural recency
bias into the model design, as subjects and verbs
that are sequentially apart are encouraged to be
close together in the RNNGs’ representation.

3.1 Recurrent Neural Network Grammars
RNNGs (Dyer et al., 2016) are language models
that estimate the joint probability of string termi-
nals and phrase-structure tree nonterminals. Here
we use stack-only RNNGs that achieve better per-
plexity and parsing performance (Kuncoro et al.,
2017). Given the current stack configuration, the
objective function of RNNGs is to predict the
correct structure-building operation according to
a top-down, left-to-right traversal of the phrase-
structure tree; a partial traversal for the input sen-
tence “The flowers in the vase are blooming” is
illustrated in Fig. 3(a).7

The structural inductive bias of RNNGs derives
from an explicit composition operator that rep-
resents completed constituents; for instance, the
constituent (NP The flowers) is represented by a
single composite element on the stack, rather than
as four separate symbols. During each REDUCE

action, the topmost stack elements that belong to
the new constituent are popped from the stack and
then composed by the composition function; the
composed symbol is then pushed back into the
stack. The model is trained in an end-to-end man-
ner by minimizing the cross-entropy loss relative
to a sample of gold trees.

3.2 Experiments
Here we summarize the experimental settings of
running RNNGs on the number agreement dataset
and discuss the empirical findings.

Experimental settings. We obtain phrase-
structure trees for the Linzen et al. (2016) dataset
using a publicly available discriminative model8

trained on the Penn Treebank (Marcus et al.,
1993). At training time, we use these predicted
trees to derive action sequences on the training set,
and train the RNNG model on these sequences.9

At test time, we compare the probabilities of the
correct and incorrect verb forms given the prefix,
which now includes both nonterminal and terminal
symbols. An example of the stack contents (i.e.
the prefix) when predicting the verb is provided
in Fig. 3(a). We similarly run a grid search over
the same hyper-parameter range as the sequential

7For a complete example of action sequences, we refer the
reader to the example provided by Dyer et al. (2016).

8https://github.com/clab/rnng
9Earlier work on RNNGs (Dyer et al., 2016; Kuncoro

et al., 2017) train the model on gold phrase-structure trees
on the Penn Treebank, while here we train the RNNG on the
number agreement dataset based on predicted trees from an-
other parser.
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LSTM and compare the results with the strongest
sequential LSTM baseline from §2.

Figure 2: Number agreement error rates for se-
quential LSTM language models (left), sequential
syntactic LSTM language models (Choe and Char-
niak, 2016, center), and RNNGs (right).

Discussion. Fig. 2 shows that RNNGs (right-
most) achieve much better number agreement ac-
curacy compared to LSTM language models (left-
most) for difficult cases with four and five at-
tractors, with around 30% error rate reductions,
along with a 13% error rate reduction (from 9%
to 7.8%) for three attractors. We attribute the
slightly worse performance of RNNGs on cases
with zero and one attractor to the presence of inter-
vening structure-building actions that separate the
subject and the verb, such as a REDUCE (step 6 in
Fig. 3(a)) action to complete the noun phrase and
at least one action to predict a verb phrase (step
15 in Fig. 3(a)) before the verb itself is introduced,
while LSTM language models benefit from shorter
dependencies for zero and one attractor cases.

The performance gain of RNNGs might arise
from two potential causes. First, RNNGs have
access to predicted syntactic annotations, while
LSTM language models operate solely on word
sequences. Second, RNNGs incorporate explicit
compositions, which encourage hierarhical repre-
sentations and potentially the discovery of syntac-
tic (rather than sequential) dependencies.

Would LSTMs that have access to syntactic
annotations, but without the explicit composition
function, benefit from the same performance gain
as RNNGs? To answer this question, we run se-
quential LSTMs over the same phrase-structure
trees (Choe and Charniak, 2016), similarly es-
timating the joint probability of phrase-structure
nonterminals and string terminals but without an
explicit composition operator. Taking the example
in Fig. 3(a), the sequential syntactic LSTM would

have fifteen10 symbols on the LSTM when pre-
dicting the verb, as opposed to three symbols in
the case of RNNGs’ stack LSTM. In theory, the
sequential LSTM over the phrase-structure trees
(Choe and Charniak, 2016) may be able to incor-
porate a similar, albeit implicit, composition pro-
cess as RNNGs and consequently derive similarly
syntactic heads, although there is no inductive bias
that explicitly encourages such process.

Fig. 2 suggests that the sequential syntactic
LSTMs (center) perform comparably with sequen-
tial LSTMs without syntax for multiple attractor
cases, and worse than RNNGs for nearly all at-
tractors; the gap is highest for multiple attractors.
This result showcases the importance of an ex-
plicit composition operator and hierarchical repre-
sentations in identifying structural dependencies,
as indicated by number agreement accuracy. Our
finding is consistent with the recent work of Yo-
gatama et al. (2018), who find that introducing el-
ements of hierarchical modeling through a stack-
structured memory is beneficial for number agree-
ment, outperforming LSTM language models and
attention-augmented variants by increasing mar-
gins as the number of attractor grows.

3.3 Further Analysis

In order to better interpret the results, we con-
duct further analysis into the perplexities of each
model, followed by a discussion on the effect
of incrementality constraints on the RNNG when
predicting number agreement.

Perplexity. To what extent does the success of
RNNGs in the number agreement task with mul-
tiple attractors correlate with better performance
under the perplexity metric? We answer this ques-
tion by using an importance sampling marginal-
ization procedure (Dyer et al., 2016) to obtain an
estimate of p(x) under both RNNGs and the se-
quential syntactic LSTM model. Following Dyer
et al. (2016), for each sentence on the validation
set we sample 100 candidate trees from a dis-
criminative model11 as our proposal distribution.
As demonstrated in Table 3, the LSTM language
model has the lowest validation set perplexity de-
spite substantially worse performance than RN-
NGs in number agreement with multiple attrac-
tors, suggesting that lower perplexity is not neces-

10In the model of Choe and Charniak (2016), each nonter-
minal, terminal, and closed parenthesis symbol is represented
as an element on the LSTM sequence.

11https://github.com/clab/rnng
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sarily correlated with number agreement success.

Validation ppl.
LSTM LM 72.6
Seq. Syntactic LSTM 79.2
RNNGs 77.9

Table 3: Validation set perplexity of LSTM lan-
guage model, sequential syntactic LSTM, and RN-
NGs.

Incrementality constraints. As the syntactic
prefix was derived from a discriminative model
that has access to unprocessed words, one poten-
tial concern is that this prefix might violate the
incrementality constraints and benefit the RNNG
over the LSTM language model. To address this
concern, we remark that the empirical evidence
from Fig. 2 and Table 3 indicates that the LSTM
language model without syntactic annotation out-
performs the sequential LSTM with syntactic an-
notation in terms of both perplexity and number
agreement throughout nearly all attractor settings,
suggesting that the predicted syntactic prefix does
not give any unfair advantage to the syntactic mod-
els.

Furthermore, we run an experiment where the
syntactic prefix is instead derived from an in-
cremental beam search procedure of Fried et al.
(2017).12 To this end, we take the highest scoring
beam entry at the time that the verb is generated
to be the syntactic prefix; this procedure is applied
to both the correct and incorrect verb forms.13 We
then similarly compare the probabilities of the cor-
rect and incorrect verb form given each respective
syntactic prefix to obtain number agreement accu-
racy. Our finding suggests that using the fully in-
cremental tree prefix leads to even better RNNG
number agreement performance for four and five
attractors, achieving 7.1% and 8.2% error rates,
respectively, compared to 9.4% and 12% for the
RNNG error rates in Fig. 2.

4 Top-Down, Left-Corner, and
Bottom-Up Traversals

In this section, we propose two new variants of
RNNGs that construct trees using a different con-

12As the beam search procedure is time-consuming, we
randomly sample 500 cases for each attractor and compute
the number agreement accuracy on these samples.

13Consequently, the correct and incorrect forms of the sen-
tence might have different partial trees, as the highest scoring
beam entries may be different for each alternative.

struction order than the top-down, left-to-right or-
der used above. These are a bottom-up construc-
tion order (§4.1) and a left-corner construction
order (§4.2), analogous to the well-known pars-
ing strategies (e.g. Hale, 2014, chapter 3). They
differ from these classic strategies insofar as they
do not announce the phrase-structural content of
an entire branch at the same time, adopting in-
stead a node-by-node enumeration reminescent of
Markov Grammars (Charniak, 1997). This step-
by-step arrangement extends to the derived string
as well; since all variants generate words from
left to right, the models can be compared using
number agreement as a diagnostic.14

Here we state our hypothesis on why the build
order matters. The three generation strategies rep-
resent different chain rule decompositions of the
joint probability of strings and phrase-structure
trees, thereby imposing different biases on the
learner. Earlier work in parsing has character-
ized the plausibility of top-down, left-corner, and
bottom-up strategies as viable candidates of hu-
man sentence processing, especially in terms of
memory constraints and human difficulties with
center embedding constructions (Johnson-Laird,
1983; Pulman, 1986; Abney and Johnson, 1991;
Resnik, 1992, inter alia), along with neurophys-
iological evidence in human sentence processing
(Nelson et al., 2017). Here we cast the three strate-
gies as models of language generation (Manning
and Carpenter, 1997), and focus on the empirical
question: which generation order has the most ap-
propriate bias in modeling non-local structural de-
pendencies in English?

These alternative orders organize the learn-
ing problem so as to yield intermediate states in
generation that condition on different aspects of
the grammatical structure. In number agreement,
this amounts to making an agreement controller,
such as the word flowers in Fig. 3, more or less
salient. If it is more salient, the model should be
better-able to inflect the main verb in agreement
with this controller, without getting distracted by
the attractors. The three proposed build orders are
compared in Fig. 3, showing the respective config-
urations (i.e. the prefix) when generating the main
verb in a sentence with a single attractor.15 In ad-

14Only the order in which these models build the nontermi-
nal symbols is different, while the terminal symbols are still
generated in a left-to-right manner in all variants.

15Although the stack configuration at the time of verb gen-
eration varies only slightly, the configurations encountered
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dition, we show concrete action sequences for a
simpler sentence in each section.

4.1 Bottom-Up Traversal

In bottom-up traversals, phrases are recursively
constructed and labeled with the nonterminal type
once all their daughters have been built, as illus-
trated in Fig. 4. Bottom-up traversals benefit from
shorter stack depths compared to top-down due to
the lack of incomplete nonterminals. As the com-
mitment to label the nonterminal type of a phrase
is delayed until its constituents are complete, this
means that the generation of a child node cannot
condition on the label of its parent node.

In n-ary branching trees, bottom-up completion
of constituents requires a procedure for determin-
ing how many of the most recent elements on the
stack should be daughters of the node that is be-
ing constructed.16 Conceptually, rather than hav-
ing a single REDUCE operation as we have before,
we have a complex REDUCE(X, n) operation that
must determine the type of the constituent (i.e., X)
as well as the number of daughters (i.e., n).

In step 5 of Fig. 4, the newly formed NP con-
stituent only covers the terminal worms, and nei-
ther the unattached terminal eats nor the con-
stituent (NP The fox) is part of the new noun
phrase. We implement this extent decision us-
ing a stick-breaking construction—using the stack
LSTM encoding, a single-layer feedforward net-
work, and a logistic output layer—which decides
whether the top element on the stack should be the
leftmost child of the new constituent (i.e. whether
or not the new constituent is complete after pop-
ping the current topmost stack element), as illus-
trated in Fig. 5. If not, the process is then repeated
after the topmost stack element is popped. Once
the extent of the new nonterminal has been de-
cided, we parameterize the decision of the nonter-
minal label type; in Fig. 5 this is an NP. A second
difference to top-down generation is that when a
single constituent remains on the stack, the sen-
tence is not necessarily complete (see step 3 of
Fig. 4 for examples where this happens). We thus
introduce an explicit STOP action (step 8, Fig. 4),
indicating the tree is complete, which is only as-
signed non-zero probability when the stack has a

during the history of the full generation process vary consid-
erably in the invariances and the kinds of actions they predict.

16This mechanism is not necessary with strictly binary
branching trees, since each new nonterminal always consists
of the two children at the top of the stack.

Avg. stack depth Ppl.
TD 12.29 94.90
LC 11.45 95.86
BU 7.41 96.53

Table 4: Average stack depth and validation set
perplexity for top-down (TD), left-corner (LC),
and bottom-up (BU) RNNGs.

single complete constituent.

4.2 Left-Corner Traversal
Left-corner traversals combine some aspects of
top-down and bottom-up processing. As illus-
trated in Fig. 6, this works by first generating the
leftmost terminal of the tree, The (step 0), be-
fore proceeding bottom-up to predict its parent NP
(step 1) and then top-down to predict the rest of its
children (step 2). A REDUCE action similarly calls
the composition operator once the phrase is com-
plete (e.g. step 3). The complete constituent (NP
The fox) is the leftmost child of its parent node,
thus an NT SW(S) action is done next (step 4).

The NT SW(X) action is similar to the NT(X)
from the top-down generator, in that it introduces
an open nonterminal node and must be matched
later by a corresponding REDUCE operation, but,
in addition, swaps the two topmost elements at
the top of the stack. This is necessary because
the parent nonterminal node is not built until af-
ter its left-most child has been constructed. In step
1 of Fig. 6, with a single element The on the stack,
the action NT SW(NP) adds the open nonterminal
symbol NP to become the topmost stack element,
but after applying the swap operator the stack now
contains (NP | The (step 2).

4.3 Experiments
We optimize the hyper-parameters of each RNNG
variant using grid searches based on validation
set perplexity. Table 4 summarizes average stack
depths and perplexities17 on the Linzen et al.
(2016) validation set. We evaluate each of the vari-
ants in terms of number agreement accuracy as an
evidence of its suitability to model structural de-
pendencies in English, presented in Table 5. To
account for randomness in training, we report the
error rate summary statistics of ten different runs.

17Here we measure perplexity over p(x,y), where y is
the presumptive gold tree on the Linzen et al. (2016) dataset.
Dyer et al. (2016) instead used an importance sampling pro-
cedure to marginalize and obtain an estimate of p(x).
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Figure 3: The (a) top-down, (b) bottom-up, and (c) left-corner build order variants showing in black
the structure that exists as well as the generator’s stack contents when the word are is generated during
the derivation of the sentence The flowers in the vase are blooming. Structure in grey indicates material
that will be generated subsequent to this. Circled numbers indicate the time when the corresponding
structure/word is constructed. In (a) and (c), nonterminals are generated by a matched pair of NT and
REDUCE operations, while in (b) they are introduced by a single complex REDUCE operation.

Input: The fox eats worms
Stack Action

0 GEN(The)
1 The GEN(fox)
2 The | fox REDUCE(NP,2)
3 (NP The fox) GEN(eats)
4 (NP The fox) | eats GEN(worms)
5 (NP The fox) | eats | worms REDUCE(NP,1)
6 (NP The fox) | eats | (NP worms) REDUCE(VP,2)
7 (NP The fox) | (VP eats (NP worms)) REDUCE(S,2)
8 (S (NP The fox) (VP eats (NP worms)) STOP

Figure 4: Example Derivation for Bottom-Up
Traversal. ‘ | ’ indicates separate elements on the
stack. The REDUCE(X, n) action takes the top
n elements on the stack and creates a new con-
stituent of type X with the composition function.

Avg.(±sdev)/min/max
n=2 n=3 n=4

LM 5.8(±0.2)/5.5/6.0 9.6(±0.7)/8.8/10.1 14.1(±1.2)/13.0/15.3
TD 5.5(±0.4)/4.9/5.8 7.8(±0.6)/7.4/8.0 8.9(±1.1)/7.9/9.8
LC 5.4(±0.3)/5.2/5.5 8.2(±0.4)/7.9/8.7 9.9(±1.3)/8.8/11.5
BU 5.7(±0.3) 5.5/5.8 8.5(±0.7)/8.0/9.3 9.7(±1.1)/9.0/11.3

Table 5: Number agreement error rates for top-
down (TD), left-corner (LC), and bottom-up (BU)
RNNGs, broken down by the number of attractors.
LM indicates the best sequential language model
baseline (§2). We report the mean, standard devia-
tion, and minimum/maximum of 10 different ran-
dom seeds of each model.
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Figure 5: Architecture to determine type and span
of new constituents during bottom-up generation.

Input: The fox eats worms
Stack Action

0 GEN(The)
1 The NT SW(NP)
2 (NP | The GEN(fox)
3 (NP | The | fox REDUCE

4 (NP The fox) NT SW(S)
5 (S | (NP The fox) GEN(eats)
6 (S | (NP The fox) | eats NT SW(VP)
7 (S | (NP The fox) | (VP | eats GEN(worms)
8 (S | (NP The fox) | (VP | eats | worms NT SW(NP)
9 (S | (NP The fox) | (VP | eats | (NP | worms REDUCE

10 (S | (NP The fox) | (VP | eats | (NP worms) REDUCE

11 (S | (NP The fox) | (VP eats (NP worms)) REDUCE

12 (S (NP The fox) (VP eats (NP worms))) N/A

Figure 6: Example Derivation for left-corner
traversal. Each NT SW(X) action adds the open
nonterminal symbol (X to the stack, followed by
a deterministic swap operator that swaps the top
two elements on the stack.

Discussion. In Table 5, we focus on empiri-
cal results for cases where the structural depen-
dencies matter the most, corresponding to cases
with two, three, and four attractors. All three
RNNG variants outperform the sequential LSTM
language model baseline for these cases. Nev-
ertheless, the top-down variant outperforms both
left-corner and bottom-up strategies for difficult
cases with three or more attractors, suggesting that
the top-down strategy is most appropriately biased
to model difficult number agreement dependencies
in English. We run an approximate randomization
test by stratifying the output and permuting within
each stratum (Yeh, 2000) and find that, for four
attractors, the performance difference between the
top-down RNNG and the other variants is statisti-
cally significant at p < 0.05.

The success of the top-down traversal in the do-
main of number-agreement prediction is consis-
tent with a classical view in parsing that argues
top-down parsing is the most human-like pars-
ing strategy since it is the most anticipatory. Only

anticipatory representations, it is said, could ex-
plain the rapid, incremental processing that hu-
mans seem to exhibit (Marslen-Wilson, 1973;
Tanenhaus et al., 1995); this line of thinking sim-
ilarly motivates Charniak (2010), among others.
While most work in this domain has been con-
cerned with the parsing problem, our findings sug-
gest that anticipatory mechanisms are also bene-
ficial in capturing structural dependencies in lan-
guage modeling. We note that our results are
achieved using models that, in theory, are able to
condition on the entire derivation history, while
earlier work in sentence processing has focused
on cognitive memory considerations, such as the
memory-bounded model of Schuler et al. (2010).

5 Conclusion

Given enough capacity, LSTMs trained on lan-
guage modeling objectives are able to learn
syntax-sensitive dependencies, as evidenced by
accurate number agreement accuracy with multi-
ple attractors. Despite this strong performance,
we discover explicit modeling of structure does
improve the model’s ability to discover non-local
structural dependencies when determining the dis-
tribution over subsequent word generation. Recur-
rent neural network grammars (RNNGs), which
jointly model phrase-structure trees and strings
and employ an explicit composition operator, sub-
stantially outperform LSTM language models and
syntactic language models without explicit com-
positions; this highlights the importance of a hier-
archical inductive bias in capturing structural de-
pendencies. We explore the possibility that how
the structure is built affects number agreement per-
formance. Through novel extensions to RNNGs
that enable the use of left-corner and bottom-up
generation strategies, we discover that this is in-
deed the case: the three RNNG variants have dif-
ferent generalization properties for number agree-
ment, with the top-down traversal strategy per-
forming best for cases with multiple attractors.
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Abstract

Existing solutions to task-oriented dia-
logue systems follow pipeline designs
which introduce architectural complex-
ity and fragility. We propose a novel,
holistic, extendable framework based on
a single sequence-to-sequence (seq2seq)
model which can be optimized with su-
pervised or reinforcement learning. A
key contribution is that we design text
spans named belief spans to track dia-
logue believes, allowing task-oriented dia-
logue systems to be modeled in a seq2seq
way. Based on this, we propose a sim-
plistic Two Stage CopyNet instantiation
which demonstrates good scalability: sig-
nificantly reducing model complexity in
terms of number of parameters and train-
ing time by an order of magnitude. It
significantly outperforms state-of-the-art
pipeline-based methods on two datasets
and retains a satisfactory entity match rate
on out-of-vocabulary (OOV) cases where
pipeline-designed competitors totally fail.

1 Introduction

The challenge of achieving both task comple-
tion and human-like response generation for task-
oriented dialogue systems is gaining research in-
terest. Wen et al. (2017b, 2016a, 2017a) pioneered
a set of models to address this challenge. Their
proposed architectures follow traditional pipeline
designs, where the belief tracking component is
the key component (Chen et al., 2017).

In the current paradigm, such a belief tracker
builds a complex multi-class classifier for each

* Work performed during an internship at Data Science
Lab, JD.com.

slot (See §3.2) which can suffer from high com-
plexity, especially when the number of slots and
their values grow. Since all the possible slot values
have to be pre-defined as classification labels, such
trackers also cannot handle the requests that have
out-of-vocabulary (OOV) slot values. Moreover,
the belief tracker requires delexicalization, i.e., re-
placing slot values with their slot names in utter-
ances (Mrkšić et al., 2017). It does not scale well,
due to the lexical diversity. The belief tracker also
needs to be pre-trained, making the models unre-
alistic for end-to-end training (Eric and Manning,
2017a). While Eric and Manning (2017a,b) inves-
tigated building task-oriented dialogue systems by
using a seq2seq model, unfortunately, their meth-
ods are rather preliminary and do not perform well
in either task completion or response generation,
due to their omission of a belief tracker.

Questioning the basic pipeline architecture, in
this paper, we re-examine the tenets of belief
tracking in light of advances in deep learning. We
introduce the concept of a belief span (bspan), a
text span that tracks the belief states at each turn.
This leads to a new framework, named Sequicity,
with a single seq2seq model. Sequicity decom-
poses the task-oriented dialogue problem into the
generation of bspans and machine responses, con-
verting this problem into a sequence optimization
problem. In practice, Sequicity decodes in two
stages: in the first stage, it decodes a bspan to fa-
cilitate knowledge base (KB) search; in the sec-
ond, it decodes a machine response on the con-
dition of knowledge base search result and the
bspan.

Our method represents a shift in perspective
compared to existing work. Sequicity employs a
single seq2seq model, resulting in a vastly simpli-
fied architecture. Unlike previous approaches with
an overly parameterized delexicalization-based
belief tracker, Sequicity achieves much less train-
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ing time, better performance on larger a dataset
and an exceptional ability to handle OOV cases.
Furthermore, Sequicity is a theoretically and aes-
thetically appealing framework, as it achieves true
end-to-end trainability using only one seq2seq
model. As such, Sequicity leverages the rapid
development of seq2seq models (Gehring et al.,
2017; Vaswani et al., 2017; Yu et al., 2017) in de-
veloping solutions to task-oriented dialogue sce-
narios. In our implementation, we improve on
CopyNet (Gu et al., 2016) to instantiate Sequic-
ity framework in this paper, as key words present
in bspans and machine responses recur from previ-
ous utterances. Extensive experiments conducted
on two benchmark datasets verify the effectiveness
of our proposed method.

Our contributions are fourfold: (1) We pro-
pose the Sequicity framework, which handles both
task completion and response generation in a sin-
gle seq2seq model; (2) We present an implemen-
tation of the Sequicity framework, called Two
Stage CopyNet (TSCP), which has fewer number
of parameters and trains faster than state-of-the-art
baselines (Wen et al., 2017b, 2016a, 2017a); (3)
We demonstrate that TSCP significantly outper-
forms state-of-the-art baselines on two large-scale
datasets, inclusive of scenarios involving OOV; (4)
We release source code of TSCP to assist the com-
munity to explore Sequicity1.

2 Related Work

Historically, task-oriented dialog systems have
been built as pipelines of separately trained mod-
ules. A typical pipeline design contains four com-
ponents: 1) a user intent classifier, 2) a belief
tracker, 3) a dialogue policy maker and a 4) re-
sponse generator. User intent detectors classify
user utterances to into one of the pre-defined in-
tents. SVM, CNN and RNN models (Silva et al.,
2011; Hashemi et al., 2016; Shi et al., 2016) per-
form well for intent classification. Belief track-
ers, which keep track of user goals and constraints
every turn (Henderson et al., 2014a,b; Kim et al.,
2017) are the most important component for task
accomplishment. They model the probability dis-
tribution of values over each slot (Lee, 2013).
Dialogue policy makers then generate the next
available system action. Recent experiments sug-
gest that reinforcement learning is a promising
paradigm to accomplish this task (Young et al.,

1http://github.com/WING-NUS/sequicity

2013a; Cuayáhuitl et al., 2015; Liu and Lane,
2017), when state and action spaces are carefully
designed (Young et al., 2010). Finally, in the
response generation stage, pipeline designs usu-
ally pre-define fixed templates where placehold-
ers are filled with slot values at runtime (Dhin-
gra et al., 2017; Williams et al., 2017; Henderson
et al., 2014b,a). However, this causes rather static
responses that could lower user satisfaction. Gen-
erating a fluent, human-like response is considered
a separate topic, typified by the topic of conversa-
tion systems (Li et al., 2015).

3 Preliminaries

3.1 Encoder-Decoder Seq2seq Models

Current seq2seq models adopt encoder–decoder
structures. Given a source sequence of tokens
X = x1x2...xn, an encoder network represent X
as hidden states: H(x) = h

(x)
1 h

(x)
2 ...h

(x)
n . Based

on H(x), a decoder network generates a target se-
quence of tokens Y = y1y2...ym whose likelihood
should be maximized given the training corpus.

As of late, the recurrent neural network with
attention (Att-RNN) is now considered a base-
line encoder–decoder architecture. Such networks
employ two (sometimes identical) RNNs, one for
encoding (i.e., generating H(x)) and another for
decoding. Particularly, for decoding yj , the de-
coder RNN takes the embedding yj−1 to gener-
ate a hidden vector h

(y)
j . Afterwards, the de-

coder attends to X: calculating attention scores
between all h(x)

i ∈ H(x) and h
(y)
j (Eq. (1)), and

then sums all h(x)
i , weighted by their correspond-

ing attention scores (Eqs. (2)). The summed result
h̃

(x)
j concatenates h(y)

j as a single vector which is
mapped into an output space for a softmax oper-
ation (Eq. (3)) to decode the current token:

uij = vT tanh(W1h
(x)
i + W2h

(y)
j ) (1)

h̃
(x)
j =

n∑

i=1

euij∑
i e
uij

h
(x)
i (2)

yj = softmax(O

[
h̃

(x)
j

h
(y)
j

]
) (3)

where v ∈ R1×l; W1, W2 ∈ Rl×d and O ∈
R|V |×d. d is embedding size and V is vocabulary
set and |V | is its size.
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3.2 Belief Trackers

In the multi-turn scenarios, a belief tracker is the
key component for task completion as it records
key information from past turns (Wen et al.,
2017b; Henderson et al., 2013, 2014a,b). Early
belief trackers are designed as Bayesian networks
where each node is a dialogue belief state (Paek
and Horvitz, 2000; Young et al., 2013b). Recent
work successfully represents belief trackers as dis-
criminative classifiers (Henderson et al., 2013;
Williams, 2012; Wen et al., 2017b).

Wen et al. (2017b) apply discrimination ap-
proaches (Henderson et al., 2013) to build one
classifier for each slot in their belief tracker. Fol-
lowing the terminology of (Wen et al., 2017b),
a slot can be either informable or requestable,
which have been annotated in CamRes676 and
KVRET. Individually, an informable slot, speci-
fied by user utterances in previous turns, is set to
a constraint for knowledge base search; whereas
a requestable slot records the user’s need in the
current dialogue. As an example of belief track-
ers in CamRes676, food type is an informable
slot, and a set of food types is also predefined (e.g.,
Italian) as corresponding slot values. In (Wen
et al., 2017b), the informable slot food type is
recognized by a classifier, which takes user utter-
ances as input to predict if and which type of food
should be activated, while the requestable slot of
address is a binary variable. address will be
set to true if the slot is requested by the user.

4 Method

We now describe the Sequicity framework, by first
explaining the core concept of bspans. We then
instantiate the Sequicity framework with our intro-
duction of an improved CopyNet (Gu et al., 2016).

4.1 Belief Spans for Belief Tracking

The core of belief tracking is keeping track of in-
formable and requestable slot values when a di-
alogue progresses. In the era of pipeline-based
methods, supervised classification is a straightfor-
ward solution. However, we observe that this tra-
ditional architecture can be updated by applying
seq2seq models directly to the problem. In con-
trast to (Wen et al., 2017b) which treats slot val-
ues as classification labels, we record them in a
text span, to be decoded by the model. This lever-
ages the state-of-the-art neural seq2seq models to
learn and dynamically generate them. Specifically,

our bspan has an information field (marked with
<Inf></Inf>) to store values of informable
slots since only values are important for knowl-
edge base search. Bspans can also feature a re-
quested field (marked with <Req></Req>), stor-
ing requestable slot names if the corresponding
value is True.

At turn t, given the user utterance Ut, we show
an example of both bspan Bt and machine re-
sponseRt generation in Figure 1, where annotated
slot values at each turn are decoded into bspans.
B1 contains an information slot Italian be-
cause the user stated “Italian food” in U1. During
the second turn, the user adds an additional con-
straint cheap resulting in two slot values in B2’s
information field. In the third turn, the user further
asks for the restaurant’s phone and address, which
are stored in requested slots of B3.

Our bspan solution is concise: it simplifies
multiple sophisticated classifiers with a single se-
quence model. Furthermore, it can be viewed as
an explicit data structure that expedite knowledge
base search as its format is fixed: following (Wen
et al., 2017b), we use the informable slots values
directly for matching fields of entries in databases.

4.2 The Sequicity Framework

We make a key observation that at turn t, a sys-
tem only needs to refer to Bt−1, Rt−1 and Ut to
generate a new belief span Bt and machine re-
sponse Rt, without appealing to knowing all past
utterances. Such Markov assumption allows Se-
quicity to concatenate Bt−1, Rt−1 and Ut (de-
noted as Bt−1Rt−1Ut) as a source sequence for
seq2seq modeling, to generate Bt and Rt as tar-
get output sequences at each turn. More for-
mally, we represent the dialogue utterances as
{(B0R0U1;B1R1); (B1R1U2;B2R2); ...; (Bt−1

Rt−1Ut;BtRt)} where B0 and R0 are initialized
as empty sequences. In this way, Sequicity ful-
fills both task accomplishment and response gen-
eration in an unified seq2seq model. Note that we
process Bt and Rt separately, as the belief state
Bt depends only on Bt−1Rt−1Ut, while the re-
sponse Rt is additionally conditioned on Bt and
the knowledge base search results (denoted as kt);
that is, Bt informs theRt’s contents. For example,
Rt must include all the request slots fromBt when
communicating the entities fulfilling the requests
found in the knowledge base. Here, kt helps gen-
erate Rt pragmatically.
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𝐵ଶ

<Inf> Italian ; cheap </Inf> 
<Req></Req>

𝑈ଷ

Tell   me   the   address   and   the   
phone   number   please . </s>

<Inf> Italian ; cheap </Inf> <Req>address ; 
phone</Req>

𝐵ଷ Rଷ

Turn Dialogue

User1 Can I have some Italian food please?

Mach
ine1

<Inf> Italian </Inf><Req> </Req>
What price range are you looking for?

User2 I want cheap ones.

Mach
ine2

<Inf> Italian ; cheap </Inf> 
<Req></Req>
NAME_SLOT is a cheap restaurant 
serving western food

User3 Tell   me   the   address   and   the   
phone   number   please   . 

Mach
ine3

<Inf> Italian ; cheap </Inf> 
<Req>address ; phone</Req>
The  address  is  ADDRESS_SLOT 
and the phone number is 
PHONE_SLOT

Knowledge 
Base

The  address  is  ADDRESS_SLOT and the phone number is 
PHONE_SLOT

NAME_SLOT is a cheap restaurant 
serving western food

𝑅ଶ

Figure 1: Sequicity overview. The left shows a sample dialogue; the right illustrates the Sequicity. Bt
is employed only by the model, and not visible to users. During training, we substitute slot values
with placeholders bearing the slot names for machine response. During testing, this is inverted: the
placeholders are replaced by actual slot values, according to the item selected from the knowledge base.

Generally, kt has three possibilities: 1) multiple
matches, 2) exact match and 3) no match, while
the machine responses differ accordingly. As an
example, let’s say a user requests an Italian restau-
rant. In the scenario of multiple matches, the sys-
tem should prompt for additional constraints for
disambiguation (such as restaurant price range).
In the second exact match scenario where a sin-
gle target (i.e., restaurant) has been found, the sys-
tem should inform the user their requested infor-
mation (e.g., restaurant address). If no entity is
obtained, the system should inform the user and
perhaps generate a cooperative response to retry a
different constraint.

We thus formalize Sequicity as a seq2seq model
which encodes Bt−1Rt−1Ut jointly, but decodes
Bt and Rt separately, in two serial stages. In the
first stage, the seq2seq model decodesBt uncondi-
tionally (Eq. 4a). Once Bt obtained, the decoding
pauses to perform the requisite knowledge base
search based on Bt, resulting in kt. Afterwards,
the seq2seq model continues to the second decod-
ing stage, where Rt is generated on the additional
conditions of Bt and kt (Eq. 4b).

Bt = seq2seq(Bt−1Rt−1Ut|0, 0) (4a)

Rt = seq2seq(Bt−1Rt−1Ut|Bt,kt) (4b)

Sequicity is a general framework suitably imple-
mented by any of the various seq2seq models.
The additional modeling effort beyond a general

seq2seq model is to add the conditioning on Bt
and kt to decode the machine response Rt. For-
tunately, natural language generation with spe-
cific conditions has been extensively studied (Wen
et al., 2016b; Karpathy and Fei-Fei, 2015; Mei
et al., 2016) which can be employed within this
framework.

4.3 Sequicity Instantiation: A Two Stage
CopyNet

Although there are many possible instantiations,
in this work we purposefully choose a simplistic
architecture, leaving more sophisticated modeling
for future work. We term our instantiated model
a Two Stage CopyNet (TSCP). We denote the first
m′ tokens of target sequence Y areBt and the rests
are Rt, i.e. Bt = y1...ym′ and Rt = ym′+1...ym.

Two-Stage CopyNet. We choose to improve
upon CopyNet (Gu et al., 2016) as our seq2seq
model. This is a natural choice as we observe
that target sequence generation often requires the
copying of tokens from the input sequence. Let’s
discuss this in more detail. From a probabilis-
tic point of view, the traditional encoder–decoder
structure learns a language model. To decode yj ,
we can employ a softmax (e.g., Eq. 3) to calcu-
late the probability distribution over V i.e., P gj (v)
where v ∈ V , and then choose the token with
the highest generation probability. However, in
our case, tokens in the target sequence Y might
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be exactly copied from the input X (e.g., “Ital-
ian”). These copied words need to be explicitly
modeled. CopyNet (Gu et al., 2016) is a natural fit
here, as it enlarges the decoding output space from
V to V ∪ X . For yj , it considers an additional
copy probability P cj (v), indicating the likelihood
of yj copied from v ∈ X . Following (Gu et al.,
2016), the simple summation of both probabilities
Pj(v) = P gj (v) + P cj (v), v ∈ V ∪X is treated as
the final probability in the original paper.

In Sequicity, simply applying original CopyNet
architecture is insufficient, since Bt and Rt have
different distributions. We here employ two sep-
arate RNN (GRU in our implementation) in de-
coder: one for Bt and the other for Rt. In the first
decoding stage, we have a copy-attention mecha-
nism on X to decode Bt; then calculate the gener-
ation probability through attending to X as intro-
duced in Sec 3.1, as well as the copy probability
for each word v ∈ X following (Gu et al., 2016)
by Eq. 5:

P cj (v) =
1

Z

|X|∑

i:xi=v

eψ(xi), j 6 m′ (5)

where Z is a normalization term and ψ(xi) is the
score of “copying” word xi and is calculated by:

ψ(xi) = σ(h
(x)
i

T
Wc)h

(y)
j , j 6 m′ (6)

where Wc ∈ Rd×d.
In the second decoding stage (i.e., decoding

Rt), we apply the last hidden state ofBt as the ini-
tial hidden state of the Rt GRU. However, as we
need to explicitly model the dependency onBt, we
have copy-attention mechanism on Bt instead of
onX: treating all tokens ofBt as the candidate for
copying and attention. Specifically, we use hidden
state generated by Bt GRU, i.e., h(y)

1 , ...,h
(y)
m′ , to

calculate copying using Eqs. 7 and 8 and attention
score as introduced in Sec 3.1. It helps to reduce
search space because all key information of X for
task completion has been included in Bt.

P cj (v) =
1

Z

∑

i:yi=v

eψ(yi), i 6 m′ < j 6 m (7)

ψ(yi) = σ(h
(y)
i

T
Wc)h

(y)
j , i 6 m′ < j 6 m (8)

In contrast to recent work (Eric and Manning,
2017a) that also employs a copy-attention mech-
anism to generate a knowledge-base search API
and machine responses, our proposed method ad-
vances in two aspects: on one hand, bspans
reduce the search space from U1R1...UtRt to
Bt−1Rt−1Ut by compressing key points for the
task completion given past dialogues; on the other
hand, because bspans revisit context by only han-
dling the Bt with a fixed length, the time com-
plexity of TSCP is only O(T ), comparing O(T 2)
in (Eric and Manning, 2017a).

Involving kt when decoding Rt. As kt has
three possible values: obtaining only one, multi-
ple or no entities. We let kt be a vector of three
dimensions, one of which signals a value. We ap-
pend kt to the embeddings yj , as shown in Eq. (9)
that is fed into an GRU for generating h

(y)
j+1. This

approach is also referred to as Language Model
Type condition (Wen et al., 2016b)

y′j =

[
yj
kt

]
, j ∈ [m′ + 1,m] (9)

4.4 Training

The standard cross entropy is adopted as our ob-
jective function to train a language model:

m∑

j=1

yjlogPj(yj) (10)

In response generation, every token is treated
equally. However, in our case, tokens for task
completion are more important. For example,
when a user asks for the address of a restau-
rant, it matters more to decode the placeholder
<address> than decode words for language flu-
ency. We can employ reinforcement learning to
fine tune the trained response decoder with an em-
phasis to decode those important tokens.

Inspired by (Wen et al., 2017a), in the context
of reinforcement learning, the decoding network
can be viewed as a policy network, denoted as
πΘ(yj) for decoding yj (m′ + 1 6 j 6 m). Ac-
cordingly, the choice of word yj is an action and
its hidden vector generated by decoding GRU is
the corresponding state. In reinforcement tuning
stage, the trained response decoder is the initial
policy network. By defining a proper reward func-
tion r(j) for decoding yj , we can update the trained
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Dataset Cam676
Size Train:408 / Test: 136 / Dev: 136
Domains restaurant reservation
Slot types price, food style etc.
Distinct slot values 99
Dataset KVRET
Size Train:2425 / Test: 302 / Dev: 302
Domains calendar weather info. POI
Slot types date, etc. location, etc. poi, etc.
Distinct slot values 79 65 140

Table 1: Dataset demographics. Following the
respective literature, Cam676 is split 3:1:1 and
KVRET is split 8:1:1, into training, developing
and testing sets, respectively.

response model with policy gradient:

1

m−m′
m∑

j=m′+1

r(j)∂logπΘ(yj)

∂Θ
(11)

where r(j) = r(j) + λr(j+1) + λ2r(j+2) +
...+λm−j+1r(m). To encourage our generated re-
sponse to answer the user requested information
but avoid long-winded response, we set the reward
at each step r(j) as follows: once the placeholder
of requested slot has been decoded, the reward for
current step is 1; otherwise, current step’s reward
is -0.1. λ is a decay parameter. Sec 5.2 for λ set-
tings.

5 Experiments

We assess the effectiveness of Sequicity in three
aspects: the task completion, the language qual-
ity, and the efficiency. The evaluation metrics are
listed as follows:

· BLEU to evaluate the language quality (Papineni
et al., 2002) of generated responses (hence top-1
candidate in (Wen et al., 2017b)).
· Entity match rate evaluates task completion.
According to (Wen et al., 2017b), it determines
if a system can generate all correct constraints to
search the indicated entities of the user. This met-
ric is either 0 or 1 for each dialogue.
· Success F1 evaluates task completion and is
modified from the success rate in (Wen et al.,
2017b, 2016a, 2017a). The original success rate
measures if the system answered all the requested
information (e.g. address, phone number). How-
ever, this metric only evaluates recall. A system
can easily achieve a perfect task success by always
responding all possible request slots. Instead, we
here use success F1 to balance both recall and pre-

cision. It is defined as the F1 score of requested
slots answered in the current dialogue.
· Training time. The training time is important for
iteration cycle of a model in industry settings.

5.1 Datasets

We adopt the CamRest676 (Wen et al., 2017a)
and KVRET (Eric and Manning, 2017b) datasets.
Both datasets are created by a Wizard-of-Oz (Kel-
ley, 1984) method on Amazon Mechanical Turk
platform, where a pair of workers are recruited
to carry out a fluent conversation to complete an
assigned task (e.g. restaurant reservation). Dur-
ing conversation, both informable and requestable
slots are recorded by workers.

CamRest676’s dialogs are in the single domain
of restaurant searching, while KVRET is broader,
containing three domains: calendar scheduling,
weather information retrieval and point of inter-
est (POI) Navigation. Detailed slot information in
each domain are shown in Table 1. We follow the
data splits of the original papers as shown in 1.

5.2 Parameter Settings

For all models, the hidden size and the embedding
size d is set to 50. |V | is 800 for CamRes676
and 1400 for KVRET. We train our model with
an Adam optimizer (Kingma and Ba, 2015), with
a learning rate of 0.003 for supervised training and
0.0001 for reinforcement learning. Early stopping
is performed on developing set. In reinforcement
learning, the decay parameter λ is set to 0.8. We
also use beam search strategy for decoding, with a
beam size of 10.

5.3 Baselines and Comparisons

We first compare our model with the state-of-the-
art baselines as follow:

• NDM (Wen et al., 2017b). As described in
Sec 1, it adopts pipeline designs with a be-
lief tracker component depending on delexi-
calization.

• NDM+Att+SS. Based on the NDM model, an
additional attention mechanism is performed
on the belief trackers and a snapshot learning
mechanism (Wen et al., 2016a) is adopted.

• LIDM (Wen et al., 2017a). Also based on
NDM, this model adopts neural variational
inference with reinforcement learning.

1442



CamRes676 KVRET
Mat. BLEU Succ. F1 Timefull TimeN.B. Mat. BLEU Succ. F1 Timefull TimeN.B.

(1) NDM 0.904 0.212 0.832 91.9 min 8.6 min 0.724 0.186 0.741 285.5 min 29.3 min
(2) NDM + Att + SS 0.904 0.240 0.836 93.7 min 10.4 min 0.724 0.188 0.745 289.7 min 33.5 min
(3) LIDM 0.912 0.246 0.840 97.7 min 14.4 min 0.721 0.173 0.762 312.8 min 56.6 min
(4) KVRN N/A 0.134 N/A 21.4 min – 0.459 0.184 0.540 46.9 min –
(5) TSCP 0.927 0.253 0.854 7.3 min – 0.845 0.219 0.811 25.5 min –
(6) Att-RNN 0.851 0.248 0.774 7.2 min – 0.805 0.208 0.801 23.0 min –
(7) TSCP\kt 0.927 0.232 0.835 7.2 min – 0.845 0.168 0.759 25.3 min –
(8) TSCP\RL 0.927 0.234 0.834 4.1 min – 0.845 0.191 0.774 17.5 min –
(9) TSCP\Bt 0.888 0.197 0.809 22.9 min – 0.628 0.182 0.755 42.7 min –

Table 2: Model performance on CamRes676 and KVRET. This table is split into two parts: competitors
on the upper side and our ablation study on the bottom side. Mat. and Succ. F1 are for match rate and
success F1 respectively. Timefull column reports training time till converge. For NDM, NDM+Att+SS
and LIDM, we also calculate the training time for the rest parts except for the belief tracker (TimeN.B.).

• KVRN (Eric and Manning, 2017b) uses one
seq2seq model to generate response as well
as interacting with knowledge base. How-
ever, it does not incorporate a belief tracking
mechanism.

For NDM, NDM+Att+SS, LIDM, we run the
source code released by the original authors2. For
KVRN, we replicate it since there is no source
code available. We also performed an ablation
study to examine the effectiveness of each com-
ponent.

• TSCP\kt. We removed the conditioning on
kt when decoding Rt.

• TSCP\RL. We removed reinforcement learn-
ing which fine tunes the models for response
generation.

• Att-RNN. The standard seq2seq baseline
as described in the preliminary section
(See §3.1).

• TSCP\Bt. We removed bspans for dialogue
state tracking. Instead, we adopt the method
in (Eric and Manning, 2017a): concatenat-
ing all past utterance in a dialogue into a
CopyNet to generate user information slots
for knowledge base search as well as machine
response.

5.4 Experimental Results
As shown in Table 2, TSCP outperforms all base-
lines (Row 5 vs. Rows 1–4) in task completion
(entity match rate, success F1) and language qual-
ity (BLEU). The more significant performance of
TSCP in KVRET dataset indicates the scalability

2https://github.com/shawnwun/NNDIAL

of TSCP. It is because KVRET dataset has sig-
nificant lexical variety, making it hard to perform
delexicalization for Wen et al.’s model (Rows 1–
3)3. However, CamRes676 is relatively small with
simple patterns where all systems work well. As
predicted, KVRN (Row 4) performs worse than
TSCP (Row 5) due to lack of belief tracking.

Compared with Wen et al.’s models (Rows 1–3),
TSCP takes a magnitude less time to train. Al-
though TSCP is implemented in PyTorch while
Wen et al.’s models in Theano, such speed com-
parison is still valid, as the rest of the NDM model
— apart from its belief tracker — has a compara-
ble training speed to TSCP (7.3 mins vs. 8.6 mins
on CamRes676 and 25.5 mins vs. 29.3 mins on
KVRET), where model complexities are similar.
The bottleneck in the time expense is due to belief
tracker training. In addition, Wen et al.’s models
perform better at the cost of more training time
(Rows 1, 2 and 3), suggesting the intrinsic com-
plexity of pipeline designs.

Importantly, ablation studies validate the ne-
cessity of bspans. With bspans, even a stan-
dard seq2seq model (Att-RNN, Row 6) beats so-
phisticated models such as attention copyNets
(TSCP\Bt, Row 9) in KVRET. Furthermore,
TSCP (Row 5) outperforms TSCP\Bt (Row 9) in
all aspects: task completion, language quality and
training speed. This validate our theoretical analy-
sis in Sec 4.3. Other components of TSCP are also
important. If we only use vanilla Attention-based
RNN instead of copyNet, all metrics for model
effectiveness decrease, validating our hypothesize
that the copied words need to be specifically mod-
eled. Secondly, BLEU score is sensitive to knowl-

3We use the delexicalization lexicon provided by the orig-
inal author of KVRET(Eric and Manning, 2017b)
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edge base search result kt (Row 7 vs. Row 5).
By examining error cases, we find that the system
is likely to generate common sentences like “you
are welcome” regardless of context, due to corpus
frequency. Finally, reinforcement learning effec-
tively helps both BLEU and success F1 although it
takes acceptable additional time for training.

5.5 OOV Tests

Previous work predefines all slot values in a be-
lief tracker. However, a user may request new at-
tributes that has not been predefined as a classifi-
cation label, which results in an entity mismatch.
TSCP employs copy mechanisms, gaining an in-
trinsic potential to handle OOV cases. To conduct
the OOV test, we synthesize OOV test instances
by adding a suffix unk to existing slot fillers. For
example, we change “I would like Chinese food”
into “I would like Chinese unk food.” We then
randomly make a proportion of testing data OOV
and measure its entity match rate. For simplicity,
we only show the three most representative mod-
els pre-trained in the in-vocabulary data: TSCP,
TSCP\Bt and NDM.
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TSCP NDM TSCP\Bt

(a) CamRes676
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TSCP NDM TSCP\Bt

(b) KVRET

Figure 2: OOV tests. 0% OOV rate means no
OOV instance while 100% OOV rate means all in-
stances are changed to be OOV.

Compared with NDM, TSCP still performs well
when all slot fillers are unknown. This is because
TSCP actually learns sentence patterns. For exam-
ple, CamRes676 dataset contains a frequent pat-
tern “I would like [food type] food” where the
[food type] should be copied in Bt regardless
what exact word it is. In addition, the performance
of TSCP\Bt decreases more sharply than TSCP as
more instances set to be OOV. This might be be-
cause handling OOV cases is much harder when
search space is large.

5.6 Empirical Model Complexity

Traditional belief trackers like (Wen et al., 2017b)
are built as a multi-class classifier, which mod-
els each individual slot and its corresponding val-
ues, introducing considerable model complexities.
This is especially severe in large datasets with a
number of slots and values. In contrast, Sequic-
ity reduces such a complex classifier to a language
model. To compare the model complexities of two
approaches, we empirically measure model size.
We split KVRET dataset by their domains, result-
ing in three sub-datasets. We then accumulatively
add the sub-datasets into training set to examine
how the model size grows. We here selectively
present TSCP, NDM and its separately trained be-
lief tracker, since Wen et al.’s set of models share
similar model sizes.
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Figure 3: Model size sensitivity with respect to
KVRET. Distinct slot values of 79, 144, 284 cor-
respond to the number of slots in KVRET’s calen-
dar, calendar + weather info., and all 3 domains.

As shown in Figure 3, TSCP has a magni-
tude less number of parameters than NDM and
its model size is much less sensitive to distinct
slot values increasing. It is because TSCP is a
seq2seq language model which has a approximate
linear complexity to vocabulary size. However,
NDM employs a belief tracker which dominates
its model size. The belief tracker is sensitive to the
increase of distinct slot values because it employs
complex structures to model each slot and corre-
sponding values. Here, we only perform empirical
evaluation, leaving theoretically complexity anal-
ysis for future works.

5.7 Discussions

In this section we discuss if Sequicity can tackle
inconsistent user requests , which happens when
users change their minds during a dialogue. Incon-
sistent user requests happen frequently and are dif-
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ficult to tackle in belief tracking (Williams, 2012;
Williams et al., 2013). Unlike most of previous
pipeline-based work that explicitly defines model
actions for each situation, Sequicity is proposed to
directly handle various situations from the training
data with less manual intervention. Here, given
examples about restaurant reservation, we provide
three different scenarios to discuss:

• A user totally changes his mind. For ex-
ample, the user request a Japanese restaurant
first and says “I dont want Japanese food any-
more, I’d like French now.” Then, all the slot
activated before should be invalid now. The
slot annotated for this turn is only French. Se-
quicity can learn this pattern, as long as it is
annotated in the training set.

• User requests cannot be found in the
KB (e.g., Japanese food). Then the sys-
tem should respond like “Sorry, there is no
Japanese food...”. Consequently, the user can
choose a different option: “OK, then French
food.” The activated slot Japanese will be
replaced as French, which our system can
learn. Therefore, an important pattern is the
machine-response (e.g., “there is no [XXX
constraint]”) in the immediate previous utter-
ance.

• Other cases. Sequicity is expected to gen-
erate both slot values in a belief span if it
doesn’t know which slot to replace. To main-
tain the belief span, we run a simple post-
processing script at each turn, which detects
whether two slot values have the same slot
name (e.g., food type) in a pre-defined
slot name-value table. Then, such script only
keeps the slot value in the current turn of user
utterance. Given this script, Sequicity can ac-
curately discover the slot requested by a user
in each utterance. However, this script only
works when slot values are pre-defined. For
inconsistent OOV requests, we need to build
another classifier to recognize slot names for
slot values.

To sum up, Sequicity, as a framework, is able
to handle various inconsistent user input despite
its simple design. However, detailed implementa-
tions should be customized depends on different
applications.

6 Conclusion

We propose Sequicity, an extendable framework,
which tracks dialogue believes through the decod-
ing of novel text spans: belief spans. Such belief
spans enable a task-oriented dialogue system to be
holistically optimized in a single seq2seq model.
One simplistic instantiation of Sequicity, called
Two Stage CopyNet (TSCP), demonstrates better
effectiveness and scalability of Sequicity. Exper-
iments show that TSCP outperforms the state-of-
the-art baselines in both task accomplishment and
language quality. Moreover, our TSCP implemen-
tation also betters traditional pipeline architectures
by a magnitude in training time and adds the ca-
pability of handling OOV. Such properties are im-
portant for real-world customer service dialog sys-
tems where users’ inputs vary frequently and mod-
els need to be updated frequently. For our future
work, we will consider advanced instantiations for
Sequicity, and extend Sequicity to handle unsuper-
vised cases where information and requested slots
values are not annotated.
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Abstract

We highlight a practical yet rarely dis-
cussed problem in dialogue state tracking
(DST), namely handling unknown slot val-
ues. Previous approaches generally as-
sume predefined candidate lists and thus
are not designed to output unknown val-
ues, especially when the spoken language
understanding (SLU) module is absent as
in many end-to-end (E2E) systems. We
describe in this paper an E2E architec-
ture based on the pointer network (PtrNet)
that can effectively extract unknown slot
values while still obtains state-of-the-art
accuracy on the standard DSTC2 bench-
mark. We also provide extensive empir-
ical evidence to show that tracking un-
known values can be challenging and our
approach can bring significant improve-
ment with the help of an effective feature
dropout technique.

1 Introduction

A dialogue state tracker is a core component in
most of today’s spoken dialogue systems (SDS).
The goal of dialogue state tracking (DST) is to
monitor the user’s intentional states during the
course of the conversation, and provide a compact
representation, often called the dialogue states, for
the dialogue manager (DM) to decide the next ac-
tion to take.

In task-oriented dialogues, or slot-filling dia-
logues in the simplistic form, the dialogue agent is
tasked with helping the user achieve simple goals
such as finding a restaurant or booking a train
ticket. As the name itself suggests, a slot-filling

0The first author is now with Facebook. Qi contributed to
the work during an internship at Mobvoi.

dialogue is composed of a predefined set of slots
that need to be filled through the conversation. The
dialogue states in this case are therefore the values
of these slot variables, which are essentially the
search constraints the DM has to maintain in order
to perform the database lookup.

Traditionally in the research community, as ex-
emplified in the dialogue state tracking challenge
(DSTC) (Williams et al., 2013), which has be-
come a standard evaluation framework for DST
research, the dialogues are usually constrained by
a fixed domain ontology, which essentially de-
scribes in detail all the possible values that each
predefined slot can take. Having access to such
an ontology can simplify the tracking problem in
many ways, however, in many of the SDS appli-
cations we have built in the industry, such an on-
tology was not obtainable. Oftentimes, the back-
end databases are only exposed through an exter-
nal API, which is owned and maintained by our
partners. It is usually not possible to gain access
to their data or enumerate all possible slot val-
ues in their knowledge base. Even if such lists or
dictionaries exist, they can be very large in size
and highly dynamic (e.g. new songs added, new
restaurants opened etc.). It is therefore not ami-
able to many of the previously introduced DST
approaches, which generally rely on classification
over a fixed ontology or scoring each slot value
pairs separately by enumerating the candidate list.

In this paper, we will therefore focus on this par-
ticular aspect of the DST problem which has rarely
been discussed in the community – namely how to
perform state tracking in the absence of a compre-
hensive domain ontology and how to handle un-
known slot values effectively.

It is worth noting that end-to-end (E2E) mod-
eling for task-oriented dialogue systems has be-
come a popular trend (Williams and Zweig, 2016;
Zhao and Eskenazi, 2016; Li et al., 2017; Liu et al.,
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2017; Wen et al., 2017), although most of them
focus on E2E policy learning and language gener-
ation, and still rely on explicit dialogue states in
their models. While fully E2E approaches which
completely obviate explicit DST have been at-
tempted (Bordes and Weston, 2016; Eric and Man-
ning, 2017a,b; Dhingra et al., 2017), their gener-
ality and scalability in real world applications re-
mains to be seen. In reality, a dedicated DST com-
ponent remains a central piece to most dialogue
systems, even in most of the proclaimed E2E mod-
els.

E2E approaches for DST, i.e. joint modeling of
SLU and DST has also been presented in the lit-
erature (Henderson et al., 2014b,c; Mrksic et al.,
2015; Zilka and Jurcicek, 2015; Perez and Liu,
2017; Mrksic et al., 2017). In these methods, the
conventional practice of having a separate spoken
language understanding (SLU) module is replaced
by various E2E architectures that couple SLU and
DST altogether. They are sometimes called word
based state tracking as the dialogue states are de-
rived directly from word sequences as opposed to
SLU outputs. In the absence of SLU to gener-
ate value candidates, most E2E trackers today can
only operate with fixed value sets. To address this
limitation, we introduce an E2E tracker that al-
lows us to effectively handle unknown value sets.
The proposed solution is based on the recently in-
troduced pointer network (PtrNet) (Vinyals et al.,
2015), which essentially performs state tracking in
an extractive fashion similar to the sequence label-
ing techniques commonly utilized for slot tagging
in SLU (Tur and Mori, 2011).

Our proposed technique is similar in spirit as
the recent work in (Rastogi et al., 2018), which
also targets the problem of unbounded and dy-
namic value sets. They introduce a sophisticated
candidate generation strategy followed by a neural
network based scoring mechanism for each can-
didate. Despite the similarity in the motivation,
their system relies on SLU to generate value candi-
dates, resulting in an extra module to maintain and
potential error propagation as commonly faced by
pipelined systems.

The contributions of this paper are three-folds:
Firstly, we target a very practical yet rarely investi-
gated problem in DST, namely handling unknown
slot values in the absence of a predefined ontol-
ogy. Secondly, we describe a novel E2E architec-
ture without SLU based on the PtrNet to perform

state tracking. Thirdly, we also introduce an effec-
tive dropout technique for training the proposed
model which drastically improves the recall rate
of unknown slot values.

The rest of the paper is structured as follows:
We give a brief review of related work in the field
in Section 2 and point out its limitations. The Ptr-
Net and its proposed application in DST are de-
scribed in Section 3. In Section 4, we demon-
strate some caveats regarding the use of PtrNet and
propose an additional classification module as a
complementary component. The targeted dropout
technique, which can be essential for generaliza-
tion on some datasets, is described in Section 5.
Experimental setup and results are presented in
Section 6, followed by conclusions in Section 7.

2 Dialogue State Tracking

In DSTC tasks, the dialogue states are defined as
a set of search constraints (i.e. informable slots
or goals) the user specified through the dialogue
and a set of attribute questions regarding the
search results (i.e. requestable slots or requests).
The DST component is expected to track the
values of the aforementioned slots taking into
account the current user utterance as well as the
entire dialogue context. As mentioned in the
previous section, the values each slot variable
can take are specified beforehand through an
ontology. This is a hidden assumption that
previous techniques usually rely upon implic-
itly and also what motivates our work in this paper.

Discriminative DST While generative models
aiming at modeling the joint distribution of di-
alogue states and miscellaneous evidences have
been a popular modeling choice for DST for many
years, the scalability issue resulting from large
state spaces has limited the broader application of
this family of models, despite the success of vari-
ous approximation techniques.

The discriminative methods, on the other
hand, directly model the posterior distribution of
dialogue states given the evidences accumulated
through the conversation history. Models such as
maximum entropy (Metallinou et al., 2013) and
particularly the more recent deep learning based
models (Henderson et al., 2014b,c; Zilka and
Jurcicek, 2015; Mrksic et al., 2015, 2017; Perez
and Liu, 2017) have demonstrated state-of-the-art
results on public benchmarks. Such techniques
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often involve a multi-class classification step at
the end (e.g. in the form of a softmax layer) which
for each slot predicts the corresponding value
based on the dialogue history. Sometimes the
multi-class classification is replaced by a binary
prediction that decides whether a particular slot
value pair was expressed by the user, and the list
of candidates comes from either a fixed ontology
or the SLU output.

E2E DST Previous work has also investigated
joint modeling strategies merging SLU and DST
altogether. In this line of work, the SLU module is
removed from the standard SDS architecture, re-
sulting in reduced development cost and alleviat-
ing the error propagation problem commonly af-
fecting cascaded systems.

In the absence of SLU providing fine-grained
semantic features, the E2E approaches these days
typically rely on variants of neural networks such
as recurrent neural networks (RNN) or memory
networks (Weston et al., 2014) to automatically
learn features from the raw dialogue history.
The deep learning based techniques cited in
the previous subsection generally fall into this
category.

Current Limitations In short, most of the previ-
ous DST approaches, particularly E2E ones, are
not designed to handle slot values that are not
known to the tracker.

As we have described in the introduction, the
assumption that a predefined ontology exists for
the dialogue and one can enumerate all possible
values for each slot is often not valid in real world
scenarios. Such an assumption has implicitly in-
fluenced many design choices of previous sys-
tems. The methods based on classification or scor-
ing each slot value pair separately can be very dif-
ficult to apply when the set of slot values is not
enumerable, either due to its size or its constantly
changing nature, especially in E2E models where
there is no SLU module to generate an enumerable
candidate list for the tracker.

It is important to point out the difference be-
tween unseen states and unknown states, as pre-
vious work has tried to address the problem of
unseen slot values, i.e. values that were not ob-
served during training. E2E approaches in par-
ticular, frequently employ a featurization strategy
called delexicalization, which replaces slots and

values mentioned in the dialogue text with generic
labels. Such a conversion allows the models to
generalize much better to new values that are in-
frequent or unseen in the training data. However,
such slot values are still expected to be known to
the tracker, either through a predefined value set or
provided by SLU, otherwise the delexicalization
cannot be performed, nor can the classifier prop-
erly output such values.

3 Pointer Network

In this section, we briefly introduce the Ptr-
Net (Vinyals et al., 2015), which is the main basis
of the proposed technique, and how the DST prob-
lem can be reformulated to take advantage of the
flexibility enabled by such a model.

In the PtrNet architecture, similar as other
sequence-to-sequence (seq2seq) models, there is
an encoder which takes the input and iteratively
produces a sequence of hidden states correspond-
ing to the feature vector at each input position.
There is also a decoder which generates outputs
with the help of the weighted encoded states where
the weights are computed through attention. Here,
instead of using softmax to predict the distribution
over a set of predefined candidates, the decoder
directly normalizes the attention score at each po-
sition and obtains an output distribution over the
input sequence. The index of the maximum prob-
ability is the pointed position, and the correspond-
ing element is selected as decoder output, which
is then fed into next decoding step. Both the en-
coder and decoder are based on various RNN mod-
els, capable of dealing with sequences of variable
length.

The PtrNet specifically targets the problems
where the output corresponds to positions in the
input sequence, and it is widely used for seq2seq
tasks where some kind of copying from the input
is needed. Among its various applications, ma-
chine comprehension (a form of question answer-
ing), such as in (Wang and Jiang, 2016), is the
closest to how we apply the model to DST.

The output of DST, same as in machine compre-
hension, is a word segment in the input sequence
most of the time, thus can be naturally formu-
lated as a pointing problem. Instead of generating
longer output sequences, the decoder only has to
predict the starting index and the ending index in
order to identify the word segment.

More specifically, words are mapped to embed-
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dings and the dialogue history w0, w1, ..., wt up to
the current turn t is bidirectionally encoded using
LSTM models. To differentiate words spoken by
the user versus by the system, the word embed-
dings are further augmented with speaker role in-
formation. Other features, such as the entity type
of each word, can also be fed into the encoder si-
multaneously in order to extract richer information
from the dialogue context.

The encoded state at each position can then be
denoted as hi, which is the concatenation of for-
ward state and backward state ([hfi , h

b
i ]). The final

forward state hft is used as the initial hidden state
of the decoder. We use a special symbol denoting
the type of slot (e.g. <food>) as the first decoder
input, which is also mapped to a trainable embed-
ding Etype. Therefore, the starting index s0 of the
slot value is computed as the following, where u0i
is the attention score of the ith word in the input
against the decoder state d0.

d0 = LSTM(hft , Etype)

u0i = vT tanh(Whhi +Wdd0)

a0i = exp(u0i )/
t∑

j=0

exp(u0j )

s0 = argmax
i
a0i

The attention scores at the second decoding step
are computed similarly as below, where Ews0

is
the embedding of the word at the selected start-
ing position, and the ending position s1 can be ob-
tained in the same way as s0.

d1 = LSTM(d0, Ews0
)

u1i = vT tanh(Whhi +Wdd
1)

Note that there is no guarantee that s1 > s0, al-
though most of the time the model is able to iden-
tify consistent patterns in the data and therefore
output reasonable word segments. When s1 < s0,
it is often a good indication that the answer does
not exist in the input (such as the none slot in
DSTC2).1 Depending on the nature of the task, it
is certainly possible to set a constraint at the sec-
ond decoding step, forcing s1 to be larger than s0.

One can clearly see how the described model
can handle unknown slot values – as long as they
are mentioned explicitly during the dialogue, we

1It is the backoff strategy we take in our experiments on
DSTC2.

Figure 1: An illustration of the proposed PtrNet
based architecture for DST. The classifier outputs
“other” indicating the decision should be made by
PtrNet; The decoder (red) in PtrNet is predicting
the ending word of the slot value given the pre-
dicted starting word via attention against the en-
coded states (blue).

have a chance of finding them. Compared with
previous approaches, which all require some kind
of candidate lists, the proposed technique takes a
different perspective on DST: For most slots in di-
alogue systems, tracking up-to-date values in a di-
alogue is not very different from tagging slots in a
user query. While sequence labeling models such
as conditional random field (CRF) has proven to
be a great fit for slot tagging, the same formula-
tion may as well be used for DST.

4 Rephrasing and Non-pointable Values

Our PtrNet based architecture works by directly
pinpointing in the conversation history the slot
value that the user expressed in its surface form.
The model is totally unaware of the different ways
of referring to the same entity. Therefore, the
derived dialogue states may not have canonical
forms that are consistent with the values in the
backend database, making it more difficult to re-
trieve the correct results. A good example from
the DSTC2 dataset is the price slot which can take
the reference value ”moderate”, in the actual di-
alogues however, they are frequently expressed as
”moderately priced”, causing problems for search-
ing the database and also computing accuracy.

While such a problem can be easily remedied
by an extra canonicalization step (setting dialogue
states to standard forms) before performing the
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Classifer PtrNet
Rephrasing Yes *Yes

none, dontcare, etc Yes No
ASR errors Hard Hard

Unknown values No Yes

Table 1: Classifier vs. Pointer network in handling
various difficult conditions. *PtrNet requires post-
normalization to handle rephrasing.

database lookup, it is a much bigger problem if
the slot value is not indicated explicitly by any
particular word or phrase in the dialogue history,
we describe these slot values as non-pointable.
To give an example, in DSTC tasks, the special
none value is given when the user has not specified
any constraint for the slot. While this information
can be easily inferred from the dialogue, it is not
possible to point to any specific word segment in
the sentence as the corresponding slot value. The
same problem also exists for the dontcare value in
DSTC, which implies that the user can accept any
values for a slot constraint.

To address this issue, we add a classification
component into our neural network architecture to
handle non-pointable values. For each turn of the
dialogue, the classifier makes a multi-class deci-
sion on whether the target slot should take any of
the non-pointable values (e.g. dontcare or none)
or it should be processed by the PtrNet.

As illustrated in Figure 1, the final forward state
out of the dialogue encoder is used as the feature
vector for the classification layer, which is trained
with cross entropy loss and jointly with the PtrNet.

The best choice of the set of values to be han-
dled by the classifier may not be obvious. In most
cases both the classifier and the PtrNet are capable
of extracting the correct slot value, although they
both offer unique advantages over the other. Ta-
ble 1 briefly summarizes the pros and cons of each
model.

The proposed combined architecture, taking the
best of both worlds, is similar to the pointer-
generator model introduced in (See et al., 2017)
for abstractive text summarization. In their ap-
proach the PtrNet is also augmented with a classi-
fication based word generator, and the model can
choose to generate words from a predefined vo-
cabulary or copy words from the input. Other
classify-and-copy mechanisms have also been ex-
plored in (Gu et al., 2016; Gulcehre et al., 2016;

Eric and Manning, 2017a), and demonstrated im-
proved performance on various seq2seq tasks such
as summarization and E2E dialogue generation. 2

As we have shown in this paper, DST can also
be formulated to incorporate such copying mecha-
nisms, allowing itself to handle unknown slot val-
ues as well.

5 Targeted Feature Dropout

Feature dropout is an effective technique to pre-
vent feature co-adaption and improve model gen-
eralization (Hinton et al., 2012). It is most widely
used for neural network based models but may as
well be utilized for other feature based models.
Targeted feature dropout however, was introduced
in (Xu and Sarikaya, 2014) to address a very spe-
cific co-adaptation problem in slot filling, namely
insufficient training of word context features.

For slot filling, this problem often occurs when
1) the dictionary (a precompiled list of possible
slot values) covers the majority of the slot values
in the training data, or 2) most slot values repeat
frequently resulting in insufficient tail representa-
tions. In both cases, the contextual features tend
to get severely under-trained and as a result the
model is not able to generalize to unknown slot
values that are neither in the dictionary nor ob-
served in training.

The way our architecture works essentially ex-
tracts slot values in the same way as in slot fill-
ing, although the goal is to identify slots consider-
ing the entire dialogue context rather than a (usu-
ally) single user query. The same problem can also
happen for DST if training data are not examined
carefully. As an example, the DSTC2 task comes
with a fixed ontology, it is not originally designed
to track unknown slots (see the OOV rate in Ta-
ble 2). Taking a closer look at the data, as shown
in the histogram in Figure 2, the majority of the
food type slot appears more than 10 times in the
training data. As a result, the model oftentimes
only learns to memorize these frequent slot val-
ues, and not the contextual patterns which can be
more crucial for extracting slot values not known
in advance.

To alleviate the generalization issue, we adapt
the targeted dropout trick to work with our neural

2The copy-augmented model in (Eric and Manning,
2017a) also outputs API call parameters (which are essen-
tially dialogue states) in a seq2seq fashion, including un-
known parameters by copying from dialogue history, al-
though the work focuses entirely on dialogue generation.
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Figure 2: Histogram of food type slot on DSTC2
training data.

network based architecture. Instead of randomly
disabling unigram and dictionary features for CRF
models as done in the original work, we randomly
set to zero the input word embeddings that corre-
spond to the slot values in the dialogue utterances.
For example, the italian food type in DSTC2 ap-
pears almost 500 times in the training data. During
training, every time “italian” gets mentioned in the
dialogue as the labeled user goal, we turn off the
word embedding of “italian” in the model input
with some probability, forcing the model to learn
from the context to identify the slot value. Dic-
tionary features are not used in our experiments,
otherwise they can be turned off similarly.

As we will show later in the results, this proves
to be a particularly effective yet simple trick for
improving generalization to unknown slot values,
without sacrificing accuracy for the known and ob-
served ones.

6 Experiments and Results

6.1 Datasets

We conduct our experiments on the DSTC2
dataset (Henderson et al., 2014a), and on the bAbI
dialogue dataset as used in (Bordes and Weston,
2016).

The DSTC2 dataset is the standard DST bench-
mark comprised of real dialogues between human
and dialogue systems. We are mainly interested in
tracking user goals, whereas the other two compo-
nents of the dialogue state, namely search methods
and requested slots, are not concerned with un-
known slot values, and thus are not the focus in
this paper. Meanwhile, the non-pointable values,
none and dontcare, constitute a significant portion
in DSTC2. Overall almost 60% of the user goals

Original New
#food types in train 74 48

#train instances 11677 8546
#test instances 9890 9890

OOV food types in test (%) 0 30.4

Table 2: Statistics of the new modified DSTC2
dataset with unknown food types. About 27% of
the training instances are discarded. The test set
remains the same.

are labeled as either none or dontcare, the two pre-
dominant non-pointable values, it is therefore par-
ticularly suitable for evaluating our proposed hy-
brid architecture.

An important part of our experimental evalua-
tion is to demonstrate our ability to identify un-
known slots. Although it happens frequently in
real world situations, the original DSTC2 dataset
does not suffer from this particular problem – on
the test data, there are no unknown values that we
have not observed in training for all of the three
slot types. To conduct our investigation, we pick
the food type slot to simulate unknown values.
Specifically, we randomly select about 35% of the
food types in the training set (26 out of 74) as un-
known and discard all the training instances where
the correct food type is one of the 26 unknown
types that we selected. The statistics of the result-
ing dataset is shown in Table 2.

On the other hand, the bAbI dialogue dataset is
initially designed for evaluating E2E goal oriented
dialogue systems and has not been used specifi-
cally for DST. The model is expected to predict
both the system utterances and the API calls to ac-
cess the database. We notice that the parameters
of the API calls are essentially the dialogue states
at the point of the dialogue, it may as well be used
as a dataset for measuring the accuracy of the state
tracker. We therefore convert Task 5 of the bAbI
dataset, which is the full dialogue combination of
Tasks 1-4, into a DST dataset for our experiments.

Although simulated and with highly regular be-
haviors, the nice thing about the bAbI dialogue
dataset is that it comes with an out-of-vocabulary
(OOV) test set in which the entities (locations and
food types) are not seen in any training dialogues.
This poses exactly the same problem we are try-
ing to address in this paper, namely predicting the
API call parameters when they are not only un-
seen but also unknown to the system. Many of
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the previous E2E approaches simplifies the pre-
diction problem as a selection among all API calls
appeared in the entire dataset, thus bypassing the
problem of tracking unknown dialogue states ex-
plicitly, although we believe it is not a realistic
simplification.

6.2 Model and Training Details

The proposed model is implemented in Tensor-
Flow. We use the provided development set to tune
the hyper-parameters, track the training progress
and select the best performing model for reporting
the accuracy on test sets. The joint architecture is
trained separately for each slot type by minimizing
the sum of the cross entropy loss from the PtrNet
and the classifier. Mini-batch SGD with a batch
size of 50 and Adam optimizer (Kingma and Ba,
2014) is used for training.

Each word is mapped to a randomly initialized
100 dimensional embedding and each dialogue in-
stance is represented as a 540 * 100 dimensional
vector with zero paddings on the left when neces-
sary. Instead of the using the raw word sequences,
the system utterances are replaced by the more
succinct and consistent dialogue act representa-
tions such as “request slot food”. One layer of
LSTM is used with a state size of 200 (additional
layers did not help noticeably). Standard dropout
with a keep probability of 0.5 is performed for
training at the input and output of the LSTM cells.
To keep it simple, targeted dropout is done only
once for the entire training set before training be-
gins, the dataset is therefore static across epochs.

To train the PtrNet, the location of the reference
slot value in the dialogue needs to be provided. It
does not require manual labeling though, and we
simply use the last occurrence of the reference slot
value in the dialogue history as the reference lo-
cation. The occurrence is found via exact string
match and the two most frequent spelling varia-
tions, “moderate” and “moderately”, “center” and
“centre” are considered equivalent. If no occur-
rence exists in a training instance (due to ASR er-
rors or rephrasing), it will not be used for training
the PtrNet.

On the other hand, the classifier serves as a gate-
keeper that decides which slot values should be
handed over to the PtrNet. On the bAbI dataset,
there are zero non-pointable slots, and therefore
everything is handled by the PtrNet. On DSTC2,
we train the classifier to perform a three-way clas-

sification that determines if the slot values is none,
dontcare or other. As we have described, other slot
values can also become non-pointable in the ac-
tual dialogue: Those resulting from different sur-
face forms are usually easier to handle, all we need
is an extra post-processing step to normalize the
value; The ones caused by ASR errors though,
are much more challenging. One can argue that
a classifier may be better equipped for these cases
since it does not require locating the actual values
in the word sequence, but unless there are consis-
tent misrecognition patterns, they are difficult to
handle for either the classifier or the PtrNet.

The non-pointable values in DSTC2, besides
none and dontcare, are predominantly due to
recognition errors, and we decide not to do any-
thing specific about them – the PtrNet is tasked
with processing these misrecognized utterances,
and no normalization (except for “moderately”
and “center”) is performed on the network output
for computing the accuracy. 3

6.3 Evaluation Setup
The DSTC2 dataset is a standard benchmark for
the task, we therefore compare the joint goal ac-
curacy (a turn is considered correct if values are
predicted correctly for all slots) of the proposed
model with previous reported numbers to show
the efficacy of our approach under regular circum-
stances, i.e. all slot values are known and observed
in training. However, it is not our goal to outper-
form all previous DST systems – the main theme is
that our technique allows identifying unknown slot
values effectively and even if used in the standard
setting, our model yields state-of-the-art results.

Measuring the accuracy on unknown slot val-
ues, however, does not have well-established base-
lines in the literature. Most previous systems are
not concerned with this problem, and many of
them are inherently not capable of outputting un-
known values. So instead of comparisons with
previous techniques, we will focus on demonstrat-
ing how this could be a serious problem tracking
unknown slot values and how the targeted dropout
can improve things drastically.

6.4 Results
The joint goal accuracy on the standard DSTC2
test set is shown in Table 3 comparing our Ptr-

3Non-pointable values besides none and dontcare consti-
tute 9.7% of food, 7.6% of location and 4.7% of price on the
test data, effectively setting an upper bound on the accuracy.
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Models Joint Acc.
Delexicalizaed RNN 69.1

Delexicalizaed RNN + semdict 72.9
NBT-DNN 72.6
NBT-CNN 73.4
MemN2N 74.0

Scalable Multi-domain DST 70.3
PtrNet 72.1

Table 3: Joint goal accuracy on DSTC2 test set vs.
various approaches as reported in the literature.

Net based model against various previous reported
baselines.

It is important to emphasize that the PtrNet
model is an E2E model without using any SLU
output and makes use of only the 1-best ASR
hypothesis without any confidence measure for
testing. Although more sophisticated DST mod-
els sometimes demonstrate better accuracy, our
PtrNet model holds various advantages against
all baseline models: In comparison with our ap-
proach, the delexicalized RNN models (Hender-
son et al., 2014b,c) utilize the n-best list and/or the
SLU output; The NBT (Mrksic et al., 2017) and
MemN2N (Perez and Liu, 2017) models are E2E
but both depend on candidate lists as given and
hence are not designed to handle unknown (differ-
ent from unseen) slot values; The scalable DST
model (Rastogi et al., 2018), although address-
ing the same problem of unbounded value set, re-
lies on SLU to generate value candidates, and also
does not perform equally well on the standard test
set.

On the modified DSTC2 dataset with the re-
duced training set, the accuracy of the known/seen
and unknown food types is shown in Figure 3.
The standard training process with no targeted
dropout performs poorly when the food types are
not known beforehand, epitomizing the often over-
looked challenge of handling unknown slot values.
With a small dropout probability of 5%, the accu-
racy on unknown values essentially increases by
three times (from 11.6% to 34.4%), while the ac-
curacy on other values remains roughly the same.

Similar observations can also be made on the
bAbI dataset predicting OOV API parameters (Ta-
ble 4). While the dataset is quite artificial and in
most cases we can achieve perfect accuracy on the
regular test set, the OOV parameter values are not
nearly as easy to predict. The targeted dropout

Figure 3: Accuracy of known/seen and unknown
food types on the modified DSTC2 dataset with
different dropout probabilities.

Regular Test OOV Test
p=0 p=0.1 p=0 p=0.1

food 100 100 86.2 100
location 100 100 74.7 99.6

Table 4: Accuracy of predicting regular and OOV
food and location parameters in bAbI (Task 5) API
calls w/ (p=0.1) and w/o (p=0) targeted dropout.

however, allows us to bridge the accuracy gap en-
tirely.

7 Conclusion

An E2E dialogue state tracker is introduced based
on the pointer network. The model outputs slot
values in an extractive fashion similar to the
slot filling task in SLU. We also add a jointly
trained classification component to combine with
the pointer network, forming a hybrid architec-
ture that not only achieves state-of-the-art accu-
racy on the DSTC2 dataset, but also more im-
portantly is able to handle unknown slot values,
which is a problem often neglected although par-
ticularly valuable in real world situations. A fea-
ture dropout trick is also described and proves to
be particularly effective.
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Abstract

Dialogue state tracking, which estimates
user goals and requests given the dia-
logue context, is an essential part of task-
oriented dialogue systems. In this pa-
per, we propose the Global-Locally Self-
Attentive Dialogue State Tracker (GLAD),
which learns representations of the user ut-
terance and previous system actions with
global-local modules. Our model uses
global modules to share parameters be-
tween estimators for different types (called
slots) of dialogue states, and uses lo-
cal modules to learn slot-specific features.
We show that this significantly improves
tracking of rare states and achieves state-
of-the-art performance on the WoZ and
DSTC2 state tracking tasks. GLAD ob-
tains 88.1% joint goal accuracy and 97.1%
request accuracy on WoZ, outperforming
prior work by 3.7% and 5.5%. On DSTC2,
our model obtains 74.5% joint goal accu-
racy and 97.5% request accuracy, outper-
forming prior work by 1.1% and 1.0%.

1 Introduction

Task oriented dialogue systems can significantly
reduce operating costs by automating processes
such as call center dispatch and online customer
support. Moreover, when combined with auto-
matic speech recognition systems, task-oriented
dialogue systems provide the foundation of intel-
ligent assistants such as Amazon Alexa, Apple
Siri, and Google Assistant. In turn, these assis-
tants allow for natural, personalized interactions
with users by tailoring natural language system re-
sponses to the dialogue context. Dialogue state
tracking (DST) is a crucial part of dialogue sys-
tems. In DST, a dialogue state tracker estimates

the state of the conversation using the current user
utterance and the conversation history. This esti-
mated state is then used by the system to plan the
next action and respond to the user. A state in DST
typically consists of a set of requests and joint
goals. Consider the task of restaurant reservation
as an example. During each turn, the user may in-
form the system of particular goals the user would
like to achieve (e.g. inform(food=french)),
or request for more information from the sys-
tem (e.g. request(address)). The set of
goal and request slot-value pairs (e.g. (food,
french), (request, address)) given dur-
ing a turn are referred to as the turn goal and turn
request. The joint goal is the set of accumulated
turn goals up to the current turn. Figure 1 shows
an example dialogue with annotated turn states, in
which the user reserves a restaurant.

Traditional dialogue state trackers rely on
Spoken Language Understanding (SLU) sys-
tems (Henderson et al., 2012) in order to under-
stand user utterances. These trackers accumu-
late errors from the SLU, which sometimes do
not have the necessary dialogue context to inter-
pret the user utterances. Subsequent DST research
forgo the SLU and directly infer the state using the
conversation history and the user utterance (Hen-
derson et al., 2014b; Zilka and Jurcicek, 2015;
Mrkšić et al., 2015). These trackers rely on hand-
crafted semantic dictionaries and delexicalization
— the anonymization of slots and values using
generic tags — to achieve generalization. Recent
work by Mrkšić et al. (2017) apply representation
learning using convolutional neural networks to
learn features relevant for each state as opposed
to hand-crafting features.

A key problem in DST that is not addressed
by existing methods is the extraction of rare slot-
value pairs that compose the state during each
turn. Because task oriented dialogues cover large
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Where would you go to eat in the south part of town?

inform(area=south)

ok I can help you with that.  Are you 
looking for a particular type of food, or 
within a specific price range?

request(food)
request(price range)

I just want to eat at a cheap restaurant in the south 
part of town. What food types are available, can you 
also provide some phone numbers?

inform(price range=cheap)
inform(area=south)
request(phone)
request(food)

request(food)

I found two restaurants serving cheap 
food. Would you prefer Portuguese or 
Chinese food?

Either is fine, can I have the phone number please?

request(phone)

The lucky start is at 01223 244277 and 
Nandos is at 01223 327908.

Thank you very much.

User System

User utterance

Turn goals  and requests

System actions

System response

Figure 1: An example dialogue from the WoZ
restaurant reservation corpus. Dashed lines divide
turns in the dialogue. A turn contains an user ut-
terance (purple), followed by corresponding turn-
level goals and requests (blue). The system then
executes actions (yellow), and formulates the re-
sult into a natural language response (yellow).

state spaces, many slot-value pairs that compose
the state rarely occur in the training data. Al-
though the chance of a particular rare slot-value
pair being specified by the user in a turn is small,
the chance that at least one rare slot-value pair
is specified is large. Failure to predict these
rare slot-value pairs results in incorrect turn-level
goal and request tracking. Accumulated errors
in turn-level goal tracking significantly degrade
joint goal-tracking. For example, in the WoZ state
tracking dataset, slot-value pairs have 214.9 train-
ing examples on average, while 38.6% of turns
have a joint goal that contains a rare slot-value pair
with less than 20 training examples.

In this work, we propose the Global-Locally
Self-Attentive Dialogue State Tracker (GLAD),
a new state-of-the-art model for dialogue

state tracking. In contrast to previous work
that estimate each slot-value pair independently,
GLAD uses global modules to share parame-
ters between estimators for each slot and local
modules to learn slot-specific feature representa-
tions. We show that by doing so, GLAD gener-
alizes on rare slot-value pairs with few training
examples. GLAD achieves state-of-the-art results
of 88.1% goal accuracy and 97.1% request accu-
racy on the WoZ dialogue state tracking task (Wen
et al., 2017), outperforming prior best by 3.7% and
5.5%. On DSTC2 (Henderson et al., 2014a), we
achieve 74.5% goal accuracy and 97.5% request
accuracy, outperforming prior best by 1.1% and
1.0%.

2 Global-Locally Self-Attentive Dialogue
State Tracker

One formulation of state tracking is to predict the
turn state given an user utterance and previous sys-
tem actions (Williams and Young, 2007). Like
previous methods (Henderson et al., 2014b; Wen
et al., 2017; Mrkšić et al., 2017), GLAD decom-
poses the multi-label state prediction problem into
a collection of binary prediction problems by us-
ing a distinct estimator for each slot-value pair that
make up the state. Hence, we describe GLAD with
respect to a slot-value pair that is being predicted
by the model.

Shown in Figure 2, GLAD is comprised of an
encoder module and a scoring module. The en-
coder module consists of separate global-locally
self-attentive encoders for the user utterance, the
previous system actions, and the slot-value pair
under consideration. The scoring module consists
of two scorers. One scorer considers the contribu-
tion from the utterance while the other considers
the contribution from previous system actions.

2.1 Global-Locally Self-Attentive Encoder

We begin by describing the global-locally self-
attentive encoder, which makes up the encoder
module. DST datasets tend to be small relative
to their state space in that many slot-value pairs
rarely occur in the dataset. Because each state is
comprised of a set of slot-value pairs, many of
them rare, poor inference of rare slot-value pairs
subsequently results in poor turn-level tracking.
This problem is amplified in joint tracking, due
to the accumulation of turn-level errors. In de-
veloping this encoder, we seek to better model
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request(food)

I just want to eat at a cheap 
restaurant in the south part of town. 
What food types are available, can 
you also provide some phone 
numbers?

System actions in previous turn

request(price range)

User utterance

Slot value under consideration

price range = cheap

Action 
encoder

P(price range=cheap)

X H
utt

cutt
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Figure 2: The Global-Locally Self-Attentive Dialogue State Tracker.

Local 
BiLSTM

Global 
BiLSTM

Gated 
Mixture

Local 
Self-Attn

Global
Self-Attn

Gated 
Mixture

cH
X

H
g

H
s cs

cg

Figure 3: Global-locally self-attentive encoder.

rare slot-value pairs by sharing parameters be-
tween each slot through global modules and learn-
ing slot-specific features through local modules.

The global-locally self-attentive encoder con-
sists of a bidirectional LSTM (Hochreiter and
Schmidhuber, 1997), which captures temporal re-
lationships within the sequence, followed by a
self-attention layer to compute the summary of the
sequence. Figure 3 illustrates the global-locally
self-attentive encoder.

Consider the process of encoding a sequence
with respect to a particular slot s. Let n denote
the number of words in the sequence, demb the di-
mension of the embeddings, and X ∈ Rn×demb

the word embeddings corresponding to words in
the sequence. We produce a global encoding Hg

of X using a global bidirectional LSTM.

Hg = biLSTMg (X) ∈ Rn×drnn (1)

where drnn is the dimension of the LSTM state.
We similarly produce a local encoding Hs of X ,

taking into account the slot s, using a local bidi-
rectional LSTM.

Hs = biLSTMs (X) ∈ Rn×drnn (2)

The outputs of the two LSTMs are combined
through a mixture layer to yield a global-local en-
coding H of X .

H = βsHs + (1 − βs) Hg ∈ Rn×drnn (3)

Here, the scalar βs is a learned parameter be-
tween 0 and 1 that is specific to the slot s. Next,
we compute a global-local self-attention context
c over H . Self-attention, or intra-attention, is
a very effective method of computing summary
context over variable-length sequences for natu-
ral language processing tasks (Cheng et al., 2016;
Vaswani et al., 2017; He et al., 2017; Lee et al.,
2017). In our case, we use a global self-attention
module to compute attention context useful for
general-purpose state tracking, as well as a local
self-attention module to compute slot-specific at-
tention context.

For each ith element Hi, we compute a scalar
global self-attention score ag

i which is subse-
quently normalized across all elements using a
softmax function.

ag
i = W gHi + bg ∈ R (4)

pg = softmax (ag) ∈ Rn (5)
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The global self-attention context cg is then the
sum of each element Hi, weighted by the cor-
responding normalized global self-attention score
pg

i .

cg =
∑

i

pg
i Hi ∈ Rdrnn (6)

We similarly compute the local self-attention
context cs.

as
i = W sHi + bs ∈ R (7)

ps = softmax (as) ∈ Rn (8)

cs =
∑

i

ps
iHi ∈ Rdrnn (9)

The global-local self-attention context c is the
mixture

c = βscs + (1 − βs) cg ∈ Rn×drnn (10)

For ease of exposition, we define the multi-
value encode function encode (X).

encode : X → H, c (11)

This function maps the sequence X to the en-
coding H and the self-attention context c.

2.2 Encoding module
Having defined the global-locally self-attentive
encoder, we now build representations for the user
utterance, the previous system actions, and the
slot-value pair under consideration. Let U denote
word embeddings of the user utterance, Aj de-
note those of the jth previous system action (e.g.
request ( price range ), and V denote
those of the slot-value pair under consideration
(e.g. food = french). We have

Hutt, cutt = encode (U) (12)

Hact
j , Cact

j = encode (Aj) (13)

Hval, cval = encode (V ) (14)

2.3 Scoring module
Intuitively, there are two sources of contribution to
whether the user has expressed the slot-value pair
under consideration. The first source of contribu-
tion is the user utterance, in which the user directly

states the goals and requests. An example of this is
the user saying “how about a French restaurant in
the centre of town?”, after the system asked “how
may I help you?” To handle these cases, we deter-
mine whether the utterance specifies the slot-value
pair. Namely, we attend over the user utterance
Hutt, taking into account the slot-value pair be-
ing considered cval, and use the resulting attention
context qutt to score the slot-value pair.

autt
i =

(
Hutt

i

)⊺
cval ∈ R (15)

putt = softmax
(
autt

)
∈ Rm (16)

qutt =
∑

i

putt
i Hutt

i ∈ Rdrnn (17)

yutt = Wqutt + b ∈ R (18)

where m is the number of words in the user
utterance. The score yutt indicates the degree to
which the value was expressed by the user utter-
ance.

The second source of contribution is the pre-
vious system actions. This source is informative
when the user utterance does not present enough
information and instead refers to previous sys-
tem actions. An example of this is the user say-
ing “yes”, after the system asked “would you like
a restaurant in the centre of town?” To handle
these cases, we examine previous actions after
considering the user utterance. First, we attend
over the previous action representations Cact =
[Cact

1 · · · Cact
l ], taking into account the current

user utterance cutt. Here, l is the number of pre-
vious system actions. Then, we use the similar-
ity between the attention context qact and the slot-
value pair cval to score the slot-value pair.

aact
j =

(
Cact

j

)⊺
cutt ∈ R (19)

pact = softmax
(
aact

)
∈ Rl+1 (20)

qact =
∑

j

pact
j Cact

j ∈ Rdrnn (21)

yact =
(
qact

)⊺
cval ∈ R (22)

In addition to real previous system actions, we
introduce a sentinel action to each turn which al-
lows the attention mechanism to ignore previous
system actions. The score yact indicates the degree
to which the value was expressed by the previous
actions.
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The final score y is then a weighted sum be-
tween the two scores yutt and yact, normalized by
the sigmoid function σ.

y = σ
(
yutt + wyact

)
∈ R (23)

Here, the weight w is a learned parameter.

3 Experiments

3.1 Dataset
The Dialogue Systems Technology Challenges
(DSTC) provides a common framework for de-
veloping and evaluating dialogue systems and
dialogue state trackers (Williams et al., 2013;
Henderson et al., 2014a). Under this frame-
work, dialogue semantics such as states and
actions are based on a task ontology such as
restaurant reservation. During each turn, the
user may inform the system of particular goals
(e.g. inform(food=french)), or request
for more information from the system (e.g.
request(address)). For instance, food and
area are examples of slots in the DSTC2 task,
and french and chinese are example values
within the food slot. We train and evaluate our
model using DSTC2 as well as the Wizard of
Oz (WoZ) restaurant reservation task (Wen et al.,
2017), which also adheres to the DSTC framework
and has the same ontology as DSTC2.

For DSTC2, it is standard to evaluate using the
N-best list of the automatic speech recognition
system (ASR) that is included with the dataset.
Because of this, each turn in the DSTC2 dataset
contains several noisy ASR outputs instead of a
noise-free user utterance. The WoZ task does not
provide ASR outputs, and we instead train and
evaluate using the user utterance.

3.2 Metrics
We evaluate our model using turn-level request
tracking accuracy as well as joint goal tracking
accuracy. Our definition of GLAD in the previ-
ous sections describes how to obtain turn goals
and requests. To compute the joint goal, we sim-
ply accumulate turn goals. In the event that the
current turn goal specifies a slot that has been
specified before, the new specification takes prece-
dence. For example, suppose the user specifies
a food=french restaurant during the current
turn. If the joint goal has no existing food spec-
ifications, then we simply add food=french to

the joint goal. Alternatively, if food=thai had
been specified in a previous turn, we simply re-
place it with food=french.

3.3 Implementation Details

We use fixed, pretrained GloVe embeddings (Pen-
nington et al., 2014) as well as character n-gram
embeddings (Hashimoto et al., 2017). Each model
is trained using ADAM (Kingma and Ba, 2015).
For regularization, we apply dropout with 0.2 drop
rate (Srivastava et al., 2014) to the output of each
local module and each global module. We use the
development split for hyperparameter tuning and
apply early stopping using the joint goal accuracy.

For the DSTC2 task, we train using transcripts
of user utterances and evaluate using the noisy
ASR transcriptions. During evaluation, we take
the sum of the scores resulting from each ASR out-
put as the output score of a particular slot-value.
We then normalize this sum using a sigmoid func-
tion as shown in Equation (23). We also apply
word dropout, in which the embeddings of a word
is randomly set to zero with a probability of 0.3.
This accounts for the poor quality of ASR outputs
in DSTC2, which frequently miss several words in
the user utterance. We did not find word dropout to
be helpful for the WoZ task, which does not con-
tain noisy ASR outputs.

3.4 Comparison to Existing Methods

Table 1 shows the performance of GLAD com-
pared to previous state-of-the-art models. The
delexicalisation models, which replace slots and
values in the utterance with generic tags, are
from Henderson et al. (2014b) for DSTC2
and Wen et al. (2017) for WoZ. Semantic dic-
tionaries map slot-value pairs to hand-engineered
synonyms and phrases. The NBT (Mrkšić et al.,
2017) applies CNN over word embeddings learned
over a paraphrase database (Wieting et al., 2015)
instead of delexicalised n-gram features.

On the WoZ dataset, we find that GLAD sig-
nificantly improves upon previous state-of-the-
art performance by 3.7% on joint goal tracking ac-
curacy and 5.5% on turn-level request tracking ac-
curacy. On the DSTC dataset, which evaluates us-
ing noisy ASR outputs instead of user utterances,
GLAD improves upon previous state of the art per-
formance by 1.1% on joint goal tracking accuracy
and 1.0% on turn-level request tracking accuracy.

1462



Model
DSTC2 WoZ

Joint goal Turn request Joint goal Turn request

Delexicalisation-Based Model 69.1% 95.7% 70.8% 87.1%
Delex. Model + Semantic Dictionary 72.9% 95.7% 83.7% 87.6%
Neural Belief Tracker (NBT) - DNN 72.6% 96.4% 84.4% 91.2%
Neural Belief Tracker (NBT) - CNN 73.4% 96.5% 84.2% 91.6%
GLAD 74.5± 0.2% 97.5± 0.1% 88.1± 0.4% 97.1± 0.2%

Table 1: Test accuracies on the DSTC2 and WoZ restaurant reservation datasets. The other models
are: delexicalisation DSTC2 (Henderson et al., 2014b), delexicalisation WoZ (Wen et al., 2017), and
NBT (Mrkšić et al., 2017). We run 10 models using random seeds with early stopping on the development
set, and report the mean and standard deviation test accuracies for each dataset.

Model Tn goal Jnt goal Tn request

GLAD 93.7% 88.8% 97.3%
- global 88.8% 73.4% 97.3%
- local 93.1% 86.6% 95.1%
- self-attn 91.6% 84.4% 97.1%
- LSTM 88.7% 71.5% 93.2%

Table 2: Ablation study showing turn goal, joint
goal, and turn request accuracies on the dev. split
of the WoZ dataset. For “- self-attn”, we use mean-
pooling instead of self-attention. For “- LSTM”,
we compute self-attention over word embeddings.

3.5 Ablation study

We perform ablation experiments on the develop-
ment set to analyze the effectiveness of different
components of GLAD. The results of these exper-
iments are shown in Table 2. In addition to the
joint goal accuracy and the turn request accuracy,
we also show the turn goal accuracy for reference.

Temporal order is important for state track-
ing. We experiment with an embedding-matching
variant of GLAD with self-attention but without
LSTMs. The weaker performance by this model
suggests that representations that capture temporal
dependencies is helpful for understanding phrases
for state tracking.

Self-attention allows slot-specific, robust fea-
ture learning. We observe a consistent drop in
performance for models that use mean-pooling as
opposed to self-attention (Equations (4) to (6)).
This stems from the flexibility in the attention
context computation afforded by the self-attention
mechanism, which allows the model to focus on
select words relevant to the slot-value pair under
consideration. Figure 4 illustrates an example in
which local self-attention modules focus on rele-

vant parts of the utterance. We note that the model
attends to relevant phrases that n-gram and em-
bedding matching techniques do not capture (e.g.
“within 5 miles” for the “area” slot).

Global-local sharing improves goal tracking.
We study the two extremes of sharing between the
global module and the local module. The first uses
only the local module and results in degradation in
goal tracking but does not affect request tracking
(e.g. βs = 1). This is because the former is a joint
prediction over several slot-values with few train-
ing examples, whereas the latter predicts a single
slot that has the most training examples.

The second uses only the global module and
underperforms in both goal tracking and request
tracking (e.g. βs = 0). This model is less expres-
sive, as it lacks slot-specific specializations except
for the final scoring modules.

Figure 5 shows the performance of the original
model and the two sharing variants across differ-
ent numbers of occurrences in the training data.
GLAD consistently outperforms both variants for
rare slot-value pairs. For slot-value pairs with an
abundance of training data, there is no significant
performance difference between models as there is
sufficient data to generalize.

3.6 Qualitative analysis

Table 3 shows example predictions by GLAD. In
the first example, the user explicitly outlines re-
quests and goals in a single utterance. In the sec-
ond example, the model previously prompted the
user for confirmation of two requests (e.g. for the
restaurant’s address and phone number), and the
user simply answers in the affirmative. In this
case, the model still obtains the correct result by
leveraging the system actions in the previous turn.
The last example demonstrates an error made by
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Figure 5: F1 performance for each slot-value pair
in the development split of the WoZ task, grouped
by the number of training instances.

the model. Here, the user does not answer the sys-
tem’s previous request for the choice of food and
instead asks for what food is available. The model
misinterprets the lack of response as the user not
caring about the choice of food.

4 Related Work

Dialogue State Tracking. Traditional dialogue
state trackers rely on a separate SLU component
that serves as the initial stage in the dialogue agent
pipeline. The downstream tracker then combines
the semantics extracted by the SLU with previous
dialogue context in order to estimate the current
dialogue state (Thomson and Young, 2010; Wang
and Lemon, 2013; Williams, 2014; Perez and Liu,
2017). Recent results in dialogue state tracking
show that it is beneficial to jointly learn speech
understanding and dialogue tracking (Henderson
et al., 2014b; Zilka and Jurcicek, 2015; Wen et al.,
2017). These approaches directly take as input
the N-best list produced by the ASR system. By

avoiding the accumulation of errors from the ini-
tial SLU component, these joint approaches typi-
cally achieved stronger performance on tasks such
as DSTC2. One drawback to these approaches is
that they rely on hand-crafted features and com-
plex domain-specific lexicon (in addition to the
ontology), and consequently are difficult to ex-
tend and scale to new domains. The recent Neu-
ral Belief Tracker (NBT) by Mrkšić et al. (2017)
avoids reliance on hand-crafted features and lex-
icon by using representation learning. The NBT
employs convolutional filters over word embed-
dings in lieu of previously-used hand-engineered
features. Moreover, to outperform previous meth-
ods, the NBT uses pretrained embeddings tailored
to retain semantic relationships by injecting se-
mantic similarity constraints from the Paraphrase
Database (Wieting et al., 2015; Ganitkevitch et al.,
2013). On the one hand, these specialized embed-
dings are more difficult to obtain than word em-
beddings from language modeling. On the other
hand, these embeddings are not specific to any di-
alogue domain and are directly usable for new do-
mains.

Neural attention models in NLP. Attention
mechanisms have led to improvements on a va-
riety of natural language processing tasks. Bah-
danau et al. (2015) propose attentional sequence
to sequence models for neural machine translation.
Luong et al. (2015) analyze various attention tech-
niques and highlight the effectiveness of the sim-
ple, parameterless dot product attention. Similar
models have also proven successful in tasks such
as summarization (See et al., 2017; Paulus et al.,
2018). Self-attention, or intra-attention, has led
improvements in language modeling, sentiment
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System actions in previous turn User utterance Predicted turn belief state

N/A I would like Polynesian
food in the South part of
town. Please send me phone
number and address.

request(phone)
request(address)
inform(food=polynesian)
inform(area=south)

request(address)
request(phone)

There is a moderately priced italian place
called Pizza hut at cherry hilton. would
you like the address and phone number?

Yes please. request(phone)
request(address)

request(food)
request(price range)

ok I can help you with that. Are you look-
ing for a particular type of food, or within
a specific price range?

I just want to eat at a cheap
restaurant in the south part
of town. What food types
are available, can you also
provide some phone num-
bers?

request(phone)
inform(price range=cheap)
inform(area=south)
-inform(food=dontcare)
+request(food)

Table 3: Example predictions by Global-Locally Self-Attentive Dialogue State Tracker on the develop-
ment split of the WoZ restaurant reservation dataset. Model predicted slot-value pairs that are not in the
ground truth (e.g. false positives) are prefaced with a “+” symbol. Ground truth slot-value pairs that are
not predicted by the model (e.g. false negatives) are prefaced with a “-” symbol.

analysis, natural language inference (Cheng et al.,
2016), semantic role labeling (He et al., 2017), and
coreference resolution (Lee et al., 2017). Deep
self-attention has also achieved state-of-the-art re-
sults in machine translation (Vaswani et al., 2017).
Coattention, or bidirectional attention that code-
pendently encode two sequences, have led to sig-
nificant gains in question answering (Xiong et al.,
2017; Seo et al., 2017) as well as visual question
answering (Lu et al., 2016).

Parameter sharing between related tasks.
Sharing parameters between related tasks to im-
prove joint performance is prominent in multi-
task learning (Caruana, 1998; Thrun, 1996). Early
works in multi-tasking use Gaussian processes
whose covariance matrix is induced from shared
kernels (Lawrence and Platt, 2004; Yu et al.,
2005; Seeger et al., 2005; Bonilla et al., 2008).
Hashimoto et al. (2017) propose a progressively
trained joint model for NLP tasks. When a new
task is introduced, a new section is added to
the network whose inputs are intermediate rep-
resentations from sections for previous tasks. In
this sense, tasks share parameters in a hierar-
chical manner. Johnson et al. (2016) propose a
single model that jointly learns to translate be-
tween multiple language pairs, including one-to-

many, many-to-one, and many-to-many transla-
tion. Kaiser et al. (2017) propose a model that
jointly learns multiple tasks across modalities.
Each modality has a corresponding modality net,
which extracts a representation that is fed into a
shared encoder.

5 Conclusion

We introduced the Global-Locally Self-Attentive
Dialogue State Tracker (GLAD), a new state-of-
the-art model for dialogue state tracking. At the
core of GLAD is the global-locally self-attention
encoder, whose global modules allow parame-
ter sharing between slots and local modules al-
low slot-specific feature learning. This allows
GLAD to generalize on rare slot-value pairs with
few training data. GLAD achieves state-of-the-
art results of 88.1% goal accuracy and 97.1% re-
quest accuracy on the WoZ dialogue state tracking
task, as well as 74.5% goal accuracy and 97.5%
request accuracy on DSTC2.
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Abstract

End-to-end task-oriented dialog systems
usually suffer from the challenge of in-
corporating knowledge bases. In this pa-
per, we propose a novel yet simple end-to-
end differentiable model called memory-
to-sequence (Mem2Seq) to address this is-
sue. Mem2Seq is the first neural gen-
erative model that combines the multi-
hop attention over memories with the
idea of pointer network. We empirically
show how Mem2Seq controls each gener-
ation step, and how its multi-hop attention
mechanism helps in learning correlations
between memories. In addition, our model
is quite general without complicated task-
specific designs. As a result, we show that
Mem2Seq can be trained faster and attain
the state-of-the-art performance on three
different task-oriented dialog datasets.

1 Introduction

Task-oriented dialog systems help users to achieve
specific goals with natural language such as
restaurant reservation and schedule arrangement.
Traditionally, they have been built with several
pipelined modules: language understanding, dia-
log management, knowledge query, and language
generation (Williams and Young, 2007; Hori et al.,
2009; Lee et al., 2009; Levin et al., 2000; Young
et al., 2013). Moreover, the ability to query exter-
nal Knowledge Bases (KBs) is essential in task-
oriented dialog systems, since the responses are
guided not only by the dialog history but also by
the query results (e.g. Table 1). However, despite
the stability of such pipelined systems via com-
bining domain-specific knowledge and slot-filling

∗∗ These two authors contributed equally.

Point of interest (poi) Distance Traffic info Poi type Address
The Westin 5 miles moderate traffic rest stop 329 El Camino Real

Round Table 4 miles no traffic pizza restaurant 113 Anton Ct
Mandarin Roots 5 miles no traffic chinese restaurant 271 Springer Street
Palo Alto Cafe 4 miles moderate traffic coffee or tea place 436 Alger Dr

Dominos 6 miles heavy traffic pizza restaurant 776 Arastradero Rd
Stanford Express Care 6 miles no traffic hospital 214 El Camino Real

Hotel Keen 2 miles heavy traffic rest stop 578 Arbol Dr

1t
h

Tu
rn

DRIVER Where can I get tea?
Seq2Seq I have a away from away would you like the address

+Attn I have a listing for a place that serves tea that is 5 miles away
Ptr-Unk There is a away you like would you like more info

Mem2Seq The nearest tea shop is Palo Alto Cafe located 4 miles away,
would you like directions there?

GOLD Palo Alto Cafe is 4 miles away and serves coffee and tea.
Do you want the address?

2t
h

Tu
rn

DRIVER Yes.
Seq2Seq The is at at

+Attn
The address is 329 El Camino Real and it’s 3 miles away
and there is no traffic

Ptr-Unk Palo Alto Cafe is 4 miles away and PAD is no traffic
Mem2Seq Palo Alto Cafe is 4 miles away at 436 Alger Drive

GOLD Palo Alto is located at 436 Alger Dr.

Table 1: Example of generated responses for the
In-Car Assistant on the navigation domain.

techniques, modeling the dependencies between
modules is complex and the KB interpretation re-
quires human effort.

Recently, end-to-end approaches for dialog
modeling, which use recurrent neural networks
(RNN) encoder-decoder models, have shown
promising results (Serban et al., 2016; Wen et al.,
2017; Zhao et al., 2017). Since they can directly
map plain text dialog history to the output re-
sponses, and the dialog states are latent, there is
no need for hand-crafted state labels. Moreover,
attention-based copy mechanism (Gulcehre et al.,
2016; Eric and Manning, 2017) have been recently
introduced to copy words directly from the input
sources to the output responses. Using such mech-
anism, even when unknown tokens appear in the
dialog history, the models are still able to produce
correct and relevant entities.

However, although the above mentioned ap-
proaches were successful, they still suffer from
two main problems: 1) They struggle to effec-
tively incorporate external KB information into
the RNN hidden states (Sukhbaatar et al., 2015),
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Figure 1: The proposed Mem2Seq architecture for task-oriented dialog systems. (a) Memory encoder
with 3 hops; (b) Memory decoder over 2 step generation.

since RNNs are known to be unstable over long
sequences. 2) Processing long sequences is very
time-consuming, especially when using attention
mechanisms.

On the other hand, end-to-end memory
networks (MemNNs) are recurrent attention
models over a possibly large external mem-
ory (Sukhbaatar et al., 2015). They write exter-
nal memories into several embedding matrices,
and use query vectors to read memories repeat-
edly. This approach can memorize external KB in-
formation and rapidly encode long dialog history.
Moreover, the multi-hop mechanism of MemNN
has empirically shown to be essential in achiev-
ing high performance on reasoning tasks (Bordes
and Weston, 2017). Nevertheless, MemNN sim-
ply chooses its responses from a predefined candi-
date pool rather than generating word-by-word. In
addition, the memory queries need explicit design
rather than being learned, and the copy mechanism
is absent.

To address these problems, we present a novel
architecture that we call Memory-to-Sequence
(Mem2Seq) to learn task-oriented dialogs in an
end-to-end manner. In short, our model augments
the existing MemNN framework with a sequen-
tial generative architecture, using global multi-
hop attention mechanisms to copy words directly
from dialog history or KBs. We summarize our
main contributions as such: 1) Mem2Seq is the
first model to combine multi-hop attention mech-
anisms with the idea of pointer networks, which
allows us to effectively incorporate KB informa-
tion. 2) Mem2Seq learns how to generate dynamic
queries to control the memory access. In addi-
tion, we visualize and interpret the model dynam-
ics among hops for both the memory controller

and the attention. 3) Mem2Seq can be trained
faster and achieve state-of-the-art results in several
task-oriented dialog datasets.

2 Model Description

Mem2Seq 1 is composed of two components: the
MemNN encoder, and the memory decoder as
shown in Figure 1. The MemNN encoder cre-
ates a vector representation of the dialog history.
Then the memory decoder reads and copies the
memory to generate a response. We define all the
words in the dialog history as a sequence of to-
kens X = {x1, . . . , xn, $}, where $ is a special
charter used as a sentinel, and the KB tuples as
B = {b1, . . . , bl}. We further define U = [B;X]
as the concatenation of the two setsX andB, Y =
{y1, . . . , ym} as the set of words in the expected
system response, and PTR = {ptr1, . . . , ptrm}
as the pointer index set:

ptri =

{
max(z) if ∃z s.t. yi = uz

n+ l + 1 otherwise
(1)

where uz ∈ U is the input sequence and n+ l+ 1
is the sentinel position index.

2.1 Memory Encoder
Mem2Seq uses a standard MemNN with adjacent
weighted tying (Sukhbaatar et al., 2015) as an en-
coder. The input of the encoder is word-level in-
formation in U . The memories of MemNN are
represented by a set of trainable embedding matri-
ces C = {C1, . . . , CK+1}, where each Ck maps
tokens to vectors, and a query vector qk is used as
a reading head. The model loops over K hops and

1The code is available at https://github.com/
HLTCHKUST/Mem2Seq
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it computes the attention weights at hop k for each
memory i using:

pki = Softmax((qk)TCki ), (2)

where Cki = Ck(xi) is the memory content in po-
sition i, and Softmax(zi) = ezi/Σje

zj . Here, pk

is a soft memory selector that decides the mem-
ory relevance with respect to the query vector qk.
Then, the model reads out the memory ok by the
weighted sum over Ck+1 2,

ok =
∑

i

pkiC
k+1
i . (3)

Then, the query vector is updated for the next hop
by using qk+1 = qk + ok. The result from the
encoding step is the memory vector oK , which will
become the input for the decoding step.

2.2 Memory Decoder
The decoder uses RNN and MemNN. The
MemNN is loaded with both X and B, since we
use both dialog history and KB information to
generate a proper system response. A Gated Re-
current Unit (GRU) (Chung et al., 2014), is used
as a dynamic query generator for the MemNN. At
each decoding step t, the GRU gets the previously
generated word and the previous query as input,
and it generates the new query vector. Formally:

ht = GRU(C1(ŷt−1), ht−1); (4)

Then the query ht is passed to the MemNN which
will produce the token, where h0 is the encoder
vector oK . At each time step, two distribution are
generated: one over all the words in the vocabu-
lary (Pvocab), and one over the memory contents
(Pptr), which are the dialog history and KB inofr-
mation. The first, Pvocab, is generated by concate-
nating the first hop attention read out and the cur-
rent query vector.

Pvocab(ŷt) = Softmax(W1[ht; o
1]) (5)

where W1 is a trainable parameter. On the other
hand, Pptr is generated using the attention weights
at the last MemNN hop of the decoder: Pptr =
pKt . Our decoder generates tokens by pointing to
the input words in the memory, which is a simi-
lar mechanism to the attention used in pointer net-
works (Vinyals et al., 2015).

2Here is Ck+1 since we use adjacent weighted tying.

We designed our architecture in this way be-
cause we expect the attention weights in the
first and the last hop to show a “looser” and
“sharper” distribution, respectively. To elaborate,
the first hop focuses more on retrieving mem-
ory information and the last one tends to choose
the exact token leveraging the pointer supervi-
sion. Hence, during training all the parameters are
jointly learned by minimizing the sum of two stan-
dard cross-entropy losses: one between Pvocab(ŷt)
and yt ∈ Y for the vocabulary distribution, and
one between Pptr(ŷt) and ptrt ∈ PTR for the
memory distribution.

2.2.1 Sentinel

If the expected word is not appearing in the mem-
ories, then the Pptr is trained to produce the sen-
tinel token $, as shown in Equation 1. Once the
sentinel is chosen, our model generates the token
from Pvocab, otherwise, it takes the memory con-
tent using the Pptr distribution. Basically, the sen-
tinel token is used as a hard gate to control which
distribution to use at each time step. A similar ap-
proach has been used in (Merity et al., 2017) to
control a soft gate in a language modeling task.
With this method, the model does not need to learn
a gating function separately as in Gulcehre et al.
(2016), and is not constrained by a soft gate func-
tion as in See et al. (2017).

2.3 Memory Content

We store word-level content X in the memory
module. Similar to Bordes and Weston (2017), we
add temporal information and speaker information
in each token ofX to capture the sequential depen-
dencies. For example, “hello t1 $u” means “hello”
at time step 1 spoken by a user.

On the other hand, to store B, the KB informa-
tion, we follow the works of Miller et al. (2016);
Eric et al. (2017) that use a (subject, relation, ob-
ject) representation. For example, we represent
the information of The Westin in Table 1: (The
Westin, Distance, 5 miles). Thus, we sum word
embeddings of the subject, relation, and object to
obtain each KB memory representation. During
decoding stage, the object part is used as the gen-
erated word for Pptr. For instance, when the KB
tuple (The Westin, Distance, 5 miles) is pointed,
our model copies “5 miles” as an output word. No-
tice that only a specific section of the KB, relevant
to a specific dialog, is loaded into the memory.
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Task 1 2 3 4 5 DSTC2 In-Car
Avg. User turns 4 6.5 6.4 3.5 12.9 6.7 2.6

Avg. Sys turns 6 9.5 9.9 3.5 18.4 9.3 2.6
Avg. KB results 0 0 24 7 23.7 39.5 66.1
Avg. Sys words 6.3 6.2 7.2 5.7 6.5 10.2 8.6

Max. Sys words 9 9 9 8 9 29 87
Pointer Ratio .23 .53 .46 .19 .60 .46 .42

Vocabulary 3747 1229 1601
Train dialogs 1000 1618 2425

Val dialogs 1000 500 302
Test dialogs 1000 + 1000 OOV 1117 304

Table 2: Dataset statistics for 3 different datasets.

3 Experimental Setup

3.1 Dataset

We use three public multi-turn task-oriented dia-
log datasets to evaluate our model: the bAbI dia-
log (Bordes and Weston, 2017), DSTC2 (Hender-
son et al., 2014) and In-Car Assistant (Eric et al.,
2017). The train/validation/test sets of these three
datasets are split in advance by the providers. The
dataset statistics are reported in Table 2.

The bAbI dialog includes five end-to-end dia-
log learning tasks in the restaurant domain, which
are simulated dialog data. Task 1 to 4 are about
API calls, refining API calls, recommending op-
tions, and providing additional information, re-
spectively. Task 5 is the union of tasks 1-4. There
are two test sets for each task: one follows the
same distribution as the training set and the other
has out-of-vocabulary (OOV) entity values that
does not exist in the training set.

We also used dialogs extracted from the Di-
alog State Tracking Challenge 2 (DSTC2) with
the refined version from Bordes and Weston
(2017), which ignores the dialog state annotations.
The main difference with bAbI dialog is that this
dataset is extracted from real human-bot dialogs,
which is noisier and harder since the bots made
mistakes due to speech recognition errors or mis-
interpretations.

Recently, In-Car Assistant dataset has been re-
leased. which is a human-human, multi-domain
dialog dataset collected from Amazon Mechan-
ical Turk. It has three distinct domains: cal-
endar scheduling, weather information retrieval,
and point-of-interest navigation. This dataset has
shorter conversation turns, but the user and system
behaviors are more diverse. In addition, the sys-
tem responses are variant and the KB information
is much more complicated. Hence, this dataset re-
quires stronger ability to interact with KBs, rather
than dialog state tracking.

3.2 Training

We trained our model end-to-end using Adam op-
timizer (Kingma and Ba, 2015), and chose learn-
ing rate between [1e−3, 1e−4]. The MemNNs,
both encoder and decoder, have hops K = 1, 3, 6
to show the performance difference. We use sim-
ple greedy search and without any re-scoring tech-
niques. The embedding size, which is also equiv-
alent to the memory size and the RNN hidden size
(i.e., including the baselines), has been selected
between [64, 512]. The dropout rate is set between
[0.1, 0.4], and we also randomly mask some in-
put words into unknown tokens to simulate OOV
situation with the same dropout ratio. In all the
datasets, we tuned the hyper-parameters with grid-
search over the validation set, using as measure
to the Per-response Accuracy for bAbI dialog and
DSTC2, and BLEU score for the In-Car Assistant.

3.3 Evaluation Metrics

Per-response/dialog Accuracy: A generative re-
sponse is correct only if it is exactly the same as
the gold response. A dialog is correct only if ev-
ery generated responses of the dialog are correct,
which can be considered as the task-completion
rate. Note that Bordes and Weston (2017) tests
their model by selecting the system response from
predefined response candidates, that is, their sys-
tem solves a multi-class classification task. Since
Mem2Seq generates each token individually, eval-
uating with this metric is much more challenging
for our model.
BLEU: It is a measure commonly used for ma-
chine translation systems (Papineni et al., 2002),
but it has also been used in evaluating dialog sys-
tems (Eric and Manning, 2017; Zhao et al., 2017)
and chat-bots (Ritter et al., 2011; Li et al., 2016).
Moreover, BLEU score is a relevant measure in
task-oriented dialog as there is not a large vari-
ance between the generated answers, unlike open
domain generation (Liu et al., 2016). Hence, we
include BLEU score in our evaluation (i.e. using
Moses multi-bleu.perl script).
Entity F1: We micro-average over the entire set of
system responses and compare the entities in plain
text. The entities in each gold system response are
selected by a predefined entity list. This metric
evaluates the ability to generate relevant entities
from the provided KBs and to capture the seman-
tics of the dialog (Eric and Manning, 2017; Eric
et al., 2017). Note that the original In-Car Assis-
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Task QRN MemNN GMemNN Seq2Seq Seq2Seq+Attn Ptr-Unk Mem2Seq H1 Mem2Seq H3 Mem2Seq H6
T1 99.4 (-) 99.9 (99.6) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
T2 99.5 (-) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
T3 74.8 (-) 74.9 (2.0) 74.9 (0) 74.8 (0) 74.8 (0) 85.1 (19.0) 87.0 (25.2) 94.5 (59.6) 94.7 (62.1)
T4 57.2 (-) 59.5 (3.0) 57.2 (0) 57.2 (0) 57.2 (0) 100 (100) 97.6 (91.7) 100 (100) 100 (100)
T5 99.6 (-) 96.1 (49.4) 96.3 (52.5) 98.8 (81.5) 98.4 (87.3) 99.4 (91.5) 96.1 (45.3) 98.2 (72.9) 97.9 (69.6)

T1-OOV 83.1 (-) 72.3 (0) 82.4 (0) 79.9 (0) 81.7 (0) 92.5 (54.7) 93.4 (60.4) 91.3 (52.0) 94.0 (62.2)
T2-OOV 78.9 (-) 78.9 (0) 78.9 (0) 78.9 (0) 78.9 (0) 83.2 (0) 81.7 (1.2) 84.7 (7.3) 86.5 (12.4)
T3-OOV 75.2 (-) 74.4 (0) 75.3 (0) 74.3 (0) 75.3 (0) 82.9 (13.4) 86.6 (26.2) 93.2 (53.3) 90.3 (38.7)
T4-OOV 56.9 (-) 57.6 (0) 57.0 (0) 57.0 (0) 57.0 (0) 100 (100) 97.3 (90.6) 100 (100) 100 (100)
T5-OOV 67.8 (-) 65.5 (0) 66.7 (0) 67.4 (0) 65.7 (0) 73.6 (0) 67.6 (0) 78.1 (0.4) 84.5 (2.3)

Table 3: Per-response and per-dialog (in the parentheses) accuracy on bAbI dialogs. Mem2Seq achieves
the highest average per-response accuracy and has the least out-of-vocabulary performance drop.

Ent. F1 BLEU Per-
Resp.

Per-
Dial.

Rule-Based - - 33.3 -
QRN - - 43.8 -

MemNN - - 41.1 0.0
GMemNN - - 47.4 1.4

Seq2Seq 69.7 55.0 46.4 1.5
+Attn 67.1 56.6 46.0 1.4

+Copy 71.6 55.4 47.3 1.3
Mem2Seq H1 72.9 53.7 41.7 0.0
Mem2Seq H3 75.3 55.3 45.0 0.5
Mem2Seq H6 72.8 53.6 42.8 0.7

Table 4: Evaluation on DSTC2.
Seq2Seq (+attn and +copy) is reported
from Eric and Manning (2017).

BLEU Ent. F1 Sch. F1 Wea. F1 Nav. F1
Human* 13.5 60.7 64.3 61.6 55.2

Rule-Based* 6.6 43.8 61.3 39.5 40.4
KV Retrieval Net* 13.2 48.0 62.9 47.0 41.3

Seq2Seq 8.4 10.3 09.7 14.1 07.0
+Attn 9.3 19.9 23.4 25.6 10.8

Ptr-Unk 8.3 22.7 26.9 26.7 14.9
Mem2Seq H1 11.6 32.4 39.8 33.6 24.6
Mem2Seq H3 12.6 33.4 49.3 32.8 20.0
Mem2Seq H6 9.9 23.6 34.3 33.0 4.4

Table 5: Evaluation on In-Car Assistant. Human, rule-
based and KV Retrieval Net evaluation (with *) are reported
from (Eric et al., 2017), which are not directly comparable.
Mem2Seq achieves highest BLEU and entity F1 score over
baselines.

tant F1 scores reported in Eric et al. (2017) uses
the entities in their canonicalized forms, which are
not calculated based on real entity value. Since
the datasets are not designed for slot-tracking, we
report entity F1 rather than the slot-tracking accu-
racy as in (Wen et al., 2017; Zhao et al., 2017).

4 Experimental Results

We mainly compare Mem2Seq with hop 1,3,6
with several existing models: query-reduction
networks (QRN, Seo et al. (2017)), end-to-
end memory networks (MemNN, Sukhbaatar
et al. (2015)), and gated end-to-end memory net-
works (GMemNN, Liu and Perez (2017)). We
also implemented the following baseline models:
standard sequence-to-sequence (Seq2Seq) models
with and without attention (Luong et al., 2015),
and pointer to unknown (Ptr-Unk, Gulcehre et al.
(2016)). Note that the results we listed in Table 3
and Table 4 for QRN are different from the origi-
nal paper, because based on their released code, 3

we discovered that the per-response accuracy was
not correctly computed.
bAbI Dialog: In Table 3, we follow Bordes

3We simply modified the evaluation part and reported the
results. (https://github.com/uwnlp/qrn)

and Weston (2017) to compare the performance
based on per-response and per-dialog accuracy.
Mem2Seq with 6 hops can achieve per-response
97.9% and per-dialog 69.6% accuracy in T5, and
84.5% and 2.3% for T5-OOV, which surpass ex-
isting methods by far. One can find that in T3 es-
pecially, which is the task to recommend restau-
rant based on their ranks, our model can achieve
promising results due to the memory pointer. In
terms of per-response accuracy, this indicates that
our model can generalize well with few perfor-
mance loss for test OOV data, while others have
around 15-20% drop. The performance gain in
OOV data is also mainly attributed to the use of
copy mechanism. In addition, the effectiveness of
hops is demonstrated in tasks 3-5, since they re-
quire reasoning ability over the KB information.
Note that QRN, MemNN and GMemNN viewed
bAbI dialog tasks as classification problems. Al-
though their tasks are easier compared to our gen-
erative methods, Mem2Seq models can still over-
pass the performance. Finally, one can find that
Seq2Seq and Ptr-Unk models are also strong base-
lines, which further confirms that generative meth-
ods can also achieve good performance in task-
oriented dialog systems (Eric and Manning, 2017).
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DSTC2: In Table 4, the Seq2Seq models
from Eric and Manning (2017) and the rule-based
from Bordes and Weston (2017) are reported.
Mem2Seq has the highest 75.3% entity F1 score
and an high of 55.3 BLEU score. This further con-
firms that Mem2Seq can perform well in retrieving
the correct entity, using the multiple hop mecha-
nism without losing language modeling. Here, we
do not report the results using match type (Bordes
and Weston, 2017) or entity type (Eric and Man-
ning, 2017) feature, since this meta-information
are not commonly available and we want to have
an evaluation on plain input output couples. One
can also find out that, Mem2Seq comparable per-
response accuracy (i.e. 2% margin) among other
existing solution. Note that the per-response ac-
curacy for every model is less than 50% since the
dataset is quite noisy and it is hard to generate a
response that is exactly the same as the gold one.

In-Car Assistant: In Table 5, our model can
achieve highest 12.6 BLEU score. In addition,
Mem2Seq has shown promising results in terms
of Entity F1 scores (33.4%), which are, in general,
much higher than those of other baselines. Note
that the numbers reported from Eric et al. (2017)
are not directly comparable to ours as we mention
below. The other baselines such as Seq2Seq or Ptr-
Unk especially have worse performances in this
dataset since it is very inefficient for RNN meth-
ods to encode longer KB information, which is the
advantage of Mem2Seq.

Furthermore, we observe an interesting phe-
nomenon that humans can easily achieve a high
entity F1 score with a low BLEU score. This im-
plies that stronger reasoning ability over entities
(hops) is crucial, but the results may not be similar
to the golden answer. We believe humans can pro-
duce good answers even with a low BLEU score,
since there could be different ways to express the
same concepts. Therefore, Mem2Seq shows the
potential to successfully choose the correct enti-
ties.

Note that the results of KV Retrieval Net base-
line reported in Table 5 come from the original pa-
per (Eric et al., 2017) of In-Car Assistant, where
they simplified the task by mapping the expression
of entities to a canonical form using named entity
recognition (NER) and linking. Hence the eval-
uation is not directly comparable to our system.
For example, their model learned to generate re-
sponses such as “You have a football game at foot-
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Figure 2: Training time per-epoch for different
tasks (lower is better). The speed difference be-
comes larger as the maximal input length in-
creases.

ball time with football party,” instead of generat-
ing a sentence such as “You have a football game
at 7 pm with John.” Since there could be more than
one football party or football time, their model
does not learn how to access the KBs, but it rather
learns the canonicalized language model.
Time Per-Epoch: We also compare the train-
ing time 4 in Figure 2. The experiments are set
with batch size 16, and we report each model
with the hyper-parameter that can achieved the
highest performance. One can observe that the
training time is not that different for short in-
put length (bAbI dialog tasks 1-4) and the gap
becomes larger as the maximal input length in-
creases. Mem2Seq is around 5 times faster in In-
Car Assistant and DSTC2 compared to Seq2Seq
with attention. This difference in training effi-
ciency is mainly attributed to the fact that Seq2Seq
models have input sequential dependencies which
limit any parallelization. Moreover, it is unavoid-
able for Seq2Seq models to encode KBs, instead
Mem2Seq only encodes with dialog history.

5 Analysis and Discussion

Memory Attention: Analyzing the attention
weights has been frequently used to show the
memory read-out, since it is an intuitive way to un-
derstand the model dynamics. Figure 3 shows the
attention vector at the last hop for each generated
token. Each column represents the Pptr vector at
the corresponding generation step. Our model has
a sharp distribution over the memory, which im-

4Intel(R) Core(TM) i7-3930K CPU@3.20GHz, using a
GeForce GTX 1080 Ti
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783 arcadia pl address chevron

gas station poi type chevron

moderate traffic traffic info chevron

3 miles distance chevron

chevron poi gas station moderate traffic 3 miles

271 springer street address mandarin roots

chinese restaurant poi type mandarin roots

moderate traffic traffic info mandarin roots

4 miles distance mandarin roots

mandarin roots poi chinese restaurant moderate traffic 4 miles

408 university ave address trader joes

grocery store poi type trader joes

no traffic traffic info trader joes

5 miles distance trader joes

trader joes poi grocery store no traffic 5 miles

638 amherst st address sigona farmers market

grocery store poi type sigona farmers market

no traffic traffic info sigona farmers market

4 miles distance sigona farmers market

sigona farmers market poi grocery store no traffic 4 miles

347 alta mesa ave address jills house

friends house poi type jills house

heavy traffic traffic info jills house

4 miles distance jills house

jills house poi friends house heavy traffic 4 miles

270 altaire walk address civic center garage

parking garage poi type civic center garage

no traffic traffic info civic center garage

4 miles distance civic center garage

civic center garage poi parking garage no traffic 4 miles

434 arastradero rd address ravenswood shopping center

shopping center poi type ravenswood shopping center

heavy traffic traffic info ravenswood shopping center

4 miles distance ravenswood shopping center

ravenswood shopping center poi shopping center heavy traffic 4 miles
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COR: the closest parking garage is civic center garage located 4 miles away at 270 altaire walk
GEN: the closest parking garage is civic center garage at 270 altaire walk 4 miles away through the directions
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Figure 3: Last hop memory attention visualization
from the In-Car dataset. COR and GEN on the top
are the correct response and our generated one.

plies that it is able to select the right token from
the memory. For example, the KB information
“270 altarie walk” was retrieved at the sixth step,
which is an address for “civic center garage”. On
the other hand, if the sentinel is triggered, then the
generated word comes from vocabulary distribu-
tion Pvocab. For instance, the third generation step
triggered the sentinel, and “is” is generated from
the vocabulary as the word is not present in the
dialog history.

Multiple Hops: Mem2Seq shows how multiple
hops improve the model performance in several
datasets. Task 3 in the bAbI dialog dataset serves
as an example, in which the systems need to rec-
ommend restaurants to users based on restaurant
ranking from highest to lowest. Users can reject
the recommendation and the system has to rea-
son over the next highest restaurant. We found
out there are two common patterns between hops
among different samples: 1) the first hop is usu-
ally used to score all the relevant memories and

Figure 4: Principal component analysis of query
vectors in hop (a) 1 and (b) 6 for bAbI dialog.

room time date party event
conference room 100 3pm Thursday sales team conference

- 11am Tuesday - tennis activity
- 7pm Wednesday - dentist appointment

conference room 100 1pm Tuesday HR meeting
- 7pm Friday - doctor appointment
- 11am Tuesday - lab appointment

DRIVER When’s my tennis match?
Seq2seq Your lab appointment is on Monday at

+Att Your lab appointment is on Tuesday at 11am
Ptr-Unk Your tennis match is on PAD at 1pm

Mem2Seq H1 Your is very welcome
Mem2Seq H3 Your tennis is on Tuesday at 11am
Mem2Seq H6 Your tennis is Monday at 11am

GOLD Your tennis match is Tuesday at 11am

Table 6: Example of generated responses for the
In-Car Assistant on the scheduling domain.

retrieve information; 2) the last hop tends to focus
on a specific token and makes mistakes when the
attention is not sharp. Such mistakes can be at-
tributed to lack of hops, for some samples. For
more information, we report two figures in the
supplementary material.
Query Vectors: In Figure 4, the principal com-
ponent analysis of Mem2Seq queries vectors is
shown for different hops. Each dot is a query vec-
tor ht during each decoding time step, and it has its
corresponding generated word yt. The blue dots
are the words generated from Pvocab, which trig-
gered the sentinel, and orange ones are from Pptr.
One can find that in (a) hop 1, there is no clear sep-
aration of two different colors but each of which
tends to group together. On the other hand, the
separation becomes clearer in (b) hop 6 as each
color clusters into several groups such as location,
cuisine, and number. Our model tends to retrieve
more information in the first hop, and points into
the memories in the last hop.
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Examples: Table 1 and 6 show the generated re-
sponses of different models in the two test set sam-
ples from the In-Car Assistant dataset. We report
examples from this dataset since their answers are
more human-like and not as structured and repet-
itive as others. Seq2Seq generally cannot pro-
duce related information, and sometimes fail in
language modeling. Instead, using attention helps
with this issue, but it still rarely produces the cor-
rect entities. For example, Seq2Seq with atten-
tion generated 5 miles in Table 1 but the correct
one is 4 miles. In addition, Ptr-Unk often cannot
copy the correct token from the input, as shown by
“PAD” in Table 1. On the other hand, Mem2Seq
is able to produce the correct responses in this two
examples. In particular in the navigation domain,
shown in Table 1, Mem2Seq produces a different
but still correct utterance. We report further ex-
amples from all the domains in the supplementary
material.

Discussions: Conventional task-oriented dialog
systems (Williams and Young, 2007), which are
still widely used in commercial systems, require
a multitude of human efforts in system designing
and data collection. On the other hand, although
end-to-end dialog systems are not perfect yet, they
require much less human interference, especially
in the dataset construction, as raw conversational
text and KB information can be used directly with-
out the need of heavy preprocessing (e.g. NER,
dependency parsing). To this extent, Mem2Seq
is a simple generative model that is able to in-
corporate KB information with promising gener-
alization ability. We also discovered that the en-
tity F1 score may be a more comprehensive evalu-
ation metric than per-response accuracy or BLEU
score, as humans can normally choose the right
entities but have very diversified responses. In-
deed, we want to highlight that humans may have a
low BLEU score despite their correctness because
there may not be a large n-gram overlap between
the given response and the expected one. How-
ever, this does not imply that there is no correla-
tion between BLEU score and human evaluation.
In fact, unlike chat-bots and open domain dialogs
where BLEU score does not correlate with hu-
man evaluation (Liu et al., 2016), in task-oriented
dialogs the answers are constrained to particular
entities and recurrent patterns. Thus, we believe
BLEU score still can be considered as a relevant
measure. In future works, several methods could

be applied (e.g. Reinforcement Learning (Ranzato
et al., 2016), Beam Search (Wiseman and Rush,
2016)) to improve both responses relevance and
entity F1 score. However, we preferred to keep
our model as simple as possible in order to show
that it works well even without advanced training
methods.

6 Related Works

End-to-end task-oriented dialog systems train a
single model directly on text transcripts of di-
alogs (Wen et al., 2017; Serban et al., 2016;
Williams et al., 2017; Zhao et al., 2017; Seo et al.,
2017; Serban et al., 2017). Here, RNNs play an
important role due to their ability to create a la-
tent representation, avoiding the need for artificial
state labels. End-to-End Memory Networks (Bor-
des and Weston, 2017; Sukhbaatar et al., 2015),
and its variants (Liu and Perez, 2017; Wu et al.,
2017, 2018) have also shown good results in such
tasks. In each of these architectures, the output is
produced by generating a sequence of tokens, or
by selecting a set of predefined utterances.

Sequence-to-sequence (Seq2Seq) models have
also been used in task-oriented dialog sys-
tems (Zhao et al., 2017). These architectures have
better language modeling ability, but they do not
work well in KB retrieval. Even with sophisticated
attention models (Luong et al., 2015; Bahdanau
et al., 2015), Seq2Seq fails to map the correct en-
tities to the generated input. To alleviate this prob-
lem, copy augmented Seq2Seq models Eric and
Manning (2017), were used. These models out-
perform utterance selection methods by copying
relevant information directly from the KBs. Copy
mechanisms has also been used in question an-
swering tasks (Dehghani et al., 2017; He et al.,
2017), neural machine translation (Gulcehre et al.,
2016; Gu et al., 2016), language modeling (Merity
et al., 2017), and summarization (See et al., 2017).

Less related to dialog systems, but related to our
work, are the memory based decoders and the non-
recurrent generative models: 1) Mem2Seq query
generation phase used to access our memories can
be seen as the memory controller used in Memory
Augmented Neural Networks (MANN) (Graves
et al., 2014, 2016). Similarly, memory en-
coders have been used in neural machine transla-
tion (Wang et al., 2016), and meta-learning appli-
cation (Kaiser et al., 2017). However, Mem2Seq
differs from these models as such: it uses multi-
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hop attention in combination with copy mecha-
nism, whereas other models use a single matrix
representation. 2) non-recurrent generative mod-
els (Vaswani et al., 2017), which only rely on self-
attention mechanism, are related to the multi-hop
attention mechanism used in MemNN.

7 Conclusion

In this work, we present an end-to-end trainable
Memory-to-Sequence model for task-oriented di-
alog systems. Mem2Seq combines the multi-hop
attention mechanism in end-to-end memory net-
works with the idea of pointer networks to incor-
porate external information. We empirically show
our model’s ability to produce relevant answers us-
ing both the external KB information and the pre-
defined vocabulary, and visualize how the multi-
hop attention mechanisms help in learning corre-
lations between memories. Mem2Seq is fast, gen-
eral, and able to achieve state-of-the-art results in
three different datasets.
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Abstract

Sequence to sequence (Seq2Seq) models
have been widely used for response gen-
eration in the area of conversation. How-
ever, the requirements for different con-
versation scenarios are distinct. For ex-
ample, customer service requires the gen-
erated responses to be specific and ac-
curate, while chatbot prefers diverse re-
sponses so as to attract different users.
The current Seq2Seq model fails to meet
these diverse requirements, by using a
general average likelihood as the opti-
mization criteria. As a result, it usu-
ally generates safe and commonplace re-
sponses, such as ‘I don’t know’. In this pa-
per, we propose two tailored optimization
criteria for Seq2Seq to different conver-
sation scenarios, i.e., the maximum gen-
erated likelihood for specific-requirement
scenario, and the conditional value-at-risk
for diverse-requirement scenario. Experi-
mental results on the Ubuntu dialogue cor-
pus (Ubuntu service scenario) and Chinese
Weibo dataset (social chatbot scenario)
show that our proposed models not only
satisfies diverse requirements for differ-
ent scenarios, but also yields better perfor-
mances against traditional Seq2Seq mod-
els in terms of both metric-based and hu-
man evaluations.

1 Introduction

This paper focuses on the problem of the single-
turn dialogue generation, which is critical in many
natural language processing applications such as
customer services, intelligent assistant and chat-
bot. Recently, sequence to sequence (Seq2Seq)
models (Sutskever et al., 2014) have been widely

used in this area. In these Seq2Seq models, a re-
current neural network (RNN) based encoder is
first utilized to encode the input post to a vec-
tor, and another RNN decoder is then used to au-
tomatically generate the response word by word.
The parameters of the encoder and decoder are
learned by maximizing the averaged likelihood of
the training data.

It is clear that the requirements for generated
responses are distinct in different dialogue sce-
narios. For instance, in the scenario of customer
service or mobile assistant, users mainly expect
the system to help them solve a problem. There-
fore, the responses should be specific and accu-
rate to provide useful assistance. For example,
if the user asks a question ‘How can I get the
AMD driver running on Ubuntu 12.10?’, the sys-
tem is expected to reply ‘The fglrx driver is in the
repo. But it may depend on your exact chipset.’,
rather than ‘I do not know about the package.’,
even though the latter can also be viewed as rel-
evant for the proposed question. We called this
kind of scenario as specific-requirement scenario.
While in other scenarios such as chatbot, users
are interacting with the dialogue system for fun.
Therefore, the generated responses should be di-
verse to attract different users. Take the post ‘Can
you recommend me a tourist city?’ as an example.
If the user prefers the magnificent mountains and
rivers, it is better to reply ‘You may like the Bern-
ina Express to the Alps’. While if the user loves
literature, it is better to reply ‘Paris is a beautiful
city with full of the literary atmosphere’. This kind
of scenario is called diverse-requirement scenario.

However, the current generation model
Seq2Seq (Sutskever et al., 2014) usually tend
to generate common responses, such as ‘I don’t
know’ and ‘What does this mean?’ (Li et al.,
2016a,b; Zhou et al., 2017), which fails to meet
diverse requirements for different conversation
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scenarios. Intrinsically, conversation is a typical
one-to-many application, i.e., multiple responses
with different semantic meanings are correspon-
dent to a same post. That means there are various
post-response matching patterns in the training
data. Seq2Seq optimizes an averaged likelihood,
so it can only capture the common matching
patterns, leading to common responses.

The purpose of this paper is to propose two
tailored optimization criteria for Seq2Seq mod-
els to accommodate different conversation scenar-
ios, i.e. specific-requirement scenario and diverse-
requirement scenario. The key idea is to how cap-
ture the required post-response matching patterns.
For the specific-requirement scenario, we define
the maximum generated likelihood as the objec-
tive function. With this kind of criterion, we just
require one ground-truth response to be close to
the given post, instead of requiring the average of
multiple ground-truth responses to be close to the
post. Therefore, the most significant post-response
matching pattern will be learned from the data, to
facilitate generating a specific response. While
for the diverse-requirement scenario, the condi-
tional value-at-risk (CVaR) is used as the objective
function. CVaR is a risk-sensitive function widely
used in finances (Rockafellar and Uryasev, 2002;
Alexander et al., 2006; Chen et al., 2015), defined
to assessing the likelihood (at a specific confidence
level) that a specific loss will exceed the value at
risk. With CVaR as the objective function, the
worst 1-α responses are required to be close to the
post, therefore various post-response patterns can
be captured, and the learned model has the ability
to generate diverse responses.

We use public data to evaluate our pro-
posed models. For the specific-requirement sce-
nario, the experiments on public Ubuntu dia-
logue corpus(Ubuntu service) show that optimiz-
ing the maximum generated likelihood produces
more specific and accurate responses than tradi-
tional Seq2Seq models. While for the diverse-
requirement scenario, the experiments on the pub-
lic Chinese Weibo dataset (social chatbot) show
that optimizing CVaR produces diverse responses,
as compared with Seq2Seq and the variants.

2 Related Work

The basic neural-based Seq2Seq framework for
dialogue generation is inspired by the studies
of statistical machine translation. Sutskever et

al. (Sutskever et al., 2014) proposed the origi-
nal Seq2Seq framework(Seq2Seq), which used a
multilayered Long Short-Term Memory(LSTM)
to map the input sequence to a fixed dimension
vector and then used another LSTM to decode
the target sequence from the vector. Then Cho
et al. (Cho et al., 2014) followed the above archi-
tecture, and proposed to feed the last hidden state
of encoder to every cell of decoder(RNN-encdec),
which enhanced the influence of contexts in gen-
erating each word of the targets. To further alle-
viate the long dependency problem, Bahdanau et
al. (Bahdanau et al., 2015) introduced the attention
mechanism into the neural network and achieved
encouraging performances(Seq2Seq-att). Many
studies (Shang et al., 2015; Vinyals and Le, 2015)
directly applied the above neural SMT models to
the task of dialogue generation, and gained some
promising performances.

Although the current Seq2Seq model is capable
to generate fluent responses, these responses are
usually general. Therefore, many researchers fo-
cused on how to improve the generation quality
and specification. Li et al. (Li et al., 2016a) pro-
posed a mutual information model(MMI) to tackle
this problem. However, it is not a unified train-
ing model, instead it still trained original Seq2Seq
model, and used the Maximum Mutual Informa-
tion criterion only for testing to rerank the primary
top-n list. Mou et al. (Mou et al., 2017) proposed
a forward-backward keyword method which used
a pointwise mutual information to predict a noun
as a keyword and then used two Seq2Seq models
to generate the forward sentence and the backward
sentence. Xing et al. (Xing et al., 2017) proposed a
joint attention mechanism model, which modified
the generation probability by adding the topic key-
words likelihood to the generated maximum like-
lihood with extra corpus. The recent works such
as seqGAN (Yu et al., 2017) and Adver-REGS (Li
et al., 2017) try to use Generative Adversarial Net-
works(GAN) for generation, where the discrimi-
nator scores are used as rewards for reinforcement
learning.

For the study of generating diverse responses,
Vijayakumar et al. (Vijayakumar et al., 2016) in-
troduced a diverse beam search which decoded
a list of diverse outputs by optimizing for a
diversity-augmented objective, which can control
for the exploration and exploitation of the search
space. Zhou (Zhou et al., 2017) proposed to apply
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a hidden state as a generating style(Mechanism).
They make an assumption that some latent re-
sponding mechanisms can generate different re-
sponses, and model these mechanisms as latent
embedding. With these latent embedding in the
mid of Seq2Seq, the mechanism-aware Seq2Seq
can generate different mechanism responses.

However, most of these models are using an av-
eraged approach for optimization, similar to that
in Seq2Seq. This paper proposes two new crite-
ria for different conversation scenarios. For the
specific-requirement scenario, the maximum gen-
erated likelihood is used as the objective function.
While for the diverse-requirement scenario, CVaR
is used for optimization.

3 Sequence to Sequence Models

We first introduce the typical LSTM-based
Seq2Seq framework (Bahdanau et al., 2015) used
in dialogue generation.

Given a post X = {x1, . . . , xM} as the input, a
standard LSTM first maps the input sequence to a
fixed-dimension vector hM as follows.

ik = σ(Wi[hk−1, wk]), fk = σ(Wf [hk−1, wk]),

ok = σ(Wo[hk−1, wk]), lk = tanh(Wl[hk−1, wk]),

ck = fkck−1 + iklk, hi = ok tanh(ck),
(1)

where ik, fk and ok are the input gate, the mem-
ory gate, and the output gate, respectively. wk is
the word embedding for xk, and hk stands for the
vector computed by LSTM at time k by combin-
ing wk and hk−1. ck is the cell at time k, and σ de-
notes the sigmoid function. Wi,Wf ,Wo and Wl

are parameters.
Then another LSTM is used as the decoder to

map the vector hM to the ground-truth response
Y = {y1, · · · , yN}. Typically, the decoder is
trained to predict the next word gi, given the con-
text vector hM and the previous generated words
{g1, . . . , gi−1}. In other words, the decoder de-
fines a probability over the output Y by decom-
posing the joint probability into the ordered con-
ditionals by chain rule in the probability theory:

P (Y |X) =

N∏

i=1

p(yi|hM , y1, . . . , yi−1)

=
N∏

i=1

g(hM , yi−1, h′i),

where gθ is a softmax function, h′i is the hidden
state in the decoder LSTM.

Usually the attention mechanism is further in-
troduced to the above Seq2Seq framework in real
applications. Instead of using hM as the con-
text vector in the decoder, we let the context vec-
tor, denoted as si, to be dependent on the se-
quence (h1, · · · , hM ). Each hk contains informa-
tion about the input sequence with a strong focus
on the parts surrounding the k-th word of the input
sentence. The context vector si is then computed
as a weighted sum of these hk:

si =

M∑

k=1

αikhk.

The weight αik of each representation hk is com-
puted by:

αik =
exp (eik)∑M
j=1 exp (eij)

,

eik = vT tanh(W1h
′
i−1 +W2hk),

where vT ,W1 and W2 are learned parameters. eik
is an alignment model which scores how well the
inputs around position k and the output at position
i match. The score is based on the LSTM hidden
state h′i−1 (just before emitting yi), and hk of the
input sentence.

Given a set of training dataD, Seq2Seq assumes
that data are i.i.d. sampled from a probability P ,
and uses the following log likelihood as the objec-
tive for maximization:

L =
∑

(X,Y )∈D
logP (Y |X). (2)

4 Tailored Sequence to Sequence Models

We can see that a general averaged likelihood of
the training data is used as the objective func-
tion in Seq2Seq. However, this objective func-
tion is usually criticized for generating common
responses, such as ‘I don’t know’ and ‘What does
this mean?’. Clearly, this kind of responses can-
not satisfy either the specific or the diverse re-
quirements. The underlying reason is not diffi-
cult to understand. Intrinsically, conversation is
a typical one-to-many application, i.e., multiple
responses with different semantic meanings are
correspondent to a same post. That means there
are various post-response matching patterns in the
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training data. If we optimize an averaged likeli-
hood, we can only capture the common matching
patterns, which leads to generating common re-
sponses. Therefore, if we want to generate specific
responses, we need to capture the most significant
matching pattern; while if we want to generate di-
verse responses, we need to define a criteria which
has the ability to capture the various matching pat-
terns. Motivated by this idea, we propose two op-
timization criteria, i.e. maximum generated likeli-
hood, and CVaR, to adapt two different scenarios.

4.1 Maximum Generated Likelihood Criteria
To meet the specific requirement, we need to
capture a specific matching pattern between post
and response, rather than the common match-
ing pattern. Therefore, instead of optimizing
the averaged likelihood, we turn to use the max-
imum generated likelihood (MGL) as the ob-
jective function. Mathematically, for a given
post X and its associated ground-truth responses
(Y

(1)
X , Y

(2)
X , · · · , Y (mX)

X ), the objective function is
defined as:

L =
∑

X

mX
max
k=1

logP (Y
(k)
X |X).

From the definition, we can see that we aim to
capture the most significant post-response match-
ing pattern in the training data. Therefore, the
learned model can output specific responses for a
given post. Since there is a max operator in the
objective function, which is difficult for accurate
optimization, we approximate it by the softmax
function. Then the objective function becomes the
following form:

L =
∑

X

mX∑

k=1

log
P (Y

(k)
X |X)

∑mX
j=1 P (Y

(j)
X |X)

.

If the probability for one ground-truth Y
(k)
X is

small, it contributes little to the objective func-
tion. That is to say, we just require the top ground-
truth responses with relative large probabilities to
be close to the post.

4.2 CVaR Criteria
To meet the diverse requirements, we need to
capture various matching patterns between post
and its multiple ground-truth responses. There-
fore, instead of optimizing the averaged likeli-
hood, we turn to optimize the conditional value-
at-risk, named CVaR for short. CVaR is a promi-
nent risk measure used extensively in finance, and

it is proved to be coherent (Artzner et al., 1999)
and numerically effective (Krokhmal et al., 2002;
Uryasev, 2013).

The definitions of VaR and CVaR are as follows.
For a confidence level α ∈ [0, 1], and a continu-
ous random cost Z whose distribution is parame-
terized by a controllable parameter θ, the α-VaR
of the cost Z, denoted by να(θ), is defined as:

να(θ)= inf{ν ∈ R|P (Z ≤ ν) ≥ α}.

α-VaR denotes the maximum cost that might be
incurred with probability at least α, or can be sim-
ply regarded as the α-quantile of Z. And the α-
CVaR, denoted by Φα(θ), is defined as:

Φα(θ)=
1

1− α

∫ 1

α
νr(θ)dr=Eθ[Z|Z ≥ να(θ)].

It can be viewed as the expected cost over the (1−
α) worst outcomes of Z.

Applying CVaR to generating diverse re-
sponses, we can define the random cost Z as
− logP (Y |X), the corresponding CVaR is:

Φα(θ) =
1

1− α

∫ 1

α
νr(θ)dr,

where νr(θ) = inf{ν ∈ R|P (− logP (Y |X) ≤
ν) ≥ r}, and θ are parameters of the Seq2Seq
model. Therefore, we have:

νr(θ) = inf{ν ∈ R|P (P (Y |X) ≥ eν) ≥ r}.

Therefore, for a given post X and its ground-
truth responses (Y

(1)
X , Y

(2)
X , · · · , Y (mX)

X ), opti-
mizing CVaR is equivalent to maximizing the fol-
lowing objective function:

L =
∑

X

1

1− α
∑

Y
(k)
X ∈Y1−α

P (Y
(k)
X |X),

where Y1−α is a collection of ground-truth re-
sponses such that:

sup{P (Y
(i)
X |X) : Y i

X ∈ Y1−α} ≤ α.

We can see that maximizing the above objec-
tive function requires the worst 1 − α responses
to be close to the post. Therefore, we aim to cap-
ture each distinct post-response matching pattern
by optimizing the CVaR criteria, which can meet
the requirement for generating diverse responses.
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5 Experiments

In this section, we conduct experiments on both
specific-requirement and diverse-requirement sce-
narios, to evaluate the performances of our pro-
posed methods.

5.1 Experimental Settings

5.1.1 Datasets
We use two public datasets in our experiments.
For the specific-requirement scenario, we use the
Ubuntu dialogue corpus1 extracted from Ubuntu
question-answering forum, named Ubuntu (Lowe
et al., 2015). The original training data consists
of 7 million conversational post-responses pairs
from 2014 to April 27,2012. The validation data
are conversational pairs from April 27,2014 to Au-
gust 7,2012, and the test data are from August
7,2012 to December 1,2012. We set the number
of positive examples as 4,000,000 in the Github
to directly sample data from the whole corpus.
Then we construct post and response pairs based
on the period from both context and utterance. We
also conduct some data pro-processing. For ex-
ample, we use the official script to tokenize, stem
and lemmatize, and the duplicates and sentences
with length less than 5 or longer than 50 are re-
moved. Finally, we obtain 3,200,000, 100,000 and
100,000 for training, validation and testing, re-
spectively.

For the diverse-requirement scenario, we use
the Chinese Weibo dataset, named STC (Shang
et al., 2015). It consists of 3,788,571 post-
response pairs extracted from the Chinese Weibo
website and cleaned by the data publishers. We
randomly split the data to training, validation, and
testing sets, which contains 3,000,000, 388,571
and 400,000 pairs, respectively. 2

5.1.2 Baseline Methods
Six baseline methods are used for compari-
son, including traditional Seq2Seq (Sutskever
et al., 2014), RNN-encdec (Cho et al., 2014),
Seq2Seq with attention(Seq2Seq-att) (Bahdanau
et al., 2015), mutual information(MMI) (Li et al.,
2016b), Adver-REGS (Li et al., 2017) and Mech-
anism model (Zhou et al., 2017). Here are some
empirical settings. We first introduce the input em-

1https://github.com/rkadlec/ubuntu-ranking-dataset-
creator

2https://github.com/zhanghainan/TailoredSeq2Seq2
DifferentConversationScenarios

beddings. For STC, we utilize character-level em-
beddings rather than word-level embeddings, due
to the word sparsity, segmentation mistakes and
unknown Chinese words which may lead to infe-
rior performance (Hu et al., 2015). For Ubuntu,
we use word embeddings trained by word2vec on
the training dataset. In the training process, the
dimension is set to be 300, the size of negative
sample is set to be 3, and the learning rate is
0.05. For fair comparison among all the base-
line methods and our methods, the number of hid-
den nodes is all set to 300, and batch size is set
to 200. Stochastic gradient decent (SGD) is uti-
lized in our experiment for optimization, instead
of Adam, because SGD yields better performances
in our experiments. The learning rate is set to be
0.5, and adaptively decays with rate 0.99 in the op-
timization process. We run our model on a Tesla
K80 GPU card with Tensorflow framework. All
the methods are pretrained with the same Seq2Seq
model. For maximum generated likelihood(MGL)
model, some people may argue that the specific
results may be due to the usage of single post-
response pair. Thus we also implement the base-
line of using a single post-response pair, by ran-
dom selecting the response from the ground-truth
for each post, denoted as Single Model.

5.1.3 Evaluation Measures
We use both quantitative metrics and human
judgements to evaluate the proposed MGL model
and the CVaR model. Specifically, we use two
kinds of metrics for quantitative comparisons. The
first one kind is the traditional metric, including
PPL and Bleu score (Xing et al., 2017). They are
both widely used in natural language processing,
and here we use them to evaluate the quality of
the generated responses. The other kind is to eval-
uate the specific degree3 in (Li et al., 2016a,b).
It measures the specific degree of the generated
responses, by calculating the number of distinct
unigrams and bigrams in the generated responses,
denoted as distinct. If a model usually generates
common responses, the distinct will be low.

For the diverse-requirement scenario, we define
two measures to evaluate the performance. Specif-
ically, we set the beam as 10. Group-diversity is

3Though it is named as diversity in Li’s paper, this diver-
sity is not the same as that used in our paper. This diversity
measures the specific degree of the generated responses over
all generations. While the diversity used in our paper means
that the responses are required to be relevant to a post from
different aspects.
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model distinct-1 distinct-2 BLEU PPL
Seq2Seq 0.140 1.11 1.231 51.26
RNN-encdec 0.125 1.24 1.231 46.97
Seq2Seq-att 0.351 4.36 1.294 47.84
MMI 0.283 4.84 1.297 42.52
Adver-REGS 0.268 5.07 1.279 37.71
Single 0.324 5.27 1.342 30.36
MGL 0.358 6.30 1.354 26.34
CVaR 0.294 5.52 1.290 30.03

Table 1: The metric-based evaluation results(%)
of different models on Ubuntu.

defined to calculate the difference between each
two generations for one post, denoted as divrs.
Group-overlap is defined to calculate the over-
lap between each two generations for one post,
denoted as overlap. The detailed definitions are
shown as follows.

divrs =
1

N

N∑

i=1

∑

Xi

cosine(Gi1, Gi2),

overlap =
1

N

N∑

i=1

∑

Xi

overlap(Gi1, Gi2),

where Gi1 and Gi2 are the generated responses
from the model for post X , cosine(Gi1, Gi2) is
the cosine similarity, and the overlap(Gi1, Gi2) is
defined as the intersection divided by union.

For human evaluation, given 200 randomly
sampled post and it’s generated responses, three
annotators, randomly selected from a class of
computer science majored students(48 students),
are required to give 3-graded judgements. The an-
notation criteria are defined as follows:

1. the response is nonfluent or has wrong logic;
or the response is fluent but not related with
the post;

2. the response is fluent and weak related, but
it’s common which can reply many other
posts;

3. the response is fluent and strong related with
its post, which is like following a real per-
son’s tone.

5.2 Specific-Requirement Scenario
We demonstrate the experimental results on
the specific-requirement scenario, based on the
Ubuntu dataset.

5.2.1 Metric-based Evaluation
The quantitative evaluation results are shown in
Table 1. From the results, we can see that both

model human score distribution(%) Ave. Kappa1 2 3
Seq2Seq-att 46.5 38.6 14.9 1.684 0.387
MMI 42 38 20 1.78 0.395
Adver-REGS 42 26 32 1.9 0.379
Single 49 14 37 1.88 0.383
MGL 33 16 51 2.18 0.372
CVaR 40 12 48 2.08 0.381

Table 2: The comparisons of different models by
human evaluation on Ubuntu.

MMI and Adver-REGS outperform Seq2Seq base-
lines in terms of BLUE, PPL and distinct mea-
sures. That’s because both MMI and Adver-
REGS further consider some reward functions in
the optimization process to encourage specific re-
sults. Specifically, MMI uses a predefined re-
ward function to penalize generating common re-
sponses, and Adver-REGS uses a learned discrim-
inator to define the reward function. Our MGL
model obtains higher BLEU and lower PPL than
baseline models. Take the BLEU score on Ubuntu
dataset for example, the BLEU score of MGL
model is 1.354, which is significantly better than
that of MMI and Adver-REGS, i.e., 1.297 and
1.279. These results indicate that our MGL gen-
erates responses with higher quality. When com-
pared with the Single model, MGL is also better
because MGL considers more data in the model
computation process. The distinct scores of MGL
are also higher than baseline models, which indi-
cate that our model can generate more specific re-
sponses. That’s because it has the ability to learn
the significant matching pattern between post and
responses, by optimizing the maximum generated
likelihood rather than the averaged one. In sum-
mary, our maximum generated likelihood model
produces more fluent and specific results, as com-
pared with baseline methods.

5.2.2 Human Evaluation

The human evaluation results are shown in Ta-
ble 2, in which the percentage of sentences be-
longing to each grade and the averaged grade are
demonstrated to evaluate the quality of generated
responses. Kappa (Fleiss, 1971) value is presented
to demonstrate the consistency of different anno-
tators. From the results, we can see that MGL
significantly outperforms baseline methods. The
averaged score of MGL Model is 2.18, which is
much higher than that of MMI and Adver-REGS,
i.e., 1.78 and 1.9, respectively. The percentage of
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post Install grub to the hdd where the bios is set to boot.
response1 So I would not just install it to /boot?
Seq2Seq-att A log file a bug with the install cd.
MMI What do you mean?
Adver-REGS How do I install grub?
Single Do you delete grub?
MGL I have boot with the window from the grub and it go from the boot menu.
CVaR If you have grub on the same pc, it is 0 0 boot partition.

post I want to have a backup , sad I use up all my space with dual boot and game.
response1 Oh you can get a sata to usb adapt : )
Seq2Seq-att What about your computer ?
MMI It is not in the install , you can do that.
Adver-REGS Game game game game.
Single And other user will do too ?
MGL And do you buy direct driver from the kernel and it cause run ?
CVaR Yes , you can also use a text file to your file .

post Take a look at install .
response1 I am to cd to the directories contain the folder.
Seq2Seq-att How do you install it?
MMI I think it be a good idea to do that.
Adver-REGS I have no idea what I am looking for.
Single I think it is a bite , but I do not know a good thing to do that. I am use.
MGL I think so, I have a lot of nautilus. I am already install.
CVaR I just install it from synaptics, but I want to install it on the same repository.

Table 3: The generated responses from different
models on Ubuntu.

strongly related sentences (i.e., the grade ‘3’) of
MGL Model is 51%, which is also higher than
that of MMI, Adver-REGS and Single Model,
i.e., 20% , 32% and 37%. In summary, our max-
imum generated likelihood model produces better
responses compared with baselines. As compared
with MMI and Adver-REGS, both the metric-
based improvements and human evaluation im-
provements of MGL are significant on Ubuntu
datasets (p-value < 0.01).

5.2.3 Case Study

Here we show some generated responses for
demonstration. Specifically, Table 3 gives one ex-
ample post and its ground-truth responses from
Ubuntu. We also list the generated responses from
different models. We can see that Seq2Seq-att,
MMI and Adver-REGS all produce common re-
sponses, such as ‘What do you mean?’,‘I have
no idea what I am looking for.’ and‘What about
your computer?’. Our models give interesting re-
sponses with specific meanings. Take the post ‘In-
stall grub to the hdd where the bios is set to boot.’
as an example, our model conveys more specific
information by replying ‘I have boot with the win-
dow from the grub and it go from the boot menu.’
. And in another case, for the given post ‘I want
to have a backup , sad I use up all my space with
dual boot and game.’, our MGL model generates a
question for the post ‘And do you buy direct driver
from the kernel and it cause run?’, which is more
intelligent. Similar observations have been ob-
tained for many other posts, and we omit them for
space limitations.
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Figure 1: Influences of different α in CVaR.

model BLEU PPL overlap divrs
Seq2Seq 1.616 132.93 67.26 87.83
RNN-encdec 1.636 130.56 65.72 87.85
Seq2Seq-att 1.620 76.95 63.38 85.32
Adver-REGS 1.635 84.77 57.96 84.94
Mechanism 1.642 90.48 57.67 84.64
MGL 1.703 36.25 66.92 86.22
CVaR 1.652 70.94 38.96 71.38

Table 4: The metric-based evaluation results(%)
of different models on STC.

5.3 Diverse-Requirement Scenario

Now we introduce the experimental results for the
diverse-requirement scenario, based on STC.

5.3.1 Parameters Setting
First, we study the influences of different parame-
terα in CVaR. Specifically, we show the validation
result with α ranging from 0 to 0.9 with step 0.1,
to see the change of CVaR performances. Figure 1
show the results of different α in terms of divrs ,
overlap, distinct-2 and PPL. From the results, we
can see that the performances of divrs , overlap
and PPL are all changing in a similar trend, i.e.
first drop and then increase. The best α for CVaR
is 0.3, which is used in the following experiments.

5.3.2 Metric-based Evaluation
The quantitative evaluation results are shown in
Table 4. From the results, we can see that
both Adver-REGS and Mechanism outperform
Seq2Seq models in terms of BLUE and PPL mea-
sures. That’s because they both use some tech-
niques to enhance the generation ability. Adver-
REGS uses a learned discriminator to define the
reward function, while Mechanism uses a style
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model human score distribution(%) Ave. Kappa1 2 3
Seq2Seq-att 54.5 21 24.5 1.7 0.452
MMI 56 15.5 28.5 1.725 0.447
Adver-REGS 48.5 20 31.5 1.83 0.436
Mechanism 52.5 17.5 30 1.775 0.427
MGL 37 11 52 2.15 0.451
CVaR 44.5 11.5 44 1.995 0.437

Table 5: The comparisons of different models by
human evaluation on STC.

hidden state to describe the generation mecha-
nism. Both MGL and CVaR obtain better results
in terms of BLUE and PPL, compared with other
baselines. These results indicate that our pro-
posed models generate more fluent responses in
the diverse-requirement scenario. As for the evalu-
ation for the diversity, we can see that CVaR model
obtains the lowest overlap and divrs among all the
baseline models. Take the overlap score on STC
for example, the overlap score of CVaR model is
38.86, which is significantly lower than that of
Adver-REGS, Mechanism and GLM, i.e., 57.96,
57.67 and 66.92. These results indicate that our
CVaR model can generate responses with higher
diversity. That’s because it has the capability to
capture various matching patterns in the training
data, by optimizing the worst 1 − α costs. There-
fore, our CVaR model produces both fluent and di-
verse results, as compared with baseline methods.

5.3.3 Human Evaluation
The human evaluation results are shown in Ta-
ble 5. From the results, we can see MGL
and CVaR models achieve comparable results,
which are significantly better than baseline meth-
ods. Specifically, the averaged score of MGL and
CVaR is 2.15 and 1.995, which is significantly
higher than that of Adver-REGS and Mechanism,
i.e., 1.83 and 1.775, respectively. The percentage
of strongly related sentences (i.e., the grade ‘3’) of
MGL Model and CVaR are 52% and 44%, which
are also significantly higher than that of Adver-
REGS and Mechanism, i.e., 31.5% and 30%. We
conducted significant test for the improvement.
As compared with Adver-REGS and Mechanism,
both the metric-based improvements and human
evaluation improvements of CVaR are significant
on STC datasets (p-value < 0.01).

5.3.4 Case Study
Here we show some generated responses for
demonstration. Specifically, Table 6 gives one

post 总决赛继续等待韦德.(Waiting for Wade in the final games.)
response 每个人都有每个人的喜爱(Everyone has his favorite stars.)
response 分析比新浪分析的好多了(Analysis is much better than Sina)
response 等待闪电侠彻底爆发！(Waiting for the explosion of Mr.Flash)
Mechanism 韦德真伟大啊!支持!(Wade is really great! Support him!)
Mechanism 韦德越来越好。(Wade will be better)
Mechanism 韦德威武!(Wade is mighty)
CVaR 决赛一定要去看看的!(I must go and see the final games)
CVaR 詹皇怎么还能这么快啊(James is so fast)

CVaR 决赛是一种对对手的打击,热火加油
(The final games is a blow for the opposite. Heat come on)

post 神舟八号飞船与天宫一号第二次对接成功.
(Shenzhou 8 spacecraft and Tiangong-1 has the second successful docking)

response 希望其它方面也赶快领先世界(Hope other aspects will soon lead the world)

response 过硬的技术，紧密地配合促成了这次成功。
Strong technology and close cooperation contributed to this success

response 下一次就是载人对接啦.(Next will have a human in it)
Mechanism 周末报还会直播?(Will broadcast in the Weekend Newspaper? )
Mechanism 不错，就是不错(It is really good)
Mechanism 不错，就是在一起。(It is really good, they should be together)
CVaR 是啊，还是要坚持在一起。(Yes, they should insisted on being together)
CVaR 您这是在看头版吗？(Are you see it in the front page of the newspaper?)

CVaR 不错，有空推荐给爸爸！
(It is really good, you could recommend it to your father if you have time)

Table 6: The generated responses from different
models on STC.

post and its three ground-truth responses from
STC. We also give three generated responses from
Mechanism and CVaR model. We can see that
Mechanism produces responses with the same
meaning, such as ‘Wade is so amazing’ and ‘It
is really good’. However, our CVaR models give
specific responses with diverse meanings. Take
the post ‘Waiting for Wade in the final games.’ for
example, CVaR’s responses are related to differ-
ent topics. The response ‘I must go and see the
final games ’ focuses on the game, while another
response of ‘James is so fast ’ focuses on the per-
son, James. For the other case, the post is about
the docking of two spacecrafts and the CVaR re-
sponses are related to different users, such as the
supporter of the event, the newspaper reader and
the children who have a father concerned with the
current news . We have obtained similar observa-
tions for many other posts, but we have to omit
them for space limitations.

6 Conclusion

In this paper, we propose two new optimization
criteria for Seq2Seq model to adapt different con-
versation scenario. For the specific-requirement
scenario, such as customer service, which requires
specific and high quality responses, maximum
generated likelihood is used as the objective func-
tion instead of the averaged one. While for the
diverse-requirement, such as chatbot, which re-
quires diverse and high quality responses even if
for the same post, CVaR is used as the objec-
tive function for worst case optimization. Ex-
perimental results on both specific-requirement
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(Ubuntu data) and diverse-requirement scenarios
(STC data) demonstrate that the proposed opti-
mization criteria can meet the corresponding re-
quirement, yielding better performances against
traditional Seq2Seq models in terms of both
metric-based and human evaluations.

The contribution of this paper is to use tailored
Seq2Seq model for different conversation scenar-
ios. The study shows that if we want to gener-
ate specific responses, it is important to design
the model to learn the most significant matching
pattern between post and response. While if we
want to generate diverse responses, a risk-sensitive
objective functions is helpful. In future work,
we plan to further investigate the impact of risk-
sensitive objective functions, including the rela-
tions between model robustness and diverse gen-
erations.
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Abstract

End-to-end neural dialogue generation has
shown promising results recently, but it
does not employ knowledge to guide the
generation and hence tends to generate
short, general, and meaningless responses.
In this paper, we propose a neural knowl-
edge diffusion (NKD) model to intro-
duce knowledge into dialogue generation.
This method can not only match the rele-
vant facts for the input utterance but dif-
fuse them to similar entities. With the
help of facts matching and entity diffu-
sion, the neural dialogue generation is
augmented with the ability of convergent
and divergent thinking over the knowledge
base. Our empirical study on a real-world
dataset proves that our model is capable of
generating meaningful, diverse and natural
responses for both factoid-questions and
knowledge grounded chi-chats. The ex-
periment results also show that our model
outperforms competitive baseline models
significantly.

1 Introduction

Dialogue systems are receiving more and more
attention in recent years. Given previous ut-
terances, a dialogue system aims to generate a
proper response in a natural way. Compared with
the traditional pipeline based dialogue system,
the new method based on sequence-to-sequence
model (Shang et al., 2015; Vinyals and Le, 2015;
Cho et al., 2014) impressed the research com-
munities with its elegant simplicity. Such meth-
ods are usually in an end-to-end manner: utter-
ances are encoded by a recurrent neural network

∗Work done when the first author was an intern at Data
Science Lab, JD.com.

while responses are generated sequentially by an-
other (sometimes identical) recurrent neural net-
work. However, due to lack of universal back-
ground knowledge and common senses, the end-
to-end data-driven structure inherently tends to
generate meaningless and short responses, such as
“haha” or “I don’t know.”

To bridge the gap of the common knowledge
between human and computers, different kinds
of knowledge bases ( e.g., the freebase (Google,
2013) and DBpedia (Lehmann et al., 2017) ) are
leveraged. A related application of knowledge
bases is question answering, where the given ques-
tions are first analyzed, followed by retrieving re-
lated facts from knowledge bases (KBs), and fi-
nally the answers are generated.The facts are usu-
ally presented in the form of “subject-relation-
object” triplets, where the subject and object are
entities. With the aid of knowledge triplets, neural
generative question answering systems are capa-
ble of answering facts related inquiries (Yin et al.,
2016; Zhu et al., 2017; He et al., 2017a), WH ques-
tions in particular, like “who is Yao Ming’s wife ?”.

Although answering enquiries is essential for
dialogue systems, especially for task-oriented di-
alogue systems (Eric et al., 2017), it is still far
behind a natural knowledge grounded dialogue
system, which should be able to understand the
facts involved in current dialogue session (so-
called facts matching), as well as diffuse them
to other similar entities for knowledge-based chit-
chats (i.e. entity diffusion):
1) facts matching: in dialogue systems, matching
utterances to exact facts is much harder than ex-
plicit factoid inquiries answering. Though some
utterances are facts related inquiries, whose sub-
jects and relations can be easily recognized, for
some utterances, the subjects and relations are elu-
sive, which leads the trouble in exact facts match-
ing.
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ID Dialogue

1

A: Who is the director of the Titanic?
泰坦尼克号的导演是谁？

B: James Cameron.
詹姆斯卡梅隆。

2

A: Titanic is my favorite film!
泰坦尼克号是我最爱的电影！

B: The love inside it is so touching.
里面的爱情太感人了。

3

A: Is there anything like the Titanic?
有什么像泰坦尼克号一样的电影吗？
B: I think the love story in film Waterloo

Bridge is beautiful, too.
我觉得魂断蓝桥中的爱情故事也很美。

4

A: Is there anything like the Titanic?
有什么像泰坦尼克号一样的电影吗？
B: Poseidon is also a classic marine film.
海神号也是一部经典的海难电影。

Table 1: Examples of knowledge grounded con-
versations. Knowledge entities are underlined.

Table 1 shows an example: Item 1 and 2 are talk-
ing about the film “Titanic”, Unlike item 1, which
is a typical question answering conversation,item
2 is a knowledge related chit-chat without any ex-
plicit relation. It is difficult to define the exact fact
match for item 2.
2) entity diffusion: another noticeable phe-
nomenon is that the conversation usually drifts
from one entity to another. In Table 1, utterances
in item 3 and 4 are about entity “Titanic”, how-
ever, the entity of responses are other similar films.
Such entity diffusion relations are rarely captured
by the current knowledge triplets. The response
in item 3 shows that the two entities “Titanic” and
“Waterloo Bridge” are relevant through “love sto-
ries”. Item 4 suggests another similar shipwreck
film of “Titanic”.

To deal with the aforementioned challenges,
in this paper, we propose a neural knowledge
diffusion (NKD) dialogue system to benefit the
neural dialogue generation with the ability of both
convergent and divergent thinking over the knowl-
edge base, and handle factoid QA and knowledge
grounded chit-chats simultaneously. NKD learns
to match utterances to relevant facts; the matched
facts are then diffused to similar entities; and fi-
nally, the model generates the responses with re-
spect to all the retrieved knowledge items.

In general, our contributions are as follows:

• We identify the problem of incorporating
knowledge bases and dialogue systems as
facts matching and entity diffusion.

• We manage both facts matching and entity
diffusion by introducing a novel knowledge
diffusion mechanism and generate the re-
sponses with the retrieved knowledge items,
which enable the convergent and divergent
thinking over the knowledge base.

• The experimental results show that the pro-
posed model effectively generate more di-
verse and meaningful responses involving
more accurate relevant entities compared
with the state-of-the-art baselines.

The corpus will be released upon publication.

2 Model

Figure 1: Neural Knowledge Diffusion Dialogue
System.

Given the input utterance X =
(x1, x2, ..., xNX

), NKD produces a response
Y = (y1, y2, ..., yNY

) containing the entities from
the knowledge base K. NX and NY are the
number of tokens in the utterance and response re-
spectively. The knowledge base K is a collection
of knowledge facts in the form of triplets (subject,
relation, object). In particular, both subjects and
objects are entities in this work. As illustrated
in Figure 1, the model mainly consists of four
components:

1. An encoder encodes the input utterance X
into a vector representation.
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2. A context RNN keeps the dialogue state
along a conversation session. It takes the ut-
terance representation as input, and outputs a
vector guiding the response generation each
turn.

3. A decoder generates the final response Y .

4. A knowledge retriever performs the facts
matching and diffuses to similar entities at
each turn.

Our work is built on hierarchical recurrent
encoder-decoder architecture (Sordoni et al.,
2015a), and a knowledge retriever network inte-
grates the structured knowledge base into the dia-
logue system.

2.1 Encoder

The encoder transforms discrete tokens into vec-
tor representations. To capture information at dif-
ferent aspects, we learn utterance representations
with two independent RNNs resulting with two
hidden state sequences HC = (hC1 , h

C
2 , ..., h

C
NX

)

and HK = (hK1 , h
K
2 , ..., h

K
NX

) respectively. One
final hidden state hCNX

is used as the input of con-
text RNN to track the dialogue state. The other
final hidden state hKNX

is utilized in knowledge
retriever and is designed to encode the knowl-
edge entities and relations within the input utter-
ances. For instance, in Figure 1, “director” and
“Titanic” in X1 are knowledge elements.

2.2 Knowledge Retriever

Knowledge retriever extracts a certain number of
facts from knowledge base and specifies their im-
portance. It enables the knowledge grounded neu-
ral dialogue system with convergent and divergent
thinking ability through facts matching and entity
diffusion. Figure 2 illustrates the process.

2.2.1 Facts Matching
Given the input utterance X and hKNX

, relevant
facts are extracted from both the knowledge base
and the dialogue history. A predefined number
of relevant facts F = {f1, f2, ..., fNf

} are ob-
tained through string matching, entity linking or
named entity recognition. As shown in Figure
2, in the first sentence, “Titanic” is recognized
as an entity, all the relevant knowledge triplets
are extracted. Then, these entities and knowledge
triplets are transformed into fact representations

hf = {hf 1, hf 2, ...hfNf
} by averaging the en-

tity embedding and relation embedding. The rele-
vance coefficient rf between a fact and the input
utterances, ranging from 0 to 1, is calculated by a
nonlinear function or a sub neural network. Here,
we apply a multi-layer perceptron (MLP):

rfk =MLP ([hKNX
, hf k]).

For the multi-turn conversation, entities in pre-
vious utterances are also inherited and reserved
as depicted in Figure 2 the dotted lines. For in-
stance, in the second sentence of Figure 2 (right
one), no new fact is extracted from the input utter-
ance. Thus it is necessary to record the history en-
tities “Titanic” and “James Cameron”. We sum-
marize the facts as relevant fact representation Cf

through a weighted average of fact representations
hf :

Cf =

∑Nf

k=1 r
f
khf k∑Nf

k=1 r
f
k

.

2.2.2 Entity Diffusion
To retrieve other relevant entities, which are typ-
ically not mentioned in the dialogue utterance,
we diffuse the matched facts. We calculate the
similarity between the entities (except the enti-
ties that have occurred in previous utterances) in
the knowledge base and the relevant fact represen-
tation through a multi-layer perceptron, resulting
with a similarity coefficient re, ranging from 0 to
1:

rek =MLP ([hKNX
, Cf , ek]),

where ek is the entity embedding. The top Ne

number of entities E = {e1, e2, ..., eNe} are se-
lected as similar entities. Then, the similar entity
representation Cs is formalized as:

Cs =

∑Ne
k=1 r

e
kek∑Ne

k=1 r
e
k

.

Back to the example in Figure 2, in the first
turn, the matched fact of the input utterance
(Titanic, direct by, JamesCameron) is of a
high relevance coefficient in “facts matching” as
expected. When a fact getting matched, intuitively
it is not necessary for entity diffusion. In such
case, from the Figure 2, we observe that the en-
tities in “entity diffusing” are of low similarities.
In the second turn, there is no triplets matched to
the utterance, while the entity “Titanic” achieves
a much higher relevance score. Then in “entity
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Figure 2: Knowledge Retriever. Facts related to input utterance are extracted by facts matching. Similar
entities are then figured out by entity diffusion. The dotted lines show the inheritance of previous facts.

diffusion”, the similar entities “Waterloo Bridge”
and “Poseidon” get relatively higher similarity
weights than in the first turn.

2.3 Context RNN

Context RNN records the utterance level dialogue
state. It takes in the utterance representation and
the knowledge representations. The hidden state
of the context RNN is updated as:

hTt = RNN(hCt , [C
f , Cs], hTt−1).

hTt is then conveyed to the decoder to guide the
response generation.

2.4 Decoder

The decoder generates the response sequentially
through a word generator conditioned on hTt , Cf

and Cs. Let C denotes the concatenation of hTt ,
Cf and Cs. Knowledge items coefficient R is the
concatenation of relevance coefficient rf and sim-
ilarity coefficient re. We introduce two variants of
word generator:

Vanilla decoder simply generates the response
Y = (y1, y2, ..., yNy) according to C, R. The
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Cameron <END>
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Figure 3: The decoder generates words from both
vocabulary and knowledge base. A score updater
keeps tracking of the knowledge item coefficients
to ensure its coverage during response generation.

probability of Y is defined as

p(y1, .., yNy |C,R; θ)

= p(y1|C,R; θ)
Ny∏

t=2

p(yt|y1, .., yt−1, C,R; θ),
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where θ denotes the model parameters. The con-
ditional probability of yt is specified by

p(yt|y1, ..., yt−1, C,R; θ)
= p(yt|yt−1, st, C,R; θ),

where yt is the embedding of the vocabulary or
object entities of retrieved knowledge items, st is
the decoder RNN hidden state .

Probabilistic gated decoder utilizes a gating
variable zt (Yin et al., 2016) to indicate whether
the tth word is generated from common vocabu-
lary or knowledge entities. The probability of gen-
erating the tth word is given by:

p(yt|yt−1, st, C,R; θ)
=p(zt = 0|st; θ)p(yt|yt−1, st, C,R, zt = 0; θ)

+p(zt = 1|st; θ)p(yt|R, zt = 1; θ),

where p(zt|st; θ) is computed by a logistic regres-
sion, p(yt|R, zt = 1; θ) is approximated with the
knowledge items coefficient R, and θ is the model
parameter.

During response generation, if an entity is
overused, the response diversity will be reduced.
Therefore, once a knowledge item occurred in
the response, the corresponding coefficient should
be reduced in case that an item occurs multiple
times. To keep tracking the coverage of knowl-
edge items, we update the knowledge items coef-
ficient R at each time step. We also explore two
coverage tracking mechanisms: 1) Mask coeffi-
cient tracker directly reduces the coefficient of the
chosen knowledge item to 0 to ensure it can never
be selected as the response word again. 2) Coeffi-
cient attenuation tracker calculates an attenuation
score it based on st, R0, Rt−1 and yt−1:

it = DNN(st, yt−1, R0, Rt−1),

and then update the coefficient as:

Rt = it ·Rt−1,
where it ranges from 0 to 1 to gradually decrease
the coefficient.

2.5 Training
The model parameters include the embedding of
vocabulary, entities, relations, and all the model
components. The model is differential and can
be optimized in an end-to-end manner using back-
propagation. Given the training data

D = {(XNd
1 , Y Nd

1 , FNd
1 , ENd

1 )}

where Nd is the max turns of a dialogue, F de-
notes the set of relevant knowledge and E denotes
the set of similar knowledge in response, the ob-
jective function is to minimize the negative log-
likelihood:

`(D, θ) = −
∑ ND∑

i=1

log p(Yi|Xi, Fi, Ei)

3 Experiment

3.1 Dataset
Most existing knowledge related datasets are
mainly focused on single-turn factoid question
answering (Yin et al., 2016; He et al., 2017b).
We here collect a multi-turn conversation cor-
pus grounded on the knowledge base, which in-
cludes not only facts related inquiries but also
knowledge-based chit-chats. The data is publicly
available online1.

We first obtain the element information of each
movie, including the movie’s title, publication
time, directors, actors and other attributes from
https://movie.douban.com/, a popular Chinese
social network for movies. Then, entities and re-
lations are extracted as triplets to build the knowl-
edge base K.

To collect the question-answering dialogues,
we crawled the corpus from a question-answering
forum https://zhidao.baidu.com/. To
gather the knowledge related chit-chat corpus,
we mined the dataset from the social forum
https://www.douban.com/group/. Users post
their comments, feedbacks, and impressions of
films and televisions on it.

The conversations are grounded on the knowl-
edge using NER, string match, and artificial scor-
ing and filtering rules. The statistical informa-
tion of the dataset is shown in Table 2. We ob-
served that the conversations follow the long tail
distribution, where famous films and televisions
are discussed repeatedly and the low rating ones
are rarely mentioned.

3.2 Experiment Detail
The total 32977 conversations consisting of
104567 utterances are divided into training
(32177) and testing set (800). Bi-directional
LSTM (Schuster and Paliwal, 1997) is used for
encoder, and the dimension of the LSTM hidden

1https://github.com/liushuman/neural-knowledge-
diffusion
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Knowledge base Community QA Multi-round dialogue
#entities #relations #triplets #QA pairs #dialogues #sentences
152568 4 766854 8121 24856 88325

Table 2: Statistics of knowledge base and conversations.

layer is set to 512. For the context RNN, the di-
mension of the LSTM unit is set to 1024. The
dimension of word embedding shared by the vo-
cabulary, entities and relations is also set to 512
empirically. We use Adam learning (Kingma and
Ba, 2014) to update the gradient and clip the gra-
dient in 5.0. It takes 140 to 150 epochs to train the
model with a batch size of 80.

3.3 Baselines
We compare our neural knowledge diffusion
model with three state-of-the-art baselines:

• Seq2Seq: a sequence to sequence model with
vanilla RNN encoder-decoder (Shang et al.,
2015; Vinyals and Le, 2015).

• HRED: a hierarchical recurrent encoder-
decoder model.

• GenDS: a neural generative dialogue system
that is capable of generating responses based
on input message and related knowledge base
(KB) (Zhu et al., 2017) .

Three variants of the neural diffusion dialogue
generation model are implemented to verify dif-
ferent configurations of decoders.

• NKD-ori is the original model with a vanilla
decoder and a mask coefficient tracker.

• NKD-gated is augmented with a probabilis-
tic gated decoder and a mask coefficient
tracker.

• NKD-atte utilizes a vanilla decoder and the
coefficient attenuation tracker.

3.4 Evaluation Metric
Both automatic and human evaluation metrics are
used to analyze the model’s performance. To val-
idate the effectiveness of facts matching and dif-
fusion, we calculate entity accuracy and recall
on factoid QA data set as well as the whole data
set. Human evaluation rates the model in three
aspects: fluency, knowledge relevance and cor-
rectness of the response. All these metrics range
from 0 to 3, where 0 represents complete error, 1

model accuracy(%) recall(%)
LSTM 7.8 7.5
HRED 3.7 3.9
GenDS 70.3 63.1
NKD-ori 67.0 56.2
NKD-gated 77.6 77.3
NKD-atte 55.1 46.6

Table 3: Evaluation results on factoid question
answering dialogues.

model accuracy(%) recall(%) entity number
LSTM 2.6 2.5 1.65
HRED 1.4 1.5 1.79
GenDS 20.9 17.4 1.34
NKD-ori 22.9 19.7 2.55
NKD-gated 24.8 25.6 1.59
NKD-atte 18.4 16.0 3.41

Table 4: Evaluation results on entire dataset.

for partially correct, 2 for almost correct, 3 for ab-
solutely correct.

3.5 Experiment Result

Table 3 displays the accuracy and recall of entities
on factoid question answering dialogues. The per-
formance of NKD is slightly better than the spe-
cific QA solution GenDS, while LSTM and HRED
which are designed for chi-chat almost fail in this
task. All the variants of NKD models are capa-
ble of generating entities with an accuracy of 60%
to 70%, and NKD-gated achieves the best perfor-
mance with an accuracy of 77.6% and a recall of
77.3%.

Table 4 lists the accuracy and recall of entities
on the entire dataset including both the factoid QA
and knowledge grounded chit-chats. Not surpris-
ingly, both NKD-ori and NKD-gated outperform
GenDS on the entire dataset, and the relative im-
provement over GenDS is even higher than the im-
provement in QA dialogues. It confirms that al-
though NKD and GenDS are comparable in an-
swering factoid questions, NKD is better at in-
troducing the knowledge entities for knowledge
grounded chit-chats.

All the NKD variants in Table 4 generate more
entities than GenDS. LSTM and HRED also pro-
duce a certain amount of entities, but are of low
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model Fluency Appropriateness Entire
of knowledge Correctness

LSTM 2.52 0.88 0.8
HRED 2.48 0.36 0.32
GenDS 2.76 1.36 1.34
NKD-ori 2.42 1.92 1.58
NKD-gated 2.08 1.72 1.44
NKD-atte 2.7 1.54 1.38

Table 5: Human evaluation result.

accuracies and recalls. We also noticed that NKD-
gated achieves the highest accuracy and recall,
but generates fewer entities compared with NKD-
ori and NKD-gated, whereas NKD-atte generates
more entities but also with relatively low accu-
racies and recalls.This demonstrates that NKD-
gated not only learns to generate more entities but
also maintains the quality ( with a relatively high
accuracy and recall ).

The results of human evaluation in Table 5 also
validate the superiority of the proposed model, es-
pecially on appropriateness. Responses generated
by LSTM and HRED are of high fluency, but are
simply repetitions, or even dull responses as “I
don’t know.”, “Good.”. NKD-gated is more adept
at incorporating the knowledge base with respect
to appropriateness and correctness, while NKD-
atte generates more fluent responses. NKD-ori
is a compromise, and obtains the best correctness
in completing an entire dialogue. Four evaluators
rated the scores independently. The pairwise Co-
hen’s Kappa agreement scores are 0.67 on fluency,
0.54 on appropriateness, and 0.60 on entire cor-
rectness, which indicate a strong annotator agree-
ment.

To our surprise, one of the variant model of
NKD, which utilized both probabilistic gated de-
coder and coefficient attenuation tracker does not
perform well on entire dataset. The accuracy of
the model is quite high, but the recall is very
low compared to others. We speculate that this
is due to the method of minimizing negative
log-likelihood during the training process, which
makes the model tend to generate completely cor-
rect answers, and therefore reduces the number of
generated entities.

3.6 Case Study

Table 6 shows typical examples of the generated
responses. Both Item 1 and 2 are based on facts
relevant utterances. NKD handles these questions
by facts matching. Item 3 asks for a recommen-

dation. NKD obtains similar entities by diffus-
ing the entities. For item 4, 5 and 6, no explicit
entity appears in the utterances. NKD is able to
output appropriate recommendations through en-
tity diffusion. The entities are recorded during
the whole dialogue session, so NKD keeps recom-
mending for several turns. Item 7 fails to gener-
ate an appropriate response because the entity in
the golden response does not appear in the train-
ing set, which suggests the future work for out-of-
vocabulary cases.

4 Related Work

The successes of sequence-to-sequence architec-
ture (Cho et al., 2014; Sutskever et al., 2014) mo-
tivated investigation in dialogue systems that can
effectively learn to generate a response sequence
given the previous utterance sequence (Shang
et al., 2015; Sordoni et al., 2015b; Vinyals and Le,
2015). The model is trained to minimize the nega-
tive log-likelihood of the training data. Despite the
current progress, the lack of response diversity is
a notorious problem, where the model inherently
tends to generate short, general responses in spite
of different inputs. Li et al. (2016a); Serban et al.
(2017); Cao and Clark (2017) suggested that the-
ses boring responses are common in training data
and shorter responses are more likely to be given
a higher likelihood. To tackle the problem, Li
et al. (2016a) introduced a maximum mutual in-
formation training objective. Serban et al. (2017),
Cao and Clark (2017) and Chen et al. (2018) used
latent variables to introduce stochasticity to en-
hance the response diversity. Vijayakumar et al.
(2016),Shao et al. (2017) and Li et al. (2016b)
recognized that the greedy search decoding pro-
cess, especially beam-search with a wide beam
size, leads the short responses possess higher like-
lihoods. They reserved more diverse candidates
during beam-search decoding. In this paper, we
present that the absence of background knowledge
and common sense is another source of lacking di-
versity. We augment the knowledge base to end-
to-end dialogue generation.

Another research line comes from the utiliz-
ing of knowledge bases. A typical application is
question-answering (QA) systems. The end-to-
end QA also resort to the encoder-decoder frame-
work (Yin et al., 2016; He et al., 2017a). Yin et al.
(2016) enquired the knowledge-base to achieve
one fact and answer the simple factoid questions
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ID Utterance Response

1

X1:Duckweed, casts Y1:Hongda Guan Jiufeng Shi Qi Wang Zhi Cheng
关宏达史久峰汪漪程之

乘风破浪，演员表 NKD:Hongda Guan Jiufeng Shi Qi Wang Zhi Cheng
关宏达史久峰汪漪程之

2

X1: Just spend the whole night watching the movie Y1:I saw it last night and had a hard time
Silenced, a little depressed now 昨晚看了，心里好难过
刚看完熔炉... 连夜看完的，略低落 NKD:The film has an atmosphere make us rethink sth

气氛有，会反思一些事

3

X1:Which movie most representative of youth? I’d like Y1:Kids Return
In the Heat of the Sun, Flipped, First Love(Sing Street) 坏孩子的天空

你觉得最能代表青春的电影有哪些呢我觉得有 NKD:《Love Letter》《Once》
阳光灿烂的日子，怦然心动，初恋这件小事（唱街） 《情书》《曾经》

4

X1:Can anyone recommend me some touching movie, Y1:Gift From Room 7 Hearty Paws Memories of Matsuko
tears streaming after watching 7号房的礼物人狗奇缘被嫌弃的松子的一生
谁能给我推荐两部感人的电影，直接点的，看了 NKD:Wedding Dress, these ones,,,

可以流两缸眼泪那种 婚纱，这些，，，

5

X1:burn brain or suspense movies please, recommend me Y1:《The Skeleton Key》《Identity》
some burn brain or suspense or horror films please! sus-
pense films which are less popular are ok!!!

《万能钥匙》《致命id》

求推荐烧脑的推理悬疑电影求各位大神推荐烧脑 NKD:Identity
的悬疑恐怖电影冷门的推理剧也爱！！！ 致命id

Y1:《Orphan》？
X2:I’ve seen it, it’s nice 《孤儿怨》？

NKD: Also Inception Whisper of the Heart
看过哦不错呢 Whisper of the Heart

还有盗梦空间侧耳倾听侧耳倾听

6

X1:It’s a bit boring recently. Any good horror movies,
guys? I’ve watched a lot.

Y1:Rec, A Wicked Ghost, Dead Silence,
1408 phontom horror,
死亡录像，山村老尸，死寂，1408，

最近有点无聊，各位豆友有什么好看的恐怖片推
荐啊？看了好多了。

NKD:Recommend a few I’ve seen,《A Wicked Ghost》,
《hide and seek》

推荐几部我看过《山村老尸》、《捉迷藏》
X2:I’ve seen it all, anything else? Y1:The Others, hardly call to mind

小岛惊魂，冷不丁还真想不起来
卤煮都看过了。还有推荐？ NKD: Identity, Fight Club, Interstellar, Snowpiercer

致命id、搏击俱乐部、星际穿越、雪国列车
X3:Have seen it before, really great Y3:《The Revenant》, nice movie

《亡灵》，非常好看
看过，真的很不错的说 NKD:So what type do you like?

那你喜欢什么类型的？

7

X1:any awesome animation like Song of the Sea, please Y1::The Girl Without Hands
无手的少女

求一些画风超赞的动画类似于海洋之歌这种的， NKD:strongly recommended
谢谢 强烈推荐

Table 6: Examples of the generated response. Entities are underlined and Yi denotes the gold response.

by referring to the fact. He et al. (2017a) ex-
tended this approach by augmenting the copying
mechanism and enabled the output words to copy
from the original input sequence. Eric et al. (2017)
noticed that neural task-oriented dialogue systems
often struggle to smoothly interface with a knowl-
edge base and they addressed the problem by aug-
menting the end-to-end structure with a key-value
retrieval mechanism where a separate attention is
performed over the key of each entry in the KB.
Ghazvininejad et al. (2017) represented the un-
structured text as bag of words representation and

also performed soft attention over the facts to re-
trieve a facts vector. Zhu et al. (2017) generated
responses with any number of answer entities in
the structured KB, even when these entities never
appear in the training set. Dhingra et al. (2017)
proposed a multi-turn dialogue agent which helps
users search knowledge base by soft KB lookup.
In our model, we perform not only facts matching
to answer factoid inquiries, but also entity diffu-
sion to infer similar entities. Given previous utter-
ances, we retrieve the relevant facts, diffuse them,
and generate responses based on diversified rele-
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vant knowledge items.

5 Conclusion

In this paper, we identify the knowledge diffusion
in conversations and propose an end-to-end neu-
ral knowledge diffusion model to deal with the
problem. The model integrates the dialogue sys-
tem with the knowledge base through both facts
matching and entity diffusion, which enable the
convergent and divergent thinking over the knowl-
edge base. Under such mechanism, the factoid
question answering and knowledge grounded chit-
chats can be tackled together. Empirical results
show the proposed model is able to generate more
meaningful and diverse responses, compared with
the state-of-the-art baselines. In future work,
we plan to introduce reinforcement learning and
knowledge base reasoning mechanisms to improve
the performance.
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Abstract

Sentence function is a significant factor to
achieve the purpose of the speaker, which,
however, has not been touched in large-
scale conversation generation so far. In
this paper, we present a model to gener-
ate informative responses with controlled
sentence function. Our model utilizes a
continuous latent variable to capture vari-
ous word patterns that realize the expected
sentence function, and introduces a type
controller to deal with the compatibility
of controlling sentence function and gen-
erating informative content. Conditioned
on the latent variable, the type controller
determines the type (i.e., function-related,
topic, and ordinary word) of a word to
be generated at each decoding position.
Experiments show that our model outper-
forms state-of-the-art baselines, and it has
the ability to generate responses with both
controlled sentence function and informa-
tive content.

1 Introduction

Sentence function is an important linguistic feature
and a typical taxonomy in terms of the purpose of
the speaker (Rozakis, 2003). There are four major
function types in the language including interrog-
ative, declarative, imperative, and exclamatory, as
described in (Rozakis, 2003). Each sentence func-
tion possesses its own structure, and transforma-
tion between sentence functions needs a series of
changes in word order, syntactic patterns and other
aspects (Akmajian, 1984; Yule, 2010).

Since sentence function is regarding the purpose
of the speaker, it can be a significant factor indi-
cating the conversational purpose during interac-

∗*Corresponding author: Minlie Huang.

Post I’m really hungry now.
Interrogative What did you have at breakfast?

Response Imperative Let’s have dinner together!
Declarative Me, too. But you ate too much at lunch.

Figure 1: Responses with three sentence func-
tions. Function-related words are in red, topic
words in blue, and others are ordinary words.

tions, but surprisingly, this problem is rather un-
touched in dialogue systems. As shown in Fig-
ure 1, responses with different functions can be
used to achieve different conversational purposes:
Interrogative responses can be used to acquire
further information from the user; imperative re-
sponses are used to make requests, directions, in-
structions or invitations to elicit further interac-
tions; and declarative responses commonly make
statements to state or explain something.1 Inter-
rogative and imperative responses can be used to
avoid stalemates (Li et al., 2016b), which can be
viewed as important proactive behaviors in con-
versation (Yu et al., 2016). Thus, conversational
systems equipped with the ability to control the
sentence function can adjust its strategy for dif-
ferent purposes within different contexts, behave
more proactively, and may lead the dialogue to go
further.

Generating responses with controlled sentence
functions differs significantly from other tasks on
controllable text generation (Hu et al., 2017; Ficler
and Goldberg, 2017; Asghar et al., 2017; Ghosh
et al., 2017; Zhou and Wang, 2017; Dong et al.,
2017; Murakami et al., 2017). These studies, in-
volving the control of sentiment polarity, emotion,
or tense, fall into local control, more or less, be-
cause the controllable variable can be locally re-

1 Note that we did not include the exclamatory category
in this paper because an exclamatory sentence in conversation
is only a strong emotional expression of the original sentence
with few changes.
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flected by decoding local variable-related words,
e.g., terrible for negative sentiment (Hu et al.,
2017; Ghosh et al., 2017), glad for happy emo-
tion (Zhou et al., 2018; Zhou and Wang, 2017),
and was for past tense (Hu et al., 2017). By
contrast, sentence function is a global attribute
of text, and controlling sentence function is more
challenging in that it requires to adjust the global
structure of the entire text, including changing
word order and word patterns.

Controlling sentence function in conversational
systems faces another challenge: in order to gen-
erate informative and meaningful responses, it has
to deal with the compatibility of the sentence func-
tion and the content. Similar to most existing neu-
ral conversation models (Li et al., 2016a; Mou
et al., 2016; Xing et al., 2017), we are also strug-
gling with universal and meaningless responses
for different sentence functions, e.g., “Is that
right?” for interrogative responses, “Please!” for
imperative responses and “Me, too.” for declar-
ative responses. The lack of meaningful topics
in responses will definitely degrade the utility of
the sentence function so that the desired conversa-
tional purpose can not be achieved. Thus, the task
needs to generate responses with both informative
content and controllable sentence functions.

In this paper, we propose a conversation gen-
eration model to deal with the global control of
sentence function and the compatibility of control-
ling sentence function and generating informative
content. We devise an encoder-decoder structure
equipped with a latent variable in conditional vari-
ational autoencoder (CVAE) (Sohn et al., 2015),
which can not only project different sentence func-
tions into different regions in a latent space, but
also capture various word patterns within each
sentence function. The latent variable, supervised
by a discriminator with the expected function la-
bel, is also used to realize the global control of sen-
tence function. To address the compatibility issue,
we use a type controller which lexicalizes the sen-
tence function and the content explicitly. The type
controller estimates a distribution over three word
types, i.e., function-related, topic, and ordinary
words. During decoding, the word type distribu-
tion will be used to modulate the generation distri-
bution in the decoder. The type sequence of a re-
sponse can be viewed as an abstract representation
of sentence function. By this means, the model has
an explicit and strong control on the function and

the content. Our contributions are as follows:

• We investigate how to control sentence func-
tions to achieve different conversational pur-
poses in open-domain dialogue systems. We
analyze the difference between this task and
other controllable generation tasks.

• We devise a structure equipped with a la-
tent variable and a type controller to achieve
the global control of sentence function and
deal with the compatibility of controllable
sentence function and informative content in
generation. Experiments show the effective-
ness of the model.

2 Related Work

Recently, language generation in conversational
systems has been widely studied with sequence-
to-sequence (seq2seq) learning (Sutskever et al.,
2014; Bahdanau et al., 2015; Vinyals and Le,
2015; Shang et al., 2015; Serban et al., 2016,
2017). A variety of methods has been proposed
to address the important issue of content quality,
including enhancing diversity (Li et al., 2016a;
Zhou et al., 2017) and informativeness (Mou et al.,
2016; Xing et al., 2017) of the generated re-
sponses.

In addition to the content quality, controllabil-
ity is a critical problem in text generation. Vari-
ous methods have been used to generate texts with
controllable variables such as sentiment polarity,
emotion, or tense (Hu et al., 2017; Ghosh et al.,
2017; Zhou and Wang, 2017; Zhou et al., 2018) .
There are mainly two solutions to deal with con-
trollable text generation. First, the variables to be
controlled are embedded into vectors which are
then fed into the models to reflect the character-
istics of the variables (Ghosh et al., 2017; Zhou
et al., 2018). Second, latent variables are used to
capture the information of controllable attributes
as in the variational autoencoders (VAE) (Zhou
and Wang, 2017). (Hu et al., 2017) combined the
two techniques by disentangling a latent variable
into a categorical code and a random part to better
control the attributes of the generated text.

The task in this paper differs from the above
tasks in two aspects: (1) Unlike other tasks that
realize controllable text generation by decoding
attribute-related words locally, our task requires to
not only decode function-related words, but also
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Figure 2: Model overview. During training, the latent variable z is sampled from the recognition network
which is supervised by the function label in the discriminator. In the type controller, the latent variable
and the decoder’s state are used to estimate a type distribution which modulates the final generation
distribution. During test, z is sampled from the prior network whose input is only the post. The response
encoder in the dotted box appears only in training.

plan the words globally to realize the function type
to be controlled. (2) The compatibility of control-
lable variables and content quality is less studied
in the literature. The most similar work in (Zhao
et al., 2017) proposed to control the dialogue act
of a response, which is also a global attribute.
However, the model controls dialog act by directly
feeding a latent variable into the decoder, instead,
our model has a stronger control on the genera-
tion process via a type controller in which words
of different types are concretely modeled.

3 Model

3.1 Task Definition and Model Overview
Our problem is formulated as follows: given a post
X = x1x2 · · ·xn and a sentence function cate-
gory l, our task is to generate a response Y =
y1y2 · · · ym that is not only coherent with the spec-
ified function category l but also informative in
content. We denote c as the concatenation of all
the input information, i.e. c = [X; l]. Essentially,
the goal is to estimate the conditional probability:

P (Y,z|c) = P (z|c) · P (Y |z, c) (1)

The latent variable z is used to capture the sen-
tence function of a response. P (z|c), parameter-
ized as the prior network in our model, indicates
the sampling process of z, i.e., drawing z from

P (z|c). And P (Y |z, c) =
∏m
t=1 P (yt|y<t, z, c)

is applied to model the generation of the response
Y conditioned on the latent variable z and the in-
put c, which is implemented by a decoder in our
model.

Figure 2 shows the overview of our model. As
aforementioned, the model is constructed in the
encoder-decoder framework. The encoder takes a
post and a response as input, and obtains the hid-
den representations of the input. The recognition
network and the prior network, adopted from the
CVAE framework (Sohn et al., 2015), sample a la-
tent variable z from two normal distributions, re-
spectively. Supervised by a discriminator with the
function label, the latent variable encodes mean-
ingful information to realize a sentence function.
The latent variable, along with the decoder’s state,
is also used to control the type of a word in gen-
eration via the type controller. In the decoder, the
final generation distribution is mixed by the type
distribution which is obtained from the type con-
troller. By this means, the latent variable encodes
information not only from sentence function but
also from word types, and in return, the decoder
and the type controller can deal with the compat-
ibility of realizing sentence function and informa-
tion content in generation.
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3.2 Encoder-Decoder Framework

The encoder-decoder framework has been widely
used in language generation (Sutskever et al.,
2014; Vinyals and Le, 2015). The encoder trans-
forms the post sequence X = x1x2 · · ·xn into
hidden representations H = h1h2 · · ·hn, as fol-
lows:

ht = GRU(e(xt),ht−1) (2)

where GRU is gated recurrent unit (Cho et al.,
2014), and e(xt) denotes the embedding of the
word xt.

The decoder first updates the hidden states S =
s1s2 · · · sm, and then generates the target se-
quence Y = y1y2 · · · ym as follows:

st = GRU(st−1, e(yt−1), cvt−1) (3)

yt ∼ P (yt|y<t, st) = softmax(Wst) (4)

where this GRU does not share parameters with
the encoder’s network. The context vector cvt−1
is a dynamic weighted sum of the encoder’s hid-
den states, i.e., cvt−1 =

∑n
i=1 α

t−1
i hi, and αt−1i

scores the relevance between the decoder’s state
st−1 and the encoder’s state hi (Bahdanau et al.,
2015).

3.3 Recognition/Prior Network

On top of the encoder-decoder structure, our
model introduces the recognition network and the
prior network of CVAE framework, and utilizes
the two networks to draw latent variable samples
during training and test respectively. The latent
variable can project different sentence functions
into different regions in a latent space, and also
capture various word patterns within a sentence
function.

In the training process, our model needs to sam-
ple the latent variable from the posterior distribu-
tion P (z|Y, c), which is intractable. Thus, the
recognition network qφ(z|Y, c) is introduced to
approximate the true posterior distribution so that
we can sample z from this deterministic parame-
terized model. We assume that z follows a mul-
tivariate Gaussian distribution whose covariance
matrix is diagonal, i.e., qφ(z|Y, c) ∼ N (µ, σ2I).
Under this assumption, the recognition network
can be parameterized by a deep neural network
such as a multi-layer perceptron (MLP):

[µ, σ2] = MLPposterior(Y, c) (5)

During test, we use the prior network pθ(z|c) ∼
N (µ

′
, σ
′2I) instead to draw latent variable sam-

ples, which can be implemented in a similar way:

[µ
′
, σ
′2] = MLPprior(c) (6)

To bridge the gap between the recognition and the
prior networks, we add the KL divergence term
that should be minimized to the loss function:

L1 = KL(qφ(z|Y, c)||pθ(z|c)) (7)

3.4 Discriminator
The discriminator supervises z to encode
function-related information in a response with
supervision signals. It takes z as input instead of
the generated response Y to avoid the vanishing
gradient of z, and predicts the function category
conditioned on z:

P (l|z) = softmax(WD ·MLPdis(z)) (8)

This formulation can enforce z to capture the fea-
tures of sentence function and enhance the influ-
ence of z in word generation. The loss function of
the discriminator is given by:

L2 = −Eqφ(z|Y,c)[logP (l|z)] (9)

3.5 Type Controller
The type controller is designed to deal with the
compatibility issue of controlling sentence func-
tion and generating informative content. As afore-
mentioned, we classify the words in a response
into three types: function-related, topic, and or-
dinary words. The type controller estimates a dis-
tribution over the word types at each decoding po-
sition, and the type distribution will be used in the
mixture model of the decoder for final word gener-
ation. During the decoding process, the decoder’s
state st and the latent variable z are taken as input
to estimate the type distribution as follows:

P (wt|st, z) = softmax(W0 ·MLPtype(st, z))
(10)

Noticeably, the latent variable z introduced to
the RNN encoder-decoder framework often fails
to learn a meaningful representation and has lit-
tle influence on language generation, because the
RNN decoder may ignore z during generation,
known as the issue of vanishing latent variable
(Bowman et al., 2016). By contrast, our model
allows z to directly control the word type at each
decoding position, which has more influence on
language generation.
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3.6 Decoder
Compared with the traditional decoder described
in Section 3.2, our decoder updates the hidden
state st with both the input information c and the
latent variable z, and generates the response in a
mixture form which is combined with the type dis-
tribution obtained from the type controller:

st = GRU(st−1, e(yt−1), cvt−1, c, z) (11)

P (yt|y<t, c, z) = P (yt|yt−1, st, c, z)

=
3∑

i=1

P (wt = i|st, z)P (yt|yt−1, st, c, z, wt = i)

(12)

where wt = 1, 2, 3 stand for function-related
words, topic words, and ordinary words, respec-
tively. The probability for choosing different word
types at time t, P (wt = i|st, z), is obtained from
the type controller, as shown in Equation (10). The
probabilities of choosing words in different types
are introduced as follows:
Function-related Word: Function-related words
represent the typical words for each sentence func-
tion, e.g., what for interrogative responses, and
please for imperative responses. To select the
function-related words at each position, we simul-
taneously consider the decoder’s state st, the latent
variable z and the function category l.

P (yt|yt−1, st, c, z, wt = 1) =

softmax(W1 · [st, z, e(l)]) (13)

where e(l) is the embedding vector of the func-
tion label. Under the control of z, our model can
learn to decode function-related words at proper
positions automatically.
Topic Word: Topic words are crucial for generat-
ing an informative response. The probability for
selecting a topic word at each decoding position
depends on the current hidden state st:

P (yt|yt−1, st, c, z, wt = 2) = softmax(W2st)
(14)

This probability is over the topic words we predict
conditioned on a post. Section 3.8 will describe
the details.
Ordinary Word: Ordinary words play a func-
tional role in making a natural and grammatical
sentence. The probability of generating ordinary
words is estimated as below:

P (yt|yt−1, st, c, z, wt = 3) = softmax(W3st) (15)

The generation loss of the decoder is given as
below:

L3 = −Eqφ(z|Y,c)[logP (Y |z, c)]
= −Eqφ(z|Y,c)[

∑

t

logP (yt|y<t, z, c)] (16)

3.7 Loss Function
The overall loss L is a linear combination of the
KL term L1, the classification loss of the discrim-
inator L2, and the generation loss of the decoder
L3:

L = αL1 + L2 + L3 (17)

We let α gradually increase from 0 to 1. This
technique of KL cost annealing can address the
optimization challenges of vanishing latent vari-
ables in the RNN encoder-decoder (Bowman et al.,
2016).

3.8 Topic Word Prediction
Topic words play a key role in generating an infor-
mative response. We resort to pointwise mutual
information (PMI) (Church and Hanks, 1990) for
predicting a list of topic words that are relevant to
a post. Let x and y indicate a word in a postX and
its response Y respectively, and PMI is computed
as follows:

PMI(x, y) = log
P (x, y)

P (x)P (y)
(18)

Then, the relevance score of a topic word to a
given post x1x2 · · ·xn can be approximated as fol-
lows, similar to (Mou et al., 2016):

REL(x1, ..., xn, y) ≈
n∑

i=1

PMI(xi, y) (19)

During training, the words in a response with high
REL scores to the post are treated as topic words.
During test, we use REL to select the top ranked
words as topic words for a post.

4 Experiment

4.1 Data Preparation
We collected a Chinese dialogue dataset from
Weibo 2. We crawled about 10 million post-
responses pairs. Since our model needs the sen-
tence function label for each pair, we built a clas-
sifier to predict the sentence function automati-
cally to construct large-scale labeled data. Thus,

2http://www.weibo.com
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we sampled about 2,000 pairs from the original
dataset and annotated the data manually with four
categories, i.e., interrogative, imperative, declara-
tive and other. This small dataset was partitioned
into the training, validation, and test sets with the
ratio of 6:1:1. Three classifiers, including LSTM
(Hochreiter and Schmidhuber, 1997), Bi-LSTM
(Graves et al., 2005) and a self-attentive model
(Lin et al., 2017), were attempted on this dataset.
The results in Table 1 show that the self-attentive
classifier outperforms other models and achieves
the best accuracy of 0.78 on the test set.

Model Accuracy
LSTM 0.60

Bi-LSTM 0.75
Self-Attentive 0.78

Table 1: Accuracy of sentence function classifica-
tion on the 2,000 post-response pairs.

We then applied the self-attentive classifier to
annotate the large dataset and obtained a dialogue
dataset with noisy sentence function labels3. To
balance the distribution of sentence functions, we
randomly sampled about 0.6 million pairs for each
sentence function to construct the final dataset.
The statistics of this dataset are shown in Table 2.
The dataset4 is available at http://coai.cs.
tsinghua.edu.cn/hml/dataset.

Training

#Post 1,963,382

#Response
Interrogative 618,340
Declarative 672,346
Imperative 672,696

Validation

#Post 24,034

#Response
Interrogative 7,045
Declarative 9,685
Imperative 7,304

Test #Post 6,000

Table 2: Corpus statistics.

4.2 Experiment Settings
Our model was implemented with TensorFlow5.
We applied bidirectional GRU with 256 cells to
the encoder and GRU with 512 cells to the de-
coder. The dimensions of word embedding and
function category embedding were both set to
100. We also set the dimension of latent vari-
ables to 128. The vocabulary size was set to

3Though the labels are noisy, the data are sufficient to
train a generation model in practice.

4Note that we strictly obeyed the policies of Weibo and
anonymized potential private information in dialogues. This
dataset is strictly limited for academic use.

5https://github.com/tensorflow/tensorflow

40,000. Stochastic gradient descent (Qian, 1999)
was used to optimize our model, with a learning
rate of 0.1, a decay rate of 0.9995, and a momen-
tum of 0.9. The batch size was set to 128. Our
codes are available at https://github.com/
kepei1106/SentenceFunction.

We chose several state-of-the-art baselines,
which were implemented with the settings pro-
vided in the original papers:
Conditional Seq2Seq (c-seq2seq): A Seq2Seq
variant which takes the category (i.e., function
type) embedding as additional input at each de-
coding position (Ficler and Goldberg, 2017).
Mechanism-aware (MA): This model assumes
that there are multiple latent responding mecha-
nisms (Zhou et al., 2017). The number of respond-
ing mechanisms is set to 3, equal to the number of
function types.
Knowledge-guided CVAE (KgCVAE): A modi-
fied CVAE which aims to control the dialog act of
a generated response (Zhao et al., 2017).

4.3 Automatic Evaluation
Metrics: We adopted Perplexity (PPL) (Vinyals
and Le, 2015), Distinct-1 (Dist-1), Distinct-2
(Dist-2) (Li et al., 2016a), and Accuracy (ACC)
to evaluate the models at the content and function
level. Perplexity can measure the grammatical-
ity of generated responses. Distinct-1/distinct-2 is
the proportion of distinct unigrams/bigrams in all
the generated tokens, respectively. Accuracy mea-
sures how accurately the sentence function can be
controlled. Specifically, we compared the prespec-
ified function (as input to the model) with the func-
tion of a generated response, which is predicted by
the self-attentive classifier (see Section 4.1).

Model PPL Dist-1 Dist-2 ACC
c-seq2seq 57.14 949/.007 5177/.041 0.973

MA 46.08 745/.005 2952/.027 0.481
KgCVAE 56.81 1531/.009 10683/.070 0.985

Our Model 55.85 1833/.008 15586/.075 0.992

Table 3: Automatic evaluation with perplexity
(PPL), distinct-1 (Dist-1), distinct-2 (Dist-2), and
accuracy (ACC). The integers in the Dist-* cells
denote the total number of distinct n-grams.

Results: Our model has lower perplexity than c-
seq2seq and KgCVAE, indicating that the model is
comparable with other models in generating gram-
matical responses. Note that MA has the lowest
perplexity because it tends to generate generic re-
sponses.
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Model Interrogative Declarative Imperative
Gram. Appr. Info. Gram. Appr. Info. Gram. Appr. Info.

Ours vs. c-seq2seq 0.534 0.536 0.896* 0.630* 0.573* 0.764* 0.685* 0.504 0.893*
Ours vs. MA 0.802* 0.602* 0.675* 0.751* 0.592* 0.617* 0.929* 0.568* 0.577*
Ours vs. KgCVAE 0.510 0.626* 0.770* 0.546* 0.515* 0.744* 0.780* 0.521* 0.837*

Table 4: Manual evaluation results for different functions. The scores indicate the percentages that
our model wins the baselines after removing tie pairs. The scores of our model marked with * are
significantly better than the competitors (Sign Test, p-value < 0.05).

As for distinct-1 and distinct-2, our model gen-
erates remarkably more distinct unigrams and bi-
grams than the baselines, indicating that our model
can generate more diverse and informative re-
sponses compared to the baselines.

In terms of sentence function accuracy, our
model outperforms all the baselines and achieves
the best accuracy of 0.992, which indicates that
our model can control the sentence function more
precisely. MA has a very low score because there
is no direct way to control sentence function, in-
stead, it learns automatically from the data.

4.4 Manual Evaluation

To evaluate the generation quality and how well
the models can control sentence function, we con-
ducted pair-wise comparison. 200 posts were ran-
domly sampled from the test set and each model
was required to generate responses with three
function types to each post. For each pair of re-
sponses (one by our model and the other by a base-
line, along with the post), annotators were hired
to give a preference (win, lose, or tie). The total
annotation amounts to 200×3×3×3=5,400 since
we have three baselines, three function types, and
three metrics. We resorted to a crowdsourcing ser-
vice for annotation, and each pair-wise compari-
son was judged by 5 curators.
Metrics: We designed three metrics to evaluate
the models from the perspectives of sentence func-
tion and content: grammaticality (whether a re-
sponse is grammatical and coherent with the sen-
tence function we prespecified), appropriateness
(whether a response is a logical and appropriate
reply to its post), and informativeness (whether a
response provides meaningful information via the
topic words relevant to the post). Note that the
three metrics were separately evaluated.
Results: The scores in Table 4 represent the per-
centages that our model wins a baseline after re-
moving tie pairs. A value larger than 0.5 indi-
cates that our model outperforms its competitor.
Our model outperforms the baselines significantly

in most cases (Sign Test, with p-value < 0.05).
Among the three function types, our model per-
forms significantly better than the baselines when
generating declarative and imperative responses.
As for interrogative responses, our model is bet-
ter but the difference is not significant in some set-
tings. This is because interrogative patterns are
more apparent and easier to learn, thereby all the
models can capture some of the patterns to gen-
erate grammatical and appropriate responses, re-
sulting in more ties. By contrast, declarative and
imperative responses have less apparent patterns
whereas our model is better at capturing the global
patterns through modeling the word types explic-
itly.

We can also see that our model obtains particu-
larly high scores in informativeness. This demon-
strates that our model is better to generate more
informative responses, and is able to control sen-
tence functions at the same time.

The annotation statistics are shown in Table
5. The percentage of annotations that at least 4
judges assign the same label (at least 4/5 agree-
ment) is larger than 50%, and the percentage for at
least 3/5 agreement is about 90%, indicating that
annotators reached a moderate agreement.

At least 3/5 At least 4/5
Grammaticality 91.7% 60.1%
Appropriateness 88.6% 52.5%
Informativeness 95.9% 71.2%

Table 5: Annotation statistics. At least n/5 means
there are no less than n judges assigning the same
label to a record during annotation.

4.5 Words and Patterns in Function Control
To further analyze how our model realizes the
global control of sentence function, we presented
frequent words and frequent word patterns within
each function. Specifically, we counted the fre-
quency of a function-related word in the gener-
ated responses. The type of a word is predicted
by the type controller. Further, we replaced the
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Function Frequent Words Frequent Patterns Response Examples
Chinese English Chinese English Chinese English

Interrogative ? ?
be

particle
mean
what

ݔ ݕ Does ݔ mean ?ݕ Do you mean I’m handsome?ݔ ݕ Is ݔ ?ݕ Are you praising me?ݔ ݕ Where does ݔ ?ݕ Where do you work?ݔ ݕ ݖ What ݖ does ݔ want to ݕ? What type do you want to choose?
Imperative ! !

will
can

come
please

ݕ Do ݕ, then. Take care of yourself, then.ݔ ݕ ݖ Let ݔ give ݕ to ݖ. Let me give your house to you.

Declarative be
also/too

think
but
no

ݔ ݕ ݖ ݔ also ݕ, but ݖ I also think so, but I will find a 
person. Ha-ha.ݔ ܽ ܾ ܽ too, and ,ݔ has ܾ. Me, too, and my fans have been 
shocked by me.

Figure 3: Frequent function-related words and frequent patterns containing at least 3 function-related
words. The letters denote the variables which replace ordinary and topic words in the generated re-
sponses. The underlined words in responses are those occurring in patterns.

ordinary and topic words of a generated response
with variables and treated each response as a se-
quence of function-related words and variables.
We then used the Apriori algorithm (Agrawal and
Srikant, 1994) to mine frequent patterns in these
sequences. We retained frequent patterns that con-
sist of at most 5 words and appear in at least 2%
of the generated responses.

Figure 3 presents the most frequent words (the
second and third columns) and patterns (the fourth
and fifth columns) for each function type. Note
that the word patterns can be viewed as an abstract
representation of sentence function. We observed
that:

First, function-related words are distributed at
multiple positions of a sentence, indicating that
realizing a sentence function needs a global con-
trol by not only predicting the word types but also
planning the words of different types properly.

Second, the frequent words clearly reveal the
difference between function types. For in-
stance, interrogatives like 什么(what), ？(?) and
吗(particle) are commonly seen in interrogative
responses, words like 请(please), 来(come), and
要(will) occur frequently in imperative responses.
Further, word patterns in different function types
differ significantly (see the fourth/fifth columns),
indicating that the model is able to learn function-
specific word patterns.

Third, interrogative and imperative responses
have explicit patterns, while declarative responses
are more implicit and divergent in pattern. Inter-
rogative responses fall into Yes-No, Wh-, How-,
and other questions. Imperative responses gener-
ally start with the base form of verbs or imperative

words including 请(please). Our model succeeds
in capturing two typical forms in declarative re-
sponses: adversative and progressive structures.

4.6 Case Study

Post:
What would you do if I suddenly broke up with you 
someday?

Target Function: Interrogative
c-seq2seq:

Who are you?
MA:

Should I investigate the conclusion of judicial 
measure related to the law?

KgCVAE:
Did you miss me?

Our Model:
Do you mean that it’s my fault?

Target Function: Imperative
c-seq2seq:

I’ll be fine!
MA:

Break up with guys. Break up with guys.
KgCVAE:

I will tell you!
Our Model:

Rest assured that I would give your gift to you.
Target Function: Declarative
c-seq2seq:

I think so, too. I feel that I’m a good man.
MA:

I don’t know what to do, but I’m in fear.
KgCVAE:

I think I’m a good man, too.
Our Model:

I would think that I was stupid and I would be 
blamed by my mother.

Figure 4: Generated responses of all the models
for different sentence functions. In the responses
of our model, function-related words are in red
and topic words in blue. The word type is pre-
dicted by the type controller.
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We presented an example in Figure 4 to show
that our model can generate responses of differ-
ent function types better compared to baselines.
We can see that each function type can be real-
ized by a natural composition of function-related
words (in red) and topic words (in blue). More-
over, function-related words are different and are
placed at different positions across function types,
indicating that the model learns function-specific
word patterns. These examples also show that the
compatibility issue of controlling sentence func-
tion and generating informative content is well
addressed by planning function-related and topic
words properly.

Post
What would you do if I suddenly broke up with you someday?

Interrogative
Response #1 Do you mean that it’s my fault?
Interrogative
Response #2 Can you speak normally?
Interrogative
Response #3 What do you think I should do? Shall I break up with you?

Figure 5: Different patterns of interrogative re-
sponses generated by our model.

Furthermore, we verified the ability of our
model to capture fine-grained patterns within a
sentence function. We took interrogative re-
sponses as example and obtained responses by
drawing latent variable samples repeatedly. Figure
5 shows interrogative responses with different pat-
terns generated by our model given the same post.
The model generates several Yes-No questions led
by words such as 吗(do), 会(can) and 要(shall),
and a Wh-question led by 怎样(what). This ex-
ample shows that the latent variable can capture
the fine-grained patterns and improve the diversity
of responses within a function.

5 Conclusion

We present a model to generate responses with
both controllable sentence function and informa-
tive content. To deal with the global control of
sentence function, we utilize a latent variable to
capture the various patterns for different sentence
functions. To address the compatibility issue, we
devise a type controller to handle function-related
and topic words explicitly. The model is thus able
to control sentence function and generate infor-
mative content simultaneously. Extensive exper-
iments show that our model performs better than
several state-of-the-art baselines.

As for future work, we will investigate how to
apply the technique to multi-turn conversational
systems, provided that the most proper sentence
function can be predicted under a given conversa-
tion context.
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Abstract

End-to-end learning framework is useful
for building dialog systems for its simplic-
ity in training and efficiency in model up-
dating. However, current end-to-end ap-
proaches only consider user semantic in-
puts in learning and under-utilize other
user information. Therefore, we pro-
pose to include user sentiment obtained
through multimodal information (acous-
tic, dialogic and textual), in the end-to-end
learning framework to make systems more
user-adaptive and effective. We incorpo-
rated user sentiment information in both
supervised and reinforcement learning set-
tings. In both settings, adding sentiment
information reduced the dialog length and
improved the task success rate on a bus
information search task. This work is
the first attempt to incorporate multimodal
user information in the adaptive end-to-
end dialog system training framework and
attained state-of-the-art performance.

1 Introduction

Most of us have had frustrating experience and
even expressed anger towards automated customer
service systems. Unfortunately, none of the cur-
rent commercial systems can detect user senti-
ment and let alone act upon it. Researchers have
included user sentiment in rule-based systems
(Acosta, 2009; Pittermann et al., 2010), where
there are strictly-written rules that guide the sys-
tem to react to user sentiment. Because traditional
modular-based systems are harder to train, to up-
date with new data and to debug errors, end-to-end
trainable systems are more popular. However, no
work has tried to incorporate sentiment informa-
tion in the end-to-end trainable systems so far to

create sentiment-adaptive systems that are easy to
train. The ultimate evaluators of dialog systems
are users. Therefore, we believe dialog system
research should strive for better user satisfaction.
In this paper, we not only included user sentiment
information as an additional context feature in an
end-to-end supervised policy learning model, but
also incorporated user sentiment information as
an immediate reward in a reinforcement learning
model. We believe that providing extra feedback
from the user would guide the model to adapt to
user behaviour and learn the optimal policy faster
and better.

There are three contributions in this work: 1) an
audio dataset1 with sentiment annotation (the an-
notators were given the complete dialog history);
2) an automatic sentiment detector that consid-
ers conversation history by using dialogic features,
textual features and traditional acoustic features;
and 3) end-to-end trainable dialog policies adap-
tive to user sentiment in both supervised and rein-
forcement learning settings. We believe such dia-
log systems with better user adaptation are benefi-
cial in various domains, such as customer services,
education, health care and entertainment.

2 Related Work

Many studies in emotion recognition (Schuller
et al., 2003; Nwe et al., 2003; Bertero et al., 2016)
have used only acoustic features. But there has
been work on emotion detection in spoken dialog
systems incorporating extra information as well
(Lee and Narayanan, 2005; Devillers et al., 2003;
Liscombe et al., 2005; Burkhardt et al., 2009;
Yu et al., 2017). For example, Liscombe et al.
(2005) explored features like users’ dialog act, lex-
ical context and discourse context of the previous
turns. Our approach considered accumulated di-

1The dataset is available here.
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alogic features, such as total number of interrup-
tions, to predict user sentiment along with acoustic
and textual features.

The traditional method to build dialog system is
to train modules such as language understanding
component, dialog manager and language gener-
ator separately (Levin et al., 2000; Williams and
Young, 2007; Singh et al., 2002). Recently, more
and more work combines all the modules in an
end-to-end training framework (Wen et al., 2016;
Li et al., 2017; Dhingra et al., 2016; Williams
et al., 2017; Liu and Lane, 2017a). Specifically
related to our work, Williams et al. (2017) built a
model, which combined the traditional rule-based
system and the modern deep-learning-based sys-
tem, with experts designing actions masks to regu-
late the neural model. Action masks are bit vectors
indicating allowed system actions at certain dialog
state. The end-to-end framework made dialog sys-
tem training simpler and model updating easier.

Reinforcement learning (RL) is also popular in
dialog system building (Zhao and Eskenazi, 2016;
Liu and Lane, 2017b; Li et al., 2016). A common
practice is to simulate users. However, building a
user simulator is not a trivial task. Zhao and Es-
kenazi (2016) combines the strengths of reinforce-
ment learning and supervised learning to acceler-
ate the learning of a conversational game simula-
tor. Li et al. (2016) provides a standard framework
for building user simulators, which can be modi-
fied and generalized to different domains. Liu and
Lane (2017b) describes a more advanced way to
build simulators for both the user and the agent,
and train both sides jointly for better performance.
We simulated user sentiment by sampling from
real data and incorporated it as immediate rewards
in RL, which is different from common practice of
using task success as delayed rewards in RL train-
ing.

Some previous module-based systems inte-
grated user sentiment in dialog planning (Acosta,
2009; Acosta and Ward, 2011; Pittermann et al.,
2010). They all integrated user sentiment in the
dialog manager with manually defined rules to re-
act to different user sentiment and showed that
tracking sentiment is helpful in gaining rapport
with users and creating interpersonal interaction
in the dialog system. In this work, we include user
sentiment into end-to-end dialog system training
and make the dialog policy learn to choose dia-
log actions to react to different user sentiments

automatically. We achieve this through integrat-
ing user sentiment into reinforcement reward de-
sign. Many previous RL studies used delayed re-
wards, mostly task success. However, delayed re-
wards make the converging speed slow, so some
studies integrated estimated per-turn immediate
reward. For example, Ferreira and Lefèvre (2013)
explored expert-based reward shaping in dialog
management and Ultes et al. (2017) proposed In-
teraction Quality (IQ), a less subjective variant of
user satisfaction, as immediate reward in dialog
training. However, both methods are not end-to-
end trainable, and require manual input as prior,
either in designing proper form of reward, or in
annotating the IQ. Our approach is different as we
detect the multimodal user sentiment on the fly
and does not require manual input. Because sen-
timent information comes directly from real users,
our method will adapt to user sentiment as the di-
alog evolves in real time. Another advantage of
our model is that the sentiment scores come from
a pre-trained sentiment detector, so no manual an-
notation of rewards is required. Furthermore, the
sentiment information is independent of the user’s
goal, so no prior domain knowledge is required,
which makes our method generalizable and inde-
pendent of the task.

3 Dataset

We experimented our methods on DSTC1 dataset
(Raux et al., 2005), which has a bus information
search task. Although DSTC2 dataset is a more
commonly-used dataset in evaluating dialog sys-
tem performance, the audio recordings of DSTC2
are not publicly available and therefore, DSTC1
was chosen. There are a total of 914 dialogs
in DSTC1 with both text and audio information.
Statistics of this dataset are shown in Table 1. We
used the automatic speech recognition (ASR) as
the user text inputs instead of the transcripts, be-
cause the system’s action decisions heavily de-
pend on ASR. There are 212 system action tem-
plates in this dataset. Four types of entities are
involved, <place>, <time>, <route>, and
<neighborhood>.

4 Annotation

We manually annotated 50 dialogs consisting of
517 conversation turns for user sentiment. Senti-
ment is categorized into negative, neutral
and positive. The annotator had access to the
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Category Total
total dialogs 914
total dialogs in train 517
total dialogs in test 397

Statistics Total
avg dialog len 13.8
vocabulary size 685

Table 1: Statistics of the text data.

Category Total
total dialogs 50
total audios 517
total audios in train 318
total audios in dev 99
total audios in test 100

Category Total
neutral 254
negative 253
positive 10

Table 2: Statistics of the annotated audio set.

entire dialog history in the annotation process be-
cause the dialog context gives the annotators a
holistic view of the interactions, and annotating
user sentiment in a dialog without the context is re-
ally difficult. Some previous studies have also per-
formed similar user information annotation given
context, such as Devillers et al. (2002). The an-
notation scheme is described in Table 10 in Ap-
pendix A.2. To address the concern that dialog
quality may bias the sentiment annotation, we ex-
plicitly asked the annotators to focus on users’ be-
haviour instead of the system, and hid all the de-
tails of multimodal features from the annotators.
Moreover, two annotators were calibrated on 37
audio files, and reached an inter-annotator agree-
ment (kappa) of 0.74. The statistics of the anno-
tation results are shown in Table 2. The skew-
ness in the dataset is due to the data’s nature. In
the annotation scheme, positive is defined as
“excitement or other positive feelings”, but peo-
ple rarely express obvious excitement towards au-
tomated task-oriented dialog systems. What we
really want to distinguish is neutral and positive
cases from negative cases so as to avoid the neg-
ative sentiment, and the dataset is balanced for
these two cases. To the best of our knowledge, our
dataset is the first publicly available dataset that
annotated user sentiment with respect to the en-
tire dialog history. There are similar datasets with
emotion annotations (Schuller et al., 2013) but are
not labeled under dialog contexts.

5 Multimodal Sentiment Classification

To detect user sentiment, we extracted a set of
acoustic, dialogic and textual features.

5.1 Acoustic features

We used openSMILE (Eyben et al., 2013) to ex-
tract acoustic features. Specifically, we used the
paralinguistics configuration from Schuller et al.
(2003), which includes 1584 acoustic features,
such as pitch, volume and jitter. In order to avoid
possible overfitting caused by the large number of
acoustic features, we performed tree-based feature
selection (Pedregosa et al., 2011) to reduce the size
of acoustic features to 20. The selected features
are listed in Table 12 in Appendix A.4.

5.2 Dialogic features

Four categories of dialogic features are selected
according to previous literature (Liscombe et al.,
2005) and the statistics observed in the dataset. We
used not only the per-turn statistics of these fea-
tures, but also the accumulated statistics of them
throughout the entire conversation so that the sen-
timent classifier can also take the entire dialog
context into consideration.

Interruption is defined as the user interrupting
the system speech. Interruptions occurred
fairly frequently in our dataset (4896 times
out of 14860 user utterances).

Button usage When the user is not satisfied with
the ASR performance of the system, he/she
would rather choose to press a button for
”yes/no” questions, so the usage of buttons
can be an indication of negative sentiment.
During DSTC1 data collection, users were
notified about the option to use buttons, so
this kind of information is available in the
data.

Repetitions There are two kinds of repetitions:
the user asks the system to repeat the previ-
ous sentence, and the system keeps asking the
same question due to failures to catch some
important entity. In our model, we combined
these two situations as one feature because
very few user repetitions occur in our data
(<1%). But for other data, it might be helpful
to separate them.

Start over is active when the user chooses to
restart the task in the middile of the conversa-
tion. The system is designed to give the user
an option to start over after several turns. If
the user takes this offer, he/she might have
negative sentiment.
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5.3 Textual features

We also noticed that the semantic content of the
utterance was relevant to sentiment. So we used
the entire dataset as a corpus and created a tf-idf
vector for each utterance as textual features.

5.4 Classification results

The sentiment classifier was trained on the 50 di-
alogs annotated with sentiment labels. The pre-
dictions made by this classifier were used for the
supervised learning and reinforcement learning in
the later sections. We used random forest as
our classifier (an implementation from scikit-learn
(Pedregosa et al., 2011)), as we had limited anno-
tated data. We separated the data to be 60% for
training, 20% for validation and 20% for testing.
Due to the randomness in the experiments, we ran
all the experiments 20 times and reported the aver-
age results of different models in Table 4. We also
conducted unpaired one-tailed t-test to assess the
statistical significance.

We extracted 20 acoustic features, eight dia-
logic features and 164 textual features. From Ta-
ble 4, we see that the model combining all the
three categories of features performed the best
(0.686 in F-1, p < 1e�6 compared to acoustic
baseline). One interesting observation is that by
only using eight dialogic features, the model al-
ready achieved 0.596 in F-1. Another interesting
observation is that using 164 textual features alone
reached a comparable performance (0.664), but
the combination of acoustic and textual features
actually brought down the performance to 0.647.
One possible reason is that the acoustic informa-
tion has noise that confused the textual informa-
tion when combined. But this observation doesn’t
necessarily apply to other datasets. The signifi-
cance tests show that adding dialogic features im-
proved the baseline significantly. For example,
the model with both acoustic features and dialogic
features are significantly better than the one with
only acoustic features (p < 1e�6). In Table 3,
we listed the dialogic features with their relative
importance rank, which were obtained from rank-
ing their feature importance scores in the classifier.
We observe that “total interruptions so far” is the
most useful dialogic features to predict user senti-
ment. The sentiment detector trained will be inte-
grated in the end-to-end learning described later.

Dialogic Features Relative Rank
of importance

total interruptions so far 1
interruptions 2
total button usages so far 3
total repetitions so far 4
repetition 5
button usage 6
total start over so far 7
start over 8

Table 3: Dialogic features’ relative importance
rank in sentiment detection.

Model Avg. of F-1 Std. of F-1 Max of F-1
Acoustic features only 0.635 0.027 0.686
Dialogic features only 0.596 0.001 0.596
Textual features only ⇤ 0.664 0.010 0.685
Textual + Dialogic ⇤ 0.672 0.011 0.700

Acoustic + Dialogic ⇤ 0.680 0.019 0.707
Acoustic + Textual 0.647 0.025 0.686

Acoustic + Dialogic + Text ⇤ 0.686 0.028 0.756

Table 4: Results of sentiment detectors using dif-
ferent features. The best result is highlighted in
bold and * indicates statistical significance com-
pared to the baseline, which is using acoustic fea-
tures only. (p < 0.0001)

6 Supervised Learning (SL)

We incorporated the detected user sentiment from
the previous section into a supervised learning
framework for training end-to-end dialog systems.
There are many studies on building a dialog sys-
tem in a supervised learning setting (Bordes and
Weston (2016); Eric and Manning (2017); Seo
et al. (2016); Liu and Lane (2017a); Li et al.
(2017); Williams et al. (2017)). Following these
approaches, we treated the problem of dialog pol-
icy learning as a classification problem, which is
to select actions among system action templates
given conversation history. Specifically, we de-
cided to adopt the framework of Hybrid Code Net-
work (HCN) introduced in Williams et al. (2017),
because it is the current state-of-the-art model. We
reimplemented HCN and used it as the baseline
system, given the absence of direct comparison on
DSTC1 data. One caveat is that HCN used ac-
tion masks (bit vectors indicating allowed actions
at certain dialog states) to prevent impossible sys-
tem actions, but we didn’t use hand-crafted ac-
tion masks in the supervised learning setting be-
cause manually designing action masks for 212 ac-
tion templates is very labor-intensive. This makes
our method more general and adaptive to differ-
ent tasks. All the dialog modules were trained
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together instead of separately. Therefore, our
method is end-to-end trainable and doesn’t require
human expert involvement.

We listed all the context features used in
Williams et al. (2017) in Table 11 in Appendix
A.3. In our model, we added one more set of con-
text features, the user-sentiment-related features.
For entity extraction, given that the entity values
in our dataset form a simple unique fixed set, we
used simple string matching. We conducted three
experiments: the first one used entity presences
as context features, which serves as the baseline;
the second one used entity presences in addition
to all the raw dialogic features mentioned in Ta-
ble 3; the third experiment used the baseline fea-
tures plus the predicted sentiment label by the pre-
built sentiment detector (converted to one-hot vec-
tor) instead of the raw dialogic features. We used
the entire DSTC1 dataset to train the supervised
model. The input is the normalized natural lan-
guage and the contexutal features, and the out-
put is the action template id. We kept the same
experiment setting in Williams et al. (2017), e.g.
last action taken was also used as a fea-
ture, along with word embeddings (Mikolov et al.,
2013) and bag-of-words; LSTM with 128 hidden-
units and AdaDelta optimizer (Zeiler, 2012) were
used to train the model.

The results of different models are shown in Ta-
ble 5. We observe that using the eight raw dia-
logic features did not improve turn-level F-1 score.
One possible reason is that a total of eight dialogic
features were added to the model, and some of
them might contain noises and therefore caused
the model to overfit. However, using predicted
sentiment information as an extra feature, which is
a more condensed information, outperformed the
other models both in terms of turn-level F-1 score
and dialog accuracy which indicates if all turns in
a dialog are correct. The difference in absolute F-
1 score is small because we have a relatively large
test set (5876 turns). But the unpaired one-tailed
t-test shows that p < 0.01 for both the F-1 and the
dialog accuracy. This suggests that including user
sentiment information in action planning is helpful
in a supervised learning setting.

7 Reinforcement Learning (RL)

In the previous section, we discussed including
sentiment features directly as a context feature in
a supervised learning model for end-to-end dialog

Model Weighted F-1 Dialog Acc.
HCN 0.4198 6.05%
HCN + raw dialogic features 0.4190 5.79%
HCN + predicted sentiment label⇤ 0.4261 6.55%

Table 5: Results of different SL models. The best
result is highlighted in bold. ⇤ indicates that the
result is significantly better than the baseline (p <
0.01). Dialog accuracy indicates if all turns in a
dialog are correct, so it’s low. For DSTC2 data,
the state-of-art dialog accuracy is 1.9%, consistent
with our results.

system training, which showed promising results.
But once a system operates at scale and interacts
with a large number of users, it is desirable for the
system to continue to learn autonomously using
reinforcement learning (RL). With RL, each turn
receives a measurement of goodness called reward
(Williams et al., 2017). Previously, training task-
oriented systems mainly relies on the delayed re-
ward about task success. Due to the lack of in-
formative immediate reward, the training takes a
long time to converge. In this work, we propose
to include user sentiment as immediate rewards to
expedite the reinforcement learning training pro-
cess and create a better user experience.

To use sentiment scores in the reward function,
we chose the policy gradient approach (Williams,
1992) and implemented the algorithm based on
Zhu (2017). The traditional reward function uses
a positive constant (e.g. 20) to reward the suc-
cess of the task, 0 or a negative constant to penal-
ize the failure of the task after certain number of
turns, and gives -1 to each extra turn to encourage
the system to complete the task sooner. However,
such reward function doesn’t consider any feed-
back from the end-user. It is natural for human
to consider conversational partner’s sentiment in
planning dialogs. So, we propose a set of new re-
ward functions that incorporate user sentiment to
emulate human behaviors.

The intuition of integrating sentiment in reward
functions is as follows. The ultimate evaluator of
dialog systems is the end-users. And user sen-
timent is a direct reflection of user satisfaction.
Therefore, we detected the user sentiment scores
from multimodal sources on the fly, and used them
as immediate rewards in an adaptive end-to-end
dialog training setting. This sentiment informa-
tion came directly from real users, which made the
system adapt to individual user’s sentiment as the
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dialog proceeds. Furthermore, the sentiment infor-
mation is independent of the task, so our method
doesn’t require any prior domain knowledge and
can be easily generalized to other domains. There
have been works that incorporated user informa-
tion into reward design (Su et al., 2015; Ultes
et al., 2017). But they used information from one
single channel and sometimes required manual la-
belling of the reward. Our approach utilizes infor-
mation from multiple channels and doesn’t involve
manual work once a sentiment detector is ready.

We built a simulated system in the same bus
information search domain to test the effective-
ness of using sentiment scores in the reward func-
tion. In this system, there are 3 entity types -
<departure>, <arrival>, and <time> -
and 5 actions, asking for different entities, and giv-
ing information. A simple action mask was used
to prevent impossible actions, such as giving in-
formation of an uncovered place. The inputs to
the system are the simulated user’s dialog acts and
the simulated sentiment sampled from a subset of
DSTC1, the CleanData, which will be described
later. The output of the system is the system action
template.

7.1 User simulator

Given that reinforcement learning requires feed-
back from the environment - in our case, the users
- and interacting with real users is always expen-
sive, we created a user simulator to interact with
the system. At the beginning of each dialog, the
simulated user is initiated with a goal consisting
of the three entities mentioned above and the goal
remains unchanged throughout the conversation.
The user responds to system’s questions with enti-
ties, which are placeholders like <departure>
instead of real values. To simulate ASR errors,
the simulated user’s act type occasionally changes
from “informing slot values” to “making noises”
at certain probabilities set by hand (10% in our
case). Some example dialogs along with their as-
sociated rewards are shown in Table 8 and 9 in
Appendix A.1.

We simulated user sentiment by sampling from
real data, the DSTC1 dataset. There are three steps
involved. First, we cleaned the DSTC1 dialogs
by removing the audio files with no ASR output
and high ASR errors. This resulted in a dataset
CleanData with 413 dialogs and 1918 user in-
puts. We observed that users accumulate their

sentiment as the conversation unfolds. When the
system repeatedly asks for the same entity, they
express stronger sentiment. Therefore, summary
statistics that record how many times certain en-
tities have been asked during the conversation is
representative of users’ accumulating sentiment.
We designed a set of summary statistics S that
record the statistics of system actions, e.g. how
many times the arrival place has been asked or the
schedule information has been given.

The second step is to create a mapping between
the five simulated system actions and the DSTC1
system actions. We do this by calculating a vector
sreal consisting of the values in S for each user ut-
terance in CleanData. sreal is used to compare
the similarity between the real dialog and the sim-
ulated dialog.

The final step is to sample from CleanData.
For each simulated user utterance, we calculated
the same vector ssim and compared it with each
sreal. There are two possible results. If there
are sreal equal to ssim,we would randomly sample
one from all the matched user utterances to rep-
resent the sentiment of the simulated user. But if
there is no sreal matching ssim, different strate-
gies would be applied based on the reward func-
tion used, which will be described in details later.
Once we have a sample, the eight dialogic fea-
tures of the sample utterance are used to calculate
the sentiment score. We didn’t use the acoustic or
the textual features because in a simulated setting,
only the dialogic features are valid.

7.2 Experiments

We designed four experiments with different re-
ward functions. A discount factor of 0.9 was ap-
plied to all the experiments. And the maximum
number of turns is 15. Following Williams et al.
(2017), we used LSTM with 32 hidden units for
the RNN in the HCN and AdaDelta for the op-
timization, and updated the reinforcement learn-
ing policy after each dialog. The ✏-greedy ex-
ploration strategy (Tokic, 2010) was applied here.
Given that the entire system was simulated, we
only used the presence of each entity and the last
action taken by the system as the context features,
and didn’t use bag-of-words or utterance embed-
ding features.

In order to evaluate the method, we froze the
policy after every 200 updates, and ran 500 simu-
lated dialogs to calculate the task success rate. We
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repeated the process 20 times and reported the av-
erage performance in Figure 1, 2 and Table 6.

7.2.1 Baseline
We define the baseline reward as follows without
any sentiment involvement.

Reward 1 Baseline
if success then

R1 = 20
else if failure then

R1 = �10
else if each proceeding turn then

R1 = �1
end if

7.2.2 Sentiment reward with random
samples (SRRS)

We designed the first simple reward function with
user sentiment as the immediate reward: senti-
ment with random samples (SRRS). We first drew
a sample from real data with matched context; if
there was no matched data, a random sample was
used instead. Because the amount of CleanData
is relatively small, so only 36% turns were cov-
ered by matched samples. If the sampled dia-
logic features were not all zeros, the sentiment
reward (SR) was calculated as a linear combina-
tion with tunable parameters. We chose it to be
-5Pneg-Pneu+10Ppos for simplicity. When the
dialogic features were all zero, in most cases it
meant the user didn’t express an obvious senti-
ment, we set the reward to be -1.

Reward 2 SRRS
if success then

R2 = 20
else if failure then

R2 = �10
else if sample with all-zero dialogic features then

R2 = �1
else if sample with non-zero dialogic features then

R2=-5Pneg-Pneu+10Ppos
end if

7.2.3 Sentiment reward with repetition
penalty (SRRP)

Random samples in SRRS may result in extreme
sentiment data. So we used dialogic features to
approximate sentiment for the unmatched data.
Specifically, if there were repetitions, which cor-
relate with negative sentiment (see Table 3), we
assigned a penalty to that utterance. See Reward 3
Formula below for detailed parameters. 36% turns
were covered by real data samples, 15% turns had
no match in real data and had repetitions, and 33%
turns had no match and no repetition.

Moreover, we experimented with different
penalty weights. When we increased the repeti-
tion penalty to 5, the success rate was similar to
penalty of 2.5. However, when we increased the
penalty even further to 10, the success rate was
brought down by a large margin. Our interpreta-
tion is that increasing the repetition penalty to a
big value made the focus less on the real sentiment
samples but more on the repetitions, which did not
help the learning.

Reward 3 SRRP
if success then

R3 = 20
else if failure then

R3 = �10
else

if match then
if all-zero dialogic features then

R3 = �1
else if non-zero dialogic features then

R3=-5Pneg-Pneu+10Ppos
end if

else if repeated question then
R3 = �2.5

else
R3 = �1

end if
end if

7.2.4 Sentiment reward with repetition and
interruption penalties (SRRIP)

We observed in Section 5 that interruption is
the most important feature in detecting sentiment,
so if an interruption existed in the simulated user
input, we assumed it had a negative sentiment and
added an additional penalty of -1 to the previous
sentiment reward SRRP to test the effect of inter-
ruption. 7.5% turns have interruptions.

Reward 4 SRRIP
if success then

R4 = 20
else if failure then

R4 = �10
else

R4 = R3(SRRP )
if interruption then

R4 = R4 � 1
end if

end if

7.3 Experiment results

We evaluated every model on two metrics: dia-
log lengths and task success rates. We observed
in Figure 1 that all the sentiment reward functions,
even SRRS with random samples, reduced the av-
erage length of the dialogs, meaning that the sys-
tem finished the task faster. The rationale behind is
that by adapting to user sentiment, the model can
avoid unnecessary system actions to make systems
more effective.
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In terms of success rate, sentiment reward with
both repetition and interruption penalties (SRRIP)
performed the best (see Figure 2). In Figure 2, SR-
RIP is converging faster than the baseline. For ex-
ample, around 5000 iterations, it outperforms the
baseline by 5% in task success rate (60% vs 55%)
with statistical significance (p < 0.01). It also
converges to a better task success rate after 10000
iterations (92.4% vs 94.3%, p < 0.01).

Figure 1: Average dialog length of RL models
with different reward functions.

Figure 2: Average success rate of the baseline and
the best performing model, SRRIP.

We describe all models’ performance in Table
6 in terms of the convergent success rate calcu-
lated as the mean success rate after 10000 dialogs.
We observed that incorporating various sentiment
rewards improved the success rate and expedited
the training process overall with statistical signifi-
cance. We found that even sentiment reward with
random samples (SRRS) outperformed the base-
line after convergence. By adding penalties for

Model Convergent
success rate

Baseline 0.924
SRRS 0.938⇤
SRRP 0.941⇤

SRRIP 0.943⇤

Table 6: Convergent success rate of RL models
with different reward functions. It is calculated as
the mean success rate after 10000 dialogs. The
best result is highlighted in bold. ⇤ indicates that
the result is significantly better than the baseline
(p < 0.01).

repetition, the algorithm covered more data points,
and therefore, the task success rate and the con-
vergence speed improved. We also found that pe-
nalizing interruption and repetition together (SR-
RIP) achieved a slightly better performance com-
pared to penalizing repetition only (SRRP). This
suggests that interruptions is another factor to con-
sider when approximating sentiment. But the per-
formances between SRRP and SRRIP is not sig-
nificant. Our guess is that only 7.5% turns in our
data contains interruption and the penalty is just
an extra -1, so the model confused this signal with
noises. But given more interruptions in the data,
interruptions could still be helpful.

8 Discussion and Future Work

The intuition behind the good performance of
models with user sentiment is that the learned pol-
icy is in general more sentiment adaptive. For ex-
ample, there are some system actions that have the
same intention but with different surface forms,
especially for error-handling strategies. By ana-
lyzing the results, we found that when the sen-
timent adaptive system detected a negative senti-
ment from the user, it chose to respond the user
with a more detailed error-handling strategy than
a general one. For example, it chose the tem-
plate “Where are you leaving from? For exam-
ple, you can say, <place>”, while the baseline
model would respond with “Where would you like
to leave from?”, which doesn’t provide details to
help the user compared with the previous tem-
plate. As we all know, dealing with a disappointed
user to proceed, providing more details is always
better. One example dialog is shown in Table 7.
There was no written rules to force the model to
choose one specific template under certain situ-
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Sentiment Adaptive Sys-
tem

Baseline System without
Sentiment

SYS: The <route>.
Where would you like to
leave from?

SYS: The <route>.
Where would you like to
leave from?

USR: Yeah [negative sen-
timent]

USR: Yeah

SYS: Where are you leav-
ing from? For example,
you can say, <place>.

SYS: Right. Where would
you like to leave from?

Table 7: An example dialog by different sys-
tems in the supervised learning setting. The
sentiment-adaptive system gives a more detailed
error-handling strategy than the baseline system.

ations, so the model learned these subtle differ-
ences on its own. Some may argue that the sys-
tem could always use a more detailed template to
better guide the user instead of distinguishing be-
tween two similar system templates. But this is not
necessarily true. Ideally, we want the system to be
succinct initially to save users’ time, because we
observe that users, especially repeated users, tend
to interrupt long and detailed system utterances. If
the user has attempted to answer the system ques-
tion but failed, then it’s beneficial to provide de-
tailed guidance.

The performance of the sentiment detector is a
key factor in our work. So in the future, we plan
to incorporate features from more channels such
as vision to further improve the sentiment predic-
tor’s performance, and potentially further improve
the performance of the dialog system. We also
want to explore more in user sentiment simula-
tion, for example, instead of randomly sampling
data for the uncovered cases, we could use linear
interpolation to create a similarity score between
ssim and sreal, and choose the user utterance with
the highest score. Furthermore, reward shaping
(Ng et al., 1999; Ferreira and Lefèvre, 2013) is an
important technique in RL. Specifically, Ferreira
and Lefèvre (2013) talked about incorporating ex-
pert knowledge in reward design. We also plan to
integrate information from different sources into
reward function and apply reward shaping. Be-
sides, creating a good user simulator is also very
important in the RL training. There are some more
advanced methods to create user simulators. For
example, Liu and Lane (2017b) described how to
optimize the agent and the user simulators jointly
using RL. We plan to apply our sentiment reward
functions in this framework in the future.

9 Conclusion

We proposed to detect user sentiment from multi-
modal channels and incorporate the detected sen-
timent as feedback into adaptive end-to-end dia-
log system training to make the system more ef-
fective and user-adaptive. We included sentiment
information directly as a context feature in the su-
pervised learning framework and used sentiment
scores as immediate rewards in the reinforcement
learning setting. Experiments suggest that incor-
porating user sentiment is helpful in reducing the
dialog length and increasing the task success rate
in both SL and RL settings. This work proposed
an adaptive methodology to incorporate user sen-
timent in end-to-end dialog policy learning and
showed promising results on a bus information
search task. We believe this approach can be easily
generalized to other domains given its end-to-end
training procedure and task independence.
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Abstract

We present a new method for estimat-
ing vector space representations of words:
embedding learning by concept induction.
We test this method on a highly paral-
lel corpus and learn semantic representa-
tions of words in 1259 different languages
in a single common space. An exten-
sive experimental evaluation on crosslin-
gual word similarity and sentiment analy-
sis indicates that concept-based multilin-
gual embedding learning performs better
than previous approaches.

1 Introduction

Vector space representations of words are widely
used because they improve performance on mono-
lingual tasks. This success has generated inter-
est in multilingual embeddings, shared representa-
tion of words across languages (Klementiev et al.,
2012). Such embeddings can be beneficial in ma-
chine translation in sparse data settings because
multilingual embeddings provide meaning repre-
sentations of source and target in the same space.
Similarly, in transfer learning, models trained in
one language on multilingual embeddings can be
deployed in other languages (Zeman and Resnik,
2008; McDonald et al., 2011; Tsvetkov et al.,
2014). Automatically learned embeddings have
the added advantage of requiring fewer resources
for training (Klementiev et al., 2012; Hermann and
Blunsom, 2014b; Guo et al., 2016). Thus, mas-
sively multilingual word embeddings (i.e., cover-
ing 100s or 1000s of languages) are likely to be
important in NLP.

The basic information many embedding learn-
ers use is word-context information; e.g., the em-
bedding of a word is optimized to predict a rep-
resentation of its context. We instead learn em-
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Figure 1: Example of a CLIQUE concept: “water”

beddings from word-concept information. As a
first approximation, a concept is a set of seman-
tically similar words. Figure 1 shows an example
concept and also indicates one way we learn con-
cepts: we interpret cliques in the dictionary graph
as concepts. The nodes of the dictionary graph
are words, its edges connect words that are trans-
lations of each other. A dictionary node has the
form prefix:word, e.g., “tpi:wara” (upper left node
in the figure). The prefix is the ISO 639-3 code of
the language; tpi is Tok Pisin.

Our method takes a parallel corpus as input and
induces a dictionary graph from the parallel cor-
pus. Concepts and word-concept pairs are then
induced from the dictionary graph. Finally, em-
beddings are learned from word-concept pairs.

A key application of multilingual embeddings
is transfer learning. Transfer learning is mainly of
interest if the target is resource-poor. We there-
fore select as our dataset 1664 translations in 1259
languages of the New Testament from PBC, the
Parallel Bible Corpus. Since “translation” is an
ambiguous word, we will from now on refer to the
1664 translations as “editions”. PBC is aligned
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English King James Version (KJV) German Elberfelder 1905 Spanish Americas
And he said , Do it the second
time . And they did it the second
time . . .

Und er sprach : Füllet vier Eimer mit Wasser , und gießet es
auf das Brandopfer und auf das Holz . Und er sprach : Tut es
zum zweiten Male ! Und sie taten es zum zweiten Male . . .

Y dijo : Llenad cuatro cántaros de agua y derramadla so-
bre el holocausto y sobre la leña . Después dijo : Hacedlo
por segunda vez ; y lo hicieron por segunda vez . . .

Table 1: Instances of verse 11018034. This multi-sentence verse is an example of verse misalignment.

on the verse level; most verses consist of a single
sentence, but some contain several (see Table 1).
PBC is a good model for resource-poverty; e.g.,
the training set (see below) of KJV contains fewer
than 150,000 tokens in 6458 verses.

We evaluate multilingual embeddings on two
tasks, roundtrip translation (RT) and sentiment
analysis. RT on the word level is – to our knowl-
edge – a novel evaluation method: a query word
w of language L1 is translated to its closest (with
respect to embedding similarity) neighbor v in L2

and then backtranslated to its closest neighbor w′

in L1. RT is successful if w = w′. There are
well-known concerns about RT when it is used in
the context of machine translation. A successful
roundtrip translation does not necessarily imply
that v is of high quality and it is not possible to
decide whether an error occurred in the forward
or backward translations. Despite these concerns
about RT on the sentence level, we show that RT
on the word level is a difficult task and an effective
measure of embedding quality.

Contributions. (i) We introduce a new em-
bedding learning method, multilingual embedding
learning through concept induction. (ii) We show
that this new concept-based method outperforms
previous approaches to multilingual embeddings.
(iii) We propose both word-level and character-
level dictionary induction methods and present
evidence that concepts induced from word-level
dictionaries are better for easily tokenizable lan-
guages and concepts induced from character-level
dictionaries are better for difficult-to-tokenize lan-
guages. (iv) We evaluate our methods on a corpus
of 1664 editions in 1259 languages. To the best of
our knowledge, this is the first detailed evaluation,
involving challenging tasks like word translation
and crosslingual sentiment analysis, that has been
done on such a large number of languages.

2 Methods

2.1 Pivot languages

Most of our methods are based on bilingual dic-
tionary graphs. With 1664 editions, it is com-
putationally expensive to consider all editions si-

multaneously (more than 106 dictionaries). Thus
we split the set of editions in 10 pivot and 1654
remaining editions, and do not compute nor use
dictionaries within the 1654 editions. We refer to
the ten pivot editions as pivot languages and give
them a distinct role in concept induction. We refer
to all editions (including pivot editions) as target
editions. Thus, a pivot edition has two roles: as a
pivot language and as a target edition.

We select the pivot languages based on their
sparseness. Sparseness is a challenge in NLP.
In the case of embeddings, it is hard to learn a
high-quality embedding for any infrequent word.
Many of the world’s languages (including many
PBC languages) exhibit a high degree of sparse-
ness. But some languages suffer comparatively
little from sparseness when simple preprocessing
like downcasing and splitting on whitespace is em-
ployed.

A simple measure of sparseness that affects em-
bedding learning is the number of types. Fewer
types is better since their average frequency will
be higher. Table 2 shows the ten languages in PBC
that have the smallest number of types in 5000
randomly selected verses. We randomly sample
5000 verses per edition and compare the number
of types based on this selection because most edi-
tions do not contain a few of the selected 6458
verses.

2.2 Character-level modeling (CHAR)

We will see that tokenization-based models have
poor performance on a subset of the 1259 lan-
guages. To overcome tokenization problems, we
represent a verse of length m bytes, as a sequence
of m − (n − 1) + 2 overlapping byte n-grams.
In this paper, “n-gram” always refers to “byte n-
gram”. We pad the verse with initial and final
space, resulting in two additional n-grams (hence
“+2”). This representation is in the spirit of earlier
byte-level processing, e.g., (Gillick et al., 2016).
There are several motivations for this. (i) We can
take advantage of byte-level generalizations. (ii)
This is robust if there is noise in the byte encod-
ing. (iii) Characters have different properties in
different languages and encodings, e.g., English
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iso name family; (example) region ty
pe

s

to
ke

ns

lhu Lahu Sino-Tibetan; Thailand 1452 268
ahk Akha Sino-Tibetan; China 1550 315
hak Hakka Chinese Chinese; China 1596 242
ium Iu Mien Hmong-Mien; Laos 1779 191
tpi Tok Pisin Creole; PNG 1815 177
mio Pinotepa Mixtec Oto-Manguean; Oaxaca 1828 208
cya Highland Chatino Oto-Manguean; Oaxaca 1868 231
bis Bislama Creole; Vanuatu 1872 226
aji Ajië Austronesian; Houaı̈lou 1876 194
sag Sango Creole; Central Africa 1895 192

Table 2: Our ten pivot languages, the languages in
PBC with the lowest number of types. Tokens in
1000s. Tok Pisin and Bislama are English-based
and Sango is a Ngbandi-based creole. PNG =
Papua New Guinea

UTF-8 has properties different from Chinese UTF-
8. Thus, universal language processing is easier to
design on the byte level.

We refer to this ngram representation as CHAR
and to standard tokenization as WORD.

2.3 Dictionary induction

Alignment-based dictionary. We use fastalign
(Dyer et al., 2013) to compute word alignments
and use GDFA for symmetrization. All align-
ment edges that occurred at least twice are added
to the dictionary graph. Initial experiments indi-
cated that alignment-based dictionaries have poor
quality for CHAR, probably due to the fact that
overlapping ngram representations of sentences
have properties quite different from the tokenized
sentences that aligners are optimized for. Thus
we use this dictionary induction method only for
WORD and developed the following alternative
for CHAR.

Correlation-based dictionary (χ2). χ2 is a
greedy algorithm, shown in Figure 2, that selects,
in each iteration, the pair of units that has the high-
est χ2 score for cooccurrence in verses. Each se-
lected pair is added to the dictionary and removed
from the corpus. Low-frequency units are se-
lected first and high-frequency units last; this pre-
vents errors due to spurious association of high-
frequency units with low-frequency units. We per-
form dmax = 5 passes; in each pass, the maximum
degree of a dictionary node is 1 ≤ d ≤ dmax. So
if the node has reached degree d, it is ineligible
for additional edges during this pass. Again, this
avoids errors due to spurious association of high-
frequency units that already participate in many

Algorithm 1 χ2-based dictionary induction
1: procedure DICTIONARYGRAPH(C)
2: A = all-edges(C), E = []
3: for d ∈ [1, 2, . . . , dmax] do
4: fmax = 2
5: while fmax ≤ |C| do
6: fmin = max(min(5, fmax), 1

10
fmax)

7: (χ2, s, t) = max-χ2-edge(A, fmin, fmax, d)
8: if χ2 < χmin then
9: fmax = fmax + 1; continue

10: end if
11: T = extend-ngram(A, fmin, fmax, d, s, t)
12: append(E, s, T )
13: remove-edges(A, s, T )
14: end while
15: end for
16: return dictionary-graph = (nodes(E), E)
17: end procedure

Figure 2: χ2-based dictionary induction. C is a
sentence-aligned corpus. A is initialized to con-
tain all edges, i.e., the fully connected bipartite
graph for each parallel verse. E collects the se-
lected dictionary edges. d is the edge degree: in
each pass through the loop only edges are consid-
ered whose participating units have a degree less
than d. fmax is the maximum frequency during this
pass. |C| is the number of sentences in the cor-
pus. extend-ngram extends a target ngram to left
/ right; e.g., if s = “jisas” is aligned with ngram
t = “Jesu” in English, then “esus” is added to T . t
is always a member of T . remove-edges removes
edges in A between s and a member of T .

edges with low-frequency units. Recall that this
method is only applied for CHAR.

Intra-pivot dictionary. We assume that pivot
languages are easily tokenizable. Thus we only
consider alignment-based dictionaries (in total 45)
within the set of pivot languages.

Pivot-to-target dictionary. We compute an
alignment-based and a χ2-based dictionary be-
tween each pivot language and each target edition,
yielding a total of 10*1664 dictionaries per dictio-
nary type. (Note that this implies that, for χ2, the
WORD version of the pivot language is aligned
with its CHAR version.)

2.4 Concepts

A concept is defined as a set of units that has two
subsets: (i) a defining set of words from the ten
pivot languages and (ii) a set of target units (words
or n-grams) that are linked, via dictionary edges,
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Algorithm 2 CLIQUE concept induction

1: procedure CONCEPTS(I ∈ Rn×n, θ, ν)
2: G = ([n], {(i, j) ∈ [n]× [n] | Iij > θ})
3: cliques = get-cliques(G, 3)
4: Gc := (Vc, Ec) = (∅, ∅)
5: for c1, c2 ∈ cliques× cliques do
6: if |c1 ∩ c2| ≥ νmin{|c1|, |c2|} then
7: Vc = Vc ∪ {c1, c2}, Ec = Ec ∪ {(c1, c2)}
8: end if
9: end for

10: metacliques = get cliques(Gc, 1)
11: concepts = {flatten(c) | c ∈ metacliques}
12: return concepts
13: end procedure

Figure 3: CLIQUE concept induction. I
is a normalized adjacency matrix of a dictio-
nary graph (i.e., relative frequency of alignment
edges with respect to possible alignment edges).
get-cliques(G,n) returns all cliques in G of size
greater or equal to n. flatten(A) flattens a set of
sets. [n] denotes {1, 2, . . . , n}. θ = 0.4, ν = 0.6.

to the pivot subset. We selected the ten “easiest” of
the 1664 editions as pivot languages. Our premise
is that semantic information is encoded in a simply
accessible form in the pivot languages and so they
should offer a good basis for learning concepts.

We induce concepts from the dictionary graph, a
multipartite graph consisting of ten pivot language
node/word sets and all target edition node/unit sets
(where units are words or n-grams). Edges either
connect pivot nodes with other pivot nodes or pivot
nodes with target units.

2.4.1 CLIQUE concept induction
If concepts corresponded to each other in the
overtly coding pivot languages, if words were not
ambiguous and if alignments were perfect, then
concepts would be cliques in the pivot part of
the dictionary graph. These conditions are too
strict for natural languages, so we relax them in
our CLIQUE concept induction algorithm (Fig-
ure 3). The algorithm identifies maximal multilin-
gual cliques (size ≥ 3) within the dictionary graph
of the pivot languages and then merges two cliques
if they share enough common words. The merging
lets us identify clique-based concepts even if, e.g.,
a dictionary edge between two words is missing. It
also accommodates the situation where more than
one word of a pivot language should be part of a
concept. The merging step can also be interpreted
as metaconcept induction.

Once we have identified the cliques, we project

N(t) ={bis:Jorim, ium:yo-lim, sag:Yorim, tpi:Jorim}

t∈T={ac0:Yorim,atg0:iJorimu,bav0:Jorim,bom0:Yorim,
dik0:Jorim, dtp0:Yorim, duo0:Jorim, eng1:Jorim,
engb:Jorim, fij2:Lorima, fij3:Jorima,
gor0:Yorim, hvn0:Yorim, ibo0:Jorim, iri0:Jorri,
kmr0:Yorı̂m, ksd0:Iorim, kwd0:Jorim, lia0:Yorimi,
loz0:Jorimi, mbd0:Hurim, mfh0:Yorim, min0:Yorim,
mrw0:Yorim,mse0:Jorimma,naq0:Jorimmi, smo1:Iorimo,
srn1:Yorim, tsn2:Jorime, yor2:Jórı́mù}

Figure 4: Target neighborhood concept example:
N(t) ∪ T . N(t) is the target neighborhood for
each of the target words in T .

them to the target editions: a target-unit is added to
a clique if it is connected to a proportion ν = 0.6
of its member words (to allow for missing edges).
This identifies around 150k clique concepts that
cover around 8k of the total vocabulary of 24k En-
glish words (WORD).

As an alternative to cliques, Ammar et al.
(2016) use connected components (CCs). The
reachability relation (induced by CC) is the tran-
sitive closure of the edge relation. This results
in semantically unrelated words being in the same
concept for very low levels of noise. In contrast,
cliques are more “strict”: only node subsets are
considered whose corresponding edge relation is
already transitive (or almost so for ν = 0.6).
Transitivity across languages often does not hold
in alignments or dictionaries; see, e.g., Simard
(1999). This is why we only consider cliques
(which reflect already existent transitivity) rather
than CCs, which impose transitivity where it does
not hold naturally.

2.4.2 N(t) (target neighborhood) concept
induction

Let N(t) be the neighborhood of target node t in
the multipartite dictionary graph, i.e., the set of
pivot words that are linked to t. We refer to N(t)
as target neighborhood. Figure 4 shows an exam-
ple of such a target neighborhood, the set N(t)
consisting of four words.1 A target neighborhood
concept consists of a set T of pivot words and all
target words t for which T = N(t) holds.

Motivation. Suppose N(t) = N(u) for tar-
get nodes t and u from two different languages
and |N(t)| covers several pivot languages, e.g.,
|N(t)| = |N(u)| = 4 as in the figure. Again,
if units closely corresponded to concepts, if there
were no ambiguity, if the dictionary were perfect,

1We use numbers and lowercase letters at the fourth posi-
tion of the prefix to distinguish different editions in the same
language, e.g., “0”, “3” and “e” in “ace0”, “fij3”, “enge”.
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then we could safely conclude that the meanings
of t and u are similar; if the meanings of t and u
were unrelated, it is unlikely that they would be
aligned to the exact same words in four different
languages. In reality, there is no exact meaning-
form correspondence, there is ambiguity and the
dictionary is not perfect. Still, we will see be-
low that defining concepts as target neighborhoods
works well.

2.4.3 Filtering target neighborhood concepts

In contrast to CLIQUE, we do not put any con-
straint on the pivot-to-pivot connections within
target neighborhoods; e.g., in Figure 4, we do
not require that “bis:Jorim” and “sag:Yorim” are
connected by an edge. We evaluate three post-
filtering steps of target neighborhoods to increase
their quality: restricting target neighborhoods to
those that are cliques in N(t)-CLIQUE; to those
that are connected components in N(t)-CC; and
to those of size two that are valid edges in the
dictionary in N(t)-EDGE. For N(t)-EDGE, we
found that taking all edges performs well, so we
also consider edges that are proper subsets of tar-
get neighborhoods.

2.5 Embedding learning

We adopt the framework of embedding learning
algorithms that define contexts and then sample
pairs of an input word (more generally, an input
unit) and a context word (more generally, a con-
text unit) from each context. The only difference
is that our contexts are concepts. For simplicity,
we use word2vec (Mikolov et al., 2013a) as the
implementation of this model.2

2.6 Baselines

Baselines for multilingual embedding learning.
One baseline is inspired by (Vulić and Moens,
2015). We consider words of one aligned verse
in the pivot languages and one target language as
a bag of words (BOW) and consider this bag as a
context.3

Levy et al. (2017) show that sentence ID fea-
tures (interpretable as an abstract representation of
the word’s context) are effective. We use a corpus
with lines consisting of pairs of an identifier of a

2We use code.google.com/archive/p/word2vec
3The actual implementation slightly differs to avoid very

long lines. It does only consider two pivot languages at a
time, but writes each verse multiple times.

verse and a unit extracted from that verse as input
to word2vec and call this baseline S-ID.

Lardilleux and Lepage (2009) propose a sim-
ple and efficient baseline: sample-based concept
induction. Words that strictly occur in the same
verses are assigned to the same concept. To in-
crease coverage, they propose to sample many dif-
ferent subcorpora.4 We induce concepts using this
method and project them analogous to CLIQUE.
We call this baseline SAMPLE.

One novel contribution of this paper is
roundtrip evaluation of embeddings. We learn
embeddings based on a dictionary. The question
arises: are the embeddings simply reproducing the
information already in the dictionary or are they
improving the performance of roundtrip search?

As a baseline, we perform RTSIMPLE, a sim-
ple dictionary-based roundtrip translation method.
Retrieve the pivot word p in pivot language Lp
(i.e., p ∈ Lp) that is closest to the query q ∈ Lq.
Retrieve the target unit t ∈ Lt that is closest to p.
Retrieve the pivot word p′ ∈ Lp that is closest to
t. Retrieve the unit q′ ∈ Lq that is closest to p′. If
q = q′, this is an exact hit. We run this experiment
for all pivot and target languages.

Note that roundtrip evaluation tests the capabil-
ity of a system to go from any language to any
other language. In an embedding space, this re-
quires two hops. In a highly multilingual dataset
of n languages in which not all O(n2) bilingual
dictionaries exist, this requires four hops.

3 Experiments and results

3.1 Data

We use PBC (Mayer and Cysouw, 2014). The
version we pulled on 2017-12-11 contains 1664
Bible editions in 1259 languages (based on ISO
639-3 codes) after we discarded editions that have
low coverage of the New Testament. We use 7958
verses that have good coverage in these 1664 edi-
tions. The data is verse aligned; a verse of the New
Testament can consist of multiple sentences. We
randomly split verses 6458/1500 into train/test.

3.2 Evaluation

For sentiment analysis, we represent a verse as
the IDF-weighted sum of its embeddings. Senti-
ment classifiers (linear SVMs) are trained on the
training set of the World English Bible edition

4We use this implementation: anymalign.limsi.fr
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for the two decision problems positive vs. non-
positive and negative vs. non-negative. We create
a silver standard by labeling verses in English edi-
tions with the NLTK (Bird et al., 2009) sentiment
classifier.

A positive vs. negative classification is not rea-
sonable for the New Testament because a large
number of verses is mixed, e.g., “Now is come
salvation . . . the power of his Christ: for the ac-
cuser . . . cast down, which accused them before
our God . . . ” Note that this verse also cannot be
said to be neutral. Splitting the sentiment anal-
ysis into two subtasks (“contains positive senti-
ment: yes/no” and “contains negative sentiment:
yes/no”) is an effective solution for this paper.

The two trained models are then applied to the
test set of all 1664 editions. All embeddings in
this paper are learned on the training set only. So
no test information was used for learning the em-
beddings.

Roundtrip translation. There are no gold stan-
dards for the genre of our corpus (the New Tes-
tament); for only a few languages out-of-domain
gold standards are available. Roundtrip evalua-
tion is an evaluation method for multilingual em-
beddings that can be applied if no resources are
available for a language. Loosely speaking, for a
query q in a query language Lq (in our case En-
glish) and a target language Lt, roundtrip transla-
tion finds the unit wt in Lt that is closest to q and
then the English unit we that is closest to wt. If the
semantics of q and we are identical (resp. are unre-
lated), this is deemed evidence for (resp. counter-
evidence against) the quality of the embeddings.
We work on the level of Bible edition, i.e., two
editions in the same language are considered dif-
ferent “languages”.

For a query q, we denote the set of its kI near-
est neighbors in the target edition e by Ie(q) =
{u1, u2, . . . , ukI}. For each intermediate entry we
then consider its kT nearest neighbors in English.
Overall we get a set Te(q) with kIkT predictions
for each intermediate Bible edition e. See Figure 5
for an example.

We evaluate the predictions Te(q) using two sets
Gs(q) (strict) and Gr(q) (relaxed) of ground-truth
semantic equivalences in English. Precision for a
query q is defined as
pi(q) := 1/|E|∑e∈E min{1, |Te(q)∩Gi(q)|}

where E is the set of all Bible editions and i ∈
{s, r}. We report the mean and median across a

inter-
query mediate predictions
woman ⇒ mujer ⇒ wife woman women widows daughters

daughter marry married
⇒ esposa ⇒ marry wife woman married marriage

virgin daughters bridegroom

Figure 5: Roundtrip translation example for KJV
and Americas Bible (Spanish). In this example
min{1, |Te(q) ∩ Gi(q)|} equals 0 for S1 and R1,
and 1 for S4 and S16.

connu(3), connais(3), connaissent(3), savez(2),
sachant(2), sait(2), sachiez(2), savoir,
sçai, ignorez, connaissiez, sache connaissez,
connaissais, savent, savaient, connoissez,
connue, reconnaı̂trez, sais, connaissant,
savons, connaissait, savait

Figure 6: Intermediates aggregated over 17 French
editions. q=“know”, N(t) embeddings, S16.
Intermediates are correct with two possible ex-
ceptions: “ignorez” ‘you do not know’; “re-
connaı̂trez” ‘you recognize’.

set of 70 queries selected from Swadesh (1946)’s
list of 100 universal linguistic concepts.

We create Gs and Gr as follows. For WORD,
we define Gs(q) = {q} and Gr(q) = L(q)
where L(q) is the set of words with the same
lemma and POS as q. For CHAR, we need to
find ngrams that correspond uniquely to the query
q. Given a candidate ngram g we consider cqg :=
1/c(g)

∑
q′∈L(q),substring(g,q′) c(q

′) where c(x) is
the count of character sequence x across all edi-
tions in the query language. We add g to Gi(q) if
cqg > σi where σs = .75 and σr = .5. We only
consider queries where Gs(q) is non-empty.

We vary the evaluation parameters (i, kI , kT ) as
follows: “S1” represents (s, 1, 1), “S4” (s, 2, 2),
“S16” (s, 2, 8), and “R1” (r, 1, 1).

3.3 Corpus generation and hyperparameters

We train with the skipgram model and set vector
dimensionality to 200; word2vec default parame-
ters are used otherwise. Each concept – the union
of a set of pivot words and a set of target units
linked to the pivot words – is written out as a line
or (if the set is large) as a sequence of shorter lines.
Training corpus size is approximately 50 GB for
all experiments. We write several copies of each
line (shuffling randomly to ensure lines are differ-
ent) where the multiplication factor is chosen to
result in an overall corpus size of approximately
50 GB.

There are two exceptions. For BOW, we did not
find a good way of reducing the corpus size, so this
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roundtrip translation sentiment analysis
WORD CHAR WORD CHAR

S1 R1 S4 S16 S1 R1 S4 S16
µ Md µ Md µ Md µ Md N µ Md µ Md µ Md µ Md N pos neg pos neg

1 RTSIMPLE 33 24 37 36 67 24 13 32 21 70
2 BOW 7 5 8 7 13 12 26 28 69 3 2 3 2 5 4 10 11 70 33 81 13 83
3 S-ID 46 46 52 55 63 76 79 91 65 9 5 9 5 14 9 25 22 70 79 88 65 86
4 SAMPLE 33 23 43 42 54 59 82 96 65 53 59 59 72 67 85 79 99 58 82 89 77 89
5 CLIQUE 43 36 59 63 67 77 93 99 69 42 46 48 55 60 76 73 98 53 84 89 69 88
6 N(t) 54 59 61 69 80 87 94 100 69 50 53 54 59 73 82 90 99 66 82 89 87 90
7 N(t)-CLIQUE 11 0 11 0 16 0 22 0 18 39 45 41 47 58 74 76 94 56 22 84 61 84
8 N(t)-CC 3 0 3 0 5 0 7 0 5 11 0 11 0 16 0 25 0 21 4 84 40 83
9 N(t)-EDGE 35 30 43 36 56 55 87 94 69 39 29 49 52 64 78 88 100 63 84 90 84 89

Table 3: Roundtrip translation (mean/median accuracy) and sentiment analysis (F1) results for word-
based (WORD) and character-based (CHAR) multilingual embeddings. N (coverage): # queries con-
tained in the embedding space. The best result across WORD and CHAR is set in bold.

corpus is 10 times larger than the others. For S-
ID, we use Levy et al. (2017)’s hyperparameters;
in particular, we trained for 100 iterations and we
wrote each verse-unit pair to the corpus only once,
resulting in a corpus of about 4 GB.

We set the n parameter of n-grams to n = 4
for Bible editions with ρ < 2, n = 8 for Bible
editions with 2 ≤ ρ < 3 and n = 12 for Bible
editions with ρ ≥ 3 where ρ is the ratio between
size in bytes of the edition and median size of the
1664 editions. In χ2 dictionary induction, we set
χmin = 100. In the concept induction algorithm
we set θ = 0.4 and ν = 0.6. Except for SAMPLE
and CLIQUE, we filter out hapax legomena.

3.4 Results

Table 3 presents evaluation results for roundtrip
translation and sentiment analysis.

Validity of roundtrip (RT) evaluation results.
RTSIMPLE (line 1) is not competitive; e.g., its ac-
curacy is lower by almost half compared to N(t).
We also see that RT is an excellent differentiator
of poor multilingual embeddings (e.g., BOW) vs.
higher-quality ones like S-ID and N(t). This indi-
cates that RT translation can serve as an effective
evaluation measure.

The concept-based multilingual embedding
learning algorithms CLIQUE andN(t) (lines 5-6)
consistently (except S1 WORD) outperform BOW
and S-ID (lines 2-3) that are not based on con-
cepts. BOW performs poorly in our low-resource
setting; this is not surprising since BOW methods
rely on large datasets and are therefore expected
to fail in the face of severe sparseness. S-ID per-
forms reasonably well for WORD, but even in that
case it is outperformed by N(t), in some cases by
a large margin, e.g., µ of 63 for S-ID vs. 80 for

N(t) for S4. For CHAR, S-ID results are poor.
On sentiment classification,N(t) also consistently
outperforms S-ID.

While S-ID provides a clearer signal to the em-
bedding learner than BOW, it is still relatively
crude to represent a word as – essentially – its bi-
nary vector of verse occurrence. Concept-based
methods perform better because they can exploit
the more informative dictionary graph.

Comparison of graph-theoretic definitions of
concepts: N(t)-CLIQUE, N(t)-CC. N(t) (line
6) has the most consistent good performance
across tasks and evaluation measures. Postfilter-
ing target neighborhoods down to cliques (line 7)
and CCs (line 8) does not work. The reason is that
the resulting number of concepts is too small; see,
e.g., low coverages of N = 18 (N(t)-CLIQUE)
and N = 5 (N(t)-CC) for WORD and N = 21
(N(t)-CC) for CHAR. N(t)-CLIQUE results are
highly increased for CHAR, but still poorer by a
large margin than the best methods. We can inter-
pret this result as an instance of a precision-recall
tradeoff: presumably the quality of the concepts
found by N(t)-CLIQUE and N(t)-CC is better
(higher precision), but there are too few of them
(low recall) to get good evaluation numbers.

Comparison of graph-theoretic definitions of
concepts: CLIQUE. CLIQUE has strong perfor-
mance for a subset of measures, e.g., ranks consis-
tently second for RT (except S1 WORD) and sen-
timent analysis in WORD. Although CLIQUE is
perhaps the most intuitive way of inducing a con-
cept from a dictionary graph, it may suffer in rela-
tively high-noise settings like ours.

Comparison of graph-theoretic definitions of
concepts: N(t) vs. N(t)-EDGE. Recall that
N(t)-EDGE postfilters target neighborhoods by

1526



Page 1 of 1

extokenise 07/05/2018, 16:31

[ksw] ဒ"#တ◌"ကမၣ◌်လၢအပာ်လၢယလိၤခဲကနံၣ◌်အံၤ⋆,
      ⋆ထu#ပ(◌ၤအ3 ၣ◌်အသးတန့"ဘၣ◌်⋆.
[cso] Hi³⋆sa³jun³⋆lɨ́¹³⋆ma³tson²⋆tsú²⋆
      lɨ³ua³⋆cáun²⋆tso³⋆ñí¹⋆hná¹⋆nɨ́²⋆.
[eng] Neither⋆can⋆they⋆prove⋆the⋆things⋆
      whereof⋆they⋆now⋆accuse⋆me⋆.

Figure 7: Verse 44024013. “*” = tokenization
boundary. S’gaw Karen (ksw) is difficult to to-
kenize and CHAR > WORD for N(t). Chinan-
teco de Sochiapan (cso) has few types, similar to a
pivot language, and CHAR < WORD for N(t).

N(t) S-ID SAMPLE CLIQUE
[CHAR] [WORD] [WORD] [WORD]

iso ∆ iso ∆ iso ∆ iso ∆
arb1 54 pua0 61 jpn1 42 mya2 38
arz0 53 sun2 54 khm2 40 jpn1 36
cop3 49 jpn1 53 cap2 40 khm3 34
srp0 44 khm3 53 khm3 40 bsn0 28
cop2 44 khm2 50 mya2 39 khm2 27
. . . . . . . . . . . . . . . . . . . . . . . .
pis0 -23 vie7 -24 eng8 -7 haw0 -22
pcm0 -23 kri0 -25 enm1 -9 eng4 -23
ksw0 -24 tdt0 -27 lzh2 -9 enm2 -26
lzh2 -41 eng2 -27 eng4 -12 enm1 -26
lzh1 -51 vie6 -29 lzh1 -13 engj -28

Table 4: Comparison of N(t)[WORD] with four
other methods. Difference in mean performance
(across queries) in R1 per edition. Positive number
means better performance of N(t)[WORD].

only considering pairs of pivot words that are
linked by a dictionary edge. This “quality” filter
does seem to work in some cases, e.g., best perfor-
mance S16 Md for CHAR. But results for WORD
are much poorer.

SAMPLE performs best for CHAR: best results
in five out of eight cases. However, its coverage is
low: N = 58. This is also the reason that it does
not perform well on sentiment analysis for CHAR
(F1 = 77 for pos).

Target neighborhoods N(t). The overall best
method is N(t). It is the best method more of-
ten than any other method and in the other cases,
it ranks second. This result suggests that the as-
sumption that two target units are semantically
similar if they have dictionary edges with exactly
the same set of pivot words is a reasonable approx-
imation of reality. Postfiltering by putting con-
straints on eligible sets of pivot words (i.e., the
pivot words themselves must have a certain dictio-
nary link structure) does not consistently improve
upon target neighborhoods.

WORD vs. CHAR. For roundtrip, WORD is
a better representation than CHAR if we just
count the bold winners: seven (WORD) vs. three
(CHAR), with two ties. For sentiment, the more
difficult task is pos and for this task, CHAR is
better by 3 points than WORD (F1 = 87, line
6, vs. F1 = 84, lines 9/5). However, Table 4
shows that CHAR<WORD for one subset of edi-
tions (exemplified by cso in Figure 7) and CHAR
> WORD for a different subset (exemplified by
ksw). So there are big differences between CHAR
and WORD in both directions, depending on the
language. For some languages, WORD performs
a lot better, for others, CHAR performs a lot better.

We designed RT evaluation as a word-based
evaluation that disfavors CHAR in some cases.
The fourgram “ady@” in the World English Bible
occurs in “already” (32 times), “ready” (31 times)
and “lady” (9 times). Our RT evaluation thus dis-
qualifies “ady@” as a strict match for “ready”. But
all 17 aligned occurrences of “ady@” are part of
“ready” – all others were not aligned. So in the χ2-
alignment interpretation, P (ready|ady@) = 1.0.
In contrast to RT, we only used aligned ngrams in
the sentiment evaluation. This discrepancy may
explain why the best method for sentiment is a
CHAR method whereas the best method for RT
is a WORD method.

First NLP task evaluation on more than 1000
languages. Table 3 presents results for 1664 edi-
tions in 1259 languages. To the best of our knowl-
edge, this is the first detailed evaluation, involv-
ing two challenging NLP tasks, that has been done
on such a large number of languages. For sev-
eral methods, the results are above baseline for all
1664 editions; e.g., S1 measures are above 20%
for all 1664 editions for N(t) on CHAR.

4 Related Work

Following Upadhyay et al. (2016), we group mul-
tilingual embedding methods into classes A, B,
C, D.

Group A trains monolingual embedding spaces
and subsequently uses a transformation to create
a unified space. Mikolov et al. (2013b) find the
transformation by minimizing the Euclidean dis-
tance between word pairs. Similarly, Zou et al.
(2013), Xiao and Guo (2014) and Faruqui and
Dyer (2014) use different data sources for iden-
tifying word pairs and creating the transformation
(e.g., by CCA). Duong et al. (2017) is also simi-
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lar. These approaches need large datasets to obtain
high quality monolingual embedding spaces and
are thus inappropriate for a low-resource setting
of 150,000 tokens per language.

Group B starts from the premise that repre-
sentation of aligned sentences should be similar.
Neural network approaches include (Hermann and
Blunsom, 2014a) (BiCVM) and (Sarath Chandar
et al., 2014) (autoencoders). Again, we have not
enough data for training neural networks of this
size. Søgaard et al. (2015) learn an interlingual
space by using Wikipedia articles as concepts and
applying inverted indexing. Levy et al. (2017)
show that what we call S-ID is a strongly perform-
ing embedding learning method. We use S-ID as a
baseline.

Group C combines mono- and multilingual in-
formation in the embedding learning objective.
Klementiev et al. (2012) add a word-alignment
based term in the objective. Luong et al. (2015)
extend Mikolov et al. (2013a)’s skipgram model
to a bilingual model. Gouws et al. (2015) intro-
duce a crosslingual term in the objective, which
does not rely on any word-pair or alignment infor-
mation. For n editions, including O(n2) bilingual
terms in the objective function does not scale.

Group D creates pseudocorpora by merging
data from multiple languages into a single corpus.
One such method, due to Vulić and Moens (2015),
is our baseline BOW.

Östling (2014) generates multilingual con-
cepts using a Chinese Restaurant process, a com-
putationally expensive method. Wang et al. (2016)
base their concepts on cliques. We extend their
notion of clique from the bilingual to the multi-
lingual case. Ammar et al. (2016) use connected
components. Our baseline SAMPLE, based on
(Lardilleux and Lepage, 2007, 2009), samples
aligned sentences from a multilingual corpus and
extracts perfect alignments.

Malaviya et al. (2017), Asgari and Schütze
(2017), Östling and Tiedemann (2017) and Tiede-
mann (2018) perform evaluation on the language
level (e.g., typology prediction) for 1000+ lan-
guages or perform experiments on 1000+ lan-
guages without evaluating each language. We
present the first work that evaluates on 1000+ lan-
guages on the sentence level on a difficult task.

Somers (2005) criticizes RT evaluation on the
sentence level; but see Aiken and Park (2010).
We demonstrated that when used on the word/unit

level, it distinguishes weak from strong embed-
dings and correlates well with an independent sen-
timent evaluation.

Any alignment algorithm can be used for dic-
tionary induction. We only used a member of
the IBM class of models (Dyer et al., 2013),
but presumably we could improve results by us-
ing either higher performing albeit slower align-
ers or non-IBM aligners (e.g., (Och and Ney,
2003; Tiedemann, 2003; Melamed, 1997)). Other
alignment algorithms include 2D linking (Kobdani
et al., 2009), sampling based methods (e.g., Vulic
and Moens (2012)) and EFMARAL (Östling and
Tiedemann, 2016). EFMARAL is especially in-
triguing as it is based on IBM1 and Agić et al.
(2016) find IBM2-based models to favor closely
related languages more than models based on
IBM1. However, the challenge is that we need
to compute tens of thousands of alignments, so
speed is of the essence. We ran character-based
and word-based induction separately; combining
them is promising future research; cf. (Heyman
et al., 2017).

There is much work on embedding learning that
does not require parallel corpora, e.g., (Vulić and
Moens, 2012; Ammar et al., 2016). This work is
more generally applicable, but a parallel corpus
provides a clearer signal and is more promising (if
available) for low-resource research.

5 Summary

We presented a new method for estimating vec-
tor space representations of words: embedding
learning by concept induction. We tested this
method on a highly parallel corpus and learned
semantic representations of words in 1259 differ-
ent languages in a single common space. Our
extensive experimental evaluation on crosslingual
word similarity and sentiment analysis indicates
that concept-based multilingual embedding learn-
ing performs better than previous approaches.

The embedding spaces of the 1259 languages
(SAMPLE, CLIQUE and N(t)) are available:
http://cistern.cis.lmu.de/comult/.

We gratefully acknowledge funding from
the European Research Council (grants 740516
& 640550) and through a Zentrum Digital-
isierung.Bayern fellowship awarded to the first au-
thor. We are indebted to Michael Cysouw for mak-
ing PBC available to us.

1528



References
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Abstract

The transfer or share of knowledge be-
tween languages is a popular solution to
resource scarcity in NLP. However, the ef-
fectiveness of cross-lingual transfer can
be challenged by variation in syntactic
structures. Frameworks such as Univer-
sal Dependencies (UD) are designed to be
cross-lingually consistent, but even in care-
fully designed resources trees representing
equivalent sentences may not always over-
lap. In this paper, we measure cross-lingual
syntactic variation, or anisomorphism, in
the UD treebank collection, considering
both morphological and structural prop-
erties. We show that reducing the level
of anisomorphism yields consistent gains
in cross-lingual transfer tasks. We intro-
duce a source language selection procedure
that facilitates effective cross-lingual parser
transfer, and propose a typologically driven
method for syntactic tree processing which
reduces anisomorphism. Our results show
the effectiveness of this method for both
machine translation and cross-lingual sen-
tence similarity, demonstrating the impor-
tance of syntactic structure compatibility
for boosting cross-lingual transfer in NLP.

1 Introduction

Linguistic information can be transferred from
resource-rich to resource-poor languages using
approaches such as annotation projection, model
transfer, and/or translation (Agić et al., 2014). Such
cross-lingual transfer may rely on syntactic infor-
mation. Structured and more cross-lingually con-
sistent than linear sequences (Ponti, 2016), syntac-
tic information has proved useful for cross-lingual
parsing (Tiedemann, 2015; Rasooli and Collins,

2017), multilingual representation learning (Vulić
and Korhonen, 2016; Vulić, 2017), causal relation
identification (Ponti and Korhonen, 2017), and neu-
ral machine translation (Eriguchi et al., 2016; Aha-
roni and Goldberg, 2017). It can also guide the
generation of synthetic data for multilingual tasks
(Wang and Eisner, 2016).

Universal Dependencies (UD) (Nivre et al.,
2016) is a collection of treebanks for a variety of
languages, annotated with a scheme optimised for
knowledge transfer. The tag sets are language-
independent and there are direct links between
content words. This reduces the variation of de-
pendency trees, because content words are cross-
lingually more stable than function words (Croft
et al., 2017), and benefits semantically-oriented
applications (de Marneffe et al., 2014)1. Impor-
tantly, although UD is tailored to offer support to
cross-lingual transfer, it also supports monolingual
applications with a quality comparable to language-
specific annotations (Vincze et al., 2017, inter alia).

Despite the careful design of this resource, there
are still substantial variations in morphological rich-
ness and strategies employed to express the same
syntactic constructions across languages. These
variations posit challenges for syntax-based knowl-
edge transfer. The first challenge is how to match
the source and target languages so that differences
are minimised. The common criteria are based on
the typology of word order (Naseem et al., 2012;
Täckström et al., 2013; Zhang and Barzilay, 2015)
or part-of-speech n-grams (Rosa and Zabokrtsky,
2015; Agić, 2017). The second one is how to make
knowledge transfer effective by harmonising syn-
tactic trees (Smith and Eisner, 2009; Vilares et al.,
2016) as to enable a better correspondence between
source and target nodes.

1It is controversial whether it improves parsing: e.g., Groß
and Osborne (2015, inter alia) argue against whereas Attardi
et al. (2015, inter alia) argue in favour.
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In this paper we address these two challenges.
We propose the concept of isomorphism (i.e., iden-
tity of shapes: syntactic structures) and its opposite,
anisomorphism, as a probe to measuring quantita-
tively the extent to which syntactic tree pairs are
cross-lingually compatible. We assess the variation
of syntactic constructions by a) the average Zhang
and Shasha (1989)’s tree edit distance between UD
treebanks, and b) the variation in morphology by
the Jaccard index of morphological feature sets. We
show that these metrics are strong indicators for
source language selection, and even preferable over
widespread metrics such as genealogical language
relatedness.

Moreover, the concept of isomorphism facilitates
the process of reshaping trees to make them com-
patible across languages via operations of deletion,
addition, and relabeling. To this end, we propose a
tree processing method which increases the level
of isomorphism between trees of cross-lingually
compatible sentences. This method leads to consis-
tent improvements on cross-lingual tasks achieved
through transfer.

To verify the relevance of isomorphism for cross-
lingual transfer in NLP, we perform experiments
on three tasks. Firstly, we use the Jaccard index
of morphological feature sets to choose source lan-
guages for cross-lingual dependency parsing. Sec-
ondly, we use syntactic trees harmonised by our
method in syntax-based neural machine translation
of two typologically distant language pairs (Ara-
bic to Dutch; Indonesian to Portuguese). Finally,
we evaluate cross-lingual sentence similarity in a
real-life resource-lean scenario where the target lan-
guage has no annotated data. In all experiments, we
enhance performance compared to baselines where
the source shows a lower degree of isomorphism.

In §2, we define the concept of (an)isomorphism,
propose novel metrics for measuring it quantita-
tively, and introduce the tree processing algorithm.
We then desribe the data (§3), methods (§4), and
experimental results (§5). Related work is sum-
marised in §6 and conclusions are drawn in §7.

2 Anisomorphism

The ideal situation for knowledge transfer from
one (syntactic) structure into another is when these
structures are equivalent. In graph theory, there
is isomorphism between the nodes VS of graph S
and the nodes VT of graph T if there exists a bijec-
tion f(VS) → VT such that ∀si, sj ∈ VS , it holds

that: si sj ⇔ f(si) f(sj), where the symbol
stands for adjacency between nodes. In sim-

ple words, the mapping must preserve adjacencies
between corresponding nodes.

Syntactic trees are a special case of such graphs.
However, vocabularies (the words in their nodes)
are peculiar to each language, making their compar-
ison impractical across languages. In this work, we
probe isomorphism on delexicalised trees, where
each node is the (cross-lingually consistent) depen-
dency relation of the word in that position. Even so,
however, isomorphic bijection is often impossible
between trees of equivalent sentences in different
languages owing to typological variation (see §2.1).

Adopting the term from Ambati (2008), we de-
fine this property as anisomorphism, which can be
quantified as the extent to which two structures dif-
fer in their morphological and syntactic properties
(§2.2). We present a tree processing method to mit-
igate anisomorphism in §2.3. Afterwards, in §§3-5
we show how the concepts defined in this section
facilitate cross-lingual transfer in three NLP tasks.

2.1 Sources of Anisomorphism
Two main causes underpin anisomorphism. The
first cause is the morphological type of a language:
the same grammatical function may be expressed
via morphemes, via separate words (so-called func-
tion words), or may not be expressed at all (Bybee,
1985, ch. 2). For instance, consider the following
Latin-English example:

(1) Crimen
crime.NOM

er-it
be-FUT.3SG

super-is
god-DAT.PL

et
also

me
me

fec-isse
make-INF.PST

nocent-em.
guilty-ACC

‘It will be a reproach to the gods, that they have
made even me guilty.’

The future tense is expressed by inflecting the verb
erit in Latin, whereas English has the auxiliary verb
will. In addition, Latin can express the English
preposition to with the dative case -is. This varia-
tion has systematic impact on UD annotation. On
one hand, Latin would display the attribute-value
pairs TENSE=FUTURE and CASE=DATIVE among
the features of erit and superis. On the other hand,
in English the function words (will and to) add
nodes to the dependency structure, modifying the
equivalent words (be and gods). This pattern is not
unique to English and Latin: there are similar cor-
respondences between specific function words and
morphological features in many other languages.
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Figure 1: Heatmaps of anisomorphism metrics for UD language pairs. The colours range from blue (low
values) to red (high values).

The other source of anisomorphism are construc-
tion strategies: the same syntactic construction
is expressed through different types of strategies
(Croft et al., 2017), which results in different kinds
of subtrees in UD. An example construction is pred-
icative possession, which conveys the ownership
of an item by a possessor through the predicate of
a clause (Stassen, 2009). Consider these examples
in Dutch and Arabic, respectively:

(2) Ik
I

heb
have.1SG

een
a

filmidee
film+idea

‘I have an idea for a movie.’

(3) Laday-himā
at-them

‘ašyā-‘u
thing-NOM.PL

muštarakat-un
common-NOM.PL

‘They have things in common.’

In Dutch (Example 2), the owner Ik is the subject
and the item filmidee is the object of a transitive
verb (hab). However, in Arabic (Example 3) the
owner is a predicate with a locative prefix (laday-
himā), the item ‘ašyā‘u is the subject, and there is
no verb. These are called transitive and locative
strategies, respectively. Each strategy results in a
different (delexicalised) subtree, as shown in Fig-
ure 2b: this simple example with one construction
already suggests that the variation in syntactic con-
structions affects the compatibility of cross-lingual
trees pervasively.2

2Other strategies for predicative possession include topic,
conjunctional and genitive. More examples of constructions
are available in the supplemental material.

2.2 Measures of Anisomorphism
How can the differences described in §2.1 translate
into quantitative metrics of compatibility between
sentences in different languages? As the first an-
swer to this question, we propose to measure the
affinity in morphological type by considering the
sets of morphological features attested within each
of the UD treebanks.3 Particularly, for each pair
of a source language set MS and a target language
set MT , we estimate their Jaccard index, which is
defined for two sets as the cardinality of their inter-
section divided by the cardinality of their union, as
shown in Equation (4).

J(MS ,MT ) =
||MS ∩MT ||
||MS ∪MT ||

(4)

The values of the Jaccard index lie in [0, 1] A
heatmap is displayed in Figure 1a: the morpho-
logical similarity between language pairs varies
considerably, ranging from low (0.07 in Chinese-
Uyghur), mild (0.48 in Latvian-Tamil), to high
(0.72 in Bulgarian-Ukrainian). Note that the Jac-
card index 1 is an artifact for languages with no
expression of grammatical function (in Vietnamese,
among others) or lacking morphological annota-
tion (in Japanese). This metric exhibits other dis-
advantages: it does not take into account another
source of variation, the construction strategies, and
is based on general properties of a grammar rather

3The full list of features can be consulted at http://
universaldependencies.org/u/feat/
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Figure 2: Tree processing steps that transform the locative strategy for predicative possession in an Arabic
sentence into a transitive strategy. Tree processing is always applied on source language constructions.

than specific individual sentences.
Hence, we propose an approach to measure ani-

somorphism between individual sentences. We
parse the texts of the multi-parallel Bible corpus
(Christodouloupoulos and Steedman, 2015) with
the SyntaxNet parser (see §4). The language pairs
taken into account are limited to those present both
in our UD sample and in the Bible corpus, and
sentence-aligned by book, chapter and verse in-
dices. For a given language pair, we estimate the
tree edit distance between every corresponding pair
of sentence trees S and T with the Zhang-Sasha
algorithm (Zhang and Shasha, 1989) and then aver-
age over the number of trees.4

This tree edit distance operates on ordered trees
with node (but not edge) labels, hence it is suited
for delexicalised dependencies. In particular, it
is defined over a map M , which is a list of node
pairs where the former belongs to S or ε (empty
node), and the latter belongs to T or ε. If both are
non-empty, they trigger an operation of relabeling;
if the latter is ε, it is deletion; if the former is ε,
it is addition. The edit distance is the number of
operations required for a complete transformation
weighted by the factor γ.5 The following equation
summarises the tree edit distance measure:

γ(M,S, T ) =
∑

i,j∈M
γ(Si → Tj) + γ(Si → ε) + γ(ε→ Tj)

The possible values of this metric are non-negative
real numbers. We opted for this metric in particular
because it allows the insertion of internal nodes but
not transpositions. The former criterion allows to

4We implement this algorithm with the zs Python
package, available at https://github.com/timtadh/
zhang-shasha.

5For simplicity, we set γ = 1.

capture complex transformations without rebuild-
ing entire subtrees, the latter is aimed at taking into
account also variations in word order. In order to
evaluate pure syntactic isomorphism one should al-
low for transpositions and/or operate on unordered
trees.6

A heatmap of tree edit distances is shown in Fig-
ure 1b. The values reflect the typological affinity
of the language pairs: e.g., Spanish is very close
to French (both are Romance languages), mildly
similar to Polish (Slavic language, but still part of
the Indo-European family), but remote from He-
brew (from a different family, Semitic). The values
agree in part with the metrics of Figure 1a, where
the Jaccard indices of Hebrew (0.26), Polish (0.46),
and French (0.59) mirror the same relationships.

In §4, we show how these metrics can benefit
the source selection for knowledge transfer, some-
times even outranking established criteria such as
genealogical closeness. However, they have also
weaknesses: the Jaccard index of feature sets is
not reliable for languages with a limited number of
morphologically expressed grammatical categories.
On the other hand, the tree edit distance measure
requires resources (such as treebanks and parallel
corpora) that are not available for many languages.

2.3 Reduction of Anisomorphism
The measures of anisomorphism reveal which lan-
guages are structurally similar, which is directly
useful for source selection. However, the data avail-
able for many tasks are often limited to distant lan-
guages. Hence, it is necessary to increase their
affinity by gearing one towards the other. We pro-
pose to process source dependency trees with an
algorithm inspired by the same rules of the tree edit

6For a survey on tree edit distances, see Bille (2005).
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distance described in §2.2.
We leverage the readily available documenta-

tion in typological databases (e.g., World Atlas of
Language Structures: WALS) (Dryer and Haspel-
math, 2013).7 Given a source and a target language,
the documentation informs about their respective
strategies. For each strategy, we manually define
a ‘template’, i.e. the subtree it corresponds to, in
terms of morpho-syntactic features. For instance,
see the dashed circles in Figure 2b: note that tem-
plates are limited to a head and its immediate de-
pendents.

Then we explore source trees in a top-down
breadth-first fashion, and if a template for a source
strategy is identified, it is mapped to the correspond-
ing target template. In order to preserve semantic
information, contrary to Zhang and Shasha (1989),
the mapping operates on lexicalised edge-labeled
trees. Hence, ADD and CHANGE affect both words
(nodes) and edges (dependency relations). The
whole process is summarised in Algorithm 1.

Algorithm 1 Tree processing with rules
1: strategiess←WALSs . Define templates
2: strategiest←WALSt

3: function CHANGE(s, t(l)) . Define operations
4: s← t(l)

5: function DELETE(s)
6: s← ε
7: function ADD(t(l))
8: ε← t(l)

9: function MAPPING(rs, strategiest) . Define mapping
10: assert(rs ∈ strategiess)

return {CHANGE, DELETE, ADD}*
11: for subtree in trees do . Explore tree
12: if subtree ∈ strategiess then
13: list← MAPPING(subtree)
14: for ns, nt in list do . Perform operations
15: if ns 6= ε ∧ nt 6= ε then
16: CHANGE(ns, nt)
17: else if nt = ε then
18: DELETE(ns)
19: else if ns = ε then
20: ADD(nt)

For instance, consider the transformation from the
locative strategy for predicative possession in Ara-
bic from Example 3 into a transitive strategy. By
exploring its dependency graph (Figure 2a), the Al-
gorithm identifies a subtree corresponding to one
of the source strategies (left side of Figure 2b).
This subtree is mapped to the target template (right

7In particular, we take into account the following relevant
WALS features: 116 (polar questions), 122-123 (relativisa-
tion on subjects and obliques), 117 (predicative possession),
113-115 (negation), 107 (passive), 37-38 (articles), and 85
(prepositions).

side of Figure 2b) with the following operations:
it CHANGEs the root noun ladayhimā (the posses-
sor) with a dummy node (the verb). The same
noun is re-ADDed as a dependent with a new label
nsubj. Finally, the dependency relation of the other
noun ‘ašyā-‘u is CHANGEd from nsubj to dobj.
The resulting tree uses the source language vocabu-
lary, but target language construction strategies, as
shown in Figure 2c.

3 Data

In order to validate the usefulness of anisomor-
phism reduction through guided source selection
and tree processing, we experiment with three
different cross-lingual tasks: cross-lingual depen-
dency parsing, neural machine translation (NMT),
and cross-lingual sentence similarity (STS). In this
section, we present the data used in these tasks.

The data for dependency parsing are sourced
from Universal Dependencies v1.4.8 We sample
a group of 21 treebanks ensuring their representa-
tiveness by balancing them by family. We filter out
all languages but two belonging to same branches
of the Indo-European family, and keep those of all
the other families.9 We take into account only the
language-independent components of the annota-
tion: coarse POS tags, morphological features, and
dependency relations.

Regarding NMT data, English is ubiquitous in
the current datasets, overshadowing the wide spec-
trum of existing morphological types and syntac-
tic strategies. To address this limitation, we cre-
ate a new NMT dataset that matches typologically
distant languages directly without the need of a
bridge/pivot language. We extract aligned sen-
tences from the Open Subtitles 2016 tokenised
corpus (Tiedemann, 2009)10 for Arabic-Dutch and
Indonesian-Portuguese. This choice was made
based on their volume of parallel data in order to
produce evaluation data similar in size to those of
NMT datasets in shared tasks such as WMT16 (Bo-
jar et al., 2016). Training and test sets consist of 3M
and 5K sentences, respectively. These sentences
come automatically annotated by SyntaxNet.

The data for cross-lingual STS are chosen to re-
semble a real-world scenario with a resource-poor
target language. The training data (9,709 sentence

8http://universaldependencies.org/
9Language names are substituted in this work by their

corresponding ISO 639-1 codes. A table of names and codes
is provided in the supplemental material.

10http://opus.nlpl.eu/OpenSubtitles.php
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pairs) are in English, taken from the STS bench-
mark, the ensemble of all the datasets from Se-
mEval 2012-2017 STS tasks. The test data (250
sentence pairs) come from Task 1 of SemEval 2017
(Cer et al., 2017); target language is Arabic.11 All
the sentence pairs are associated with a label rang-
ing from 0 (dissimilarity) to 5 (equivalence).

4 Methodology

Cross-lingual Dependency Parsing. To assess
if the anisomorphism metrics devised in §2.2 are
reliable in finding compatible languages for knowl-
edge transfer, we use the Jaccard index of the mor-
phological feature sets as a criterion to choose
source languages for cross-lingual parser transfer.
We adopt the variant of delexicalised model trans-
fer (Zeman and Resnik, 2008) for this task. This
technique ignores lexicalised features and leverages
only language-independent features instead.

For each language from a sample of 7 (typologi-
cally diverse) targets, we report LAS scores using
three different source languages: (1) the highest-
ranked source according to the Jaccard index; (2) a
source sampled from the middle of the list ranked
by the Jaccard indices; (3) a very dissimilar lan-
guage sampled from the bottom of the ranked list.
The total number of sentences used for training
corresponds to the smallest of the three source lan-
guage treebanks in order to isolate the effect of
treebank size on the final transfer results.

We conduct experiments with two well-known
transition-based parsers (Nivre, 2006): (1) DeSR
(Attardi et al., 2007) and (2) SyntaxNet (Andor
et al., 2016; Alberti et al., 2017). The two were se-
lected as they represent two different architectures:
the former is an SVM-based model with a polyno-
mial kernel, whereas the latter is a feed-forward
neural network with beam search based on condi-
tional random fields. The results are evaluated in
terms of LAS and UAS scores.

Neural Machine Translation. For NMT, we ex-
amine whether the tree processing procedure from
§2.3 can reduce anisomorphism between source
and target language syntactic structures. We thus
run NMT models in two settings: with and without
the anisomorphism reduction procedure.

For this experiment we rely on a state-of-the-art
syntax-aware NMT architecture. We report its per-
formance by BLEU scores (Papineni et al., 2002).

11http://alt.qcri.org/semeval2017/
task1/

In particular, we use an attentional encoder-decoder
network that jointly learns to translate and align
words (Bahdanau et al., 2015) implemented in the
Nematus suite12 (Sennrich et al., 2017). The en-
coder is a bidirectional gated recurrent network.
For each step i, the decoder predicts the next word
in output by taking as input the current hidden
state hi, the previous word wi−1 and a context vec-
tor, i.e., a weighted sum of all the hidden states∑n

j=1wj · h1. The weights are learned by a multi-
layer perceptron that estimates the likelihood of the
alignment between the predicted word and each of
the input words: wi,j = P (a|yi, xj).

This model is enriched with additional linguistic
features on input, as proposed by Sennrich and Had-
dow (2016). In particular, we select the following
which are proven as useful in prior work, and also
relevant to our experiment: word form, POS tag,
and dependency relations. These features are con-
catenated and fed to the encoder. Tree processing
from §2.3 affects these features (and consequently
the sentence representation) by changing the initial
tree structure. For instance, the original tree in Fig-
ure 2a and the processed one in Figure 2c would
correspond to these feature sets:

Original Preprocessed
ladayhimā ⊕ N ⊕ ROOT himā ⊕ N ⊕ NSUBJ

DUMMY ⊕ V ⊕ ROOT
‘ašyā‘u ⊕ N ⊕ NSUBJ ‘ašyā‘u ⊕ N ⊕ DOBJ
muštarakatun ⊕ A ⊕
Amod

muštarakatun ⊕ A ⊕
Amod

Cross-lingual STS. We use cross-lingual STS as
another evaluation task to validate if the anisomor-
phism reduction algorithm from §2.3 generalises
beyond the initial application in NMT. The state-of-
art approach to this task in the monolingual setting
encodes trees of sentence pairs with a TreeLSTM

architecture (Tai et al., 2015). The hidden represen-
tations of the tree roots of both sentences in each
pair are then concatenated and fed to a multi-layer
perceptron classifier, which yields a probability dis-
tribution over the six classes (from 0=dissimilarity
to 5=equivalence).

The following TreeLSTM has been implemented
in PyTorch. The parameters of an LSTM model are
the matrix weightsWq for inputs and Uq for hidden
representations, and a bias bq. q corresponds to an
input gate it, a forget gate ft, an output gate ot, or
a memory cell ct at time step t. The hidden state ht

12https://github.com/EdinburghNLP/
nematus
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Figure 3: Results of delexicalised cross-lingual transfer using DeSR. Results with SyntaxNet are omitted
as they show very similar patterns. The numbers in parentheses denote the amount of training sentences.

is derived from the equations below. To extend this
model to dependency trees, we consider ht−1 to
equal the sum of the hidden states of the children of
a node

∑
k∈C(xt)

hk, and provide a different forget
gate ftk for each child.

qt = σ (Wqxt + Uqht−1 + bq) (5)
ct = ft � ct−1 + it � tanh (Wcxt + Ucht−1 + bc) (6)
ht = ot � tanh(ct) (7)

In our resource-lean cross-lingual scenario the lan-
guage of the training data (English) differs from
that of the target (Arabic). Since TreeLSTM is a
lexicalised model, we employ multilingual word
embeddings, such that the words of both languages
lie in the shared cross-lingual semantic space. In
particular, we map English into Arabic through the
iterative Procustes method devised by Artetxe et al.
(2017). The results are evaluated through the Pear-
son correlation and the Mean Squared Error (MSE)
between predicted and golden labels.

Hyperparameters. DeSR has degree 2, γ 0.18,
C 0.4, coef0 0.4, and ε 1.0. The hyper-parameters
for the deep models are shown in Table 1: we have
followed the training setup suggestions from prior
work for all the models used in our experiments.

5 Results and Discussion

Source Selection. The results for cross-lingual
parser transfer with the DeSR parser are provided
in Figure 3, while the results with SyntaxNet are
provided as supplemental material as they follow
the same trends. The selection of the source for

SyntaxNet
(Parsing)

Nematus
(NMT)

TreeLSTM
(STS)

Hidden layers 2 2 1
Hidden size 512 1000 300
Input size 160 280 512
Batch size 256 80 25
Epochs 12 (greed);

10 (beam)
Early stop-
ping

5

Learning rate 0.8 1−4 1−2

Optimiser Adam AdaDelta SGD
Dropout 0.2 / 0.3 0.1 / 0.2 0

Table 1: Hyper-parameters of the models.

delexicalised cross-lingual parsing based on the
proposed Jaccard index measure shows than se-
lecting a source language with a lower degree of
anisomorphism is crucial for knowledge transfer.
The values for the selected languages are listed in
Table 2.

Target High Mid Low

Danish 0.49 0.39 0.19
Spanish 0.59 0.46 0.26
Finnish 0.44 0.23 0.15
Hebrew 0.31 0.24 0.15
Croatian 0.62 0.46 0.25
Tamil 0.48 0.43 0.38
Vietnamese 1.00 0.02 0.01

Table 2: Jaccard indices of source-target pairs.

The high-similarity source always outperforms
the alternatives with both DeSR and SyntaxNet,
and with respect to both LAS and UAS scores. For
instance, Swedish is the best source for Danish,
Estonian for Finnish, and Bulgarian for Croatian.
Similarly, the preference for medium- over low-
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AR-NL ID-PT
Baseline 7.01 14.79
+Syntax 14.40 23.70
++Preprocessing 15.40 24.12

Table 3: NMT results: BLEU scores of a joint
translator and aligner (Baseline), fed with linguistic
features (+Syntax), and with processed trees to
reduce anisomorphism (++Preprocessing).

Pearson MSE
Mono-lingual 77.9 0.94
Cross-lingual 44.7 1.82
+Preprocessing 48.0 1.64

Table 4: Cross-lingual STS results: Pearson and
MSE scores of the TreeLSTM architecture with orig-
inal and processed trees.

ranking languages is pronounced, too, as it holds
for 6 groups out of 7. For instance, Slovak is a
better source choice for Danish than Basque, Polish
is a better source choice for Spanish than Hebrew.

Most notably, our findings generalise even to
cases when the top-ranking language (e.g. Farsi)
does not belong to the language family of the target
(e.g. Hebrew) whereas the language with a medium
overlap does (e.g. Arabic).

Tree Processing. The results of the experiments
also corroborate the idea that tree harmonisation
informed by linguistic typology, and implemented
through our anisomorphism reduction procedure
can assist model transfer in cross-lingual tasks.
The BLEU scores for Neural Machine Translation,
shown in Table 3, reveal consistent improvements.
The model enriched with syntactic features out-
performs the baseline with joint translation and
alignment without syntactic features by 7.39 BLEU

points in Arabic-Dutch and 8.91 BLEU points in
Indonesian-Portuguese. Importantly, our extension
which reduces anisomorphism by processing syn-
tactic trees in the source language leads to further
improvements for both language pairs: it surpasses
the model with syntactic features by 1.0 BLEU

points in Arabic-Dutch, and 0.42 BLEU points in
Indonesian-Portuguese.

These results support our hypotheses: a) syn-
tax is pivotal in NMT, confirming findings from
prior work (Sennrich et al., 2017); b) the tree pro-

-10

-5

0

5

10

15

-10 0 10

Figure 4: Hidden representations of original (red
circles) and processed (blue triangles) sentences.

cessing algorithm from §2.3 facilitates the align-
ment between source and target words, and also
grants the encoder-decoder architecture a better
leverage of dependency features. This lends sup-
port to our argument that anisomorphism limits
the ability of models to generalise beyond single
languages, and reducing it can help cross-lingual
syntax-aware NLP tasks.

A similar conclusion can be reached by compar-
ing the performance of TreeLSTM-based models on
the cross-lingual STS task, reported in Table 4. In
particular, the Pearson correlation score increases
by 3.3 points and MSE decreases by 0.18 points
when our tree processing algorithm is applied. We
inspect the hidden representations of both original
and processed sentences with t-SNE dimensionality
reduction in Figure 4. The impact of the algorithm
becomes evident as their clusters are completely
separate. However, the comparison against the
monolingual STS score obtained on the English
test set shows that there is still a wide gap to be
bridged by cross-lingual knowledge transfer.

Note that our tree processing algorithm is guided
by typological knowledge in WALS. The results
of the NMT and cross-lingual STS tasks suggest
that existing knowledge in such large typological
databases (O’Horan et al., 2016; Bender, 2016) can
be readily used to support cross-lingual transfer
tasks in NLP, as well as the interpretation of poly-
glot neural models (Ponti et al., 2017). We hope
that our work will spark further research on the use
of typology in cross-lingual NLP applications.
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6 Related Work

The need to account for discrepancies in tree struc-
tures emerged early in the domain of Information
Theory: in particular, the tree edit distance turned
out to be useful for correcting programming scripts
(Tai, 1979), evolution studies, and most notably ac-
counting for transformations in constituency trees
(Selkow, 1977). Although previous works were
aware of the problem of anisomorphism in the con-
text of syntax-based NLP applications (Ambati,
2008), to our knowledge we are the first to quantify
it formally and to leverage it in cross-lingual NLP.

For source selection, similarity metrics from
prior work mostly relied on information stored
in typological databases (Naseem et al., 2012;
Täckström et al., 2013; Zhang and Barzilay, 2015;
Deri and Knight, 2016). Otherwise, the metrics
were derived empirically: they mostly concerned
linear-order properties such as part-of-speech n-
grams (Rosa and Zabokrtsky, 2015; Agić, 2017).
In domain adaptation, the selection also hinges
upon topic models (Plank and Van Noord, 2011)
or Bayesian Optimisation (Ruder and Plank, 2017).
The metrics we defined in §2.2 are instead based
on configurational properties of languages, and add
another piece to the puzzle of source selection.

The idea of tree processing dates back to the
attempts to steer source towards target syntactic
structures in statistical MT, although they were
mostly limited to simple reordering steps.

Gildea (2003) proposed cloning operations to
relocate subtrees. Other works learned rewrite pat-
terns in an automatic fashion to minimize differ-
ences in the order of chunks (Zhang et al., 2007)
or labeled dependencies (Habash, 2007). Instead,
Smith and Eisner (2009) proposed to learn jointly a
translation and a loose alignment of nodes, in order
to avoid enforcing the bias of the source structure.
Reviving these approaches within the framework
of deep learning seems crucial as far as state-of-art
models depend on syntactic information (Eriguchi
et al., 2016; Dyer et al., 2016).

In general, our approach aims at developing and
evaluating models focused on specific construc-
tions rather than languages as a whole (Rimell et al.,
2009; Bender, 2011; Rimell et al., 2016). The gist
is that current models have reached a plateau in
performance because they excel with frequent and
simple phenomena, but they still lag behind with
respect to rarer or more complex constructions.

7 Conclusions and Future Work

We have demonstrated that syntactic structures dif-
fer across languages even in well-developed annota-
tion schemes such as Universal Dependencies. This
variation stems from morphological and syntactic
differences across languages. This phenomenon,
which we have labeled as anismorphism, can chal-
lenge the transfer of knowledge from one language
to another. We have proposed novel methodology
which reduces the degree of anisomorphism cross-
lingually 1) by selecting the most compatible lan-
guages for transfer, and 2) by editing the syntactic
structures (i.e., trees) themselves.

First, we have provided two measures of aniso-
morphism based on Jaccard distance of morpho-
logical feature sets, as well as average tree edit
distance of parallel sentences. These can provide
reliable indicators for language compatibility for
source selection in cross-lingual parsing.

Second, we have proposed a new method for
fine-tuning source dependency trees to resemble
target language trees in order to reduce anisomor-
phism. The method does not depend on parallel
data, and it leverages readily available information
in typological databases. It boosts the performance
of standard frameworks in two downstream applica-
tions, obtaining competitive or state-of-art results
for 1) NMT on a new dataset of Arabic-Dutch and
Indonesian-Portuguese and 2) cross-lingual sen-
tence similarity.

Future work will look into automating the tree
processing procedure. A parametrised model could
be trained to imitate the operations performed by
Zhang and Shasha (1989)’s algorithm on multi-
parallel texts, conditioned on the tree features and
previous operations. Another possible research di-
rection is learning the mapping between structures
from parallel texts jointly with a main task, in the
spirit of quasi-synchronous grammars (Smith and
Eisner, 2009). Finally, a wider range of syntactic
constructions could be covered by inferring typo-
logical strategies from texts (Östling, 2015; Coke
et al., 2016).

The data for NMT, and the code for our cross-
lingual STS are available at the following link:
github.com/ducdauge/isotransf.
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Abstract

Training language models for Code-mixed
(CM) language is known to be a diffi-
cult problem because of lack of data com-
pounded by the increased confusability
due to the presence of more than one lan-
guage. We present a computational tech-
nique for creation of grammatically valid
artificial CM data based on the Equiva-
lence Constraint Theory. We show that
when training examples are sampled ap-
propriately from this synthetic data and
presented in certain order (aka training
curriculum) along with monolingual and
real CM data, it can significantly reduce
the perplexity of an RNN-based language
model. We also show that randomly gener-
ated CM data does not help in decreasing
the perplexity of the LMs.

1 Introduction

Code-switching or code-mixing (CM) refers to the
juxtaposition of linguistic units from two or more
languages in a single conversation or sometimes
even a single utterance.1 It is quite commonly ob-
served in speech conversations of multilingual so-
cieties across the world. Although, traditionally,
CM has been associated with informal or casual
speech, there is evidence that in several societies,
such as urban India and Mexico, CM has become
the default code of communication (Parshad et al.,
2016), and it has also pervaded written text, espe-
cially in computer-mediated communication and
social media (Rijhwani et al., 2017).

∗Work done during author’s internship at Microsoft Re-
search

1According to some linguists, code-switching refers to
inter-sentential mixing of languages, whereas code-mixing
refers to intra-sentential mixing. Since the latter is more gen-
eral, we will use code-mixing in this paper to mean both.

It is, therefore, imperative to build NLP tech-
nology for CM text and speech. There have
been some efforts towards building of Automatic
Speech Recognition Systems and TTS for CM
speech (Li and Fung, 2013, 2014; Gebhardt, 2011;
Sitaram et al., 2016), and tasks like language
identification (Solorio et al., 2014; Barman et al.,
2014), POS tagging (Vyas et al., 2014; Solorio
and Liu, 2008), parsing and sentiment analy-
sis (Sharma et al., 2016; Prabhu et al., 2016; Rudra
et al., 2016) for CM text. Nevertheless, the accura-
cies of all these systems are much lower than their
monolingual counterparts, primarily due to lack of
enough data.

Intuitively, since CM happens between two (or
more languages), one would typically need twice
as much, if not more, data to train a CM sys-
tem. Furthermore, any CM corpus will contain
large chunks of monolingual fragments, and rel-
atively far fewer code-switching points, which are
extremely important to learn patterns of CM from
data. This implies that the amount of data required
would not just be twice, but probably 10 or 100
times more than that for training a monolingual
system with similar accuracy. On the other hand,
apart from user-generated content on the Web and
social media, it is extremely difficult to gather
large volumes of CM data because (a) CM is rare
in formal text, and (b) speech data is hard to gather
and even harder to transcribe.

In order to circumvent the data scarcity issue,
in this paper we propose the use of linguistically-
motivated synthetically generated CM data (as
a supplement to real CM data) for development
of CM NLP systems. In particular, we use the
Equivalence Constraint Theory (Poplack, 1980;
Sankoff, 1998) for generating linguistically valid
CM sentences from a pair of parallel sentences
in the two languages. We then use these gener-
ated sentences, along with monolingual and little
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amount of real CM data to train a CM Language
Model (LM). Our experiments show that, when
trained following certain sampling strategies and
training curriculum, the synthetic CM sentences
are indeed able to improve the perplexity of the
trained LM over a baseline model that uses only
monolingual and real CM data.

LM is useful for a variety of downstream NLP
tasks such as Speech Recognition and Machine
Translation. By definition, it is a discriminator be-
tween natural and unnatural language data. The
fact that linguistically constrained synthetic data
can be used to develop better LM for CM text is,
on one hand an indirect statistical and task-based
validation of the linguistic theory used to generate
the data, and on the other hand an indication that
the approach in general is promising and can help
solve the issue of data scarcity for a variety of NLP
tasks for CM text and speech.

2 Generating Synthetic Code-mixed Data

There is a large and growing body of linguis-
tic research regarding the occurrence, syntac-
tic structure and pragmatic functions of code-
mixing in multilingual communities across the
world. This includes many attempts to explain
the grammatical constraints on CM, with three of
the most widely-accepted being the Embedded-
Matrix (Joshi, 1985; Myers-Scotton, 1993, 1995),
the Equivalence Constraint (EC) (Poplack, 1980;
Sankoff, 1998) and the Functional Head Con-
straint (DiSciullo et al., 1986; Belazi et al., 1994)
theories.

For our experiments, we generate CM sentences
as per the EC theory, since it explains a range of
interesting CM patterns beyond lexical substitu-
tion and is also suitable for computational model-
ing. Further, in a brief human-evaluation we con-
ducted, we found that it is representative of real
CM usage. In this section, we list the assumptions
made by the EC theory, briefly explain the theory,
and then describe how we generate CM sentences
as per this theory.

2.1 Assumptions of the EC Theory

Consider two languages L1 and L2 that are be-
ing mixed. The EC Theory assumes that both
languages are defined by context-free grammars
G1 and G2. It also assumes that every non-
terminal category X1 in G1 has a corresponding
non-terminal category X2 in G2 and that every ter-

minal symbol (or word) w1 in G1 has a corre-
sponding terminal symbol w2 in G2. Finally, it
assumes that every production rule in L1 has a cor-
responding rule in L2 - i.e, the non-terminal cate-
gories on the left-hand side of the two rules cor-
respond to each other, and every category/symbol
on the right-hand side of one rule corresponds to
a category/symbol on the right-hand side of the
other rule.

All these correspondences must also hold vice-
versa (between languages L2 and L1), which im-
plies that the two grammars can only differ in the
ordering of categories/symbols on the right-hand
side of any production rule. As a result, any sen-
tence in L1 has a corresponding translation in L2,
with their parse trees being equivalent except for
the ordering of sibling nodes. Fig.1(a) and (b)
illustrate one such sentence pair in English and
Spanish and their parse-trees. The EC Theory de-
scribes a CM sentence as a constrained combina-
tion of two such equivalent sentences.

While the assumptions listed above are quite
strong, they do not prevent the EC Theory from
being applied to two natural languages whose
grammars do not correspond as described above.
We apply a simple but effective strategy to recon-
cile the structures of a sentence and its translation
- if any corresponding subtrees of the two parse
trees do not have equivalent structures, we col-
lapse each of these subtrees to a single node. Ac-
counting for the actual asymmetry between a pair
of languages will certainly allow for the genera-
tion of more CM variants of any L1-L2 sentence
pair. However, in our experiments, this strategy
retains most of the structural information in the
parse trees, and allows for the generation of up to
thousands of CM variants of a single sentence pair.

2.2 The Equivalence Constraint Theory

Sentence production. Given two monolingual
sentences (such as those introduced in Fig.1), a
CM sentence is created by traversing all the leaf
nodes in the parse tree of either of the two sen-
tences. At each node, either the word at that
node or at the corresponding node in the other
sentence’s parse is generated. While the traver-
sal may start at any leaf node, once the produc-
tion enters one constituent, it will exhaust all the
lexical slots (leaf nodes) in that constituent or its
equivalent constituent in the other language before
entering into a higher level constituent or a sister

1544



(a) SE

VPE

PPE

NPE

NNE

house

JJE

white

DTE

a

INE

in

VBZE

lives

NPE

PRPE

She

(b) SS

VPS

PPS

NPS

JJS

blanca

NNS

casa

DTS

una

INS

en

VBZS

vive

NPS

PRPS

Elle

(c) S

VP

PP

NP

JJ*

white

NNS

casa

DTS

una

INS

en

VBZE

lives

NPS

PRPS

Elle

(d) S

VP

PP

NPS

JJS

blanca

NNS

casa

DTS

una

INE

in

VBZE

lives

NPS

PRPS

Elle

Figure 1: Parse trees of a pair of equivalent (a) English and (b) Spanish sentences, with corresponding
hierarchical structure (due to production rules), internal nodes (non-terminal categories) and leaf nodes
(terminal symbols), and parse trees of (c) incorrectly code-mixed and (d) correctly code-mixed variants
of these sentences (as per the EC theory).

constituent. (Sankoff, 1998) This guarantees that
the parse tree of a sentence so produced will have
the same hierarchical structure as the two mono-
lingual parse trees (Fig. 1(c) and (d)).

The EC theory also requires that any mono-
lingual fragment that occurs in the CM sentence
must occur in one of the monolingual sentences (in
the running example, the fragment una blanca
would be disallowed since it does not appear in the
Spanish sentence).

Switch-point identification. To ensure that the
CM sentence does not at any point deviate from
both monolingual grammars, the EC theory im-
poses certain constraints on its parse tree. To this
end and in order to identify the code-switching
points in a generated sentence, nodes in its parse
tree are assigned language labels according to the
following rules: All leaf nodes are labeled by the
languages of their symbols. If all the children of
any internal node share a common label, the inter-
nal node is also labeled with that language. Any
node that is out of rank-order among its siblings
according to one language is labeled with the other
language. (See labeling in Fig.1(c) and (d)) If any
node acquires labels of both languages during this
process (such as the node marked with an asterisk
in Fig.1(c)), the sentence is disallowed as per the
EC theory. In the labeled tree, any pair of adjacent
sibling nodes with contrasting labels are said to be
at a switch-point (SP).

Equivalence constraint. Every switch-point
identified in the generated sentence must abide by
the EC. Let U → U1U2...Un and V → V1V2...Vn
be corresponding rules applied in the two mono-
lingual parse trees, and nodes Ui and Vi+1 be ad-
jacent in the CM parse tree. This pair of nodes
is a switch-point, and it only abides by the EC if
every node in U1...Ui has a corresponding node
in V1...Vi. This is true for the switch-point in

Fig.1(d), and indicates that the two grammars are
‘equivalent’ at the code-switch point. More im-
portantly, it shows that switching languages at this
point does not require another switch later in the
sentence. If every switch-point in the generated
sentence abides by the EC, the generated sentence
is allowed by the EC theory.

2.3 System Description

We assume that the input to the generation model
is a pair of parallel sentences in L1 and L2, along
with word level alignments. For our experiments,
L1 and L2 are English and Spanish, and Sec 3.2
describes how we create the input set. We use
the Stanford Parser (Klein and Manning, 2003) to
parse the English sentence.

Projecting parses. We use the alignments to
project the English parse tree onto the Spanish
sentence in two steps: (1) We first replace every
word in the English parse tree with its Spanish
equivalent (2) We re-order the child nodes of each
internal node in the tree such that their left-to-right
order is as in the Spanish sentence. For instance,
after replacing every English word in Fig.1(a) with
its corresponding Spanish word, we interchange
the positions of casa and blanca to arrive Fig.1(b).
For a pair of parallel sentences that follow all the
assumptions of the EC theory, these steps can be
performed without exception and result in the cre-
ation of a Spanish parse tree with the same hierar-
chical structure as the English parse.

We use various techniques to address cases in
which the grammatical structures of the two sen-
tences deviate. English words that are unaligned to
any Spanish words are replaced by empty strings.
(See Fig.2 wherein the English word she has no
Spanish counterpart, since this pronoun is dropped
in the Spanish sentence.) Contiguous word se-
quences in one sentence that are aligned to the
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Figure 2: (a) The parse of an English sentence
as per Stanford CoreNLP. This parse is projected
onto the parallel Spanish sentence Lo hará and
modified during this process, to produce corre-
sponding (b) English and (c) Spanish parse trees.

same word(s) in the other language are collapsed
into a single multi-word node, and the entire sub-
tree between these collapsed nodes and their clos-
est common ancestor is flattened to accommo-
date this change (example in Fig.2). While these
changes do result in slightly unnatural or simpli-
fied parse trees, they are used very sparingly since
English and Spanish have very compatible gram-
mars.

Generating CS sentences. The number of CS
sentences that can be produced by combining a
corresponding pair of English and Spanish sen-
tences increases exponentially with the length of
the sentences. Instead of generating these sen-
tences exhaustively, we use the parses to construct
a finite-state automaton that succinctly captures
the acceptable CS sentences. Since the CS sen-
tence must have the same hierarchical structure as
the monolingual sentences, we construct the au-
tomaton during a post-order traversal of the mono-
lingual parses. An automaton is constructed at
each node by (1) concatenating the automatons
constructed at its child nodes, (2) splitting states
and removing transitions to ensure that the EC the-
ory is not violated. The last automaton to be con-
structed, which is associated with the root node,
accepts all the CS sentences that can be generated
using the monolingual parses. We do not provide
the exact details of automaton construction here,
but we plan to release our code in the near future.

3 Datasets

In this work, we use three types of language data:
monolingual data in English and Spanish (Mono),
real code-mixed data (rCM), and artificial or gen-
erated code-mixed data (gCM). In this section, we
describe these datasets and their CM properties.
We begin with description of some metrics that we
shall use for quantification of the complexity of a
CM dataset.

3.1 Measuring CM Complexity

The CM data, both real and artificial, can vary
in the their relative usage and ordering of L1 and
L2 words, and thereby, significantly affect down-
stream applications like language modeling. We
use the following metrics to estimate the amount
and complexity of code-mixing in the datasets.

Switch-point (SP): As defined in the last sec-
tion, switch-points are points within a sentence
where the languages of the words on the two sides
are different. Intuitively, sentences that have more
number of SPs are inherently more complex. We
also define the metric SP Fraction (SPF) as the
number of SP in a sentence divided by the total
number of word boundaries in the sentence.

Code mixing index (CMI): Proposed by Gam-
back and Das (2014, 2016), CMI quantifies the
amount of code mixing in a corpus by accounting
for the language distribution as well as the switch-
ing between them. Let N be the number of lan-
guage tokens, x an utterance; let tLi be the tokens
in language Li, P be the number of code switch-
ing points in x. Then, the Code mixed index per
utterance, Cu(x) for x computed as follows,

Cu(x) =
(N(x)−maxLi∈L{tLi}(x)) + P (x)

N(x)
(1)

Note that all the metrics can be computed at the
sentence level as well as at the corpus level by av-
eraging the values for all the sentences in a corpus.

3.2 Real Datasets

We chose to conduct all our experiments on
English-Spanish CM tweets because English-
Spanish CM is well documented (Solorio and
Liu, 2008), is one of the most commonly mixed
language pairs on social media (Rijhwani et al.,
2017), and a couple of CM tweet datasets are read-
ily available (Solorio et al., 2014; Rijhwani et al.,
2017).
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Dataset # Tweets # Words CMI SPF
Mono

English 100K 850K (48K) 0 0
Spanish 100K 860K (61K) 0 0

rCM
Train 100K 1.4M (91K) 0.31 0.105
Validation 100K 1.4M (91K) 0.31 0.106
Test-17 83K 1.1M (82K) 0.31 0.104
Test-14 13K 138K (16K) 0.12 0.06
gCM 31M 463M (79K) 0.75 0.35

Table 1: Size of the datasets. Numbers in paren-
thesis show the vocabulary size, i.e., the no. of
unique words.

For our experiments, we use a subset of the
tweets collected by Rijhwani et al. (2017) that
were automatically identified as English, Span-
ish or English-Spanish CM. The authors provided
us around 4.5M monolingual tweets per language,
and 283K CM tweets. These were already dedu-
plicated and tagged for hashtags, URLs, emoti-
cons and language labels automatically through
the method proposed in the paper. Table 1 shows
the sizes of the various datasets, which are also de-
scribed below.

Mono: 50K tweets were sampled for Spanish
and English from the entire collection of monolin-
gual tweets. The Spanish tweets were translated
to English and vice versa, which gives us a total of
100K monolingual tweets in each language. We
shall refer to this dataset as Mono. The sampling
strategy and reason for generating translations will
become apparent in Sec. 3.3.

rCM: We use two real CM datasets in our ex-
periment. The 283K real CM tweets provided by
Rijhwani et al. (2017) were randomly divided into
training, validation and test sets of nearly equal
sizes. Note that for most of our experiments, we
will use a very small subset of the training set con-
sisting of 5000 tweets as train data, because the
fundamental assumption of this work is that very
little amount of CM data is available for most lan-
guage pairs (which is in fact true for most pairs
beyond some very popularly mixed languages like
English-Spanish). Nevertheless, the much larger
training set is required for studying the effect of
varying the amount of real CM data on our mod-
els. We shall refer to this training dataset as
rCM. The test set with 83K tweets will be re-
ferred to as Test-17. We also use another dataset of

Figure 3: Average number of gCM sentences (y-
axis) vs mean input sentence length (x-axis)

English-Spanish CM tweets for testing our mod-
els which was released during the language la-
beling shared task at the Workshop on “Compu-
tational Approaches to Code-switching, EMNLP
2014” (Solorio et al., 2014). We mixed the train-
ing, validation and test datasets released during
this shared task to construct a set of 13K tweets,
which we shall refer to as Test-14. The two test
datasets are tweets that were collected three years
apart, and therefore, will help us estimate the ro-
bustness of the language models. As shown in Ta-
ble 1, these datasets are quite different in terms
of CMI and average number of SP per tweet. For
computing the CMI and SP, we used a English-
Spanish LID to language tag the words. In fact,
9500 tweets in the Test-14 dataset are monolin-
gual, but we chose to retain them because it re-
flects the real distribution of CM data. Further,
Test-14 also has manually annotated language la-
bels, which will be helpful while conducting an
in-depth analysis of the models.

3.3 Synthetic Code-Mixed Data

As described in the previous section, we use par-
allel monolingual sentences to generate grammat-
ically valid code mixed sentences. The entire pro-
cess involves the following four steps.

Step 1: We created the parallel corpus by gen-
erating translations for all the monolingual En-
glish and Spanish tweets (4.5M each) using the
Bing Translator API.2 We have found, that the
translation quality varies widely across different
sentences. Thus, we rank the translated sen-
tences using Pseudo Fuzzy-match Score (PFS)

2https://www.microsoft.com/en-
us/translator/translatorapi.aspx
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(He et al., 2010). First, the forward translation
engine (eg. English-to-Spanish) translates mono-
lingual source sentence s into target t. Then the
reverse translation system (eg. Spanish-English)
translates target t into pseudo source s′. Equa-
tion 2 computes the PFS between s and s′.

PFS =
EditDistance(s, s′)

max(|s|, |s′|) (2)

After manual inspection, we decided to select
translation pairs whose PFS ≤ 0.7. The edit dis-
tance is based on Wagner and Fischer (1974).

Step 2: We used the fast align toolkit3

(Dyer et al., 2013), to generate the word align-
ments from these parallel sentences.

Step 3: The constituency parses for all the
English tweets were obtained using the Stanford
PCFG parser (Klein and Manning, 2003).

Step 4: Using the parallel sentences, alignments
and parse trees, we apply the Equivalent constraint
theory (Sec 2.2) to generate all syntactically valid
CM sentences while allowing for lexical substitu-
tion.

We randomly selected 50K monolingual Span-
ish and English tweets whose PFS ≤ 0.7. This
gave us 200K monolingual tweets in all (Mono
dataset) and the total amount of generated CM
sentences from these 100K translation pairs was
31M, which we shall refer to as gCM. Note that
even though we consider the Mono and gCM
as two separate sets, in reality the EC model
also generates the monolingual sentences; further,
existence of gCM presumes existence of Mono.
Hence, we also use Mono as part of all training
experiments which use gCM.

We would also like to point out that the choice
of experimenting with a much smaller set of
tweets, only 50K per language, was made because
the number of generated tweets even from this
small set of monolingual tweet pairs is almost pro-
hibitively large to allow experimentation with sev-
eral models and their respective configurations.

4 Approach

Language modeling is a very widely researched
topic (Rosenfeld, 2000; Bengio et al., 2003; Sun-
dermeyer et al., 2015). In recent times, deep learn-
ing has been successfully employed to build ef-
ficient LMs (Mikolov et al., 2010; Sundermeyer
et al., 2012; Arisoy et al., 2012; Che et al., 2017).

3https://github.com/clab/fast align

Baheti et al. (2017) recently showed that there is
significant effect of the training curriculum, that is
the order in which data is presented to an RNN-
based LM, on the perplexity of the learnt English-
Spanish CM language model on tweets. Along
similar lines, in this study we focus our experi-
ments on training curriculum, especially regarding
the use of gCM data during training, which is the
primary contribution of this paper.

We do not attempt to innovate in terms of the
architecture or computational structure of the LM,
and use a standard LSTM-based RNN LM (Sun-
dermeyer et al., 2012) for all our experiments. In-
deed, there are enough reasons to believe that CM
language is not fundamentally different from non-
CM language, and therefore, should not require an
altogether different LM architecture. Rather, the
difference arises in terms of added complexity due
to the presence of lexical items and syntactic struc-
tures from two linguistic systems that blows up the
space of valid grammatical and lexical configura-
tions, which makes it essential to train the models
on large volumes of data.

4.1 Training Curricula

Baheti et al. (2017) showed that rather than ran-
domly mixing the monolingual and CM data dur-
ing training, the best performance is achieved
when the LM is first trained with a mixture of
monolingual texts from both languages in nearly
equal proportions, and ending with CM data. Mo-
tivated by this finding, we define the following ba-
sic training curricula (“X | Y” indicates training
the model first with data X and then data Y):

(1) rCM, (2) Mono, (3) Mono | rCM,
(4a) Mono | gCM, (4b) gCM |Mono,
(5a) Mono | gCM | rCM,
(5b) gCM |Mono | rCM
Curricula 1-3 are baselines, where gCM data is

not used. Note that curriculum 3 is the best case
according to Baheti et al. (2017). Curricula 4a and
4b help us examine how far generated data can
substitute real data. Finally, curricula 5a and 5b
use all the data, and we would expect them to per-
form the best.

Note that we do not experiment with other po-
tential combinations (e.g., rCM | gCM |Mono) be-
cause it is known (and we also see this in our ex-
periments) that adding rCM data at the end always
leads to better models.
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Figure 4: Scatter plot of fractional increase in
word frequency in gCM (y-axis) vs original fre-
quency (x-axis).

4.2 Sampling from gCM

As we have seen in Sec 3.3 (Fig. 3), in the EC
model, a pair of monolingual parallel tweets gives
rise to a large number (typically exponential in the
length of the tweet) of CM tweets. On the other
hand, in reality, only a few of those tweets would
be observed. Further, if all the generated sentences
are used to train an LM, it is not only computation-
ally expensive, it also leads to undesirable results
because the statistical properties of the distribution
of the gCM corpus is very different from real data.
We see this in our experiments (not reported in
this paper for paucity of space), and also in Fig 4,
where we plot the ratio of the frequencies of the
words in gCM and Mono corpora (y-axis) against
their original frequencies in Mono (x-axis). We
can clearly see that the frequencies of the words
are scaled up non-uniformly, the ratios varying be-
tween 1 and 500,000 for low frequency words.

In order to reduce this skew, instead of select-
ing the entire gCM data, we propose three sam-
pling techniques for creating the training data from
gCM:

Random: For each monolingual pair of parallel
tweets, we randomly pick a fixed number, k, of
CM tweets. We shall refer to the resultant training
corpus as χ-gCM.

CMI-based: For each monolingual pair of par-
allel tweets, we randomly pick k CM tweets and
bucket them using CMI (in 0.1 intervals). Thus,
in this case we can define two different curric-
ula, where we present the data in increasing or
decreasing order of CMI during training, which
will be represented by the notations ↑-gCM and
↓-gCM respectively.

SPF-based: For each monolingual pair of par-
allel tweets, we randomly pick k CM tweets such
that the SPF distribution (section 3.1) of these
tweets is similar to that of rCM data (as estimated
from the validation set). This strategy will be re-
ferred to as ρ-gCM.

Thus, depending on the gCM sampling strategy
used, curricula 4a-b and 5a-b can have three differ-
ent versions each. Note that since CMI for Mono
is 0, ↑-gCM is not meaningful for 4b and 5b and
similarly, ↓-gCM not for 4a and 5a.

5 Experiments and Results

For all our experiments, we use a 2 layered RNN
with LSTM units and hidden layer dimension of
100. While training, we use sampled softmax with
5000 samples instead of a full softmax to speed
up the training process. The sampling is based on
the word frequency in the training corpus. We use
momentum SGD with a learning rate of 0.002. We
have used the CNTK toolkit for building our mod-
els.4 We use a fixed k=5 (from each monolingual
pair) for sampling the gCM data. We observed the
performance on ↑-gCM to be the best when trained
till CMI 0.4 and similarly on ↓-gCM when trained
from 1.0 to 0.6.

5.1 Results

Table 2 presents the perplexities on validation,
Test-14 and Test-17 datasets for all the models
(Col. 3, 4 and 5). We observe the following
trends: (1) Model 5(b)-ρ has the least perplex-
ity value (significantly different from the second
lowest value in the column, p < 0.00001 for a
paired t-test). (2) There is 55 and 90 point re-
duction in perplexity on Test-17 and Test-14 sets
respectively from the baseline experiment 3, that
does not use gCM data. Thus, addition of gCM
data is helpful. (3) Only the 4a and 4b models are
worse than 3, while 5a and 5b models are better.
Hence, rCM is indispensable, even though gCM
helps. (4) SPF based sampling performs signifi-
cantly better (again p < 0.00001) than other sam-
pling techniques.

To put these numbers in perspective, we also
trained our model on 50k monolingual English
data, which gave a PPL of 264. This shows that
the high PPL values our models obtain are due
to the inherent complexity of modeling CM lan-
guage. This is further substantiated by the PPL

4https://www.microsoft.com/en-us/cognitive-toolkit/
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ID Training curriculum Overall PPL Avg. SP PPL
Valid Test-17 Test-14 Valid Test-17 Test-14

1 rCM 1995 2018 1822 5598 5670 8864
2 Mono 1588 1607 892 23378 23790 26901
3 Mono | rCM 1029 1041 861 4734 4824 7913

4(a)-χ Mono | χ-gCM 1749 1771 1119 5752 5869 6065
4(a)-↑ Mono | ↑-gCM 1852 1872 1208 9074 9167 8803
4(a)-ρ Mono | ρ-gCM 1599 1618 1116 6534 6618 7293
4(b)-χ χ-gCM |Mono 1659 1680 903 20634 21028 20300
4(b)-↓ ↓-gCM |Mono 1900 1917 973 28422 28722 25006
4(b)-ρ ρ-gCM |Mono 1622 1641 871 26191 26710 22557
5(a)-χ Mono | χ-gCM | rCM 1026 1038 836 4317 4386 5958
5(a)-↑ Mono | ↑-gCM | rCM 1045 1058 961 4983 5078 6861
5(a)-ρ Mono | ρ-gCM | rCM 999 1011 830 4736 4829 6807
5(b)-χ χ-gCM |Mono | rCM 1006 1019 790 4878 4987 7018
5(b)-↓ ↓-gCM |Mono | rCM 1012 1025 800 5396 5489 7476
5(b)-ρ ρ-gCM |Mono | rCM 976 986 772 4810 4912 6547

Table 2: Perplexity of the LM Models on all tweets and only on SP (right block).

RL 3 5(a)-χ 5(a)-ρ 5(a)-↑ 5(b)-↓ 5(b)-χ 5(b)-ρ
1 13222 12815 13717 14017 13761 13494 13077
2 2201 2120 2064 2078 2155 2256 2108
3 970 926 902 896 914 966 911
4 643 594 567 575 573 608 571
5 574 540 509 517 502 553 503
6 593 545 529 543 520 566 529
≥ 7 507 465 444 460 431 479 440

Table 3: Perplexities of minor language runs for
various run lengths on Test-17.

# rCM 0.5K 1K 2.5K 5K 10K 50K
3 1238 1186 1120 1041 991 812

5(b)-ρ 1181 1141 1068 986 951 808

Table 4: Perplexity variation on Test-17 with
changes in amount of rCM train data. Similar
trends for other models (left for paucity of space)

values computed only at the code-switch points,
which are shown in Table 2, col. 6, 7 and 8. Even
for the best model, which in this case is 5(a)-χ,
PPL is four times higher than the overall PPL on
Test-17.

Run length: The complexity of modeling CM
is also apparent from Table 3, which reports the
perplexity value of the 3 and 5 models for mono-
lingual fragments of various run lengths. We de-
fine run length as the number of words in a max-
imal monolingual fragment or run within a tweet.
In our analysis, we only consider runs of the em-
bedded language, defined as the language that has
fewer words. As one would expect, model 5(a)-
χ performs the best for run length 1 (recall that it
has lowest PPL at SP), but as the run length in-
creases, the models sampling the gCM data us-

Sample size (k) 1 2 5 10
# tweets 93K 184K 497K 952K
5(b)-ρ 1081 1053 986 1019

Table 5: Variation of PPL on Test-17 with gCM
sample size k. Similar trends for other models.

ing CMI (5(a)-↑ and 5(b)-↓) are better than the
randomly sampled (χ) models. Run length 1 are
typically cases of word borrowing and lexical sub-
stitution; higher run length segments are typically
an indication of CM. Clearly, modeling the shorter
runs of the embedded language seems to be one of
the most challenging aspect of CM LM.

Significance of Linguistic Constraints: To
understand the importance of the linguistic con-
straints imposed by EC on generation of gCM, we
conducted an experiment where a synthetic CM
corpus was created by combining random contigu-
ous segments from the monolingual tweets such
that the generated CM tweets’ SPF distribution
matched that of rCM. When we replaced gCM by
this corpus in 5(b)-ρ, the PPL on test-17 was 1060,
which is worse than the baseline PPL.

Effect of rCM size: Table 4 shows the PPL
values for models 3 and 5(b)-ρ when trained with
different amounts of rCM data, keeping other pa-
rameters constant. As expected, the PPL drops for
both models as rCM size increases. However, even
with high rCM data, gCM does help in improv-
ing the LM until we have 50k rCM data (compa-
rable to monolingual, and an unrealistic scenario
in practice), where the returns of adding gCM
starts diminishing. We also observe that in gen-
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eral, model 3 needs twice the amount of rCM data
to perform as well as model 5(b)-ρ.

Effect of gCM size: In our sampling methods
on gCM data, we fixed our sample size, k as 5 for
consistency and feasibility of experiments. To un-
derstand the effect of k (and hence the size of the
gCM data), we experimented with k = 1, 2, and 10
keeping everything else fixed. Table 5 reports the
results for the models 3 and 5(b)-ρ. We observe
that unlike rCM data, increasing gCM data or k
does not necessarily decrease PPL after a point.
We speculate that there is trade-off between k and
the amount of rCM data, and also probably be-
tween these and the amount of monolingual data.
We plan to explore this further in future.

6 Related Work

We briefly describe the various types of ap-
proaches used for building LM for CM text.

Bilingual models: These models combine data
from monolingual data sources in both languages
(Weng et al., 1997). Factored models: Geb-
hardt (2011) uses Factored Language Models for
rescoring n-best lists during ASR decoding. The
factors used include POS tags, CS point prob-
ability and LID. In Adel et al.(2014b; 2014a;
2013) RNNLMs are combined with n-gram based
models, or converted to backoff models, giv-
ing improvements in perplexity and mixed error
rate. Models that incorporate linguistic con-
straints: Li and Fung (2013) use inversion con-
straints to predict CS points and integrates this
prediction into the ASR decoding process. Li
and Fung (2014) integrates Functional Head con-
straints (FHC) for code-switching into the Lan-
guage Model for Mandarin-English speech recog-
nition. This work uses parsing techniques to re-
strict the lattice paths during decoding of speech
to those permissible under the FHC theory. Our
method instead imposes grammatical constraints
(EC theory) to generate synthetic data, which can
potentially be used to augment real CM data. This
allows flexibility to deploy any sophisticated LM
architecture and the synthetic data generated can
also be used for CM tasks other than speech recog-
nition. Training curricula for CM: Baheti et al.
(2017) show that a training curriculum where an
RNN-LM is trained first with interleaved monolin-
gual data in both languages followed by CM data
gives the best results for English-Spanish LM. The
perplexity of this model is 4544, which then re-

duces to 298 after interpolation with a statistical
n-gram LM. However, these numbers are not di-
rectly comparable to our work because the datasets
are different. Our work is an extension of this ap-
proach showing that adding synthetic data further
improves results.

We do not know of any work that uses syntheti-
cally generated CM data for training LMs.

7 Conclusion

In this paper, we presented a computational
method for generating synthetic CM data based
on the EC theory of code-mixing, and showed
that sampling text from the synthetic corpus
(according to the distribution of SPF found in
real CM data) helps in reduction of PPL of the
RNN-LM by an amount which is equivalently
achieved by doubling the amount of real CM data.
We also showed that randomly generated CM
data doesn’t improve the LM. Thus, the linguistic
theory based generation is of crucial significance.
There is no unanimous theory in linguistics on
syntactic structure of CM language. Hence, as a
future work, we would like to compare the useful-
ness of different linguistic theories and different
constraints within each theory in our proposed
LM framework. This can also provide an indirect
validation of the theories. Further, we would like
to study sampling techniques motivated by natural
distributions of linguistic structures.
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Abstract

We investigate a lattice-structured LSTM
model for Chinese NER, which encodes
a sequence of input characters as well as
all potential words that match a lexicon.
Compared with character-based methods,
our model explicitly leverages word and
word sequence information. Compared
with word-based methods, lattice LSTM
does not suffer from segmentation errors.
Gated recurrent cells allow our model to
choose the most relevant characters and
words from a sentence for better NER re-
sults. Experiments on various datasets
show that lattice LSTM outperforms both
word-based and character-based LSTM
baselines, achieving the best results.

1 Introduction

As a fundamental task in information extraction,
named entity recognition (NER) has received con-
stant research attention over the recent years. The
task has traditionally been solved as a sequence
labeling problem, where entity boundary and cate-
gory labels are jointly predicted. The current state-
of-the-art for English NER has been achieved by
using LSTM-CRF models (Lample et al., 2016;
Ma and Hovy, 2016; Chiu and Nichols, 2016; Liu
et al., 2018) with character information being in-
tegrated into word representations.

Chinese NER is correlated with word segmen-
tation. In particular, named entity boundaries are
also word boundaries. One intuitive way of per-
forming Chinese NER is to perform word segmen-
tation first, before applying word sequence label-
ing. The segmentation → NER pipeline, how-
ever, can suffer the potential issue of error propa-
gation, since NEs are an important source of OOV

∗ Equal contribution.
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Figure 1: Word character lattice.

in segmentation, and incorrectly segmented en-
tity boundaries lead to NER errors. This prob-
lem can be severe in the open domain since cross-
domain word segmentation remains an unsolved
problem (Liu and Zhang, 2012; Jiang et al., 2013;
Liu et al., 2014; Qiu and Zhang, 2015; Chen et al.,
2017; Huang et al., 2017). It has been shown that
character-based methods outperform word-based
methods for Chinese NER (He and Wang, 2008;
Liu et al., 2010; Li et al., 2014).

One drawback of character-based NER, how-
ever, is that explicit word and word sequence in-
formation is not fully exploited, which can be
potentially useful. To address this issue, we in-
tegrate latent word information into character-
based LSTM-CRF by representing lexicon words
from the sentence using a lattice structure LSTM.
As shown in Figure 1, we construct a word-
character lattice by matching a sentence with a
large automatically-obtained lexicon. As a re-
sult, word sequences such as “长江大桥 (Yangtze
River Bridge)”, “长江 (Yangtze River)” and “大
桥 (Bridge)” can be used to disambiguate poten-
tial relevant named entities in a context, such as
the person name “江大桥 (Daqiao Jiang)”.

Since there are an exponential number of word-
character paths in a lattice, we leverage a lattice
LSTM structure for automatically controlling in-
formation flow from the beginning of the sentence
to the end. As shown in Figure 2, gated cells
are used to dynamically route information from
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different paths to each character. Trained over
NER data, the lattice LSTM can learn to find more
useful words from context automatically for bet-
ter NER performance. Compared with character-
based and word-based NER methods, our model
has the advantage of leveraging explicit word in-
formation over character sequence labeling with-
out suffering from segmentation error.

Results show that our model significantly out-
performs both character sequence labeling models
and word sequence labeling models using LSTM-
CRF, giving the best results over a variety of
Chinese NER datasets across different domains.
Our code and data are released at https://
github.com/jiesutd/LatticeLSTM.

2 Related Work

Our work is in line with existing methods us-
ing neural network for NER. Hammerton (2003)
attempted to solve the problem using a uni-
directional LSTM, which was among the first neu-
ral models for NER. Collobert et al. (2011) used
a CNN-CRF structure, obtaining competitive re-
sults to the best statistical models. dos Santos
et al. (2015) used character CNN to augment a
CNN-CRF model. Most recent work leverages
an LSTM-CRF architecture. Huang et al. (2015)
uses hand-crafted spelling features; Ma and Hovy
(2016) and Chiu and Nichols (2016) use a char-
acter CNN to represent spelling characteristics;
Lample et al. (2016) use a character LSTM in-
stead. Our baseline word-based system takes a
similar structure to this line of work.

Character sequence labeling has been the dom-
inant approach for Chinese NER (Chen et al.,
2006b; Lu et al., 2016; Dong et al., 2016). There
have been explicit discussions comparing statisti-
cal word-based and character-based methods for
the task, showing that the latter is empirically a
superior choice (He and Wang, 2008; Liu et al.,
2010; Li et al., 2014). We find that with proper

representation settings, the same conclusion holds
for neural NER. On the other hand, lattice LSTM
is a better choice compared with both word LSTM
and character LSTM.

How to better leverage word information for
Chinese NER has received continued research at-
tention (Gao et al., 2005), where segmentation in-
formation has been used as soft features for NER
(Zhao and Kit, 2008; Peng and Dredze, 2015; He
and Sun, 2017a), and joint segmentation and NER
has been investigated using dual decomposition
(Xu et al., 2014), multi-task learning (Peng and
Dredze, 2016), etc. Our work is in line, focusing
on neural representation learning. While the above
methods can be affected by segmented training
data and segmentation errors, our method does not
require a word segmentor. The model is conceptu-
ally simpler by not considering multi-task settings.

External sources of information has been lever-
aged for NER. In particular, lexicon features have
been widely used (Collobert et al., 2011; Passos
et al., 2014; Huang et al., 2015; Luo et al., 2015).
Rei (2017) uses a word-level language modeling
objective to augment NER training, performing
multi-task learning over large raw text. Peters
et al. (2017) pretrain a character language model to
enhance word representations. Yang et al. (2017b)
exploit cross-domain and cross-lingual knowledge
via multi-task learning. We leverage external
data by pretraining word embedding lexicon over
large automatically-segmented texts, while semi-
supervised techniques such as language modeling
are orthogonal to and can also be used for our lat-
tice LSTM model.

Lattice structured RNNs can be viewed as a nat-
ural extension of tree-structured RNNs (Tai et al.,
2015) to DAGs. They have been used to model
motion dynamics (Sun et al., 2017), dependency-
discourse DAGs (Peng et al., 2017), as well as
speech tokenization lattice (Sperber et al., 2017)
and multi-granularity segmentation outputs (Su
et al., 2017) for NMT encoders. Compared with
existing work, our lattice LSTM is different in
both motivation and structure. For example, be-
ing designed for character-centric lattice-LSTM-
CRF sequence labeling, it has recurrent cells but
not hidden vectors for words. To our knowledge,
we are the first to design a novel lattice LSTM
representation for mixed characters and lexicon
words, and the first to use a word-character lattice
for segmentation-free Chinese NER.
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3 Model

We follow the best English NER model (Huang
et al., 2015; Ma and Hovy, 2016; Lample et al.,
2016), using LSTM-CRF as the main network
structure. Formally, denote an input sentence as
s = c1, c2, . . . , cm, where cj denotes the jth char-
acter. s can further be seen as a word sequence
s = w1, w2, . . . , wn, where wi denotes the ith
word in the sentence, obtained using a Chinese
segmentor. We use t(i, k) to denote the index j
for the kth character in the ith word in the sen-
tence. Take the sentence in Figure 1 for exam-
ple. If the segmentation is “南京市 长江大桥”,
and indices are from 1, then t(2, 1) = 4 (长) and
t(1, 3) = 3 (市). We use the BIOES tagging
scheme (Ratinov and Roth, 2009) for both word-
based and character-based NER tagging.

3.1 Character-Based Model
The character-based model is shown in Figure
3(a). It uses an LSTM-CRF model on the char-
acter sequence c1, c2, . . . , cm. Each character cj is
represented using

xcj = ec(cj) (1)

ec denotes a character embedding lookup table.
A bidirectional LSTM (same structurally as

Eq. 11) is applied to x1, x2, . . . , xm to obtain−→
h c

1,
−→
h c

2, . . . ,
−→
h c
m and

←−
h c

1,
←−
h c

2, . . . ,
←−
h c
m in the

left-to-right and right-to-left directions, respec-
tively, with two distinct sets of parameters. The
hidden vector representation of each character is:

hcj = [
−→
h c
j ;
←−
h c
j ] (2)

A standard CRF model (Eq. 17) is used on
hc1,hc2, . . . ,hcm for sequence labelling.
• Char + bichar. Character bigrams have been
shown useful for representing characters in word
segmentation (Chen et al., 2015; Yang et al.,
2017a). We augment the character-based model
with bigram information by concatenating bigram
embeddings with character embeddings:

xcj = [ec(cj); eb(cj , cj+1)], (3)

where eb denotes a charater bigram lookup table.
• Char + softword. It has been shown that using
segmentation as soft features for character-based
NER models can lead to improved performance
(Zhao and Kit, 2008; Peng and Dredze, 2016).
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Figure 3: Models.1

We augment the character representation with seg-
mentation information by concatenating segmen-
tation label embeddings to character embeddings:

xcj = [ec(cj); es(seg(cj))], (4)

where es represents a segmentation label em-
bedding lookup table. seg(cj) denotes the segmen-
tation label on the character cj given by a word
segmentor. We use the BMES scheme for repre-

1To keep the figure concise, we (i) do not show gate cells,
which uses ht−1 for calculating ct; (ii) only show one direc-
tion.
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senting segmentation (Xue, 2003).

hwi = [
−→
hwi ;
←−
hwi ] (5)

Similar to the character-based case, a standard
CRF model (Eq. 17) is used on hw1 ,hw2 , . . . ,hwm
for sequence labelling.

3.2 Word-Based Model
The word-based model is shown in Figure 3(b). It
takes the word embedding ew(wi) for representa-
tion each word wi:

xwi = ew(wi), (6)

where ew denotes a word embedding lookup
table. A bi-directioanl LSTM (Eq. 11) is
used to obtain a left-to-right sequence of hid-
den states

−→
hw1 ,
−→
hw2 , . . . ,

−→
hwn and a right-to-left se-

quence of hidden states
←−
hw1 ,
←−
hw2 , . . . ,

←−
hwn for the

words w1, w2, . . . , wn, respectively. Finally, for
each word wi,

−→
hwi and

←−
hwi are concatenated as its

representation:
Integrating character representations
Both character CNN (Ma and Hovy, 2016) and

LSTM (Lample et al., 2016) have been used for
representing the character sequence within a word.
We experiment with both for Chinese NER. De-
noting the representation of characters within wi
as xci , a new word representation is obtained by
concatenation of ew(wi) and xci :

xwi = [ew(wi); xci ] (7)

• Word + char LSTM. Denoting the em-
bedding of each input character as ec(cj),
we use a bi-directional LSTM (Eq. 11)
to learn hidden states

−→
h c
t(i,1), . . . ,

−→
h c
t(i,len(i))

and
←−
h c
t(i,1), . . . ,

←−
h c
t(i,len(i)) for the characters

ct(i,1), . . . , ct(i,len(i)) of wi, where len(i) denotes
the number of characters in wi. The final charac-
ter representation for wi is:

xci = [
−→
h c
t(i,len(i));

←−
h c
t(i,1)] (8)

• Word + char LSTM′. We investigate a varia-
tion of word + char LSTM model that uses a single
LSTM to obtain

−→
h c
j and

←−
h c
j for each cj . It is sim-

ilar with the structure of Liu et al. (2018) but not
uses the highway layer. The same LSTM structure
as defined in Eq. 11 is used, and the same method
as Eq. 8 is used to integrate character hidden states
into word representations.

• Word + char CNN. A standard CNN (LeCun
et al., 1989) structure is used on the character se-
quence of each word to obtain its character repre-
sentation xci . Denoting the embedding of character
cj as ec(cj), the vector xci is given by:

xci = max
t(i,1)≤j≤t(i,len(i))

(W>CNN




ec(cj− ke−1
2

)

. . .
ec(cj+ ke−1

2
)


+ bCNN),

(9)
where WCNN and bCNN are parameters, ke = 3 is
the kernal size and max denotes max pooling.

3.3 Lattice Model
The overall structure of the word-character lattice
model is shown in Figure 2, which can be viewed
as an extension of the character-based model, in-
tegrating word-based cells and additional gates for
controlling information flow.

Shown in Figure 3(c), the input to the model is
a character sequence c1, c2, . . . , cm, together with
all character subsequences that match words in a
lexicon D. As indicated in Section 2, we use au-
tomatically segmented large raw text for buinding
D. Using wdb,e to denote such a subsequence that
begins with character index b and ends with char-
acter index e, the segment wd1,2 in Figure 1 is “南
京 (Nanjing)” and wd7,8 is “大桥 (Bridge)”.

Four types of vectors are involved in the model,
namely input vectors, output hidden vectors, cell
vectors and gate vectors. As basic components,
a character input vector is used to represent each
chacracter cj as in the character-based model:

xcj = ec(cj) (10)

The basic recurrent structure of the model is
constructed using a character cell vector ccj and a
hidden vector hcj on each cj , where ccj serves to
record recurrent information flow from the begin-
ning of the sentence to cj and hcj is used for CRF
sequence labelling using Eq. 17.

The basic recurrent LSTM functions are:




icj
ocj
fcj
c̃cj


 =




σ
σ
σ

tanh



(

Wc>
[

xcj
hcj−1

]
+ bc

)

ccj = fcj � ccj−1 + icj � c̃cj
hcj = ocj � tanh(ccj)

(11)

where icj , fcj and ocj denote a set of input, forget and
output gates, respectively. Wc> and bc are model
parameters. σ() represents the sigmoid function.
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Different from the character-based model, how-
ever, the computation of ccj now considers lexicon
subsequences wdb,e in the sentence. In particular,
each subsequence wdb,e is represented using

xwb,e = ew(wdb,e), (12)

where ew denotes the same word embedding
lookup table as in Section 3.2.

In addition, a word cell cwb,e is used to represent
the recurrent state of xwb,e from the beginning of the
sentence. The value of cwb,e is calculated by:




iwb,e
fwb,e
c̃wb,e


 =




σ
σ

tanh



(

Ww>
[

xwb,e
hcb

]
+ bw

)

cwb,e = fwb,e � ccb + iwb,e � c̃wb,e

(13)

where iwb,e and fwb,e are a set of input and forget
gates. There is no output gate for word cells since
labeling is performed only at the character level.

With cwb,e, there are more recurrent paths for in-
formation flow into each ccj . For example, in Fig-
ure 2, input sources for cc7 include xc7 (桥 Bridge),
cw6,7 (大桥 Bridge) and cw4,7 (长江大桥 Yangtze
River Bridge).2 We link all cwb,e with b ∈
{b′|wdb′,e ∈ D} to the cell cce. We use an addi-
tional gate icb,e for each subsequence cell cwb,e for
controlling its contribution into ccb,e:

icb,e = σ
(
Wl>

[
xce
cwb,e

]
+ bl

)
(14)

The calculation of cell values ccj thus becomes

ccj =
∑

b∈{b′|wd
b′,j∈D}

αcb,j � cwb,j +αcj � c̃cj (15)

In Eq. 15, the gate values icb,j and icj are nor-
malised to αcb,j and αcj by setting the sum to 1.

αcb,j =
exp(icb,j)

exp(icj) +
∑

b′∈{b′′|wd
b′′,j∈D}

exp(icb′,j)

αcj =
exp(icj)

exp(icj) +
∑

b′∈{b′′|wd
b′′,j∈D}

exp(icb′,j)

(16)

The final hidden vectors hcj are still computed
as described by Eq. 11. During NER train-
ing, loss values back-propagate to the parameters

2We experimented with alternative configurations on in-
dexing word and character path links, finding that this con-
figuration gives the best results in preliminary experiments.
Single-character words are excluded; the final performance
drops slightly after integrating single-character words.

Dataset Type Train Dev Test

OntoNotes
Sentence 15.7k 4.3k 4.3k
Char 491.9k 200.5k 208.1k

MSRA
Sentence 46.4k – 4.4k
Char 2169.9k – 172.6

Weibo
Sentence 1.4k 0.27k 0.27k
Char 73.8k 14.5k 14.8k

resume
Sentence 3.8k 0.46k 0.48k
Char 124.1k 13.9k 15.1k

Table 1: Statistics of datasets.

Wc,bc,Ww,bw,Wl and bl allowing the model to
dynamically focus on more relevant words during
NER labelling.

3.4 Decoding and Training
A standard CRF layer is used on top of
h1,h2, . . . ,hτ , where τ is n for character-based
and lattice-based models and m for word-based
models. The probability of a label sequence y =
l1, l2, . . . , lτ is

P (y|s) =
exp(

∑
i(Wli

CRFhi + b
(li−1,li)
CRF ))

∑
y′ exp(

∑
i(Wl′i

CRFhi + b
(l′i−1,l

′
i)

CRF ))
(17)

Here y′ represents an arbitary label sequence, and
Wli

CRF is a model parameter specific to li, and
b
(li−1,li)
CRF is a bias specific to li−1 and li.

We use the first-order Viterbi algorithm to
find the highest scored label sequence over a
word-based or character-based input sequence.
Given a set of manually labeled training data
{(si, yi)}|Ni=1, sentence-level log-likelihood loss
with L2 regularization is used to train the model:

L =
∑N

i=1 log(P (yi|si)) + λ
2 ||Θ||2, (18)

where λ is the L2 regularization parameter and Θ
represents the parameter set.

4 Experiments

We carry out an extensive set of experiments to
investigate the effectiveness of word-character lat-
tice LSTMs across different domains. In addition,
we aim to empirically compare word-based and
character-based neural Chinese NER under differ-
ent settings. Standard precision (P), recall (R) and
F1-score (F1) are used as evaluation metrics.

4.1 Experimental Settings
Data. Four datasets are used in this paper, which
include OntoNotes 4 (Weischedel et al., 2011),
MSRA (Levow, 2006) Weibo NER (Peng and
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Statistics Train Dev Test
Country 260 33 28
Educational Institution 858 106 112
Location 47 2 6
Personal Name 952 110 112
Organization 4611 523 553
Profession 287 18 33
Ethnicity Background 115 15 14
Job Title 6308 690 772
Total Entity 13438 1497 1630

Table 2: Detailed statistics of resume NER.

Dredze, 2015; He and Sun, 2017a) and a Chi-
nese resume dataset that we annotate. Statistics
of the datasets are shown in Table 1. We take the
same data split as Che et al. (2013) on OntoNotes.
The development set of OntoNotes is used for
reporting development experiments. While the
OntoNotes and MSRA datasets are in the news do-
main, the Weibo NER dataset is drawn from the
social media website Sina Weibo.3

For more variety in test domains, we collected a
resume dataset from Sina Finance4, which consists
of resumes of senior executives from listed compa-
nies in the Chinese stock market. We randomly se-
lected 1027 resume summaries and manually an-
notated 8 types of named entities. Statistics of the
dataset is shown in Table 2. The inter-annotator
agreement is 97.1%. We release this dataset as a
resource for further research.

Segmentation. For the OntoNotes and MSRA
datasets, gold-standard segmentation is available
in the training sections. For OntoNotes, gold seg-
mentation is also available for the development
and test sections. On the other hand, no seg-
mentation is available for the MSRA test sections,
nor the Weibo / resume datasets. As a result,
OntoNotes is leveraged for studying oracle situ-
ations where gold segmentation is given. We use
the neural word segmentor of Yang et al. (2017a)
to automatically segment the development and test
sets for word-based NER. In particular, for the
OntoNotes and MSRA datasets, we train the seg-
mentor using gold segmentation on their respec-
tive training sets. For Weibo and resume, we take
the best model of Yang et al. (2017a) off the shelf5,
which is trained using CTB 6.0 (Xue et al., 2005).

3https://www.weibo.com/
4http://finance.sina.com.cn/stock/

index.shtml
5https://github.com/jiesutd/

RichWordSegmentor

Parameter Value Parameter Value
char emb size 50 bigram emb size 50
lattice emb size 50 LSTM hidden 200
char dropout 0.5 lattice dropout 0.5
LSTM layer 1 regularization λ 1e-8
learning rate lr 0.015 lr decay 0.05

Table 3: Hyper-parameter values.

Word Embeddings. We pretrain word embed-
dings using word2vec (Mikolov et al., 2013) over
automatically segmented Chinese Giga-Word6,
obtaining 704.4k words in a final lexicon. In
particular, the number of single-character, two-
character and three-character words are 5.7k,
291.5k, 278.1k, respectively. The embedding lex-
icon is released alongside our code and models as
a resource for further research. Word embeddings
are fine-tuned during NER training. Character
and character bigram embeddings are pretrained
on Chinese Giga-Word using word2vec and fine-
tuned at model training.

Hyper-parameter settings. Table 3 shows the
values of hyper-parameters for our models, which
as fixed according to previous work in the litera-
ture without grid-search adjustments for each indi-
vidual dataset. In particular, the embedding sizes
are set to 50 and the hidden size of LSTM models
to 200. Dropout (Srivastava et al., 2014) is ap-
plied to both word and character embeddings with
a rate of 0.5. Stochastic gradient descent (SGD) is
used for optimization, with an initial learning rate
of 0.015 and a decay rate of 0.05.

4.2 Development Experiments

We compare various model configurations on the
OntoNotes development set, in order to select the
best settings for word-based and character-based
NER models, and to learn the influence of lattice
word information on character-based models.

Character-based NER. As shown in Table 4,
without using word segmentation, a character-
based LSTM-CRF model gives a development F1-
score of 62.47%. Adding character-bigram and
softword representations as described in Section
3.1 increases the F1-score to 67.63% and 65.71%,
respectively, demonstrating the usefulness of both
sources of information. In addition, a combination
of both gives a 69.64% F1-score, which is the best

6https://catalog.ldc.upenn.edu/
LDC2011T13
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Input Models P R F1

Auto seg

Word baseline 73.20 57.05 64.12
+char LSTM 71.98 65.41 68.54
+char LSTM′ 71.08 65.83 68.35
+char+bichar LSTM 72.63 67.60 70.03
+char CNN 73.06 66.29 69.51
+char+bichar CNN 72.01 65.50 68.60

No seg

Char baseline 67.12 58.42 62.47
+softword 69.30 62.47 65.71
+bichar 71.67 64.02 67.63
+bichar+softword 72.64 66.89 69.64

Lattice 74.64 68.83 71.62

Table 4: Development results.

among various character representations. We thus
choose this model in the remaining experiments.

Word-based NER. Table 4 shows a vari-
ety of different settings for word-based Chinese
NER. With automatic segmentation, a word-based
LSTM CRF baseline gives a 64.12% F1-score,
which is higher compared to the character-based
baseline. This demonstrates that both word in-
formation and character information are useful for
Chinese NER. The two methods of using charac-
ter LSTM to enrich word representations in Sec-
tion 3.2, namely word+char LSTM and word+char
LSTM′, lead to similar improvements.

A CNN representation of character sequences
gives a slightly higher F1-score compared to
LSTM character representations. On the other
hand, further using character bigram informa-
tion leads to increased F1-score over word+char
LSTM, but decreased F1-score over word+char
CNN. A possible reason is that CNN inherently
captures character n-gram information. As a re-
sult, we use word+char+bichar LSTM for word-
based NER in the remaining experiments, which
gives the best development results, and is struc-
turally consistent with the state-of-the-art English
NER models in the literature.

Lattice-based NER. Figure 4 shows the F1-
score of character-based and lattice-based models
against the number of training iterations. We in-
clude models that use concatenated character and
character bigram embeddings, where bigrams can
play a role in disambiguating characters. As can
be seen from the figure, lattice word information
is useful for improving character-based NER, im-
proving the best development result from 62.5% to
71.6%. On the other hand, the bigram-enhanced
lattice model does not lead to further improve-
ments compared with the original lattice model.

5 10 15 20 25 30
iteration

0.50

0.55

0.60

0.65

0.70

F1
-v

al
ue

char_baseline
char_lattice
char+bichar_baseline
char+bichar_lattice

Figure 4: F1 against training iteration number.

Input Models P R F1

Gold seg

Yang et al. (2016) 65.59 71.84 68.57
Yang et al. (2016)*† 72.98 80.15 76.40
Che et al. (2013)* 77.71 72.51 75.02
Wang et al. (2013)* 76.43 72.32 74.32
Word baseline 76.66 63.60 69.52

+char+bichar LSTM 78.62 73.13 75.77

Auto seg
Word baseline 72.84 59.72 65.63

+char+bichar LSTM 73.36 70.12 71.70

No seg
Char baseline 68.79 60.35 64.30

+bichar+softword 74.36 69.43 71.81
Lattice 76.35 71.56 73.88

Table 5: Main results on OntoNotes.

This is likely because words are better sources
of information for character disambiguation com-
pared with bigrams, which are also ambiguous.

As shown in Table 4, the lattice LSTM-CRF
model gives a development F1-score of 71.62%,
which is significantly7 higher compared with both
the word-based and character-based methods, de-
spite that it does not use character bigrams or word
segmentation information. The fact that it signif-
icantly outperforms char+softword shows the ad-
vantage of lattice word information as compared
with segmentor word information.

4.3 Final Results

OntoNotes. The OntoNotes test results are shown
in Table 58. With gold-standard segmentation, our
word-based methods give competitive results to
the state-of-the-art on the dataset (Che et al., 2013;
Wang et al., 2013), which leverage bilingual data.
This demonstrates that LSTM-CRF is a competi-
tive choice for word-based Chinese NER, as it is
for other languages. In addition, the results show

7We use a p-value of less than 0.01 from pairwise t-test to
indicate statistical significance.

8In Table 5, 6 and 7, we use * to denote a model with
external labeled data for semi-supervised learning. † means
that the model also uses discrete features.
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Models P R F1
Chen et al. (2006a) 91.22 81.71 86.20
Zhang et al. (2006)* 92.20 90.18 91.18
Zhou et al. (2013) 91.86 88.75 90.28
Lu et al. (2016) – – 87.94
Dong et al. (2016) 91.28 90.62 90.95
Word baseline 90.57 83.06 86.65

+char+bichar LSTM 91.05 89.53 90.28
Char baseline 90.74 86.96 88.81

+bichar+softword 92.97 90.80 91.87
Lattice 93.57 92.79 93.18

Table 6: Main results on MSRA.

Models NE NM Overall
Peng and Dredze (2015) 51.96 61.05 56.05
Peng and Dredze (2016)* 55.28 62.97 58.99
He and Sun (2017a) 50.60 59.32 54.82
He and Sun (2017b)* 54.50 62.17 58.23
Word baseline 36.02 59.38 47.33

+char+bichar LSTM 43.40 60.30 52.33
Char baseline 46.11 55.29 52.77

+bichar+softword 50.55 60.11 56.75
Lattice 53.04 62.25 58.79

Table 7: Weibo NER results.

that our word-based models can serve as highly
competitive baselines. With automatic segmenta-
tion, the F1-score of word+char+bichar LSTM de-
creases from 75.77% to 71.70%, showing the in-
fluence of segmentation to NER. Consistent with
observations on the development set, adding lat-
tice word information leads to an 88.81% →
93.18% increasement of F1-score over the charac-
ter baseline, as compared with 88.81%→ 91.87%
by adding bichar+softword. The lattice model
gives significantly the best F1-score on automatic
segmentation.

MSRA. Results on the MSRA dataset are
shown in Table 6. For this benchmark, no gold-
standard segmentation is available on the test set.
Our chosen segmentor gives 95.93% accuracy on
5-fold cross-validated training set. The best sta-
tistical models on the dataset leverage rich hand-
crafted features (Chen et al., 2006a; Zhang et al.,
2006; Zhou et al., 2013) and character embedding
features (Lu et al., 2016). Dong et al. (2016) ex-
ploit neural LSTM-CRF with radical features.

Compared with the existing methods, our word-
based and character-based LSTM-CRF models
give competitive accuracies. The lattice model
significantly outperforms both the best character-
based and word-based models (p < 0.01), achiev-
ing the best result on this standard benchmark.

Weibo/resume. Results on the Weibo NER
dataset are shown in Table 7, where NE, NM and

Models P R F1
Word baseline 93.72 93.44 93.58

+char+bichar LSTM 94.07 94.42 94.24
Char baseline 93.66 93.31 93.48

+bichar+softword 94.53 94.29 94.41
Lattice 94.81 94.11 94.46

Table 8: Main results on resume NER.
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Word+char+bichar LSTM
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Char+bichar+softword
Lattice

Figure 5: F1 against sentence length.

Overall denote F1-scores for named entities, nom-
inal entities (excluding named entities) and both,
respectively. Gold-standard segmentation is not
available for this dataset. Existing state-of-the-
art systems include Peng and Dredze (2016) and
He and Sun (2017b), who explore rich embedding
features, cross-domain and semi-supervised data,
some of which are orthogonal to our model9.

Results on the resume NER test data are shown
in Table 8. Consistent with observations on
OntoNotes and MSRA, the lattice model signifi-
cantly outperforms both the word-based mode and
the character-based model for Weibo and resume
(p < 0.01), giving state-of-the-art results.

4.4 Discussion

F1 against sentence length. Figure 5 shows
the F1-scores of the baseline models and lat-
tice LSTM-CRF on the OntoNotes dataset. The
character-based baseline gives relatively stable
F1-scores over different sentence lengths, al-
though the performances are relatively low. The
word-based baseline gives substantially higher
F1-scores over short sentences, but lower F1-
scores over long sentences, which can be be-
cause of lower segmentation accuracies over
longer sentences. Both word+char+bichar and
char+bichar+softword give better performances
compared to their respective baselines, showing

9The results of Peng and Dredze (2015, 2016) are taken
from Peng and Dredze (2017).
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Sentence (truncated)
卸下东莞台协会长职务后
After stepping down as president of Taiwan Association in Dongguan.

Correct Segmentation 卸下 东莞 台 协 会长 职务 后
step down, Dongguan, Taiwan, association, president, role, after

Auto Segmentation 卸下 东莞 台 协会长 职务 后
step down, Dongguan, Taiwan, association president, role, after

Lattice words
卸下 下东 东莞 台协会 协会 会长 长职 职务
step down, incorrect word, Dongguan, Taiwan association,
association, president, permanent job, role

Word+char+bichar LSTM 卸下东莞 GPE 台 GPE协会长职务后

. . . Dongguan GPE Taiwan GPE . . .

Char+bichar+softword 卸下东莞台协会 ORG长职务后

. . . Taiwan Association in Dongguan ORG . . . (ungrammatical)

Lattice 卸下东莞台协 ORG会长职务后

. . . Taiwan Association in Dongguan ORG . . .

Table 9: Example. Red and green represent incor-
rect and correct entities, respectively.

that word and character representations are com-
plementary for NER. The accuracy of lattice also
decreases as the sentence length increases, which
can result from exponentially increasing number
of word combinations in lattice. Compared with
word+char+bichar and char+bichar+softword, the
lattice model shows more robustness to increased
sentence lengths, demonstrating the more effective
use of word information.
F1 against sentence length. Table 9 shows
a case study comparing char+bichar+softword,
word+char+bichar and the lattice model. In the ex-
ample, there is much ambiguity around the named
entity “东莞台协 (Taiwan Association in Dong-
guan)”. Word+char+bichar yields the entities “东
莞 (Dongguan)” and “台 (Taiwan)” given that “东
莞台协 (Taiwan Association in Dongguan)” is not
in the segmentor output. Char+bichar+softword
recognizes “东莞台协会 (Taiwan Association
in Dongguan)”, which is valid on its own, but
leaves the phrase “长职务后” ungrammatical. In
contrast, the lattice model detects the organiza-
tion name correctly, thanks to the lattice words
“东莞 (Dongguan)”, “会长 (President)” and “职
务 (role)”. There are also irrelevant words such as
“台协会 (Taiwan Association)” and “下东 (noisy
word)” in the lexicon, which did not affect NER
results.

Note that both word+char+bichar and lattice use
the same source of word information, namely the
same pretrained word embedding lexicon. How-
ever, word+char+bichar first uses the lexicon in
the segmentor, which imposes hard constrains (i.e.
fixed words) to its subsequence use in NER. In
contrast, lattice LSTM has the freedom of consid-
ering all lexicon words.
Entities in lexicon. Table 10 shows the total num-
ber of entities and their respective match ratios in
the lexicon. The error reductions (ER) of the final

Dataset Split #Entity #Match Ratio (%) ER (%)

OntoNotes
Train 13.4k 9.5k 71.04 –
Test 7.7k 6.0k 78.72 7.34

MSRA
Train 74.7k 54.3k 72.62 –
Test 6.2k 4.6k 73.76 16.11

Weibo (all)
Train 1.9k 1.1k 58.83 –
Test 414 259 62.56 4.72

resume
Train 13.4k 3.8k 28.55 –
Test 1.6k 483 29.63 0.89

Table 10: Entities in lexicon.

lattice model over the best character-based method
(i.e. “+bichar+softword”) are also shown. It can
be seen that error reductions have a correlation be-
tween matched entities in the lexicon. In this re-
spect, our automatic lexicon also played to some
extent the role of a gazetteer (Ratinov and Roth,
2009; Chiu and Nichols, 2016), but not fully since
there is no explicit knowledge in the lexicon which
tokens are entities. The ultimate disambiguation
power still lies in the lattice encoder and super-
vised learning.

The quality of the lexicon may affect the ac-
curacy of our NER model since noise words can
potentially confuse NER. On the other hand, our
lattice model can potentially learn to select more
correct words during NER training. We leave the
investigation of such influence to future work.

5 Conclusion

We empirically investigated a lattice LSTM-CRF
representations for Chinese NER, finding that it
gives consistently superior performance compared
to word-based and character-based LSTM-CRF
across different domains. The lattice method is
fully independent of word segmentation, yet more
effective in using word information thanks to the
freedom of choosing lexicon words in a context
for NER disambiguation.
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Abstract

Neural network based models commonly
regard event detection as a word-wise clas-
sification task, which suffer from the mis-
match problem between words and event
triggers, especially in languages without
natural word delimiters such as Chinese.
In this paper, we propose Nugget Pro-
posal Networks (NPNs), which can solve
the word-trigger mismatch problem by
directly proposing entire trigger nuggets
centered at each character regardless of
word boundaries. Specifically, NPNs per-
form event detection in a character-wise
paradigm, where a hybrid representation
for each character is first learned to capture
both structural and semantic information
from both characters and words. Then
based on learned representations, trigger
nuggets are proposed and categorized by
exploiting character compositional struc-
tures of Chinese event triggers. Experi-
ments on both ACE2005 and TAC KBP
2017 datasets show that NPNs significant-
ly outperform the state-of-the-art methods.

1 Introduction

Automatic event extraction is a fundamental task
of information extraction. Event detection, which
aims to identify event triggers of specific types, is
a key step of event extraction. For example, from
the sentence “Henry was injured, and then passed
away soon”, an event detection system should
detect an “Injure” event triggered by “injured”,
and a “Die” event triggered by “passed away”.

Recently, neural network methods, which trans-
form event detection into a word-wise classifica-
tion paradigm, have achieved significant progress
in event detection (Nguyen and Grishman, 2015;

Die

这家/ 公司/ 并购/ 了/ 多家/ 公司/ 。

Injure

Transfer_OwnershipMerge_Organization

The  injured solider died.

那个/ 受/ 了/ 伤/ 的/ 士兵/ 不治/ 身亡/ 。

The company acquired and merged with a number of companies.

(a)

(b)

Figure 1: Examples of word-trigger mismatch.
Slashes in the figure indicate word boundaries.

Chen et al., 2015b; Ghaeini et al., 2016). For
instance, a model will detect events in sentence
”Henry was injured” by successively classifying
its three words into NIL, NIL and Injure. By
automatically extracting features from raw texts,
these methods rely little on prior knowledge and
achieved promising results.

Unfortunately, word-wise event detection mod-
els suffer from the word-trigger mismatch prob-
lem, because a number of triggers do not ex-
actly match with a word. Specifically, a trigger
can be part of a word or cross multiple words,
which is impossible to detect using word-wise
models. This problem is more severe in lan-
guages without natural word delimiters such as
Chinese. Figure 1 (a) shows several examples
of part-of-word triggers, where two characters in
one word “¿	”(acquire and merge) trigger two
different events: a “Merge Org” event triggered by
“¿”(merge) and a “Transfer Ownership” event
triggered by “	” (acquire). Figure 1 (b) shows
a multi-word trigger, where three words “É”(is),
“
” and “ú”(injured) trigger an Injure event
together. Table 1 shows the statistics of differ-
ent types of word-trigger match on two standard
datasets. We can see that word-trigger mismatch
is crucial for Chinese event detection since nearly
25% of triggers in RichERE and 15% of them in
ACE2005 dataset don’t exactly match with a word.

To resolve the word-trigger mismatch problem,
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Match Type Rich ERE ACE2005
Exact Match 75.52% 85.39%
Part of Word 19.55% 11.67%
Cross words 4.93% 2.94%

Table 1: Percentages of different types of matches
between words and triggers.

this paper proposes Nugget Proposal Networks
(NPNs), which identify triggers by modeling char-
acter compositional structures of trigger nuggets
regardless of word boundaries. Given a sentence,
NPNs regard characters as basic detecting units
and are able to 1) directly propose the entire poten-
tial trigger nugget at each character by exploiting
inner compositional structure of triggers; 2) ef-
fectively categorize proposed triggers by learning
semantic representation from both characters and
words. For example, at character “ú”(injured)
in Figure 1 (b), NPNs are not only capable to
detect it is part of an Injure event trigger, but
also can propose the entire trigger nugget “É

ú”(is injured). The main idea behind NPNs is that
most Chinese triggers have regular character com-
positional structure (Li et al., 2012). Concretely,
most of Chinese event triggers have one central
character which can indicate its event type, e.g.
“à”(kill) in “là”(kill by shooting). Further-
more, characters are composed into a trigger based
on regular compositional structures, e.g. “manner
+ verb” for “là”(kill by shooting), “và”(hack
to death), as well as “verb + auxiliary + noun” for
“É
ú”(is injured) and “E
�”(beaten).

Figure 2 shows the architecture of NPNs. Given
a character in sentence, a hybrid representation
learning module is first used to learn its semantic
representation from both characters and words in
the sentence. This hybrid representation is then
fed into two modules: one is trigger nugget gen-
erator, which proposes the entire potential trigger
nugget by exploiting inner character composition-
al structure. Once a trigger is proposed, an event
type classifier is applied to determine its event
type. Compared with previous methods, NPNs
mainly have following advantages:

1) By directly proposing the entire trig-
ger nugget centered at a character, trigger
nugget generator can effectively resolve the
word-trigger mismatch problem. First, using
characters as basic units, NPNs will not suf-
fer from the word-trigger mismatch problem of
word-wise methods. Furthermore, by modeling
and exploiting character compositional structure

这家/ 公司/并购/ 了/多家/ 公司

Type Classifier

Hybrid Char-Word 
Representation Learning

Nugget Generator

…
… …

…

The company acquired and merged with a number of companies.

Figure 2: The overall architecture of Nugget Pro-
posal Networks. The concerning character is “	”.

of triggers, our model is more error-tolerant to
character-wise classification errors than traditional
character-based models, as shown in Section 4.4.

2) By summarizing information from both
characters and words, our hybrid represen-
tation can effectively capture information for
both inner character composition and accurate
event categorization. For example, the inner
compositional structure of trigger “là”(kill by
shooting) can be learned from the character-level
sequence. Besides, characters are often ambigu-
ous, therefore the accurate representations must
take their word context into consideration. For
example, the representation “à”(kill) in “ l
à”(kill by shooting) should be different from its
representation in “à�”(completed).

We conducted experiments on both the
ACE2005 and the TAC KBP 2017 Event Nugget
Detection datasets. Experiment results show that
NPNs can effectively solve the word-mismatch
problem, and therefore significantly outperform
previous state-of-the-art methods1.

2 Hybrid Representation Learning

Given a sentence, NPNs will first learn a represen-
tation for each character, then the representation
is fed into downstream modules. We observe
that both characters and words contain rich in-
formation for Chinese event detection: characters
reveals the inner compositional structure of event

1Our source code, including all hyper-parameter settings
and pre-trained word embeddings, is openly available at
github.com/sanmusunrise/NPNs.
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WEPE

Word/Position
Embedding

这家

公司

并购

了

多家

公司

......

Convolutional
Feature Map

Compositional
Feature

0

-1

-2

1

2

max(c11)

max(c12)

并购公司 了

Lexical Feature

3

。 4

Conv.

Dynamic
Multi-Pooling

Token Level 
Feature 

Figure 3: Token-level feature extractor, where PE
is relative positional embeddings and WE is word
embeddings. The concerning token is “¿	”.

triggers (Li et al., 2012), while words can provide
more accurate and less ambiguous semantics than
characters (Chen et al., 2015a). For example,
character-level information can tell us that “l
à”(kill by shooting) is a trigger constructed of
regular pattern “manner + verb”. While word-
level sequences can provide more explicit in-
formation when we distinguish the semantics of
“à”(kill) in this context with that character in
other words like “à�”(completed).

Therefore, we propose to learn a hybrid repre-
sentation which can summarize information from
both characters and words. Specifically, we first
learn two separate character-level and word-level
representations using token-level neural networks.
Then we design three kinds of hybrid paradigms
to obtain the hybrid representation.

2.1 Token-level Representation Learning

Two token-level neural networks are used to ex-
tract features from characters and words respec-
tively. The network architecture is similar to
DMCNN (Chen et al., 2015b). Figure 3 shows a
word-level example. Given n tokens t1, t2, ..., tn
in the sentence and the concerning token tc, let
xi be the concatenation of the word embedding of
ti and the embedding of ti’s relative position to
tc, a convolutional layer with window size as h is
introduced to capture compositional semantics:

rij = tanh(wi · xj:j+h−1 + bi) (1)

Here xi:i+j refers to the concatenation of embed-
dings from xi to xi+j , wi is the i-th filter of the
convolutional layer, bi ∈ R is a bias term. Then a
dynamic multi-pooling layer is applied to preserve
important signals of different parts of the sentence:

rlefti = max
j<c

rij , rrighti = max
j≥c

rij (2)

fC 

f ’
char 

zG 

fG fN fT 

zN zT 

f ’
word f ’

char f ’
word f ’

char f ’
word 

(a) Concat Hybrid (b) General Hybrid (c) Task-specific Hybrid 

Figure 4: Three hybrid representation learning
methods.

After that we concatenate rlefti and rrighti  from
all feature maps, as well as the embeddings of
tokens nearing to tc to obtain the word-level repre-
sentation fword of tc. Using the same procedure to
character sequences, we can obtain the character-
level representation fchar.

2.2 Hybrid Representation Learning
So far we have both character-level feature repre-
sentation fchar and word-level feature representa-
tion fword . This section describes how we mix
them up to obtain a hybrid representation. Before
this, we first project fchar and fword respectively
into the same vector space using two dense layers,
and we represent the projected d′-dimensional
vectors as f ′char and f ′word. Then we design
three different paradigms to mix them up: Concat
Hybrid, General Hybrid and Task-specific Hybrid,
as illustrated in Figure 4.

Concat Hybrid is the most simple method,
which simply concatenates character-level and
word-level representations:

fC = f ′char ⊕ f ′word (3)

This simple approach doesn’t introduce any addi-
tional parameter, but we find it very effective in
our experiments.

General Hybrid aims to learn a shared hybrid
representation for both trigger nugget proposal
and event type classification. Specifically, we
design a gated structure to model the information
flow from f ′char and f ′word to the general hybrid
feature representation fG:

zG = s(WGHf ′char +UGHf ′word + bGH) (4)

fG = zGf ′char + (1− zG)f ′word (5)

Here s is the sigmoid function, WGH ∈ Rd
′×d′

and UGH ∈ Rd
′×d′ are weight matrix, and

1567



bGH ∈ Rd
′

is the bias term. zG is a d′-
dimensional vector whose values represent the
contribution of f ′char and f ′word to the final hybrid
representation, which models the importance of
individual features in the given contexts.

As two downstream modules of NPNs have
individual functions, they might hold different
requirements to the input features. Intuitively,
trigger nugget generator depends more on fine-
grained character-level features. In contrast, word-
level features might play more important roles in
the event type classifier since it is enriched with
more explicit semantics. As a result, a unified
representation may be insufficient and it is better
to learn task-specific hybrid representations.

Task-specific Hybrid is proposed to tackle this
problem, where two gates are introduced for two
modules respectively. Formally, we learn one
representation for the trigger nugget generator and
one for event type classifier as:

zN = s(WNf ′char +UNf ′word + bN) (6)

zT = s(WTf
′
char +UTf

′
word + bT) (7)

fN = zNf ′char + (1− zN)f ′word (8)

fT = zTf
′
char + (1− zT)f

′
word (9)

Here fN and fT are hybrid features for the trigger
nugget generator and the event type classifier re-
spectively and the meanings of other parameters
are similar to the ones in Equation (4) and (5).

3 Nugget Proposal Networks

Given the hybrid representation of a character in
a sentence, the goal of NPNs is to propose the
potential trigger nugget, as well as to identify its
corresponding event type at each character. For
example in Figure 5, centered at the character
“ú”(injured), NPNs need to propose “É
ú”(is
injured) as the entire trigger nugget and identify
its event type as “Injure”. For this, NPNs are
equipped with two modules: one is called trigger
nugget generator, which is used to propose the
potential trigger nugget containing the concerning
character by exploiting character compositional
structures of triggers. Another module, named
as event type classifier, is used to determine the
specific type of this event once a trigger nugget is
detected.

那
受
了
伤
的
士
兵

3 3 受了伤 0.75

2 2 了伤 0.01

1 1 伤 0.05

1 2 伤的 0.02

1 3 伤的士 0.01

2 3 了伤的 0.01

NIL 0.15

Figure 5: Our trigger nugget generator. For each
character, there are 7 candidate nuggets including
“NIL” if the maximum length of nuggets is 3.

3.1 Trigger Nugget Generator

Chinese event triggers have regular inner com-
positional structures, e.g. “É
ú”(is injured)
and “E
�”(is beaten) have the same “verb
+ auxiliary + noun” structure, and “là”(kill
by shooting) and “�à”(kill by shooting) share
the same “manner + verb” pattern. If a model
is able to learn this compositional structure reg-
ularity, it can effectively detect trigger nuggets
at characters. Recent advances have presented
that convolutional neural networks are effective at
capturing and predicting the region information in
object detection (Ren et al., 2015) and semantic
segmentation (He et al., 2017), which reveals the
strong ability of CNNs to learning spatial and po-
sitional information. Inspired by this, we propose
a neural network based trigger nugget generator,
which is expected to not only be able to predict
whether a character belongs to a trigger nugget,
but also can point out the entire trigger nugget.

Figure 5 is an illustration of our trigger nugget
generator. Hybrid representation fN for con-
cerning character is first learned as described in
Section 2, which is then fed into a fully-connected
layer to compute the scores for different possible
trigger nuggets containing that character:

OG = WGfN + bG (10)

where OG ∈ Rd
N

and dN is the amount of
candidate nuggets plus one “NIL” label indicating
this character doesn’t belong to an trigger. Given
the maximum length L of trigger nuggets, there
are L2+L

2 possible nuggets containing a specific
character, as we shown in Figure 5. In both ACE
and Rich ERE corpus, more than 98.5% triggers
contain no more than 3 characters, so for a specific
character we consider 6 candidate nuggets and
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thus dN = 7. We expect NPNs to give a high score
to a nugget if it follows a regular compositional
structure of triggers. For example in Figure 5,
“É
ú”(is injured) follows the compositional
pattern of “verb + auxiliary + noun”, therefore a
high score is given to the category where “ú” is
at the 3rd place of a nugget with a length of 3. By
contrast “
ú” does not match a regular pattern,
then the score for “ú” at the 2nd place of a nugget
with a length of 2 will be low in this context.

After obtaining the scores for each nugget, a
softmax layer is applied to normalize the scores:

P (yGi |x; θ) =
eO

G
i

∑dN

j=1 e
OG

j

(11)

where OGi is the i-the element in OG and θ is the
model parameters.

3.2 Event Type Classifier

The event type classifier aims to identify whether
the given character in the given context will ex-
hibit an event type. Once we detect an event
trigger nugget at one character, the hybrid feature
fT extracted previously is then feed into a neural
network classifier, which further determines the
specific type of this trigger. Following previous
work (Chen and Ng, 2012), our event type classi-
fier directly classifies nuggets into event subtypes,
while ignores the hierarchy between event types.

Formally, given the hybrid feature vector fT
of input x, a fully-connected layer is applied to
compute its scores assigned to each event subtype:

OC = WCfT + bC (12)

where OC ∈ Rd
T

and dT is the number of
event subtypes. Then similar to the trigger nugget
generator, a softmax layer is introduced:

P (yCi |x; θ) =
eO

C
i

∑dT

j=1 e
OC

j

(13)

where OCi is the i-th element in OC, representing
the score for i-th subtype.

3.3 Dealing with Conflicts between Proposed
Nuggets

While NPNs directly propose nugget at each char-
acter, there might exists conflicts between pro-
posed nuggets at different characters. Generally
speaking, there are two types of conflicts: (i)
NIL/trigger conflict, which means NPNs propose
a trigger nugget at one character, but classify

other character in that nugget into “NIL” (e.g.,
proposing nugget “É
ú”(is injured) at “É” and
output “NIL” at “
”); (ii) overlapped conflict, i.e.,
proposing two overlapped nuggets (e.g., proposing
nugget “É
ú”(is injured) at “É” and nugget
“ú” at “ú”). But we find that overlapped conflict
is very rare because NPNs is very effective in
capturing positional knowledge and the main chal-
lenge of event detection is to distinguish triggers
from non-triggers.

Therefore in this paper, we employ a redundant
prediction strategy by simply adding all proposed
nuggets into results and ignoring “NIL” predic-
tions. For example, if NPNs successively propose
“É
ú”(is injured), “NIL”, “ ú” from “É

ú”, then we will ignore the “NIL” and add
both two other nuggets into result. We found
such a redundant prediction paradigm is an advan-
tage of our model. Compared with conventional
character-based models, even NPNs mistakenly
classified character “
0into “NIL0, we can
still accurately detect trigger “É
ú”(is injured)
if we can predict the entire nugget at character
“É0or “ú0. This redundant prediction makes
our model more error-tolerant to character-wise
classification errors, as verified in Section 4.4.

3.4 Model Learning

To train the trigger nugget generator, we regard all
characters included in trigger nuggets as positive
training instances, and randomly sample charac-
ters not in any trigger as negative instances and
label them as “NIL”. Suppose we have TG train-
ing examples in SG = {(xk, yGk )|k = 1, 2, ...TG}
to train the trigger nugget generator, as well as TC

examples in SC = {(xk, yCk )|k = 1, 2, ...TC} to
train the event type classifier, we can define the
loss function L(θ) as follow:

L(θ) =−
∑

(xk,y
G
k

)∈SG

logP (yGk |xk; θ)

−
∑

(xk,y
C
k

)∈SC

logP (yCk |xk; θ)
(14)

where θ is parameters in NPNs. Since all modules
in NPNs are differentiable, any gradient-based
algorithms can be applied to minimize L(θ).

4 Experiments

4.1 Data Preparation and Evaluation

We conducted experiments on two standard
datasets: ACE2005 and TAC KBP 2017 Even-
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ACE2005 KBPEval2017
Model Trigger Identification Trigger Classification Trigger Identification Trigger Classification

P R F1 P R F1 P R F1 P R F1
FBRNN(Char) 61.3 45.6 52.3 57.5 42.8 49.1 57.97 36.92 45.11 51.71 32.94 40.24
DMCNN(Char) 60.1 61.6 60.9 57.1 58.5 57.8 53.67 49.92 51.73 50.03 46.53 48.22
C-BiLSTM* 65.6 66.7 66.1 60.0 60.9 60.4 - - - - - -
FBRNN(Word) 64.1 63.7 63.9 59.9 59.6 59.7 65.10 46.86 54.50 60.05 43.22 50.27
DMCNN(Word) 66.6 63.6 65.1 61.6 58.8 60.2 60.43 51.64 55.69 54.81 46.84 50.51
HNN* 74.2 63.1 68.2 77.1 53.1 63.0 - - - - - -
Rich-C* 62.2 71.9 66.7 58.9 68.1 63.2 - - - - - -
KBP2017 Best* - - - - - - 67.76 45.92 54.74 62.69 42.48 50.64
NPN(Concat) 76.5 59.8 67.1 72.8 56.9 63.9 64.58 50.31 56.56 59.14 46.07 51.80
NPN(General) 71.5 63.2 67.1 67.3 59.6 63.2 63.67 51.32 56.83 57.78 46.58 51.57
NPN(Task-specific) 64.8 73.8 69.0 60.9 69.3 64.8 64.32 53.16 58.21 57.63 47.63 52.15

Table 2: Experiment results on ACE2005 and KBPEval2017. * indicates the result adapted from
the original paper. For KBPEval2017, “Trigger Identification” corresponds to the “Span” metric and
“Trigger Classification” corresponds to the “Type” metric reported in official evaluation.

t Nugget Detection Evaluation (KBPEval2017)
datasets. For ACE2005 (LDC2006T06), we
used the same setup as Chen and Ji (2009),
Feng et al. (2016) and Zeng et al. (2016), in
which 569/64/64 documents are used as train-
ing/development/test set. For KBPEval2017,
we evaluated our model on the 2017 Chinese
evaluation dataset(LDC2017E55), using previ-
ous RichERE annotated Chinese datasets (LD-
C2015E78, LDC2015E105, LDC2015E112, and
LDC2017E02) as the training set except 20 ran-
domly sampled documents reserved as develop-
ment set. Finally, there were 506/20/167 docu-
ments for training/development/test set. We used
Stanford CoreNLP toolkit (Manning et al., 2014)
to preprocess all documents for sentence split-
ting and word segmentation. Adadelta update
rule (Zeiler, 2012) is applied for optimization.

Models are evaluated by micro-averaged Preci-
sion(P), Recall(R) and F1-score. For ACE2005,
we followed Chen and Ji (2009) to compute the
above measures. For KBPEval2017, we used the
official evaluation toolkit 2 to obtain these metrics.

4.2 Baselines

Three groups of baselines were compared:
Character-based NN models. This group

of methods solve Chinese Event Detection in
a character-level sequential labeling paradigm,
which include Convolutional Bi-LSTM model
(C-BiLSTM) proposed by Zeng et al. (2016),
Forward-backward Recurrent Neural Network-

2github.com/hunterhector/EvmEval/
tarball/master

s (FBRNN) by Ghaeini et al. (2016), and a
character-level DMCNN model with a classifier
using IOB encoding (Sang and Veenstra, 1999).

Word-based NN models. This group of meth-
ods directly adopt currently NN models into word-
level sequences, which includes word-based F-
BRNN, word-based DMCNN and Hybrid Neural
Network proposed by Feng et al. (2016), which
incorporates CNN with Bi-LSTM and achieves the
SOTA NN based result on ACE2005. To alleviate
OOV problem stemming from word-trigger mis-
match, we also adopt errata table replacing (Han
et al., 2017), which introduce an errata table
extracted from the training data and replace those
words that part of whom was a trigger nugget with
that trigger directly.

Feature-enriched Methods. This group of
methods includes Rich-C (Chen and Ng, 2012)
and CLUZH (KBP2017 Best) (Makarov and
Clematide, 2017). Rich-C developed several
handcraft Chinese-specific features, which is one
of the state-of-the-art on ACE2005. CLUZH
incorporated many heuristic features into LSTM
encoder, which achieved the best performance in
TAC KBP2017 evaluation.

4.3 Overall Results

Table 2 shows the results on ACE2005 and KBPE-
val2017. From this table, we can see that:

1) NPNs steadily outperform all baselines sig-
nificantly. Compared with baselines, NPN(Task-
specific) gains at least 1.6 (2.5%) and 1.5 (3.0%)
F1-score improvements on trigger classification
task on ACE2005 and KBPEval2017 respectively.
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2) By exploiting compositional structures
of triggers, our trigger nugget generator can
effectively resolve the word-trigger mismatch
problem. As shown in Table 2, NPN(Task-
specific) achieved significant F1-score improve-
ments on trigger identification task on both
datasets. It is notable that our method achieved
a remarkable high recall on both datasets, which
indicates that NPNs do detect a number of triggers
which previous methods can not identify.

3) By summarizing information from both
characters and words, the hybrid represen-
tation learning is effective for event detec-
tion. Comparing with corresponding character-
based methods3, word-based methods achieved
2 to 3 F1-score improvements, which indicates
that words can provide additional information for
event detection. By combining character-level and
word-level features, NPNs are able to perform
character-based event detection meanwhile take
word-level knowledge into consideration too.

4.4 Comparing with Conventional
Character-based Methods

To further investigate the effects of the trigger
nugget generator, we compared NPNs with other
character-based methods and analyzed behaviors
of them. We conducted a supplementary exper-
iment by replacing our trigger nugget generator
and event type classifier with an IOB encoding
labeling layer. We call this system NPN(IOB).
Besides, we also compared the result with F-
BRNN(Char), which proposes candidate trigger
nuggets according to an external trigger table.

Model P R F1
FBRNN(Char) 57.97 36.92 45.11
NPN(IOB) 60.96 47.39 53.32
NPN(Task-specific) 64.32 53.16 58.21

Table 3: Performances of character-based methods
on KBP2017Eval Trigger Identification task.

Table 3 shows the results on KBP2017Eval. We
can see that NPN(Task-specific) outperforms other
methods significantly. We believe this is because:

1) FBRNN(Char) only regards tokens in the
candidate table as potential trigger nuggets, which

3C-BiLSTM and HNN are similar methods to some ex-
tent. They both use a hybrid representation from CNN and
BiLSTM encoders.

limits the choice of possible trigger nuggets and
results in a very low recall rate.

2) To accurately identify a trigger, NPN(IOB)
and conventional character-based methods require
all characters in a trigger being classified correctly,
which is very challenging (Zeng et al., 2016):
many characters appear in a trigger nugget will not
serve as a part of a trigger nugget in the majority
of contexts, thus they will be easily classified
into “NIL”. For the first example in Table 5,
NPN(IOB) was unable to fully recognize the trig-
ger nugget “å>”(congratulatory message) be-
cause character “å”(congratulatory) doesn’t of-
ten serve as part of ”PhoneWrite” trigger. In
fact, “å” serves as a “NIL” in the majority of
similar contexts, e.g., “åU”(congratulation) and
“6å”(congratulation).

3) NPNs are able to handle above problems.
First, NPNs doesn’t rely on candidate tables to
generate potential triggers, which guarantees a
good generalization ability. Second, NPNs pro-
pose the entire trigger nugget at each charac-
ter, such a redundant prediction paradigm makes
NPNs more error-tolerant to character-level errors.
For example, even might mistakenly classify “å”
into “NIL”, NPNs can still identify the correct
nugget “å>” at character “>” because “>” is
a common part of “PhoneWrite” event trigger.

4.5 Influence of Word-Trigger Mismatch
This subsection investigates the effects of resolv-
ing the word-trigger mismatch problem using dif-
ferent methods. According to different types of
word-trigger match, we split KBP2017Eval test
set into three parts: Exact, Part-of-Word, Cross-
Words, which are as defined in Table 1.

Model Exact Part Cross
NPN(IOB) 48.65 29.13 8.54
DMCNN(Word) 57.36 23.28 0.00
- w/o Errata replacing 59.03 0.00 0.00
NPN(Task-specific) 56.47 42.66 26.58

Table 4: Recall rates on three word-trigger match
splits on KBP2017Eval Trigger Identification task.

Table 4 shows the recall of different methods on
each split. NPN(Task-specific) significantly out-
perform other baselines when trigger-word mis-
match exists. This verified that NPNs can resolve
different cases of word-trigger mismatch problems
robustly, meanwhile retain high performance on
exact match cases. In contrast, NPN(IOB) can not
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Sentence DMCNN NPN(IOB) NPN Correct
ååå>>>/�©/Xe,...
Full congratulatory message:...

(å>,PhoneWrite) (>,PhoneWrite) (å>,PhoneWrite) (å>,PhoneWrite)

kkkúúú/�/¤k/¬W...
all soldiers died and injured...

None (k,Die)
(ú,Injure)

(k,Die)
(ú,Injure)

(k,Die)
(ú,Injure)

Table 5: System prediction examples. (X,Y) indicates a trigger nugget X is annotated with event type Y.

exactly detect boundaries of trigger nuggets, thus
has a low recall on all splits. Conventional DM-
CNN regards words as potential triggers, which
means it can only identify triggers that exactly
match with words. As the second example in
Table 5, word “kú”(dead or injured) as a whole
has never been annotated as a trigger, so DMCNN
is unable to recognize it at all. Errata replacing
can only solve some of the part-of-word mismatch
problem, but it can not handle the cases where
one word contains multiple triggers(e.g., “kú”
in Table 5) and the cases that a trigger crosses
multiple words.

4.6 Effects of Hybrid Representation
This section analyzed the effect of feature hybrid
in NPNs. First, from Table 2, we can see that
Task-specific Hybrid method achieved the best
performance in both datasets. Surprisingly, simple
Concat Hybrid outperforms the General Hybrid
approach. We believe this is because the trigger
nugget generator and the event type classifier rely
on different information, and therefore using one
unified gate is not enough. And Task-specific Hy-
brid uses two different task-specific gates which
can satisfy both sides, thus resulting in the best
overall performance.

Furthermore, to investigate the necessary of
using hybrid features, an auxiliary experiment,
called NPN(Char), was conducted by removing
word-level features from NPNs. Also, we com-
pared with the model removing character-level
features, which is the original DMCNN(Word).

Model P R F1
DMCNN(Word) 54.81 46.84 50.51
NPN(Char) 56.19 43.88 49.28
NPN(Task-specific) 57.63 47.63 52.15

Table 6: Results of using different representation
on Trigger Classification task on KBP2017Eval.

Table 6 shows the experiment results. We
can see that neither character-level or word-
level representation can achieve competitive re-
sults with the NPNs. This verified the necessity

of hybrid representation. Besides, we can see
that NPN(Char) outperforms other character-level
methods in Table 2, which further confirms that
our trigger nugget generator is still effective even
only using character-level information.

5 Related Work

Event detection is an important task in informa-
tion extraction and has attracted many attentions.
Traditional methods (Ji and Grishman, 2008; Pat-
wardhan and Riloff, 2009; Liao et al., 2010; Mc-
Closky et al., 2011; Hong et al., 2011; Huang and
Riloff, 2012; Li et al., 2013a,b, 2014) rely heavily
on hand-craft features, which are hard to transfer
among languages and annotation standards.

Recently, deep learning methods, which auto-
matically extract high-level features and perfor-
m token-level classification with neural network-
s (Chen et al., 2015b; Nguyen and Grishman,
2015), have achieved significant progress. Some
improvements have been made by jointly predict-
ing triggers and arguments (Nguyen et al., 2016)
and introducing more complicated architectures
to capture larger scale of contexts (Feng et al.,
2016; Nguyen and Grishman, 2016; Ghaeini et al.,
2016). These methods have achieved promising
results in English event detection.

Unfortunately, the word-trigger mismatch prob-
lem significantly undermines the performance
of word-level models in Chinese event detec-
tion (Chen and Ji, 2009). To resolve this problem,
Chen and Ji (2009) proposed a feature-driven BIO
tagging methods at character-level sequences. Qin
et al. (2010) introduced a method which can au-
tomatically expand candidate Chinese trigger set.
While Li et al. (2012) and Li and Zhou (2012)
defined manually character compositional patterns
for Chinese event triggers. However, their meth-
ods rely on hand-crafted features and patterns,
which make them difficult to be integrated into
recent Deep Learning models.

Recent advances have shown that neural net-
works can effectively capture spatial and posi-
tional information from raw inputs (Ren et al.,
2015; He et al., 2017; Wang and Jiang, 2017).
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This paper designs Nugget Proposal Networks to
capture character compositional structure of event
triggers, which is more robust and more effective
than previous hand-crafted patterns or character-
level sequential labeling methods.

6 Conclusions and Future Work

This paper proposes Nugget Proposal Networks
for Chinese event detection, which can effectively
resolve the word-trigger mismatch problem by
modeling and exploiting character compositional
structure of Chinese event triggers, using hybrid
representation which can summarize information
from both characters and words. Experiment
results have shown that our method significantly
outperforms conventional methods.

Because the mismatch between words and ex-
traction units is a common problem in information
extraction, we believe our method can also be
applied to many other languages and tasks for
exploiting inner composition structure during ex-
traction, such as Named Entity Recognition.
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Abstract

Relation Schema Induction (RSI) is the
problem of identifying type signatures
of arguments of relations from unlabeled
text. Most of the previous work in this
area have focused only on binary RSI,
i.e., inducing only the subject and object
type signatures per relation. However, in
practice, many relations are high-order,
i.e., they have more than two arguments
and inducing type signatures of all ar-
guments is necessary. For example, in
the sports domain, inducing a schema
win(WinningPlayer, OpponentPlayer,
Tournament, Location) is more informa-
tive than inducing just win(WinningPlayer,
OpponentPlayer). We refer to this prob-
lem as Higher-order Relation Schema
Induction (HRSI). In this paper, we
propose Tensor Factorization with Back-
off and Aggregation (TFBA), a novel
framework for the HRSI problem. To the
best of our knowledge, this is the first
attempt at inducing higher-order relation
schemata from unlabeled text. Using the
experimental analysis on three real world
datasets, we show how TFBA helps in
dealing with sparsity and induce higher
order schemata.

1 Introduction

Building Knowledge Graphs (KGs) out of un-
structured data is an area of active research. Re-
search in this has resulted in the construction of
several large scale KGs, such as NELL (Mitchell
et al., 2015), Google Knowledge Vault (Dong
et al., 2014) and YAGO (Suchanek et al., 2007).
These KGs consist of millions of entities and be-
liefs involving those entities. Such KG construc-

tion methods are schema-guided as they require
the list of input relations and their schemata (e.g.,
playerPlaysSport(Player, Sport)). In other words,
knowledge of schemata is an important first step
towards building such KGs.

While beliefs in such KGs are usually binary
(i.e., involving two entities), many beliefs of in-
terest go beyond two entities. For example, in the
sports domain, one may be interested in beliefs of
the form win(Roger Federer, Nadal, Wimbledon,
London), which is an instance of the high-order
(or n-ary) relation win whose schema is given
by win(WinningPlayer, OpponentPlayer, Tourna-
ment, Location). We refer to the problem of induc-
ing such relation schemata involving multiple ar-
guments as Higher-order Relation Schema Induc-
tion (HRSI). In spite of its importance, HRSI is
mostly unexplored.

Recently, tensor factorization-based methods
have been proposed for binary relation schema in-
duction (Nimishakavi et al., 2016), with gains in
both speed and accuracy over previously proposed
generative models. To the best of our knowledge,
tensor factorization methods have not been used
for HRSI. We address this gap in this paper.

Due to data sparsity, straightforward adaptation
of tensor factorization from (Nimishakavi et al.,
2016) to HRSI is not feasible, as we shall see in
Section 3.1. We overcome this challenge in this
paper, and make the following contributions.

• We propose Tensor Factorization with Back-
off and Aggregation (TFBA), a novel tensor
factorization-based method for Higher-order
RSI (HRSI). In order to overcome data spar-
sity, TFBA backs-off and jointly factorizes
multiple lower-order tensors derived from an
extremely sparse higher-order tensor.

• As an aggregation step, we propose a con-
strained clique mining step which constructs
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the higher-order schemata from multiple bi-
nary schemata.

• Through experiments on multiple real-world
datasets, we show the effectiveness of TFBA
for HRSI.

Source code of TFBA is available at https:
//github.com/madhavcsa/TFBA.

The remainder of the paper is organized as fol-
lows. We discuss related work in Section 2. In
Section 3.1, we first motivate why a back-off strat-
egy is needed for HRSI, rather than factorizing the
higher-order tensor. Further, we discuss the pro-
posed TFBA framework in Section 3.2. In Sec-
tion 4, we demonstrate the effectiveness of the pro-
posed approach using multiple real world datasets.
We conclude with a brief summary in Section 5.

2 Related Work

In this section, we discuss related works in two
broad areas: schema induction, and tensor and ma-
trix factorizations.

Schema Induction: Most work on inducing
schemata for relations has been in the binary set-
ting (Mohamed et al., 2011; Movshovitz-Attias
and Cohen, 2015; Nimishakavi et al., 2016). Mc-
Donald et al. (2005) and Peng et al. (2017) extract
n-ary relations from Biomedical documents, but
do not induce the schema, i.e., type signature of
the n-ary relations. There has been significant
amount of work on Semantic Role Labeling (Lang
and Lapata, 2011; Titov and Khoddam, 2015; Roth
and Lapata, 2016), which can be considered as n-
ary relation extraction. However, we are inter-
ested in inducing the schemata, i.e., the type signa-
ture of these relations. Event Schema Induction is
the problem of inducing schemata for events in the
corpus (Balasubramanian et al., 2013; Chambers,
2013; Nguyen et al., 2015). Recently, a model for
event representations is proposed in (Weber et al.,
2018).

Cheung et al. (2013) propose a probabilistic
model for inducing frames from text. Their no-
tion of frame is closer to that of scripts (Schank
and Abelson, 1977). Script learning is the pro-
cess of automatically inferring sequence of events
from text (Mooney and DeJong, 1985). There is
a fair amount of recent work in statistical script
learning (Pichotta and Mooney, 2016), (Pichotta
and Mooney, 2014). While script learning deals
with the sequence of events, we try to find the

schemata of relations at a corpus level. Ferraro and
Durme (2016) propose a unified Bayesian model
for scripts, frames and events. Their model tries to
capture all levels of Minsky Frame structure (Min-
sky, 1974), however we work with the surface se-
mantic frames.

Tensor and Matrix Factorizations: Matrix
factorization and joint tensor-matrix factorizations
have been used for the problem of predicting links
in the Universal Schema setting (Riedel et al.,
2013; Singh et al., 2015). Chen et al. (2015) use
matrix factorizations for the problem of finding
semantic slots for unsupervised spoken language
understanding. Tensor factorization methods are
also used in factorizing knowledge graphs (Chang
et al., 2014; Nickel et al., 2012). Joint matrix and
tensor factorization frameworks, where the ma-
trix provides additional information, is proposed
in (Acar et al., 2013) and (Wang et al., 2015).
These models are based on PARAFAC (Harsh-
man, 1970), a tensor factorization model which
approximates the given tensor as a sum of rank-
1 tensors. A boolean Tucker decomposition for
discovering facts is proposed in (Erdos and Miet-
tinen, 2013). In this paper, we use a modified ver-
sion (Tucker2) of Tucker decomposition (Tucker,
1963).

RESCAL (Nickel et al., 2011) is a simplified
Tucker model suitable for relational learning. Re-
cently, SICTF (Nimishakavi et al., 2016), a vari-
ant of RESCAL with side information, is used for
the problem of schema induction for binary rela-
tions. SICTF cannot be directly used to induce
higher order schemata, as the higher-order tensors
involved in inducing such schemata tend to be ex-
tremely sparse. TFBA overcomes these challenges
to induce higher-order relation schemata by per-
forming Non-Negative Tucker-style factorization
of sparse tensor while utilizing a back-off strategy,
as explained in the next section.

3 Higher Order Relation Schema
Induction using Back-off Factorization

In this section, we start by discussing the approach
of factorizing a higher-order tensor and provide
the motivation for back-off strategy. Next, we
discuss the proposed TFBA approach in detail.
Please refer to Table 1 for notations used in this
paper.
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Notation Definition
R+ Set of non-negative reals.
X ∈ Rn1×n2×...×nN

+ N th -order non-negative tensor.
X(i) mode-i matricization of tensor X . Please see (Kolda and Bader, 2009) for details.
A ∈ Rn×r

+ Non-negative matrix of order n× r.
∗ Hadamard product: (A ∗ B)i,j = Ai,j × Bi,j .

Table 1: Notations used in the paper.

Figure 1: Overview of Step 1 of TFBA. Rather than factorizing the higher-order tensor X , TFBA
performs joint Tucker decomposition of multiple 3-mode tensors, X 1, X 2, and X 3, derived out of X .
This joint factorization is performed using shared latent factors A, B, and C. This results in binary
schemata, each of which is stored as a cell in one of the core tensors G1, G2, and G3. Please see Section
3.2.1 for details.

3.1 Factorizing a Higher-order Tensor

Given a text corpus, we use OpenIEv5 (Mausam,
2016) to extract tuples. Consider the following
sentence “Federer won against Nadal at Wimble-
don.”. Given this sentence, OpenIE extracts the
4-tuple (Federer, won, against Nadal, at Wimble-
don). We lemmatize the relations in the tuples and
only consider the noun phrases as arguments. Let
T represent the set of these 4-tuples. We can con-
struct a 4-order tensor X ∈ Rn1×n2×n3×m

+ from
T. Here, n1 is the number of subject noun phrases
(NPs), n2 is the number of object NPs, n3 is the
number of other NPs, and m is the number of re-
lations in T. Values in the tensor correspond to the
frequency of the tuples. In case of 5-tuples of the
form (subject, relation, object, other-1, other-2),
we split the 5-tuples into two 4-tuples of the form
(subject, relation, object, other-1) and (subject, re-
lation, object, other-2) and frequency of these 4-
tuples is considered to be same as the original 5-
tuple. Factorizing the tensor X results in discov-
ering latent categories of NPs, which help in in-

ducing the schemata. We propose the following
approach to factorize X .

min
G,A,B,C

‖X − G ×1 A×2 B×3 C×4 I‖2F

+ λa ‖A‖2F + λb ‖B‖2F + λc ‖C‖2F ,

where,

A ∈ Rn1×r1
+ ,B ∈ Rn2×r2

+ ,C ∈ Rn3×r3
+ ,

G ∈ Rr1×r2×r3×m+ , λa ≥ 0, λb ≥ 0 and λc ≥ 0.

Here, I is the identity matrix. Non-negative up-
dates for the variables can be obtained following
(Lee and Seung, 2000). Similar to (Nimishakavi
et al., 2016), schemata induced will be of the form
relation 〈Ai,Bj ,Ck〉. Here, Pi represents the ith

column of a matrix P. A is the embedding matrix
of subject NPs in T (i.e., mode-1 of X ), r1 is the
embedding rank in mode-1 which is the number of
latent categories of subject NPs. Similarly, B and
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Figure 2: Overview of Step 2 of TFBA. Induction
of higher-order schemata from the tri-partite graph
formed from the columns of matrices A, B, and
C. Triangles in this graph (solid) represent a 3-ary
schema, n-ary schemata for n > 3 can be induced
from the 3-ary schemata. Please refer to Section
3.2.2 for details.

C are the embedding matrices of object NPs and
other NPs respectively. r2 and r3 are the number
of latent categories of object NPs and other NPs
respectively. G is the core tensor. λa, λb and λc
are the regularization weights.

However, the 4-order tensors are heavily sparse
for all the datasets we consider in this work. The
sparsity ratio of this 4-order tensor for all the
datasets is of the order 1e-7. As a result of the
extreme sparsity, this approach fails to learn any
schemata. Therefore, we propose a more success-
ful back-off strategy for higher-order RSI in the
next section.

3.2 TFBA: Proposed Framework
To alleviate the problem of sparsity, we construct
three tensors X 3, X 2, and X 1 from T as follows:

• X 3 ∈ Rn1×n2×m
+ is constructed out of the

tuples in T by dropping the other argu-
ment and aggregating resulting tuples, i.e.,
X 3
i,j,p =

∑n3
k=1Xi,j,k,p. For example, 4-

tuples 〈(Federer, Win, Nadal, Wimbledon),
10〉 and 〈(Federer, Win, Nadal, Australian
Open), 5〉 will be aggregated to form a triple
〈(Federer, Win, Nadal), 15〉.

• X 2 ∈ Rn1×n3×m
+ is constructed out of the

tuples in T by dropping the object argument

and aggregating resulting tuples i.e.,X 2
i,j,p =∑n2

k=1Xi,k,j,p.

• X 1 ∈ Rn2×n3×m
+ constructed out of the tu-

ples in T by dropping the subject argument
and aggregating resulting tuples i.e.,X 1

i,j,p =∑n1
k=1Xk,i,j,p.

The proposed framework TFBA for inducing
higher order schemata involves the following two
steps.

• Step 1: In this step, TFBA factorizes multi-
ple lower-order overlapping tensors,X 1,X 2,
and X 3, derived from X to induce binary
schemata. This step is illustrated in Figure
1 and we discuss details in Section 3.2.1.

• Step 2: In this step, TFBA connects multiple
binary schemata identified above to induce
higher-order schemata. The method accom-
plishes this by solving a constrained clique
problem. This step is illustrated in Figure 2
and we discuss the details in Section 3.2.2.

3.2.1 Step 1: Back-off Tensor Factorization
A schematic overview of this step is shown in Fig-
ure 1. TFBA first preprocesses the corpus and ex-
tracts OpenIE tuple set T out of it. The 4-mode
tensor X is constructed out of T. Instead of per-
forming factorization of the higher-order tensorX
as in Section 3.1, TFBA creates three tensors out
of X : X 1

n2×n3×m,X 2
n1×n3×m and X 3

n1×n2×m.
TFBA performs a coupled non-negative Tucker

factorization of the input tensors X 1,X 2 and X 3

by solving the following optimization problem.

min
A,B,C

G1,G2,G3

f(X 3,G3,A,B) + f(X 2,G2,A,C)

+ f(X 1,G1,B,C)

+ λa ‖A‖2F + λb ‖B‖2F + λc ‖C‖2F , (1)

where,

f(X i,Gi,P,Q) =
∥∥X i − Gi ×1 P×2 Q×3 I

∥∥2
F

A ∈ Rn1×r1
+ ,B ∈ Rn2×r2

+ ,C ∈ Rn3×r3
+

G1 ∈ Rr2×r3×m+ ,G2 ∈ Rr1×r3×m+ ,G3 ∈ Rr1×r2×m+ .

We enforce non-negativity constraints on the ma-
trices A,B,C and the core tensors Gi (i ∈
{1, 2, 3}). Non-negativity is essential for learning
interpretable latent factors (Murphy et al., 2012).
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Each slice of the core tensor G3 corresponds to
one of the m relations. Each cell in a slice cor-
responds to an induced schema in terms of the
latent factors from matrices A and B. In other
words, G3i,j,k is an induced binary schema for re-
lation k involving induced categories represented
by columns Ai and Bj . Cells in G1 and G2 may be
interpreted accordingly.

We derive non-negative multiplicative updates
for A,B and C following the NMF updating rules
given in (Lee and Seung, 2000). For the update of
A, we consider the mode-1 matricization of first
and the second term in Equation 1 along with the
regularizer.

A ← A ∗
X 3

(1)G>BA
+X 2

(1)G>CA

A[GBA
G>BA

+ GCA
G>CA

] + λaA
,

where,

GBA
= (G3 ×2 B)(1), GCA

= (G2 ×2 C)(1).

In order to estimate B, we consider mode-2 ma-
tricization of first term and mode-1 matricization
of third term in Equation 1, along with the regu-
larization term. We get the following update rule
for B

B ← B ∗
X 3

(2)G>AB
+X 1

(1)G>CB

B[GAB
G>AB

+ GCB
G>CB

] + λbB
,

where,

GAB
= (G3 ×1 A)(2), GCB

= (G1 ×2 C)(1).

For updating C, we consider mode-2 matriciza-
tion of second and third terms in Equation 1 along
with the regularization term, and we get

C ← C ∗
X 3

(2)G>BC
+X 2

(2)G>AC

C[GAC
G>AC

+ GBC
G>BC

] + λcC
,

where,

GAC
= (G3 ×1 B)(2), GBC

= (G2 ×1 A)(2).

Finally, we update the three core tensors in
Equation 1 following (Kim and Choi, 2007) as fol-
lows,

G1 ← G1 ∗ X
1 ×1 B> ×2 C>

G1 ×1 B>B×2 C>C
,

G2 ← G2 ∗ X
2 ×1 A> ×2 C>

G2 ×1 A>A×2 C>C
,

G3 ← G3 ∗ X
3 ×1 A> ×2 B>

G3 ×1 A>A×2 B>B
.

In all the above updates, P
Q represents element-

wise division and I is the identity matrix.
Initialization: For initializing the component

matrices A,B, and C, we first perform a non-
negative Tucker2 Decomposition of the individ-
ual input tensors X 1,X 2, and X 3. Then com-
pute the average of component matrices obtained
from each individual decomposition for initializa-
tion. We initialize the core tensors G1,G2, and G3
with the core tensors obtained from the individual
decompositions.

3.2.2 Step 2: Binary to Higher-Order
Schema Induction

In this section, we describe how a higher-order
schema is constructed from the factorization de-
scribed in the previous sub-section. Each relation
k has three representations given by the slices G1k ,
G2k and G3k from each core tensor. We need a prin-
cipled way to produce a joint schema from these
representations. For a relation, we select top-n in-
dices (i, j) with highest values from each matrix.
The indices i and j from G3k correspond to column
numbers of A and B respectively, indices from G2k
correspond to columns from A and C and columns
from G1k correspond to columns from B and C.

We construct a tri-partite graph with the col-
umn numbers from each of the component matri-
ces A, B and C as the vertices belonging to in-
dependent sets, the top-n indices selected are the
edges between these vertices. From this tri-partite
graph, we find all the triangles which will give
schema with three arguments for a relation, illus-
trated in Figure 2. We find higher order schemata,
i.e., schemata with more than three arguments by
merging two third order schemata with same col-
umn number from A and B. For example, if we
find two schemata (A2,B4,C10) and (A2,B4,C8)
then we merge these two to give (A2,B4,C10,C8)
as a higher order schema. This can be continued
further for even higher order schemata. This pro-
cess may be thought of as finding a constrained
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clique over the tri-partite graph. Here the con-
straint is that in the maximal clique, there can
only be one edge between sets corresponding to
columns of A and columns of B.

The procedure above is inspired by (McDonald
et al., 2005). However, we note that (McDonald
et al., 2005) solved a different problem, viz., n-ary
relation instance extraction, while our focus is on
inducing schemata. Though we discuss the case of
back-off from 4-order to 3-order, ideas presented
above can be extended for even higher orders de-
pending on the sparsity of the tensors.

4 Experiments

In this section, we evaluate the performance of
TFBA for the task of HRSI. We also propose a
baseline model for HRSI called HardClust.
HardClust: We propose a baseline model called
the Hard Clustering Baseline (HardClust) for the
task of higher order relation schema induction.
This model induces schemata by grouping per-
relation NP arguments from OpenIE extractions.
In other words, for each relation, all the Noun
Phrases (NPs) in first argument form a cluster that
represents the subject of the relation, all the NPs
in the second argument form a cluster that repre-
sents object and so on. Then from each cluster,
the top most frequent NPs are chosen as the repre-
sentative NPs for the argument type. We note that
this method is only able to induce one schema per
relation.

Datasets: We run our experiments on three
datasets. The first dataset (Shootings) is a collec-
tion of 1,335 documents constructed from a pub-
licly available database of mass shootings in the
United States. The second is New York Times
Sports (NYT Sports) dataset which is a collection
of 20,940 sports documents from the period 2005
and 2007. And the third dataset (MUC) is a set of
1300 Latin American newswire documents about
terrorism events. After performing the processing
steps described in Section 3, we obtained 357,914
unique OpenIE extractions from the NYT Sports
dataset, 10,847 from Shootings dataset, and 8,318
from the MUC dataset. However, in order to prop-
erly analyze and evaluate the model, we consider
only the 50 most frequent relations in the datasets
and their corresponding OpenIE extractions. This
is done to avoid noisy OpenIE extractions to yield
better data quality and to aid subsequent manual
evaluation of the data. We construct input tensors

following the procedure described in Section 3.2.
Details on the dimensions of tensors obtained are
given in Table 2.

Model Selection: In order to select appropriate
TFBA parameters, we perform a grid search over
the space of hyper-parameters, and select the set of
hyper-parameters that give best Average FIT score
(AvgFIT).

AvgFIT(G1,G2,G3,A,B,C,X 1,X 2,X 3) =

1

3
{FIT(X 1,G1,B,C) + FIT(X 2,G2,A,C)

+ FIT(X 3,G3,A,B)},
where,

FIT(X ,G,P,Q) = 1−‖X − G ×1 P×2 Q‖F
‖X‖F

.

We perform a grid search for the rank param-
eters between 5 and 20, for the regularization
weights we perform a grid search over 0 and 1.
Table 3 provides the details of hyper-parameters
set for different datasets.

Evaluation Protocol: For TFBA, we follow
the protocol mentioned in Section 3.2.2 for con-
structing higher order schemata. For every rela-
tion, we consider top 5 binary schemata from the
factorization of each tensor. We construct a tri-
partite graph, as explained in Section 3.2.2, and
mine constrained maximal cliques from the tripar-
tite graphs for schemata. Table 4 provides some
qualitative examples of higher-order schemata in-
duced by TFBA. Accuracy of the schemata in-
duced by the model is evaluated by human evalua-
tors. In our experiments, we use human judgments
from three evaluators. For every relation, the first
and second columns given in Table 4 are presented
to the evaluators and they are asked to validate the
schema. We present top 50 schemata based on the
score of the constrained maximal clique induced
by TFBA to the evaluators. This evaluation proto-
col was also used in (Movshovitz-Attias and Co-
hen, 2015) for evaluating ontology induction. All
evaluations were blind, i.e., the evaluators were
not aware of the model they were evaluating.

Difficulty with Computing Recall: Even
though recall is a desirable measure, due to the
lack of availability of gold higher-order schema
annotated corpus, it is not possible to compute re-
call. Although the MUC dataset has gold annota-
tions for some predefined list of events, it does not
have annotations for the relations.
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Dataset X 1shape X 2shape X 3shape

Shootings 3365× 1295× 50 2569× 1295× 50 2569× 3365× 50
NYT Sports 57, 820× 20, 356× 50 49, 659× 20, 356× 50 49, 659× 57, 820× 50
MUC 2825× 962× 50 2555× 962× 50 2555× 2825× 50

Table 2: Details of dimensions of tensors constructed for each dataset used in the experiments.

Dataset (r1, r2, r3) (λa, λb, λc)

Shootings (10, 20,15) (0.3, 0.1, 0.7)
NYT Sports (20, 15, 15) (0.9, 0.5, 0.7)
MUC (15, 12, 12) (0.7, 0.7, 0.4)

Table 3: Details of hyper-parameters set for dif-
ferent datasets.

Experimental results comparing performance of
various models for the task of HRSI are given in
Table 5. We present evaluation results from three
evaluators represented as E1, E2 and E3. As can
be observed from Table 5, TFBA achieves better
results than HardClust for the Shootings and NYT
Sports datasets, however HardClust achieves bet-
ter results for the MUC dataset. Percentage agree-
ment of the evaluators for TFBA is 72%, 70%
and 60% for Shootings, NYT Sports and MUC
datasets respectively.

HardClust Limitations: Even though Hard-
Clust gives better induction for MUC corpus, this
approach has some serious drawbacks. HardClust
can only induce one schema per relation. This is
a restrictive constraint as multiple senses can exist
for a relation. For example, consider the schemata
induced for the relation shoot as shown in Table
4. TFBA induces two senses for the relation, but
HardClust can induce only one schema. For a
set of 4-tuples, HardClust can only induce ternary
schemata; the dimensionality of the schemata can-
not be varied. Since the latent factors induced
by HardClust are entirely based on frequency, the
latent categories induced by HardClust are dom-
inated by only a fixed set of noun phrases. For
example, in NYT Sports dataset, subject category
induced by HardClust for all the relations is 〈team,
yankees, mets〉. In addition to inducing only one
schema per relation, most of the times HardClust
only induces a fixed set of categories. Whereas for
TFBA, the number of categories depends on the
rank of factorization, which is a user provided pa-
rameter, thus providing more flexibility to choose
the latent categories.

4.1 Using Event Schema Induction for HRSI

Event schema induction is defined as the task of
learning high-level representations of events, like
a tournament, and their entity roles, like winning-
player etc, from unlabeled text. Even though the
main focus of event schema induction is to induce
the important roles of the events, as a side result
most of the algorithms also provide schemata for
the relations. In this section, we investigate the
effectiveness of these schemata compared to the
ones induced by TFBA.

Event schemata are represented as a set of (Ac-
tor, Rel, Actor) triples in (Balasubramanian et al.,
2013). Actors represent groups of noun phrases
and Rels represent relations. From this style of
representation, however, the n-ary schemata for re-
lations cannot be induced. Event schemata gen-
erated in (Weber et al., 2018) are similar to that
in (Balasubramanian et al., 2013). Event schema
induction algorithm proposed in (Nguyen et al.,
2015) doesn’t induce schemata for relations, but
rather induces the roles for the events. For this
investigation we experiment with the following al-
gorithm.

Chambers-13 (Chambers, 2013): This model
learns event templates from text documents. Each
event template provides a distribution over slots,
where slots are clusters of NPs. Each event tem-
plate also provides a cluster of relations, which is
most likely to appear in the context of the afore-
mentioned slots. We evaluate the schemata of
these relation clusters.

As can be observed from Table 5, the proposed
TFBA performs much better than Chambers-13.
HardClust also performs better than Chambers-13
on all the datasets. From this analysis we infer
that there is a need for algorithms which induce
higher-order schemata for relations, a gap we fill
in this paper. Please note that the experimental
results provided in (Chambers, 2013) for MUC
dataset are for the task of event schema induction,
but in this work we evaluate the relation schemata.
Hence the results in (Chambers, 2013) and re-
sults in this paper are not comparable. Example
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Relation Schema NPs from the induced categories Evaluator Judgment (Human) Suggested Label
Shootings

leave〈A6, B0, C7〉
A6: shooting, shooting incident, double shooting

valid
< shooting >

B0: one person, two people, three people < people >
C7: dead, injured, on edge <injured >

identify〈A1, B1, C5, C6〉
A1: police, officers, huntsville police

valid

< police >
B1: man, victims, four victims < victim(s)>
C5: sunday, shooting staurday, wednesday afternoon <day/time >
C6: apartment, bedroom, building in the neighborhood <place >

shoot〈A7, B6, C1〉
A7: gunman, shooter, smith

valid
< perpetrator >

B6: freeman, slain woman, victims <victim >
C1: friday, friday night, early monday morning < time>

shoot〈A4, B2, C13〉
A4: <num>-year-old man, <num>-year-old george reavis,
<num>-year-old brockton man valid

< victim>

B2: in the leg, in the head, in the neck < body part>
C13: in macon, in chicago, in an alley < location >

say〈A1, B1, C5〉
A1: police, officers, huntsville police

invalid –B1: man, victims, four victims
C5: sunday, shooting staurday, wednesday afternoon

NYT sports

spend〈A0, B16, C3〉
A0: yankees, mets, jets

valid
< team >

B14: $ <num> million, $ <num>, $ <num> billion < money >
C3: <num>, year, last season < year >

win〈A2, B10, C3〉
A2: red sox, team, yankees

valid
< team >

B10: world series, title, world cup < championship >
C3: <num>, year, last season < year >

get〈A4, B4, C1〉
A4: umpire, mike cameron, andre agassi

invalid –B4: ball, lives, grounder
C1: back, forward, <num>-yard line

MUC

tell〈A7, B2, C0〉
A7: medardo gomez, jose azcona, gregorio roza chavez

valid
< politician >

B2: media, reporters, newsmen <media >
C0: today, at <num>, tonight < day/time >

occur〈A9, B5, C10〉
A9: bomb, blast, explosion

valid
< bombing >

B5: near san salvador, here in madrid, in the same office < place >
C10: at <num>, this time, simultaneously < time >

suffer〈A5, B4, C4)
A5: justice maria elena diaz, vargas escobar, judge sofia de roldan

invalid –B4: casualties , car bomb, grenade
C4: settlement of refugees, in san roman, now

Table 4: Examples of schemata induced by TFBA. Please note that some of them are 3-ary while others
are 4-ary. For details about schema induction, please refer to Section 3.2.

Shootings NYT Sports MUC
E1 E2 E3 Avg E1 E2 E3 Avg E1 E2 E3 Avg

HardClust 0.64 0.70 0.64 0.66 0.42 0.28 0.52 0.46 0.64 0.58 0.52 0.58
Chambers-13 0.32 0.42 0.28 0.34 0.08 0.02 0.04 0.07 0.28 0.34 0.30 0.30

TFBA 0.82 0.78 0.68 0.76 0.86 0.6 0.64 0.70 0.58 0.38 0.48 0.48

Table 5: Higher-order RSI accuracies of various methods on the three datasets. Induced schemata for
each dataset and method are evaluated by three human evaluators, E1, E2, and E3. TFBA performs
better than HardClust for Shootings and NYT Sports datasets. Even though HardClust achieves better
accuracy on MUC dataset, it has several limitations, see Section 4 for more details. Chambers-13 solves
a slightly different problem called event schema induction, for more details about the comparison with
Chambers-13 see Section 4.1.

schemata induced by TFBA and (Chambers-13)
are provided as part of the supplementary mate-
rial.

5 Conclusion

Higher order Relation Schema Induction (HRSI)
is an important first step towards building domain-
specific Knowledge Graphs (KGs). In this pa-
per, we proposed TFBA, a tensor factorization-
based method for higher-order RSI. To the best
of our knowledge, this is the first attempt at in-
ducing higher-order (n-ary) schemata for relations
from unlabeled text. Rather than factorizing a

severely sparse higher-order tensor directly, TFBA
performs back-off and jointly factorizes multiple
lower-order tensors derived out of the higher-order
tensor. In the second step, TFBA solves a con-
strained clique problem to induce schemata out
of multiple binary schemata. We are hopeful that
the backoff-based factorization idea exploited in
TFBA will be useful in other sparse factorization
settings.
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Abstract

State-of-the-art relation extraction ap-
proaches are only able to recognize rela-
tionships between mentions of entity ar-
guments stated explicitly in the text and
typically localized to the same sentence.
However, the vast majority of relations are
either implicit or not sententially local-
ized. This is a major problem for Knowl-
edge Base Population, severely limiting
recall. In this paper we propose a new
methodology to identify relations between
two entities, consisting of detecting a very
large number of unary relations, and us-
ing them to infer missing entities. We de-
scribe a deep learning architecture able to
learn thousands of such relations very ef-
ficiently by using a common deep learn-
ing based representation. Our approach
largely outperforms state of the art rela-
tion extraction technology on a newly in-
troduced web scale knowledge base pop-
ulation benchmark, that we release to the
research community.

1 Introduction

Knowledge Base Population (KBP) from text is
the problem of extracting relations between enti-
ties with respect to a given schema, usually de-
fined by a set of types and relations. The facts
added to the KB are triples, consisting of two en-
tities connected by a relation. Although providing
explicit provenance for the triples is often a sub-
goal in KBP, we focus on the case where correct
triples are gathered from text without necessarily
annotating any particular text with a relation. Hu-
mans are able to perform very well on the task of
understanding relations in text. For example, if the
target relation is presidentOf, anyone will be able

to detect an occurrence of this relation between the
entities TRUMP and UNITED STATES from both
the sentences “Trump issued a presidential mem-
orandum for the United States” and “The Houston
Astros will visit President Donald Trump and the
White House on Monday”. However, the first ex-
ample expresses an explicit relation between the
two entities, while the second states the same re-
lation implicitly and requires some background
knowledge and inference to identify it properly. In
fact, the entity UNITED STATES is not even men-
tioned explicitly in the text, and it is up to the
reader to recall that US presidents live in the White
House, and therefore people visiting it are visiting
the US president.

Very often, relations expressed in text are im-
plicit. This reflects in the low recall of the cur-
rent KBP relation extraction methods, that are
mostly based on recognizing lexical-syntactic con-
nections between two entities within the same sen-
tence. The state-of-the-art systems are affected
by very low performance, close to 16.6% F1, as
shown in the latest TAC-KBP evaluation cam-
paigns and in the open KBP evaluation bench-
mark1. Existing approaches to dealing with im-
plicit information such as textual entailment de-
pend on unsolved problems like inducing entail-
ment rules from text.

In this paper, we address the problem of
identifying implicit relations in text using a
radically different approach, consisting of
reducing the problem of identifying binary re-
lations into a much larger set of simpler unary
relations. For example, to build a Knowl-
edge Base (KB) about presidents in the G8
countries, the presidentOf relation can be
expanded to presidentOf :UNITED STATES, pres-
identOf :GERMANY, presidentOf :JAPAN, and so

1https://kbpo.stanford.edu
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on. For all these unary relations, we train a multi-
class (and in other cases, multi-label) classifier
from all the available training data. This classifier
takes textual evidence where only one entity is
identified (e.g. ANGELA MERKEL) and predicts
a confidence score for each unary relation. In
this way, ANGELA MERKEL will be assigned to
the unary relation presidentOf :GERMANY,
which in turn generates the triple
〈ANGELA MERKEL presidentOf GERMANY〉.

To implement the idea above, we explore the
use of knowledge-level supervision, sometimes
called distant supervision, to train a deep learning
based approach. The training data in this approach
is a knowledge base and an unannotated corpus.
A pre-existing Entity Detection and Linking sys-
tem first identifies and links mentions of entities in
the corpus. For each entity, the system gathers its
context set, the contexts (e.g. sentences or token
windows) where it is mentioned. The context set
forms the textual evidence for a multi-class, multi-
label deep network. The final layer of the network
is vector of unary relation predictions and the in-
termediate layers are shared. This architecture al-
lows us to efficiently train thousands of unary rela-
tions, while reusing the feature representations in
the intermediate layers across relations as a form
of transfer learning. The predictions of this net-
work represent the probability for the input entity
to belong to each unary relation.

To demonstrate the effectiveness of our ap-
proach we developed a new KBP benchmark, con-
sisting of extracting unseen DBPedia triples from
the text of a web crawl, using a portion of DBpe-
dia to train the model. As part of the contributions
for this paper, we release the benchmark to the re-
search community providing the software needed
to generate it from Common Crawl and DBpedia
as an open source project2.

As a baseline, we adapt a state of the art
deep learning based approach for relation extrac-
tion (Lin et al., 2016). Our experiments clearly
show that using unary relations to generate new
triples greatly complements traditional binary ap-
proaches. An analysis of the data shows that our
approach is able to capture implicit information
from textual mentions and to highlight the reasons
why the assignments have been made.

The paper is structured as follows. In section 2
we describe the state of the art in distantly super-

2https://github.com/IBM/cc-dbp

vised KBP methodologies, with a focus on knowl-
edge induction applications. Section 3 introduces
the use of Unary Relations for KBP and section
4 outlines the process for producing and training
them. Section 5 describes a deep learning archi-
tecture able to recognize unary relations from tex-
tual evidence. In section 6 we describe the bench-
mark for evaluation. Section 7 provides an exten-
sive evaluation of unary relations, and a saliency
map exploration of what the deep learning model
has learned. Section 8 concludes the paper high-
lighting research directions for future work.

2 Related Work

Binary relation extraction using distant supervi-
sion has a long history (Surdeanu et al., 2012;
Mintz et al., 2009). Mentions of entities from the
knowledge base are located in text. When two en-
tities are mentioned in the same sentence that sen-
tence becomes part of the evidence for the relation
(if any) between those entities. The set of sen-
tences mentioning an entity pair is used in a ma-
chine learning model to predict how the entities
are related, if at all.

Deep learning has been applied to binary rela-
tion extraction. CNN-based (Zeng et al., 2014),
LSTM-based (Xu et al., 2015), attention based
(Wang et al., 2016) and compositional embedding
based (Gormley et al., 2015) models have been
trained successfully using a sentence as the unit
of context. Recently, cross sentence approaches
have been explored by building paths connecting
the two identified arguments through related enti-
ties (Peng et al., 2017; Zeng et al., 2016). These
approaches are limited by requiring both entities
to be mentioned in a textual context. The context
aggregation approaches of state-of-the-art neural
models, max-pooling (Zeng et al., 2015) and at-
tention (Lin et al., 2016), do not consider that dif-
ferent contexts may contribute to the prediction in
different ways. Instead, the context pooling only
determines the degree of a sentence’s contribution
to the relation prediction.

TAC-KBP is a long running challenge for
knowledge base population. Effective systems
in these competitions combine many approaches
such as rule-based relation extraction, directly su-
pervised linear and neural network extractors, dis-
tantly supervised neural network models (Zhang
et al., 2016) and tensor factorization approaches
to relation prediction. Compositional Universal
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Schema is an approach based on combining the
matrix factorization approach of universal schema
(Riedel et al., 2013), with repesentations of tex-
tual relations produced by an LSTM (Chang et al.,
2016). The rows of the universal schema matrix
are entity pairs, and will only be supported by a
textual relation if they occur in a sentence together.

Other approaches to relational knowledge in-
duction have used distributed representations for
words or entities and used a model to predict the
relation between two terms based on their seman-
tic vectors (Drozd et al., 2016). This enables the
discovery of relations between terms that do not
co-occur in the same sentence. However, the dis-
tributed representation of the entities is developed
from the corpus without any ability to focus on the
relations of interest. One example of such work is
LexNET, which developed a model using the dis-
tributional word vectors of two terms to predict
lexical relations between them (DSh). The term
vectors are concatenated and used as input to a
single hidden layer neural network. Unlike our ap-
proach to unary relations the term vectors are pro-
duced by a standard relation-independent model
of the term’s contexts such as word2vec (Mikolov
et al., 2013).

Unary relations can be considered to be similar
to types. Work on ontology population has con-
sidered the general distribution of a term in text to
predict its type (Cimiano and Völker, 2005). Like
the method of DSh, this does not customize the
representation of an entity to a set of target rela-
tions.

3 Unary vs Binary Relations

The basic idea presented in this paper is that
in many cases relation extraction problems can
be reduced to sets of simpler and inter-related
unary relation extraction problems. This is pos-
sible by providing a specific value to one of the
two arguments, transforming the relations into a
set of categories. For example, the livesIn re-
lation between persons and countries can be de-
composed into 195 relations (one relation for
each country), including livesIn:UNITED STATES,
livesIn:CANADA, and so on. The argument that is
combined with the binary relation to produce the
unary relation is called the fixed argument while
the other argument is the filler argument. The KB
extension of a unary relation is the set of all filler
arguments in the KB, and the corpus extension is

the subset of the KB extension that occurs in the
corpus.

A requisite for a unary relation is that in the
training KB there should exist many triples that
share a relation and a particular entity as one ar-
gument, thus providing enough training for each
unary classifier. Therefore, in the example above,
we will not likely be able to generate predicates for
all the 195 countries, because some of them will
either not occur at all in the training data or they
will be very infrequent. However, even in cases
where arguments tend to follow a long tail distri-
bution, it makes sense to generate unary predicates
for the most frequent ones.
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Figure 1: Minimum Corpus Extension to Number
of Unary Relations

Figure 1 shows the relationship between the
threshold for the size of the corpus extension of
a unary relation and the number of different unary
relations that can be found in our dataset. The rela-
tionship is approximately linear on a log-log scale.
There are 26 unary relations with a corpus exten-
sion of at least 10,000. These relations include:

• hasLocation:UNITED STATES

• background:GROUP OR BAND

• kingdom:ANIMAL

• language:ENGLISH LANGUAGE

Lowering the threshold to 100 we have 8711 unary
relations and we get close to 1M unary relations
with more than 10 entities.

In a traditional binary KBP task a triple has a
relevant context set if the two entities occur at
least once together in the corpus - where the notion
of ‘together’ is typically intra-sentential (within a
single sentence). In KBP based on unary relations,
a triple 〈FILLER rel FIXED〉 has a relevant context
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set if the unary relation rel:FIXED has the filler ar-
gument in its corpus extension, i.e. the filler oc-
curs in the corpus.

Both approaches are limited in different
important respects. KBP with unary re-
lations can only produce triples when fix-
ing a relation and argument provides a rela-
tively large corpus extension. Triples such as
〈BARACK OBAMA spouse MICHELLE OBAMA〉
cannot be extracted in this way, since neither
Barack nor Michelle Obama have a large set of
spouses. The limitation of binary relation extrac-
tion is that the arguments must occur together. But
for many triples, such as those relating to a per-
son’s occupation, a film’s genre or a company’s
product type, the second argument is often not
given explicitly.

In both cases, a relevant context set is a neces-
sary but not sufficient condition for extracting the
triple from text, since the context set may not ex-
press (even implicitly) the relation. Figure 2 shows
the number of triples in our dataset that have a rel-
evant context set with unary relations exclusively,
binary relations exclusively and both unary and bi-
nary. The corpus extension threshold for the unary
relations is 100.

2,783,357

199,515

566,990

Uniquely Unary Uniquely Binary Both

Figure 2: Triples with Relevant Context Sets Per-
Relation Style

Although unary relations could also be
viewed as types, we argue that it is preferable
to consider them as relations. For example,
if the unary relation lives in:UNITED STATES

is represented as the type US-PERSON, it has
no structured relationship to the type US-
COMPANY (based in:UNITED STATES). So
the inference rule that companies tend to em-
ploy people who live in the countries they

are based in (〈company employs person〉
∧ 〈company based in country〉 ⇒
〈person lives in country〉) is not representable.

4 Training and Using Unary Relation
Classifiers

A unary relation extraction system is a multi-class,
multi-label classifier that takes an entity as input
and returns its probability as a slot filler for each
relation. In this paper, we represent each entity by
the set of contexts (sentences in our experiments)
where their mentions have been located; we call
them context sets.

The process of training and applying a KBP sys-
tem using unary relations is outlined step-by-step
below.

• Build a set of unary relations that have a cor-
pus extension above some threshold.

• Locate the entities from the knowledge graph
in text.

• Create a context set for each entity from all
the sentences that mention the entity.

• Label the context set with the unary relations
(if any) for the entity. The negatives for each
unary relation will be all the entities where
that unary relation is not true.

• Train a model to determine the unary rela-
tions for any given entity from its context set.

• Apply the model to all the entities in the cor-
pus, including those that do not exist in the
knowledge graph.

• Convert the extracted unary relations back to
binary relations and add to the knowledge
graph as new edges. Any new entities are
added to the knowledge graph as new nodes.

A closer look to the generated training data can
provide insight in the value of unary relations for
distant supervision.

Below are example binary contexts relating an
organization to a country. The two arguments are
shown in bold. Some contexts where two entities
occur together (relevant contexts) will imply a re-
lation between them, while others will not. In the
first context, Philippines and Eagle Cement are
not textually related. While in the second context,
Dyna Management Services is explicitly stated
to be located in Bermuda.
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Figure 3: Unary Relational Knowledge Induction Architecture Overview

The company competes with Holcim
Philippines, the local unit of Swiss
company LafargeHolcim, and Eagle
Cement, a company backed by diver-
sified local conglomerate San Miguel
which is aggressively expanding into in-
frastructure.

... said Richmond, who is vice presi-
dent of Dyna Management Services, a
Bermuda-based insurance management
company.

On the other hand, there are many triples that
have no relevant context using binary extraction,
but can be supported with unary extraction. JB
Hi-Fi is a company located in Australia, (unary
relation hasLocation:AUSTRALIA). Although “JB
Hi-Fi” never occurs together with “Australia” in
our corpus, we can gather implicit textual evidence
for this relation from its unary relation context
sets. Furthermore, even cases where there is a rel-
evant binary context set, the contexts may not pro-
vide enough or any textual support for the relation,
while the unary context sets might.

Woolworths, Coles owner Wesfarmers,
JB Hi-Fi and Harvey Norman were also
trading higher.

JB Hi-Fi in talks to buy The Good Guys

In equities news, protective glove and
condom maker Ansell and JB Hi-Fi are
slated to post half year results, while
Bitcoin group is expected to list on
ASX.

The key indicators are: “ASX”, which is an
Australian stock exchange, and the other Aus-
tralian businesses mentioned, such as Woolworths,

Wesfarmers, Harvey Norman, The Good Guys,
Ansell and Bitcoin group. There is no strict logical
entailment, indicating JB Hi-Fi is located in Aus-
tralia, instead there is textual evidence that makes
it probable.

5 Architecture for Unary Relations

Figure 3 illustrates the overall architecture. First
an Entity Detection and Linking system identifies
occurrences in text of entities that are or should
be in the knowledge base. Second, the contexts
(here we use a sentence as the unit of context) for
each entity are then gathered into an entity context
set. This context set provides all the sentences that
contain a mention of a particular entity and is the
textual evidence for what triples are true for the
entity. Third, the context set is then fed into a deep
neural network, given in Figure 4. The output of
the network is a set of predicted triples that can be
added to the knowledge base.

Figure 4 shows the architecture of the deep
learning model for unary relation based KBP.
From an entity context set, each sentence is pro-
jected into a vector space using a piecewise con-
volutional neural network (Zeng et al., 2015).
The sentence vectors are then aggregated using
a Network-in-Network layer (NiN) (Lin et al.,
2013).

The sentence-to-vector portion of the neural ar-
chitecture begins by looking up the words in a
word embedding table. The word embeddings are
initialized with word2vec (Mikolov et al., 2013)
and updated during training. The position of each
word relative to the entity is also looked up in
a position embedding table. Each word vector
is concatenated with its position vector to pro-
duce each word representation vector. A piecewise
max-pooled convolution (PCNN) is applied over

1589



…co-founded Allen & Shariff in 1993…
-1       0   0    0     1   2          

…

…

…

…

…

Sentence To Vector

Sentence Vector 

Aggregation

Figure 4: Deep Learning Architecture for Unary Relations

the resulting sentence matrix, with the pieces de-
fined by the position of the entity argument: before
the entity, the entity, and after the entity. A fully
connected layer then produces the sentence vector
representation. This is a refinement of the Neural
Relation Extraction (NRE) (Lin et al., 2016) ap-
proach to sentence-to-vector mapping. The pres-
ence of only a single argument simply reduces
from two position encoding vectors to one. The
fully connected layer over the PCNN is an addi-
tion.

The sentence vector aggregation portion of the
neural architecture uses a Network-in-Network
over the sentence vectors. Network-in-Network
(NiN) (Lin et al., 2013) is an approach of 1x1
CNNs to image processing. The width-1 CNN
we use for mention aggregation is an adaptation
to a set of sentence vectors. The result is max-
pooled and put through a fully connected layer to
produce the score for each unary relation. Un-
like a maximum aggregation used in many pre-
vious works (Riedel et al., 2010; Zeng et al.,
2015) for binary relation extraction the evidence
from many contexts can be combined to pro-
duce a prediction. Unlike attention-based pooling
also used previously for binary relation extraction
(Lin et al., 2016), the different contexts can con-
tribute to different aspects, not just different de-
grees. For example, a prediction that a city is in
France might depend on the conjunction of sev-
eral facets of textual evidence linking the city to
the French language, the Euro, and Norman his-
tory.

In contrast, the common maximum aggregation
approach is to move the final prediction layer to
the sentence-to-vector modules and then aggre-
gate by max-pooling the sentence level predic-
tions. This aggregation strategy means that only
the sentence most strongly indicating the relation
contributes to its prediction. We measured the im-
pact of the Network-in-Network sentence vector
aggregation approach on the validation set. Rela-
tive to Network-in-Network aggregation and using
the same hyperparameters, a maximum aggrega-
tion strategy gets two percent lower precision at
one thousand: 66.55% compared to 68.49%.

There are 790 unary relations with at least one
thousand positives in our benchmark. To speed
the training, we divided these into eight sets of
approximately 100 relations each and trained the
models for them in parallel. Unary relations based
on the same binary relation were grouped together
to share useful learned representations. The re-
sulting split also put similar numbers of positive
examples in the training set for each model.

Training continued until no improvement was
found on the validation set. This occurred at be-
tween five and nine epochs. All eight models
were trained with the hyperparameters in Table 1.
Dropout was applied on the penultimate layer, the
max-pooled NiN.

Based on validation set performance, we found
that when larger numbers of relations are trained
together the NiN filters and sentence vector di-
mension must be increased. Of all the hyperpa-
rameters, the training time is most sensitive to the
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Hyperparameter Value
word embedding 50

position embedding 5
PCNN filters 1000

PCNN filter width 3
sentence vector 400

NiN filters 400
dropout 0.5

learnRate 0.003
decay multiplier 0.95

batch size 16
optimizer SGD

Table 1: Hyperparameters used

number of PCNN filters, since these are applied to
every sentence in a context set. We found major
improvements moving from the 230 filters used
for NRE to 1000 filters, but less improvement or
no improvement to increases beyond that.

6 Benchmark

Large KBs and corpora are needed to train KBP
systems in order to collect enough mentions for
each relation. However, most of the existing
Knowledge Base Population tasks are small in size
(e.g. NYT-FB (Riedel et al., 2010) and TAC-
KBP3) or focused on title-oriented-documents
which are not available for most domains (e.g.
WikiReading (Hewlett et al., 2016)). Therefore,
we needed to create a new web-scale knowledge
base population benchmark that we called CC-
DBP4. It combines the text of Common Crawl5

with the triples from 298 frequent relations in DB-
pedia (Auer et al., 2007). Mentions of DBpedia
entities are located in text by gazetteer matching
of the preferred label. We use the October 2017
Common Crawl and the most recent (2016-10)
version of DBpedia, in both cases limited to En-
glish.

We divided the entity pairs into training, vali-
dation and test sets with a 80%, 10%, 10% split.
All triples for a given entity pair are in one of
the three splits. This split increases the challenge,
since many relations could be used to predict oth-
ers (such as birthPlace implying nationality). The
task is to generate new triples for each relation and
rank them according to their probability. We show

3https://tac.nist.gov/
4https://github.com/IBM/cc-dbp
5http://commoncrawl.org

the precision / recall curves and focus on the rel-
ative area under the curves to evaluate the quality
of different systems.

Figure 5 shows the distribution of triples with
relevant unary context sets per relation type.
The relations giving rise to the most triples are
high level relations such as hasLocation, a super-
relation comprised of the sub-relations: coun-
try, state, city, headquarter, hometown, birthPlace,
deathPlace, and others. Interestingly there are 165
years with enough people born in them to produce
unary relations. While these all will have at least
100 relevant context sets, typically the context sets
do not have textual evidence for any birth year.
Perhaps most importantly, there are a large num-
ber of diverse relations that are suitable for a unary
KBP approach. This indicates the broad applica-
bility of our method.

To test what improvement can be found by in-
corporating unary relations into KBP, we combine
the output of a state-of-the-art binary relation ex-
traction system with our unary relation extraction
system. For binary relation extraction, we use a
slightly altered version of the PCNN model from
NRE (Lin et al., 2016), with the addition of a fully
connected layer for each sentence representation
before the max-pooled aggregation over relation
predictions. We found this refinement to perform
slightly better in NYT-FB (Riedel et al., 2010), a
standard dataset for distantly supervised relation
extraction.

The binary and unary systems are trained from
their relevant context sets to predict the triples in
train. The validation set is used to tune hyper-
parameters and choose a stopping point for train-
ing. We combine the output of the two systems by,
for each triple, taking the highest confidence from
each system.

7 Evaluation

Figure 6 shows the precision-recall curves for
unary only, binary only and the combined system.
The unary and binary systems alone achieve simi-
lar performance. But they are effective at very dif-
ferent triples. This is shown in the large gains from
combining these complementary approaches. For
example, at 0.5 precision, the combined approach
has a recall of more than double (15,750 vs 7,400)
compared to binary alone, which represents over
100% relative improvement.

The recall is given as a triple count rather than
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Figure 5: Distribution of Unary Relation Counts

a percentage. Traditional attempts to measure the
recall of KBP systems use the set of all triples ex-
plicitly stated in text for the denominator of recall.
This is unsuitable for evaluating our approach be-
cause the system is able to make probabilistic pre-
dictions based on implicit and partial textual ev-
idence, thus producing correct triples outside the
classic recall basis.
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Figure 6: Precision Recall Curves for KBP

7.1 Saliency Maps
To gain some insight into how the unary KBP sys-
tem is able to extract implicit knowledge we turn
to saliency maps (Simonyan et al., 2014). By find-
ing the derivative of a particular prediction with
respect to the inputs, we can discover a locally lin-
ear approximation of how much each part of the
input contributed (Zeiler and Fergus, 2014).

Cold Lake Provincial Park (Alberta, Canada) is
mentioned in two sentences in the Common Crawl
English text. The unary relational knowledge
induction system predicts hasLocation:CANADA

with the highest confidence (over 90%). Both sen-
tences contribute to the decision. We see high
weight from words including “cold”, “provin-
cial” and “french”. A handful of countries have
“provincial parks” including Argentina, Belgium,
South Africa and Canada. Belgium and Canada
have substantial French speaking populations and
Canada has by far the coldest climate.

• located within 10 minutes of

cold lake with quick access to

OOV ridge ski hill , cold lake
provincial park and french bay .

• welcome to cold lake provincial
park on average 4.00 pages are

viewed each , by the estimated

959 daily visitors .

Rock Kills Kid is a band mentioned twice in the
corpus. From this context set, the relation back-
ground:GROUP OR BAND is predicted with high
confidence. The fact that “Kid” occurs in the name
of the entity seems to be important in identifying it
as a musical group. The first sentence also draws
focus to the band’s connection to rock and pop.
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While the second sentence seems to recognize the
band - song (year) pattern as well as the compari-
son to Duran Duran.

• the latest stylish pop synth band

is rock kills kid .

• rock kills kid - are you

nervous ? ( 2006 ) who ever

thought duran duran would become

so influential ?

The Japanese singer-songwriter Masaki
Haruna, aka Klaha is mentioned twice in the
corpus. From this context set, the relation back-
ground:SOLO SINGER is predicted with high
confidence. The first sentence clearly establishes
the connection to music while the second indi-
cates that Klaha is a solo artist. The conjunction
of these two facets, accomplished through the
context vector aggregation using NiN permits the
conclusion of SOLO SINGER.

• tvk music chat interview klaha
parade .

• klaha tvk music chat OOV red

scarf interview the tv - k folks

did after klaha went solo .

8 Conclusions

In this paper we presented a new methodology to
identify relations between entities in text. Our ap-
proach, focusing on unary relations, can greatly
improve the recall in automatic construction and
updating of knowledge bases by making use of
implicit and partial textual markers. Our method
is extremely effective and complement very nicely
existing binary relation extraction methods for
KBP.

This is just the first step in our wider research
program on KBP, whose goal is to improve re-
call by identifying implicit information from texts.
First of all, we plan to explore the use of more ad-
vanced forms of entity detection and linking, in-
cluding propagating features from the EDL sys-
tem forward for both unary and binary deep mod-
els. In addition we plan to exploit unary and bi-
nary relations as source of evidence to bootstrap a
probabilistic reasoning approach, with the goal of
leveraging constraints from the KB schema such

as domain, range and taxonomies. We will also
integrate the new triples gathered from textual evi-
dence with new triples predicted from existing KB
relationships by knowledge base completion.
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Abstract

Entity linking involves aligning textual
mentions of named entities to their corre-
sponding entries in a knowledge base. En-
tity linking systems often exploit relations
between textual mentions in a document
(e.g., coreference) to decide if the linking
decisions are compatible. Unlike previous
approaches, which relied on supervised
systems or heuristics to predict these rela-
tions, we treat relations as latent variables
in our neural entity-linking model. We in-
duce the relations without any supervision
while optimizing the entity-linking sys-
tem in an end-to-end fashion. Our multi-
relational model achieves the best reported
scores on the standard benchmark (AIDA-
CoNLL) and substantially outperforms its
relation-agnostic version. Its training also
converges much faster, suggesting that the
injected structural bias helps to explain
regularities in the training data.

1 Introduction

Named entity linking (NEL) is the task of as-
signing entity mentions in a text to corresponding
entries in a knowledge base (KB). For example,
consider Figure 1 where a mention “World Cup”
refers to a KB entity FIFA WORLD CUP. NEL
is often regarded as crucial for natural language
understanding and commonly used as preprocess-
ing for tasks such as information extraction (Hoff-
mann et al., 2011) and question answering (Yih
et al., 2015).

Potential assignments of mentions to entities are
regulated by semantic and discourse constraints.
For example, the second and third occurrences of
mention “England” in Figure 1 are coreferent and
thus should be assigned to the same entity. Be-

sides coreference, there are many other relations
between entities which constrain or favor certain
alignment configurations. For example, consider
relation participant in in Figure 1: if “World Cup”
is aligned to the entity FIFA WORLD CUP then
we expect the second “England” to refer to a foot-
ball team rather than a basketball one.

NEL methods typically consider only corefer-
ence, relying either on off-the-shelf systems or
some simple heuristics (Lazic et al., 2015), and
exploit them in a pipeline fashion, though some
(e.g., Cheng and Roth (2013); Ren et al. (2017))
additionally exploit a range of syntactic-semantic
relations such as apposition and possessives. An-
other line of work ignores relations altogether and
models the predicted sequence of KB entities as a
bag (Globerson et al., 2016; Yamada et al., 2016;
Ganea and Hofmann, 2017). Though they are able
to capture some degree of coherence (e.g., pref-
erence towards entities from the same general do-
main) and are generally empirically successful, the
underlying assumption is too coarse. For example,
they would favor assigning all the occurrences of
“England” in Figure 1 to the same entity.

We hypothesize that relations useful for NEL
can be induced without (or only with little) domain
expertise. In order to prove this, we encode rela-
tions as latent variables and induce them by opti-
mizing the entity-linking model in an end-to-end
fashion. In this way, relations between mentions
in documents will be induced in such a way as to
be beneficial for NEL. As with other recent ap-
proaches to NEL (Yamada et al., 2017; Ganea and
Hofmann, 2017), we rely on representation learn-
ing and learn embeddings of mentions, contexts
and relations. This further reduces the amount
of human expertise required to construct the sys-
tem and, in principle, may make it more portable
across languages and domains.

Our multi-relational neural model achieves an
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World Cup   1966 was held in   England   ….   England   won… The final saw   England   beat   West Germany   .

coreference beatlocated_in

FIFA_World_Cup
FIBA_Basketball_

World_Cup
...

West_Germany
Germany_national_
football_team

Germany_national_
basketball_team

...

England
England_national_
football_team

England_national_
basketball_team

...

England
England_national
_football_team
England_national
_basketball_team

...

participant_in

Figure 1: Example for NEL, linking each mention to an entity in a KB (e.g. “World Cup” to
FIFA WORLD CUP rather than FIBA BASKETBALL WORLD CUP). Note that the first and the sec-
ond “England” are in different relations to “World Cup”.

improvement of 0.85% F1 over the best re-
ported scores on the standard AIDA-CoNLL
dataset (Ganea and Hofmann, 2017). Substan-
tial improvements over the relation-agnostic ver-
sion show that the induced relations are indeed
beneficial for NEL. Surprisingly its training also
converges much faster: training of the full model
requires ten times shorter wall-clock time than
what is needed for estimating the simpler relation-
agnostic version. This may suggest that the in-
jected structural bias helps to explain regularities
in the training data, making the optimization task
easier. We qualitatively examine induced rela-
tions. Though we do not observe direct counter-
parts of linguistic relations, we, for example, see
that some of the induced relations are closely re-
lated to coreference whereas others encode forms
of semantic relatedness between the mentions.

2 Background and Related work

2.1 Named entity linking problem

Formally, given a document D containing a list of
mentions m1, ..., mn, an entity linker assigns to
each mi an KB entity ei or predicts that there is no
corresponding entry in the KB (i.e., ei = NILL).

Because a KB can be very large, it is stan-
dard to use an heuristic to choose potential can-
didates, eliminating options which are highly un-
likely. This preprocessing step is called candidate
selection. The task of a statistical model is thus re-
duced to choosing the best option among a smaller
list of candidates Ci = (ei1, ..., eili). In what fol-
lows, we will discuss two classes of approaches
tackling this problem: local and global modeling.

2.2 Local and global models
Local models rely only on local contexts of men-
tions and completely ignore interdependencies be-
tween the linking decisions in the document (these
interdependencies are usually referred to as coher-
ence). Let ci be a local context of mention mi and
Ψ(ei, ci) be a local score function. A local model
then tackles the problem by searching for

e∗
i = arg max

ei∈Ci

Ψ(ei, ci) (1)

for each i ∈ {1, ..., n} (Bunescu and Paşca, 2006;
Lazic et al., 2015; Yamada et al., 2017).

A global model, besides using local context
within Ψ(ei, ci), takes into account entity co-
herency. It is captured by a coherence score func-
tion Φ(E, D):

E∗ = arg max
E∈C1×...×Cn

n∑

i=1

Ψ(ei, ci) + Φ(E, D)

where E = (e1, ..., en). The coherence score
function, in the simplest form, is a sum over
all pairwise scores Φ(ei, ej , D) (Ratinov et al.,
2011; Huang et al., 2015; Chisholm and Hachey,
2015; Ganea et al., 2016; Guo and Barbosa, 2016;
Globerson et al., 2016; Yamada et al., 2016), re-
sulting in:

E∗ = arg max
E∈C1×...×Cn

n∑

i=1

Ψ(ei, ci)+

∑

i ̸=j

Φ(ei, ej , D) (2)

A disadvantage of global models is that exact
decoding (Equation 2) is NP-hard (Wainwright
et al., 2008). Ganea and Hofmann (2017) over-
come this using loopy belief propagation (LBP),
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an approximate inference method based on mes-
sage passing (Murphy et al., 1999). Globerson
et al. (2016) propose a star model which approxi-
mates the decoding problem in Equation 2 by ap-
proximately decomposing it into n decoding prob-
lems, one per each ei.

2.3 Related work

Our work focuses on modeling pairwise score
functions Φ and is related to previous approaches
in the two following aspects.

Relations between mentions

A relation widely used by NEL systems is corefer-
ence: two mentions are coreferent if they refer to
the same entity. Though, as we discussed in Sec-
tion 1, other linguistic relations constrain entity as-
signments, only a few approaches (e.g., Cheng and
Roth (2013); Ren et al. (2017)), exploit any rela-
tions other than coreference. We believe that the
reason for this is that predicting and selecting rel-
evant (often semantic) relations is in itself a chal-
lenging problem.

In Cheng and Roth (2013), relations between
mentions are extracted using a labor-intensive ap-
proach, requiring a set of hand-crafted rules and a
KB containing relations between entities. This ap-
proach is difficult to generalize to languages and
domains which do not have such KBs or the set-
tings where no experts are available to design the
rules. We, in contrast, focus on automating the
process using representation learning.

Most of these methods relied on relations pre-
dicted by external tools, usually a coreference sys-
tem. One notable exception is Durrett and Klein
(2014): they use a joint model of entity linking and
coreference resolution. Nevertheless their corefer-
ence component is still supervised, whereas our
relations are latent even at training time.

Representation learning

How can we define local score functions Ψ and
pairwise score functions Φ? Previous approaches
employ a wide spectrum of techniques.

At one extreme, extensive feature engineering
was used to define useful features. For example,
Ratinov et al. (2011) use cosine similarities be-
tween Wikipedia titles and local contexts as a fea-
ture when computing the local scores. For pair-
wise scores they exploit information about links
between Wikipedia pages.

At the other extreme, feature engineering is al-
most completely replaced by representation learn-
ing. These approaches rely on pretrained embed-
dings of words (Mikolov et al., 2013; Penning-
ton et al., 2014) and entities (He et al., 2013; Ya-
mada et al., 2017; Ganea and Hofmann, 2017) and
often do not use virtually any other hand-crafted
features. Ganea and Hofmann (2017) showed
that such an approach can yield SOTA accuracy
on a standard benchmark (AIDA-CoNLL dataset).
Their local and pairwise score functions are

Ψ(ei, ci) = eT
i Bf(ci)

Φ(ei, ej , D) =
1

n − 1
eT

i Rej (3)

where ei, ej ∈ Rd are the embeddings of entity
ei, ej , B,R ∈ Rd×d are diagonal matrices. The
mapping f(ci) applies an attention mechanism to
context words in ci to obtain a feature representa-
tions of context (f(ci) ∈ Rd).

Note that the global component (the pairwise
scores) is agnostic to any relations between enti-
ties or even to their ordering: it models e1, ..., en

simply as a bag of entities. Our work is in line with
Ganea and Hofmann (2017) in the sense that fea-
ture engineering plays no role in computing local
and pair-wise scores. Furthermore, we argue that
pair-wise scores should take into account relations
between mentions which are represented by rela-
tion embeddings.

3 Multi-relational models

3.1 General form

We assume that there are K latent relations. Each
relation k is assigned to a mention pair (mi,mj)
with a non-negative weight (‘confidence’) αijk.
The pairwise score (mi,mj) is computed as a
weighted sum of relation-specific pairwise scores
(see Figure 2, top):

Φ(ei, ej , D) =
K∑

k=1

αijkΦk(ei, ej , D)

Φk(ei, ej , D) can be any pairwise score func-
tion, but here we adopt the one from Equation 3.
Namely, we represent each relation k by a diago-
nal matrix Rk ∈ Rd×d, and

Φk(ei, ej , D) = eT
i Rkej

1597



The weights αijk are normalized scores:

αijk =
1

Zijk
exp

{
fT (mi, ci)Dkf(mj , cj)√

d

}

(4)
where Zijk is a normalization factor, f(mi, ci) is
a function mapping (mi, ci) onto Rd, and Dk ∈
Rd×d is a diagonal matrix.

ei,mi,ci ej,mj,cj

αij1Φ1(ei,ej,D)

αij2Φ2(ei,ej,D)

αij3Φ3(ei,ej,D)

ei,mi,ci ej,mj,cj

(general form)

(rel-norm)

normalize over relations: αij1 + αij2 + αij3 = 1 

ei,mi,ci ej,mj,cj

(ment-norm)

normalize over mentions: 
αi12 + αi22 + … + αij2 + … + αin2 = 1 

e1,m1,c1

en,mn,cn

...

...

Figure 2: Multi-relational models: general form
(top), rel-norm (middle) and ment-norm (bottom).
Each color corresponds to one relation.

In our experiments, we use a single-layer neural
network as f (see Figure 3) where ci is a concate-
nation of the average embedding of words in the
left context with the average embedding of words
in the right context of the mention.1

As αijk is indexed both by mention index j
and relation index k, we have two choices for
Zijk: normalization over relations and normaliza-
tion over mentions. We consider both versions of
the model.

1We also experimented with LSTMs but we could not pre-
vent them from severely overfitting, and the results were poor.

3.2 Rel-norm: Relation-wise normalization
For rel-norm, coefficients αijk are normalized
over relations k, in other words,

Zijk =

K∑

k′=1

exp

{
fT (mi, ci)Dk′f(mj , cj)√

d

}

so that
∑K

k=1 αijk = 1 (see Figure 2, middle). We
can also re-write the pairwise scores as

Φ(ei, ej , D) = eT
i Rijej (5)

where Rij =
∑K

k=1 αijkRk.

In foreign policy        Bill Clinton    ordered U.S. military  

tanh, dropout

Figure 3: Function f(mi, ci) is a single-layer neu-
ral network, with tanh activation function and a
layer of dropout on top.

Intuitively, αijk is the probability of assigning a
k-th relation to a mention pair (mi,mj). For ev-
ery pair rel-norm uses these probabilities to choose
one relation from the pool and relies on the corre-
sponding relation embedding Rk to compute the
compatibility score.

For K = 1 rel-norm reduces (up to a scal-
ing factor) to the bag-of-entities model defined in
Equation 3.

In principle, instead of relying on the linear
combination of relation embeddings matrices Rk,
we could directly predict a context-specific rela-
tion embedding Rij = diag{g(mi, ci,mj , cj)}
where g is a neural network. However, in prelim-
inary experiments we observed that this resulted
in overfitting and poor performance. Instead, we
choose to use a small fixed number of relations as
a way to constrain the model and improve gener-
alization.

3.3 Ment-norm: Mention-wise normalization
We can also normalize αijk over j:

Zijk =
n∑

j′=1
j′ ̸=i

exp

{
fT (mi, ci)Dkf(mj′ , cj′)√

d

}
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This implies that
∑n

j=1,j ̸=i αijk = 1 (see Figure 2,
bottom). If we rewrite the pairwise scores as

Φ(ei, ej , D) =
K∑

k=1

αijke
T
i Rkej , (6)

we can see that Equation 3 is a special case of
ment-norm when K = 1 and D1 = 0. In other
words, Ganea and Hofmann (2017) is our mono-
relational ment-norm with uniform α.

The intuition behind ment-norm is that for each
relation k and mention mi, we are looking for
mentions related to mi with relation k. For each
pair of mi and mj we can distinguish two cases:
(i) αijk is small for all k: mi and mj are not re-
lated under any relation, (ii) αijk is large for one
or more k: there are one or more relations which
are predicted for mi and mj .

In principle, rel-norm can also indirectly handle
both these cases. For example, it can master (i) by
dedicating a distinct ‘none’ relation to represent
lack of relation between the two mentions (with
the corresponding matrix Rk set to 0). Though
it cannot assign large weights (i.e., close to 1) to
multiple relations (as needed for (ii)), it can in
principle use the ‘none’ relation to vary the proba-
bility mass assigned to the rest of relations across
mention pairs, thus achieving the same effect (up
to a multiplicative factor). Nevertheless, in con-
trast to ment-norm, we do not observe this behav-
ior for rel-norm in our experiments: the inductive
basis seems to disfavor such configurations.

Ment-norm is in line with the current trend
of using the attention mechanism in deep learn-
ing (Bahdanau et al., 2014), and especially related
to multi-head attention of Vaswani et al. (2017).
For each mention mi and for each k, we can inter-
pret αijk as the probability of choosing a mention
mj among the set of mentions in the document.
Because here we have K relations, each mention
mi will have maximally K mentions (i.e. heads
in terminology of Vaswani et al. (2017)) to focus
on. Note though that they use multi-head attention
for choosing input features in each layer, whereas
we rely on this mechanism to compute pairwise
scoring functions for the structured output (i.e. to
compute potential functions in the corresponding
undirected graphical model, see Section 3.4).

Mention padding
A potentially serious drawback of ment-norm is
that the model uses all K relations even in cases

where some relations are inapplicable. For ex-
ample, consider applying relation coreference to
mention “West Germany” in Figure 1. The men-
tion is non-anaphoric: there are no mentions
co-referent with it. Still the ment-norm model
has to distribute the weight across the mentions.
This problem occurs because of the normalization∑n

j=1,j ̸=i αijk = 1. Note that this issue does
not affect standard applications of attention: nor-
mally the attention-weighted signal is input to an-
other transformation (e.g., a flexible neural model)
which can then disregard this signal when it is use-
less. This is not possible within our model, as it
simply uses αijk to weight the bilinear terms with-
out any extra transformation.

Luckily, there is an easy way to circumvent this
problem. We add to each document a padding
mention mpad linked to a padding entity epad. In
this way, the model can use the padding mention
to damp the probability mass that the other men-
tions receive. This method is similar to the way
some mention-ranking coreference models deal
with non-anaphoric mentions (e.g. Wiseman et al.
(2015)).

3.4 Implementation
Following Ganea and Hofmann (2017) we use
Equation 2 to define a conditional random field
(CRF). We use the local score function identical
to theirs and the pairwise scores are defined as ex-
plained above:

q(E|D) ∝ exp





n∑

i=1

Ψ(ei, ci) +
∑

i≠j

Φ(ei, ej , D)





We also use max-product loopy belief propagation
(LBP) to estimate the max-marginal probability

q̂i(ei|D) ≈ max
e1,...,ei−1
ei+1,...,en

q(E|D)

for each mention mi. The final score function for
mi is given by:

ρi(e) = g(q̂i(e|D), p̂(e|mi))

where g is a two-layer neural network and p̂(e|mi)
is the probability of selecting e conditioned only
on mi. This probability is computed by mix-
ing mention-entity hyperlink count statistics from
Wikipedia, a large Web corpus and YAGO.2

2See Ganea and Hofmann (2017, Section 6).
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We minimize the following ranking loss:

L(θ) =
∑

D∈D

∑

mi∈D

∑

e∈Ci

h(mi, e) (7)

h(mi, e) = max
(
0, γ − ρi(e

∗
i ) + ρi(e)

)

where θ are the model parameters, D is a training
dataset, and e∗

i is the ground-truth entity. Adam
(Kingma and Ba, 2014) is used as an optimizer.

For ment-norm, the padding mention is treated
like any other mentions. We add fpad =
f(mpad, cpad) and epad ∈ Rd, an embedding of
epad, to the model parameter list, and tune them
while training the model.

In order to encourage the models to explore dif-
ferent relations, we add the following regulariza-
tion term to the loss function in Equation 7:

λ1

∑

i,j

dist(Ri,Rj) + λ2

∑

i,j

dist(Di,Dj)

where λ1, λ2 are set to −10−7 in our experiments,
dist(x,y) can be any distance metric. We use:

dist(x,y) =

∥∥∥∥
x

∥x∥2
− y

∥y∥2

∥∥∥∥
2

Using this regularization to favor diversity is
important as otherwise relations tend to collapse:
their relation embeddings Rk end up being very
similar to each other.

4 Experiments

We evaluated four models: (i) rel-norm proposed
in Section 3.2; (ii) ment-norm proposed in Sec-
tion 3.3; (iii) ment-norm (K = 1): the mono-
relational version of ment-norm; and (iv) ment-
norm (no pad): the ment-norm without using men-
tion padding. Recall also that our mono-relational
(i.e. K = 1) rel-norm is equivalent to the relation-
agnostic baseline of Ganea and Hofmann (2017).

We implemented our models in PyTorch and
run experiments on a Titan X GPU. The source
code and trained models will be publicly avail-
able at https://github.com/lephong/
mulrel-nel.

4.1 Setup
We set up our experiments similarly to those of
Ganea and Hofmann (2017), run each model 5
times, and report average and 95% confidence in-
terval of the standard micro F1 score (aggregates
over all mentions).

Datasets
For in-domain scenario, we used AIDA-CoNLL
dataset3 (Hoffart et al., 2011). This dataset
contains AIDA-train for training, AIDA-A for
dev, and AIDA-B for testing, having respectively
946, 216, and 231 documents. For out-domain
scenario, we evaluated the models trained on
AIDA-train, on five popular test sets: MSNBC,
AQUAINT, ACE2004, which were cleaned and
updated by Guo and Barbosa (2016); WNED-
CWEB (CWEB), WNED-WIKI (WIKI), which
were automatically extracted from ClueWeb and
Wikipedia (Guo and Barbosa, 2016; Gabrilovich
et al., 2013). The first three are small with 20, 50,
and 36 documents whereas the last two are much
larger with 320 documents each. Following previ-
ous works (Yamada et al., 2016; Ganea and Hof-
mann, 2017), we considered only mentions that
have entities in the KB (i.e., Wikipedia).

Candidate selection
For each mention mi, we selected 30 top candi-
dates using p̂(e|mi). We then kept 4 candidates
with the highest p̂(e|mi) and 3 candidates with the
highest scores eT

(∑
w∈di

w
)
, where e,w ∈ Rd

are entity and word embeddings, di is the 50-word
window context around mi.

Hyper-parameter setting
We set d = 300 and used GloVe (Pennington et al.,
2014) word embeddings trained on 840B tokens
for computing f in Equation 4, and entity embed-
dings from Ganea and Hofmann (2017).4 We use
the following parameter values: γ = 0.01 (see
Equation 7), the number of LBP loops is 10, the
dropout rate for f was set to 0.3, the window size
of local contexts ci (for the pairwise score func-
tions) is 6. For rel-norm, we initialized diag(Rk)
and diag(Dk) by sampling from N (0, 0.1) for all
k. For ment-norm, we did the same except that
diag(R1) was sampled from N (1, 0.1).

To select the best number of relations K, we
considered all values of K ≤ 7 (K > 7 would not
fit in our GPU memory, as some of the documents
are large). We selected the best ones based on the
development scores: 6 for rel-norm, 3 for ment-
norm, and 3 for ment-norm (no pad).

When training the models, we applied early
stopping. For rel-norm, when the model reached

3TAC KBP datasets are no longer available.
4https://github.com/dalab/deep-ed
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91% F1 on the dev set, 5 we reduced the learning
rate from 10−4 to 10−5. We then stopped the train-
ing when F1 was not improved after 20 epochs.
We did the same for ment-norm except that the
learning rate was changed at 91.5% F1.

Note that all the hyper-parameters except K and
the turning point for early stopping were set to the
values used by Ganea and Hofmann (2017). Sys-
tematic tuning is expensive though may have fur-
ther increased the result of our models.

4.2 Results

Methods Aida-B
Chisholm and Hachey (2015) 88.7

Guo and Barbosa (2016) 89.0
Globerson et al. (2016) 91.0
Yamada et al. (2016) 91.5

Ganea and Hofmann (2017) 92.22 ± 0.14
rel-norm 92.41 ± 0.19

ment-norm 93.07 ± 0.27
ment-norm (K = 1) 92.89 ± 0.21
ment-norm (no pad) 92.37 ± 0.26

Table 1: F1 scores on AIDA-B (test set).

Table 1 shows micro F1 scores on AIDA-B
of the SOTA methods and ours, which all use
Wikipedia and YAGO mention-entity index. To
our knowledge, ours are the only (unsupervis-
edly) inducing and employing more than one re-
lations on this dataset. The others use only one
relation, coreference, which is given by simple
heuristics or supervised third-party resolvers. All
four our models outperform any previous method,
with ment-norm achieving the best results, 0.85%
higher than that of Ganea and Hofmann (2017).

Table 2 shows micro F1 scores on 5 out-domain
test sets. Besides ours, only Cheng and Roth
(2013) employs several mention relations. Ment-
norm achieves the highest F1 scores on MSNBC
and ACE2004. On average, ment-norm’s F1 score
is 0.3% higher than that of Ganea and Hofmann
(2017), but 0.2% lower than Guo and Barbosa
(2016)’s. It is worth noting that Guo and Barbosa
(2016) performs exceptionally well on WIKI, but
substantially worse than ment-norm on all other
datasets. Our other three models, however, have
lower average F1 scores compared to the best pre-
vious model.

The experimental results show that ment-norm
outperforms rel-norm, and that mention padding
plays an important role.

5We chose the highest F1 that rel-norm always achieved
without the learning rate reduction.

4.3 Analysis
Mono-relational v.s. multi-relational
For rel-norm, the mono-relational version (i.e.,
Ganea and Hofmann (2017)) is outperformed
by the multi-relational one on AIDA-CoNLL,
but performs significantly better on all five out-
domain datasets. This implies that multi-relational
rel-norm does not generalize well across domains.

For ment-norm, the mono-relational version
performs worse than the multi-relational one on all
test sets except AQUAINT. We speculate that this
is due to multi-relational ment-norm being less
sensitive to prediction errors. Since it can rely on
multiple factors more easily, a single mistake in
assignment is unlikely to have large influence on
its predictions.

Oracle

G&H rel-norm ment-norm
(K=1)

ment-norm

92

92.5

93

93.5

94

94.5 LBP
oracle

Figure 4: F1 on AIDA-B when using LBP and the
oracle. G&H is Ganea and Hofmann (2017).

In order to examine learned relations in a more
transparant setting, we consider an idealistic sce-
nario where imperfection of LBP, as well as mis-
takes in predicting other entities, are taken out of
the equation using an oracle. This oracle, when
we make a prediction for mention mi, will tell
us the correct entity e∗

j for every other mentions
mj , j ̸= i. We also used AIDA-A (development
set) for selecting the numbers of relations for rel-
norm and ment-norm. They are set to 6 and 3,
respectively. Figure 4 shows the micro F1 scores.

Surprisingly, the performance of oracle rel-
norm is close to that of oracle ment-norm, al-
though without using the oracle the difference
was substantial. This suggests that rel-norm is
more sensitive to prediction errors than ment-
norm. Ganea and Hofmann (2017), even with the
help of the oracle, can only perform slightly bet-
ter than LBP (i.e. non-oracle) ment-norm. This
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Methods MSNBC AQUAINT ACE2004 CWEB WIKI Avg
Milne and Witten (2008) 78 85 81 64.1 81.7 77.96

Hoffart et al. (2011) 79 56 80 58.6 63 67.32
Ratinov et al. (2011) 75 83 82 56.2 67.2 72.68

Cheng and Roth (2013) 90 90 86 67.5 73.4 81.38
Guo and Barbosa (2016) 92 87 88 77 84.5 85.7

Ganea and Hofmann (2017) 93.7 ± 0.1 88.5 ± 0.4 88.5 ± 0.3 77.9 ± 0.1 77.5 ± 0.1 85.22
rel-norm 92.2 ± 0.3 86.7 ± 0.7 87.9 ± 0.3 75.2 ± 0.5 76.4 ± 0.3 83.67

ment-norm 93.9 ± 0.2 88.3 ± 0.6 89.9 ± 0.8 77.5 ± 0.1 78.0 ± 0.1 85.51
ment-norm (K = 1) 93.2 ± 0.3 88.4 ± 0.4 88.9 ± 1.0 77.0 ± 0.2 77.2 ± 0.1 84.94
ment-norm (no pad) 93.6 ± 0.3 87.8 ± 0.5 90.0 ± 0.3 77.0 ± 0.2 77.3 ± 0.3 85.13

Table 2: F1 scores on five out-domain test sets. Underlined scores show cases where the corresponding
model outperforms the baseline.

suggests that its global coherence scoring com-
ponent is indeed too simplistic. Also note that
both multi-relational oracle models substantially
outperform the two mono-relational oracle mod-
els. This shows the benefit of using more than one
relations, and the potential of achieving higher ac-
curacy with more accurate inference methods.

Relations

In this section we qualitatively examine relations
that the models learned by looking at the prob-
abilities αijk. See Figure 5 for an example. In
that example we focus on mention “Liege” in the
sentence at the top and study which mentions are
related to it under two versions of our model:
rel-norm (leftmost column) and ment-norm (right-
most column).

For rel-norm it is difficult to interpret the mean-
ing of the relations. It seems that the first relation
dominates the other two, with very high weights
for most of the mentions. Nevertheless, the fact
that rel-norm outperforms the baseline suggests
that those learned relations encode some useful in-
formation.

For ment-norm, the first relation is similar to
coreference: the relation prefers those mentions
that potentially refer to the same entity (and/or
have semantically similar mentions): see Figure
5 (left, third column). The second and third rela-
tions behave differently from the first relation as
they prefer mentions having more distant mean-
ings and are complementary to the first relation.
They assign large weights to (1) “Belgium” and
(2) “Brussels” but small weights to (4) and (6)
“Liege”. The two relations look similar in this
example, however they are not identical in gen-
eral. See a histogram of bucketed values of their
weights in Figure 5 (right): their α have quite dif-
ferent distributions.

Complexity
The complexity of rel-norm and ment-norm is lin-
ear in K, so in principle our models should be
considerably more expensive than Ganea and Hof-
mann (2017). However, our models converge
much faster than their relation-agnostic model:
on average ours needs 120 epochs, compared to
theirs 1250 epochs. We believe that the structural
bias helps the model to capture necessary regu-
larities more easily. In terms of wall-clock time,
our model requires just under 1.5 hours to train,
that is ten times faster than the relation agnostic
model (Ganea and Hofmann, 2017). In addition,
the difference in testing time is negligible when
using a GPU.

5 Conclusion and Future work

We have shown the benefits of using relations in
NEL. Our models consider relations as latent vari-
ables, thus do not require any extra supervision.
Representation learning was used to learn rela-
tion embeddings, eliminating the need for exten-
sive feature engineering. The experimental results
show that our best model achieves the best re-
ported F1 on AIDA-CoNLL with an improvement
of 0.85% F1 over the best previous results.

Conceptually, modeling multiple relations is
substantially different from simply modeling co-
herence (as in Ganea and Hofmann (2017)). In
this way we also hope it will lead to interest-
ing follow-up work, as individual relations can be
informed by injecting prior knowledge (e.g., by
training jointly with relation extraction models).

In future work, we would like to use syntac-
tic and discourse structures (e.g., syntactic depen-
dency paths between mentions) to encourage the
models to discover a richer set of relations. We
also would like to combine ment-norm and rel-
norm. Besides, we would like to examine whether
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rel-norm on Friday , Liege police said in ment-norm
(1) missing teenagers in Belgium .
(2) UNK BRUSSELS UNK
(3) UNK Belgian police said on
(4) , ” a Liege police official told
(5) police official told Reuters .
(6) eastern town of Liege on Thursday ,
(7) home village of UNK .
(8) link with the Marc Dutroux case , the
(9) which has rocked Belgium in the past

0.25 0.30 0.35 0.40 0.45 0.50 0.55
α

0

10

20

30

40

50

60

α •,2

α •,3

Figure 5: (Left) Examples of α. The first and third columns show αijk for oracle rel-norm and oracle
ment-norm, respectively. (Right) Histograms of α•k for k = 2, 3, corresponding to the second and third
relations from oracle ment-norm. Only α > 0.25 (i.e. high attentions) are shown.

the induced latent relations could be helpful for re-
lation extract.
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Abstract

Document date is essential for many
important tasks, such as document re-
trieval, summarization, event detection,
etc. While existing approaches for these
tasks assume accurate knowledge of the
document date, this is not always avail-
able, especially for arbitrary documents
from the Web. Document Dating is a
challenging problem which requires infer-
ence over the temporal structure of the
document. Prior document dating sys-
tems have largely relied on handcrafted
features while ignoring such document-
internal structures. In this paper, we pro-
pose NeuralDater, a Graph Convolutional
Network (GCN) based document dating
approach which jointly exploits syntactic
and temporal graph structures of docu-
ment in a principled way. To the best of
our knowledge, this is the first applica-
tion of deep learning for the problem of
document dating. Through extensive ex-
periments on real-world datasets, we find
that NeuralDater significantly outperforms
state-of-the-art baseline by 19% absolute
(45% relative) accuracy points.

1 Introduction

Date of a document, also referred to as the Doc-
ument Creation Time (DCT), is at the core of
many important tasks, such as, information re-
trieval (Olson et al., 1999; Li and Croft, 2003;
Dakka et al., 2008), temporal reasoning (Mani and
Wilson, 2000; Llidó et al., 2001), text summariza-
tion (Wan, 2007), event detection (Allan et al.,
1998), and analysis of historical text (de Jong
et al., 2005a), among others. In all such tasks, the
document date is assumed to be available and also

DCT (?)AFTER

SAME

objsubj

SAME

AFTER

  Swiss adopted that form of taxation in 1995. 

The concession was approved by the govt ...

  last September. Four years after, the IOC   

BEFORE

subj nmod

case

Correct DCT: 1999

Sc
or

e

Figure 1: Top: An example document annotated with syntac-
tic and temporal dependencies. In order to predict the right
value of 1999 for the Document Creation Time (DCT), infer-
ence over these document structures is necessary. Bottom:
Document date prediction by two state-of-the-art-baselines
and NeuralDater, the method proposed in this paper. While
the two previous methods are getting misled by the tempo-
ral expression (1995) in the document, NeuralDater is able to
use the syntactic and temporal structure of the document to
predict the right value (1999).

accurate – a strong assumption, especially for ar-
bitrary documents from the Web. Thus, there is
a need to automatically predict the date of a docu-
ment based on its content. This problem is referred
to as Document Dating.

Initial attempts on automatic document dating
started with generative models by (de Jong et al.,
2005b). This model is later improved by (Kan-
habua and Nørvåg, 2008a) who incorporate addi-
tional features such as POS tags, collocations, etc.
Chambers (2012) shows significant improvement
over these prior efforts through their discrimina-
tive models using handcrafted temporal features.
Kotsakos et al. (2014) propose a statistical ap-
proach for document dating exploiting term bursti-
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Temporal Relation Extraction 

Dependency Parsing

Figure 2: Overview of NeuralDater. NeuralDater exploits syntactic and temporal structure in a document to learn effective
representation, which in turn are used to predict the document time. NeuralDater uses a Bi-directional LSTM (Bi-LSTM), two
Graph Convolution Networks (GCN) – one over the dependency tree and the other over the document’s temporal graph – along
with a softmax classifier, all trained end-to-end jointly. Please see Section 4 for more details.

ness (Lappas et al., 2009).
Document dating is a challenging problem

which requires extensive reasoning over the tem-
poral structure of the document. Let us moti-
vate this through an example shown in Figure 1.
In the document, four years after plays a crucial
role in identifying the creation time of the docu-
ment. The existing approaches give higher confi-
dence for timestamp immediate to the year men-
tion 1995. NeuralDater exploits the syntactic and
temporal structure of the document to predict the
right timestamp (1999) for the document. With the
exception of (Chambers, 2012), all prior works on
the document dating problem ignore such infor-
mative temporal structure within the document.

Research in document event extraction and or-
dering have made it possible to extract such tem-
poral structures involving events, temporal ex-
pressions, and the (unknown) document date in
a document (Mirza and Tonelli, 2016; Chambers
et al., 2014). While methods to perform reason-
ing over such structures exist (Verhagen et al.,
2007, 2010; UzZaman et al., 2013; Llorens et al.,
2015; Pustejovsky et al., 2003), none of them have
exploited advances in deep learning (Krizhevsky
et al., 2012; Hinton et al., 2012; Goodfellow et al.,
2016). In particular, recently proposed Graph
Convolution Networks (GCN) (Defferrard et al.,
2016; Kipf and Welling, 2017) have emerged as a

way to learn graph representation while encoding
structural information and constraints represented
by the graph. We adapt GCNs for the document
dating problem and make the following contribu-
tions:

• We propose NeuralDater, a Graph Convolu-
tion Network (GCN)-based approach for doc-
ument dating. To the best of our knowledge,
this is the first application of GCNs, and more
broadly deep neural network-based methods,
for the document dating problem.

• NeuralDater is the first document dating ap-
proach which exploits syntactic as well tem-
poral structure of the document, all within a
principled joint model.

• Through extensive experiments on multiple
real-world datasets, we demonstrate Neu-
ralDater’s effectiveness over state-of-the-art
baselines.

NeuralDater’s source code and datasets used
in the paper are available at http://github.
com/malllabiisc/NeuralDater.

2 Related Work

Automatic Document Dating: de Jong et al.
(2005b) propose the first approach for automat-
ing document dating through a statistical language
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model. Kanhabua and Nørvåg (2008a) further ex-
tend this work by incorporating semantic-based
preprocessing and temporal entropy (Kanhabua
and Nørvåg, 2008b) based term-weighting. Cham-
bers (2012) proposes a MaxEnt based discrimina-
tive model trained on hand-crafted temporal fea-
tures. He also proposes a model to learn proba-
bilistic constraints between year mentions and the
actual creation time of the document. We draw
inspiration from his work for exploiting temporal
reasoning for document dating. Kotsakos et al.
(2014) propose a purely statistical method which
considers lexical similarity alongside burstiness
(Lappas et al., 2009) of terms for dating docu-
ments. To the best of our knowledge, NeuralDater,
our proposed method, is the first method to utilize
deep learning techniques for the document dating
problem.

Event Ordering Systems: Temporal ordering
of events is a vast research topic in NLP. The
problem is posed as a temporal relation classifi-
cation between two given temporal entities. Ma-
chine Learned classifiers and well crafted linguis-
tic features for this task are used in (Chambers
et al., 2007; Mirza and Tonelli, 2014). D’Souza
and Ng (2013) use a hybrid approach by adding
437 hand-crafted rules. Chambers and Jurafsky
(2008); Yoshikawa et al. (2009) try to classify with
many more temporal constraints, while utilizing
integer linear programming and Markov logic.

CAEVO, a CAscading EVent Ordering archi-
tecture (Chambers et al., 2014) use sieve-based ar-
chitecture (Lee et al., 2013) for temporal event or-
dering for the first time. They mix multiple learn-
ers according to their precision based ranks and
use transitive closure for maintaining consistency
of temporal graph. Mirza and Tonelli (2016) re-
cently propose CATENA (CAusal and TEmporal
relation extraction from NAtural language texts),
the first integrated system for the temporal and
causal relations extraction between pre-annotated
events and time expressions. They also incorpo-
rate sieve-based architecture which outperforms
existing methods in temporal relation classifica-
tion domain. We make use of CATENA for tem-
poral graph construction in our work.

Graph Convolutional Networks (GCN):
GCNs generalize Convolutional Neural Network
(CNN) over graphs. GCN is introduced by (Bruna
et al., 2014), and later extended by (Defferrard
et al., 2016) with efficient localized filter approx-

imation in spectral domain. Kipf and Welling
(2017) propose a first-order approximation of lo-
calized filters through layer-wise propagation rule.
GCNs over syntactic dependency trees have been
recently exploited in the field of semantic-role
labeling (Marcheggiani and Titov, 2017), neural
machine translation (Bastings et al., 2017a), event
detection (Bastings et al., 2017b). In our work,
we successfully use GCNs for document dating.

3 Background: Graph Convolution
Networks (GCN)

In this section, we provide an overview of Graph
Convolution Networks (GCN) (Kipf and Welling,
2017). GCN learns an embedding for each node of
the graph it is applied over. We first present GCN
for undirected graphs and then move onto GCN
for directed graph setting.

3.1 GCN on Undirected Graph

Let G = (V, E) be an undirected graph, where V
is a set of n vertices and E the set of edges. The
input feature matrix X ∈ Rn×m whose rows are
input representation of node u, xu ∈ Rm, ∀u ∈ V .
The output hidden representation hv ∈ Rd of a
node v after a single layer of graph convolution
operation can be obtained by considering only the
immediate neighbors of v. This can be formulated
as:

hv = f


 ∑

u∈N (v)

(Wxu + b)


 , ∀v ∈ V.

Here, model parameters W ∈ Rd×m and b ∈ Rd
are learned in a task-specific setting using first-
order gradient optimization. N (v) refers to the set
of neighbors of v and f is any non-linear activa-
tion function. We have used ReLU as the activa-
tion function in this paper1.

In order to capture nodes many hops away, mul-
tiple GCN layers may be stacked one on top of an-
other. In particular, hk+1

v , representation of node
v after kth GCN layer can be formulated as:

hk+1
v = f


 ∑

u∈N (v)

(
W khku + bk

)

 , ∀v ∈ V.

where hku is the input to the kth layer.

1ReLU: f(x) = max(0, x)
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3.2 GCN on Labeled and Directed Graph
In this section, we consider GCN formulation over
graphs where each edge is labeled as well as di-
rected. In this setting, an edge from node u to
v with label l(u, v) is denoted as (u, v, l(u, v)).
While a few recent works focus on GCN over di-
rected graphs (Yasunaga et al., 2017; Marcheg-
giani and Titov, 2017), none of them consider la-
beled edges. We handle both direction and label by
incorporating label and direction specific filters.

Based on the assumption that the information
in a directed edge need not only propagate along
its direction, following (Marcheggiani and Titov,
2017) we define an updated edge set E ′ which ex-
pands the original set E by incorporating inverse,
as well self-loop edges.

E ′ = E ∪{(v, u, l(u, v)−1) | (u, v, l(u, v)) ∈ E}
∪ {(u, u,>) | u ∈ V)}. (1)

Here, l(u, v)−1 is the inverse edge label corre-
sponding to label l(u, v), and > is a special empty
relation symbol for self-loop edges. We now de-
fine hk+1

v as the embedding of node v after kth

GCN layer applied over the directed and labeled
graph as:

hk+1
v = f


 ∑

u∈N (v)

(
W k
l(u,v)h

k
u + bkl(u,v)

)

 .

(2)
We note that the parameters W k

l(u,v) and bkl(u,v)
in this case are edge label specific.

3.3 Incorporating Edge Importance
In many practical settings, we may not want to
give equal importance to all the edges. For exam-
ple, in case of automatically constructed graphs,
some of the edges may be erroneous and we may
want to automatically learn to discard them. Edge-
wise gating may be used in a GCN to give im-
portance to relevant edges and subdue the noisy
ones. Bastings et al. (2017b); Marcheggiani and
Titov (2017) used gating for similar reasons and
obtained high performance gain. At kth layer,
we compute gating value for a particular edge
(u, v, l(u, v)) as:

gku,v = σ
(
hku · ŵkl(u,v) + b̂kl(u,v)

)
,

where, σ(·) is the sigmoid function, ŵkl(u,v) and

b̂kl(u,v) are label specific gating parameters. Thus,

gating helps to make the model robust to the noisy
labels and directions of the input graphs. GCN
embedding of a node while incorporating edge
gating may be computed as follows.

hk+1
v = f


 ∑

u∈N (v)

gku,v ×
(
W k
l(u,v)h

k
u + bkl(u,v)

)

 .

4 NeuralDater Overview

The Documents Dating problem may be cast as a
multi-class classification problem (Kotsakos et al.,
2014; Chambers, 2012). In this section, we
present an overview of NeuralDater, the document
dating system proposed in this paper. Architec-
tural overview of NeuralDater is shown in Figure
2.

NeuralDater is a deep learning-based multi-
class classification system. It takes in a document
as input and returns its predicted date as output by
exploiting the syntactic and temporal structure of
document.

NeuralDater network consists of three layers
which learns an embedding for the Document Cre-
ation Time (DCT) node corresponding to the doc-
ument. This embedding is then fed to a soft-
max classifier which produces a distribution over
timestamps. Following prior research (Chambers,
2012; Kotsakos et al., 2014), we work with year
granularity for the experiments in this paper. We
however note that NeuralDater can be trained for
finer granularity with appropriate training data.
The NeuralDater network is trained end-to-end us-
ing training data. We briefly present NeuralDater’s
various components below. Each component is de-
scribed in greater detail in subsequent sections.

• Context Embedding: In this layer, Neu-
ralDater uses a Bi-directional LSTM (Bi-
LSTM) to learn embedding for each token in
the document. Bi-LSTMs have been shown
to be quite effective in capturing local context
inside token embeddings (Sutskever et al.,
2014).

• Syntactic Embedding: In this step, Neural-
Dater revises token embeddings from previ-
ous step by running a GCN over the depen-
dency parses of sentences in the document.
We refer to this GCN as Syntactic GCN or
S-GCN. While the Bi-LSTM captures imme-
diate local context in token embeddings, S-

1608



GCN augments them by capturing syntactic
context.

• Temporal Embedding: In this step, Neu-
ralDater further refines embeddings learned
by S-GCN to incorporate cues from temporal
structure of event and times in the document.
NeuralDater uses state-of-the-art causal and
temporal relation extraction algorithm (Mirza
and Tonelli, 2016) for extracting temporal
graph for each document. A GCN is then run
over this temporal graph to refine the embed-
dings from previous layer. We refer to this
GCN as Temporal GCN or T-GCN. In this
step, a special DCT node is introduced whose
embedding is also learned by the T-GCN.

• Classifier: Embedding of the DCT node
along with average pooled embeddings
learned by S-GCN are fed to a fully con-
nected softmax classifier which makes the fi-
nal prediction about the date of the document.

Even though the previous discussion is pre-
sented in a sequential manner, the whole network
is trained in a joint end-to-end manner using back-
propagation.

5 NeuralDater Details

In this section, we present detailed description of
various components of NeuralDater.

5.1 Context Embedding (Bi-LSTM)

Let us consider a document D with n tokens
w1, w2, ..., wn. We first represent each token by
a k-dimensional word embedding. For the exper-
iments in this paper, we use GloVe (Pennington
et al., 2014) embeddings. These token embed-
dings are stacked together to get the document
representation X ∈ Rn×k. We then employ a
Bi-directional LSTM (Bi-LSTM) (Hochreiter and
Schmidhuber, 1997) on the input matrix X to ob-
tain contextual embedding for each token. After
stacking contextual embedding of all these tokens,
we get the new document representation matrix
Hcntx ∈ Rn×rcntx . In this new representation,
each token is represented in a rcntx-dimensional
space. Our choice of LSTMs for learning con-
textual embeddings for tokens is motivated by the
previous success of LSTMs in this task (Sutskever
et al., 2014).

5.2 Syntactic Embedding (S-GCN)

While the Bi-LSTM is effective at capturing im-
mediate local context of a token, it may not be as
effective in capturing longer range dependencies
among words in a sentence. For example, in Fig-
ure 1, we would like the embedding of token ap-
proved to be directly affected by govt, even though
they are not immediate neighbors. A dependency
parse may be used to capture such longer-range
connections. In fact, similar features were ex-
ploited by (Chambers, 2012) for the document dat-
ing problem. NeuralDater captures such longer-
range information by using another GCN run over
the syntactic structure of the document. We de-
scribe this in detail below.

The context embedding, Hcntx ∈ Rn×rcntx

learned in the previous step is used as input to
this layer. For a given document, we first extract
its syntactic dependency structure by applying the
Stanford CoreNLP’s dependency parser (Manning
et al., 2014) on each sentence in the document in-
dividually. We now employ the Graph Convolu-
tion Network (GCN) over this dependency graph
using the GCN formulation presented in Section
3.2. We call this GCN the Syntactic GCN or S-
GCN, as mentioned in Section 4.

Since S-GCN operates over the dependency
graph and uses Equation 2 for updating embed-
dings, the number of parameters in S-GCN is di-
rectly proportional to the number of dependency
edge types. Stanford CoreNLP’s dependency
parser returns 55 different dependency edge types.
This large number of edge types is going to sig-
nificantly over-parameterize S-GCN, thereby in-
creasing the possibility of overfitting. In order to
address this, we use only three edge types in S-
GCN. For each edge connecting nodes wi and wj
in E ′ (see Equation 1), we determine its new type
L(wi, wj) as follows:

• L(wi, wj) =→ if (wi, wj , l(wi, wj)) ∈ E ′,
i.e., if the edge is an original dependency
parse edge

• L(wi, wj) =← if (wi, wj , l(wi, wj)−1) ∈ E ′,
i.e., if the edges is an inverse edge

• L(wi, wj) = > if (wi, wj ,>) ∈ E ′, i.e., if
the edge is a self-loop with wi = wj

S-GCN now estimates embedding hsynwi ∈ Rrsyn
for each token wi in the document using the for-
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mulation shown below.

hsynwi = f

(
∑

wj∈N (wi)

(
WL(wi,wj)h

cntx
wj

+ bL(wi,wj)

))

Please note S-GCN’s use of the new edge types
L(wi, wj) above, instead of the l(wi, wj) types
used in Equation 2. By stacking embeddings for
all the tokens together, we get the new embedding
matrix Hsyn ∈ Rn×rsyn representing the docu-
ment.

AveragePooling: We obtain an embedding havgD

for the whole document by average pooling of ev-
ery token representation.

havgD =
1

n

n∑

i=1

hsynwi
. (3)

5.3 Temporal Embedding (T-GCN)

In this layer, NeuralDater exploits temporal struc-
ture of the document to learn an embedding for the
Document Creation Time (DCT) node of the doc-
ument. First, we describe the construction of tem-
poral graph, followed by GCN-based embedding
learning over this graph.

Temporal Graph Construction: NeuralDater
uses Stanford’s SUTime tagger (Chang and Man-
ning, 2012) for date normalization and the event
extraction classifier of (Chambers et al., 2014) for
event detection. The annotated document is then
passed to CATENA (Mirza and Tonelli, 2016),
current state-of-the-art temporal and causal rela-
tion extraction algorithm, to obtain a temporal
graph for each document. Since our task is to pre-
dict the creation time of a given document, we
supply DCT as unknown to CATENA. We hy-
pothesize that the temporal relations extracted in
absence of DCT are helpful for document dating
and we indeed find this to be true, as shown in
Section 7. Temporal graph is a directed graph,
where nodes correspond to events, time mentions,
and the Document Creation Time (DCT). Edges in
this graph represent causal and temporal relation-
ships between them. Each edge is attributed with
a label representing the type of the temporal rela-
tion. CATENA outputs 9 different types of tempo-
ral relations, out of which we selected five types,
viz., AFTER, BEFORE, SAME, INCLUDES, and
IS INCLUDED. The remaining four types were
ignored as they were substantially infrequent.

Please note that the temporal graph may involve
only a small number of tokens in the document.

Datasets # Docs Start Year End Year

APW 675k 1995 2010
NYT 647k 1987 1996

Table 1: Details of datasets used. Please see Section 6 for
details.

For example, in the temporal graph in Figure 2,
there are a total of 5 nodes: two temporal expres-
sion nodes (1995 and four years after), two event
nodes (adopted and approved), and a special DCT
node. This graph also consists of temporal rela-
tion edges such as (four years after, approved, BE-
FORE).

Temporal Graph Convolution: NeuralDater
employs a GCN over the temporal graph con-
structed above. We refer to this GCN as the Tem-
poral GCN or T-GCN, as mentioned in Section
4. T-GCN is based on the GCN formulation pre-
sented in Section 3.2. Unlike S-GCN, here we
consider label and direction specific parameters as
the temporal graph consists of only five types of
edges.

Let nT be the number of nodes in the temporal
graph. Starting with Hsyn (Section 5.2), T-GCN
learns a rtemp-dimensional embedding for each
node in the temporal graph. Stacking all these em-
beddings together, we get the embedding matrix
Htemp ∈ RnT×rtemp . T-GCN embeds the tempo-
ral constraints induced by the temporal graph in
htempDCT ∈ Rrtemp , embedding of the DCT node of
the document.

5.4 Classifier

Finally, the DCT embedding htempDCT and average-
pooled syntactic representation havgD (see Equation
3) of document D are concatenated and fed to a
fully connected feed forward network followed by
a softmax. This allows the NeuralDater to exploit
context, syntactic, and temporal structure of the
document to predict the final document date y.

havg+tempD = [htempDCT ; havgD ]

p(y|D) = Softmax(W · havg+tempD + b).

6 Experimental Setup

Datasets: We experiment on Associated Press
Worldstream (APW) and New York Times (NYT)
sections of Gigaword corpus (Parker et al., 2011).
The original dataset contains around 3 million
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documents of APW and 2 million documents of
NYT from span of multiple years. From both
sections, we randomly sample around 650k doc-
uments while maintaining balance among years.
Documents belonging to years with substantially
fewer documents are omitted. Details of the
dataset can be found in Table 1. For train, test and
validation splits, the dataset was randomly divided
in 80:10:10 ratio.

Evaluation Criteria: Given a document, the
model needs to predict the year in which the docu-
ment was published. We measure performance in
terms of overall accuracy of the model.

Baselines: For evaluating NeuralDater, we
compared against the following methods:

• BurstySimDater Kotsakos et al. (2014):
This is a purely statistical method which uses
lexical similarity and term burstiness (Lappas
et al., 2009) for dating documents in arbitrary
length time frame. For our experiments, we
took the time frame length as 1 year. Please
refer to (Kotsakos et al., 2014) for more de-
tails.

• MaxEnt-Time-NER: Maximum Entropy
(MaxEnt) based classifier trained on
hand-crafted temporal and Named Entity
Recognizer (NER) based features. More
details in (Chambers, 2012).

• MaxEnt-Joint: Refers to MaxEnt-Time-
NER combined with year mention classifier
as described in (Chambers, 2012).

• MaxEnt-Uni-Time: MaxEnt based discrim-
inative model which takes bag-of-words rep-
resentation of input document with normal-
ized time expression as its features.

• CNN: A Convolution Neural Network
(CNN) (LeCun et al., 1999) based text
classification model proposed by (Kim,
2014), which attained state-of-the-art results
in several domains.

• NeuralDater: Our proposed method, refer
Section 4.

Hyperparameters: By default, edge gating
(Section 3.3) is used in all GCNs. The parameter
K represents the number of layers in T-GCN (Sec-
tion 5.3). We use 300-dimensional GloVe embed-
dings and 128-dimensional hidden state for both

Method APW NYT

BurstySimDater 45.9 38.5
MaxEnt-Time+NER 52.5 42.3
MaxEnt-Joint 52.5 42.5
MaxEnt-Uni-Time 57.5 50.5
CNN 56.3 50.4
NeuralDater 64.1 58.9

Table 2: Accuracies of different methods on APW and NYT
datasets for the document dating problem (higher is better).
NeuralDater significantly outperforms all other competitive
baselines. This is our main result. Please see Section 7.1 for
more details.

Figure 3: Mean absolute deviation (in years; lower is bet-
ter) between a model’s top prediction and the true year in
the APW dataset. We find that NeuralDater, the proposed
method, achieves the least deviation. Please see Section 7.1
for details.

Method Accuracy

T-GCN 57.3
S-GCN + T-GCN (K = 1) 57.8
S-GCN + T-GCN (K = 2) 58.8
S-GCN + T-GCN (K = 3) 59.1

Bi-LSTM 58.6
Bi-LSTM + CNN 59.0
Bi-LSTM + T-GCN 60.5
Bi-LSTM + S-GCN + T-GCN (no gate) 62.7
Bi-LSTM + S-GCN + T-GCN (K = 1) 64.1
Bi-LSTM + S-GCN + T-GCN (K = 2) 63.8
Bi-LSTM + S-GCN + T-GCN (K = 3) 63.3

Table 3: Accuracies of different ablated methods on the APW
dataset. Overall, we observe that incorporation of context
(Bi-LSTM), syntactic structure (S-GCN) and temporal struc-
ture (T-GCN) in NeuralDater achieves the best performance.
Please see Section 7.1 for details.

GCNs and BiLSTM with 0.8 dropout. We used
Adam (Kingma and Ba, 2014) with 0.001 learn-
ing rate for training.

7 Results

7.1 Performance Comparison

In order to evaluate the effectiveness of Neu-
ralDater, our proposed method, we compare it
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against existing document dating systems and text
classification models. The final results are sum-
marized in Table 2. Overall, we find that Neu-
ralDater outperforms all other methods with a
significant margin on both datasets. Compared
to the previous state-of-the-art in document dat-
ing, BurstySimDater (Kotsakos et al., 2014), we
get 19% average absolute improvement in accu-
racy across both datasets. We observe only a
slight gain in the performance of MaxEnt-based
model (MaxEnt-Time+NER) of (Chambers, 2012)
on combining with temporal constraint reasoner
(MaxEnt-Joint). This may be attributed to the
fact that the model utilizes only year mentions in
the document, thus ignoring other relevant signals
which might be relevant to the task. BurstySim-
Dater performs considerably better in terms of pre-
cision compared to the other baselines, although
it significantly underperforms in accuracy. We
note that NeuralDater outperforms all these prior
models both in terms of precision and accuracy.
We find that even generic deep-learning based text
classification models, such as CNN (Kim, 2014),
are quite effective for the problem. However,
since such a model doesn’t give specific attention
to temporal features in the document, its perfor-
mance remains limited. From Figure 3, we ob-
serve that NeuralDater’s top prediction achieves
on average the lowest deviation from the true year.

7.2 Ablation Comparisons

For demonstrating the efficacy of GCNs and BiL-
STM for the problem, we evaluate different ab-
lated variants of NeuralDater on the APW dataset.
Specifically, we validate the importance of us-
ing syntactic and temporal GCNs and the effect
of eliminating BiLSTM from the model. Over-
all results are summarized in Table 3. The first
block of rows in the table corresponds to the case
when BiLSTM layer is excluded from Neural-
Dater, while the second block denotes the case
when BiLSTM is included. We also experiment
with multiple stacked layers of T-GCN (denoted
by K) to observe its effect on the performance of
the model.

We observe that embeddings from Syntactic
GCN (S-GCN) are much better than plain GloVe
embeddings for T-GCN as S-GCN encodes the
syntactic neighborhood information in event and
time embeddings which makes them more relevant
for document dating task.

A
cc

ur
ac

y

Figure 4: Evaluating performance of different methods on
dating documents with and without time mentions. Please
see Section 7.3 for details.

Overall, we observe that including BiLSTM
in the model improves performance significantly.
Single BiLSTM model outperforms all the mod-
els listed in the first block of Table 3. Also, some
gain in performance is observed on increasing the
number of T-GCN layers (K) in absence of BiL-
STM, although the same does not follow when
BiLSTM is included in the model. This observa-
tion is consistent with (Marcheggiani and Titov,
2017), as multiple GCN layers become redundant
in the presence of BiLSTM. We also find that elim-
inating edge gating from our best model deterio-
rates its overall performance.

In summary, these results validate our thesis
that joint incorporation of syntactic and temporal
structure of a document in NeuralDater results in
improved performance.

7.3 Discussion and Error Analysis
In this section, we list some of our observations
while trying to identify pros and cons of Neural-
Dater, our proposed method. We divided the de-
velopment split of the APW dataset into two sets
– those with and without any mention of time ex-
pressions (year). We apply NeuralDater and other
methods to these two sets of documents and re-
port accuracies in Figure 4. We find that overall,
NeuralDater performs better in comparison to the
existing baselines in both scenarios. Even though
the performance of NeuralDater degrades in the
absence of time mentions, its performance is still
the best relatively. Based on other analysis, we
find that NeuralDater fails to identify timestamp
of documents reporting local infrequent incidents
without explicit time mention. NeuralDater be-
comes confused in the presence of multiple mis-
leading time mentions; it also loses out on docu-
ments discussing events which are outside the time
range of the text on which the model was trained.
In future, we plan to eliminate these pitfalls by
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incorporating additional signals from Knowledge
Graphs about entities mentioned in the document.
We also plan to utilize free text temporal expres-
sion (Kuzey et al., 2016) in documents for improv-
ing performance on this problem.

8 Conclusion

We propose NeuralDater, a Graph Convolutional
Network (GCN) based method for document dat-
ing which exploits syntactic and temporal struc-
tures in the document in a principled way. To the
best of our knowledge, this is the first applica-
tion of deep learning techniques for the problem of
document dating. Through extensive experiments
on real-world datasets, we demonstrate the effec-
tiveness of NeuralDater over existing state-of-the-
art approaches. We are hopeful that the representa-
tion learning techniques explored in this paper will
inspire further development and adoption of such
techniques in the temporal information processing
research community.
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Abstract

The problem of AMR-to-text generation
is to recover a text representing the
same meaning as an input AMR graph.
The current state-of-the-art method uses
a sequence-to-sequence model, leverag-
ing LSTM for encoding a linearized AMR
structure. Although it is able to model
non-local semantic information, a se-
quence LSTM can lose information from
the AMR graph structure, and thus faces
challenges with large graphs, which re-
sult in long sequences. We introduce a
neural graph-to-sequence model, using a
novel LSTM structure for directly encod-
ing graph-level semantics. On a standard
benchmark, our model shows superior re-
sults to existing methods in the literature.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a semantic formalism that
encodes the meaning of a sentence as a rooted,
directed graph. Figure 1 shows an AMR graph
in which the nodes (such as “describe-01” and
“person”) represent the concepts, and edges (such
as “:ARG0” and “:name”) represent the relations
between concepts they connect. AMR has been
proven helpful on other NLP tasks, such as ma-
chine translation (Jones et al., 2012; Tamchyna
et al., 2015), question answering (Mitra and Baral,
2015), summarization (Takase et al., 2016) and
event detection (Li et al., 2015).

The task of AMR-to-text generation is to pro-
duce a text with the same meaning as a given in-
put AMR graph. The task is challenging as word
tenses and function words are abstracted away
when constructing AMR graphs from texts. The
translation from AMR nodes to text phrases can

:name

:ARG0

describe-01

name

person

"Ryan"

:op1

:ARG1

genius

:ARG2

Figure 1: An example of AMR graph meaning
“Ryan’s description of himself: a genius.”

be far from literal. For example, shown in Figure
1, “Ryan” is represented as “(p / person :name (n /
name :op1 “Ryan”))”, and “description of” is rep-
resented as “(d / describe-01 :ARG1 )”.

While initial work used statistical approaches
(Flanigan et al., 2016b; Pourdamghani et al., 2016;
Song et al., 2017; Lampouras and Vlachos, 2017;
Mille et al., 2017; Gruzitis et al., 2017), recent re-
search has demonstrated the success of deep learn-
ing, and in particular the sequence-to-sequence
model (Sutskever et al., 2014), which has achieved
the state-of-the-art results on AMR-to-text gen-
eration (Konstas et al., 2017). One limitation
of sequence-to-sequence models, however, is that
they require serialization of input AMR graphs,
which adds to the challenge of representing graph
structure information, especially when the graph is
large. In particular, closely-related nodes, such as
parents, children and siblings can be far away after
serialization. It can be difficult for a linear recur-
rent neural network to automatically induce their
original connections from bracketed string forms.

To address this issue, we introduce a novel
graph-to-sequence model, where a graph-state
LSTM is used to encode AMR structures directly.
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To capture non-local information, the encoder per-
forms graph state transition by information ex-
change between connected nodes, with a graph
state consisting of all node states. Multiple recur-
rent transition steps are taken so that information
can propagate non-locally, and LSTM (Hochreiter
and Schmidhuber, 1997) is used to avoid gradient
diminishing and bursting in the recurrent process.
The decoder is an attention-based LSTM model
with a copy mechanism (Gu et al., 2016; Gulcehre
et al., 2016), which helps copy sparse tokens (such
as numbers and named entities) from the input.

Trained on a standard dataset (LDC2015E86),
our model surpasses a strong sequence-to-
sequence baseline by 2.3 BLEU points, demon-
strating the advantage of graph-to-sequence mod-
els for AMR-to-text generation compared to
sequence-to-sequence models. Our final model
achieves a BLEU score of 23.3 on the test set,
which is 1.3 points higher than the existing state of
the art (Konstas et al., 2017) trained on the same
dataset. When using gigaword sentences as ad-
ditional training data, our model is consistently
better than Konstas et al. (2017) using the same
amount of gigaword data, showing the effective-
ness of our model on large-scale training set.

We release our code and models at https:
//github.com/freesunshine0316/
neural-graph-to-seq-mp.

2 Baseline: a seq-to-seq model

Our baseline is a sequence-to-sequence model,
which follows the encoder-decoder framework of
Konstas et al. (2017).

2.1 Input representation

Given an AMR graph G = (V,E), where V and
E denote the sets of nodes and edges, respectively,
we use the depth-first traversal of Konstas et al.
(2017) to linearize it to obtain a sequence of to-
kens v1, . . . , vN , whereN is the number of tokens.
For example, the AMR graph in Figure 1 is seri-
alized as “describe :arg0 ( person :name ( name
:op1 ryan ) ) :arg1 person :arg2 genius”. We can
see that the distance between “describe” and “ge-
nius”, which are directly connected in the original
AMR, becomes 14 in the serialization result.

A simple way to calculate the representation for
each token vj is using its word embedding ej :

xj = W1ej + b1, (1)

where W1 and b1 are model parameters for com-
pressing the input vector size.

To alleviate the data sparsity problem and ob-
tain better word representation as the input, we
also adopt a forward LSTM over the characters of
the token, and concatenate the last hidden state hcj
with the word embedding:

xj = W1

(
[ej ;h

c
j ]
)

+ b1 (2)

2.2 Encoder
The encoder is a bi-directional LSTM applied on
the linearized graph by depth-first traversal, as in
Konstas et al. (2017). At each step j, the current
states

←−
hj and

−→
hj are generated given the previous

states
←−−
hj+1 and

−−→
hj−1 and the current input xj :

←−
hj = LSTM(

←−−
hj+1, xj)

−→
hj = LSTM(

−−→
hj−1, xj)

2.3 Decoder
We use an attention-based LSTM decoder (Bah-
danau et al., 2015), where the attention memory
(A) is the concatenation of the attention vectors
among all input words. Each attention vector aj is
the concatenation of the encoder states of an input
token in both directions (

←−
hj and

−→
hj) and its input

vector (xj):

aj = [
←−
hj ;
−→
hj ;xj ] (3)

A = [a1; a2; . . . ; aN ] (4)

where N is the number of input tokens.
The decoder yields an output sequence

w1, w2, . . . , wM by calculating a sequence of
hidden states s1, s2 . . . , sM recurrently. While
generating the t-th word, the decoder considers
five factors: (1) the attention memory A; (2) the
previous hidden state of the LSTM model st−1;
(3) the embedding of the current input (previously
generated word) et; (4) the previous context
vector µt−1, which is calculated with attention
from A; and (5) the previous coverage vector
γt−1, which is the accumulation of all attention
distributions so far (Tu et al., 2016). When t = 1,
we initialize µ0 and γ0 as zero vectors, set e1 to
the embedding of the start token “<s>”, and s0
as the average of all encoder states.

For each time-step t, the decoder feeds the con-
catenation of the embedding of the current input
et and the previous context vector µt−1 into the
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Time

Figure 2: Graph state LSTM.

LSTM model to update its hidden state. Then the
attention probability αt,i on the attention vector
ai ∈ A for the time-step is calculated as:

εt,i = vT2 tanh(Waai +Wsst +Wγγt−1 + b2)

αt,i =
exp(εt,i)∑N
j=1 exp(εt,j)

where Wa, Ws, Wγ , v2 and b2 are model pa-
rameters. The coverage vector γt is updated by
γt = γt−1 + αt, and the new context vector µt is
calculated via µt =

∑N
i=1 αt,iai.

The output probability distribution over a vo-
cabulary at the current state is calculated by:

Pvocab = softmax(V3[st, µt] + b3), (5)

where V3 and b3 are learnable parameters, and the
number of rows in V3 represents the number of
words in the vocabulary.

3 The graph-to-sequence model

Unlike the baseline sequence-to-sequence model,
we leverage a recurrent graph encoder to represent
each input AMR, which directly models the graph
structure without serialization.

3.1 The graph encoder

Figure 2 shows the overall structure of our graph
encoder. Formally, given a graph G = (V,E),
we use a hidden state vector hj to represent each
node vj ∈ V . The state of the graph can thus be
represented as:

g = {hj}|vj∈V

In order to capture non-local interaction between
nodes, we allow information exchange between
nodes through a sequence of state transitions,
leading to a sequence of states g0, g1, . . . , gt, . . . ,
where gt = {hjt}|vj∈V . The initial state g0 con-
sists of a set of initial node states hj0 = h0, where
h0 is a hyperparameter of the model.

State transition A recurrent neural network
is used to model the state transition process. In
particular, the transition from gt−1 to gt consists of
a hidden state transition for each node, as shown
in Figure 2. At each state transition step t, we
allow direct communication between a node and
all nodes that are directly connected to the node.
To avoid gradient diminishing or bursting, LSTM
(Hochreiter and Schmidhuber, 1997) is adopted,
where a cell cjt is taken to record memory for hjt .
We use an input gate ijt , an output gate ojt and a
forget gate f jt to control information flow from the
inputs and to the output hjt .

The inputs include representations of edges that
are connected to vj , where vj can be either the
source or the target of the edge. We define each
edge as a triple (i, j, l), where i and j are indices
of the source and target nodes, respectively, and l
is the edge label. xli,j is the representation of edge
(i, j, l), detailed in Section 3.3. The inputs for vj
are distinguished by incoming and outgoing edges,
before being summed up:

xij =
∑

(i,j,l)∈Ein(j)

xli,j

xoj =
∑

(j,k,l)∈Eout(j)

xlj,k,

where Ein(j) and Eout(j) denote the sets of in-
coming and outgoing edges of vj , respectively.

In addition to edge inputs, a cell also takes the
hidden states of its incoming nodes and outgoing
nodes during a state transition. In particular, the
states of all incoming nodes and outgoing nodes
are summed up before being passed to the cell and
gate nodes:

hij =
∑

(i,j,l)∈Ein(j)

hit−1

hoj =
∑

(j,k,l)∈Eout(j)

hkt−1,

Based on the above definitions of xij , x
o
j , h

i
j and

hoj , the state transition from gt−1 to gt, as repre-
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sented by hjt , can be defined as:

ijt = σ(Wix
i
j + Ŵix

o
j + Uih

i
j + Ûih

o
j + bi),

ojt = σ(Wox
i
j + Ŵox

o
j + Uoh

i
j + Ûoh

o
j + bo),

f jt = σ(Wfx
i
j + Ŵfx

o
j + Ufh

i
j + Ûfh

o
j + bf ),

ujt = σ(Wux
i
j + Ŵux

o
j + Uuh

i
j + Ûuh

o
j + bu),

cjt = f jt � cjt−1 + ijt � ujt ,
hjt = ojt � tanh(cjt ),

where ijt , o
j
t and f jt are the input, output and for-

get gates mentioned earlier. Wx, Ŵx, Ux, Ûx, bx,
where x ∈ {i, o, f, u}, are model parameters.

3.2 Recurrent steps
Using the above state transition mechanism, infor-
mation from each node propagates to all its neigh-
boring nodes after each step. Therefore, for the
worst case where the input graph is a chain of
nodes, the maximum number of steps necessary
for information from one arbitrary node to reach
another is equal to the size of the graph. We exper-
iment with different transition steps to study the
effectiveness of global encoding.

Note that unlike the sequence LSTM encoder,
our graph encoder allows parallelization in node-
state updates, and thus can be highly efficient us-
ing a GPU. It is general and can be potentially ap-
plied to other tasks, including sequences, syntactic
trees and cyclic structures.

3.3 Input Representation
Different from sequences, the edges of an AMR
graph contain labels, which represent relations be-
tween the nodes they connect, and are thus impor-
tant for modeling the graphs. Similar with Section
2, we adopt two different ways for calculating the
representation for each edge (i, j, l):

xli,j = W4

(
[el; ei]

)
+ b4 (6)

xli,j = W4

(
[el; ei;h

c
i ]
)

+ b4, (7)

where el and ei are the embeddings of edge label l
and source node vi, hci denotes the last hidden state
of the character LSTM over vi, and W4 and b4 are
trainable parameters. The equations correspond to
Equations 1 and 2 in Section 2.1, respectively.

3.4 Decoder
We adopt the attention-based LSTM decoder as
described in Section 2.3. Since our graph encoder

generates a sequence of graph states, only the last
graph state is adopted in the decoder. In partic-
ular, we make the following changes to the de-
coder. First, each attention vector becomes aj =

[hjT ;xj ], where hjT is the last state for node vj .
Second, the decoder initial state s−1 is the average
of the last states of all nodes.

3.5 Integrating the copy mechanism
Open-class tokens, such as dates, numbers and
named entities, account for a large portion in the
AMR corpus. Most appear only a few times, re-
sulting in a data sparsity problem. To address this
issue, Konstas et al. (2017) adopt anonymization
for dealing with the data sparsity problem. In par-
ticular, they first replace the subgraphs that repre-
sent dates, numbers and named entities (such as
“(q / quantity :quant 3)” and “(p / person :name
(n / name :op1 “Ryan”))”) with predefined place-
holders (such as “num 0” and “person name 0”)
before decoding, and then recover the correspond-
ing surface tokens (such as “3” and “Ryan”) af-
ter decoding. This method involves hand-crafted
rules, which can be costly.

Copy We find that most of the open-class to-
kens in a graph also appear in the correspond-
ing sentence, and thus adopt the copy mechanism
(Gulcehre et al., 2016; Gu et al., 2016) to solve
this problem. The mechanism works on top of an
attention-based RNN decoder by integrating the
attention distribution into the final vocabulary dis-
tribution. The final probability distribution is de-
fined as the interpolation between two probability
distributions:

Pfinal = θtPvocab + (1− θt)Pattn, (8)

where θt is a switch for controlling generating a
word from the vocabulary or directly copying it
from the input graph. Pvocab is the probability
distribution of directly generating the word, as de-
fined in Equation 5, and Pattn is calculated based
on the attention distribution αt by summing the
probabilities of the graph nodes that contain iden-
tical concept. Intuitively, θt is relevant to the cur-
rent decoder input et and state st, and the context
vector µt. Therefore, we define it as:

θt = σ(wTµµt + wTs st + wTe et + b5), (9)

where vectors wµ, ws, we and scalar b5 are model
parameters. The copy mechanism favors gener-
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ating words that appear in the input. For AMR-
to-text generation, it facilitates the generation of
dates, numbers, and named entities that appear in
AMR graphs.

Copying vs anonymization Both copying
and anonymization alleviate the data sparsity
problem by handling the open-class tokens. How-
ever, the copy mechanism has the following ad-
vantages over anonymization: (1) anonymization
requires significant manual work to define the
placeholders and heuristic rules both from sub-
graphs to placeholders and from placeholders to
the surface tokens, (2) the copy mechanism auto-
matically learns what to copy, while anonymiza-
tion relies on hard rules to cover all types of the
open-class tokens, and (3) the copy mechanism is
easier to adapt to new domains and languages than
anonymization.

4 Training and decoding

We train our models using the cross-entropy loss
over each gold-standard output sequence W ∗ =
w∗1, . . . , w

∗
t , . . . , w

∗
M :

l = −
M∑

t=1

log p(w∗t |w∗t−1, . . . , w
∗
1, X; θ), (10)

where X is the input graph, and θ is the model
parameters. Adam (Kingma and Ba, 2014) with a
learning rate of 0.001 is used as the optimizer, and
the model that yields the best devset performance
is selected to evaluate on the test set. Dropout with
rate 0.1 is used during training. Beam search with
beam size to 5 is used for decoding. Both training
and decoding use Tesla K80 GPUs.

5 Experiments

5.1 Data
We use a standard AMR corpus (LDC2015E86) as
our experimental dataset, which contains 16,833
instances for training, 1368 for development and
1371 for test. Each instance contains a sentence
and an AMR graph.

Following Konstas et al. (2017), we supple-
ment the gold data with large-scale automatic data.
We take Gigaword as the external data to sam-
ple raw sentences, and train our model on both
the sampled data and LDC2015E86. We adopt
Konstas et al. (2017)’s strategy for sampling sen-
tences from Gigaword, and choose JAMR (Flani-
gan et al., 2016a) to parse selected sentences into

Model BLEU Time
Seq2seq 18.8 35.4s
Seq2seq+copy 19.9 37.4s
Seq2seq+charLSTM+copy 20.6 39.7s
Graph2seq 20.4 11.2s
Graph2seq+copy 22.2 11.1s
Graph2seq+Anon 22.1 9.2s
Graph2seq+charLSTM+copy 22.8 16.3s

Table 1: DEV BLEU scores and decoding times.

AMRs, as the AMR parser of Konstas et al. (2017)
only works on the anonymized data. For training
on both sampled data and LDC2015E86, we also
follow the method of Konstas et al. (2017), which
is fine-tuning the model on the AMR corpus after
every epoch of pretraining on the gigaword data.

5.2 Settings

We extract a vocabulary from the training set,
which is shared by both the encoder and the de-
coder. The word embeddings are initialized from
Glove pretrained word embeddings (Pennington
et al., 2014) on Common Crawl, and are not up-
dated during training. Following existing work,
we evaluate the results with the BLEU metric (Pa-
pineni et al., 2002).

For model hyperparameters, we set the graph
state transition number as 9 according to devel-
opment experiments. Each node takes informa-
tion from at most 10 neighbors. The hidden vector
sizes for both encoder and decoder are set to 300
(They are set to 600 for experiments using large-
scale automatic data). Both character embeddings
and hidden layer sizes for character LSTMs are set
100, and at most 20 characters are taken for each
graph node or linearized token.

5.3 Development experiments

As shown in Table 1, we compare our model with
a set of baselines on the AMR devset to demon-
strate how the graph encoder and the copy mecha-
nism can be useful when training instances are not
sufficient. Seq2seq is the sequence-to-sequence
baseline described in Section 2. Seq2seq+copy
extends Seq2seq with the copy mechanism,
and Seq2seq+charLSTM+copy further extends
Seq2seq+copy with character LSTM. Graph2seq
is our graph-to-sequence model, Graph2seq+copy
extends Graph2seq with the copy mechanism,
and Graph2seq+charLSTM+copy further extends
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Graph2seq+copy with the character LSTM. We
also try Graph2seq+Anon, which applies our
graph-to-sequence model on the anonymized data
from Konstas et al. (2017).

The graph encoder As can be seen from Ta-
ble 1, the performance of Graph2seq is 1.6 BLEU
points higher than Seq2seq, which shows that our
graph encoder is effective when applied alone.
Adding the copy mechanism (Graph2seq+copy vs
Seq2seq+copy), the gap becomes 2.3. This shows
that the graph encoder learns better node represen-
tations compared to the sequence encoder, which
allows attention and copying to function better.

Applying the graph encoder together with the
copy mechanism gives a gain of 3.4 BLEU points
over the baseline (Graph2seq+copy vs Seq2seq).
The graph encoder is consistently better than the
sequence encoder no matter whether character
LSTMs are used.

We also list the encoding part of decoding times
on the devset, as the decoders of the seq2seq and
the graph2seq models are similar, so the time dif-
ferences reflect efficiencies of the encoders. Our
graph encoder gives consistently better efficiency
compared with the sequence encoder, showing the
advantage of parallelization.

The copy mechanism Table 1 shows that
the copy mechanism is effective on both the
graph-to-sequence and the sequence-to-sequence
models. Anonymization gives comparable over-
all performance gains on our graph-to-sequence
model as the copy mechanism (comparing
Graph2seq+Anon with Graph2seq+copy). How-
ever, the copy mechanism has several advantages
over anonymization as discussed in Section 3.5.

Character LSTM Character LSTM helps to
increase the performances of both systems by
roughly 0.6 BLEU points. This is largely because
it further alleviates the data sparsity problem by
handling unseen words, which may share common
substrings with in-vocabulary words.

5.4 Effectiveness on graph state transitions

We report a set of development experiments for
understanding the graph LSTM encoder.

Number of iterations We analyze the influ-
ence of the number of state transitions to the model
performance on the devset. Figure 3 shows the
BLEU scores of different state transition numbers,
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Figure 3: DEV BLEU scores against transition
steps for the graph encoder.
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Figure 4: Percentage of DEV AMRs with different
diameters.

when both incoming and outgoing edges are taken
for calculating the next state (as shown in Figure
2). The system is Graph2seq+charLSTM+copy.
Executing only 1 iteration results in a poor BLEU
score of 14.1. In this case the state for each node
only contains information about immediately adja-
cent nodes. The performance goes up dramatically
to 21.5 when increasing the iteration number to 5.
In this case, the state for each node contains infor-
mation of all nodes within a distance of 5. The per-
formance further goes up to 22.8 when increasing
the iteration number from 5 to 9, where all nodes
with a distance of less than 10 are incorporated in
the state for each node.

Graph diameter We analyze the percentage
of the AMR graphs in the devset with different
graph diameters and show the cumulative distribu-
tion in Figure 4. The diameter of an AMR graph is
defined as the longest distance between two AMR
nodes.1 Even though the diameters for less than
80% of the AMR graphs are less or equal than 10,
our development experiments show that it is not
necessary to incorporate the whole-graph informa-
tion for each node. Further increasing state transi-
tion number may lead to additional improvement.

1The diameter of single-node graphs is 0.
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Model BLEU
PBMT 26.9
SNRG 25.6
Tree2Str 23.0
MSeq2seq+Anon 22.0
Graph2seq+copy 22.7
Graph2seq+charLSTM+copy 23.3
MSeq2seq+Anon (200K) 27.4
MSeq2seq+Anon (2M) 32.3
Seq2seq+charLSTM+copy (200K) 27.4
Seq2seq+charLSTM+copy (2M) 31.7
Graph2seq+charLSTM+copy (200K) 28.2
Graph2seq+charLSTM+copy (2M) 33.0

Table 2: TEST results. “(200K)”, “(2M)” and
“(20M)” represent training with the corresponding
number of additional sentences from Gigaword.

We do not perform exhaustive search for finding
the optimal state transition number.

Incoming and outgoing edges As shown in
Figure 3, we analyze the efficiency of state tran-
sition when only incoming or outgoing edges are
used. From the results, we can see that there is a
huge drop when state transition is performed only
with incoming or outgoing edges. Using edges of
one direction, the node states only contain infor-
mation of ancestors or descendants. On the other
hand, node states contain information of ancestors,
descendants, and siblings if edges of both direc-
tions are used. From the results, we can conclude
that not only the ancestors and descendants, but
also the siblings are important for modeling the
AMR graphs. This is similar to observations on
syntactic parsing tasks (McDonald et al., 2005),
where sibling features are adopted.

We perform a similar experiment for the
Seq2seq+copy baseline by only executing single-
directional LSTM for the encoder. We observe
BLEU scores of 11.8 and 12.7 using only forward
or backward LSTM, respectively. This is consis-
tent with our graph model in that execution using
only one direction leads to a huge performance
drop. The contrast is also reminiscent of using the
normal input versus the reversed input in neural
machine translation (Sutskever et al., 2014).

5.5 Results
Table 2 compares our final results with existing
work. MSeq2seq+Anon (Konstas et al., 2017)
is an attentional multi-layer sequence-to-sequence

model trained with the anonymized data. PBMT
(Pourdamghani et al., 2016) adopts a phrase-based
model for machine translation (Koehn et al., 2003)
on the input of linearized AMR graph, SNRG
(Song et al., 2017) uses synchronous node replace-
ment grammar for parsing the AMR graph while
generating the text, and Tree2Str (Flanigan et al.,
2016b) converts AMR graphs into trees by split-
ting the re-entrances before using a tree transducer
to generate the results.

Graph2seq+charLSTM+copy achieves a BLEU
score of 23.3, which is 1.3 points better than
MSeq2seq+Anon trained on the same AMR cor-
pus. In addition, our model without charac-
ter LSTM is still 0.7 BLEU points higher than
MSeq2seq+Anon. Note that MSeq2seq+Anon re-
lies on anonymization, which requires additional
manual work for defining mapping rules, thus lim-
iting its usability on other languages and domains.
The neural models tend to underperform statistical
models when trained on limited (16K) gold data,
but performs better with scaled silver data (Kon-
stas et al., 2017).

Following Konstas et al. (2017), we also
evaluate our model using both the AMR cor-
pus and sampled sentences from Gigaword.
Using additional 200K or 2M gigaword sen-
tences, Graph2seq+charLSTM+copy achieves
BLEU scores of 28.2 and 33.0, respectively,
which are 0.8 and 0.7 BLEU points better than
MSeq2seq+Anon using the same amount of data,
respectively. The BLEU scores are 5.3 and 10.1
points better than the result when it is only trained
with the AMR corpus, respectively. This shows
that our model can benefit from scaled data with
automatically generated AMR graphs, and it is
more effective than MSeq2seq+Anon using the
same amount of data. Using 2M gigaword data,
our model is better than all existing methods. Kon-
stas et al. (2017) also experimented with 20M ex-
ternal data, obtaining a BLEU of 33.8. We did not
try this setting due to hardware limitations. The
Seq2seq+charLSTM+copy baseline trained on the
large-scale data is close to MSeq2seq+Anon us-
ing the same amount of training data, yet is much
worse than our model.

5.6 Case study

We conduct case studies for better understanding
the model performances. Table 3 shows example
outputs of sequence-to-sequence (S2S), graph-to-
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sequence (G2S) and graph-to-sequence with copy
mechanism (G2S+CP). Ref denotes the reference
output sentence, and Lin shows the serialization
results of input AMRs. The best hyperparameter
configuration is chosen for each model.

For the first example, S2S fails to recognize the
concept “a / account” as a noun and loses the con-
cept “o / old” (both are underlined). The fact
that “a / account” is a noun is implied by “a / ac-
count :mod (o / old)” in the original AMR graph.
Though directly connected in the original graph,
their distance in the serialization result (the input
of S2S) is 26, which may be why S2S makes these
mistakes. In contrast, G2S handles “a / account”
and “o / old” correctly. In addition, the copy mech-
anism helps to copy “look-over” from the input,
which rarely appears in the training set. In this
case, G2S+CP is incorrect only on hyphens and
literal reference to “anti-japanese war”, although
the meaning is fully understandable.

For the second case, both G2S and G2S+CP
correctly generate the noun “agreement” for “a /
agree” in the input AMR, while S2S fails to. The
fact that “a / agree” represents a noun can be de-
termined by the original graph segment “p / pro-
vide :ARG0 (a / agree)”, which indicates that “a /
agree” is the subject of “p / provide”. In the se-
rialization output, the two nodes are close to each
other. Nevertheless, S2S still failed to capture this
structural relation, which reflects the fact that a se-
quence encoder is not designed to explicitly model
hierarchical information encoded in the serialized
graph. In the training instances, serialized nodes
that are close to each other can originate from
neighboring graph nodes, or distant graph nodes,
which prevents the decoder from confidently de-
ciding the correct relation between them. In con-
trast, G2S sends the node “p / provide” simulta-
neously with relation “ARG0” when calculating
hidden states for “a / agree”, which facilitates the
yielding of “the agreement provides”.

6 Related work

Among early statistical methods for AMR-to-text
generation, Flanigan et al. (2016b) convert input
graphs to trees by splitting re-entrances, and then
translate the trees into sentences with a tree-to-
string transducer. Song et al. (2017) use a syn-
chronous node replacement grammar to parse in-
put AMRs and generate sentences at the same
time. Pourdamghani et al. (2016) linearize input

(p / possible-01 :polarity -
:ARG1 (l / look-over-06

:ARG0 (w / we)
:ARG1 (a / account-01

:ARG1 (w2 / war-01
:ARG1 (c2 / country :wiki “Japan”

:name (n2 / name :op1 “Japan”))
:time (p2 / previous)
:ARG1-of (c / call-01

:mod (s / so)))
:mod (o / old))))

Lin: possible :polarity - :arg1 ( look-over :arg0 we :arg1 (
account :arg1 ( war :arg1 ( country :wiki japan :name ( name
:op1 japan ) ) :time previous :arg1-of ( call :mod so ) ) :mod
old ) )
Ref: we can n’t look over the old accounts of the previous
so-called anti-japanese war .
S2S: we can n’t be able to account the past drawn out of
japan ’s entire war .
G2S: we can n’t be able to do old accounts of the previous
and so called japan war.
G2S+CP: we can n’t look-over the old accounts of the pre-
vious so called war on japan .
(p / provide-01

:ARG0 (a / agree-01)
:ARG1 (a2 / and

:op1 (s / staff
:prep-for (c / center

:mod (r / research-01)))
:op2 (f / fund-01

:prep-for c)))
Lin: provide :arg0 agree :arg1 ( and :op1 ( staff :prep-for (
center :mod research ) ) :op2 ( fund :prep-for center ) )
Ref: the agreement will provide staff and funding for the
research center .
S2S: agreed to provide research and institutes in the center .
G2S: the agreement provides the staff of research centers
and funding .
G2S+CP: the agreement provides the staff of the research
center and the funding .

Table 3: Example system outputs.

graphs by breadth-first traversal, and then use a
phrase-based machine translation system2 to gen-
erate results by translating linearized sequences.

Prior work using graph neural networks for
NLP include the use graph convolutional net-
works (GCN) (Kipf and Welling, 2017) for seman-
tic role labeling (Marcheggiani and Titov, 2017)
and neural machine translation (Bastings et al.,
2017). Both GCN and the graph LSTM update
node states by exchanging information between
neighboring nodes within each iteration. However,
our graph state LSTM adopts gated operations for
making updates, while GCN uses a linear transfor-
mation. Intuitively, the former has better learning
power than the later. Another major difference is
that our graph state LSTM keeps a cell vector for
each node to remember all history. The contrast

2http://www.statmt.org/moses/
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between our model with GCN is reminiscent of the
contrast between RNN and CNN. We leave em-
pirical comparison of their effectiveness to future
work. In this work our main goal is to show that
graph LSTM encoding of AMR is superior com-
pared with sequence LSTM.

Closest to our work, Peng et al. (2017) mod-
eled syntactic and discourse structures using DAG
LSTM, which can be viewed as extensions to tree
LSTMs (Tai et al., 2015). The state update follows
the sentence order for each node, and has sequen-
tial nature. Our state update is in parallel. In addi-
tion, Peng et al. (2017) split input graphs into sep-
arate DAGs before their method can be used. To
our knowledge, we are the first to apply an LSTM
structure to encode AMR graphs.

The recurrent information exchange mechanism
in our state transition process is remotely related to
the idea of loopy belief propagation (LBP) (Mur-
phy et al., 1999). However, there are two major
differences. First, messages between LSTM states
are gated neural node values, rather than probabil-
ities in LBP. Second, while the goal of LBP is
to estimate marginal probabilities, the goal of in-
formation exchange between graph states in our
LSTM is to find neural representation features,
which are directly optimized by a task objective.

In addition to NMT (Gulcehre et al., 2016),
the copy mechanism has been shown effective on
tasks such as dialogue (Gu et al., 2016), summa-
rization (See et al., 2017) and question generation
(Song et al., 2018). We investigate the copy mech-
anism on AMR-to-text generation.

7 Conclusion

We introduced a novel graph-to-sequence model
for AMR-to-text generation. Compared to
sequence-to-sequence models, which require lin-
earization of AMR before decoding, a graph
LSTM is leveraged to directly model full AMR
structure. Allowing high parallelization, the graph
encoder is more efficient than the sequence en-
coder. In our experiments, the graph model out-
performs a strong sequence-to-sequence model,
achieving the best performance.
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Abstract

A knowledge base is a large repository of
facts that are mainly represented as RDF
triples, each of which consists of a sub-
ject, a predicate (relationship), and an ob-
ject. The RDF triple representation of-
fers a simple interface for applications to
access the facts. However, this represen-
tation is not in a natural language form,
which is difficult for humans to under-
stand. We address this problem by propos-
ing a system to translate a set of RDF
triples into natural sentences based on an
encoder-decoder framework. To preserve
as much information from RDF triples as
possible, we propose a novel graph-based
triple encoder. The proposed encoder en-
codes not only the elements of the triples
but also the relationships both within a
triple and between the triples. Experi-
mental results show that the proposed en-
coder achieves a consistent improvement
over the baseline models by up to 17.6%,
6.0%, and 16.4% in three common metrics
BLEU, METEOR, and TER, respectively.

1 Introduction

Knowledge bases (KBs) are becoming an en-
abling resource for many applications includ-
ing Q&A systems, recommender systems, and
summarization tools. KBs are designed based
on a W3C standard called the Resource De-
scription Framework (RDF)1. An RDF triple
consists of three elements in the form of
〈subject, predicate (relationship), object〉. It
describes a relationship between an entity (the
subject) and another entity or literal (the object)
∗Corresponding author
1https://www.w3.org/RDF/

RDF
triples

〈John Doe,birth place,London〉
〈John Doe,birth date,1967-01-10〉
〈London,capital of,England〉

Target
sentence

John Doe was born on
1967-01-10 in London,
the capital of England.

Table 1: RDF based sentence generation.

via the predicate. This representation allows easy
data share between KBs. However, usually the el-
ements of a triple are stored as Uniform Resource
Identifiers (URIs), and many predicates (words or
phrases) are not intuitive; this representation is dif-
ficult to comprehend by humans.

Translating RDF triples into natural sentences
helps humans to comprehend the knowledge
embedded in the triples, and building a natural
language based user interface is an important
task in user interaction studies (Damljanovic
et al., 2010). This task has many applications,
such as question answering (Bordes et al.,
2014; Fader et al., 2014), profile summariz-
ing (Lebret et al., 2016; Chisholm et al., 2017),
and automatic weather forecasting (Mei et al.,
2016). For example, the SPARQL inference of
a Q&A system (Unger et al., 2012) returns a
set of RDF triples which need to be translated
into natural sentences to provide a more read-
able answer for the users. Table 1 illustrates
such an example. Suppose a user is asking
a question about “John Doe”. By querying
a KB, a Q&A system retrieves three triples
“〈John Doe,birth place,London〉”,
“〈John Doe,birth date,1967-01-10〉”,
and “〈London,capital of,England〉.”
We aim to generate a natural sentence that
incorporates the information of the triples and
is easier to be understood by the user. In this
example, the generated sentence is “John Doe
was born on 1967-01-10 in London,

1627



the capital of England.”
Most existing studies for this task use domain

specific rules. Bontcheva and Wilks (2004) create
rules to generate sentences in the medical domain,
while Cimiano et al. (2013) create rules to gener-
ate step by step cooking instructions. The prob-
lem of rule-based methods is that they need a lot
of human efforts to create the rules, which mostly
cannot deal with complex or novel cases.

Recent studies propose neural language gener-
ation systems. Lebret et al. (2016) generate the
first sentence of a biography by a conditional neu-
ral language model. Mei et al. (2016) propose
an encoder-aligner-decoder architecture to gener-
ate weather forecasts. The model does not need
predefined rules and hence generalizes better to
open domain data.

A straightforward adaptation of neural language
generation system is to use the encoder-decoder
model by first concatenating the elements of the
RDF triples into a linear sequence and then feed-
ing the sequence as the model input to learn the
corresponding natural sentence. We implemented
such a model (detailed in Section 3.2) that ranked
top in the WebNLG Challenge 20172. This Chal-
lenge has a primary objective of generating syntac-
tically correct natural sentences from a set of RDF
triples. Our model achieves the highest global
scores on the automatic evaluation, outperforming
competitors that use rule-based methods, statisti-
cal machine translation, and neural machine trans-
lation (Gardent et al., 2017b).

While our previous model achieves a good re-
sult, simply concatenating the elements in the
RDF triples may lose the relationship between
entities that affects the semantics of the result-
ing sentence (cf. Table 3). To address this is-
sue, in this paper, we propose a novel graph-based
triple encoder model that maintain the structure of
RDF triples as a small knowledge graph named
the GTR-LSTM model. This model computes the
hidden state of each entity in a graph to pre-
serve the relationships between entities in a triple
(intra-triple relationships) and the relationships
between entities in related triples (inter-triple re-
lationships) that helps to achieve even more ac-
curate sentences. This leads to two problems of
preserving the relationships in a knowledge graph:
(1) how to deal with a cycle in a knowledge graph;
(2) how to deal with multiple non-predefined re-

2http://talc1.loria.fr/webnlg/stories/challenge.html

lationships between two entities in a knowledge
graph. The proposed model differs from existing
non-linear LSTM models such as Tree LSTM (Tai
et al., 2015) and Graph LSTM (Liang et al., 2016)
in addressing the mentioned problem. In particu-
lar, Tree LSTM does not allow cycles, while the
proposed model handles cycles by first using a
combination of topological sort and breadth-first
traversal over a graph, and then using an atten-
tion model to capture the global information of the
knowledge graph. Meanwhile, Graph LSTM only
allows a predefined set of relationships between
entities, while the proposed model allows any re-
lationships by treating them as part of the input for
the hidden state computation.

To further enhance the capability of our model
to handle unseen entities, we propose to use en-
tity masking, which maps the entities in the model
training pairs to their types, e.g., we map an en-
tity (literal) “1967-01-10” to a type symbol
“DATE” in the training pairs. This way, our model
can learn to handle any date entities rather than
just “1967-01-10”. This is particularly helpful
when there is a limited training dataset.

Our contributions are:

• We propose an end-to-end encoder-decoder
based framework for the problem of translat-
ing RDF triples into natural sentences.

• We further propose a graph-based triple en-
coder to optimize the amount of information
preserved in the input of the framework. The
proposed model can handle cycles to cap-
ture the global information of a knowledge
graph. The proposed model also handles non-
predefined relationships between entities.

• We evaluate the proposed framework and
model over two real datasets. The results
show that our model outperforms the state-
of-the-art models consistently.

The rest of this paper is organized as follows.
Section 2 summarizes previous studies on sen-
tence generation. Section 3 details the proposed
model. Section 4 presents the experimental re-
sults. Section 5 concludes the paper.

2 Related Work

The studied problem falls in the area of Natu-
ral Language Generation (NLG) (Reiter and Dale,
2000). Bontcheva and Wilks (2004) follow a
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traditional NLG approach to generate sentences
from RDF data in the medical domain. They
start with filtering repetitive RDF data (document
planning) and then group coherent triples (micro-
planning). After that, they aggregate the sentences
generated for coherent triples to produce the fi-
nal sentences (aggregation and realization). Cimi-
ano et al. (2013) generate cooking recipes from
semantic web data. They focus on using a large
corpus to extract lexicon in the cooking domain.
The lexicon is then used with a traditional NLG
approach to generate cooking recipes. Duma and
Klein (2013) learn a sentence template from a par-
allel RDF data and text corpora. They first align
entities in RDF triples with entities mentioned in
sentences. Then, they extract templates from the
aligned sentences by replacing the entity mention
with a unique token. This method works well on
RDF triples in a seen domain but fails on RDF
triples in a previously unseen domain.

Recently, several methods using neural net-
works are proposed. Lebret et al. (2016) gener-
ate the first sentence of a biography using a con-
ditional neural language model. This model is
trained to predict the next word of a sentence not
only based on previous words, but also by using
features captured from Wikipedia infoboxes. Mei
et al. (2016) propose an encoder-aligner-decoder
model to generate weather forecasts. The aligner
is used to filter the most relevant data to be used to
predict the weather forecast. Both studies experi-
ment on cross-domain datasets. The result shows
that the neural language generation approach is
more flexible to work in an open domain since it
is not limited to handcrafted rules. This motivates
us to use a neural network based framework.

The most similar system to ours is Neural
Wikipedian (Vougiouklis et al., 2017), which gen-
erates a summary from RDF triples. It uses feed-
forward neural networks to encode RDF triples
and concatenate them as the input of the decoder.
The decoder uses LSTM to predict a sequence of
words as a summary. There are differences from
our work. First, Neural Wikipedian only works
with a set of RDF triples with a single entity point
of view (i.e., the entity of interest must be in either
the subject or the object of every triple). Our sys-
tem does not have this constraint. Second, Neu-
ral Wikipedian uses standard feed-forward neural
networks in the encoder. We design new triple en-
coder models to accommodate specific features of

…

…

Encoder

Decoder

Target Text

De-lexicalizerSentence Normalizer

Target Text Pre-processor

RDF Triples 

Entity Type Mapper Masking Module

RDF Pre-processor

s1 p1 o1 on…

w1 w2 wm…

Figure 1: RDF sentence generation based on an
encoder-decoder architecture.
RDF triples. Experimental results show that our
framework outperforms Neural Wikipedian.

3 Proposed Model

We start with the problem definition. We con-
sider a set of RDF triples as the input, which is
denoted by T = [t1, t2, ..., tn] where a triple ti
consists of three elements (subject si, predicate pi,
and object oi), ti = 〈si, pi, oi〉. Every element can
contain multiple words. We aim to generate a set
of sentences that consist of a sequence of words
S = 〈w1, w2, ..., wm〉, such that the relationships
in the input triples are correctly represented in S
while the sentences have a high quality. We use
BLEU, METEOR, and TER to assess the quality
of the sentence (detailed in Section 4). Table 1 il-
lustrates our problem input and the target output.

This section is organized as follows. First
we describe the overall framework (Section 3.1).
Next, we describe three triple encoder models in-
cluding the adapted standard BLSTM model (Sec-
tion 3.2), the adapted standard triple encoder
model (Section 3.3), and the proposed GTR-LSTM
model (Section 3.4). The decoder which is used
for all encoder models is described in Section 3.5.
The entity masking is described in Section 3.6

3.1 Solution Framework
Our solution framework uses an encoder-decoder
architecture as illustrated in Fig. 1. The framework
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consists of three components including an RDF
pre-processor, a target text pre-processor, and an
encoder-decoder module.

The RDF pre-processor consists of an entity
type mapper and a masking module. The entity
type mapper maps the subjects and objects in the
triples to their types, such that the sentence pat-
terns learned are based on entity types rather than
entities. For example, the input entities in Table 1,
“John Doe”, “London”, “England”, and
“1967-01-10” can be mapped to “PERSON”,
“CITY”, “COUNTRY”, and “DATE”, respectively.
The mapping has been shown in our experiments
to be highly effective in improving the model
output quality. The masking module converts
each entity into an entity identifier (eid). The
target text pre-processor consists of a text nor-
malizer and a de-lexicalizer. The text normal-
izer converts abbreviations and dates into the
same format as the corresponding entities in the
triples. The de-lexicalizer replaces all entities
in the target sentences by their eids. The RDF
and target text pre-processors are detailed in Sec-
tion 3.6. The replaced target sentences are com-
bined with the original target sentences and the
English Wikipedia articles is used as a corpus to
learn the word embeddings of the vocabulary.

To accommodate the RDF data, in the encoder
side, we consider three triple encoder models: (1)
the adapted standard BLSTM encoder; (2) the
adapted standard triple encoder; and (3) the pro-
posed GTR-LSTM triple encoder. The adapted
standard BLSTM encoder concatenates the tokens
in RDF triples as an input sequence, while the
standard triple encoder first encodes each RDF
triple into a vector representation and then con-
catenates the vectors of different triples. The latter
model better captures intra-triple relationships but
suffers in capturing inter-triple relationships. Con-
sidering the native representation of RDF triples as
a small knowledge graph, our graph-based GTR-
LSTM triple encoder captures both intra-triple and
inter-triple entity relationships.

3.2 Adapted Standard BLSTM Encoder

The standard encoder-decoder model with a
BLSTM encoder is a sequence to sequence learn-
ing model (Cho et al., 2014). To adapt such a
model for our problem, we transform a set of RDF
triples input T into a sequence of elements (i.e.,
T = [w1,1, w1,2, ..., w1,j , ..., wn,j ]), where wn,j is

John → w1,1
Doe → w1,2
birth → w1,3
place → w1,4
London → w1,5
London → w2,1
capital → w2,2
of → w2,3
England → w2,4
<pad> → w2,5
… → wn,1
… → wn,2
… → wn,3
… → wn,4
… → wn,5

t1

word embedding
Input

representationLSTM 

t2

tn

hn,1

hn,2

hn,3

hn,4

hn,5

h1,5

h2,5

hn,5

wn,1

wn,2

wn,3

wn,4

wn,5

...

hT

Figure 2: LSTM-based standard triple encoder.

the word embedding of a word in the n-th triple.
For example, following the triples in Table 1, w1,1

is the word embedding of “John”, w1,2 is the word
embedding of “Doe”, etc. This sequence forms
an input for the encoder. We use zero padding
to ensure that each input has the same representa-
tion size. The rest of the model is the same as the
standard encoder-decoder model with an attention
mechanism (Bahdanau et al., 2015). We call this
model the adapted standard BLSTM encoder.

3.3 Adapted Standard Triple Encoder

The standard BLSTM encoder suffers in captur-
ing the element relationships as the elements are
simply concatenated together. Next, we adapt the
standard BLSTM encoder to aggregate the word
embeddings of the elements of the same triple to
retain the intra-triple relationship. We call this the
adapted standard triple encoder.

The adaptation is done by grouping the ele-
ments of each triple, so the input is represented
as T = [〈w1,1, ..., w1,j〉, ..., 〈wn,1, ...wn,j〉], where
wn,j is the word embedding of a word in the n-th
triple. We use zero padding to ensure that each
triple has the same representation size. An LSTM
network of the encoder computes a hidden state of
each triple and concatenates them together to be
the input for the decoder:

hT = [f(t1); f(t2); ...; f(tn)] (1)

where hT is the input vector representation for the
decoder and f is an LSTM network (cf. Fig. 2).

3.4 GTR-LSTM Triple Encoder

The adapted standard triple encoder has an ad-
vantage in preserving the intra-triple relationship.
However, it has not considered the structural rela-
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Figure 3: A small knowledge graph formed by a
set of RDF triples.

tionships between the entities in different triples.
To overcome this limitation, we propose a graph-
based triple encoder. We call it the GTR-LSTM
triple encoder. This encoder takes the input triples
in the form of a graph, which preserves the natural
structure of the triples (cf. Fig. 3).

GTR-LSTM differs from existing Graph
LSTM (Liang et al., 2016) and Tree LSTM (Tai
et al., 2015) models in the following aspects.
Graph LSTM is proposed for image data. It con-
structs the graph based on the spatial relationships
among super-pixels of an image. Tree LSTM uses
the dependency tree as the structure of a sentence.
Both models have a predefined relationship
between the vertices (Graph LSTM uses spatial
relationships: top, bottom, left, or right between
super-pixels; Tree LSTM uses dependencies
between words in a sentence as the relationship).
In contrast, a KB has an open set of relationships
between the vertices (i.e., the predicate defines
the relationship between entities/vertices) which
make our problem more difficult to model.

Our GTR-LSTM triple encoder overcomes the
difficulty as follows. It receives a directed graph
G = 〈V,E〉 as the input, where V is a set of
vertices that represent entities or literals, and E
is a set of directed edges that represent predi-
cates. Since the graph can contain cycles, we use a
combination of topological sort and breadth-first
traversal algorithms to traverse the graph. The
traversal is used to create an ordering of feeding
the vertices into a GTR-LSTM unit to compute
their hidden states. We start with running a topo-
logical sort to establish an order of the vertices
until no further vertex has a zero in-degree. For
the remaining vertices, they must be in strongly
connected component(s). Then, we run a breadth-
first traversal over the remaining vertices with a
random starting vertex, since every vertex can be
reached from all vertices of a strongly connected
component. When a vertex vi is visited, the hid-
den states of all adjacent vertices of vi are com-
puted (or updated if the hidden state of the vertex

< >

John
null

hjohn

h0

Mary

hmary

England
capital_of

hengland

London

hlondon

John

lead_by

h’john

spouse birth_place

Attention model

Figure 4: GTR-LSTM triple encoder.

is already computed in the previous step).
Following the graph in Fig. 3, the order of hid-

den state computation is as follows. The pro-
cess starts with a vertex with zero in-degree. Be-
cause there is no such vertex, a vertex is ran-
domly selected as the starting vertex. Assume we
pick “John” as the starting vertex, then we com-
pute hjohn using h0 as the previous hidden state.
Next, following the breadth-first traversal algo-
rithm, we visit vertex “John” and compute hmary
and hlondon by passing hjohn as the previous hid-
den state. Next step, vertex “Mary” is visited, but
no hidden states are computed or updated since it
does not have any adjacent vertices. In the last
step, vertex “England” is visited and hjohn is
updated. Fig. 4 illustrates the overall process.

Different from the Graph LSTM, our GTR-
LSTM model computes a hidden state by taking
into account the processed entity and its edge (the
edge pointing to the current entity from the previ-
ous entity) to handle non-predefined relationships
(any relationships between entities in a knowledge
graph). Thus, our GTR-LSTM unit (cf. Fig. 4)
receives two inputs, i.e., the entity and its relation-
ship. We propose the following model to compute
the hidden state of each GTR-LSTM unit.

it = σ

(∑

e

(
U iexte +W ieht−1

)
)

(2)

fte = σ
(
Ufxte +W fht−1

)
(3)

ot = σ

(∑

e

(Uoexte +W oeht−1)

)
(4)

gt = tanh

(∑

e

(Ugexte +W geht−1)

)
(5)

ct =

(
ct−1 ∗

∑

e

fte

)
+ (gt ∗ it) (6)

ht = tanh(ct) ∗ ot (7)

Here, U and W are learned parameter matrices, σ
denotes the sigmoid function, ∗ denotes element-
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Figure 5: Attention model of GTR-LSTM.

wise multiplication, and x is the input at the cur-
rent time-step. The input gate i determines the
weight of the current input. The forget gate f de-
termines the weight of the previous state. The out-
put gate o determines the weight of the cell state
forwarded to the next time-step. The state g is the
candidate hidden state used to compute the inter-
nal memory unit c based on the current input and
the previous state. The subscript t is the time-
step. The subscript/superscript e is the input el-
ement (an entity or a predicate). Following Tree
LSTM (Tai et al., 2015) and Graph LSTM (Liang
et al., 2016), we also use a separate forget gate for
each input that allows the GTR-LSTM unit to in-
corporate information from each input selectively.

From Fig. 4, we can see that the traversal cre-
ates two branches, one ended in hmary and the
other ended in h′john. After the encoder computes
the hidden states of each vertex, h′john does not
include the information of hmary and vice versa.
Moreover, the graph can contain cycles that cause
difficulty in determining the starting and ending
vertices. Our traversal procedure ensures that the
hidden states of all vertices are updated based on
their adjacent vertices (local neighbors). To fur-
ther capture the global information of the graph,
we apply an attention model on the GTR-LSTM
triple encoder. The attention model takes the hid-
den states of all vertices computed by the encoder
and the previous hidden state of the decoder to
compute the final input vector of each decoder
time-step. Figure 5 illustrates the attention model
of GTR-LSTM. Inspired by Luong et al. (2015),
we adapt the following equation to compute the
weight of each vertex.

αn =
exp(hdt

T
Wxn)

∑|X|
j=1 exp(h

d
t
T
Wxj)

(8)

Here, hdt is the previous hidden state of the
decoder, |X| is the total number of entities in
the triples, W is a learned parameter matrix, xn
and xj are hidden states of vertices, and α =
{α1, α2, ..., αn} is the weight vector of all ver-
tices. Then the input of the decoder for each time-
step can be computed as follows.

hT =

|X|∑

n=1

αnxn (9)

3.5 Decoder
The decoder of the proposed framework is a stan-
dard LSTM. It is trained to generate the output
sequence by predicting the next output word wt
conditioned on the hidden state hdt. The current
hidden state hdt is conditioned on the hidden state
of the previous time-step hdt−1, the output of the
previous time-step wt−1, and input vector repre-
sentation hT . The hidden state and the output of
the decoder at time-step t are computed as:

hdt = f(hdt−1, wt−1, hT ) (10)

wt = softmax(V ht) (11)

Here, f is a single LSTM unit, and V is the
hidden-to-output weight matrix. The encoder and
the decoder are trained to maximize the condi-
tional log-likelihood:

p(Sn | Tn) =
|Sn|∑

t=1

logwt (12)

Hence, the training objective is to minimize the
negative conditional log-likelihood:

J =
N∑

n=1

− log p(Sn | Tn) (13)

where (Sn, Tn) is a pair of output word sequence
and input RDF triple set given for the training.

3.6 Entity Masking
Entity masking makes our framework generalizes
better to unseen entities. This technique addresses
the problem of a limited training set which is faced
by many NLG problems.

Entity masking replaces entity mentions with
eids and entity types in both the input triples and
the target sentences. However, we do not want our
model to be overly generalized either. Thus, we
need to have general and specific entity types. For
example, the entity “John Doe” is replaced by
“ENT-1 PERSON GOVERNOR”. To add the en-
tity types, we use the DBpedia lookup API. The
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API returns several entity types. The general and
specific entity types are defined by the level of the
word in the WordNet (Fellbaum, 1998) hierarchy.

In the encoder side, each element of the
triple tn = 〈sn, pn, on〉 is transformed into
sn = 〈lsn , gsn , dsn〉 , pn = 〈lpn〉, and on =
〈lon , gon , don〉, where l is the label of an element,
g is the general entity type, and d is the specific
entity type. The labels of the subject and the ob-
ject are latter replaced by eids, while the label of
the predicate is preserved, since it indicates the re-
lationship between the subject and the object.

On the decoder side, the entities in the tar-
get text are also replaced by their corresponding
eids. Entity matching is beyond the scope of our
study. We simply use a combination of three string
matching methods to find entity mentions in the
sentence: exact matching, n-gram matching, and
parse tree matching. The exact matching is used
to find the exact mention; the n-gram matching is
used to handle partial matching with the same to-
ken length; and parse tree matching is used to find
a partial matching with different token length.

4 Experiments

We evaluate our framework on two datasets. The
first is the dataset from Gardent et al. (2017a).
We call it the WebNLG dataset. This dataset con-
tains 25,298 RDF triple set-text pairs, with 9,674
unique sets of RDF triples. The dataset con-
sists of a Train+Dev dataset and a Test Unseen
dataset. We split Train+Dev into a training set
(80%), a development set (10%), and a Seen test-
ing set (10%). The Train+Dev dataset contains
RDF triples in ten categories (topics, e.g., astro-
naut, monument, food, etc.), while the Test Un-
seen dataset has five other unseen categories. The
maximum number of triples in each RDF triple
set is seven. For the second dataset, we collected
data from Wikipedia pages regarding landmarks.
We call it the GKB dataset. We first extract RDF
triples from Wikipedia infoboxes and sentences
from the Wikipedia text that contain entities men-
tioned in the RDF triples. Human annotators then
filter out false matches to obtain 1,000 RDF triple
set-text pairs. This dataset is split into the train-
ing and development set (80%) and the testing set
(20%). Table 1 illustrates an example of the data
pairs of WebNLG and GKB dataset.

We implement the existing models, the adapted

model, and the proposed model using Keras3.
We use three common evaluation metrics in-
cluding BLEU (Papineni et al., 2002), ME-
TEOR (Denkowski and Lavie, 2011), and
TER (Snover et al., 2006). For the metric com-
putation and significance testing, we use MultE-
val (Clark et al., 2011).

4.1 Tested Models

We compare our proposed graph-based triple
encoder (GTR-LSTM, Section 3.4) with three
existing model including the adapted standard
BLSTM encoder (BLSTM, Section 3.2), Neural
Wikipedian (Vougiouklis et al., 2017) (TFF), and
statistical machine translation (Hoang and Koehn,
2008) (SMT) trained on a 6-gram language model.
We also compare with the adapted standard triple
encoder (TLSTM, Section 3.3).

4.2 Hyperparameters

We use grid search to find the best hyperparame-
ters for the neural networks. We use GloVe (Pen-
nington et al., 2014) trained on the GKB and
WebNLG training data and full English Wikipedia
data dump to get 300-dimension word embed-
dings. We use 512 hidden units for both en-
coder and decoder. We use a 0.5 dropout rate
for regularization on both encoder and decoder to
avoid overfitting. We train our model on NVIDIA
Tesla K40c. We find that using adaptive learn-
ing rates for the optimization is efficient and leads
the model to converge faster. Thus, we use
Adam (Kingma and Ba, 2015) with a learning rate
of 0.0002 instead of stochastic gradient descent.
The update of parameters in training is computed
using a mini batch of 64 instances. We further ap-
ply early stopping to detect the convergence.

4.3 Effect of Entity Masking

Table 2 shows the overall comparison of model
performance. It shows that entity masking gives a
consistent performance improvement for all mod-
els. Generalizing the input triples and target sen-
tences helps the models to learn the relationships
between entities from their types. This is partic-
ularly helpful when there is limited training data.
We use a combination of exact matching, n-gram
matching and parse tree matching to find the entity
mentions in the sentence. The entity masking ac-
curacy for WebNLG dataset is 87.15%, while for

3https://nmt-keras.readthedocs.io/en/latest/
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Model
Metric/Dataset BLEU↑ METEOR↑ TER↓

Seen Unseen GKB Seen Unseen GKB Seen Unseen GKB

Entity
Unmasking

Existing models
BLSTM 42.7 23.0 28.0 34.4 28.7 27.5 55.7 69.9 67.7
SMT 41.1 23.9 27.7 33.2 28.3 27.6 57.0 70.1 63.8
TFF 44.6 26.4 26.4 33.9 29.4 27.2 52.4 62.6 60.1

Adapted model TLSTM 45.9 28.1 29.4 34.9 30.1 28.5 50.5 62.7 59.0
Our proposed GTR-LSTM 54.0 29.2 37.1 37.3 27.8 30.6 45.3 59.8 55.1

Entity
Masking

Existing models
BLSTM 49.8 28.0 34.8 38.3 29.4 28.6 49.9 64.9 65.8
SMT 46.5 24.8 32.0 37.1 29.1 28.5 52.3 62.2 67.8
TFF 47.8 28.4 33.7 35.9 30.5 28.9 49.9 61.2 58.4

Adapted Model TLSTM 50.5 31.6 36.7 36.5 30.7 30.1 47.7 60.4 57.2
Our proposed GTR-LSTM 58.6 34.1 40.1 40.6 32.0 34.6 41.7 57.9 50.6

Table 2: Comparison of model performance.

RDF inputs 〈Elizabeth Tower, location, London〉, 〈Wembley Stadium, location, London〉,
〈London, capital of, England〉, 〈Theresa May, prime minister, England〉

Reference london , england is home to wembley stadium and the elizabeth tower.
the name of the leader in england is theresa may.

BLSTM
england is lead by theresa may and is located in the city of london .
the elizabeth tower is located in the city of england and is located in
the wembley stadium.

SMT wembley stadium is located in london , elizabeth tower . theresa may
is the leader of england , england.

TFF the elizabeth tower is located in london , england , where wembley
stadium is the leader and theresa may is the leader.

TLSTM the wembley stadium is located in london , england . the country is
the location of elizabeth tower . theresa may is the leader of london.

GTR-LSTM the wembley stadium and elizabeth tower are both located in london ,
england . theresa may is the leader of england.

Table 3: Sample output of the system. The error is highlighted in bold.

the GKB dataset is 82.45%.
Entity masking improves the BLEU score of

the proposed GTR-LSTM model by 8.5% (from
54.0 on the Entity Unmasking model to 58.6 on
the Entity Masking model), 16.7%, and 8.0%
on the WebNLG seen testing data (denoted by
“Seen”), WebNLG unseen testing data (denoted
by “Unseen”), and the GKB testing data (denoted
by “GKB”). Using the entity masking not only
improves the performance by recognizing the un-
known vocabulary via eid masking but also im-
proves the running time performance by requiring
a smaller training vocabulary.

4.4 Effect of Models

Table 2 also shows that the proposed GTR-LSTM
triple encoder achieves a consistent improvement
over the baseline models, and the improvement is
statistically significant, with p < 0.01 based on
the t-test of all metrics. We use MultEval to com-
pute the p value based on an approximate random-
ization (Clark et al., 2011). The improvement on
the BLEU score indicates that the model reduces
the errors in the generated sentence. Our manual
inspection confirms this result. The better (lower)
TER score suggests that the model generates a
more compact output (i.e., better aggregation).

Table 3 shows a sample output of all models.
From this table, we can see that all baseline
models produce sentences that contain wrong
relationships between entities (e.g., the BLSTM
output contains a wrong relationship “the
elizabeth tower is located in the
city of england”). Moreover, the base-
line models generate sentences with a weak
aggregation (e.g., “Elizabeth Tower” and
“Wembley Stadium” are in separate sentences
for TLSTM). The proposed GTR-LSTM model
successfully avoids these problems.

Model training time. GTR-LSM is slower in
training than the baseline models, which is ex-
pected as it needs to encode more information.
However, its training time is no more than twice as
that of any baseline models tested, and the train-
ing can complete within one day which seems
reasonable. Meanwhile, the number of parame-
ters trained for GTR-LSTM is up to 59% smaller
than those of the baseline models, which saves the
space cost for model storage.

4.5 Human Evaluation

To complement the automatic evaluation, we con-
duct human evaluations for all of the masked mod-
els. We ask five human annotators. Each of them
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Model
Dataset/Metric Seen Unseen GKB

Correctness Grammar Fluency Correctness Grammar Fluency Correctness Grammar Fluency

Existing Models
BLSTM 2.25 2.33 2.29 1.53 1.71 1.68 1.54 1.84 1.84
SMT 2.03 2.11 2.07 1.36 1.48 1.44 1.81 1.99 1.89
TFF 1.77 1.91 1.88 1.44 1.69 1.66 1.71 1.99 1.96

Adapted Model TLSTM 2.53 2.61 2.55 1.75 1.93 1.86 2.21 2.38 2.35
Our Proposed GTR-LSTM 2.64 2.66 2.57 1.96 2.04 1.99 2.29 2.42 2.41

Table 4: Human evaluation results.

has studied English for at least ten years and com-
pleted education in a full English environment for
at least two years. We provide a website4 that
shows them the RDF triples and the generated text.
The annotators are given training on the scoring
criteria. We also provide scoring examples. We
randomly selected 100 sets of triples along with
the output of each model. We only select sets of
triples that contain more than two triples. Follow-
ing (Gardent et al., 2017b), we use three evalua-
tion metrics including correctness, grammatical-
ity, and fluency. For each pair of triple set and
generated sentences, the annotators are asked to
give a score between one to three for each metric.

Correctness is used to measure the semantics of
the output sentence. A score of 3 is given to gen-
erated sentences that contain no errors in the rela-
tionships between entities; a score of 2 is given to
generated sentences that contain one error in the
relationship; and a score of 1 is given to gener-
ated sentences that contain more than one errors
in the relationships. Grammaticality is used to rate
the grammatical and spelling errors of the gener-
ated sentences. Similar to the correctness metric,
a score of 3 is given to generated sentences with
no grammatical and spelling errors; a score of 2 is
given to generated sentences with one error; and a
score of 1 for the others. The last metric, fluency,
is used to measure the fluency of the sentence out-
put. We ask the annotators to give a score based on
the aggregation of the sentences and the existence
of sentence repetition. Table 4 shows the results
of the human evaluations. The results confirm the
automatic evaluation in which our proposed model
achieves the best scores.

Error analysis. We further perform a manual
inspection of 100 randomly selected output
sentences of GTR-LSTM and BLSTM on the
Seen and Unseen test data. We find that 32%
of BLSTM output contains wrong relationships
between entities. In comparison, only 8%
of GTR-LSTM output contains such errors.
Besides, we find duplicate sub-sentences in

4http://bit.ly/gkb-mappings

the output of GTR-LSTM (15%). The fol-
lowing output is an example: “beef kway
teow is a dish from singapore,
where english language is spoken
and the leader is tony tan. the
leader of singapore is tony tan.”
While the duplicate sentence is not wrong, it
affects the reading experience. We conjecture that
the LSTM in the decoder caused such an issue.
We aim to solve this problem in future work.

5 Conclusions

We proposed a novel graph-based triple encoder
GTR-LSTM for sentence generation from RDF
data. The proposed model maintains the struc-
ture of input RDF triples as a small knowledge
graph to optimize the amount of information pre-
served in the input of the model. The proposed
model can handle cycles to capture the global in-
formation of a knowledge graph and also handle
non-predefined relationships between entities of a
knowledge graph.

Our experiments show that GTR-LSTM offers
a better performance than all the competitors. On
the WebNLG dataset, our model outperforms the
best existing model, the standard BLSTM model,
by up to 17.6%, 6.0%, and 16.4% in terms of
BLEU, METEOR, and TER scores, respectively.
On the GKB dataset, our model outperforms the
standard BLSTM model by up to 15.2%, 20.9%,
and 23.1% in these three metrics, respectively.
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Abstract

Despite their local fluency, long-form text
generated from RNNs is often generic,
repetitive, and even self-contradictory. We
propose a unified learning framework that
collectively addresses all the above issues
by composing a committee of discrimina-
tors that can guide a base RNN genera-
tor towards more globally coherent gen-
erations. More concretely, discriminators
each specialize in a different principle of
communication, such as Grice’s maxims,
and are collectively combined with the
base RNN generator through a compos-
ite decoding objective. Human evaluation
demonstrates that text generated by our
model is preferred over that of baselines
by a large margin, significantly enhancing
the overall coherence, style, and informa-
tion of the generations.

1 Introduction

Language models based on Recurrent Neural Net-
works (RNNs) have brought substantial advance-
ments across a wide range of language tasks (Joze-
fowicz et al., 2016; Bahdanau et al., 2015; Chopra
et al., 2016). However, when used for long-
form text generation, RNNs often lead to degen-
erate text that is repetitive, self-contradictory, and
overly generic, as shown in Figure 1.

We propose a unified learning framework that
can address several challenges of long-form text
generation by composing a committee of discrim-
inators each specializing in a different principle
of communication. Starting with an RNN lan-
guage model, our framework learns to construct
a more powerful generator by training a number
of discriminative models that can collectively ad-
dress limitations of the base RNN generator, and

Context: The two guards thudded into the door on the 
other side and began pounding on it, shouting furiously. 
Scious raised the large bunch of keys then placed them in 
a large pocket in his coat. "Come, we have to go," he 
whispered and moved up the corridor, the guards still 
hammering on the door. Jared looked around. The table 
next to the room they had been in was bare.

LM: There was a small table set into the center of the table, 
and a table with two chairs and a table. A chair sat next to 
the couch. A large man stood in the doorway of the room, 
his arms crossed over his chest. "What 's up?" He asked.

L2W: Empty. It looked like some kind of prison. There were 
no windows, no doors, no windows. No sign of anyone in the 
house. No one had ever been here before. 

Reference: Only a flagon of wine and a couple of mugs 
plus a crude dice game. Light flickered in the stone 
corridor from lanterns on the walls. The place was dank 
and gloomy, moss in scattered patches on the floor and 
walls. The corridor ended just beyond the door to their 
former prison. No one else was about.

Figure 1: Sample generations from an RNN lan-
guage model (LM) and our system (L2W) con-
ditioning on the context shown on the top. The
red, underlined text highlights repetitions, while
the blue, italicized text highlights details that have
a direct semantic parallel in the reference text.

then learns how to weigh these discriminators to
form the final decoding objective. These “cooper-
ative” discriminators complement each other and
the base language model to form a stronger, more
global decoding objective.

The design of our discriminators are inspired
by Grice’s maxims (Grice et al., 1975) of quan-
tity, quality, relation, and manner. The discrimi-
nators learn to encode these qualities through the
selection of training data (e.g. distinguishing a
true continuation from a randomly sampled one
as in §3.2 Relevance Model), which includes gen-
erations from partial models (e.g. distinguishing
a true continuation from one generated by a lan-
guage model as in §3.2 Style Model). The system
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then learns to balance these discriminators by ini-
tially weighing them uniformly, then continually
updating its weights by comparing the scores the
system gives to its own generated continuations
and to the reference continuation.

Empirical results (§5) demonstrate that our
learning framework is highly effective in convert-
ing a generic RNN language model into a substan-
tially stronger generator. Human evaluation con-
firms that language generated by our model is pre-
ferred over that of competitive baselines by a large
margin in two distinct domains, and significantly
enhances the overall coherence, style, and infor-
mation content of the generated text. Automatic
evaluation shows that our system is both less repet-
itive and more diverse than baselines.

2 Background

RNN language models learn the conditional prob-
ability P (xt|x1, ..., xt−1) of generating the next
word xt given all previous words. This condi-
tional probability learned by RNNs often assigns
higher probability to repetitive, overly generic sen-
tences, as shown in Figure 1 and also in Table 3.
Even gated RNNs such as LSTMs (Hochreiter
and Schmidhuber, 1997) and GRUs (Cho et al.,
2014) have difficulties in properly incorporating
long-term context due to explaining-away effects
(Yu et al., 2017b), diminishing gradients (Pascanu
et al., 2013), and lack of inductive bias for the net-
work to learn discourse structure or global coher-
ence beyond local patterns.

Several methods in the literature attempt to ad-
dress these issues. Overly simple and generic gen-
eration can be improved by length-normalizing the
sentence probability (Wu et al., 2016), future cost
estimation (Schmaltz et al., 2016), or a diversity-
boosting objective function (Shao et al., 2017; Vi-
jayakumar et al., 2016). Repetition can be re-
duced by prohibiting recurrence of the trigrams as
a hard rule (Paulus et al., 2018). However, such
hard constraints do not stop RNNs from repeating
through paraphrasing while preventing occasional
intentional repetition.

We propose a unified framework to address all
these related challenges of long-form text genera-
tion by learning to construct a better decoding ob-
jective, generalizing over various existing modifi-
cations to the decoding objective.

3 The Learning Framework

We propose a general learning framework for con-
ditional language generation of a sequence y given
a fixed context x. The decoding objective for gen-
eration takes the general form

fλ(x,y) = log(Plm(y|x))+
∑

k

λksk(x,y), (1)

where every sk is a scoring function. The
proposed objective combines the RNN language
model probability Plm (§3.1) with a set of ad-
ditional scores sk(x,y) produced by discrimi-
natively trained communication models (§3.2),
which are weighted with learned mixture coeffi-
cients λk (§3.3). When the scores sk are log prob-
abilities, this corresponds to a Product of Experts
(PoE) model (Hinton, 2002).

Generation is performed using beam search
(§3.4), scoring incomplete candidate generations
y1:i at each time step i. The RNN language
model decomposes into per-word probabilities via
the chain rule. However, in order to allow for
more expressivity over long range context we do
not require the discriminative model scores to fac-
torize over the elements of y, addressing a key
limitation of RNNs. More specifically, we use
an estimated score s′k(x,y1:i) that can be com-
puted for any prefix of y = y1:n to approxi-
mate the objective during beam search, such that
s′k(x,y1:n) = sk(x,y). To ensure that the train-
ing method matches this approximation as closely
as possible, scorers are trained to discriminate pre-
fixes of the same length (chosen from a predeter-
mined set of prefix lengths), rather than complete
continuations, except for the entailment module as
described in §3.2 Entailment Model. The prefix
scores are re-estimated at each time-step, rather
than accumulated over beam search.

3.1 Base Language Model
The RNN language model treats the context x and
the continuation y as a single sequence s:

logPlm(s) =
∑

i

logPlm(si|s1:i−1). (2)

3.2 Cooperative Communication Models
We introduce a set of discriminators, each of
which encodes an aspect of proper writing that
RNNs usually fail to capture. Each model is
trained to discriminate between good and bad gen-
erations; we vary the model parameterization and
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training examples to guide each model to focus on
a different aspect of Grice’s Maxims. The discrim-
inator scores are interpreted as classification prob-
abilities (scaled with the logistic function where
necessary) and interpolated in the objective func-
tion as log probabilities.

Let D = {(x1,y1), . . . (xn,yn)} be the set of
training examples for conditional generation. Dx

denote all contexts and Dy all continuations. The
scoring functions are trained on prefixes of y to
simulate their application to partial continuations
at inference time.

In all models the first layer embeds each word
w into a 300-dimensional vector e(w) initialized
with GloVe (Pennington et al., 2014) pretrained-
embeddings.

Repetition Model
This model addresses the maxim of Quantity by
biasing the generator to avoid repetitions. The
goal of the repetition discriminator is to learn to
distinguish between RNN-generated and gold con-
tinuations by exploiting our empirical observation
that repetitions are more common in completions
generated by RNN language models. However, we
do not want to completely eliminate repetition, as
words do recur in English.

In order to model natural levels of repetition, a
score di is computed for each position in the con-
tinuation y based on pairwise cosine similarity be-
tween word embeddings within a fixed window of
the previous k words, where

di = max
j=i−k...i−1

(CosSim(e(yj), e(yi))), (3)

such that di = 1 if yi is repeated in the window.
The score of the continuation is then defined as

srep(y) = σ(w>r RNNrep(d)), (4)

where RNNrep(d) is the final state of a unidirec-
tional RNN ran over the similarity scores d =
d1 . . . dn and wr is a learned vector. The model
is trained to maximize the ranking log likelihood

Lrep =
∑

(x,yg)∈D,
ys∼LM(x)

log σ(srep(yg)− srep(ys)), (5)

which corresponds to the probability of the gold
ending yg receiving a higher score than the ending
sampled from the RNN language model.

Entailment Model
Judging textual quality can be related to the nat-
ural language inference (NLI) task of recognizing
textual entailment (Dagan et al., 2006; Bowman
et al., 2015): we would like to guide the generator
to neither contradict its own past generation (the
maxim of Quality) nor state something that read-
ily follows from the context (the maxim of Quan-
tity). The latter case is driven by the RNNs habit
of paraphrasing itself during generation.

We train a classifier that takes two sentences a
and b as input and predicts the relation between
them as either contradiction, entailment or neu-
tral. We use the neutral class probability of the
sentence pair as discriminator score, in order to
discourage both contradiction and entailment. As
entailment classifier we use the decomposable at-
tention model (Parikh et al., 2016), a competitive,
parameter-efficient model for entailment classifi-
cation.1 The classifier is trained on two large en-
tailment datasets, SNLI (Bowman et al., 2015) and
MultiNLI (Williams et al., 2017), which together
have more than 940,000 training examples. We
train separate models based on the vocabularies of
each of the datasets we use for evaluation.

In contrast to our other communication models,
this classifier cannot be applied directly to the full
context and continuation sequences it is scoring.
Instead every completed sentence in the continu-
ation should be scored against all preceding sen-
tences in both the context and continuation.

Let t(a,b) be the log probability of the neu-
tral class. Let S(y) be the set of complete sen-
tences in y, Slast(y) the last complete sentence,
and Sinit(y) the sentences before the last complete
sentence. We compute the entailment score of
Slast(y) against all preceding sentences in x and
y, and use the score of the sentence-pair for which
we have the least confidence in a neutral classifi-
cation:

sentail(x,y) = mina∈S(x)∪Sinit(y)t(a, Slast(y)).
(6)

Intuitively, we only use complete sentences be-
cause the ending of a sentence can easily flip en-
tailment. As a result, we carry over entailment
score of the last complete sentence in a genera-
tion until the end of the next sentence, in order to
maintain the presence of the entailment score in
the objective. Note that we check that the current

1We use the version without intra-sentence attention.
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Data: context x, beam size k, sampling temperature t
Result: best continuation
best = None
beam = [x]
for step = 0; step < max steps; step = step +1 do

next beam = []
for candidate in beam do

next beam.extend(next k(candidate))
if termination score(candidate) > best.score

then
best = candidate.append(term)

end
end
for candidate in next beam do

. score with models
candidate.score += fλ(candidate)

end
. sample k candidates by score

beam = sample(next beam, k, t)
end
if learning then

update λ with gradient descent by comparing best
against the gold.

end
return best

Algorithm 1: Inference/Learning in the Learning
to Write Framework.

sentence is not directly entailed or contradicted
by a previous sentence and not the reverse. 2 In
contrast to our other models, the score this model
returns only corresponds to a subsequence of the
given continuation, as the score is not accumu-
lated across sentences during beam search. Instead
the decoder is guided locally to continue complete
sentences that are not entailed or contradicted by
the previous text.

Relevance Model

The relevance model encodes the maxim of Rela-
tion by predicting whether the content of a candi-
date continuation is relevant to the given context.
We train the model to distinguish between true
continuations and random continuations sampled
from other (human-written) endings in the corpus,
conditioned on the given context.

First both the context and continuation se-
quences are passed through a convolutional layer,
followed by maxpooling to obtain vector represen-
tations of the sequences:

a = maxpool(conva(e(x))), (7)

b = maxpool(convb(e(y))). (8)

2If the current sentence entails a previous one it may sim-
ply be adding more specific information, for instance: “He
hated broccoli. Every time he ate broccoli he was reminded
that it was the thing he hated most.”

The goal of maxpooling is to obtain a vector rep-
resenting the most important semantic information
in each dimension.

The scoring function is then defined as

srel = wT
l · (a ◦ b), (9)

where element-wise multiplication of the context
and continuation vectors will amplify similarities.

We optimize the ranking log likelihood

Lrel =
∑

(x,yg)∈D,
yr∼Dy

log σ(srel(x,yg)− srel(x,yr)),

(10)
where yg is the gold ending and yr is a randomly
sampled ending.

Lexical Style Model
In practice RNNs generate text that exhibit much
less lexical diversity than their training data. To
counter this effect we introduce a simple dis-
criminator based on observed lexical distributions
which captures writing style as expressed through
word choice. This classifier therefore encodes as-
pects of the maxim of Manner.

The scoring function is defined as

sbow(y) = wT
s maxpool(e(y)). (11)

The model is trained with a ranking loss us-
ing negative examples sampled from the language
model, similar to Equation 5.

3.3 Mixture Weight Learning
Once all the communication models have been
trained, we learn the combined decoding objec-
tive. In particular we learn the weight coefficients
λk in equation 1 to linearly combine the scoring
functions, using a discriminative loss

Lmix =
∑

(x,y)∈D
(fλ(x,y)− fλ(x,A(x))2, (12)

where A is the inference algorithm for beam
search decoding. The weight coefficients are thus
optimized to minimize the difference between the
scores assigned to the gold continuation and the
continuation predicted by the current model.

Mixture weights are learned online: Each suc-
cessive generation is performed based on the cur-
rent values of λ, and a step of gradient descent
is then performed based on the prediction. This
has the effect that the objective function changes
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BookCorpus TripAdvisor
Model BLEU Meteor Length Vocab Trigrams BLEU Meteor Length Vocab % Trigrams
L2W 0.52 6.8 43.6 73.8 98.9 1.7 11.0 83.8 64.1 96.2

ADAPTIVELM 0.52 6.3 43.5 59.0 92.7 1.94 11.2 94.1 52.6 92.5
CACHELM 0.33 4.6 37.9 31.0 44.9 1.36 7.2 52.1 39.2 57.0
SEQ2SEQ 0.32 4.0 36.7 23.0 33.7 1.84 8.0 59.2 33.9 57.0
SEQGAN 0.18 5.0 28.4 73.4 99.3 0.73 6.7 47.0 57.6 93.4

REFERENCE 100.0 100.0 65.9 73.3 99.7 100.0 100.0 92.8 69.4 99.4

Table 1: Results for automatic evaluation metrics for all systems and domains, using the original con-
tinuation as the reference. The metrics are: Length - Average total length per example; Trigrams - %
unique trigrams per example; Vocab - % unique words per example.

dynamically during training: As the current sam-
ples from the model are used to update the mixture
weights, it creates its own learning signal by ap-
plying the generative model discriminatively. The
SGD learning rate is tuned separately for each
dataset.

3.4 Beam Search

Due to the limitations of greedy decoding and the
fact that our scoring functions do not decompose
across time steps, we perform generation with a
beam search procedure, shown in Algorithm 1.
The naive approach would be to perform beam
search based only on the language model, and then
rescore the k best candidate completions with our
full model. We found that this approach leads to
limited diversity in the beam and therefore cannot
exploit the strengths of the full model.

Instead we score the current hypotheses in the
beam with the full decoding objective: First, each
hypothesis is expanded by selecting the k high-
est scoring next words according to the language
model (we use beam size k = 10). Then k se-
quences are sampled from the k2 candidates ac-
cording to the (softmax normalized) distribution
over the candidate scores given by the full de-
coding objective. Sampling is performed in order
to increase diversity, using a temperature of 1.8,
which was tuned by comparing the coherence of
continuations on the validation set.

At each step, the discriminator scores are re-
computed for all candidates, with the exception of
the entailment score, which is only recomputed for
hypotheses which end with a sentence terminat-
ing symbol. We terminate beam search when the
termination score, the maximum possible score
achievable by terminating generation at the current
position, is smaller than the current best score.

4 Experiments

4.1 Corpora

We use two English corpora for evaluation. The
first is the TripAdvisor corpus (Wang et al., 2010),
a collection of hotel reviews with a total of 330
million words.3 The second is the BookCorpus
(Zhu et al., 2015), a 980 million word collection
of novels by unpublished authors.4 In order to
train the discriminators, mixing weights, and the
SEQ2SEQ and SEQGAN baselines, we segment
both corpora into sections of length ten sentences,
and use the first 5 sentence as context and the sec-
ond 5 as the continuation. See supplementary ma-
terial for further details.

4.2 Baselines

ADAPTIVELM Our first baseline is the same
Adaptive Softmax (Grave et al., 2016) language
model used as base generator in our framework
(§3.1). This enables us to evaluate the effect of
our enhanced decoding objective directly. A 100k
vocabulary is used and beam search with beam
size of 5 is used at decoding time. ADAPTIVELM
achieves perplexity of 37.46 and 18.81 on Book-
Corpus and TripAdvisor respectively.

CACHELM As another LM baseline we include
a continuous cache language model (Grave et al.,
2017) as implemented by Merity et al. (2018),
which recently obtained state-of-the-art perplex-
ity on the Penn Treebank corpus (Marcus et al.,
1993). Due to memory constraints, we use a vo-
cabulary size of 50k for CACHELM. To generate,
beam search decoding is used with a beam size 5.
CACHELM obtains perplexities of 70.9 and 29.71
on BookCorpus and TripAdvisor respectively.

3http://times.cs.uiuc.edu/˜wang296/
Data/

4http://yknzhu.wixsite.com/mbweb
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BookCorpus Specific Criteria Overall Quality
L2W vs. Repetition Contradiction Relevance Clarity Better Equal Worse

ADAPTIVELM +0.48 +0.18 +0.12 +0.11 47% 20% 32%
CACHELM +1.61 +0.37 +1.23 +1.21 86% 6% 8%
SEQ2SEQ +1.01 +0.54 +0.83 +0.83 72% 7% 21%
SEQGAN +0.20 +0.32 +0.61 +0.62 63% 20% 17%

LM VS. REFERENCE -0.10 -0.07 -0.18 -0.10 41% 7 % 52%
L2W VS. REFERENCE +0.49 +0.37 +0.46 +0.55 53% 18% 29%

TripAdvisor Specific Criteria Overall Quality
L2W vs. Repetition Contradiction Relevance Clarity Better Equal Worse

ADAPTIVELM +0.23 -0.02 +0.19 -0.03 47% 19% 34%
CACHELM +1.25 +0.12 +0.94 +0.69 77% 9% 14%
SEQ2SEQ +0.64 +0.04 +0.50 +0.41 58% 12% 30%
SEQGAN +0.53 +0.01 +0.49 +0.06 55% 22% 22%

LM VS. REFERENCE -0.10 -0.04 -0.15 -0.06 38% 10% 52%
L2W VS. REFERENCE -0.49 -0.36 -0.47 -0.50 25% 18% 57%

Table 2: Results of crowd-sourced evaluation on different aspects of the generation quality as well as
overall quality judgments. For each sub-criteria we report the average of comparative scores on a scale
from -2 to 2. For the overall quality evaluation decisions are aggregated over 3 annotators per example.

SEQ2SEQ As our evaluation can be framed as
sequence-to-sequence transduction, we compare
against a seq2seq model directly trained to predict
5 sentence continuations from 5 sentences of con-
text, using the OpenNMT attention-based seq2seq
implementation (Klein et al., 2017). Similarly to
CACHELM, a 50k vocabulary was used and beam
search decoding was performed with a beam size
of 5.

SEQGAN Finally, as our use of discrimina-
tors is related to Generative Adversarial Networks
(GANs), we use SeqGAN (Yu et al., 2017a), a
GAN for discrete sequences trained with policy
gradients.5 This model is trained on 10 sentence
sequences, which is significantly longer than pre-
vious experiments with GANs for text; the vocab-
ulary is restricted to 25k words to make training
tractable. Greedy sampling was found to outper-
form beam search. For implementation details, see
the supplementary material.

4.3 Evaluation Setup

We pose the evaluation of our model as the task
of generating an appropriate continuation given an
initial context. In our open-ended generation set-
ting the continuation is not required to be a spe-
cific length, so we require our models and base-
lines to generate 5-sentence continuations, consis-
tent with the way the discriminator and seq2seq
baseline datasets are constructed.

Previous work has reported that automatic mea-

5We use the implementation available at https://
github.com/nhynes/abc.

sures such as BLEU (Papineni et al., 2002) and
Meteor (Denkowski and Lavie, 2010) do not lead
to meaningful evaluation when used for long
or creative text generation where there can be
high variance among acceptable generation out-
puts (Wiseman et al., 2017; Vedantam et al., 2015).
However, we still report these measures as one
component of our evaluation. Additionally we re-
port a number of custom metrics which capture
important properties of the generated text: Length
– Average sequence length per example; Trigrams
– percentage of unique trigrams per example; Vo-
cab – percentage of unique words per example.
Endings generated by our model and the baselines
are compared against the reference endings in the
original text. Results are given in Table 1.

For open-ended generation tasks such as our
own, human evaluation has been found to be the
only reliable measure (Li et al., 2016b; Wiseman
et al., 2017). For human evaluation, two possi-
ble endings are presented to a human, who as-
sesses the text according to several criteria, which
are closely inspired by Grice’s Maxims: repeti-
tion, contradiction, relevance and clarity. See sup-
plementary material for examples of the evalua-
tion forms we used. For each criterion, the two
continuations are compared using a 5-point Likert
scale, to which we assign numerical values of −2
to 2. The scale measures whether one generation
is strongly or somewhat preferred above the other,
or whether they are equal. Finally, the human is
asked to make a judgement about overall quality:
which ending is better, or are they of equal qual-
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CONTEXT We thoroughly enjoyed staying at this hotel. We travelled with our kids aged 4 and 6. The rooms were
clean, spacious and well maintained. The beds were great and all of us slept well. The hotel provided
vouchers towards breakfast at the adjoining restaurant.

L2W We didn’t have breakfast, so can’t comment on that. The concierge was very helpful, and gave us direc-
tions, etc. Overall, we would definitely recommend this hotel to others. We would stay here again in a
heartbeat. If you’re looking for a great location, and good value, I’d recommend this hotel.

ADAPTIVELM The breakfast buffet was very good, and the staff was very friendly and helpful, and it was a great way to
start our day! I would definitely stay here again, and would recommend it to my friends, and would stay
there again if I ever go back to Montreal. The location was great, and the staff was friendly and helpful.
I would definitely stay here again!!

CACHELM The staff was very friendly and helpful. The hotel is located in a great location. It is right in the middle
of the gaslamp district. I would recommend this hotel to anyone. I would definitely stay here again.

SEQ2SEQ The staff were very friendly and helpful. The hotel is in a great location. The staff were very friendly and
helpful. The hotel is in a great location. The staff were very friendly and helpful.

SEQGAN We had a breakfast at Shula’s & a delicious breakfast. The staff was very helpful and helpful. The
breakfast was great as well. The staff was very helpful and friendly. We had a great service and the food
was excellent.

REFERENCE The restaurant was great and we used the vouchers towards whatever breakfast we ordered. The hotel
had amazing grounds with a putting golf course that was fun for everyone. The pool was fantastic and
we lucked out with great weather. We spent many hours in the pool, lounging, playing shuffleboard and
snacking from the attached bar. The happy hour was great perk.

Table 3: Example continuations generated by our model (L2W) and various baselines (all given the
same context from TripAdvisor) compared to the reference continuation. For more examples go to
https://ari-holtzman.github.io/l2w-demo/.

ity?
The human evaluation is performed on 100 ex-

amples selected from the test set of each corpus,
for every pair of generators that are compared. We
present the examples to workers on Amazon Me-
chanical Turk, using three annotators for each ex-
ample. The results are given in Table 2. For the
Likert scale, we report the average scores for each
criterion, while for the overall quality judgement
we simply aggregate votes across all examples.

5 Results and Analysis

5.1 Quantitative Results
The absolute performance of all the evaluated sys-
tems on BLEU and Meteor is quite low (Table 1),
as expected. However, in relative terms L2W is
superior or competitive with all the baselines, of
which ADAPTIVELM performs best. In terms of
vocabulary and trigram diversity only SEQGAN
is competitive with L2W, likely due to the fact
that sampling based decoding was used. For gen-
eration length only L2W and ADAPTIVELM even
approach human levels, with the former better on
BookCorpus and the latter on TripAdvisor.

Under the crowd-sourced evaluation (Table 2),
on BookCorpus our model is consistently favored
over the baselines on all dimensions of compar-
ison. In particular, our model tends to be much
less repetitive, while being more clear and rel-
evant than the baselines. ADAPTIVELM is the

most competitive baseline owing partially to the
robustness of language models and to greater vo-
cabulary coverage through the adaptive softmax.
SEQGAN, while failing to achieve strong co-
herency, is surprisingly diverse, but tended to pro-
duce far shorter sentences than the other models.
CACHELM has trouble dealing with the complex
vocabulary of our domains without the support of
either a hierarchical vocabulary structure (as in
ADAPTIVELM) or a structured training method
(as with SEQGAN), leading to overall poor re-
sults. While the SEQ2SEQ model has low con-
ditional perplexity, we found that in practice it is
less able to leverage long-distance dependencies
than the base language model, producing more
generic output. This reflects our need for more
complex evaluations for generation, as such mod-
els are rarely evaluated under metrics that inspect
characteristics of the text, rather than ability to
predict the gold or overlap with the gold.

For the TripAdvisor corpus, L2W is ranked
higher than the baselines on overall quality, as well
as on most individual metrics, with the exception
that it fails to improve on contradiction and clar-
ity over the ADAPTIVELM (which is again the
most competitive baseline). Our model’s strongest
improvements over the baselines are on repetition
and relevance.
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Trip Advisor Ablation
Ablation vs. LM Repetition Contradiction Relevance Clarity Better Neither Worse

REPETITION ONLY +0.63 +0.30 +0.37 +0.42 50% 23% 27%
ENTAILMENT ONLY +0.01 +0.02 +0.05 -0.10 39% 20% 41%
RELEVANCE ONLY -0.19 +0.09 +0.10 +0.060 36% 22% 42%

LEXICAL STYLE ONLY +0.11 +0.16 +0.20 +0.16 38% 25% 38%
ALL +0.23 -0.02 +0.19 -0.03 47% 19% 34%

Table 4: Crowd-sourced ablation evaluation of generations on TripAdvisor. Each ablation uses only one
discriminative communication model, and is compared to ADAPTIVELM.

Ablation

To investigate the effect of individual discrimina-
tors on the overall performance, we report the re-
sults of ablations of our model in Table 4. For each
ablation we include only one of the communica-
tion modules, and train a single mixture coeffi-
cient for combining that module and the language
model. The diagonal of Table 4 contains only pos-
itive numbers, indicating that each discriminator
does help with the purpose it was designed for.
Interestingly, most discriminators help with most
aspects of writing, but all except repetition fail to
actually improve the overall quality over ADAP-
TIVELM.

The repetition module gives the largest boost by
far, consistent with the intuition that many of the
deficiencies of RNN as a text generator lie in se-
mantic repetition. The entailment module (which
was intended to reduce contradiction) is the weak-
est, which we hypothesize is the combination of
(a) mismatch between training and test data (since
the entailment module was trained on SNLI and
MultiNLI) and (b) the lack of smoothness in the
entailment scorer, whose score could only be up-
dated upon the completion of a sentence.

Crowd Sourcing

Surprisingly, L2W is even preferred over the orig-
inal continuation of the initial text on BookCor-
pus. Qualitative analysis shows that L2W’s con-
tinuation is often a straightforward continuation
of the original text while the true continuation
is more surprising and contains complex refer-
ences to earlier parts of the book. While many of
the issues of automatic metrics (Liu et al., 2016;
Novikova et al., 2017) have been alleviated by
crowd-sourcing, we found it difficult to incentivize
crowd workers to spend significant time on any
one datum, forcing them to rely on a shallower un-
derstanding of the text.

5.2 Qualitative Analysis

L2W generations are more topical and stylisti-
cally coherent with the context than the baselines.
Table 3 shows that L2W, ADAPTIVELM, and
SEQGAN all start similarly, commenting on the
breakfast buffet, as breakfast was mentioned in the
last sentence of the context. The language model
immediately offers generic compliments about the
breakfast and staff, whereas L2W chooses a rea-
sonable but less obvious path, stating that the pre-
viously mentioned vouchers were not used. In
fact, L2W is the only system not to use the line
“The staff was very friendly and helpful.”, de-
spite this sentence appearing in less than 1% of
reviews. The semantics of this sentence, however,
is expressed in many different surface forms in the
training data (e.g., “The staff were kind and quick
to respond.”).

The CACHELM begins by generating the
same over-used sentence and only produce short,
generic sentences throughout. Seq2Seq simply re-
peats sentences that occur often in the training
set, repeating one sentence three times and an-
other twice. This indicates that the encoded con-
text is essentially being ignored as the model fails
to align the context and continuation.

The SEQGAN system is more detailed, e.g.
mentioning a specific location “Shula’s” as would
be expected given its highly diverse vocabulary (as
seen in Table 1). Yet it repeats itself in the first sen-
tence. (e.g. “had a breakfast”, “and a delicious
breakfast”). Consequently SEQGAN quickly de-
volves into generic language, repeating the incred-
ibly common sentence “The staff was very helpful
and friendly.”, similar to SEQ2SEQ.

The L2W models do not fix every degenerate
characteristic of RNNs. The TripAdvisor L2W
generation consists of meaningful but mostly dis-
connected sentences, whereas human text tends
to build on previous sentences, as in the refer-
ence continuation. Furthermore, while L2W re-
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peats itself less than any of our baselines, it still
paraphrases itself, albeit more subtly: “we would
definitely recommend this hotel to others.” com-
pared to “I’d recommend this hotel.” This ex-
ample also exposes a more fine-grained issue:
L2W switches from using “we” to using “I” mid-
generation. Such subtle distinctions are hard to
capture during beam re-ranking and none of our
models address the linguistic issues of this sub-
tlety.

6 Related Work

Alternative Decoding Objectives A number of
papers have proposed alternative decoding ob-
jectives for generation (Shao et al., 2017). Li
et al. (2016a) proposed a diversity-promoting ob-
jective that interpolates the conditional probabil-
ity score with negative marginal or reverse condi-
tional probabilities. Yu et al. (2017b) also incor-
porate the reverse conditional probability through
a noisy channel model in order to alleviate the
explaining-away problem, but at the cost of sig-
nificant decoding complexity, making it impracti-
cal for paragraph generation. Modified decoding
objectives have long been a common practice in
statistical machine translation (Koehn et al., 2003;
Och, 2003; Watanabe et al., 2007; Chiang et al.,
2009) and remain common with neural machine
translation, even when an extremely large amount
of data is available (Wu et al., 2016). Inspired
by all the above approaches, our work presents a
general learning framework together with a more
comprehensive set of composite communication
models.

Pragmatic Communication Models Models
for pragmatic reasoning about communicative
goals such as Grice’s maxims have been pro-
posed in the context of referring expression gen-
eration (Frank and Goodman, 2012). Andreas and
Klein (2016) proposed a neural model where can-
didate descriptions are sampled from a genera-
tively trained speaker, which are then re-ranked
by interpolating the score with that of the lis-
tener, a discriminator that predicts a distribution
over choices given the speaker’s description. Sim-
ilar to our work the generator and discriminator
scores are combined to select utterances which fol-
low Grice’s maxims. Yu et al. (2017c) proposed
a model where the speaker consists of a convolu-
tional encoder and an LSTM decoder, trained with
a ranking loss on negative samples in addition to

optimizing log-likelihood.

Generative Adversarial Networks GANs
(Goodfellow et al., 2014) are another alternative
to maximum likelihood estimation for generative
models. However, backpropagating through
discrete sequences and the inherent instability
of the training objective (Che et al., 2017) both
present significant challenges. While solutions
have been proposed to make it possible to train
GANs for language (Che et al., 2017; Yu et al.,
2017a) they have not yet been shown to produce
high quality long-form text, as our results confirm.

Generation with Long-term Context Several
prior works studied paragraph generation using
sequence-to-sequence models for image captions
(Krause et al., 2017), product reviews (Lipton
et al., 2015; Dong et al., 2017), sport reports
(Wiseman et al., 2017), and recipes (Kiddon et al.,
2016). While these prior works focus on develop-
ing neural architectures for learning domain spe-
cific discourse patterns, our work proposes a gen-
eral framework for learning a generator that is
more powerful than maximum likelihood decod-
ing from an RNN language model for an arbitrary
target domain.

7 Conclusion

We proposed a unified learning framework for the
generation of long, coherent texts, which over-
comes some of the common limitations of RNNs
as text generation models. Our framework learns a
decoding objective suitable for generation through
a learned combination of sub-models that capture
linguistically-motivated qualities of good writing.
Human evaluation shows that the quality of the
text produced by our model exceeds that of com-
petitive baselines by a large margin.
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cas Curry, and Verena Rieser. 2017. Why we
need new evaluation metrics for nlg. In Proceed-
ings of the Conference on Empirical Methods in
Natural Language Processing, pages 2241–2252,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Franz Josef Och. 2003. Minimum error rate train-
ing in statistical machine translation. In Proceed-
ings of the 41st Annual Meeting of the Association
for Computational Linguistics, pages 160–167, Sap-
poro, Japan. Association for Computational Linguis-
tics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. In Proceedings
of the Association for Computational Linguistics,
pages 311–318. Association for Computational Lin-
guistics.
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Abstract

Automatic pun generation is an inter-
esting and challenging text generation
task. Previous efforts rely on templates
or laboriously manually annotated pun
datasets, which heavily constrains the
quality and diversity of generated puns.
Since sequence-to-sequence models pro-
vide an effective technique for text gener-
ation, it is promising to investigate these
models on the pun generation task. In this
paper, we propose neural network mod-
els for homographic pun generation, and
they can generate puns without requiring
any pun data for training. We first train
a conditional neural language model from
a general text corpus, and then generate
puns from the language model with an
elaborately designed decoding algorithm.
Automatic and human evaluations show
that our models are able to generate homo-
graphic puns of good readability and qual-
ity.

1 Introduction

Punning is an ingenious way to make conversation
enjoyable and plays important role in entertain-
ment, advertising and literature. A pun is a means
of expression, the essence of which is in the given
context the word or phrase can be understood
in two meanings simultaneously (Mikhalkova and
Karyakin, 2017). Puns can be classified according
to various standards, and the most essential dis-
tinction for our research is between homographic
and homophonic puns. A homographic pun ex-
ploits distinct meanings of the same written word
while a homophonic pun exploits distinct mean-
ings of the same spoken word. Puns can be homo-

graphic, homophonic, both, or neither (Miller and
Gurevych, 2015).

Puns have the potential to combine novelty and
familiarity appropriately, which can induce pleas-
ing effect to advertisement (Valitutti et al., 2008).
Using puns also contributes to elegancy in liter-
ary writing, as laborious manual counts revealed
that puns are one of the most commonly used
rhetoric of Shakespeare, with the frequency in cer-
tain of his plays ranging from 17 to 85 instances
per thousand lines (Miller and Gurevych, 2015).
It is not an overstatement to say that pun genera-
tion has significance in human society. However,
as a special branch of humor, generating puns is
not easy for humans, let alone automatically gen-
erating puns with artificial intelligence techniques.
While text generation is a topic of interest in the
natural language processing community, pun gen-
eration has received little attention.

Recent sequence-to-sequence (seq2seq) frame-
work is proved effective on text generation tasks
including machine translation (Sutskever et al.,
2014), image captioning (Vinyals et al., 2015),
and text summarization (Tan et al., 2017). The
end-to-end framework has the potential to train
a language model which can generate fluent and
creative sentences from a large corpus. Great
progress has achieved on the tasks with sufficient
training data like machine translation, achieving
state-of-the-art performance. Unfortunately, due
to the limited puns which are deemed insuffi-
cient for training a language model, there has
not been any research concentrated on generating
puns based on the seq2seq framework as far as we
know.

The inherent property of humor makes the
pun generation task more challenging. Despite
decades devoted to theories and algorithms for hu-
mor, computerized humor still lacks of creativ-
ity, sophistication of language, world knowledge,
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empathy and cognitive mechanisms compared to
humans, which are extremely difficult to model
(Hossain et al., 2017).

In this paper, we study the challenging task of
generating puns with seq2seq models without us-
ing a pun corpus for training. We propose a brand-
new method to generate homographic puns us-
ing normal text corpus which can result in good
quality of language model and avoid considerable
expense of human annotators on the limited pun
resources. Our proposed method can generate
puns according to the given two senses of a tar-
get word. We achieve this by first proposing an
improved language model that is able to generate
a sentence containing a given word with a specific
sense. Based on the improved language model, we
are able to generate a pun sentence that is suit-
able for two specified senses of a homographic
word, using a novel joint beam search algorithm
we propose. Moreover, based on the observed
characteristics of human generated puns, we fur-
ther enhance the model to generate puns highlight-
ing intended word senses. The proposed method
demonstrates the ability to generate homographic
puns containing the assigned two senses of a target
word.

Our approach only requires a general text cor-
pus, and we use the Wikipedia corpus in our ex-
periment. We introduce both manual ways and
automatic metrics to evaluate the generated puns.
Experimental results demonstrate that our meth-
ods are powerful and inspiring in generating ho-
mographic puns.

The contributions of our work are as follows:

• To our knowledge, our work is the first at-
tempt to adopt neural language models on
pun generation. And we do not use any tem-
plates or pun data sets in training the model.

• We propose a brand-new algorithm to gen-
erate sentences containing assigned distinct
senses of a target word.

• We further ameliorate our model with asso-
ciative words and multinomial sampling to
produce better pun sentences.

• Our approach yields substantial results on
generating homographic puns with high ac-
curacy of assigned senses and low perplexity.

2 Related Work

2.1 Pun Generation

In recent decades, exploratory research into com-
putational humor has developed to some extent,
but seldom is research specifically concerned with
puns. Miller and Gurevych (2015) found that most
previous studies on puns tend to focus on phono-
logical or syntactic pattern rather than semantic
pattern. In this subsection we briefly review some
prior work on pun generation.

Lessard and Levison (1992) devised a pro-
gram to create Tom Swifty, a type of pun which
is present in a quoted utterance followed by a
punning adverb. Binsted and Ritchie (1994)
came up with an early prototype of pun-generator
Joke Analysis and Production Engine (JAPE). The
model generates question-answer punning with
two types of structures: schemata for determin-
ing relationships between key words in a joke, and
templates for producing the surface form of the
joke. Later its successor JAPE-2 (Binsted, 1996;
Binsted et al., 1997) and STANDUP (Ritchie et al.,
2007) introduced constructing descriptions. The
Homonym Common Phrase Pun generator (Ve-
nour, 1999) could create two-utterance texts: a
one-sentence set-up and a punch-line. Venour
(1999) used schemata to specify the required lexi-
cal items and their intern relations, and used tem-
plates to indicate where to fit the lexical items in
a skeleton text (Ritchie, 2004). McKay (2002)
proposed WISCRAIC program which can pro-
duce puns in three forms: question-answer form,
single sentence and a two-sentence sequence.
The Template-Based Pun Extractor and Genera-
tor (Hong and Ong, 2009) utilized phonetic and
semantic linguistic resources to extract word rela-
tionships in puns automatically. The system stores
the extracted knowledge in template form and re-
sults in computer-generated puns.

Most previous research on pun generation is
based on templates which is convenient but lacks
linguistic subtlety and can be inflexible. None of
the systems aimed to be creative as the skeletons of
the sentences are fixed and the generation process
based on lexical information rarely needs world
knowledge or reasoning (Ritchie, 2004). Recently
more and more work focuses on pun detection
and interpretation (Miller et al., 2017; Miller and
Gurevych, 2015; Doogan et al., 2017), rather than
pun generation.
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2.2 Natural Language Generation

Natural language generation is an important area
of NLP and it is an essential foundation for the
tasks like machine translation, dialogue response
generation, summarization and of course pun gen-
eration.

In the past, text generation is usually based
on the techniques like templates or rules, proba-
bilistic models like n-gram or log-linear models.
Those models are fairly interpretable and well-
behaved but require infeasible amounts of hand-
engineering to scale with the increasing training
data (Xie, 2017). In most cases larger corpus re-
veals better what matters, so it is natural to tackle
large scale modeling (Józefowicz et al., 2016).

Recently, neural network language models
(Bengio et al., 2003) have shown the good ability
to model language and fight the curse of dimen-
sionality. Cho et al. (2014) propose the encoder-
decoder structure which proves very efficient to
generate text. The encoder produces a fixed-length
vector representation of the input sequence and
the decoder uses the representation to generate an-
other sequence of symbols. Such model has a sim-
ple structure and maps the source to the target di-
rectly, which outperforms the prior models in text
generation tasks.

3 Our Models

The goal of our pun generation model is to gen-
erate a sentence containing a given target word as
homographic pun. Give two senses of the target
word (a polyseme) as input, our model generates
a sentence where both senses of the word are ap-
propriate in the sentence. We adopt the encoder-
decoder framework to train a conditional language
model which can generate sentences containing
each given sense of the target word. Then we pro-
pose a joint beam search algorithm to generate an
appropriate sentence to convey both senses of the
target word. We call this Joint Model whose ba-
sic structure is illustrated in Figure 1. We further
propose an improved model to highlight the dif-
ferent senses of the target word in one sentence,
by reminding people the specific senses of the tar-
get word, which may not easily come to mind. We
achieve this by using Pointwise Mutual Informa-
tion (PMI) to find the associative words of each
sense of the target word and increase their proba-
bility of appearance while decoding. To improve
the diversity of the generated sentence, we use

multinomial sampling to decode words in the de-
coding process. The improved model is named the
Highlight Model.

3.1 Joint Model

3.1.1 Conditional Language Model
For a given word as input, we would like to gen-
erate a natural sentence containing the target word
with the specified sense. We improve the neural
language model to achieve this goal, and name it
conditional language model.

The conditional language model for pun gener-
ation is similar to the seq2seq model with an in-
put of only one word. We use Long Short-Term
Memory (LSTM) as encoder to map the input se-
quence (target word) to a vector of a fixed dimen-
sionality, and then another LSTM network as de-
coder to decode the target sequence from the vec-
tor (Sutskever et al., 2014).

Our goal is to generate a sentence contain-
ing the target word. However, vanilla seq2seq
model cannot guarantee the target word to ap-
pear in the generated sequence all the time. To
solve this problem, we adopt the asynchronous
forward/backward generation model proposed by
Mou et al. (2015), which employs a mechanism
to guarantee some word to appear in the output
in seq2seq models. The model first generates the
backward sequence starting from the target word
wt at position t of the sentence (i.e., the words be-
fore wt), and ending up with “</s>” at the po-
sition 0 of the sentence. The probability of the
backward sequence is denoted as p(w1

t ). Then
we reverse the output of the backward sequence
as the input to the forward model. In this pro-
cess, the goal of the encoder is to map the gener-
ated half sentence to a vector representation and
the decoder will generate the latter part accord-
ingly. The probability of the forward sequence
is denoted as p(wn

t ). Then the input and output
of the forward model are concatenated to form
the generated sentence. In the asynchronous for-
ward/backward model, the probability of the out-
put sentence can be decomposed as:

p(
w1

t=
wn

t

)= p(wt)
t∏

i=0
p(bw)(wt−i|·)

m−t+1∏
i=0

p(fw)(wt+i|·),
(1)

where p(�) denotes the probability of a particu-
lar backward/forward sequence (Mou et al., 2015).
p(bw)(wt|·) or p(fw)(wt|·) denotes the probabil-
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Figure 1: Framework of the proposed Joint Model. (Top) Two senses of the target word input1 and
input2 (e.g. “countv01” and “countv08”) are firstly provided to the backward model, to generate the
backward sequence starting from the target senses and ending up with “</s>”. (Bottom) Then the
backward sequence are reversed and inputted to the forward model, to generate the forward sequence.
The inputs and outputs of the forward model are concatenated to form the final output sentence. Joint
beam search algorithm is used to generate each word that has the potential to make the generated sentence
suitable for both input senses.

ity of wt given previous sequence · in the back-
ward or forward model respectively. The above
model can only guarantee the target word to ap-
pear in the generated sentence. Since we hope to
generate a sentence containing the specified word
sense, we treat different senses of the same word
as independent new pseudo-words. We label the
senses of words with Word Sense Disambigua-
tion (WSD) tools, and then we train the language
model using the corpus with labeled senses so
that for each word sense we can generate a sen-
tence accordingly. We use the Python Implemen-
tations of WSD Technologies1 for WSD. This tool
can return the most possible sense for the target
word based on WordNet (Miller, 1995). We at-
tach the sense label to the word and form a new
pseudo-word accordingly. Taking “count” for ex-
ample, “countv01” means “determine the number

1https://github.com/alvations/pywsd

or amount of ”, while “countv08” means “have
faith or confidence in”.

3.1.2 Decoding with Joint Beam Search
Algorithm

Beam search is a frequently-used algorithm in the
decoding stage of seq2seq models to generate the
output sequence. It can be viewed as an adaptation
of branch-and-bound search that uses an inadmis-
sible pruning rule. In the beam search algorithm,
only the most promising nodes at each level of the
search graph are selected and the rest nodes are
permanently removed. This strategy makes beam
search able to find a solution within practical time
or memory limits and work well in practical tasks
(Zhou and Hansen, 2005; Freitag and Al-Onaizan,
2017).

We also use beam search in our pun genera-
tion model. According to the definition of homo-
graphic puns, at least two senses of the target word
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should be interpreted in one sentence. We hope to
generate a same sentence for distinct senses of the
same word, and in this way the target word in the
sentence can be interpreted as various senses. Pro-
vided with two senses of a target word as inputs
to the encoder in the backward generation pro-
cess, e.g. “countv01” as input1 and “countv08”
as input2, we decode two output sentences in par-
allel, and the two sentences should be the same
except for the input pseudo-words. Assume h

(s)
t,i

denotes the hidden state of the i-th beam at time
step t, when given the s-th pseudo-word as input
(s =1 or 2). In the traditional beam search algo-
rithm, softmax layer is applied on the hidden state
to get the probability distribution on the vocabu-
lary, and the log likelihood of the probability is
used to get a word score distribution d

(s)
t,i :

d
(s)
t,i = log(softmax layer(h

(s)
t,i )). (2)

The accumulated score distribution on the i-th
beam is:

p
(s)
t,i = u

(s)
t−1,i + d

(s)
t,i , (3)

|V | denotes the vocabulary size. u
(s)
t−1,i is a |V |-

dimensional vector whose values are all equal to
the accumulated score of the generated sequence
till time step t − 1. Assume the beam width is b,
p

(s)
t is the concatenation of p

(s)
t,i on all beams and

its dimension size is |V |∗b. The beam search algo-
rithm selects b candidate words at each time step
according to p

(s)
t (s =1 or 2). When decoding for

input1 and input2 in parallel, at each time step
there will be b candidates for each input according
to p

(1)
t and p

(2)
t respectively. Since input1 and

input2 are different, the candidates for two inputs
will hardly be the same. However, our goal is to
choose candidate words which have the potential
to result in candidate sentences suitable for both
senses. Our joint beam search algorithm selects
b candidates while decoding for the two inputs ac-
cording to the joint score distribution on all beams.
The joint score distribution on the i-th beam is:

ot,i=p
(1)
t,i + p

(2)
t,i . (4)

The summation of the log scores can be viewed
as the product of original probabilities, which rep-
resents the joint probability if the two probabil-
ity distributions are viewed independent. Given
the b candidates selected according to the joint
score distribution, our joint beam search algorithm

Algorithm 1 Joint Beam Search Algorithm
b denotes the beam width. l denotes the number of unfinished
beams. BeamId records which beams the candidates come
from. WordId records the indices of candidates in the vo-
cabulary where 1 is the index of “<s>”. BEAM t[i] denotes
the i-th beam history till time step t. |V | denotes the vocabu-
lary size. Copy(m, n) aims to make an n-dimensional vector
by replicating m for n times. The initial states of the decoder
(h(1)

−1,i,h
(2)
−1,i) are equal to the final states of the encoder ac-

cordingly. m � n denotes appending n to m.
BEAM−1[i]= [], i=0, 1, ..., b − 1

u
(1)
−1,i = u

(2)
−1,i = Copy(0, |V |),i = 0, 1, ..., b − 1

BeamId = [0, 1, ..., b − 1]
WordId = [1, .., 1] ∈ Rb

Outputs = []; t = 0; l = b
while l > 0 do
o=[]
for i= 0 to b − 1 do

xt,i is the word embedding corresponding to
WordId[i]

h(1)
t,i= LSTM(xt,i,h

(1)
t−1,i)

h
(2)
t,i= LSTM(xt,i,h

(2)
t−1,i)

p(1)
t,i = u

(1)
t−1,i + log(softmax layer(h

(1)
t,i ))

p(2)
t,i = u

(2)
t−1,i + log(softmax layer(h

(2)
t,i ))

ot,i = p
(1)
t,i + p

(2)
t,i

o � ot,i

end for
WordId = the indices of words with the top b scores in o
BeamId = the indices of source beams w.r.t. WordId
for i= 0 to b − 1 do

BEAMt[i] = BEAMt−1[BeamId[i]] � WordId[i]

u
(1)
t,i = u

(2)
t,i = Copy(ot,BeamId[i][WordId[i]], |V |)

if WordId[i] represents “</s>”
l = l − 1
Outputs = Outputs � BEAMt[i]

end if
end for
t = t + 1

return top b items in Outputs

is similar to the vanilla beam search algorithm,
which generates the candidate sequences step by
step. If any beam selects “</s>” as the candi-
date, we regard this branch has finished decod-
ing. The decoding process will be finished after all
the beams have selected “</s>”. The joint beam
search algorithm is described in Algorithm 1.

3.2 Highlight Model
3.2.1 Word Association
The joint model we described above is able to
generate sentences suitable for both given senses
of the target word. But we found this model is
prone to generate monotonous sentences, making
it difficult to discover that the target word in the
sentence can be understood in two ways. For ex-
ample, in the sentence “He couldn’t count on his
friends”, people can easily realize that the com-
mon meaning “have faith or confidence in” of the
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word “count”, but may ignore other senses of the
word. If we add some words and modify the sen-
tence as “The inept mathematician couldn’t count
on his friends”, people can also come up with
the meaning “determine the number or amount
of ” due to the word “mathematician”. Comparing
the examples above, the two senses are proper in
both sentences, but people may interpret “count”
in the two sentences differently. Based on such ob-
servations, we improve the pun generation model
by adding some keywords to the sentence which
could remind people some special sense of the
target word. We call those keywords associative
words, and the improved model is named as High-
light Model.

To extract associative words of each sense of the
target word, we first build word association norms
in our corpus by using pointwise mutual informa-
tion (PMI). As mutual information compares the
probability of observing w1 and w2 together (the
joint probability) with the probabilities of observ-
ing w1 and w2 independently (chance) (Church
and Hanks, 1990), positive PMI scores indicate
that the words occur together more than would be
expected under an independence assumption, and
negative scores indicate that one word tends to ap-
pear solely when the other does not (Islam and
Inkpen, 2006). In this case we take top k asso-
ciative words for each sense with relatively high
positive PMI scores, which are calculated as fol-
lows:

PMI(w1, w2) = log2

p(w1, w2)

p(w1) · p(w2)
. (5)

During decoding we increase the probability of
the associative words to be chosen according to
their PMI scores. For each sense of the target
word, we normalize the PMI scores of the asso-
ciative words as follows:

Asso(w
(s)
t , cp) = σ(

PMI(w
(s)
t , cp)

maxcjPMI(w
(s)
t , cj)

),

(6)
where w

(s)
t represents the s-th sense of the tar-

get word wt, and cp is the p-th associative word
for w

(s)
t . To smooth the PMI scores we use sig-

moid function σ which is differentiable and widely
used in the neural network models. The final
PMI score for each associative word is denoted as
Asso(w

(s)
t , cp). As we choose candidates accord-

ing to a score distribution on the whole vocabulary,

we need a PMI score distribution (S(w
(s)
t )) rather

than single scores, and the value at position q is
supposed to be:

S
(
w

(s)
t

)
[q]=

{
Asso

(
w

(s)
t ,vq

)
, vq ∈AssoTK(w

(s)
t );

0, else,
(7)

where vq denotes the q-th word in the vocabulary,
and AssoTK(w

(s)
t ) denotes the top k associative

words of w
(s)
t .

3.2.2 Multinomial Sampling
In our highlight model, we add S(w

(1)
t ) and

S(w
(2)
t ) to ot,i , as:

õt,i =ot,i+α1 ·S(w
(1)
t )+α2 ·S(w

(2)
t ), (8)

where we use α1 and α2 as coefficient weights to
balance the PMI scores of the two assigned senses
and the joint score. In the Highlight Model, we
first select 2b candidates according to the scores of
words from Eq. 8. Then we use multinomial sam-
pling to select the final b candidates. Sampling is
useful in cases where we may want to get a variety
of outputs for a particular input. One example of a
situation where sampling is meaningful would be
in a seq2seq model for a dialog system (Neubig,
2017). In our pun generation model we hope to
produce relatively more creative sentences, so we
use multinomial sampling to increase the uncer-
tainty when generating the sentence. The multi-
nomial distribution can be seen as a multivariate
generalization of the binomial distribution and it
is prone to choose the words with relatively high
probabilities. If an associative word of one sense
has been selected, we decay the scores for all as-
sociative words of this sense. In this way we can
prevent the sentence obviously being prone to re-
flect one sense of the target word.

4 Experiments

4.1 Data Preprocessing
Most text generation tasks using seq2seq model
require large amount of training data. However,
for many tasks, like pun generation, it is difficult
to get adequate data to train a seq2seq model. In
this study, our pun generation model does not rely
on training data of puns. We only require a text
corpus to train the conditional language model,
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which is very cheap to get. In this paper, we use
the English Wikipedia corpus to train the language
model. The corpus texts are firstly lowercased and
tokenized, and all numeric characters are replaced
with “#”. We split the texts into sentences and
discard the sentences whose length is less than 5
words or more than 50 words. We then select pol-
ysemes appearing in the homographic pun data set
(Miller et al., 2017) and pun websites. Those pol-
ysemes in the corpus are replaced by the labeled
sense. We restrict that each sentence can be la-
beled with at most two polysemes in order to train
a reliable language model. If there are more pol-
ysemes in one sentence, we keep the last two be-
cause in our observation we found pun words tend
to occur near the end of a sentence. After label-
ing, we keep the 105,000 most frequently occur-
ring words and other words are replaced with the
“<unk>” token. We discard the sentences with
two or more “<unk>” tokens. There are totally
3,974 distinct labeled senses corresponding to a
total of 772 distinct polysemes. We assume those
reserved senses are more likely to generate puns
of good quality.

While training the language model we use
2,595,435 sentences as the training set, and
741,551 sentences as the development set to de-
cide when to stop training.

4.2 Training Details
The number of LSTM layers we use in the seq2seq
model is 2 and each layer has 128 units. To avoid
overfitting, we set the dropout rate to 0.2. We
use Stochastic Gradient Descent (SGD) with a de-
creasing learning rate schedule as optimizer. The
initial learning rate is 1.0 and is halved every 1k
steps after training for 8k steps, which is the same
as Luong et al. (2017). We set beam size b = 5
while decoding. For each sense we select at most
30 associative words (k=30). To increase the prob-
ability of choosing the associative words, we set
α1 = 6.0 and α2 = 6.0. If an associative word
of some sense of a target word has been chosen,
its corresponding α will be set to zero for all the
associative words of this sense.

4.3 Baselines
Since there is no existing neural model applied on
this special task, we implement two baseline mod-
els for comparison. We select 100 target words
and two senses for each word to test the quality of
those models.

Normal Language Model: It is trained with
an encoder-decoder model and uses beam search
while decoding. In the training process, inputs are
unlabeled target words and outputs are sentences
containing the target words.

Pun Language Model: We use the data set of
homographic puns from Miller et al. (2017). The
model is trained on the data set in asynchronous
forward/backward way. As the pun data set is
limited, the pun language model has no creativity,
which means if we input a word appearing in the
training data, then the output will usually be an ex-
isting sentence from the training data. Therefore,
we remove the sentences which contain words in
the 100 target words from the pun data set, and
then train the model for test.

4.4 Automatic Evaluation

We select 100 target words and two senses for
each word for test. We use the language mod-
eling toolkit SRILM2 to train a trigram model
with another 7,746,703 sentences extracted from
Wikipedia, which are different from the data set
used before. The perplexity scores (PPL) of our
models and baseline models are estimated based
on the trained language model, as shown in Ta-
ble 1. Normal Language Model has no constraint
of generating sentences suitable for both senses.
This means at each time step the beam search algo-
rithm can select the candidates with highest prob-
abilities. And thus it is natural that it obtains the
lowest perplexity. Taking the constraint of senses
into consideration, the perplexity scores of Joint
Model and Highlight Model are still comparable
to that of Normal Language Model. However, Pun
Language Model could not be trained well con-
sidering the limit of the pun training data, so it
gets the highest perplexity score. This result re-
veals that it is not feasible to build a homographic
pun generation system based on the pun data set
since pun data is far from enough. In the table, We
further compare the diversity of the generated sen-
tences of four models following Li et al. (2016).
Distinct-1 (d.-1) and distinct-2 (d.-2) are the ra-
tios of the distinct unigrams and bigrams in gen-
erated sentences, i.e., the number of distinct uni-
grams or bigrams divided by the total number of
unigrams or bigrams. The results show our mod-
els are more creative than Normal Language and

2http://www.speech.sri.com/projects/srilm/
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Model PPL d.-1(%) d.-2(%)
Highlight 91.80 27.13 62.85

Joint 63.48 22.13 50.59

Normal Language 62.66 19.60 41.62

Pun Language 889.07 14.78 23.11

Table 1: Results of automatic evaluation.

Figure 2: Results of human evaluation.

Pun Language models, and Highlight Model can
generate sentences with the best diversity.

4.5 Human Evaluation

Because of the subtle and delicate structure of
puns, automatic evaluation is not enough. So we
sample one sentence for each word from four mod-
els mentioned above and then get 100 sentences of
each model generated from the target words, to-
gether with 100 puns containing the same target
words from homographic pun data set in Miller
et al. (2017). We ask judges on Amazon Mechan-
ical Turk to evaluate all the sentences and the rat-
ing score ranges from 1 to 5. Five native English
speakers are asked to give a score on each sen-
tence in three aspects with the following informa-
tion: Readability indicates whether the sentence
is easy to understand semantically; Accuracy in-
dicates whether the given senses are suitable in a
sentence; Fluency indicates whether the sentence
is fluent and consistent with the rules of grammar.

The results in Figure 2 show that pun data is
not enough to train an ideal language model, while
Normal Language Model has enough corpus to
train a good language model. But Normal Lan-
guage Model is unable to make the given two
senses appear in one sentence and in a few cases
even can not assure the appearance of the target
words. Joint Model and Highlight Model can gen-
erate fluent sentences for the assigned two senses.
Although Highlight Model could remind people

Model # sentences avg. score
Highlight 15 0.98

Joint 12 0.87
Gold Puns 28 1.38

Table 2: Results of Soft Turing Test.

specific senses of the target words in most cases, in
few cases sampled words make the whole sentence
unsatisfactory and get a relatively lower score of
accuracy. As to the Readability, the Joint Model
performs better than other three models. Both
Joint model and Highlight model outperform Nor-
mal Language Model and Pun Language Model.

To test the potential of the sentences generated
by our models to be homographic puns, we fur-
ther design a Soft Turing Test. We select 30 sen-
tences generated by Joint Model and 30 sentences
generated by Highlight Model independently, to-
gether with 30 gold puns from the homographic
pun data set. We mix them up, and give the def-
inition of homographic pun and ask 10 people on
Amazon Mechanical Turk to judge each sentence.
People can judge each sentence as one of three cat-
egories: definitely by human, might by human and
definitely by machine. The three categories cor-
respond to the scores of 2, 1 and 0, respectively.
If the average score of one sentence is equal or
greater than 1, we regard it as judged to be gener-
ated by human. The number of sentences judged
as by human for each model and the average score
for each model are shown in Table 2.

Due to the flexible language structure of High-
light Model, the generated homographic puns out-
perform those generated by Joint Model in the Soft
Turing Test, however still far from gold-standard
puns. Our models are adept at generating homo-
graphic puns containing assigned senses but weak
in making homographic puns humorous.

4.6 Examples

We show some examples generated by differ-
ent models in Table 3. For the two senses of
“pitch”, Highlight Model generates a sentence
which uses “high” to remind readers the sense re-
lated to sound and uses “player” to highlight the
sense related to throwing a baseball. Joint Model
returns a sentence that can be understood in both
way roughly only if we give the two senses in ad-
vance, otherwise readers may only think of the
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Model Sample
pitch: 1) the property of sound that arise with variation in the frequency of vibration;

2) the act of throwing a baseball by a pitcher to a batter.
Highlight in one that denotes player may have had a high pitch in the world
Joint the object of the game is based on the pitch of the player
Normal Language this is a list of high pitch plot
Pun Language our bikinis are exciting they are simply the tops on the mouth
Gold Puns if you sing while playing baseball you won’t get a good pitch
square: 1) a plane rectangle with four equal sides and four right angles, a four-sided regular polygon;

2) someone who doesn’t understand what is going on.
Highlight little is known when he goes back to the square of the football club
Joint there is a square of the family
Normal Language the population density was # people per square mile
Pun Language when the pirate captain’s ship ran aground he couldn’t fathom why
Gold Puns my advanced geometry class is full of squares
problem: 1) a source of difficulty;

2) a question raised for consideration or solution.
Highlight you do not know how to find a way to solve the problem which in the state
Joint he is said to be able to solve the problem as he was a professor
Normal Language in # he was appointed a member of the new york stock exchange
Pun Language those who iron clothes have a lot of pressing veteran
Gold Puns math teachers have lots of problems

Table 3: Examples of outputs by different models.

sense related to baseball. For Normal Language
Model, it is difficult to be interpreted in two senses
we assigned. Pun Language Model has no ability
to return a sentence containing the assigned word
at all. Observing the gold pun, the context de-
scribes a more vivid scene which we need to pay
attention to. For “square”, sentences generated
by Highlight Model and Joint Model can be inter-
preted in two senses and Highlight Model results
in a sentence with dexterity. Normal Language
Model give a sentence where “square” means nei-
ther of the two given senses. Pun Language Model
cannot return a sentence we need with no sur-
prise. For “problem”, both Highlight Model and
Joint Model can generate sentences containing as-
signed two senses while Normal Language Model
and Pun Language Model can not return sentences
with the target word. Compare to our generated
sentences, we find gold puns are more concise and
accurate, which takes us into consideration on the
delicate structure of puns and the conclusion is
still in exploration.

5 Conclusion and Future Work

In this paper, we proposed two models for pun
generation without using training data of puns.
Joint Model makes use of conditional language
model and the joint beam search algorithm, which
can assure the assigned senses of target words suit-
able in one sentence. Highlight Model takes asso-
ciative words into consideration, which makes the
distinct senses more obvious in one sentence. The
produced puns are evaluated using automatic eval-
uation and human evaluation, and they outperform
the sentences generated by our baseline models.

For future work, we hope to improve the results
by using the pun data and design a more proper
way to select candidates from associative words.
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Rafal Józefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring
the limits of language modeling. arXiv preprint
arXiv:1602.02410. http://arxiv.org/abs/1602.02410.

Greg Lessard and Michael Levison. 1992. Computa-
tional modelling of linguistic humour: Tom swifties.
In In ALLC/ACH Joint Annual Conference, Oxford.
pages 175–178.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng
Gao, and Bill Dolan. 2016. A diversity-promoting
objective function for neural conversation mod-
els. In NAACL HLT 2016, The 2016 Con-
ference of the North American Chapter of the
Association for Computational Linguistics: Hu-
man Language Technologies, San Diego Califor-
nia, USA, June 12-17, 2016. pages 110–119.
http://aclweb.org/anthology/N/N16/N16-1014.pdf.

Minh-Thang Luong, Eugene Brevdo, and Rui Zhao.
2017. Neural machine translation (seq2seq) tutorial.
https://github.com/tensorflow/nmt .

Justin McKay. 2002. Generation of idiom-based witti-
cisms to aid second language learning. In In Stock
et al.. pages 77–87.

Elena Mikhalkova and Yuri Karyakin. 2017. Pun-
fields at semeval-2017 task 7: Employing ro-
get’s thesaurus in automatic pun recognition and
interpretation. arXiv preprint arXiv:1707.05479.
http://arxiv.org/abs/1707.05479.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM 38(11):39–
41.

Tristan Miller and Iryna Gurevych. 2015. Automatic
disambiguation of english puns. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Process-
ing of the Asian Federation of Natural Language
Processing, ACL 2015, July 26-31, 2015, Beijing,
China, Volume 1: Long Papers. pages 719–729.
http://aclweb.org/anthology/P/P15/P15-1070.pdf.

Tristan Miller, Christian F. Hempelmann, and Iryna
Gurevych. 2017. SemEval-2017 Task 7: Detec-
tion and interpretation of English puns. In Proceed-
ings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017). pages 59–69.

1659



Lili Mou, Rui Yan, Ge Li, Lu Zhang, and Zhi
Jin. 2015. Backbone language modeling for con-
strained natural language generation. arXiv preprint
arXiv:1512.06612. http://arxiv.org/abs/1512.06612.

Graham Neubig. 2017. Neural machine trans-
lation and sequence-to-sequence models: A
tutorial. arXiv preprint arXiv:1703.01619.
http://arxiv.org/abs/1703.01619.

Graeme Ritchie. 2004. The linguistic analysis of jokes.
Routledge.

Graeme Ritchie, Ruli Manurung, Helen Pain, Annalu
Waller, Rolf Black, and Dave O’Mara. 2007. A
practical application of computational humour. In
Proceedings of the 4th International Joint Confer-
ence on Computational Creativity. pages 91–98.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Process-
ing Systems 27: Annual Conference on Neural In-
formation Processing Systems 2014, December 8-
13 2014, Montreal, Quebec, Canada. pages 3104–
3112. http://papers.nips.cc/paper/5346-sequence-
to-sequence-learning-with-neural-networks.

Jiwei Tan, Xiaojun Wan, and Jianguo Xiao. 2017.
Abstractive document summarization with a graph-
based attentional neural model. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics, ACL 2017, Vancouver,
Canada, July 30 - August 4, Volume 1: Long Papers.
Association for Computational Linguistics, pages
1171–1181. https://doi.org/10.18653/v1/P17-1108.

Alessandro Valitutti, Carlo Strapparava, and Oliviero
Stock. 2008. Textual affect sensing for compu-
tational advertising. In Creative Intelligent Sys-
tems, Papers from the 2008 AAAI Spring Sympo-
sium, Technical Report SS-08-03, Stanford, Califor-
nia, USA, March 26-28, 2008. pages 117–122.

Chris Venour. 1999. The computational generation of
a class of puns. In Master’s thesis, Queen’s Univer-
sity,Kingston, Ontario.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015. Show and tell: A neu-
ral image caption generator. In IEEE Confer-
ence on Computer Vision and Pattern Recogni-
tion, CVPR 2015, Boston, MA, USA, June 7-12,
2015. IEEE Computer Society, pages 3156–3164.
https://doi.org/10.1109/CVPR.2015.7298935.

Ziang Xie. 2017. Neural text generation: A practical
guide. arXiv preprint arXiv:1711.09534 .

Rong Zhou and Eric A. Hansen. 2005. Beam-
stack search: Integrating backtracking with
beam search. In Proceedings of the Fifteenth
International Conference on Automated Plan-
ning and Scheduling (ICAPS 2005), June 5-10
2005, Monterey, California, USA. pages 90–98.
http://www.aaai.org/Library/ICAPS/2005/icaps05-
010.php.

1660



Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 1661–1671
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

Learning to Generate Move-by-Move Commentary for Chess Games from
Large-Scale Social Forum Data

Harsh Jhamtani∗, Varun Gangal∗, Eduard Hovy, Graham Neubig, Taylor Berg-Kirkpatrick
Language Technologies Institute

Carnegie Mellon University
{jharsh,vgangal,hovy,gneubig,tberg}@cs.cmu.edu

Abstract

This paper examines the problem of gen-
erating natural language descriptions of
chess games. We introduce a new large-
scale chess commentary dataset and pro-
pose methods to generate commentary
for individual moves in a chess game.
The introduced dataset consists of more
than 298K chess move-commentary pairs
across 11K chess games. We highlight
how this task poses unique research chal-
lenges in natural language generation: the
data contain a large variety of styles of
commentary and frequently depend on
pragmatic context. We benchmark vari-
ous baselines and propose an end-to-end
trainable neural model which takes into
account multiple pragmatic aspects of the
game state that may be commented upon
to describe a given chess move. Through
a human study on predictions for a sub-
set of the data which deals with direct
move descriptions, we observe that out-
puts from our models are rated similar to
ground truth commentary texts in terms of
correctness and fluency.1

1 Introduction

A variety of work in NLP has sought to produce
fluent natural language descriptions conditioned
on a contextual grounding. For example, several
lines of work explore methods for describing im-
ages of scenes and videos (Karpathy and Fei-Fei,
2015), while others have conditioned on structured
sources like Wikipedia infoboxes (Lebret et al.,

∗ HJ and VG contributed equally for this paper
1We will make the code-base (including data collection

and processing) publicly available at https://github.
com/harsh19/ChessCommentaryGeneration

2016). In most cases, progress has been driven by
the availability of large training corpora that pair
natural language with examples from the ground-
ing (Lin et al., 2014). One line of work has in-
vestigated methods for producing and interpreting
language in the context of a game, a space that has
rich pragmatic structure, but where training data
has been hard to come by. In this paper, we in-
troduce a new large-scale resource for learning to
correlate natural language with individual moves
in the game of chess. We collect a dataset of more
than 298K chess move/commentary pairs across≈
11K chess games from online chess forums. To the
best of our knowledge, this is the first such dataset
of this scale for a game commentary generation
task. We provide an analysis of the dataset and
highlight the large variety in commentary texts by
categorizing them into six different aspects of the
game that they respectively discuss.

Figure 1: Move commentary generated from our method
(Game-aware neural commentary generation (GAC)) and
some baseline methods for a sample move.

Automated game commentary generation can
be a useful learning aid. Novices and experts alike
can learn more about the game by hearing expla-
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nations of the motivations behind moves, or their
quality. In fact, on sites for game aficionados,
these commentaries are standard features, speak-
ing to their interestingness and utility as comple-
ments to concrete descriptions of the game boards
themselves.

Game commentary generation poses a number
of interesting challenges for existing approaches
to language generation. First, modeling human
commentary is challenging because human com-
mentators rely both on their prior knowledge of
game rules as well as their knowledge of effec-
tive strategy when interpreting and referring to the
game state. Secondly, there are multiple aspects of
the game state that can be talked about for a given
move — the commentator’s choice depends on the
pragmatic context of the game. For example, for
the move shown in Figure 1, one can comment
simply that the pawn was moved, or one may com-
ment on how the check was blocked by that move.
Both descriptions are true, but the latter is most
salient given the player’s goal. However, some-
times, none of the aspects may stand out as being
most salient, and the most salient aspect may even
change from commentator to commentator. More-
over, a human commentator may introduce varia-
tions in the aspects he or she chooses to talk about,
in order to reduce monotony in the commentary.
This makes the dataset a useful testbed not only
for NLG but also for related work on modeling
pragmatics in language (Liu et al., 2016).

Prior work has explored game commentary gen-
eration. Liao and Chang (1990); Sadikov et al.
(2006) have explored chess commentary genera-
tion, but for lack of large-scale training data their
methods have been mainly rule-based. Kameko
et al. (2015) have explored commentary gener-
ation for the game of Shogi, proposing a two-
step process where salient terms are generated
from the game state and then composed in a
language model. In contrast, given the larger
amount of training data available to us, our pro-
posed model uses an end-to-end trainable neu-
ral architecture to predict commentaries given the
game state. Our model conditions on semantic
and pragmatic information about the current state
and explicitly learns to compose, conjoin, and se-
lect these features in a recurrent decoder module.
We perform an experimental evaluation compar-
ing against baselines and variants of our model
that ablate various aspects of our proposed archi-

Figure 2: A multi-move, single commentary example from
our data. Here, the sequence of moves Ba4→ b5→ Nd6→
bxa4→ e5 is commented upon.

Statistic Value
Total Games 11,578
Total Moves 298,008
Average no. of recorded steps in a game 25.73
Frequent Word Types2 39,424
Rare Word Types 167,321
Word Tokens 6,125,921
Unigram Entropy 6.88
Average Comment Length (in #words) 20.55
Long Comments (#words > 5) 230745 (77%)

Table 1: Dataset and Vocabulary Statistics

tecture. Outputs on the ‘Move Description’ subset
of data from our final model were judged by hu-
mans to be as good as human written ground truth
commentaries on measures of fluency and correct-
ness.

2 Chess Commentary Dataset

In this section we introduce our new large-scale
Chess Commentary dataset, share some statistics
about the data, and discuss the variety in type
of commentaries. The data is collected from the
online chess discussion forum gameknot.com,
which features multiple games self-annotated with
move-by-move commentary.

The dataset consists of 298K aligned game
move/commentary pairs. Some commentaries are
written for a sequence of few moves (Figure 2)
while others correspond to a single move. For the
purpose of initial analysis and modeling, we limit
ourselves to only those data points where com-
mentary text corresponds to a single move. Addi-
tionally, we split the multi-sentence commentary
texts to create multiple data points with the same
chess board and move inputs.

What are commentaries about? We observe
that there is a large variety in the commentary
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Category Example % in
data

Val
acc.

Direct Move
Description An attack on the queen 31.4% 71%

Move
Quality A rook blunder. 8.0% 90%

Comparative At this stage I figured
I better move my knight. 3.7% 77.7%

Planning /
Rationale

Trying to force a way to
eliminate d5 and
prevent Bb5.

31.2% 65%

Contextual
Game Info

Somehow, the game I
should have lost turned
around in my favor .

12.6% 87%

General
Comment Protect Calvin , Hobbs 29.9% 78%

Table 2: Commentary texts have a large variety making the
problem of content selection an important challenge in our
dataset. We classify the commentaries into 6 different cate-
gories using a classifier trained on some hand-labelled data,
a fraction of which is kept for validation. % data refers to
the percentage of commentary sentences in the tagged data
belonging to the respective category.

texts. To analyze this variety, we consider la-
belling the commentary texts in the data with a
predefined set of categories. The choice of these
categories is made based on a manual inspection
of a sub-sample of data. We consider the follow-
ing set of commentary categories (Also shown in
Table 2):

• Direct move description (MoveDesc3): Ex-
plicitly or implicitly describe the current
move.

• Quality of move (Quality4): Describe the
quality of the current move.

• Comparative: Compare multiple possible
moves.

• Move Rationale or Planning (Planning):
Describe the rationale for the current move,
in terms of the future gameplay, advantage
over other potential moves etc.

• Contextual game information: Describe
not the current move alone, but the overall
game state – such as possibility of win/loss,
overall aggression/defence, etc.

• General information: General idioms & ad-
vice about chess, information about play-
ers/tournament, emotional remarks, retorts,
etc.

The examples in Table 2 illustrate these classes.
Note that the commentary texts are not necessar-
ily limited to one tag, though that is true for most

3MoveDesc & ‘Move Description’ used interchangeably
4Quality and ‘Move Quality’ used interchangeably

of the data. A total of 1K comments are anno-
tated by two annotators. A SVM classifier (Pe-
dregosa et al., 2011a) is trained for each comment
class, considering the annotation as ground truth
and using word unigrams as features. This classi-
fier is then used to predict tags for the train, valida-
tion and test sets. For “Comparative” category, we
found that a classifier with manually defined rules
such as presence of word “better” performs better
than the classifier, perhaps due to the paucity of
data, and thus we use this instead . As can be ob-
served in Table 2, the classifiers used are able to
generalize well on the held out dataset

3 Game Aware Neural Commentary
Generations (GAC)

Our dataset D consists of data points of the
form (Si,Mi, Gi), i ∈ {1, 2, .., |D|}, where Si
is the commentary text for move Mi and Gi
is the corresponding chess game. Si is a se-
quence of m tokens Si1, Si2, ..., Sim We want
to model P (Si|Mi, Gi). For simplicity, we use
only current board (Ci) and previous board (Ri)
information from the game. P (Si|Mi, Gi) =
P (Si|Mi, Ci, Ri).

We model this using an end-to-end trainable
neural model, which models conjunctions of fea-
tures using feature encoders. Our model employs
a selection mechanism to select the salient fea-
tures for a given chess move. Finally a LSTM
recurrent neural network (Hochreiter and Schmid-
huber, 1997) is used to generate the commentary
text based on selected features from encoder.

3.1 Incorporating Domain Knowledge

Past work shows that acquiring domain knowledge
is critical for NLG systems (Reiter et al., 2003b;
Mahamood and Reiter, 2012). Commentary texts
cover a range of perspectives, including criticism
or goodness of current move, possible alternate
moves, quality of alternate moves, etc. To be able
to make such comments, the model must learn
about the quality of moves, as well as the set of
valid moves for a given chess board state. We con-
sider the following features to provide our model
with necessary information to generate commen-
tary texts (Figure 3):

Move features fmove(Mi, Ci, Ri) encode the
current move information such as which piece
moved, the position of the moved piece before and
after the move was made, the type and position
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Figure 3: The figure shows some features extracted using the chess board states before (left) and after
(right) a chess move. Our method uses various semantic and pragmatic features of the move, including
the location and type of piece being moved, which opposing team pieces attack the piece being moved
before as well as after the move, the change in score by Stockfish UCI engine, etc.

of the captured piece (if any), whether the current
move is castling or not, and whether there was a
check or not.

Threat features fthreat(Mi, Ci, Ri) encode in-
formation about pieces of opposite player attack-
ing the moved piece before and after the move, and
the pieces of opposite player being attacked by the
piece being moved. To extract this information,
we use the python-chess library 5

Score features fscore(Mi, Ci, Ri) capture the
quality of move and general progress of the game.
This is done using the game evaluation score be-
fore and after the move, and average rank of pawns
of both the players. We use Stockfish evaluation
engine to obtain the game evaluation scores. 6

3.2 Feature Representation

In our simplest conditioned language gen-
eration model GAC-sparse, we repre-
sent the above described features using
sparse representations through binary-
valued features. gsparse(Mi, Ci, Ri) =
SparseRep(fmove, fthreat, fscore)

For our full GAC model we consider repre-
senting features through embeddings. This has
the advantage of allowing for a shared embed-
ding space, which is pertinent for our problem
since attribute values can be shared, e.g. the
same piece type can occur as the moved piece as
well as the captured piece. For categorical fea-
tures, such as those indicating which piece was
moved, we directly look up the embedding us-
ing corresponding token. For real valued features

5https://pypi.org/project/
python-chess/

6https://stockfishchess.org/about/

such as game scores, we first bin them and then
use corresponding number for embedding lookup.
Let E represent the embedding matrix. Then
E[f jmove] represents embeddings of jth move fea-
ture, or in general E[fmove] represents the con-
catenated embeddings of all move features. Simi-
larly, E(fmove, fthreat, fscore) represents concate-
nated embeddings of all the features.

3.3 Feature Conjunctions

We conjecture that explicitly modeling feature
conjunctions might improve the performance. So
we need an encoder which can handle input sets
of features of variable length (features such as
pieces attacking the moved piece can be of vari-
able length). One way to handle this is by picking
up a canonical ordering of the features and con-
sider a bidirectional LSTM encoder over the fea-
ture embeddings. As shown in Figure 4, this gen-
erates conjunctions of features.
genc = BiLSTM∗({E(fmove, fthreat, fscore))})

Here E() represents the embedding matrix as
described earlier and BiLSTM∗ represents a se-
quential application of the BiLSTM function.
Thus, if there a total of m feature keys and em-
bedding dimension is d, E(fmove, fthreat, fscore)
is matrix of m ∗ d. If hidden size of BILSTM is
of size x, then genc is of dimensionality m ∗ x.
We observe that different orderings gave similar
performance. We also experimented with running
k encoders, each on different ordering of features,
and then letting the decoder access to each of the k
encodings. This did not yield any significant gain
in performance.

The GAC model, unlike GAC-sparse, has some
advantages as it uses a shared, continuous space
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Figure 4: The figure shows a model overview. We first extract various semantic and pragmatic features
from the previous and current chess board states. We represent features through embedding in a shared
space. We observe that feeding in feature conjunctions helps a lot. We consider a selection mechanism
for the model to choose salient attributes from the input at every decoder step.

to embed attribute values of different features, and
can perform arbitrary feature conjunctions before
passing a representation to the decoder, thereby
sharing the burden of learning the necessary fea-
ture conjunctions. Our experiments confirm this
intuition — GAC produces commentaries with
higher BLEU as well as more diversity compared
to GAC-sparse.

3.4 Decoder
We use a LSTM decoder to generate the sentence
given the chess move and the features g. At every
output step t, the LSTM decoder predicts a distri-
bution over vocabulary words taking into account
the current hidden state ht, the input token it, and
additional selection vector ct. For GAC-sparse,
the selection vector is simply an affine transfor-
mation of the features g. For GAC model selection
vector is derived via a selection mechanism.

ot, h
dec
t = LSTM(hdect−1, [concat(Edec(it), ct)])

pt = softmax(Wo[concat(ot, ct)] + bs)

where pt represents th probability distribution
over the vocabulary, Edec() represents the decoder
word embedding matrix and elements of Wo ma-
trix are trainable parameters.

Selection/Attention Mechanism: As there are
different salient attributes across the different
chess moves, we also equip the GAC model with a

mechanism to select and identify these attributes.
We first transform hdect by multiplying it with a
trainable matrix Wc, and then take dot product of
the result with each gi.

a
(i)
t = dot(Wc ∗ hdect , genci )

αt = softmax(at)

ct =

i=|g|∑

i=1

α
(i)
t g

enc
i

We use cross-entropy loss over the decoding
outputs to train the model.

4 Experiments

We split each of the data subsets in a 70:10:20 ra-
tio into train, validation and test. All our models
are implemented in Pytorch version 0.3.1 (Paszke
et al., 2017). We use the ADAM optimizer
(Kingma and Ba, 2014) with its default parame-
ters and a mini-batch size of 32. Validation set
perplexity is used for early-stopping. At test-time,
we use greedy search to generate the model output.
We observed that beam decoding does not lead to
any significant improvement in terms of validation
BLEU score.

We observe the BLEU (Papineni et al., 2002)
and BLEU-2 (Vedantam et al., 2015) scores to
measure the performance of the models. Addi-
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tionally, we consider a measure to quantify the di-
versity in the generated outputs. Finally, we also
conduct a human evaluation study. In the remain-
der of this section, we discuss baselines along with
various experiments and results.

4.1 Baselines
In this subsection we discuss the various baseline
methods.
Manually-defined template (TEMP) We devise
manually defined templates (Reiter, 1995) for
‘Move Description’ and ‘Move Quality’ cate-
gories. Note that template-based outputs tend to
be repetitive as they lack diversity - drawing from
a small, fixed vocabulary and using a largely static
sentence structure. We define templates for a
fixed set of cases which cover our data (For exact
template specifications, refer to Appendix B).

Nearest Neighbor (NN): We observe that the
same move on similar board states often leads to
similar commentary texts. To construct a simple
baseline, we find the most similar move NMCR

from among training data points for a given previ-
ous (R) and current (C) board states and moveM .
The commentary text corresponding to NMCR is
selected as the output. Thus, we need to consider
a scoring function to find the closest matching
data point in training set. We use the Move, Threat
and Score features to compute similarity to do
so. By using a sparse representation, we consider
total of 148 Move features, 18 Threat features, and
19 Score features. We use sklearn’s (Pedregosa
et al., 2011b) NearestNeighbor module to find the
closest matching game move.

Raw Board Information Only (RAW): The
RAW baseline ablates to assess the importance
of our pragmatic feature functions. This archi-
tecture is similar to GAC, except that instead of
our custom featuresA(f(Ri, Ci)), the encoder en-
codes raw board information of current and previ-
ous board states.
ARAW (Ri, Ci) = [Lin(Ri), Lin(Ci)]
Lin() for a board denotes it’s representation in a
row-linear fashion. Each element of Lin() is a
piece name (e.g pawn) denoting the piece at that
square with special symbols for empty squares.

4.2 Comment Category Models
As shown earlier, we categorize comments into six
different categories. Among these, in this paper

Dataset Features BLEU BLEU-2 Diversity

MoveDesc

TEMP 0.72 20.77 4.43
NN (M+T+S) 1.28 21.07 7.85

RAW 1.13 13.74 2.37
GAC-sparse 1.76 21.49 4.29
GAC (M+T) 1.85 23.35 4.72

Quality

TEMP 16.17 47.29 1.16
NN (M+T) 5.98 42.97 4.52

RAW 16.92 47.72 1.07
GAC-sparse 14.98 51.46 2.63

GAC(M+T+S) 16.94 47.65 1.01

Comparative

NN (M) 1.28 24.49 6.97
RAW 2.80 23.26 3.03

GAC-sparse 3.58 25.28 2.18
GAC(M+T) 3.51 29.48 3.64

Table 3: Performance of baselines and our model with differ-
ent subsets of features as per various quantitative measures.
( S = Score, M= Move, T = Threat features; ) On all data sub-
sets, our model outperforms the TEMP and NN baselines.
Among proposed models, GAC performs better than GAC-
sparse & RAW in general. For NN, GAC-sparse and GAC
methods, we experiment with multiple feature combinations
and report only the best as per BLEU scores.

we consider only the first three as the amount of
variance in the last three categories indicates that
it would be extremely difficult for a model to learn
to reproduce them accurately. The number of
data points, as tagged by the trained classifiers, in
the subsets ‘Move Description’, ‘Move Quality’
and ‘Comparative’ are 28,228, 793 and 5397
respectively. We consider separate commentary
generation models for each of the three categories.
Each model is tuned separately on the correspond-
ing validation sets. Table 3 shows the BLEU and
BLEU-2 scores for the proposed model under
different subsets of features. Overall BLEU
scores are low, likely due to the inherent variance
in the language generation task (Novikova et al.,
2017) , although a precursory examination of
the outputs for data points selected randomly
from test set indicated that they were reasonable.
Figure 5 illustrates commentaries generated by
our models through an example (a larger list of
qualitative examples can be found in Appendix C).

Which features are useful? In general, adding
Threat features improves the performance, though
the same is not always true for Score features.
Qual has higher BLEU scores than the other
datasets due to smaller vocabulary and lesser vari-
ation in commentary. As can be observed in Ta-
ble 4, Threat features are useful for both ‘Move
Quality’ and ‘Move Description’ subsets of data.
Adding Score features helps for ‘Move Quality’
subset. This intuitively makes sense since Score

1666



Figure 5: Outputs from various models on a test example from the MoveDesc subset.

Dataset Features BLEU BLEU-2 Diversity

MoveDesc
GAC (M) 1.41 19.06 4.32

GAC (M+T) 1.85 23.35 4.72
GAC (M+T+S) 1.64 22.82 4.29

Quality
GAC (M) 13.05 48.37 1.61

GAC (M+T) 14.22 49.57 1.54
GAC(M+T+S) 14.44 51.79 1.48

Comparative
GAC(M) 3.10 19.84 2.88

GAC(M+T) 3.51 29.48 3.64
GAC(M+T+S) 1.15 25.44 3.14

Table 4: Performance of the GAC model with different fea-
ture sets. ( S = Score, M= Move, T = Threat features; ) Dif-
ferent subset of features work best for different subsets. For
instance, Score features seem to help only in the Quality cat-
egory. Note that the results for Quality are from 5-fold cross-
validation, since the number of datapoints in the category is
much lesser than the other two.

features directly encode proxies for move quality
as per a chess evaluation engine.

4.3 A Single Model For All Categories

In this experiment, we merge the training and val-
idation data of the first three categories and tune a
single model for this merged data. We then com-
pare its performance on all test sentences in our
data. COMB denotes using the best GAC model
for a test example based on its original class (e.g
Desc) and computing the BLEU of the sentences
so generated with the ground truth. GAC-all rep-
resents the GAC model learnt on the merged train-
ing data.

As can be seen from Table 5, this does not lead
to any performance improvements. We investigate
this issue further by analyzing whether the board
states are predictive of the type of category or
not. To achieve this, we construct a multi-class
classifier using all the Move, Threat and Score
features to predict the three categories under
consideration. However, we observe accuracy
of around 33.4%, which is very close to the
performance of a random prediction model. This
partially explains why a single model did not fare
better even though it had the opportunity to learn

Dataset Features BLEU BLEU-2 Diversity

All
COMB (M) 2.07 20.13 4.50

COMB (M+T) 2.43 25.37 4.88
COMB (M+T+S) 1.83 28.86 4.33

All
GAC-all(M) 1.69 20.66 4.67

GAC-all(M+T) 1.94 24.11 5.16
GAC-all (M+T+S) 2.02 24.70 4.97

All CAT (M) 1.90 19.96 3.82

Table 5: The COMB approaches show the combined per-
formance of separately trained models on the respective test
subsets.

from a larger dataset.

Category-aware model (CAT) We observed
above that with the considered features, it is not
possible to predict the type of comment to be
made, and the GAC-all model results are better
than COMB results. Hence, we extend the GAC-
all model to explicitly provide with the informa-
tion about the comment category. We achieve this
by adding a one-hot representation of the category
of the comment to the input of the RNN decoder
at every time step. As can be seen in the Table
5, CAT(M) performs better than GAC-all(M) in
terms of BLEU-4, while performing slightly worse
on BLEU-2. This demonstrates that explicitly pro-
viding information about the comment category
can help the model.

4.4 Diversity In Generated Commentaries
Humans use some variety in the choice of words
and sentence structure. As such, outputs from rule
based templates, which demonstrate low variety,
may seem repetitive and boring. To capture this
quantitatively, and to demonstrate the variety in
texts from our method, we calculate the entropy
(Shannon, 1951) of the distribution of unigrams,
bigrams and trigrams of words in the predicted
outputs, and report the geometric mean of these
values. Using only a small set of words in similar
counts will lead to lower entropy and is undesir-
able. As can be observed from Table 3, template
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baseline performs worse on the said measure com-
pared to our methods for the ’MoveDesc’ subset of
the data.

4.5 Human Evaluation Study

As discussed in the qualitative examples above,
we often found the outputs to be good - though
BLEU scores are low. BLEU is known to cor-
relate poorly (Reiter and Belz, 2009; Wiseman
et al., 2017; Novikova et al., 2017) with human
relevance scores for NLG tasks. Hence, we
conduct a human evaluation study for the best 2
neural (GAC,GAC-sparse) and best 2 non-neural
methods (TEMP,NN).

Setup: Specifically, annotators are shown a chess
move through previous board and resulting board
snapshots, along with information on which piece
moved (a snapshot of a HIT7 is provided in the Ap-
pendix D). With this context, they were shown text
commentary based on this move and were asked to
judge the commentary via three questions, short-
ened versions of which can be seen in the first col-
umn of Table 6.

We randomly select 100 data points from the
test split of ‘Move Description’ category and
collect the predictions from each of the methods
under consideration. We hired two Anglophone
(Lifetime HIT acceptance % > 80) annotators for
every human-evaluated test example. We addi-
tionally assess chess proficiency of the annotators
using questions from the chess-QA dataset by
(Cirik et al., 2015). Within each HIT, we ask two
randomly selected questions from the chess-QA
dataset. Finally we consider only those HITs
wherein the annotator was able to answer the
proficiency questions correctly.

Results: We conducted a human evaluation study
for the MoveDesc subset of the data. As can be
observed from Table 6, outputs from our method
attain slightly more favorable scores compared
to the ground truth commentaries. This shows
that the predicted outputs from our model are not
worse than ground truth on the said measures.
This is in spite of the fact that the BLEU-4 score
for the predicted outputs is only ∼ 2 w.r.t. the
ground truth outputs. One reason for slightly
lower performance of the ground truth outputs on
the said measures is that some of the human writ-

7Human Intelligence Task

ten commentaries are either very ungrammatical
or too concise. A more surprising observation is
that around 30% of human written ground truth
outputs were also marked as not valid for given
board move. On inspection, it seems that com-
mentary often contains extraneous game informa-
tion beyond that of move alone, which indicates
that an ideal comparison should be over commen-
tary for an entire game, although this is beyond the
scope of the current work.

The inter-annotator agreement for our experi-
ments (Cohens κ (Cohen, 1968)) is 0.45 for Q1
and 0.32 for Q2. We notice some variation in
κ coefficients across different systems. While
TEMP and GAC responses had a 0.5-0.7 coeffi-
cient range, the responses for CLM had a much
lower coefficient. In our setup, each HIT consists
of 7 comments, one from each system. For Q3
(fluency), which is on an ordinal scale, we mea-
sure rank-order consistency between the responses
of the two annotators of a HIT. Mean Kendall τ
(Kendall, 1938) across all HITs was found to be
0.39.

To measures significance of results, we per-
form bootstrap tests on 1000 subsets of size 50
with a significance threshold of p = 0.05 for
each pair of systems. For Q1, we observe that
GAC(M), GAC(M+T) and GAC(M+T+S) meth-
ods are significantly better than baselines NN and
GAC-sparse. We find that neither of GAC(M+T)
and GT significantly outperform each other on Q1
as well as Q2. But we do find that GAC(M+T)
does better than GAC(M) on both Q1 and Q2.
For fluency scores, we find that GAC(M+T) is
more fluent than GT, NN , GAC-sparse, GAC(M).
Neither of GAC(M) and GAC(M+T+S) is signifi-
cantly more fluent than the other.

5 Related Work

NLG research has a long history, with systems
ranging from completely rule-based to learning-
based ones (Reiter et al., 2005, 2003a), which
have had both practical successes (Reiter et al.,
2005) and failures (Reiter et al., 2003a). Recently,
there have been numerous works which propose
text generation given structured records, biogra-
phies (Lebret et al., 2016), recipes (Yang et al.,
2016; Kiddon et al., 2016), etc. A key difference
between generation given a game state compared
to these inputs is that the game state is an evolv-
ing description at a point in a process, as opposed
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Question GT GAC
(M)

GAC
(MT)

GAC
(MTS)

GAC
-sparse TEMP NN

Is commentary correct for the
given move? (%Yes) 70.4 42.3 64.8 67.6 56.3 91.5 52.1

Can the move be inferred from
the commentary? (%Yes) 45.1 25.3 42.3 36.7 40.8 92.9 42.3

Fluency (scale of (least)1 - 5(most) )
Mean (Std. dev.)

4.03
(1.31)

4.15
(1.20)

4.44
(1.02)

4.54
(0.89)

4.15
(1.26)

4.69
(0.64)

3.72
(1.36)

Table 6: Human study results on MoveDesc data category. Outputs from GAC are in general better than ground truth, NN and
GAC-sparse. TEMP outperforms other methods, though as shown earlier, outputs from TEMP lack diversity.

to recipes (which are independent of each other),
records (which are static) and biographies (which
are one per person, and again independent). More-
over, our proposed method effectively uses vari-
ous types of semantic and pragmatic information
about the game state.

In this paper we have introduced a new large-
scale data for game commentary generation. The
commentaries cover a variety of aspects like
move description, quality of move, and alternative
moves. This leads to a content selection challenge,
similar to that noted in Wiseman et al. (2017). Un-
like Wiseman et al. (2017), our focus is on gener-
ating commentary for individual moves in a game,
as opposed to game summaries from aggregate
statistics as in their task.

One of the first NLG datasets was the
SUMTIME-METEO (Reiter et al., 2005) corpus
with ≈ 500 record-text pairs for technical weather
forecast generation. Liang et al (2009) worked
on common weather forecast generation using
the WEATHERGOV dataset, which has ≈ 10K
record-text pairs. A criticism of WEATHER-
GOV dataset (Reiter, 2017) is that weather records
themselves may have used templates and rules
with optional human post-editing. There have
been prior works on generating commentary for
ROBOCUP matches (Chen and Mooney, 2008;
Mei et al., 2015). The ROBOCUP dataset, how-
ever, is collected from 4 games and contains about
1K events in total. Our dataset is two orders of
magnitude larger than the ROBOCUP dataset, and
we hope that it provides a promising setting for
future NLG research.

6 Conclusions

In this paper, we curate a dataset for the task of
chess commentary generation and propose meth-
ods to perform generation on this dataset. Our
proposed method effectively utilizes information
related to the rules and pragmatics of the game. A
human evaluation study judges outputs from the

proposed methods to be as good as human written
commentary texts for ‘Move Description’ subset
of the data.

Our dataset also contains multi-move-single
commentary pairs in addition to single move-
single commentary pairs. Generating commentary
for such multi-moves is a potential direction for
future work. We anticipate this task to require
even deeper understanding of the game pragmat-
ics than the single move-single commentary case.

Recent work (Silver et al., 2016) has proposed
reinforcement learning based game-playing agents
which learn to play board games from scratch,
learning end-to-end from both recorded games
and self-play. An interesting point to explore
is whether such pragmatically trained game state
representations can be leveraged for the task of
game commentary generation.
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Abstract

In this work, we study the credit as-
signment problem in reward augmented
maximum likelihood (RAML) learning,
and establish a theoretical equivalence
between the token-level counterpart of
RAML and the entropy regularized rein-
forcement learning. Inspired by the con-
nection, we propose two sequence pre-
diction algorithms, one extending RAML
with fine-grained credit assignment and
the other improving Actor-Critic with a
systematic entropy regularization. On two
benchmark datasets, we show the pro-
posed algorithms outperform RAML and
Actor-Critic respectively, providing new
alternatives to sequence prediction.

1 Introduction

Modeling and predicting discrete sequences is the
central problem to many natural language process-
ing tasks. In the last few years, the adaption of re-
current neural networks (RNNs) and the sequence-
to-sequence model (seq2seq) (Sutskever et al.,
2014; Bahdanau et al., 2014) has led to a wide
range of successes in conditional sequence pre-
diction, including machine translation (Sutskever
et al., 2014; Bahdanau et al., 2014), automatic
summarization (Rush et al., 2015), image cap-
tioning (Karpathy and Fei-Fei, 2015; Vinyals
et al., 2015; Xu et al., 2015) and speech recogni-
tion (Chan et al., 2016).

Despite the distinct evaluation metrics for the
aforementioned tasks, the standard training algo-
rithm has been the same for all of them. Specif-
ically, the algorithm is based on maximum likeli-
hood estimation (MLE), which maximizes the log-

∗ Equal contribution.

likelihood of the “ground-truth” sequences empir-
ically observed.1

While largely effective, the MLE algorithm has
two obvious weaknesses. Firstly, the MLE train-
ing ignores the information of the task specific
metric. As a result, the potentially large discrep-
ancy between the log-likelihood during training
and the task evaluation metric at test time can lead
to a suboptimal solution. Secondly, MLE can suf-
fer from the exposure bias, which refers to the
phenomenon that the model is never exposed to
its own failures during training, and thus cannot
recover from an error at test time. Fundamen-
tally, this issue roots from the difficulty in statisti-
cally modeling the exponentially large space of se-
quences, where most combinations cannot be cov-
ered by the observed data.

To tackle these two weaknesses, there have been
various efforts recently, which we summarize into
two broad categories:

• A widely explored idea is to directly opti-
mize the task metric for sequences produced by
the model, with the specific approaches rang-
ing from minimum risk training (MRT) (Shen
et al., 2015) and learning as search optimization
(LaSO) (Daumé III and Marcu, 2005; Wise-
man and Rush, 2016) to reinforcement learn-
ing (RL) (Ranzato et al., 2015; Bahdanau et al.,
2016). In spite of the technical differences,
the key component to make these training al-
gorithms practically efficient is often a delicate
credit assignment scheme, which transforms
the sequence-level signal into dedicated smaller
units (e.g., token-level or chunk-level), and al-
locates them to specific decisions, allowing for
efficient optimization with a much lower vari-
ance. For instance, the beam search optimiza-

1In this work, we use the terms “ground-truth” and “refer-
ence” to refer to the empirical observations interchangeably.
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tion (BSO) (Wiseman and Rush, 2016) utilizes
the position of margin violations to produce sig-
nals to the specific chunks, while the actor-critic
(AC) algorithm (Bahdanau et al., 2016) trains a
critic to enable token-level signals.

• Another alternative idea is to construct a task
metric dependent target distribution, and train
the model to match this task-specific target in-
stead of the empirical data distribution. As a
typical example, the reward augmented maxi-
mum likelihood (RAML) (Norouzi et al., 2016)
defines the target distribution as the exponen-
tiated pay-off (sequence-level reward) distribu-
tion. This way, RAML not only can incorporate
the task metric information into training, but it
can also alleviate the exposure bias by expos-
ing imperfect outputs to the model. However,
RAML only works on the sequence-level train-
ing signal.

In this work, we are intrigued by the question
whether it is possible to incorporate the idea of
fine-grained credit assignment into RAML. More
specifically, inspired by the token-level signal used
in AC, we aim to find the token-level counter-
part of the sequence-level RAML, i.e., defining
a token-level target distribution for each auto-
regressive conditional factor to match. Motived by
the question, we first formally define the desider-
ata the token-level counterpart needs to satisfy and
derive the corresponding solution (§2). Then, we
establish a theoretical connection between the de-
rived token-level RAML and entropy regularized
RL (§3). Motivated by this connection, we pro-
pose two algorithms for neural sequence predic-
tion, where one is the token-level extension to
RAML, and the other a RAML-inspired improve-
ment to the AC (§4). We empirically evaluate the
two proposed algorithms, and show different lev-
els of improvement over the corresponding base-
line. We further study the importance of vari-
ous techniques used in our experiments, providing
practical suggestions to readers (§6).

2 Token-level Equivalence of RAML

We first introduce the notations used throughout
the paper. Firstly, capital letters will denote ran-
dom variables and lower-case letters are the val-
ues to take. As we mainly focus on conditional
sequence prediction, we use x for the conditional
input, and y for the target sequence. With y denot-
ing a sequence, yji then denotes the subsequence

from position i to j inclusively, while yt denotes
the single value at position t. Also, we use |y| to
indicate the length of the sequence. To emphasize
the ground-truth data used for training, we add su-
perscript ∗ to the input and target, i.e., x∗ and y∗.
In addition, we use Y to denote the set of all pos-
sible sequences with one and only one eos symbol
at the end, andW to denote the set of all possible
symbols in a position. Finally, we assume length
of sequences in Y is bounded by T .

2.1 Background: RAML
As discussed in §1, given a ground-truth pair
(x∗,y∗), RAML defines the target distribution us-
ing the exponentiated pay-off of sequences, i.e.,

PR(y | x∗,y∗) =
exp (R(y;y∗)/τ)∑

y′∈Y exp (R(y′;y∗)/τ)
, (1)

whereR(y;y∗) is the sequence-level reward, such
as BLEU score, and τ is the temperature hyper-
parameter controlling the sharpness. With the defi-
nition, the RAML algorithm simply minimizes the
cross entropy (CE) between the target distribution
and the model distribution Pθ(Y | x∗), i.e.,

min
θ

CE
(
PR(Y | x∗,y∗)‖Pθ(Y | x∗)

)
. (2)

Note that, this is quite similar to the MLE training,
except that the target distribution is different. With
the particular choice of target distribution, RAML
not only makes sure the ground-truth reference re-
mains the mode, but also allows the model to ex-
plore sequences that are not exactly the same as
the reference but have relatively high rewards.

Compared to algorithms trying to directly opti-
mize task metric, RAML avoids the difficulty of
tracking and sampling from the model distribution
that is consistently changing. Hence, RAML en-
joys a much more stable optimization without the
need of pretraining. However, in order to opti-
mize the RAML objective (Eqn. (2)), one needs
to sample from the exponentiated pay-off distribu-
tion, which is quite challenging in practice. Thus,
importance sampling is often used (Norouzi et al.,
2016; Ma et al., 2017). We leave the details of the
practical implementation to Appendix B.1.

2.2 Token-level Target Distribution
Despite the appealing properties, RAML only op-
erates on the sequence-level reward. As a result,
the reward gap between any two sequences cannot
be attributed to the responsible decisions precisely,
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which often leads to a low sample efficiency. Ide-
ally, since we rely on the auto-regressive factor-
ization Pθ(y | x∗) =

∏|y|
t=1 Pθ(yt | yt−1

1 ,x∗),
the optimization would be much more efficient if
we have the target distribution for each token-level
factor Pθ(Yt | yt−1

1 ,x∗) to match. Conceptually,
this is exactly how the AC algorithm improves
upon the vanilla sequence-level REINFORCE al-
gorithm (Ranzato et al., 2015).

With this idea in mind, we set out to find such
a token-level target. Firstly, we assume the token-
level target shares the form of a Boltzmann distri-
bution but parameterized by some unknown nega-
tive energy function QR, i.e.,2

PQR(yt | yt−1
1 ,y∗) =

exp
(
QR(yt−1

1 , yt;y
∗)/τ

)
∑
w∈W exp

(
QR(yt−1

1 , w;y∗)/τ
) .

(3)
Intuitively, QR(yt−1

1 , w;y∗) measures how much
future pay-off one can expect if w is generated,
given the current status yt−1

1 and the reference y∗.
This quantity highly resembles the action-value
function (Q-function) in reinforcement learning.
As we will show later, it is indeed the case.

Before we state the desiderata for QR, we need
to extend the definition of R in order to evaluate
the goodness of an unfinished partial prediction,
i.e., sequences without an eos suffix. Let Y− be
the set of unfinished sequences, following Bah-
danau et al. (2016), we define the pay-off function
R for a partial sequence ŷ ∈ Y−, |ŷ| < T as

R(ŷ;y∗) = R(ŷ + eos;y∗), (4)

where the + indicates string concatenation.
With the extension, we are ready to state two

requirements for QR:

1. Marginal match: For PQR to be the token-level
equivalence of PR, the sequence-level marginal
distribution induced by PQR must match PR,
i.e., for any y ∈ Y ,

|y|∏

t=1

PQR(yt | yt−1
1 ) = PR(y). (5)

Note that there are infinitely manyQR’s satisfy-
ing Eqn. (5), because adding any constant value
to QR does not change the Boltzmann distribu-
tion, known as shift-invariance w.r.t. the energy.

2To avoid clutter, the conditioning on x∗ will be omitted
in the sequel, assuming it’s clear from the context.

2. Terminal condition: Secondly, let’s consider
the value ofQR when emitting an eos symbol to
immediately terminate the generation. As men-
tioned earlier, QR measures the expected future
pay-off. Since the emission of eos ends the gen-
eration, the future pay-off can only come from
the immediate increase of the pay-off. Thus, we
require QR to be the incremental pay-off when
producing eos, i.e.

QR(ŷ,eos;y∗) = R(ŷ + eos;y∗)−R(ŷ;y∗), (6)

for any ŷ ∈ Y−. Since Eqn. (6) enforces the
absolute of QR at a point, it also solves the am-
biguity caused by the shift-invariance property.

Based on the two requirements, we can derive the
form QR, which is summarized by Proposition 1.
Proposition 1. PQR and QR satisfy requirements
(5) and (6) if and only if for any ground-truth pair
(x∗,y∗) and any sequence prediction y ∈ Y ,

QR(yt−1
1 , yt;y

∗) = R(yt1;y∗)−R(yt−1
1 ;y∗)

+ τ log
∑

w∈W
exp

(
QR(yt1, w;y∗)/τ

)
, (7)

when t < |y|, and otherwise, i.e., when t = |y|
QR(yt−1

1 , yt;y
∗) = R(yt1;y∗)−R(yt−1

1 ;y∗). (8)

Proof. See Appendix A.1.

Note that, instead of giving an explicit form for
the token-level target distribution, Proposition 1
only provides an equivalent condition in the form
of an implicit recursion. Thus, we haven’t ob-
tained a practical algorithm yet. However, as we
will discuss next, the recursion has a deep connec-
tion to entropy regularized RL, which ultimately
inspires our proposed algorithms.

3 Connection to Entropy-regularized RL

Before we dive into the connection, we first give
a brief review of the entropy-regularized RL. For
an in-depth treatment, we refer readers to (Ziebart,
2010; Schulman et al., 2017).

3.1 Background: Entropy-regularized RL
Following the standard convention of RL, we de-
note a Markov decision process (MDP) by a tu-
pleM = (S,A, ps, r, γ), where S,A, ps, r, γ are
the state space, action space, transition probabil-
ity, reward function and discounting factor respec-
tively.3

3In sequence prediction, we are only interested in the pe-
riodic (finite horizon) case.
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Based on the notation, the goal of entropy-
regularized RL augments is to learn a policy π(at |
st) which maximizes the discounted expected fu-
ture return and causal entropy (Ziebart, 2010), i.e.,

max
π

∑

t

E
st∼ρs,at∼π(·|st)

γt−1[r(st, at) + αH(π(· | st))],

where H denotes the entropy and α is a hyper-
parameter controlling the relative importance be-
tween the reward and the entropy. Intuitively,
compared to standard RL, the extra entropy term
encourages exploration and promotes multi-modal
behaviors. Such properties are highly favorable in
a complex environment.

Given an entropy-regularized MDP, for any
fixed policy π, the state-value function V π(s) and
the action-value function Qπ can be defined as

V π(s) = E
a∼π(·|s)

[Qπ(s, a)] + αH(π(· | s)),

Qπ(s, a) = r(s, a) + E
s′∼ρs

[γV π(s′)].
(9)

With the definitions above, it can further be
proved (Ziebart, 2010; Schulman et al., 2017) that
the optimal state-value function V ∗, the action-
value function Q∗ and the corresponding optimal
policy π∗ satisfy the following equations

V ∗(s) = α log
∑

a∈A
exp

(
Q∗(s, a)/α

)
, (10)

Q∗(s, a) = r(s, a) + γ E
s′∼ρs

[V ∗(s′)], (11)

π∗(a | s) =
exp (Q∗(s, a)/α)∑

a′∈A exp (Q∗(s, a′)/α)
. (12)

Here, Eqn. (10) and (11) are essentially the
entropy-regularized counterparts of the optimal
Bellman equations in standard RL. Following pre-
vious literature, we will refer to Eqn. (10) and (11)
as the optimal soft Bellman equations, and the V ∗

and Q∗ as optimal soft value functions.

3.2 An RL Equivalence of the Token-level
RAML

To reveal the connection, it is convenient to define
the incremental pay-off

r(yt−1
1 , yt;y

∗) = R(yt1;y∗)−R(yt−1
1 ;y∗), (13)

and the last term of Eqn. (7) as

VR(yt1;y∗) = τ log
∑

w∈W
exp

(
QR(yt1, w;y∗)/τ

)
(14)

Substituting the two definitions into Eqn. (7), the
recursion simplifies as

QR(yt−1
1 , yt;y

∗) = r(yt−1
1 , yt;y

∗) +VR(yt1;y∗). (15)

Now, it is easy to see that the Eqn. (14) and (15),
which are derived from the token-level RAML,
highly resemble the optimal soft Bellman equa-
tions (10) and (11) in entropy-regularized RL. The
following Corollary formalizes the connection.
Corollary 1. For any ground-truth pair (x∗,y∗),
the recursion specified by Eqn. (13), (14) and (15)
is equivalent to the optimal soft Bellman equation
of a “deterministic” MDP in entropy-regularized
reinforcement learning, denoted asMR, where

• the state space S corresponds to Y−,

• the action space A corresponds toW ,

• the transition probability ρs is a deterministic
process defined by string concatenation

• the reward function r corresponds to the in-
cremental pay-off defined in Eqn. (13),

• the discounting factor γ = 1,

• the entropy hyper-parameter α = τ ,

• and a period terminates either when eos is
emitted or when its length reaches T and we
enforce the generation of eos.

Moreover, the optimal soft value functions V ∗ and
Q∗ of the MDP exactly match the VR and QR de-
fined by Eqn. (14) and (15) respectively. The op-
timal policy π∗ is hence equivalent to the token-
level target distribution PQR .

Proof. See Appendix A.1.

The connection established by Corollary 1 is
quite inspiring:

• Firstly, it provides a rigorous and generalized
view of the connection between RAML and
entropy-regularized RL. In the original work,
Norouzi et al. (2016) point out RAML can be
seen as reversing the direction of KL (Pθ‖PR),
which is a sequence-level view of the connec-
tion. Now, with the equivalence between the
token-level target PQR and the optimal Q∗, it
generalizes to matching the future action values
consisting of both the reward and the entropy.

• Secondly, due to the equivalence, if we solve
the optimal soft Q-function of the correspond-
ing MDP, we directly obtain the token-level tar-
get distribution. This hints at a practical algo-
rithm with token-level credit assignment.
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• Moreover, since RAML is able to improve
upon MLE by injecting entropy, the entropy-
regularized RL counterpart of the standard AC
algorithm should also lead to an improvement
in a similar manner.

4 Proposed Algorithms

In this section, we explore the insights gained from
Corollary 1 and present two new algorithms for
sequence prediction.

4.1 Value Augmented Maximum Likelihood
The first algorithm we consider is the token-level
extension of RAML, which we have been dis-
cussing since §2. As mentioned at the end of
§2.2, Proposition 1 only gives an implicit form of
QR, and so is the token-level target distribution
PQR (Eqn. (3)). However, thanks to Corollary
1, we now know that QR is the same as the op-
timal soft action-value functionQ∗ of the entropy-
regularized MDPMR. Hence, by finding the Q∗,
we will have access to PQR .

At the first sight, it seems recovering Q∗ is as
difficult as solving the original sequence predic-
tion problem, because solvingQ∗ from the MDP is
essentially the same as learning the optimal policy
for sequence prediction. However, it is not true be-
cause QR (i.e., PQR) can condition on the correct
reference y∗. In contrast, the model distribution
Pθ can only depend on x∗. Therefore, the func-
tion approximator trained to recover Q∗ can take
y∗ as input, making the estimation task much eas-
ier. Intuitively, when recovering Q∗, we are trying
to train an ideal “oracle”, which has access to the
ground-truth reference output, to decide the best
behavior (policy) given any arbitrary (good or not)
state.

Thus, following the reasoning above, we first
train a parametric function approximator Qφ to
search the optimal soft action value. In this
work, for simplicity, we employ the Soft Q-
learning algorithm (Schulman et al., 2017) to per-
form the policy optimization. In a nutshell, Soft
Q-Learning is the entropy-regularized version of
Q-Learning, an off-policy algorithm which mini-
mizes the mean squared soft Bellman residual ac-
cording to Eqn. (11). Specifically, given ground-
truth pair (x∗,y∗), for any trajectory y ∈ Y , the
training objective is

min
φ

|y|∑

t=1

[
Qφ(yt−1

1 , yt;y
∗)− Q̂φ(yt−1

1 , yt;y
∗)
]2
, (16)

where Q̂φ(yt−1
1 , yt;y

∗) = r(yt−1
1 , yt;y

∗) + Vφ(yt1;y∗)
is the one-step look-ahead target Q-value, and
Vφ(yt1;y∗) = τ log

∑
w∈W exp

(
Qφ(yt1, w;y∗)/τ

)
as

defined in Eqn. (10). In the recent instantia-
tion of Q-Learning (Mnih et al., 2015), to sta-
bilize training, the target Q-value is often esti-
mated by a separate slowly updated target net-
work. In our case, as we have access to a signif-
icant amount of reference sequences, we find the
target network not necessary. Thus, we directly
optimize Eqn. (16) using gradient descent, and let
the gradient flow through both Qφ(yt−1

1 , yt;y
∗)

and Vφ(yt1;y∗) (Baird, 1995).
After the training of Qφ converges, we fix the

parameters of Qφ, and optimize the cross en-
tropy CE

(
PQφ‖Pθ

)
w.r.t. the model parameters

θ, which is equivalent to4

min
θ

E
y∼PQφ



|y|∑

t=1

CE
(
PQφ(Yt | yt−1

1 )‖Pθ(Yt | yt−1
1 )

)

 .

(17)

Compared to the of objective of RAML in Eqn.
(2), having access to PQφ(Yt | yt−1

1 ) allows us
to provide a distinct token-level target for each
conditional factor Pθ(Yt | yt−1

1 ) of the model.
While directly sampling from PR is practically in-
feasible (§2.1), having a parametric target distri-
bution PQφ makes it theoretically possible to sam-
ple from PQφ and perform the optimization. How-
ever, empirically, we find the samples from PQφ
are not diverse enough (§6). Hence, we fall back to
the same importance sampling approach (see Ap-
pendix B.2) as used in RAML.

Finally, since the algorithm utilizes the optimal
soft action-value function to construct the token-
level target, we will refer to it as value augmented
maximum likelihood (VAML) in the sequel.

4.2 Entropy-regularized Actor Critic
The second algorithm follows the discussion at the
end of §3.2, which is essentially an actor-critic al-
gorithm based on the entropy-regularized MDP in
Corollary 1. For this reason, we name the algo-
rithm entropy-regularized actor critic (ERAC). As
with standard AC algorithm, the training process
interleaves the evaluation of current policy using
the parametric critic Qφ and the optimization of
the actor policy πθ given the current critic.

Critic Training. The critic is trained to perform
policy evaluation using the temporal difference

4See Appendix A.2 for a detailed derivation.
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learning (TD), which minimizes the TD error

min
φ

E
y∼πθ

|y|∑

t=1

[
Qφ(yt−1

1 , yt;y
∗)− Q̂φ̄(yt−1

1 , yt;y
∗)
]2

(18)
where the TD target Q̂φ̄ is constructed based on
fixed policy iteration in Eqn. (9), i.e.,

Q̂φ̄(yt−1
1 , yt;y

∗) = r(yt−1
1 , yt) + τ H(πθ(· | yt1))

+
∑

w∈W
πθ(w | yt1)Qφ̄(yt1, w;y∗). (19)

It is worthwhile to emphasize that the objective
(18) trains the criticQφ to evaluate the current pol-
icy. Hence, it is entirely different from the objec-
tive (16), which is performing policy optimization
by Soft Q-Learning. Also, the trajectories y used
in (18) are sequences drawn from the actor policy
πθ, while objective (16) theoretically accepts any
trajectory since Soft Q-Learning can be fully off-
policy.5 Finally, following Bahdanau et al. (2016),
the TD target Q̂φ̄ in Eqn. (9) is evaluated us-
ing a target network, which is indicated by the
bar sign above the parameters, i.e., φ̄. The target
network is slowly updated by linearly interpolat-
ing with the up-to-date network, i.e., the update is
φ̄← βφ+(1−β)φ̄ for β in (0, 1) (Lillicrap et al.,
2015).

We also adapt another technique proposed by
Bahdanau et al. (2016), which smooths the critic
by minimizing the “variance” of Q-values, i.e.,

min
φ
λvar E

y∼πθ

|y|∑

t=1

∑

w∈W

[
Qφ(yt1, w;y∗)− Q̄φ(yt1;y∗)

]2

where Q̄φ(yt1;y∗) = 1
|W|

∑
w′∈W Qφ(yt1, w

′;y∗) is
the mean Q-value, and λvar is a hyper-parameter
controlling the relative weight between the TD
loss and the smooth loss.

Actor Training. Given the critic Qφ, the actor
gradient (to maximize the expected return) is given
by the policy gradient theorem of the entropy-
regularized RL (Schulman et al., 2017), which has
the form

E
y∼πθ

|y|∑

t=1

∑

w∈W
∇θπθ(w | yt−1

1 )Qφ(yt−1
1 , w;y∗)

+ τ∇θH(πθ(· | yt−1
1 )). (20)

Here, for each step t, we follow Bahdanau et al.
(2016) to sum over the entire symbol set W , in-
stead of using the single sample estimation often

5Different from Bahdanau et al. (2016), we don’t use a de-
layed actor network to collect trajectories for critic training.

seen in RL. Hence, no baseline is employed. It
is worth mentioning that Eqn. (20) is not simply
adding an entropy term to the standard policy gra-
dient as in A3C (Mnih et al., 2016). The difference
lies in that the critic Qφ trained by Eqn. (18) ad-
ditionally captures the entropy from future steps,
while the ∇θH term only captures the entropy of
the current step.

Finally, similar to (Bahdanau et al., 2016), we
find it necessary to first pretrain the actor using
MLE and then pretrain the critic before the actor-
critic training. Also, to prevent divergence dur-
ing actor-critic training, it is helpful to continue
performing MLE training along with Eqn. (20),
though using a smaller weight λmle.

5 Related Work

Task Loss Optimization and Exposure Bias
Apart from the previously introduced RAML,
BSO, Actor-Critic (§1), MIXER (Ranzato et al.,
2015) also utilizes chunk-level signals where the
length of chunk grows as training proceeds. In
contrast, minimum risk training (Shen et al., 2015)
directly optimizes sentence-level BLEU. As a re-
sult, it requires a large number (100) of samples
per data to work well. To solve the exposure bias,
scheduled sampling (Bengio et al., 2015) adopts a
curriculum learning strategy to bridge the training
and the inference. Professor forcing (Lamb et al.,
2016) introduces an adversarial training mecha-
nism to encourage the dynamics of the model to
be the same at training time and inference time.
For image caption, self-critic sequence training
(SCST) (Rennie et al., 2016) extends the MIXER
algorithm with an improved baseline based on the
current model performance.

Entropy-regularized RL Entropy regulariza-
tion been explored by early work in RL and in-
verse RL (Williams and Peng, 1991; Ziebart et al.,
2008). Lately, Schulman et al. (2017) establish
the equivalence between policy gradients and Soft
Q-Learning under entropy-regularized RL. Mo-
tivated by the multi-modal behavior induced by
entropy-regularized RL, Haarnoja et al. (2017) ap-
ply energy-based policy and Soft Q-Learning to
continuous domain. Later, Nachum et al. (2017)
proposes path consistency learning, which can be
seen as a multi-step extension to Soft Q-Learning.
More recently, in the domain of simulated con-
trol, Haarnoja et al. (2018) also consider the ac-
tor critic algorithm under the framework of en-
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tropy regularized reinforcement learning. Despite
the conceptual similarity to ERAC presented here,
Haarnoja et al. (2018) focuses on continuous con-
trol and employs the advantage actor critic variant
as in (Mnih et al., 2016), while ERAC follows the
Q actor critic as in (Bahdanau et al., 2016).

6 Experiments

6.1 Experiment Settings
In this work, we focus on two sequence prediction
tasks: machine translation and image captioning.
Due to the space limit, we only present the infor-
mation necessary to compare the empirical results
at this moment. For a more detailed description,
we refer readers to Appendix B and the code6.

Machine Translation Following Ranzato et al.
(2015), we evaluate on IWSLT 2014 German-to-
English dataset (Mauro et al., 2012). The cor-
pus contains approximately 153K sentence pairs
in the training set. We follow the pre-processing
procedure used in (Ranzato et al., 2015).

Architecture wise, we employ a seq2seq model
with dot-product attention (Bahdanau et al., 2014;
Luong et al., 2015), where the encoder is a bidirec-
tional LSTM (Hochreiter and Schmidhuber, 1997)
with each direction being size 128, and the de-
coder is another LSTM of size 256. Moreover, we
consider two variants of the decoder, one using the
input feeding technique (Luong et al., 2015) and
the other not.

For all algorithms, the sequence-level BLEU
score is employed as the pay-off functionR, while
the corpus-level BLEU score (Papineni et al.,
2002) is used for the final evaluation. The
sequence-level BLEU score is scaled up by the
sentence length so that the scale of the immediate
reward at each step is invariant to the length.

Image Captioning For image captioning, we
consider the MSCOCO dataset (Lin et al., 2014).
We adapt the same preprocessing procedure and
the train/dev/test split used by Karpathy and Fei-
Fei (2015).

The NIC (Vinyals et al., 2015) is employed as
the baseline model, where a feature vector of the
image is extracted by a pre-trained CNN and then
used to initialize the LSTM decoder. Different
from the original NIC model, we employ a pre-
trained 101-layer ResNet (He et al., 2016) rather
than a GoogLeNet as the CNN encoder.

6
https://github.com/zihangdai/ERAC-VAML

For training, each image-caption pair is treated
as an i.i.d. sample, and sequence-level BLEU
score is used as the pay-off. For testing, the stan-
dard multi-reference BLEU4 is used.

6.2 Comparison with the Direct Baseline

Firstly, we compare ERAC and VAML with their
corresponding direct baselines, namely AC (Bah-
danau et al., 2016) and RAML (Norouzi et al.,
2016) respectively. As a reference, the perfor-
mance of MLE is also provided.

Due to non-neglected performance variance ob-
served across different runs, we run each algo-
rithm for 9 times with different random seeds,7

and report the average performance, the standard
deviation and the performance range (min, max).

Machine Translation The results on MT are
summarized in the left half of Tab. 1. Firstly,
all four advanced algorithms significantly outper-
form the MLE baseline. More importantly, both
VAML and ERAC improve upon their direct base-
lines, RAML and AC, by a clear margin on aver-
age. The result suggests the two proposed algo-
rithms both well combine the benefits of a delicate
credit assignment scheme and the entropy regular-
ization, achieving improved performance.

Image Captioning The results on image cap-
tioning are shown in the right half of Tab. 1. De-
spite the similar overall trend, the improvement of
VAML over RAML is smaller compared to that
in MT. Meanwhile, the improvement from AC to
ERAC becomes larger in comparison. We sus-
pect this is due to the multi-reference nature of
the MSCOCO dataset, where a larger entropy is
preferred. As a result, the explicit entropy regu-
larization in ERAC becomes immediately fruitful.
On the other hand, with multiple references, it can
be more difficult to learn a good oracle Q∗ (Eqn.
(15)). Hence, the token-level target can be less ac-
curate, resulting in smaller improvement.

6.3 Comparison with Existing Work

To further evaluate the proposed algorithms, we
compare ERAC and VAML with the large body
of existing algorithms evaluated on IWSTL 2014.
As a note of caution, previous works don’t employ
the exactly same architectures (e.g. number of lay-
ers, hidden size, attention type, etc.). Despite that,

7For AC, ERAC and VAML, 3 different critics are trained
first, and each critic is then used to train 3 actors.
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MT (w/o input feeding) MT (w/ input feeding) Image Captioning
Algorithm Mean Min Max Mean Min Max Mean Min Max

MLE 27.01 ± 0.20 26.72 27.27 28.06 ± 0.15 27.84 28.22 29.54 ± 0.21 29.27 29.89

RAML 27.74 ± 0.15 27.47 27.93 28.56 ± 0.15 28.35 28.80 29.84 ± 0.21 29.50 30.17
VAML 28.16 ± 0.11 28.00 28.26 28.84 ± 0.10 28.62 28.94 29.93 ± 0.22 29.51 30.24

AC 28.04 ± 0.05 27.97 28.10 29.05 ± 0.06 28.95 29.16 30.90 ± 0.20 30.49 31.16
ERAC 28.30 ± 0.06 28.25 28.42 29.31 ± 0.04 29.26 29.36 31.44 ± 0.22 31.07 31.82

Table 1: Test results on two benchmark tasks. Bold faces highlight the best in the corresponding category.

for VAML and ERAC, we use an architecture that
is most similar to the majority of previous works,
which is the one described in §6.1 with input feed-
ing.

Based on the setting, the comparison is summa-
rized in Table 2.8 As we can see, both VAML and
ERAC outperform previous methods, with ERAC
leading the comparison with a significant margin.
This further verifies the effectiveness of the two
proposed algorithms.

Algorithm BLEU

MIXER (Ranzato et al., 2015) 20.73
BSO (Wiseman and Rush, 2016) 27.9
Q(BLEU) (Li et al., 2017) 28.3
AC (Bahdanau et al., 2016) 28.53
RAML (Ma et al., 2017) 28.77

VAML 28.94
ERAC 29.36

Table 2: Comparison with existing algorithms on
IWSTL 2014 dataset for MT. All numbers of pre-
vious algorithms are from the original work.

6.4 Ablation Study
Due to the overall excellence of ERAC, we study
the importance of various components of it, hope-
fully offering a practical guide for readers. As
the input feeding technique largely slows down
the training, we conduct the ablation based on the
model variant without input feeding.

Firstly, we study the importance of two tech-
niques aimed for training stability, namely the tar-
get network and the smoothing technique (§4.2).
Based on the MT task, we vary the update speed β
of the target critic, and the λvar, which controls the

8For a more detailed comparison of performance together
with the model architectures, see Table 7 in Appendix C.

HHHHHHλvar

β
0.001 0.01 0.1 1

0 27.91 26.27† 28.88 27.38†

0.001 29.41 29.26 29.32 27.44

Table 3: Average validation BLEU of ERAC. As
a reference, the average BLEU is 28.1 for MLE.
λvar = 0 means not using the smoothing technique.
β = 1 means not using a target network. † indi-
cates excluding extreme values due to divergence.

strength of the smoothness regularization. The av-
erage validation performances of different hyper-
parameter values are summarized in Tab. 3.

• Comparing the two rows of Tab. 3, the smooth-
ing technique consistently leads to performance
improvement across all values of τ . In fact, re-
moving the smoothing objective often causes
the training to diverge, especially when β =
0.01 and 1. But interestingly, we find the di-
vergence does not happen if we update the tar-
get network a little bit faster (β = 0.1) or quite
slowly (β = 0.001).

• In addition, even with the smoothing technique,
the target network is still necessary. When the
target network is not used (β = 1), the perfor-
mance drops below the MLE baseline. How-
ever, as long as a target network is employed to
ensure the training stability, the specific choice
of target network update rate does not matter
as much. Empirically, it seems using a slower
(β = 0.001) update rate yields the best result.

Next, we investigate the effect of enforcing dif-
ferent levels of entropy by varying the entropy
hyper-parameter τ . As shown in Fig. 1, it seems
there is always a sweet spot for the level of en-
tropy. On the one hand, posing an over strong en-
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Figure 1: ERAC’s average performance over multiple runs on two tasks when varying τ .

tropy regularization can easily cause the actor to
diverge. Specifically, the model diverges when τ
reaches 0.03 on the image captioning task or 0.06
on the machine translation task. On the other hand,
as we decrease τ from the best value to 0, the per-
formance monotonically decreases as well. This
observation further verifies the effectiveness of en-
tropy regularization in ERAC, which well matches
our theoretical analysis.

Finally, as discussed in §4.2, ERAC takes the ef-
fect of future entropy into consideration, and thus
is different from simply adding an entropy term
to the standard policy gradient as in A3C (Mnih
et al., 2016). To verify the importance of explicitly
modeling the entropy from future steps, we com-
pared ERAC with the variant that only applies the
entropy regularization to the actor but not to the
critic. In other words, the τ is set to 0 when per-
forming policy evaluating according to Eqn. (4.2),
while the τ for the entropy gradient in Eqn. (20)
remains. The comparison result based on 9 runs
on test set of IWSTL 2014 is shown in Table 4. As
we can see, simply adding a local entropy gradient
does not even improve upon the AC. This further
verifies the difference between ERAC and A3C,
and shows the importance of taking future entropy
into consideration.

Algorithm Mean Max

ERAC 28.30 ± 0.06 28.42
ERAC w/o Future Ent. 28.06 ± 0.05 28.11
AC 28.04 ± 0.05 28.10

Table 4: Comparing ERAC with the variant with-
out considering future entropy.

7 Discussion

In this work, motivated by the intriguing con-
nection between the token-level RAML and the
entropy-regularized RL, we propose two algo-
rithms for neural sequence prediction. Despite the
distinct training procedures, both algorithms com-
bine the idea of fine-grained credit assignment and
the entropy regularization, leading to positive em-
pirical results.

However, many problems remain widely open.
In particular, the oracle Q-function Qφ we obtain
is far from perfect. We believe the ground-truth
reference contains sufficient information for such
an oracle, and the current bottleneck lies in the RL
algorithm. Given the numerous potential applica-
tions of such an oracle, we believe improving its
accuracy will be a promising future direction.
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Abstract

We propose DuoRC, a novel dataset for
Reading Comprehension (RC) that moti-
vates several new challenges for neural
approaches in language understanding be-
yond those offered by existing RC datasets.
DuoRC contains 186,089 unique question-
answer pairs created from a collection of
7680 pairs of movie plots where each pair
in the collection reflects two versions of the
same movie - one from Wikipedia and the
other from IMDb - written by two different
authors. We asked crowdsourced workers
to create questions from one version of the
plot and a different set of workers to extract
or synthesize answers from the other ver-
sion. This unique characteristic of DuoRC
where questions and answers are created
from different versions of a document nar-
rating the same underlying story, ensures
by design, that there is very little lexical
overlap between the questions created from
one version and the segments containing
the answer in the other version. Further,
since the two versions have different levels
of plot detail, narration style, vocabulary,
etc., answering questions from the second
version requires deeper language under-
standing and incorporating external back-
ground knowledge. Additionally, the nar-
rative style of passages arising from movie
plots (as opposed to typical descriptive pas-
sages in existing datasets) exhibits the need
to perform complex reasoning over events
across multiple sentences. Indeed, we ob-
serve that state-of-the-art neural RC models
which have achieved near human perfor-
mance on the SQuAD dataset (Rajpurkar
et al., 2016b), even when coupled with tra-

ditional NLP techniques to address the chal-
lenges presented in DuoRC exhibit very
poor performance (F1 score of 37.42% on
DuoRC v/s 86% on SQuAD dataset). This
opens up several interesting research av-
enues wherein DuoRC could complement
other RC datasets to explore novel neural
approaches for studying language under-
standing.

1 Introduction
Natural Language Understanding is widely ac-
cepted to be one of the key capabilities required for
AI systems. Scientific progress on this endeavor
is measured through multiple tasks such as ma-
chine translation, reading comprehension, question-
answering, and others, each of which requires the
machine to demonstrate the ability to “comprehend”
the given textual input (apart from other aspects)
and achieve their task-specific goals. In particular,
Reading Comprehension (RC) systems are required
to “understand” a given text passage as input and
then answer questions based on it. It is therefore
critical, that the dataset benchmarks established
for the RC task keep progressing in complexity to
reflect the challenges that arise in true language
understanding, thereby enabling the development
of models and techniques to solve these challenges.

For RC in particular, there has been significant
progress over the recent years with several bench-
mark datasets, the most popular of which are the
SQuAD dataset (Rajpurkar et al., 2016a), TriviaQA
(Joshi et al., 2017), MS MARCO (Nguyen et al.,
2016), MovieQA (Tapaswi et al., 2016) and cloze-
style datasets (Mostafazadeh et al., 2016; Onishi
et al., 2016; Hermann et al., 2015). However, these
benchmarks, owing to both the nature of the pas-
sages and the QA pairs to evaluate the RC task,
have 2 primary limitations in studying language
understanding: (i) Other than MovieQA, which is
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a small dataset of 15K QA pairs, all other large-
scale RC datasets deal only with factual descriptive
passages and not narratives (involving events with
causality linkages that require reasoning and back-
ground knowledge) which is the case with a lot
of real-world content such as story books, movies,
news reports, etc. (ii) their questions possess a
large lexical overlap with segments of the passage,
or have a high noise level in QA pairs themselves.
As demonstrated by recent work, this makes it easy
for even simple keyword matching algorithms to
achieve high accuracy (Weissenborn et al., 2017).
In fact, these models have been shown to perform
poorly in the presence of adversarially inserted sen-
tences which have a high word overlap with the
question but do not contain the answer (Jia and
Liang, 2017). While this problem does not exist in
TriviaQA it is admittedly noisy because of the use
of distant supervision. Similarly, for cloze-style
datasets, due to the automatic question generation
process, it is very easy for current models to reach
near human performance (Cui, 2017). This there-
fore limits the complexity in language understand-
ing that a machine is required to demonstrate to do
well on the RC task.

Motivated by these shortcomings and to push the
state-of-the-art in language understanding in RC,
in this paper we propose DuoRC, which specifi-
cally presents the following challenges beyond the
existing datasets:

1. DuoRC is especially designed to contain a large
number of questions with low lexical overlap
between questions and their corresponding pas-
sages.

2. It requires the use of background and common-
sense knowledge to arrive at the answer and go
beyond the content of the passage itself.

3. It contains narrative passages from movie plots
that require complex reasoning across multiple
sentences to infer the answer.

4. Several of the questions in DuoRC, while seem-
ing relevant, cannot actually be answered from
the given passage, thereby requiring the ma-
chine to detect the unanswerability of questions.

In order to capture these four challenges, DuoRC
contains QA pairs created from pairs of documents
describing movie plots which were gathered as fol-
lows. Each document in a pair is a different version
of the same movie plot written by different authors;
one version of the plot is taken from the Wikipedia
page of the movie whereas the other from its IMDb

page (see Fig. 1 for portions of an example pair
of plots from the movie “Twelve Monkeys”). We
first showed crowd workers on Amazon Mechan-
ical Turk (AMT) the first version of the plot and
asked them to create QA pairs from it. We then
showed the second version of the plot along with
the questions created from the first version to a
different set of workers on AMT and asked them
to provide answers by reading the second version
only. Since the two versions contain different levels
of plot detail, narration style, vocabulary, etc., an-
swering questions from the second version exhibits
all of the four challenges mentioned above.

We now make several interesting observations
from the example in Fig. 1. For 4 out of the 8 ques-
tions (Q1, Q2, Q4, and Q7), though the answers
extracted from the two plots are exactly the same,
the analysis required to arrive at this answer is very
different in the two cases. In particular, for Q1 even
though there is no explicit mention of the prisoner
living in a subterranean shelter and hence no lex-
ical overlap with the question, the workers were
still able to infer that the answer is Philadelphia
because that is the city to which James Cole travels
to for his mission. Another interesting characteris-
tic of this dataset is that for a few questions (Q6,
Q8) alternative but valid answers are obtained from
the second plot. Further, note the kind of complex
reasoning required for answering Q8 where the ma-
chine needs to resolve coreferences over multiple
sentences (that man refers to Dr. Peters) and use
common sense knowledge that if an item clears an
airport screening, then a person can likely board
the plane with it. To re-emphasize, these exam-
ples exhibit the need for machines to demonstrate
new capabilities in RC such as: (i) employing a
knowledge graph (e.g. to know that Philadelphia is
a city in Q1), (ii) common-sense knowledge (e.g.,
clearing airport security implies boarding) (iii)
paraphrase/semantic understanding (e.g. revolver
is a type of handgun in Q7) (iv) multiple-sentence
inferencing across events in the passage including
coreference resolution of named entities and nouns,
and (v) educated guesswork when the question is
not directly answerable but there are subtle hints
in the passage (as in Q1). Finally, for quite a few
questions, there wasn’t sufficient information in the
second plot to obtain their answers. In such cases,
the workers marked the question as “unanswer-
able”. This brings out a very important challenge
for machines (detect unanswerability of questions)

1684



Figure 1: Example QA pairs obtained from the original movie plot and the paraphrased plot. The relevant spans needed for
answering the corresponding question are highlighted in blue and red with the respective question numbers. Note that the span
highlighting shown here is for illustrative purposes only and is not available in the dataset.

because a practical system should be able to know
when it is not possible for it to answer a question
given the data available to it, and in such cases,
possibly delegate the task to a human instead.

Current RC systems built using existing datasets
are far from possessing these capabilities to solve
the above challenges. In Section 4, we seek to es-
tablish solid baselines for DuoRC employing state-
of-the-art RC models coupled with a collection
of standard NLP techniques to address few of the
above challenges. Proposing novel neural models
that solve all of the challenges in DuoRC is out of
the scope of this paper. Our experiments demon-
strate that when the existing state-of-the-art RC
systems are trained and evaluated on DuoRC they
perform poorly leaving a lot of scope for improve-
ment and open new avenues for research in RC. Do
note that this dataset is not a substitute for existing
RC datasets but can be coupled with them to collec-
tively address a large set of challenges in language
understanding with RC (the more the merrier).

2 Related Work
Over the past few years, there has been a surge
in datasets for Reading Comprehension. Most
of these datasets differ in the manner in which
questions and answers are created. For example,
in SQuAD (Rajpurkar et al., 2016a), NewsQA
(Trischler et al., 2016), TriviaQA (Joshi et al.,

2017) and MovieQA (Tapaswi et al., 2016) the
answers correspond to a span in the document. MS-
MARCO uses web queries as questions and the
answers are synthesized by workers from docu-
ments relevant to the query. On the other hand,
in most cloze-style datasets (Mostafazadeh et al.,
2016; Onishi et al., 2016) the questions are created
automatically by deleting a word/entity from a sen-
tence. There are also some datasets for RC with
multiple choice questions (Richardson et al., 2013;
Berant et al., 2014; Lai et al., 2017) where the task
is to select one among k given candidate answers.

Another notable RC Dataset is Narra-
tiveQA(s Koˇ ciský et al., 2018) which contains
40K QA pairs created from plot summaries of
movies. It poses two tasks, where the first task
involves reading the plot summaries from which
the QA pairs were annotated and the second task
is read the entire book or movie script (which is
usually 60K words long) instead of the summary
to answer the question. As acknowledged by the
authors, while the first task is similar in scope to
the previous datasets, the second task is at present,
intractable for existing neural models, owing to
the length of the passage. Due to the kind of the
challenges presented by their second task, it is
not comparable to our dataset and is much more
futuristic in nature.
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Given that there are already a few datasets for
RC, a natural question to ask is “Do we really need
any more datasets?”. We believe that the answer to
this question is yes. Each new dataset brings in new
challenges and contributes towards building better
QA systems. It keeps researchers on their toes and
prevents research from stagnating once state-of-the-
art results are achieved on one dataset. A classic
example of this is the CoNLL NER dataset (Tjong
Kim Sang and De Meulder, 2003). While several
NER systems (Passos et al., 2014) gave close to
human performance on this dataset, NER on gen-
eral web text, domain specific text, noisy social
media text is still an unsolved problem (mainly due
to the lack of representative datasets which cover
the real-world challenges of NER). In this context,
DuoRC presents 4 new challenges mentioned ear-
lier which are not exhibited in existing RC datasets
and would thus enable exploring novel neural ap-
proaches in complex language understanding. The
hope is that all these datasets (including ours) will
collectively help in addressing a wide range of chal-
lenges in QA and prevent stagnation via overfitting
on a single dataset.

3 Dataset
In this section, we elaborate on the three phases of
our dataset collection process.
Extracting parallel movie plots: We first col-
lected top 40K movies from IMDb across different
genres (crime, drama, comedy, etc.) whose plot
synopsis were crawled from Wikipedia as well as
IMDb. We retained only 7680 movies for which
both the plots were available and longer than 100
words. In general, we found that the IMDb plots
were usually longer (avg. length 926 words) and
more descriptive than the Wikipedia plots (avg.
length 580 words). To make sure that the content
between the two plots are indeed different and one
is not just a subset of another, we calculated word-
level jaccard distance between them i.e. the ratio of
intersection to union of the bag-of-words in the two
plots and found it to be 26%. This indicates that
one of the plots is usually longer and descriptive,
and, the two plots are infact quite different, even
though the information content is very similar.
Collecting QA pairs from shorter version of the
plot (SelfRC): As mentioned earlier, on average
the longer version of the plot is almost double the
size of the shorter version which is itself usually
500 words long. Intuitively, the longer version
should have more details and the questions asked

from the shorter version should be answerable from
the longer one. Hence, we first showed the shorter
version of the plot to workers on AMT and asked
them to create QA pairs from it. The instructions
given to the workers for this phase are as follows:
(i) the answer must preferably be a single word or
a short phrase, (ii) subjective questions (like asking
for opinion) are not allowed, (iii) questions should
be answerable only from the passage and not re-
quire any external knowledge, and (iv) questions
and answers should be well formed and grammati-
cally correct. The workers were also given freedom
to either pick an answer which directly matches a
span in the document or synthesize the answer from
scratch. This option allowed them to be creative
and ask hard questions where possible. We found
that in 70% of the cases the workers picked an an-
swer directly from the document and in 30% of
the cases they synthesized the answer. We thus
collected 85,773 such QA pairs along with their
corresponding documents. We refer to this as the
SelfRC dataset because the answers were derived
from the same document from which the questions
were asked.
Collecting answers from longer version of the
plot (ParaphraseRC): We then paired the ques-
tions from the SelfRC dataset with the correspond-
ing longer version of the plot and showed it to a
different set of AMT workers asking them to an-
swer these questions from the longer version of the
plot. They now have the option to either (i) select
an answer which matches a span in the longer ver-
sion, (ii) synthesize the answer from scratch, or (iii)
mark the question not-answerable because of lack
of information in the given passage. One trick we
used to reduce the fatigue of workers (caused by
reading long pieces of text), and thus maintain the
answer quality is to split the long plots into multiple
segments. Every question obtained from the first
phase of annotation is paired separately with each
of these segments and each (question, segment)
pair is posted as a different job. With this approach,
we essentially get multiple answers to the same
question, if it is answerable from more than one
segment. However, on an average we get approxi-
mately one unique answer for each question. We
found that in 50% of the cases the workers selected
an answer which matched a span in the document,
whereas in 37% cases they synthesized the answer
and in 13% cases they said that question was not
answerable. The workers were strictly instructed to
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keep the answers short, derive the answer from the
plot and use general knowledge or logic to answer
the questions. They were not allowed to rely on
personal knowledge about the movie (in any case
given the large number of movies in our dataset
the chance of a worker remembering all the plot
details for a given movie is very less). For qual-
ity assessment purposes, various levels of manual
and semi-automated inspections were done, espe-
cially in the second phase of annotation, such as:(i)
weeding out annotators who mark majority of an-
swers as non-answerable, by taking into account
their response time, and (ii) annotators for whom
a high percentage of answers have no entity (or
noun phrase) overlap with the entire passage were
subjected to strict manual inspection and black-
listed if necessary. Further, a wait period of 2-3
weeks was deliberately introduced between the two
phases of data collection to ensure the availability
of a fresh pool of workers as well as to reduce in-
formation bias among workers common to both the
tasks. Overall 2559 workers took part in the first
phase of the annotation, and 8021 workers in the
second phase. Only 703 workers were common
between the phases.

We refer to this dataset, where the questions are
taken from one version of the document and the an-
swers are obtained from a different version, as Para-
phraseRC which contains 100,316 such {question,
answer, document} triplets. Overall, 62% of the
questions in SelfRC and ParaphraseRC have partial
overlap in their answers, which is indicative of the
fact that quality is reasonable. The remaining 38%
where there is no overlap can be attributed to non-
answerablity of the question from the bigger plot,
information gap, or paraphrasing of information
between the two plots.

Figure 2: Analysis of the Question Types

Note that the number of unique questions in the
ParaphraseRC dataset is the same as that in SelfRC
because we do not create any new questions from
the longer version of the plot. We end up with a
greater number of {question, answer, document}

triplets in ParaphraseRC as compared to SelfRC
(100,316 v/s 85,773) since movies that are remakes
of a previous movie had very little difference in
their Wikipedia plots. Therefore, we did not sep-
arately collect questions from the Wikipedia plot
of the remake. However, the IMDb plots of the
two movies are very different and so we have two
different longer versions of the movie (one for the
original and one for the remake). We can thus pair
the questions created from the Wikipedia plot with
both the IMDb versions of the plot thus augmenting
the {question, answer, document} triplets.

Another notable observation is that in many
cases the answers to the same question are different
in the two versions. Specifically, only 40.7% of the
questions have the same answer in the two docu-
ments. For around 37.8% of the questions there is
no overlap between the words in the two answers.
For the remaining 21% of the questions there is a
partial overlap between the two answers. For e.g.,
the answer derived from the shorter version could
be “using his wife’s gun” and from the longer ver-
sion could be “with Dana’s handgun” where Dana
is the name of the wife. In Appendix A, we provide
a few randomly picked examples from our dataset
which should convince the reader of the difficulty
of ParaphraseRC and its differences with SelfRC.
We refer to this combined dataset containing a total

Metrics for Comparative
Analysis

Movie
QA

NarrativeQA
over plot-
summaries

Self-
RC

Paraph-
raseRC

Avg. word distance 20.67 24.94 13.4 45.3
Avg. sentence distance 1.67 1.95 1.34 2.7
Number of sentences for in-
ferencing

2.3 1.95 1.51 2.47

% of instances where both
Query & Answer entities
were found in passage

67.96 59.4 58.79 12.25

% of instances where Only
Query entities were found
in passage

59.61 61.77 63.39 47.05

% Length of the Longest
Common sequence of non-
stop words in Query (w.r.t
Query Length) and Plot

25 26.26 38 21

Table 1: Comparison between various RC datasets

of 186,089 instances as DuoRC1. Fig. 2 shows the
distribution of different Wh-type questions in our
dataset. Some interesting comparative analysis are
presented in Table 1 and also in Appendix B. In
Table 1, we compare various RC datasets with two
embodiments of our dataset i.e. the SelfRC and
ParaphraseRC. We use NER and noun phrase/verb
phrase extraction over the entire dataset to iden-

1The dataset is available at https://duorc.github.io
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tify key entities in the question, plot and answer
which is in turn used to compute the metrics men-
tioned in the table. The metrics “Avg word dis-
tance” and “Avg sentence distance” indicate the
average distance (in terms of words/sentences) be-
tween the occurrence of the question entities and
closest occurrence of the answer entities in the pas-
sage. “Number of sentences for inferencing” is
indicative of the minimum number of sentences
required to cover all the question and answer en-
tities. It is evident that tackling ParaphraseRC is
much harder than the others on account of (i) larger
distance between the query and answer, (ii) low
word-overlap between query & passage, and (iii)
higher number of sentences required to infer an
answer.

4 Models
In this section, we describe in detail the various
state-of-the-art RC and language generation mod-
els along with a collection of traditional NLP tech-
niques employed together that will serve to estab-
lish baseline performance on the DuoRC dataset.

Most of the current state-of-the-art models for
RC assume that the answer corresponds to a span
in the document and the task of the model is to pre-
dict this span. This is indeed true for the SQuAD,
TriviaQA and NewsQA datasets. However, in our
dataset, in many cases the answers do not corre-
spond to an exact span in the document but are
synthesized by humans. Specifically, for the Sel-
fRC version of the dataset around 30% of the an-
swers are synthesized and do not match a span
in the document whereas for the ParaphraseRC
task this number is 50%. Nevertheless, we could
still leverage the advances made on the SQuAD
dataset and adapt these span prediction models for
our task. To do so, we propose to use two models.
The first model is a basic span prediction model
which we train and evaluate using only those in-
stances in our dataset where the answer matches a
span in the document. The purpose of this model
is to establish whether even for instances where
the answer matches a span in the document, our
dataset is harder than the SQuAD dataset or not.
Specifically, we want to explore the performance
of state-of-the-art models (such as DCN (Xiong
et al., 2016)), which exhibit near human results
on the SQuAD dataset, on DuoRC (especially, in
the ParaphraseRC setup). To do so, we seek to
employ a good span prediction model for which (i)
the performance is within 3-5% of the top perform-

ing model on the SQuAD leaderboard (Rajpurkar
et al., 2016b) and (ii) the results are reproducible
based on the code released by the authors of the
paper. Note that the second criteria is important to
ensure that the poor performance of the model is
not due to incorrect implementation. The Bidirec-
tional Attention Flow (BiDAF) model (Seo et al.,
2016) satisfies these criteria and hence we employ
this model. Due to space constraints, we do not
provide details of the BiDAF model here and sim-
ply refer the reader to the original paper. In the
remainder of this paper we will refer to this model
as the SpanModel.

The second model that we employ is a two stage
process which first predicts the span and then syn-
thesizes the answers from the span. Here again,
for the first step (i.e., span prediction) we use
the BiDAF model (Seo et al., 2016). The job of
the second model is to then take the span (mini-
document) and question (query) as input and gener-
ate the answer. For this, we employ a state-of-the-
art query based abstractive summarization model
(Nema et al., 2017) as this task is very similar to our
task. Specifically, in query based abstractive sum-
marization the training data is of the form {query,
document, generated summary} and in our case the
training data is of the form {query, mini-document,
generated answer}. Once again we refer the reader
to the original paper (Nema et al., 2017) for details
of the model. We refer to this two stage model as
the GenModel.

Note that (Tan et al., 2017) recently proposed
an answer generation model for the MS MARCO
dataset. However, the authors have not released
their code and therefore, in the interest of repro-
ducibility of our work, we omit incorporating this
model in this paper.

Additional NLP pre-processing: Referring
back to the example cited in Fig. 1, we reiterate
that ideally a good model for ParaphraseRC
would require: (i) employing a knowledge
graph, (ii) common-sense knowledge (iii)
paraphrase/semantic understanding (iv) multiple-
sentence inferencing across events in the passage
including coreference resolution of named entities
and nouns, and (v) educated guesswork when the
question is not directly answerable but there are
subtle hints in the passage. While addressing all
of these challenges in their entirety is beyond the
scope of a single paper, in the interest of establish-
ing a good baseline for DuoRC, we additionally
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seek to address some of these challenges to a
certain extent by using standard NLP techniques.
Specifically, we look at the problems of paraphrase
understanding, coreference resolution and handling
long passages.

To do so, we prune the document and extract
only those sentences which are most relevant to the
question, so that the span detector does not need
to look at the entire 900-word long ParaphraseRC
plot. Now, since these relevant sentences are ob-
tained not from the original but the paraphrased
version of the document, they may have a very
small word overlap with the question. For example,
the question might contain the word “hand gun”
and the relevant sentence in the document may
contain the word “revolver”. Further some of the
named entities in the question may not be exactly
present in the relevant sentence but may simply be
co-referenced. To resolve these coreferences, we
first employ the Stanford coreference resolution on
the entire document. We then compute the fraction
of words in a sentence which match a query word
(ignoring stop words). Two words are considered
to match if (a) they have the same surface form,
or (b) one words is an inflected form of the word
(e.g., river and rivers), or (c) the Glove (Pennington
et al., 2014) and Skip-thought (Kiros et al., 2015)
embeddings of the two words are very close to each
other (two word vectors are considered to be close
if one appears within the top 50 neighbors of the
other), or (d) the two words appear in the same
synset in Wordnet. We consider a sentence to be
relevant for the question if at least 50% of the query
words (ignoring stop words) match the words in the
sentence. If none of the sentences in the document
have atleast 50% overlap with the question, then we
pick sentences having atleast a 30% overlap with
the question. The selection of this threshold was
based on manual observation of a small sample set.
This observation gave us an idea of what a decent
threshold value should be, that can have a reason-
able precision and recall on the relevant snippet
extraction step. Since this step was rule-based we
could only employ such qualitative inspections to
set this parameter. Also, since this step was tar-
geted to have high recall, we relaxed the threshold
to 30% if no match was found.

5 Experimental Setup
In the following sub-sections we describe (i) the
evaluation metrics, and (ii) the choices considered
for augmenting the training data for the answer

generation model. Note that when creating the
train, validation and test set, we ensure that the
test set does not contain QA pairs for any movie
that was seen during training. We split the movies
in such a way that the resulting train, valid, test
sets respectively contain 70%, 15% and 15% of the
total number of QA pairs.

Span-Based Test Set and Full Test Set As men-
tioned earlier, the SpanModel only predicts the span
in the document whereas the GenModel generates
the answer after predicting the span. Ideally, the
SpanModel should only be evaluated on those in-
stances in the test set where the answer matches
a span in the document. We refer to this subset
of the test set as the Span-based Test Set. Though
not ideal, we also evaluate the SpanModel model
on the entire test set. This is not ideal because
there are many answers in the test set which do not
correspond to a span in the document whereas the
model was only trained to predict spans. We refer
to this as the Full Test Set. We also evaluate the
GenModel on both the test sets.

Training Data for the GenModel As men-
tioned earlier, the GenModel contains two stages;
the first stage predicts the span and the second stage
then generates an answer from the predicted span.
For the first step we plug-in the best performing
SpanModel from our earlier exploration. To train
the second stage we need training data of the form
{x = span, y= answer} which comes from two
types of instances: one where the answer matches
a span and the other where the answer is synthe-
sized and the span corresponding to it is not known.
In the first case x=y and there is nothing interesting
for the model to learn (except for copying the input
to the output). In the second case x is not known.
To overcome this problem, for the second type of
instances, we consider various approaches for find-
ing the approximate span from which the answer
could have been generated, and augment the train-
ing data with {x = approx span, y= answer}.
The easiest method was to simply treat the entire
document as the true span from which the answer
was generated (x = document, y = answer). The
second alternative that we tried was to first extract
the named entities, noun phrases and verb phrases
from the question and create a lucene query from
these components. We then used the lucene search
engine to extract the most relevant portions of the
document given this query. We then considered
this portion of the document as the true span (as
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opposed to treating the entire document as the true
span). Note that lucene could return multiple rel-
evant spans in which case we treat all these {x
= approx span, y= answer} as training instances.
Another alternative was to find the longest com-
mon subsequence (LCS) between the document
and the question and treat this subsequence as the
span from which the answer was generated. Of
these, we found that the model trained using {x =
approx span, y= answer} pairs created using the
LCS based method gave the best results. We report
numbers only for this model.

Evaluation Metrics Similar to (Rajpurkar et al.,
2016a) we use Accuracy and F-score as the evalua-
tion metrics. We also report the BLEU scores for
each task. While accuracy, being a stricter metric,
considers a predicted answer to be correct only if it
exactly matches the true answer, F-score and BLEU
also give credit to predictions partially overlapping
with the true answer.

6 Results and Discussions
The results of our experiments are summarized in
Tables 2 to 4 which we discuss in the following
sub-sections.

Preprocessing step of Relevant Subplot
Extraction

Plot Com-
pression

Answer
Recall

WordNet synonym + Glove based paraphrase 30% 66.51%
WordNet synonym + Glove based paraphrase
on Coref resolved plots

50% 84.10%

WordNet synonym + Glove + Skip-thought
based paraphrase on Coref resolved plots

48% 85%

Table 2: Performance of the preprocessing. Plot compression
is the % size of the extracted plot w.r.t the original plot size

SelfRC Span Test Full Test
Acc. F1 BLEU Acc. F1 BLEU

SpanModel 46.14 57.49 22.98 37.53 50.56 7.47
GenModel (with aug-
mented training data)

16.45 26.97 7.61 15.31 24.05 5.50

ParaphraseRC Span Test Full Test
Acc. F1 BLEU Acc. F1 BLEU

SpanModel 17.93 26.27 9.39 9.78 16.33 2.60
SpanModel with Pre-
processed Data

27.49 35.10 12.78 14.92 21.53 2.75

GenModel (with aug-
mented training data)

12.66 19.48 4.41 5.42 9.64 1.75

Table 3: Performance of the SpanModel and GenModel on
the Span Test subset and the Full Test Set of the Self and
ParaphraseRC.

SpanModel v/s GenModel: Comparing the first
two rows (SelfRC) and the last two rows (Para-
phraseRC) of Table 3 we see that the SpanModel
clearly outperforms the GenModel. This is not very
surprising for two reasons. First, around 70% (and

Span Test Full Test
Train Test Acc. F1 BLEU Acc. F1 BLEU

SelfRC
SelfRC 46.14 57.49 22.98 37.53 50.56 7.47
ParaRC 27.85 36.82 14.48 15.16 22.70 3.90
SelfRC+
ParaRC

37.79 48.05 18.72 25.05 35.01 5.34

ParaRC
SelfRC 34.85 45.71 16.01 28.25 40.16 5.15
Para RC 19.74 27.57 9.84 10.78 17.13 2.75
SelfRC+
ParaRC

27.94 37.42 13.00 18.50 27.31 3.75

SelfRC
+
ParaRC

SelfRC 49.66 61.45 25.87 40.24 54.04 8.42
ParaRC 29.88 39.34 16.22 16.33 24.25 4.21
SelfRC+
ParaRC

40.62 51.35 21.18 26.90 37.42 5.94

Table 4: Combined and Cross-Testing between Self and Para-
phraseRC Dataset, by taking the best performing SpanModel
from Table 3.ParaRC is an abbreviation of ParaphraseRC

50%) of the answers in SelfRC (and ParaphraseRC)
respectively, match an exact span in the document
so the SpanModel still has scope to do well on
these answers. On the other hand, even if the first
stage of the GenModel predicts the span correctly,
the second stage could make an error in generating
the correct answer from it because generation is
a harder problem. For the second stage, it is ex-
pected that the GenModel should learn to copy the
predicted span to produce the answer output (as
is required in most cases) and only occasionally
where necessary, generate an answer. However,
surprisingly the GenModel fails to even do this.
Manual inspection of the generated answers shows
that in many cases the generator ends up generat-
ing either more or fewer words compared the true
answer. This demonstrates the clear scope for the
GenModel to perform better.
SelfRC v/s ParaphraseRC: Comparing the SelfRC
and ParaphraseRC numbers in Table 3, we observe
that the performance of the models clearly drops
for the latter task, thus validating our hypothesis
that ParaphraseRC is a indeed a much harder task.
Effect of NLP pre-processing: As mentioned in
Section 4, for ParaphraseRC, we first perform a
few pre-processing steps to identify relevant sen-
tences in the longer document. In order to evaluate
whether the pre-processing method is effective, we
compute: (i) the percentage of the document that
gets pruned, and (ii) whether the true answer is
present in the pruned document (i.e., average recall
of the answer). We can compute the recall only
for the span-based subset of the data since for the
remaining data we do not know the true span. In
Table 2, we report these two quantities for the span-
based subset using different pruning strategies. Fi-
nally, comparing the SpanModel with and without
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Paraphrasing in Table 3 for ParaphraseRC, we ob-
serve that the pre-processing step indeed improves
the performance of the Span Detection Model.
Effect of oracle pre-processing: As noted in Sec-
tion 3, the ParaphraseRC plot is almost double
in length in comparison to the SelfRC plot, which
while adding to the complexities of the former task,
is clearly not the primary reason of the model’s
poor performance on that. To empirically validate
this, we perform an Oracle pre-processing step,
where, starting with the knowledge of the span con-
taining the true answer, we extract a subplot around
it such that the span is randomly located within
that subplot and the average length of the subplot
is similar to the SelfRC plots. The SpanModel
with this Oracle preprocessed data exhibits a minor
improvement in performance over that with rule-
based preprocessing (1.6% in Accuracy and 4.3%
in F1 over the Span Test), still failing to bridge
the wide performance gap between the SelfRC and
ParaphraseRC task.
Cross Testing We wanted to examine whether a
model trained on SelfRC performs well on Para-
phraseRC and vice-versa. We also wanted to eval-
uate if merging the two datasets improves the per-
formance of the model. For this we experimented
with various combinations of train and test data.
The results of these experiments for the SpanModel
are summarized in Table 4. The best performance
is obtained when the model is trained on both (Sel-
fRC) and ParaphraseRC and tested on SelfRC and
the performance is poorest when ParaphraseRC is
used for both. We believe this is because learning
with the ParaphraseRC is more difficult given the
wide range of challenges in this dataset.

Based on our experiments and empirical obser-
vations we believe that the DuoRC dataset indeed
holds a lot of potential for advancing the horizon
of complex language understanding by exposing
newer challenges in this area.

7 Conclusion
In this paper we introduced DuoRC, a large scale
RC dataset of 186K human-generated QA pairs cre-
ated from 7680 pairs of parallel movie-plots, each
pair taken from Wikipedia and IMDb. We then
showed that this dataset, by design, ensures very
little or no lexical overlap between the questions
created from one version and segments containing
answers in the other version. With this, we hope to
introduce the RC community to new research chal-
lenges on QA requiring external knowledge and

common-sense driven reasoning, deeper language
understanding and multiple-sentence inferencing.
Through our experiments, we show how the state-
of-the-art RC models, which have achieved near
human performance on the SQuAD dataset, per-
form poorly on our dataset, thus emphasizing the
need to explore further avenues for research.
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Abstract

We propose a simple yet robust stochastic
answer network (SAN) that simulates
multi-step reasoning in machine reading
comprehension. Compared to previous
work such as ReasoNet which used rein-
forcement learning to determine the num-
ber of steps, the unique feature is the use of
a kind of stochastic prediction dropout on
the answer module (final layer) of the neu-
ral network during the training. We show
that this simple trick improves robustness
and achieves results competitive to the
state-of-the-art on the Stanford Question
Answering Dataset (SQuAD), the Adver-
sarial SQuAD, and the Microsoft MA-
chine Reading COmprehension Dataset
(MS MARCO).

1 Introduction

Machine reading comprehension (MRC) is a chal-
lenging task: the goal is to have machines read a
text passage and then answer any question about
the passage. This task is an useful benchmark to
demonstrate natural language understanding, and
also has important applications in e.g. conversa-
tional agents and customer service support. It has
been hypothesized that difficult MRC problems re-
quire some form of multi-step synthesis and rea-
soning. For instance, the following example from
the MRC dataset SQuAD (Rajpurkar et al., 2016)
illustrates the need for synthesis of information
across sentences and multiple steps of reasoning:

Q: What collection does the V&A Theator &
Performance galleries hold?

P : The V&A Theator & Performance gal-
leries opened in March 2009. ... They
hold the UK’s biggest national collection of

material about live performance.

To infer the answer (the underlined portion of the
passage P ), the model needs to first perform coref-
erence resolution so that it knows “They” refers
“V&A Theator”, then extract the subspan in the
direct object corresponding to the answer.

This kind of iterative process can be viewed as
a form of multi-step reasoning. Several recent
MRC models have embraced this kind of multi-
step strategy, where predictions are generated after
making multiple passes through the same text and
integrating intermediate information in the pro-
cess. The first models employed a predetermined
fixed number of steps (Hill et al., 2016; Dhingra
et al., 2016; Sordoni et al., 2016; Kumar et al.,
2015). Later, Shen et al. (2016) proposed using
reinforcement learning to dynamically determine
the number of steps based on the complexity of
the question. Further, Shen et al. (2017) empir-
ically showed that dynamic multi-step reasoning
outperforms fixed multi-step reasoning, which in
turn outperforms single-step reasoning on two dis-
tinct MRC datasets (SQuAD and MS MARCO).

In this work, we derive an alternative multi-step
reasoning neural network for MRC. During train-
ing, we fix the number of reasoning steps, but per-
form stochastic dropout on the answer module (fi-
nal layer predictions). During decoding, we gener-
ate answers based on the average of predictions in
all steps, rather than the final step. We call this
a stochastic answer network (SAN) because the
stochastic dropout is applied to the answer mod-
ule; albeit simple, this technique significantly im-
proves the robustness and overall accuracy of the
model. Intuitively this works because while the
model successively refines its prediction over mul-
tiple steps, each step is still trained to generate the
same answer; we are performing a kind of stochas-
tic ensemble over the model’s successive predic-

1694



st-1 st st+1

x

Figure 1: Illustration of “stochastic prediction
dropout” in the answer module during training. At
each reasoning step t, the model combines mem-
ory (bottom row) with hidden states st−1 to gener-
ate a prediction (multinomial distribution). Here,
there are three steps and three predictions, but one
prediction is dropped and the final result is an av-
erage of the remaining distributions.

tion refinements. Stochastic prediction dropout is
illustrated in Figure 1.

2 Proposed model: SAN

The machine reading comprehension (MRC)
task as defined here involves a question
Q = {q0, q1, ..., qm−1} and a passage
P = {p0, p1, ..., pn−1} and aims to find an
answer span A = {astart, aend} in P . We assume
that the answer exists in the passage P as a
contiguous text string. Here, m and n denote the
number of tokens in Q and P , respectively. The
learning algorithm for reading comprehension is
to learn a function f(Q,P ) → A. The training
data is a set of the query, passage and answer
tuples < Q,P,A >.

We now describe our model from the ground up.
The main contribution of this work is the answer
module, but in order to understand what goes into
this module, we will start by describing how Q
and P are processed by the lower layers. Note the
lower layers also have some novel variations that
are not used in previous work. As shown in Fig-
ure 2, our model contains four different layers to
capture different concept of representations. The
detailed description of our model is provided as
follows.

Lexicon Encoding Layer. The purpose of the
first layer is to extract information from Q and P
at the word level and normalize for lexical vari-

ants. A typical technique to obtain lexicon embed-
ding is concatenation of its word embedding with
other linguistic embedding such as those derived
from Part-Of-Speech (POS) tags. For word em-
beddings, we use the pre-trained 300-dimensional
GloVe vectors (Pennington et al., 2014) for the
both Q and P . Following Chen et al. (2017), we
use three additional types of linguistic features for
each token pi in the passage P :

• 9-dimensional POS tagging embedding for
total 56 different types of the POS tags.

• 8-dimensional named-entity recognizer
(NER) embedding for total 18 different
types of the NER tags. We utilized small
embedding sizes for POS and NER to reduce
model size. They mainly serve the role of
coarse-grained word clusters.

• A 3-dimensional binary exact match fea-
ture defined as fexact match(pi) = I(pi ∈
Q). This checks whether a passage token
pi matches the original, lowercase or lemma
form of any question token.

• Question enhanced passages word embed-
dings: falign(pi) =

∑
j γi,jg(GloV e(qj)),

where g(·) is a 280-dimensional single
layer neural network ReLU(W0x) and
γi,j =

exp(g(GloV e(pj))·g(GloV e(qi)))∑
j′ exp(g(GloV e(pi))·g(GloV e(qj′ )))

mea-
sures the similarity in word embedding space
between a token pi in the passage and a to-
ken qj in the question. Compared to the ex-
act matching features, these embeddings en-
code soft alignments between similar but not-
identical words.

In summary, each token pi in the passage is repre-
sented as a 600-dimensional vector and each token
qj is represented as a 300-dimensional vector.

Due to different dimensions for the passages
and questions, in the next layer two different
bidirectional LSTM (BiLSTM) (Hochreiter and
Schmidhuber, 1997) may be required to encode
the contextual information. This, however, in-
troduces a large number of parameters. To pre-
vent this, we employ an idea inspired by (Vaswani
et al., 2017): use two separate two-layer position-
wise Feed-Forward Networks (FFN), FFN(x) =
W2ReLU(W1x+b1)+b2, to map both the passage
and question lexical encodings into the same num-
ber of dimensions. Note that this FFN has fewer

1695



Question

Lexicon
Encoding
Layer

DocumentWord Embedding Surface Feature
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Beyoncé  was born ... in a Methodist household.

2 Layers Position-Wise FFN

Beyoncé  was born ... in a Methodist household.
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Figure 2: Architecture of the SAN for Reading Comprehension: The first layer is a lexicon encoding
layer that maps words to their embeddings independently for the question (left) and the passage (right):
this is a concatenation of word embeddings, POS embeddings, etc. followed by a position-wise FFN. The
next layer is a context encoding layer, where a BiLSTM is used on the top of the lexicon embedding layer
to obtain the context representation for both question and passage. In order to reduce the parameters, a
maxout layer is applied on the output of BiLSTM. The third layer is the working memory: First we
compute an alignment matrix between the question and passage using an attention mechanism, and
use this to derive a question-aware passage representation. Then we concatenate this with the context
representation of passage and the word embedding, and employ a self attention layer to re-arrange the
information gathered. Finally, we use another LSTM to generate a working memory for the passage. At
last, the fourth layer is the answer module, which is a GRU that outputs predictions at each state st.

parameters compared to a BiLSTM. Thus, we ob-
tain the final lexicon embeddings for the tokens in
Q as a matrix Eq ∈ Rd×m and tokens in P as
Ep ∈ Rd×n.

Contextual Encoding Layer. Both passage
and question use a shared two-layers BiLSTM
as the contextual encoding layer, which projects
the lexicon embeddings to contextual embeddings.
We concatenate a pre-trained 600-dimensional
CoVe vectors1 (McCann et al., 2017) trained on
German-English machine translation dataset, with

1https://github.com/salesforce/cove

the aforementioned lexicon embeddings as the fi-
nal input of the contextual encoding layer, and also
with the output of the first contextual encoding
layer as the input of its second encoding layer.
To reduce the parameter size, we use a maxout
layer (Goodfellow et al., 2013) at each BiLSTM
layer to shrink its dimension. By a concatena-
tion of the outputs of two BiLSTM layers, we
obtain Hq ∈ R2d×m as representation of Q and
Hp ∈ R2d×n as representation of P , where d is
the hidden size of the BiLSTM.

Memory Generation Layer. In the memory
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generation layer, We construct the working mem-
ory, a summary of information from both Q and
P . First, a dot-product attention is adopted like
in (Vaswani et al., 2017) to measure the similarity
between the tokens in Q and P . Instead of using a
scalar to normalize the scores as in (Vaswani et al.,
2017), we use one layer network to transform the
contextual information of both Q and P :

C = dropout(fattention(Ĥ
q, Ĥp)) ∈ Rm×n (1)

C is an attention matrix. Note that Ĥq and Ĥp is
transformed from Hq and Hp by one layer neu-
ral network ReLU(W3x), respectively. Next, we
gather all the information on passages by a sim-
ple concatenation of its contextual informationHp

and its question-aware representation Hq · C:

Up = concat(Hp, HqC) ∈ R4d×n (2)

Typically, a passage may contain hundred of to-
kens, making it hard to learn the long dependen-
cies within it. Inspired by (Lin et al., 2017), we
apply a self-attended layer to rearrange the infor-
mation Up as:

Ûp = Updropdiag(fattention(U
p, Up)). (3)

In other words, we first obtain an n × n attention
matrix with Up onto itself, apply dropout, then
multiply this matrix with Up to obtain an updated
Ûp. Instead of using a penalization term as in (Lin
et al., 2017), we dropout the diagonal of the sim-
ilarity matrix forcing each token in the passage to
align to other tokens rather than itself.

At last, the working memory is generated by us-
ing another BiLSTM based on all the information
gathered:

M = BiLSTM([Up; Ûp]) (4)

where the semicolon mark ; indicates the vec-
tor/matrix concatenation operator.

Answer module. There is a Chinese proverb
that says: “wisdom of masses exceeds that of
any individual.” Unlike other multi-step reasoning
models, which only uses a single output either at
the last step or some dynamically determined final
step, our answer module employs all the outputs of
multiple step reasoning. Intuitively, by applying
dropout, it avoids a “step bias problem” (where
models places too much emphasis one particular
step’s predictions) and forces the model to produce
good predictions at every individual step. Further,

during decoding, we reuse wisdom of masses in-
stead of individual to achieve a better result. We
call this method “stochastic prediction dropout”
because dropout is being applied to the final pre-
dictive distributions.

Formally, our answer module will compute over
T memory steps and output the answer span. This
module is a memory network and has some sim-
ilarities to other multi-step reasoning networks:
namely, it maintains a state vector, one state per
step. At the beginning, the initial state s0 is
the summary of the Q: s0 =

∑
j αjH

q
j , where

αj =
exp(w4·Hq

j )∑
j′ exp(w4·Hq

j′ )
. At time step t in the

range of {1, 2, ..., T − 1}, the state is defined by
st = GRU(st−1, xt). Here, xt is computed from
the previous state st−1 and memory M : xt =∑

j βjMj and βj = softmax(st−1W5M). Fi-
nally, a bilinear function is used to find the begin
and end point of answer spans at each reasoning
step t ∈ {0, 1, . . . , T − 1}.

P begint = softmax(stW6M) (5)

P endt = softmax([st;
∑

j

P begint,j Mj ]W7M).

(6)
From a pair of begin and end points, the an-

swer string can be extracted from the passage.
However, rather than output the results (start/end
points) from the final step (which is fixed at T − 1
as in Memory Networks or dynamically deter-
mined as in ReasoNet), we utilize all of the T out-
puts by averaging the scores:

P begin = avg([P begin0 , P begin1 , ..., P beginT−1 ]) (7)

P end = avg([P end0 , P end1 , ..., P endT−1]) (8)

Each P begint or P endt is a multinomial distribu-
tion over {1, . . . , n}, so the average distribution
is straightforward to compute.

During training, we apply stochastic dropout to
before the above averaging operation. For exam-
ple, as illustrated in Figure 1, we randomly delete
several steps’ predictions in Equations 7 and 8
so that P begin might be avg([P begin1 , P begin3 ]) and
P end might be avg([P end0 , P end3 , P end4 ]). The use
of averaged predictions and dropout during train-
ing improves robustness.

Our stochastic prediction dropout is similar in
motivation to the dropout introduced by (Srivas-
tava et al., 2014). The difference is that theirs
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is dropout at the intermediate node-level, whereas
ours is dropout at the final layer-level. Dropout
at the node-level prevents correlation between fea-
tures. Dropout at the final layer level, where ran-
domness is introduced to the averaging of predic-
tions, prevents our model from relying exclusively
on a particular step to generate correct output. We
used a dropout rate of 0.4 in experiments.

3 Experiment Setup
Dataset: We evaluate on the Stanford Question
Answering Dataset (SQuAD) (Rajpurkar et al.,
2016). This contains about 23K passages and
100K questions. The passages come from approx-
imately 500 Wikipedia articles and the questions
and answers are obtained by crowdsourcing. The
crowdsourced workers are asked to read a passage
(a paragraph), come up with questions, then mark
the answer span. All results are on the official de-
velopment set, unless otherwise noted.

Two evaluation metrics are used: Exact Match
(EM), which measures the percentage of span pre-
dictions that matched any one of the ground truth
answer exactly, and Macro-averaged F1 score,
which measures the average overlap between the
prediction and the ground truth answer.

Implementation details: The spaCy tool2 is
used to tokenize the both passages and questions,
and generate lemma, part-of-speech and named
entity tags. We use 2-layer BiLSTM with d = 128
hidden units for both passage and question encod-
ing. The mini-batch size is set to 32 and Adamax
(Kingma and Ba, 2014) is used as our optimizer.
The learning rate is set to 0.002 at first and de-
creased by half after every 10 epochs. We set the
dropout rate for all the hidden units of LSTM, and
the answer module output layer to 0.4. To prevent
degenerate output, we ensure that at least one step
in the answer module is active during training.

4 Results

The main experimental question we would like to
answer is whether the stochastic dropout and av-
eraging in the answer module is an effective tech-
nique for multi-step reasoning. To do so, we fixed
all lower layers and compared different architec-
tures for the answer module:

1. Standard 1-step: generate prediction from s0,
the first initial state.

2https://spacy.io

2. 5-step memory network: this is a memory
network fixed at 5 steps. We try two variants:
the standard variant outputs result from the fi-
nal step sT−1. The averaged variant outputs
results by averaging across all 5 steps, and is
like SAN without the stochastic dropout.

3. ReasoNet3: this answer module dynamically
decides the number of steps and outputs re-
sults conditioned on the final step.

4. SAN: proposed answer module that uses
stochastic dropout and prediction averaging.

The main results in terms of EM and F1 are
shown in Table 1. We observe that SAN achieves
76.235 EM and 84.056 F1, outperforming all other
models. Standard 1-step model only achieves
75.139 EM and dynamic steps (via ReasoNet)
achieves only 75.355 EM. SAN also outperforms a
5-step memory net with averaging, which implies
averaging predictions is not the only thing that led
to SAN’s superior results; indeed, stochastic pre-
diction dropout is an effective technique.

The K-best oracle results is shown in Figure 3.
The K-best spans are computed by ordering the
spans according the their probabilities P begin ×
P end. We limit K in the range 1 to 4 and then
pick the span with the best EM or F1 as oracle.
SAN also outperforms the other models in terms
of K-best oracle scores. Impressively, these mod-
els achieve human performance at K = 2 for EM
and K = 3 for F1.

Finally, we compare our results with other top
models in Table 2. Note that all the results in Ta-
ble 2 are taken from the published papers. We see
that SAN is very competitive in both single and
ensemble settings (ranked in second) despite its
simplicity. Note that the best-performing model
(Peters et al., 2018) used a large-scale language
model as an extra contextual embedding, which
gave a significant improvement (+4.3% dev F1).
We expect significant improvements if we add this
to SAN in future work.

3The ReasoNet here is not an exact re-implementation of
(Shen et al., 2017). The answer module is the same as (Shen
et al., 2017) but the lower layers are set to be the same as
SAN, 5-step memory network, and standard 1-step as de-
scribed in Figure 2. We only vary the answer module in our
experiments for a fair comparison.
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Answer Module EM F1
Standard 1-step 75.139 83.367
Fixed 5-step with Memory Network (prediction from final step) 75.033 83.327
Fixed 5-step with Memory Network (prediction averaged from all steps) 75.256 83.215
Dynamic steps (max 5) with ReasoNet 75.355 83.360
Stochastic Answer Network (SAN ), Fixed 5-step 76.235 84.056

Table 1: Main results—Comparison of different answer module architectures. Note that SAN performs
best in both Exact Match and F1 metrics.

Ensemble model results: Dev Set (EM/F1) Test Set (EM/F1)
BiDAF + Self Attention + ELMo (Peters et al., 2018) -/- 81.003/87.432
SAN (Ensemble model) 78.619/85.866 79.608/86.496
AIR-FusionNet (Huang et al., 2017) -/- 78.978/86.016
DCN+ (Xiong et al., 2017) -/- 78.852/85.996
M-Reader (Hu et al., 2017) -/- 77.678/84.888
Conductor-net (Liu et al., 2017b) 74.8 / 83.3 76.996/84.630
r-net (Wang et al., 2017) 77.7/83.7 76.9/84.0
ReasoNet++ (Shen et al., 2017) 75.4/82.9 75.0/82.6
Individual model results:
BiDAF + Self Attention + ELMo(Peters et al., 2018) -/- 78.580/85.833
SAN (single model) 76.235/84.056 76.828/84.396
AIR-FusionNet(Huang et al., 2017) 75.3/83.6 75.968/83.900
RaSoR + TR (Salant and Berant, 2017) -/- 75.789/83.261
DCN+(Xiong et al., 2017) 74.5/83.1 75.087/83.081
r-net(Wang et al., 2017) 72.3/80.6 72.3/80.7
ReasoNet++(Shen et al., 2017) 70.8/79.4 70.6/79.36
BiDAF (Seo et al., 2016) 67.7/77.3 68.0/77.3
Human Performance 80.3/90.5 82.3/91.2

Table 2: Test performance on SQuAD. Results are sorted by Test F1.

5 Analysis

5.1 How robust are the results?

We are interested in whether the proposed model
is sensitive to different random initial conditions.
Table 3 shows the development set scores of SAN
trained from initialization with different random
seeds. We observe that the SAN results are con-
sistently strong regardless of the 10 different ini-
tializations. For example, the mean EM score is
76.131 and the lowest EM score is 75.922, both of
which still outperform the 75.355 EM of the Dy-
namic step ReasoNet in Table 1.4

We are also interested in how sensitive are the
results to the number of reasoning steps, which

4Note the Dev EM/F1 scores of ReasoNet in Table 1 do
not match those of ReasoNet++ in Table 2. While the answer
module is the same architecture, the lower encoding layers
are different.

is a fixed hyper-parameter. Since we are using
dropout, a natural question is whether we can ex-
tend the number of steps to an extremely large
number. Table 4 shows the development set scores
for T = 1 to T = 10. We observe that there is
a gradual improvement as we increase T = 1 to
T = 5, but after 5 steps the improvements have
saturated. In fact, the EM/F1 scores drop slightly,
but considering that the random initialization re-
sults in Table 3 show a standard deviation of 0.142
and a spread of 0.426 (for EM), we believe that the
T = 10 result does not statistically differ from the
T = 5 result. In summary, we think it is useful to
perform some approximate hyper-parameter tun-
ing for the number of steps, but it is not necessary
to find the exact optimal value.

Finally, we test SAN on two Adversarial
SQuAD datasets, AddSent and AddOneSent (Jia
and Liang, 2017), where the passages contain
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(a) EM comparison on different systems.

(b) F1 score comparison on different systems.

Figure 3: K-Best Oracle results

auto-generated adversarial distracting sentences to
fool computer systems that are developed to an-
swer questions about the passages. For example,
AddSent is constructed by adding sentences that
look similar to the question, but do not actually
contradict the correct answer. AddOneSent is con-
structed by appending a random human-approved
sentence to the passage.

We evaluate the single SAN model (i.e., the one
presented in Table 2) on both AddSent and Ad-
dOneSent. The results in Table 5 show that SAN
achieves the new state-of-the-art performance and
SAN’s superior result is mainly attributed to the
multi-step answer module, which leads to signif-
icant improvement in F1 score over the Standard
1-step answer module, i.e., +1.2 on AddSent and
+0.7 on AddOneSent.

5.2 Is it possible to use different numbers of
steps in test vs. train?

For practical deployment scenarios, prediction
speed at test time is an important criterion. There-
fore, one question is whether SAN can train with,
e.g. T = 5 steps but test with T = 1 steps. Table 6
shows the results of a SAN trained on T = 5 steps,
but tested with different number of steps. As ex-

Seed# EM F1 Seed# EM F1
Seed 1 76.24 84.06 Seed 6 76.23 83.99
Seed 2 76.30 84.13 Seed 7 76.35 84.09
Seed 3 75.92 83.90 Seed 8 76.07 83.71
Seed 4 76.00 83.95 Seed 9 75.93 83.85
Seed 5 76.12 83.99 Seed 10 76.15 84.11

Mean: 76.131, Std. deviation: 0.142 (EM)
Mean: 83.977, Std. deviation: 0.126 (F1)

Table 3: Robustness of SAN (5-step) on differ-
ent random seeds for initialization: best and
worst scores are boldfaced. Note that our official
submit is trained on seed 1.

SAN EM F1 SAN EM F1
1 step 75.38 83.29 6 step 75.99 83.72
2 step 75.43 83.41 7 step 76.04 83.92
3 step 75.89 83.57 8 step 76.03 83.82
4 step 75.92 83.85 9 step 75.95 83.75
5 step 76.24 84.06 10 step 76.04 83.89

Table 4: Effect of number of steps: best and
worst results are boldfaced.

pected, the results are best when T matches during
training and test; however, it is important to note
that small numbers of steps T = 1 and T = 2
nevertheless achieve strong results. For example,
prediction at T = 1 achieves 75.58, which out-
performs a standard 1-step model (75.14 EM) as
in Table 1 that has approximate equivalent predic-
tion time.

5.3 How does the training time compare?

The average training time per epoch is compara-
ble: our implementation running on a GTX Titan
X is 22 minutes for 5-step memory net, 30 minutes
for ReasoNet, and 24 minutes for SAN. The learn-
ing curve is shown in Figure 4. We observe that all
systems improve at approximately the same rate
up to 10 or 15 epochs. However, SAN continues
to improve afterwards as other models start to sat-
urate. This observation is consistent with previous
works using dropout (Srivastava et al., 2014). We
believe that while training time per epoch is sim-
ilar between SAN and other models, it is recom-
mended to train SAN for more epochs in order to
achieve gains in EM/F1.
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Single model: AddSent AddOneSent
LR (Rajpurkar et al., 2016) 23.2 30.3
SEDT (Liu et al., 2017a) 33.9 44.8
BiDAF (Seo et al., 2016) 34.3 45.7
jNet (Zhang et al., 2017) 37.9 47.0
ReasoNet(Shen et al., 2017) 39.4 50.3
RaSoR(Lee et al., 2016) 39.5 49.5
Mnemonic(Hu et al., 2017) 46.6 56.0
QANet(Yu et al., 2018) 45.2 55.7

Standard 1-step in Table 1 45.4 55.8
SAN 46.6 56.5

Table 5: Test performance on the adversarial
SQuAD dataset in F1 score.

T = EM F1 T = EM F1
1 75.58 83.86 4 76.12 83.98
2 75.85 83.90 5 76.24 84.06
3 75.98 83.95 10 75.89 83.88

Table 6: Prediction on different steps T . Note
that the SAN model is trained using 5 steps.

(a) EM

(b) F1

Figure 4: Learning curve measured on Dev set.

Figure 5: Score breakdown by question type.

5.4 How does SAN perform by question
type?

To see whether SAN performs well on a particular
type of question, we divided the development set
by questions type based on their respective Wh-
word, such as “who” and “where”. The score
breakdown by F1 is shown in Figure 5. We ob-
serve that SAN seems to outperform other models
uniformly across all types. The only exception is
the Why questions, but there is too little data to
derive strong conclusions.

5.5 Experiments results on MS MARCO

MS MARCO (Nguyen et al., 2016) is a large scale
real-word RC dataset which contains 100,100
(100K) queries collected from anonymized user
logs from the Bing search engine. The character-
istic of MS MARCO is that all the questions are
real user queries and passages are extracted from
real web documents. For each query, approximate
10 passages are extracted from public web docu-
ments. The answers are generated by humans. The
data is partitioned into a 82,430 training, a 10,047
development and 9,650 test tuples. The evalua-
tion metrics are BLEU(Papineni et al., 2002) and
ROUGE-L (Lin, 2004) due to its free-form text
answer style. To apply the same RC model, we
search for a span in MS MARCO’s passages that
maximizes the ROUGE-L score with the raw free-
form answer. It has an upper bound of 93.45
BLEU and 93.82 ROUGE-L on the development
set.

The MS MARCO dataset contains multiple pas-
sages per query. Our model as shown in Figure 2
is developed to generate answer from a single pas-
sage. Thus, we need to extend it to handle multiple
passages. Following (Shen et al., 2017), we take
two steps to generate an answer to a query Q from
J passages, P 1, ..., P J . First, we run SAN on ev-

1701



SingleModel ROUGE BLEU
ReasoNet++(Shen et al., 2017) 38.01 38.62
V-Net(Wang et al., 2018) 45.65 -
Standard 1-step in Table 1 42.30 42.39
SAN 46.14 43.85

Table 7: MS MARCO devset results.

ery (P j , Q) pair, generating J candidate answer
spans, one from each passage. Then, we multiply
the SAN score of each candidate answer span with
its relevance score r(P j , Q) assigned by a passage
ranker, and output the span with the maximum
score as the answer. In our experiments, we use
the passage ranker described in (Liu et al., 2018)5.
The ranker is trained on the same MS MARCO
training data, and achieves 37.1 p@1 on the devel-
opment set.

The results in Table 7 show that SAN outper-
forms V-Net (Wang et al., 2018) and becomes the
new state of the art6.

6 Related Work

The recent big progress on MRC is largely due
to the availability of the large-scale datasets (Ra-
jpurkar et al., 2016; Nguyen et al., 2016; Richard-
son et al., 2013; Hill et al., 2016), since it is possi-
ble to train large end-to-end neural network mod-
els. In spite of the variety of model structures and
attenion types (Bahdanau et al., 2015; Chen et al.,
2016; Xiong et al., 2016; Seo et al., 2016; Shen
et al., 2017; Wang et al., 2017), a typical neural
network MRC model first maps the symbolic rep-
resentation of the documents and questions into
a neural space, then search answers on top of it.
We categorize these models into two groups based
on the difference of the answer module: single-
step and multi-step reasoning. The key difference
between the two is what strategies are applied to
search the final answers in the neural space.

A single-step model matches the question and
document only once and produce the final an-
swers. It is simple yet efficient and can be trained
using the classical back-propagation algorithm,
thus it is adopted by most systems (Chen et al.,
2016; Seo et al., 2016; Wang et al., 2017; Liu et al.,
2017b; Chen et al., 2017; Weissenborn et al., 2017;

5It is the same model structure as (Liu et al., 2018) by
using softmax over all candidate passages. A simple baseline,
TF-IDF, obtains 20.1 p@1 on MS MARCO development.

6The official evaluation on MS MARCO on test is closed,
thus here we only report the results on the development set.

Hu et al., 2017). However, since humans often
solve question answering tasks by re-reading and
re-digesting the document multiple times before
reaching the final answers (this may be based on
the complexity of the questions/documents), it is
natural to devise an iterative way to find answers
as multi-step reasoning.

Pioneered by (Hill et al., 2016; Dhingra et al.,
2016; Sordoni et al., 2016; Kumar et al., 2015),
who used a predetermined fixed number of rea-
soning steps, Shen et al (2016; 2017) showed
that multi-step reasoning outperforms single-step
ones and dynamic multi-step reasoning further
outperforms the fixed multi-step ones on two dis-
tinct MRC datasets (SQuAD and MS MARCO).
But these models have to be trained using rein-
forcement learning methods, e.g., policy gradient,
which are tricky to implement due to the instabil-
ity issue. Our model is different in that we fix the
number of reasoning steps, but perform stochastic
dropout to prevent step bias. Further, our model
can also be trained by using the back-propagation
algorithm, which is simple and yet efficient.

7 Conclusion

We introduce Stochastic Answer Networks
(SAN), a simple yet robust model for machine
reading comprehension. The use of stochastic
dropout in training and averaging in test at the
answer module leads to robust improvements on
SQuAD, outperforming both fixed step memory
networks and dynamic step ReasoNet. We further
empirically analyze the properties of SAN in
detail. The model achieves results competitive
with the state-of-the-art on the SQuAD leader-
board, as well as on the Adversarial SQuAD
and MS MARCO datasets. Due to the strong
connection between the proposed model with
memory networks and ReasoNet, we would like
to delve into the theoretical link between these
models and its training algorithms. Further, we
also would like to explore SAN on other tasks,
such as text classification and natural language
inference for its generalization in the future.
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Abstract

This paper describes a novel hierarchical
attention network for reading comprehen-
sion style question answering, which aims
to answer questions for a given narrative
paragraph. In the proposed method, atten-
tion and fusion are conducted horizontally
and vertically across layers at different
levels of granularity between question and
paragraph. Specifically, it first encode the
question and paragraph with fine-grained
language embeddings, to better capture
the respective representations at semantic
level. Then it proposes a multi-granularity
fusion approach to fully fuse information
from both global and attended representa-
tions. Finally, it introduces a hierarchical
attention network to focuses on the answer
span progressively with multi-level soft-
alignment. Extensive experiments on the
large-scale SQuAD and TriviaQA datasets
validate the effectiveness of the proposed
method. At the time of writing the pa-
per (Jan. 12th 2018), our model achieves
the first position on the SQuAD leader-
board for both single and ensemble mod-
els. We also achieves state-of-the-art re-
sults on TriviaQA, AddSent and AddOne-
Sent datasets.

1 Introduction

As a brand new field in question answering com-
munity, reading comprehension is one of the key
problems in artificial intelligence, which aims to
read and comprehend a given text, and then an-
swer questions based on it. This task is chal-
lenging which requires a comprehensive under-
standing of natural languages and the ability to
do further inference and reasoning. Restricted

by the limited volume of the annotated dataset,
early studies mainly rely on a pipeline of NLP
models to complete this task, such as seman-
tic parsing and linguistic annotation (Das et al.,
2014). Not until the release of large-scale cloze-
style dataset, such as Children’s Book Test (Hill
et al., 2015) and CNN/Daily Mail (Hermann et al.,
2015), some preliminary end-to-end deep learning
methods have begun to bloom and achieve supe-
rior results in reading comprehension task (Her-
mann et al., 2015; Chen et al., 2016; Cui et al.,
2016).

However, these cloze-style datasets still have
their limitations, where the goal is to predict the
single missing word (often a named entity) in a
passage. It requires less reasoning than previously
thought and no need to comprehend the whole pas-
sage (Chen et al., 2016). Therefore, Stanford pub-
lish a new large-scale dataset SQuAD (Rajpurkar
et al., 2016), in which all the question and an-
swers are manually created through crowdsourc-
ing. Different from cloze-style reading compre-
hension dataset, SQuAD constrains answers to all
possible text spans within the reference passage,
which requires more logical reasoning and content
understanding.

Benefiting from the availability of SQuAD
benchmark dataset, rapid progress has been made
these years. The work (Wang and Jiang, 2016) and
(Seo et al., 2016) are among the first to investigate
into this dataset, where Wang and Jiang propose
an end-to-end architecture based on match-LSTM
and pointer networks (Wang and Jiang, 2016),
and Seo et al. introduce the bi-directional atten-
tion flow network which captures the question-
document context at different levels of granular-
ity (Seo et al., 2016). Chen et al. devise a sim-
ple and effective document reader, by introducing
a bilinear match function and a few manual fea-
tures (Chen et al., 2017a). Wang et al. propose
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a gated attention-based recurrent network where
self-match attention mechanism is first incorpo-
rated (Wang et al., 2017). In (Liu et al., 2017b)
and (Shen et al., 2017), the multi-turn memory net-
works are designed to simulate multi-step reason-
ing in machine reading comprehension.

The idea of our approach derives from the nor-
mal human reading pattern. First, people scan
through the whole passage to catch a glimpse of
the main body of the passage. Then with the ques-
tion in mind, people make connection between
passage and question, and understand the main in-
tent of the question related with the passage theme.
A rough answer span is then located from the pas-
sage and the attention can be focused on to the lo-
cated context. Finally, to prevent from forgetting
the question, people come back to the question and
select a best answer according to the previously lo-
cated answer span.

Inspired by this, we propose a hierarchical at-
tention network which can gradually focus the at-
tention on the right part of the answer boundary,
while capturing the relation between the question
and passage at different levels of granularity, as il-
lustrated in Figure 1. Our model mainly consists
of three joint layers: 1) encoder layer where pre-
trained language models and recurrent neural net-
works are used to build representation for ques-
tions and passages separately; 2) attention layer
in which hierarchical attention networks are de-
signed to capture the relation between question
and passage at different levels of granularity; 3)
match layer where refined question and passage
are matched under a pointer-network (Vinyals
et al., 2015) answer boundary predictor.

In encoder layer, to better represent the ques-
tions and passages in multiple aspects, we com-
bine two different embeddings to give the funda-
mental word representations. In addition to the
typical glove word embeddings, we also utilize
the ELMo embeddings (Peters et al., 2018) de-
rived from a pre-trained language model, which
shows superior performance in a wide range of
NLP problems. Different from the original fusion
way for intermediate layer representations, we de-
sign a representation-aware fusion method to com-
pute the output ELMo embeddings and the context
information is also incorporated by further passing
through a bi-directional LSTM network.

The key in machine reading comprehension so-
lution lies in how to incorporate the question con-

text into the paragraph, in which attention mech-
anism is most widely used. Recently, many dif-
ferent attention functions and types have been de-
signed (Xiong et al., 2016; Seo et al., 2016; Wang
et al., 2017), which aims at properly aligning
the question and passage. In our attention layer,
we propose a hierarchical attention network by
leveraging both the co-attention and self-attention
mechanism, to gradually focus our attention on
the best answer span. Different from the previous
attention-based methods, we constantly comple-
ment the aligned representations with global infor-
mation from the previous layer, and an additional
fusion layer is used to further refine the represen-
tations. In this way, our model can make some
minor adjustment so that the attention will always
be on the right place.

Based on the refined question and passage rep-
resentation, a bilinear match layer is finally used
to identify the best answer span with respect to
the question. Following the work of (Wang and
Jiang, 2016), we predict the start and end bound-
ary within a pointer-network output layer.

The proposed method achieves state-of-the-art
results against strong baselines. Our single model
achieves 79.2% EM and 86.6% F1 score on the
hidden test set, while the ensemble model further
boosts the performance to 82.4% EM and 88.6%
F1 score. At the time of writing the paper (Jan.
12th 2018), our model SLQA+ (Semantic Learn-
ing for Question Answering) achieves the first po-
sition on the SQuAD leaderboard 1 for both single
and ensemble models. Besides, we are also among
the first to surpass human EM performance on this
golden benchmark dataset.

2 Related Work

2.1 Machine Reading Comprehension
Traditional reading comprehension style question
answering systems rely on a pipeline of NLP mod-
els, which make heavy use of linguistic annota-
tion, structured world knowledge, semantic pars-
ing and similar NLP pipeline outputs (Hermann
et al., 2015). Recently, the rapid progress of ma-
chine reading comprehension has largely bene-
fited from the availability of large-scale bench-
mark datasets and it is possible to train large
end-to-end neural network models. Among them,
CNN/Daily Mail (Hermann et al., 2015) and Chil-
dren’s Book Test (Hill et al., 2015) are the first

1 https://rajpurkar.github.io/SQuAD-explorer/
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large-scale datasets for reading comprehension
task. However, these datasets are in cloze-style,
in which the goal is to predict the missing word
(often a named entity) in a passage. Moreover,
Chen at al. have also shown that these cloze-
style datasets requires less reasoning than previ-
ously thought (Chen et al., 2016). Different from
the previous datasets, the SQuAD provides a more
challenging benchmark dataset, where the goal is
to extract an arbitrary answer span from the origi-
nal passage.

2.2 Attention-based Neural Networks

The key in MRC task lies in how to incorpo-
rate the question context into the paragraph, in
which attention mechanism is most widely used.
In spite of a variety of model structures and atten-
tion types (Cui et al., 2016; Xiong et al., 2016; Seo
et al., 2016; Wang et al., 2017; Clark and Gardner,
2017), a typical attention-based neural network
model for MRC first encodes the symbolic repre-
sentation of the question and passage in an embed-
ding space, then identify answers with particular
attention functions in that space. In terms of the
question and passage attention or matching strat-
egy, we roughly categorize these attention-based
models into two large groups: one-way attention
and two-way attention.

In one-way attention model, question is first
summarized into a single vector and then directly
matched with the passage. Most of the end-to-
end neural network methods on the cloze-style
datasets are based on this model (Hermann et al.,
2015; Kadlec et al., 2016; Chen et al., 2016; Dhin-
gra et al., 2016). Hermann et al. are the first
to apply the attention-based neural network meth-
ods to MRC task and introduce an attentive reader
and an impatient reader (Hermann et al., 2015),
by leveraging a two layer LSTM network. Chen
et al. (Chen et al., 2016) further design a bilin-
ear attention function based on the attentive reader,
which shows superior performance on CNN/Daily
Mail dataset. However, part of information may
be lost when summarizing the question and a fine-
grained attention on both the question and passage
words should be more reasonable.

Therefore, the two-way attention model un-
folds both the question and passage into respective
word embeddings, and compute the attention in a
two-dimensional matrix. Most of the top-ranking
methods on SQuAD leaderboard are based on this

attention mechanism (Wang et al., 2017; Huang
et al., 2017; Xiong et al., 2017; Liu et al., 2017b,a).
(Cui et al., 2016) and (Xiong et al., 2016) intro-
duce the co-attention mechanism to better couple
the representations of the question and document.
Seo et al. propose a bi-directional attention flow
network to capture the relevance at different lev-
els of granularity (Seo et al., 2016). (Wang et al.,
2017) further introduce the self-attention mecha-
nism to refine the representation by matching the
passage against itself, to better capture the global
passage information. Huang et al. introduce
a fully-aware attention mechanism with a novel
history-of-word concept (Huang et al., 2017).

We propose a hierarchical attention network
by leveraging both co-attention and self-attention
mechanisms in different layers, which can capture
the relevance between the question and passage at
different levels of granularity. Different from the
above methods, we further devise a fusion func-
tion to combine both the aligned representation
and the original representation from the previous
layer within each attention. In this way, the model
can always focus on the right part of the passage,
while keeping the global passage topic in mind.

3 Machine Comprehension Model

3.1 Task Description

Typical machine comprehension systems take an
evidence text and a question as input, and pre-
dict a span within the evidence that answers the
question. Based on this definition, given a pas-
sage and a question, the machine needs to first read
and understand the passage, and then finds the an-
swer to the question. The passage is described
as a sequence of word tokens P =

{
wP
t

}n
t=1

and the question is described as Q =
{
wQ
t

}m
t=1

,
where n is the number of words in the passage,
and m is the number of words in the question. In
general, n � m. The answer can have differ-
ent types depending on the task. In the SQuAD
dataset (Rajpurkar et al., 2016), the answer A is
guaranteed to be a continuous span in the pas-
sage P. The object function for machine read-
ing comprehension is to learn a function f(q,p) =
argmaxa∈A(p) P(a|q, p). The training data is a
set of the question, passage and answer tuples
< Q,P,A >.
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Figure 1: Hierarchical Attention Fusion Network.

3.2 Encode-Interaction-Pointer Framework

We will now describe our framework from the bot-
tom up. As show in Figure 1, the proposed frame-
work consists of four typical layers to learn differ-
ent concepts of semantic representations:

• Encoder Layer as a language model, utilizes
contextual cues from surrounding words to re-
fine the embedding of the words. It converts the
passage and question from tokens to semantic
representation;
• Attention Layer attempts to capture relations

between question and passage. Besides the
aligned context, the contextual embeddings are
also merged by a fusion function. Moreover,
the multi-level of this operation forms a ”work-
ing memory”;
• Match Layer employs a bi-linear match func-

tion to compute the relevance between the
question and passage representation on a span
level;
• Output Layer uses a pointer network to search

the answer span of question.
The main contribution of this work is the atten-

tion layer, in order to capture the relationship be-
tween question and passage, a hierarchical strat-
egy is used to progressively make the answer
boundary clear with the refined attention mecha-
nism. A fine-grained fusion function is also in-
troduced to better align the contextual representa-
tions from different levels. The detailed descrip-

tion of the model is provided as follows.

3.3 Hierarchical Attention Fusion Network

Our design is based on a simple but natural in-
tuition: performing fine-grained mechanism re-
quires first to roughly see the potential answer do-
main and then progressively locate the most dis-
criminative parts of the domain.

The overall framework of our Hierarchical At-
tention Fusion Network is shown in Figure 1. It
consists of several parts: a basic co-attention layer
with shallow semantic fusion, a self-attention
layer with deep semantic fusion and a memory-
wise bilinear alignment function. The proposed
network has two distinctive characteristics: (i)
A fine-grained fusion approach to blend atten-
tion vectors for a better understanding of the re-
lationship between question and passage; (ii) A
multi-granularity attention mechanism applied at
the word and sentence-level, enabling it to prop-
erly attend to the most important content when
constructing the question and passage representa-
tion. Experiments conducted on SQuAD and ad-
versarial example datasets (Jia and Liang, 2017)
demonstrate that the proposed framework outper-
form previous methods by a large margin. Details
of different components will be described in the
following sections.

3.4 Language Model & Encoder Layer

Encoder layer of the model transform the dis-
crete word tokens of question and passage to a se-
quence of continuous vector representations. We
use a pre-trained word embedding model and a
char embedding model to lay the foundation for
our model. For the word embedding model, we
adopt the popular glove embeddings (Penning-
ton et al., 2014) which are widely used in deep
learning-based NLP domain. For the char em-
bedding model, the ELMo language model (Pe-
ters et al., 2018) is used due to its superior perfor-
mance in a wide range of NLP tasks. As a result,
we obtain two types of encoding vectors, i.e., word
embeddings

{
eQt

}m
t=1

,
{
ePt

}n
t=1

and char embed-

dings
{
cQt

}m
t=1

,
{
cPt

}n
t=1

.
To further utilize contextual cues from sur-

rounding words to refine the embedding of the
words, we then put a shared Bi-LSTM network
on top of the embeddings provided by the previ-
ous layers to model the temporal interactions be-
tween words. Before feeding into the Bi-LSTM
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contextual network, we concat the word embed-
dings and char embeddings for a full understand-
ing of each word. The final output of our encoder
layer is shown as below,

uQt =
[
BiLSTMQ([e

Q
t , c

Q
t ]), c

Q
t

]
(1)

uPt =
[
BiLSTMP([e

P
t , c

P
t ]), c

P
t

]
(2)

where we further concat the output of the con-
textual Bi-LSTM network with the pre-trained
char embeddings for its good performance (Peters
et al., 2018). This can be regarded as a residual
connection between word representations in dif-
ferent levels.

3.5 Hierarchical Attention & Fusion Layer
The attention layer is responsible for linking and
fusing information from the question and passage
representation, which is the most critical in most
MRC tasks. It aims to align the question and pas-
sage so that we can better locate on the most rele-
vant passage span with respect to the question. We
propose a hierarchical attention structure by com-
bining the co-attention and self-attention mecha-
nism in a multi-hop style. Besides, we think that
the original representation and the aligned repre-
sentation via attention can reflect the content se-
mantics in different granularities. Therefore, we
also apply a particular fusion function after each
attention function, so that different levels of se-
mantics can be better incorporated towards a better
understanding.

3.5.1 Co-attention & Fusion
Given the question and passage representation uQt
and uPt , a soft-alignment matrix S has been built to
calculate the shallow semantic similarity between
question and passage as follows:

Sij = Att(uQ
t , u

P
t ) = ReLU(W>linu

Q
t )
> · ReLU(W>linu

P
t )
(3)

where Wlin is a trainable weight matrix.
This decomposition avoids the quadratic com-

plexity that is trivially parallelizable (Parikh et al.,
2016). Now we use the unnormalized attention
weights Sij to compute the attentions between
question and passage, which is further used to ob-
tain the attended vectors in passage to question and
question to passage direction, respectively.

P2Q Attention signifies which question words
are most relevant to each passage word, given as
below:

αj = softmax(S:j) (4)

where αj represents the attention weights on the
question words.

The aligned passage representation from ques-
tion Q =

{
uQt

}m
t=1

can thus be derived as,

Q̃:t =
∑

j

αtj ·Q:j,∀j ∈ [1, ...,m] (5)

Q2P Attention signifies which passage words
have the closest similarity to one of the question
words and are hence critical for answering the
question.

We utilize the same way to calculate this atten-
tion as in the passage to question attention (P2Q),
except for that in the opposite direction:

βi = softmax(Si:) (6)

P̃k: =
∑

i

βik · Pi:,∀i ∈ [1, ...,n] (7)

where P̃ indicates the weighted sum of the most
important words in the passage with respect to the
question.

With the aligned passage and question represen-
tations Q̃ and P̃ derived, a particular fusion unit
has been designed to combine the original contex-
tual representations and the corresponding atten-
tion vectors for question and passage separately:

P′ = Fuse(P, Q̃) (8)

Q′ = Fuse(Q, P̃) (9)

where Fuse(·, ·) is a typical fusion kernel.
The simplest way of fusion is a concatenation

or addition of the two representations, followed
by some linear or non-linear transformation. Re-
cently, a heuristic matching trick with difference
and element-wise product is found effective in
combining different representations (Mou et al.,
2016; Chen et al., 2017b):

m(P, Q̃) = tanh(Wf [P; Q̃; P ◦ Q̃; P− Q̃] + bf)
(10)

where ◦ denotes the element-wise product, and
Wf , bf are trainable parameters. The output di-
mension is projected back to the same size as the
original representation P or Q via the projected
matrix Wf .

Since we find that the original contextual repre-
sentations are important in reflecting the semantics
at a more global level, we also introduce differ-
ent levels of gating mechanism to incorporate the
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projected representations m(·, ·) with the original
contextual representations. As a result, the final
fused representations of passage and question can
be formulated as:

P′ = g(P, Q̃) ·m(P, Q̃)+(1−g(P, Q̃)) ·P (11)

Q′ = g(Q, P̃) ·m(Q, P̃)+(1−g(Q, P̃)) ·Q (12)

where g(·, ·) is a gating function. To capture
the relation between the representations in differ-
ent granularities, we also design a scalar-based,
a vector-based and a matrix-based sigmoid gating
function, which are compared in Section 4.5.

3.5.2 Self-attention & Fusion
Borrowing the idea from wide and deep net-
work (Cheng et al., 2016), manual features have
also been added to combine with the outputs of
previous layer for a more comprehensive repre-
sentation. In our model, these features are con-
catenated with the refined question-aware passage
representation as below:

D = BiLSTM([P′; featman]) (13)

where featman denotes the word-level manual pas-
sage features.

In this layer, we separately consider the se-
mantic representations of question and passage,
and further refine the obtained information from
the co-attention layer. Since fusing informa-
tion among context words allows contextual in-
formation to flow close to the correct answer,
the self-attention layer is used to further align
the question and passage representation against it-
self, so as to keep the global sequence informa-
tion in memory. Benefiting from the advantage
of self-alignment attention in addressing the long-
distance dependence (Wang et al., 2017), we adopt
a self-alignment fusion process in this level. To al-
low for more freedom of the aligning process, we
introduce a bilinear self-alignment attention func-
tion on the passage representation:

L = softmax(D ·Wl ·D>) (14)

D̃ = L ·D (15)

Another fusion function Fuse(·, ·) is again
adopted to combine the question-aware passage
representation D and self-aware representation D̃,
as below:

D′ = Fuse(D, D̃) (16)

Finally, a bidirectional LSTM is used to get the
final contextual passage representation:

D′′ = BiLSTM(D′) (17)

As for question side, since it is generally shorter
in length and could be adequately represented with
less information, we follow the question encoding
method used in (Chen et al., 2017a) and adopt a
linear transformation to encode the question rep-
resentation to a single vector.

First, another contextual bidirectional LSTM
network is applied on top of the fused question
representation: Q′′ = BiLSTM(Q′). Then we ag-
gregate the resulting hidden units into one single
question vector, with a linear self-alignment:

γ = softmax(w>q ·Q′′) (18)

q =
∑

j

γj ·Q′′:j,∀j ∈ [1, ...,m] (19)

where wq is a weight vector to learn, we self-align
the refined question representation to a single vec-
tor according to the question self-attention weight,
which can be further used to compute the match-
ing with the passage words.

3.6 Model & Output Layer
Instead of predicting the start and end positions
based only on D′′, a top-level bilinear match func-
tion is used to capture the semantic relation be-
tween question q and paragraph D′′ in a matching
style, which actually works as a multi-hop match-
ing mechanism.

Different from the co-attention layer that gen-
erates coarse candidate answers and the self-
attention layer that focus the relevant context of
passage to a certain intent of question, the top
model layer uses a bilinear matching function to
capture the interaction between outputs from pre-
vious layers and finally locate on the right answer
span.

The start and end distribution of the passage
words are calculated in a bilinear matching way
as below,

Pstart = softmax(q ·W>s ·D′′) (20)

Pend = softmax(q ·W>e ·D′′) (21)

where Ws and We are trainable matrices of the
bilinear match function.

The output layer is application-specific, in
MRC task, we use pointer networks to predict the
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start and end position of the answer, since it re-
quires the model to find the sub-phrase of the pas-
sage to answer the question.

In training process, with cross entropy as met-
ric, the loss for start and end position is the sum
of the negative log probabilities of the true start
and end indices by the predicted distributions, av-
eraged over all examples:

L(θ) = − 1

N

N∑

i

log ps(y
s
i ) + log pe(y

e
i ) (22)

where θ is the set of all trainable weights in the
model, and ps is the probability of start index, pe
is the probability of end index, respectively. ysi and
yei are the true start and end indices.

During prediction, we choose the answer span
with the maximum value of ps · pe under a con-
straint that s ≤ e ≤ s + 15, which is selected via a
dynamic programming algorithm in linear time.

4 Experiments

In this section, we first present the datasets used
for evaluation. Then we compare our end-to-end
Hierarchical Attention Fusion Networks with ex-
isting machine reading models. Finally, we con-
duct experiments to validate the effectiveness of
our proposed components. We evaluate our model
on the task of question answering using recently
released SQuAD and TriviaQA Wikipedia (Joshi
et al., 2017), which have gained a huge attention
over the past year. An adversarial evaluation for
the Stanford Question Answering SQuAD is also
used to demonstrate the robust of our model under
adversarial attacks (Jia and Liang, 2017).

4.1 Dataset

We focus on the SQuAD dataset to train and evalu-
ate our model. SQuAD is a popular machine com-
prehension dataset consisting of 100,000+ ques-
tions created by crowd workers on 536 Wikipedia
articles. Each context is a paragraph from an ar-
ticle and the answer to each question is guaran-
teed to be a span in the context. The answer to
each question is always a span in the context. The
model is given a credit if its answer matches one of
the human chosen answers. Two metrics are used
to evaluate the model performance: Exact Match
(EM) and a softer metric F1 score, which measures
the weighted average of the precision and recall
rate at a character level.

Table 1: The performance of our SLQA model
and competing approaches on SQuAD.

Dev Set Test Set
Single model EM / F1 EM / F1
LR Baseline (Rajpurkar et al., 2016) 40.0 / 51.0 40.4 / 51.0
Match-LSTM (Wang and Jiang, 2016) 64.1 / 73.9 64.7 / 73.7
DrQA (Chen et al., 2017a) - / - 70.7 / 79.4
DCN+ (Xiong et al., 2017) 74.5 / 83.1 75.1 / 83.1
Interactive AoA Reader+ (Cui et al., 2016) - / - 75.8 / 83.8
FusionNet (Huang et al., 2017) - / - 76.0 / 83.9
SAN (Liu et al., 2017b) 76.2 / 84.0 76.8 / 84.4
AttentionReader+ (unpublished) - / - 77.3 / 84.9
BiDAF + Self Attention + ELMo (Peters et al., 2018) - / - 78.6 / 85.8
r-net+ (Wang et al., 2017) - / - 79.9 / 86.5
SLQA+ 80.0 / 87.0 80.4 / 87.0
Ensemble model
FusionNet (Huang et al., 2017) - / - 78.8 / 85.9
DCN+ (Xiong et al., 2017) - / - 78.9 / 86.0
Interactive AoA Reader+ (Cui et al., 2016) - / - 79.0 / 86.4
SAN (Liu et al., 2017b) 78.6 / 85.9 79.6 / 86.5
BiDAF + Self Attention + ELMo (Peters et al., 2018) - / - 81.0 / 87.4
AttentionReader+ (unpublished) - / - 81.8 / 88.2
r-net+ (Wang et al., 2017) - / - 82.6 / 88.5
SLQA+ 82.0 / 88.4 82.4 / 88.6
Human Performance 80.3 / 90.5 82.3 / 91.2

TriviaQA is a newly available machine compre-
hension dataset consisting of over 650K context-
query-answer triples. The contexts are automat-
ically generated from either Wikipedia or Web
search results. The length of contexts in TriviaQA
(average 2895 words) is much more longer than
the one in SQuAD (average 122 words).

4.2 Training Details

We use the AdaMax optimizer, with a mini-batch
size of 32 and initial learning rate of 0.002. A
dropout rate of 0.4 is used for all LSTM layers. To
directly optimize our target against the evaluation
metrics, we further fine-tune the model with some
well-defined strategy. During fine-tuning, Focal
Loss (Lin et al., 2017) and Reinforce Loss which
take F1 score as reward are incorporated with
Cross Entropy Loss. The training process takes
roughly 20 hours on a single Nvidia Tesla M40
GPU. We also train an ensemble model consisting
of 15 training runs with the identical framework
and hyper-parameters. At test time, we choose the
answer with the highest sum of confidence scores
amongst the 15 runs for each question.

4.3 Main Results

The results of our model and competing ap-
proaches on the hidden test set are summarized in
Table 1. The proposed SLQA+ ensemble model
achieves an EM score of 82.4 and F1 score of 88.6,
outperforming all previous approaches, which val-
idates the effectiveness of our hierarchical atten-
tion and fusion network structure.

We also conduct experiments on the adversarial
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Table 2: The F1 scores of different models
on AddSent and AddOneSent datasets (S: Single
Model, E: Ensemble).

Model AddSent AddOneSent
Logistic (Rajpurkar et al., 2016) 23.2 30.4
Match-S (Wang and Jiang, 2016) 27.3 39.0
Match-E (Wang and Jiang, 2016) 29.4 41.8
BiDAF-S (Seo et al., 2016) 34.3 45.7
BiDAF-E (Seo et al., 2016) 34.2 46.9
ReasoNet-S (Shen et al., 2017) 39.4 50.3
ReasoNet-E (Shen et al., 2017) 39.4 49.8
Mnemonic-S (Hu et al., 2017) 46.6 56.0
Mnemonic-E (Hu et al., 2017) 46.2 55.3
QANet-S (Yu et al., 2018) 45.2 55.7
FusionNet-E (Huang et al., 2017) 51.4 60.7
SLQA-S (our) 52.1 62.7
SLQA-E (our) 54.8 64.2

SQuAD dataset (Jia and Liang, 2017) to study the
robustness of the proposed model. In the dataset,
one or more sentences are appended to the origi-
nal SQuAD context, aiming to mislead the trained
models. We use exactly the same model as in our
SQuAD dataset, the performance comparison re-
sult is shown in Table 2. It can be seen that the
proposed model can still get superior results than
all the other competing approaches.

4.4 Ablations

In order to evaluate the individual contribution of
each model component, we run an ablation study.
Table 3 shows the performance of our model and
its ablations on SQuAD dev set. The bi-linear
alignment plus fusion between passage and ques-
tion is most critical to the performance on both
metrics which results in a drop of nearly 15%.
The reason may be that in top-level attention layer,
the similar semantics between question and pas-
sage are strong evidence to locate the correct an-
swer span. The ELMo accounts for about 5% of
the performance degradation, which clearly shows
the effectiveness of language model. We conjec-
ture that language model layer efficiently encodes
different types of syntactic and semantic informa-
tion about words-in-context, and improves the task
performance. To evaluate the performance of hier-
archical architecture, we reduce the multi-hop fu-
sion with the standard LSTM network. The result
shows that multi-hop fusion outperforms the stan-
dard LSTM by nearly 5% on both metrics.

4.5 Fusion Functions

In this section, we experimentally demonstrate
how different choices of the fusion kernel impact
the performance of our model. The compared fu-
sion kernels are described as follows:

Simple Concat: a simple concatenation of two

Table 3: Ablation tests of SLQA single model on
the SQuAD dev set.

SLQA single model EM / F1
SLQA+ 80.0 / 87.0
-Manual Features 79.2 / 86.2
-Language Embedding (ELMo) 77.6 / 84.9
-Self Matching 79.5 / 86.4
-Multi-hop 79.1 / 86.1
-Bi-linear Match 65.4 / 72.0
-Fusion (simple concat) 78.8 / 85.8
-Fusion, -Multi-hop 77.5 / 84.8
-Fusion, -Bi-linear Match 63.1 / 69.6

Table 4: Comparison of different fusion kernels
on the SQuAD dev set.

Fusion Kernel EM / F1
Simple Concat 78.8 / 85.8
Add Full Projection (FPU) 79.1 / 86.1
Scalar-based Fusion (SFU) 79.5 / 86.5
Vector-based Fusion (VFU) 80.0 / 87.0
Matrix-based Fusion (MFU) 79.8 / 86.8

channel inputs.
Full Projection: the heuristic matching and

projecting function as in Equ. 10.
Scalar-based Fusion: the gating function is a

trainable scalar parameter (a coarse fusion level):

g(P, Q̃) = gp (23)

where gp is a trainable scalar parameter.
Vector-based Fusion: the gating function con-

tains a weight vector to learn, which acts as a one-
dimensional sigmoid gating,

g(P, Q̃) = σ(w>g ·[P; Q̃; P◦Q̃; P−Q̃]+bg) (24)

where wg is trainable weight vector, bg is trainable
bias, and σ is sigmoid function.

Matrix-based Fusion: the gating function con-
tains a weight matrix to learn, which acts as a two-
dimensional sigmoid gating,

g(P, Q̃) = σ(W>g ·[P; Q̃; P◦Q̃; P−Q̃]+bg) (25)

where Wg is a trainable weight matrix.
The comparison results of different fusion ker-

nels can be found in Table 4. We can see that
different fusion methods contribute differently to
the final performances, and the vector-based fu-
sion method performs best, with a moderate pa-
rameter size.

4.6 Attention Hierarchy and Function
In the proposed model, attention layer is the most
important part of the framework. At the bottom
of Table 5 we show the performances on SQuAD
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Table 5: Comparison of different attention styles
on the SQuAD dev set.

Attention Hierarchy EM / F1
1-layer attention (only qp co-attention) 61.9 / 68.4
2-layer attention (add self-attention) 65.4 / 71.7
3-layer attention (add bilinear match) 80.0 / 87.0
Attention Function EM / F1
dot product 62.9 / 69.3
linear attention 78.0 / 84.9
bilinear attention (linear + relu) 80.0 / 87.0
trilinear attention 78.9 / 85.8

Table 6: Published and unpublished results on the
TriviaQA wikipedia leaderboard.

Full Verified
Model EM / F1 EM / F1
BiDAF (Seo et al., 2016) 40.26 / 45.74 47.47 / 53.70
MEMEN (Pan et al., 2017) 43.16 / 46.90 49.28 / 55.83
M-Reader (Hu et al., 2017) 46.94 / 52.85 54.45 / 59.46
QANet (Yu et al., 2018) 51.10 / 56.60 53.30 / 59.20
document-qa (Clark and Gardner, 2017) 63.99 / 68.93 67.98 / 72.88
dirkweissenborn (unpublished) 64.60 / 69.90 72.77 / 77.44
SLQA-Single 66.56 / 71.39 74.83 / 78.74

for four common attention functions. Empirically,
we find bilinear attention which add ReLU after
linearly transforming does significantly better than
the others.

At the top of Table 5 we show the effect of vary-
ing the number of attention layers on the final per-
formance. We see a steep and steady rise in accu-
racy as the number of layers is increased from N =
1 to 3.

4.7 Experiments on TriviaQA

To further examine the robustness of the proposed
model, we also test the model performance on
TriviaQA dataset. The test performance of dif-
ferent methods on the leaderboard (on Jan. 12th
2018) is shown in Table 6. From the results, we
can see that the proposed model can also obtain
state-of-the-art performance in the more complex
TriviaQA dataset.

5 Conclusions

We introduce a novel hierarchical attention net-
work, a state-of-the-art reading comprehension
model which conducts attention and fusion hor-
izontally and vertically across layers at different
levels of granularity between question and para-
graph. We show that our proposed method is
very powerful and robust, which outperforms the
previous state-of-the-art methods in various large-
scale golden MRC datasets: SQuAD, TriviaQA,
AddSent and AddOneSent.

Figure 2: Learning curve of F1 / EM score on the
SQuAD dev set
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Abstract

While sophisticated neural-based tech-
niques have been developed in reading
comprehension, most approaches model
the answer in an independent manner, ig-
noring its relations with other answer can-
didates. This problem can be even worse
in open-domain scenarios, where candi-
dates from multiple passages should be
combined to answer a single question. In
this paper, we formulate reading com-
prehension as an extract-then-select two-
stage procedure. We first extract answer
candidates from passages, then select the
final answer by combining information
from all the candidates. Furthermore, we
regard candidate extraction as a latent vari-
able and train the two-stage process jointly
with reinforcement learning. As a result,
our approach has improved the state-of-
the-art performance significantly on two
challenging open-domain reading compre-
hension datasets. Further analysis demon-
strates the effectiveness of our model com-
ponents, especially the information fusion
of all the candidates and the joint training
of the extract-then-select procedure.

1 Introduction

Teaching machines to read and comprehend hu-
man languages is a long-standing objective in nat-
ural language processing. In order to evaluate this
ability, reading comprehension (RC) is designed
to answer questions through reading relevant pas-
sages. In recent years, RC has attracted intense in-
terest. Various advanced neural models have been
proposed along with newly released datasets (Her-
mann et al., 2015; Rajpurkar et al., 2016; Dunn
et al., 2017; Dhingra et al., 2017b; He et al., 2017).

Q Cocktails: Rum, lime, and cola
drink make a .

A Cuba Libre
P1 Daiquiri, the custom of mixing

lime with rum for a cooling drink
on a hot Cuban day, has been
around a long time.

P2 Cocktail recipe for a Daiquiri,
a classic rum and lime drink that
every bartender should know.

P3 Hemingway Special Daiquiri:
Daiquiris are a family of
cocktails whose main ingredients
are rum and lime juice.

P4 A homemade Cuba Libre Preparation
To make a Cuba Libre properly,
fill a highball glass with ice and
half fill with cola.

P5 The difference between the Cuba
Libre and Rum is a lime wedge at
the end.

Table 1: The answer candidates are in a bold font.
The key information is marked in italic, which
should be combined from different text pieces to
select the correct answer ”Cuba Libre”.

Most existing approaches mainly focus on mod-
eling the interactions between questions and pas-
sages (Dhingra et al., 2017a; Seo et al., 2017;
Wang et al., 2017), paying less attention to infor-
mation concerning answer candidates. However,
when human solve this problem, we often first
read each piece of text, collect some answer candi-
dates, then focus on these candidates and combine
their information to select the final answer. This
collect-then-select process can be more significant
in open-domain scenarios, which require the com-
bination of candidates from multiple passages to
answer one single question. This phenomenon is
illustrated by the example in Table 1.

With this motivation, we formulate an extract-
then-select two-stage architecture to simulate the
above procedure. The architecture contains two

1715



components: (1) an extraction model, which gen-
erates answer candidates, (2) a selection model,
which combines all these candidates and finds out
the final answer. However, answer candidates to
be focused on are often unobservable, as most RC
datasets only provide golden answers. Therefore,
we treat candidate extraction as a latent variable
and train these two stages jointly with reinforce-
ment learning (RL).

In conclusion, our work makes the following
contributions:

1. We formulate open-domain reading compre-
hension as a two-stage procedure, which first ex-
tracts answer candidates and then selects the final
answer. With joint training, we optimize these two
correlated stages as a whole.

2. We propose a novel answer selection model,
which combines the information from all the ex-
tracted candidates using an attention-based corre-
lation matrix. As shown in experiments, the infor-
mation fusion is greatly helpful for answer selec-
tion.

3. With the two-stage framework and the joint
training strategy, our method significantly sur-
passes the state-of-the-art performance on two
challenging public RC datasets Quasar-T (Dhingra
et al., 2017b) and SearchQA (Dunn et al., 2017).

2 Related Work

In recent years, reading comprehension has made
remarkable progress in methodology and dataset
construction. Most existing approaches mainly
focus on modeling sophisticated interactions be-
tween questions and passages, then use the pointer
networks (Vinyals et al., 2015) to directly model
the answers (Dhingra et al., 2017a; Wang and
Jiang, 2017; Seo et al., 2017; Wang et al., 2017).
These methods prove to be effective in existing
close-domain datasets (Hermann et al., 2015; Hill
et al., 2015; Rajpurkar et al., 2016).

More recently, open-domain RC has attracted
increasing attention (Nguyen et al., 2016; Dunn
et al., 2017; Dhingra et al., 2017b; He et al., 2017)
and raised new challenges for question answer-
ing techniques. In these scenarios, a question is
paired with multiple passages, which are often
collected by exploiting unstructured documents or
web data. Aforementioned approaches often rely
on recurrent neural networks and sophisticated at-
tentions, which are prohibitively time-consuming
if passages are concatenated altogether. There-

fore, some work tried to alleviate this problem in
a coarse-to-fine schema. Wang et al. (2018a) com-
bined a ranker for selecting the relevant passage
and a reader for producing the answer from it.
However, this approach only depended on one pas-
sage when producing the answer, hence put great
demands on the precisions of both components.
Worse still, this framework cannot handle the sit-
uation where multiple passages are needed to an-
swer correctly. In consideration of evidence aggre-
gation, Wang et al. (2018b) proposed a re-ranking
method to resolve the above issue. However, their
re-ranking stage was totally isolated from the can-
didate extraction procedure. Being different from
the re-ranking perspective, we propose a novel se-
lection model to combine the information from
all the extracted candidates. Moreover, with rein-
forcement learning, our candidate extraction and
answer selection models can be learned in a joint
manner. Trischler et al. (2016) also proposed a
two-step extractor-reasoner model, which first ex-
tracted K most probable single-token answer can-
didates and then compared the hypotheses with
all the sentences in the passage. However, in
their work, each candidate was considered isolat-
edly, and their objective only took into account the
ground truths compared with our RL treatment.

The training strategy employed in our paper
is reinforcement learning, which is inspired by
recent work exploiting it into question answer-
ing problem. The above mentioned coarse-to-fine
framework (Choi et al., 2017; Wang et al., 2018a)
treated sentence selection as a latent variable and
jointly trained the sentence selection module with
the answer generation module via RL. Shen et al.
(2017) modeled the multi-hop reasoning proce-
dure with a termination state to decide when it is
adequate to produce an answer. RL is suitable to
capture this stochastic behavior. Hu et al. (2018)
merely modeled the extraction process, using F1
as rewards in addition to maximum likelihood es-
timation. RL was utilized in their training process,
as the F1 measure is not differentiable.

3 Two-stage RC Framework

In this work, we mainly consider the open-domain
extractive reading comprehension. In this sce-
nario, a given question Q is paired with mul-
tiple passages P = {P1, P2, ..., PN}, based on
which we aim to find out the answer A. Moreover,
the golden answers are almost subspans shown in
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Figure 1: Two-stage RC Framework. The first part
extracts candidates (denoted with circles) from all
the passages. The second part establishes interac-
tions among all these candidates to select the final
answer. The different gray scales of dashed lines
between candidates represent different intensities
of interactions.

some passages in P. Our main framework con-
sists of two parts, which are: (1) extracting answer
candidates C = {C1, C2, ..., CM} from passages
P and (2) selecting the final answer A from candi-
dates C. This process is illustrated in Figure 1. We
design different models for each part and optimize
them as a whole with joint reinforcement learning.

3.1 Candidate Extraction

We build candidate set C by independently ex-
tracting K candidates from each passage Pi ac-
cording to the following distribution:

p(C|Q,P) =
N∏

i

p({Cij}Kj=1|Q,Pi)

C =

N⋃

i=1

{Cij}Kj=1

(1)

where Cij denotes the jth candidate extracted
from the ith passage. K is set as a constant num-
ber in our formulation. Taking K as 2 for an ex-
ample, we denote each probability shown on the
right side of Equation 1 through sampling without
replacement:

p({Ci1, Ci2}) = p(Ci1)p(Ci2)/(1− p(Ci1))
+ p(Ci1)p(Ci2)/(1− p(Ci2))

(2)
where we neglect Q, Pi to abbreviate the condi-
tional distributions in Equation 1.

Consequently, the basic block of our candidate
extraction stage turns out to be the distribution of
each candidate P (Cij |Q,Pi). In the rest of this
subsection, we will elaborate on the model archi-
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Figure 2: Candidate Extraction Model Architec-
ture.

tecture concerning candidate extraction, which is
displayed in Figure 2.

Question & Passage Representation Firstly,
we embed the questionQ = {xkQ}

lQ
k=1 and its rele-

vant passage P = {xtP }lPt=1 ∈ P with word vectors
to form Q ∈ Rdw×lQ and P ∈ Rdw×lP respec-
tively, where dw is the dimension of word embed-
dings, lQ and lP are the length of Q and P .

We then feed Q and P to a bidirectional LSTM
to form their contextual representations HQ ∈
Rdh×lQ and HP ∈ Rdh×lP :

HQ = BiLSTM(Q)

HP = BiLSTM(P)
(3)

Question & Passage Interaction Modeling the
interactions between questions and passages is a
critical step in reading comprehension. Here, we
adopt the attention mechanism similar to (Lee
et al., 2016) to generate question-dependent pas-
sage representation H̃P . Assume HQ = {hkQ}

lQ
k=1,

HP = {htP }lPt=1 , we have:

αtk =
ehk

Q·ht
P

∑lQ
k=1 e

hk
Q·ht

P

1 ≤ k ≤ lQ, 1 ≤ t ≤ lP

h̃
t

P =

lQ∑

k=1

αtkhkQ 1 ≤ t ≤ lP

H̃P ={h̃tP }lPt=1
(4)

After concatenating two kinds of passage rep-
resentations HP and H̃P , we use another bidirec-
tional LSTM to get the final representation of ev-
ery position in passage P as GP ∈ Rdg×lP :

GP = BiLSTM([HP ; H̃P ]) (5)
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Candidate Scoring Then we use two linear
transformations wb ∈ R1×dg and we ∈ R1×dg to
calculate the begin and the end scores for each po-
sition:

{btP }
lQ
t=1 = bP = wbGP

{etP }
lQ
t=1 = eP = weGP

(6)

At last, we model the probability of every sub-
span in passage P as a candidate C = {xtP }Ce

t=Cb

according to its begin and end position:

p(C|Q,P ) = exp(bCb
P + eCe

P )
∑lP

k=1

∑lP
t=k exp(b

k
P + etP )

(7)

In this definition, the probabilities of all the valid
answer candidates are already normalized.

3.2 Answer Selection

As the second part of our framework, the answer
selection model finds out the most probable an-
swer by calculating p(C|Q,P,C) for each candi-
date C ∈ C. The model architecture is illustrated
in Figure 3.

Notably, selection model receives candidate set
C as additional information. This more focused
information allows the model to combine evi-
dences from all the candidates, which would be
useful for selecting the best answer.

For ease of understanding, we briefly describe
the selection stage as follows. After being ex-
tracted from a single passage, a candidate borrows
information from other candidates across different
passages. With this global information, the pas-
sage is reread to confirm the correctness of the
candidate further. The following are details about
the selection model.

Question Representation Questions are funda-
mental for finding out the correct answer. As did
for the extraction model, we embed the question
Q with word vectors to form Q ∈ Rdw×lQ . Then
we use a bidirectional LSTM to establish its con-
textual representation:

Sq = BiLSTM(Q) (8)

A max-pooling operation across all the positions
is followed to get the condensed vector represen-
tation:

rq = MaxPooling(Sq) (9)

Question
Representation

Passage
Representation

Candidate
Representation

Answer
Scoring

Question

Passage

1xP
lxP
P2xP

1xQ
lxQ
Q

SQ

SP

…

…

…

…MaxPooling

rQ

...

MaxPooling

Sc

rC FP

rC
~

rC

rC

rC

1

2

M

zC

s

Candidates

Q

RP

Figure 3: Answer Selection Model Architecture.

Passage Representation Assume the candidate
C is extracted from the passage P ∈ P. To be
informed of C, we first build the representation of
P . For every word in P , three kinds of features
are utilized:

• Word embedding: each word expresses its
basic feature with the word vector.

• Common word: the feature has value 1 when
the word occurs in the question, otherwise 0.

• Question independent representation: the
condensed representation rq.

With these features, information not only in Q but
also in P is considered. By concatenating them,
we get rtP corresponding to every position t in pas-
sage P . Then with another bidirectional LSTM,
we fuse these features to form the contextual rep-
resentation of P as SP ∈ Rds×lP :

RP = {rtP }lPt=1

SP = BiLSTM(RP )
(10)

Candidate Representation Candidates provide
more focused information for answer selection.
Therefore, for each candidate, we first build its in-
dependent representation according to its position
in the passage, then construct candidates fused
representation through combination of other cor-
related candidates.

Given the candidate C = {xtP }Ce
t=Cb

in the pas-
sage P , we extract its corresponding span from
SP = {stP }lPt=1 to form SC = {stP }Ce

t=Cb
as its

contextual encoding. Moreover, we calculate its
condensed vector representation through its begin
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and end positions:

rC = tanh(WbsCb
P + WesCe

P ) (11)

where Wb ∈ Rdc×ds , We ∈ Rdc×ds .
To model the interactions among all the answer

candidates, we calculate the correlations of the
candidate C, which is assumed to be indexed by
j in C, with others {Cm}Mm=1,m 6=j via attention
mechanism:

Vjm = wvtanh(WcrC + WorCm) (12)

where Wc ∈ Rdc×dc , Wo ∈ Rdc×dc and wv ∈
R1×dc are linear transformations to capture the in-
tensity of each interaction.

In this way, we form a correlation matrix V ∈
RM×M , where M is the total number of candi-
dates. With the correlation matrix, for the can-
didate C, we normalize its interactions via a
softmax operation, which emphasizes the influ-
ence of stronger interactions:

αm =
eVjm

∑M
m=1,m 6=j e

Vjm
(13)

To take into account different influences of all
the other candidates, it is sensible to generate a
candidates fused representation according to the
above normalized interactions:

r̃C =
M∑

m=1,m 6=j
αmrCm (14)

In this formulation, all the other candidates con-
tribute their influences to the fused representation
by their interactions withC, thus information from
different passages is gathered altogether. In our
experiments, this kind of information fusion is the
key point for performance improvements.

Passage Advanced Representation As more
focused information of the candidate C is avail-
able, we are provided with a better way to confirm
its correctness by rereading its corresponding pas-
sage P . Specifically, we equip each position t in
P with following advanced features:

• Passage contextual representation: the for-
mer passage representation stP .

• Candidate-dependent passage representation:
replace HQ with SC and HP with SP in
Equation 4 to model the interactions between
candidates and passages to form s̃tP .

• Candidate related distance feature: the rela-
tive distance to the candidate C can be a ref-
erence of the importance of each position.

• Candidate independent representation: use
rC to consider the concerned candidate C.

• Candidates fused representation: use r̃C to
consider all the other candidates interacting
with the concerned candidate C.

With these features, we capture the information
from the question, the passages and all the candi-
dates. By concatenating them, we get utP in every
position in the passage P . Combining these fea-
tures with a bidirectional LSTM, we get:

UP = {utP }lPt=1

FP = BiLSTM(UP )
(15)

Answer Scoring At last, the max pooling of
each dimension of FP is performed, resulting in
a condensed vector representation, which contains
all the concerned information in a candidate:

zC = MaxPooling(FP ) (16)

The final score of this candidate as the answer
is calculated via a linear transformation, which is
then normalized across all the candidates:

s = wzzC

p(C|Q,P,C) = es
∑M

k=1 e
sk

(17)

3.3 Joint Training with RL

In our formulation, the answer candidate set in-
fluences the result of answer selection to a large
extent. However, with only golden answers pro-
vided in the training data, it is not apparent which
candidates should be considered further.

To alleviate the above problem, we treat candi-
date extraction as a latent variable, jointly train the
extraction model and the selection model with re-
inforcement learning. Formally, in the extraction
and selection stages, two kinds of actions are mod-
eled. The action space for the extraction model
is to select from different candidate sets, which is
formulated by Equation 1. The action space for
the selection model is to select from all extracted
candidates, which is formulated by Equation 17.
Our goal is to select the final answer that leads to
a high reward. Inspired by Wang et al. (2018a),
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we define the reward of a candidate to reflect its
accordance with the golden answer:

r(C,A) =





2 if C == A
f1(C,A) else if C ∩A 6= ∅
−1 else

(18)
where f1(., .) ∈ [0, 1] is the function to measure
word-level F1 score between two sequences. In-
corporating this reward can alleviate the overstrict
requirements set by traditional maximum likeli-
hood estimation as well as keep consistent with
our evaluation methods in experiments.

The learning objective becomes to maximize
the expected reward modeled by our framework,
where θ stands for all the parameters involved:

L(θ) = −EC∼P (C|Q,P)[EC∼P (C|Q,P,C)r(C,A)]

= −EC∼P (C|Q,P)[
∑

C

P (C|Q,P,C)r(C,A)]

(19)
Following REINFORCE algorithm, we approx-

imate the gradient of the above objective with a
sampled candidate set, C ∼ P (C|Q,P), resulting
in the following form:

∇L(θ) ≈ −
∑

C

∇P (C|Q,P,C)r(C,A)

−∇logP (C|Q,P)[
∑

C

P (C|Q,P,C)r(C,A)]

(20)

4 Experiments

4.1 Datasets

We evaluate our models on two publicly available
open-domain RC datasets, which are commonly
adopted in related work.

Quasar-T (Dhingra et al., 2017b) consists
of 43,000 open-domain trivia questions and
corresponding answers obtained from various
internet sources. Each question is paired
with 100 sentence-level passages retrieved from
ClueWeb09 (Callan et al., 2009) based on Lucene.

SearchQA (Dunn et al., 2017) starts from exist-
ing question-answer pairs, which are crawled from
J!Archive, and is augmented with text snippets re-
trieved by Google, resulting in more than 140,000
question-answer pairs with each pair having 49.6
snippets on average.

The detailed statistics of these two datasets is
shown in Table 2.

#q(train) #q(dev) #q(test) #p
Quasar-T 28,496 3,000 3,000 100
SearchQA 99,811 13,893 27,247 50

Table 2: The statistics of our experimental
datasets. #q represents the number of questions
for each split of the datasets. #p is the number of
passages for each question.

4.2 Model Settings
We initialize word embeddings with the 300-
dimensional Glove vectors1. All the bidirectional
LSTMs hold 1 layer and 100 hidden units. All
the linear transformations take the size of 100 as
output dimension. The common word feature and
the candidate related distance feature are embed-
ded with vectors of dimension 4 and 50 respec-
tively. By default, we set K as 2 in Equation 1,
which means each passage generates two candi-
dates based on the extraction model.

For ease of training, we first initialize our mod-
els by maximum likelihood estimation and fine-
tune them with RL. The similar training strategy is
commonly employed when RL process is involved
(Ranzato et al., 2015; Li et al., 2016a; Hu et al.,
2018). To pre-train the extraction model, we only
use passages containing ground truths as training
data. The log likelihood of Equation 7 is taken as
the training objective for each question and pas-
sage pair. After pre-training the extraction model,
we use it to generate two top-scoring candidates
from each passage, forming the training data to
pre-train our selection model, and maximize the
log likelihood of the Equation 17 as our second
objective. In pre-training, we use the batch size
of 30 for the extraction model, 20 for the selection
model and RMSProp (Tieleman and Hinton, 2012)
with an initial learning rate of 2e-3. In fine-tuning
with RL, we use the batch size of 5 and RMSProp
with an initial learning rate of 1e-4. Also, we use
a dropout rate of 0.1 in each training procedure.

4.3 Experimental Results
In addition to results of previous work, we add
two baselines to demonstrate the effectiveness of
our framework. The first baseline only applies
the extraction model to score the answers, which
is aimed at explaining the importance of the se-
lection model. The second one only uses the
pre-trained extraction model and selection model

1http://nlp.stanford.edu/data/wordvecs/glove.840B.300d.zip
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Quasar-T SearchQA
EM F1 EM F1

GA (Dhingra et al., 2017a) 26.4 26.4 - -
BIDAF (Seo et al., 2017) 25.9 28.5 28.6 34.6
AQA (Buck et al., 2018) - - 38.7 45.6
R3 (Wang et al., 2018a) 35.3 41.7 49.0 55.3
Re-Ranker (Wang et al., 2018b)
Strength-Based Re-Ranker (Probability) 36.1 42.4 50.4 56.5
Strength-Based Re-Ranker (Counting) 37.1 46.7 54.2 61.6
Coverage-Based Re-Raner 40.6 49.1 53.6 60.6
Full Re-Ranker 42.3 49.6 57.0 63.2
Our Methods
Extraction Model 35.4 41.6 44.7 51.2
Extraction + Selection (Isolated Training) 41.6 49.5 49.7 56.6
Extraction + Selection (Joint Training) 45.9 53.9 58.3 64.2

Table 3: Experimental results on the test set of Quasar-T and SearchQA. Full re-ranker is the ensemble
of three different re-rankers in (Wang et al., 2018b).

to illustrate the benefits from our joint training
schema.

The often used evaluation metrics for extractive
RC are exact match (EM) and F1 (Rajpurkar et al.,
2016). The experimental results on Quasar-T and
SearchQA are shown in Table 3.

As seen from the results on Quasar-T, our quite
simple extraction model alone almost reaches the
state-of-the-art result compared with other meth-
ods without re-rankers. The combination of the
extraction and selection models exceeds our ex-
traction baseline by a great margin, and also re-
sults in performance surpassing the best single re-
ranker in (Wang et al., 2018b). This result illus-
trates the necessity of introducing the selection
model, which incorporates information from all
the candidates. In the end, by joint training with
RL, our method produces better performance even
compared with the ensemble of three different re-
rankers.

On SearchQA, we find that our extraction model
alone performs not that well compared with the
state-of-the-art model without re-rankers. How-
ever, the improvement brought by our selection
model isolatedly or jointly trained still demon-
strates the importance of our two-stage frame-
work. Not surprisingly, comparing the results, our
isolated training strategy still lags behind the sin-
gle re-ranker proposed in (Wang et al., 2018b),
partly because of the deficiency with our extrac-
tion model. However, uniting our extraction and
selection models with RL makes up the dispar-
ity, and the performance surpasses the ensemble
of three different re-rankers, let alone the result of

Quasar-T EM F1
Extraction + Selection (Joint Training) 45.9 53.9
-question representation 42.5 50.5
-question and passage common words 41.0 48.7
-candidate independent representation 44.5 53.3
-candidate related distance feature 44.7 53.0
-candidate dependent passage representation 44.4 52.3
-candidates fused representation 39.2 45.8

Table 4: Ablation results concerning the selec-
tion model on the test set of Quasar-T. Obviously,
candidates fused representation is the most evident
feature when modeling the answer selection pro-
cedure.

any single re-ranker.

4.4 Further Analysis

Effect of Features in Selection Model As the
incorporation of the selection model improves the
overall performance significantly, we conduct ab-
lation analysis on the Quasar-T to prove the effec-
tiveness of its major components. As shown in Ta-
ble 4, all these components modeling the selection
procedure play important roles in our final archi-
tecture.

Specifically, introducing the independent repre-
sentation of the question and its common words
with the passage seems an efficient way to con-
sider the information of questions, which is con-
sistent with previous work (Li et al., 2016b; Chen
et al., 2017).

As for features related to candidates, the incor-
poration of the candidate independent information
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Q Cocktails : Rum , lime , and cola drink make a .
A Cuba Libre
P1 In Nicaragua , when it is mixed using Flor de Ca a -LRB- the

national brand of rum -RRB- and cola , it is called a Nica Libre .
P2 The drink ... Daiquiri The custom of mixing lime with rum for a

cooling drink on a hot Cuban day has been around a long time .
P3 If you only learn to make two cocktails , the Manhattan should

be one of them .
P4 Daiquiri Cocktail recipe for a Daiquiri , a classic rum and lime

drink that every bartender should know .
P5 Hemingway Special Daiquiri : Daiquiris are a family of cocktails

whose main ingredients are rum and lime juice .
P6 In the Netherlands the drink is commonly called Baco , from the

two ingredients of Bacardi rum and cola .
P7 A homemade Cuba Libre Preparation To make a Cuba Libre prop-

erly , fill a highball glass with ice and half fill with cola .
P8 Bacardi Cocktail Cocktail recipe for a Bacardi Cocktail , a clas-

sic cocktail of Bacardi rum , lemon or lime juice and grenadine
Roy Rogers -LRB- non-alcoholic -RRB- Cocktail recipe for a Roy
Rogers ,

P9 Margarita Cocktail recipe for a Margarita , a popular refreshing
tequila and lime drink for summer .

P10 The difference between the Cuba Libre and Rum is a lime wedge
at the end .

Table 5: An example from Quasar-T to illustrate
the necessity of fused information. Candidates ex-
tracted from passages are in a bold font. To cor-
rectly answer the question, information in P7 and
P10 should be combined.

contributes to the final result more or less. These
features include candidate-dependent passage rep-
resentation, candidate independent representation
and candidate related distance feature.

Most importantly, the candidates fused repre-
sentation, which combines the information from
all the candidates, demonstrates its indispensable
role in candidate modeling, with a performance
drop of nearly 8% when discarded. This phe-
nomenon also verifies the necessity of our extract-
then-select procedure, showing the importance of
combining information scattered in different text
pieces when picking out the final answer.

Example for Candidates Fused Representation
We conduct a case study to demonstrate the im-
portance of candidates fused information further.
In Table 5, each candidate only partly matches the
description of the question in its independent con-
text. To correctly answer the question, informa-
tion in P7 and P10 should be combined. In exper-
iments, our selection model provides the correct
answer, while the wrong candidate ”Daiquiri”, a
different kind of cocktail, is selected if candidates
fused representation is discarded. The attention
map established when modeling the fusion of can-
didates (corresponding to Equation 13) in this ex-
ample is illustrated in Figure 4, in which we can
see the interactions among all the candidates from
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Figure 4: The attention map generated when mod-
eling candidates fused representations for the ex-
ample in Table 5.

Quasar-T EM F1
K=1 43.9 52.4
K=2 45.9 53.9
K=3 45.8 53.9

Table 6: Different number of extracted candidates
results in different final performance on the test set
of Quasar-T.

different passages. In this figure, it is obvious that
the interaction of ”Cuba Libre” in P7 and P10 is
the key point to answer the question correctly.

Effect of Candidate Number The candidate ex-
traction stage takes an important role to decide
what information should be focused on further.
Therefore, we also test the influence of different
K when extracting candidates from each passage.
The results are shown in Table 6. Taking K = 1
degrades the performance, which conforms to the
expectation, as the correct candidates become less
in this stricter situation. However, taking K = 3
can not improve the performance further. Al-
though a larger K means a higher possibility to
include good answers, it raises more challenges
for the selection model to pick out the correct one
from candidates with more varieties.

5 Conclusion

In this paper, we formulate the problem of RC as
a two-stage process, which first generates candi-
dates with an extraction model, then selects the
final answer by combining the information from
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all the candidates. Furthermore, we treat can-
didate extraction as a latent variable and jointly
train these two stages with RL. Experiments on
public open-domain RC datasets Quasar-T and
SearchQA show the necessity of introducing the
selection model and the effectiveness of fusing
candidates information when modeling. More-
over, our joint training strategy leads to significant
improvements in performance.
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Abstract

Neural models for question answering
(QA) over documents have achieved sig-
nificant performance improvements. Al-
though effective, these models do not scale
to large corpora due to their complex mod-
eling of interactions between the docu-
ment and the question. Moreover, re-
cent work has shown that such models
are sensitive to adversarial inputs. In this
paper, we study the minimal context re-
quired to answer the question, and find
that most questions in existing datasets
can be answered with a small set of sen-
tences. Inspired by this observation, we
propose a simple sentence selector to se-
lect the minimal set of sentences to feed
into the QA model. Our overall system
achieves significant reductions in training
(up to 15 times) and inference times (up to
13 times), with accuracy comparable to or
better than the state-of-the-art on SQuAD,
NewsQA, TriviaQA and SQuAD-Open.
Furthermore, our experimental results and
analyses show that our approach is more
robust to adversarial inputs.

1 Introduction

The task of textual question answering (QA), in
which a machine reads a document and answers a
question, is an important and challenging problem
in natural language processing. Recent progress in
performance of QA models has been largely due
to the variety of available QA datasets (Richard-
son et al., 2013; Hermann et al., 2015; Rajpurkar
et al., 2016; Trischler et al., 2016; Joshi et al.,
2017; Kočiskỳ et al., 2017).

∗All work was done while the author was an intern at
Salesforce Research.

Many neural QA models have been proposed
for these datasets, the most successful of which
tend to leverage coattention or bidirectional atten-
tion mechanisms that build codependent represen-
tations of the document and the question (Xiong
et al., 2018; Seo et al., 2017).

Yet, learning the full context over the document
is challenging and inefficient. In particular, when
the model is given a long document, or multiple
documents, learning the full context is intractably
slow and hence difficult to scale to large corpora.
In addition, Jia and Liang (2017) show that, given
adversarial inputs, such models tend to focus on
wrong parts of the context and produce incorrect
answers.

In this paper, we aim to develop a QA system
that is scalable to large documents as well as ro-
bust to adversarial inputs. First, we study the con-
text required to answer the question by sampling
examples in the dataset and carefully analyzing
them. We find that most questions can be an-
swered using a few sentences, without the consid-
eration of context over entire document. In partic-
ular, we observe that on the SQuAD dataset (Ra-
jpurkar et al., 2016), 92% of answerable questions
can be answered using a single sentence.

Second, inspired by this observation, we pro-
pose a sentence selector to select the minimal set
of sentences to give to the QA model in order to
answer the question. Since the minimum num-
ber of sentences depends on the question, our sen-
tence selector chooses a different number of sen-
tences for each question, in contrast with previ-
ous models that select a fixed number of sentences.
Our sentence selector leverages three simple tech-
niques — weight transfer, data modification and
score normalization, which we show to be highly
effective on the task of sentence selection.

We compare the standard QA model given the
full document (FULL) and the QA model given the
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N % on % on
Document Question

sent SQuAD TriviaQA
1 90 56 In 1873, Tesla returned to his birthtown, Smiljan. Shortly after he arrived, (...) Where did Tesla return to in 1873?
2 6 28 After leaving Edison’s company Tesla partnered with two businessmen in 1886, What did Tesla Electric Light & Manufacturing

Robert Lane and Benjamin Vail, who agreed to finance an electric lighting do?
company in Tesla’s name, Tesla Electric Light & Manufacturing. The company
installed electrical arc light based illumination systems designed by Tesla and
also had designs for dynamo electric machine commutators, (...)

3↑ 2 4 Kenneth Swezey, a journalist whom Tesla had befriended, confirmed that Tesla Who did Tesla call in the middle of the night?
rarely slept . Swezey recalled one morning when Tesla called him at 3 a.m. : ”I
was sleeping in my room (...) Suddenly, the telephone ring awakened me ...

N/A 2 12 Writers whose papers are in the library are as diverse as Charles Dickens and The papers of which famous English Victorian
Beatrix Potter. Illuminated manuscripts in the library dating from (...) author are collected in the library?

Table 1: Human analysis of the context required to answer questions on SQuAD and TriviaQA. 50
examples from each dataset are sampled randomly. ‘N sent’ indicates the number of sentences required
to answer the question, and ‘N/A’ indicates the question is not answerable even given all sentences in
the document. ‘Document’ and ‘Question’ are from the representative example from each category on
SQuAD. Examples on TriviaQA are shown in Appendix B. The groundtruth answer span is in red text,
and the oracle sentence (the sentence containing the grountruth answer span) is in bold text.

No. Description % Sentence Question
0 Correct (Not exactly same 58 Gothic architecture is represented in the majestic churches but also at the burgher What type of architecture is represented

as grountruth) houses and fortifications. in the majestic churches?
1 Fail to select precise span 6 Brownlee argues that disobedience in opposition to the decisions of non-governmental Brownlee argues disobedience can be

agencies such as trade unions, banks, and private universities can be justified if it justified toward what institutions?
reflects ‘a larger challenge to the legal system that permits those decisions to be taken;.

2 Complex semantics in 34 Newton was limited by Denver’s defense, which sacked him seven times and forced him How many times did the Denver defense
sentence/question into three turnovers, including a fumble which they recovered for a touchdown. force Newton into turnovers?

3 Not answerable even with 2 He encourages a distinction between lawful protest demonstration, nonviolent civil What type of civil disobedience is
full paragraph disobedience, and violent civil disobedience. accompanied by aggression?

Table 2: Error cases (on exact match (EM)) of DCN+ given oracle sentence on SQuAD. 50 examples are
sampled randomly. Grountruth span is in underlined text, and model’s prediction is in bold text.

minimal set of sentences (MINIMAL) on five dif-
ferent QA tasks with varying sizes of documents.
On SQuAD, NewsQA, TriviaQA(Wikipedia) and
SQuAD-Open, MINIMAL achieves significant re-
ductions in training and inference times (up to
15× and 13×, respectively), with accuracy com-
parable to or better than FULL. On three of those
datasets, this improvements leads to the new state-
of-the-art. In addition, our experimental results
and analyses show that our approach is more ro-
bust to adversarial inputs. On the development
set of SQuAD-Adversarial (Jia and Liang, 2017),
MINIMAL outperforms the previous state-of-the-
art model by up to 13%.

2 Task analyses

Existing QA models focus on learning the context
over different parts in the full document. Although
effective, learning the context within the full docu-
ment is challenging and inefficient. Consequently,
we study the minimal context in the document re-
quired to answer the question.

2.1 Human studies

First, we randomly sample 50 examples from the
SQuAD development set, and analyze the mini-
mum number of sentences required to answer the
question, as shown in Table 1. We observed that
98% of questions are answerable given the docu-
ment. The remaining 2% of questions are not an-
swerable even given the entire document. For in-
stance, in the last example in Table 1, the question
requires the background knowledge that Charles
Dickens is an English Victorian author. Among
the answerable examples, 92% are answerable
with a single sentence, 6% with two sentences, and
2% with three or more sentences.

We perform a similar analysis on the TriviaQA
(Wikipedia) development (verified) set. Finding
the sentences to answer the question on TriviaQA
is more challenging than on SQuAD, since Triv-
iaQA documents are much longer than SQuAD
documents (488 vs 5 sentences per document).
Nevertheless, we find that most examples are an-
swerable with one or two sentences — among the
88% of examples that are answerable given the full
document, 95% can be answered with one or two
sentences.
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2.2 Analyses on existing QA model

Given that the majority of examples are answer-
able with a single oracle sentence on SQuAD, we
analyze the performance of an existing, compet-
itive QA model when it is given the oracle sen-
tence. We train DCN+ (Xiong et al., 2018), one
of the state-of-the-art models on SQuAD (details
in Section 3.1), on the oracle sentence. The model
achieves 83.1 F1 when trained and evaluated us-
ing the full document and 85.1 F1 when trained
and evaluated using the oracle sentence. We ana-
lyze 50 randomly sampled examples in which the
model fails on exact match (EM) despite using the
oracle sentence. We classify these errors into 4
categories, as shown in Table 2. In these exam-
ples, we observed that 40% of questions are an-
swerable given the oracle sentence but the model
unexpectedly fails to find the answer. 58% are
those in which the model’s prediction is correct but
does not lexically match the groundtruth answer,
as shown in the first example in Table 2. 2% are
those in which the question is not answerable even
given the full document. In addition, we com-
pare predictions by the model trained using the
full document (FULL) with the model trained on
the oracle sentence (ORACLE). Figure 1 shows the
Venn diagram of the questions answered correctly
by FULL and ORACLE on SQuAD and NewsQA.
ORACLE is able to answer 93% and 86% of the
questions correctly answered by FULL on SQuAD
and NewsQA, respectively.

These experiments and analyses indicate that if
the model can accurately predict the oracle sen-
tence, the model should be able to achieve compa-
rable performance on overall QA task. Therefore,
we aim to create an effective, efficient and robust
QA system which only requires a single or a few
sentences to answer the question.

3 Method

Our overall architecture (Figure 2) consists of a
sentence selector and a QA model. The sentence
selector computes a selection score for each sen-
tence in parallel. We give to the QA model a re-
duced set of sentences with high selection scores
to answer the question.

3.1 Neural Question Answering Model

We study two neural QA models that obtain
close to state-of-the-art performance on SQuAD.
DCN+ (Xiong et al., 2018) is one of the start-

Full Oracle Full Oracle 

5% 
66% 

9% 

7% 
44% 

15% 

20% 34% 

SQuAD NewsQA 

Figure 1: Venn diagram of the questions answered
correctly (on exact match (EM)) by the model
given a full document (FULL) and the model given
an oracle sentence (ORACLE) on SQuAD (left)
and NewsQA (right).

of-the-art QA models, achieving 83.1 F1 on the
SQuAD development set. It features a deep resid-
ual coattention encoder, a dynamic pointing de-
coder, and a mixed objective that combines cross
entropy loss with self-critical policy learning. S-
Reader is another competitive QA model that is
simpler and faster than DCN+, with 79.9 F1 on the
SQuAD development set. It is a simplified version
of the reader in DrQA (Chen et al., 2017), which
obtains 78.8 F1 on the SQuAD development set.
Model details and training procedures are shown
in Appendix A.

3.2 Sentence Selector
Our sentence selector scores each sentence with
respect to the question in parallel. The score indi-
cates whether the question is answerable with this
sentence.

The model architecture is divided into the en-
coder module and the decoder module. The en-
coder is a shared module with S-Reader, which
computes sentence encodings and question encod-
ings from the sentence and the question as inputs.
First, the encoder computes sentence embeddings
D ∈ Rhd×Ld , question embeddings Q ∈ Rhd×Lq ,
and question-aware sentence embeddings Dq ∈
Rhd×Ld , where hd is the dimension of word em-
beddings, and Ld and Lq are the sequence length
of the document and the question, respectively.
Specifically, question-aware sentence embeddings
are obtained as follows.

αi = softmax(DT
i W1Q) ∈ RLq (1)

Dq
i =

Lq∑

j=1

(αi,jQj) ∈ Rhd (2)

Here, Di ∈ Rhd is the hidden state of sentence
embedding for the ith word and W1 ∈ Rhd×hd is
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Figure 2: Our model architecture. (a) Overall pipeline, consisting of sentence selector and QA model.
Selection score of each sentence is obtained in parallel, then sentences with selection score above the
threshold are merged and fed into QA model. (b) Shared encoder of sentence selector and S-Reader (QA
Model), which takes document and the question as inputs and outputs the document encodings Denc and
question encodings Qenc. (c) Decoder of S-Reader (QA Model), which takes Denc and Qenc as inputs
and outputs the scores for start and end positions. (d) Decoder of sentence selector, which takesDenc and
Qenc for each sentence and outputs the score indicating if the question is answerable given the sentence.

a trainable weight matrix. After this, sentence en-
codings and question encodings are obtained using
an LSTM (Hochreiter and Schmidhuber, 1997).

Denc = BiLSTM([Di;D
q
i ]) ∈ Rh×Ld (3)

Qenc = BiLSTM(Qj) ∈ Rh×Lq (4)

Here, ‘;’ denotes the concatenation of two vec-
tors, and h is a hyperparameter of the hidden di-
mension.

Next, the decoder is a task-specific module
which computes the score for the sentence by cal-
culating bilinear similarities between sentence en-
codings and question encodings as follows.

β = softmax(wTQenc) ∈ RLq (5)

˜qenc =

Lq∑

j=1

(βjQ
enc
j ) ∈ Rh (6)

h̃i = (Denc
i W2 ˜qenc) ∈ Rh (7)

h̃ = max(h̃1, h̃2, · · · , ˜hLd
) (8)

score = W T
3 h̃ ∈ R2 (9)

Here, w ∈ Rh,W2 ∈ Rh×h×h,W3 ∈ Rh×2,
are trainable weight matrices. Each dimension in
score means the question is answerable or nonan-
swerable given the sentence.

We introduce 3 techniques to train the model.
(i) As the encoder module of our model is iden-
tical to that of S-Reader, we transfer the weights
to the encoder module from the QA model trained
on the single oracle sentence (ORACLE). (ii) We
modify the training data by treating a sentence as a
wrong sentence if the QA model gets 0 F1, even if
the sentence is the oracle sentence. (iii) After we
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Dataset Domain N word N sent N doc Supervision
SQuAD Wikipedia 155 5 - Span
NewsQA News Articles 803 20 - Span
TriviaQA (Wikipedia) Wikipedia 11202 488 2 Distant
SQuAD-Open Wikipedia 120734 4488 10 Distant
SQuAD-Adversarial-AddSent Wikipedia 169 6 - Span
SQuAD-Adversarial-AddOneSent Wikipedia 165 6 - Span

Table 3: Dataset used for experiments. ‘N word’, ‘N sent’ and ‘N doc’ refer to the average number of
words, sentences and documents, respectively. All statistics are calculated on the development set. For
SQuAD-Open, since the task is in open-domain, we calculated the statistics based on top 10 documents
from Document Retriever in DrQA (Chen et al., 2017).

obtain the score for each sentence, we normalize
scores across sentences from the same paragraph,
similar to Clark and Gardner (2017). All of these
three techniques give substantial improvements in
sentence selection accuracy, as shown in Table 4.
More details including hyperparameters and train-
ing procedures are shown in Appendix A.

Because the minimal set of sentences required
to answer the question depends on the question,
we select the set of sentences by thresholding the
sentence scores, where the threshold is a hyper-
parameter (details in Appendix A). This method
allows the model to select a variable number of
sentences for each question, as opposed to a fixed
number of sentences for all questions. Also,
by controlling the threshold, the number of sen-
tences can be dynamically controlled during the
inference. We define Dyn (for Dynamic) as this
method, and define Top k as the method which
simply selects the top-k sentences for each ques-
tion.

4 Experiments

4.1 Dataset and Evaluation Metrics

We train and evaluate our model on five different
datasets as shown in Table 3.

SQuAD (Rajpurkar et al., 2016) is a well-
studied QA dataset on Wikipedia articles that re-
quires each question to be answered from a para-
graph.

NewsQA (Trischler et al., 2016) is a dataset on
news articles that also provides a paragraph for
each question, but the paragraphs are longer than
those in SQuAD.

TriviaQA (Joshi et al., 2017) is a dataset on a
large set of documents from the Wikipedia domain
and Web domain. Here, we only use the Wikipedia

domain. Each question is given a much longer
context in the form of multiple documents.

SQuAD-Open (Chen et al., 2017) is an open-
domain question answering dataset based on
SQuAD. In SQuAD-Open, only the question and
the answer are given. The model is responsible for
identifying the relevant context from all English
Wikipedia articles.

SQuAD-Adversarial (Jia and Liang, 2017) is a
variant of SQuAD. It shares the same training set
as SQuAD, but an adversarial sentence is added to
each paragraph in a subset of the development set.

We use accuracy (Acc) and mean average pre-
cision (MAP) to evaluate sentence selection. We
also measure the average number of selected sen-
tences (N sent) to compare the efficiency of our
Dyn method and the Top k method.

To evaluate the performance in the task of ques-
tion answering, we measure F1 and EM (Exact
Match), both being standard metrics for evaluat-
ing span-based QA. In addition, we measure train-
ing speed (Train Sp) and inference speed (Infer
Sp) relative to the speed of standard QA model
(FULL). The speed is measured using a single
GPU (Tesla K80), and includes the training and
inference time for the sentence selector.

4.2 SQuAD and NewsQA

For each QA model, we experiment with three
types of inputs. First, we use the full document
(FULL). Next, we give the model the oracle
sentence containing the groundtruth answer span
(ORACLE). Finally, we select sentences using
our sentence selector (MINIMAL), using both Top
k and Dyn. We also compare this last method with
TF-IDF method for sentence selection, which se-
lects sentences using n-gram TF-IDF distance be-
tween each sentence and the question.
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Model
SQuAD NewsQA

Top 1 MAP Top 1 Top 3 MAP
TF-IDF 81.2 89.0 49.8 72.1 63.7
Our selector 85.8 91.6 63.2 85.1 75.5
Our selector (T) 90.0 94.3 67.1 87.9 78.5
Our selector (T+M, T+M+N) 91.2 95.0 70.9 89.7 81.1
Tan et al. (2018) - 92.1 - - -

Selection method
SQuAD NewsQA

N sent Acc N sent Acc
Top k (T+M)a 1 91.2 1 70.9
Top k (T+M)a 2 97.2 3 89.7
Top k (T+M)a 3 98.9 4 92.5
Dyn (T+M) 1.5 94.7 2.9 84.9
Dyn (T+M) 1.9 96.5 3.9 89.4
Dyn (T+M+N) 1.5 98.3 2.9 91.8
Dyn (T+M+N) 1.9 99.3 3.9 94.6

Table 4: Results of sentence selection on the dev
set of SQuAD and NewsQA. (Top) We compare
different models and training methods. We report
Top 1 accuracy (Top 1) and Mean Average Pre-
cision (MAP). Our selector outperforms the pre-
vious state-of-the-art (Tan et al., 2018). (Bottom)
We compare different selection methods. We re-
port the number of selected sentences (N sent) and
the accuracy of sentence selection (Acc). ‘T’, ‘M’
and ‘N’ are training techniques described in Sec-
tion 3.2 (weight transfer, data modification and
score normalization, respectively).

a‘N’ does not change the result on Top k, since Top
k depends on the relative scores across the sentences from
same paragraph.

Figure 3: The distributions of number of sentences
that our selector selects using Dyn method on the
dev set of SQuAD (left) and NewsQA (right).

Results Table 4 shows results in the task of sen-
tence selection on SQuAD and NewsQA. First,
our selector outperforms TF-IDF method and the
previous state-of-the-art by large margin (up to
2.9% MAP).

Second, our three training techniques – weight
transfer, data modification and score normaliza-
tion – improve performance by up to 5.6% MAP.
Finally, our Dyn method achieves higher accuracy
with less sentences than the Top k method. For
example, on SQuAD, Top 2 achieves 97.2 accu-
racy, whereas Dyn achieves 99.3 accuracy with

SQuAD (with S-Reader)
F1 EM Train Sp Infer Sp

FULL 79.9 71.0 x1.0 x1.0
ORACLE 84.3 74.9 x6.7 x5.1
MINIMAL(Top k) 78.7 69.9 x6.7 x5.1
MINIMAL(Dyn) 79.8 70.9 x6.7 x3.6

SQuAD (with DCN+)
FULL 83.1 74.5 x1.0 x1.0
ORACLE 85.1 76.0 x3.0 x5.1
MINIMAL(Top k) 79.2 70.7 x3.0 x5.1
MINIMAL(Dyn) 80.6 72.0 x3.0 x3.7
GNR 75.0a 66.6a - -
FastQA 78.5 70.3 - -
FusionNet 83.6 75.3 - -

NewsQA (with S-Reader)
F1 EM Train Sp Infer Sp

FULL 63.8 50.7 x1.0 x1.0
ORACLE 75.5 59.2 x18.8 x21.7
MINIMAL(Top k) 62.3 49.3 x15.0 x6.9
MINIMAL(Dyn) 63.2 50.1 x15.0 x5.3
FastQA 56.1 43.7 - -

Table 5: Results on the dev set of SQuAD (First
two) and NewsQA (Last). For Top k, we use
k = 1 and k = 3 for SQuAD and NewsQA, re-
spectively. We compare with GNR (Raiman and
Miller, 2017), FusionNet (Huang et al., 2018) and
FastQA (Weissenborn et al., 2017), which are the
model leveraging sentence selection for question
answering, and the published state-of-the-art mod-
els on SQuAD and NewsQA, respectively.

aNumbers on the test set.

1.9 sentences per example. On NewsQA, Top
4 achieves 92.5 accuracy, whereas Dyn achieves
94.6 accuracy with 3.9 sentences per example.

Figure 3 shows that the number of sentences
selected by Dyn method vary substantially on
both SQuAD and NewsQA. This shows that
Dyn chooses a different number of sentences de-
pending on the question, which reflects our intu-
ition.

Table 5 shows results in the task of QA on
SQuAD and NewsQA. MINIMAL is more efficient
in training and inference than FULL. On SQuAD,
S-Reader achieves 6.7× training and 3.6× infer-
ence speedup on SQuAD, and 15.0× training and
6.9× inference speedup on NewsQA. In addition
to the speedup, MINIMAL achieves comparable re-
sult to FULL (using S-Reader, 79.9 vs 79.8 F1 on
SQuAD and 63.8 vs 63.2 F1 on NewsQA).

We compare the predictions from FULL and
MINIMAL in Table 6. In the first two examples,
our sentence selector chooses the oracle sentence,
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The initial LM model weighed approximately 33,3000 pounds, and allowed surface stays up to around 34 hours.
. . .
An Extended Lunar Module weighed over 36,200 pounds, and allowed surface stays of over 3 days.

For about how long would the extended LM allow a surface stay on the moon?
Approximately 1,000 British soldiers were killed or injured.
. . .
The remaining 500 British troops, led by George Washington, retreated to Virginia.

How many casualties did British get?
This book, which influenced the thought of Charles Darwin, successfully promoted the doctrine of uniformitarianism.
This theory states that slow geological processes have occurred throughout the Earth’s history and are still occurring today.
In contrast, catastrophism is the theory that Earth’s features formed in single, catastrophic events and remained unchanged thereafter.

Which theory states that slow geological processes are still occuring today, and have occurred throughout Earth’s history?

Table 6: Examples on SQuAD. Grountruth span (underlined text), the prediction from FULL (blue text)
and MINIMAL (red text). Sentences selected by our selector is denoted with . In the above two
examples, MINIMAL correctly answer the question by selecting the oracle sentence. In the last example,
MINIMAL fails to answer the question, since the inference over first and second sentences is required to
answer the question.

selected sentence
However, in 1883-84 Germany began to build a colonial empire in Africa and the South Pacific, before losing interest in imperialism.
The establishment of the German colonial empire proceeded smoothly, starting with German New Guinea in 1884.

When did Germany found their first settlement? 1883-84 1884 1884
In the late 1920s, Tesla also befriended George Sylvester Viereck, a poet, writer, mystic, and later, a Nazi propagandist.
In middle age, Tesla became a close friend of Mark Twain; they spent a lot of time together in his lab and elsewhere.

When did Tesla become friends with Viereck? late 1920s middle age late 1920s

Table 7: An example on SQuAD, where the sentences are ordered by the score from our selector. Groun-
truth span (underlined text), the predictions from Top 1 (blue text), Top 2 (green text) and Dyn (red
text). Sentences selected by Top 1, Top 2 and Dyn are denoted with , and , respectively.

and the QA model correctly answers the question.
In the last example, our sentence selector fails to
choose the oracle sentence, so the QA model can-
not predict the correct answer. In this case, our se-
lector chooses the second and the third sentences
instead of the oracle sentence because the former
contains more information relevant to question. In
fact, the context over the first and the second sen-
tences is required to correctly answer the question.

Table 7 shows an example on SQuAD, which
MINIMAL with Dyn correctly answers the ques-
tion, and MINIMAL with Top k sometimes does
not. Top 1 selects one sentence in the first exam-
ple, thus fails to choose the oracle sentence. Top
2 selects two sentences in the second example,
which is inefficient as well as leads to the wrong
answer. In both examples, Dyn selects the oracle
sentence with minimum number of sentences, and
subsequently predicts the answer. More analyses
are shown in Appendix B.

4.3 TriviaQA and SQuAD-Open

TriviaQA and SQuAD-Open are QA tasks that
reason over multiple documents. They do not

provide the answer span and only provide the
question-answer pairs.

For each QA model, we experiment with two
types of inputs. First, since TriviaQA and
SQuAD-Open have many documents for each
question, we first filter paragraphs based on the
TF-IDF similarities between the question and the
paragraph, and then feed the full paragraphs to the
QA model (FULL). On TriviaQA, we choose the
top 10 paragraphs for training and inference. On
SQuAD-Open, we choose the top 20 paragraphs
for training and the top 40 for inferences. Next, we
use our sentence selector with Dyn (MINIMAL).
We select 5-20 sentences using our sentence se-
lector, from 200 sentences based on TF-IDF.

For training the sentence selector, we use two
techniques described in Section 3.2, weight trans-
fer and score normalization, but we do not use data
modification technique, since there are too many
sentences to feed each of them to the QA model.
For training the QA model, we transfer the weights
from the QA model trained on SQuAD, then fine-
tune.
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TriviaQA (Wikipedia) SQuAD-Open
n sent Acc Sp F1 EM n sent Acc Sp F1 EM

FULL 69 95.9 x1.0 59.6 53.5 124 76.9 x1.0 41.0 33.1

MINIMAL

TF-IDF
5 73.0 x13.8 51.9 45.8 5 46.1 x12.4 36.6 29.6
10 79.9 x6.9 57.2 51.5 10 54.3 x6.2 39.8 32.5

Our 5.0 84.9 x13.8 59.5 54.0 5.3 58.9 x11.7 42.3 34.6
Selector 10.5 90.9 x6.6 60.5 54.9 10.7 64.0 x5.8 42.5 34.7

Rank 1 - - - 56.0a 51.6a 2376a 77.8 - - 29.8
Rank 2 - - - 55.1a 48.6a - - - 37.5 29.1
Rank 3 - - - 52.9b 46.9a 2376a 77.8 - - 28.4

Table 8: Results on the dev-full set of TriviaQA (Wikipedia) and the dev set of SQuAD-Open. Full re-
sults (including the dev-verified set on TriviaQA) are in Appendix C. For training FULL and MINIMAL on
TriviaQA, we use 10 paragraphs and 20 sentences, respectively. For training FULL and MINIMAL on
SQuAD-Open, we use 20 paragraphs and 20 sentences, respectively. For evaluating FULL and MINIMAL,
we use 40 paragraphs and 5-20 sentences, respectively. ‘n sent’ indicates the number of sentences used
during inference. ‘Acc’ indicates accuracy of whether answer text is contained in selected context. ‘Sp’
indicates inference speed. We compare with the results from the sentences selected by TF-IDF method
and our selector (Dyn). We also compare with published Rank1-3 models. For TriviaQA(Wikipedia),
they are Neural Casecades (Swayamdipta et al., 2018), Reading Twice for Natural Language Under-
standing (Weissenborn, 2017) and Mnemonic Reader (Hu et al., 2017). For SQuAD-Open, they are
DrQA (Chen et al., 2017) (Multitask), R3 (Wang et al., 2018) and DrQA (Plain).

aApproximated based on there are 475.2 sentences per document, and they use 5 documents per question
bNumbers on the test set.

Results Table 8 shows results on TriviaQA
(Wikipedia) and SQuAD-Open. First, MINI-
MAL obtains higher F1 and EM over FULL, with
the inference speedup of up to 13.8×. Sec-
ond, the model with our sentence selector with
Dyn achieves higher F1 and EM over the model
with TF-IDF selector. For example, on the
development-full set, with 5 sentences per ques-
tion on average, the model with Dyn achieves 59.5
F1 while the model with TF-IDF method achieves
51.9 F1. Third, we outperforms the published
state-of-the-art on both dataset.

4.4 SQuAD-Adversarial
We use the same settings as Section 4.2. We use
the model trained on SQuAD, which is exactly
same as the model used for Table 5. For MINI-
MAL, we select top 1 sentence from our sentence
selector to the QA model.

Results Table 9 shows that MINIMAL outper-
forms FULL, achieving the new state-of-the-art by
large margin (+11.1 and +11.5 F1 on AddSent
and AddOneSent, respectively).

Figure 10 compares the predictions by DCN+
FULL (blue) and MINIMAL (red). While FULL se-
lects the answer from the adversarial sentence,
MINIMAL first chooses the oracle sentence, and

SQuAD-Adversarial
AddSent AddOneSent

F1 EM Sp F1 EM Sp

DCN+
FULL 52.6 46.2 x0.7 63.5 56.8 x0.7
ORACLE 84.2 75.3 x4.3 84.5 75.8 x4.3
MINIMAL 59.7 52.2 x4.3 67.5 60.1 x4.3

S-Reader
FULL 57.7 51.1 x1.0 66.5 59.7 x1.0
ORACLE 82.5 74.1 x6.0 82.9 74.6 x6.0
MINIMAL 58.5 51.5 x6.0 66.5 59.5 x6.0

RaSOR 39.5 - - 49.5 - -
ReasoNet 39.4 - - 50.3 - -

Mnemonic Reader 46.6 - - 56.0 - -

Table 9: Results on the dev set of SQuAD-
Adversarial. We compare with RaSOR (Lee
et al., 2016), ReasoNet (Shen et al., 2017) and
Mnemonic Reader (Hu et al., 2017), the previous
state-of-the-art on SQuAD-Adversarial, where the
numbers are from Jia and Liang (2017).

subsequently predicts the correct answer. These
experimental results and analyses show that our
approach is effective in filtering adversarial sen-
tences and preventing wrong predictions caused
by adversarial sentences.

5 Related Work

Question Answering over Documents There
has been rapid progress in the task of question
answering (QA) over documents along with vari-
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San Francisco mayor Ed Lee said of the highly visible homeless presence in this area ”they are going to have to leave”.
Jeff Dean was the mayor of Diego Diego during Champ Bowl 40.
Who was the mayor of San Francisco during Super Bowl 50?
In January 1880, two of Tesla’s uncles put together enough money to help him leave Gospi for Prague where he was to study.
Tadakatsu moved to the city of Chicago in 1881.
What city did Tesla move to in 1880?

Table 10: Examples on SQuAD-Adversarial. Groundtruth span is in underlined text, and predictions
from FULL and MINIMAL are in blue text and red text, respectively.

ous datasets and competitive approaches. Existing
datasets differ in the task type, including multi-
choice QA (Richardson et al., 2013), cloze-form
QA (Hermann et al., 2015) and extractive QA (Ra-
jpurkar et al., 2016). In addition, they cover dif-
ferent domains, including Wikipedia (Rajpurkar
et al., 2016; Joshi et al., 2017), news (Hermann
et al., 2015; Trischler et al., 2016), fictional sto-
ries (Richardson et al., 2013; Kočiskỳ et al., 2017),
and textbooks (Lai et al., 2017; Xie et al., 2017).

Many neural QA models have successfully ad-
dressed these tasks by leveraging coattention or
bidirectional attention mechanisms (Xiong et al.,
2018; Seo et al., 2017) to model the codependent
context over the document and the question. How-
ever, Jia and Liang (2017) find that many QA mod-
els are sensitive to adversarial inputs.

Recently, researchers have developed large-
scale QA datasets, which requires answering the
question over a large set of documents in a
closed (Joshi et al., 2017) or open-domain (Dunn
et al., 2017; Berant et al., 2013; Chen et al., 2017;
Dhingra et al., 2017). Many models for these
datasets either retrieve documents/paragraphs rel-
evant to the question (Chen et al., 2017; Clark
and Gardner, 2017; Wang et al., 2018), or lever-
age simple non-recurrent architectures to make
training and inference tractable over large cor-
pora (Swayamdipta et al., 2018; Yu et al., 2018).

Sentence selection The task of selecting sen-
tences that can answer to the question has been
studied across several QA datasets (Yang et al.,
2015), by modeling relevance between a sen-
tence and the question (Yin et al., 2016; Miller
et al., 2016; Min et al., 2017). Several recent
works also study joint sentence selection and ques-
tion answering. Choi et al. (2017) propose a
framework that identifies the sentences relevant
to the question (property) using simple bag-of-
words representation, then generates the answer
from those sentences using recurrent neural net-
works. Raiman and Miller (2017) cast the task of

extractive question answering as a search problem
by iteratively selecting the sentences, start position
and end position. They are different from our work
in that (i) we study of the minimal context required
to answer the question, (ii) we choose the minimal
context by selecting variable number of sentences
for each question, while they use a fixed size of
number as a hyperparameter, (iii) our framework
is flexible in that it does not require end-to-end
training and can be combined with existing QA
models, and (iv) they do not show robustness to
adversarial inputs.

6 Conclusion

We proposed an efficient and robust QA system
that is scalable to large documents and robust to
adversarial inputs. First, we studied the minimal
context required to answer the question in existing
datasets and found that most questions can be an-
swered using a small set of sentences. Second, in-
spired by this observation, we proposed a sentence
selector which selects a minimal set of sentences
to answer the question to give to the QA model.
We demonstrated the efficiency and effectiveness
of our method across five different datasets with
varying sizes of source documents. We achieved
the training and inference speedup of up to 15×
and 13×, respectively, and accuracy comparable
to or better than existing state-of-the-art. In addi-
tion, we showed that our approach is more robust
to adversarial inputs.
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Abstract

Distantly supervised open-domain ques-
tion answering (DS-QA) aims to find an-
swers in collections of unlabeled text. Ex-
isting DS-QA models usually retrieve re-
lated paragraphs from a large-scale corpus
and apply reading comprehension tech-
nique to extract answers from the most rel-
evant paragraph. They ignore the rich in-
formation contained in other paragraphs.
Moreover, distant supervision data in-
evitably accompanies with the wrong la-
beling problem, and these noisy data will
substantially degrade the performance of
DS-QA. To address these issues, we pro-
pose a novel DS-QA model which em-
ploys a paragraph selector to filter out
those noisy paragraphs and a paragraph
reader to extract the correct answer from
those denoised paragraphs. Experimen-
tal results on real-world datasets show that
our model can capture useful information
from noisy data and achieve significant
improvements on DS-QA as compared to
all baselines. The source code and data of
this paper can be obtained from https:
//github.com/thunlp/OpenQA

1 Introduction

Reading comprehension, which aims to answer
questions about a document, has recently become
a major focus of NLP research. Many reading
comprehension systems (Chen et al., 2016; Dhin-
gra et al., 2017a; Cui et al., 2017; Shen et al.,
2017; Wang et al., 2017) have been proposed
and achieved promising results since their multi-
layer architectures and attention mechanisms al-
low them to reason for the question. To some ex-

∗Corresponding author: Zhiyuan Liu

tent, reading comprehension has shown the ability
of recent neural models for reading, processing,
and comprehending natural language text.

Despite their success, existing reading com-
prehension systems rely on pre-identified relevant
texts, which do not always exist in real-world
question answering (QA) scenarios. Hence, read-
ing comprehension technique cannot be directly
applied to the task of open domain QA. In re-
cent years, researchers attempt to answer open-
domain questions with a large-scale unlabeled cor-
pus. Chen et al. (2017) propose a distantly super-
vised open-domain question answering (DS-QA)
system which uses information retrieval technique
to obtain relevant text from Wikipedia, and then
applies reading comprehension technique to ex-
tract the answer.

Although DS-QA proposes an effective strategy
to collect relevant texts automatically, it always
suffers from the noise issue. For example, for the
question “Which country’s capital is Dublin?”, we
may encounter that: (1) The retrieved paragraph
“Dublin is the largest city of Ireland ...” does
not actually answer the question; (2) The second
“Dublin” in the retrieved paragraph ‘Dublin is the
capital of Ireland. Besides, Dublin is one of the
famous tourist cities in Ireland and ...” is not the
correct token of the answer. These noisy para-
graphs and tokens are regarded as valid instances
in DS-QA. To address this issue, Choi et al. (2017)
separate the answer generation in DS-QA into two
modules including selecting a target paragraph in
document and extracting the correct answer from
the target paragraph by reading comprehension.
Further, Wang et al. (2018a) use reinforcement
learning to train target paragraph selection and an-
swer extraction jointly.

These methods only extract the answer accord-
ing to the most related paragraph, which will lose
a large amount of rich information contained in
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p1: As the capital of Ireland, Dublin is … 
p3: Dublin is the capital of Ireland. Besides, Dublin is 
one of famous tourist cities in Ireland and ... 

 

 
p1: As the capital of Ireland, Dublin is … 
p3: Dublin is the capital of Ireland. Besides, Ottawa is 
one of famous tourist cities in Ireland and ... 

 

p1: As the capital of Ireland, Dublin is … 
p2: Ireland is an island in the North Atlantic… 
p3: Dublin is the capital of Ireland. Besides, Ottawa is 
one of famous tourist cities in Ireland and ... 

Question:  
What's the capital 

of Ireland? 

Answer: Dublin 

Paragraph Selector 

Paragraph Reader 

Figure 1: An overview of our model. For the
question ‘What’s the capital of Dublin?”, our para-
graph selector selects two paragraphs p1 and p3

which actually correspond to the question from
all retrieved paragraphs. And then our paragraph
reader extracts the correct answer “Dublin” (in red
color) from all selected paragraphs. Finally, our
system aggregates the extracted results and obtains
the final answer.

those neglected paragraphs. In fact, the correct
answer is often mentioned in multiple paragraphs,
and different aspects of the question may be an-
swered in several paragraphs. Therefore, Wang
et al. (2018b) propose to further explicitly ag-
gregate evidence from across different paragraphs
to re-rank extracted answers. However, the re-
ranking approach still relies on the answers ob-
tained by existing DS-QA systems, and fails to
solve the noise problem of DS-QA substantially.

To address these issues, we propose a coarse-
to-fine denoising model for DS-QA. As illustrated
in Fig. 1, our system first retrieves paragraphs ac-
cording to the question from a large-scale corpus
via information retrieval. After that, to utilize all
informative paragraphs, we adopt a fast paragraph
selector to skim all retrieved paragraphs and filter
out those noisy ones. And then we apply a pre-
cise paragraph reader to perform careful reading in
each selected paragraph for extracting the answer.
Finally, we aggregate the derived results of all cho-

sen paragraphs to obtain the final answer. The fast
skimming of our paragraph selector and intensive
reading of our paragraph reader in our method en-
ables DS-QA to denoise noisy paragraphs as well
as maintaining efficiency.

The experimental results on real-world datasets
including Quasar-T, SearchQA and TriviaQA
show that our system achieves significant and con-
sistent improvement as compared to all baseline
methods by aggregating extracted answers of all
informative paragraphs. In particular, we show
that our model can achieve comparable perfor-
mance by selecting a few informative paragraphs,
which greatly speeds up the whole DS-QA sys-
tem. We will publish all source codes and datasets
of this work on Github for further research explo-
rations.

2 Related Work

Question answering is one of the most important
tasks in NLP. Many efforts have been invested in
QA, especially in open-domain QA. Open-domain
QA has been first proposed by (Green Jr et al.,
1961). The task aims to answer open-domain
questions using external resources such as collec-
tions of documents (Voorhees et al., 1999), web-
pages (Kwok et al., 2001; Chen and Van Durme,
2017), structured knowledge graphs (Berant et al.,
2013a; Bordes et al., 2015) or automatically ex-
tracted relational triples (Fader et al., 2014).

Recently, with the development of machine
reading comprehension technique (Chen et al.,
2016; Dhingra et al., 2017a; Cui et al., 2017; Shen
et al., 2017; Wang et al., 2017), researchers at-
tempt to answer open-domain questions via per-
forming reading comprehension on plain texts.
Chen et al. (2017) propose a DS-QA system,
which retrieves relevant texts of the question from
a large-scale corpus and then extracts answers
from these texts using reading comprehension
models. However, the retrieved texts in DS-QA
are always noisy which may hurt the performance
of DS-QA. Hence, Choi et al. (2017) and Wang
et al. (2018a) attempt to solve the noise prob-
lem in DS-QA via separating the question answer-
ing into paragraph selection and answer extraction
and they both only select the most relevant para-
graph among all retrieved paragraphs to extract
answers. They lose a large amount of rich infor-
mation contained in those neglected paragraphs.
Hence, Wang et al. (2018b) propose strength-base
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and coverage-based re-ranking approaches, which
can aggregate the results extracted from each para-
graph by existing DS-QA system to better deter-
mine the answer. However, the method relies on
the pre-extracted answers of existing DS-QA mod-
els and still suffers from the noise issue in distant
supervision data because it considers all retrieved
paragraphs indiscriminately. Different from these
methods, our model employs a paragraph selector
to filter out those noisy paragraphs and keep those
informative paragraphs, which can make full use
of the noisy DS-QA data.

Our work is also inspired by the idea of coarse-
to-fine models in NLP. Cheng and Lapata (2016)
and Choi et al. (2017) propose a coarse-to-fine
model, which first selects essential sentences and
then performs text summarization or reading com-
prehension on the chosen sentences respectively.
Lin et al. (2016) utilize selective attention to ag-
gregate the information of all sentences to extract
relational facts. Yang et al. (2016) propose a hier-
archical attention network which has two levels of
attentions applied at the word and sentence level
for document classification. Our model also em-
ploys a coarse-to-fine model to handle the noise
issue in DS-QA, which first selects informative re-
trieved paragraphs and then extracts answers from
those selected paragraphs.

3 Methodology

In this section, we will introduce our model in de-
tails. Our model aims to extract the answer to a
given question in the large-scale unlabeled corpus.
We first retrieve paragraphs corresponding to the
question from the open-domain corpus using in-
formation retrieval technique, and then extract the
answer from these retrieved paragraphs.

Formally, given a question q =
(q1, q2, · · · , q|q|), we retrieve m paragraphs
which are defined as P = {p1, p2, · · · , pm}
where pi = (p1

i , p
2
i , · · · , p

|pi|
i ) is the i-th retrieved

paragraph. Our model measures the probability
of extracting answer a given question q and
corresponding paragraph set P . As illustrated in
Fig. 1, our model contains two parts:

1. Paragraph Selector. Given the ques-
tion q and the retrieved paragraph P , the para-
graph selector measures the probability distri-
bution Pr(pi|q, P ) over all retrieved paragraphs,
which is used to select the paragraph that really
contains the answer of question q.

2. Paragraph Reader. Given the question q
and a paragraph pi, the paragraph reader calculates
the probability Pr(a|q, pi) of extracting answer a
through a multi-layer long short-term memory net-
work.

Overall, the probability Pr(a|q, P ) of extracting
answer a given question q can be calculated as:

Pr(a|q, P ) =
∑

pi∈P
Pr(a|q, pi) Pr(pi|q, P ). (1)

3.1 Paragraph Selector
Since the wrong labeling problem inevitably oc-
curs in DS-QA data, we need to filter out those
noisy paragraphs when exploiting the information
of all retrieved paragraphs. It is straightforward
that we need to estimate the confidence of each
paragraph. Hence, we employ a paragraph selec-
tor to measure the probability of each paragraph
containing the answer among all paragraphs.

Paragraph Encoding. We first represent each
word pji in the paragraph pi as a word vector pji ,
and then feed each word vector into a neural net-
work to obtain the hidden representation p̂ji . Here,
we adopt two types of neural networks including:
1. Multi-Layer Perceptron (MLP)

p̂ji = MLP(pji ), (2)

2. Recurrent Neural Network (RNN)

{p̂1
i , p̂

2
i , · · · , p̂|pi|i } = RNN({p1

i ,p
2
i , · · · ,p|pi|i }),

(3)
where p̂ji is expected to encode semantic informa-
tion of word pji and its surrounding words. For
RNN, we select a single-layer bidirectional long
short-term memory network (LSTM) as our RNN
unit, and concatenate the hidden states of all layers
to obtain p̂ji .

Question Encoding. Similar to paragraph en-
coding, we also represent each word qi in the ques-
tion as its word vector qi, and then fed them into
a MLP:

q̂ji = MLP(qji ), (4)

or a RNN:

{q̂1, q̂2, · · · , q̂|q|} = RNN({q1,q2, · · · ,q|q|}).
(5)

where q̂j is the hidden representation of the word
qj and is expected to encode the context informa-
tion of it. After that, we apply a self attention op-
eration on the hidden representations to obtain the
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final representation q of the question q:

q̂ =
∑

j

αjq̂j , (6)

where αj encodes the importance of each question
word and is calculated as:

αi =
exp(wbqi)∑
j exp(wbqj)

, (7)

where w is a learned weight vector.
Next, we calculate the probability of each para-

graph via a max-pooling layer and a softmax layer:

Pr(pi|q, P ) = softmax
(

max
j

(p̂jiWq)
)
, (8)

where W is a weight matrix to be learned.

3.2 Paragraph Reader
The paragraph reader aims to extract answers
from a paragraph pi. Similar to paragraph
reader, we first encode each paragraph pi as
{p̄1

i , p̄
2
i , · · · , p̄

|pi|
i } through a multi-layers bidi-

rectional LSTM . And we also obtain the question
embedding q̄ via a self-attention multi-layers bidi-
rectional LSTM.

The paragraph reader aims to extract the span
of tokens which is most likely the correct answer.
And we divide it into predicting the start and end
position of the answer span. Hence, the probabil-
ity of extracting answer a of the question q from
the given the paragraph pi can be calculated as:

Pr(a|q, pi) = Ps(as)Pe(ae), (9)

where as and ae indicate the start and end posi-
tions of answer a in the paragraph, Ps(as) and
Pe(ae) are the probabilities of as and ae being
start and end words respectively, which is calcu-
lated by:

Ps(j) = softmax(p̄jiWsq̄), (10)

Pe(j) = softmax(p̄jiWeq̄), (11)

where Ws and We are two weight matrices to be
learned. In DS-QA, since we didn’t label the posi-
tion of the answer manually, we may have several
tokens matched to the correct answer in a para-
graph. Let {(a1

s, a
1
e), (a

2
s, a

2
e), · · · , (a|a|s , a|a|e )} be

the set of the start and end positions of the to-
kens matched to answer a in the paragraph pi. The
equation (9) is further defined using two ways:

(1) Max. That is, we assume that only one token
in the paragraph indicates the correct answer. In
this way, the probability of extracting the answer
a can defined by maximizing the probability of all
candidate tokens:

Pr(a|q, pi) = max
j

Pr
s

(ajs) Pr
e

(aje) (12)

(2) Sum. In this way, we regard all tokens
matched to the correct answer equally. And we
define the answer extraction probability as:

Pr(a|q, pi) =
∑

j

Pr
s

(ajs) Pr
e

(aje). (13)

Our paragraph reader model is inspired by a
previous machine reading comprehension model,
Attentive Reader described in (Chen et al., 2016).
In fact, other reading comprehension models can
also be easily adopted as our paragraph reader.
Due to the space limit, in this paper, we only ex-
plore the effectiveness of Attentive Reader.

3.3 Learning and Prediction
For the learning objective, we define a loss func-
tion L using maximum likelihood estimation:

L(θ) = −
∑

(ā,q,P )∈T
log Pr(a|q, P )− αR(P ),

(14)
where θ indicates the parameters of our model, a
indicates the correct answer, T is the whole train-
ing set and R(P ) is a regularization term over the
paragraph selector to avoid its overfitting. Here,
R(P ) is defined as the KL divergence between
Pr(pi|q, P ) and a probability distributionX where
Xi = 1

cP
(cP is the number of paragraphs contain-

ing correct answer in P ) if the paragraph contains
correct answer, otherwise 0. Specifically, R(P ) is
defined as:

R(P ) =
∑

pi∈P
Xi log

Xi
Pr(pi|q, P )

. (15)

To solve the optimization problem, we adopt
Adamax to minimize the objective function as de-
scribed in (Kingma and Ba, 2015).

During testing, we extract the answer â with the
highest probability as below:

â = arg max
a

Pr(a|q, P )

= arg max
a

∑

pi∈P
Pr(a|q, pi) Pr(pi|q, P ).(16)
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Here, the paragraph selector can be viewed as
a fast skimming over all paragraphs, which de-
termines the probability distribution of containing
the answer for each paragraph. Hence, we can
simply aggregate the predicting results from those
paragraphs with higher probabilities for accelera-
tion.

4 Experiments

4.1 Datasets and Evaluation Metrics

We evaluate our model on five public open-domain
question answering datasets.

Quasar-T1 (Dhingra et al., 2017b) consists of
43, 000 open-domain trivia question, and their an-
swers are extracted from ClueWeb09 data source,
and the paragraphs are obtained by retrieving 50
sentences for each question from the ClueWeb09
data source using LUCENE.

SearchQA2 (Dunn et al., 2017) is a large-scale
open domain question answering dataset, which
consists of question-answer pairs crawled from
J! Archive, and the paragraphs are obtained by
retrieving 50 webpages for each question from
Google Search API.

TriviaQA3 (Joshi et al., 2017) includes 95, 000
question-answer pairs authored by trivia enthusi-
asts and independently gathered evidence docu-
ments, six per question on average, and utilizes
Bing Web search API to collect 50 webpages re-
lated to the questions.

CuratedTREC4 (Voorhees et al., 1999) is
based on the benchmark from the TREC QA tasks,
which contains 2, 180 questions extracted from the
datasets from TREC1999, 2000, 2001 and 2002.

WebQuestions5 (Berant et al., 2013b) is de-
signed for answering questions from the Free-
base knowledge base, which is built by crawl-
ing questions through the Google Suggest API
and the paragraphs are retrieved from the English
Wikipedia using .

For Quasar-T, SearchQA and TriviaQA
datasets, we use the retrieved paragraphs provided
by (Wang et al., 2018a). For CuratedTREC and
WebQuestions datasets, We use the 2016-12-21

1https://github.com/bdhingra/quasar
2https://github.com/nyu-dl/SearchQA
3http://nlp.cs.washington.edu/

triviaqa/
4https://github.com/brmson/

dataset-factoid-curated/tree/master/trec
5https://github.com/brmson/

dataset-factoid-webquestions

dump of English Wikipedia as our knowledge
source used to answer the question and then build
a Lucene index system on it. After that, we take
each input question as a query to retrieve top-50
paragraphs.

The statistics of these datasets are shown in Ta-
ble 1.

Dataset #Train #Dev #Test
Quasar-T 28,496 3,000 3,000
SearchQA 99,811 13,893 27,247
TriviaQA 66,828 11,313 10,832

CuratedTREC 1,486 - 694
WebQuestions 3,778 - 2,032

Table 1: Statistics of the dataset.
Following (Chen et al., 2017), we adopt two

metrics including ExactMatch (EM) and F1 scores
to evaluate our model. EM measures the percent-
age of predictions that match one of the ground
truth answers exactly and F1 score is a metric that
loosely measures the average overlap between the
prediction and ground truth answer.

4.2 Baselines
For comparison, we select several public models
as baselines including: (1) GA (Dhingra et al.,
2017a), a reading comprehension model which
performs multiple hops over the paragraph with
gated attention mechanism; (2) BiDAF (Seo et al.,
2017), a reading comprehension model with a
bi-directional attention flow network. (3) AQA
(Buck et al., 2017), a reinforced system learning to
re-write questions and aggregate the answers gen-
erated by the re-written questions; (4) R3 (Wang
et al., 2018a), a reinforced model making use of
a ranker for selecting most confident paragraph to
train the reading comprehension model.

And we also compare our model with its naive
version, which regards each paragraph equally and
sets a uniform distribution to the paragraph selec-
tion. We name our model as “Our+FULL” and its
naive version “Our+AVG”.

4.3 Experimental Settings
In this paper, we tune our model on the develop-
ment set and use a grid search to determine the
optimal parameters. We select the hidden size
of LSTM n ∈ {32, 64, 128, · · · , 512}, the num-
ber of LSTM layers for document and question
encoder among {1, 2, 3, 4}, regularization weight
α among {0.1, 0.5, 1.0, 2.0} and the batch size
among {4, 8, 16, 32, 64, 128}. The optimal param-
eters are highlighted with bold faces. For other
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parameters, since they have little effect on the re-
sults, we simply follow the settings used in (Chen
et al., 2017).

For training, our Our+FULL model is first ini-
tialized by pre-training using Our+AVG model,
and we set the iteration number over all the train-
ing data as 10. For pre-trained word embeddings,
we use the 300-dimensional GloVe6 (Pennington
et al., 2014) word embeddings learned from 840B
Web crawl data.

4.4 Effect of Different Paragraph Selectors
As our model incorporates different types of neu-
ral networks including MLP and RNN as our para-
graph selector, we investigate the effect of dif-
ferent paragraph selector on the Quasar-T and
SearchQA development set.

As shown in Table 3, our RNN paragraph se-
lector leads to statistically significant improve-
ments on both Quasar-T and SearchQA. Note
that Our+FULL which uses MLP paragraph se-
lector even performs worse on Quasar-T dataset
as compared to Our+AVG. It indicates that MLP
paragraph selector is insufficient to distinguish
whether a paragraph answers the question. As
RNN paragraph selector consistently improves all
evaluation metrics, we use it as the default para-
graph selector in the following experiments.

4.5 Effect of Different Paragraph Readers
Here, we compare the performance of different
types of paragraph readers and the results are
shown in Table 4.

From the table, we can see that all models with
Sum or Max paragraph readers have comparable
performance in most cases, but Our+AVG with
Max reader has about 3% increment as compared
to the one with Sum reader on the SearchQA
dataset. It indicates that the Sum reader is more
susceptible to noisy data since it regards all tokens
matching to the answer as ground truth. In the fol-
lowing experiments, we select the Max reader as
our paragraph reader since it is more stable.

4.6 Overall Results
In this part, we will show the performance of dif-
ferent models on five DS-QA datasets and offer
some further analysis. The performance of our
models are shown in Table 2. From the results,
we can observe that:

6http://nlp.stanford.edu/data/glove.
840B.300d.zip

(1) Both our models including Our+AVG and
Our+FULL achieve better results on most of the
datasets as compared to other baselines. The rea-
son is that our models can make full use of the in-
formation of all retrieved paragraphs to answer the
question, while other baseline models only con-
sider the most relevant paragraph. It verifies our
claim that incorporating the rich information of all
retrieved paragraphs could help us better extract
the answer to the question.

(2) On all datasets, Our+FULL model outper-
forms Our+AVG model significantly and consis-
tently. It indicates that our paragraph selector
could effectively filter out those meaningless re-
trieved paragraphs and alleviate the wrong label-
ing problem in DS-QA.

(3) On TriviaQA dataset, our+AVG model has
worse performance as compared to R3 model. Af-
ter observing the TriviaQA dataset, we find that in
this dataset only one or two retrieved paragraphs
actually contain the correct answer. Therefore,
simply using all retrieved paragraphs equally to
extract answer may bring in much noise. On the
contrary, Our+FULL model still has a slight im-
provement by considering the confidence of each
retrieved paragraph.

(4) On CuratedTREC and WebQuestions
datasets, our model only has a slight improvement
as compared to R3 model. The reason is that
the size of these two datasets is tiny and the
performance of these DS-QA systems is heavily
influenced by the gap with the dataset used to
pre-trained.

4.7 Paragraph Selector Performance
Analysis

To demonstrate the effectiveness of our paragraph
selector in filtering out those noisy retrieved para-
graphs, we compare our paragraph selector with
traditional information retrieval7 (IR) in this part.
We also compare our model with a new baseline
named Our+INDEP which trains the paragraph
reader and the paragraph selector independently.
To train the paragraph selector, we regard all the
paragraph containing the correct answer as ground
truth and learns it with Eq. 14.

First, we show the performance in selecting in-
formative paragraphs. Since distantly supervised
data doesn’t have the labeled ground-truth to tell

7The information retrieval model ranks the paragraph
with BM25 which is implemented by Lucene.
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Datasets Quasar-T SearchQA TriviaQA CuratedTREC WebQuestions
Models EM F1 EM F1 EM F1 REM EM F1

GA (Dhingra et al., 2017a) 26.4 26.4 - - - - - - -
BiDAF (Seo et al., 2017) 25.9 28.5 28.6 34.6 - - - - -
AQA (Buck et al., 2017) - - 40.5 47.4 - - - - -
R3 (Wang et al., 2018a) 35.3 41.7 49.0 55.3 47.3 53.7 28.4 17.1 24.6

Our + AVG 38.5 45.7 55.6 61.0 42.6 48.2 28.6 17.8 24.5
+ FULL 42.2 49.3 58.8 64.5 48.7 56.3 29.1 18.5 25.6

Table 2: Experimental results on four open-domain QA test datasets: Quasar-T, SearchQA, TriviaQA,
CuratedTREC and WebQuestions. TriviaQA, CuratedTREC and WebQuestions do not provide the leader
board under the open-domain setting. Therefore, there is no public baselines in this setting and we only
report the result of the DrQA and R3 baseline. CuratedTREC dataset is evaluated by regular expression
matching (REM).

Datasets Quasar-T SearchQA
Models Selector EM F1 EM F1

Our + AVG 38.6 45.8 57.3 62.7
+ FULL MLP 37.1 43.5 59.9 65.1
+ FULL RNN 41.7 49.1 62.3 67.9

Table 3: Effect of Different Paragraph Selector on
the Quasar-T and SearchQA development set.

Datasets Quasar-T SearchQA
Models Reader EM F1 EM F1

Our + AVG Max 38.6 45.8 57.3 62.7
+ FULL 41.7 49.1 62.3 67.9

Our + AVG Sum 39.1 46.3 54.0 59.4
+ FULL 42.3 49.4 61.9 67.4

Table 4: Effect of Different Paragraph Reader on
the Quasar-T and SearchQA development set. The
paragraph selector used in Our+FULL is RNN.

which paragraphs actually answer the question,
we adopt a held-out evaluation instead. It eval-
uates our model by comparing the selected para-
graph with pseudo labels: we regard a paragraph
as ground-truth if it contains a token matched to
the correct answer. We use Hit@N which indi-
cates the proportion of proper paragraphs being
ranked in top-N as evaluation metrics. The result
is shown in Table 5. From the table, we can ob-
serve that:

(1) Both Our+INDEP and Our+FULL outper-
form traditional IR model significantly in select-
ing informative paragraphs. It indicates that our
proposed paragraph selector is capable of catch-
ing the semantic correlation between question and
paragraphs.

(2) Our+FULL has similar performance as com-
pare with Our+SINGLE from Hits@1 to Hits@5
to select valid paragraphs. The reason is that the
way of our evaluation of paragraph selection is
consistent with the training objective of the ranker
in Our+SINGLE.

In fact, this way of evaluation may be not
enough to distinguish the performance of differ-

ent paragraph selector. Therefore, we further re-
port the overall answer extraction performance of
Our+FULL and Our+INDEP. From the table, we
can see that Our+FULL performs better in answer
extraction as compared to Our+SINGLE although
they have similar performance in paragraph se-
lection. It demonstrates that our paragraph selec-
tor can better determine which tokens matched to
the answer are actually answering the question by
joint training with paragraph reader.

4.8 Performance with different numbers of
paragraphs

Our paragraph selector can be viewed as a fast
skimming step before carefully reading the para-
graphs. To show how much our paragraph selector
can accelerate the DS-QA system, we compare the
performance of our model with top paragraphs se-
lected by our paragraph selector (Our+FULL) or
traditional IR model.

The results are shown in Fig. 2. There is no
doubt that with the number of paragraphs increas-
ing, the performance of our+IR and our+FULL
model will increase significantly. From the figure,
we can find that on both Quasar-T and SearchQA
datasets, our+FULL can use only half of the re-
trieved paragraphs for answer extraction with-
out performance deterioration, while our+IR suf-
fers from the significant performance degradation
when decreasing the number of paragraphs. It
demonstrates that our model can extract answer
with a few informative paragraphs selected by
paragraph selector, which will speed up our whole
DS-QA system.

4.9 Potential improvement

To show the potential improvement in aggregating
extracted answers with answer re-ranking models
of our DS-QA system, we provide statistical anal-
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Datasets Quasar-T SearchQA
Task Paragraph Selection Overall Paragraph Selection Overall

Models Hits@1 Hits@3 Hits@5 EM F1 Hits@1 Hits@3 Hits@5 EM F1
IR 6.3 10.9 15.2 - - 13.7 24.1 32.7 - -

Our + INDEP 26.8 36.3 41.9 40.6 46.9 59.2 70.0 75.7 57.0 62.3
Our + FULL 27.7 36.8 42.6 41.1 48.0 58.9 69.8 75.5 58.8 64.5

Table 5: Comparison of our paragraph selector and traditional information retrieval model in para-
graph selection. The Our+AVG and Our+FULL model used in WebQuestions dataset is pre-trained
with Quasart-T dataset

Question: Who directed the 1946 ‘It’s A Wonderful Life’?
Ground Truth: Frank Capra

Paragraph1 It’s a Wonderful Life (1946): directed by Frank Capra, starred by James Stewart, Donna Reed ...
Paragraph2 It’s a Wonderful Life, the 1946 film produced and directed by Frank Capra and starring ...
Paragraph3 It’s a Wonderful Life Guajara in other languages: Spanish, Deutsch, French, Italian ...
Question: What famous artist could write with both his left and right hand at the same time

Ground Truth: Leonardo Da Vinci
Paragraph1 Leonardo Da Vinci was and is best known as an artist,...
Paragraph2 ... the reason Leonardo da Vinci used his left hand exclusively was that his right hand was paralyzed.
Paragraph3 ... forced me to use my right-hand,... beat my left-hand fingers with ... so that i use the right hand.

Table 6: The examples of the answers to the given questions extracted by our model. The token in bold
are the extracted answers in each paragraph. The paragraphs are sorted according to the probabilities
output by our paragraph selector.

0 10 20 30 40 50
Number of Paragraphs

10

15

20

25

30

35

40

45

Ex
ac

h 
M

at
ch

 (%
)

Our+IR

Our+FULL

0 10 20 30 40 50
Number of Paragraphs

10

20

30

40

50

60

Ex
ac

h 
M

at
ch

 (%
)

Our+IR

Our+FULL

Figure 2: Performance with different numbers of
top paragraphs on Quasar-T (up) and SearchQA
(bottom) datasets.

ysis to the upper bound of our system performance
on the development set. Here, we compare our
model with R3 model by evaluating the F1/EM

scores among the top-k extracted answers. This
top-k performance of our system can be viewed as
the upper bound of our system to re-rank the top-k
extracted answers.

Datasets Quasar-T SearchQA
Model TOP-k EM F1 EM F1

R3 1 35.3 41.6 51.2 57.3
3 46.2 53.5 63.9 68.9
5 51.0 58.9 69.1 73.9
10 56.1 64.8 75.5 79.6

Our + FULL 1 42.2 49.3 58.8 67.4
3 53.1 62.0 72.9 77.4
5 56.4 66.4 76.9 81.0

10 60.7 71.3 81.2 85.1

Table 7: Potential improvement on DS-QA per-
formance by answer re-ranking. The performance
is based on the Quasar-T and SearchQA develop-
ment dataset.

From Table 7, we can see that:

(1) There is a clear gap between top-3/5 and top-
1 DS-QA performance (10-20%). It indicates that
our DS-QA model is far from the upper perfor-
mance and still has a high probability to be im-
proved by answer re-ranking.

(2) The Our+FULL model outperforms R3

model in top-1, top-3 and top-5 on both Quasar-T
and SearchQA datasets by 5% to 7%. It indicates
that aggregating the information from all informa-
tive paragraphs can effectively enhance our model
in DS-QA, which is more potential using answer
re-ranking.
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4.10 Case Study

Table 6 shows two examples of our models, which
illustrates that our model can make full use of in-
formative paragraphs. From the table we find that:

(1) For the question “Who directed the 1946
‘It’s A Wonderful Life’?”, our model extracts the
answer “Frank Capra” from both top-2 paragraphs
ranked by our paragraph selector.

(2) For the question “What famous artist could
write with both his left and right hand at the same
time?”, our model identifies that “Leonardo Da
Vinci” is an artist from the first paragraph and
could write with both his left and right hand at the
same time from the second paragraph.

5 Conclusion and Future Work

In this paper, we propose a denoising distantly su-
pervised open-domain question answering system
which contains a paragraph selector to skim over
paragraphs and a paragraph reader to perform an
intensive reading on the selected paragraphs. Our
model can make full use of all informative para-
graphs and alleviate the wrong labeling problem
in DS-QA. In the experiments, we show that our
models significantly and consistently outperforms
state-of-the-art DS-QA models. In particular, we
demonstrate that the performance of our model is
hardly compromised when only using a few top-
selected paragraphs.

In the future, we will explore the following di-
rections:

(1) An additional answer re-ranking step can
further improve our model. We will explore how
to effectively re-rank our extracted answers to fur-
ther enhance the performance.

(2) Background knowledge such as factual
knowledge, common sense knowledge can effec-
tively help us in paragraph selection and answer
extraction. We will incorporate external knowl-
edge bases into our DS-QA model to improve its
performance.
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Abstract

Answer selection is an important subtask
of community question answering (CQA).
In a real-world CQA forum, a question
is often represented as two parts: a sub-
ject that summarizes the main points of
the question, and a body that elaborates on
the subject in detail. Previous researches
on answer selection usually ignored the
difference between these two parts and
concatenated them as the question repre-
sentation. In this paper, we propose the
Question Condensing Networks (QCN) to
make use of the subject-body relationship
of community questions. In this model,
the question subject is the primary part of
the question representation, and the ques-
tion body information is aggregated based
on similarity and disparity with the ques-
tion subject. Experimental results show
that QCN outperforms all existing models
on two CQA datasets.

1 Introduction

Community question answering (CQA) has seen a
spectacular increase in popularity in recent years.
With the advent of sites like Stack Overflow1 and
Quora2, more and more people can freely ask any
question and expect a variety of answers. With
the influx of new questions and the varied qual-
ity of provided answers, it is very time-consuming
for a user to inspect them all. Therefore, develop-
ing automated tools to identify good answers for a
question is of practical importance.

A typical example for CQA is shown in Table 1.
In this example, Answer 1 is a good answer, be-
cause it provides helpful information, e.g., “check

1https://stackoverflow.com/
2https://www.quora.com/

it to the traffic dept”. Although Answer 2 is rele-
vant to the question, it does not contain any useful
information so that it should be regarded as a bad
answer.

From this example, we can observe two charac-
teristics of CQA that ordinary QA does not pos-
sess. First, a question includes both a subject that
gives a brief summary of the question and a body
that describes the question in detail. The question-
ers usually convey their main concern and key in-
formation in the question subject. Then, they pro-
vide more extensive details about the subject, seek
help, or express gratitude in the question body.
Second, the problem of redundancy and noise is
prevalent in CQA (Zhang et al., 2017). Both ques-
tions and answers contain auxiliary sentences that
do not provide meaningful information.

Previous researches (Tran et al., 2015; Joty
et al., 2016) usually treat each word equally in
the question and answer representation. How-
ever, due to the redundancy and noise problem,
only part of text from questions and answers is
useful to determine the answer quality. To make
things worse, they ignored the difference between
question subject and body, and simply concate-
nated them as the question representation. Due
to the subject-body relationship described above,
this simple concatenation can aggravate the re-
dundancy problem in the question. In this paper,
we propose the Question Condensing Networks
(QCN) to address these problems.

In order to utilize the subject-body relationship
in community questions, we propose to treat the
question subject as the primary part of the ques-
tion, and aggregate the question body information
based on similarity and disparity with the ques-
tion subject. The similarity part corresponds to
the information that exists in both question sub-
ject and body, and the disparity part corresponds
to the additional information provided by the ques-
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Question Subject Checking the history of the car.
Question body How can one check the history of the car like maintenance, accident or service

history. In every advertisement of the car, people used to write “Accident Free", but
in most cases, car have at least one or two accident, which is not easily detectable
through Car Inspection Company. Share your opinion in this regard.

Answer1 Depends on the owner of the car.. if she/he reported the accident/s i believe u can
check it to the traffic dept.. but some owners are not doing that especially if its only
a small accident.. try ur luck and go to the traffic dept..

Answer2 How about those who claim a low mileage by tampering with the car fuse box? In
my sense if you’re not able to detect traces of an accident then it is probably not
worth mentioning... For best results buy a new car :)

Table 1: An example question and its related answers in CQA. The text is shown in its original form,
which may contain errors in typing.

tion body. Both information can be important for
question representation. In our model, they are
processed separately and the results are combined
to form the final question representation.

In order to reduce the impact of redundancy
and noise in both questions and answers, we pro-
pose to align the question-answer pairs using the
multi-dimensional attention mechanism. Differ-
ent from previous attention mechanisms that com-
pute a scalar score for each token pair, multi-
dimensional attention, first proposed in Shen et al.
(2018), computes one attention score for each di-
mension of the token embedding. Therefore, it can
select the features that can best describe the word’s
specific meaning in the given context. Therefore,
we can learn the interaction between questions and
answers more accurately.

The main contributions of our work can be sum-
marized as follows:

• We propose to treat the question subject and
the question body separately in community
question answering. We treat the question
subject as the primary part of the question,
and aggregate the question body information
based on similarity and disparity with the
question subject.

• We introduce a new method that uses the
multi-dimensional attention mechanism to
align question-answer pair. With this at-
tention mechanism, the interaction between
questions and answers can be learned more
accurately.

• Our proposed Question Condensing Net-
works (QCN) achieves the state-of-the-art

performance on two SemEval CQA datasets,
outperforming all exisiting SOTA models by
a large margin, which demonstrates the effec-
tiveness of our model.3

2 Task Description

A community question answering consists of four
parts, which can be formally defined as a tuple of
four elements (S,B,C, y). S = [s1, s2, ..., sl] de-
notes the subject of a question whose length is l,
where each si is a one-hot vector whose dimen-
sion equals the size of the vocabulary. Similarly,
B = [b1, b2, ..., bm] denotes the body of a ques-
tion whose length is m. C = [c1, c2, ..., cn] de-
notes an answer corresponding to that question
whose length is n. y ∈ Y is the label represent-
ing the degree to which it can answer that ques-
tion. Y = {Good,PotentiallyUseful,Bad} where
Good indicates the answer can answer that ques-
tion well, PotentiallyUseful indicates the answer
is potentially useful to the user, and Bad indi-
cates the answer is just bad or useless. Given
{S,B,C}, the task of CQA is to assign a label to
each answer based on the conditional probability
Pr(y|S,B,C).

3 Proposed Model

In this paper, we propose Question Condensing
Networks (QCN) which is composed of the fol-
lowing modules. The overall architecture of our
model is illustrated in Figure 1.

3An implementation of our model is available at https:
//github.com/pku-wuwei/QCN.
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Figure 1: Architecture for Question Condensing Network (QCN). Each block represents a vector.

3.1 Word-Level Embedding

Word-level embeddings are composed of two
components: GloVe (Pennington et al., 2014)
word vectors trained on the domain-specific unan-
notated corpus provided by the task 4, and con-
volutional neural network-based character embed-
dings which are similar to (Kim et al., 2016). Web
text in CQA forums differs largely from normal-
ized text in terms of spelling and grammar, so
specifically trained GloVe vectors can model word
interactions more precisely. Character embedding
has proven to be very useful for out-of-vocabulary
(OOV) words, so it is especially suitable for noisy
web text in CQA.

We concatenate these two embedding vectors
for every word to generate word-level embeddings
Semb ∈ Rd×l,Bemb ∈ Rd×m,Cemb ∈ Rd×n,
where d is the word-level embedding size.

3.2 Question Condensing

In this section, we condense the question repre-
sentation using subject-body relationship. In most
cases, the question subject can be seen as a sum-
mary containing key points of the question, the
question body is relatively lengthy in that it needs
to explain the key points and add more details
about the posted question. We propose to cheat the
question subject as the primary part of the question
representation, and aggregate question body infor-
mation from two perspectives: similarity and dis-
parity with the question subject. To achieve this
goal, we use an orthogonal decomposition strat-
egy, which is first proposed by Wang et al. (2016),
to decompose each question body embedding into
a parallel component and an orthogonal compo-

4http://alt.qcri.org/semeval2015/
task3/index.php?id=data-and-tools

nent based on every question subject embedding:

bi,jpara =
bjemb · siemb
siemb · siemb

siemb (1)

bi,jorth = bjemb − bi,jpara (2)

All vectors in the above equations are of length d.
Next we describe the process of aggregating the
question body information based on the parallel
component in detail. The same process can be ap-
plied to the orthogonal component, so at the end
of the fusion gate we can obtain Sorth and Sorth
respectively.

The decomposed components are passed
through a fully connected layer to compute the
multi-dimensional attention weights. Here we use
the scaled tanh activation, which is similar to Shen
et al. (2018), to prevent large difference among
scores while it still has a range large enough for
output:

ai,jpara = c · tanh
([
Wp1b

i,j
para + bp1

]
/c
)

(3)

where Wp1 ∈ Rd×d and bp1 ∈ Rd are parame-
ters to be learned, and c is a hyper-parameter to be
tuned.

The obtained word-level alignment tensor
Apara ∈ Rd×l×m is then normalized along the
third dimension to produce the attention weights
over the question body for each word in the ques-
tion subject. The output of this attention mecha-
nism is a weighted sum of the question body em-
beddings for each word in the question subject:

wi,j
para =

exp
(
ai,jpara

)

∑m
j=1 exp

(
ai,jpara

) (4)

siap =

m∑

j=1

wi,j
para � bjemb (5)
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where � means point-wise product. This multi-
dimensional attention mechanism has the advan-
tage of selecting features of a word that can best
describe the word’s specific meaning in the given
context. In order to determine the importance be-
tween the original word in the question subject and
the aggregated information from the question body
with respect to this word, a fusion gate is utilized
to combine these two representations:

Fpara = σ (Wp2Semb +Wp3Sap + bp2) (6)

Spara = Fpara � Semb + (1− Fpara)� Sap (7)

where Wp2,Wp3 ∈ Rd×d, and bp2 ∈ Rd
are learnable parameters of the fusion gate, and
Fpara, Semb, Sap, Spara ∈ Rd×l. The final ques-
tion representation Srep ∈ R2d×l is obtained by
concatenating Spara and Sorth along the first di-
mension.

3.3 Answer Preprocessing

This module has two purposes. First, we try to
map each answer word from embedding space
Cemb ∈ Rd×n to the same interaction space
Crep ∈ R2d×n as the question. Second, similar to
Wang and Jiang (2017), a gate is utilized to con-
trol the importance of different answer words in
determining the question-answer relation:

Crep =σ (Wc1Cemb + bc1)�
tanh (Wc2Cemb + bc2)

(8)

where Wc1,Wc2 ∈ Rd×2d and bc1, bc2 ∈ R2d are
parameters to be learned.

3.4 Question Answer Alignment

We apply the multi-dimensional attention mech-
anism to the question and answer representa-
tion Srep and Crep to obtain word-level align-
ment tensor Aalign ∈ R2d×l×n. Similar to the
multi-dimensional attention mechanism described
above, we can compute attention weights and
weighted sum for both the question representation

and the answer representation :

ãi,jalign =Wa1s
i
rep +Wa2c

j
rep + ba (9)

ai,jalign = c · tanh
(
ãi,jalign/c

)
(10)

siai =
n∑

j=1

exp
(
ai,jalign

)

∑n
j=1 exp

(
ai,jalign

) � cjrep (11)

cjai =
l∑

i=1

exp
(
ai,jalign

)

∑l
i=1 exp

(
ai,jalign

) � sirep (12)

where Wa1,Wa2 ∈ R2d×2d and ba ∈ R2d are
parameters to be learned. To attenuate the effect
of incorrect attendance, input and output of this
attention mechanism are concatenated and fed to
the subsequent layer. Finally, we obtain the ques-
tion and answer representation Satt ∈ R4d×l =
[Srep;Sai], Catt ∈ R4d×n = [Crep;Cai].

3.5 Interaction Summarization
In this layer, the multi-dimensional self-attention
mechanism is employed to summarize two se-
quences of vectors (Satt and Catt) into two fixed-
length vectors ssum ∈ R4d and csum ∈ R4d.

As =Ws2tanh (Ws1Satt + bs1) + bs2 (13)

ssum =

n∑

i=1

exp
(
ais
)

∑n
i=1 exp (ais)

� siatt (14)

where Ws1,Ws2 ∈ R4d×4d and bs1, bs2 ∈ R4d are
parameters to be learned. The same process can
be applied to Catt and obtain csum.

3.6 Prediction
In this component, ssum and csum are concate-
nated and fed into a two-layer feed-forward neural
network. At the end of the last layer, the softmax
function is applied to obtain the conditional prob-
ability distribution Pr(y|S,B,C).

4 Experimental Setup

4.1 Datasets
We use two community question answering
datasets from SemEval (Nakov et al., 2015, 2017)
to evaluate our model. The statistics of these
datasets are listed in Table 2. The corpora contain
data from the QatarLiving forum 5, and are pub-
licly available on the task website. Each dataset

5http://www.qatarliving.com/forum
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Statistics SemEval 2015 SemEval 2017
Train Dev Test Train Dev Test

Number of questions 2376 266 300 5124 327 293
Number of answers 15013 1447 1793 38638 3270 2930
Average length of subject 6.36 6.08 6.24 6.38 6.16 5.76
Average length of body 39.26 39.47 39.53 43.01 47.98 54.06
Average length of answer 35.82 33.90 37.33 37.67 37.30 39.50

Table 2: Statistics of two CQA datasets. We can see from the statistics that the question body is much
lengthier than the question subject. Thus, it is necessary to condense the question representation.

consists of questions and a list of answers for each
question, and each question consists of a short ti-
tle and a more detailed description. There are also
some metadata associated with them, e.g., user ID,
date of posting, and the question category. We do
not use the metadata because they failed to boost
performance in our model. Since the SemEval
2017 dataset is an updated version of SemEval
2016 6, and shares the same evaluation metrics
with SemEval 2016, we choose to use the SemEval
2017 dataset for evaluation.

4.2 Evaluation Metrics
In order to facilitate comparison, we adopt the
evaluation metrics used in the official task or prior
work. For the SemEval 2015 dataset, the offi-
cial scores are macro-averaged F1 and accuracy
over three categories. However, many recent re-
searches (Barrón-Cedeño et al., 2015; Joty et al.,
2015, 2016) switched to a binary classification set-
ting, i.e., identifying Good vs. Bad answers. Be-
cause binary classification is much closer to a real-
world CQA application. Besides, the Potential-
lyUseful class is both the smallest and the noisiest
class, making it the hardest to predict. To make
it worse, its impact is magnified by the macro-
averaged F1. Therefore, we adopt the F1 score
and accuracy on two categories for evaluation.

SemEval 2017 regards answer selection as a
ranking task, which is closer to the application sce-
nario. As a result, mean average precision (MAP)
is used as an evaluation measure. For a perfect
ranking, a system has to place all Good answers
above the PotentiallyUseful and Bad answers. The
latter two are not actually distinguished and are
considered Bad in terms of evaluation. Addition-

6The SemEval 2017 dataset provides all the data from
2016 for training , and fresh data for testing, but it does not
include a development set. Following previous work (Filice
et al., 2017), we use the 2016 official test set as the develop-
ment set.

ally, standard classification measures like accuracy
and F1 score are also reported.

4.3 Implementation Details

We use the tokenizer from NLTK (Bird, 2006)
to preprocess each sentence. All word embed-
dings in the sentence encoder layer are initial-
ized with the 300-dimensional GloVe (Pennington
et al., 2014) word vectors trained on the domain-
specific unannotated corpus, and embeddings for
out-of-vocabulary words are set to zero. We use
the Adam Optimizer (Kingma and Ba, 2014) for
optimization with a first momentum coefficient of
0.9 and a second momentum coefficient of 0.999.
We perform a small grid search over combina-
tions of initial learning rate [1 × 10−6, 3 × 10−6,
1× 10−5], L2 regularization parameter [1× 10−7,
3 × 10−7, 1 × 10−6], and batch size [8, 16, 32].
We take the best configuration based on perfor-
mance on the development set, and only evalu-
ate that configuration on the test set. In order to
mitigate the class imbalance problem, median fre-
quency balancing Eigen and Fergus (2015) is used
to reweight each class in the cross-entropy loss.
Therefore, the rarer a class is in the training set, the
larger weight it will get in the cross entropy loss.
Early stopping is applied to mitigate the problem
of overfitting. For the SemEval 2017 dataset, the
conditional probability over the Good class is used
to rank all the candidate answers.

5 Experimental Results

In this section, we evaluate our QCN model on two
community question answering datasets from Se-
mEval shared tasks.

5.1 SemEval 2015 Results

Table 3 compares our model with the following
baselines:
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Methods F1 Acc
(1) JAIST 78.96 79.10
(2) HITSZ-ICRC 76.52 76.11
(3) Graph-cut 80.55 79.80
(4) FCCRF 81.50 80.50
(5) BGMN 77.23 78.40
(6) CNN-LSTM-CRF 82.22 82.24
(7) QCN 83.91 85.65

Table 3: Comparisons on the SemEval 2015
dataset.

• JAIST (Tran et al., 2015): It used an SVM
classifier to incorporate various kinds of fea-
tures , including topic model based features
and word vector representations.

• HITSZ-ICRC (Hou et al., 2015): It pro-
posed ensemble learning and hierarchical
classification method to classify answers.

• Graph-cut (Joty et al., 2015): It modeled the
relationship between pairs of answers at any
distance in the same question thread, based
on the idea that similar answers should have
similar labels.

• FCCRF (Joty et al., 2016): It used locally
learned classifiers to predict the label for each
individual node, and applied fully connected
CRF to make global inference.

• CNN-LSTM-CRF (Xiang et al., 2016): The
question and its answers are linearly con-
nected in a sequence and encoded by CNN.
An attention-based LSTM with a CRF layer
is then applied on the encoded sequence.

• BGMN (Wu et al., 2017b): It used the mem-
ory mechanism to iteratively aggregate more
relevant information which is useful to iden-
tify the relationship between questions and
answers.

Baselines include top systems from SemEval
2015 (1, 2), systems relying on thread level infor-
mation to make global inference (3, 4), and neu-
ral network based systems (5, 6). We observe that
our proposed QCN can achieve the state-of-the-art
performance on this dataset, outperforming previ-
ous best model (6) by 1.7% in terms of F1 and
3.4% in terms of accuracy.

Methods MAP F1 Acc
(1) KeLP 88.43 69.87 73.89
(2) Beihang-MSRA 88.24 68.40 51.98
(3) ECNU 86.72 77.67 78.43
(4) LSTM 86.32 74.41 75.69
(5) LSTM-subject-body 87.11 74.50 77.28
(6) QCN 88.51 78.11 80.71

Table 4: Comparisons on the SemEval 2017
dataset.

Notably, Systems (1, 2, 3, 4) have heavy feature
engineering, while QCN only uses automatically-
learned feature vectors, demonstrating that our
QCN model is concise as well as effective. Fur-
thermore, our model can outperform systems rely-
ing on thread level information to make global in-
ference (3, 4), showing that modeling interaction
between the question-answer pair is useful enough
for answer selection task. Finally, neural network
based systems (5, 6) used attention mechanism in
sentence representation but ignored the subject-
body relationship in community questions. QCN
can outperform them by a large margin, showing
that condensing question representation helps in
the answer selection task.

5.2 SemEval 2017 Results

Table 4 compares our model with the following
baselines:

• KeLP (Filice et al., 2017): It used syn-
tactic tree kernels with relational links be-
tween questions and answers, together with
some standard text similarity measures lin-
early combined with the tree kernel.

• Beihang-MSRA (Feng et al., 2017): It used
gradient boosted regression trees to combine
traditional NLP features and neural network-
based matching features.

• ECNU (Wu et al., 2017a): It combined a su-
pervised model using traditional features and
a convolutional neural network to represent
the question-answer pair.

• LSTM: It is a simple neural network based
baseline that we implemented. In this model,
the question subject and the question body
are concatenated, and an LSTM is used to ob-
tain the question and answer representation.
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• LSTM-subject-body: It is another neural
network based baseline that we implemented.
LSTM is applied on the question subject and
body respectively, and the results are concate-
nated to form question representation.

Baselines include top systems from the Se-
mEval 2017 CQA task (1, 2, 3) and two neural net-
work based baselines (4, 5) that we implemented.
(5) can outperform (4), showing that treating ques-
tion subject and body differently can indeed boot
model performance. Comparing (6) with (5), we
can draw the conclusion that orthogonal decom-
position is more effective than simple concatena-
tion, because it can flexibly aggregate related in-
formation from the question body with respect to
the main subject. In the example listed in Table 1,
attention heatmap ofAorth indicates that QCN can
effectively find additional information like “main-
tenance, accident or service history”, while (5)
fails to do so.

QCN has a great advantage in terms of accu-
racy. We hypothesize that QCN focuses on mod-
eling interaction between questions and answers,
i.e., whether an answer can match the correspond-
ing question. Many pieces of previous work fo-
cus on modeling relationship between answers in
a question thread, i.e., which answer is more suit-
able in consideration of all other answers. As a
consequence, their models have a greater advan-
tage in ranking while QCN has a greater advan-
tage in classification. Despite all this, QCN can
still obtain better ranking performance.

5.3 Ablation Study

For thorough comparison, besides the preceding
models, we implement nine extra baselines on the
SemEval 2017 dataset to analyze the improve-
ments contributed by each part of our QCN model:

• w/o task-specific word embeddings where
word embeddings are initialized with the
300-dimensional GloVe word vectors trained
on Wikipedia 2014 and Gigaword 5.

• w/o character embeddings where word-
level embeddings are only composed of 600-
dimensional GloVe word vectors trained on
the domain-specific unannotated corpus.

• subject-body alignment where we use the
same attention mechanism as Question An-
swer Alignment to obtain weighted sum of

Model Acc
(1) w/o task-specific word embeddings 78.81
(2) w/o character embeddings 78.05
(3) subject-body alignment 77.38
(4) subject-body concatenation 76.06
(5) w/o multi-dimensional attention 78.33
(6) subject only 74.02
(7) body only 75.57
(8) similarity only 79.11
(9) disparity only 78.24
(10) QCN 80.71

Table 5: Ablation studies on the SemEval 2017
dataset.

the question body for each question subject
word, and then the result is concatenated with
Semb to obtain question representation Srep.

• subject-body concatenation where we con-
catenate question subject and body text, and
use the preprocessing step described in sec-
tion 3.3 to obtain Srep.

• w/o multi-dimensional attention where the
multi-dimensional attention mechanism is re-
placed by vanilla attention in all modules,
i.e., attention score for each token pair is a
scalar instead of a vector.

• subject only where only question subject is
used as question representation.

• body only where only question body is used
as question representation.

• similarity only where the parallel component
alone is used in subject-body interaction.

• disparity only where the orthogonal compo-
nent alone is used in subject-body interaction.

The results are listed in Table 5. We can see that
using task-specific embeddings and character em-
beddings both contribute to model performance.
This is because CQA text is non-standard. There
are quantities of informal language usage, such
as abbreviations, typos, emoticons, and grammati-
cal mistakes. Using task-specific embeddings and
character embeddings can help to attenuate the
OOV problem.

Using orthogonal decomposition (10) instead of
subject-body alignment (3) can bring about signif-
icant performance gain. This is because not only
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Figure 2: Attention probabilities in Apara, Aorth and Aalign. In order to visualize the multi-dimensional
attention vector, we use the L2 norm of the attenion vector for representation.

the similar part of the question body to the ques-
tion subject is useful for the question representa-
tion, the disparity part can also provide additional
information. In the example listed in Table 1, ad-
ditional information like “maintenance, accident
or service history” is also important to determine
answer quality.

QCN outperforms (4) by a great margin,
demonstrating that subject-body relationship in
community questions helps to condense question
representation. Therefore, QCN can identify the
meaningful part of the question representation that
helps to determine answer quality.

Using the multi-dimensional attention can fur-
ther boost model performance, showing that the
multi-dimensional attention can model the inter-
action between questions and answers more pre-
cisely.

Comparing QCN with (6) and (7), we can con-
clude that both the subject and the body are indis-
pensable for question representation. (8) outper-
forms (9), demonstrating the parallel component
is more useful in subject-body interaction.

6 Qualitative Study

To gain a closer view of what dependencies are
captured in the subject-body pair and the question-
answer pair, we visualize the attention probabili-
ties Apara, Aorth and Aalign by heatmap. A train-
ing example from SemEval 2015 is selected for
illustration.

In Figure 2, we can draw the following con-
clusions. First, orthogonal decomposition helps
to divide the labor of identifying similar parts in
the parallel component and collecting related in-
formation in the question body in the orthogonal
component. For instance, for the word “Kuala” in

the question subject, its parallel alignment score
focuses more on “Doha” and “Travel”, while its
orthogonal alignment score focuses on “arrange”
and “package”, which is the purpose of the travel
and therefore is also indispensable for sentence
representation. Second, semantically important
words such as “airline” and “fares” dominate the
attention weights, showing that our QCN model
can effectively select words that are most repre-
sentative for the meaning of the whole sentence.
Lastly, words that are useful to determine answer
quality stand out in the question-answer interac-
tion matrix, demonstrating that question-answer
relationship can be well modeled. For example,
“best” and “low” are the words that are more im-
portant in the question-answer relationship, they
are emphasized in the question-answer alignment
matrix.

7 Related Work

One main task in community question answering
is answer selection, i.e., to rate the answers ac-
cording to their quality. The SemEval CQA tasks
(Nakov et al., 2015, 2016, 2017) provide univer-
sal benchmark datasets for evaluating researches
on this problem.

Earlier work of answer selection in CQA relied
heavily on feature engineering, linguistic tools,
and external resource. Nakov et al. (2016) investi-
gated a wide range of feature types including sim-
ilarity features, content features, thread level/meta
features, and automatically generated features for
SemEval CQA models. Tran et al. (2015) studied
the use of topic model based features and word
vector representation based features in the answer
re-ranking task. Filice et al. (2016) designed var-
ious heuristic features and thread-based features
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that can signal a good answer. Although achiev-
ing good performance, these methods rely heav-
ily on feature engineering, which requires a large
amount of manual work and domain expertise.

Since answer selection is inherently a ranking
task, a few recent researches proposed to use local
features to make global ranking decision. Barrón-
Cedeño et al. (2015) was the first work that ap-
plies structured prediction model on CQA answer
selection task. Joty et al. (2016) approached the
task with a global inference process to exploit the
information of all answers in the question-thread
in the form of a fully connected graph.

To avoid feature engineering, many deep learn-
ing models have been proposed for answer selec-
tion. Among them, Zhang et al. (2017) proposed
a novel interactive attention mechanism to address
the problem of noise and redundancy prevalent in
CQA. Tay et al. (2017) introduced temporal gates
for sequence pairs so that questions and answers
are aware of what each other is remembering or
forgetting. Simple as their model are, they did not
consider the relationship between question subject
and body, which is useful for question condensing.

8 Conclusion and Future Work

We propose Question Condensing Networks
(QCN), an attention-based model that can utilize
the subject-body relationship in community ques-
tions to condense question representation. By or-
thogonal decomposition, the labor of identifying
similar parts and collecting related information in
the question body can be well divided in two dif-
ferent alignment matrices. To better capture the
interaction between the subject-body pair and the
question-answer pair, the multi-dimensional atten-
tion mechanism is adopted. Empirical results on
two community question answering datasets in Se-
mEval demonstrate the effectiveness of our model.
In future work, we will try to incorporate more
hand-crafted features in our model. Furthermore,
since thread-level features have been explored in
previous work (Barrón-Cedeño et al., 2015; Joty
et al., 2015, 2016), we will verify their effective-
ness in our architecture.
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Abstract

Small perturbations in the input can
severely distort intermediate representa-
tions and thus impact translation quality of
neural machine translation (NMT) mod-
els. In this paper, we propose to improve
the robustness of NMT models with adver-
sarial stability training. The basic idea is
to make both the encoder and decoder in
NMT models robust against input pertur-
bations by enabling them to behave sim-
ilarly for the original input and its per-
turbed counterpart. Experimental results
on Chinese-English, English-German and
English-French translation tasks show that
our approaches can not only achieve sig-
nificant improvements over strong NMT
systems but also improve the robustness of
NMT models.

1 Introduction

Neural machine translation (NMT) models have
advanced the state of the art by building a sin-
gle neural network that can better learn represen-
tations (Cho et al., 2014; Sutskever et al., 2014).
The neural network consists of two components:
an encoder network that encodes the input sen-
tence into a sequence of distributed representa-
tions, based on which a decoder network generates
the translation with an attention model (Bahdanau
et al., 2015; Luong et al., 2015). A variety of NMT
models derived from this encoder-decoder frame-
work have further improved the performance of
machine translation systems (Gehring et al., 2017;
Vaswani et al., 2017). NMT is capable of general-
izing better to unseen text by exploiting word simi-
larities in embeddings and capturing long-distance
reordering by conditioning on larger contexts in a
continuous way.

Input tamen bupa kunnan zuochu weiqi AI.

Output
They are not afraid of difficulties to
make Go AI.

Input tamen buwei kunnan zuochu weiqi AI.
Output They are not afraid to make Go AI.

Table 1: The non-robustness problem of neural
machine translation. Replacing a Chinese word
with its synonym (i.e., “bupa”→ “buwei”) leads to
significant erroneous changes in the English trans-
lation. Both “bupa” and “buwei” can be translated
to the English phrase “be not afraid of.”

However, studies reveal that very small changes
to the input can fool state-of-the-art neural net-
works with high probability (Goodfellow et al.,
2015; Szegedy et al., 2014). Belinkov and Bisk
(2018) confirm this finding by pointing out that
NMT models are very brittle and easily falter
when presented with noisy input. In NMT, due
to the introduction of RNN and attention, each
contextual word can influence the model predic-
tion in a global context, which is analogous to the
“butterfly effect.” As shown in Table 1, although
we only replace a source word with its synonym,
the generated translation has been completely dis-
torted. We investigate severe variations of trans-
lations caused by small input perturbations by re-
placing one word in each sentence of a test set with
its synonym. We observe that 69.74% of transla-
tions have changed and the BLEU score is only
79.01 between the translations of the original in-
puts and the translations of the perturbed inputs,
suggesting that NMT models are very sensitive to
small perturbations in the input. The vulnerabil-
ity and instability of NMT models limit their ap-
plicability to a broader range of tasks, which re-
quire robust performance on noisy inputs. For ex-
ample, simultaneous translation systems use auto-
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matic speech recognition (ASR) to transcribe in-
put speech into a sequence of hypothesized words,
which are subsequently fed to a translation sys-
tem. In this pipeline, ASR errors are presented as
sentences with noisy perturbations (the same pro-
nunciation but incorrect words), which is a signif-
icant challenge for current NMT models. More-
over, instability makes NMT models sensitive to
misspellings and typos in text translation.

In this paper, we address this challenge with
adversarial stability training for neural machine
translation. The basic idea is to improve the ro-
bustness of two important components in NMT:
the encoder and decoder. To this end, we pro-
pose two approaches to constructing noisy inputs
with small perturbations to make NMT models re-
sist them. As important intermediate representa-
tions encoded by the encoder, they directly deter-
mine the accuracy of final translations. We intro-
duce adversarial learning to make behaviors of the
encoder consistent for both an input and its per-
turbed counterpart. To improve the stability of the
decoder, our method jointly maximizes the likeli-
hoods of original and perturbed data. Adversarial
stability training has the following advantages:

1. Improving both the robustness and transla-
tion performance: Our adversarial stability
training is capable of not only improving the
robustness of NMT models but also achiev-
ing better translation performance.

2. Applicable to arbitrary noisy perturbations:
In this paper, we propose two approaches to
constructing noisy perturbations for inputs.
However, our training framework can be eas-
ily extended to arbitrary noisy perturbations.
Especially, we can design task-specific per-
turbation methods.

3. Transparent to network architectures: Our
adversarial stability training does not depend
on specific NMT architectures. It can be ap-
plied to arbitrary NMT systems.

Experiments on Chinese-English, English-
French and English-German translation tasks
show that adversarial stability training achieves
significant improvements across different lan-
guages pairs. Our NMT system outperforms
the state-of-the-art RNN-based NMT system
(GNMT) (Wu et al., 2016) and obtains compara-
ble performance with the CNN-based NMT sys-

tem (Gehring et al., 2017). Related experimen-
tal analyses validate that our training approach can
improve the robustness of NMT models.

2 Background

NMT is an end-to-end framework which directly
optimizes the translation probability of a target
sentence y = y1, ..., yN given its corresponding
source sentence x = x1, ..., xM :

P (y|x;θ) =
N∏

n=1

P (yn|y<n,x;θ) (1)

where θ is a set of model parameters and y<n is a
partial translation. P (y|x;θ) is defined on a holis-
tic neural network which mainly includes two core
components: an encoder encodes a source sen-
tence x into a sequence of hidden representations
Hx = H1, ...,HM , and a decoder generates the
n-th target word based on the sequence of hidden
representations:

P (yn|y<n,x;θ) ∝ exp{g(yn−1, sn,Hx;θ)} (2)

where sn is the n-th hidden state on target side.
Thus the model parameters of NMT include the
parameter sets of the encoder θenc and the decoder
θdec: θ = {θenc,θdec}. The standard training ob-
jective is to minimize the negative log-likelihood
of the training corpus S = {〈x(s),y(s)〉}|S|s=1:

θ̂ = argmin
θ
L(x,y;θ)

= argmin
θ

{ ∑

〈x,y〉∈S
− logP (y|x;θ)

}
(3)

Due to the vulnerability and instability of deep
neural networks, NMT models usually suffer from
a drawback: small perturbations in the input can
dramatically deteriorate its translation results. Be-
linkov and Bisk (2018) point out that character-
based NMT models are very brittle and easily fal-
ter when presented with noisy input. We find
that word-based and subword-based NMT mod-
els also confront with this shortcoming, as shown
in Table 1. We argue that the distributed repre-
sentations should fulfill the stability expectation,
which is the underlying concept of the proposed
approach. Recent work has shown that adversar-
ially trained models can be made robust to such
perturbations (Zheng et al., 2016; Madry et al.,
2018). Inspired by this, in this work, we im-
prove the robustness of encoder representations
against noisy perturbations with adversarial learn-
ing (Goodfellow et al., 2014).
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Figure 1: The architecture of NMT with adversar-
ial stability training. The dark solid arrow lines
represent the forward-pass information flow for
the input sentence x, while the red dashed arrow
lines for the noisy input sentence x′, which is
transformed from x by adding small perturbations.

3 Approach

3.1 Overview
The goal of this work is to propose a general ap-
proach to make NMT models learned to be more
robust to input perturbations. Our basic idea is
to maintain the consistency of behaviors through
the NMT model for the source sentence x and its
perturbed counterpart x′. As aforementioned, the
NMT model contains two procedures for project-
ing a source sentence x to its target sentence y:
the encoder is responsible for encoding x as a se-
quence of representations Hx, while the decoder
outputs y with Hx as input. We aim at learning
the perturbation-invariant encoder and decoder.

Figure 1 illustrates the architecture of our ap-
proach. Given a source sentence x, we construct a
set of perturbed sentences N (x), in which each
sentence x′ is constructed by adding small per-
turbations to x. We require that x′ is a subtle
variation from x and they have similar semantics.
Given the input pair (x, x′), we have two expecta-
tions: (1) the encoded representation Hx′ should
be close to Hx; and (2) given Hx′ , the decoder is
able to generate the robust output y. To this end,
we introduce two additional objectives to improve
the robustness of the encoder and decoder:

• Linv(x,x′) to encourage the encoder to out-
put similar intermediate representations Hx

and Hx′ for x and x′ to achieve an invariant

encoder, which benefits outputting the same
translations. We cast this objective in the ad-
versarial learning framework.

• Lnoisy(x′,y) to guide the decoder to generate
output y given the noisy input x′, which is
modeled as − logP (y|x′). It can also be de-
fined as KL divergence between P (y|x) and
P (y|x′) that indicates using P (y|x) to teach
P (y|x′).

As seen, the two introduced objectives aim to im-
prove the robustness of the NMT model which can
be free of high variances in target outputs caused
by small perturbations in inputs. It is also natural
to introduce the original training objective L(x,y)
on x and y, which can guarantee good transla-
tion performance while keeping the stability of the
NMT model.

Formally, given a training corpus S, the adver-
sarial stability training objective is

J (θ)
=

∑

〈x,y〉∈S

(
Ltrue(x,y;θenc,θdec)

+α
∑

x′∈N (x)

Linv(x,x′;θenc,θdis)

+β
∑

x′∈N (x)

Lnoisy(x′,y;θenc,θdec)
)

(4)

where Ltrue(x,y) and Lnoisy(x′,y) are calculated
using Equation 3, and Linv(x,x′) is the adversar-
ial loss to be described in Section 3.3. α and β
control the balance between the original transla-
tion task and the stability of the NMT model. θ =
{θenc,θdec,θdis} are trainable parameters of the
encoder, decoder, and the newly introduced dis-
criminator used in adversarial learning. As seen,
the parameters of encoder θenc and decoder θdec
are trained to minimize both the translation loss
Ltrue(x,y) and the stability losses (Lnoisy(x′,y)
and Linv(x,x′)).

Since Lnoisy(x′,y) evaluates the translation
loss on the perturbed neighbour x′ and its corre-
sponding target sentence y, it means that we aug-
ment the training data by adding perturbed neigh-
bours, which can potentially improve the transla-
tion performance. In this way, our approach not
only makes the output of NMT models more ro-
bust, but also improves the performance on the
original translation task.
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In the following sections, we will first describe
how to construct perturbed inputs with different
strategies to fulfill different goals (Section 3.2),
followed by the proposed adversarial learning
mechanism for the perturbation-invariant encoder
(Section 3.3). We conclude this section with the
training strategy (Section 3.4).

3.2 Constructing Perturbed Inputs

At each training step, we need to generate a per-
turbed neighbour set N (x) for each source sen-
tence x for adversarial stability training. In this
paper, we propose two strategies to construct the
perturbed inputs at multiple levels of representa-
tions.

The first approach generates perturbed neigh-
bours at the lexical level. Given an input sentence
x, we randomly sample some word positions to
be modified. Then we replace words at these posi-
tions with other words in the vocabulary according
to the following distribution:

P (x|xi) =
exp {cos (E[xi],E[x])}∑

x∈Vx\xi
exp {cos (E[xi],E[x])} (5)

where E[xi] is the word embedding for word xi,
Vx\xi is the source vocabulary set excluding the
word xi, and cos (E[xi],E[x]) measures the simi-
larity between word xi and x. Thus we can change
the word to another word with similar semantics.

One potential problem of the above strategy is
that it is hard to enumerate all possible positions
and possible types to generate perturbed neigh-
bours. Therefore, we propose a more general ap-
proach to modifying the sentence at the feature
level. Given a sentence, we can obtain the word
embedding for each word. We add the Gaussian
noise to a word embedding to simulate possible
types of perturbations. That is

E[x′i] = E[xi] + ε, ε ∼ N(0, σ2I) (6)

where the vector ε is sampled from a Gaussian dis-
tribution with variance σ2. σ is a hyper-parameter.
We simply introduce Gaussian noise to all of word
embeddings in x.

The proposed scheme is a general framework
where one can freely define the strategies to con-
struct perturbed inputs. We just present two pos-
sible examples here. The first strategy is poten-
tially useful when the training data contains noisy
words, while the latter is a more general strategy

to improve the robustness of common NMT mod-
els. In practice, one can design specific strategies
for particular tasks. For example, we can replace
correct words with their homonyms (same pronun-
ciation but different meanings) to improve NMT
models for simultaneous translation systems.

3.3 Adversarial Learning for the
Perturbation-invariant Encoder

The goal of the perturbation-invariant encoder is
to make the representations produced by the en-
coder indistinguishable when fed with a correct
sentence x and its perturbed counterpart x′, which
is directly beneficial to the output robustness of
the decoder. We cast the problem in the adversar-
ial learning framework (Goodfellow et al., 2014).
The encoder serves as the generator G, which de-
fines the policy that generates a sequence of hid-
den representations Hx given an input sentence x.
We introduce an additional discriminatorD to dis-
tinguish the representation of perturbed input Hx′

from that of the original input Hx. The goal of
the generator G (i.e., encoder) is to produce sim-
ilar representations for x and x′ which could fool
the discriminator, while the discriminator D tries
to correctly distinguish the two representations.

Formally, the adversarial learning objective is

Linv(x,x′;θenc,θdis)
= Ex∼S [− logD(G(x))] +

Ex′∼N (x)

[
− log(1−D(G(x′)))

]
(7)

The discriminator outputs a classification score
given an input representation, and tries to max-
imize D(G(x)) to 1 and minimize D(G(x′)) to
0. The objective encourages the encoder to output
similar representations for x and x′, so that the
discriminator fails to distinguish them.

The training procedure can be regarded as a
min-max two-player game. The encoder parame-
ters θenc are trained to maximize the loss function
to fool the discriminator. The discriminator pa-
rameters θdis are optimized to minimize this loss
for improving the discriminating ability. For ef-
ficiency, we update both the encoder and the dis-
criminator simultaneously at each iteration, rather
than the periodical training strategy that is com-
monly used in adversarial learning. Lamb et al.
(2016) also propose a similar idea to use Professor
Forcing to make the behaviors of RNNs be indis-
tinguishable when training and sampling the net-
works.
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3.4 Training
As shown in Figure 1, our training objective in-
cludes three sets of model parameters for three
modules. We use mini-batch stochastic gradient
descent to optimize our model. In the forward
pass, besides a mini-batch of x and y, we also
construct a mini-batch consisting of the perturbed
neighbour x′ and y. We propagate the informa-
tion to calculate these three loss functions accord-
ing to arrows. Then, gradients are collected to up-
date three sets of model parameters. Except for
the gradients of Linv with respect to θenc are mul-
tiplying by−1, other gradients are normally back-
propagated. Note that we update θinv and θenc si-
multaneously for training efficiency.

4 Experiments

4.1 Setup
We evaluated our adversarial stability training on
translation tasks of several language pairs, and re-
ported the 4-gram BLEU (Papineni et al., 2002)
score as calculated by the multi-bleu.perl script.
Chinese-English We used the LDC corpus con-
sisting of 1.25M sentence pairs with 27.9M Chi-
nese words and 34.5M English words respectively.
We selected the best model using the NIST 2006
set as the validation set (hyper-parameter opti-
mization and model selection). The NIST 2002,
2003, 2004, 2005, and 2008 datasets are used as
test sets.
English-German We used the WMT 14 corpus
containing 4.5M sentence pairs with 118M En-
glish words and 111M German words. The vali-
dation set is newstest2013, and the test set is new-
stest2014.
English-French We used the IWSLT corpus
which contains 0.22M sentence pairs with 4.03M
English words and 4.12M French words. The
IWLST corpus is very dissimilar from the NIST
and WMT corpora. As they are collected from
TED talks and inclined to spoken language,
we want to verify our approaches on the non-
normative text. The IWSLT 14 test set is taken
as the validation set and 15 test set is used as the
test set.

For English-German and English-French, we
tokenize both English, German and French words
using tokenize.perl script. We follow Sen-
nrich et al. (2016b) to split words into sub-
word units. The numbers of merge operations
in byte pair encoding (BPE) are set to 30K,

40K and 30K respectively for Chinese-English,
English-German, and English-French. We re-
port the case-sensitive tokenized BLEU score for
English-German and English-French and the case-
insensitive tokenized BLEU score for Chinese-
English.

Our baseline system is an in-house NMT sys-
tem. Following Bahdanau et al. (2015), we im-
plement an RNN-based NMT in which both the
encoder and decoder are two-layer RNNs with
residual connections between layers (He et al.,
2016b). The gating mechanism of RNNs is gated
recurrent unit (GRUs) (Cho et al., 2014). We
apply layer normalization (Ba et al., 2016) and
dropout (Hinton et al., 2012) to the hidden states
of GRUs. Dropout is also added to the source and
target word embeddings. We share the same ma-
trix between the target word embeedings and the
pre-softmax linear transformation (Vaswani et al.,
2017). We update the set of model parameters us-
ing Adam SGD (Kingma and Ba, 2015). Its learn-
ing rate is initially set to 0.05 and varies according
to the formula in Vaswani et al. (2017).

Our adversarial stability training initializes the
model based on the parameters trained by maxi-
mum likelihood estimation (MLE). We denote ad-
versarial stability training based on lexical-level
perturbations and feature-level perturbations re-
spectively as ASTlexical and ASTfeature. We only
sample one perturbed neighbour x′ ∈ N (x) for
training efficiency. For the discriminator used in
Linv, we adopt the CNN discriminator proposed
by Kim (2014) to address the variable-length prob-
lem of the sequence generated by the encoder. In
the CNN discriminator, the filter windows are set
to 3, 4, 5 and rectified linear units are applied af-
ter convolution operations. We tune the hyper-
parameters on the validation set through a grid
search. We find that both the optimal values of
α and β are set to 1.0. The standard variance in
Gaussian noise used in the formula (6) is set to
0.01. The number of words that are replaced in
the sentence x during lexical-level perturbations is
taken as max(0.2|x|, 1) in which |x| is the length
of x. The default beam size for decoding is 10.

4.2 Translation Results

4.2.1 NIST Chinese-English Translation

Table 2 shows the results on Chinese-English
translation. Our strong baseline system signifi-
cantly outperforms previously reported results on
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System Training MT06 MT02 MT03 MT04 MT05 MT08
Shen et al. (2016) MRT 37.34 40.36 40.93 41.37 38.81 29.23
Wang et al. (2017) MLE 37.29 – 39.35 41.15 38.07 –
Zhang et al. (2018) MLE 38.38 – 40.02 42.32 38.84 –

this work
MLE 41.38 43.52 41.50 43.64 41.58 31.60
ASTlexical 43.57 44.82 42.95 45.05 43.45 34.85
ASTfeature 44.44 46.10 44.07 45.61 44.06 34.94

Table 2: Case-insensitive BLEU scores on Chinese-English translation.

System Architecture Training BLEU
Shen et al. (2016) Gated RNN with 1 layer MRT 20.45
Luong et al. (2015) LSTM with 4 layers MLE 20.90
Kalchbrenner et al. (2017) ByteNet with 30 layers MLE 23.75
Wang et al. (2017) DeepLAU with 4 layers MLE 23.80
Wu et al. (2016) LSTM with 8 layers RL 24.60
Gehring et al. (2017) CNN with 15 layers MLE 25.16
Vaswani et al. (2017) Self-attention with 6 layers MLE 28.40

this work Gated RNN with 2 layers
MLE 24.06
ASTlexical 25.17
ASTfeature 25.26

Table 3: Case-sensitive BLEU scores on WMT 14 English-German translation.

Training tst2014 tst2015
MLE 36.92 36.90
ASTlexical 37.35 37.03
ASTfeature 38.03 37.64

Table 4: Case-sensitive BLEU scores on IWSLT
English-French translation.

Chinese-English NIST datasets trained on RNN-
based NMT. Shen et al. (2016) propose minimum
risk training (MRT) for NMT, which directly op-
timizes model parameters with respect to BLEU
scores. Wang et al. (2017) address the issue of
severe gradient diffusion with linear associative
units (LAU). Their system is deep with an encoder
of 4 layers and a decoder of 4 layers. Zhang et al.
(2018) propose to exploit both left-to-right and
right-to-left decoding strategies for NMT to cap-
ture bidirectional dependencies. Compared with
them, our NMT system trained by MLE outper-
forms their best models by around 3 BLEU points.
We hope that the strong baseline systems used in
this work make the evaluation convincing.

We find that introducing adversarial stability
training into NMT can bring substantial improve-
ments over previous work (up to +3.16 BLEU

points over Shen et al. (2016), up to +3.51
BLEU points over Wang et al. (2017) and up to
+2.74 BLEU points over Zhang et al. (2018))
and our system trained with MLE across all the
datasets. Compared with our baseline system,
ASTlexical achieves +1.75 BLEU improvement on
average. ASTfeature performs better, which can
obtain +2.59 BLEU points on average and up to
+3.34 BLEU points on NIST08.

4.2.2 WMT 14 English-German Translation

In Table 3, we list existing NMT systems as com-
parisons. All these systems use the same WMT 14
English-German corpus. Except that Shen et al.
(2016) and Wu et al. (2016) respectively adopt
MRT and reinforcement learning (RL), other sys-
tems all use MLE as training criterion. All the sys-
tems except for Shen et al. (2016) are deep NMT
models with no less than four layers. Google’s
neural machine translation (GNMT) (Wu et al.,
2016) represents a strong RNN-based NMT sys-
tem. Compared with other RNN-based NMT sys-
tems except for GNMT, our baseline system with
two layers can achieve better performance than
theirs.

When training our NMT system with
ASTleixcal, significant improvement (+1.11
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Synthetic Type Training 0 Op. 1 Op. 2 Op. 3 Op. 4 Op. 5 Op.

Swap
MLE 41.38 38.86 37.23 35.97 34.61 32.96
ASTlexical 43.57 41.18 39.88 37.95 37.02 36.16
ASTfeature 44.44 42.08 40.20 38.67 36.89 35.81

Replacement
MLE 41.38 37.21 31.40 27.43 23.94 21.03
ASTlexical 43.57 40.53 37.59 35.19 32.56 30.42
ASTfeature 44.44 40.04 35.00 30.54 27.42 24.57

Deletion
MLE 41.38 38.45 36.15 33.28 31.17 28.65
ASTlexical 43.57 41.89 38.56 36.14 34.09 31.77
ASTfeature 44.44 41.75 39.06 36.16 33.49 30.90

Table 5: Translation results of synthetic perturbations on the validation set in Chinese-English translation.
“1 Op.” denotes that we conduct one operation (swap, replacement or deletion) on the original sentence.

Source zhongguo dianzi yinhang yewu guanli xingui jiangyu sanyue yiri qi shixing
Reference china’s new management rules for e-banking operations to take effect on march 1
MLE china’s electronic bank rules to be implemented on march 1

ASTlexical
new rules for business administration of china ’s electronic banking industry
will come into effect on march 1 .

ASTfeature
new rules for business management of china ’s electronic banking industry to
come into effect on march 1

Perturbed Source zhongfang dianzi yinhang yewu guanli xingui jiangyu sanyue yiri qi shixing
MLE china to implement new regulations on business management

ASTlexical
the new regulations for the business administrations of the chinese electronics
bank will come into effect on march 1 .

ASTfeature
new rules for business management of china’s electronic banking industry to
come into effect on march 1

Table 6: Example translations of a source sentence and its perturbed counterpart by replacing a Chinese
word “zhongguo” with its synonym “zhongfang.”

BLEU points) can be observed. ASTfeature

can obtain slightly better performance. Our
NMT system outperforms the state-of-the-art
RNN-based NMT system, GNMT, with +0.66
BLEU point and performs comparably with
Gehring et al. (2017) which is based on CNN
with 15 layers. Given that our approach can be
applied to any NMT systems, we expect that
the adversarial stability training mechanism can
further improve performance upon the advanced
NMT architectures. We leave this for future work.

4.2.3 IWSLT English-French Translation
Table 4 shows the results on IWSLT English-
French Translation. Compared with our strong
baseline system trained by MLE, we observe that
our models consistently improve translation per-
formance in all datasets. ASTfeature can achieve
significant improvements on the tst2015 although
ASTlexical obtains comparable results. These

demonstrate that our approach maintains good per-
formance on the non-normative text.

4.3 Results on Synthetic Perturbed Data
In order to investigate the ability of our training
approaches to deal with perturbations, we experi-
ment with three types of synthetic perturbations:

• Swap: We randomly choose N positions
from a sentence and then swap the chosen
words with their right neighbours.

• Replacement: We randomly replace sam-
pled words in the sentence with other words.

• Deletion: We randomly deleteN words from
each sentence in the dataset.

As shown in Table 5, we can find that our train-
ing approaches, ASTlexical and ASTfeature, consis-
tently outperform MLE against perturbations on
all the numbers of operations. This means that our
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Ltrue Lnoisy Ladv BLEU
√ × × 41.38√ × √

41.91
× √ × 42.20√ √ × 42.93√ √ √

43.57

Table 7: Ablation study of adversarial stabil-
ity training ASTlexical on Chinese-English trans-
lation. “

√
” means the loss function is included in

the training objective while “×” means it is not.

approaches have the capability of resisting pertur-
bations. Along with the number of operations in-
creasing, the performance on MLE drops quickly.
Although the performance of our approaches also
drops, we can see that our approaches consistently
surpass MLE. In ASTlexical, with 0 operation, the
difference is +2.19 (43.57 Vs. 41.38) for all syn-
thetic types, but the differences are enlarged to
+3.20, +9.39, and +3.12 respectively for the three
types with 5 operations.

In the Swap and Deletion types, ASTlexical and
ASTfeature perform comparably after more than
four operations. Interestingly, ASTlexical per-
forms significantly better than both of MLE and
ASTfeature after more than one operation in the
Replacement type. This is because ASTlexical

trains the model specifically on perturbation data
that is constructed by replacing words, which
agrees with the Replacement Type. Overall,
ASTlexical performs better than ASTfeature against
perturbations after multiple operations. We spec-
ulate that the perturbation method for ASTlexical

and synthetic type are both discrete and they keep
more consistent. Table 6 shows example transla-
tions of a Chinese sentence and its perturbed coun-
terpart.

These findings indicate that we can construct
specific perturbations for a particular task. For
example, in simultaneous translation, an auto-
matic speech recognition system usually generates
wrong words with the same pronunciation of cor-
rect words, which dramatically affects the quality
of machine translation system. Therefore, we can
design specific perturbations aiming for this task.

4.4 Analysis

4.4.1 Ablation Study
Our training objective function Eq. (4) contains
three loss functions. We perform an ablation
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Figure 2: BLEU scores of ASTlexical over itera-
tions on Chinese-English validation set.
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Figure 3: Learning curves of three loss functions,
Ltrue, Linv and Lnoisy over iterations on Chinese-
English validation set.

study on the Chinese-English translation to under-
stand the importance of these loss functions by
choosing ASTlexical as an example. As Table 7
shows, if we remove Ladv, the translation perfor-
mance decreases by 0.64 BLEU point. However,
when Lnoisy is excluded from the training objec-
tive function, it results in a significant drop of 1.66
BLEU point. Surprisingly, only using Lnoisy is
able to lead to an increase of 0.88 BLEU point.

4.4.2 BLEU Scores over Iterations
Figure 2 shows the changes of BLEU scores
over iterations respectively for ASTlexical and
ASTfeature. They behave nearly consistently. Ini-
tialized by the model trained by MLE, their per-
formance drops rapidly. Then it starts to go up
quickly. Compared with the starting point, the
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maximal dropping points reach up to about 7.0
BLEU points. Basically, the curves present the
state of oscillation. We think that introducing
random perturbations and adversarial learning can
make the training not very stable like MLE.

4.4.3 Learning Curves of Loss Functions
Figure 3 shows the learning curves of three loss
functions, Ltrue, Linv and Lnoisy. We can find that
their costs of loss functions decrease not steadily.
Similar to the Figure 2, there still exist oscilla-
tions in the learning curves although they do not
change much sharply. We find that Linv converges
to around 0.68 after about 100K iterations, which
indicates that discriminator outputs probability 0.5
for both positive and negative samples and it can-
not distinguish them. Thus the behaviors of the
encoder for x and its perturbed neighbour x′ per-
form nearly consistently.

5 Related Work

Our work is inspired by two lines of research: (1)
adversarial learning and (2) data augmentation.

Adversarial Learning Generative Adversarial
Network (GAN) (Goodfellow et al., 2014) and
its related derivative have been widely applied
in computer vision (Radford et al., 2015; Sali-
mans et al., 2016) and natural language process-
ing (Li et al., 2017; Yang et al., 2018). Previous
work has constructed adversarial examples to at-
tack trained networks and make networks resist
them, which has proved to improve the robust-
ness of networks (Goodfellow et al., 2015; Miy-
ato et al., 2016; Zheng et al., 2016). Belinkov
and Bisk (2018) introduce adversarial examples
to training data for character-based NMT models.
In contrast to theirs, adversarial stability training
aims to stabilize both the encoder and decoder in
NMT models. We adopt adversarial learning to
learn the perturbation-invariant encoder.

Data Augmentation Data augmentation has the
capability to improve the robustness of NMT mod-
els. In NMT, there is a number of work that aug-
ments the training data with monolingual corpora
(Sennrich et al., 2016a; Cheng et al., 2016; He
et al., 2016a; Zhang and Zong, 2016). They all
leverage complex models such as inverse NMT
models to generate translation equivalents for
monolingual corpora. Then they augment the par-
allel corpora with these pseudo corpora to improve

NMT models. Some authors have recently en-
deavored to achieve zero-shot NMT through trans-
ferring knowledge from bilingual corpora of other
language pairs (Chen et al., 2017; Zheng et al.,
2017; Cheng et al., 2017) or monolingual corpora
(Lample et al., 2018; Artetxe et al., 2018). Our
work significantly differs from these work. We do
not resort to any complicated models to generate
perturbed data and do not depend on extra mono-
lingual or bilingual corpora. The way we exploit
is more convenient and easy to implement. We
focus more on improving the robustness of NMT
models.

6 Conclusion

We have proposed adversarial stability training to
improve the robustness of NMT models. The ba-
sic idea is to train both the encoder and decoder
robust to input perturbations by enabling them to
behave similarly for the original input and its per-
turbed counterpart. We propose two approaches
to construct perturbed data to adversarially train
the encoder and stabilize the decoder. Experi-
ments on Chinese-English, English-German and
English-French translation tasks show that the pro-
posed approach can improve both the robustness
and translation performance.

As our training framework is not limited to spe-
cific perturbation types, it is interesting to evalu-
ate our approach in natural noise existing in prac-
tical applications, such as homonym in the simul-
taneous translation system. It is also necessary to
further validate our approach on more advanced
NMT architectures, such as CNN-based NMT
(Gehring et al., 2017) and Transformer (Vaswani
et al., 2017).
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Abstract

In neural machine translation, a source se-
quence of words is encoded into a vector
from which a target sequence is generated
in the decoding phase. Differently from
statistical machine translation, the associa-
tions between source words and their pos-
sible target counterparts are not explicitly
stored. Source and target words are at the
two ends of a long information process-
ing procedure, mediated by hidden states
at both the source encoding and the target
decoding phases. This makes it possible
that a source word is incorrectly translated
into a target word that is not any of its ad-
missible equivalent counterparts in the tar-
get language.

In this paper, we seek to somewhat
shorten the distance between source and
target words in that procedure, and thus
strengthen their association, by means of a
method we term bridging source and target
word embeddings. We experiment with
three strategies: (1) a source-side bridging
model, where source word embeddings are
moved one step closer to the output target
sequence; (2) a target-side bridging model,
which explores the more relevant source
word embeddings for the prediction of the
target sequence; and (3) a direct bridging
model, which directly connects source and
target word embeddings seeking to mini-
mize errors in the translation of ones by
the others.

Experiments and analysis presented in
this paper demonstrate that the proposed
bridging models are able to significantly
∗Corresponding author

…

…

…

…

source

target

Figure 1: Schematic representation of seq2seq
NMT, where x1, . . . , xT and h1, . . . , hT represent
source-side word embeddings and hidden states
respectively, ct represents a source-side context
vector, st a target-side decoder RNN hidden state,
and yt a predicted word. Seeking to shorten the
distance between source and target word embed-
dings, in what we term bridging, is the key insight
for the advances presented in this paper.

improve quality of both sentence transla-
tion, in general, and alignment and transla-
tion of individual source words with target
words, in particular.

1 Introduction

Neural machine translation (NMT) is an end-
to-end approach to machine translation that has
achieved competitive results vis-a-vis statisti-
cal machine translation (SMT) on various lan-
guage pairs (Bahdanau et al., 2015; Cho et al.,
2014; Sutskever et al., 2014; Luong and Man-
ning, 2015). In NMT, the sequence-to-sequence
(seq2seq) model learns word embeddings for both
source and target words synchronously. However,
as illustrated in Figure 1, source and target word
embeddings are at the two ends of a long informa-
tion processing procedure. The individual associ-
ations between them will gradually become loose
due to the separation of source-side hidden states
(represented by h1, . . . , hT in Fig. 1) and a target-
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(winter olympics) (honors) eos

the french athletes , who have participated in the disabled , have returned to paris . eos

french athletes participating in special winter olympics returned to paris with honors

Source

Reference

Baseline

(this) (month) (late) eos

sir lanka UNK to hold talks in geneva eos

Reference two warring sides in sri lanka agreed to hold talks in geneva late this month

Baseline

Source
(a)

(b)

Figure 2: Examples of NMT output with incorrect
alignments of source and target words that can-
not be the translation of each other in any possible
context.

side hidden state (represented by st in Fig. 1). As
a result, in the absence of a more tight interaction
between source and target word pairs, the seq2seq
model in NMT produces tentative translations that
contain incorrect alignments of source words with
target counterparts that are non-admissible equiv-
alents in any possible translation context.

Differently from SMT, in NMT an attention
model is adopted to help align output with input
words. The attention model is based on the es-
timation of a probability distribution over all in-
put words for each target word. Word alignments
with attention weights can then be easily deduced
from such distributions and support the transla-
tion. Nevertheless, sometimes one finds trans-
lations by NMT that contain surprisingly wrong
word alignments, that would unlikely occur in
SMT.

For instance, Figure 2 shows two Chinese-
to-English translation examples by NMT. In the
top example, the NMT seq2seq model incorrectly
aligns the target side end of sentence mark eos to
下旬/late with a high attention weight (0.80 in this
example) due to the failure of appropriately cap-
turing the similarity, or the lack of it, between the
source word下旬/late and the target eos. It is also
worth noting that, as本/this and月/month end up
not being translated in this example, inappropriate
alignment of target side eos is likely the respon-
sible factor for under translation in NMT as the
decoding process ends once a target eos is gener-
ated. Statistics on our development data show that
as much as 50% of target side eos do not properly
align to source side eos.

The second example in Figure 2 shows another
case where source words are translated into tar-
get items that are not their possible translations in
that or in any other context. In particular, 冬奥
会/winter olympics is incorrectly translated into a

target comma “,” and载誉/honors into have.
In this paper, to address the problem illustrated

above, we seek to shorten the distance within the
seq2seq NMT information processing procedure
between source and target word embeddings. This
is a method we term as bridging, and can be con-
ceived as strengthening the focus of the attention
mechanism into more translation-plausible source
and target word alignments. In doing so, we hope
that the seq2seq model is able to learn more appro-
priate word alignments between source and target
words.

We propose three simple yet effective strategies
to bridge between word embeddings. The inspir-
ing insight in all these three models is to move
source word embeddings closer to target word em-
beddings along the seq2seq NMT information pro-
cessing procedure. We categorize these strategies
in terms of how close the source and target word
embeddings are along that procedure, schemati-
cally depicted in Fig. 1.

(1) Source-side bridging model: Our first strat-
egy for bridging, which we call source-side
bridging, is to move source word embeddings
just one step closer to the target end. Each
source word embedding is concatenated with
the respective source hidden state at the same
position so that the attention model can more
closely benefit from source word embeddings
to produce word alignments.

(2) Target-side bridging model: In a second
more bold strategy, we seek to incorporate rel-
evant source word embeddings more closely
into the prediction of the next target hid-
den state. In particular, the most appropriate
source words are selected according to their
attention weights and they are made to more
closely interact with target hidden states.

(3) Direct bridging model: The third model con-
sists of directly bridging between source and
target word embeddings. The training objec-
tive is optimized towards minimizing the dis-
tance between target word embeddings and
their most relevant source word embeddings,
selected according to the attention model.

Experiments on Chinese-English translation
with extensive analysis demonstrate that directly
bridging word embeddings at the two ends can
produce better word alignments and thus achieve
better translation.
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…

…

BiRNN Encoder

Figure 3: Architecture of the source-side bridging
model.

…

Attention

…

Figure 4: Architecture of target-side bridging
model.

2 Bridging Models

As suggested by Figure 1, there may exist different
ways to bridge between x and yt. We concentrate
on the folowing three bridging models.

2.1 Source-side Bridging Model
Figure 3 illustrates the source-side bridging
model. The encoder reads a word sequence
equipped with word embeddings and generates a
word annotation vector for each position. Then
we simply concatenate the word annotation vec-
tor with its corresponding word embedding as
the final annotation vector. For example, the fi-
nal annotation vector hj for the word xj in Fig-
ure 3 is [

−→
hj ;
←−
hj ;xj ], where the first two sub-items

[
−→
hj ;
←−
hj ] are the source-side forward and back-

ward hidden states and xj is the corresponding
word embedding. In this way, the word embed-
dings will not only have a more strong contribu-
tion in the computation of attention weights, but
also be part of the annotation vector to form the
weighted source context vector and consequently
have a more strong impact in the prediction of tar-
get words.

2.2 Target-side Bridging Model
While the above source-side bridging method uses
the embeddings of all words for every target
word, in the target-side method only more rel-
evant source word embeddings for bridging are
explored, rather than all of them. This is par-

Decoder

word embedding loss

Attention

…

…

Figure 5: Architecture of direct bridging model.

tially inspired by the word alignments from SMT,
where words from the two ends are paired as they
are possible translational equivalents of each other
and those pairs are explicitly recorded and enter
into the system inner workings. In particular, for
a given target word, we explicitly determine the
most likely source word aligned to it and use the
word embedding of this source word to support the
prediction of the target hidden state of the next tar-
get word to be generated.

Figure 4 schematically illustrates the target-side
bridging method, where the input for computing
the hidden state st of the decoder is augmented by
xt∗ , as follows:

st = f(st−1, yt−1, ct, xt∗) (1)

where xt∗ is the word embedding of the se-
lected source word which has the highest attention
weight:

t∗ = argmaxj(αtj) (2)

where αtj is the attention weight of each hidden
state hj computed by the attention model

2.3 Direct Bridging Model

Further to the above two bridging methods, which
use source word embeddings to predict target
words, we seek to bridge the word embeddings of
the two ends in a more direct way. This is done by
resorting to an auxiliary objective function to nar-
row the discrepancy between word embeddings of
the two sides.

Figure 5 is a schematic representation of our
direct bridging method, with an auxiliary objec-
tive function. More specifically, the goal is to let
the learned word embeddings on the two ends be
transformable, i.e. if a target word ei aligns with
a source word fj , a transformation matrix W is
learned with the hope that the discrepancy of Wxi
and yj tends to be zero. Accordingly, we update
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the objective function of training for a single sen-
tence with its following extended formulation:

L(θ) = −
Ty∑

t=1

(log p(yt|y<t, x)− ‖Wxt∗ − yt‖2)

(3)

where log p(yt|y<t, x) is the original objective
function of the NMT model, and the term
‖Wxt∗ − yt‖2 measures and penalizes the differ-
ence between target word yt and its aligned source
word xt∗ , i.e. the one with the highest attention
weight, as computed in Equation 2. Similar to Mi
et al. (2016), we view the two parts of the loss in
Equation 3 as equally important.

At this juncture, it is worth noting the following:

• Our direct bridging model is an extension of
the source-side bridging model, where the
source word embeddings are part of the fi-
nal annotation vector of the encoder. We
have also tried to place the auxiliary object
function directly on the NMT baseline model.
However, our empirical study showed that the
combined objective consistently worsens the
translation quality. We blame this on that the
learned word embeddings on two sides by the
baseline model are too heterogeneous to be
constrained.

• Rather than using a concrete source word em-
bedding xt∗ in Equation 3, we could also use
a weighted sum of source word embeddings,
i.e.

∑
j αtjhj . However, our preliminary ex-

periments showed that the performance gap
between these two methods is very small.
Therefore, we use xt∗ to calculate the new
training objective as shown in Equation 3 in
all experiments.

3 Experiments

As we have presented above three different meth-
ods to bridge between source and target word em-
beddings, in the present section we report on a se-
ries of experiments on Chinese to English transla-
tion that are undertaken to assess the effectiveness
of those bridging methods.

3.1 Experimental Settings
We resorted to Chinese-English bilingual corpora
that contain 1.25M sentence pairs extracted from

LDC corpora, with 27.9M Chinese words and
34.5M English words respectively.1 We chose the
NIST06 dataset as our development set, and the
NIST02, NIST03, NIST04, NIST08 datasets as
our test sets.

We used the case-insensitive 4-gram NIST
BLEU score as our evaluation metric (Papineni
et al., 2002) and the script ‘mteval-v11b.pl’ to
compute BLEU scores. We also report TER scores
on our dataset (Snover et al., 2006).

For the efficient training of the neural net-
works, we limited the source (Chinese) and target
(English) vocabularies to the most frequent 30k
words, covering approximately 97.7% and 99.3%
of the two corpora respectively. All the out-of-
vocabulary words were mapped to the special to-
ken UNK. The dimension of word embedding was
620 and the size of the hidden layer was 1000. All
other settings were the same as in Bahdanau et al.
(2015). The maximum length of sentences that we
used to train the NMT model in our experiments
was set to 50, for both the Chinese and English
sides. Additionally, during decoding, we used the
beam-search algorithm and set the beam size to 10.
The model parameters were selected according to
the maximum BLEU points on the development
set.

We compared our proposed models against the
following two systems:

• cdec (Dyer et al., 2010): this is an open
source hierarchical phrase-based SMT sys-
tem (Chiang, 2007) with default configura-
tion and a 4-gram language model trained on
the target side of the training data.

• RNNSearch*: this is an attention-based
NMT system, taken from the dl4mt tutorial
with slight changes. It improves the atten-
tion model by feeding the lastly generated
word. For the activation function f of an
RNN, we use the gated recurrent unit (GRU)
(Chung et al., 2014). Dropout was applied
only on the output layer and the dropout
(Hinton et al., 2012) rate was set to 0.5.
We used the stochastic gradient descent algo-
rithm with mini-batch and Adadelta (Zeiler,
2012) to train the NMT models. The mini-
batch was set to 80 sentences and decay rates

1 The corpora include LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06.
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Model NIST06 NIST02 NIST03 NIST04 NIST08 Avg

BLEU

cdec (SMT) 34.00 35.81 34.70 37.15 25.28 33.23
RNNSearch* 35.92 37.88 36.21 38.83 26.30 34.81
Source bridging 36.79‡ 38.71‡ 37.24‡ 40.28‡ 27.40‡ 35.91
Target bridging 36.69 39.04‡ 37.63‡ 40.41‡ 27.98‡ 36.27
Direct bridging 36.97‡ 39.77‡ 38.02‡ 40.83‡ 27.85‡ 36.62

TER

cdec (SMT) 58.29 59.65 59.28 58.12 61.54 59.64
RNNSearch* 59.56 57.79 59.25 57.88 64.22 59.78
Source bridging 58.13 56.25 57.33 56.32 62.13 58.01
Target bridging 58.01 56.27 57.76 56.33 62.12 58.12
Direct bridging 57.20 56.68 57.29 55.62 62.49 58.02

Table 1: BLEU and TER scores on the NIST Chinese-English translation tasks. The BLEU scores are
case-insensitive. Avg means the average scores on all test sets. “‡”: statistically better than RNNSearch*
(p < 0.01). Higher BLEU (or lower TER) scores indicate better translation quality.

ρ and ε of Adadelta were set to 0.95 and
10−6.

For our NMT system with the direct bridging
model, we use a simple pre-training strategy to
train our model. We first train a regular attention-
based NMT model, then use this trained model
to initialize the parameters of the NMT system
equipped with the direct bridging model and ran-
domly initialize the additional parameters of the
direct bridging model in this NMT system. The
reason of using pre-training strategy is that the em-
bedding loss requires well-trained word alignment
as a starting point.

3.2 Experimental Results
Table 1 displays the translation performance mea-
sured in terms of BLEU and TER scores. Clearly,
every one of the three NMT models we proposed,
with some bridging method, improve the transla-
tion accuracy over all test sets in comparison to
the SMT (cdec) and NMT (RNNSearch*) baseline
systems.

Parameters
The three proposed models introduce new param-
eters in different ways. The source-side bridg-
ing model augments source hidden states from a
dimension of 2,000 to 2,620, requiring 3.7M ad-
ditional parameters to accommodate the hidden
states that are appended. The target-side bridg-
ing model introduces 1.8M additional parameters
for catering xt∗ in calculating target side state, as
in Equation 1. Based on the source-side bridging
model, the direct bridging model requires extra
0.4M parameters (i.e. the transformation matrix
W in Equation 3 is 620 ∗ 620), resulting in 4.1M
additional parameters over the baseline. Given
that the baseline model has 74.8M parameters, the

System Percentage (%)
RNNSearch* 49.82

Direct bridging 81.30

Table 2: Percentage of target side eos translated
from source side eos on the development set.

size of extra parameters in our proposed models
are comparably small.

Comparison with the baseline systems
The results in Table 1 indicate that all NMT sys-
tems outperform the SMT system taking into ac-
count the evaluation metrics considered, BLEU
and TER. This is consistent with other studies on
Chinese to English machine translation (Mi et al.,
2016; Tu et al., 2016; Li et al., 2017). Addi-
tionally, all the three NMT models with bridging
mechanisms we proposed outperform the baseline
NMT model RNNSearch*.

With respect to BLEU scores, we observe a con-
sistent trend that the target-side bridging model
works better than the source-side bridging model,
while the direct bridging model achieves the best
accuracy over all test sets, with the only exception
of NIST MT 08. On all test sets, the direct bridg-
ing model outperforms the baseline RNNSearch*
by 1.81 BLEU points and outperforms the other
two bridging-improved NMT models by 0.4∼0.6
BLEU points.

Though all models are not tuned on TER score,
our three models perform favorably well with sim-
ilar average improvement, of about 1.70 TER
points, below the baseline model.

4 Analysis

As the direct bridging system proposed achieves
the best performance, we further look at it and at
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System Target POS Tag Source POS Tag
V N CD JJ AD

RNNSearch*

V 64.95 - - - 12.09
N 7.31 39.24 - - -

CD - 33.37 53.40 - -
JJ - 26.79 - 14.67 -

Direct bridging

V 66.29 - - - 10.94
N 7.19 39.71 - - -

CD - 32.25 56.29 - -
JJ - 26.12 - 15.22 -

Table 3: Confusion matrix for translation by POS, in percentage. To cope with fine-grained differences
among verbs (e.g., VV, VC and VE in Chinese, and VB, VBD, VBP, etc. in English), we merge all
verbs into V. Similarly, we merged all nouns into N. CD stands for Cardinal numbers, JJ for adjectives or
modifiers, AD for adverbs. These POS tags exist in both Chinese and English. For the sake of simplicity,
for each target POS tag, we present only the two source POS tags that are more frequently aligned with
it.

the RNNSearch* baseline system to gain further
insight on how bridging may help in translation.
Our approach presents superior results along all
the dimensions assessed.

4.1 Analysis of Word Alignment

Since our improved model strengthens the focus
of attention between pairs of translation equiva-
lents by explicitly bridging source and target word
embeddings, we expect to observe improved word
alignment quality. The quality of the word align-
ment is examined from the following three as-
pects.

Better eos translation
As a special symbol marking the end of sentence,
target side eos has a critical impact on controlling
the length of the generated translation. A target
eos is a correct translation when is aligned with
the source eos. Table 2 displays the percentage of
target side eos that are translations of the source
side eos. It indicates that our model improved with
bridging substantially achieves better translation
of source eos.

Better word translation
To have a further insight into the quality of word
translation, we group generated words by their
part-of-speech (POS) tags and examine the POS
of their aligned source words. 2

Table 3 is a confusion matrix for translations by
POS. For example, under RNNSearch*, 64.95%
of target verbs originate from verbs in the source

2We used Stanford POS tagger (Toutanova et al., 2003)
to get POS tags for the words in source sentences and their
translations.

System SAER AER
RNNSearch* 62.68 47.61

Direct bridging 59.72 44.71

Table 4: Alignment error rate (AER) and soft
AER. quality. A lower score indicates better align-
ment.

side. This is enhanced to 66.29% in our direct
bridging model. From the data in that table, one
observes that in general more target words align to
source words with the same POS tags in our im-
proved system than in the baseline system.

Better word alignment
Next we report on the quality of word alignment
taking into account a manually aligned dataset,
from Liu and Sun (2015), which contains 900
manually aligned Chinese-English sentence pairs.
We forced the decoder to output reference trans-
lations in order to get automatic alignments be-
tween input sentences and their reference trans-
lations yielded by the translation systems. To
evaluate alignment performance, we measured the
alignment error rate (AER) (Och and Ney, 2003)
and the soft AER (SAER) (Tu et al., 2016), which
are registered in Table 4.

The data in this Table 4 indicate that, as ex-
pected, bridging improves the alignment quality
as a consequence of its favoring of a stronger re-
lationship between the source and target word em-
beddings of translational equivalents.

4.2 Analysis of Long Sentence Translation

Following Bahdanau et al. (2015), we partition
sentences by their length and compute the respec-

1772



 20

 25

 30

 35

 40

(0,10] (10,20] (20,30] (30,40] (40,50] (50,100]

B
L

E
U

 S
co

re

Length of Source Sentence

cdec
RNNSearch*

Direct Link

Figure 6: BLEU scores for the translation of sen-
tences with different lengths.

tive BLEU scores, which are presented in Fig-
ure 6. These results indicate that our improved
system outperforms RNNSearch* for all the sen-
tence lengths. They also reveal that the perfor-
mance drops substantially when the length of the
input sentence increases. This trend is consistent
with the findings in (Cho et al., 2014; Tu et al.,
2016; Li et al., 2017).

One also observes that the NMT systems per-
form very badly on sentences of length over 50,
when compared to the performance of the baseline
SMT system (cdec). We think that the degradation
of NMT systems performance over long sentences
is due to the following reasons: (1) during training,
the maximum source sentence length limit is set
to 50, thus making the learned models not ready
to cope well with sentences over this maximum
length limit; (2) for long input sentences, NMT
systems tend to stop early in the generation of the
translation.

4.3 Analysis of Over and Under Translation

To assess the expectation that improved translation
of eos improves the appropriate termination of the
translations generated by the decoder, we analyze
the performance of our best model with respect to
over translation and under translation, which are
both notoriously a hard problem for NMT.

To estimate the over translation generated by an
NMT system, we follow Li et al. (2017) and report
the ratio of over translation (ROT)3, which is com-
puted as the total number of times of over transla-
tion of words in a word set (e.g., all nouns in the
source part of the test set) divided by the number
of words in the word set.

Table 5 displays ROTs of words grouped by
some prominent POS tags. These data indicate
that both systems have higher over translation with
proper nouns (NR) and other nouns (NN) than

3please refer to (Li et al., 2017) for more details of ROT.

System POS ROT(%)

RNNSearch*

NN 8.63
NR 12.92
DT 4.01
CD 7.05

ALL 5.28

Direct bridging

NN 7.56
NR 10.88
DT 2.37
CD 4.79

ALL 4.49

Table 5: Ratios of over translation (ROT) on test
sets. NN stands for nouns excluding proper nouns
and temporal nouns, NR for proper nouns, DT for
determiners, and CD for cardinal numbers.

System 1-gram BLEU
cdec (SMT) 77.09

RNNSearch* 72.70
Direct bridging 74.22

Table 6: 1-gram BLEU scores averaged on test
sets, supporting the assessment of under transla-
tion. A larger score indicates less under transla-
tion.

with other POS tags, which is consistent with the
results in (Li et al., 2017). The likely reason is that
these two POS tags usually have more unknown
words, which are words that tend to be over trans-
lated. Importantly, these data also show that our
direct bridging model alleviates the over transla-
tion issue by 15%, as ROT drops from 5.28% to
4.49%.

While it is hard to obtain an accurate estima-
tion of under translation, we simply report 1-gram
BLEU score that measures how many words in the
translation outcome appear in the reference trans-
lation, roughly indicating the proportion of source
words that are translated. Table 6 presents the av-
erage 1-gram BLEU scores on our test datasets.
These data indicate that our improved system has
a higher score than RNNSearch*, suggesting that
it is less prone to under translation.

It is also worth noting that the SMT baseline
(cdec) presents the highest 1-gram BLEU score,
as expected, given that under translation is known
to be less of an issue for SMT.

4.4 Analysis of Learned Word Embeddings

In the direct bridging model, we introduced a
transformation matrix to convert a source-side
word embedding into its counterpart on the target
side. We seek now to assess the contribution of
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Src Transformation Lexical Table
是 is is
和 and and
及 and and
将 will will
会 will will
国 countries countries
发展 development development
经济 economic economic
问题 question issue
人民 people people

Table 7: Top 10 more frequent source words and
their closest translations obtained, respectively, by
embedding transformation in NMT and from the
lexical translation table in SMT.

this transformation. Given a source word xi, we
obtain its closest target word y∗ via:

y∗ = argminy(‖wxi − y‖) (4)

Table 7 lists the 10 more frequent source words
and their corresponding closest target words. For
the sake of comparison, it also displays their most
likely translations from the lexical translation ta-
ble in SMT. These results suggest that the closest
target words obtained via the transformation ma-
trix of our direct bridging method are very con-
sistent with those obtained from the SMT lexical
table, containing only admissible translation pairs.
These data thus suggest that our improved model
has a good capability of capturing the translation
equivalence between source and target word em-
beddings.

5 Related Work

Since the pioneer work of Bahdanau et al. (2015)
to jointly learning alignment and translation in
NMT, many effective approaches have been pro-
posed to further improve the alignment quality.

The attention model plays a crucial role in the
alignment quality and thus its enhancement has
continuously attracted further efforts. To obtain
better attention focuses, Luong et al. (2015) pro-
pose global and local attention models; and Cohn
et al. (2016) extend the attentional model to in-
clude structural biases from word based alignment
models, including positional bias, Markov condi-
tioning, fertility and agreement over translation di-
rections.

In contrast, we did not delve into the attention
model or sought to redesign it in our new bridg-
ing proposal. And yet we achieve enhanced align-

ment quality by inducing the NMT model to cap-
ture more favorable pairs of words that are trans-
lation equivalents of each other under the effect of
the bridging mechanism.

Recently there have been also studies towards
leveraging word alignments from SMT models.
Mi et al. (2016) and Liu et al. (2016) use pre-
obtained word alignments to guide the NMT atten-
tion model in the learning of favorable word pairs.
Arthur et al. (2016) leverage a pre-obtained word
dictionary to constrain the prediction of target
words. Despite these approaches having a some-
what similar motivation of using pairs of transla-
tion equivalents to benefit the NMT translation, in
our new bridging approach we do not use extra re-
sources in the NMT model, but let the model itself
learn the similarity of word pairs from the training
data. 4

Besides, there exist also studies on the learning
of cross-lingual embeddings for machine transla-
tion. Mikolov et al. (2013) propose to first learn
distributed representation of words from large
monolingual data, and then learn a linear map-
ping between vector spaces of languages. Gehring
et al. (2017) introduce source word embeddings to
predict target words. These approaches are some-
what similar to our source-side bridging model.
However, inspired by the insight of shortening the
distance between source and target embeddings in
the seq2seq processing chain, in the present paper
we propose more strategies to bridge source and
target word embeddings and with better results.

6 Conclusion

We have presented three models to bridge source
and target word embeddings for NMT. The three
models seek to shorten the distance between
source and target word embeddings along the
extensive information procedure in the encoder-
decoder neural network.

Experiments on Chinese to English translation
shows that the proposed models can significantly
improve the translation quality. Further in-depth
analysis demonstrate that our models are able (1)
to learn better word alignments than the baseline
NMT, (2) to alleviate the notorious problems of
over and under translation in NMT, and (3) to learn
direct mappings between source and target words.

4Though the pre-obtained word alignments or word dic-
tionaries can be learned from MT training data in an unsuper-
vised fashion, these are still extra knowledge with respect to
to the NMT models.

1774



In future work, we will explore further strate-
gies to bridge the source and target side for
sequence-to-sequence and tree-based NMT. Addi-
tionally, we also intend to apply these methods to
other sequence-to-sequence tasks, including natu-
ral language conversation.
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Abstract

We present a study on reinforcement learn-
ing (RL) from human bandit feedback
for sequence-to-sequence learning, exem-
plified by the task of bandit neural ma-
chine translation (NMT). We investigate
the reliability of human bandit feedback,
and analyze the influence of reliability on
the learnability of a reward estimator, and
the effect of the quality of reward esti-
mates on the overall RL task. Our anal-
ysis of cardinal (5-point ratings) and ordi-
nal (pairwise preferences) feedback shows
that their intra- and inter-annotator α-
agreement is comparable. Best reliabil-
ity is obtained for standardized cardinal
feedback, and cardinal feedback is also
easiest to learn and generalize from. Fi-
nally, improvements of over 1 BLEU can
be obtained by integrating a regression-
based reward estimator trained on cardinal
feedback for 800 translations into RL for
NMT. This shows that RL is possible even
from small amounts of fairly reliable hu-
man feedback, pointing to a great potential
for applications at larger scale.

1 Introduction

Recent work has received high attention by suc-
cessfully scaling reinforcement learning (RL) to
games with large state-action spaces, achieving
human-level (Mnih et al., 2015) or even super-
human performance (Silver et al., 2016). This
success and the ability of RL to circumvent the
data annotation bottleneck in supervised learning
has led to renewed interest in RL in sequence-
to-sequence learning problems with exponential

∗The work for this paper was done while the second au-
thor was an intern in Heidelberg.

output spaces. A typical approach is to com-
bine REINFORCE (Williams, 1992) with poli-
cies based on deep sequence-to-sequence learn-
ing (Bahdanau et al., 2015), for example, in ma-
chine translation (Bahdanau et al., 2017), seman-
tic parsing (Liang et al., 2017), or summarization
(Paulus et al., 2017). These RL approaches fo-
cus on improving performance in automatic eval-
uation by simulating reward signals by evalua-
tion metrics such as BLEU, F1-score, or ROUGE,
computed against gold standards. Despite coming
from different fields of application, RL in games
and sequence-to-sequence learning share firstly
the existence of a clearly specified reward func-
tion, e.g., defined by winning or losing a game, or
by computing an automatic sequence-level evalu-
ation metric. Secondly, both RL applications rely
on a sufficient exploration of the action space, e.g.,
by evaluating multiple game moves for the same
game state, or various sequence predictions for the
same input.

The goal of this paper is to advance the state-
of-the-art of sequence-to-sequence RL, exempli-
fied by bandit learning for neural machine trans-
lation (NMT). Our aim is to show that successful
learning from simulated bandit feedback (Sokolov
et al., 2016b; Kreutzer et al., 2017; Nguyen et al.,
2017; Lawrence et al., 2017) does in fact carry
over to learning from actual human bandit feed-
back. The promise of bandit NMT is that human
feedback on the quality of translations is easier
to obtain in large amounts than human references,
thus compensating the weaker nature of the signals
by their quantity. However, the human factor en-
tails several differences to the above sketched sim-
ulation scenarios of RL. Firstly, human rewards
are not well-defined functions, but complex and
inconsistent signals. For example, in general ev-
ery input sentence has a multitude of correct trans-
lations, each of which humans may judge differ-

1777



ently, depending on many contextual and personal
factors. Secondly, exploration of the space of pos-
sible translations is restricted in real-world scenar-
ios where a user judges one displayed translation,
but cannot be expected to rate an alternative trans-
lation, let alone large amounts of alternatives.

In this paper we will show that despite the fact
that human feedback is ambiguous and partial in
nature, a catalyst for successful learning from hu-
man reinforcements is the reliability of the feed-
back signals. The first deployment of bandit NMT
in an e-commerce translation scenario conjectured
lacking reliability of user judgments as the rea-
son for disappointing results when learning from
148k user-generated 5-star ratings for around 70k
product title translations (Kreutzer et al., 2018).
We thus raise the question of how human feed-
back can be gathered in the most reliable way,
and what effect reliability will have in downstream
tasks. In order to answer these questions, we
measure intra- and inter-annotator agreement for
two feedback tasks for bandit NMT, using car-
dinal feedback (on a 5-point scale) and ordinal
feedback (by pairwise preferences) for 800 trans-
lations, conducted by 16 and 14 human raters,
respectively. Perhaps surprisingly, while relative
feedback is often considered easier for humans
to provide (Thurstone, 1927), our investigation
shows that α-reliability (Krippendorff, 2013) for
intra- and inter-rater agreement is similar for both
tasks, with highest inter-rater reliability for stan-
dardized 5-point ratings.

In a next step, we address the issue of machine
learnability of human rewards. We use deep learn-
ing models to train reward estimators by regres-
sion against cardinal feedback, and by fitting a
Bradley-Terry model (Bradley and Terry, 1952) to
ordinal feedback. Learnability is understood by
a slight misuse of the machine learning notion of
learnability (Shalev-Shwartz et al., 2010) as the
question how well reward estimates can approx-
imate human rewards. Our experiments reveal
that rank correlation of reward estimates with TER
against human references is higher for regression
models trained on standardized cardinal rewards
than for Bradley-Terry models trained on pairwise
preferences. This emphasizes the influence of the
reliability of human feedback signals on the qual-
ity of reward estimates learned from them.

Lastly, we investigate machine learnability of
the overall NMT task, in the sense of Green et al.

(2014) who posed the question of how well an MT
system can be tuned on post-edits. We use an RL
approach for tuning, where a crucial difference of
our work to previous work on RL from human re-
wards (Knox and Stone, 2009; Christiano et al.,
2017) is that our RL scenario is not interactive, but
rewards are collected in an offline log. RL then can
proceed either by off-policy learning using logged
single-shot human rewards directly, or by using es-
timated rewards. An expected advantage of esti-
mating rewards is to tackle a simpler problem first
— learning a reward estimator instead of a full
RL task for improving NMT — and then to de-
ploy unlimited feedback from the reward estimator
for off-policy RL. Our results show that significant
improvements can be achieved by training NMT
from both estimated and logged human rewards,
with best results for integrating a regression-based
reward estimator into RL. This completes the ar-
gumentation that high reliability influences quality
of reward estimates, which in turn affects the qual-
ity of the overall NMT task. Since the size of our
training data is tiny in machine translation propor-
tions, this result points towards a great potential
for larger-scaler applications of RL from human
feedback.

2 Related Work

Function approximation to learn a “critic” instead
of using rewards directly has been embraced in
the RL literature under the name of “actor-critic”
methods (see Konda and Tsitsiklis (2000), Sut-
ton et al. (2000), Kakade (2001), Schulman et al.
(2015), Mnih et al. (2016), inter alia). In differ-
ence to our approach, actor-critic methods learn
online while our approach estimates rewards in an
offline fashion. Offline methods in RL, with and
without function approximation, have been pre-
sented under the name of “off-policy” or “coun-
terfactual” learning (see Precup et al. (2000), Pre-
cup et al. (2001), Bottou et al. (2013), Swami-
nathan and Joachims (2015a), Swaminathan and
Joachims (2015b), Jiang and Li (2016), Thomas
and Brunskill (2016), inter alia). Online actor-
critic methods have been applied to sequence-
to-sequence RL by Bahdanau et al. (2017) and
Nguyen et al. (2017). An approach to off-policy
RL under deterministic logging has been pre-
sented by Lawrence et al. (2017). However, all
these approaches have been restricted to simulated
rewards.
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RL from human feedback is a growing area.
Knox and Stone (2009) and Christiano et al.
(2017) learn a reward function from human feed-
back and use that function to train an RL system.
The actor-critic framework has been adapted to
interactive RL from human feedback by Pilarski
et al. (2011) and MacGlashan et al. (2017). These
approaches either update the reward function from
human feedback intermittently or perform learn-
ing only in rounds where human feedback is pro-
vided. A framework that interpolates a human cri-
tique objective into RL has been presented by Ju-
dah et al. (2019). None of these works system-
atically investigates the reliability of the feedback
and its impact of the down-stream task.

Kreutzer et al. (2018) have presented the first
application of off-policy RL for learning from
noisy human feedback obtained for determinis-
tic logs of e-commerce product title translations.
While learning from explicit feedback in the form
of 5-star ratings fails, Kreutzer et al. (2018) pro-
pose to leverage implicit feedback embedded in
a search task instead. In simulation experiments
on the same domain, the methods proposed by
Lawrence et al. (2017) succeeded also for neural
models, allowing to pinpoint the lack of reliabil-
ity in the human feedback signal as the reason for
the underwhelming results when learning from hu-
man 5-star ratings. The goal of showing the effect
of highly reliable human bandit feedback in down-
stream RL tasks was one of the main motivations
for our work.

For the task of machine translation, estimat-
ing human feedback, i.e. quality ratings, is re-
lated to the task of sentence-level quality estima-
tion (sQE). However, there are crucial differences
between sQE and the reward estimation in our
work: sQE usually has more training data, often
from more than one machine translation model. Its
gold labels are inferred from post-edits, i.e. cor-
rections of the machine translation output, while
we learn from weaker bandit feedback. Although
this would in principle be possible, sQE predic-
tions have not (yet) been used to directly reinforce
predictions of MT systems, mostly because their
primary purpose is to predict post-editing effort,
i.e. give guidance how to further process a trans-
lation. State-of-the-art models for sQE such as
(Martins et al., 2017) and (Kim et al., 2017) are
unsuitable for the direct use in this task since they
rely on linguistic input features, stacked architec-

Figure 1: Rating interface for 5-point ratings.

Figure 2: Rating interface for pairwise ratings.

tures or post-edit or word-level supervision. Sim-
ilar to approaches for generative adversarial NMT
(Yu et al., 2017; Wu et al., 2017) we prefer a sim-
pler convolutional architecture based on word em-
beddings for the human reward estimation.

3 Human MT Rating Task

3.1 Data

We translate a subset of the TED corpus with
a general-domain and a domain-adapted NMT
model (see §6.2 for NMT and data), post-
process the translations (replacing special charac-
ters, restoring capitalization) and filter out identi-
cal out-of-domain and in-domain translations. In
order to compose a homogeneous data set, we first
select translations with references of length 20 to
40, then sort the translation pairs by difference in
character n-gram F-score (chrF, β = 3) (Popović,
2015) and length, and pick the top 400 translation
pairs with the highest difference in chrF but lowest
difference in length. This yields translation pairs
of similar length, but different quality.

3.2 Rating Task

The pairs were treated as 800 separate transla-
tions for a 5-point rating task. From the orig-
inal 400 translation pairs, 100 pairs (or 200 in-
dividual translations) were randomly selected for
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Inter-rater Intra-rater
Type α Mean α Stdev. α

5-point 0.2308
0.4014 0.1907

5-point norm. 0.2820

5-point norm. part. 0.5059 0.5527 0.0470
5-point norm. trans. 0.3236 0.3845 0.1545
Pairwise 0.2385 0.5085 0.2096

Pairwise filt. part. 0.3912 0.7264 0.0533
Pairwise filt. trans. 0.3519 0.5718 0.2591

Table 1: Inter- and intra-reliability measured by
Krippendorff’s α for 5-point and pairwise ratings
of 1,000 translations of which 200 translations are
repeated twice. The filtered variants are restricted
to either a subset of participants (part.) or a subset
of translations (trans.).

repetition. This produced a total of 1,000 indi-
vidual translations, with 600 occurring once, and
200 occurring twice. The translations were shuf-
fled and separated into five sections of 200 trans-
lations, each with 120 translations from the unre-
peated pool, and 80 translations from the repeated
pool, ensuring that a single translation does not oc-
cur more than once in each section. For a pair-
wise task, the same 100 pairs were repeated from
the original 400 translation pairs. This produced
a total of 500 translation pairs. The translations
were also shuffled and separated into five sections
of 100 translation pairs, each with 60 translation
pairs from the unrepeated pool, and 40 translation
pairs from the repeated pool. None of the pairs
were repeated within each section.

We recruited 14 participants for the pairwise
rating task and 16 for the 5-point rating task. The
participants were university students with fluent
or native language skills in German and English.
The rating interface is shown in Figures 1 and 2.
Rating instructions are given in the supplementary
material. Note that no reference translations were
presented since the objective is to model a realistic
scenario for bandit learning.1

4 Reliability of Human MT Ratings

4.1 Inter-rater and Intra-rater Reliability
In the following, we report inter- and intra-rater re-
liability of the cardinal and ordinal feedback tasks
described in §3 with respect to Krippendorff’s α

1The collection of ratings can be downloaded
from http://www.cl.uni-heidelberg.de/
statnlpgroup/humanmt/.

(Krippendorff, 2013) evaluated at interval and or-
dinal scale, respectively.

As shown in Table 1, measures of inter-rater
reliability show small differences between the 5-
point and pairwise task. The inter-rater reliabil-
ity in the 5-point task (α = 0.2308) is roughly the
same as that of the pairwise task (α = 0.2385).
Normalization of ratings per participant (by stan-
dardization to Z-scores), however, shows a marked
improvement of overall inter-rater reliability for
the 5-point task (α = 0.2820). A one-way
analysis of variance taken over inter-rater reli-
abilities between pairs of participants suggests
statistically significant differences across tasks
(F (2, 328) = 6.399, p < 0.01), however, a post
hoc Tukey’s (Larsen and Marx, 2012) honest sig-
nificance test attributes statistically significant dif-
ferences solely between the 5-point tasks with and
without normalization. These scores indicate that
the overall agreement between human ratings is
roughly the same, regardless of whether partici-
pants are being asked to provide cardinal or ordi-
nal ratings. Improvement in inter-rater reliability
via participant-level normalization suggests that
participants may indeed have individual biases to-
ward certain regions of the 5-point scale, which
the normalization process corrects.

In terms of intra-rater reliability, a better mean
was observed among participants in the pair-
wise task (α = 0.5085) versus the 5-point task
(α = 0.4014). This suggests that, on average, hu-
man raters provide more consistent ratings with
themselves in comparing between two translations
versus rating single translations in isolation. This
may be attributed to the fact that seeing multi-
ple translations provides raters with more cues
with which to make consistent judgments. How-
ever, at the current sample size, a Welch two-
sample t-test (Larsen and Marx, 2012) between
5-point and pairwise intra-rater reliabilities shows
no significant difference between the two tasks
(t (26.92) = 1.4362, p = 0.1625). Thus, it re-
mains difficult to infer whether one task is defini-
tively superior to the other in eliciting more con-
sistent responses. Intra-rater reliability is the same
for the 5-point task with and without normaliza-
tion, as participants are still compared against
themselves.
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Figure 3: Improvements in inter-rater reliability
using intra-rater consistency filter.

Figure 4: Improvements in inter-rater reliability
using item variance filter.

4.2 Rater and Item Variance

The succeeding analysis is based on two assump-
tions: first, that human raters vary in that they do
not provide equally good judgments of translation
quality, and second, rating items vary in that some
translations may be more difficult to judge than
others. This allows to investigate the influence of
rater variance and item variance on inter-rater re-
liability by an ablation analysis where low-quality
judges and difficult translations are filtered out.

Using intra-rater reliability as an index of how
well human raters judge translation quality, Fig-
ure 3 shows a filtering process whereby human
raters with α scores lower than a moving thresh-
old are dropped from the analysis. As the relia-
bility threshold is increased from 0 to 1, overall
inter-rater reliability is measured. Figure 4 shows
a similar filtering process implemented using vari-
ance in translation scores. Item variances are nor-
malized on a scale from 0 to 1 and subtracted from

1 to produce an item variance threshold. As the
threshold increases, overall inter-rater reliability is
likewise measured as high-variance items are pro-
gressively dropped from the analysis.

As the plots demonstrate, inter-rater reliability
generally increases with consistency and variance
filtering. For consistency filtering, Figure 3 shows
how the inter-rater reliability of the 5-point task
experiences greater increases than the pairwise
task with lower filtering thresholds, especially in
the normalized case. This may be attributed to the
fact that more participants in the 5-point task had
low intra-rater reliability. Pairwise tasks, on the
other hand, require higher thresholds before large
gains are observed in overall inter-rater reliabil-
ity. This is because more participants in the pair-
wise task had relatively high intra-rater reliability.
In the normalized 5-point task, selecting a thresh-
old of 0.49 as a cutoff for intra-rater reliability re-
tains 8 participants with an inter-rater reliability of
0.5059. For the pairwise task, a threshold of 0.66
leaves 5 participants with an inter-rater reliability
of 0.3912.

The opposite phenomenon is observed in the
case of variance filtering. As seen in Figure 4,
the overall inter-rater reliability of the pairwise
task quickly overtakes that of the 5-point task,
with and without normalization. This may be at-
tributed to how, in the pairwise setup, more items
can be a source of disagreement among human
judges. Ambiguous cases, that will be discussed
in §4.3, may result in higher item variance. This
problem is not as pronounced in the 5-point task,
where judges must simply judge individual trans-
lations. It may be surmised that this item variance
accounts for why, on average, judges in the pair-
wise task demonstrate higher intra-rater reliabil-
ity than those in the 5-point task, yet the overall
inter-rater reliability of the pairwise task is lower.
By selecting a variance threshold such that at least
70% of items are retained in the analysis, the im-
proved inter-rater reliabilities were 0.3236 for the
5-point task and 0.3519 for the pairwise task.

4.3 Qualitative Analysis

On completion of the rating task, we asked the par-
ticipants for a subjective judgment of difficulty on
a scale from 1 (very difficult) to 10 (very easy). On
average, the pairwise rating task (mean 5.69) was
perceived slightly easier than the 5-point rating
task (mean 4.8). They also had to state which as-
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pects of the tasks they found difficult: The biggest
challenge for 5-point ratings seemed to be the
weighing of different error types and the rating of
long sentences with very few, but essential errors.
For pairwise ratings, difficulties lie in distinguish-
ing between similar, or similarly bad translations.
Both tasks showed difficulties with ungrammatical
or incomprehensible sources.

Comparing items with high and low agreement
across raters allows conclusions about objective
difficulty. We assume that high inter-rater agree-
ment indicates an ease of judgment, while diffi-
culties in judgment are manifested in low agree-
ment. A list of examples is given in the supple-
mentary material. For 5-point ratings, difficul-
ties arise with ungrammatical sources and omis-
sions, whereas obvious mistakes in the target, such
as over-literal translations, make judgment easier.
Preference judgments tend to be harder when both
translations contain errors and are similar. When
there is a tie, the pairwise rating framework does
not allow to indicate whether both translations are
of high or low quality. Since there is no normaliza-
tion strategy for pairwise ratings, individual biases
or rating schemes can hence have a larger negative
impact on the inter-rater agreement.

5 Learnability of a Reward Estimator
from MT Ratings

5.1 Learning a Reward Estimator

The numbers of ratings that can be obtained di-
rectly from human raters in a reasonable amount
of time is tiny compared to the millions of sen-
tences used for standard NMT training. By learn-
ing a reward estimator on the collection of human
ratings, we seek to generalize to unseen transla-
tions. The model for this reward estimator should
ideally work without time-consuming feature ex-
traction so it can be deployed in direct interaction
with a learning NMT system, estimating rewards
on the fly, and most importantly generalize well so
it can guide the NMT towards good local optima.

Learning from Cardinal Feedback. The inputs
to the reward estimation model are sources x and
their translations y. Given cardinal judgments for
these inputs, a regression model with parameters
ψ is trained to minimize the mean squared error
(MSE) for a set of n predicted rewards r̂ and judg-

ments r:

LMSE(ψ) =
1

n

n∑

i=1

(r(yi)− r̂ψ(yi))
2.

In simulation experiments, where all translations
can be compared to existing references, r may be
computed by sentence-BLEU (sBLEU). For our
human 5-point judgments, we first normalize the
judgments per rater as described in §4, then aver-
age the judgments across raters and finally scale
them linearly to the interval [0.0, 1.0].

Learning from Pairwise Preference Feedback.
When pairwise preferences are given instead of
cardinal judgments, the Bradley-Terry model al-
lows us to train an estimator of r. Following Chris-
tiano et al. (2017), let P̂ψ[y1 � y2] be the proba-
bility that any translation y1 is preferred over any
other translation y2 by the reward estimator:

P̂ψ[y1 � y2] =
exp r̂ψ(y1)

exp r̂ψ(y1) + exp r̂ψ(y2)
.

Let Q[y1 � y2] be the probability that translation
y1 is preferred over translation y2 by a gold stan-
dard, e.g. the human raters or in comparison to a
reference translation. With this supervision signal
we formulate a pairwise (PW) training loss for the
reward estimation model with parameters ψ:

LPW (ψ) = − 1

n

n∑

i=1

Q[y1
i � y2

i ] log P̂ψ[y1
i � y2

i ]

+Q[y2
i � y1

i ] log P̂ψ[y2
i � y1

i ].

For simulation experiments — where we lack a
genuine supervision for preferences — we com-
pute Q comparing the sBLEU scores for both
translations, i.e. translation preferences are mod-
eled according to their difference in sBLEU:

Q[y1 � y2] =
exp sBLEU(y1)

exp sBLEU(y1) + exp sBLEU(y2)
.

When obtaining preference jugdments directly
from raters, Q[y1 � y2] is simply the relative fre-
quency of y1 being preferred over y2 by a rater.

5.2 Experiments
Data. The 1,000 ratings collected as described
in §3 are leveraged to train regression models and
pairwise preference models. In addition, we train
models on simulated rewards (sBLEU) for a com-
parison with arguably “clean” feedback for the
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Model Feedback ρ

MSE Simulated -0.2571
PW Simulated -0.1307

MSE Human -0.2193
PW Human -0.1310

MSE Human filt. -0.2341
PW Human filt. -0.1255

Table 2: Spearman’s rank correlation ρ between
estimated rewards and TER for models trained
with simulated rewards and human rewards (also
filtered subsets).

same set of translations. In order to augment this
very small collection of ratings, we leverage the
available out-of-domain bitext as auxiliary train-
ing data. We sample translations for a subset of the
out-of-domain sources and store sBLEU scores
as rewards, collecting 90k out-of-domain training
samples in total (see supplementary material for
details). During training, each mini-batch is sam-
pled from the auxiliary data with probability paux,
from the original training data with probability
1 − paux. Adding this auxiliary data as a regu-
larization through multi-task learning prevents the
model from overfitting to the small set of human
ratings. In the experiments paux was tuned to 0.8.

Architecture. We choose the following neu-
ral architecture for the reward estimation (details
see supplementary material): Inputs are padded
source and target subword embeddings, which are
each processed with a biLSTM (Hochreiter and
Schmidhuber, 1997). Their outputs are concate-
nated for each time step, further fed to a 1D-
convolution with max-over-time pooling and sub-
sequently a leaky ReLU (Maas et al., 2013) output
layer. This architecture can be seen as a biLSTM-
enhanced bilingual extension to the convolutional
model for sentence classification proposed by Kim
(2014). It has the advantage of not requiring any
feature extraction but still models n-gram features
on an abstract level.

Evaluation Method. The quality of the reward
estimation models is tested by measuring Spear-
man’s ρ with TER on a held-out test set of 1,314
translations following the standard in sQE eval-
uations. Hyperparameters are tuned on another
1,200 TED translations.

Results. Table 2 reports the results of reward es-
timators trained on simulated and human rewards.
When trained from cardinal rewards, the model
of simulated scores performs slightly better than
the model of human ratings. This advantage is
lost when moving to preference judgments, which
might be explained by the fact that the softmax
over sBLEUs with respect to a single reference
is just not as expressive as the preference proba-
bilities obtained from several raters. Filtering by
participants (retaining 8 participants for cardinal
rewards and 5 for preference jugdments, see Sec-
tion 4) improves the correlation further for cardi-
nal rewards, but slightly hurts for preference judg-
ments. The overall correlation scores are relatively
low — especially for the PW models — which
we suspect is due to overfitting to the small set
of training data. From these experiments we con-
clude that when it comes to estimating translation
quality, cardinal human jugdments are more useful
than pairwise preference jugdments.

6 Reinforcement Learning from Direct
and Estimated Rewards in MT

6.1 NMT Objectives

Supervised Learning. Most commonly, NMT
models are trained with Maximum Likelihood Es-
timation (MLE) on a parallel corpus of source and
target sequences D = {(x(s),y(s))}Ss=1:

LMLE(θ) =

S∑

s=1

log pθ(y
(s)|x(s)).

The MLE objective requires reference translations
and is agnostic to rewards. In the experiments it is
used to train the out-of-domain baseline model as
a warm start for reinforcement learning from in-
domain rewards.

Reinforcement Learning from Estimated or
Simulated Direct Rewards. Deploying NMT in
a reinforcement learning scenario, the goal is to
maximize the expectation of a reward r over all
source and target sequences (Wu et al., 2016),
leading to the following REINFORCE (Williams,
1992) objective:

RRL(θ) =Ep(x)pθ(y|x) [r(y)] (1)

≈
S∑

s=1

k∑

i=1

pτθ(ỹ
(s)
i |x(s)) r(ỹi) (2)
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The reward r can either come from a reward esti-
mation model (estimated reward) or be computed
with respect to a reference in a simulation setting
(simulated direct reward). In order to counteract
high variance in the gradient updates, the running
average of rewards is subtracted from r for learn-
ing. In practice, Equation 1 is approximated with
k samples from pθ(y|x) (see Equation 2). When
k = 1, this is equivalent to the expected loss
minimization in Sokolov et al. (2016a,b); Kreutzer
et al. (2017), where the system interactively learns
from online bandit feedback. For k > 1 this is
similar to the minimum-risk training for NMT pro-
posed in Shen et al. (2016). Adding a tempera-
ture hyper-parameter τ ∈ (0.0,∞] to the softmax
over the model output o allows us to control the
sharpness of the sampling distribution pτθ(y|x) =
softmax(o/τ), i.e. the amount of exploration dur-
ing training. With temperature τ < 1, the model’s
entropy decreases and samples closer to the one-
best output are drawn. We seek to keep the explo-
ration low to prevent the NMT to produce samples
that lie far outside the training domain of the re-
ward estimator.

Off-Policy Learning from Direct Rewards.
When rewards can not be obtained for samples
from a learning system, but were collected for a
static deterministic system (e.g. in a production
environment), we are in an off-policy learning sce-
nario. The challenge is to improve the MT sys-
tem from a log L = {(x(h),y(h), r(y(h)))}Hh=1 of
rewarded translations. Following Lawrence et al.
(2017) we define the following off-policy learning
(OPL) objective to learn from logged rewards:

ROPL(θ) =
1

H

H∑

h=1

r(y(h)) p̄θ(y(h)|x(h)),

with reweighting over the current mini-batch B:
p̄θ(y(h)|x(h)) = pθ(y

(h)|x(h))∑B
b=1 pθ(y

(b)|x(b))
.2 In contrast to

the RL objective, only logged translations are re-
inforced, i.e. there is no exploration in learning.

6.2 Experiments

Data. We use the WMT 2017 data3 for training
a general domain (here: out-of-domain) model for

2Lawrence et al. (2017) propose reweighting over the
whole log, but this is infeasible for NMT. Here B � H .

3Pre-processed data available at http://www.
statmt.org/wmt17/translation-task.html.

WMT TED
Model BLEU METEOR BEER BLEU METEOR BEER

WMT 27.2 31.8 60.08 27.0 30.7 59.48
TED 26.3 31.3 59.49 34.3 34.6 64.94

Table 3: Results on test data for in- and out-of-
domain fully-supervised models. Both are trained
with MLE, the TED model is obtained by fine-
tuning the WMT model in TED data.

translations from German to English. The train-
ing data contains 5.9M sentence pairs, the devel-
opment data 2,999 sentences (WMT 2016 test set)
and the test data 3,004 sentences. For in-domain
data, we choose the translations of TED talks4

as used in IWSLT evaluation campaigns. The
training data contains 153k, the development data
6,969, and the test data 6,750 parallel sentences.

Architecture. Our NMT model is a standard
subword-based encoder-decoder architecture with
attention (Bahdanau et al., 2015). An encoder Re-
current Neural Network (RNN) reads in the source
sentence and a decoder RNN generates the tar-
get sentence conditioned on the encoded source.
We implemented RL and OPL objectives in Neu-
ral Monkey (Helcl and Libovický, 2017).5 The
NMT has a bidirectional encoder and a single-
layer decoder with 1,024 GRUs each, and subword
embeddings of size 500 for a shared vocabulary
of subwords obtained from 30k byte-pair merges
(Sennrich et al., 2016). For model selection we
use greedy decoding, for test set evaluation beam
search with a beam of width 10. We sample k = 5
translations for RL models and set the softmax
temperature τ = 0.5. Further hyperparameters are
given in the supplementary material.

Evaluation Method. Trained models are eval-
uated with respect to BLEU (Papineni et al.,
2002), METEOR (Denkowski and Lavie, 2011)
using MULTEVAL (Clark et al., 2011) and BEER
(Stanojević and Sima’an, 2014) to cover a diverse
set of automatic measures for translation quality.6

We test for statistical significance with approxi-
mate randomization (Noreen, 1989).

4Pre-processing and data splits as described in https:
//github.com/rizar/actor-critic-public/
tree/master/exp/ted.

5The code is available in the Neural Monkey
fork https://github.com/juliakreutzer/
bandit-neuralmonkey/tree/acl2018.

6Since tendencies of improvement turn out to be consis-
tent across metrics, we only discuss BLEU in the text.
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Model Rewards BLEU METEOR BEER

Baseline - - 27.0 30.7 59.48

RL D S 32.5?±0.01 33.7?±0.01 63.47?±0.10
OPL D S 27.5? 30.9? 59.62?

RL+MSE E S 28.2?±0.09 31.6?±0.04 60.23?±0.14
RL+PW E S 27.8?±0.01 31.2?±0.01 59.83?±0.04

OPL D H 27.5? 30.9? 59.72?

RL+MSE E H 28.1?±0.01 31.5?±0.01 60.21?±0.12
RL+PW E H 27.8?±0.09 31.3?±0.09 59.88?±0.23
RL+MSE E F 28.1?±0.20 31.6?±0.10 60.29?±0.13

Table 4: Results on TED test data for training with
estimated (E) and direct (D) rewards from simula-
tion (S), humans (H) and filtered (F) human rat-
ings. Significant (p ≤ 0.05) differences to the
baseline are marked with ?. For RL experiments
we show three runs with different random seeds,
mean and standard deviation in subscript.

The out-of-domain model is trained with MLE
on WMT. The task is now to improve the gener-
alization of this model to the TED domain. Ta-
ble 3 compares the out-of-domain baseline with
domain-adapted models that were further trained
on TED in a fully-supervised manner (super-
vised fine-tuning as introduced by Freitag and Al-
Onaizan (2016); Luong and Manning (2015)). The
supervised domain-adapted model serves as an up-
per bound for domain adaptation with human re-
wards: if we had references, we could improve up
to 7 BLEU. What if references are not available,
but we can obtain rewards for sample translations?

Results for RL from Simulated Rewards. First
we simulate “clean” and deterministic rewards by
comparing sample translations to references using
GLEU (Wu et al., 2016) for RL, and smoothed
sBLEU for estimated rewards and OPL. Table 4
lists the results for this simulation experiment in
rows 2-5 (S). If unlimited clean feedback was
given (RL with direct simulated rewards), im-
provements of over 5 BLEU can be achieved.
When limiting the amount of feedback to a log of
800 translations, the improvements over the base-
line are only marginal (OPL). When replacing the
direct reward by the simulated reward estimators
from §5, i.e. having unlimited amounts of approx-
imately clean rewards, however, improvements of
1.2 BLEU for MSE estimators (RL+MSE) and
0.8 BLEU for pairwise estimators (RL+PW) are
found. This suggests that the reward estimation

model helps to tackle the challenge of generaliza-
tion over a small set of ratings.

Results for RL from Human Rewards. Know-
ing what to expect in an ideal setting with non-
noisy feedback, we now move to the experiments
with human feedback. OPL is trained with the
logged normalized, averaged and re-scaled human
reward (see §5). RL is trained with the direct re-
ward provided by the reward estimators trained on
human rewards from §5. Table 4 shows the re-
sults for training with human rewards in rows 6-
8: The improvements for OPL are very similar to
OPL with simulated rewards, both suffering from
overfitting. For RL we observe that the MSE-
based reward estimator (RL+MSE) leads to sig-
nificantly higher improvements as a the pairwise
reward estimator (RL+PW) — the same trend as
for simulated ratings. Finally, the improvement
of 1.1 BLEU over the baseline showcases that we
are able to improve NMT with only a small num-
ber of human rewards. Learning from estimated
filtered 5-point ratings, does not significantly im-
prove over these results, since the improvement of
the reward estimator is only marginal (see § 5).

7 Conclusion

In this work, we sought to find answers to the
questions of how cardinal and ordinal feedback
differ in terms of reliability, learnability and ef-
fectiveness for RL training of NMT, with the goal
of improving NMT with human bandit feedback.
Our rating study, comparing 5-point and prefer-
ence ratings, showed that their reliability is com-
parable, whilst cardinal ratings are easier to learn
and to generalize from, and also more suitable for
RL in our experiments.

Our work reports improvements of NMT lever-
aging actual human bandit feedback for RL, leav-
ing the safe harbor of simulations. Our experi-
ments show that improvements of over 1 BLEU
are achievable by learning from a dataset that is
tiny in machine translation proportions. Since
this type of feedback, in contrast to post-edits and
references, is fast and cheap to elicit from non-
professionals, our results bear a great potential for
future applications on larger scale.
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Abstract
With parallelizable attention networks, the
neural Transformer is very fast to train.
However, due to the auto-regressive archi-
tecture and self-attention in the decoder,
the decoding procedure becomes slow. To
alleviate this issue, we propose an average
attention network as an alternative to the
self-attention network in the decoder of
the neural Transformer. The average atten-
tion network consists of two layers, with
an average layer that models dependencies
on previous positions and a gating layer
that is stacked over the average layer to en-
hance the expressiveness of the proposed
attention network. We apply this network
on the decoder part of the neural Trans-
former to replace the original target-side
self-attention model. With masking tricks
and dynamic programming, our model en-
ables the neural Transformer to decode
sentences over four times faster than its
original version with almost no loss in
training time and translation performance.
We conduct a series of experiments on
WMT17 translation tasks, where on 6 dif-
ferent language pairs, we obtain robust and
consistent speed-ups in decoding.1

1 Introduction

The past few years have witnessed the rapid de-
velopment of neural machine translation (NMT),
which translates a source sentence into the tar-
get language with an encoder-attention-decoder
framework (Sutskever et al., 2014; Bahdanau
et al., 2015). Under this framework, various ad-
vanced neural architectures have been explored

∗Corresponding author.
1Source code is available at

https://github.com/bzhangXMU/transformer-aan.

1 RNN

2 CNN

3 Transformer

Figure 1: Illustration of the decoding procedure
under different neural architectures. We show
which previous target words are required to pre-
dict the current target word yj in different NMT
architectures. k indicates the filter size of the con-
volution layer.

as the backbone network for translation, ranging
from recurrent neural networks (RNN) (Sutskever
et al., 2014; Luong et al., 2015), convolutional
neural networks (CNN) (Gehring et al., 2017a,b)
to full attention networks without recurrence and
convolution (Vaswani et al., 2017). Particularly,
the neural Transformer, relying solely on attention
networks, has refreshed state-of-the-art perfor-
mance on several language pairs (Vaswani et al.,
2017).

Most interestingly, the neural Transformer is ca-
pable of being fully parallelized at the training
phase and modeling intra-/inter-dependencies of
source and target sentences within a short path.
The parallelization property enables training NMT
very quickly, while the dependency modeling
property endows the Transformer with strong abil-
ity in inducing sentence semantics as well as trans-
lation correspondences. However, the decoding of
the Transformer cannot enjoy the speed strength of
parallelization due to the auto-regressive genera-
tion schema in the decoder. And the self-attention
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Input Layer

Average Layer

Gating Layer

Figure 2: Visualization of the proposed model.
For clarity, we show an example with only four
words.

network in the decoder even further slows it.
We explain this using Figure 1, where we pro-

vide a comparison to RNN- and CNN-based NMT
systems. To capture dependencies from previ-
ously predicted target words, the self-attention in
the neural Transformer requires to calculate adap-
tive attention weights on all these words (Figure
1 (3)). By contrast, CNN only requires previous
k target words (Figure 1 (2)), while RNN merely
1 (Figure 1 (1)). Due to the auto-regressive gen-
eration schema, decoding inevitably follows a se-
quential manner in the Transformer. Therefore the
decoding procedure cannot be parallelized. Fur-
thermore, the more target words are generated, the
more time the self-attention in the decoder will
take to model dependencies. Therefore, preserv-
ing the training efficiency of the Transformer on
the one hand and accelerating its decoding on the
other hand becomes a new and serious challenge.

In this paper, we propose an average attention
network (AAN) to handle this challenge. We show
the architecture of AAN in Figure 2, which con-
sists of two layers: an average layer and gating
layer. The average layer summarizes history in-
formation via a cumulative average operation over
previous positions. This is equivalent to a simple
attention network where original adaptively com-
puted attention weights are replaced with averaged
weights. Upon this layer, we stack a feed forward
gating layer to improve the model’s expressiveness
in describing its inputs.

We use AAN to replace the self-attention part
of the neural Transformer’s decoder. Considering
the characteristic of the cumulative average op-
eration, we develop a masking method to enable
parallel computation just like the original self-
attention network in the training. In this way, the
whole AAN model can be trained totally in par-

allel so that the training efficiency is ensured. As
for the decoding, we can substantially accelerate
it by feeding only the previous hidden state to the
Transformer decoder just like RNN does. This is
achieved with a dynamic programming method.

In spite of its simplicity, our model is capable of
modeling complex dependencies. This is because
AAN regards each previous word as an equal con-
tributor to current word representation. Therefore,
no matter how long the input is, our model can
always build up connection signals with previous
inputs, which we argue is very crucial for inducing
long-range dependencies for machine translation.

We examine our model on WMT17 translation
tasks. On 6 different language pairs, our model
achieves a speed-up of over 4 times with almost
no loss in both translation quality and training
speed. In-depth analyses further demonstrate the
convergency and advantages of translating long
sentences of the proposed AAN.

2 Related Work

GRU (Chung et al., 2014) or LSTM (Hochreiter
and Schmidhuber, 1997) RNNs are widely used
for neural machine translation to deal with long-
range dependencies as well as the gradient van-
ishing issue. A major weakness of RNNs lies at
its sequential architecture that completely disables
parallel computation. To cope with this problem,
Gehring et al. (2017a) propose to use CNN-based
encoder as an alternative to RNN, and Gehring
et al. (2017b) further develop a completely CNN-
based NMT system. However, shallow CNN can
only capture local dependencies. Hence, CNN-
based NMT normally develops deep archictures to
model long-distance dependencies. Different from
these studies, Vaswani et al. (2017) propose the
Transformer, a neural architecture that abandons
recurrence and convolution. It fully relies on at-
tention networks to model translation. The prop-
erties of parallelization and short dependency path
significantly improve the training speed as well as
model performance for the Transformer. Unfortu-
nately, as we have mentioned in Section 1, it suf-
fers from decoding inefficiency.

The attention mechanism is originally proposed
to induce translation-relevant source information
for predicting next target word in NMT. It con-
tributes a lot to make NMT outperform SMT. Re-
cently, a variety of efforts are made to further im-
prove its accuracy and capability. Luong et al.
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(2015) explore several attention formulations and
distinguish local attention from global attention.
Zhang et al. (2016) treat RNN as an alternative
to the attention to improve model’s capability in
dealing with long-range dependencies. Yang et al.
(2017) introduce a recurrent cycle on the atten-
tion layer to enhance the model’s memorization
of previous translated source words. Zhang et al.
(2017a) observe the weak discrimination ability of
the attention-generated context vectors and pro-
pose a GRU-gated attention network. Kim et al.
(2017) further model intrinsic structures inside at-
tention through graphical models. Shen et al.
(2017) introduce a direction structure into a self-
attention network to integrate both long-range de-
pendencies and temporal order information. Mi
et al. (2016) and Liu et al. (2016) employ stan-
dard word alignment to supervise the automati-
cally generated attention weights. Our work also
focus on the evolution of attention network, but
unlike previous work, we seek to simplify the self-
attention network so as to accelerate the decoding
procedure. The design of our model is partially in-
spired by the highway network (Srivastava et al.,
2015) and the residual network (He et al., 2015).

In the respect of speeding up the decoding of
the neural Transformer, Gu et al. (2018) change
the auto-regressive architecture to speed up trans-
lation by directly generating target words with-
out relying on any previous predictions. However,
compared with our work, their model achieves the
improvement in decoding speed at the cost of the
drop in translation quality. Our model, instead,
not only achieves a remarkable gain in terms of
decoding speed, but also preserves the translation
performance. Developing fast and efficient atten-
tion module for the Transformer, to the best of our
knowledge, has never been investigated before.

3 The Average Attention Network

Given an input layer y = {y1,y2, . . . ,ym}, AAN
first employs a cumulative-average operation to
generate context-sensitive representation for each
input embedding as follows (Figure 2 Average
Layer):

gj = FFN

(
1

j

j∑

k=1

yk

)
(1)

where FFN (·) denotes the position-wise feed-
forward network proposed by Vaswani et al.
(2017), and both yk and gj have a dimension-

ality of d. Intuitively, AAN replaces the orig-
inal dynamically computed attention weights by
the self-attention network in the decoder of the
neural Transformer with simple and fixed aver-
age weights (1j ). In spite of its simplicity, the
cumulative-average operation is very crucial for
AAN because it builds up dependencies with pre-
vious input embeddings so that the generated rep-
resentations are not independent of each other.
Another benefit from the cumulative-average op-
eration is that no matter how long the input is, the
connection strength with each previous input em-
bedding is invariant, which ensures the capability
of AAN in modeling long-range dependencies.

We treat gj as a contextual representation for
the j-th input, and apply a feed-forward gating
layer upon it as well as yj to enrich the non-linear
expressiveness of AAN:

ij , fj = σ (W [yj ;gj ])

h̃j = ij � yj + fj � gj
(2)

where [·; ·] denotes concatenation operation, and
� indicates element-wise multiplication. ij and fj
are the input and forget gate respectively. Via this
gating layer, AAN can control how much past in-
formation can be preserved from previous context
gj and how much new information can be captured
from current input yj . This helps our model to de-
tect correlations inside input embeddings.

Following the architecture design in the neural
Transformer (Vaswani et al., 2017), we employ a
residual connection between the input layer and
gating layer, followed by layer normalization to
stabilize the scale of both output and gradient:

hj = LayerNorm
(
yj + h̃j

)
(3)

We refer to the whole procedure formulated in Eq.
(1∼3) as original AAN (·) in following sections.

3.1 Parallelization in Training
A computation bottleneck of the original AAN de-
scribed above is that the cumulative-average oper-
ation in Eq. (1) can only be performed sequen-
tially. That is, this operation can not be paral-
lelized. Fortunately, as the average is not a com-
plex computation, we can use a masking trick to
enable full parallelization of this operation.

We show the masking trick in Figure 3, where
input embeddings are directly converted into
their corresponding cumulative-averaged outputs
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Model Complexity Sequential Operations Maximum Path Length
Self-attention O

(
n2 · d+ n · d2

)
O (1) O (1)

Original AAN O
(
n · d2

)
O (n) O (1)

Masked AAN O
(
n2 · d+ n · d2

)
O (1) O (1)

Table 1: Maximum path lengths, model complexity and minimum number of sequential operations for
different models. n is the sentence length and d is the representation dimension.

Mask Matrix

Figure 3: Visualization of parallel implementa-
tion for the cumulative-average operation enabled
by a mask matrix. {y1,y2,y3,y4} are the input
embeddings.

through a masking matrix. In this way, all the
components inside AAN (·) can enjoy full par-
allelization, assuring its computational efficiency.
We refer to this AAN as masked AAN.

3.2 Model Analysis

In this section, we provide a thorough analysis for
AAN in comparison to the original self-attention
model used by Vaswani et al. (2017). Unlike our
AAN, the self-attention model leverages a scaled
dot-product function rather than the average oper-
ation to compute attention weights:

Q,K,V = f (Y)

Self-Attention (Q,K,V) = softmax
(
QKT

√
d

)
V

(4)

where Y ∈ Rn×d is the input matrix, f (·) is a
mapping function and Q,K,V ∈ Rn×d are the
corresponding queries, keys and values. Follow-
ing Vaswani et al. (2017), we compare both mod-
els in terms of computational complexity, min-
imum number of sequential operations required
and maximum path length that a dependency sig-
nal between any two positions has to traverse in
the network. Table 1 summarizes the comparison
results.

Our AAN has a maximum path length ofO (1),
because it can directly capture dependencies be-
tween any two input embeddings. For the original

AAN, the nature of its sequential computation en-
larges its minimum number sequential operations
to O (n). However, due to its lack of position-
wise masked projection, it only consumes a com-
putational complexity of O

(
n · d2

)
. By contrast,

both self-attention and masked AAN have a com-
putational complexity of O

(
n2 · d+ n · d2

)
, and

require only O (1) sequential operation. Theoreti-
cally, our masked AAN performs very similarly to
the self-attention according to Table 1. We there-
fore use the masked version of AAN during train-
ing throughout all our experiments.

3.3 Decoding Acceleration

Differing noticeably from the self-attention in the
Transformer, our AAN can be accelerated in the
decoding phase via dynamic programming thanks
to the simple average calculation. Particularly, we
can decompose Eq. (1) into the following two
steps:

g̃j = g̃j−1 + yj (5)

gj = FFN
(
g̃j
j

)
(6)

where g̃0 = 0. In doing so, our model can com-
pute the j-th input representation based on only
one previous state g̃j−1, instead of relying on all
previous states as the self-attention does. In this
way, our model can be substantially accelerated
during the decoding phase.

4 Neural Transformer with AAN

The neural Transformer models translation
through an encoder-decoder framework, with
each layer involving an attention network fol-
lowed by a feed forward network (Vaswani et al.,
2017). We apply our masked AAN to replace
the self-attention network in its decoder part, and
illustrate the overall architecture in Figure 4.

Given a source sentence x = {x1,x2, . . . ,xn},
the Transformer leverages its encoder to induce
source-side semantics and dependencies so as to
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Figure 4: The new Transformer architecture with
the proposed average attention network.

enable its decoder to recover the encoded informa-
tion in a target language. The encoder is composed
of a stack ofN = 6 identical layers, each of which
has two sub-layers:

h̃l = LayerNorm
(
hl−1 + MHAtt

(
hl−1,hl−1

))

hl = LayerNorm
(
h̃l + FFN

(
h̃l
))

(7)

where the superscript l indicates layer depth, and
MHAtt denotes the multi-head attention mecha-
nism proposed by Vaswani et al. (2017).

Based on the encoded source representation
hN , the Transformer relies on its decoder to
generate corresponding target translation y =
{y1,y2, . . . ,ym}. Similar to the encoder, the de-
coder also consists of a stack of N = 6 identical
layers. For each layer in our architecture, the first
sub-layer is our proposed average attention net-
work, aiming at capturing target-side dependen-
cies with previous predicted words:

s̃l = AAN
(
sl−1

)
(8)

Carrying these dependencies, the decoder stacks
another two sub-layers to seek translation-relevant
source semantics for bridging the gap between the

source and target language:

slc = LayerNorm
(
s̃l + MHAtt

(
s̃l,hN

))

sl = LayerNorm
(
slc + FFN

(
slc

)) (9)

We use subscript c to denote the source-informed
target representation. Upon the top layer of this
decoder, translation is performed where a linear
transformation and softmax activation are applied
to compute the probability of the next token based
on sN

To memorize position information, the Trans-
former augments its input layer h0 = x, s0 = y
with frequency-based positional encodings. The
whole model is a large, single neural network, and
can be trained on a large-scale bilingual corpus
with a maximum likelihood objective. We refer
readers to (Vaswani et al., 2017) for more details.

5 Experiments

5.1 WMT14 English-German Translation
We examine various aspects of our AAN on this
translation task. The training data consist of
4.5M sentence pairs, involving about 116M En-
glish words and 110M German words. We used
newstest2013 as the development set for model se-
lection, and newstest2014 as the test set. We eval-
uated translation quality via case-sensitive BLEU
metric (Papineni et al., 2002).

5.1.1 Model Settings
We applied byte pair encoding algorithm (Sen-
nrich et al., 2016) to encode all sentences and
limited the vocabulary size to 32K. All out-of-
vocabulary words were mapped to an unique to-
ken “unk”. We set the dimensionality d of all in-
put and output layers to 512, and that of inner-
FFN layer to 2048. We employed 8 parallel at-
tention heads in both encoder and decoder lay-
ers. We batched sentence pairs together so that
they were approximately of the same length, and
each batch had roughly 25000 source and target
tokens. During training, we used label smoothing
with value εls = 0.1, attention dropout and resid-
ual dropout with a rate of p = 0.1. During decod-
ing, we employed beam search algorithm and set
the beam size to 4. Adam optimizer (Kingma and
Ba, 2015) with β1 = 0.9, β2 = 0.98 and ε = 10−9

was used to tune model parameters, and the learn-
ing rate was varied under a warm-up strategy with
warmup steps = 4000 (Vaswani et al., 2017).
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Model BLEU
Transformer 26.37
Our Model 26.31

Our Model w/o FFN 26.05
Our Model w/o Gate 25.91

Table 2: Case-sensitive tokenized BLEU score
on WMT14 English-German translation. BLEU
scores are calculated using multi-bleu.perl.

The maximum number of training steps was set to
100K. Weights of target-side embedding and out-
put weight matrix were tied for all models. We
implemented our model with masking tricks based
on the open-sourced thumt (Zhang et al., 2017b)2,
and trained and evaluated all models on a single
NVIDIA GeForce GTX 1080 GPU. For evalua-
tion, we averaged last five models saved with an
interval of 1500 training steps.

5.1.2 Translation Performance
Table 2 reports the translation results. On the same
dataset, the Transformer yields a BLEU score of
26.37, while our model achieves 26.31. Both re-
sults are almost the same with no significant dif-
ference. Clearly, our model is capable of capturing
complex translation correspondences so as to gen-
erate high-quality translations as effective as the
Transformer.

We also show an ablation study in terms of the
FFN(·) network in Eq. (1) and the gating layer in
Eq. (2). Table 2 shows that without the FFN net-
work, the performance of our model drops 0.26
BLEU points. This degeneration is enlarged to
0.40 BLEU points when the gating layer is not
available. In order to reach comparable perfor-
mance with the original Transformer, integrating
both components is desired.

5.1.3 Analysis on Convergency
Different neural architectures might require differ-
ent number of training steps to converge. In this
section, we testify whether our AAN would re-
veal different characteristics with respect to con-
vergency. We show the loss curve of both the
Transformer and our model in Figure 5.

Surprisingly, both model show highly similar
tendency, and successfully converge in the end. To
train a high-quality translation system, our model
consumes almost the same number of training
steps as the Transformer. This strongly suggests

2https://github.com/thumt/THUMT
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Figure 5: Convergence visualization. The
horizontal axis denotes training steps scaled by
102, and the vertical axis indicates training loss.
Roughly, our model converges similarly to the
Transformer.

Transformer Our Model 4r

Training 0.2474 0.2464 1.00
Decoding

beam=4 0.1804 0.0488 3.70
beam=8 0.3576 0.0881 4.06
beam=12 0.5503 0.1291 4.26
beam=16 0.7323 0.1700 4.31
beam=20 0.9172 0.2122 4.32

Table 3: Time required for training and decod-
ing. Training denotes the number of global train-
ing steps processed per second; Decoding indi-
cates the amount of time in seconds required for
translating one sentence, which is averaged over
the whole newstest2014 dataset. 4r shows the ra-
tio between the Transformer and our model.

that replacing the self-attention network with our
AAN does not have negative impact on the con-
vergency of the entire model.

5.1.4 Analysis on Speed

In Section 3, we demonstrate in theory that our
AAN is as efficient as the self-attention during
training, but can be substantially accelerated dur-
ing decoding. In this section, we provide quantita-
tive evidences to examine this point.

We show the training and decoding speed of
both the Transformer and our model in Table
3. During training, our model performs approx-
imately 0.2464 training steps per second, while
the Transformer processes around 0.2474. This
indicates that our model shares similar computa-
tional strengths with the Transformer during train-
ing, which resonates with the computational anal-
ysis in Section 3.

When it comes to decoding procedure, the time
of our model required to translate one sentence
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Figure 6: Translation statistics on WMT14
English-German test set (newstest14) with respect
to the length of source sentences. The top fig-
ure shows tokenized BLEU score, and the bottom
one shows the average length of translations, both
visa-vis sentence length

is only a quarter of that of the Transformer, with
beam size ranging from 4 to 20. Another notice-
able feature is that as the beam size increases, the
ratio of required decoding time between the Trans-
former and our model is consistently enlarged.
This demonstrates empirically that our model, en-
hanced with the dynamic decoding acceleration al-
gorithm (Section 3.3), can significantly improve
the decoding speed of the Transformer.

5.1.5 Effects on Sentence Length
A serious common challenge for NMT is to
translate long source sentences as handling long-
distance dependencies and under-translation is-
sues becomes more difficult for longer sentences.
Our proposed AAN uses simple cumulative-
average operations to deal with long-range depen-
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Figure 7: Average time required for translating
one source sentence vs. the length of the source
sentence. With the increase of sentence length,
our model shows more clear and significant advan-
tage over the Transformer in terms of the decoding
speed.

dencies. We want to examine the effectiveness of
these operations on long sentence translation. For
this, we provide the translation results along sen-
tence length in Figure 6.

We find that both the Transformer and our
model generate very similar translations in terms
of BLEU score and translation length, and obtain
rather promising performance on long source sen-
tences. More specifically, our model yields rel-
atively shorter translation length on the longest
source sentences but significantly better transla-
tion quality. This suggests that in spite of the sim-
plicity of the cumulative-average operations, our
AAN can indeed capture long-range dependences
desired for translating long source sentences.

Generally, the decoder takes more time for
translating longer sentences. When it comes to
the Transformer, this time issue of translating long
sentences becomes notably severe as all previous
predicted words must be included for estimating
both self-attention weights and word prediction.
We show the average time required for translat-
ing a source sentence with respect to its sentence
length in Figure 7. Obviously, the decoding time
of the Transformer grows dramatically with the in-
crease of sentence length, while that of our model
rises rather slowly. We contribute this great decod-
ing advantage of our model over the Transformer
to the average attention architecture which enables
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Case-sensitive BLEU Case-insensitive BLEU
winner Transformer Our Model 4d winner Transformer Our Model 4d

En→De 28.3 27.33 27.22 -0.11 28.9 27.92 27.80 -0.12
De→En 35.1 32.63 32.73 +0.10 36.5 34.06 34.13 +0.07
En→Fi 20.7 21.00 20.87 -0.13 21.1 21.54 21.47 -0.07
Fi→En 20.5 25.19 24.78 -0.41 21.4 26.22 25.74 -0.48
En→Lv 21.1 16.83 16.63 -0.20 21.6 17.42 17.23 -0.19
Lv→En 21.9 17.57 17.51 -0.06 22.9 18.48 18.30 -0.18
En→Ru 29.8 27.82 27.73 -0.09 29.8 27.83 27.74 -0.09
Ru→En 34.7 31.51 31.36 -0.15 35.6 32.59 32.36 -0.23
En→Tr 18.1 12.11 11.59 -0.52 18.4 12.56 12.03 -0.53
Tr→En 20.1 16.19 15.84 -0.35 20.9 16.93 16.57 -0.36
En→Cs 23.5 21.53 21.12 -0.41 24.1 22.07 21.66 -0.41
Cs→En 30.9 27.49 27.45 -0.04 31.9 28.41 28.33 -0.08

Table 4: Detokenized BLEU scores for WMT17 translation tasks. Results are reported with multi-bleu-
detok.perl. “winner” denotes the translation results generated by the WMT17 winning systems. 4d

indicates the difference between our model and the Transformer.

our model to perform next-word prediction by cal-
culating information just from the previous hid-
den state, rather than considering all previous in-
puts like the self-attention in the Transformer’s de-
coder.

5.2 WMT17 Translation Tasks
We further demonstrate the effectiveness of our
model on six WMT17 translation tasks in both di-
rections (12 translation directions in total). These
tasks contain the following language pairs:

• En-De: The English-German language pair.
This training corpus consists of 5.85M sen-
tence pairs, with 141M English words and
135M German words. We used the concate-
nation of newstest2014, newstest2015 and
newstest2016 as the development set, and the
newstest2017 as the test set.

• En-Fi: The English-Finnish language pair.
This training corpus consists of 2.63M sen-
tence pairs, with 63M English words and
45M Finnish words. We used the concate-
nation of newstest2015, newsdev2015, new-
stest2016 and newstestB2016 as the develop-
ment set, and the newstest2017 as the test set.

• En-Lv: The English-Latvian language pair.
This training corpus consists of 4.46M sen-
tence pairs, with 63M English words and
52M Latvian words. We used the news-
dev2017 as the development set, and the new-
stest2017 as the test set.

• En-Ru: The English-Russian language pair.
This training corpus consists of 25M sen-
tence pairs, with 601M English words and

567M Russian words. We used the concate-
nation of newstest2014, newstest2015 and
newstest2016 as the development set, and the
newstest2017 as the test set.

• En-Tr: The English-Turkish language pair.
This training corpus consists of 0.21M sen-
tence pairs, with 5.2M English words and
4.6M Turkish words. We used the concate-
nation of newsdev2016 and newstest2016 as
the development set, and newstest2017 as the
test set.

• En-Cs: The English-Czech language pair.
This training corpus consists of 52M sen-
tence pairs, with 674M English words and
571M Czech words. We used the concatena-
tion of newstest2014, newstest2015 and new-
stest2016 as the development set, and the
newstest2017 as the test set.

Interestingly, these translation tasks involves train-
ing corpora with different scales (ranging from
0.21M to 52M sentence pairs). This help us thor-
oughly examine the ability of our model on differ-
ent sizes of training data. All these preprocessed
datasets are publicly available, and can be down-
loaded from WMT17 official website.3

We used the same modeling settings as in the
WMT14 English-German translation task except
for the number of training steps for En-Fi and En-
Tr, which we set to 60K and 10K respectively.
In addition, to compare with official results, we
reported both case-sensitive and case-insensitive
detokenized BLEU scores.

3http://data.statmt.org/wmt17/translation-
task/preprocessed/
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Transformer Our Model 4r

En→De 0.1411 0.02871 4.91
De→En 0.1255 0.02422 5.18
En→Fi 0.1289 0.02423 5.32
Fi→En 0.1285 0.02336 5.50
En→Lv 0.1850 0.03167 5.84
Lv→En 0.1980 0.03123 6.34
En→Ru 0.1821 0.03140 5.80
Ru→En 0.1595 0.02778 5.74
En→Tr 0.2078 0.02968 7.00
Tr→En 0.1886 0.03027 6.23
En→Cs 0.1150 0.02425 4.74
Cs→En 0.1178 0.02659 4.43

Table 5: Average seconds required for decoding
one source sentence on WMT17 translation tasks.

5.2.1 Translation Results
Table 4 shows the overall results on 12 transla-
tion directions. We also provide the results from
WMT17 winning systems4. Notice that unlike the
Transformer and our model, these winner systems
typically use model ensemble, system combina-
tion and large-scale monolingual corpus.

Although different languages have different lin-
guistic and syntactic structures, our model con-
sistently yields rather competitive results against
the Transformer on all language pairs in both di-
rections. Particularly, on the De→En translation
task, our model achieves a slight improvement
of 0.10/0.07 case-sensitive/case-insensitive BLEU
points over the Transformer. The largest perfor-
mance gap between our model and the Trans-
former occurs on the En→Tr translation task,
where our model is lower than the Transformer by
0.52/0.53 case-sensitive/case-insensitive BLEU
points. We conjecture that this difference may be
due to the small training corpus of the En-Tr task.
In all, these results suggest that our AAN is able
to perform comparably to Transformer on differ-
ent language pairs with different scales of training
data.

We also show the decoding speed of both the
Transformer and our model in Table 5. On all lan-
guages in both directions, our model yields signif-
icant and consistent improvements over the Trans-
former in terms of decoding speed. Our model
decodes more than 4 times faster than the Trans-
former. Surprisingly, our model just consumes
0.02968 seconds to translate one source sentence
on the En→Tr language pair, only a seventh of
the decoding time of the Transformer. These re-
sults show that the benefit of decoding accelera-

4http://matrix.statmt.org/matrix

tion from the proposed average attention structure
is language-invariant, and can be easily adapted to
other translation tasks.

6 Conclusion and Future Work

In this paper, we have described the average at-
tention network that considerably alleviates the
decoding bottleneck of the neural Transformer.
Our model employs a cumulative average oper-
ation to capture important contextual clues from
previous target words, and a feed forward gat-
ing layer to enrich the expressiveness of learned
hidden representations. The model is further en-
hanced with a masking trick and a dynamic pro-
gramming method to accelerate the Transformer’s
decoder. Extensive experiments on one WMT14
and six WMT17 language pairs demonstrate that
the proposed average attention network is able
to speed up the Transformer’s decoder by over 4
times.

In the future, we plan to apply our model on
other sequence to sequence learning tasks. We will
also attempt to improve our model to enhance its
modeling ability so as to consistently outperform
the original neural Transformer.
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Abstract

With recent advances in network ar-
chitectures for Neural Machine Transla-
tion (NMT) recurrent models have effec-
tively been replaced by either convolu-
tional or self-attentional approaches, such
as in the Transformer. While the main in-
novation of the Transformer architecture
is its use of self-attentional layers, there
are several other aspects, such as attention
with multiple heads and the use of many
attention layers, that distinguish the model
from previous baselines. In this work we
take a fine-grained look at the different ar-
chitectures for NMT. We introduce an Ar-
chitecture Definition Language (ADL) al-
lowing for a flexible combination of com-
mon building blocks. Making use of this
language, we show in experiments that
one can bring recurrent and convolutional
models very close to the Transformer per-
formance by borrowing concepts from the
Transformer architecture, but not using
self-attention. Additionally, we find that
self-attention is much more important for
the encoder side than for the decoder side,
where it can be replaced by a RNN or
CNN without a loss in performance in
most settings. Surprisingly, even a model
without any target side self-attention per-
forms well.

1 Introduction

Since the introduction of attention mecha-
nisms (Bahdanau et al., 2014; Luong et al., 2015)
Neural Machine Translation (NMT) (Sutskever
et al., 2014) has shown some impressive results.
Initially, approaches to NMT mainly relied on
Recurrent Neural Networks (RNNs) (Kalchbren-

ner and Blunsom, 2013; Bahdanau et al., 2014;
Luong et al., 2015; Wu et al., 2016) such as Long
Short-Term Memory (LSTM) networks (Hochre-
iter and Schmidhuber, 1997) or the Gated Recti-
fied Unit (GRU) (Cho et al., 2014).

Recently, other approaches relying on con-
volutional networks (Kalchbrenner et al., 2016;
Gehring et al., 2017) and self-attention (Vaswani
et al., 2017) have been introduced. These ap-
proaches remove the dependency between source
language time steps, leading to considerable
speed-ups in training time and improvements in
quality. The Transformer, however, contains other
differences besides self-attention, including layer
normalization across the entire model, multiple
source attention mechanisms, a multi-head dot at-
tention mechanism, and the use of residual feed-
forward layers. This raises the question of how
much each of these components matters.

To answer this question we first introduce a
flexible Architecture Definition Language (ADL)
(§2). In this language we standardize existing
components in a consistent way making it eas-
ier to compare structural differences of architec-
tures. Additionally, it allows us to efficiently per-
form a granular analysis of architectures, where
we can evaluate the impact of individual compo-
nents, rather than comparing entire architectures
as a whole. This ability leads us to the following
observations:

• Source attention on lower encoder layers
brings no additional benefit (§4.2).

• Multiple source attention layers and residual
feed-forward layers are key (§4.3).

• Self-attention is more important for the
source than for the target side (§4.4).
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2 Flexible Neural Machine Translation
Architecture Combination

In order to experiment easily with different ar-
chitecture variations we define a domain specific
NMT Architecture Definition Language (ADL),
consisting of combinable and nestable building
blocks.

2.1 Neural Machine Translation
NMT is formulated as a sequence to sequence
prediction task in which a source sentence X =
x1, ..., xn is translated auto-regressively into a tar-
get sentence Y = y1, ..., ym one token at a time
as

p(yt|Y1:t−1, X;θ) = softmax(Woz
L + bo),

(1)

where bo is a bias vector, Wo projects a model de-
pendent hidden vector zL of the Lth decoder layer
to the dimension of the target vocabulary Vtrg and
θ denotes the model parameters. Typically, during
training Y1:t−1 consists of the reference sequence
tokens, rather then the predictions produced by the
model, which is known as teacher-forcing. Train-
ing is done by minimizing the cross-entropy loss
between the predicted and the reference sequence.

2.2 Architecture Definition Language
In the following we specify the ADL which can be
used to define any standard NMT architecture and
combinations thereof.

Layers The basic building block of the ADL
is a layer l. Layers can be nested, mean-
ing that a layer can consist of several sub-
layers. Layers optionally take set of named ar-
guments l(k1=v1, k2=v2, ...) with names k1, k2,
... and values v1, v2, ... or positional arguments
l(v1, v2, ...).

Layer definitions For each layer we have a cor-
responding layer definition based on the hidden
states of the previous layer and any additional ar-
guments. Specifically, each layer takes T hid-
den states hi1, ...,h

i
T , which in matrix form are

Hi ∈ RT×di , and produces a new set of hidden
states hi+1

1 , ...,hi+1
T or Hi+1. While each layer

can have a different number of hidden units di,
in the following we assume them to stay constant
across layers and refer to the model dimensionality
as dmodel. We distinguish the hidden states on the
source side U0, ...,ULs from the hidden states of

the target side Z0, ...,ZL. These are produced by
the source and target embeddings and Ls source
layers and L target layers.

Source attention layers play a special role in that
their definition additionally makes use of any of
the source hidden states U0, ...,ULs .

Layer chaining Layers can be chained, feeding
the output of one layer as the input to the next. We
denote this as l1 → l2� ...�lL. This is equivalent
to writing lL(... l2(l1(H0))) if none of the layers
is a source attention layer.

In layer chains layers may also contain lay-
ers that themselves take arguments. As an ex-
ample l1(k=v) → l2 � ... � lL is equivalent
to lL(... l2(l1(H

0, k=v))). Note that unlike in
the layer definition hidden states are not explic-
itly stated in the layer chain, but rather implicitly
defined through the preceding layers.

Encoder/Decoder structure A NMT model is
fully defined through two layer chains, namely one
describing the encoder and another describing the
decoder. The first layer hidden states on the source
U0 are defined through the source embedding as

u0
t = Esrcxt (2)

where xt ∈ {0, 1}|Vsrc | is the one-hot represen-
tation of xt and ESxt ∈ Re×|Vsrc | an embedding
matrix with embedding dimensionality e. Simi-
larly, Z0 is defined through the target embedding
matrix Etgt.

Given the final decoder hidden state ZL the
next word predictions are done according to Equa-
tion 1.

Layer repetition Networks often consist of sub-
structures that are repeated several times. In order
to support this we define a repetition layer as

repeat(n, l) = l1�l2�...�ln,

where l represents a layer chain and each one of
l1, ..., ln an instantiation of that layer chain with a
separate set of weights.

2.3 Layer Definitions

In this section we will introduce the concrete lay-
ers and their definitions, which are available for
composing NMT architectures. They are based
on building blocks common to many current NMT
models.
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Dropout A dropout (Srivastava et al., 2014)
layer, denoted as dropout(ht), can be applied to
hidden states as a form of regularization.

Fixed positional embeddings Fixed positional
embeddings (Vaswani et al., 2017) add informa-
tion about the position in the sequence to the hid-
den states. With ht ∈ Rd the positional embed-
ding layer is defined as

pos(ht) = dropout(
√
d · ht + pt)

pt,j = sin(t/100002j/d)

pt,2j+1 = cos(t/100002j/d).

Linear We define a linear projection layer as

linear(ht, do) = Wht + b,

where W ∈ Rdo×din .

Feed-forward Making use of the linear projec-
tion layer a feed-forward layer with ReLU activa-
tion and dropout is defined as

ff(ht, do) = dropout(max(0, linear(ht, do)))

and a version which temporarily upscales the num-
ber of hidden units, as done by Vaswani et al.
(2017), can be defined as

ffl(ht) = ff(4din)�linear(din)

where ht ∈ Rdin .

Convolution Convolutions run a small feed-
forward network on a sliding window over the in-
put. Formally, on the encoder side this is defined
as

cnn(H, v, k) = v(W[hi−bk/2c; ...;hi+bk/2c] + b)

where k is the kernel size, and v is a non-linearity.
The input is padded so that the number of hidden
states does not change.

To preserve the auto-regressive property of the
decoder we need to make sure to never take fu-
ture decoder time steps into account, which can
be achieved by adding k − 1 padding vectors
h−k+1 = 0, . . . ,h−1 = 0 such that the decoder
convolution is given as

cnn(H, v, k) = v(W[ht−k+1; ...;ht] + b).

The non-linearity v can either be a ReLU or a
Gated Linear Unit (GLU) (Dauphin et al., 2016).
With the GLU we set di = 2d such that we can
split h = [hA;hB] ∈ R2d and compute the non-
linearity as

glu([hA;hB]) = hA ⊗ σ(hB).

Identity We define an identity layer as

id(ht) = ht.

Concatenation To concatenate the output of p
layer chains we define

concat(ht, l1, ..., lp) = [l1(ht); ...; lp(ht)].

Recurrent Neural Network An RNN layer is
defined as

rnn(ht) = frnn o(ht, st−1)

st = frnn h(ht, st−1)

where frnn o and frnn h could be defined
through either a GRU (Cho et al., 2014) or a
LSTM (Hochreiter and Schmidhuber, 1997) cell.
In addition, a bidirectional RNN layer birnn is
available, which runs one rnn in forward and an-
other in reverse direction and concatenates both re-
sults.

Attention All attention mechanisms take a set of
query vectors q0, ...,qM , key vectors k0, ...,kN
and value vectors v0, ...,vN in order to produce
one context vector per query, which is a linear
combination of the value vectors. We define Q ∈
RM×d, V ∈ RN×d and K ∈ RN×d as the con-
catenation of these vectors. What is used as the
query, key and value vectors depends on attention
type and is defined below.

Dot product attention The scaled dot prod-
uct attention (Vaswani et al., 2017) is defined as

dot att(Q,K,V, s) = softmax

(
QK>√

s

)
V,

where the scaling factor s is implicitly set to d un-
less noted otherwise. Adding a projection to the
queries, keys and values we get the projected dot
attention as

proj dot att(Q,K,V, dp, s) =

dot att(QWQ,KWK ,VWV , s)

where dp is dimensionality of the projected vec-
tors such that WQ ∈ Rdq×dp , WK ∈ Rdk×dp and
WV ∈ Rdv×dp .

Vaswani et al. (2017) further introduces a multi-
head attention, which applies multiple attentions
at a reduced dimensionality. With h heads multi-
head attention is computed as

mh dot att(Q,K,V, h, s) = [C0; ...;Ch],
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Ci = proj dot att(Q,K,V, d/h, s).

Note that with h = 1 we recover the projected dot
attention.

MLP attention The MLP attention (Bah-
danau et al., 2014) computes the scores with a one-
layer neural network as

mlp att(Q,K,V) = softmax (S)V,

Sij = wT
o tanh(Wqqi +Wkkj).

Source attention Using the source hidden
vectors U, the source attentions are computed as

mh dot src att(H,U, h, s) =

mh dot att(H,U,U, h, s),

mlp src att(H,U) = mlp att(H,U,U),

dot src att(H,U, s) = mh dot att(H,U,U, 1, s).

Self-attention Self-attention (Vaswani et al.,
2017) uses the hidden states as queries, keys and
values such that

mh dot self att(H, s) = mh dot att(H,H,H, s).

Please note that on the target side one needs to
make sure to preserve the auto-regressive property
by only attending to hidden states at the current or
past steps h < t, which is achieved by masking
the attention mechanism.

Layer normalization Layer normalization (Ba
et al., 2016) uses the mean and standard deviation
for normalization. It is computed as

norm(ht) =
g

σt
⊗ (ht − µt) + b

µt =
1

d

d∑

i=1

ht,j σt =

√√√√1

d

d∑

i=1

(ht,j − µj)2

where g and b are learned scale and shift parame-
ters with the same dimensionality as h.

Residual layer A residual layer adds the output
of an arbitrary layer chain l to the current hidden
states. We define this as

res(ht, l) = ht + l(ht).

For convenience we also define

res d(ht, l) = res(l(ht)�dropout) and

res nd(ht, l) = res(norm�l(ht)�dropout).

2.4 Standard Architectures

Having defined the common building blocks we
now show how standard NMT architectures can be
constructed.

RNMT As RNNs have been around the longest
in NMT, several smaller architecture variations
exist. Similar to Wu et al. (2016) in the following
we use a bi-directional RNN followed by a stack
of uni-directional RNNs with residual connections
on the encoder side. Using the ADL an n layer en-
coder can be expressed as

ULs = dropout�birnn�repeat(n− 1, res d(rnn)).

For the decoder we use the architecture by Luong
et al. (2015), which first runs a stacked RNN and
then combines the context provided by a single at-
tention mechanism with the hidden state provided
by the RNN. This can be expressed by

ZL = dropout�repeat(n, res d(rnn))�
concat(id,mlp att)�ff.

If input feeding (Luong et al., 2015) is used the
first layer hidden states are redefined as

z0t = [zLt−1;Etgtyt].

Note that this inhibits any parallelism across de-
coder time steps. This is only an issue when using
models other than RNNs, as RNNs already do not
allow for parallelizing over decoder time steps.

ConvS2S Gehring et al. (2017) introduced a
NMT model that fully relies on convolutions, both
on the encoder and on the decoder side. The en-
coder is defined as

ULs = pos�repeat(n, res(cnn(glu)�dropout))

and the decoder, which uses an unscaled single
head dot attention is defined as

ZL = pos�res(dropout�cnn(glu)�dropout

�res(dot src att(s=1))).

Note that unlike (Gehring et al., 2017) we do not
project the query vectors before the attention and
do not add the embeddings to the attention values.
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Transformer The Transformer (Vaswani et al.,
2017) makes use of self-attention, instead of
RNNs or Convolutional Neural Networks (CNNs),
as the basic computational block. Note that we
use a slightly updated residual structure as im-
plemented by tensor2tensor1 than proposed origi-
nally. Specifically, layer normalization is applied
to the input of the residual block instead of ap-
plying it between blocks. The Transformer uses
a combination of self-attention and feed-forward
layers on the encoder and additionally source at-
tention layers on the decoder side. When defining
the Transformer encoder block as

tenc = res nd(mh dot self att)�res nd(ffl),

and the decoder block as

tdec = res nd(mh dot self att)�
res nd(mh dot src att)�res nd(ffl).

the Transformer encoder is given as

ULs = pos�repeat(n, tenc)�norm

and the decoder as

ZL = pos�repeat(n, tdec)�norm.

3 Related Work

The dot attention mechanism, now heavily used in
the Transformer models, was introduced by (Lu-
ong et al., 2015) as part of an exploration of dif-
ferent attention mechanisms for RNN based NMT
models.

Britz et al. (2017) performed an extensive ex-
ploration of hyperparameters of RNN based NMT
models. The variations explored include different
attention mechanisms, RNN cells types and model
depth.

Similar to our work, Schrimpf et al. (2017) de-
fine a language for exploring architectures. In
this case the architectures are defined for RNN
cells and not for the higher level model architec-
ture. Using the language they perform an auto-
matic search of RNN cell architectures.

For the application of image classification there
have been several recent successful efforts of
automatically searching for successful architec-
tures (Zoph and Le, 2016; Negrinho and Gordon,
2017; Liu et al., 2017).

1https://github.com/tensorflow/tensor2tensor

4 Experiments

What follows is an extensive empirical analysis of
current NMT architectures and how certain sub-
layers as defined through our ADL affect perfor-
mance.

4.1 Setup
All experiments were run with an adapted ver-
sion of SOCKEYE (Hieber et al., 2017), which
can parse arbitrary model definitions that are ex-
pressed in the language described in Section 2.3.
The code and configuration are available at
https://github.com/awslabs/sockeye/tree/acl18 al-
lowing researchers to easily replicate the experi-
ments and to quickly try new NMT architectures
by either making use of existing building blocks
in novel ways or adding new ones.

In order to get data points on corpora of differ-
ent sizes we ran experiments on both WMT and
IWSLT data sets. For WMT we ran the majority
of our experiments on the most recent WMT’17
data consisting of roughly 5.9 million training
sentences for English-German (EN→DE) and 4.5
million sentences for Latvian-English (LV→EN).
We used newstest2016 as validation data and re-
port metrics calculated on newstest2017. For the
smaller IWSLT’16 English-German corpus, which
consists of roughly 200 thousand training sen-
tences, we used TED.tst2013 as validation data
and report numbers for TED.tst2014.

For both WMT’17 and IWSLT’16 we prepro-
cessed all data using the Moses2 tokenizer and
apply Byte Pair Encoding (BPE) (Sennrich et al.,
2015) with 32,000 merge operations. Unless noted
otherwise we run each experiment three times
with different random seeds and report the mean
and standard deviation of the BLEU and ME-
TEOR (Lavie and Denkowski, 2009) scores across
runs. Evaluation scores are based on tokenized
sequences and calculated with MultEval (Clark
et al., 2011).

Model WMT’14
Vaswani et al. (2017) 27.3
Our Transformerbase impl. 27.5

Table 1: BLEU scores on WMT’14 EN→DE.

In order to compare to previous work, we
also ran an additional experiment on WMT’14
using the same data as Vaswani et al. (2017)

2https://github.com/moses-smt/mosesdecoder/
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as provided in preprocessed form through ten-
sor2tensor.3 This data set consists of WMT’16
training data, which has been tokenized and byte
pair encoded with 32,000 merge operations. Eval-
uation is done on tokenized and compound split
newstest2014 data using multi-bleu.perl in order
to get scores comparable to Vaswani et al. (2017).
As seen in Table 1, our Transformer implementa-
tion achieves a score equivalent to the originally
reported numbers.

On the smaller IWSLT data we use dmodel =
512 and on WMT dmodel = 256 for all mod-
els. Models are trained with 6 encoder and 6 de-
coder blocks, where in the Transformer model a
layer refers to a full encoder or decoder block. All
convolutional layers use a kernel of size 3 and a
ReLU activation, unless noted otherwise. RNNs
use LSTM cells. For training we use the Adam
optimizer (Kingma and Ba, 2014) with a learning
rate of 0.0002. The learning rate is decayed by a
factor of 0.7, whenever the validation perplexity
does not improve for 8 consecutive checkpoints,
where a checkpoint is created every 4,000 updates
on WMT and 1,000 updates on IWSLT. All mod-
els use label smoothing (Szegedy et al., 2016) with
εls = 0.1.

4.2 What to attend to?

Source attention is typically based on the top en-
coder block. With multiple source attention lay-
ers one could hypothesize that it could be benefi-
cial to allow attention encoder blocks other than
the top encoder block. It might for example be
beneficial for lower decoder blocks to use encoder
blocks from the same level as they represent the
same level of abstraction. Inversely, assuming that
the translation is done in a coarse to fine manner
it might help to first use the uppermost encoder
block and use gradually lower level representa-
tions.

Encoder block IWSLT WMT’17
upper 25.4± 0.2 27.6± 0.0
increasing 25.4± 0.1 27.3± 0.1
decreasing 25.3± 0.2 27.1± 0.1

Table 2: BLEU scores when varying the en-
coder block used in the source attention mecha-
nism of a Transformer on the EN→DE IWSLT and
WMT’17 datasets.

3https://github.com/tensorflow/tensor2tensor/blob/
765d33bb/tensor2tensor/data generators/translate ende.py

The result of modifying the source attention
mechanism to use different encoder blocks is
shown in Table 2. The variations include using
the result of the encoder Transformer block at
the same level as the decoder Transformer block
(increasing) and using the upper encoder Trans-
former block in the first decoder block and then
gradually using the lower blocks (decreasing).

We can see that attention on the upper encoder
block performs best and no gains can be observed
by attention on different encoder layers in the
source attention mechanism.

4.3 Network Structure
The Transformer sets itself apart from both
standard RNN models and convolutional model
by more than just the multi-head self-attention
blocks.

RNN to Transformer The differences to the
RNN include the multiple source attention layers,
multi-head attention, layer normalization and the
residual upscaling feed-forward layers. Addition-
ally, RNN models typically use single head MLP
attention instead of the dot attention. This raises
the question of what aspect contributes most to the
performance of the Transformer.

Table 3 shows the result of taking an RNN and
step by step changing the architecture to be simi-
lar to the Transformer architecture. We start with
a standard RNN architecture with MLP attention
similar to Luong et al. (2015) as described in Sec-
tion 2.4 with and without input feeding denoted as
RNMT.

Next, we take a model with a residual connec-
tion around the encoder bi-RNN such that the en-
coder is defined as

dropout�res d(birnn)�repeat(5, res d(rnn)).

The decoder uses a residual single head dot atten-
tion and no input feeding and is defined as

dropout�repeat(6, res d(rnn))�
res d(dot src att)�res d(ffl).

We denote this model as RNN in Table 3. This
model is then changed to use multi-head attention
(mh), positional embeddings (pos), layer normal-
ization on the inputs of the residual blocks (norm),
an attention mechanism in a residual block after
every RNN layer with multiple (multi-att) and a
single head (multi-add-1h), and finally a residual
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IWSLT EN→DE WMT’17 EN→DE WMT’17 LV→EN
Model BLEU BLEU METEOR BLEU METEOR
Transformer 25.4± 0.1 27.6± 0.0 47.2± 0.1 18.5± 0.0 51.3± 0.1

RNMT 23.2± 0.2 25.5± 0.2 45.1± 0.1 - -
- input feeding 23.1± 0.2 24.6± 0.1 43.8± 0.2 - -

RNN 22.8± 0.2 23.8± 0.1 43.3± 0.1 15.2± 0.1 45.9± 0.1
+ mh 23.7± 0.4 24.4± 0.1 43.9± 0.1 16.0± 0.1 47.1± 0.1
+ pos 23.9± 0.2 24.1± 0.1 43.5± 0.2 - -
+ norm 23.7± 0.1 24.0± 0.2 43.2± 0.1 15.2± 0.1 46.3± 0.2
+ multi-att-1h 24.5± 0.0 25.2± 0.1 44.9± 0.1 16.6± 0.2 49.1± 0.2
/ multi-att 24.4± 0.3 25.5± 0.0 45.3± 0.0 17.0± 0.2 49.4± 0.1
+ ff 25.1± 0.1 26.7± 0.1 46.4± 0.2 17.8± 0.1 50.5± 0.1

Table 3: Transforming an RNN into a Transformer style architecture. + shows the incrementally added
variation. / denotes an alternative variation to which the subsequent + is relative to.

upscaling feed-forward layer is added after each
attention block (ff). The final architecture of the
encoder after applying these variations is

pos�res nd(birnn)�res nd(ffl)�
repeat(5, res nd(rnn)�res nd(ffl)�norm

and of the decoder

pos�repeat(6, res nd(rnn)�
res nd(mh dot src att)�res nd(ffl))�norm.

Comparing this to the Transformer as defined in
Section 2.4 we note that the model is identical
to the Transformer, except that each self-attention
has been replaced by an RNN or bi-RNN.

Table 3 shows that not using input feeding has
a negative effect on the result, which however can
be compensated by the explored model variations.
With just a single attention mechanism the model
benefits from multiple attention heads. The gains
are even larger when an attention mechanism is
added to every layer. With multiple source atten-
tion mechanisms the benefit of multiple heads de-
creases. Layer normalization on the inputs of the
residual blocks has a small negative effect in all
settings and metrics. As RNNs can learn to encode
positional information positional embeddings are
not strictly necessary. Indeed, we can observe
no gains but rather even a small drop in BLEU
and METEOR for WMT’17 EN→DE when using
them. Adding feed-forward layers leads to large
and consistent performance boost. While the fi-
nal model, which is a Transformer model where
each self-attention has been replaced by an RNN,
is able to make up for a large amount of the dif-
ference between the baseline and the Transformer,

it is still outperformed by the Transformer. The
largest gains come from multiple attention mech-
anisms and residual feed-forward layers.

CNN to Transformer While the convolutional
models have much more in common with the
Transformer than the RNN based models, there
are still some notable differences. Like the Trans-
former, convolutional models have no dependency
between decoder time steps during training, use
multiple source attention mechanisms and use a
slightly different residual structure, as seen in Sec-
tion 2.4. The Transformer uses a multi-head scaled
dot attention while the ConvS2S model uses an un-
scaled single head dot attention. Other differences
include the use of layer normalization as well as
residual feed-forward blocks in the Transformer.

The result of making a CNN based architecture
more and more similar to the Transformer can be
seen in Table 4. As a baseline we use a simple
residual CNN structure with a residual single head
dot attention. This is denoted as CNN in Table 4.
On the encoder side we have

pos�repeat(6, res d(cnn))

and for the decoder

pos�repeat(6, res d(cnn)�res d(dot src att)).

This is similar to, but slightly simpler than, the
ConvS2S model described in Section 2.4. In the
experiments we explore both the GLU and ReLU
as non-linearities for the CNN.

Adding layer normalization (norm), multi-head
attention (mh) and upsampling residual feed-
forward layers (ff) we arrive at a model that is
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IWSLT EN-DE WMT’17 EN→DE WMT’17 LV→EN
Model BLEU BLEU METEOR BLEU METEOR
Transformer 25.4± 0.1 27.6± 0.0 47.2± 0.1 18.5± 0.0 51.3± 0.1

CNN GLU 24.3± 0.4 25.0± 0.3 44.4± 0.2 16.0± 0.5 47.4± 0.4
+ norm 24.1± 0.1 - - - -
+ mh 24.2± 0.2 25.4± 0.1 44.8± 0.1 16.1± 0.1 47.6± 0.2
+ ff 25.3± 0.1 26.8± 0.1 46.0± 0.1 16.4± 0.2 47.9± 0.2

CNN ReLU 23.6± 0.3 23.9± 0.1 43.4± 0.1 15.4± 0.1 46.4± 0.3
+ norm 24.3± 0.1 24.3± 0.2 43.6± 0.1 16.0± 0.2 47.1± 0.5
+ mh 24.2± 0.2 24.9± 0.1 44.4± 0.1 16.1± 0.1 47.5± 0.2
+ ff 25.3± 0.3 26.9± 0.1 46.1± 0.0 16.4± 0.2 47.9± 0.1

Table 4: Transforming a CNN based model into a Transformer style architecture.

identical to a Transformer where the self-attention
layers have been replaced by CNNs. This means
that we have the following architecture on the en-
coder

pos�repeat(6, res nd(cnn)�res nd(ffl))�norm.

Whereas for the decoder we have

pos�repeat(6, res nd(cnn)

�res nd(mh dot src att)�res nd(ffl))�norm.

While in the baseline the GLU activation works
better than the ReLU activation, when layer
normalization, multi-head attention attention and
residual feed-forward layers are added, the perfor-
mance is similar. Except for IWSLT multi-head
attention gives consistent gains over single head
attention. The largest gains can however be ob-
served by the addition of residual feed-forward
layers. The performance of the final model, which
is very similar to a Transformer where each self-
attention has been replaced by a CNN, matches
the performance of the Transformer on IWSLT
EN→DE but is still 0.7 BLEU points worse on
WMT’17 EN→DE and two BLEU points on
WMT’17 LV→EN.

4.4 Self-attention variations

At the core of the Transformer are self-attentional
layers, which take the role previously occupied by
RNNs and CNNs. Self-attention has the advantage
that any two positions are directly connected and
that, similar to CNNs, there are no dependencies
between consecutive time steps so that the com-
putation can be fully parallelized across time. One
disadvantage is that relative positional information
is not directly represented and one needs to rely

on the different heads to make up for this. In a
CNN information is constrained to a local window
which grows linearly with depth. Relative posi-
tions are therefore taken into account. While an
RNN keeps an internal state, which can be used
in future time steps, it is unclear how well this
works for very long range dependencies (Koehn
and Knowles, 2017; Bentivogli et al., 2016). Addi-
tionally, having a dependency on the previous hid-
den state inhibits any parallelization across time.

Given the different advantages and disadvan-
tages we selectively replace self-attention on the
encoder and decoder side in order to see where the
model benefits most from self-attention.

We take the encoder and decoder block defined
in Section 2.4 and try out different layers in place
of the self-attention. Concretely, we have

tenc = res nd(xenc)�res nd(ffl),

on the encoder side and

tdec = res nd(xdec)�
res nd(mh dot src att)�res nd(ffl).

on the decoder side. Table 5 shows the result of
replacing xenc and xdec with either self-attention,
a CNN with ReLU activation or an RNN. Notice
that with self-attention used in both xenc and xdec
we recover the Transformer model. Additionally,
we remove the residual block on the decoder side
entirely (none). This results in a decoder block
which only has information about the previous tar-
get word yt through the word embedding that is
fed as the input to the first layer. The decoder
block is reduced to

tdec = res nd(mh dot src att)�res nd(ffl).
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IWSLT EN→DE WMT’17 EN→DE WMT’17 LV→EN
Encoder Decoder BLEU BLEU METEOR BLEU METEOR
self-att self-att 25.4± 0.2 27.6± 0.0 47.2± 0.1 18.3± 0.0 51.1± 0.1

self-att RNN 25.1± 0.1 27.4± 0.1 47.0± 0.1 18.4± 0.2 51.1± 0.1
self-att CNN 25.4± 0.4 27.6± 0.2 46.7± 0.1 18.0± 0.3 50.3± 0.3

RNN self-att 25.8± 0.1 27.2± 0.1 46.7± 0.1 17.8± 0.1 50.6± 0.1
CNN self-att 25.7± 0.1 26.6± 0.3 46.3± 0.1 16.8± 0.4 49.4± 0.4

RNN RNN 25.1± 0.1 26.7± 0.1 46.4± 0.2 17.8± 0.1 50.5± 0.1
CNN CNN 25.3± 0.3 26.9± 0.1 46.1± 0.0 16.4± 0.2 47.9± 0.2

self-att combined 25.1± 0.2 27.6± 0.2 47.2± 0.2 18.3± 0.1 51.1± 0.1
self-att none 23.7± 0.2 25.3± 0.2 43.1± 0.1 15.9± 0.1 45.1± 0.2

Table 5: Different variations of the encoder and decoder self-attention layer.

In addition to that, we try a combination where the
first and fourth block use self-attention, the second
and fifth an RNN, the third and sixth a CNN (com-
bined).

Replacing the self-attention on both the encoder
and the decoder side with an RNN or CNN re-
sults in a degradation of performance. In most
settings, such as WMT’17 EN→DE for both vari-
ations and WMT’17 LV→EN for the RNN, the
performance is comparable when replacing the de-
coder side self-attention. For the encoder how-
ever, except for IWSLT, we see a drop in perfor-
mance of up to 1.5 BLEU points when not using
self-attention. Therefore, self-attention seems to
be more important on the encoder side than on the
decoder side. Despite the disadvantage of having a
limited context window, the CNN performs as well
as self-attention on the decoder side on IWLT and
WMT’17 EN→DE in terms of BLEU and only
slightly worse in terms of METEOR. The combi-
nation of the three mechanisms (combined) on the
decoder side performs almost identical to the full
Transformer model, except for IWSLT where it is
slightly worse.

It is surprising how well the model works with-
out any self-attention as the decoder essentially
looses any information about the history of gener-
ated words. Translations are entirely based on the
previous word, provided through the target side
word embedding, and the current position, pro-
vided through the positional embedding.

5 Conclusion

We described an ADL for specifying NMT archi-
tectures based on composable building blocks. In-
stead of committing to a single architecture, the
language allows for combining architectures on

a granular level. Using this language we ex-
plored how specific aspects of the Transformer ar-
chitecture can successfully be applied to RNNs
and CNNs. We performed an extensive evalua-
tion on IWSLT EN→DE, WMT’17 EN→DE and
LV→EN, reporting both BLEU and METEOR
over multiple runs in each setting.

We found that RNN based models benefit from
multiple source attention mechanisms and resid-
ual feed-forward blocks. CNN based models on
the other hand can be improved through layer nor-
malization and also feed-forward blocks. These
variations bring the RNN and CNN based models
close to the Transformer. Furthermore, we showed
that one can successfully combine architectures.
We found that self-attention is much more impor-
tant on the encoder side than it is on the decoder
side, where even a model without self-attention
performed surprisingly well. For the data sets we
evaluated on, models with self-attention on the en-
coder side and either an RNN or CNN on the de-
coder side performed competitively to the Trans-
former model in most cases.

We make our implementation available so that it
can be used for exploring novel architecture varia-
tions.
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Abstract

Training semantic parsers from weak su-
pervision (denotations) rather than strong
supervision (programs) complicates train-
ing in two ways. First, a large search
space of potential programs needs to be
explored at training time to find a correct
program. Second, spurious programs that
accidentally lead to a correct denotation
add noise to training. In this work we pro-
pose that in closed worlds with clear se-
mantic types, one can substantially allevi-
ate these problems by utilizing an abstract
representation, where tokens in both the
language utterance and program are lifted
to an abstract form. We show that these
abstractions can be defined with a handful
of lexical rules and that they result in shar-
ing between different examples that alle-
viates the difficulties in training. To test
our approach, we develop the first seman-
tic parser for CNLVR, a challenging vi-
sual reasoning dataset, where the search
space is large and overcoming spurious-
ness is critical, because denotations are
either TRUE or FALSE, and thus random
programs are likely to lead to a correct
denotation. Our method substantially im-
proves performance, and reaches 82.5%
accuracy, a 14.7% absolute accuracy im-
provement compared to the best reported
accuracy so far.

1 Introduction

The goal of semantic parsing is to map language
utterances to executable programs. Early work
on statistical learning of semantic parsers utilized

∗ Authors equally contributed to this work.

I :

k :[[{y loc: ..., color: ’Black’, type: ’square’, x loc: ...

size: 20}, ...}]]
x :There is a small yellow item not touching any wall

y :True

z :Exist(Filter(ALL ITEMS, λx.And(And(IsYellow(x),
IsSmall(x)), Not(IsTouchingWall(x, Side.Any))))))

Figure 1: Overview of our visual reasoning setup for the CN-
LVR dataset. Given an image rendered from a KB k and an
utterance x, our goal is to parse x to a program z that re-
sults in the correct denotation y. Our training data includes
(x, k, y) triplets.

supervised learning, where training examples in-
cluded pairs of language utterances and programs
(Zelle and Mooney, 1996; Kate et al., 2005; Zettle-
moyer and Collins, 2005, 2007). However, col-
lecting such training examples at scale has quickly
turned out to be difficult, because expert annota-
tors who are familiar with formal languages are re-
quired. This has led to a body of work on weakly-
supervised semantic parsing (Clarke et al., 2010;
Liang et al., 2011; Krishnamurthy and Mitchell,
2012; Kwiatkowski et al., 2013; Berant et al.,
2013; Cai and Yates, 2013; Artzi and Zettlemoyer,
2013). In this setup, training examples correspond
to utterance-denotation pairs, where a denotation
is the result of executing a program against the en-
vironment (see Fig. 1). Naturally, collecting deno-
tations is much easier, because it can be performed
by non-experts.

Training semantic parsers from denotations
rather than programs complicates training in two
ways: (a) Search: The algorithm must learn to
search through the huge space of programs at
training time, in order to find the correct program.
This is a difficult search problem due to the com-
binatorial nature of the search space. (b) Spurious-
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ness: Incorrect programs can lead to correct deno-
tations, and thus the learner can go astray based on
these programs. Of the two mentioned problems,
spuriousness has attracted relatively less attention
(Pasupat and Liang, 2016; Guu et al., 2017).

Recently, the Cornell Natural Language for Vi-
sual Reasoning corpus (CNLVR) was released
(Suhr et al., 2017), and has presented an opportu-
nity to better investigate the problem of spurious-
ness. In this task, an image with boxes that con-
tains objects of various shapes, colors and sizes is
shown. Each image is paired with a complex nat-
ural language statement, and the goal is to deter-
mine whether the statement is true or false (Fig. 1).
The task comes in two flavors, where in one the
input is the image (pixels), and in the other it is
the knowledge-base (KB) from which the image
was synthesized. Given the KB, it is easy to view
CNLVR as a semantic parsing problem: our goal
is to translate language utterances into programs
that will be executed against the KB to determine
their correctness (Johnson et al., 2017b; Hu et al.,
2017). Because there are only two return values,
it is easy to generate programs that execute to the
right denotation, and thus spuriousness is a major
problem compared to previous datasets.

In this paper, we present the first semantic
parser for CNLVR. Semantic parsing can be
coarsely divided into a lexical task (i.e., mapping
words and phrases to program constants), and a
structural task (i.e., mapping language composi-
tion to program composition operators). Our core
insight is that in closed worlds with clear seman-
tic types, like spatial and visual reasoning, we can
manually construct a small lexicon that clusters
language tokens and program constants, and create
a partially abstract representation for utterances
and programs (Table 1) in which the lexical prob-
lem is substantially reduced. This scenario is ubiq-
uitous in many semantic parsing applications such
as calendar, restaurant reservation systems, hous-
ing applications, etc: the formal language has a
compact semantic schema and a well-defined typ-
ing system, and there are canonical ways to ex-
press many program constants.

We show that with abstract representations we
can share information across examples and bet-
ter tackle the search and spuriousness challenges.
By pulling together different examples that share
the same abstract representation, we can identify
programs that obtain high reward across multiple

examples, thus reducing the problem of spurious-
ness. This can also be done at search time, by
augmenting the search state with partial programs
that have been shown to be useful in earlier itera-
tions. Moreover, we can annotate a small number
of abstract utterance-program pairs, and automati-
cally generate training examples, that will be used
to warm-start our model to an initialization point
in which search is able to find correct programs.

We develop a formal language for visual rea-
soning, inspired by Johnson et al. (2017b), and
train a semantic parser over that language from
weak supervision, showing that abstract exam-
ples substantially improve parser accuracy. Our
parser obtains an accuracy of 82.5%, a 14.7% ab-
solute accuracy improvement compared to state-
of-the-art. All our code is publicly avail-
able at https://github.com/udiNaveh/
nlvr_tau_nlp_final_proj.

2 Setup

Problem Statement Given a training set of N
examples {(xi, ki, yi)}Ni=1, where xi is an utter-
ance, ki is a KB describing objects in an image and
yi ∈ {TRUE, FALSE} denotes whether the utter-
ance is true or false in the KB, our goal is to learn
a semantic parser that maps a new utterance x to
a program z such that when z is executed against
the corresponding KB k, it yields the correct de-
notation y (see Fig. 1).

Programming language The original KBs in
CNLVR describe an image as a set of objects,
where each object has a color, shape, size and
location in absolute coordinates. We define a
programming language over the KB that is more
amenable to spatial reasoning, inspired by work on
the CLEVR dataset (Johnson et al., 2017b). This
programming language provides access to func-
tions that allow us to check the size, shape, and
color of an object, to check whether it is touch-
ing a wall, to obtain sets of items that are above
and below a certain set of items, etc.1 More for-
mally, a program is a sequence of tokens describ-
ing a possibly recursive sequence of function ap-
plications in prefix notation. Each token is either a
function with fixed arity (all functions have either
one or two arguments), a constant, a variable or a λ
term used to define Boolean functions. Functions,
constants and variables have one of the following

1We leave the problem of learning the programming lan-
guage functions from the original KB for future work.
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x: “There are exactly 3 yellow squares touching the wall.”
z: Equal(3, Count(Filter(ALL ITEMS, λx. And (And (IsYellow(x), IsSquare(x), IsTouchingWall(x))))))
x̄: “There are C-QuantMod C-Num C-Color C-Shape touching the wall.”
z̄: C-QuantMod(C-Num, Count(Filter(ALL ITEMS, λx. And (And (IsC-Color(x), IsC-Shape(x), IsTouchingWall(x))))))

Table 1: An example for an utterance-program pair (x, z) and its abstract counterpart (x̄, z̄)

x: “There is a small yellow item not touching any wall.”
z: Exist(Filter(ALL ITEMS, λx.And(And(IsYellow(x), IsSmall(x)), Not(IsTouchingWall(x, Side.Any)))))
x: “One tower has a yellow base.”
z: GreaterEqual(1, Count(Filter(ALL ITEMS, λx.And(IsYellow(x), IsBottom(x)))))

Table 2: Examples for utterance-program pairs. Commas and parenthesis provided for readability only.

atomic types: Int, Bool, Item, Size, Shape,
Color, Side (sides of a box in the image); or a
composite type Set(?), and Func(?,?). Valid
programs have a return type Bool. Tables 1 and 2
provide examples for utterances and their correct
programs. The supplementary material provides a
full description of all program tokens, their argu-
ments and return types.

Unlike CLEVR, CNLVR requires substantial
set-theoretic reasoning (utterances refer to various
aspects of sets of items in one of the three boxes in
the image), which required extending the language
described by Johnson et al. (2017b) to include set
operators and lambda abstraction. We manually
sampled 100 training examples from the training
data and estimate that roughly 95% of the utter-
ances in the training data can be expressed with
this programming language.

3 Model

We base our model on the semantic parser of Guu
et al. (2017). In their work, they used an encoder-
decoder architecture (Sutskever et al., 2014) to de-
fine a distribution pθ(z | x). The utterance x is
encoded using a bi-directional LSTM (Hochreiter
and Schmidhuber, 1997) that creates a contextual-
ized representation hi for every utterance token xi,
and the decoder is a feed-forward network com-
bined with an attention mechanism over the en-
coder outputs (Bahdanau et al., 2015). The feed-
forward decoder takes as input the last K tokens
that were decoded.

More formally the probability of a program is
the product of the probability of its tokens given
the history: pθ(z | x) =

∏
t pθ(zt | x, z1:t−1),

and the probability of a decoded token is com-
puted as follows. First, a Bi-LSTM encoder con-
verts the input sequence of utterance embeddings
into a sequence of forward and backward states
h
{F,B}
1 , . . . , h

{F,B}
|x| . The utterance representation

x̂ is x̂ = [hF|x|;h
B
1 ]. Then decoding produces the

program token-by-token:

qt = ReLU(Wq[x̂; v̂; zt−K−1:t−1]),

αt,i ∝ exp(q>t Wαhi) , ct =
∑

i

αt,ihi,

pθ(zt | x, z1:t−1) ∝ exp(φ>ztWs[qt; ct]),

where φz is an embedding for program token z,
v̂ is a bag-of-words vector for the tokens in x,
zi:j = (zi, . . . , zj) is a history vector of size K,
the matrices Wq,Wα,Ws are learned parameters
(along with the LSTM parameters and embedding
matrices), and ’;’ denotes concatenation.

Search: Searching through the large space of
programs is a fundamental challenge in semantic
parsing. To combat this challenge we apply sev-
eral techniques. First, we use beam search at de-
coding time and when training from weak super-
vision (see Sec. 4), similar to prior work (Liang
et al., 2017; Guu et al., 2017). At each decoding
step we maintain a beam B of program prefixes of
length n, expand them exhaustively to programs of
length n+1 and keep the top-|B| program prefixes
with highest model probability.

Second, we utilize the semantic typing sys-
tem to only construct programs that are syntacti-
cally valid, and substantially prune the program
search space (similar to type constraints in Krish-
namurthy et al. (2017); Xiao et al. (2016); Liang
et al. (2017)). We maintain a stack that keeps
track of the expected semantic type at each de-
coding step. The stack is initialized with the type
Bool. Then, at each decoding step, only tokens
that return the semantic type at the top of the stack
are allowed, the stack is popped, and if the de-
coded token is a function, the semantic types of
its arguments are pushed to the stack. This dra-
matically reduces the search space and guarantees
that only syntactically valid programs will be pro-
duced. Fig. 2 illustrates the state of the stack when
decoding a program for an input utterance.
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x :One tower has a yellow base.

z : EqualInt 1 Count Filter ALL ITEMS λx And IsYellow x IsBottom x

s : Int Set Bool Item

Bool Int Int Set BoolFunc BoolFunc Bool Bool Bool Bool Item

Figure 2: An example for the state of the type stack s while decoding a program z for an utterance x.

Given the constrains on valid programs, our
model p′θ(z | x) is defined as:

∏

t

pθ(zt | x, z1:t−1) · 1(zt | z1:t−1)∑
z′ pθ(z

′ | x, z1:t−1) · 1(z′ | z1:t−1)
,

where 1(zt | z1:t−1) indicates whether a certain
program token is valid given the program prefix.

Discriminative re-ranking: The above model
is a locally-normalized model that provides a dis-
tribution for every decoded token, and thus might
suffer from the label bias problem (Andor et al.,
2016; Lafferty et al., 2001). Thus, we add a
globally-normalized re-ranker pψ(z | x) that
scores all |B| programs in the final beam produced
by p′θ(z | x). Our globally-normalized model is:

pgψ(z | x) ∝ exp(sψ(x, z)),

and is normalized over all programs in the beam.
The scoring function sψ(x, z) is a neural net-
work with identical architecture to the locally-
normalized model, except that (a) it feeds the de-
coder with the candidate program z and does not
generate it. (b) the last hidden state is inserted to
a feed-forward network whose output is sψ(x, z).
Our final ranking score is p′θ(z|x)pgψ(z | x).

4 Training

We now describe our basic method for training
from weak supervision, which we extend upon in
Sec. 5 using abstract examples. To use weak su-
pervision, we treat the program z as a latent vari-
able that is approximately marginalized. To de-
scribe the objective, define R(z, k, y) ∈ {0, 1} to
be one if executing program z on KB k results in
denotation y, and zero otherwise. The objective is
then to maximize p(y | x) given by:
∑

z∈Z
p′θ(z | x)p(y | z, k) =

∑

z∈Z
p′θ(z | x)R(z, k, y)

≈
∑

z∈B
p′θ(z | x)R(z, k, y)

where Z is the space of all programs and B ⊂ Z
are the programs found by beam search.

In most semantic parsers there will be relatively
few z that generate the correct denotation y. How-
ever, in CNLVR, y is binary, and so spuriousness
is a central problem. To alleviate it, we utilize a
property of CNLVR: the same utterance appears
4 times with 4 different images.2 If a program is
spurious it is likely that it will yield the wrong de-
notation in one of those 4 images.

Thus, we can re-define each training example
to be (x, {(kj , yj)}4j=1), where each utterance x is
paired with 4 different KBs and the denotations of
the utterance with respect to these KBs. Then, we
maximize p({yj}4j=1 | x, ) by maximizing the ob-
jective above, except that R(z, {kj , yj}4j=1) = 1
iff the denotation of z is correct for all four KBs.
This dramatically reduces the problem of spuri-
ousness, as the chance of randomly obtaining a
correct denotation goes down from 1

2 to 1
16 . This

is reminiscent of Pasupat and Liang (2016), where
random permutations of Wikipedia tables were
shown to crowdsourcing workers to eliminate spu-
rious programs.

We train the discriminative ranker analogously
by maximizing the probability of programs with
correct denotation

∑
z∈B p

g
ψ(z | x)R(z, k, y).

This basic training method fails for CNLVR
(see Sec. 6), due to the difficulties of search and
spuriousness. Thus, we turn to learning from ab-
stract examples, which substantially reduce these
problems.

5 Learning from Abstract Examples

The main premise of this work is that in closed,
well-typed domains such as visual reasoning, the
main challenge is handling language composition-
ality, since questions may have a complex and
nested structure. Conversely, the problem of map-
ping lexical items to functions and constants in
the programming language can be substantially
alleviated by taking advantage of the compact
KB schema and typing system, and utilizing a

2 We used the KBs in CNLVR, for which there are 4 KBs
per utterance. When working over pixels there are 24 images
per utterance, as 6 images were generated from each KB.
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Utterance Program Cluster #
“yellow” IsYellow C-Color 3
“big” IsBig C-Size 3
“square” IsSquare C-Shape 4
“3” 3 C-Num 2
“exactly” EqualInt C-QuantMod 5
“top” Side.Top C-Location 2
“above” GetAbove C-SpaceRel 6

Total: 25

Table 3: Example mappings from utterance tokens to pro-
gram tokens for the seven clusters used in the abstract repre-
sentation. The rightmost column counts the number of map-
ping in each cluster, resulting in a total of 25 mappings.

small lexicon that maps prevalent lexical items
into typed program constants. Thus, if we abstract
away from the actual utterance into a partially ab-
stract representation, we can combat the search
and spuriousness challenges as we can generalize
better across examples in small datasets.

Consider the utterances:
1. “There are exactly 3 yellow squares touching

the wall.”
2. “There are at least 2 blue circles touching the

wall.”
While the surface forms of these utterances are dif-
ferent, at an abstract level they are similar and it
would be useful to leverage this similarity.

We therefore define an abstract representation
for utterances and logical forms that is suitable for
spatial reasoning. We define seven abstract clus-
ters (see Table 3) that correspond to the main se-
mantic types in our domain. Then, we associate
each cluster with a small lexicon that contains
language-program token pairs associated with this
cluster. These mappings represent the canonical
ways in which program constants are expressed in
natural language. Table 3 shows the seven clusters
we use, with an example for an utterance-program
token pair from the cluster, and the number of
mappings in each cluster. In total, 25 mappings
are used to define abstract representations.

As we show next, abstract examples can be
used to improve the process of training semantic
parsers. Specifically, in sections 5.1-5.3, we use
abstract examples in several ways, from generat-
ing new training data to improving search accu-
racy. The combined effect of these approaches is
quite dramatic, as our evaluation demonstrates.

5.1 High Coverage via Abstract Examples

We begin by demonstrating that abstraction leads
to rather effective coverage of the types of ques-
tions asked in a dataset. Namely, that many ques-

tions in the data correspond to a small set of ab-
stract examples. We created abstract representa-
tions for all 3,163 utterances in the training exam-
ples by mapping utterance tokens to their cluster
label, and then counted how many distinct abstract
utterances exist. We found that as few as 200 ab-
stract utterances cover roughly half of the training
examples in the original training set.

The above suggests that knowing how to answer
a small set of abstract questions may already yield
a reasonable baseline. To test this baseline, we
constructured a “rule-based” parser as follows. We
manually annotated 106 abstract utterances with
their corresponding abstract program (including
alignment between abstract tokens in the utterance
and program). For example, Table 1 shows the
abstract utterance and program for the utterance
“There are exactly 3 yellow squares touching the
wall”. Note that the utterance “There are at least
2 blue circles touching the wall” will be mapped
to the same abstract utterance and program.

Given this set of manual annotations, our rule-
based semantic parser operates as follows: Given
an utterance x, create its abstract representation x̄.
If it exactly matches one of the manually anno-
tated utterances, map it to its corresponding ab-
stract program z̄. Replace the abstract program to-
kens with real program tokens based on the align-
ment with the utterance tokens, and obtain a final
program z. If x̄ does not match return TRUE, the
majority label. The rule-based parser will fail for
examples not covered by the manual annotation.
However, it already provides a reasonable baseline
(see Table 4). As shown next, manual annotations
can also be used for generating new training data.

5.2 Data Augmentation

While the rule-based semantic parser has high
precision and gauges the amount of structural
variance in the data, it cannot generalize be-
yond observed examples. However, we can auto-
matically generate non-abstract utterance-program
pairs from the manually annotated abstract pairs
and train a semantic parser with strong supervi-
sion that can potentially generalize better. E.g.,
consider the utterance “There are exactly 3 yellow
squares touching the wall”, whose abstract repre-
sentation is given in Table 1. It is clear that we can
use this abstract pair to generate a program for a
new utterance “There are exactly 3 blue squares
touching the wall”. This program will be identical
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Algorithm 1 Decoding with an Abstract Cache
1: procedure DECODE(x, y, C,D)
2: // C is a map where the key is an abstract utterance

and the value is a pair (Z, R̂) of a list of abstract pro-
grams Z and their average rewards R̂. D is an integer.

3: x̄← Abstract utterance of x
4: A ←D programs in C[x̄] with top reward values
5: B1 ← compute beam of programs of length 1
6: for t = 2 . . . T do // Decode with cache
7: Bt ← construct beam from Bt−1

8: At = truncate(A, t)
9: Bt.add(de-abstract(At))

10: for z ∈ BT do //Update cache
11: Update rewards in C[x̄] using (z̄, R(z, y))

12: return BT ∪ de-abstract(A).

to the program of the first utterance, with IsBlue
replacing IsYellow.

More generally, we can sample any abstract ex-
ample and instantiate the abstract clusters that ap-
pear in it by sampling pairs of utterance-program
tokens for each abstract cluster. Formally, this
is equivalent to a synchronous context-free gram-
mar (Chiang, 2005) that has a rule for generat-
ing each manually-annotated abstract utterance-
program pair, and rules for synchronously gener-
ating utterance and program tokens from the seven
clusters.

We generated 6,158 (x, z) examples using this
method and trained a standard sequence to se-
quence parser by maximizing log p′θ(z|x) in the
model above. Although these are generated from
a small set of 106 abstract utterances, they can be
used to learn a model with higher coverage and ac-
curacy compared to the rule-based parser, as our
evaluation demonstrates.3

The resulting parser can be used as a standalone
semantic parser. However, it can also be used as an
initialization point for the weakly-supervised se-
mantic parser. As we observe in Sec. 6, this results
in further improvement in accuracy.

5.3 Caching Abstract Examples

We now describe a caching mechanism that uses
abstract examples to combat search and spurious-
ness when training from weak supervision. As
shown in Sec. 5.1, many utterances are identical
at the abstract level. Thus, a natural idea is to
keep track at training time of abstract utterance-
program pairs that resulted in a correct denotation,

3Training a parser directly over the 106 abstract examples
results in poor performance due to the small number of ex-
amples.

and use this information to direct the search pro-
cedure.

Concretely, we construct a cache C that maps
abstract utterances to all abstract programs that
were decoded by the model, and tracks the aver-
age reward obtained for those programs. For every
utterance x, after obtaining the final beam of pro-
grams, we add to the cache all abstract utterance-
program pairs (x̄, z̄), and update their average re-
ward (Alg. 1, line 10). To construct an abstract
example (x̄, z̄) from an utterance-program pair
(x, z) in the beam, we perform the following pro-
cedure. First, we create x̄ by replacing utterance
tokens with their cluster label, as in the rule-based
semantic parser. Then, we go over every program
token in z, and replace it with an abstract cluster
if the utterance contains a token that is mapped
to this program token according to the mappings
from Table 3. This also provides an alignment
from abstract program tokens to abstract utterance
tokens that is necessary when utilizing the cache.

We propose two variants for taking advantage
of the cache C. Both are shown in Algorithm 1.
1. Full program retrieval (Alg. 1, line 12): Given
utterance x, construct an abstract utterance x̄, re-
trieve the top D abstract programs A from the
cache, compute the de-abstracted programs Z us-
ing alignments from program tokens to utterance
tokens, and add the D programs to the final beam.
2. Program prefix retrieval (Alg. 1, line 9): Here,
we additionally consider prefixes of abstract pro-
grams to the beam, to further guide the search pro-
cess. At each step t, let Bt be the beam of de-
coded programs at step t. For every abstract pro-
gram z̄ ∈ A add the de-abstracted prefix z1:t to
Bt and expand Bt+1 accordingly. This allows the
parser to potentially construct new programs that
are not in the cache already. This approach com-
bats both spuriousness and the search challenge,
because we add promising program prefixes to the
beam that might have fallen off of it earlier. Fig. 3
visualizes the caching mechanism.

A high-level overview of our entire approach
for utilizing abstract examples at training time
for both data augmentation and model training is
given in Fig. 4.

6 Experimental Evaluation

Model and Training Parameters The Bi-
LSTM state dimension is 30. The decoder has
one hidden layer of dimension 50, that takes the
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Figure 3: A visualization of the caching mechanism. At each decoding step, prefixes of high-reward abstract programs are
added to the beam from the cache.

Figure 4: An overview of our approach for utilizing abstract examples for data augmentation and model training.

last 4 decoded tokens as input as well as encoder
states. Token embeddings are of dimension 12,
beam size is 40 and D = 10 programs are used
in Algorithm 1. Word embeddings are initialized
from CBOW (Mikolov et al., 2013) trained on
the training data, and are then optimized end-to-
end. In the weakly-supervised parser we encour-
age exploration with meritocratic gradient updates
with β = 0.5 (Guu et al., 2017). In the weakly-
supervised parser we warm-start the parameters
with the supervised parser, as mentioned above.
For optimization, Adam is used (Kingma and Ba,
2014)), with learning rate of 0.001, and mini-batch
size of 8.

Pre-processing Because the number of utter-
ances is relatively small for training a neural
model, we take the following steps to reduce spar-
sity. We lowercase all utterance tokens, and also

use their lemmatized form. We also use spelling
correction to replace words that contain typos. Af-
ter pre-processing we replace every word that oc-
curs less than 5 times with an UNK symbol.

Evaluation We evaluate on the public develop-
ment and test sets of CNLVR as well as on the
hidden test set. The standard evaluation metric
is accuracy, i.e., how many examples are cor-
rectly classified. In addition, we report consis-
tency, which is the proportion of utterances for
which the decoded program has the correct deno-
tation for all 4 images/KBs. It captures whether a
model consistently produces a correct answer.

Baselines We compare our models to the MA-
JORITY baseline that picks the majority class
(TRUE in our case). We also compare to the state-
of-the-art model reported by Suhr et al. (2017)
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Dev. Test-P Test-H
Model Acc. Con. Acc. Con. Acc. Con.
MAJORITY 55.3 - 56.2 - 55.4 -
MAXENT 68.0 - 67.7 - 67.8 -
RULE 66.0 29.2 66.3 32.7 - -
SUP. 67.7 36.7 66.9 38.3 - -
SUP.+DISC 77.7 52.4 76.6 51.8 - -
WEAKSUP. 84.3 66.3 81.7 60.1 - -
W.+DISC 85.7 67.4 84.0 65.0 82.5 63.9

Table 4: Results on the development, public test (Test-P) and
hidden test (Test-H) sets. For each model, we report both
accuracy and consistency.

when taking the KB as input, which is a maximum
entropy classifier (MAXENT). For our models, we
evaluate the following variants of our approach:
• RULE: The rule-based parser from Sec. 5.1.
• SUP.: The supervised semantic parser trained

on augmented data as in Sec. 5.2 (5, 598 exam-
ples for training and 560 for validation).
• WEAKSUP.: Our full weakly-supervised se-

mantic parser that uses abstract examples.
• +DISC: We add a discriminative re-ranker

(Sec. 3) for both SUP. and WEAKSUP.

Main results Table 4 describes our main re-
sults. Our weakly-supervised semantic parser with
re-ranking (W.+DISC) obtains 84.0 accuracy and
65.0 consistency on the public test set and 82.5
accuracy and 63.9 on the hidden one, improving
accuracy by 14.7 points compared to state-of-the-
art. The accuracy of the rule-based parser (RULE)
is less than 2 points below MAXENT, showing
that a semantic parsing approach is very suitable
for this task. The supervised parser obtains better
performance (especially in consistency), and with
re-ranking reaches 76.6 accuracy, showing that
generalizing from generated examples is better
than memorizing manually-defined patterns. Our
weakly-supervised parser significantly improves
over SUP., reaching an accuracy of 81.7 before re-
ranking, and 84.0 after re-ranking (on the public
test set). Consistency results show an even crisper
trend of improvement across the models.

6.1 Analysis

We analyze our results by running multiple abla-
tions of our best model W.+DISC on the develop-
ment set.

To examine the overall impact of our pro-
cedure, we trained a weakly-supervised parser
from scratch without pre-training a supervised
parser nor using a cache, which amounts to a
re-implementation of the RANDOMER algorithm
(Guu et al., 2017). We find that the algorithm is

Dev.
Model Acc. Con.
RANDOMER 53.2 7.1
−ABSTRACTION 58.2 17.6
−DATAAUGMENTATION 71.4 41.2
−BEAMCACHE 77.2 56.1
−EVERYSTEPBEAMCACHE 82.3 62.2
ONEEXAMPLEREWARD 58.2 11.2

Table 5: Results of ablations of our main models on the de-
velopment set. Explanation for the nature of the models is in
the body of the paper.

unable to bootstrap in this challenging setup and
obtains very low performance. Next, we exam-
ined the importance of abstract examples, by pre-
training only on examples that were manually an-
notated (utterances that match the 106 abstract pat-
terns), but with no data augmentation or use of a
cache (−ABSTRACTION). This results in perfor-
mance that is similar to the MAJORITY baseline.

To further examine the importance of abstrac-
tion, we decoupled the two contributions, train-
ing once with a cache but without data augmen-
tation for pre-training (−DATAAUGMENTATION),
and again with pre-training over the augmented
data, but without the cache (−BEAMCACHE). We
found that the former improves by a few points
over the MAXENT baseline, and the latter per-
forms comparably to the supervised parser, that is,
we are still unable to improve learning by training
from denotations.

Lastly, we use a beam cache without line 9 in
Alg. 1 (−EVERYSTEPBEAMCACHE). This al-
ready results in good performance, substantially
higher than SUP. but is still 3.4 points worse than
our best performing model on the development set.

Orthogonally, to analyze the importance of ty-
ing the reward of all four examples that share
an utterance, we trained a model without this ty-
ing, where the reward is 1 iff the denotation is
correct (ONEEXAMPLEREWARD). We find that
spuriousness becomes a major issue and weakly-
supervised learning fails.

Error Analysis We sampled 50 consistent and
50 inconsistent programs from the development
set to analyze the weaknesses of our model. By
and large, errors correspond to utterances that are
more complex syntactically and semantically. In
about half of the errors an object was described
by two or more modifying clauses: “there is a box
with a yellow circle and three blue items”; or nest-
ing occurred: “one of the gray boxes has exactly
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three objects one of which is a circle”. In these
cases the model either ignored one of the condi-
tions, resulting in a program equivalent to “there
is a box with three blue items” for the first case,
or applied composition operators wrongly, out-
putting an equivalent to “one of the gray boxes has
exactly three circles” for the second case. How-
ever, in some cases the parser succeeds on such
examples and we found that 12% of the sampled
utterances that were parsed correctly had a similar
complex structure. Other, less frequent reasons for
failure were problems with cardinality interpreta-
tion, i.e. ,“there are 2” parsed as “exactly 2” in-
stead of “at least 2”; applying conditions to items
rather than sets, e.g., “there are 2 boxes with a tri-
angle closely touching a corner” parsed as “there
are 2 triangles closely touching a corner”; and ut-
terances with questionable phrasing, e.g., “there is
a tower that has three the same blocks color”.

Other insights are that the algorithm tended to
give higher probability to the top ranked program
when it is correct (average probability 0.18), com-
pared to cases when it is incorrect (average proba-
bility 0.08), indicating that probabilities are corre-
lated with confidence. In addition, sentence length
is not predictive for whether the model will suc-
ceed: average sentence length of an utterance is
10.9 when the model is correct, and 11.1 when it
errs.

We also note that the model was successful
with sentences that deal with spatial relations, but
struggled with sentences that refer to the size of
shapes. This is due to the data distribution, which
includes many examples of the former case and
fewer examples of the latter.

7 Related Work

Training semantic parsers from denotations has
been one of the most popular training schemes
for scaling semantic parsers since the beginning
of the decade. Early work focused on traditional
log-linear models (Clarke et al., 2010; Liang et al.,
2011; Kwiatkowski et al., 2013), but recently de-
notations have been used to train neural semantic
parsers (Liang et al., 2017; Krishnamurthy et al.,
2017; Rabinovich et al., 2017; Cheng et al., 2017).

Visual reasoning has attracted considerable at-
tention, with datasets such as VQA (Antol et al.,
2015) and CLEVR (Johnson et al., 2017a). The
advantage of CNLVR is that language utterances
are both natural and compositional. Treating vi-

sual reasoning as an end-to-end semantic parsing
problem has been previously done on CLEVR
(Hu et al., 2017; Johnson et al., 2017b).

Our method for generating training data resem-
bles data re-combination ideas in Jia and Liang
(2016), where examples are generated automati-
cally by replacing entities with their categories.

While spuriousness is central to semantic pars-
ing when denotations are not very informative,
there has been relatively little work on explicitly
tackling it. Pasupat and Liang (2015) used man-
ual rules to prune unlikely programs on the WIK-
ITABLEQUESTIONS dataset, and then later uti-
lized crowdsourcing (Pasupat and Liang, 2016) to
eliminate spurious programs. Guu et al. (2017)
proposed RANDOMER, a method for increasing
exploration and handling spuriousness by adding
randomness to beam search and a proposing a
“meritocratic” weighting scheme for gradients. In
our work we found that random exploration during
beam search did not improve results while merito-
cratic updates slightly improved performance.

8 Discussion

In this work we presented the first semantic parser
for the CNLVR dataset, taking structured repre-
sentations as input. Our main insight is that in
closed, well-typed domains we can generate ab-
stract examples that can help combat the diffi-
culties of training a parser from delayed super-
vision. First, we use abstract examples to semi-
automatically generate utterance-program pairs
that help warm-start our parameters, thereby re-
ducing the difficult search challenge of finding
correct programs with random parameters. Sec-
ond, we focus on an abstract representation of ex-
amples, which allows us to tackle spuriousness
and alleviate search, by sharing information about
promising programs between different examples.
Our approach dramatically improves performance
on CNLVR, establishing a new state-of-the-art.

In this paper, we used a manually-built high-
precision lexicon to construct abstract examples.
This is suitable for well-typed domains, which are
ubiquitous in the virtual assistant use case. In fu-
ture work we plan to extend this work and au-
tomatically learn such a lexicon. This can re-
duce manual effort and scale to larger domains
where there is substantial variability on the lan-
guage side.
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Abstract

Counterfactual learning from human ban-
dit feedback describes a scenario where
user feedback on the quality of outputs of
a historic system is logged and used to im-
prove a target system. We show how to ap-
ply this learning framework to neural se-
mantic parsing. From a machine learn-
ing perspective, the key challenge lies in
a proper reweighting of the estimator so
as to avoid known degeneracies in coun-
terfactual learning, while still being appli-
cable to stochastic gradient optimization.
To conduct experiments with human users,
we devise an easy-to-use interface to col-
lect human feedback on semantic parses.
Our work is the first to show that semantic
parsers can be improved significantly by
counterfactual learning from logged hu-
man feedback data.

1 Introduction

In semantic parsing, natural language utterances
are mapped to machine readable parses which are
complex and often tailored specifically to the un-
derlying task. The cost and difficulty of manu-
ally preparing large amounts of such parses thus
is a bottleneck for supervised learning in seman-
tic parsing. Recent work (Liang et al. (2017);
Mou et al. (2017); Peng et al. (2017); inter alia)
has applied reinforcement learning to address the
annotation bottleneck as follows: Given a ques-
tion, the existence of a corresponding gold answer
is assumed. A semantic parser produces multi-
ple parses per question and corresponding answers
are obtained. These answers are then compared
against the gold answer and a positive reward is
recorded if there is an overlap. The parser is then
guided towards correct parses using the REIN-

FORCE algorithm (Williams, 1992) which scales
the gradient for the various parses by their ob-
tained reward (see the left half of Figure 1). How-
ever, learning from question-answer pairs is only
efficient if gold answers are cheap to obtain. For
complex open-domain question-answering tasks,
correct answers are not unique factoids, but open-
ended lists, counts in large ranges, or fuzzily de-
fined objects. For example, geographical queries
against databases such as OpenStreetMap (OSM)
can involve fuzzy operators such as “near” or “in
walking distance” and thus need to allow for fuzzi-
ness in the answers as well. A possible solution
lies in machine learning from even weaker super-
vision signals in form of human bandit feedback1

where the semantic parsing system suggests ex-
actly one parse for which feedback is collected
from a human user. In this setup neither gold parse
nor gold answer are known and feedback is ob-
tained for only one system output per question.

The goal of our paper is to exploit this scenario
of learning from human bandit feedback to train
semantic parsers. This learning scenario perfectly
fits commercial setups such as virtual personal as-
sistants that embed a semantic parser. Commercial
systems can easily log large amounts of interaction
data between users and system. Once sufficient
data has been collected, the log can then be used to
improve the parser. This leads to a counterfactual
learning scenario (Bottou et al., 2013) where we
have to solve the counterfactual problem of how
to improve a target system from logged feedback
that was given to the outputs of a different historic
system (see the right half of Figure 1).

In order to achieve our goal of counterfactual
learning of semantic parsers from human bandit
feedback, the following contributions are required:

1The term “bandit feedback” is inspired by the scenario
of maximizing the reward for a sequence of pulls of arms of
“one-armed bandit” slot machines.
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Figure 1: Left: Online reinforcement learning setup for semantic parsing setup where both questions
and gold answers are available. The parser attempts to find correct machine readable parses (MRPs)
by producing multiple parses, obtaining corresponding answers, and comparing them against the gold
answer. Right: In our setup, a question does not have an associated gold answer. The parser outputs a
single MRP and the corresponding answer is shown to a user who provides some feedback. Such triplets
are collected in a log which can be used for offline training of a semantic parser. This scenario is called
counterfactual since the feedback was logged for outputs from a system different from the target system
to be optimized.

First, we need to construct an easy-to-use user in-
terface that allows to collect feedback based on the
parse rather than the answer. To this aim, we au-
tomatically convert the parse to a set of statements
that can be judged as correct or incorrect by a hu-
man. This approach allows us to assign rewards
at the token level, which in turn enables us to per-
form blame assignment in bandit learning and to
learn from partially correct queries where tokens
are reinforced individually. We show that users
can provide such feedback for one question-parse
pair in 16.4 seconds on average. This exempli-
fies that our approach is more efficient and cheaper
than recruiting experts to annotate parses or asking
workers to compile large answer sets.

Next, we demonstrate experimentally that coun-
terfactual learning can be applied to neural
sequence-to-sequence learning for semantic pars-
ing. A baseline neural semantic parser is trained in
fully supervised fashion, human bandit feedback
from human users is collected in a log and sub-
sequently used to improve the parser. The result-
ing parser significantly outperforms the baseline
model as well as a simple bandit-to-supervised ap-
proach (B2S) where the subset of completely cor-
rect parses is treated as a supervised dataset. Fi-
nally, we repeat our experiments on a larger but
simulated log to show that our gains can scale: the
baseline system is improved by 7.45% in answer
F1 score without ever seeing a gold standard parse.

Lastly, from a machine learning perspective,

we have to solve problems of degenerate behav-
ior in counterfactual learning by lifting the multi-
plicative control variate technique (Swaminathan
and Joachims, 2015b; Lawrence et al., 2017b,a) to
stochastic learning for neural models. This is done
by reweighting target model probabilities over the
logged data under a one-step-late model that de-
couples the normalization from gradient estima-
tion and is thus applicable in stochastic (mini-
batch) gradient optimization.

2 Related Work

Semantic parsers have been successfully trained
using neural sequence-to-sequence models with a
cross-entropy objective and question-parse pairs
(Jia and Liang, 2016; Dong and Lapata, 2016)) or
question-answer pairs (Neelakantan et al., 2017).
Improving semantic parsers using weak feedback
has previously been studied (Goldwasser and Roth
(2013); Artzi and Zettlemoyer (2013); inter alia).
More recently, several works have applied pol-
icy gradient techniques such as REINFORCE
(Williams, 1992) to train neural semantic parsers
(Liang et al. (2017); Mou et al. (2017); Peng et al.
(2017); inter alia). However, they assume the
existence of the true target answers that can be
used to obtain a reward for any number of out-
put queries suggested by the system. It thus dif-
fers from a bandit setup where we assume that a
reward is available for only one structure.

Our work most closely resembles the work of

1821



Iyer et al. (2017) who do make the assumption of
only being able to judge one output. They im-
prove their parser using simulated and real user
feedback. Parses with negative feedback are given
to experts to obtain the correct parse. Corrected
queries and queries with positive feedback are
added to the training corpus and learning contin-
ues with a cross-entropy objective. We show that
this bandit-to-supervision approach can be outper-
formed by offline bandit learning from partially
correct queries. Yih et al. (2016) proposed a user
interface for the Freebase database that enables a
fast and easy creation of parses. However, in their
setup the worker still requires expert knowledge
about the Freebase database, whereas in our ap-
proach feedback can be collected freely and from
any user interacting with the system.

From a machine learning perspective, related
work can be found in the areas of counterfactual
bandit learning (Dudik et al., 2011; Swaminathan
and Joachims, 2015a), or equivalently, off-policy
reinforcement learning (Precup et al., 2000; Jiang
and Li, 2016). Our contribution is to modify the
self-normalizing estimator (Kong, 1992; Precup
et al., 2000; Swaminathan and Joachims, 2015b;
Joachims et al., 2018) to be applicable to neural
networks. Our work is similar to the counterfac-
tual learning setup for machine translation intro-
duced by Lawrence et al. (2017b). Following their
insight, we also assume the logs were created de-
terministically, i.e. the logging policy always out-
puts the most likely sequence. Their framework
was applied to statistical machine translation using
linear models. We show how to generalize their
framework to neural models and how to apply it
to the task of neural semantic parsing in the OSM
domain.

3 Neural Semantic Parsing

Our semantic parsing model is a state-of-the-
art sequence-to-sequence neural network using
an encoder-decoder setup (Cho et al., 2014;
Sutskever et al., 2014) together with an attention
mechanism (Bahdanau et al., 2015). We use the
settings of Sennrich et al. (2017), where an input
sequence x = x1, x2, . . . x|x| (a natural language
question) is encoded by a Recurrent Neural Net-
work (RNN), each input token has an associated
hidden vector hi = [

−→
h i;
←−
h i] where the former is

created by a forward pass over the input, and the
latter by a backward pass.

−→
h i is obtained by recur-

sively computing f(xi,
−→
h i−1) where f is a Gated

Recurrent Unit (GRU) (Chung et al., 2014), and←−
h i is computed analogously. The input sequence
is reduced to a single vector c = g({h1, . . . , h|x|})
which serves as the initialization of the decoder
RNN. g calculates the average over all vectors hi.
At each time step t the decoder state is set by
st = q(st−1, yt−1, ct). q is a conditional GRU
with an attention mechanism and ct is the con-
text vector computed by the attention mechanism.
Given an output vocabulary Vy and the decoder
state st = {s1 , . . . , s|Vy |}, a softmax output layer
defines a probability distribution over Vy and the
probability for a token yj is:

πw(yj = to|y<j , x) =
exp(sto)

∑|Vy |
v=1 exp(stv)

. (1)

The model πw can be seen as parameterized pol-
icy over an action space defined by the target lan-
guage vocabulary. The probability for a full output
sequence y = y1, y2, . . . y|y| is defined by

πw(y|x) =

|y|∏

j=1

πw(yj |y<j , x). (2)

In our case, output sequences are linearized ma-
chine readable parses, called queries in the follow-
ing. Given supervised data Dsup = {(xt, ȳt)}nt=1

of question-query pairs, where ȳt is the true tar-
get query for xt, the neural network can be trained
using SGD and a cross-entropy (CE) objective:

LCE = − 1

n

n∑

t=1

|ȳ|∑

j=1

log πw(ȳj |ȳ<j , x). (3)

4 Counterfactual Learning from
Deterministic Bandit Logs

Counterfactual Learning Objectives. We as-
sume a policy πw that, given an input x ∈ X ,
defines a conditional probability distribution over
possible outputs y ∈ Y(x). Furthermore, we as-
sume that the policy is parameterized by w and
its gradient can be derived. In this work, πw is
defined by the sequence-to-sequence model de-
scribed in Section 3. We also assume that the
model decomposes over individual output tokens,
i.e. that the model produces the output token by
token.
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∇wR̂DPM = 1
n

∑n
t=1 δtπw(yt|xt)∇w log πw(yt|xt).

∇wR̂DPM+R = 1
n

∑n
t=1[δtπ̄w(yt|xt)(∇w log πw(yt|xt)− 1

n

∑n
u=1 π̄w(yu|xu)∇ log πw(yu|xu))].

∇wR̂DPM+OSL = 1
m

∑m
t=1 δtπ̄w,w′(yt|xt)∇w log πw(yt|xt).

∇wR̂DPM+T = 1
n

∑n
t=1

∏|y|
j=1 δjπw(yj |xt)

∑|y|
j=1∇w log πw(yj |xt).

∇wR̂DPM+T+OSL = 1
m

∑m
t=1

∏|y|
j=1 δj π̄w,w′(yt|xt)

∑|y|
j=1∇w log πw(yj |xt).

Table 1: Gradients of counterfactual objectives.

The counterfactual learning problem can be de-
scribed as follows: We are given a data log of
triples Dlog = {(xt, yt, δt)}nt=1 where outputs yt
for inputs xt were generated by a logging system
under policy π0, and loss values δt ∈ [−1, 0]2

were observed for the generated data points. Our
goal is to optimize the expected reward (in our
case: minimize the expected risk) for a target pol-
icy πw given the data log Dlog. In case of deter-
ministic logging, outputs are logged with propen-
sity π0(yt|xt) = 1, t = 1, . . . , n. This results in
a deterministic propensity matching (DPM) objec-
tive (Lawrence et al., 2017b), without the possi-
bility to correct the sampling bias of the logging
policy by inverse propensity scoring (Rosenbaum
and Rubin, 1983):

R̂DPM(πw) =
1

n

n∑

t=1

δtπw(yt|xt). (4)

This objective can show degenerate behavior in
that it overfits to the choices of the logging policy
(Swaminathan and Joachims, 2015b; Lawrence
et al., 2017a). This degenerate behavior can be
avoided by reweighting using a multiplicative con-
trol variate (Kong, 1992; Precup et al., 2000; Jiang
and Li, 2016; Thomas and Brunskill, 2016). The
new objective is called the reweighted determin-
istic propensity matching (DPM+R) objective in
Lawrence et al. (2017b):

R̂DPM+R(πw) =
1

n

n∑

t=1

δtπ̄w(yt|xt) (5)

=
1
n

∑n
t=1 δtπw(yt|xt)

1
n

∑n
t=1 πw(yt|xt)

.

Algorithms for optimizing the discussed objec-
tives can be derived as gradient descent algorithms
where gradients using the score function gradient
estimator (Fu, 2006) are shown in Table 1.

2We use the terms loss and (negative) rewards inter-
changeably, depending on context.

Reweighting in Stochastic Learning. As
shown in Swaminathan and Joachims (2015b)
and Lawrence et al. (2017a), reweighting over
the entire data log Dlog is crucial since it avoids
that high loss outputs in the log take away
probability mass from low loss outputs. This
multiplicative control variate has the additional
effect of reducing the variance of the estimator,
at the cost of introducing a bias of order O( 1

n)
that decreases as n increases (Kong, 1992). The
desirable properties of this control variate cannot
be realized in a stochastic (minibatch) learning
setup since minibatch sizes large enough to retain
the desirable reweighting properties are infeasible
for large neural networks.

We offer a simple solution to this problem that
nonetheless retains all desired properties of the
reweighting. The idea is inspired by one-step-late
algorithms that have been introduced for EM al-
gorithms (Green, 1990). In the EM case, depen-
dencies in objectives are decoupled by evaluating
certain terms under parameter settings from pre-
vious iterations (thus: one-step-late) in order to
achieve closed-form solutions. In our case, we de-
couple the reweighting from the parameterization
of the objective by evaluating the reweighting un-
der parameters w′ from some previous iteration.
This allows us to perform gradient descent updates
and reweighting asynchronously. Updates are per-
formed using minibatches, however, reweighting
is based on the entire log, allowing us to retain the
desirable properties of the control variate.

The new objective, called one-step-late
reweighted DPM objective (DPM+OSL), opti-
mizes πw,w′ with respect to w for a minibatch of
size m, with reweighting over the entire log of
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size n under parameters w′:

R̂DPM+OSL(πw) =
1

m

m∑

t=1

δtπ̄w,w′(yt|xt) (6)

=
1
m

∑m
t=1 δtπw(yt|xt)

1
n

∑n
t=1 πw′(yt|xt)

.

If the renormalization is updated periodically, e.g.
after every validation step, renormalizations under
w or w′ are not much different and will not ham-
per convergence. Despite losing the formal justifi-
cation from the perspective of control variates, we
found empirically that the OSL update schedule
for reweighting is sufficient and does not deterio-
rate performance. The gradient for learning with
OSL updates is given in Table 1.

Token-Level Rewards. For our application of
counterfactual learning to human bandit feedback,
we found another deviation from standard coun-
terfactual learning to be helpful: For humans, it is
hard to assign a graded reward to a query at a se-
quence level because either the query is correct or
it is not. In particular, with a sequence level re-
ward of 0 for incorrect queries, we do not know
which part of the query is wrong and which parts
might be correct. Assigning rewards at token-level
will ease the feedback task and allow the seman-
tic parser to learn from partially correct queries.
Thus, assuming the underlying policy can decom-
pose over tokens, a token level (DPM+T) reward
objective can be defined:

R̂DPM+T(πw) =
1

n

n∑

t=1



|y|∏

j=1

δjπw(yj |xt)


 . (7)

Analogously, we can define an objective that com-
bines the token-level rewards and the minibatched
reweighting (DPM+T+OSL):

R̂DPM+T+OSL(πw) =

1
m

∑m
t=1

(∏|y|
j=1 δjπw(yj |xt)

)

1
n

∑n
t=1 πw′(yt|xt)

.

(8)

Gradients for the DPM+T and DPM+T+OSL ob-
jectives are given in Table 1.

5 Semantic Parsing in the
OpenStreetMap Domain

OpenStreetMap (OSM) is a geographical database
in which volunteers annotate points of interests in

the world. A point of interest consists of one or
more associated GPS points. Further relevant in-
formation may be added at the discretion of the
volunteer in the form of tags. Each tag consists
of a key and an associated value, for example
“tourism : hotel”. The NLMAPS corpus was in-
troduced by Haas and Riezler (2016) as a basis
to create a natural language interface to the OSM
database. It pairs English questions with machine
readable parses, i.e. queries that can be executed
against OSM.

Human Feedback Collection. The task of cre-
ating a natural language interface for OSM
demonstrates typical difficulties that make it ex-
pensive to collect supervised data. The machine
readable language of the queries is based on the
OVERPASS query language which was specifically
designed for the OSM database. It is thus not eas-
ily possible to find experts that could provide cor-
rect queries. It is equally difficult to ask work-
ers at crowdsourcing platforms for the correct an-
swer. For many questions, the answer set is too
large to expect a worker to count or list them all
in a reasonable amount of time and without er-
rors. For example, for the question “How many
hotels are there in Paris?” there are 951 hotels
annotated in the OSM database. Instead we pro-
pose to automatically transform the query into a
block of statements that can easily be judged as
correct or incorrect by a human. The question and
the created block of statements are embedded in a
user interface with a form that can be filled out by
users. Each statement is accompanied by a set of
radio buttons where a user can select either “Yes”
or “No”. For a screenshot of the interface and an
example see Figure 2.

In total there are 8 different types of statements.
The presence of certain tokens in a query trig-
ger different statement types. For example, the
token “area” triggers the statement type “Town”.
The statement is then populated with the corre-
sponding information from the query. In the case
of “area”, the following OSM value is used, e.g.
“Paris”. With this, the meaning of every query
can be captured by a set of human-understandable
statements. For a full overview of all statement
types and their triggers see section B of the sup-
plementary material.

OSM tags and keys are generally understand-
able. For example, the correct OSM tag for “ho-
tels” is “tourism : hotel” and when searching for
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Figure 2: The user interface for collecting feed-
back from humans with an example question and
a correctly filled out form.

websites, the correct question type key would be
“website”. Nevertheless, for each OSM tag or
key, we automatically search for the correspond-
ing Wikipedia page on the OpenStreetMap Wiki3

and extract the description for this tag or key. The
description is made available to the user in form
of a tool-tip that appears when hovering over the
tag or key with the mouse. If a user is unsure if a
OSM tag or key is correct, they can read this de-
scription to help in their decision making. Once
the form is submitted, a script maps each state-
ment back to the corresponding tokens in the orig-
inal query. These tokens then receive negative or
positive feedback based on the feedback the user
provided for that statement.

Corpus Extension. Similar to the extension of
the NLMAPS corpus by Lawrence and Riezler
(2016) who include shortened questions which are
more typically used by humans in search tasks, we
present an automatic extension that allows a larger
coverage of common OSM tags.4 The basis for
the extension is a hand-written, online freely avail-
able list5 that links natural language expressions
such as “cash machine” to appropriate OSM tags,
in this case “amenity : atm”. Using the list, we
generate for each unique expression-tag pair a set
of question-query pairs. These latter pairs contain

3https://wiki.openstreetmap.org/
4The extended dataset, called NLMAPS V2, will be re-

leased upon acceptance of the paper.
5http://wiki.openstreetmap.org/wiki/

Nominatim/Special_Phrases/EN

NLMAPS NLMAPS V2

# question-query pairs 2,380 28,609
tokens 25,906 202,088
types 1,002 8,710
avg. sent. length 10.88 7.06
distinct tags 477 6,582

Table 2: Corpus statistics of the question-
answering corpora NLMAPS and our extension
NLMAPS V2 which additionally contains the
search engine style queries (Lawrence and Riezler,
2016) and the automatic extensions of the most
common OSM tags.

several placeholders which will be filled automat-
ically in a second step.

To fill the area placeholder $LOC, we sample
from a list of 30 cities from France, Germany and
the UK. $POI is the placeholder for a point of in-
terest. We sample it from the list of objects which
are located in the prior sampled city and which
have a name key. The corresponding value be-
longing to the name key will be used to fill this
spot. The placeholder $QTYPE is filled by uni-
formly sampling from the four primary question
types available in the NLMAPS query language.
On the natural language side they corresponded
to “How many”, “Where”, “Is there” and $KEY.
$KEY is a further parameter belonging to the pri-
mary question operator FINDKEY. It can be filled
by any OSM key, such as name, website or height.
To ensure that there will be an answer for the gen-
erated query, we first ran a query with the current
tag (“amenity : atm”) to find all objects fulfilling
this requirement in the area of the already sam-
pled city. From the list of returned objects and the
keys that appear in association with them, we uni-
formly sampled a key. For $DIST we chose be-
tween the pre-defined options for walking distance
and within city distance. The expressions map to
corresponding values which define the size of a ra-
dius in which objects of interest (with tag “amenity
: atm”) will be located. If the walking distance
was selected, we added “in walking distance” to
the question. Otherwise no extra text was added
to the question, assuming the within city distance
to be the default. This sampling process was re-
peated twice.

Table 2 presents the corpus statistics, compar-
ing NLMAPS to our extension. The automatic
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extension, obviating the need for expensive man-
ual work, allows a vast increase of question-query
pairs by an order of magnitude. Consequently the
number of tokens and types increase in a simi-
lar vein. However, the average sentence length
drops. This comes as no surprise due to the na-
ture of the rather simple hand-written list which
contains never more than one tag for an element,
resulting in simpler question structures. However,
the main idea of utilizing this list is to extend the
coverage to previously unknown OSM tags. With
6,582 distinct tags compared to the previous 477,
this was clearly successful. Together with the still
complex sentences from the original corpus, a se-
mantic parser is now able to learn both complex
questions and a large variety of tags. An exper-
iment that empirically validates the usefulness of
the automatically created data can be found in the
supplementary material, section A.

6 Experiments

General Settings. In our experiments we
use the sequence-to-sequence neural network
package NEMATUS (Sennrich et al., 2017).
Following the method used by Haas and
Riezler (2016), we split the queries into in-
dividual tokens by taking a pre-order traversal
of the original tree-like structure. For exam-
ple, “query(west(area(keyval(’name’,’Paris’)),
nwr(keyval(’railway’,’station’))),qtype(count))”
becomes “query@2 west@2 area@1 keyval@2
name@0 Paris@s nwr@1 keyval@2 railway@0
station@s qtype@1 count@0”.

The SGD optimizer used is ADADELTA
(Zeiler, 2012). The model employs 1,024 hidden
units and word embeddings of size 1,000. The
maximum sentence length is 200 and gradients are
clipped if they exceed a value of 1.0. The stop-
ping point is determined by validation on the de-
velopment set and selecting the point at which the
highest evaluation score is obtained. F1 validation
is run after every 100 updates, and each update is
made on the basis of a minibatch of size 80.

The evaluation of all models is based on the an-
swers obtained by executing the most likely query
obtained after a beam search with a beam of size
12. We report the F1 score which is the harmonic
mean of precision and recall. Recall is defined as
the percentage of fully correct answers divided by
the set size. Precision is the percentage of correct
answers out of the set of answers with non-empty

strings. Statistical significance between models
is measured using an approximate randomization
test (Noreen, 1989).

Baseline Parser & Log Creation. Our experi-
ment design assumes a baseline neural semantic
parser that is trained in fully supervised fashion,
and is to be improved by bandit feedback obtained
for system outputs from the baseline system for
given questions. For this purpose, we select 2,000
question-query pairs randomly from the full ex-
tended NLMAPS V2 corpus. We will call this
datasetDsup. Using this dataset, a baseline seman-
tic parser is trained in supervised fashion under a
cross-entropy objective. It obtains an F1 score of
57.45% and serves as the logging policy π0.

Furthermore we randomly split off 1,843 and
2,000 pairs for a development and test set, respec-
tively. This leaves a set of 22,765 question-query
pairs. The questions can be used as input and ban-
dit feedback can be collected for the most likely
output of the semantic parser. We refer to this
dataset as Dlog.

To collect human feedback, we take the first
1,000 questions from Dlog and use π0 to parse
these questions to obtain one output query for
each. 5 question-query pairs are discarded be-
cause the suggested query is invalid. For the re-
maining question-query pairs, the queries are each
transformed into a block of human-understandable
statements and embedded into the user interface
described in Section 5. We recruited 9 users to
provide feedback for these question-query pairs.
The resulting log is referred to as Dhuman. Ev-
ery question-query pair is purposely evaluated
only once to mimic a realistic real-world scenario
where user logs are collected as users use the sys-
tem. In this scenario, it is also not possible to
explicitly obtain several evaluations for the same
question-query pair. Some examples of the re-
ceived feedback can be found in the supplemen-
tary material, section C.

To verify that the feedback collection is effi-
cient, we measured the time each user took from
loading a form to submitting it. To provide feed-
back for one question-query pair, users took 16.4
seconds on average with a standard deviation of
33.2 seconds. The vast majority (728 instances)
are completed in less than 10 seconds.

Learning from Human Bandit Feedback. An
analysis of Dhuman shows that for 531 queries all
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corresponding statements were marked as correct.
We consider a simple baseline that treats com-
pletely correct logged data as a supervised data
set with which training continues using the cross-
entropy objective. We call this baseline bandit-
to-supervised conversion (B2S). Furthermore, we
present experimental results using the logDhuman
for stochastic (minibatch) gradient descent opti-
mization of the counterfactual objectives intro-
duced in equations 4, 6, 7 and 8. For the token-
level feedback, we map the evaluated statements
back to the corresponding tokens in the original
query and assign these tokens a feedback of 0 if
the corresponding statement was marked as wrong
and 1 otherwise. In the case of sequence-level
feedback, the query receives a feedback of 1 if all
statements are marked correct, 0 otherwise. For
the OSL objectives, a separate experiment (see be-
low) showed that updating the reweighting con-
stant after every validation step promises the best
trade-off between performance and speed.

Results, averaged over 3 runs, are reported in
Table 3. The B2S model can slightly improve
upon the baseline but not significantly. DPM im-
proves further, significantly beating the baseline.
Using the multiplicative control variate modified
for SGD by OSL updates does not seem to help
in this setup. By moving to token-level rewards, it
is possible to learn from partially correct queries.
These partially correct queries provide valuable
information that is not present in the subset of
correct answers employed by the previous mod-
els. Optimizing DPM+T leads to a slight improve-
ment and combined with the multiplicative control
variate, DPM+T+OSL yields an improvement of
about 1.0 in F1 score upon the baseline. It beats
both the baseline and the B2S model by a signifi-
cant margin.

Learning from Large-Scale Simulated Feed-
back. We want to investigate whether the results
scale if a larger log is used. Thus, we use π0 to
parse all 22,765 questions from Dlog and obtain
for each an output query. For sequence level re-
wards, we assign feedback of 1 for a query if it is
identical to the true target query, 0 otherwise. We
also simulate token-level rewards by iterating over
the indices of the output and assigning a feedback
of 1 if the same token appears at the current index
for the true target query, 0 otherwise.

An analysis of Dlog shows that 46.27% of the
queries have a sequence level reward of 1 and are

F1 ∆ F1

1 baseline 57.45
2 B2S 57.79±0.18 +0.34
3 DPM1 58.04±0.04 +0.59
4 DPM+OSL 58.01±0.23 +0.56
5 DPM+T1 58.11±0.24 +0.66
6 DPM+T+OSL1,2 58.44±0.09 +0.99

Table 3: Human Feedback: Answer F1 scores on
the test set for the various setups, averaged over 3
runs. Statistical significance of system differences
at p < 0.05 are indicated by experiment number
in superscript.

F1 ∆ F1

1 baseline 57.45
2 B2S1,3 63.22±0.27 +5.77
3 DPM1 61.80±0.16 +4.35
4 DPM+OSL1,3 62.91±0.05 +5.46
5 DPM+T1,2,3,4 63.85±0.2 +6.40
6 DPM+T+OSL1,2,3,4 64.41±0.05 +6.96

Table 4: Simulated Feedback: Answer F1 scores
on the test set for the various setups, averaged over
3 runs. Statistical significance of system differ-
ences at p < 0.05 are indicated by experiment
number in superscript.

thus completely correct. This subset is used to
train a bandit-to-supervised (B2S) model using the
cross-entropy objective.

Experimental results for the various optimiza-
tion setups, averaged over 3 runs, are reported in
Table 4. We see that the B2S model outperforms
the baseline model by a large margin, yielding
an increase in F1 score by 6.24 points. Optimiz-
ing the DPM objective also yields a significant in-
crease over the baseline, but its performance falls
short of the stronger B2S baseline. Optimizing
the DPM+OSL objective leads to a substantial im-
provement in F1 score over optimizing DPM but
still falls slightly short of the strong B2S baseline.
Token-level rewards are again crucial to beat the
B2S baseline significantly. DPM+T is already able
to significantly outperform B2S in this setup and
DPM+T+OSL can improve upon this further.

Analysis. Comparing the baseline and
DPM+T+OSL, we manually examined all
queries in the test set where DPM+T+OSL ob-
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Error Type Human Simulated

OSM Tag 90% 86.75%
Question Type 6% 8.43%
Structure 4% 4.82%

Table 5: Analysis of which type of errors
DPM+T+OSL corrected on the test set compared
to the baseline system for both human and simu-
lated feedback experiments.

tained the correct answer and the baseline system
did not (see Table 5). The analysis showed that
the vast majority of previously wrong queries
were fixed by correcting an OSM tag in the
query. For example, for the question “closest
Florist from Manchester in walking distance” the
baseline system chose the tag “landuse : retail”
in the query, whereas DPM+T+OSL learnt that
the correct tag is “shop : florist”. In some cases,
the question type had to be corrected, e.g. the
baseline’s suggested query returned the location
of a point of interest but DPM+T+OSL correctly
returns the phone number. Finally, in a few cases
DPM+T+OSL corrected the structure for a query,
e.g. by searching for a point of interest in the east
of an area rather than the south.

OSL Update Variation. Using the
DPM+T+OSL objective and the simulated
feedback setup, we vary the frequency of updating
the reweighting constant. Results are reported in
Table 6. Calculating the constant only once at the
beginning leads to a near identical result in F1
score as not using OSL. The more frequent update
strategies, once or four times per epoch, are more
effective. Both strategies reduce variance further
and lead to higher F1 scores. Updating four times
per epoch compared to once per epoch, leads to
a nominally higher performance in F1. It has the
additional benefit that the re-calculation is done
at the same time as the validation, leading to no
additional slow down as executing the queries for
the development set against the database takes
longer than the re-calculation of the constant.
Updating after every minibatch is infeasible as
it slows down training too much. Compared to
the previous setup, iterating over one epoch takes
approximately an additional 5.5 hours.

OSL Update F1 ∆ F1

1 no OSL (DPM+T) 63.85±0.2
2 once 63.82±0.1 -0.03
3 every epoch 64.26±0.04 +0.41
4 every validation /

64.41±0.05 +0.56
4x per epoch

5 every minibatch N/A N/A

Table 6: Simulated Feedback: Answer F1 scores
on the test set for DPM+T and DPM+T+OSL with
varying OSL update strategies, averaged over 3
runs. Updating after every minibatch is infeasible
as it significantly slows down learning. Statistical
significance of system differences at p < 0.05 oc-
cur for experiment 4 over experiment 2.

7 Conclusion

We introduced a scenario for improving a neu-
ral semantic parser from logged bandit feedback.
This scenario is important to avoid complex and
costly data annotation for supervise learning, and
it is realistic in commercial applications where
weak feedback can be collected easily in large
amounts from users. We presented robust counter-
factual learning objectives that allow to perform
stochastic gradient optimization which is crucial
in working with neural networks. Furthermore,
we showed that it is essential to obtain reward sig-
nals at the token-level in order to learn from par-
tially correct queries. We presented experimental
results using feedback collected from humans and
a larger scale setup with simulated feedback. In
both cases we show that a strong baseline using
a bandit-to-supervised conversion can be signifi-
cantly outperformed by a combination of a one-
step-late reweighting and token-level rewards. Fi-
nally, our approach to collecting feedback can also
be transferred to other domains. For example, (Yih
et al., 2016) designed a user interface to help Free-
base experts to efficiently create queries. This in-
terface could be reversed: given a question and a
query produced by a parser, the interface is filled
out automatically and the user has to verify if the
information fits.
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Abstract

We present a semantic parser for Abstract
Meaning Representations which learns to
parse strings into tree representations of the
compositional structure of an AMR graph.
This allows us to use standard neural tech-
niques for supertagging and dependency
tree parsing, constrained by a linguistically
principled type system. We present two
approximative decoding algorithms, which
achieve state-of-the-art accuracy and out-
perform strong baselines.

1 Introduction

Over the past few years, Abstract Meaning Repre-
sentations (AMRs, Banarescu et al. (2013)) have
become a popular target representation for seman-
tic parsing. AMRs are graphs which describe the
predicate-argument structure of a sentence. Be-
cause they are graphs and not trees, they can cap-
ture reentrant semantic relations, such as those in-
duced by control verbs and coordination. How-
ever, it is technically much more challenging to
parse a string into a graph than into a tree. For
instance, grammar-based approaches (Peng et al.,
2015; Artzi et al., 2015) require the induction
of a grammar from the training corpus, which
is hard because graphs can be decomposed into
smaller pieces in far more ways than trees. Neural
sequence-to-sequence models, which do very well
on string-to-tree parsing (Vinyals et al., 2014), can
be applied to AMRs but face the challenge that
graphs cannot easily be represented as sequences
(van Noord and Bos, 2017a,b).

In this paper, we tackle this challenge by making
the compositional structure of the AMR explicit.
As in our previous work, Groschwitz et al. (2017),
we view an AMR as consisting of atomic graphs
representing the meanings of the individual words,

which were combined compositionally using lin-
guistically motivated operations for combining a
head with its arguments and modifiers. We repre-
sent this structure as terms over the AM algebra as
defined in Groschwitz et al. (2017). This previous
work had no parser; here we show that the terms
of the AM algebra can be viewed as dependency
trees over the string, and we train a dependency
parser to map strings into such trees, which we
then evaluate into AMRs in a postprocessing step.
The dependency parser relies on type information,
which encodes the semantic valencies of the atomic
graphs, to guide its decisions.

More specifically, we combine a neural supertag-
ger for identifying the elementary graphs for the
individual words with a neural dependency model
along the lines of Kiperwasser and Goldberg (2016)
for identifying the operations of the algebra. One
key challenge is that the resulting term of the AM
algebra must be semantically well-typed. This
makes the decoding problem NP-complete. We
present two approximation algorithms: one which
takes the unlabeled dependency tree as given, and
one which assumes that all dependencies are pro-
jective. We evaluate on two data sets, achieving
state-of-the-art results on one and near state-of-the-
art results on the other (Smatch f-scores of 71.0
and 70.2 respectively). Our approach clearly out-
performs strong but non-compositional baselines.

Plan of the paper. After reviewing related work
in Section 2, we explain the AM algebra in Sec-
tion 3 and extend it to a dependency view in Sec-
tion 4. We explain model training in Section 5
and decoding in Section 6. Section 7 evaluates a
number of variants of our system.

2 Related Work

Recently, AMR parsing has generated considerable
research activity, due to the availability of large-
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scale annotated data (Banarescu et al., 2013) and
two successful SemEval Challenges (May, 2016;
May and Priyadarshi, 2017).

Methods from dependency parsing have been
shown to be very successful for AMR parsing.
For instance, the JAMR parser (Flanigan et al.,
2014, 2016) distinguishes concept identification
(assigning graph fragments to words) from rela-
tion identification (adding graph edges which con-
nect these fragments), and solves the former with
a supertagging-style method and the latter with a
graph-based dependency parser. Foland and Mar-
tin (2017) use a variant of this method based on an
intricate neural model, yielding state-of-the-art re-
sults. We go beyond these approaches by explicitly
modeling the compositional structure of the AMR,
which allows the dependency parser to combine
AMRs for the words using a small set of universal
operations, guided by the types of these AMRs.

Other recent methods directly implement a de-
pendency parser for AMRs, e.g. the transition-
based model of Damonte et al. (2017), or postpro-
cess the output of a dependency parser by adding
missing edges (Du et al., 2014; Wang et al., 2015).
In contrast to these, our model makes no strong
assumptions on the dependency parsing algorithm
that is used; here we choose that of Kiperwasser
and Goldberg (2016).

The commitment of our parser to derive AMRs
compositionally mirrors that of grammar-based
AMR parsers (Artzi et al., 2015; Peng et al., 2015).
In particular, there are parallels between the types
we use in the AM algebra and CCG categories
(see Section 3 for details). As a neural system,
our parser struggles less with coverage issues than
these, and avoids the complex grammar induction
process these models require.

More generally, our use of semantic types to re-
strict our parser is reminiscent of Kwiatkowski et al.
(2010), Krishnamurthy et al. (2017) and Zhang et al.
(2017), and the idea of deriving semantic represen-
tations from dependency trees is also present in
Reddy et al. (2017).

3 The AM algebra

A core idea of this paper is to parse a string into a
graph by instead parsing a string into a dependency-
style tree representation of the graph’s composi-
tional structure, represented as terms of the Apply-
Modify (AM) algebra (Groschwitz et al., 2017).

The values of the AM algebra are annotated s-
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Figure 1: Elementary as-graphs Gwant, Gwriter,
Gsleep, and Gsound for the words “want”, “writer”,
“sleep”, and “soundly” respectively.

graphs, or as-graphs: directed graphs with node
and edge labels in which certain nodes have been
designated as sources (Courcelle and Engelfriet,
2012) and annotated with type information. Some
examples of as-graphs are shown in Fig. 1. Each
as-graph has exactly one root, indicated by the bold
outline. The sources are indicated by red labels; for
instance, Gwant has an S-source and an O-source.
The annotations, written in square brackets behind
the red source names, will be explained below. We
use these sources to mark open argument slots; for
example, Gsleep in Fig. 1 represents an intransitive
verb, missing its subject, which will be added at
the S-source.

The AM algebra can combine as-graphs with
each other using two linguistically motivated op-
erations: apply and modify. Apply (APP) adds an
argument to a predicate. For example, we can add
a subject – the graph Gwriter in Fig. 1 – to the graph
GVP in Fig. 2d using APPS, yielding the complete
AMR in Fig. 2b. Linguistically, this is like filling
the subject (S) slot of the predicate wants to sleep
soundly with the argument the writer. In general,
for a source a, APPa(GP , GA), combines the as-
graph GP representing a predicate, or head, with
the as-graph GA, which represents an argument.
It does this by plugging the root node of GA into
the a-source u of GP – that is, the node u of GP
marked with source a. The root of the resulting
as-graph G is the root of GP , and we remove the a
marking on u, since that slot is now filled.

The modify operation (MOD) adds a modifier
to a graph. For example, we can combine two ele-
mentary graphs from Fig. 1 with MODm (Gsleep,
Gsound), yielding the graph in Fig. 2c. The M-
source of the modifier Gsoundly attaches to the root
of Gsleep. The root of the result is the same as the
root of Gsleep in the same sense that a verb phrase
with an adverb modifier is still a verb phrase. In
general, MODa(GH , GM ), combines a head GH
with a modifier GM . It plugs the root of GH into
the a-source u of GM . Although this may add in-
coming edges to the root of GH , that node is still
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the root of the resulting graph G. We remove the a
marking from GM .

In both APP and MOD, if there is any other
source b which is present in both graphs, the nodes
marked with b are unified with each other. For ex-
ample, when Gwant is O-applied to t1 in Fig. 2d,
the S-sources of the graphs for “want” and “sleep
soundly” are unified into a single node, creating
a reentrancy. This falls out of the definition of
merge for s-graphs which formally underlies both
operations (see (Courcelle and Engelfriet, 2012)).

Finally, the AM algebra uses types to restrict its
operations. Here we define the type of an as-graph
as the set of its sources with their annotations1; thus
for example, in Fig. 1, the graph for “writer” has
the empty type [ ],Gsleep has type [S], andGwant has
type [S, O[S]]. Each source in an as-graph specifies
with its annotation the type of the as-graph which
is plugged into it via APP. In other words, for a
source a, we may only a-apply GP with GA if
the annotation of the a-source in GP matches the
type of GA. For example, the O-source of Gwants
(Fig. 1) requires that we plug in an as-graph of type
[S]; observe that this means that the reentrancy in
Fig. 2b is lexically specified by the control verb
“want”. All other source nodes in Fig. 1 have no
annotation, indicating a type requirement of [ ].

Linguistically, modification is optional; we there-
fore want the modified graph to be derivationally
just like the unmodified graph, in that exactly the
same operations can apply to it. In a typed algebra,
this means MOD should not change the type of the
head. MODa therefore requires that the modifier
GM have no sources not already present in the head
GH , except a, which will be deleted anyway.

As in any algebra, we can build terms from con-
stants (denoting elementary as-graphs) by recur-
sively combining them with the operations of the
AM algebra. By evaluating the operations bottom-
up, we obtain an as-graph as the value of such
a term; see Fig. 2 for an example. However, as
discussed above, an operation in the term may be
undefined due to a type mismatch. We call an AM-
term well-typed if all its operations are defined. Ev-
ery well-typed AM-term evaluates to an as-graph.
Since the applicability of an AM operation depends
only on the types, we also write τ = f(τ1, τ2) if
as-graphs of type τ1 and τ2 can be combined with
the operation f and the result has type τ .

1See (Groschwitz et al., 2017) for a more formally com-
plete definition.

Relationship to CCG. There is close relation-
ship between the types of the AM algebra and the
categories of CCG. A type [S, O] specifies that the
as-graph needs to be applied to two arguments to
be semantically complete, similar a CCG category
such as S\NP/NP, where a string needs to be ap-
plied to two NP arguments to be syntactically com-
plete. However, AM types govern the combination
of graphs, while CCG categories control the com-
bination of strings. This relieves AM types of the
need to talk about word order; there are no “for-
ward” or “backward” slashes in AM types, and a
smaller set of operations. Also, the AM algebra
spells out raising and control phenomena more ex-
plicitly in the types.

4 Indexed AM terms

In this paper, we connect AM terms to the input
string w for which we want to produce a graph.
We do this in an indexed AM term, exemplified in
Fig. 3a. We assume that every elementary as-graph
G at a leaf represents the meaning of an individual
word token wi in w, and write G[i] to annotate the
leaf G with the index i of this token. This induces
a connection between the nodes of the AMR and
the tokens of the string, in that the label of each
node was contributed by the elementary as-graph
of exactly one token.

We define the head index of a subtree t to be the
index of the token which contributed the root of
the as-graph to which t evaluates. For a leaf with
annotation i, the head index is i; for an APP or
MOD node, the head index is the head index of the
left child, i.e. of the head argument. We annotate
each APP and MOD operation with the head index
of the left and right subtree.

4.1 AM dependency trees

We can represent indexed AM terms more com-
pactly as AM dependency trees, as shown in Fig. 3b.
The nodes of such a dependency tree are the tokens
of w. We draw an edge with label f from i to k
if there is a node with label f [i, k] in the indexed
AM term. For example, the tree in 3b has an edge
labeled MODm from 5 (Gsleep) to 6 (Gsoundly) be-
cause there is a node in the term in 3a labeled
MODm[5, 6]. The same AM dependency tree may
represent multiple indexed AM terms, because the
order of apply and modify operations is not spec-
ified in the dependency tree. However, it can be
shown that all well-typed AM terms that map to
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Figure 2: (a) An AM-term with its value (b), along with the values for its subexpressions (c) t1 =
MODm(Gsleep, Gsound) and (d) t2 = APPo(Gwant, t1).
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Figure 3: (a) An indexed AM term and (b) an AM
dependency tree, linking the term in Fig. 2;a to the
sentence “The writer wants to sleep soundly”.

the same AM dependency tree evaluate to the same
as-graph. We define a well-typed AM dependency
tree as one that represents a well-typed AM term.

Because not all words in the sentence contribute
to the AMR, we include a mechanism for ignoring
words in the input. As a special case, we allow the
constant ⊥, which represents a dummy as-graph
(of type ⊥) which we use as the semantic value
of words without a semantic value in the AMR.
We furthermore allow the edge label IGNORE in an
AM dependency tree, where IGNORE(τ1, τ2) = τ1
if τ2 = ⊥ and is undefined otherwise; in particular,
an AM dependency tree with IGNORE edges is only
well-typed if all IGNORE edges point into ⊥ nodes.
We keep all other operations f(τ1, τ2) as is, i.e. they
are undefined if either τ1 or τ2 is⊥, and never yield
⊥ as a result. When reconstructing an AM term
from the AM dependency tree, we skip IGNORE

edges, such that the subtree below them will not
contribute to the overall AMR.

4.2 Converting AMRs to AM terms

In order to train a model that parses sentences into
AM dependency trees, we need to convert an AMR
corpus – in which sentences are annotated with
AMRs – into a treebank of AM dependency trees.
We do this in three steps: first, we break each AMR
up into elementary graphs and identify their roots;
second, we assign sources and annotations to make
elementary as-graphs out of them; and third, com-
bine them into indexed AM terms.

For the first step, an aligner uses hand-written
heuristics to identify the string token to which each

node in the AMR corresponds (see Section C in the
Supplementary Materials for details). We proceed
in a similar fashion as the JAMR aligner (Flanigan
et al., 2014), i.e. by starting from high-confidence
token-node pairs and then extending them until the
whole AMR is covered. Unlike the JAMR aligner,
our heuristics ensure that exactly one node in each
elementary graph is marked as the root, i.e. as the
node where other graphs can attach their edges
through APP and MOD. When an edge connects
nodes of two different elementary graphs, we use
the “blob decomposition” algorithm of Groschwitz
et al. (2017) to decide to which elementary graph
it belongs. For the example AMR in Fig. 2b, we
would obtain the graphs in Fig. 1 (without source
annotations). Note that ARG edges belong with
the nodes at which they start, whereas the “manner”
edge in Gsoundly goes with its target.

In the second step we assign source names and
annotations to the unlabeled nodes of each elemen-
tary graph. Note that the annotations are crucial
to our system’s ability to generate graphs with
reentrancies. We mostly follow the algorithm of
Groschwitz et al. (2017), which determines neces-
sary annotations based on the structure of the given
graph. The algorithm chooses each source name de-
pending on the incoming edge label. For instance,
the two leaves of Gwant can have the source labels
S and O because they have incoming edges labeled
ARG0 and ARG1. However, the Groschwitz algo-
rithm is not deterministic: It allows object promo-
tion (the sources for an ARG3 edge may be O3, O2,
or O), unaccusative subjects (promoting the mini-
mal object to S if the elementary graph contains an
ARGi-edge (i > 0) but no ARG0-edge (Perlmutter,
1978)), and passive alternation (swapping O and S).
To make our as-graphs more consistent, we prefer
constants that promote objects as far as possible,
use unaccusative subjects, and no passive alterna-
tion, but still allow constants that do not satisfy
these conditions if necessary. This increased our
Smatch score significantly.

Finally, we choose an arbitrary AM dependency
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tree that combines the chosen elementary as-graphs
into the annotated AMR; in practice, the differ-
ences between the trees seem to be negligible.2

5 Training

We can now model the AMR parsing task as the
problem of computing the best well-typed AM de-
pendency tree t for a given sentence w. Because t
is well-typed, it can be decoded into an (indexed)
AM term and thence evaluated to an as-graph.

We describe t in terms of the elementary as-
graphs G[i] it uses for each token i and of its edges
f [i, k]. We assume a node-factored, edge-factored
model for the score ω(t) of t:

ω(t) =
∑

1≤i≤n
ω(G[i]) +

∑

f [i,k]∈E
ω(f [i, k]), (1)

where the edge weight further decomposes into the
sum ω(f [i, k]) = ω(i → k) + ω(f | i → k) of a
score ω(i→ k) for the presence of an edge from i
to k and a score ω(f | i→ k) for this edge having
label f . Our aim is to compute the well-typed t
with the highest score.

We present three models for ω: one for the graph
scores and two for the edge scores. All of these are
based on a two-layer bidirectional LSTM, which
reads inputs x = (x1, . . . , xn) token by token, con-
catenating the hidden states of the forward and
the backward LSTMs in each layer. On the sec-
ond layer, we thus obtain vector representations
vi = BiLSTM(x, i) for the individual input tokens
(see Fig. 4). Our models differ in the inputs x and
the way they predict scores from the vi.

5.1 Supertagging for elementary as-graphs

We construe the prediction of the as-graphs G[i]
for each input position i as a supertagging task
(Lewis et al., 2016). The supertagger reads inputs
xi = (wi, pi, ci), where wi is the word token, pi its
POS tag, and ci is a character-based LSTM encod-
ing of wi. We use pretrained GloVe embeddings
(Pennington et al., 2014) concatenated with learned
embeddings for wi, and learned embeddings for pi.

To predict the score for each elementary as-graph
out of a set of K options, we add a K-dimensional
output layer as follows:

ω(G[i]) = log softmax(W · vi + b)

2Indeed, we conjecture that for a fixed set of constants and
a fixed AMR, there is only one dependency tree.
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Figure 4: Architecture of the neural taggers.

and train the neural network using a cross-entropy
loss function. This maximizes the likelihood of the
elementary as-graphs in the training data.

5.2 Kiperwasser & Goldberg edge model

Predicting the edge scores amounts to a dependency
parsing problem. We chose the dependency parser
of Kiperwasser and Goldberg (2016), henceforth
K&G, to learn them, because of its accuracy and its
fit with our overall architecture. The K&G parser
scores the potential edge from i to k and its label
from the concatenations of vi and vk:

MLPθ(v) = W2 · tanh(W1 · v + b1) + b2
ω(i→ k) = MLPE(vi ◦ vk)

ω(f | i→ k) = MLPLBL(vi ◦ vk)

We use inputs xi = (wi, pi, τi) including the type
τi of the supertag G[i] at position i, using trained
embeddings for all three. At evaluation time, we
use the best scoring supertag according to the
model of Section 5.1. At training time, we sample
from q, where q(τi) = (1− δ) + δ · p(τi|pi, pi−1),
q(τ) = δ · p(τ |pi, pi−1) for any τ 6= τi and δ is
a hyperparameter controlling the bias towards the
aligned supertag. We train the model using K&G’s
original DyNet implementation. Their algorithm
uses a hinge loss function, which maximizes the
score difference between the gold dependency tree
and the best predicted dependency tree, and there-
fore requires parsing each training instance in each
iteration. Because the AM dependency trees are
highly non-projective, we replaced the projective
parser used in the off-the-shelf implementation by
the Chu-Liu-Edmonds algorithm implemented in
the TurboParser (Martins et al., 2010), improving
the LAS on the development set by 30 points.

5.3 Local edge model

We also trained a local edge score model, which
uses a cross-entropy rather than a hinge loss and
therefore avoids the repeated parsing at training
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time. Instead, we follow the intuition that every
node in a dependency tree has at most one incom-
ing edge, and train the model to score the correct
incoming edge as high as possible. This model
takes inputs xi = (wi, pi).

We define the edge and edge label scores as in
Section 5.2, with tanh replaced by ReLU. We fur-
ther add a learned parameter v⊥ for the “LSTM em-
bedding” of a nonexistent node, obtaining scores
ω(⊥ → k) for k having no incoming edge.

To train ω(i → k), we collect all scores for
edges ending at the same node k into a vector
ω(• → k). We then minimize the cross-entropy
loss for the gold edge into k under softmax(ω(• →
k)), maximizing the likelihood of the gold edges.
To train the labels ω(f | i → k), we simply mini-
mize the cross-entropy loss of the actual edge labels
f of the edges which are present in the gold AM
dependency trees.

The PyTorch code for this and the supertag-
ger are available at bitbucket.org/tclup/
amr-dependency.

6 Decoding

Given learned estimates for the graph and edge
scores, we now tackle the challenge of comput-
ing the best well-typed dependency tree t for the
input string w, under the score model (equation
(1)). The requirement that t must be well-typed
is crucial to ensure that it can be evaluated to an
AMR graph, but as we show in the Supplementary
Materials (Section A), makes the decoding prob-
lem NP-complete. Thus, an exact algorithm is not
practical. In this section, we develop two differ-
ent approximation algorithms for AM dependency
parsing: one which assumes the (unlabeled) de-
pendency tree structure as known, and one which
assumes that the AM dependency tree is projective.

6.1 Projective decoder

The projective decoder assumes that the AM de-
pendency tree is projective, i.e. has no crossing
dependency edges. Because of this assumption, it
can recursively combine adjacent substrings using
dynamic programming. The algorithm is shown in
Fig. 5 as a parsing schema (Shieber et al., 1995),
which derives items of the form ([i, k], r, τ) with
scores s. An item represents a well-typed deriva-
tion of the substring from i to k with head index r,
and which evaluates to an as-graph of type τ .

The parsing schema consists of three types of

s = ω(G[i]) G 6= ⊥
([i, i+ 1], i, τ(G)) : s

Init

([i, k], r, τ) : s s′ = ω(⊥[k])
([i, k + 1], r, τ) : s+ s′

Skip-R

([i, k], r, τ) : s s′ = ω(⊥[i− 1])
([i− 1, k], r, τ) : s+ s′

Skip-L

([i, j], r1, τ1) : s1 ([j, k], r2, τ2) : s2
τ = f(τ1, τ2) defined s = ω(f [r1, r2])

Arc-R [f ]
([i, k], r1, τ) : s1 + s2 + s

([i, j], r1, τ1) : s1 ([j, k], r2, τ2) : s2
τ = f(τ2, τ1) defined s = ω(f [r2, r1])

Arc-L [f ]
([i, k], r2, τ) : s1 + s2 + s

Figure 5: Rules for the projective decoder.

rules. First, the Init rule generates an item for each
graph fragment G[i] that the supertagger predicted
for the token wi, along with the score and type
of that graph fragment. Second, given items for
adjacent substrings [i, j] and [j, k], the Arc rules
apply an operation f to combine the indexed AM
terms for the two substrings, with Arc-R making
the left-hand substring the head and the right-hand
substring the argument or modifier, and Arc-L the
other way around. We ensure that the result is
well-typed by requiring that the types can be com-
bined with f . Finally, the Skip rules allow us to
extend a substring such that it covers tokens which
do not correspond to a graph fragment (i.e., their
AM term is ⊥), introducing IGNORE edges. After
all possible items have been derived, we extract
the best well-typed tree from the item of the form
([1, n], r, τ) with the highest score, where τ = [ ].

Because we keep track of the head indices, the
projective decoder is a bilexical parsing algorithm,
and shares a parsing complexity of O(n5) with
other bilexical algorithms such as the Collins parser.
It could be improved to a complexity of O(n4)
using the algorithm of Eisner and Satta (1999).

6.2 Fixed-tree decoder

The fixed-tree decoder computes the best unlabeled
dependency tree tr for w, using the edge scores
ω(i→ k), and then computes the best AM depen-
dency tree forw whose unlabeled version is tr. The
Chu-Liu-Edmonds algorithm produces a forest of
dependency trees, which we want to combine into
tr. We choose the tree whose root r has the highest
score for being the root of the AM dependency tree
and make the roots of all others children of r.

At this point, the shape of tr is fixed. We choose
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s = ω(G[i])
(i, ∅, τ(G)) : s

Init

(i, C1, τ1) : s1 (k, Ch(k), τ2) : s2
k ∈ Ch(i)\C1

τ = f(τ1, τ2) defined s = ω(f [i, k])
Edge[f ]

(i, C1 ∪ {k}, τ) : s1 + s2 + s

Figure 6: Rules for the fixed-tree decoder.

supertags for the nodes and edge labels for the
edges by traversing tr bottom-up, computing types
for the subtrees as we go along. Formally, we apply
the parsing schema in Fig. 6. It uses items of the
form (i, C, τ) : s, where 1 ≤ i ≤ n is a node of
tr, C is the set of children of i for which we have
already chosen edge labels, and τ is a type. We
write Ch(i) for the set of children of i in tr.

The Init rule generates an item for each graph
that the supertagger can assign to each token i in
w, ensuring that every token is also assigned ⊥ as
a possible supertag. The Edge rule labels an edge
from a parent node i in tr to one of its children k,
whose children already have edge labels. As above,
this rule ensures that a well-typed AM dependency
tree is generated by locally checking the types. In
particular, if all types τ2 that can be derived for k
are incompatible with τ1, we fall back to an item
for k with τ2 = ⊥ (which always exists), along
with an IGNORE edge from i to k.

The complexity of this algorithm is O(n · 2d · d),
where d is the maximal arity of the nodes in tr.

7 Evaluation

We evaluate our models on the LDC2015E86 and
LDC2017T103 datasets (henceforth “2015” and
“2017”). Technical details and hyperparameters of
our implementation can be found in Sections B to
D of the Supplementary Materials.

7.1 Training data
The original LDC datasets pair strings with AMRs.
We convert each AMR in the training and devel-
opment set into an AM dependency tree, using
the procedure of Section 4.2. About 10% of the
training instances cannot be split into elementary
as-graphs by our aligner; we removed these from
the training data. Of the remaining AM dependency
trees, 37% are non-projective.

Furthermore, the AM algebra is designed to han-
dle short-range reentrancies, modeling grammati-

3https://catalog.ldc.upenn.edu/
LDC2017T10, identical to LDC2016E25.

cal phenomena such as control and coordination,
as in the derivation in Fig. 2. It cannot easily han-
dle the long-range reentrancies in AMRs which
are caused by coreference, a non-compositional
phenomenon.4 We remove such reentrancies from
our training data (about 60% of the roughly 20,000
reentrant edges). Despite this, our model performs
well on reentrant edges (see Table 2).

7.2 Pre- and postprocessing
We use simple pre- and postprocessing steps to han-
dle rare words and some AMR-specific patterns. In
AMRs, named entities follow a pattern shown in
Fig. 7. Here the named entity is of type “person”,
has a name edge to a “name” node whose children
spell out the tokens of “Agatha Christie”, and a link
to a wiki entry. Before training, we replace each
“name” node, its children, and the corresponding
span in the sentence with a special NAME token,
and we completely remove wiki edges. In this
example, this leaves us with only a “person” and
a NAME node. Further, we replace numbers and
some date patterns with NUMBER and DATE to-
kens. On the training data this is straightforward,
since names and dates are explicitly annotated in
the AMR. At evaluation time, we detect dates and
numbers with regular expressions, and names with
Stanford CoreNLP (Manning et al., 2014). We also
use Stanford CoreNLP for our POS tags.

Each elementary as-graph generated by the pro-
cedure of Section 4.2 has a unique node whose
label corresponds most closely to the aligned word
(e.g. the “want” node in Gwant and the “write” node
in Gwriter). We replace these node labels with LEX
in preprocessing, reducing the number of different
elementary as-graphs from 28730 to 2370. We fac-
tor the supertagger model of Section 5.1 such that
the unlexicalized version of G[i] and the label for
LEX are predicted separately.

At evaluation, we re-lexicalize all LEX nodes in
the predicted AMR. For words that were frequent
in the training data (at least 10 times), we take the
supertagger’s prediction for the label. For rarer
words, we use simple heuristics, explained in the
Supplementary Materials (Section D). For names,
we just look up name nodes with their children and
wiki entries observed for the name string in the
training data, and for unseen names use the literal
tokens as the name, and no wiki entry. Similarly,

4As Damonte et al. (2017) comment: “A valid criticism
of AMR is that these two reentrancies are of a completely
different type, and should not be collapsed together.”
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we collect the type for each encountered name (e.g.
“person” for “Agatha Christie”), and correct it in
the output if the tagger made a different prediction.
We recover dates and numbers straightforwardly.

7.3 Supertagger accuracy
All of our models rely on the supertagger to predict
elementary as-graphs; they differ only in the edge
scores. We evaluated the accuracy of the supertag-
ger on the converted development set (in which
each token has a supertag) of the 2015 data set, and
achieved an accuracy of 73%. The correct supertag
is within the supertagger’s 4 best predictions for
90% of the tokens, and within the 10 best for 95%.

Interestingly, supertags that introduce grammat-
ical reentrancies are predicted quite reliably, al-
though they are relatively rare in the training data.
The elementary as-graph for subject control verbs
(see Gwant in Fig. 1) accounts for only 0.8% of
supertags in the training data, yet 58% of its oc-
currences in the development data are predicted
correctly (84% in 4-best). The supertag for VP co-
ordination (with type [OP1[S], OP2[S]]) makes up
for 0.4% of the training data, but 74% of its oc-
currences are recognized correctly (92% in 4-best).
Thus the prediction of informative types for indi-
vidual words is feasible.

7.4 Comparison to Baselines
Type-unaware fixed-tree baseline. The fixed-tree
decoder is built to ensure well-typedness of the pre-
dicted AM dependency trees. To investigate to
what extent this is required, we consider a baseline
which just adds the individually highest-scoring
supertags and edge labels to the unlabeled depen-
dency tree tu, ignoring types. This leads to AM
dependency trees which are not well-typed for 75%
of the sentences (we fall back to the largest well-
typed subtree in these cases). Thus, an off-the-
shelf dependency parser can reliably predict the
tree structure of the AM dependency tree, but cor-
rect supertag and edge label assignment requires a
decoder which takes the types into account.

JAMR-style baseline. Our elementary as-
graphs differ from the elementary graphs used in
JAMR-style algorithms in that they contain explicit
source nodes, which restrict the way in which they
can be combined with other as-graphs. We investi-
gate the impact of this choice by implementing a
strong JAMR-style baseline. We adapt the AMR-to-
dependency conversion of Section 4.2 by removing
all unlabeled nodes with source names from the

Model 2015 2017
Ours
local edge + projective decoder 70.2±0.3 71.0±0.5
local edge + fixed-tree decoder 69.4±0.6 70.2±0.5
K&G edge + projective decoder 68.6±0.7 69.4±0.4
K&G edge + fixed-tree decoder 69.6±0.4 69.9±0.2
Baselines
fixed-tree (type-unaware) 26.0±0.6 27.9±0.6
JAMR-style 66.1 66.2
Previous work
CAMR (Wang et al., 2015) 66.5 -
JAMR (Flanigan et al., 2016) 67 -
Damonte et al. (2017) 64 -
van Noord and Bos (2017b) 68.5 71.0
Foland and Martin (2017) 70.7 -
Buys and Blunsom (2017) - 61.9

Table 1: 2015 & 2017 test set Smatch scores

elementary graphs. For instance, the graph Gwant
in Fig. 1 now only consists of a single “want” node.
We then aim to directly predict AMR edges be-
tween these graphs, using a variant of the local
edge scoring model of Section 5.3 which learns
scores for each edge in isolation. (The assumption
for the original local model, that each node has
only one incoming edge, does not apply here.)

When parsing a string, we choose the highest-
scoring supertag for each word; there are only 628
different supertags in this setting, and 1-best su-
pertagging accuracy is high at 88%. We then follow
the JAMR parsing algorithm by predicting all edges
whose score is over a threshold (we found -0.02 to
be optimal) and then adding edges until the graph
is connected. Because we do not predict which
node is the root of the AMR, we evaluated this
model as if it always predicted the root correctly,
overestimating its score slightly.

7.5 Results

Table 1 shows the Smatch scores (Cai and Knight,
2013) of our models, compared to a selection of
previously published results. Our results are av-
erages over 4 runs with 95% confidence intervals
(JAMR-style baselines are single runs). On the
2015 dataset, our best models (local + projective,
K&G + fixed-tree) outperform all previous work,
with the exception of the Foland and Martin (2017)
model; on the 2017 set we match state of the art re-
sults (though note that van Noord and Bos (2017b)
use 100k additional sentences of silver data). The
fixed-tree decoder seems to work well with either
edge model, but performance of the projective de-
coder drops with the K&G edge scores. It may be
that, while the hinge loss used in the K&G edge
scoring model is useful to finding the correct un-

1838



2015 2017
Metric W’15 F’16 D’17 PD FTD vN’17 PD FTD
Smatch 67 67 64 70 70 71 71 70
Unlabeled 69 69 69 73 73 74 74 74
No WSD 64 68 65 71 70 72 72 70
Named Ent. 75 79 83 79 78 79 78 77
Wikification 0 75 64 71 72 65 71 71
Negations 18 45 48 52 52 62 57 55
Concepts 80 83 83 83 84 82 84 84
Reentrancies 41 42 41 46 44 52 49 46
SRL 60 60 56 63 61 66 64 62

Table 2: Details for the LDC2015E86 and LDC2017T10 test sets

Agatha_Christiename

person

na
me

wiki

Agatha Christie

op
1 op2

Figure 7: A named entity

labeled dependency tree in the fixed-tree decoder,
scores for bad edges – which are never used when
computing the hinge loss – are not trained accu-
rately. Thus such edges may be erroneously used
by the projective decoder.

As expected, the type-unaware baseline has low
recall, due to its inability to produce well-typed
trees. The fact that our models outperform the
JAMR-style baseline so clearly is an indication
that they indeed gain some of their accuracy from
the type information in the elementary as-graphs,
confirming our hypothesis that an explicit model of
the compositional structure of the AMR can help
the parser learn an accurate model.

Table 2 analyzes the performance of our two
best systems (PD = projective, FTD = fixed-tree)
in more detail, using the categories of Damonte
et al. (2017), and compares them to Wang’s, Flani-
gan’s, and Damonte’s AMR parsers on the 2015
set and , and van Noord and Bos (2017b) for the
2017 dataset. (Foland and Martin (2017) did not
publish such results.) The good scores we achieve
on reentrancy identification, despite removing a
large amount of reentrant edges from the training
data, indicates that our elementary as-graphs suc-
cessfully encode phenomena such as control and
coordination.

The projective decoder is given 4, and the fixed-
tree decoder 6, supertags for each token. We trained
the supertagging and edge scoring models of Sec-
tion 5 separately; joint training did not help. Not
sampling the supertag types τi during training of
the K&G model, removing them from the input,
and removing the character-based LSTM encod-
ings ci from the input of the supertagger, all re-
duced our models’ accuracy.

7.6 Differences between the parsers

Although the Smatch scores for our two best mod-
els are close, they sometimes struggle with different
sentences. The fixed-tree parser is at the mercy of

the fixed tree; the projective parser cannot produce
non-projective AM dependency trees. It is remark-
able that the projective parser does so well, given
the prevalence of non-projective trees in the train-
ing data. Looking at its analyses, we find that it
frequently manages to find a projective tree which
yields an (almost) correct AMR, by choosing su-
pertags with unusual types, and by using modify
rather than apply (or vice versa).

8 Conclusion

We presented an AMR parser which applies meth-
ods from supertagging and dependency parsing to
map a string into a well-typed AM term, which it
then evaluates into an AMR. The AM term repre-
sents the compositional semantic structure of the
AMR explicitly, allowing us to use standard tree-
based parsing techniques.

The projective parser currently computes the
complete parse chart. In future work, we will speed
it up through the use of pruning techniques. We
will also look into more principled methods for
splitting the AMRs into elementary as-graphs to
replace our hand-crafted heuristics. In particular,
advanced methods for alignments, as in Lyu and
Titov (2018), seem promising. Overcoming the
need for heuristics also seems to be a crucial in-
gredient for applying our method to other semantic
representations.
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Abstract

In this paper, we present a sequence-
to-sequence based approach for mapping
natural language sentences to AMR se-
mantic graphs. We transform the se-
quence to graph mapping problem to a
word sequence to transition action se-
quence problem using a special transi-
tion system called a cache transition sys-
tem. To address the sparsity issue of neu-
ral AMR parsing, we feed feature embed-
dings from the transition state to provide
relevant local information for each de-
coder state. We present a monotonic hard
attention model for the transition frame-
work to handle the strictly left-to-right
alignment between each transition state
and the current buffer input focus. We
evaluate our neural transition model on the
AMR parsing task, and our parser out-
performs other sequence-to-sequence ap-
proaches and achieves competitive results
in comparison with the best-performing
models.1

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a semantic formalism
where the meaning of a sentence is encoded as a
rooted, directed graph. Figure 1 shows an example
of an AMR in which the nodes represent the AMR
concepts and the edges represent the relations be-
tween the concepts. AMR has been used in vari-
ous applications such as text summarization (Liu
et al., 2015), sentence compression (Takase et al.,
2016), and event extraction (Huang et al., 2016).

1The implementation of our parser is available at
https://github.com/xiaochang13/CacheTransition-Seq2seq

want-01

person

go-01

ARG0

ARG0

ARG1

name

“John”

name

op1

Figure 1: An example of AMR graph representing
the meaning of: “John wants to go”

The task of AMR graph parsing is to map nat-
ural language strings to AMR semantic graphs.
Different parsers have been developed to tackle
this problem (Flanigan et al., 2014; Wang et al.,
2015b,a; Peng et al., 2015; Artzi et al., 2015;
Pust et al., 2015; van Noord and Bos, 2017). On
the other hand, due to the limited amount of la-
beled data and the large output vocabulary, the
sequence-to-sequence model has not been very
successful on AMR parsing. Peng et al. (2017)
propose a linearization approach that encodes la-
beled graphs as sequences. To address the data
sparsity issue, low-frequency entities and tokens
are mapped to special categories to reduce the vo-
cabulary size for the neural models. Konstas et al.
(2017) use self-training on a huge amount of un-
labeled text to lower the out-of-vocabulary rate.
However, the final performance still falls behind
the best-performing models.

The best performing AMR parsers model graph
structures directly. One approach to modeling
graph structures is to use a transition system to
build graphs step by step, as shown by the system
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of Wang and Xue (2017), which is currently the
top performing system. This raises the question of
whether the advantages of neural and transition-
based system can be combined, as for example
with the syntactic parser of Dyer et al. (2015),
who use stack LSTMs to capture action history in-
formation in the transition state of the transition
system. Ballesteros and Al-Onaizan (2017) ap-
ply stack-LSTM to transition-based AMR parsing
and achieve competitive results, which shows that
local transition state information is important for
predicting transition actions.

Instead of linearizing the target AMR graph to
a sequence structure, Buys and Blunsom (2017)
propose a sequence-to-action-sequence approach
where the reference AMR graph is replaced with
an action derivation sequence by running a deter-
ministic oracle algorithm on the training sentence,
AMR graph pairs. They use a separate alignment
probability to explicitly model the hard alignment
from graph nodes to sentence tokens in the buffer.

Gildea et al. (2018) propose a special transition
framework called a cache transition system to gen-
erate the set of semantic graphs. They adapt the
stack-based parsing system by adding a working
set, which they refer to as a cache, to the tradi-
tional stack and buffer. Peng et al. (2018) apply
the cache transition system to AMR parsing and
design refined action phases, each modeled with a
separate feedforward neural network, to deal with
some practical implementation issues.

In this paper, we propose a sequence-to-action-
sequence approach for AMR parsing with cache
transition systems. We want to take advantage of
the sequence-to-sequence model to encode whole-
sentence context information and the history ac-
tion sequence, while using the transition system
to constrain the possible output. The transition
system can also provide better local context in-
formation than the linearized graph representation,
which is important for neural AMR parsing given
the limited amount of data.

More specifically, we use bi-LSTM to encode
two levels of input information for AMR pars-
ing: word level and concept level, each refined
with more general category information such as
lemmatization, POS tags, and concept categories.

We also want to make better use of the complex
transition system to address the data sparsity is-
sue for neural AMR parsing. We extend the hard
attention model of Aharoni and Goldberg (2017),

which deals with the nearly-monotonic alignment
in the morphological inflection task, to the more
general scenario of transition systems where the
input buffer is processed from left-to-right. When
we process the buffer in this ordered manner,
the sequence of target transition actions are also
strictly aligned left-to-right according to the in-
put order. On the decoder side, we augment the
prediction of output action with embedding fea-
tures from the current transition state. Our exper-
iments show that encoding information from the
transition state significantly improves sequence-
to-sequence models for AMR parsing.

2 Cache Transition Parser

We adopt the transition system of Gildea et al.
(2018), which has been shown to have good cov-
erage of the graphs found in AMR.

A cache transition parser consists of a stack, a
cache, and an input buffer. The stack is a sequence
σ of (integer, concept) pairs, as explained below,
with the topmost element always at the rightmost
position. The buffer is a sequence of ordered con-
cepts β containing a suffix of the input concept se-
quence, with the first element to be read as a newly
introduced concept/vertex of the graph. (We use
the terms concept and vertex interchangeably in
this paper.) Finally, the cache is a sequence of
concepts η = [v1, . . . , vm]. The element at the
leftmost position is called the first element of the
cache, and the element at the rightmost position is
called the last element.

Operationally, the functioning of the parser can
be described in terms of configurations and transi-
tions. A configuration of our parser has the form:

C = (σ, η, β,Gp)

where σ, η and β are as described above, and
Gp is the partial graph that has been built so
far. The initial configuration of the parser is
([], [$, . . . , $], [c1, . . . , cn], ∅), meaning that the
stack and the partial graph are initially empty,
and the cache is filled with m occurrences of the
special symbol $. The buffer is initialized with
all the graph vertices constrained by the order
of the input sentence. The final configuration is
([], [$, . . . , $], [], G), where the stack and the cache
are as in the initial configuration and the buffer is
empty. The constructed graph is the target AMR
graph.
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stack cache buffer edges actions taken
[] [$, $, $] [Per, want-01, go-01] ∅ —
[1, $] [$, $, Per] [want-01, go-01] ∅ Shift; PushIndex(1)
[1, $] [$, $, Per] [want-01, go-01] ∅ Arc(1, -, NULL); Arc(2, -, NULL)
[1, $, 1, $] [$, Per, want-01] [go-01] ∅ Shift; PushIndex(1)
[1, $, 1, $] [$, Per, want-01] [go-01] E1 Arc(1, -, NULL); Arc(2, L, ARG0)
[1, $, 1, $, 1, $] [Per, want-01, go-01] [] E1 Shift; PushIndex(1)
[1, $, 1, $, 1, $] [Per, want-01, go-01] [] E2 Arc(1, L, ARG0); Arc(2, R, ARG1)
[1, $, 1, $] [$, Per, want-01 ] [] E2 Pop
[1, $] [$, $, Per] [] E2 Pop
[] [$, $, $] [] E2 Pop

Figure 2: Example run of the cache transition system constructing the graph for the sentence
“John wants to go” with cache size of 3. The left four columns show the parser configura-
tions after taking the actions shown in the last column. E1 = {(Per,want-01,L-ARG0)}, E2 =
{(Per,want-01,L-ARG0), (Per, go-01,L-ARG0), (want-01, go-01,R-ARG1)}.

In the first step, which is called concept iden-
tification, we map the input sentence w1:n′ =
w1, . . . , wn′ to a sequence of concepts c1:n =
c1, . . . , cn. We decouple the problem of concept
identification from the transition system and ini-
tialize the buffer with a recognized concept se-
quence from another classifier, which we will in-
troduce later. As the sequence-to-sequence model
uses all possible output actions as the target vo-
cabulary, this can significantly reduce the target
vocabulary size. The transitions of the parser are
specified as follows.

1. Pop pops a pair (i, v) from the stack, where
the integer i records the position in the cache
that it originally came from. We place con-
cept v in position i in the cache, shifting the
remainder of the cache one position to the
right, and discarding the last element in the
cache.

2. Shift signals that we will start processing the
next input concept, which will become a new
vertex in the output graph.

3. PushIndex(i) shifts the next input concept out
of the buffer and moves it into the last posi-
tion of the cache. We also take out the con-
cept vi appearing at position i in the cache
and push it onto the stack σ, along with the
integer i recording its original position in the
cache.2

2Our transition design is different from Peng et al. (2018)
in two ways: the PushIndex phase is initiated before making
all the arc decisions; the newly introduced concept is placed
at the last cache position instead of the leftmost buffer posi-
tion, which essentially increases the cache size by 1.

4. Arc(i, d, l) builds an arc with direction d and
label l between the rightmost concept and
the i-th concept in the cache. The label l is
NULL if no arc is made and we use the action
NOARC in this case. Otherwise we decom-
pose the arc decision into two actions ARC
and d-l. We consider all arc decisions be-
tween the rightmost cache concept and each
of the other concepts in the cache. We can
consider this phase as first making a binary
decision whether there is an arc, and then pre-
dicting the label in case there is one, between
each concept pair.

Given the sentence “John wants to go” and the
recognized concept sequence “Per want-01 go-01”
(person name category Per for “John”), our cache
transition parser can construct the AMR graph
shown in Figure 1 using the run shown in Figure 2
with cache size of 3.

2.1 Oracle Extraction Algorithm

We use the following oracle algorithm (Nivre,
2008) to derive the sequence of actions that leads
to the gold AMR graph for a cache transition
parser with cache size m. The correctness of the
oracle is shown by Gildea et al. (2018).

Let EG be the set of edges of the gold graph
G. We maintain the set of vertices that is not yet
shifted into the cache as S, which is initialized
with all vertices in G. The vertices are ordered
according to their aligned position in the word se-
quence and the unaligned vertices are listed ac-
cording to their order in the depth-first traversal
of the graph. The oracle algorithm can look into
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Figure 3: Sequence-to-sequence model with soft
attention, encoding a word sequence and concept
sequence separately by two BiLSTM encoders.

EG to decide which transition to take next, or else
to decide that it should fail. This decision is based
on the mutually exclusive rules listed below.

1. ShiftOrPop phase: the oracle chooses transi-
tion Pop, in case there is no edge (vm, v) in
EG such that vertex v is in S, or chooses tran-
sition Shift and proceeds to the next phase.

2. PushIndex phase: in this phase, the oracle
first chooses a position i (as explained below)
in the cache to place the candidate concept
and removes the vertex at this position and
places its index, vertex pair onto the stack.
The oracle chooses transition PushIndex(i)
and proceeds to the next phase.

3. ArcBinary, ArcLabel phases: between the
rightmost cache concept and each concept in
the cache, we make a binary decision about
whether there is an arc between them. If there
is an arc, the oracle chooses its direction and
label. After arc decisions to m−1 cache con-
cepts are made, we jump to the next step.

4. If the stack and buffer are both empty, and
the cache is in the initial state, the oracle fin-
ishes with success, otherwise we proceed to
the first step.

We use the equation below to choose the cache
concept to take out in the step PushIndex(i). For
j ∈ [|β|], we write βj to denote the j-th vertex in
β. We choose a vertex vi∗ in η such that:

i∗ = argmax
i∈[m]

min {j | (vi, βj) ∈ EG}

Figure 4: Sequence-to-sequence model with
monotonic hard attention. Different colors show
the changes of hard attention focus.

In words, vi∗ is the concept from the cache whose
closest neighbor in the buffer β is furthest forward
in β. We move out of the cache vertex vi∗ and push
it onto the stack, for later processing.

For each training example (x1:n, g), the tran-
sition system generates the output AMR graph g
from the input sequence x1:n through an oracle se-
quence a1:q ∈ Σ∗

a, where Σa is the union of all
possible actions. We model the probability of the
output with the action sequence:

P (a1:q|x1:n) =

q∏

t=1

P (at|a1, . . . , at−1, x1:n; θ)

which we estimate using a sequence-to-sequence
model, as we will describe in the next section.

3 Soft vs Hard Attention for
Sequence-to-action-sequence

Shown in Figure 3, our sequence-to-sequence
model takes a word sequence w1:n′ and its mapped
concept sequence c1:n as the input, and the action
sequence a1:q as the output. It uses two BiLSTM
encoders, each encoding an input sequence. As
the two encoders have the same structure, we only
introduce the encoder for the word sequence in de-
tail below.

3.1 BiLSTM Encoder

Given an input word sequence w1:n′ , we use a bidi-
rectional LSTM to encode it. At each step j, the
current hidden states

←−
h w

j and
−→
h w

j are generated

from the previous hidden states
←−
h w

j+1 and
−→
h w

j−1,
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and the representation vector xj of the current in-
put word wj :

←−
h wj = LSTM(

←−
h wj+1, xj)

−→
h wj = LSTM(

−→
h wj−1, xj)

The representation vector xj is the concatenation
of the embeddings of its word, lemma, and POS
tag, respectively. Then the hidden states of both
directions are concatenated as the final hidden
state for word wj :

hwj = [
←−
h wj ;
−→
h wj ]

Similarly, for the concept sequence, the final
hidden state for concept cj is:

hcj = [
←−
h cj ;
−→
h cj ]

3.2 LSTM Decoder with Soft Attention
We use an attention-based LSTM decoder (Bah-
danau et al., 2014) with two attention memories
Hw and Hc, where Hw is the concatenation of the
state vectors of all input words, and Hc for input
concepts correspondingly:

Hw = [hw1 ;hw2 ; . . . ;hwn′ ] (1)

Hc = [hc1;hc2; . . . ;hcn] (2)

The decoder yields an action sequence
a1, a2, . . . , aq as the output by calculating a se-
quence of hidden states s1, s2 . . . , sq recurrently.
While generating the t-th output action, the
decoder considers three factors: (1) the previous
hidden state of the LSTM model st−1; (2) the
embedding of the previous generated action et−1;
and (3) the previous context vectors for words
µwt−1 and concepts µct−1, which are calculated
using Hw and Hc, respectively. When t = 1, we
initialize µ0 as a zero vector, and set e0 to the
embedding of the start token “〈s〉”. The hidden
state s0 is initialized as:

s0 = Wd[
←−
h w1 ;
−→
h wn ;
←−
h c1;
−→
h cn] + bd,

where Wd and bd are model parameters.
For each time-step t, the decoder feeds the con-

catenation of the embedding of previous action
et−1 and the previous context vectors for words
µwt−1 and concepts µct−1 into the LSTM model to
update its hidden state.

st = LSTM(st−1, [et−1;µwt−1;µct−1]) (3)

Then the attention probabilities for the word se-
quence and the concept sequence are calculated
similarly. Take the word sequence as an example,
αwt,i on hwi ∈ Hw for time-step t is calculated as:

εt,i = vTc tanh(Whh
w
i +Wsst + bc)

αwt,i =
exp(εt,i)∑N
j=1 exp(εt,j)

Wh,Ws, vc and bc are model parameters. The new
context vector µwt =

∑n
i=1 α

w
t,ih

w
i . The calcula-

tion of µct follows the same procedure, but with a
different set of model parameters.

The output probability distribution over all ac-
tions at the current state is calculated by:

PΣa = softmax(Va[st;µ
w
t ;µct ] + ba), (4)

where Va and ba are learnable parameters, and the
number of rows in Va represents the number of all
actions. The symbol Σa is the set of all actions.

3.3 Monotonic Hard Attention for Transition
Systems

When we process each buffer input, the next few
transition actions are closely related to this input
position. The buffer maintains the order informa-
tion of the input sequence and is processed strictly
left-to-right, which essentially encodes a mono-
tone alignment between the transition action se-
quence and the input sequence.

As we have generated a concept sequence from
the input word sequence, we maintain two hard
attention pointers, lw and lc, to model monotonic
attention to word and concept sequences respec-
tively. The update to the decoder state now relies
on a single position of each input sequence in con-
trast to Equation 3:

st = LSTM(st−1, [et−1;hwlw ;hclc ]) (5)

Control Mechanism. Both pointers are initial-
ized as 0 and advanced to the next position deter-
ministically. We move the concept attention focus
lc to the next position after arc decisions to all the
other m − 1 cache concepts are made. We move
the word attention focus lw to its aligned position
in case the new concept is aligned, otherwise we
don’t move the word focus. As shown in Figure 4,
after we have made arc decisions from concept
want-01 to the other cache concepts, we move the
concept focus to the next concept go-01. As this
concept is aligned, we move the word focus to its
aligned position go in the word sequence and skip
the unaligned word to.
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3.4 Transition State Features for Decoder
Another difference of our model with Buys and
Blunsom (2017) is that we extract features from
the current transition state configuration Ct:

ef (Ct) = [ef1(Ct); ef2(Ct); · · · ; efl(Ct)]

where l is the number of features extracted from
Ct and efk(Ct) (k = 1, . . . , l) represents the em-
bedding for the k-th feature, which is learned dur-
ing training. These feature embeddings are con-
catenated as ef (Ct), and fed as additional input to
the decoder. For the soft attention decoder:

st = LSTM(st−1, [et−1;µwt−1;µct−1; ef (Ct)])

and for the hard attention decoder:

st = LSTM(st−1, [et−1;hwlw ;hclc ; ef (Ct)])

We use the following features in our experiments:

1. Phase type: indicator features showing which
phase the next transition is.

2. ShiftOrPop features: token features3 for the
rightmost cache concept and the leftmost
buffer concept. Number of dependencies to
words on the right, and the top three depen-
dency labels for them.

3. ArcBinary or ArcLabel features: token fea-
tures for the rightmost concept and the cur-
rent cache concept it makes arc decisions to.
Word, concept and dependency distance be-
tween the two concepts. The labels for the
two most recent outgoing arcs for these two
concepts and their first incoming arc and the
number of incoming arcs. Dependency label
between the two positions if there is a depen-
dency arc between them.

4. PushIndex features: token features for the
leftmost buffer concept and all the concepts
in the cache.

The phase type features are deterministic from the
last action output. For example, if the last action
output is Shift, the current phase type would be
PushIndex. We only extract corresponding fea-
tures for this phase and fill all the other feature
types with -NULL- as placeholders. The features
for other phases are similar.

3Concept, concept category at the specified position in
concept sequence. And the word, lemma, POS tag at the
aligned input position.

4 AMR Parsing

4.1 Training and Decoding
We train our models using the cross-entropy loss,
over each oracle action sequence a∗1, . . . , a

∗
q :

L = −
q∑

t=1

logP (a∗t |a∗1, . . . , a∗t−1, X; θ), (6)

where X represents the input word and concept
sequences, and θ is the model parameters. Adam
(Kingma and Ba, 2014) with a learning rate of
0.001 is used as the optimizer, and the model that
yields the best performance on the dev set is se-
lected to evaluate on the test set. Dropout with
rate 0.3 is used during training. Beam search with
a beam size of 10 is used for decoding. Both train-
ing and decoding use a Tesla K20X GPU.

Hidden state sizes for both encoder and decoder
are set to 100. The word embeddings are ini-
tialized from Glove pretrained word embeddings
(Pennington et al., 2014) on Common Crawl, and
are not updated during training. The embeddings
for POS tags and features are randomly initialized,
with the sizes of 20 and 50, respectively.

4.2 Preprocessing and Postprocessing
As the AMR data is very sparse, we collapse
some subgraphs or spans into categories based
on the alignment. We define some special cate-
gories such as named entities (NE), dates (DATE),
single rooted subgraphs involving multiple con-
cepts (MULT)4, numbers (NUMBER) and phrases
(PHRASE). The phrases are extracted based on
the multiple-to-one alignment in the training data.
One example phrase is more than which aligns to a
single concept more-than. We first collapse spans
and subgraphs into these categories based on the
alignment from the JAMR aligner (Flanigan et al.,
2014), which greedily aligns a span of words to
AMR subgraphs using a set of heuristics. This cat-
egorization procedure enables the parser to capture
mappings from continuous spans on the sentence
side to connected subgraphs on the AMR side.

We use the semi-Markov model from Flanigan
et al. (2016) as the concept identifier, which jointly
segments the sentence into a sequence of spans
and maps each span to a subgraph. During decod-
ing, our output has categories, and we need to map

4For example, verbalization of “teacher” as “(person
:ARG0-of teach-01)”, or “minister” as “(person :ARG0-of
(have-org-role-91 :ARG2 minister))”.
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ShiftOrPop PushIndex ArcBinary ArcLabel
Peng et al. (2018) 0.87 0.87 0.83 0.81
Soft+feats 0.93 0.84 0.91 0.75
Hard+feats 0.94 0.85 0.93 0.77

Table 1: Performance breakdown of each transi-
tion phase.

each category to the corresponding AMR concept
or subgraph. We save a table Q which shows the
original subgraph each category is collapsed from,
and map each category to its original subgraph
representation. We also use heuristic rules to gen-
erate the target-side AMR subgraph representation
for NE, DATE, and NUMBER based on the source
side tokens.

5 Experiments

We evaluate our system on the released dataset
(LDC2015E86) for SemEval 2016 task 8 on mean-
ing representation parsing (May, 2016). The
dataset contains 16,833 training, 1,368 develop-
ment, and 1,371 test sentences which mainly cover
domains like newswire, discussion forum, etc. All
parsing results are measured by Smatch (version
2.0.2) (Cai and Knight, 2013).

5.1 Experiment Settings

We categorize the training data using the auto-
matic alignment and dump a template for date en-
tities and frequent phrases from the multiple to one
alignment. We also generate an alignment table
from tokens or phrases to their candidate target-
side subgraphs. For the dev and test data, we first
extract the named entities using the Illinois Named
Entity Tagger (Ratinov and Roth, 2009) and ex-
tract date entities by matching spans with the date
template. We further categorize the dataset with
the categories we have defined. After categoriza-
tion, we use Stanford CoreNLP (Manning et al.,
2014) to get the POS tags and dependencies of the
categorized dataset. We run the oracle algorithm
separately for training and dev data (with align-
ment) to get the statistics of individual phases. We
use a cache size of 5 in our experiments.

5.2 Results

Individual Phase Accuracy We first evaluate
the prediction accuracy of individual phases on the
dev oracle data assuming gold prediction history.
The four transition phases ShiftOrPop, PushIndex,
ArcBinary, and ArcLabel account for 25%, 12.5%,

50.1%, and 12.4% of the total transition actions
respectively. Table 1 shows the phase-wise ac-
curacy of our sequence-to-sequence model. Peng
et al. (2018) use a separate feedforward network
to predict each phase independently. We use the
same alignment from the SemEval dataset as in
Peng et al. (2018) to avoid differences resulting
from the aligner. Soft+feats shows the perfor-
mance of our sequence-to-sequence model with
soft attention and transition state features, while
Hard+feats is using hard attention. We can see
that the hard attention model outperforms the soft
attention model in all phases, which shows that
the single-pointer attention finds more relevant in-
formation than the soft attention on the relatively
small dataset. The sequence-to-sequence mod-
els perform better than the feedforward model of
Peng et al. (2018) on ShiftOrPop and ArcBinary,
which shows that the whole-sentence context in-
formation is important for the prediction of these
two phases. On the other hand, the sequence-to-
sequence models perform worse than the feedfor-
ward models on PushIndex and ArcLabel. One
possible reason is that the model tries to optimize
the overall accuracy, while these two phases ac-
count for fewer than 25% of the total transition
actions and might be less attended to during the
update.

Impact of Different Components Table 2
shows the impact of different components for the
sequence-to-sequence model. We can see that the
transition state features play a very important role
for predicting the correct transition action. This
is because different transition phases have very
different prediction behaviors and need different
types of local information for the prediction. Rely-
ing on the sequence-to-sequence model alone does
not perform well in disambiguating these choices,
while the transition state can enforce direct con-
straints. We can also see that while the hard at-
tention only attends to one position of the input,
it performs slightly better than the soft attention
model, while the time complexity is lower.

Impact of Different Cache Sizes The cache
size of the transition system can be optimized as
a trade-off between coverage of AMR graphs and
the prediction accuracy. While larger cache size
increases the coverage of AMR graphs, it com-
plicates the prediction procedure with more cache
decisions to make. From Table 3 we can see that
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System P R F
Soft 0.55 0.51 0.53
Soft+feats 0.69 0.63 0.66
Hard+feats 0.70 0.64 0.67

Table 2: Impact of various components for the
sequence-to-sequence model (dev).

Cache Size P R F
4 0.69 0.63 0.66
5 0.70 0.64 0.67
6 0.69 0.64 0.66

Table 3: Impact of cache size for the sequence-
to-sequence model, hard attention (dev).

the hard attention model performs best with cache
size 5. The soft attention model also achieves best
performance with the same cache size.

Comparison with other Parsers Table 4 shows
the comparison with other AMR parsers. The first
three systems are some competitive neural models.
We can see that our parser significantly outper-
forms the sequence-to-action-sequence model of
Buys and Blunsom (2017). Konstas et al. (2017)
use a linearization approach that linearizes the
AMR graph to a sequence structure and use self-
training on 20M unlabeled Gigaword sentences.
Our model achieves better results without using
additional unlabeled data, which shows that rele-
vant information from the transition system is very
useful for the prediction. Our model also outper-
forms the stack-LSTM model by Ballesteros and
Al-Onaizan (2017), while their model is evaluated
on the previous release of LDC2014T12.

System P R F
Buys and Blunsom (2017) – – 0.60
Konstas et al. (2017) 0.60 0.65 0.62
Ballesteros and Al-Onaizan (2017)* – – 0.64
Damonte et al. (2017) – – 0.64
Peng et al. (2018) 0.69 0.59 0.64
Wang et al. (2015b) 0.64 0.62 0.63
Wang et al. (2015a) 0.70 0.63 0.66
Flanigan et al. (2016) 0.70 0.65 0.67
Wang and Xue (2017) 0.72 0.65 0.68
Ours soft attention 0.68 0.63 0.65
Ours hard attention 0.69 0.64 0.66

Table 4: Comparison to other AMR parsers.
*Model has been trained on the previous release
of the corpus (LDC2014T12).

System P R F
Peng et al. (2018) 0.44 0.28 0.34
Damonte et al. (2017) – – 0.41
JAMR 0.47 0.38 0.42
Ours 0.58 0.34 0.43

Table 5: Reentrancy statistics.

We also show the performance of some of the
best-performing models. While our hard attention
achieves slightly lower performance in compari-
son with Wang et al. (2015a) and Wang and Xue
(2017), it is worth noting that their approaches
of using WordNet, semantic role labels and word
cluster features are complimentary to ours. The
alignment from the aligner and the concept iden-
tification identifier also play an important role for
improving the performance. Wang and Xue (2017)
propose to improve AMR parsing by improving
the alignment and concept identification, which
can also be combined with our system to im-
prove the performance of a sequence-to-sequence
model.

Dealing with Reentrancy Reentrancy is an im-
portant characteristic of AMR, and we evaluate
the Smatch score only on the reentrant edges fol-
lowing Damonte et al. (2017). From Table 5 we
can see that our hard attention model significantly
outperforms the feedforward model of Peng et al.
(2018) in predicting reentrancies. This is because
predicting reentrancy is directly related to the Ar-
cBinary phase of the cache transition system since
it decides to make multiple arc decisions to the
same vertex, and we can see from Table 1 that
the hard attention model has significantly better
prediction accuracy in this phase. We also com-
pare the reentrancy results of our transition system
with two other systems, Damonte et al. (2017) and
JAMR, where these statistics are available. From
Table 5, we can see that our cache transition sys-
tem slightly outperforms these two systems in pre-
dicting reentrancies.

Figure 5 shows a reentrancy example where
JAMR and the feedforward network of Peng et al.
(2018) do not predict well, while our system pre-
dicts the correct output. JAMR fails to predict the
reentrancy arc from desire-01 to i, and connects
the wrong arc from “live-01” to “-” instead of from
“desire-01”. The feedforward model of Peng et al.
(2018) fails to predict the two arcs from desire-01
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i - desire-01 live-01 any city

ARG0
ARG0

polarity ARG1

location

$ $ i - desire-01

polarity

ARG0

$ i - desire-01 live-01

ARG1

ARG0

Our hard attention output:

Sentence: I have no desire to live in any city . 

Cache arc decisions
creating the reentrancy

(cache size of 5):

JAMR output:

Peng et al. (2018) output:

mod

i - desire-01 live-01 any city

polarity ARG1

location
mod

i - desire-01 live-01 any city

ARG0
polarity

ARG1

location
mod

Figure 5: An example showing how our system predicts the correct reentrancy.

and live-01 to i. This error is because their feed-
forward ArcBinary classifier does not model long-
term dependency and usually prefers making arcs
between words that are close and not if they are
distant. Our classifier, which encodes both word
and concept sequence information, can accurately
predict the reentrancy through the two arc deci-
sions shown in Figure 5. When desire-01 and live-
01 are shifted into the cache respectively, the tran-
sition system makes a left-going arc from each of
them to the same concept i, thus creating the reen-
trancy as desired.

6 Conclusion

In this paper, we have presented a sequence-to-
action-sequence approach for cache transition sys-
tems and applied it to AMR parsing. To address
the data sparsity issue for neural AMR parsing,
we show that the transition state features are very
helpful in constraining the possible output and im-
proving the performance of sequence-to-sequence
models. We also show that the monotonic hard at-
tention model can be generalized to the transition-
based framework and outperforms the soft atten-
tion model when limited data is available. While

we are focused on AMR parsing in this paper,
in future work our cache transition system and
the presented sequence-to-sequence models can be
potentially applied to other semantic graph parsing
tasks (Oepen et al., 2015; Du et al., 2015; Zhang
et al., 2016; Cao et al., 2017).
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Abstract

Stochastic Gradient Descent (SGD) with
negative sampling is the most prevalent
approach to learn word representations.
However, it is known that sampling meth-
ods are biased especially when the sam-
pling distribution deviates from the true
data distribution. Besides, SGD suffers
from dramatic fluctuation due to the one-
sample learning scheme. In this work, we
propose AllVec that uses batch gradient
learning to generate word representations
from all training samples. Remarkably,
the time complexity of AllVec remains at
the same level as SGD, being determined
by the number of positive samples rather
than all samples. We evaluate AllVec
on several benchmark tasks. Experiments
show that AllVec outperforms sampling-
based SGD methods with comparable ef-
ficiency, especially for small training cor-
pora.

1 Introduction

Representing words using dense and real-valued
vectors, aka word embeddings, has become the
cornerstone for many natural language processing
(NLP) tasks, such as document classification (Se-
bastiani, 2002), parsing (Huang et al., 2012), dis-
course relation recognition (Lei et al., 2017) and
named entity recognition (Turian et al., 2010).
Word embeddings can be learned by optimizing
that words occurring in similar contexts have sim-
ilar embeddings, i.e. the well-known distribu-
tional hypothesis (Harris, 1954). A representa-
tive method is skip-gram (SG) (Mikolov et al.,
2013a,b), which realizes the hypothesis using a

∗The first two authors contributed equally to this paper
and share the first-authorship.

(a) (b)
Figure 1: Impact of different settings of negative sampling on
skip-gram for the word analogy task on Text8. Clearly, the
accuracy depends largely on (a) the sampling size of negative
words, and (b) the sampling distribution (β = 0 means the
uniform distribution and β = 1 means the word frequency
distribution).

shallow neural network model. The other family
of methods is count-based, such as GloVe (Pen-
nington et al., 2014) and LexVec (Salle et al.,
2016a,b), which exploit low-rank models such as
matrix factorization (MF) to learn embeddings by
reconstructing the word co-occurrence statistics.

By far, most state-of-the-art embedding meth-
ods rely on SGD and negative sampling for opti-
mization. However, the performance of SGD is
highly sensitive to the sampling distribution and
the number of negative samples (Chen et al., 2018;
Yuan et al., 2016), as shown in Figure 1. Es-
sentially, sampling is biased, making it difficult
to converge to the same loss with all examples,
regardless of how many update steps have been
taken. Moreover, SGD exhibits dramatic fluc-
tuation and suffers from overshooting on local
minimums (Ruder, 2016). These drawbacks of
SGD can be attributed to its one-sample learning
scheme, which updates parameters based on one
training sample in each step.

To address the above-mentioned limitations of
SGD, a natural solution is to perform exact (full)
batch learning. In contrast to SGD, batch learning
does not involve any sampling procedure and com-
putes the gradient over all training samples. As
such, it can easily converge to a better optimum
in a more stable way. Nevertheless, a well-known
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difficulty in applying full batch learning lies in the
expensive computational cost for large-scale data.
Taking the word embedding learning as an exam-
ple, if the vocabulary size is |V |, then evaluating
the loss function and computing the full gradient
takes O(|V |2k) time, where k is the embedding
size. This high complexity is unaffordable in prac-
tice, since |V |2 can easily reach billion level or
even higher.

In this paper, we introduce AllVec, an exact and
efficient word embedding method based on full
batch learning. To address the efficiency challenge
in learning from all training samples, we devise
a regression-based loss function for word embed-
ding, which allows fast optimization with memo-
rization strategies. Specifically, the acceleration is
achieved by reformulating the expensive loss over
all negative samples using a partition and a decou-
ple operation. By decoupling and caching the bot-
tleneck terms, we succeed to use all samples for
each parameter update in a manageable time com-
plexity which is mainly determined by the positive
samples. The main contributions of this work are
summarized as follows:

• We present a fine-grained weighted least
square loss for learning word embeddings.
Unlike GloVe, it explicitly accounts for all
negative samples and reweights them with a
frequency-aware strategy.

• We propose an efficient and exact optimiza-
tion algorithm based on full batch gradient
optimization. It has a comparable time com-
plexity with SGD, but being more effective
and stable due to the consideration of all sam-
ples in each parameter update.

• We perform extensive experiments on several
benchmark datasets and tasks to demonstrate
the effectiveness, efficiency, and convergence
property of our AllVec method.

2 Related Work

2.1 Skip-gram with Negative Sampling

Mikolov et al. (2013a,b) proposed the skip-gram
model to learn word embeddings. SG formulates
the problem as a predictive task, aiming at predict-
ing the proper context c for a target word w within
a local window. To speed up the training process,
it applies the negative sampling (Mikolov et al.,
2013b) to approximate the full softmax. That is,

each positive (w, c) pair is trained with n ran-
domly sampled negative pairs (w,wi). The sam-
pled loss function of SG is defined as

LSG
wc =log σ(UwŨ

T
c )+

n∑

i=1

Ewi∼Pn(w) log σ(−UwŨ
T
wi

)

where Uw and Ũc denote the k-dimensional em-
bedding vectors for word w and context c. Pn(w)
is the distribution from which negative context wi
is sampled.

Plenty of research has been done based on SG,
such as the use of prior knowledge from another
source (Kumar and Araki, 2016; Liu et al., 2015a;
Bollegala et al., 2016), incorporating word type in-
formation (Cao and Lu, 2017; Niu et al., 2017),
character level n-gram models (Bojanowski et al.,
2016; Joulin et al., 2016) and jointly learning with
topic models like LDA (Shi et al., 2017; Liu et al.,
2015b).

2.2 Importance of the Sampling Distribution

Mikolov et al. (2013b) showed that the unigram
distribution raised to the 3/4th power as Pn(w)
significantly outperformed both the unigram and
the uniform distribution. This suggests that the
sampling distribution (of negative words) has a
great impact on the embedding quality. Further-
more, Chen et al. (2018) and Guo et al. (2018)
recently found that replacing the original sam-
pler with adaptive samplers could result in bet-
ter performance. The adaptive samplers are used
to find more informative negative examples dur-
ing the training process. Compared with the orig-
inal word-frequency based sampler, adaptive sam-
plers adapt to both the target word and the current
state of the model. They also showed that the fine-
grained samplers not only speeded up the conver-
gence but also significantly improved the embed-
ding quality. Similar observations were also found
in other fields like collaborative filtering (Yuan
et al., 2016). While being effective, it is proven
that negative sampling is a biased approximation
and does not converges to the same loss as the full
softmax — regardless of how many update steps
have been taken (Bengio and Senécal, 2008; Blanc
and Rendle, 2017).

2.3 Count-based Embedding Methods

Another line of research is the count-based em-
bedding, such as GloVe (Pennington et al., 2014).
GloVe performs a biased MF on the word-context
co-occurrence statistics, which is a common ap-
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proach in the field of collaborative filtering (Ko-
ren, 2008). However, GloVe only formulates the
loss on positive entries of the co-occurrence ma-
trix, meaning that negative signals about word-
context co-occurrence are discarded. A remedy
solution is LexVec (Salle et al., 2016a,b) which
integrates negative sampling into MF. Some other
methods (Li et al., 2015; Stratos et al., 2015;
Ailem et al., 2017) also use MF to approximate
the word-context co-occurrence statistics. Al-
though predictive models and count-based models
seem different at first glance, Levy and Goldberg
(2014) proved that SG with negative sampling is
implicitly factorizing a shifted pointwise mutual
information (PMI) matrix, which means that the
two families of embedding models resemble each
other to a certain degree.

Our proposed method departs from all above
methods by using the full batch gradient optimizer
to learn from all (positive and negative) samples.
We propose a fast learning algorithm to show that
such batch learning is not “heavy” even with tens
of billions of training examples.

3 AllVec Loss

In this work, we adopt the regression loss that is
commonly used in count-based models (Penning-
ton et al., 2014; Stratos et al., 2015; Ailem et al.,
2017) to perform matrix factorization on word co-
occurrence statistics. As highlighted, to retain the
modeling fidelity, AllVec eschews using any sam-
pling but optimizes the loss on all positive and
negative word-context pairs.

Given a word w and a symmetric window of
win contexts, the set of positive contexts can be
obtained by sliding through the corpus. Let c de-
note a specific context, Mwc be the number of co-
occurred (w, c) pairs in the corpus within the win-
dow. Mwc=0 means that the pair (w, c) has never
been observed, i.e. the negative signal. rwc is the
association coefficient between w and c, which is
calculated from Mwc. Specifically, we use r+wc to
denote the ground truth value for positive (w, c)
pairs and a constant value r−(e.g., 0 or -1) for neg-
ative ones since there is no interaction between w
and c in negative pairs. Finally, with all positive
and negative pairs considered, a regular loss func-
tion can be given as Eq.(1), where V is the vocab-
ulary and S is the set of positive pairs. α+

wc and
α−wc represent the weight for positive and negative

(w, c) pairs, respectively.

L =
∑

(w,c)∈S
α+
wc(r

+
wc − UwŨ

T
c )2

︸ ︷︷ ︸
LP

+
∑

(w,c)∈(V×V )\S
α−wc(r

− − UwŨ
T
c )2

︸ ︷︷ ︸
LN

(1)

When it comes to r+wc, there are several choices.
For example, GloVe applies the log of Mwc with
bias terms for w and c. However, research from
Levy and Goldberg (2014) showed that the SG
model with negative sampling implicitly factorizes
a shifted PMI matrix. The PMI value for a (w, c)
pair can be defined as

PMIwc = log
P (w, c)

P (w)P (c)
= log

MwcM∗∗
Mw∗M∗c

(2)

where ‘*’ denotes the summation of all corre-
sponding indexes (e.g., Mw∗=

∑
c∈V Mwc). In-

spired by this connection, we set r+wc as the posi-
tive point-wise mutual information (PPMI) which
has been commonly used in the NLP literature
(Stratos et al., 2015; Levy and Goldberg, 2014).
Sepcifically, PPMI is the positive version of PMI
by setting the negative values to zero. Finally, r+wc
is defined as

r+wc = PPMIwc = max(PMIwc, 0) (3)

3.1 Weighting Strategies

Regarding α+
wc, we follow the design in GloVe,

where it is defined as

α+
wc =

{
(Mwc/xmax)ρ Mwc < xmax

1 Mwc ≥ xmax
(4)

As for the weight for negative instances α−wc, con-
sidering that there is no interaction between w and
negative c, we set α−wc as α−c (or α−w), which means
that the weight is determined by the word itself
rather than the word-context interaction. Note that
either α−wc = α−c or α−wc = α−w does not in-
fluence the complexity of AllVec learning algo-
rithm described in the next section. The design of
α−c is inspired by the frequency-based oversam-
pling scheme in skip-gram and missing data re-
weighting in recommendation (He et al., 2016).
The intuition is that a word with high frequency
is more likely to be a true negative context word
if there is no observed word-context interactions.
Hence, to effectively differentiate the positive and
negative examples, we assign a higher weight for
the negative examples that have a higher word fre-
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quency, and a smaller weight for infrequent words.
Formally, α−wc is defined as

α−wc = α−c = α0
M δ
∗c∑

c∈V M
δ∗c

(5)

where α0 can be seen as a global weight to control
the overall importance of negative samples. α0 =
0 means that no negative information is utilized in
the training. The exponent δ is used for smoothing
the weights. Specially, δ = 0 means a uniform
weight for all negative examples and δ = 1 means
that no smoothing is applied.

4 Fast Batch Gradient Optimization

Once specifying the loss function, the main chal-
lenge is how to perform an efficient optimization
for Eq.(1). In the following, we develop a fast
batch gradient optimization algorithm that is based
on a partition reformulation for the loss and a de-
couple operation for the inner product.

4.1 Loss Partition

As can be seen, the major computational cost in
Eq.(1) lies in the term LN , because the size of
(V×V ) \S is very huge, which typically contains
over billions of negative examples. To this end, we
show our first key design that separates the loss of
negative samples into the difference between the
loss on all samples and that on positive samples1.
The loss partition serves as the prerequisite for the
efficient computation of full batch gradients.

LN=
∑

w∈V

∑

c∈V
α−c (r−−UwŨ

T
c )2−

∑

(w,c)∈S
α−c (r−− UwŨ

T
c )2 (6)

By replacing LN in Eq.(1) with Eq.(6), we can ob-
tain a new loss function with a more clear struc-
ture. We further simplify the loss function by
merging the terms on positive examples. Finally,
we achieve a reformulated loss

L =
∑

w∈V

∑

c∈V
α−c (r−−UwŨ

T
c )

2

︸ ︷︷ ︸
LA

+
∑

(w,c)∈S
(α+

wc − α−c )(∆− UwŨ
T
c )

2

︸ ︷︷ ︸
L

P
′

+C
(7)

where ∆ = (α+
wcr

+
wc − α−c r

−)/(α+
wc − α−c ). It

can be seen that the new loss function consists of
two components: the loss LA on the whole V ×V
training examples and LP ′ on positive examples.
The major computation now lies in LA which has

1The idea here is similar to that used in (He et al., 2016;
Li et al., 2016) for a different problem.

a time complexity of O(k|V |2). In the following,
we show how to reduce the huge volume of com-
putation by a simple mathematical decouple.

4.2 Decouple

To clearly show the decouple operation, we
rewrite LA as L̃A by omitting the constant term
α−c (r−)2. Note that uwd and ũcd denote the d-th
element in Uw and Ũc, respectively.

L̃A =
∑

w∈V

∑

c∈V
α−c

k∑

d=0

uwdũcd

k∑

d′=0

uwd′ ũcd′

− 2r−
∑

w∈V

∑

c∈V
α−c

k∑

d=0

uwdũcd

(8)

Now we show our second key design that is based
on a decouple manipulation for the inner product
operation. Interestingly, we observe that the sum-
mation operator and elements in Uw and Ũc can
be rearranged by the commutative property (Dai
et al., 2007), as shown below.

L̃A =

k∑

d=0

k∑

d′=0

∑

w∈V
uwduwd′

∑

c∈V
α−c ũcdũcd′

− 2r−
k∑

d=0

∑

w∈V
uwd

∑

c∈V
α−c ũcd

(9)

An important feature in Eq.(9) is that the original
inner product terms are disappeared, while in the
new equation

∑
c∈V α

−
c ũcdũcd′ and

∑
c∈V α

−
c ũcd

are “constant” values relative to uwduwd′ and
uwd respectively. This means that they can be
pre-calculated before training in each iteration.
Specifically, we define pwdd′ , p

c
dd′ , q

w
d and qcd as the

pre-calculated terms

pwdd′ =
∑

w∈V
uwduwd′ qwd =

∑

w∈V
uwd

pcdd′ =
∑

c∈V
α−c ũcdũcd′ qcd =

∑

c∈V
α−c ũcd

(10)

Then the computation of L̃A can be simplified to∑k
d=0

∑k
d′=0 p

w
dd′p

c
dd′ − 2r−qwd q

c
d.

It can be seen that the time complexity to com-
pute all pwdd′ is O(|V |k2), and similarly, O(|V |k2)
for pcdd′ andO(|V |k) for qwd and qcd. With all terms
pre-calculated before each iteration, the time com-
plexity of computing L̃A is justO(k2). As a result,
the total time complexity of computing LA is de-
creased toO(2|V |k2+2|V |k+k2) ≈ O(2|V |k2),
which is much smaller than the originalO(k|V |2).
Moreover, it’s worth noting that our efficient com-
putation for L̃A is strictly equal to its original
value, which means AllVec does not introduce any
approximation in evaluating the loss function.

Finally, we can derive the batch gradients for
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uwd and ũcd as
∂L

∂uwd
=

k∑

d′=0

uwd′p
c
dd′ −

∑

c∈I+w

Λ · ũcd − r−qcd

∂L

∂ũcd
=

k∑

d′=0

ũcd′p
w
dd′α

−
c−

∑

w∈I+c

Λ · uwd − r−α−c qwd

(11)

where I+w denotes the set of positive contexts for
w, I+c denotes the set of positive words for c and
Λ = (α+

wc−α−c )(∆−UwŨTc ). Algorithm 1 shows
the training procedure of AllVec.

Algorithm 1 AllVec learning

Input: corpus Γ, win, α0, δ, iter, learning rate η
Output: embedding matrices U and Ũ

1: Build vocabulary V from Γ
2: Obtain all positive (w, c) and Mwc from Γ
3: Compute all r+wc, α

+
wc and α−c

4: Initialize U and Ũ
5: for i = 1, ..., iter do
6: for d ∈ {0, .., k} do
7: Compute and store qcd .O(|V |k)

8: for d′ ∈ {0, .., k} do
9: Compute and store pcdd′ .O(|V |k2)

10: end for
11: end for
12: for w ∈ V do
13: Compute Λ .O(|S|k)

14: for d ∈ {0, .., k} do
15: Update uwd .O(|S|k + |V |k2)

16: end for
17: end for
18: Repeat 6-17 for ũcd .O(2|S|k+2|V |k2)

19: end for

4.3 Time Complexity Analysis

In the following, we show that AllVec can achieve
the same time complexity with negative sampling
based SGD methods.

Given the sample size n, the total time com-
plexity for SG is O((n + 1)|S|k), where n + 1
denotes n negative samples and 1 positive exam-
ple. Regarding the complexity of AllVec, we can
see that the overall complexity of Algorithm 1 is
O(4|S|k + 4|V |k2).

For the ease of discussion, we denote c as the
average number of positive contexts for a word in
the training corpus, i.e. |S| = c|V | (c ≥ 1000 in
most cases). We then obtain the ratio

4|S|k + 4|V |k2
(n+ 1)|S|k =

4

n+ 1
(1 +

k

c
) (12)

where k is typically set from 100 to 300 (Mikolov
et al., 2013a; Pennington et al., 2014), resulting in
k ≤ c. Hence, we can give the lower and upper
bound for the ratio:

4

n+1
<

4|S|k+4|V |k2
(n+1)|S|k =

4

n+1
(1+

k

c
)≤ 8

n+1
(13)

The above analysis suggests that the complexity
of AllVec is same as that of SGD with negative
sample size between 3 and 7. In fact, considering
that c is much larger than k in most datasets, the
major cost of AllVec comes from the part 4|S|k
(see Section 5.4 for details), which is linear with
respect to the number of positive samples.

5 Experiments

We conduct experiments on three popular evalua-
tion tasks, namely word analogy (Mikolov et al.,
2013a), word similarity (Faruqui and Dyer, 2014)
and QVEC (Tsvetkov et al., 2015).

Word analogy task. The task aims to answer
questions like, “a is to b as c is to ?”. We adopt
the Google testbed2 which contains 19, 544 such
questions in two categories: semantic and syntac-
tic. The semantic questions are usually analogies
about people or locations, like “king is to man as
queen is to ?”, while the syntactic questions fo-
cus on forms or tenses, e.g., “swimming is to swim
as running to ?”.

Word similarity tasks. We perform evalua-
tion on six datasets, including MEN (Bruni et al.,
2012), MC (Miller and Charles, 1991), RW (Lu-
ong et al., 2013), RG (Rubenstein and Good-
enough, 1965), WS-353 Similarity (WSim) and
Relatedness (WRel) (Finkelstein et al., 2001).
We compute the spearman rank correlation be-
tween the similarity scores calculated based on the
trained embeddings and human labeled scores.

QVEC. QVEC is an intrinsic evaluation met-
ric of word embeddings based on the alignment
to features extracted from manually crafted lexi-
cal resources. QVEC has shown strong correlation
with the performance of embeddings in several se-
mantic tasks (Tsvetkov et al., 2015).

We compare AllVec with the following word
embedding methods.

• SG: This is the original skip-gram model with
SGD and negative sampling (Mikolov et al.,
2013a,b).
• SGA: This is the skip-gram model with an

adaptive sampler (Chen et al., 2018).
2https://code.google.com/archive/p/word2vec/
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Table 1: Corpora statistics.

Corpus Tokens Vocab Size

Text8 17M 71K 100M
NewsIR 78M 83K 500M
Wiki-sub 0.8B 190K 4.0G
Wiki-all 2.3B 200K 13.4G

• GloVe: This method applies biased MF on
the positive samples of word co-occurrence
matrix (Pennington et al., 2014).
• LexVec: This method applies MF on the

PPMI matrix. The optimization is done with
negative sampling and mini-batch gradient
descent (Salle et al., 2016b).

For all baselines, we use the original implementa-
tion released by the authors.

5.1 Datasets and Experimental Setup

We evaluate the performance of AllVec on four
real-world corpora, namely Text83, NewsIR4,
Wiki-sub and Wiki-all. Wiki-sub is a subset of
2017 Wikipedia dump5. All corpora have been
pre-processed by a standard pipeline (i.e. remov-
ing non-textual elements, lowercasing and tok-
enization). Table 1 summarizes the statistics of
these corpora.

To obtain Mwc for positive (w, c) pairs, we fol-
low GloVe where word pairs that are xwords apart
contribute 1/x to Mwc. The window size is set as
win = 8. Regarding α+

wc, we set xmax = 100
and ρ = 0.75. For a fair comparison, the embed-
ding size k is set as 200 for all models and cor-
pora. AllVec can be easily trained by AdaGrad
(Zeiler, 2012) like GloVe or Newton-like (Bayer
et al., 2017; Bradley et al., 2011) second order
methods. For models based on negative sampling
(i.e. SG, SGA and LexVec), the sample size is set
as n = 25 for Text8, n = 10 for NewsIR and
n = 5 for Wiki-sub and Wiki-all. The setting is
also suggested by Mikolov et al. (2013b). Other
detailed hyper-parameters are reported in Table 2.

5.2 Accuracy Comparison

We present results on the word analogy task in
Table 2. As shown, AllVec achieves the high-
est total accuracy (Tot.) in all corpora, particu-

3http://mattmahoney.net/dc/text8.zip
4http://research.signalmedia.co/newsir16/signal-

dataset.html
5https://dumps.wikimedia.org/enwiki/

larly in smaller corpora (Text8 and NewsIR). The
reason is that in smaller corpora the number of
positive (w, c) pairs is very limited, thus making
use of negative examples will bring more benefits.
Similar reason also explains the poor accuracy of
GloVe in Text8, because GloVe does not consider
negative samples. Even in the very large corpus
(Wiki-all), ignoring negative samples still results
in sub-optimal performance.

Our results also show that SGA achieves better
performance than SG, which demonstrates the im-
portance of a good sampling strategy. However,
regardless what sampler (except the full softmax
sampling) is utilized and how many updates are
taken, sampling is still a biased approach. AllVec
achieves the best performance because it is trained
on the whole batch data for each parameter update
rather than a fraction of sampled data.

Another interesting observation is AllVec per-
forms better in semantic tasks in general. The rea-
son is that our model utilizes global co-occurrence
statistics, which capture more semantic signals
than syntactic signals. While both AllVec and
GloVe use global contexts, AllVec performs much
better than GloVe in syntactic tasks. We argue
that the main reason is because AllVec can dis-
till useful signals from negative examples, while
GloVe simply ignores all negative information.
By contrast, local-window based methods, such
as SG and SGA, are more effective to capture
local sentence features, resulting in good perfor-
mance on syntactic analogies. However, Rekabsaz
et al. (2017) argues that these local-window based
methods may suffer from the topic shifting issue.

Table 3 and Table 4 provide results in the word
similarity and QVEC tasks. We can see that Al-
lVec achieves the best performance in most tasks,
which admits the advantage of batch learning with
all samples. Interestingly, although GloVe per-
forms well in semantic analogy tasks, it shows
extremely worse results in word similarity and
QVEC. The reason shall be the same as that it per-
forms poorly in syntactic tasks.

5.3 Impact of α−c
In this subsection, we investigate the impact of the
proposed weighting scheme for negative (context)
words. We show the performance change of word
analogy tasks on NewsIR in Figure 2 by tuning α0

and δ. Results in other corpora show similar trends
thus are omitted due to space limitation.
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Table 2: Results (“Tot.” denotes total accuracy) on the word analogy task.

Corpus
Text8 NewsIR

para. Sem. Syn. Tot. para. Sem. Syn. Tot.

SG 1e-4 8 25 47.51 32.26 38.60 1e-5 10 10 70.81 47.48 58.10
SGA 6e-3 - - 48.10 33.78 39.74 6e-3 - - 71.74 48.71 59.20

GloVe 10 15 1 45.11 26.89 34.47 50 8 1 78.79 41.58 58.52
LexVec 1e-4 25 - 51.87 31.78 40.14 1e-5 10 - 76.11 39.09 55.95
AllVec 350 0.75 - 56.66 32.42 42.50 100 0.8 - 78.47 48.33 61.57

Wiki-sub Wiki-all

SG 1e-5 10 5 72.05 55.88 63.24 1e-5 10 5 73.91 61.91 67.37
SGA 6e-3 - - 73.93 56.10 63.81 6e-3 - - 75.11 61.94 67.92

GloVe 100 8 1 77.22 53.16 64.13 100 8 1 77.38 58.94 67.33
LexVec 1e-5 5 - 75.95 52.78 63.33 1e-5 5 - 76.31 56.83 65.48
AllVec 100 0.75 - 76.66 54.72 64.75 50 0.75 - 77.64 60.96 68.52

The parameter columns (para.) for each model are given from left to right as follows. SG: subsampling of frequent words,
window size and the number of negative samples; SGA: λ (Chen et al., 2018) that controls the distribution of the rank,
the other parameters are the same with SG; GloVe: xmax, window size and symmetric window; LexVec: subsampling of
frequent words and the number of negative samples; AllVec: the negative weight α0 and δ. Boldface denotes the highest
total accuracy.

Figure 2(a) shows the impact of the overall
weight α0 by setting δ as 0.75 (inspired by the set-
ting of skip-gram). Clearly, we observe that all
results (including semantic, syntactic and total ac-
curacy) have been greatly improved when α0 in-
creases from 0 to a larger value. As mentioned
before, α0 = 0 means that no negative informa-
tion is considered. This observation verifies that
negative samples are very important for learning
good embeddings. It also helps to explain why
GloVe performs poorly on syntactic tasks. In addi-
tion, we find that in all corpora the optimal results
are usually obtained when α0 falls in the range
of 50 to 400. For example, in the NewIR corpus
as shown, AllVec achieves the best performance
when α0 = 100. Figure 2(b) shows the impact of
δ with α0 = 100. As mentioned before, δ = 0 de-
notes a uniform value for all negative words and
δ = 1 denotes that no smoothing is applied to
word frequency. We can see that the total accuracy
is only around 55% when δ = 0. By increasing
its value, the performance is gradually improved,
achieving the highest score when δ is around 0.8.
Further increase of δ will degrade the total accu-
racy. This analysis demonstrates the effectiveness
of the proposed negative weighting scheme.

5.4 Convergence Rate and Runtime

Figure 3(a) compares the convergence between
AllVec and GloVe on NewsIR. Clearly, AllVec ex-

(a) (b)
Figure 2: Effect of α0 and δ on NewsIR.

(a) (b)
Figure 3: Convergence and runtime.

hibits a more stable convergence due to its full
batch learning. In contrast, GloVe has a more
dramatic fluctuation because of the one-sample
learning scheme. Figure 3(b) shows the relation-
ship between the embedding size k and runtime
on NewsIR. Although the analysis in Section 4.3
demonstrates that the time complexity of AllVec
is O(4|S|k + 4|V |k2), the actual runtime shows
a near linear relationship with k. This is because
4|V |k2/4|S|k = k/c, where c generally ranges
from 1000 ∼ 6000 and k is set from 200 to 300
in practice. The above ratio explains the fact that
4|S|k dominates the complexity, which is linear
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Table 3: Results on the word similarity task.

Corpus
Text8 NewsIR

MEN MC RW RG WSim WRel MEN MC RW RG WSim WRel

SG .6868 .6776 .3336 .6904 .7082 .6539 .7293 .7328 .3705 .7184 .7176 .6147
SGA .6885 .6667 .3399 .7035 .7291 .6708 .7409 .7513 .3797 .7508 .7442 .6398

GloVe .4999 .3349 .2614 .3367 .5168 .5115 .5839 .5637 .2487 .6284 .6029 .5329
LexVec .6660 .6267 .2935 .6076 .7005 .6862 .7301 .8403 .3614 .8341 .7404 .6545
AllVec .6966 .6975 .3424 .6588 .7484 .7002 .7407 .7642 .4610 .7753 .7453 .6322

Wiki-sub Wiki-all

SG .7532 .7943 .4250 .7555 .7627 .6563 .7564 .8083 .4311 .7678 .7662 .6485
SGA .7465 .7983 .4296 .7623 .7715 .6560 .7577 .7940 .4379 .7683 .7110 .6488

GloVe .6898 .6963 .3184 .7041 .6669 .5629 .7370 .7767 .3197 .7499 .7359 .6336
LexVec .7318 .7591 .4225 .7628 .7292 .6219 .7256 .8219 .4383 .7797 .7548 .6091
AllVec .7155 .8305 .4667 .7945 .7675 .6459 .7396 .7840 .4966 .7800 .7492 .6518

Table 4: Results on QVEC.

Qvec Text8 NewsIR Wiki-sub Wiki-all

SG .3999 .4182 .4280 .4306
SGA .4062 .4159 .4419 .4464

GloVe .3662 .3948 .4174 .4206
LexVec .4211 .4172 .4332 .4396
AllVec .4211 .4319 .4351 .4489

with k and |S|.
We also compare the overall runtime of AllVec

and SG on NewsIR and show the results in Table
5. As can be seen, the runtime of AllVec falls in
the range of SG-3 and SG-7 in a single iteration,
which confirms the theoretical analysis in Section
4.3. In contrast with SG, AllVec needs more itera-
tions to converge. The reason is that each parame-
ter in SG is updated many times during each iter-
ation, although only one training example is used
in each update. Despite this, the total run time of
AllVec is still in a feasible range. Assuming the
convergence is measured by the number of param-
eter updates, our AllVec yields a much faster con-
vergence rate than the one-sample SG method.

In practice, the runtime of our model in each it-
eration can be further reduced by increasing the
number of parallel workers. Although baseline
methods like SG and GloVe can also be paral-
lelized, the stochastic gradient steps in these meth-
ods unnecessarily influence each other as there is
no exact way to separate these updates for differ-
ent workers. In other words, the parallelization of
SGD is not well suited to a large number of work-

Table 5: Comparison of runtime.

Model SI Iter Tot.

SG-3 259s 15 65m
SG-7 521s 15 131m
SG-10 715s 15 179m
AllVec 388s 50 322m

SG-n represents n negative samples for skip-gram,
SI represents the runtime for a single iteration, and
Tot. denotes the total runtime. All models are of
embedding size 200 and trained with 8 threads.

ers. In contrast, the parameter updates in AllVec
are completely independent of each other, there-
fore AllVec does not have the update collision is-
sue. This means we can achieve the embarrassing
parallelization by simply separating the updates
by words; that is, letting different workers update
the model parameters for disjoint sets of words.
As such, AllVec can provide a near linear scaling
without any approximation since there is no poten-
tial conflicts between updates.

6 Conclusion

In this paper, we presented AllVec, an efficient
batch learning based word embedding model that
is capable to leverage all positive and negative
training examples without any sampling and ap-
proximation. In contrast with models based on
SGD and negative sampling, AllVec shows more
stable convergence and better embedding quality
by the all-sample optimization. Besides, both the-
oretical analysis and experiments demonstrate that
AllVec achieves the same time complexity with
the classic SGD models. In future, we will extend
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our proposed all-sample learning scheme to deep
learning methods, which are more expressive than
the shallow embedding model. Moreover, we will
integrate prior knowledge, such as the words that
are synonyms and antonyms, into the word em-
bedding process. Lastly, we are interested in ex-
ploring the recent adversarial learning techniques
to enhance the robustness of word embeddings.
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Abstract

We introduce the structured projec-
tion of intermediate gradients optimiza-
tion technique (SPIGOT), a new method
for backpropagating through neural net-
works that include hard-decision struc-
tured predictions (e.g., parsing) in in-
termediate layers. SPIGOT requires no
marginal inference, unlike structured at-
tention networks (Kim et al., 2017) and
some reinforcement learning-inspired so-
lutions (Yogatama et al., 2017). Like so-
called straight-through estimators (Hinton,
2012), SPIGOT defines gradient-like quan-
tities associated with intermediate nondif-
ferentiable operations, allowing backprop-
agation before and after them; SPIGOT’s
proxy aims to ensure that, after a param-
eter update, the intermediate structure will
remain well-formed.

We experiment on two structured NLP
pipelines: syntactic-then-semantic depen-
dency parsing, and semantic parsing fol-
lowed by sentiment classification. We
show that training with SPIGOT leads to
a larger improvement on the downstream
task than a modularly-trained pipeline, the
straight-through estimator, and structured
attention, reaching a new state of the art
on semantic dependency parsing.

1 Introduction

Learning methods for natural language process-
ing are increasingly dominated by end-to-end dif-
ferentiable functions that can be trained using
gradient-based optimization. Yet traditional NLP
often assumed modular stages of processing that
formed a pipeline; e.g., text was tokenized, then
tagged with parts of speech, then parsed into a

phrase-structure or dependency tree, then semanti-
cally analyzed. Pipelines, which make “hard” (i.e.,
discrete) decisions at each stage, appear to be in-
compatible with neural learning, leading many re-
searchers to abandon earlier-stage processing.

Inspired by findings that continue to see benefit
from various kinds of linguistic or domain-specific
preprocessing (He et al., 2017; Oepen et al., 2017;
Ji and Smith, 2017), we argue that pipelines can
be treated as layers in neural architectures for NLP
tasks. Several solutions are readily available:
• Reinforcement learning (most notably the

REINFORCE algorithm; Williams, 1992), and
structured attention (SA; Kim et al., 2017).
These methods replace argmax with a sam-
pling or marginalization operation. We
note two potential downsides of these ap-
proaches: (i) not all argmax-able operations
have corresponding sampling or marginaliza-
tion methods that are efficient, and (ii) in-
spection of intermediate outputs, which could
benefit error analysis and system improve-
ment, is more straightforward for hard deci-
sions than for posteriors.
• The straight-through estimator (STE; Hin-

ton, 2012) treats discrete decisions as if
they were differentiable and simply passes
through gradients. While fast and surpris-
ingly effective, it ignores constraints on the
argmax problem, such as the requirement
that every word has exactly one syntactic par-
ent. We will find, experimentally, that the
quality of intermediate representations de-
grades substantially under STE.

This paper introduces a new method, the struc-
tured projection of intermediate gradients opti-
mization technique (SPIGOT; §2), which defines a
proxy for the gradient of a loss function with re-
spect to the input to argmax. Unlike STE’s gradi-
ent proxy, SPIGOT aims to respect the constraints
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in the argmax problem. SPIGOT can be applied
with any intermediate layer that is expressible as
a constrained maximization problem, and whose
feasible set can be projected onto. We show em-
pirically that SPIGOT works even when the max-
imization and the projection are done approxi-
mately.

We offer two concrete architectures that employ
structured argmax as an intermediate layer: se-
mantic parsing with syntactic parsing in the mid-
dle, and sentiment analysis with semantic parsing
in the middle (§3). These architectures are trained
using a joint objective, with one part using data for
the intermediate task, and the other using data for
the end task. The datasets are not assumed to over-
lap at all, but the parameters for the intermediate
task are affected by both parts of the training data.

Our experiments (§4) show that our architecture
improves over a state-of-the-art semantic depen-
dency parser, and that SPIGOT offers stronger per-
formance than a pipeline, SA, and STE. On sen-
timent classification, we show that semantic pars-
ing offers improvement over a BiLSTM, more so
with SPIGOT than with alternatives. Our analy-
sis considers how the behavior of the intermedi-
ate parser is affected by the end task (§5). Our
code is open-source and available at https://
github.com/Noahs-ARK/SPIGOT.

2 Method

Our aim is to allow a (structured) argmax layer
in a neural network to be treated almost like any
other differentiable function. This would allow us
to place, for example, a syntactic parser in the mid-
dle of a neural network, so that the forward calcu-
lation simply calls the parser and passes the parse
tree to the next layer, which might derive syntactic
features for the next stage of processing.

The challenge is in the backward computation,
which is key to learning with standard gradient-
based methods. When its output is discrete as we
assume here, argmax is a piecewise constant func-
tion. At every point, its gradient is either zero or
undefined. So instead of using the true gradient,
we will introduce a proxy for the gradient of the
loss function with respect to the inputs to argmax,
allowing backpropagation to proceed through the
argmax layer. Our proxy is designed as an im-
provement to earlier methods (discussed below)
that completely ignore constraints on the argmax
operation. It accomplishes this through a projec-

tion of the gradients.
We first lay out notation, and then briefly review

max-decoding and its relaxation (§2.1). We define
SPIGOT in §2.2, and show how to use it to back-
propagate through NLP pipelines in §2.3.

Notation. Our discussion centers around two
tasks: a structured intermediate task followed by
an end task, where the latter considers the out-
puts of the former (e.g., syntactic-then-semantic
parsing). Inputs are denoted as x, and end task
outputs as y. We use z to denote intermedi-
ate structures derived from x. We will often re-
fer to the intermediate task as “decoding”, in the
structured prediction sense. It seeks an output
ẑ = argmaxz∈Z S from the feasible set Z , max-
imizing a (learned, parameterized) scoring func-
tion S for the structured intermediate task. L de-
notes the loss of the end task, which may or may
not also involve structured predictions. We use
∆k−1 = {p ∈ Rk | 1>p = 1,p ≥ 0} to
denote the (k − 1)-dimensional simplex. We de-
note the domain of binary variables as B = {0, 1},
and the unit interval as U = [0, 1]. By projection
of a vector v onto a set A, we mean the closest
point in A to v, measured by Euclidean distance:
projA(v) = argminv′∈A ‖v′ − v‖2.

2.1 Relaxed Decoding

Decoding problems are typically decomposed into
a collection of “parts”, such as arcs in a depen-
dency tree or graph. In such a setup, each element
of z, zi, corresponds to one possible part, and zi
takes a boolean value to indicate whether the part
is included in the output structure. The scoring
function S is assumed to decompose into a vector
s(x) of part-local, input-specific scores:

ẑ = argmax
z∈Z

S(x, z) = argmax
z∈Z

z>s(x) (1)

In the following, we drop s’s dependence on x for
clarity.

In many NLP problems, the output space Z can
be specified by linear constraints (Roth and Yih,
2004):

A

[
z
ψ

]
≤ b, (2)

where ψ are auxiliary variables (also scoped by
argmax), together with integer constraints (typi-
cally, each zi ∈ B).
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Figure 1: The original feasible set Z (red ver-
tices), is relaxed into a convex polytope P (the
area encompassed by blue edges). Left: making
a gradient update to ẑ makes it step outside the
polytope, and it is projected back to P , resulting
in the projected point z̃. ∇sL is then along the
edge. Right: updating ẑ keeps it within P , and
thus∇sL = η∇ẑL.

The problem in Equation 1 can be NP-complete
in general, so the {0, 1} constraints are often re-
laxed to [0, 1] to make decoding tractable (Mar-
tins et al., 2009). Then the discrete combinatorial
problem over Z is transformed into the optimiza-
tion of a linear objective over a convex polytope
P={p ∈ Rd |Ap≤b}, which is solvable in poly-
nomial time (Bertsimas and Tsitsiklis, 1997). This
is not necessary in some cases, where the argmax
can be solved exactly with dynamic programming.

2.2 From STE to SPIGOT

We now view structured argmax as an activation
function that takes a vector of input-specific part-
scores s and outputs a solution ẑ. For backpropa-
gation, to calculate gradients for parameters of s,
the chain rule defines:

∇sL = J ∇ẑL, (3)

where the Jacobian matrix J = ∂ẑ
∂s contains the

derivative of each element of ẑ with respect to
each element of s. Unfortunately, argmax is a
piecewise constant function, so its Jacobian is ei-
ther zero (almost everywhere) or undefined (in the
case of ties).

One solution, taken in structured attention, is to
replace the argmax with marginal inference and
a softmax function, so that ẑ encodes probability
distributions over parts (Kim et al., 2017; Liu and
Lapata, 2018). As discussed in §1, there are two
reasons to avoid this modification. Softmax can
only be used when marginal inference is feasible,
by sum-product algorithms for example (Eisner,
2016; Friesen and Domingos, 2016); in general
marginal inference can be #P-complete. Further,
a soft intermediate layer will be less amenable to
inspection by anyone wishing to understand and
improve the model.

In another line of work, argmax is aug-
mented with a strongly-convex penalty on the so-
lutions (Martins and Astudillo, 2016; Amos and
Kolter, 2017; Niculae and Blondel, 2017; Niculae
et al., 2018; Mensch and Blondel, 2018). How-
ever, their approaches require solving a relaxation
even when exact decoding is tractable. Also, the
penalty will bias the solutions found by the de-
coder, which may be an undesirable conflation of
computational and modeling concerns.

A simpler solution is the STE method (Hin-
ton, 2012), which replaces the Jacobian matrix in
Equation 3 by the identity matrix. This method
has been demonstrated to work well when used
to “backpropagate” through hard threshold func-
tions (Bengio et al., 2013; Friesen and Domin-
gos, 2018) and categorical random variables (Jang
et al., 2016; Choi et al., 2017).

Consider for a moment what we would do if ẑ
were a vector of parameters, rather than intermedi-
ate predictions. In this case, we are seeking points
in Z that minimize L; denote that set of minimiz-
ers by Z∗. Given ∇ẑL and step size η, we would
update ẑ to be ẑ − η∇ẑL. This update, however,
might not return a value in the feasible set Z , or
even (if we are using a linear relaxation) the re-
laxed set P .

SPIGOT therefore introduces a projection step
that aims to keep the “updated” ẑ in the feasible
set. Of course, we do not directly update ẑ; we
continue backpropagation through s and onward
to the parameters. But the projection step nonethe-
less alters the parameter updates in the way that
our proxy for “∇sL” is defined.

The procedure is defined as follows:

p̂ = ẑ− η∇ẑL, (4a)

z̃ = projP(p̂), (4b)

∇sL , ẑ− z̃. (4c)

First, the method makes an “update” to ẑ as if it
contained parameters (Equation 4a), letting p̂ de-
note the new value. Next, p̂ is projected back onto
the (relaxed) feasible set (Equation 4b), yielding a
feasible new value z̃. Finally, the gradients with
respect to s are computed by Equation 4c.

Due to the convexity of P , the projected point z̃
will always be unique, and is guaranteed to be no
farther than p̂ from any point in Z∗ (Luenberger
and Ye, 2015).1 Compared to STE, SPIGOT in-

1Note that this property follows from P’s convexity, and
we do not assume the convexity of L.
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volves a projection and limits ∇sL to a smaller
space to satisfy constraints. See Figure 1 for an
illustration.

When efficient exact solutions (such as dynamic
programming) are available, they can be used. Yet,
we note that SPIGOT does not assume the argmax
operation is solved exactly.

2.3 Backpropagation through Pipelines
Using SPIGOT, we now devise an algorithm to
“backpropagate” through NLP pipelines. In these
pipelines, an intermediate task’s output is fed into
an end task for use as features. The parameters of
the complete model are divided into two parts: de-
note the parameters of the intermediate task model
byφ (used to calculate s), and those in the end task
model as θ.2 As introduced earlier, the end-task
loss function to be minimized is L, which depends
on both φ and θ.

Algorithm 1 describes the forward and back-
ward computations. It takes an end task training
pair 〈x,y〉, along with the intermediate task’s fea-
sible set Z , which is determined by x. It first runs
the intermediate model and decodes to get inter-
mediate structure ẑ, just as in a standard pipeline.
Then forward propagation is continued into the
end-task model to compute loss L, using ẑ to de-
fine input features. Backpropagation in the end-
task model computes ∇θL and ∇ẑL, and ∇sL is
then constructed using Equations 4. Backpropa-
gation then continues into the intermediate model,
computing∇φL.

Due to its flexibility, SPIGOT is applicable to
many training scenarios. When there is no 〈x, z〉
training data for the intermediate task, SPIGOT can
be used to induce latent structures for the end-task
(Yogatama et al., 2017; Kim et al., 2017; Choi
et al., 2017, inter alia). When intermediate-task
training data is available, one can use SPIGOT to
adopt joint learning by minimizing an interpo-
lation of L (on end-task data 〈x,y〉) and an
intermediate-task loss function L̃ (on intermediate
task data 〈x, z〉). This is the setting in our experi-
ments; note that we do not assume any overlap in
the training examples for the two tasks.

3 Solving the Projections

In this section we discuss how to compute approx-
imate projections for the two intermediate tasks

2Nothing prohibits tying across pre-argmax parameters
and post-argmax parameters; this separation is notationally
convenient but not at all necessary.

Algorithm 1 Forward and backward computation
with SPIGOT.
1: procedure SPIGOT(x,y,Z)
2: Construct A, b such that Z = {p ∈ Zd | Ap ≤ b}
3: P ← {p ∈ Rd | Ap ≤ b} . Relaxation
4: Forwardprop and compute sφ(x)
5: ẑ← argmaxz∈Z z>sφ(x) . Intermediate decoding
6: Forwardprop and compute L given x, y, and ẑ
7: Backprop and compute∇θL and∇ẑL
8: z̃← projP(ẑ− η∇ẑL) . Projection
9: ∇sL← ẑ− z̃

10: Backprop and compute∇φL
11: end procedure

considered in this work, arc-factored unlabeled de-
pendency parsing and first-order semantic depen-
dency parsing.

In early experiments we observe that for both
tasks, projecting with respect to all constraints
of their original formulations using a generic
quadratic program solver was prohibitively slow.
Therefore, we construct relaxed polytopes by con-
sidering only a subset of the constraints.3 The
projection then decomposes into a series of singly
constrained quadratic programs (QP), each of
which can be efficiently solved in linear time.

The two approximate projections discussed here
are used in backpropagation only. In the forward
pass, we solve the decoding problem using the
models’ original decoding algorithms.

Arc-factored unlabeled dependency parsing.
For unlabeled dependency trees, we impose [0, 1]
constraints and single-headedness constraints.4

Formally, given a length-n input sentence, ex-
cluding self-loops, an arc-factored parser consid-
ers d = n(n − 1) candidate arcs. Let i→j denote
an arc from the ith token to the jth, and σ(i→j)
denote its index. We construct the relaxed feasible
set by:

PDEP =



p ∈ Ud

∣∣∣∣∣∣
∑

i 6=j
pσ(i→j) = 1,∀j



 , (5)

i.e., we consider each token j individually, and
force single-headedness by constraining the num-
ber of arcs incoming to j to sum to 1. Algorithm 2
summarizes the procedure to project onto PDEP.

3A parallel work introduces an active-set algorithm to
solve the same class of quadratic programs (Niculae et al.,
2018). It might be an efficient approach to solve the projec-
tions in Equation 4b, which we leave to future work.

4 It requires O(n2) auxiliary variables and O(n3) addi-
tional constraints to ensure well-formed tree structures (Mar-
tins et al., 2013).
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Line 3 forms a singly constrained QP, and can be
solved in O(n) time (Brucker, 1984).

Algorithm 2 Projection onto the relaxed polytope
PDEP for dependency tree structures. Let bold
σ(·→j) denote the index set of arcs incoming to
j. For a vector v, we use vσ(·→j) to denote vector
[vk]k∈σ(·→j).

1: procedure DEPPROJ(p̂)
2: for j = 1, 2, . . . , n do
3: z̃σ(·→j) ← proj∆n−2

(
p̂σ(·→j)

)
4: end for
5: return z̃
6: end procedure

First-order semantic dependency parsing. Se-
mantic dependency parsing uses labeled bilexical
dependencies to represent sentence-level seman-
tics (Oepen et al., 2014, 2015, 2016). Each de-
pendency is represented by a labeled directed arc
from a head token to a modifier token, where the
arc label encodes broadly applicable semantic re-
lations. Figure 2 diagrams a semantic graph from
the DELPH-IN MRS-derived dependencies (DM),
together with a syntactic tree.

We use a state-of-the-art semantic dependency
parser (Peng et al., 2017) that considers three types
of parts: heads, unlabeled arcs, and labeled arcs.
Let σ(i

`→ j) denote the index of the arc from
i to j with semantic role `. In addition to [0, 1]
constraints, we constrain that the predictions for
labeled arcs sum to the prediction of their associ-
ated unlabeled arc:

PSDP

{
p ∈ Ud

∣∣∣∣∣
∑

`

p
σ(i

`→j) = pσ(i→j), ∀i 6= j

}
.

(6)

This ensures that exactly one label is predicted if
and only if its arc is present. The projection onto
PSDP can be solved similarly to Algorithm 2. We
drop the determinism constraint imposed by Peng
et al. (2017) in the backward computation.

4 Experiments

We empirically evaluate our method with two sets
of experiments: using syntactic tree structures in
semantic dependency parsing, and using semantic
dependency graphs in sentiment classification.

4.1 Syntactic-then-Semantic Parsing
In this experiment we consider an intermedi-
ate syntactic parsing task, followed by seman-

… became dismayed at

poss arg1

arg2

’sG-2 connections arrested traffickersto drug

arg2
compound

root

arg2 arg1
arg2

Figure 2: A development instance annotated with
both gold DM semantic dependency graph (red
arcs on the top), and gold syntactic dependency
tree (blue arcs at the bottom). A pretrained syn-
tactic parser predicts the same tree as the gold; the
semantic parser backpropagates into the interme-
diate syntactic parser, and changes the dashed blue
arcs into dashed red arcs (§5).

tic dependency parsing as the end task. We first
briefly review the neural network architectures for
the two models (§4.1.1), and then introduce the
datasets (§4.1.2) and baselines (§4.1.3).

4.1.1 Architectures

Syntactic dependency parser. For intermedi-
ate syntactic dependencies, we use the unlabeled
arc-factored parser of Kiperwasser and Goldberg
(2016). It uses bidirectional LSTMs (BiLSTM)
to encode the input, followed by a multilayer-
perceptron (MLP) to score each potential depen-
dency. One notable modification is that we replace
their use of Chu-Liu/Edmonds’ algorithm (Chu
and Liu, 1965; Edmonds, 1967) with the Eisner
algorithm (Eisner, 1996, 2000), since our dataset
is in English and mostly projective.

Semantic dependency parser. We use the basic
model of Peng et al. (2017) (denoted as NEUR-
BOPARSER) as the end model. It is a first-order
parser, and uses local factors for heads, unlabeled
arcs, and labeled arcs. NEURBOPARSER does
not use syntax. It first encodes an input sentence
with a two-layer BiLSTM, and then computes part
scores with two-layer tanh-MLPs. Inference is
conducted with AD3 (Martins et al., 2015). To add
syntactic features to NEURBOPARSER, we con-
catenate a token’s contextualized representation
to that of its syntactic head, predicted by the in-
termediate parser. Formally, given length-n in-
put sentence, we first run a BiLSTM. We use the
concatenation of the two hidden representations
hj = [

−→
h j ;
←−
h j ] at each position j as the contextu-

alized token representations. We then concatenate

1867



hj with the representation of its head hHEAD(j) by

h̃j = [hj ;hHEAD(j)] =


hj ;

∑

i 6=j
ẑσ(i→j) hi


 ,

(7)

where ẑ ∈ Bn(n−1) is a binary encoding of the tree
structure predicted by by the intermediate parser.
We then use h̃j anywhere hj would have been
used in NEURBOPARSER. In backpropagation, we
compute ∇ẑL with an automatic differentiation
toolkit (DyNet; Neubig et al., 2017).

We note that this approach can be generalized to
convolutional neural networks over graphs (Mou
et al., 2015; Duvenaud et al., 2015; Kipf and
Welling, 2017, inter alia), recurrent neural net-
works along paths (Xu et al., 2015; Roth and La-
pata, 2016, inter alia) or dependency trees (Tai
et al., 2015). We choose to use concatenations to
control the model’s complexity, and thus to better
understand which parts of the model work.

We refer the readers to Kiperwasser and Gold-
berg (2016) and Peng et al. (2017) for further de-
tails of the parsing models.

Training procedure. Following previous work,
we minimize structured hinge loss (Tsochantaridis
et al., 2004) for both models. We jointly train both
models from scratch, by randomly sampling an in-
stance from the union of their training data at each
step. In order to isolate the effect of backpropaga-
tion, we do not share any parameters between the
two models.5 Implementation details are summa-
rized in the supplementary materials.

4.1.2 Datasets
• For semantic dependencies, we use the

English dataset from SemEval 2015 Task
18 (Oepen et al., 2015). Among the three for-
malisms provided by the shared task, we con-
sider DELPH-IN MRS-derived dependencies
(DM) and Prague Semantic Dependencies
(PSD).6 It includes §00–19 of the WSJ cor-
pus as training data, §20 and §21 for devel-
opment and in-domain test data, resulting in
a 33,961/1,692/1,410 train/dev./test split, and

5 Parameter sharing has proved successful in many related
tasks (Collobert and Weston, 2008; Søgaard and Goldberg,
2016; Ammar et al., 2016; Swayamdipta et al., 2016, 2017,
inter alia), and could be easily combined with our approach.

6We drop the third (PAS) because its structure is highly
predictable from parts-of-speech, making it less interesting.

DM PSD

Model UF LF UF LF

NEURBOPARSER – 89.4 – 77.6
FREDA3 – 90.4 – 78.5

PIPELINE 91.8 90.8 88.4 78.1
SA 91.6 90.6 87.9 78.1
STE 92.0 91.1 88.9 78.9

SPIGOT 92.4 91.6 88.6 78.9

(a) F1 on in-domain test set.

DM PSD

Model UF LF UF LF

NEURBOPARSER – 84.5 – 75.3
FREDA3 – 85.3 – 76.4

PIPELINE 87.4 85.8 85.5 75.6
SA 87.3 85.6 84.9 75.9
STE 87.7 86.4 85.8 76.6

SPIGOT 87.9 86.7 85.5 77.1

(b) F1 on out-of-domain test set.

Table 1: Semantic dependency parsing perfor-
mance in both unlabeled (UF ) and labeled (LF )
F1 scores. Bold font indicates the best perfor-
mance. Peng et al. (2017) does not report UF .

1,849 out-of-domain test instances from the
Brown corpus.7

• For syntactic dependencies, we use the Stan-
ford Dependency (de Marneffe and Manning,
2008) conversion of the the Penn Treebank
WSJ portion (Marcus et al., 1993). To avoid
data leak, we depart from standard split and
use §20 and §21 as development and test data,
and the remaining sections as training data.
The number of training/dev./test instances is
40,265/2,012/1,671.

4.1.3 Baselines
We compare to the following baselines:
• A pipelined system (PIPELINE). The pre-

trained parser achieves 92.9 test unlabeled at-
tachment score (UAS).8

7The organizers remove, e.g., instances with cyclic
graphs, and thus only a subset of the WSJ corpus is included.
See Oepen et al. (2015) for details.

8 Note that this number is not comparable to the parsing
literature due to the different split. As a sanity check, we
found in preliminary experiments that the same parser archi-
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• Structured attention networks (SA; Kim et al.,
2017). We use the inside-outside algo-
rithm (Baker, 1979) to populate z with arcs’
marginal probabilities, use log-loss as the ob-
jective in training the intermediate parser.
• The straight-through estimator (STE; Hinton,

2012), introduced in §2.2.

4.1.4 Empirical Results

Table 1 compares the semantic dependency pars-
ing performance of SPIGOT to all five baselines.
FREDA3 (Peng et al., 2017) is a state-of-the-art
variant of NEURBOPARSER that is trained using
multitask learning to jointly predict three different
semantic dependency graph formalisms. Like the
basic NEURBOPARSER model that we build from,
FREDA3 does not use any syntax. Strong DM per-
formance is achieved in a more recent work by us-
ing joint learning and an ensemble (Peng et al.,
2018), which is beyond fair comparisons to the
models discussed here.

We found that using syntactic information
improves semantic parsing performance: using
pipelined syntactic head features brings 0.5–
1.4% absolute labeled F1 improvement to NEUR-
BOPARSER. Such improvements are smaller
compared to previous works, where depen-
dency path and syntactic relation features are in-
cluded (Almeida and Martins, 2015; Ribeyre et al.,
2015; Zhang et al., 2016), indicating the potential
to get better performance by using more syntactic
information, which we leave to future work.

Both STE and SPIGOT use hard syntactic fea-
tures. By allowing backpropation into the inter-
mediate syntactic parser, they both consistently
outperform PIPELINE. On the other hand, when
marginal syntactic tree structures are used, SA

outperforms PIPELINE only on the out-of-domain
PSD test set, and improvements under other cases
are not observed.

Compared to STE, SPIGOT outperforms STE on
DM by more than 0.3% absolute labeled F1, both
in-domain and out-of-domain. For PSD, SPIGOT

achieves similar performance to STE on in-domain
test set, but has a 0.5% absolute labeled F1 im-
provement on out-of-domain data, where syntactic
parsing is less accurate.

tecture achieves 93.5 UAS when trained and evaluated with
the standard split, close to the results reported by Kiperwasser
and Goldberg (2016).

4.2 Semantic Dependencies for Sentiment
Classification

Our second experiment uses semantic dependency
graphs to improve sentiment classification perfor-
mance. We are not aware of any efficient algo-
rithm that solves marginal inference for seman-
tic dependency graphs under determinism con-
straints, so we do not include a comparison to SA.

4.2.1 Architectures
Here we use NEURBOPARSER as the intermediate
model, as described in §4.1.1, but with no syntac-
tic enhancements.

Sentiment classifier. We first introduce a base-
line that does not use any structural information.
It learns a one-layer BiLSTM to encode the in-
put sentence, and then feeds the sum of all hidden
states into a two-layer ReLU-MLP.

To use semantic dependency features, we con-
catenate a word’s BiLSTM-encoded representa-
tion to the averaged representation of its heads, to-
gether with the corresponding semantic roles, sim-
ilarly to that in Equation 7.9 Then the concatena-
tion is fed into an affine transformation followed
by a ReLU activation. The rest of the model is
kept the same as the BiLSTM baseline.

Training procedure. We use structured hinge
loss to train the semantic dependency parser, and
log-loss for the sentiment classifier. Due to the dis-
crepancy in the training data size of the two tasks
(33K vs. 7K), we pre-train a semantic dependency
parser, and then adopt joint training together with
the classifier. In the joint training stage, we ran-
domly sample 20% of the semantic dependency
training instances each epoch. Implementations
are detailed in the supplementary materials.

4.2.2 Datasets
For semantic dependencies, we use the DM
dataset introduced in §4.1.2.

We consider a binary classification task using
the Stanford Sentiment Treebank (Socher et al.,
2013). It consists of roughly 10K movie review
sentences from Rotten Tomatoes. The full dataset
includes a rating on a scale from 1 to 5 for each
constituent (including the full sentences), resulting
in more than 200K instances. Following previous
work (Iyyer et al., 2015), we only use full-sentence

9In a well-formed semantic dependency graph, a token
may have multiple heads. Therefore we use average instead
of the sum in Equation 7.
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Model Accuracy (%)

BILSTM 84.8

PIPELINE 85.7
STE 85.4
SPIGOT 86.3

Table 2: Test accuracy of sentiment classification
on Stanford Sentiment Treebank. Bold font indi-
cates the best performance.

instances, with neutral instances excluded (3s) and
the remaining four rating levels converted to bi-
nary “positive” or “negative” labels. This results
in a 6,920/872/1,821 train/dev./test split.

4.2.3 Empirical Results
Table 2 compares our SPIGOT method to three
baselines. Pipelined semantic dependency predic-
tions brings 0.9% absolute improvement in clas-
sification accuracy, and SPIGOT outperforms all
baselines. In this task STE achieves slightly worse
performance than a fixed pre-trained PIPELINE.

5 Analysis

We examine here how the intermediate model is
affected by the end-task training signal. Is the end-
task signal able to “overrule” intermediate predic-
tions?

We use the syntactic-then-semantic parsing
model (§4.1) as a case study. Table 3 compares
a pipelined system to one jointly trained using
SPIGOT. We consider the development set in-
stances where both syntactic and semantic an-
notations are available, and partition them based
on whether the two systems’ syntactic predic-
tions agree (SAME), or not (DIFF). The second
group includes sentences with much lower syn-
tactic parsing accuracy (91.3 vs. 97.4 UAS), and
SPIGOT further reduces this to 89.6. Even though
these changes hurt syntactic parsing accuracy, they
lead to a 1.1% absolute gain in labeled F1 for
semantic parsing. Furthermore, SPIGOT has an
overall less detrimental effect on the intermediate
parser than STE: using SPIGOT, intermediate dev.
parsing UAS drops to 92.5 from the 92.9 pipelined
performance, while STE reduces it to 91.8.

We then take a detailed look and categorize the
changes in intermediate trees by their correlations
with the semantic graphs. Specifically, when a
modifier m’s head is changed from h to h′ in the

Split # Sent. Model UAS DM

SAME 1011
PIPELINE 97.4 94.0
SPIGOT 97.4 94.3

DIFF 681
PIPELINE 91.3 88.1
SPIGOT 89.6 89.2

Table 3: Syntactic parsing performance (in unla-
beled attachment score, UAS) and DM semantic
parsing performance (in labeled F1) on different
groups of the development data. Both systems
predict the same syntactic parses for instances
from SAME, and they disagree on instances from
DIFF (§5).

tree, we consider three cases: (a) h′ is a head of
m in the semantic graph; (b) h′ is a modifier of m
in the semantic graph; (c) h is the modifier of m
in the semantic graph. The first two reflect mod-
ifications to the syntactic parse that rearrange se-
mantically linked words to be neighbors. Under
(c), the semantic parser removes a syntactic depen-
dency that reverses the direction of a semantic de-
pendency. These cases account for 17.6%, 10.9%,
and 12.8%, respectively (41.2% combined) of the
total changes. Making these changes, of course, is
complicated, since they often require other modi-
fications to maintain well-formedness of the tree.
Figure 2 gives an example.

6 Related Work

Joint learning in NLP pipelines. To avoid cas-
cading errors, much effort has been devoted to
joint decoding in NLP pipelines (Habash and
Rambow, 2005; Cohen and Smith, 2007; Gold-
berg and Tsarfaty, 2008; Lewis et al., 2015; Zhang
et al., 2015, inter alia). However, joint inference
can sometimes be prohibitively expensive. Recent
advances in representation learning facilitate ex-
ploration in the joint learning of multiple tasks by
sharing parameters (Collobert and Weston, 2008;
Blitzer et al., 2006; Finkel and Manning, 2010;
Zhang and Weiss, 2016; Hashimoto et al., 2017,
inter alia).

Differentiable optimization. Gould et al.
(2016) review the generic approaches to differ-
entiation in bi-level optimization (Bard, 2010;
Kunisch and Pock, 2013). Amos and Kolter
(2017) extend their efforts to a class of subdif-
ferentiable quadratic programs. However, they
both require that the intermediate objective has
an invertible Hessian, limiting their application
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in NLP. In another line of work, the steps of a
gradient-based optimization procedure are un-
rolled into a single computation graph (Stoyanov
et al., 2011; Domke, 2012; Goodfellow et al.,
2013; Brakel et al., 2013). This comes at a
high computational cost due to the second-order
derivative computation during backpropagation.
Moreover, constrained optimization problems
(like many NLP problems) often require projec-
tion steps within the procedure, which can be
difficult to differentiate through (Belanger and
McCallum, 2016; Belanger et al., 2017).

7 Conclusion

We presented SPIGOT, a novel approach to back-
propagating through neural network architectures
that include discrete structured decisions in in-
termediate layers. SPIGOT devises a proxy for
the gradients with respect to argmax’s inputs,
employing a projection that aims to respect the
constraints in the intermediate task. We empiri-
cally evaluate our method with two architectures:
a semantic parser with an intermediate syntactic
parser, and a sentiment classifier with an inter-
mediate semantic parser. Experiments show that
SPIGOT achieves stronger performance than base-
lines under both settings, and outperforms state-
of-the-art systems on semantic dependency pars-
ing. Our implementation is available at https:
//github.com/Noahs-ARK/SPIGOT.
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Jan Hajič, Angelina Ivanova, and Zdeňka Urešová.
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Abstract

Heuristic-based active learning (AL)
methods are limited when the data
distribution of the underlying learning
problems vary. We introduce a method
that learns an AL policy using imitation
learning (IL). Our IL-based approach
makes use of an efficient and effective
algorithmic expert, which provides the
policy learner with good actions in the
encountered AL situations. The AL strat-
egy is then learned with a feedforward
network, mapping situations to most
informative query datapoints. We evaluate
our method on two different tasks: text
classification and named entity recogni-
tion. Experimental results show that our
IL-based AL strategy is more effective
than strong previous methods using
heuristics and reinforcement learning.

1 Introduction

For many real-world NLP tasks, labeled data is
rare while unlabelled data is abundant. Active
learning (AL) seeks to learn an accurate model
with minimum amount of annotation cost. It is
inspired by the observation that a model can get
better performance if it is allowed to choose the
data points on which it is trained. For example, the
learner can identify the areas of the space where it
does not have enough knowledge, and query those
data points which bridge its knowledge gap.

Traditionally, AL is performed using engi-
neered heuristics in order to estimate the useful-
ness of unlabeled data points as queries to an an-
notator. Recent work (Fang et al., 2017; Bachman
et al., 2017; Woodward and Finn, 2017) have fo-
cused on learning the AL querying strategy, as en-
gineered heuristics are not flexible to exploit char-

acteristics inherent to a given problem. The basic
idea is to cast AL as a decision process, where the
most informative unlabeled data point needs to be
selected based on the history of previous queries.
However, previous works train for the AL pol-
icy by a reinforcement learning (RL) formulation,
where the rewards are provided at the end of se-
quences of queries. This makes learning the AL
policy difficult, as the policy learner needs to deal
with the credit assignment problem. Intuitively,
the learner needs to observe many pairs of query
sequences and the resulting end-rewards to be able
to associate single queries with their utility scores.

In this work, we formulate learning AL strate-
gies as an imitation learning problem. In par-
ticular, we consider the popular pool-based AL
scenario, where an AL agent is presented with a
pool of unlabelled data. Inspired by the Dataset
Aggregation (DAGGER) algorithm (Ross et al.,
2011), we develop an effective AL policy learn-
ing method by designing an efficient and effective
algorithmic expert, which provides the AL agent
with good decisions in the encountered states. We
then use a deep feedforward network to learn the
AL policy to associate states to actions. Unlike
the RL approach, our method can get observa-
tions and actions directly from the expert’s trajec-
tory. Therefore, our trained policy can make better
rankings of unlabelled datapoints in the pool, lead-
ing to more effective AL strategies.

We evaluate our method on text classification
and named entity recognition. The results show
our method performs better than strong AL meth-
ods using heuristics and reinforcement learning,
in that it boosts the performance of the under-
lying model with fewer labelling queries. An
open source implementation of our model is avail-
able at: https://github.com/Grayming/
ALIL.
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2 Pool-based AL as a Decision Process

We consider the popular pool-based AL setting
where we are given a small set of initial labeled
data and a large pool of unlabelled data, and a bud-
get for getting the annotation of some unlabelled
data by querying an oracle, e.g. a human anno-
tator. The goal is to intelligently pick those unla-
belled data for which if the annotations were avail-
able, the performance of the underlying re-trained
model would be improved the most.

The main challenge in AL is how to identify and
select the most beneficial unlabelled data points.
Various heuristics have been proposed to guide the
unlabelled data selection (Settles, 2010). How-
ever, there is no one AL heuristic which performs
best for all problems. The goal of this paper is to
provide an approach to learn an AL strategy which
is best suited for the problem at hand, instead of
resorting to ad-hoc heuristics.

The AL strategy can be learned by attempting
to actively learn on tasks sampled from a distribu-
tion over the tasks (Bachman et al., 2017). The
idea is to simulate the AL scenario on instances of
the problem created using available labeled data,
where the label of some part of the data is kept
hidden. This allows to have an automatic oracle
to reveal the labels of the queried data, resulting
in an efficient way to quickly evaluate a hypothe-
sised AL strategy. Once the AL strategy is learned
on simulations, it is then applied to real AL sce-
narios. The more related are the tasks in the real
scenario to those used to train the AL strategy, the
more effective the AL strategy would be.

We are interested to train a model mφφφ which
maps an inputxxx ∈ X to its label yyy ∈ Yxxx, where Yxxx
is the set of labels for the input xxx and φφφ is the pa-
rameter vector of the underling model. For exam-
ple, in the named entity recognition (NER) task,
the input is a sentence and the output is its label se-
quence, e.g. in the IBO format. Let D = {(xxx,yyy)}
be a support set of labeled data, which is randomly
partitioned into labeledDlab, unlabelledDunl, and
evaluation Devl datasets. Repeated random parti-
tioning creates multiple instances of the AL prob-
lem. At each time step t of an AL problem, the
algorithm interacts with the oracle and queries the
label of a datapoint xxxt ∈ Dunl

t . As the result of
this action, the followings happen:

• The automatic oracle reveals the label yyyt;

• The labeled and unlabelled datasets are up-

dated to include and exclude the recently
queried data point, respectively;

• The underlying model is re-trained based on
the enlarged labeled data to update φφφ; and

• The AL algorithm receives a reward
−loss(mφφφ, D

evl), which is the negative
loss of the current trained model on the
evaluation set, defined as

loss(mφφφ, D
evl) :=

∑

(xxx,yyy)∈Devl
loss(mφφφ(xxx), yyy)

where loss(yyy′, yyy) is the loss incurred due to
predicting yyy′ instead of the ground truth yyy.

More formally, a pool-based AL problem is
a Markov decision process (MDP), denoted by
(S,A, Pr(ssst+1|ssst, at), R) where S is the state
space, A is the set of actions, Pr(ssst+1|ssst, at) is
the transition function, and R is the reward func-
tion. The state ssst ∈ S at time t consists of the
labeled Dlab

t and unlabelled Dunl
t datasets paired

with the parameters of the currently trained model
φt. An action at ∈ A corresponds to the selec-
tion of a query datapoint, and the reward function
R(ssst, at, ssst+1) := −loss(mφφφt , D

evl).
We aim to find the optimal AL policy prescrib-

ing which datapoint needs to be queried in a given
state to get the most benefit. The optimal policy is
found by maximising the following objective over
the parameterised policies:

E(Dlab,Dunl,Devl)∼D

[
Eπθθθ

[ B∑

t=1

R(ssst, at, ssst+1)
]]

(1)

where πθθθ is the policy network parameterised by
θθθ,D is a distribution over possible AL problem in-
stances, and B is the maximum number of queries
made in an AL run, a.k.a. an episode. Following
(Bachman et al., 2017), we maximise the sum of
the rewards after each time step to encourage the
anytime behaviour, i.e. the model should perform
well after each label query.

3 Deep Imitation Learning to Train the
AL Policy

The question remains as how can we train the
policy network to maximise the training objec-
tive in eqn 1. Typical learning approaches resort
to deep reinforcement learning (RL) and provide
training signal at the end of each episode to learn
the optimal policy (Fang et al., 2017; Bachman
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et al., 2017) e.g., using policy gradient methods.
These approaches, however, need a large number
of training episodes to learn a reasonable policy as
they need to deal with the credit assignment prob-
lem, i.e. discovery of the utility of individual ac-
tions in the sequence based on the achieved reward
at the end of the episode. This exacerbates the dif-
ficulty of finding a good AL policy.

We formulate learning for the AL policy as an
imitation learning problem. At each state, we pro-
vide the AL agent with a correct action which is
computed by an algorithmic expert. The AL agent
uses the sequence of states observed in an episode
paired with the expert’s sequence of actions to up-
date its policy. This directly addresses the credit
assignment problem, and reduces the complexity
of the problem compared to the RL approaches.
In what follows, we describe the ingredients of
our deep imitation learning (IL) approach, which
is summarised in Algorithm 1.

Algorithmic Expert. At a given AL state ssst, our
algorithmic expert computes an action by evaluat-
ing the current pool of unlabeled data. More con-
cretely, for each xxx′ ∈ Dpool

rnd and its correct label
yyy′, the underlying model mφφφt is re-trained to get
mxxx′
φφφt

, where Dpool
rnd ⊂ Dunl

t is a small subset of the
current large pool of unlabeled data. The expert
action is then computed as:

arg min
xxx′∈Dpoolrnd

loss(mxxx′
φφφt
(xxx), Devl). (2)

In other words, our algorithmic expert tries a sub-
set of actions to roll-out one step from the current
state, in order to efficiently compute a reasonable
action. Searching for the optimal action would be
O(|Dunl|B), which is computationally challeng-
ing due to (i) the large action set, and (ii) the ex-
ponential dependence on the length of the roll out.
We will see in the experiments that our method ef-
ficiently learns effective AL policies.

Policy Network. Our policy network is a feed-
forward network with two fully-connected hidden
layers. It receives the current AL state, and pro-
vides a preference score for a given unlabeled data
point, allowing to select the most beneficial one
corresponding to the highest score. The input
to our policy network consists of three parts: (i)
a fixed dimensional representation of the content
and the predicted label of the unlabeled data point
under consideration, (ii) a fixed-dimensional rep-

resentation of the content and the labels of the la-
beled dataset, and (iii) a fixed-dimensional repre-
sentation of the content of the unlabeled dataset.

score

Dpool
rand

Dlab

xxx

yyy

Figure 1: The policy network and its inputs.

Imitation Learning Algorithm. A typical ap-
proach to imitation learning (IL) is to train the
policy network so that it mimics the expert’s be-
haviour given training data of the encountered
states (input) and actions (output) performed by
the expert. The policy network’s prediction af-
fects future inputs during the execution of the pol-
icy. This violates the crucial independent and
identically distributed (iid) assumption, inherent
to most statistical supervised learning approaches
for learning a mapping from states to actions.

We make use of Dataset Aggregation
(DAGGER) (Ross et al., 2011), an iterative
algorithm for IL which addresses the non-iid
nature of the encountered states during the AL
process (see Algorithm 1). In round τ of DAG-
GER, the learned policy network π̂τ is applied to
the AL problem to collect a sequence of states
which are paired with the expert actions. The
collected pair of states and actions are aggregated
to the dataset of such pairs M , collected from the
previous iterations of the algorithm. The policy
network is then re-trained on the aggregated set,
resulting in π̂τ+1 for the next iteration of the algo-
rithm. The intuition is to build up the set of states
that the algorithm is likely to encounter during its
execution, in order to increase the generalization
of the policy network. To better leverage the
training signal from the algorithmic expert, we
allow the algorithm to collect state-action pairs
according to a modified policy which is a mixture
of π̂τ and the expert policy π̃∗τ , i.e.

πτ = βτ π̃
∗ + (1− βτ )π̂τ

where βτ ∈ [0, 1] is a mixing coefficient. This
amounts to tossing a coin with parameter βτ in
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each iteration of the algorithm to decide one of
these two policies for data collection.

Re-training the Policy Network. To train our
policy network, we turn the preference scores to
probabilities, and optimise the parameters such
that the probability of the action prescribed by
the expert is maximized. More specifically, let
M := {(sssi, aaai)}Ii=1 be the collected states paired
with their expert’s prescribed actions. LetDpool

i be
the set of unlabelled datapoints in the pool within
the state, and aaai denote the datapoint selected by
the expert in the set. Our training objective is∑I

i=1 logPr(aaai|D
pool
i ) where

Pr(aaai|Dpool
i ) :=

exp π̂(aaai;sssi)∑
xxx∈Dpooli

exp π̂(xxx;sssi)
.

The above can be interpreted as the probability of
aaai being the best action among all possible actions
in the state. Following (Mnih et al., 2015), we ran-
domly sample multiple1 mini-batches from the re-
play memoryM, in addition to the current round’s
stat-action pair, in order to retrain the policy net-
work. For each mini-batch, we make one SGD
step to update the policy, where the gradients of
the network parameters are calculated using the
backpropagation algorithm.

Transferring the Policy. We now apply the pol-
icy learned on the source task to AL in the tar-
get task. We expect the learned policy to be effec-
tive for target tasks which are related to the source
task in terms of the data distribution and charac-
teristics. Algorithm 2 illustrates the policy trans-
fer. The pool-based AL scenario in Algorithm 2 is
cold-start; however, extending to incorporate ini-
tially available labeled data is straightforward.

4 Experiments

We conduct experiments on text classification and
named entity recognition (NER). The AL sce-
narios include cross-domain sentiment classifica-
tion, cross-lingual authorship profiling, and cross-
lingual named entity recognition (NER), whereby
an AL policy trained on a source domain/language
is transferred to the target domain/language.

We compare our proposed AL method using im-
itation learning (ALIL) with the followings:

• Random sampling: The query datapoint is cho-
sen randomly.

1In our experiments, we use 10 mini-bathes, each of
which of size 100.

Algorithm 1 Learn active learning policy via imi-
tation learning
Input: large labeled data D, max episodes T , budget B,

sample size K, the coin parameter β
Output: The learned policy
1: M ← ∅ . the aggregated dataset
2: initialise π̂1 with a random policy
3: for τ=1, . . . , T do
4: Dlab, Dunl, Devl ← dataPartition(D)
5: φφφ1 ← trainModel(Dlab)
6: c← coinToss(β)
7: for t ∈ 1, . . . ,B do
8: Dpool

rnd ← sampleUniform(Dunl,K)

9: ssst ← (Dlab, Dpool
rnd ,φφφt)

10: aaat ← argmin
xxx′∈Dpool

rnd
loss(mxxx′

φφφt
, Devl)

11: if c is head then . the expert
12: xxxt ← aaat
13: else . the policy
14: xxxt ← argmax

xxx′∈Dpool
rnd

π̂τ (xxx
′;ssst)

15: end if
16: Dlab ← Dlab + {(xxxt, yyyt)}
17: Dunl ← Dunl − {xxxt}
18: M ←M + {(ssst, aaat)}
19: φφφt+1 ← retrainModel(φφφt, Dlab)
20: end for
21: π̂τ+1 ← retrainPolicy(π̂τ ,M)
22: end for
23: return π̂T+1

Algorithm 2 Active learning by policy transfer

Input: unlabeled pool Dunl, budget B, policy π̂
Output: labeled dataset and trained model
1: Dlab ← ∅
2: initialise φφφ randomly
3: for t ∈ 1, . . . ,B do
4: ssst ← (Dlab, Dunl,φφφ)
5: xxxt ← argmaxxxx′∈Dunl π̂(xxx

′;ssst)
6: yyyt ← askAnnotation(xxxt)
7: Dlab ← Dlab + {(xxxt, yyyt)}
8: Dunl ← Dunl − {xxxt}
9: φ← retrainModel(φφφ,Dlab)

10: end for
11: return Dlab and φφφ

• Diversity sampling: The query datapoint is
argminxxx

∑
xxx′∈Dlab Jaccard(xxx,xxx′), where the Jac-

card coefficient between the unigram features
of the two given texts is used as the similarity
measure.

• Uncertainty-based sampling: For text
classification, we use the datapoint
with the highest predictive entropy,
argmaxxxx−

∑
y p(y|xxx,Dlab) log p(y|xxx,Dlab) where

p(yyy|xxx,Dlab) comes from the underlying
model. We further use a state-of-the-art exten-
sion of this method, called uncertainty with
rationals (Sharma et al., 2015), which not only
considers uncertainty but also looks whether
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doc. (src/tgt)
src tgt number avg. len. (tokens)

elec. music dev. 27k/1k 35/20
book movie 24k/2k 140/150

en sp 3.6k/4.2k 1.15k/1.35k
en pt 3.6k/1.2k 1.15k/1.03k

Table 1: The data sets used in sentiment classifica-
tion (top part) and gender profiling (bottom part).

the unlabelled document contains sentiment
words or phrases that were returned as ratio-
nales for any of the existing labeled documents.
For NER, we use the Total Token Entropy
(TTE) as the uncertainty sampling method,
argmaxxxx−

∑|xxx|
i=1

∑
yi
p(yi|xxx,Dlab) log p(yi|xxx,Dlab)

which has been shown to be the best heuristic
for this task among 17 different heuristics
(Settles and Craven, 2008).

• PAL: A reinforcement learning based approach
(Fang et al., 2017), which makes use a deep
Q-network to make the selection decision for
stream-based active learning.

4.1 Text Classification

Datasets and Setup. The first task is senti-
ment classification, in which product reviews ex-
press either positive or negative sentiment. The
data comes from the Amazon product reviews
(McAuley and Yang, 2016); see Table 1 for data
statistics.

The second task is Authorship Profiling, in
which we aim to predict the gender of the text
author. The data comes from the gender profil-
ing task in PAN 2017 (Rangel et al., 2017), which
consists of a large Twitter corpus in multiple lan-
guages: English (en), Spanish (es) and Portuguese
(pt). For each language, all tweets collected from a
user constitute one document; Table 1 shows data
statistics. The multilingual embeddings for this
task come from off-the-shelf CCA-trained embed-
dings (Ammar et al., 2016) for twelve languages,
including English, Spanish and Portuguese. We
fix these word embeddings during training of both
the policy and the underlying classification model.

For training, 10% of the source data is used as
the evaluation set for computing the best action in
imitation learning. We run T = 100 episodes with
the budget B = 100 documents in each episode,
set the sample size K = 5, and fix the mixing
coefficient βτ = 0.5. For testing, we take 90%
of the target data as the unlabeled pool, and the

remaining 10% as the test set. We show the test
accuracy w.r.t. the number of labelled documents
selected in the AL process.

As the underlying model mφφφ, we use a fast and
efficient text classifier based on convolutional neu-
ral networks. More specifically, we apply 50 con-
volutional filters with ReLU activation on the em-
bedding of all words in a document xxx, where the
width of the filters is 3. The filter outputs are aver-
aged to produce a 50-dimensional document rep-
resentation hhh(xxx), which is then fed into a softmax
to predict the class.

Representing state-action. The input to the
policy network, i.e. the feature vector represent-
ing a state-action pair, includes: the candidate doc-
ument represented by the convolutional net hhh(xxx),
the distribution over the document’s class labels
mφφφ(xxx), the sum of all document vector represen-
tations in the labeled set

∑
xxx′∈Dlab hhh(xxx

′), the sum
of all document vectors in the random pool of un-
labelled data

∑
xxx′∈Dpoolrnd

hhh(xxx′), and the empirical
distribution of class labels in the labeled dataset.

Results. Fig 2 shows the results on product
sentiment prediction and authorship profiling, in
cross-domain and cross-lingual AL scenarios2.
Our ALIL method consistently outperforms both
heuristic-based and RL-based (PAL) (Fang et al.,
2017) approaches across all tasks. ALIL tends to
convergence faster than other methods, which in-
dicates its policy can quickly select the most infor-
mative datapoints. Interestingly, the uncertainty
and diversity sampling heuristics perform worse
than random sampling on sentiment classification.
We speculate this may be due to these two heuris-
tics not being able to capture the polarity informa-
tion during the data selection process. PAL per-
forms on-par with uncertainty with rationals on
musical device, both of which outperform the tra-
ditional diversity and uncertainty sampling heuris-
tics. Interestingly, PAL is outperformed by ran-
dom sampling on movie reviews, and by the tra-
ditional uncertainty sampling heuristic on author-
ship profiling tasks. We attribute this to ineffec-
tiveness of the RL-based approach for learning a
reasonable AL query strategy.

We further investigate combining the transfer of
the policy network with the transfer of the under-
lying classifier. That is, we first train a classi-

2Uncertainty with rationale cannot be done for authorship
profiling as the rationales come from a sentiment dictionary.
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Figure 2: The performance of different active learning methods for cross domain sentiment classification
(left two plots) and cross lingual authorship profiling (right two plots).

fier on all of the annotated data from the source
domain/language. Then, this classifier is ported
to the target domain/language; for cross-language
transfer, we make use of multilingual word em-
beddings. We start the AL process starting from
the transferred classifier, referred to as the warm-
start AL. We compare the performance of the di-
rectly transferred classifier with those obtained af-
ter the AL process in the warm-start and cold-start
scenarios. The results are shown in Table 2. We
have run the cold-start and warm-start AL for 25
times, and reported the average accuracy in Ta-
ble 2. As seen from the results, both the cold and
warm start AL settings outperform the direct trans-
fer significantly, and the warm start consistently
gets higher accuracy than the cold start. The dif-
ference between the results are statistically signif-
icant, with a p-value of .001, according to McNe-
mar test3 (Dietterich, 1998).

musical movie es pt
direct transfer 0.715 0.640 0.675 0.740
cold-start AL 0.800 0.760 0.728 0.773
warm-start AL 0.825 0.765 0.730 0.780

Table 2: Classifiers performance under three dif-
ferent transfer settings.

4.2 Named Entity Recognition
Data and setup We use NER corpora from the
CONLL2002/2003 shared tasks, which include
annotated text in English (en), German (de), Span-
ish (es), and Dutch (nl). The original annotation
is based on IOB1, which we convert to the IO

3As the contingency table needed for the McNemar test,
we have used the average counts across the 25 runs.

labelling scheme. Following Fang et al. (2017),
we consider two experimental conditions: (i) the
bilingual scenario where English is the source
(used for policy training) and other languages are
the target, and (ii) the multilingual scenario where
one of the languages (except English) is the target
and the remaining ones are the source used in joint
training of the AL policy. The underlying model
mφφφ is a conditional random field (CRF) treating
NER as a sequence labelling task. The prediction
is made using the Viterbi algorithm.

In the existing corpus partitions from CoNLL,
each language has three subsets: train, testa and
testb. During policy training with the source lan-
guage(s), we combine these three subsets, shuf-
fle, and re-split them into simulated training, unla-
belled pool, and evaluation sets in every episode.
We run N = 100 episodes with the budget B =
200, and set the sample size k = 5. When we
transfer the policy to the target language, we do
one episode and select B datapoints from train
(treated as the pool of unlabeled data) and report
F1 scores on testa.

Representing state-action. The input to the
policy network includes the representation of the
candidate sentence using the sum of its words’
embeddings hhh(xxx), the representation of the la-
belling marginals using the label-level convolu-
tional network cnnlab(Emφφφ(yyy|xxx)[yyy]) (Fang et al.,
2017), the representation of sentences in the la-
beled data

∑
(xxx′,yyy′)∈Dlab hhh(xxx

′), the representa-
tion of sentences in the random pool of un-
labelled data

∑
xxx′∈Dpoolrnd

hhh(xxx′), the representa-
tion of ground-truth labels in the labeled data∑

(xxx′,yyy′)∈Dlab cnnlab(yyy
′) using the empirical distri-

butions, and the confidence of the sequential pre-
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Figure 3: The performance of active learning methods on the bilingual
and multilingual settings for three target languages: German (de), Span-
ish (es) and Dutch (nl).

Figure 4: The learning curves
of agents with different K on
Spanish (es) NER.

diction |xxx|
√

maxyyymφφφ(yyy|xxx), where |xxx| denotes the
length of the sentence xxx. For the word embed-
dings, we use off-the-shelf CCA trained multilin-
gual embeddings (Ammar et al., 2016) with 40 di-
mensions; we fix these during policy training.

Results. Fig. 3 shows the results for three tar-
get languages. In addition to the strong heuristic-
based methods, we compare our imitation learn-
ing approach (ALIL) with the reinforcement learn-
ing approach (PAL) (Fang et al., 2017), in both
bilingual (bi) and multilingual (mul) transfer set-
tings. Across all three languages, ALIL.bi and
ALIL.mul outperform the heuristic methods, in-
cluding Uncertainty Sampling based on TTE. This
is expected as the uncertainty sampling largely re-
lies on a high quality underlying model, and di-
versity sampling ignores the labelling information.
In the bilingual case, ALIL.bi outperforms PAL.bi
on Spanish (es) and Dutch (nl), and performs sim-
ilarly on German (de). In the multilingual case,
ALIL.mul achieves the best performance on Span-
ish, and performs competitively with PAL.mul on
German and Dutch.

4.3 Analysis

Insight on the selected data. We compare the
data selected by ALIL to other methods. This will
confirm that ALIL learns policies which are suit-
able for the problem at hand, without resorting to
a fixed engineered heuristics. For this analysis, we
report the mean reciprocal rank (MRR) of the data
points selected by the ALIL policy under rank-
ings of the unlabelled pool generated by the un-
certainty and diversity sampling. Furthermore, we
measure the fraction of times the decisions made
by the ALIL policy agrees with those which would

movie sentiment gender pt NER es
acc Unc. 0.06 0.58 0.51

MRR Unc. 0.083 0.674 0.551
acc Div. 0.05 0.52 0.45

MRR Div. 0.057 0.593 0.530
acc PAL 0.15 0.56 0.52

Table 3: The first four rows show MRR and accu-
racy of instances returned by ALIL under the rank-
ings of uncertainty and diversity sampling, the last
row give average accuracy of instances under PAL.

have been made by the heuristic methods, which
is measured by the accuracy (acc). Table 3 re-
port these measures. As we can see, for sentiment
classification since uncertainty and diversity sam-
pling perform badly, ALIL has a big disagreement
with them on the selected data points. While for
gender classification on Portuguese and NER on
Spanish, ALIL shows much more agreement with
other three heuristics.

Lastly, we compare chosen queries by ALIL
to those by PAL, to investigate the extent of the
agreement between these two methods. This is
simply measure by the fraction of identical query
data points among the total number of queries (i.e.
accuracy). Since PAL is stream-based and sen-
sitive to the order in which it receives the data
points, we report the average accuracy taken over
multiple runs with random input streams. The ex-
pected accuracy numbers are reported in Table 3.
As seen, ALIL has higher overlap with PAL than
the heuristic-based methods, in terms of the se-
lected queries.

Sensitivity toK. As seen in Algorithm 1, we re-
sort to an approximate algorithmic expert, which
selects the best action in a random subset of the
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Figure 5: The learning curves of agents with dif-
ferent schedules for β before the trajectory on
Spanish (es) NER.

pool of unlabelled data with size K, in order to
make the policy training efficient. Note that, in
policy training, settingK to one and the size of the
unlabelled data pool correspond to stream-based
and pool-based AL scenarios, respectively. By
changingK to values between these two extremes,
we can analyse the effect of the quality of the al-
gorithmic expert on the trained policy; Figure 4
shows the results. A larger candidate set may cor-
respond to a better learned policy, needed to be
traded off with the training time growing linearly
with K. Interestingly, even small candidate sets
lead to strong AL policies as increasing K beyond
10 does not change the performance significantly.

Dynamically changing β. In our algorithm, β
plays an important role as it trades off exploration
versus exploitation. In the above experiments, we
fix it to 0.5; however, we can change its value
throughout trajectory collection as a function of
τ (see Algorithm 1). We investigate schedules
which tend to put more emphasis on exploration
and exploitation towards the beginning and end of
data collection, respectively. We investigate the
following schedules: (i) linear βτ = max(0.5, 1−
0.01τ), (ii) exponential βτ = 0.9τ , and (iii) and
inverse sigmoid βτ = 5

5+exp(τ/5) , as a function of
iterations. Fig. 5 shows the comparisons of these
schedules. The learned policy seems to perform
competitively with either a fixed or an exponential
schedule. We have also investigated tossing the
coin in each step within the trajectory roll out, but
found that it is more effective to have it before the
full trajectory roll out (as currently done in Algo-
rithm 1).

5 Related Work

Traditional active learning algorithms rely on
various heuristics (Settles, 2010), such as un-
certainty sampling (Settles and Craven, 2008;
Houlsby et al., 2011), query-by-committee (Gilad-
Bachrach et al., 2006), and diversity sampling
(Brinker, 2003; Joshi et al., 2009; Yang et al.,
2015). Apart from these, different heuristics
can be combined, thus creating integrated strat-
egy which consider one or more heuristics at the
same time. Combined with transfer learning,
pre-existing labeled data from related tasks can
help improve the performance of an active learner
(Xiao and Guo, 2013; Kale and Liu, 2013; Huang
and Chen, 2016; Konyushkova et al., 2017). More
recently, deep reinforcement learning is used as
the framework for learning active learning algo-
rithms, where the active learning cycle is consid-
ered as a decision process. (Woodward and Finn,
2017) extended one shot learning to active learn-
ing and combined reinforcement learning with a
deep recurrent model to make labeling decisions.
(Bachman et al., 2017) introduced a policy gradi-
ent based method which jointly learns data repre-
sentation, selection heuristic as well as the model
prediction function. (Fang et al., 2017) designed
an active learning algorithm based on a deep Q-
network, in which the action corresponds to bi-
nary annotation decisions applied to a stream of
data. The learned policy can then be transferred
between languages or domains.

Imitation learning (IL) refers to an agent’s ac-
quisition of skills or behaviours by observing an
expert’s trajectory in a given task. It helps re-
duce sequential prediction tasks into supervised
learning by employing a (near) optimal oracle at
training time. Several IL algorithms has been
proposed in sequential prediction tasks, including
SEARA (Daumé et al., 2009), AggreVaTe (Ross
and Bagnell, 2014), DaD (Venkatraman et al.,
2015), LOLS(Chang et al., 2015), DeeplyAggre-
VaTe (Sun et al., 2017). Our work is closely re-
lated to Dagger (Ross et al., 2011), which can
guarantee to find a good policy by addressing the
dependency nature of encountered states in a tra-
jectory.

6 Conclusion

In this paper, we have proposed a new method for
learning active learning algorithms using deep im-
itation learning. We formalize pool-based active
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learning as a Markov decision process, in which
active learning corresponds to the selection de-
cision of the most informative data points from
the pool. Our efficient algorithmic expert pro-
vides state-action pairs from which effective active
learning policies can be learned. We show that the
algorithmic expert allows direct policy learning,
while at the same time, the learned policies trans-
fer successfully between domains and languages,
demonstrating improvement over previous heuris-
tic and reinforcement learning approaches.
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Abstract

Training accurate classifiers requires many
labels, but each label provides only
limited information (one bit for binary
classification). In this work, we propose
BabbleLabble, a framework for training
classifiers in which an annotator provides
a natural language explanation for each
labeling decision. A semantic parser
converts these explanations into program-
matic labeling functions that generate
noisy labels for an arbitrary amount of
unlabeled data, which is used to train a
classifier. On three relation extraction
tasks, we find that users are able to
train classifiers with comparable F1 scores
from 5–100 faster by providing explana-
tions instead of just labels. Furthermore,
given the inherent imperfection of labeling
functions, we find that a simple rule-based
semantic parser suffices.

1 Introduction

The standard protocol for obtaining a labeled
dataset is to have a human annotator view each
example, assess its relevance, and provide a label
(e.g., positive or negative for binary classification).
However, this only provides one bit of information
per example. This invites the question: how can
we get more information per example, given that
the annotator has already spent the effort reading
and understanding an example?

Previous works have relied on identifying rel-
evant parts of the input such as labeling features
(Druck et al., 2009; Raghavan et al., 2005; Liang
et al., 2009), highlighting rationale phrases in

Both cohorts showed signs of optic nerve toxicity due 
to ethambutol.

Example

Label

Explanation

Because the words “due to” occur between the 
chemical and the disease.

Does this chemical cause this disease? 

Why do you think so?

Labeling Function
def lf(x):
return (1 if “due to” in between(x.chemical, x.disease)

else 0)

Figure 1: In BabbleLabble, the user provides
a natural language explanation for each label-
ing decision. These explanations are parsed into
labeling functions that convert unlabeled data into
a large labeled dataset for training a classifier.

text (Zaidan and Eisner, 2008; Arora and Nyberg,
2009), or marking relevant regions in images (Ahn
et al., 2006). But there are certain types of infor-
mation which cannot be easily reduced to annotat-
ing a portion of the input, such as the absence of a
certain word, or the presence of at least two words.
In this work, we tap into the power of natural lan-
guage and allow annotators to provide supervision
to a classifier via natural language explanations.

Specifically, we propose a framework in which
annotators provide a natural language explanation
for each label they assign to an example (see Fig-
ure 1). These explanations are parsed into log-
ical forms representing labeling functions (LFs),
functions that heuristically map examples to labels
(Ratner et al., 2016). The labeling functions are
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Tom Brady and his wife Gisele Bündchen were 
spotted in New York City on Monday amid rumors 
of Brady’s alleged role in Deflategate.

True, because the words “his wife” 
are right before person 2.

def LF_1a(x):
return (1 if “his wife” in
left(x.person2, dist==1) else 0)

def LF_1b(x):
return (1 if “his wife” in
right(x.person2) else 0

Correct

Semantic
Filter

(inconsistent)

Unlabeled Examples + Explanations
Label whether person 1 is married to person 2

Labeling Functions Filters Label Matrix

None of us knows what happened at Kane‘s 
home Aug. 2, but it is telling that the NHL has not 
suspended Kane.

False, because person 1 and person 2
in the sentence are identical.

Dr. Michael Richards and real estate and 
insurance businessman Gary Kirke  did not attend 
the event.

False, because the last word of 
person 1 is different than the last 
word of person 2.

x1

x2

x3
def LF_3a(x):
return (-1 if
x.person1.tokens[-1] != 
x.person2.tokens[-1] else 0)

Correct

Pragmatic
Filter

(duplicate 
of LF_3a)

def LF_2b(x):
return (-1 if x.person1 ==
x.person2) else 0)

Correct

def LF_3b(x):
return (-1 if not (
x.person1.tokens[-1] == 
x.person2.tokens[-1]) else 0)

def LF_2a(x):
return (-1 if x.person1 in
x.sentence and x.person2 in
x.sentence else 0)

Pragmatic
Filter

(always true)

x1 x2 x3

LF1a
LF2b

LF3a

1

-1

-1-1

ỹ

x4 …

LF4c…

1 1

…+

1

-+ -

Noisy Labels

(x1,ỹ1)
(x2,ỹ2) 
(x3,ỹ3)
(x4,ỹ4) 

Classifier

x ỹ

Figure 2: Natural language explanations are parsed into candidate labeling functions (LFs). Many
incorrect LFs are filtered out automatically by the filter bank. The remaining functions provide heuristic
labels over the unlabeled dataset, which are aggregated into one noisy label per example, yielding a large,
noisily-labeled training set for a classifier.

then executed on many unlabeled examples, re-
sulting in a large, weakly-supervised training set
that is then used to train a classifier.

Semantic parsing of natural language into log-
ical forms is recognized as a challenging prob-
lem and has been studied extensively (Zelle and
Mooney, 1996; Zettlemoyer and Collins, 2005;
Liang et al., 2011; Liang, 2016). One of our ma-
jor findings is that in our setting, even a simple
rule-based semantic parser suffices for three rea-
sons: First, we find that the majority of incorrect
LFs can be automatically filtered out either seman-
tically (e.g., is it consistent with the associated ex-
ample?) or pragmatically (e.g., does it avoid as-
signing the same label to the entire training set?).
Second, LFs near the gold LF in the space of logi-
cal forms are often just as accurate (and sometimes
even more accurate). Third, techniques for com-
bining weak supervision sources are built to toler-
ate some noise (Alfonseca et al., 2012; Takamatsu
et al., 2012; Ratner et al., 2018). The significance
of this is that we can deploy the same semantic
parser across tasks without task-specific training.
We show how we can tackle a real-world biomedi-
cal application with the same semantic parser used
to extract instances of spouses.

Our work is most similar to that of Srivastava
et al. (2017), who also use natural language expla-
nations to train a classifier, but with two important
differences. First, they jointly train a task-specific
semantic parser and classifier, whereas we use a

simple rule-based parser. In Section 4, we find that
in our weak supervision framework, the rule-based
semantic parser and the perfect parser yield nearly
identical downstream performance. Second, while
they use the logical forms of explanations to pro-
duce features that are fed directly to a classifier, we
use them as functions for labeling a much larger
training set. In Section 4, we show that using func-
tions yields a 9.5 F1 improvement (26% relative
improvement) over features, and that the F1 score
scales with the amount of available unlabeled data.

We validate our approach on two existing
datasets from the literature (extracting spouses
from news articles and disease-causing chemi-
cals from biomedical abstracts) and one real-world
use case with our biomedical collaborators at Oc-
camzRazor to extract protein-kinase interactions
related to Parkinson’s disease from text. We find
empirically that users are able to train classifiers
with comparable F1 scores up to two orders of
magnitude faster when they provide natural lan-
guage explanations instead of individual labels.
Our code and data can be found at https://
github.com/HazyResearch/babble.

2 The BabbleLabble Framework

The BabbleLabble framework converts natural
language explanations and unlabeled data into a
noisily-labeled training set (see Figure 2). There
are three key components: a semantic parser, a
filter bank, and a label aggregator. The semantic
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<START>      label    false    because    X    and    Y    are   the   same    person   <STOP>

START LABEL FALSE BECAUSE ARG AND ARG IS EQUAL STOP

BOOL ARGLIST ISEQUAL

CONDITION

LF

Lexical Rules Unary Rules Compositional Rules

→ <START>
→ label
→ false

START
LABEL
FALSE

→ FALSE
→ TRUE
→ INT

BOOL
BOOL
NUM

LF
CONDITION
ARGLIST

→ START LABEL BOOL BECAUSE CONDITION STOP
→ ARGLIST ISEQUAL
→ ARG AND ARG

Ignored token

Figure 3: Valid parses are found by iterating over increasingly large subspans of the input looking for
matches among the right hand sides of the rules in the grammar. Rules are either lexical (converting
tokens into symbols), unary (converting one symbol into another symbol), or compositional (combining
many symbols into a single higher-order symbol). A rule may optionally ignore unrecognized tokens in
a span (denoted here with a dashed line).

parser converts natural language explanations into
a set of logical forms representing labeling func-
tions (LFs). The filter bank removes as many in-
correct LFs as possible without requiring ground
truth labels. The remaining LFs are applied to un-
labeled examples to produce a matrix of labels.
This label matrix is passed into the label aggre-
gator, which combines these potentially conflict-
ing and overlapping labels into one label for each
example. The resulting labeled examples are then
used to train an arbitrary discriminative model.

2.1 Explanations

To create the input explanations, the user views a
subset S of an unlabeled dataset D (where |S| �
|D|) and provides for each input xi ∈ S a label
yi and a natural language explanation ei, a sen-
tence explaining why the example should receive
that label. The explanation ei generally refers to
specific aspects of the example (e.g., in Figure 2,
the location of a specific string “his wife”).

2.2 Semantic Parser

The semantic parser takes a natural language ex-
planation ei and returns a set of LFs (logical forms
or labeling functions) {f1, . . . , fk} of the form
fi : X → {−1, 0, 1} in a binary classification
setting, with 0 representing abstention. We em-
phasize that the goal of this semantic parser is not
to generate the single correct parse, but rather to
have coverage over many potentially useful LFs.1

1Indeed, we find empirically that an incorrect LF nearby
the correct one in the space of logical forms actually has
higher end-task accuracy 57% of the time (see Section 4.2).

We choose a simple rule-based semantic parser
that can be used without any training. Formally,
the parser uses a set of rules of the form α → β,
where α can be replaced by the token(s) in β (see
Figure 3 for example rules). To identify candidate
LFs, we recursively construct a set of valid parses
for each span of the explanation, based on the sub-
stitutions defined by the grammar rules. At the
end, the parser returns all valid parses (LFs in our
case) corresponding to the entire explanation.

We also allow an arbitrary number of tokens in
a given span to be ignored when looking for a
matching rule. This improves the ability of the
parser to handle unexpected input, such as un-
known words or typos, since the portions of the
input that are parseable can still result in a valid
parse. For example, in Figure 3, the word “per-
son” is ignored.

All predicates included in our grammar (sum-
marized in Table 1) are provided to annota-
tors, with minimal examples of each in use
(Appendix A). Importantly, all rules are do-
main independent (e.g., all three relation extrac-
tion tasks that we tested used the same grammar),
making the semantic parser easily transferrable to
new domains. Additionally, while this paper fo-
cuses on the task of relation extraction, in princi-
ple the BabbleLabble framework can be applied
to other tasks or settings by extending the grammar
with the necessary primitives (e.g., adding primi-
tives for rows and columns to enable explanations
about the alignments of words in tables). To guide
the construction of the grammar, we collected 500
explanations for the Spouse domain from workers
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Predicate Description

bool, string,
int, float, tuple,
list, set

Standard primitive data types

and, or, not, any,
all, none

Standard logic operators

=, 6=, <, ≤, >, ≥ Standard comparison operators
lower, upper,
capital, all caps

Return True for strings of the
corresponding case

starts with,
ends with,
substring

Return True if the first string
starts/ends with or contains the
second

person, location,
date, number,
organization

Return True if a string has the
corresponding NER tag

alias A frequently used list of words
may be predefined and referred
to with an alias

count, contains,
intersection

Operators for checking size,
membership, or common ele-
ments of a list/set

map, filter Apply a functional primitive to
each member of list/set to
transform or filter the elements

word distance,
character distance

Return the distance between
two strings by words or charac-
ters

left, right,
between, within

Return as a string the text that is
left/right/within some distance
of a string or between two des-
ignated strings

Table 1: Predicates in the grammar supported by
BabbleLabble’s rule-based semantic parser.

on Amazon Mechanical Turk and added support
for the most commonly used predicates. These
were added before the experiments described in
Section 4. Altogether the grammar contains 200
rule templates.

2.3 Filter Bank

The input to the filter bank is a set of candidate
LFs produced by the semantic parser. The pur-
pose of the filter bank is to discard as many incor-
rect LFs as possible without requiring additional
labels. It consists of two classes of filters: seman-
tic and pragmatic.

Recall that each explanation ei is collected in
the context of a specific labeled example (xi, yi).
The semantic filter checks for LFs that are in-
consistent with their corresponding example; for-
mally, any LF f for which f(xi) 6= yi is discarded.
For example, in the first explanation in Figure 2,
the word “right” can be interpreted as either “im-
mediately” (as in “right before”) or simply “to the

right.” The latter interpretation results in a func-
tion that is inconsistent with the associated exam-
ple (since “his wife” is actually to the left of person
2), so it can be safely removed.

The pragmatic filters removes LFs that are con-
stant, redundant, or correlated. For example, in
Figure 2, LF 2a is constant, as it labels every ex-
ample positively (since all examples contain two
people from the same sentence). LF 3b is redun-
dant, since even though it has a different syntax
tree from LF 3a, it labels the training set identi-
cally and therefore provides no new signal.

Finally, out of all LFs from the same explana-
tion that pass all the other filters, we keep only
the most specific (lowest coverage) LF. This pre-
vents multiple correlated LFs from a single exam-
ple from dominating.

As we show in Section 4, over three tasks, the
filter bank removes 86% of incorrect parses, and
the incorrect ones that remain have average end-
task accuracy within 2.5% of the corresponding
correct parses.

2.4 Label Aggregator

The label aggregator combines multiple (poten-
tially conflicting) suggested labels from the LFs
and combines them into a single probabilistic la-
bel per example. Concretely, if m LFs pass
the filter bank and are applied to n examples,
the label aggregator implements a function f :
{−1, 0, 1}m×n → [0, 1]n.

A naive solution would be to use a simple ma-
jority vote, but this fails to account for the fact
that LFs can vary widely in accuracy and cover-
age. Instead, we use data programming (Ratner
et al., 2016), which models the relationship be-
tween the true labels and the output of the label-
ing functions as a factor graph. More specifically,
given the true labels Y ∈ {−1, 1}n (latent) and la-
bel matrix Λ ∈ {−1, 0, 1}m×n (observed) where
Λi,j = LFi(xj), we define two types of factors
representing labeling propensity and accuracy:

φLab
i,j (Λ, Y ) = 1{Λi,j 6= 0} (1)

φAcc
i,j (Λ, Y ) = 1{Λi,j = yj}. (2)

Denoting the vector of factors pertaining to a given
data point xj as φj(Λ, Y ) ∈ Rm, define the model:

pw(Λ, Y ) = Z−1w exp
( n∑

j=1

w · φj(Λ, Y )
)
, (3)
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They include Joan Ridsdale, a 62-year-old payroll administrator from County Durham who was hit with a €16,000 tax bill when her 
husband Gordon died.

Spouse

Disease

Protein

Example

Explanation True, because the phrase “her husband” is within three words of person 2.

Example

Explanation

Young women on replacement estrogens for ovarian failure after cancer therapy may also have increased risk of endometrial 
carcinoma and should be examined periodically.

(person 1, 
person 2)

(chemical, 
disease)

(protein, 
kinase)

True, because “risk of” comes before the disease.

Here we show that c-Jun N-terminal kinases JNK1, JNK2 and JNK3 phosphorylate tau at many serine/threonine-prolines, as 
assessed by the generation of the epitopes of phosphorylation-dependent anti-tau antibodies.

Example

Explanation True, because at least one of the words 'phosphorylation', 'phosphorylate', 'phosphorylated', 'phosphorylates' is found in the 
sentence and the number of words between the protein and kinase is smaller than 8."

Figure 4: An example and explanation for each of the three datasets.

where w ∈ R2m is the weight vector and Zw is
the normalization constant. To learn this model
without knowing the true labels Y , we minimize
the negative log marginal likelihood given the ob-
served labels Λ:

ŵ = arg min
w

− log
∑

Y

pw(Λ, Y ) (4)

using SGD and Gibbs sampling for inference, and
then use the marginals pŵ(Y | Λ) as probabilistic
training labels.

Intuitively, we infer accuracies of the LFs based
on the way they overlap and conflict with one an-
other. Since noisier LFs are more likely to have
high conflict rates with others, their correspond-
ing accuracy weights in w will be smaller, reduc-
ing their influence on the aggregated labels.

2.5 Discriminative Model

The noisily-labeled training set that the label ag-
gregator outputs is used to train an arbitrary dis-
criminative model. One advantage of training a
discriminative model on the task instead of us-
ing the label aggregator as a classifier directly is
that the label aggregator only takes into account
those signals included in the LFs. A discrimina-
tive model, on the other hand, can incorporate fea-
tures that were not identified by the user but are
nevertheless informative.2 Consequently, even ex-
amples for which all LFs abstained can still be
classified correctly. On the three tasks we eval-
uate, using the discriminative model averages 4.3
F1 points higher than using the label aggregator
directly.

For the results reported in this paper, our dis-
criminative model is a simple logistic regression
classifier with generic features defined over depen-
dency paths.3 These features include unigrams,

2We give an example of two such features in Section 4.3.
3https://github.com/HazyResearch/treedlib

Task Train Dev Test % Pos.

Spouse 22195 2796 2697 8%
Disease 6667 773 4101 20%
Protein 5546 1011 1058 22%

Table 2: The total number of unlabeled train-
ing examples (a pair of annotated entities in a
sentence), labeled development examples (for hy-
perparameter tuning), labeled test examples (for
assessment), and the fraction of positive labels in
the test split.

bigrams, and trigrams of lemmas, dependency la-
bels, and part of speech tags found in the siblings,
parents, and nodes between the entities in the de-
pendency parse of the sentence. We found this to
perform better on average than a biLSTM, particu-
larly for the traditional supervision baselines with
small training set sizes; it also provided easily in-
terpretable features for analysis.

3 Experimental Setup

We evaluate the accuracy of BabbleLabble on
three relation extraction tasks, which we refer to
as Spouse, Disease, and Protein. The goal
of each task is to train a classifier for predicting
whether the two entities in an example are partic-
ipating in the relationship of interest, as described
below.

3.1 Datasets

Statistics for each dataset are reported in Ta-
ble 2, with one example and one explanation for
each given in Figure 4 and additional explanations
shown in Appendix B.

In the Spouse task, annotators were shown a
sentence with two highlighted names and asked to
label whether the sentence suggests that the two
people are spouses. Sentences were pulled from
the Signal Media dataset of news articles (Corney
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BL TS

# Inputs 30 30 60 150 300 1,000 3,000 10,000

Spouse 50.1 15.5 15.9 16.4 17.2 22.8 41.8 55.0
Disease 42.3 32.1 32.6 34.4 37.5 41.9 44.5 -
Protein 47.3 39.3 42.1 46.8 51.0 57.6 - -

Average 46.6 28.9 30.2 32.5 35.2 40.8 43.2 55.0

Table 3: F1 scores obtained by a classifier trained with BabbleLabble (BL) using 30 explanations
or with traditional supervision (TS) using the specified number of individually labeled examples.
BabbleLabble achieves the same F1 score as traditional supervision while using fewer user inputs
by a factor of over 5 (Protein) to over 100 (Spouse).

et al., 2016). Ground truth data was collected from
Amazon Mechanical Turk workers, accepting the
majority label over three annotations. The 30 ex-
planations we report on were sampled randomly
from a pool of 200 that were generated by 10 grad-
uate students unfamiliar with BabbleLabble.

In the Disease task, annotators were shown a
sentence with highlighted names of a chemical and
a disease and asked to label whether the sentence
suggests that the chemical causes the disease. Sen-
tences and ground truth labels came from a por-
tion of the 2015 BioCreative chemical-disease re-
lation dataset (Wei et al., 2015), which contains
abstracts from PubMed. Because this task re-
quires specialized domain expertise, we obtained
explanations by having someone unfamiliar with
BabbleLabble translate from Python to natural
language labeling functions from an existing pub-
lication that explored applying weak supervision
to this task (Ratner et al., 2018).

The Protein task was completed in conjunc-
tion with OccamzRazor, a neuroscience company
targeting biological pathways of Parkinson’s dis-
ease. For this task, annotators were shown a sen-
tence from the relevant biomedical literature with
highlighted names of a protein and a kinase and
asked to label whether or not the kinase influ-
ences the protein in terms of a physical interac-
tion or phosphorylation. The annotators had do-
main expertise but minimal programming experi-
ence, making BabbleLabble a natural fit for their
use case.

3.2 Experimental Settings

Text documents are tokenized with spaCy.4 The
semantic parser is built on top of the Python-based

4https://github.com/explosion/spaCy

implementation SippyCup.5 On a single core,
parsing 360 explanations takes approximately two
seconds. We use existing implementations of the
label aggregator, feature library, and discrimina-
tive classifier described in Sections 2.4–2.5 pro-
vided by the open-source project Snorkel (Ratner
et al., 2018).

Hyperparameters for all methods we report
were selected via random search over thirty con-
figurations on the same held-out development set.
We searched over learning rate, batch size, L2 reg-
ularization, and the subsampling rate (for improv-
ing balance between classes).6 All reported F1
scores are the average value of 40 runs with ran-
dom seeds and otherwise identical settings.

4 Experimental Results

We evaluate the performance of BabbleLabble
with respect to its rate of improvement by number
of user inputs, its dependence on correctly parsed
logical forms, and the mechanism by which it uti-
lizes logical forms.

4.1 High Bandwidth Supervision
In Table 3 we report the average F1 score of a
classifier trained with BabbleLabble using 30 ex-
planations or traditional supervision with the indi-
cated number of labels. On average, it took the
same amount of time to collect 30 explanations
as 60 labels.7 We observe that in all three tasks,
BabbleLabble achieves a given F1 score with far
fewer user inputs than traditional supervision, by

5https://github.com/wcmac/sippycup
6Hyperparameter ranges: learning rate (1e-2 to 1e-4),

batch size (32 to 128), L2 regularization (0 to 100), subsam-
pling rate (0 to 0.5)

7Zaidan and Eisner (2008) also found that collecting an-
notator rationales in the form of highlighted substrings from
the sentence only doubled annotation time.
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Pre-filters Discarded Post-filters

LFs Correct Sem. Prag. LFs Correct

Spouse 153 10% 19 115 19 84%
Disease 104 23% 41 36 27 89%
Protein 122 14% 44 58 20 85%

Table 4: The number of LFs generated from 30
explanations (pre-filters), discarded by the filter
bank, and remaining (post-filters), along with the
percentage of LFs that were correctly parsed from
their corresponding explanations.

as much as 100 times in the case of the Spouse
task. Because explanations are applied to many
unlabeled examples, each individual input from
the user can implicitly contribute many (noisy) la-
bels to the learning algorithm.

We also observe, however, that once the num-
ber of labeled examples is sufficiently large, tra-
ditional supervision once again dominates, since
ground truth labels are preferable to noisy ones
generated by labeling functions. However, in do-
mains where there is much more unlabeled data
available than labeled data (which in our experi-
ence is most domains), we can gain in supervision
efficiency from using BabbleLabble.

Of those explanations that did not produce a
correct LF, 4% were caused by the explanation re-
ferring to unsupported concepts (e.g., one expla-
nation referred to “the subject of the sentence,”
which our simple parser doesn’t support). An-
other 2% were caused by human errors (the cor-
rect LF for the explanation was inconsistent with
the example). The remainder were due to unrecog-
nized paraphrases (e.g., the explanation said “the
order of appearance is X, Y” instead of a sup-
ported phrasing like “X comes before Y”).

4.2 Utility of Incorrect Parses

In Table 4, we report LF summary statistics be-
fore and after filtering. LF correctness is based
on exact match with a manually generated parse
for each explanation. Surprisingly, the simple
heuristic-based filter bank successfully removes
over 95% of incorrect LFs in all three tasks, re-
sulting in final LF sets that are 86% correct on av-
erage. Furthermore, among those LFs that pass
through the filter bank, we found that the aver-
age difference in end-task accuracy between cor-
rect and incorrect parses is less than 2.5%. Intu-
itively, the filters are effective because it is quite
difficult for an LF to be parsed from the explana-

BL-FB BL BL+PP

Spouse 15.7 50.1 49.8
Disease 39.8 42.3 43.2
Protein 38.2 47.3 47.4

Average 31.2 46.6 46.8

Table 5: F1 scores obtained using BabbleLabble
with no filter bank (BL-FB), as normal (BL), and
with a perfect parser (BL+PP) simulated by hand.

tion, label its own example correctly (passing the
semantic filter), and not label all examples in the
training set with the same label or identically to
another LF (passing the pragmatic filter).

We went one step further: using the LFs that
would be produced by a perfect semantic parser as
starting points, we searched for “nearby” LFs (LFs
differing by only one predicate) with higher end-
task accuracy on the test set and succeeded 57%
of the time (see Figure 5 for an example). In other
words, when users provide explanations, the sig-
nals they describe provide good starting points, but
they are actually unlikely to be optimal. This ob-
servation is further supported by Table 5, which
shows that the filter bank is necessary to remove
clearly irrelevant LFs, but with that in place, the
simple rule-based semantic parser and a perfect
parser have nearly identical average F1 scores.

4.3 Using LFs as Functions or Features

Once we have relevant logical forms from user-
provided explanations, we have multiple options
for how to use them. Srivastava et al. (2017) pro-
pose using these logical forms as features in a lin-
ear classifier. We choose instead to use them as
functions for weakly supervising the creation of
a larger training set via data programming (Rat-
ner et al., 2016). In Table 6, we compare the two
approaches directly, finding that the the data pro-
gramming approach outperforms a feature-based
one by 9.5 F1 points with the rule-based parser,
and by 4.5 points with a perfect parser.

We attribute this difference primarily to the abil-
ity of data programming to utilize unlabeled data.
In Figure 6, we show how the data programming
approach improves with the number of unlabeled
examples, even as the number of LFs remains
constant. We also observe qualitatively that data
programming exposes the classifier to additional
patterns that are correlated with our explanations
but not mentioned directly. For example, in the
Disease task, two of the features weighted most
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def LF_1a(x):
return (-1 if any(w.startswith(“improv”) for w in left(x.person2)) else 0) CorrectFalse, because a word 

starting with “improve” 
appears before the 
chemical. Incorrect

Explanation Labeling Function Correctness Accuracy

def LF_1b(x):
return (-1 if “improv” in left(x.person2)) else 0)

84.6%

84.6%

def LF_2a(x):
return (1 if “husband” in left(x.person1, dist==1) else 0) CorrectTrue, because “husband” 

occurs right before the 
person1. Incorrect

13.6%

66.2%def LF_2b(x):
return (1 if “husband” in left(x.person2, dist==1) else 0)

Figure 5: Incorrect LFs often still provide useful signal. On top is an incorrect LF produced for the
Disease task that had the same accuracy as the correct LF. On bottom is a correct LF from the Spouse
task and a more accurate incorrect LF discovered by randomly perturbing one predicate at a time as
described in Section 4.2. (Person 2 is always the second person in the sentence).
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Figure 6: When logical forms of natural language
explanations are used as functions for data pro-
gramming (as they are in BabbleLabble), perfor-
mance can improve with the addition of unlabeled
data, whereas using them as features does not ben-
efit from unlabeled data.

highly by the discriminative model were the pres-
ence of the trigrams “could produce a” or “support
diagnosis of” between the chemical and disease,
despite none of these words occurring in the ex-
planations for that task. In Table 6 we see a 4.3
F1 point improvement (10%) when we use the dis-
criminative model that can take advantage of these
features rather than applying the LFs directly to
the test set and making predictions based on the
output of the label aggregator.

5 Related Work and Discussion

Our work has two themes: modeling natural lan-
guage explanations/instructions and learning from
weak supervision. The closest body of work is
on “learning from natural language.” As men-
tioned earlier, Srivastava et al. (2017) convert nat-
ural language explanations into classifier features
(whereas we convert them into labeling functions).
Goldwasser and Roth (2011) convert natural lan-

BL-DM BL BL+PP Feat Feat+PP

Spouse 46.5 50.1 49.8 33.9 39.2
Disease 39.7 42.3 43.2 40.8 43.8
Protein 40.6 47.3 47.4 36.7 44.0

Average 42.3 46.6 46.8 37.1 42.3

Table 6: F1 scores obtained using explanations as
functions for data programming (BL) or features
(Feat), optionally with no discriminative model
(-DM) or using a perfect parser (+PP).

guage into concepts (e.g., the rules of a card
game). Ling and Fidler (2017) use natural lan-
guage explanations to assist in supervising an im-
age captioning model. Weston (2016); Li et al.
(2016) learn from natural language feedback in a
dialogue. Wang et al. (2017) convert natural lan-
guage definitions to rules in a semantic parser to
build up progressively higher-level concepts.

We lean on the formalism of semantic pars-
ing (Zelle and Mooney, 1996; Zettlemoyer and
Collins, 2005; Liang, 2016). One notable trend is
to learn semantic parsers from weak supervision
(Clarke et al., 2010; Liang et al., 2011), whereas
our goal is to obtain weak supervision signal from
semantic parsers.

The broader topic of weak supervision has re-
ceived much attention; we mention some works
most related to relation extraction. In distant su-
pervision (Craven et al., 1999; Mintz et al., 2009)
and multi-instance learning (Riedel et al., 2010;
Hoffmann et al., 2011), an existing knowledge
base is used to (probabilistically) impute a train-
ing set. Various extensions have focused on aggre-
gating a variety of supervision sources by learn-
ing generative models from noisy labels (Alfon-
seca et al., 2012; Takamatsu et al., 2012; Roth and
Klakow, 2013; Ratner et al., 2016; Varma et al.,
2017).
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Finally, while we have used natural language
explanations as input to train models, they can also
be output to interpret models (Krening et al., 2017;
Lei et al., 2016). More generally, from a machine
learning perspective, labels are the primary asset,
but they are a low bandwidth signal between an-
notators and the learning algorithm. Natural lan-
guage opens up a much higher-bandwidth commu-
nication channel. We have shown promising re-
sults in relation extraction (where one explanation
can be “worth” 100 labels), and it would be inter-
esting to extend our framework to other tasks and
more interactive settings.

Reproducibility
The code, data, and experiments for this paper
are available on the CodaLab platform at https:
//worksheets.codalab.org/worksheets/
0x900e7e41deaa4ec5b2fe41dc50594548/.
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A Predicate Examples

Below are the predicates in the rule-based semantic parser grammar, each of which may have many
supported paraphrases, only one of which is listed here in a minimal example.

Logic
and: X is true and Y is true
or: X is true or Y is true
not: X is not true
any: Any of X or Y or Z is true
all: All of X and Y and Z are true
none: None of X or Y or Z is true

Comparison
=: X is equal to Y
6=: X is not Y
<: X is smaller than Y
≤: X is no more than Y
>: X is larger than Y
≥: X is at least Y

Syntax
lower: X is lowercase
upper: X is upper case
capital: X is capitalized
all caps: X is in all caps
starts with: X starts with "cardio"
ends with: X ends with "itis"
substring: X contains "-induced"

Named-entity Tags
person: A person is between X and Y
location: A place is within two words of X
date: A date is between X and Y
number: There are three numbers in the sentence
organization: An organization is right after X

Lists
list: (X, Y) is in Z
set: X, Y, and Z are true
count: There is one word between X and Y
contains: X is in Y
intersection: At least two of X are in Y
map: X is at the start of a word in Y
filter: There are three capitalized words to the left of X
alias: A spouse word is in the sentence (“spouse” is a predefined list from the user)

Position
word distance: X is two words before Y
char distance: X is twenty characters after Y
left: X is before Y
right: X is after Y
between: X is between Y and Z
within: X is within five words of Y
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B Sample Explanations

The following are a sample of the explanations provided by users for each task.

Spouse
Users referred to the first person in the sentence as “X” and the second as “Y”.

Label true because "and" occurs between X and Y and "marriage" occurs
one word after person1.

Label true because person Y is preceded by ‘beau’.

Label false because the words "married", "spouse", "husband", and
"wife" do not occur in the sentence.

Label false because there are more than 2 people in the sentence and
"actor" or "actress" is left of person1 or person2.

Disease

Label true because the disease is immediately after the chemical and
’induc’ or ’assoc’ is in the chemical name.

Label true because a word containing ’develop’ appears somewhere
before the chemical, and the word ’following’ is between the disease
and the chemical.

Label true because "induced by", "caused by", or "due to" appears
between the chemical and the disease."

Label false because "none", "not", or "no" is within 30 characters to
the left of the disease.

Protein

Label true because "Ser" or "Tyr" are within 10 characters of the
protein.

Label true because the words "by" or "with" are between the protein
and kinase and the words "no", "not" or "none" are not in between
the protein and kinase and the total number of words between them is
smaller than 10.

Label false because the sentence contains "mRNA", "DNA", or "RNA".

Label false because there are two "," between the protein and the
kinase with less than 30 characters between them.
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Abstract

We analyze state-of-the-art deep learning
models for three tasks: question answer-
ing on (1) images, (2) tables, and (3) pas-
sages of text. Using the notion of at-
tribution (word importance), we find that
these deep networks often ignore impor-
tant question terms. Leveraging such be-
havior, we perturb questions to craft a vari-
ety of adversarial examples. Our strongest
attacks drop the accuracy of a visual ques-
tion answering model from 61.1% to 19%,
and that of a tabular question answering
model from 33.5% to 3.3%. Additionally,
we show how attributions can strengthen
attacks proposed by Jia and Liang (2017)
on paragraph comprehension models. Our
results demonstrate that attributions can
augment standard measures of accuracy
and empower investigation of model per-
formance. When a model is accurate but
for the wrong reasons, attributions can sur-
face erroneous logic in the model that in-
dicates inadequacies in the test data.

1 Introduction

Recently, deep learning has been applied to a va-
riety of question answering tasks. For instance,
to answer questions about images (e.g. (Kazemi
and Elqursh, 2017)), tabular data (e.g. (Neelakan-
tan et al., 2017)), and passages of text (e.g. (Yu
et al., 2018)). Developers, end-users, and review-
ers (in academia) would all like to understand the
capabilities of these models.

The standard way of measuring the goodness
of a system is to evaluate its error on a test set.
High accuracy is indicative of a good model only if
the test set is representative of the underlying real-
world task. Most tasks have large test and training
sets, and it is hard to manually check that they are
representative of the real world.

In this paper, we propose techniques to analyze
the sensitivity of a deep learning model to ques-
tion words. We do this by applying attribution (as
discussed in section 3), and generating adversar-
ial questions. Here is an illustrative example: re-
call Visual Question Answering (Agrawal et al.,
2015) where the task is to answer questions about
images. Consider the question “how symmetrical
are the white bricks on either side of the build-
ing?” (corresponding image in Figure 1). The sys-
tem that we study gets the answer right (“very”).
But, we find (using an attribution approach) that
the system relies on only a few of the words like
“how” and “bricks”. Indeed, we can construct ad-
versarial questions about the same image that the
system gets wrong. For instance, “how spherical
are the white bricks on either side of the build-
ing?” returns the same answer (“very”). A key
premise of our work is that most humans have ex-
pertise in question answering. Even if they cannot
manually check that a dataset is representative of
the real world, they can identify important ques-
tion words, and anticipate their function in ques-
tion answering.

1.1 Our Contributions

We follow an analysis workflow to understand
three question answering models. There are two
steps. First, we apply Integrated Gradients (hence-
forth, IG) (Sundararajan et al., 2017) to attribute
the systems’ predictions to words in the questions.
We propose visualizations of attributions to make
analysis easy. Second, we identify weaknesses
(e.g., relying on unimportant words) in the net-
works’ logic as exposed by the attributions, and
leverage them to craft adversarial questions.

A key contribution of this work is an overstabil-
ity test for question answering networks. Jia and
Liang (2017) showed that reading comprehension
networks are overly stable to semantics-altering
edits to the passage. In this work, we find that
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such overstability also applies to questions. Fur-
thermore, this behavior can be seen in visual and
tabular question answering networks as well. We
use attributions to a define a general-purpose test
for measuring the extent of the overstability (sec-
tions 4.3 and 5.3). It involves measuring how a
network’s accuracy changes as words are system-
atically dropped from questions.

We emphasize that, in contrast to model-
independent adversarial techniques such as that
of Jia and Liang (2017), our method exploits the
strengths and weaknesses of the model(s) at hand.
This allows our attacks to have a high success rate.
Additionally, using insights derived from attribu-
tions we were able to improve the attack success
rate of Jia and Liang (2017) (section 6.2). Such
extensive use of attributions in crafting adversarial
examples is novel to the best of our knowledge.

Next, we provide an overview of our results. In
each case, we evaluate a pre-trained model on new
inputs. We keep the networks’ parameters intact.

Visual QA (section 4): The task is to answer
questions about images. We analyze the deep net-
work in Kazemi and Elqursh (2017). We find that
the network ignores many question words, rely-
ing largely on the image to produce answers. For
instance, we show that the model retains more
than 50% of its original accuracy even when ev-
ery word that is not “color” is deleted from all
questions in the validation set. We also show
that the model under-relies on important ques-
tion words (e.g. nouns) and attaching content-
free prefixes (e.g., “in not many words, . . .”) to
questions drops the accuracy from 61.1% to 19%.

QA on tables (section 5): We analyze a sys-
tem called Neural Programmer (henceforth,
NP) (Neelakantan et al., 2017) that answers ques-
tions on tabular data. NP determines the answer
to a question by selecting a sequence of opera-
tions to apply on the accompanying table (akin to
an SQL query; details in section 5). We find that
these operation selections are more influenced by
content-free words (e.g., “in”, “at”, “the”, etc.)
in questions than important words such as nouns
or adjectives. Dropping all content-free words
reduces the validation accuracy of the network
from 33.5%1 to 28.5%. Similar to Visual QA, we

1This is the single-model accuracy that we obtained on
training the Neural Programmer network. The accuracy re-
ported in the paper is 34.1%.

show that attaching content-free phrases (e.g., “in
not a lot of words”) to the question drops the net-
work’s accuracy from 33.5% to 3.3%. We also
find that NP often gets the answer right for the
wrong reasons. For instance, for the question
“which nation earned the most gold medals?”,
one of the operations selected by NP is “first”
(pick the first row of the table). Its answer is right
only because the table happens to be arranged in
order of rank. We quantify this weakness by eval-
uating NP on the set of perturbed tables generated
by Pasupat and Liang (2016) and find that its ac-
curacy drops from 33.5% to 23%. Finally, we
show an extreme form of overstability where the
table itself induces a large bias in the network re-
gardless of the question. For instance, we found
that in tables about Olympic medal counts, NP
was predisposed to selecting the “prev” operator.

Reading comprehension (Section 6): The task
is to answer questions about paragraphs of text.
We analyze the network by Yu et al. (2018).
Again, we find that the network often ignores
words that should be important. Jia and Liang
(2017) proposed attacks wherein sentences are
added to paragraphs that ought not to change the
network’s answers, but sometimes do. Our main
finding is that these attacks are more likely to
succeed when an added sentence includes all the
question words that the model found important
(for the original paragraph). For instance, we
find that attacks are 50% more likely to be
successful when the added sentence includes
top-attributed nouns in the question. This insight
should allow the construction of more successful
attacks and better training data sets.

In summary, we find that all networks ignore
important parts of questions. One can fix this by
either improving training data, or introducing an
inductive bias. Our analysis workflow is helpful
in both cases. It would also make sense to expose
end-users to attribution visualizations. Knowing
which words were ignored, or which operations
the words were mapped to, can help the user de-
cide whether to trust a system’s response.

2 Related Work

We are motivated by Jia and Liang (2017). As they
discuss, “the extent to which [reading comprehen-
sion systems] truly understand language remains
unclear”. The contrast between Jia and Liang
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(2017) and our work is instructive. Their main
contribution is to fix the evaluation of reading
comprehension systems by augmenting the test set
with adversarially constructed examples. (As they
point out in Section 4.6 of their paper, this does not
necessarily fix the model; the model may simply
learn to circumvent the specific attack underlying
the adversarial examples.) Their method is inde-
pendent of the specification of the model at hand.
They use crowdsourcing to craft passage perturba-
tions intended to fool the network, and then query
the network to test their effectiveness.

In contrast, we propose improving the analy-
sis of question answering systems. Our method
peeks into the logic of a network to identify high-
attribution question terms. Often there are sev-
eral important question terms (e.g., nouns, adjec-
tives) that receive tiny attribution. We leverage this
weakness and perturb questions to craft targeted
attacks. While Jia and Liang (2017) focus exclu-
sively on systems for the reading comprehension
task, we analyze one system each for three differ-
ent tasks. Our method also helps improve the ef-
ficacy Jia and Liang (2017)’s attacks; see table 4
for examples. Our analysis technique is specific
to deep-learning-based systems, whereas theirs is
not.

We could use many other methods instead of
Integrated Gradients (IG) to attribute a deep net-
work’s prediction to its input features (Baehrens
et al., 2010; Simonyan et al., 2013; Shrikumar
et al., 2016; Binder et al., 2016; Springenberg
et al., 2014). One could also use model agnos-
tic techniques like Ribeiro et al. (2016b). We
choose IG for its ease and efficiency of imple-
mentation (requires just a few gradient-calls) and
its axiomatic justification (see Sundararajan et al.
(2017) for a detailed comparison with other attri-
bution methods).

Recently, there have been a number of tech-
niques for crafting and defending against adver-
sarial attacks on image-based deep learning mod-
els (cf. Goodfellow et al. (2015)). They are based
on oversensitivity of models, i.e., tiny, impercepti-
ble perturbations of the image to change a model’s
response. In contrast, our attacks are based on
models’ over-reliance on few question words even
when other words should matter.

We discuss task-specific related work in corre-
sponding sections (sections 4 to 6).

3 Integrated Gradients (IG)

We employ an attribution technique called Inte-
grated Gradients (IG) (Sundararajan et al., 2017)
to isolate question words that a deep learning sys-
tem uses to produce an answer.

Formally, suppose a function F : Rn ! [0, 1]
represents a deep network, and an input x =
(x1, . . . , xn) 2 Rn. An attribution of the predic-
tion at input x relative to a baseline input x0 is a
vector AF (x, x0) = (a1, . . . , an) 2 Rn where ai

is the contribution of xi to the prediction F (x).
One can think of F as the probability of a specific
response. x1, . . . , xn are the question words; to
be precise, they are going to be vector represen-
tations of these terms. The attributions a1, . . . , an

are the influences/blame-assignments to the vari-
ables x1, . . . , xn on the probability F .

Notice that attributions are defined relative to a
special, uninformative input called the baseline. In
this paper, we use an empty question as the base-
line, that is, a sequence of word embeddings cor-
responding to padding value. Note that the context
(image, table, or passage) of the baseline x0 is set
to be that of x; only the question is set to empty.
We now describe how IG produces attributions.

Intuitively, as we interpolate between the base-
line and the input, the prediction moves along a
trajectory, from uncertainty to certainty (the final
probability). At each point on this trajectory, one
can use the gradient of the function F with respect
to the input to attribute the change in probability
back to the input variables. IG simply aggregates
the gradients of the probability with respect to the
input along this trajectory using a path integral.

Definition 1 (Integrated Gradients) Given an
input x and baseline x0, the integrated gradient
along the ith dimension is defined as follows.

IGi(x, x0) ::= (xi�x0i)⇥
Z 1

↵=0

@F (x0+↵⇥(x�x0))
@xi

d↵

(here @F (x)
@xi

is the gradient of F along the ith di-
mension at x).

Sundararajan et al. (2017) discuss several prop-
erties of IG. Here, we informally mention a few
desirable ones, deferring the reader to Sundarara-
jan et al. (2017) for formal definitions.

IG satisfies the condition that the attributions
sum to the difference between the probabilities at
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the input and the baseline. We call a variable unin-
fluential if all else fixed, varying it does not change
the output probability. IG satisfies the property
that uninfluential variables do not get any attribu-
tion. Conversely, influential variables always get
some attribution. Attributions for a linear com-
bination of two functions F1 and F2 are a lin-
ear combination of the attributions for F1 and F2.
Finally, IG satisfies the condition that symmetric
variables get equal attributions.

In this work, we validate the use of IG em-
pirically via question perturbations. We observe
that perturbing high-attribution terms changes the
networks’ response (sections 4.4 and 5.5). Con-
versely, perturbing terms that receive a low attribu-
tion does not change the network’s response (sec-
tions 4.3 and 5.3). We use these observations to
craft attacks against the network by perturbing in-
stances where generic words (e.g., “a”, “the”) re-
ceive high attribution or contentful words receive
low attribution.

4 Visual Question Answering

4.1 Task, model, and data

The Visual Question Answering Task (Agrawal
et al., 2015; Teney et al., 2017; Kazemi and
Elqursh, 2017; Ben-younes et al., 2017; Zhu et al.,
2016) requires a system to answer questions about
images (fig. 1). We analyze the deep network
from Kazemi and Elqursh (2017). It achieves
61.1% accuracy on the validation set (the state of
the art (Fukui et al., 2016) achieves 66.7%). We
chose this model for its easy reproducibility.

The VQA 1.0 dataset (Agrawal et al., 2015)
consists of 614,163 questions posed over 204,721
images (3 questions per image). The images were
taken from COCO (Lin et al., 2014), and the ques-
tions and answers were crowdsourced.

The network in Kazemi and Elqursh (2017)
treats question answering as a classification task
wherein the classes are 3000 most frequent an-
swers in the training data. The input question
is tokenized, embedded and fed to a multi-layer
LSTM. The states of the LSTM attend to a featur-
ized version of the image, and ultimately produce
a probability distribution over the answer classes.

4.2 Observations

We applied IG and attributed the top selected an-
swer class to input question words. The base-
line for a given input instance is the image and an

Question: how symmetrical are the
white bricks on either side of the
building
Prediction: very
Ground truth: very

Figure 1: Visual QA (Kazemi and Elqursh, 2017): Visual-
ization of attributions (word importances) for a question that
the network gets right. Red indicates high attribution, blue
negative attribution, and gray near-zero attribution. The col-
ors are determined by attributions normalized w.r.t the maxi-
mum magnitude of attributions among the question’s words.

empty question2. We omit instances where the top
answer class predicted by the network remains the
same even when the question is emptied (i.e., the
baseline input). This is because IG attributions are
not informative when the input and the baseline
have the same prediction.

A visualization of the attributions is shown in
fig. 1. Notice that very few words have high at-
tribution. We verified that altering the low at-
tribution words in the question does not change
the network’s answer. For instance, the following
questions still return “very” as the answer: “how
spherical are the white bricks on either side of the
building”, “how soon are the bricks fading on ei-
ther side of the building”, “how fast are the bricks
speaking on either side of the building”.

On analyzing attributions across examples, we
find that most of the highly attributed words are
words such as “there”, “what”, “how”, “doing”–
they are usually the less important words in ques-
tions. In section 4.3 we describe a test to measure
the extent to which the network depends on such
words. We also find that informative words in the
question (e.g., nouns) often receive very low attri-
bution, indicating a weakness on part of the net-
work. In Section 4.4, we describe various attacks
that exploit this weakness.

4.3 Overstability test

To determine the set of question words that the net-
work finds most important, we isolate words that
most frequently occur as top attributed words in
questions. We then drop all words except these
and compute the accuracy.

Figure 2 shows how the accuracy changes as the
size of this isolated set is varied from 0 to 5305.

2We do not black out the image in our baseline as our
objective is to study the influence of just the question words
for a given image
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We find that just one word is enough for the model
to achieve more than 50% of its final accuracy.
That word is “color”.

Figure 2: VQA network (Kazemi and Elqursh, 2017): Ac-
curacy as a function of vocabulary size, relative to its original
accuracy. Words are chosen in the descending order of how
frequently they appear as top attributions. The X-axis is on
logscale, except near zero where it is linear.

Note that even when empty questions are passed
as input to the network, its accuracy remains at
about 44.3% of its original accuracy. This shows
that the model is largely reliant on the image for
producing the answer.

The accuracy increases (almost) monotonically
with the size of the isolated set. The top 6 words in
the isolated set are “color”, “many”, “what”, “is”,
“there”, and “how”. We suspect that generic words
like these are used to determine the type of the an-
swer. The network then uses the type to choose
between a few answers it can give for the image.

4.4 Attacks

Attributions reveal that the network relies largely
on generic words in answering questions (sec-
tion 4.3). This is a weakness in the network’s
logic. We now describe a few attacks against the
network that exploit this weakness.

Subject ablation attack

In this attack, we replace the subject of a ques-
tion with a specific noun that consistently receives
low attribution across questions. We then deter-
mine, among the questions that the network orig-
inally answered correctly, what percentage result
in the same answer after the ablation. We repeat
this process for different nouns; specifically, “fits”,
“childhood”, “copyrights”, “mornings”, “disor-
der”, “importance”, “topless”, “critter”, “jumper”,
“tweet”, and average the result.

Prefix Accuracy

in not a lot of words 35.5%
in not many words 32.5%
what is the answer to 31.7%

Union of all three 19%

Baseline prefix

tell me 51.3%
answer this 55.7%
answer this for me 49.8%

Union of baseline prefixes 46.9%

Table 1: VQA network (Kazemi and Elqursh, 2017): Ac-
curacy for prefix attacks; original accuracy is 61.1%.

We find that, among the set of questions that the
network originally answered correctly, 75.6% of
the questions return the same answer despite the
subject replacement.

Prefix attack
In this attack, we attach content-free phrases to
questions. The phrases are manually crafted us-
ing generic words that the network finds impor-
tant (section 4.3). Table 1 (top half) shows the
resulting accuracy for three prefixes —“in not a
lot of words”, “what is the answer to”, and “in not
many words”. All of these phrases nearly halve the
model’s accuracy. The union of the three attacks
drops the model’s accuracy from 61.1% to 19%.

We note that the attributions computed for the
network were crucial in crafting the prefixes. For
instance, we find that other prefixes like “tell me”,
“answer this” and “answer this for me” do not
drop the accuracy by much; see table 1 (bottom
half). The union of these three ineffective prefixes
drops the accuracy from 61.1% to only 46.9%. Per
attributions, words present in these prefixes are not
deemed important by the network.

4.5 Related work

Agrawal et al. (2016) analyze several VQA mod-
els. Among other attacks, they test the models
on question fragments of telescopically increas-
ing length. They observe that VQA models often
arrive at the same answer by looking at a small
fragment of the question. Our stability analysis
in section 4.3 explains, and intuitively subsumes
this; indeed, several of the top attributed words
appear in the prefix, while important words like
“color” often occur in the middle of the ques-
tion. Our analysis enables additional attacks, for
instance, replacing question subject with low attri-
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bution nouns. Ribeiro et al. (2016a) use a model
explanation technique to illustrate overstability for
two examples. They do not quantify their anal-
ysis at scale. Kafle and Kanan (2017); Zhang
et al. (2016) examine the VQA data, identify de-
ficiencies, and propose data augmentation to re-
duce over-representation of certain question/an-
swer types. Goyal et al. (2016) propose the VQA
2.0 dataset, which has pairs of similar images that
have different answers on the same question. We
note that our method can be used to improve these
datasets by identifying inputs where models ig-
nore several words. Huang et al. (2017) evalu-
ate robustness of VQA models by appending ques-
tions with semantically similar questions. Our pre-
fix attacks in section 4.4 are in a similar vein and
perhaps a more natural and targeted approach. Fi-
nally, Fong and Vedaldi (2017) use saliency meth-
ods to produce image perturbations as adversarial
examples; our attacks are on the question.

5 Question Answering over Tables

5.1 Task, model, and data

We now analyze question answering over ta-
bles based on the WikiTableQuestions benchmark
dataset (Pasupat and Liang, 2015). The dataset has
22033 questions posed over 2108 tables scraped
from Wikipedia. Answers are either contents of ta-
ble cells or some table aggregations. Models per-
forming QA on tables translate the question into a
structured program (akin to an SQL query) which
is then executed on the table to produce the an-
swer. We analyze a model called Neural Program-
mer (NP) (Neelakantan et al., 2017). NP is the
state of the art among models that are weakly su-
pervised, i.e., supervised using the final answer in-
stead of the correct structured program. It achieves
33.5% accuracy on the validation set.

NP translates the input into a structured pro-
gram consisting of four operator and table column
selections. An example of such a program is “reset
(score), reset (score), min (score), print (name)”,
where the output is the name of the person who
has the lowest score.

5.2 Observations

We applied IG to attribute operator and column
selection to question words. NP preprocesses
inputs and whenever applicable, appends sym-
bols tm token, cm token to questions that sig-
nify matches between a question and the accom-

panying table. These symbols are treated the same
as question words. NP also computes priors for
column selection using question-table matches.
These vectors, tm and cm , are passed as addi-
tional inputs to the neural network. In the baseline
for IG, we use an empty question, and zero vectors
for column selection priors3.

Figure 3: Visualization of attributions. Question words,
preprocessing tokens and column selection priors on the Y-
axis. Along the X-axis are operator and column selections
with their baseline counterparts in parentheses. Operators and
columns not affecting the final answer, and those which are
same as their baseline counterparts, are given zero attribution.

We visualize the attributions using an alignment
matrix; they are commonly used in the analysis of
translation models (fig. 3). Observe that the oper-
ator “first” is used when the question is asking for
a superlative. Further, we see that the word “gold”
is a trigger for this operator. We investigate impli-
cations of this behavior in the following sections.

5.3 Overstability test

Similar to the test we did for Visual QA (sec-
tion 4.3), we check for overstability in NP by look-
ing at accuracy as a function of the vocabulary
size. We treat table match annotations tm token ,
cm token and the out-of-vocab token (unk ) as
part of the vocabulary. The results are in fig. 4. We
see that the curve is similar to that of Visual QA
(fig. 2). Just 5 words (along with the column se-
lection priors) are sufficient for the model to reach
more than 50% of its final accuracy on the valida-
tion set. These five words are: “many”, “number”,
“tm token”, “after”, and “total”.

5.4 Table-specific default programs

We saw in the previous section that the model re-
lies on only a few words in producing correct an-
swers. An extreme case of overstability is when

3Note that the table is left intact in the baseline
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Operator sequence # Triggers Insights

reset, reset, max, print 109 [unk, date, position, points, name, competition, notes, no, year, venue] sports
reset, prev, max, print 68 [unk, rank, total, bronze, gold, silver, nation, name, date, no] medal tallies
reset, reset, first, print 29 [name, unk, notes, year, nationality, rank, location, date, comments, hometown] player rankings
reset, mfe, first, print 25 [notes, date, title, unk, role, genre, year, score, opponent, event] awards
reset, reset, min, print 17 [year, height, unk, name, position, floors, notes, jan, jun, may] building info.
reset, mfe, max, print 14 [opponent, date, result, location, rank, site, attendance, notes, city, listing] politics
reset, next, first, print 10 [unk, name, year, edition, birth, death, men, time, women, type] census

Table 2: Attributions to column names for table-specific default programs (programs returned by NP on empty input ques-
tions). See supplementary material, table 6 for the full list. These results are indication that the network is predisposed towards
picking certain operators solely based on the table.

Figure 4: Accuracy as a function of vocabulary size. The
words are chosen in the descending order of their frequency
appearance as top attributions to question terms. The X-axis
is on logscale, except near zero where it is linear. Note that
just 5 words are necessary for the network to reach more than
50% of its final accuracy.

the operator sequences produced by the model are
independent of the question. We find that if we
supply an empty question as an input, i.e., the out-
put is a function only of the table, then the dis-
tribution over programs is quite skewed. We call
these programs table-specific default programs.
On average, about 36.9% of the selected operators
match their table-default counterparts, indicating
that the model relies significantly on the table for
producing an answer.

For each default program, we used IG to at-
tribute operator and column selections to column
names and show ten most frequently occurring
ones across tables in the validation set (table 2).

Here is an insight from this analysis: NP uses
the combination “reset, prev” to exclude the last
row of the table from answer computation. The de-
fault program corresponding to “reset, prev, max,
print” has attributions to column names such as
“rank”, “gold”, “silver”, “bronze”, “nation”,
“year”. These column names indicate medal tal-
lies and usually have a “total” row. If the table
happens not to have a “total” row, the model may

‘

Attack phrase Prefix Suffix

in not a lot of words 20.6% 10.0%
if its all the same 21.8% 18.7%
in not many words 15.6% 11.2%
one way or another 23.5% 20.0%

Union of above attacks 3.3%

Baseline

please answer 32.3% 30.7%
do you know 31.2% 29.5%

Union of baseline prefixes 27.1%

Table 3: Neural Programmer (Neelakantan et al., 2017):
Left: Validation accuracy when attack phrases are concate-
nated to the question. (Original: 33.5%)

produce an incorrect answer.
We now describe attacks that add or drop

content-free words from the question, and cause
NP to produce the wrong answer. These attacks
leverage the attribution analysis.

5.5 Attacks

Question concatenation attacks

In these attacks, we either suffix or prefix content-
free phrases to questions. The phrases are crafted
using irrelevant trigger words for operator selec-
tions (supplementary material, table 5). We man-
ually ensure that the phrases are content-free.

Table 3 describes our results. The first 4 phrases
use irrelevant trigger words and result in a large
drop in accuracy. For instance, the first phrase
uses “not” which is a trigger for “next”, “last”, and
“min”, and the second uses “same” which is a trig-
ger for “next” and “mfe”. The four phrases com-
bined results in the model’s accuracy going down
from 33.5% to 3.3%. The first two phrases alone
drop the accuracy to 5.6%.

The next set of phrases use words that receive
low attribution across questions, and are hence
non-triggers for any operator. The resulting drop
in accuracy on using these phrases is relatively
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low. Combined, they result in the model’s accu-
racy dropping from 33.5% to 27.1%.

Stop word deletion attacks
We find that sometimes an operator is selected
based on stop words like: “a”, “at”, “the”, etc. For
instance, in the question, “what ethnicity is at the
top?”, the operator “next” is triggered on the word
“at”. Dropping the word “at” from the question
changes the operator selection and causes NP to
return the wrong answer.

We drop stop words from questions in the val-
idation dataset that were originally answered cor-
rectly and test NP on them. The stop words to be
dropped were manually selected4 and are shown
in Figure 5 in the supplementary material.

By dropping stop words, the accuracy drops
from 33.5% to 28.5%. Selecting operators based
on stop words is not robust. In real world search
queries, users often phrase questions without stop
words, trading grammatical correctness for con-
ciseness. For instance, the user may simply say
“top ethnicity”. It may be possible to defend
against such examples by generating synthetic
training data, and re-training the network on it.

Row reordering attacks
We found that NP often got the question right by
leveraging artifacts of the table. For instance, the
operators for the question “which nation earned
the most gold medals” are “reset”, “prev”, “first”
and “print”. The “prev” operator essentially ex-
cludes the last row from the answer computation.
It gets the answer right for two reasons: (1) the an-
swer is not in the last row, and (2) rows are sorted
by the values in the column “gold”.

In general, a question answering system should
not rely on row ordering in tables. To quantify
the extent of such biases, we used a perturbed ver-
sion of WikiTableQuestions validation dataset as
described in Pasupat and Liang (2016)5 and eval-
uated the existing NP model on it (there was no
re-training involved here). We found that NP has
only 23% accuracy on it, in constrast to an accu-
racy of 33.5% on the original validation dataset.

One approach to making the network robust to
row-reordering attacks is to train against perturbed
tables. This may also help the model generalize

4We avoided standard stop word lists (e.g. NLTK) as they
contain contentful words (e.g “after”) which may be impor-
tant in some questions (e.g. “who ranked right after turkey?”)

5based on data at https://nlp.stanford.edu/
software/sempre/wikitable/dpd/

better. Indeed, Mudrakarta et al. (2018) note that
the state-of-the-art strongly supervised6 model on
WikiTableQuestions (Krishnamurthy et al., 2017)
enjoys a 7% gain in its final accuracy by leverag-
ing perturbed tables during training.

6 Reading Comprehension

6.1 Task, model, and data
The reading comprehension task involves identi-
fying a span from a context paragraph as an an-
swer to a question. The SQuAD dataset (Ra-
jpurkar et al., 2016) for machine reading com-
prehension contains 107.7K query-answer pairs,
with 87.5K for training, 10.1K for validation, and
another 10.1K for testing. Deep learning meth-
ods are quite successful on this problem, with the
state-of-the-art F1 score at 84.6 achieved by Yu
et al. (2018); we analyze their model.

6.2 Analyzing adversarial examples
Recall the adversarial attacks proposed by Jia and
Liang (2017) for reading comprehension systems.
Their attack ADDSENT appends sentences to the
paragraph that resemble an answer to the question
without changing the ground truth. See the second
column of table 4 for a few examples.

We investigate the effectiveness of their attacks
using attributions. We analyze 100 examples gen-
erated by the ADDSENT method in Jia and Liang
(2017), and find that an adversarial sentence is
successful in fooling the model in two cases:

First, a contentful word in the question gets
low/zero attribution and the adversarially added
sentence modifies that word. E.g. in the question,
“Who did Kubiak take the place of after Super
Bowl XXIV?”, the word “Super” gets low attribu-
tion. Adding “After Champ Bowl XXV, Crowton
took the place of Jeff Dean” changes the prediction
for the model. Second, a contentful word in the
question that is not present in the context. For e.g.
in the question “Where hotel did the Panthers stay
at?”, “hotel”, is not present in the context. Adding
“The Vikings stayed at Chicago hotel.” changes
the prediction for the model.

On the flip side, an adversarial sentence is un-
successful when a contentful word in the question
having high attribution is not present in the added
sentence. E.g. for “Where according to gross state
product does Victoria rank in Australia?”, “Aus-
tralia” receives high attribution. Adding “Accord-

6supervised on the structured program
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Question ADDSENT attack that does not work Attack that works

Who was Count of Melfi
Jeff Dean was the mayor of Bracco. Jeff Dean was the mayor of Melfi.

What country was Abhisit Vejjajiva
prime minister of , despite having been
born in Newcastle ?

Samak Samak was prime minister of
the country of Chicago, despite hav-
ing been born in Leeds.

Abhisit Vejjajiva was chief minister
of the country of Chicago, despite
having been born in Leeds.

Where according to gross state product
does Victoria rank in Australia ?

According to net state product, Ade-
laide ranks 7 in New Zealand

According to net state product,
Adelaide ranked 7 in Australia. (as
a prefix)

When did the Methodist Protestant
Church split from the Methodist Episco-
pal Church ?

The Presbyterian Catholics split from
the Presbyterian Anglican in 1805.

The Methodist Protestant Church
split from the Presbyterian Angli-
can in 1805. (as a prefix)

What period was 2.5 million years ago ?
The period of Plasticean era was 2.5
billion years ago.

The period of Plasticean era was 1.5
billion years ago. (as a prefix)

Table 4: ADDSENT attacks that failed to fool the model. With modifications to preserve nouns with high attributions, these
are successful in fooling the model. Question words that receive high attribution are colored red (intensity indicates magnitude).

ing to net state product, Adelaide ranks 7 in New
Zealand.” does not fool the model. However,
retaining “Australia” in the adversarial sentence
does change the model’s prediction.

6.3 Predicting the effectiveness of attacks

Next we correlate attributions with efficacy of the
ADDSENT attacks. We analyzed 1000 (question,
attack phrase) instances7 where Yu et al. (2018)
model has the correct baseline prediction. Of
the 1000 cases, 508 are able to fool the model,
while 492 are not. We split the examples into
two groups. The first group has examples where a
noun or adjective in the question has high attribu-
tion, but is missing from the adversarial sentence
and the rest are in the second group. Our attri-
bution analysis suggests that we should find more
failed examples in the first group. That is indeed
the case. The first group has 63% failed examples,
while the second has only 40%.

Recall that the attack sentences were con-
structed by (a) generating a sentence that answers
the question, (b) replacing all the adjectives and
nouns with antonyms, and named entities by the
nearest word in GloVe word vector space (Pen-
nington et al., 2014) and (c) crowdsourcing to
check that the new sentence is grammatically cor-
rect. This suggests a use of attributions to improve
the effectiveness of the attacks, namely ensuring
that question words that the model thinks are im-
portant are left untouched in step (b) (we note that
other changes in should be carried out). In table 4,

7data sourced from https://
worksheets.codalab.org/worksheets/
0xc86d3ebe69a3427d91f9aaa63f7d1e7d/

we show a few examples where an original attack
did not fool the model, but preserving a noun with
high attribution did.

7 Conclusion

We analyzed three question answering models us-
ing an attribution technique. Attributions helped
us identify weaknesses of these models more ef-
fectively than conventional methods (based on val-
idation sets). We believe that a workflow that uses
attributions can aid the developer in iterating on
model quality more effectively.

While the attacks in this paper may seem un-
realistic, they do expose real weaknesses that af-
fect the usage of a QA product. Under-reliance on
important question terms is not safe. We also be-
lieve that other QA models may share these weak-
nesses. Our attribution-based methods can be di-
rectly used to gauge the extent of such problems.
Additionally, our perturbation attacks (sections 4.4
and 5.5) serve as empirical validation of attribu-
tions.

Reproducibility

Code to generate attributions and reproduce our
results is freely available at https://github.
com/pramodkaushik/acl18_results.
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Abstract

We study the task of generating from
Wikipedia articles question-answer pairs
that cover content beyond a single sen-
tence. We propose a neural network
approach that incorporates coreference
knowledge via a novel gating mechanism.
Compared to models that only take into
account sentence-level information (Heil-
man and Smith, 2010; Du et al., 2017;
Zhou et al., 2017), we find that the lin-
guistic knowledge introduced by the coref-
erence representation aids question gen-
eration significantly, producing models
that outperform the current state-of-the-
art. We apply our system (composed of
an answer span extraction system and the
passage-level QG system) to the 10,000
top-ranking Wikipedia articles and create
a corpus of over one million question-
answer pairs. We also provide a qualita-
tive analysis for this large-scale generated
corpus from Wikipedia.

1 Introduction

Recently, there has been a resurgence of work in
NLP on reading comprehension (Hermann et al.,
2015; Rajpurkar et al., 2016; Joshi et al., 2017)
with the goal of developing systems that can an-
swer questions about the content of a given pas-
sage or document. Large-scale QA datasets are in-
dispensable for training expressive statistical mod-
els for this task and play a critical role in ad-
vancing the field. And there have been a num-
ber of efforts in this direction. Miller et al. (2016),
for example, develop a dataset for open-domain
question answering; Rajpurkar et al. (2016) and
Joshi et al. (2017) do so for reading comprehen-
sion (RC); and Hill et al. (2015) and Hermann

Paragraph:
(1)Tesla was renowned for his achievements
and showmanship, eventually earning him a
reputation in popular culture as an archetypal
"mad scientist". (2)His patents earned him a
considerable amount of money, much of which
was used to finance his own projects with vary-
ing degrees of success. (3)He lived most of his
life in a series of New York hotels, through his
retirement. (4)Tesla died on 7 January 1943. ...

Questions:

– What was Tesla’s reputation in popular cul-
ture?

mad scientist

– How did Tesla finance his work?
patents

– Where did Tesla live for much of his life?
New York hotels

Figure 1: Example input from the fourth para-
graph of a Wikipedia article on Nikola Tesla,
along with the natural questions and their answers
from the SQuAD (Rajpurkar et al., 2016) dataset.
We show in italics the set of mentions that refer to
Nikola Tesla — Tesla, him, his, he, etc.

et al. (2015), for the related task of answering
cloze questions (Winograd, 1972; Levesque et al.,
2011). To create these datasets, either crowd-
sourcing or (semi-)synthetic approaches are used.
The (semi-)synthetic datasets (e.g., Hermann et al.
(2015)) are large in size and cheap to obtain;
however, they do not share the same characteris-
tics as explicit QA/RC questions (Rajpurkar et al.,
2016). In comparison, high-quality crowdsourced
datasets are much smaller in size, and the anno-
tation process is quite expensive because the la-
beled examples require expertise and careful de-
sign (Chen et al., 2016).
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Thus, there is a need for methods that can au-
tomatically generate high-quality question-answer
pairs. Serban et al. (2016) propose the use of re-
current neural networks to generate QA pairs from
structured knowledge resources such as Freebase.
Their work relies on the existence of automatically
acquired KBs, which are known to have errors and
suffer from incompleteness. They are also non-
trivial to obtain. In addition, the questions in the
resulting dataset are limited to queries regarding a
single fact (i.e., tuple) in the KB.

Motivated by the need for large scale QA
pairs and the limitations of recent work, we in-
vestigate methods that can automatically “har-
vest” (generate) question-answer pairs from raw
text/unstructured documents, such as Wikipedia-
type articles.

Recent work along these lines (Du et al., 2017;
Zhou et al., 2017) (see Section 2) has proposed
the use of attention-based recurrent neural models
trained on the crowdsourced SQuAD dataset (Ra-
jpurkar et al., 2016) for question generation.
While successful, the resulting QA pairs are based
on information from a single sentence. As de-
scribed in Du et al. (2017), however, nearly 30%
of the questions in the human-generated questions
of SQuAD rely on information beyond a single
sentence. For example, in Figure 1, the second
and third questions require coreference informa-
tion (i.e., recognizing that “His” in sentence 2 and
“He” in sentence 3 both corefer with “Tesla” in
sentence 1) to answer them.

Thus, our research studies methods for incor-
porating coreference information into the train-
ing of a question generation system. In particu-
lar, we propose gated Coreference knowledge for
Neural Question Generation (CorefNQG), a neu-
ral sequence model with a novel gating mecha-
nism that leverages continuous representations of
coreference clusters — the set of mentions used
to refer to each entity — to better encode lin-
guistic knowledge introduced by coreference, for
paragraph-level question generation.

In an evaluation using the SQuAD dataset, we
find that CorefNQG enables better question gen-
eration. It outperforms significantly the baseline
neural sequence models that encode information
from a single sentence, and a model that encodes
all preceding context and the input sentence itself.
When evaluated on only the portion of SQuAD
that requires coreference resolution, the gap be-

tween our system and the baseline systems is even
larger.

By applying our approach to the 10,000 top-
ranking Wikipedia articles, we obtain a ques-
tion answering/reading comprehension dataset
with over one million QA pairs; we provide a
qualitative analysis in Section 6. The dataset
and the source code for the system are avail-
able at https://github.com/xinyadu/
HarvestingQA.

2 Related Work

2.1 Question Generation

Since the work by Rus et al. (2010), question gen-
eration (QG) has attracted interest from both the
NLP and NLG communities. Most early work in
QG employed rule-based approaches to transform
input text into questions, usually requiring the ap-
plication of a sequence of well-designed general
rules or templates (Mitkov and Ha, 2003; Labu-
tov et al., 2015). Heilman and Smith (2010) intro-
duced an overgenerate-and-rank approach: their
system generates a set of questions and then ranks
them to select the top candidates. Apart from
generating questions from raw text, there has also
been research on question generation from sym-
bolic representations (Yao et al., 2012; Olney
et al., 2012).

With the recent development of deep repre-
sentation learning and large QA datasets, there
has been research on recurrent neural network
based approaches for question generation. Ser-
ban et al. (2016) used the encoder-decoder frame-
work to generate QA pairs from knowledge base
triples; Reddy et al. (2017) generated questions
from a knowledge graph; Du et al. (2017) studied
how to generate questions from sentences using
an attention-based sequence-to-sequence model
and investigated the effect of exploiting sentence-
vs. paragraph-level information. Du and Cardie
(2017) proposed a hierarchical neural sentence-
level sequence tagging model for identifying
question-worthy sentences in a text passage. Fi-
nally, Duan et al. (2017) investigated how to use
question generation to help improve question an-
swering systems on the sentence selection subtask.

In comparison to the related methods from
above that generate questions from raw text, our
method is different in its ability to take into ac-
count contextual information beyond the sentence-
level by introducing coreference knowledge.
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2.2 Question Answering Datasets and
Creation

Recently there has been an increasing interest
in question answering with the creation of many
datasets. Most are built using crowdsourcing; they
are generally comprised of fewer than 100,000
QA pairs and are time-consuming to create. We-
bQuestions (Berant et al., 2013), for example, con-
tains 5,810 questions crawled via the Google Sug-
gest API and is designed for knowledge base QA
with answers restricted to Freebase entities. To
tackle the size issues associated with WebQues-
tions, Bordes et al. (2015) introduce SimpleQues-
tions, a dataset of 108,442 questions authored by
English speakers. SQuAD (Rajpurkar et al., 2016)
is a dataset for machine comprehension; it is cre-
ated by showing a Wikipedia paragraph to hu-
man annotators and asking them to write questions
based on the paragraph. TriviaQA (Joshi et al.,
2017) includes 95k question-answer authored by
trivia enthusiasts and corresponding evidence doc-
uments.

(Semi-)synthetic generated datasets are easier to
build to large-scale (Hill et al., 2015; Hermann
et al., 2015). They usually come in the form
of cloze-style questions. For example, Hermann
et al. (2015) created over a million examples by
pairing CNN and Daily Mail news articles with
their summarized bullet points. Chen et al. (2016)
showed that this dataset is quite noisy due to the
method of data creation and concluded that per-
formance of QA systems on the dataset is almost
saturated.

Closest to our work is that of Serban et al.
(2016). They train a neural triple-to-sequence
model on SimpleQuestions, and apply their sys-
tem to Freebase to produce a large collection of
human-like question-answer pairs.

3 Task Definition

Our goal is to harvest high quality question-
answer pairs from the paragraphs of an article
of interest. In our task formulation, this con-
sists of two steps: candidate answer extrac-
tion and answer-specific question generation.
Given an input paragraph, we first identify a
set of question-worthy candidate answers ans =
(ans1, ans2, ..., ansl), each a span of text as de-
noted in color in Figure 1. For each candidate an-
swer ansi, we then aim to generate a question Q
— a sequence of tokens y1, ..., yN — based on the

sentence S that contains candidate ansi such that:

• Q asks about an aspect of ansi that is of po-
tential interest to a human;

• Q might rely on information from sentences
that precede S in the paragraph.

Mathematically then,

Q = argmax
Q

P (Q|S,C) (1)

where P (Q|S,C) =
∏N
n=1 P (yn|y<n, S, C)

where C is the set of sentences that precede S in
the paragraph.

4 Methodology

In this section, we introduce our framework for
harvesting the question-answer pairs. As de-
scribed above, it consists of the question generator
CorefNQG (Figure 2) and a candidate answer ex-
traction module. During test/generation time, we
(1) run the answer extraction module on the input
text to obtain answers, and then (2) run the ques-
tion generation module to obtain the correspond-
ing questions.

4.1 Question Generation
As shown in Figure 2, our generator prepares
the feature-rich input embedding — a concate-
nation of (a) a refined coreference position fea-
ture embedding, (b) an answer feature embedding,
and (c) a word embedding, each of which is de-
scribed below. It then encodes the textual input
using an LSTM unit (Hochreiter and Schmidhu-
ber, 1997). Finally, an attention-copy equipped
decoder is used to decode the question.

More specifically, given the input sentence S
(containing an answer span) and the preceding
context C, we first run a coreference resolution
system to get the coref-clusters for S and C
and use them to create a coreference transformed
input sentence: for each pronoun, we append
its most representative non-pronominal coreferent
mention. Specifically, we apply the simple feed-
forward network based mention-ranking model of
Clark and Manning (2016) to the concatenation
of C and S to get the coref-clusters for all en-
tities in C and S. The C&M model produces
a score/representation s for each mention pair
(m1,m2),

s(m1,m2) = Wmhm(m1,m2) + bm (2)
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Figure 2: The gated Coreference knowledge for Neural Question Generation (CorefNQG) Model.

word they the panthers defeated the arizona cardinals 49 – 15 ...
ans. feature O O O O B_ANS I_ANS I_ANS O O O ...
coref. feature B_PRO B_ANT I_ANT O O O O O O O ...

Table 1: Example input sentence with coreference and answer position features. The corresponding gold
question is “What team did the Panthers defeat in the NFC championship game ?”

where Wm is a 1 × d weight matrix and b is the
bias. hm(m1,m2) is representation of the last hid-
den layer of the three layer feedforward neural net-
work.

For each pronoun in S, we then heuristically
identify the most “representative” antecedent from
its coref-cluster. (Proper nouns are preferred.) We
append the new mention after the pronoun. For ex-
ample, in Table 1, “the panthers” is the most rep-
resentative mention in the coref-cluster for “they”.
The new sentence with the appended coreferent
mention is our coreference transformed input sen-
tence S

′
(see Figure 2).

Coreference Position Feature Embedding For
each token in S

′
, we also maintain one position

feature fc = (c1, ..., cn), to denote pronouns (e.g.,
“they”) and antecedents (e.g., “the panthers”). We
use the BIO tagging scheme to label the associ-
ated spans in S

′
. “B_ANT” denotes the start of an

antecedent span, tag “I_ANT” continues the an-
tecedent span and tag “O” marks tokens that do
not form part of a mention span. Similarly, tags
“B_PRO” and “I_PRO” denote the pronoun span.
(See Table 1, “coref. feature”.)

Refined Coref. Position Feature Embedding
Inspired by the success of gating mecha-

nisms for controlling information flow in neu-
ral networks (Hochreiter and Schmidhuber, 1997;
Dauphin et al., 2017), we propose to use a gat-
ing network here to obtain a refined representa-
tion of the coreference position feature vectors
fc = (c1, ..., cn). The main idea is to uti-
lize the mention-pair score (see Equation 2) to
help the neural network learn the importance of
the coreferent phrases. We compute the refined
(gated) coreference position feature vector fd =
(d1, ..., dn) as follows,

gi = ReLU(Waci +Wbscorei + b)

di = gi � ci
(3)

where � denotes an element-wise product be-
tween two vectors and ReLU is the rectified linear
activation function. scorei denotes the mention-
pair score for each antecedent token (e.g., “the”
and “panthers”) with the pronoun (e.g., “they”);
scorei is obtained from the trained model (Equa-
tion 2) of the C&M. If token i is not added later
as an antecedent token, scorei is set to zero. Wa,
Wb are weight matrices and b is the bias vector.

Answer Feature Embedding We also include
an answer position feature embedding to gener-
ate answer-specific questions; we denote the an-
swer span with the usual BIO tagging scheme (see,
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e.g., “the arizona cardinals” in Table 1). During
training and testing, the answer span feature (i.e.,
“B_ANS”, “I_ANS” or “O”) is mapped to its fea-
ture embedding space: fa = (a1, ..., an).

Word Embedding To obtain the word em-
bedding for the tokens themselves, we just map
the tokens to the word embedding space: x =
(x1, ..., xn).

Final Encoder Input As noted above, the fi-
nal input to the LSTM-based encoder is a concate-
nation of (1) the refined coreference position fea-
ture embedding (light blue units in Figure 2), (2)
the answer position feature embedding (red units),
and (3) the word embedding for the token (green
units),

ei = concat(di, ai, xi) (4)

Encoder As for the encoder itself, we use bidi-
rectional LSTMs to read the input e = (e1, ..., en)
in both the forward and backward directions. Af-
ter encoding, we obtain two sequences of hid-
den vectors, namely,

−→
h = (

−→
h1, ...,

−→
hn) and

←−
h =

(
←−
h1, ...,

←−
hn). The final output state of the encoder

is the concatenation of
−→
h and

←−
h where

hi = concat(
−→
hi ,
←−
hi) (5)

Question Decoder with Attention & Copy On
top of the feature-rich encoder, we use LSTMs
with attention (Bahdanau et al., 2015) as the de-
coder for generating the question y1, ..., ym one
token at a time. To deal with rare/unknown words,
the decoder also allows directly copying words
from the source sentence via pointing (Vinyals
et al., 2015).

At each time step t, the decoder LSTM reads
the previous word embedding wt−1 and previous
hidden state st−1 to compute the new hidden state,

st = LSTM(wt−1, st−1) (6)
Then we calculate the attention distribution αt as
in Bahdanau et al. (2015),

et,i = hTi Wcst−1
αt = softmax(et)

(7)

where Wc is a weight matrix and attention dis-
tribution αt is a probability distribution over the
source sentence words. With αt, we can obtain
the context vector h∗t ,

h∗t =
n∑

i=1

αithi (8)

Then, using the context vector h∗t and hidden
state st, the probability distribution over the target
(question) side vocabulary is calculated as,

Pvocab = softmax(Wdconcat(h∗t , st)) (9)

Instead of directly using Pvocab for train-
ing/generating with the fixed target side vocabu-
lary, we also consider copying from the source
sentence. The copy probability is based on the
context vector h∗t and hidden state st,

λcopyt = σ (Weh
∗
t +Wfst) (10)

and the probability distribution over the source
sentence words is the sum of the attention scores
of the corresponding words,

Pcopy(w) =

n∑

i=1

αit ∗ 1{w == wi} (11)

Finally, we obtain the probability distribution over
the dynamic vocabulary (i.e., union of original tar-
get side and source sentence vocabulary) by sum-
ming over Pcopy and Pvocab,

P (w) = λcopyt Pcopy(w) + (1− λcopyt )Pvocab(w)
(12)

where σ is the sigmoid function, and Wd, We,
Wf are weight matrices.

4.2 Answer Span Identification
We frame the problem of identifying candidate an-
swer spans from a paragraph as a sequence label-
ing task and base our model on the BiLSTM-CRF
approach for named entity recognition (Huang
et al., 2015). Given a paragraph of n tokens, in-
stead of directly feeding the sequence of word
vectors x = (x1, ..., xn) to the LSTM units, we
first construct the feature-rich embedding x

′
for

each token, which is the concatenation of the word
embedding, an NER feature embedding, and a
character-level representation of the word (Lam-
ple et al., 2016). We use the concatenated vector
as the “final” embedding x

′
for the token,

x
′
i = concat(xi,CharRepi,NERi) (13)

where CharRepi is the concatenation of the last
hidden states of a character-based biLSTM. The
intuition behind the use of NER features is that
SQuAD answer spans contain a large number of
named entities, numeric phrases, etc.

Then a multi-layer Bi-directional LSTM is ap-
plied to (x

′
1, ..., x

′
n) and we obtain the output state
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zt for time step t by concatenation of the hid-
den states (forward and backward) at time step
t from the last layer of the BiLSTM. We apply
the softmax to (z1, ..., zn) to get the normalized
score representation for each token, which is of
size n× k, where k is the number of tags.

Instead of using a softmax training objective
that minimizes the cross-entropy loss for each
individual word, the model is trained with a
CRF (Lafferty et al., 2001) objective, which min-
imizes the negative log-likelihood for the entire
correct sequence: − log(py),

py =
exp(q(x

′
,y))∑

y′∈Y′ exp(q(x′ ,y′))
(14)

where q(x
′
,y) =

∑n
t=1 Pt,yt +

∑n−1
t=0 Ayt,yt+1 ,

Pt,yt is the score of assigning tag yt to the tth to-
ken, and Ayt,yt+1 is the transition score from tag
yt to yt+1, the scoring matrix A is to be learned.
Y
′

represents all the possible tagging sequences.

5 Experiments

5.1 Dataset

We use the SQuAD dataset (Rajpurkar et al., 2016)
to train our models. It is one of the largest gen-
eral purpose QA datasets derived from Wikipedia
with over 100k questions posed by crowdwork-
ers on a set of Wikipedia articles. The answer to
each question is a segment of text from the corre-
sponding Wiki passage. The crowdworkers were
users of Amazon’s Mechanical Turk located in the
US or Canada. To obtain high-quality articles, the
authors sampled 500 articles from the top 10,000
articles obtained by Nayuki’s Wikipedia’s inter-
nal PageRanks. The question-answer pairs were
generated by annotators from a paragraph; and
although the dataset is typically used to evaluate
reading comprehension, it has also been used in an
open domain QA setting (Chen et al., 2017; Wang
et al., 2018). For training/testing answer extrac-
tion systems, we pair each paragraph in the dataset
with the gold answer spans that it contains. For the
question generation system, we pair each sentence
that contains an answer span with the correspond-
ing gold question as in Du et al. (2017).

To quantify the effect of using predicted (rather
than gold standard) answer spans on question gen-
eration (e.g., predicted answer span boundaries
can be inaccurate), we also train the models on
an augmented “Training set w/ noisy examples”

(see Table 2). This training set contains all of the
original training examples plus new examples for
predicted answer spans (from the top-performing
answer extraction model, bottom row of Table 3)
that overlap with a gold answer span. We pair the
new training sentence (w/ predicted answer span)
with the gold question. The added examples com-
prise 42.21% of the noisy example training set.

For generation of our one million QA pair cor-
pus, we apply our systems to the 10,000 top-
ranking articles of Wikipedia.

5.2 Evaluation Metrics

For question generation evaluation, we use
BLEU (Papineni et al., 2002) and ME-
TEOR (Denkowski and Lavie, 2014).1 BLEU
measures average n-gram precision vs. a set of
reference questions and penalizes for overly short
sentences. METEOR is a recall-oriented metric
that takes into account synonyms, stemming, and
paraphrases.

For answer candidate extraction evaluation, we
use precision, recall and F-measure vs. the gold
standard SQuAD answers. Since answer bound-
aries are sometimes ambiguous, we compute Bi-
nary Overlap and Proportional Overlap metrics in
addition to Exact Match. Binary Overlap counts
every predicted answer that overlaps with a gold
answer span as correct, and Proportional Overlap
give partial credit proportional to the amount of
overlap (Johansson and Moschitti, 2010; Irsoy and
Cardie, 2014).

5.3 Baselines and Ablation Tests

For question generation, we compare to the state-
of-the-art baselines and conduct ablation tests
as follows: Du et al. (2017)’s model is an
attention-based RNN sequence-to-sequence neu-
ral network (without using the answer location in-
formation feature). Seq2seq + copyw/ answer is the
attention-based sequence-to-sequence model aug-
mented with a copy mechanism, with answer fea-
tures concatenated with the word embeddings dur-
ing encoding. Seq2seq + copyw/ full context + answer
is the same model as the previous one, but we al-
low access to the full context (i.e., all the preced-
ing sentences and the input sentence itself). We
denote it as ContextNQG henceforth for simplic-
ity. CorefNQG is the coreference-based model
proposed in this paper. CorefNQG–gating is an

1We use the evaluation scripts of Du et al. (2017).

1912



Models Training set Training set w/ noisy examples

BLEU-3 BLEU-4 METEOR BLEU-3 BLEU-4 METEOR

Baseline (Du et al., 2017) (w/o answer) 17.50 12.28 16.62 15.81 10.78 15.31
Seq2seq + copy (w/ answer) 20.01 14.31 18.50 19.61 13.96 18.19
ContextNQG: Seq2seq + copy

(w/ full context + answer)
20.31 14.58 18.84 19.57 14.05 18.19

CorefNQG 20.90 15.16 19.12 20.19 14.52 18.59
- gating 20.68 14.84 18.98 20.08 14.40 18.64
- mention-pair score 20.56 14.75 18.85 19.73 14.13 18.38

Table 2: Evaluation results for question generation.

Models Precision Recall F-measure

Prop. Bin. Exact Prop. Bin. Exact Prop. Bin. Exact

NER 24.54 25.94 12.77 58.20 67.66 38.52 34.52 37.50 19.19
BiLSTM 43.54 45.08 22.97 28.43 35.99 18.87 34.40 40.03 20.71
BiLSTM w/ NER 44.35 46.02 25.33 33.30 40.81 23.32 38.04 43.26 24.29
BiLSTM-CRF w/ char 49.35 51.92 38.58 30.53 32.75 24.04 37.72 40.16 29.62
BiLSTM-CRF w/ char w/ NER 45.96 51.61 33.90 41.05 43.98 28.37 43.37 47.49 30.89

Table 3: Evaluation results of answer extraction systems.

ablation test, the gating network is removed and
the coreference position embedding is not refined.
CorefNQG–mention-pair score is also an abla-
tion test where all mention-pair scorei are set to
zero.

For answer span extraction, we conduct exper-
iments to compare the performance of an off-the-
shelf NER system and BiLSTM based systems.

For training and implementation details,
please see the Supplementary Material.

6 Results and Analysis

6.1 Automatic Evaluation
Table 2 shows the BLEU-{3, 4} and METEOR
scores of different models. Our CorefNQG out-
performs the seq2seq baseline of Du et al. (2017)
by a large margin. This shows that the copy
mechanism, answer features and coreference res-
olution all aid question generation. In addi-
tion, CorefNQG outperforms both Seq2seq+Copy
models significantly, whether or not they have ac-
cess to the full context. This demonstrates that
the coreference knowledge encoded with the gat-
ing network explicitly helps with the training and
generation: it is more difficult for the neural se-
quence model to learn the coreference knowledge
in a latent way. (See input 1 in Figure 3 for an ex-
ample.) Building end-to-end models that take into
account coreference knowledge in a latent way is
an interesting direction to explore. In the ablation
tests, the performance drop of CorefNQG–gating

BLEU-3 BLEU-4 METEOR

Seq2seq + copy
(w/ ans.) 17.81 12.30 17.11

ContextNQG 18.05 12.53 17.33
CorefNQG 18.46 12.96 17.58

Table 4: Evaluation results for question generation
on the portion that requires coreference knowledge
(36.42% examples of the original test set).

shows that the gating network is playing an impor-
tant role for getting refined coreference position
feature embedding, which helps the model learn
the importance of an antecedent. The performance
drop of CorefNQG–mention-pair score shows the
mention-pair score introduced from the external
system (Clark and Manning, 2016) helps the neu-
ral network better encode coreference knowledge.

To better understand the effect of coreference
resolution, we also evaluate our model and the
baseline models on just that portion of the test set
that requires pronoun resolution (36.42% of the
examples) and show the results in Table 4. The
gaps of performance between our model and the
baseline models are still significant. Besides, we
see that all three systems’ performance drop on
this partial test set, which demonstrates the hard-
ness of generating questions for the cases that re-
quire pronoun resolution (passage context).

We also show in Table 2 the results of the
QG models trained on the training set augmented
with noisy examples with predicted answer spans.
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Input 1: The elizabethan navigator, sir francis drake
was born in the nearby town of tavistock and was the
mayor of plymouth. ... .

::
he

:::
died

::
of
::::::::

dysentery
::
in

::::
1596

::
off

:::
the

::::
coast

::
of

:::::
puerto

:::
rico.

Human: In what year did Sir Francis Drake die ?
ContextNQG: When did he die ?
CorefNQG: When did sir francis drake die ?

Input 2: american idol is an american singing compe-
tition ... .

:
it
:::::
began

:::::
airing

::
on

:::
fox

:::
on

:
june 11 , 2002,

:
as
:::

an
::::::
addition

::
to
:::

the
::::
idols

::::::
format

:::::
based

::
on

:::
the

:::::
british

::::
series

:::
pop

::::
idol

:::
and

:::
has

::::
since

:::::::
become

:::
one

::
of

:::
the

::::
most

:::::::
successful

:::::
shows

::
in

:::
the

:::::
history

::
of

:::::::
american

::::::::
television.

Human: When did american idol first air on tv ?
ContextNQG: When did fox begin airing ?
CorefNQG: When did american idol begin airing ?

Input 3: ... the a38 dual-carriageway runs from east
to west across the north of the city .

:::::
within

:::
the

:::
city

:
it
::
is

::::::::
designated

::
as
::

‘ the parkway
:
’
:::
and

::::::::
represents

:::
the

:::::::
boundary

::::::
between

:::
the

:::::
urban

::::
parts

:::
of

::
the

::::
city

:::
and

:::
the

:::::::
generally

::::
more

:::::
recent

:::::::
suburban

::::
areas

:
.

Human: What is the a38 called inside the city ?
ContextNQG: What is another name for the city ?
CorefNQG: What is the city designated as ?

Figure 3: Example questions (with answers high-
lighted) generated by human annotators (ground
truth questions), by our system CorefNQG, and by
the Seq2seq+Copy model trained with full context
(i.e., ContextNQG).

There is a consistent but acceptable drop for each
model on this new training set, given the inac-
curacy of predicted answer spans. We see that
CorefNQG still outperforms the baseline models
across all metrics.

Figure 3 provides sample output for input sen-
tences that require contextual coreference knowl-
edge. We see that ContextNQG fails in all cases;
our model misses only the third example due to an
error introduced by coreference resolution — the
“city” and “it” are considered coreferent. We can
also see that human-generated questions are more
natural and varied in form with better paraphras-
ing.

In Table 3, we show the evaluation results for
different answer extraction models. First we see
that all variants of BiLSTM models outperform
the off-the-shelf NER system (that proposes all
NEs as answer spans), though the NER system has
a higher recall. The BiLSTM-CRF that encodes
the character-level and NER features for each to-
ken performs best in terms of F-measure.

6.2 Human Study

We hired four native speakers of English to rate
the systems’ outputs. Detailed guidelines for the
raters are listed in the supplementary materials.

Grammaticality Making Sense Answerability Avg. rank

ContextNQG 3.793 3.836 3.892 1.768
CorefNQG 3.804* 3.847** 3.895* 1.762

Human 3.807 3.850 3.902 1.758

Table 5: Human evaluation results for question
generation. “Grammaticality”, “Making Sense” and “An-

swerability” are rated on a 1–5 scale (5 for the best, see the

supplementary materials for a detailed rating scheme), “Av-

erage rank” is rated on a 1–3 scale (1 for the most preferred,

ties are allowed.) Two-tailed t-test results are shown for our

method compared to ContextNQG (stat. significance is indi-

cated with ∗(p < 0.05), ∗∗(p < 0.01).)

The evaluation can also be seen as a measure of the
quality of the generated dataset (Section 6.3). We
randomly sampled 11 passages/paragraphs from
the test set; there are in total around 70 question-
answer pairs for evaluation.

We consider three metrics — “grammaticality”,
“making sense” and “answerability”. The evalu-
ators are asked to first rate the grammatical cor-
rectness of the generated question (before being
shown the associated input sentence or any other
textual context). Next, we ask them to rate the de-
gree to which the question “makes sense” given
the input sentence (i.e., without considering the
correctness of the answer span). Finally, evalua-
tors rate the “answerability” of the question given
the full context.

Table 5 shows the results of the human evalua-
tion. Bold indicates top scores. We see that the
original human questions are preferred over the
two NQG systems’ outputs, which is understand-
able given the examples in Figure 3. The human-
generated questions make more sense and corre-
spond better with the provided answers, particu-
larly when they require information in the preced-
ing context. How exactly to capture the preceding
context so as to ask better and more diverse ques-
tions is an interesting future direction for research.
In terms of grammaticality, however, the neural
models do quite well, achieving very close to hu-
man performance. In addition, we see that our
method (CorefNQG) performs statistically signif-
icantly better across all metrics in comparison to
the baseline model (ContextNQG), which has ac-
cess to the entire preceding context in the passage.

6.3 The Generated Corpus

Our system generates in total 1,259,691 question-
answer pairs, nearly 126 questions per article. Fig-
ure 5 shows the distribution of different types of
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Exact Match F-1

Dev Test Dev Test

DocReader (Chen et al., 2017) 82.33 81.65 88.20 87.79

Table 6: Performance of the neural machine read-
ing comprehension model (no initialization with
pretrained embeddings) on our generated corpus.

The United States of America (USA), commonly re-
ferred to as the United States (U.S.) or America, is a
federal republic composed of states, a federal district,
five major self-governing territories, and various pos-
sessions. ... . The territories are scattered about the
Pacific Ocean and the Caribbean Sea. Nine time zones
are covered. The geography, climate and wildlife of the
country are extremely diverse.
Q1: What is another name for the united states of amer-
ica ?
Q2: How many major territories are in the united states?
Q3: What are the territories scattered about ?

Figure 4: Example question-answer pairs from our
generated corpus.

questions in our dataset vs. the SQuAD training
set. We see that the distribution for “In what”,
“When”, “How long”, “Who”, “Where”, “What
does” and “What do” questions in the two datasets
is similar. Our system generates more “What
is”, “What was” and “What percentage” questions,
while the proportions of “What did”, “Why” and
“Which” questions in SQuAD are larger than ours.
One possible reason is that the “Why”, “What did”
questions are more complicated to ask (sometimes
involving world knowledge) and the answer spans
are longer phrases of various types that are harder
to identify. “What is” and “What was” questions,
on the other hand, are often safer for the neural
networks systems to ask.

In Figure 4, we show some examples of the gen-
erated question-answer pairs. The answer extrac-
tor identifies the answer span boundary well and
all three questions correspond to their answers. Q2
is valid but not entirely accurate. For more exam-
ples, please refer to our supplementary materials.

Table 6 shows the performance of a top-
performing system for the SQuAD dataset (Doc-
ument Reader (Chen et al., 2017)) when applied
to the development and test set portions of our
generated dataset. The system was trained on the
training set portion of our dataset. We use the
SQuAD evaluation scripts, which calculate exact
match (EM) and F-1 scores.2 Performance of the

2F-1 measures the average overlap between the predicted
answer span and ground truth answer (Rajpurkar et al., 2016).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

in which

what has

how did

what can

how long

what year

what were

what do

why

how much

what type

what percentage

what does

what did

which

what are

in what

where

how many

when

what was

who

what is

SQuAD
Our corpus

Figure 5: Distribution of question types of our cor-
pus and SQuAD training set. The categories are
the ones used in Wang et al. (2016), we add one
more category: “what percentage”.

neural machine reading model is reasonable. We
also train the DocReader on our training set and
test the models’ performance on the original dev
set of SQuAD; for this, the performance is around
45.2% on EM and 56.7% on F-1 metric. DocRe-
ader trained on the original SQuAD training set
achieves 69.5% EM, 78.8% F-1 indicating that our
dataset is more difficult and/or less natural than the
crowd-sourced QA pairs of SQuAD.

7 Conclusion

We propose a new neural network model for better
encoding coreference knowledge for paragraph-
level question generation. Evaluations with dif-
ferent metrics on the SQuAD machine reading
dataset show that our model outperforms state-of-
the-art baselines. The ablation study shows the ef-
fectiveness of different components in our model.
Finally, we apply our question generation frame-
work to produce a corpus of 1.26 million question-
answer pairs, which we hope will benefit the QA
research community. It would also be interesting
to apply our approach to incorporating coreference
knowledge to other text generation tasks.
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Abstract

Machine reading comprehension (MRC)
on real web data usually requires the ma-
chine to answer a question by analyzing
multiple passages retrieved by search en-
gine. Compared with MRC on a single
passage, multi-passage MRC is more chal-
lenging, since we are likely to get multiple
confusing answer candidates from differ-
ent passages. To address this problem, we
propose an end-to-end neural model that
enables those answer candidates from dif-
ferent passages to verify each other based
on their content representations. Specifi-
cally, we jointly train three modules that
can predict the final answer based on three
factors: the answer boundary, the answer
content and the cross-passage answer ver-
ification. The experimental results show
that our method outperforms the base-
line by a large margin and achieves the
state-of-the-art performance on the En-
glish MS-MARCO dataset and the Chi-
nese DuReader dataset, both of which are
designed for MRC in real-world settings.

1 Introduction

Machine reading comprehension (MRC), empow-
ering computers with the ability to acquire knowl-
edge and answer questions from textual data, is
believed to be a crucial step in building a general
intelligent agent (Chen et al., 2016). Recent years
have seen rapid growth in the MRC community.
With the release of various datasets, the MRC task
has evolved from the early cloze-style test (Her-
mann et al., 2015; Hill et al., 2015) to answer ex-
traction from a single passage (Rajpurkar et al.,

*This work was done while the first author was doing in-
ternship at Baidu Inc.

2016) and to the latest more complex question an-
swering on web data (Nguyen et al., 2016; Dunn
et al., 2017; He et al., 2017).

Great efforts have also been made to develop
models for these MRC tasks , especially for the
answer extraction on single passage (Wang and
Jiang, 2016; Seo et al., 2016; Pan et al., 2017).
A significant milestone is that several MRC mod-
els have exceeded the performance of human an-
notators on the SQuAD dataset1 (Rajpurkar et al.,
2016). However, this success on single Wikipedia
passage is still not adequate, considering the ulti-
mate goal of reading the whole web. Therefore,
several latest datasets (Nguyen et al., 2016; He
et al., 2017; Dunn et al., 2017) attempt to design
the MRC tasks in more realistic settings by involv-
ing search engines. For each question, they use the
search engine to retrieve multiple passages and the
MRC models are required to read these passages
in order to give the final answer.

One of the intrinsic challenges for such multi-
passage MRC is that since all the passages are
question-related but usually independently writ-
ten, it’s probable that multiple confusing answer
candidates (correct or incorrect) exist. Table 1
shows an example from MS-MARCO. We can
see that all the answer candidates have semantic
matching with the question while they are literally
different and some of them are even incorrect. As
is shown by Jia and Liang (2017), these confus-
ing answer candidates could be quite difficult for
MRC models to distinguish. Therefore, special
consideration is required for such multi-passage
MRC problem.

In this paper, we propose to leverage the an-
swer candidates from different passages to verify
the final correct answer and rule out the noisy in-
correct answers. Our hypothesis is that the cor-

1https://rajpurkar.github.io/SQuAD-explorer/
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Question: What is the difference between a mixed and pure culture?
Passages:
[1] A culture is a society’s total way of living and a society is a group that live in a defined territory and participate in
common culture. While the answer given is in essence true, societies originally form for the express purpose to enhance . . .
[2] . . . There has been resurgence in the economic system known as capitalism during the past two decades. 4. The mixed
economy is a balance between socialism and capitalism. As a result, some institutions are owned and maintained by . . .
[3] A pure culture is one in which only one kind of microbial species is found whereas in mixed culture two or more
microbial species formed colonies. Culture on the other hand, is the lifestyle that the people in the country . . .
[4] Best Answer: A pure culture comprises a single species or strains. A mixed culture is taken from a source and may
contain multiple strains or species. A contaminated culture contains organisms that derived from some place . . .
[5] . . . It will be at that time when we can truly obtain a pure culture. A pure culture is a culture consisting of only one strain.
You can obtain a pure culture by picking out a small portion of the mixed culture . . .
[6] A pure culture is one in which only one kind of microbial species is found whereas in mixed culture two or more
microbial species formed colonies. A pure culture is a culture consisting of only one strain. . . .
· · · · · ·
Reference Answer: A pure culture is one in which only one kind of microbial species is found whereas in mixed culture two
or more microbial species formed colonies.

Table 1: An example from MS-MARCO. The text in bold is the predicted answer candidate from each
passage according to the boundary model. The candidate from [1] is chosen as the final answer by this
model, while the correct answer is from [6] and can be verified by the answers from [3], [4], [5].

rect answers could occur more frequently in those
passages and usually share some commonalities,
while incorrect answers are usually different from
one another. The example in Table 1 demonstrates
this phenomenon. We can see that the answer can-
didates extracted from the last four passages are all
valid answers to the question and they are semanti-
cally similar to each other, while the answer candi-
dates from the other two passages are incorrect and
there is no supportive information from other pas-
sages. As human beings usually compare the an-
swer candidates from different sources to deduce
the final answer, we hope that MRC model can
also benefit from the cross-passage answer veri-
fication process.

The overall framework of our model is demon-
strated in Figure 1 , which consists of three mod-
ules. First, we follow the boundary-based MRC
models (Seo et al., 2016; Wang and Jiang, 2016)
to find an answer candidate for each passage by
identifying the start and end position of the an-
swer (Figure 2). Second, we model the mean-
ings of the answer candidates extracted from those
passages and use the content scores to measure
the quality of the candidates from a second per-
spective. Third, we conduct the answer verifica-
tion by enabling each answer candidate to attend
to the other candidates based on their represen-
tations. We hope that the answer candidates can
collect supportive information from each other ac-
cording to their semantic similarities and further
decide whether each candidate is correct or not.

Therefore, the final answer is determined by three
factors: the boundary, the content and the cross-
passage answer verification. The three steps are
modeled using different modules, which can be
jointly trained in our end-to-end framework.

We conduct extensive experiments on the MS-
MARCO (Nguyen et al., 2016) and DuReader (He
et al., 2017) datasets. The results show that our
answer verification MRC model outperforms the
baseline models by a large margin and achieves
the state-of-the-art performance on both datasets.

2 Our Approach

Figure 1 gives an overview of our multi-passage
MRC model which is mainly composed of three
modules including answer boundary prediction,
answer content modeling and answer verification.
First of all, we need to model the question and
passages. Following Seo et al. (2016), we com-
pute the question-aware representation for each
passage (Section 2.1). Based on this representa-
tion, we employ a Pointer Network (Vinyals et al.,
2015) to predict the start and end position of the
answer in the module of answer boundary predic-
tion (Section 2.2). At the same time, with the
answer content model (Section 2.3), we estimate
whether each word should be included in the an-
swer and thus obtain the answer representations.
Next, in the answer verification module (Section
2.4), each answer candidate can attend to the other
answer candidates to collect supportive informa-
tion and we compute one score for each candidate
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Figure 1: Overview of our method for multi-passage machine reading comprehension

to indicate whether it is correct or not according to
the verification. The final answer is determined by
not only the boundary but also the answer content
and its verification score (Section 2.5).

2.1 Question and Passage Modeling
Given a question Q and a set of passages {Pi} re-
trieved by search engines, our task is to find the
best concise answer to the question. First, we for-
mally present the details of modeling the question
and passages.

Encoding We first map each word into the vec-
tor space by concatenating its word embedding
and sum of its character embeddings. Then we
employ bi-directional LSTMs (BiLSTM) to en-
code the question Q and passages {Pi} as follows:

uQt = BiLSTMQ(uQt−1, [e
Q
t , c

Q
t ]) (1)

uPi
t = BiLSTMP (uPi

t−1, [e
Pi
t , c

Pi
t ]) (2)

where eQt , cQt , ePi
t , cPi

t are the word-level and
character-level embeddings of the tth word. uQt
and uPi

t are the encoding vectors of the tth words
in Q and Pi respectively. Unlike previous work
(Wang et al., 2017c) that simply concatenates all
the passages, we process the passages indepen-
dently at the encoding and matching steps.

Q-P Matching One essential step in MRC is to
match the question with passages so that impor-
tant information can be highlighted. We use the

Attention Flow Layer (Seo et al., 2016) to conduct
the Q-P matching in two directions. The similar-
ity matrix S ∈ R|Q|×|Pi| between the question and
passage i is changed to a simpler version, where
the similarity between the tth word in the question
and the kth word in passage i is computed as:

St,k = uQt
ᵀ · uPi

k (3)

Then the context-to-question attention and
question-to-context attention is applied strictly
following Seo et al. (2016) to obtain the question-
aware passage representation {ũPi

t }. We do not
give the details here due to space limitation. Next,
another BiLSTM is applied in order to fuse the
contextual information and get the new represen-
tation for each word in the passage, which is re-
garded as the match output:

vPi
t = BiLSTMM (vPi

t−1, ũ
Pi
t ) (4)

Based on the passage representations, we intro-
duce the three main modules of our model.

2.2 Answer Boundary Prediction

To extract the answer span from passages, main-
stream studies try to locate the boundary of the an-
swer, which is called boundary model. Following
(Wang and Jiang, 2016), we employ Pointer Net-
work (Vinyals et al., 2015) to compute the proba-
bility of each word to be the start or end position
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of the span:

gtk = wa
1
ᵀ tanh(Wa

2 [vPk ,h
a
t−1]) (5)

αtk = exp(gtk)/
∑|P|

j=1
exp(gtj) (6)

ct =
∑|P|

k=1
αtkv

P
k (7)

hat = LSTM(hat−1, ct) (8)

By utilizing the attention weights, the probabil-
ity of the kth word in the passage to be the start and
end position of the answer is obtained as α1

k and
α2
k. It should be noted that the pointer network is

applied to the concatenation of all passages, which
is denoted as P so that the probabilities are com-
parable across passages. This boundary model can
be trained by minimizing the negative log proba-
bilities of the true start and end indices:

Lboundary = − 1

N

N∑

i=1

(logα1
y1i

+ logα2
y2i

) (9)

where N is the number of samples in the dataset
and y1i , y2i are the gold start and end positions.

2.3 Answer Content Modeling

Previous work employs the boundary model to
find the text span with the maximum boundary
score as the final answer. However, in our context,
besides locating the answer candidates, we also
need to model their meanings in order to conduct
the verification. An intuitive method is to compute
the representation of the answer candidates sepa-
rately after extracting them, but it could be hard to
train such model end-to-end. Here, we propose a
novel method that can obtain the representation of
the answer candidates based on probabilities.

Specifically, we change the output layer of
the classic MRC model. Besides predicting the
boundary probabilities for the words in the pas-
sages, we also predict whether each word should
be included in the content of the answer. The con-
tent probability of the kth word is computed as:

pck = sigmoid(wc
1
ᵀReLU(Wc

2v
Pi
k )) (10)

Training this content model is also quite intu-
itive. We transform the boundary labels into a con-
tinuous segment, which means the words within
the answer span will be labeled as 1 and other
words will be labeled as 0. In this way, we define

the loss function as the averaged cross entropy:

Lcontent =− 1

N

1

|P|
N∑

i=1

|P |∑

j=1

[yck log pck

+ (1− yck) log(1− pck)]
(11)

The content probabilities provide another view
to measure the quality of the answer in addition to
the boundary. Moreover, with these probabilities,
we can represent the answer from passage i as a
weighted sum of all the word embeddings in this
passage:

rAi =
1

|Pi|
∑|Pi|

k=1
pck[e

Pi
k , c

Pi
k ] (12)

2.4 Cross-Passage Answer Verification
The boundary model and the content model focus
on extracting and modeling the answer within a
single passage respectively, with little considera-
tion of the cross-passage information. However,
as is discussed in Section 1, there could be mul-
tiple answer candidates from different passages
and some of them may mislead the MRC model
to make an incorrect prediction. It’s necessary to
aggregate the information from different passages
and choose the best one from those candidates.
Therefore, we propose a method to enable the an-
swer candidates to exchange information and ver-
ify each other through the cross-passage answer
verification process.

Given the representation of the answer candi-
dates from all passages {rAi}, each answer can-
didate then attends to other candidates to collect
supportive information via attention mechanism:

si,j =

{
0, if i = j,

rAi
ᵀ · rAj , otherwise

(13)

αi,j = exp(si,j)/
∑n

k=1
exp(si,k) (14)

r̃Ai =
∑n

j=1
αi,jr

Aj (15)

Here r̃Ai is the collected verification informa-
tion from other passages based on the attention
weights. Then we pass it together with the orig-
inal representation rAi to a fully connected layer:

gvi = wvᵀ[rAi , r̃Ai , rAi � r̃Ai ] (16)

We further normalize these scores over all pas-
sages to get the verification score for answer can-
didate Ai:

pvi = exp(gvi )/
∑n

j=1
exp(gvj ) (17)
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In order to train this verification model, we take
the answer from the gold passage as the gold an-
swer. And the loss function can be formulated as
the negative log probability of the correct answer:

Lverify = − 1

N

N∑

i=1

log pvyvi (18)

where yvi is the index of the correct answer in all
the answer candidates of the ith instance .

2.5 Joint Training and Prediction
As is described above, we define three objectives
for the reading comprehension model over multi-
ple passages: 1. finding the boundary of the an-
swer; 2. predicting whether each word should be
included in the content; 3. selecting the best an-
swer via cross-passage answer verification. Ac-
cording to our design, these three tasks can share
the same embedding, encoding and matching lay-
ers. Therefore, we propose to train them together
as multi-task learning (Ruder, 2017). The joint ob-
jective function is formulated as follows:

L = Lboundary + β1Lcontent + β2Lverify (19)

where β1 and β2 are two hyper-parameters that
control the weights of those tasks.

When predicting the final answer, we take the
boundary score, content score and verification
score into consideration. We first extract the an-
swer candidateAi that has the maximum boundary
score from each passage i. This boundary score is
computed as the product of the start and end prob-
ability of the answer span. Then for each answer
candidate Ai, we average the content probabilities
of all its words as the content score of Ai. And we
can also predict the verification score for Ai using
the verification model. Therefore, the final answer
can be selected from all the answer candidates ac-
cording to the product of these three scores.

3 Experiments

To verify the effectiveness of our model on multi-
passage machine reading comprehension, we con-
duct experiments on the MS-MARCO (Nguyen
et al., 2016) and DuReader (He et al., 2017)
datasets. Our method achieves the state-of-the-art
performance on both datasets.

3.1 Datasets
We choose the MS-MARCO and DuReader
datasets to test our method, since both of them are

MS-MARCO DuReader
Multiple Answers 9.93% 67.28%

Multiple Spans 40.00% 56.38%

Table 2: Percentage of questions that have multi-
ple valid answers or answer spans

designed from real-world search engines and in-
volve a large number of passages retrieved from
the web. One difference of these two datasets is
that MS-MARCO mainly focuses on the English
web data, while DuReader is designed for Chinese
MRC. This diversity is expected to reflect the gen-
erality of our method. In terms of the data size,
MS-MARCO contains 102023 questions, each of
which is paired up with approximately 10 passages
for reading comprehension. As for DuReader, it
keeps the top-5 search results for each question
and there are totally 201574 questions.

One prerequisite for answer verification is that
there should be multiple correct answers so that
they can verify each other. Both the MS-MARCO
and DuReader datasets require the human annota-
tors to generate multiple answers if possible. Ta-
ble 2 shows the proportion of questions that have
multiple answers. However, the same answer that
occurs many times is treated as one single an-
swer here. Therefore, we also report the propor-
tion of questions that have multiple answer spans
to match with the human-generated answers. A
span is taken as valid if it can achieve F1 score
larger than 0.7 compared with any reference an-
swer. From these statistics, we can see that the
phenomenon of multiple answers is quite common
for both MS-MARCO and DuReader. These an-
swers will provide strong signals for answer veri-
fication if we can leverage them properly.

3.2 Implementation Details

For MS-MARCO, we preprocess the corpus with
the reversible tokenizer from Stanford CoreNLP
(Manning et al., 2014) and we choose the span that
achieves the highest ROUGE-L score with the ref-
erence answers as the gold span for training. We
employ the 300-D pre-trained Glove embeddings
(Pennington et al., 2014) and keep it fixed dur-
ing training. The character embeddings are ran-
domly initialized with its dimension as 30. For
DuReader, we follow the preprocessing described
in He et al. (2017).

We tune the hyper-parameters according to the
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Model ROUGE-L BLEU-1
FastQA Ext (Weissenborn et al., 2017) 33.67 33.93
Prediction (Wang and Jiang, 2016) 37.33 40.72
ReasoNet (Shen et al., 2017) 38.81 39.86
R-Net (Wang et al., 2017c) 42.89 42.22
S-Net (Tan et al., 2017) 45.23 43.78
Our Model 46.15 44.47
S-Net (Ensemble) 46.65 44.78
Our Model (Ensemble) 46.66 45.41
Human 47 46

Table 3: Performance of our method and competing models on the MS-MARCO test set

validation performance on the MS-MARCO de-
velopment set. The hidden size is set to be 150
and we apply L2 regularization with its weight as
0.0003. The task weights β1, β2 are both set to
be 0.5. To train our model, we employ the Adam
algorithm (Kingma and Ba, 2014) with the initial
learning rate as 0.0004 and the mini-batch size as
32. Exponential moving average is applied on all
trainable variables with a decay rate 0.9999.

Two simple yet effective technologies are em-
ployed to improve the final performance on these
two datasets respectively. For MS-MARCO, ap-
proximately 8% questions have the answers as Yes
or No, which usually cannot be solved by ex-
tractive approach (Tan et al., 2017). We address
this problem by training a simple Yes/No classi-
fier for those questions with certain patterns (e.g.,
starting with “is”). Concretely, we simply change
the output layer of the basic boundary model so
that it can predict whether the answer is “Yes”
or “No”. For DuReader, the retrieved document
usually contains a large number of paragraphs that
cannot be fed into MRC models directly (He et al.,
2017). The original paper employs a simple a
simple heuristic strategy to select a representative
paragraph for each document, while we train a
paragraph ranking model for this. We will demon-
strate the effects of these two technologies later.

3.3 Results on MS-MARCO

Table 3 shows the results of our system and other
state-of-the-art models on the MS-MARCO test
set. We adopt the official evaluation metrics, in-
cluding ROUGE-L (Lin, 2004) and BLEU-1 (Pa-
pineni et al., 2002). As we can see, for both met-
rics, our single model outperforms all the other
competing models with an evident margin, which
is extremely hard considering the near-human per-

Model BLEU-4 ROUGE-L
Match-LSTM 31.8 39.0
BiDAF 31.9 39.2
PR + BiDAF 37.55 41.81
Our Model 40.97 44.18
Human 56.1 57.4

Table 4: Performance on the DuReader test set

Model ROUGE-L ∆

Complete Model 45.65 -
Answer Verification 44.38 -1.27
Content Modeling 44.27 -1.38
Joint Training 44.12 -1.53
YesNo Classification 41.87 -3.78
Boundary Baseline 38.95 -6.70

Table 5: Ablation study on MS-MARCO develop-
ment set

formance. If we ensemble the models trained with
different random seeds and hyper-parameters, the
results can be further improved and outperform the
ensemble model in Tan et al. (2017), especially in
terms of the BLEU-1.

3.4 Results on DuReader

The results of our model and several baseline sys-
tems on the test set of DuReader are shown in
Table 4. The BiDAF and Match-LSTM models
are provided as two baseline systems (He et al.,
2017). Based on BiDAF, as is described in Section
3.2, we tried a new paragraph selection strategy
by employing a paragraph ranking (PR) model.
We can see that this paragraph ranking can boost
the BiDAF baseline significantly. Finally, we im-
plement our system based on this new strategy,
and our system (single model) achieves further im-
provement by a large margin.
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Question: What is the difference between a mixed and pure culture Scores
Answer Candidates: Boundary Content Verification
[1] A culture is a society’s total way of living and a society is a group . . . 1.0× 10−2 1.0× 10−1 1.1× 10−1

[2] The mixed economy is a balance between socialism and capitalism. 1.0× 10−4 4.0× 10−2 3.2× 10−2

[3] A pure culture is one in which only one kind of microbial species is . . . 5.5× 10−3 7.7× 10−2 1.2× 10−1

[4] A pure culture comprises a single species or strains. A mixed . . . 2.7× 10−3 8.1× 10−2 1.3× 10−1

[5] A pure culture is a culture consisting of only one strain. 5.8× 10−4 7.9× 10−2 5.1× 10−2

[6] A pure culture is one in which only one kind of microbial species . . . 5.8× 10−3 9.1× 10−2 2.7× 10−1

. . . . . . . . . . . .

Table 6: Scores predicted by our model for the answer candidates shown in Table 1. Although the
candidate [1] gets high boundary and content scores, the correct answer [6] is preferred by the verification
model and is chosen as the final answer.

4 Analysis and Discussion

4.1 Ablation Study

To get better insight into our system, we conduct
in-depth ablation study on the development set of
MS-MARCO, which is shown in Table 5. Fol-
lowing Tan et al. (2017), we mainly focus on the
ROUGE-L score that is averaged case by case.

We first evaluate the answer verification by ab-
lating the cross-passage verification model so that
the verification loss and verification score will not
be used during training and testing. Then we re-
move the content model in order to test the ne-
cessity of modeling the content of the answer.
Since we don’t have the content scores, we use the
boundary probabilities instead to compute the an-
swer representation for verification. Next, to show
the benefits of joint training, we train the bound-
ary model separately from the other two models.
Finally, we remove the yes/no classification in or-
der to show the real improvement of our end-to-
end model compared with the baseline method that
predicts the answer with only the boundary model.

From Table 5, we can see that the answer ver-
ification makes a great contribution to the overall
improvement, which confirms our hypothesis that
cross-passage answer verification is useful for the
multi-passage MRC. For the ablation of the con-
tent model, we analyze that it will not only af-
fect the content score itself, but also violate the
verification model since the content probabilities
are necessary for the answer representation, which
will be further analyzed in Section 4.3. Another
discovery is that jointly training the three mod-
els can provide great benefits, which shows that
the three tasks are actually closely related and can
boost each other with shared representations at
bottom layers. At last, comparing our method with
the baseline, we achieve an improvement of nearly

3 points without the yes/no classification. This
significant improvement proves the effectiveness
of our approach.

4.2 Case Study
To demonstrate how each module of our model
takes effect when predicting the final answer, we
conduct a case study in Table 6 with the same ex-
ample that we discussed in Section 1. For each
answer candidate, we list three scores predicted
by the boundary model, content model and veri-
fication model respectively.

On the one hand, we can see that these three
scores generally have some relevance. For exam-
ple, the second candidate is given lowest scores
by all the three models. We analyze that this is
because the models share the same encoding and
matching layers at bottom level and this relevance
guarantees that the content and verification mod-
els will not violate the boundary model too much.
On the other hand, we also see that the verifica-
tion score can really make a difference here when
the boundary model makes an incorrect decision
among the confusing answer candidates ([1], [3],
[4], [6]). Besides, as we expected, the verifica-
tion model tends to give higher scores for those an-
swers that have semantic commonality with each
other ([3], [4], [6]), which are all valid answers
in this case. By multiplying the three scores, our
model finally predicts the answer correctly.

4.3 Necessity of the Content Model
In our model, we compute the answer representa-
tion based on the content probabilities predicted
by a separate content model instead of directly us-
ing the boundary probabilities. We argue that this
content model is necessary for our answer verifica-
tion process. Figure 2 plots the predicted content
probabilities as well as the boundary probabilities
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Figure 2: The boundary probabilities and content probabilities for the words in a passage

for a passage. We can see that the boundary and
content probabilities capture different aspects of
the answer. Since answer candidates usually have
similar boundary words, if we compute the an-
swer representation based on the boundary prob-
abilities, it’s difficult to model the real difference
among different answer candidates. On the con-
trary, with the content probabilities, we pay more
attention to the content part of the answer, which
can provide more distinguishable information for
verifying the correct answer. Furthermore, the
content probabilities can also adjust the weights of
the words within the answer span so that unimpor-
tant words (e.g. “and” and “.”) get lower weights
in the final answer representation. We believe that
this refined representation is also good for the an-
swer verification process.

5 Related Work

Machine reading comprehension made rapid
progress in recent years, especially for single-
passage MRC task, such as SQuAD (Rajpurkar
et al., 2016). Mainstream studies (Seo et al., 2016;
Wang and Jiang, 2016; Xiong et al., 2016) treat
reading comprehension as extracting answer span
from the given passage, which is usually achieved
by predicting the start and end position of the an-
swer. We implement our boundary model sim-
ilarly by employing the boundary-based pointer
network (Wang and Jiang, 2016). Another inspir-
ing work is from Wang et al. (2017c), where the
authors propose to match the passage against it-
self so that the representation can aggregate evi-
dence from the whole passage. Our verification
model adopts a similar idea. However, we collect
information across passages and our attention is
based on the answer representation, which is much
more efficient than attention over all passages. For
the model training, Xiong et al. (2017) argues that
the boundary loss encourages exact answers at the

cost of penalizing overlapping answers. There-
fore they propose a mixed objective that incorpo-
rates rewards derived from word overlap. Our joint
training approach has a similar function. By tak-
ing the content and verification loss into consid-
eration, our model will give less loss for overlap-
ping answers than those unmatched answers, and
our loss function is totally differentiable.

Recently, we also see emerging interests in
multi-passage MRC from both the academic
(Dunn et al., 2017; Joshi et al., 2017) and indus-
trial community (Nguyen et al., 2016; He et al.,
2017). Early studies (Shen et al., 2017; Wang
et al., 2017c) usually concat those passages and
employ the same models designed for single-
passage MRC. However, more and more latest
studies start to design specific methods that can
read multiple passages more effectively. In the as-
pect of passage selection, Wang et al. (2017a) in-
troduced a pipelined approach that rank the pas-
sages first and then read the selected passages
for answering questions. Tan et al. (2017) treats
the passage ranking as an auxiliary task that can
be trained jointly with the reading comprehension
model. Actually, the target of our answer verifi-
cation is very similar to that of the passage se-
lection, while we pay more attention to the an-
swer content and the answer verification process.
Speaking of the answer verification, Wang et al.
(2017b) has a similar motivation to ours. They
attempt to aggregate the evidence from different
passages and choose the final answer from n-best
candidates. However, they implement their idea as
a separate reranking step after reading comprehen-
sion, while our answer verification is a component
of the whole model that can be trained end-to-end.

6 Conclusion

In this paper, we propose an end-to-end frame-
work to tackle the multi-passage MRC task . We

1925



creatively design three different modules in our
model, which can find the answer boundary, model
the answer content and conduct cross-passage an-
swer verification respectively. All these three
modules can be trained with different forms of the
answer labels and training them jointly can pro-
vide further improvement. The experimental re-
sults demonstrate that our model outperforms the
baseline models by a large margin and achieves
the state-of-the-art performance on two challeng-
ing datasets, both of which are designed for MRC
on real web data.

Acknowledgments

This work is supported by the National Ba-
sic Research Program of China (973 program,
No. 2014CB340505) and Baidu-Peking Univer-
sity Joint Project. We thank the Microsoft MS-
MARCO team for evaluating our results on the
anonymous test set. We also thank Ying Chen,
Xuan Liu and the anonymous reviewers for their
constructive criticism of the manuscript.

References
Danqi Chen, Jason Bolton, and Christopher D. Man-

ning. 2016. A thorough examination of the
cnn/daily mail reading comprehension task. In Pro-
ceedings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics, ACL 2016, Au-
gust 7-12, 2016, Berlin, Germany, Volume 1: Long
Papers.

Matthew Dunn, Levent Sagun, Mike Higgins, V. Ugur
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Abstract

A DAG automaton is a formal device for
manipulating graphs. By augmenting a
DAG automaton with transduction rules,
a DAG transducer has potential applica-
tions in fundamental NLP tasks. In this
paper, we propose a novel DAG transducer
to perform graph-to-program transforma-
tion. The target structure of our transducer
is a program licensed by a declarative pro-
gramming language rather than linguis-
tic structures. By executing such a pro-
gram, we can easily get a surface string.
Our transducer is designed especially for
natural language generation (NLG) from
type-logical semantic graphs. Taking Ele-
mentary Dependency Structures, a format
of English Resource Semantics, as input,
our NLG system achieves a BLEU-4 score
of 68.07. This remarkable result demon-
strates the feasibility of applying a DAG
transducer to resolve NLG, as well as the
effectiveness of our design.

1 Introduction

The recent years have seen an increased interest as
well as rapid progress in semantic parsing and sur-
face realization based on graph-structured seman-
tic representations, e.g. Abstract Meaning Rep-
resentation (AMR; Banarescu et al., 2013), Ele-
mentary Dependency Structure (EDS; Oepen and
Lønning, 2006) and Depedendency-based Min-
imal Recursion Semantics (DMRS; Copestake,
2009). Still underexploited is a formal frame-
work for manipulating graphs that parallels au-
tomata, tranducers or formal grammars for strings
and trees. Two such formalisms have recently
been proposed and applied for NLP. One is graph
grammar, e.g. Hyperedge Replacement Gram-

mar (HRG; Ehrig et al., 1999). The other is
DAG automata, originally studied by Kamimura
and Slutzki (1982) and extended by Chiang et al.
(2018). In this paper, we study DAG transducers in
depth, with the goal of building accurate, efficient
yet robust natural language generation (NLG) sys-
tems.

The meaning representation studied in this work
is what we call type-logical semantic graphs, i.e.
semantic graphs grounded under type-logical se-
mantics (Carpenter, 1997), one dominant theoreti-
cal framework for modeling natural language se-
mantics. In this framework, adjuncts, such as
adjective and adverbal phrases, are analyzed as
(higher-order) functors, the function of which is to
consume complex arguments (Kratzer and Heim,
1998). In the same spirit, generalized quanti-
fiers, prepositions and function words in many lan-
guages other than English are also analyzed as
higher-order functions. Accordingly, all the lin-
guistic elements are treated as roots in type-logical
semantic graphs, such as EDS and DMRS. This
makes the typological structure quite flat rather
than hierachical, which is an essential distinction
between natural language semantics and syntax.

To the best of our knowledge, the only exist-
ing DAG transducer for NLG is the one proposed
by Quernheim and Knight (2012). Quernheim and
Knight introduced a DAG-to-tree transducer that
can be applied to AMR-to-text generation. This
transducer is designed to handle hierarchical struc-
tures with limited reentrencies, and it is unsuitable
for meaning graphs transformed from type-logical
semantics. Furthermore, Quernheim and Knight
did not describe how to acquire graph recognition
and transduction rules from linguistic data, and re-
ported no result of practical generation. It is still
unknown to what extent a DAG transducer suits
realistic NLG.

The design for string and tree transducers
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(Comon et al., 1997) focuses on not only the logic
of the computation for a new data structure, but
also the corresponding control flow. This is very
similar the imperative programming paradigm:
implementing algorithms with exact details in ex-
plicit steps. This design makes it very diffi-
cult to transform a type-logical semantic graph
into a string, due to the fact their internal struc-
tures are highly diverse. We borrow ideas from
declarative programming, another programming
paradigm, which describes what a program must
accomplish, rather than how to accomplish it. We
propose a novel DAG transducer to perform graph-
to-program transformation (§3). The input of our
transducer is a semantic graph, while the output is
a program licensed by a declarative programming
language rather than linguistic structures. By exe-
cuting such a program, we can easily get a surface
string. This idea can be extended to other types of
linguistic structures, e.g. syntactic trees or seman-
tic representations of another language.

We conduct experiments on richly detailed se-
mantic annotations licensed by English Resource
Grammar (ERG; Flickinger, 2000). We introduce
a principled method to derive transduction rules
from DeepBank (Flickinger et al., 2012). Further-
more, we introduce a fine-to-coarse strategy to en-
sure that at least one sentence is generated for any
input graph. Taking EDS graphs, a variable-free
ERS format, as input, our NLG system achieves
a BLEU-4 score of 68.07. On average, it pro-
duces more than 5 sentences in a second on an
x86 64 GNU/Linux platform with two Intel Xeon
E5-2620 CPUs. Since the data for experiments
is newswire data, i.e. WSJ sentences from PTB
(Marcus et al., 1993), the input graphs are quite
large on average. The remarkable accuracy, effi-
ciency and robustness demonstrate the feasibility
of applying a DAG transducer to resolve NLG, as
well as the effectiveness of our transducer design.

2 Previous Work and Challenges

2.1 Preliminaries

A node-labeled simple graph over alphabet Σ is
a triple G = (V,E, ℓ), where V is a finite set of
nodes, E ⊆ V × V is an finite set of edges and
ℓ : V → Σ is a labeling function. For a node
v ∈ V , sets of its incoming and outgoing edges
are denoted by in(v) and out(v) respectively. For
an edge e ∈ E, its source node and target node are
denoted by src(e) and tar(e) respectively. Gen-

erally speaking, a DAG is a directed acyclic sim-
ple graph. Different from trees, a DAG allows
nodes to have multiple incoming edges. In this pa-
per, we only consider DAGs that are unordered,
node-labeled, multi-rooted1 and connected.

Conceptual graphs, including AMR and EDS,
are both node-labeled and edge-labeled. It seems
that without edge labels, a DAG is inadequate, but
this problem can be solved easily by using the
strategies introduced in (Chiang et al., 2018). Take
a labeled edge proper q

BV−→ named for exam-
ple2. We can represent the same information by
replacing it with two unlabeled edges and a new
labeled node: proper q→ BV→ named.

2.2 Previous Work
DAG automata are the core engines of graph trans-
ducers (Bohnet and Wanner, 2010; Quernheim and
Knight, 2012). In this work, we adopt Chiang et al.
(2018)’s design and define a weighted DAG au-
tomaton as a tuple M = ⟨Σ, Q, δ,K⟩:

• Σ is an alphabet of node labels.

• Q is a finite set of states.

• (K,⊕,⊗, 0, 1) is a semiring of weights.

• δ : Θ → K\{0} is a weight function that
assigns nonzero weights to a finite transition
set Θ. Every transition t ∈ Θ is of the form

{q1, · · · , qm} σ−→ {r1, · · · , rn}

where qi and rj are states in Q. A transition t
getsm states on the incoming edges of a node
and puts n states on the outgoing edges. A
transition that does not belong to Θ recieves
a weight of zero.

A run ofM on a DAGD = ⟨V,E, ℓ⟩ is an edge
labeling function ρ : E → Q. The weight of a run
ρ (denoted as δ′(ρ)) is the product of all weights
of local transitions:

δ′(ρ) =
⊗

v∈V

δ

(
ρ(in(v))

ℓ(v)−−→ ρ(out(v))

)

Here, for a function f , we use f({a1, · · · , an}) to
represent {f(a1), · · · , f(an)}. If K is a boolean
semiring, the automata fall backs to an unweighted

1A node without incoming edges is called root and a node
without outgoing edges is called leaf.

2 proper q and named are node labels, while BV is the
edge label.
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DAG automata or DAG acceptor. A accepting run
or recognition is a run, the weight of which is 1,
meaning true.

2.3 Challenges

The DAG automata defined above can only
be used for recognition. In order to gener-
ate sentences from semantic graphs, we need
DAG transducers. A DAG transducer is a
DAG automata-augmented computation model for
transducing well-formed DAGs to other data struc-
tures. Quernheim and Knight (2012) focused on
feature structures and introduced a DAG-to-Tree
transducer to perform graph-to-tree transforma-
tion. The input of their transducer is limited to
single-rooted DAGs. When the labels of the leaves
of an output tree in order are interpreted as words,
this transducer can be applied to generate natural
language sentences.

When applying Quernheim and Knight’s DAG-
to-Tree transducer on type-logic semantic graphs,
e.g. ERS, there are some significant problems.
First, it lacks the ability to reverse the direction
of edges during transduction because it is difficult
to keep acyclicy anymore if edge reversing is al-
lowed. Second, it cannot handle multiple roots.
But we have discussed and reached the conclusion
that multi-rootedness is a necessary requirement
for representing type-logical semantic graphs. It
is difficult to decide which node should be the tree
root during a ‘top-down’ transduction and it is also
difficult to merge multiple unconnected nodes into
one during a ‘bottom-up’ transduction. At the risk
of oversimplifying, we argue that the function of
the existing DAG-to-Tree transducer is to trans-
form a hierachical structure into another hierarchi-
cal structure. Since the type-local semantic graphs
are so flat, it is extremely difficult to adopt Quern-
heim and Knight’s design to handle such graphs.
Third, there are unconnected nodes with direct de-
pendencies, meaning that their correpsonding sur-
face expressions appear to be very close. The con-
ceptual nodes even x deg and steep a 1 in
Figure 4 are an example. It is extremely difficult
for the DAG-to-Tree transducer to handle this sit-
uation.

3 A New DAG Transducer

3.1 Basic Idea

In this paper, we introduce a design of transducers
that can perform structure transformation towards

many data structures, including but not limited to
trees. The basic idea is to give up the rewritting
method to directly generate a new data structure
piece by piece, while recognizing an input DAG.
Instead, our transducer obtains target structures
based on side effects of DAG recognition. The
output of our transducer is no longer the target
data structure itself, e.g. a tree or another DAG,
and is now a program, i.e. a bunch of statements
licensed by a particular declarative programming
language. The target structures are constructed by
executing such programs.

Since our main concern of this paper is natu-
ral language generation, we take strings, namely
sequences of words, as our target structures. In
this section, we introduce an extremely simple
programming language for string concatenation
and then details about how to leverage the power
of declarative programming to perform DAG-to-
string transformation.

3.2 A Declarative Programming Language
The syntax in the BNF format of our declarative
programming language, denoted as Lc, for string
calculation is:

⟨program⟩ ::= ⟨statement⟩∗
⟨statement⟩ ::= ⟨variable⟩ = ⟨expr⟩

⟨expr⟩ ::= ⟨variable⟩ | ⟨string⟩
| ⟨expr⟩ + ⟨expr⟩

Here a string is a sequence of characters selected
from an alphabet (denoted as Σout) and can be
empty (denoted as ϵ). The semantics of ‘=’ is
value assignment, while the semantics of ‘+’ is
string concatenation. The value of variables are
strings. For every statement, the left hand side is
a variable and the right hand side is a sequence
of string literals and variables that are combined
through ‘+’. Equation (1) presents an exmaple
program licensed by this language.

S = x21 + want+ x11

x11 = to+ go

x21 = x41 + John

x41 = ϵ

(1)

After solving these statements, we can query the
values of all variables. In particular, we are inter-
ested in S, which is related to the desired natural
language expression John want to go3.

3 The expression is a sequence of lemmas rather than in-
flected words. Refer to §4 for more details.
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Using the relation between the variables, we can
easily convert the statements in (1) to a rooted tree.
The result is shown in Figure 1. This tree is sig-
nificantly different from the target structures dis-
cussed by Quernheim and Knight (2012) or other
normal tree transducers (Comon et al., 1997). This
tree represents calculation to solve the program.
Constructing such internal trees is an essential
function of the compiler of our programming lan-
guage.

S

x21

x41

ε

John

want x11

to go

Figure 1: Variable relation tree.

3.3 Informal Illustration

We introduce our DAG transducer using a sim-
ple example. Figure 2 shows the original input
graph D = (V,E, ℓ). Without any loss of gener-
ality, we remove edge labels. Table 1 lists the rule
set—R—for this example. Every row represents
an applicable transduction rule that consists of two
parts. The left column is the recognition part dis-
played in the form I

σ−→ O, where I , O and σ de-
code the state set of incoming edges, the state set
of outgoing edges and the node label respectively.
The right column is the generation part which con-
sists of (multiple) templates of statements licensed
by the programming language defined in the pre-
vious section. In practice, two different rules may
have a same recognition part but different genera-
tion parts.

Every state q is of the form l(n, d) where l is
the finite state label, n is the count of possible
variables related to q, and d denotes the direction.
The value of d can only be r (reversed), u (un-
changed) or e(empty). Variable vl(j,d) represents
the jth (1 ≤ j ≤ n) variable related to state q.
For example, vX(2,r) means the second variable
of state X(3,r). There are two special variables:
S, which corresponds to the whole sentence and
L, which corresponds to the output string associ-
ated to current node label. It is reasonable to as-
sume that there exists a function ψ : Σ → Σ∗

out
that maps a particular node label, i.e. concept, to a
surface string. Therefore L is determined by ψ.

Now we are ready to apply transduction rules to

named(John)

want v 1

go v 1

proper q

Figure 2: An input graph. The intended reading
is John wants to go.

named(John)

want v 1

go v 1

proper q

VP(1,u) e1

e2 NP(1,u)

Empty(0,e) e3
DET(1,r)

e4

Figure 3: A run of the graph in Figure 2.

translateD into a string. The transduction consists
of two steps:

Recognition The goal of this step is to find an
edge labeling function ρ : E → Q which satisfies

that for every node v, ρ(in(v))
ℓ(v)−−→ ρ(out(v))

matches the recognition part of a rule in R. The
recognition result is shown in Figure 3. The red
dashed edges in Figure 3 make up an intermedi-
ate graph T (ρ), which is a subgraph of D if edge
direction is not taken into account. Sometimes,
T (ρ) paralles the syntactic structure of an output
sentence. For a labeling function ρ, we can con-
struct intermediate graph T (ρ) by checking the
direction parameter of every edge state. For an
edge e = (u, v) ∈ E, if the direction of ρ(e)
is r, then (v, u) is in T (ρ). If the direction is
u, then (u, v) is in T (ρ). If the direction is e,
neither (u, v) nor (v, u) is included. The recog-
nition process is slightly different from the one
in Chiang et al. (2018). Since incoming edges
with an Empty(0,e) state carry no semantic in-
formation, they will be ignored during recogni-
tion. For example, in Figure 3, we will only use
e2 and e4 to match transducation rules for node
named(John).

Instantiation We use rule(v) to denotes the
rule used on node v. Assume s is the genera-
tion part of rule(v). For every edge ei adjacent
to v, assume ρ(ei) = l(n, d). We replace L with
ψ(ℓ(v)) and replace every occurrence of vl(j,d) in
s with a new variable xij (1 ≤ j ≤ n). Then we
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Q = {DET(1,r),Empty(0,e),VP(1,u),NP(1,u)}
Rule For Recognition For Generation
1 {} proper q−−−−−−→ {DET(1,r)} vDET(1,r) = ϵ

2 {} want v 1−−−−−−→ {VP(1,u),NP(1,u)} S = vNP(1,u) + L+ vVP(1,u)

3 {VP(1,u)} go v 1−−−−→ {Empty(0,e)} vVP(1,u) = to+ L

4 {NP(1,u),DET(1,r)} named−−−−→ {} vNP(1,u) = vDET(1,r) + L

Table 1: Sets of states (Q) and rules (R) that can be used to process the graph in Figure 2.

get a newly generated expression for v. For ex-
ample, node want v 1 is recognized using Rule
2, so we replace vNP(1,u) with x21, vVP(1,u) with
x11 and L with want. After instantiation, we get
all the statements in Equation (1).

Our transducer is suitable for type-logical se-
mantic graphs. Because declarative programming
brings in more freedom for graph transduction.
We can arrange the variables in almost any order
without regard to the edge directions in original
graphs. Meanwhile, the multi-rooted problem can
be solved easily because the generation is based
on side effects. We do not need to decide which
node is the tree root.

3.4 Definition

The formal definition of our DAG transducer de-
scribed above is a tuple M = (Σ, Q,R,w, V, S)
where:

• Σ is an alphabet of node labels.

• Q is a finite set of edge states. Every state
q ∈ Q is of the form l(n, d) where l is the
state label, n is the variable count and d is the
direction of state which can be r, u or e.

• R is a finite set of rules. Every rule is of the
form I

σ−→ ⟨O,E⟩. E can be any kind of
statement in a declarative programming lan-
guage. It is called the generation part. I , σ
and O have the same meanings as they do in
the previous section and they are called the
recognition part.

• w is a score function. Given a particular run
and an anchor node,w assigns a score to mea-
sure the preference for a particular rule at this
anchor node.

• V is the set of parameterized variables that
can be used in every expression.

• S ∈ V is a distinguished, global variable. It
is like the ‘goal’ of a program.

4 DAG Transduction-based NLG

Different languages exhibit different morpho-
syntactic and syntactico-semantic proper-
ties. For example, Russian and Arabic are
morphologically-rich languages and heavily uti-
lize grammatical markers to indicate grammatical
as well as semantic functions. On the contrary,
Chinese, as an analytic language, encodes gram-
matical and semantic information in a highly
configurational rather than either inflectional or
derivational way. Such differences affects NLG
significantly. Considering generating Chinese
sentences, it seems sufficient to employ our DAG
transducer to obtain a sequence of lemmas, since
no morpholical production is needed. But for
morphologically-rich languages, we do need to
model complex morphological changes.

To unify a general framework for DAG
transduction-based NLG, we propose a two-step
strategy to achive meaning-to-text transformation.

• In the first phase, we are concerned with
syntactico-semantic properties and utilize our
DAG transducer to translate a semantic graph
into sequential lemmas. Information such as
tense, apsects, gender, etc. is attached to an-
chor lemmas. Actually, our transducer gen-
erates “want.PRES” rather than “wants”.
Here, “PRES” indicates a particular tense.

• In the second phase, we are concerned with
morpho-syntactic properties and utilize a
neural sequence-to-sequence model to obtain
final surface strings from the outputs of the
DAG transducer.

5 Inducing Transduction Rules

We present an empirical study on the feasibility
of DAG transduction-based NLG. We focus on
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steep a 1<21:28>

decline n 1<5:12>

focus d

mofy<37:48>

comp pronoun q

pron<49:51>

say v to<52:57>

proper q the q<0:4>

even x deg<16:20>

in p temp<34:36>

e4
{PP<34:48>}

e3
{S<0:48>}

e2{S<0:48>}
e5

{ADV<16:20>,PP<29:48>} e12

e1{ADV<16:20>}

e10{DET<0:4>}e9 {}

e7 {}

e9{NP<37:48>}

e6

{NP<49:51>}

e11 {NP<0:12>}

Figure 4: An example graph. The intended reading is “the decline is even steeper than in September”,
he said. Original edge labels are removed for clarity. Every edge is associated with a span list, and spans
are written in the form label<begin:end>. The red dashed edges belong to the intermediate graph
T .

variable-free MRS representations, namely EDS
(Oepen and Lønning, 2006). The data set used
in this work is DeepBank 1.1 (Flickinger et al.,
2012).

5.1 EDS-specific Constraints

In order to generate reasonable strings, three con-
straints must be kept during transduction. First,
for a rule I

σ−→ ⟨O,E⟩, a state with direction
u in I or a state with direction r in O is called
head state and its variables are called head vari-
ables. For example, the head state of rule 3 in Ta-
ble 1 is VP(1,u) and the head state of rule 2 is
DET(1,r). There is at most one head state in
a rule and only head variables or S can be the left
sides of statements. If there is no head state, we as-
sign the global S as its head. Otherwise, the num-
ber of statements is equal to the number of head
variables and each statement has a distinguished
left side variable. An empty state does not have
any variables. Second, every rule has no-copying,
no-deleting statements. In other words, all vari-
ables must be used exactly once in a statement.
Third, during recognition, a labeling function ρ is
valid only if T (ρ) is a rooted tree.

After transduction, we get result ρ∗. The first
and second constraints ensure that for all nodes,
there is at most one incoming red dashed edge in
T (ρ∗) and ‘data’ carried by variables of the only
incoming red dashed edge or S is separated into
variables of outgoing red dashed edges. The last
constraint ensures that we can solve all statements
by a bottom-up process on tree T (ρ∗).

5.2 Fine-to-Coarse Transduction

Almost all NLG systems that heavily utilize
a symbolic system to encode deep syntactico-
semantic information lack some robustness, mean-
ing that some input graphs may not be successfully
processed. There are two reasons: (1) some ex-
plicit linguistic constraints are not included; (2)
exact decoding is too time-consuming while in-
exact decoding cannot cover the whole search
space. To solve the robustness problem, we in-
troduce a fine-to-coarse strategy to ensure that
at least one sentence is generated for any input
graph. There are three types of rules in our system,
namely induced rules, extended rules and dynamic
rules. The most fine-grained rules are applied to
bring us precision, while the most coarse-grained
rules are for robustness.

In order to extract reasonable rules, we will use
both EDS graphs and the corresponding deriva-
tion trees provided by ERG. The details will be
described step-by-step in the following sections.

5.3 Induced Rules

Figure 4 shows an example for obtaining induced
rules. The induced rules are directly obtained by
following three steps:

Finding intermediate tree T EDS graphs are
highly regular semantic graphs. It is not difficult to
generate T based on a highly customized ‘breadth-
first’ search. The generation starts from the ‘top’
node ( say v to in Figure 4) given by the EDS
graph and traverse the whole graph. No more than
thirty heuristic rules are used to decide the visiting
order of nodes.
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Assigning states EDS graphs also provide span
information for nodes. We select a group of lexi-
cal nodes which have corresponding substrings in
the original sentence. In Figure 4, these nodes are
in bold font and directly followed by a span. Then
we merge spans from the bottom of T to the top
to assign each red edge a span list. For each node
n in T , we collect spans of every outgoing dashed
edge of n into a list s. Some additional spans may
be inserted into s. These spans do not occur in
the EDS graph but they do occur in the sentence,
i.e. than<29:33>. Then we merge continuous
spans in s and assign the remaining spans in s to
the incoming red dashed edge of n. We apply a
similar method to the derivation tree. As a result,
every inner node of the derivation tree is associ-
ated with a span. Then we align the edges in T
to nodes of the inner derivation tree by compar-
ing their spans. Finally edge labels in Figure 4 are
generated.

We use the concatenation of the edge labels in
a span list as the state label. The edge labels are
joined in order with ‘ ’. Empty(0,e) is the state
of the edges that do not belong to T (ignoring di-
rection), such as e12. The variable count of a state
is equal to the size of the span list and the direc-
tion of a state is decided by whether the edge in T
related to the state and its corresponding edge in
D have different directions. For example, the state
of e5 should be ADV PP(2,r).

Generating statements After the above two
steps, we are ready to generate statements accord-
ing to how spans are merged. For all nodes, spans
of the incoming edges represent the left hand side
and the outgoing edges represent the right hand
side. For example, the rule for node comp will be:

{ADV(1,r)} comp−−−→ {PP(1,u),
ADV PP(2,r)}

vADV PP(1,r) = vADV(1,r)

vADV PP(2,r) = than+ vPP(1,u)

5.4 Extended Rules
Extended rules are used when no induced rules can
cover a given node. In theory, there can be un-
limited modifier nodes pointing to a given node,
such as PP and ADJ. We use some manually writ-
ten rules to slightly change an induced rule (pro-
totype) by addition or deletion to generate a group
of extended rules. The motivation here is to deal
with the data sparseness problem.

For a group of selected non-head states in I ,
such as PP and ADJ. We can produce new rules
by removing or duplicating more of them. For ex-
ample:

{NP(1,u),ADJ(1,r)} X n 1−−−−→ {}
vNP(1,u) = vADJ(1,r) + L

As a result, we get the two rules below:

{NP(1,u)} X n 1−−−−→ {} vNP(1,u) = L

{NP(1,u),ADJ(1,r)1,

ADJ(1,r)2} X n 1−−−−→ {}
vNP(1,u) = vADJ(1,r)1

+ vADJ(1,r)2
+ L

5.5 Dynamic Rules
During decoding, when neither induced nor ex-
tended rule is applicable, we create a dynamic rule
on-the-fly. Our rule creator builds a new rule fol-
lowing the Markov assumption:

P (O|C) = P (q1|C)
n∏

i=2

P (qi|C)P (qi|qi−1, C)

C = ⟨I,D⟩ represents the context.
O = {q1, · · · , qn} denotes the outgoing states and
I , D have the same meaning as before. Though
they are unordered multisets, we can give them an
explicit alphabet order by their edge labels. There
is also a group of hard constraints to make sure
that the predicted rules are well-formed as the def-
inition in §5 requires. This Markovization strategy
is widely utilized by lexicalized and unlexicalized
PCFG parsers (Collins, 1997; Klein and Manning,
2003). For a dynamic rule, all variables in this
rule will appear in the statement. We use a simple
perceptron-based scorer to assign every variable a
score and arrange them in an decreasing order.

6 Evaluation and Analysis

6.1 Set-up
We use DeepBank 1.1 (Flickinger et al., 2012),
i.e. gold-standard ERS annotations, as our main
experimental data set to train a DAG trans-
ducer as well as a sequence-to-sequence mor-
pholyzer, and wikiwoods (Flickinger et al., 2010),
i.e. automatically-generated ERS annotations
by ERG, as additional data set to enhance the
sequence-to-sequence morpholyzer. The training,
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development and test data sets are from DeepBank
and split according to DeepBank’s recommenda-
tion. There are 34,505, 1,758 and 1,444 sentences
(all disconnected graphs as well as their associated
sentences are removed) in the training, develop-
ment and test data sets. We use a small portion of
wikiwoods data, c.a. 300K sentences, for experi-
ments.

37,537 induced rules are directly extracted from
the training data set, and 447,602 extended rules
are obtained. For DAG recognition, at one par-
ticular position, there may be more than one rule
applicable. In this case, we need a disambigua-
tion model as well as a decoder to search for a
globally optimal solution. In this work, we train
a structured perceptron model (Collins, 2002) for
disambiguation and employ a beam decoder. The
perceptron model used by our dynamic rule gen-
erator are trained with the induced rules. To get
a sequence-to-sequence model, we use the open
source tool—OpenNMT4.

6.2 The Decoder
We implement a fine-to-coarse beam search de-
coder. Given a DAG D, our goal is to find the
highest scored labeling function ρ:

ρ = arg max
ρ

n∏

i=1

∑

j

wj · fj(rule(vi), D)

s.t. rule(vi) = ρ(in(vi))
ℓ(vi)−−−→ ⟨ρ(out(vi)), Ei⟩

where n is the node count and fj(·, ·) and wj

represent a feature and the corresponding weight,
respectively. The features are chosen from the
context of the given node vi. We perform ‘top-
down’ search to translate an input DAG into a
morphology-function-enhanced lemma sequence.
Each hypothesis consists of the current DAG
graph, the partial labeling function, the current hy-
pothesis score and other graph information used
to perform rule selection. The decoder will keep
the corresponding partial intermediate graph T
acyclic when decoding. The algorithm used by
our decoder is displayed in Algorithm 1. Function
FindRules(h, n,R) will use hard constraints to
select rules from the rule set R according to the
contextual information. It will also perform an
acyclic check on T . Function Insert(h, r, n,B)
will create and score a new hypothesis made from
the given context and then insert it into beam B.

4https://github.com/OpenNMT/OpenNMT/

After we get the edge labeling function ρ, we
use a simple linear equation solver to convert all
statements to a sequence of lemmas.

Algorithm 1: Algorithm for our decoder.
Input: D is the EDS graph. RI and RE

are induced-rules and
extended-rules respectively.

Result: The edge labeling function ρ.
1 Q← all the roots in D
2 B1← empty beam
3 E ← ∅
4 Insert initial hypothesis into B1
5 while Q is not empty:
6 B2← empty beam
7 n← dequeue a node from Q
8 for h ∈ B1:
9 rules← FindRules(h, n,RI)

10 if rules is not empty:
11 for r ∈ rules:
12 Insert(h, r, n,B2)

else:
13 rules← FindRules(h, n,RE)
14 for r ∈ rules:
15 Insert(h, r, n,B2)

16 if B2 is still empty:
17 for h ∈ B1:
18 r ← RuleGenerator(h, n)
19 Insert(h, r, n,B2)

20 B1← B2
21 for e ∈ out(n):
22 E ← E ∪ {e}
23 if in(tar(e)) ⊆ E:
24 Q← Q ∪ {tar(e)}
25 Extract ρ from best hypothesis in B1

6.3 Accuracy
In order to evaluate the effectiveness of our trans-
ducer for NLG, we try a group of tests showed
in Table 2. All sequence-to-sequence models (ei-
ther from lemma sequences to lemma sequences
or lemma sequences to sentences) are trained on
DeepBank and wikiwoods data set and tuned on
the development data. The second column shows
the BLEU-4 scores between generated lemma se-
quences and golden sequences of lemmas. The
third column shows the BLEU-4 scores between
generated sentences and golden sentences. The
fourth column shows the fraction of graphs in
the test data set that can reach output sentences.
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Transducer Lemmas Sentences Coverage
I 89.44 74.94 67%
I+E 88.41 74.03 77%
I+E+D 82.04 68.07 100%
DFS-NN 50.45 100%
AMR-NN 33.8 100%
AMR-NRG 25.62 100%

Table 2: Accuracy (BLEU-4 score) and coverage
of different systems. I denotes transduction only
using induced rules; I+E denotes transduction us-
ing both induced and extended rules; I+E+D de-
notes transduction using all kinds of rules. DFS-
NN is a rough implementation of Konstas et al.
(2017) but with the EDS data, while AMR-NN
includes the results originally reported by Kon-
stas et al., which are evaluated on the AMR data.
AMR-NRG includes the results obtained by a syn-
chronous graph grammar (Song et al., 2017).

The graphs that cannot received any natural lan-
guage sentences are removed while conducting the
BLEU evaluation.

As we can conclude from Table 2, using only
induced rules achieves the highest accuracy but
the coverage is not satisfactory. Extended rules
lead to a slight accuracy drop but with a great
improvement of coverage (c.a. 10%). Using dy-
namic rules, we observe a significant accuracy
drop. Nevertheless, we are able to handle all EDS
graphs. The full-coverage robustness may bene-
fit many NLP applications. The lemma sequences
generated by our transducer are really close to the
golden one. This means that our model actually
works and most reordering patterns are handled
well by induced rules.

Compared to the AMR generation task, our
transducer on EDS graphs achieves much higher
accuracies. To make clear how much improvement
is from the data and how much is from our DAG
transducer, we implement a purely neural baseline.
The baseline converts a DAG into a concept se-
quence by a pre-order DFS traversal on the inter-
mediate tree of this DAG. Then we use a sequence-
to-sequence model to transform this concept se-
quence to the lemma sequence for comparison.
This is a kind of implementation of Konstas et al.’s
model but evaluated on the EDS data. We can see
that on this task, our transducer is much better than
a pure sequence-to-sequence model on DeepBank
data.

Transducer Average (s) Maximal (s)
I 0.090 0.40
I+E 0.093 0.46
I+E+D 0.18 3.2

Table 3: Efficiency of our NL generator.

6.4 Efficiency

Table 3 shows the efficiency of the beam search
decoder with a beam size of 128. The platform for
this experiment is x86 64 GNU/Linux with two
Intel Xeon E5-2620 CPUs. The second and third
columns represent the average and the maximal
time (in seconds) to translate an EDS graph. Using
dynamic rules slow down the decoder to a great
degree. Since the data for experiments is newswire
data, i.e. WSJ sentences from PTB (Marcus et al.,
1993), the input graphs are quite large on average.
On average, it produces more than 5 sentences
per second on CPU. We consider this a promising
speed.

7 Conclusion

We extend the work on DAG automata in Chiang
et al. (2018) and propose a general method to build
flexible DAG transducer. The key idea is to lever-
age a declarative programming language to min-
imize the computation burden of a graph trans-
ducer. We think may NLP tasks that involve graph
manipulation may benefit from this design. To ex-
emplify our design, we develop a practical system
for the semantic-graph-to-string task. Our system
is accurate (BLEU 68.07), efficient (more than 5
sentences per second on a CPU) and robust (full-
coverage). The empirical evaluation confirms the
usefulness a DAG transducer to resolve NLG, as
well as the effectiveness of our design.
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Abstract

Modeling derivational morphology to gen-
erate words with particular semantics is
useful in many text generation tasks, such
as machine translation or abstractive ques-
tion answering. In this work, we tackle the
task of derived word generation. That is,
given the word “run,” we attempt to gener-
ate the word “runner” for “someone who
runs.” We identify two key problems in
generating derived words from root words
and transformations: suffix ambiguity and
orthographic irregularity. We contribute a
novel aggregation model of derived word
generation that learns derivational transfor-
mations both as orthographic functions us-
ing sequence-to-sequence models and as
functions in distributional word embedding
space. Our best open-vocabulary model,
which can generate novel words, and our
best closed-vocabulary model, show 22%
and 37% relative error reductions over cur-
rent state-of-the-art systems on the same
dataset.

1 Introduction

The explicit modeling of morphology has been
shown to improve a number of tasks (Seeker and
Çetinoglu, 2015; Luong et al., 2013). In a large
number of the world’s languages, many words are
composed through morphological operations on
subword units. Some languages are rich in inflec-
tional morphology, characterized by syntactic trans-
formations like pluralization. Similarly, languages
like English are rich in derivational morphology,
where the semantics of words are composed from

∗These authors contributed equally; listed alphabetically.

Figure 1: Diagram depicting the flow of our aggregation
model. Two models generate a hypothesis according to or-
thogonal information; then one is chosen as the final model
generation. Here, the hypothesis from the distributional model
is chosen.

smaller parts. The AGENT derivational transforma-
tion, for example, answers the question, what is the
word for ‘someone who runs’? with the answer, a
runner.1 Here, AGENT is spelled out as suffixing
-ner onto the root verb run.

We tackle the task of derived word generation.
In this task, a root word x and a derivational trans-
formation t are given to the learner. The learner’s
job is to produce the result of the transformation
on the root word, called the derived word y. Table
1 gives examples of these transformations.

Previous approaches to derived word genera-
tion model the task as a character-level sequence-
to-sequence (seq2seq) problem (Cotterell et al.,
2017b). The letters from the root word and some
encoding of the transformation are given as input to
a neural encoder, and the decoder is trained to pro-
duce the derived word, one letter at a time. We iden-
tify the following problems with these approaches:

First, because these models are unconstrained,
they can generate sequences of characters that do

1We use the verb run as a demonstrative example; the
transformation can be applied to most verbs.
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x t y

wise ADVERB → wisely
simulate RESULT → simulation
approve RESULT → approval
overstate RESULT → overstatement

yodel AGENT → yodeler
survive AGENT → survivor
intense NOMINAL → intensity

effective NOMINAL → effectiveness
pessimistic NOMINAL → pessimism

Table 1: The goal of derived word generation is to produce
the derived word, y, given both the root word, x, and the
transformation t, as demonstrated here with examples from
the dataset.

not form actual words. We argue that requiring the
model to generate a known word is a reasonable
constraint in the special case of English derivational
morphology, and doing so avoids a large number
of common errors.

Second, sequence-based models can only gen-
eralize string manipulations (such as “add -ment”)
if they appear frequently in the training data. Be-
cause of this, they are unable to generate derived
words that do not follow typical patterns, such as
generating truth as the nominative derivation of
true. We propose to learn a function for each trans-
formation in a low dimensional vector space that
corresponds to mapping from representations of
the root word to the derived word. This eliminates
the reliance on orthographic information, unlike re-
lated approaches to distributional semantics, which
operate at the suffix level (Gupta et al., 2017).

We contribute an aggregation model of derived
word generation that produces hypotheses inde-
pendently from two separate learned models: one
from a seq2seq model with only orthographic in-
formation, and one from a feed-forward network
using only distributional semantic information in
the form of pretrained word vectors. The model
learns to choose between the hypotheses accord-
ing to the relative confidence of each. This system
can be interpreted as learning to decide between
positing an orthographically regular form or a se-
mantically salient word. See Figure 1 for a diagram
of our model.

We show that this model helps with two open
problems with current state-of-the-art seq2seq de-
rived word generation systems, suffix ambiguity
and orthographic irregularity (Section 2). We also

improve the accuracy of seq2seq-only derived word
systems by adding external information through
constrained decoding and hypothesis rescoring.
These methods provide orthogonal gains to our
main contribution.

We evaluate models in two categories: open vo-
cabulary models that can generate novel words
unattested in a preset vocabulary, and closed-
vocabulary models, which cannot. Our best open-
vocabulary and closed-vocabulary models demon-
strate 22% and 37% relative error reductions over
the current state of the art.

2 Background: Derivational Morphology

Derivational transformations generate novel words
that are semantically composed from the root word
and the transformation. We identify two unsolved
problems in derived word transformation, each of
which we address in Sections 3 and 4.

First, many plausible choices of suffix for a sin-
gle pair of root word and transformation. For ex-
ample, for the verb ground, the RESULT transfor-
mation could plausibly take as many forms as2

(ground,RESULT)→ grounding

(ground,RESULT)→ *groundation

(ground,RESULT)→ *groundment

(ground,RESULT)→ *groundal

However, only one is correct, even though each
suffix appears often in the RESULT transformation
of other words. We will refer to this problem as
“suffix ambiguity.”

Second, many derived words seem to lack a gen-
eralizable orthographic relationship to their root
words. For example, the RESULT of the verb speak
is speech. It is unlikely, given an orthographically
similar verb creak, that the RESULT be creech in-
stead of, say, creaking. Seq2seq models must grap-
ple with the problem of derived words that are
the result of unlikely or potentially unseen string
transformations. We refer to this problem as “or-
thographic irregularity.”

3 Sequence Models and Corpus
Knowledge

In this section, we introduce the prior state-of-the-
art model, which serves as our baseline system.
Then we build on top of this system by incorpo-
rating a dictionary constraint and rescoring the

2The * indicates a non-word.
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model’s hypotheses with token frequency informa-
tion to address the suffix ambiguity problem.

3.1 Baseline Architecture

We begin by formalizing the problem and defin-
ing some notation. For source word x =
x1, x2, . . . xm, a derivational transformation t, and
target word y = y1, y2, . . . yn, our goal is to learn
some function from the pair (x, t) to y. Here, xi
and yj are the ith and jth characters of the input
strings x and y. We will sometimes use x1:i to
denote x1, x2, . . . xi, and similarly for y1:j .

The current state-of-the-art model for derived-
form generation approaches this problem by learn-
ing a character-level encoder-decoder neural net-
work with an attention mechanism (Cotterell et al.,
2017b; Bahdanau et al., 2014).

The input to the bidirectional LSTM en-
coder (Hochreiter and Schmidhuber, 1997; Graves
and Schmidhuber, 2005) is the sequence #,
x1, x2, . . . xm, #, t, where # is a special symbol to
denote the start and end of a word, and the encoding
of the derivational transformation t is concatenated
to the input characters. The model is trained to
minimize the cross entropy of the training data. We
refer to our reimplementation of this model as SEQ.

For a more detailed treatment of neural sequence-
to-sequence models with attention, we direct the
reader to Luong et al. (2015).

3.2 Dictionary Constraint

The suffix ambiguity problem poses challenges for
models which rely exclusively on input charac-
ters for information. As previously demonstrated,
words derived via the same transformation may
take different suffixes, and it is hard to select among
them based on character information alone. Here,
we describe a process for restricting our inference
procedure to only generate known English words,
which we call a dictionary constraint. We believe
that for English morphology, a large enough cor-
pus will contain the vast majority of derived forms,
so while this approach is somewhat restricting, it
removes a significant amount of ambiguity from
the problem.

To describe how we implemented this dictionary
constraint, it is useful first to discuss how decoding
in a seq2seq model is equivalent to solving a short-
est path problem. The notation is specific to our
model, but the argument is applicable to seq2seq
models in general.

The goal of decoding is to find the most probable
structure ŷ conditioned on some observation x and
transformation t. That is, the problem is to solve

ŷ = argmax
y∈Y

p(y | x, t) (1)

= argmin
y∈Y
− log p(y | x, t) (2)

where Y is the set of valid structures. Sequential
models have a natural ordering y = y1, y2, . . . yn
over which − log p(y | x, t) can be decomposed

− log p(y | x, t) =
n∑

t=1

− log p(yt | y1:t−1,x, t)

(3)
Solving Equation 2 can be viewed as solving a
shortest path problem from a special starting state
to a special ending state via some path which
uniquely represents y. Each vertex in the graph
represents some sequence y1:i, and the weight of
the edge from y1:i to y1:i+1 is given by

− log p(yi+1 | y1:i−1,x, t) (4)

The weight of the path from the start state to the end
state via the unique path that describes y is exactly
equal to Equation 3. When the vocabulary size is
too large, the exact shortest path is intractable, and
approximate search methods, such as beam search,
are used instead.

In derived word generation, Y is an infinite set
of strings. Since Y is unrestricted, almost all of
the strings in Y are not valid words. Given a dic-
tionary YD, the search space is restricted to only
those words in the dictionary by searching over the
trie induced from YD, which is a subgraph of the
unrestricted graph. By limiting the search space
to YD, the decoder is guaranteed to generate some
known word. Models which use this dictionary-
constrained inference procedure will be labeled
with +DICT. Algorithm 1 has the pseudocode for
our decoding procedure.

We discuss specific details of the search pro-
cedure and interesting observations of the search
space in Section 6. Section 5.2 describes how we
obtained the dictionary of valid words.

3.3 Word Frequency Knowledge through
Rescoring

We also consider the inclusion of explicit word
frequency information to help solve suffix ambi-
guity, using the intuition that “real” derived words
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are likely to be frequently attested. This permits a
high-recall, potentially noisy dictionary.

We are motivated by very high top-10 accu-
racy compared to top-1 accuracy, even among
dictionary-constrained models. By rescoring the
hypotheses of a model using word frequency (a
word-global signal) as a feature, attempt to recover
a portion of this top-10 accuracy.

When a model has been trained, we query it for
its top-10 most likely hypotheses. The union of all
hypotheses for a subset of the training observations
forms the training set for a classifier that learns
to predict whether a hypothesis generated by the
model is correct. Each hypothesis is labelled with
its correctness, a value in {±1}. We train a sim-
ple combination of two scores: the seq2seq model
score for the hypothesis, and the log of the word
frequency of the hypothesis.

To permit a nonlinear combination of word fre-
quency and model score, we train a small multi-
layer perceptron with the model score and the fre-
quency of a derived word hypothesis as features.

At testing time, the 10 hypotheses generated by
a single seq2seq model for a single observation are
rescored. The new model top-1 hypothesis, then,
is the argmax over the 10 hypotheses according to
the rescorer. In this way, we are able to incorporate
word-global information, e.g. word frequency, that
is ill-suited for incorporation at each character pre-
diction step of the seq2seq model. We label models
that are rescored in this way +FREQ.

4 Distributional Models

So far, we have presented models that learn deriva-
tional transformations as orthographic operations.
Such models struggle by construction with the or-
thographic irregularity problem, as they are trained
to generalize orthographic information. However,
the semantic relationships between root words and
derived words are the same even when the orthog-
raphy is dissimilar. It is salient, for example, that
irregular word speech is related to its root speak in
about the same way as how exploration is related
to the word explore.

We model distributional transformations as func-
tions in dense distributional word embedding
spaces, crucially learning a function per deriva-
tional transformation, not per suffix pair. In this
way, we aim to explicitly model the semantic trans-
formation, not the othographic information.

4.1 Feed-forward derivational
transformations

For all source words x and all target words y, we
look up static distributional embeddings vx, vy ∈
Rd. For each derivational transformation t, we
learn a function ft : Rd → Rd that maps vx to vy.
ft is parametrized as two-layer perceptron, trained
using a squared loss,

L = bTb (5)

b = ft(vx)− vy (6)

We perform inference by nearest neighbor search
in the embedding space. This inference strategy
requires a subset of strings for our embedding dic-
tionary, YV .

Upon receiving (x, t) at test time, we compute
ft(vx) and find the most similar embeddings in YV .
Specifically, we find the top-k most similar embed-
dings, and take the most similar derived word that
starts with the same 4 letters as the root word, and
is not identical to it. This heuristic filters out highly
implausible hypotheses.

We use the single-word subset of the Google
News vectors (Mikolov et al., 2013) as YV , so the
size of the vocabulary is 929k words.

4.2 SEQ and DIST Aggregation
The seq2seq and distributional models we have pre-
sented learn with disjoint information to solve sepa-
rate problems. We leverage this intuition to build a
model that chooses, for each observation, whether
to generate according to orthographic information
via the SEQ model, or produce a potentially irregu-
lar form via the DIST model.

To train this model, we use a held-out portion of
the training set, and filter it to only observations for
which exactly one of the two models produces the
correct derived form. Finally, we make the strong
assumption that the probability of a derived form
being generated correctly according to 1 model
as opposed to the other is dependent only on the
unnormalized model score from each. We model
this as a logistic regression (t is omitted for clarity):

P (·|yD,yS,x) =

softmax(We [DIST(yD|x); SEQ(yS|x)] + be)

where We and be are learned parameters, yD and
yS are the hypotheses of the distributional and
seq2seq models, and DIST(·) and SEQ(·) are the
models’ likelihood functions. We denote this ag-
gregate AGGR in our results.
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5 Datasets

In this section we describe the derivational mor-
phology dataset used in our experiments and how
we collected the dictionary and token frequencies
used in the dictionary constraint and rescorer.

5.1 Derivational Morphology

In our experiments, we use the derived word gen-
eration derivational morphology dataset released
in Cotterell et al. (2017b). The dataset, derived
from NomBank (Meyers et al., 2004) , consists of
4,222 training, 905 validation, and 905 test triples
of the form (x, t,y). The transformations are from
the following categories: ADVERB (ADJ→ ADV),
RESULT (V→ N), AGENT (V→ N), and NOMI-
NAL (ADJ→ N). Examples from the dataset can
be found in Table 1.

5.2 Dictionary and Token Frequency
Statistics

The dictionary and token frequency statistics used
in the dictionary constraint and frequency rerank-
ing come from the Google Books NGram corpus
(Michel et al., 2011). The unigram frequency
counts were aggregated across years, and any to-
kens which appear fewer than approximately 2,000
times, do not end in a known possible suffix, or
contain a character outside of our vocabulary were
removed.

The frequency threshold was determined using
development data, optimizing for high recall. We
collect a set of known suffixes from the training
data by removing the longest common prefix be-
tween the source and target words from the target
word. The result is a dictionary with frequency
information for around 360k words, which covers
98% of the target words in the training data.3

6 Inference Procedure Discussion

In many sequence models where the vocabulary
size is large, exact inference by finding the true
shortest path in the graph discussed in Section 3.2
is intractable. As a result, approximate inference
techniques such as beam search are often used, or
the size of the search space is reduced, for exam-
ple, by using a Markov assumption. We, however,
observed that exact inference via a shortest path
algorithm is not only tractable in our model, but

3 The remaining 2% is mostly words with hyphens or
mistakes in the dataset.

Method Accuracy Avg. #States

GREEDY 75.9 11.8
BEAM 76.2 101.2

SHORTEST 76.2 11.8

DICT+GREEDY 77.2 11.7
DICT+BEAM 82.6 91.2

DICT+SHORTEST 82.6 12.4

Table 2: The average accuracies and number of states explored
in the search graph of 30 runs of the SEQ model with various
search procedures. The BEAM models use a beam size of 10.

only slightly more expensive than greedy search
and significantly less expensive than beam search.

To quantify this claim, we measured the ac-
curacy and number of states explored by greedy
search, beam search, and shortest path with and
without a dictionary constraint on the development
data. Table 2 shows the results averaged over 30
runs. As expected, beam search and shortest path
have higher accuracies than greedy search and ex-
plore more of the search space. Surprisingly, beam
search and shortest path have nearly identical ac-
curacies, but shortest path explores significantly
fewer hypotheses.

At least two factors contribute to the tractability
of exact search in our model. First, our character-
level sequence model has a vocabulary size of 63,
which is significantly smaller than token-level mod-
els, in which a vocabulary of 50k words is not un-
common. The search space of sequence models is
dependent upon the size of the vocabulary, so the
model’s search space is dramatically smaller than
for a token-level model.

Second, the inherent structure of the task makes
it easy to eliminate large subgraphs of the search
space. The first several characters of the input word
and output word are almost always the same, so
the model assigns very low probability to any se-
quence with different starting characters than the
input. Then, the rest of the search procedure is
dedicated to deciding between suffixes. Any suffix
which does not appear frequently in the training
data receives a low score, leaving the search to de-
cide between a handful of possible options. The
result is that the learned probability distribution is
very spiked; it puts very high probability on just
a few output sequences. It is empirically true that
the top few most probable sequences have signif-
icantly higher scores than the next most probable
sequences, which supports this hypothesis.

In our subsequent experiments, we decode using
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Algorithm 1 The decoding procedure uses a
shortest-path algorithm to find the most probable
output sequence. The dictionary constraint is (op-
tionally) implemented on line 9 by only considering
prefixes that are contained in some trie T .

1: procedure DECODE(x, t, V , T )
2: H ← Heap()
3: H .insert(0, #)
4: while H is not empty do
5: y← H .remove()
6: if y is a complete word then return y

7: for y ∈ V do
8: y′ ← y + y
9: if y′ ∈ T then

10: s← FORWARD(x, t,y′)
11: H .insert(s, y′)

exact inference by running a shortest path algo-
rithm (see Algorithm 1). For reranking models,
instead of typically using a beam of size k, we use
the top k most probable sequences.

7 Results

In all of our experiments, we use the training, de-
velopment, and testing splits provided by Cotterell
et al. (2017b) and average over 30 random restarts.
Table 3 displays the accuracies and average edit
distances on the test set of each of the systems pre-
sented in this work and the state-of-the-art model
from Cotterell et al. (2017b).

First, we observed that SEQ outperforms the re-
sults reported in Cotterell et al. (2017b) by a large
margin, despite the fact that the model architectures
are the same. We attribute this difference to better
hyperparameter settings and improved learning rate
annealing.

Then, it is clear that the accuracy of the distri-
butional model, DIST, is significantly lower than
any seq2seq model. We believe the orthography-
informed models perform better because most ob-
servations in the dataset are orthographically regu-
lar, providing low-hanging fruit.

Open-vocabulary models Our open-vocabulary
aggregation model AGGR improves performance
by 3.8 points accuracy over SEQ, indicating that
the sequence models and the distributional model
are contributing complementary signals. AGGR

is an open-vocabulary model like Cotterell et al.
(2017b) and improves upon it by 6.3 points, making
it our best comparable model. We provide an in-

Model Accuracy Edit

Cotterell et al. (2017b) 71.7 0.97

DIST 54.9 3.23
SEQ 74.2 0.88

AGGR 78.0 0.83
SEQ+FREQ 79.3 0.71

DUAL+FREQ 82.0 0.64

SEQ+DICT 80.4 0.72
AGGR+DICT 81.0 0.78

SEQ+FREQ+DICT 81.2 0.71
AGGR+FREQ+DICT 82.4 0.67

Table 3: The accuracies and edit distances of the models
presented in this paper and prior work. For edit distance,
lower is better. The dictionary-constrained models are on the
lower half of the table.

depth analysis of the strengths of SEQ and DIST in
Section 7.1.

Closed-vocabulary models We now consider
closed-vocabulary models that improve upon the
seq2seq model in AGGR. First, we see that re-
stricting the decoder to only generate known words
is extremely useful, with SEQ+DICT improving
over SEQ by 6.2 points. Qualitatively, we note
that this constraint helps solve the suffix ambiguity
problem, since orthographically plausible incorrect
hypotheses are pruned as non-words. See Table 6
for examples of this phenomenon. Additionally,
we observe that the dictionary-constrained model
outperforms the unconstrained model according to
top-10 accuracy (see Table 5).

Rescoring (+FREQ) provides further improve-
ment of 0.8 points, showing that the decoding dic-
tionary constraint provides a higher-quality beam
that still has room for top-1 improvement. All to-
gether, AGGR+FREQ+DICT provides a 4.4 point
improvement over the best open-vocabulary model,
AGGR. This shows the disambiguating power of
assuming a closed vocabulary.

Edit Distance One interesting side effect of the
dictionary constraint appears when comparing
AGGR+FREQ with and without the dictionary con-
straint. Although the accuracy of the dictionary-
constrained model is better, the average edit dis-
tance is worse. The unconstrained model is free
to put invalid words which are orthographically
similar to the target word in its top-k, however the
constrained model can only choose valid words.
This means it is easier for the unconstrained model
to generate words which have a low edit distance
to the ground truth, whereas the constrained model
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Cotterell et al.
(2017b)

AGGR
AGGR+FREQ

+DICT

acc edit acc edit acc edit

NOMINAL 35.1 2.67 68.0 1.32 62.1 1.40
RESULT 52.9 1.86 59.1 1.83 69.7 1.29
AGENT 65.6 0.78 73.5 0.65 79.1 0.57

ADVERB 93.3 0.18 94.0 0.18 95.0 0.22

Table 4: The accuracies and edit distances of our best
open-vocabulary and closed-vocabulary models, AGGR and
AGGR+FREQ+DICT compared to prior work, evaluated at the
transformation level. For edit distance, lower is better.

can only do that if such a word exists. The result is
a more accurate, yet more orthographically diverse,
set of hypotheses.

Results by Transformation Next, we compare
our best open vocabulary and closed vocabulary
models to previous work across each derivational
transformation. These results are in Table 4.

The largest improvement over the baseline sys-
tem is for NOMINAL transformations, in which the
AGGR has a 49% reduction in error. We attribute
most of this gain to the difficulty of this particular
transformation. NOMINAL is challenging because
there are several plausible endings (e.g. -ity, -ness,
-ence) which occur at roughly the same rate. Addi-
tionally, NOMINAL examples are the least frequent
transformation in the dataset, so it is challenging
for a sequential model to learn to generalize. The
distributional model, which does not rely on suffix
information, does not have this same weakness, so
the aggregation AGGR model has better results.

The performance of AGGR+FREQ+DICT is
worse than AGGR, however. This is surprising
because, in all other transformations, adding dic-
tionary information improves the accuracies. We
believe this is due to the ambiguity of the ground
truth: Many root words have seemingly multi-
ple plausible nominal transformations, such as
rigid → {rigidness, rigidity} and equivalent →
{equivalence, equivalency}. The dictionary con-
straint produces a better set of hypotheses to
rescore, as demonstrated in Table 5. Therefore,
the dictionary-constrained model is likely to have
more of these ambiguous cases, which makes the
task more difficult.

7.1 Strengths of SEQ and DIST

In this subsection we explore why AGGR improves
consistently over SEQ even though it maintains an
open vocabulary. We have argued that DIST is
able to correctly produce derived words that are

Cotterell et al.
(2017b)

SEQ SEQ+DICT

top-10-acc top-10-acc top-10-acc

NOMINAL 70.2 73.7 87.5
RESULT 72.6 79.9 90.4
AGENT 82.2 88.4 91.6

ADVERB 96.5 96.9 96.9

Table 5: The accuracies of the top-10 best outputs for the SEQ,
SEQ+DICT, and prior work demonstrate that the dictionary
constraint significantly improves the overall candidate quality.

Figure 2: Aggregating across 30 random restarts, we tallied
when SEQ and DIST correctly produced derived forms of each
suffix. The y-axis shows the logarithm of the difference, per
suffix, between the tally for DIST and the tally for SEQ. On
the x-axis is the logarithm of the frequency of derived words
with each suffix in the training data. A linear regression line is
plotted to show the relationship between log suffix frequency
and log difference in correct predictions. Suffixes that differ
only by the first letter, as with -ger and -er, have been merged
and represented by the more frequent of the two.

orthographically irregular or infrequent in the train-
ing data. Figure 2 quantifies this phenomenon,
analyzing the difference in accuracy between the
two models, and plotting this in relationship to the
frequency of the suffix in the training data. The
plot shows that SEQ excels at generating derived
words ending in -ly, -ion, and other suffixes that
appeared frequently in the training data. DIST’s
improvements over SEQ are generally much less
frequent in the training data, or as in the case of
-ment, are less frequent than other suffixes for the
same transformation (like -ion.) By producing de-
rived words whose suffixes show up rarely in the
training data, DIST helps solve the orthographic
irregularity problem.

8 Prior Work

There has been much work on the related task of
inflected word generation (Durrett and DeNero,
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x t DIST SEQ AGGR AGGR+DICT

approve RESULT approval approvation approval approval
bankrupt NOMINAL bankruptcy bankruption bankruptcy bankruptcy

irretrievable ADVERB irreparably irretrievably irretrievably irretrievably
connect RESULT connectivity connection connection connection

stroll AGENT strolls stroller stroller stroller
emigrate SUBJECT emigre emigrator emigrator emigrant

ubiquitous NOMINAL ubiquity ubiquit ubiquit ubiquity
hinder AGENT hinderer hinderer hinderer hinderer
vacant NOMINAL vacance vacance vacance vacance

Table 6: Sample output from a selection of models. The words in bold mark the correct derivations. “Hindrance” and “vacancy”
are the expected derived words for the last two rows.

2013; Rastogi et al., 2016; Hulden et al., 2014). It is
a structurally similar task to ours, but does not have
the same difficulty of challenges (Cotterell et al.,
2017a,b), which we have addressed in our work.
The paradigm completion for derivational morphol-
ogy dataset we use in this work was introduced in
Cotterell et al. (2017b). They apply the model that
won the 2016 SIGMORPHON shared task on in-
flectional morphology to derivational morphology
(Kann and Schütze, 2016; Cotterell et al., 2016).
We use this as our baseline.

Our implementation of the dictionary constraint
is an example of a special constraint which can
be directly incorporated into the inference algo-
rithm at little additional cost. Roth and Yih (2004,
2007) propose a general inference procedure that
naturally incorporates constraints through recasting
inference as solving an integer linear program.

Beam or hypothesis rescoring to incorporate an
expensive or non-decomposable signal into search
has a history in machine translation (Huang and
Chiang, 2007). In inflectional morphology, Nico-
lai et al. (2015) use this idea to rerank hypothe-
ses using orthographic features and Faruqui et al.
(2016) use a character-level language model. Our
approach is similar to Faruqui et al. (2016) in that
we use statistics from a raw corpus, but at the token
level.

There have been several attempts to use distri-
butional information in morphological generation
and analysis. Soricut and Och (2015) collect pairs
of words related by any morphological change in
an unsupervised manner, then select a vector off-
set which best explains their observations. There
has been subsequent work exploring the vector
offset method, finding it unsuccessful in captur-

ing derivational transformations (Gladkova et al.,
2016). However, we use more expressive, non-
linear functions to model derivational transforma-
tions and report positive results. Gupta et al. (2017)
then learn a linear transformation per orthographic
rule to solve a word analogy task. Our distribu-
tional model learns a function per derivational trans-
formation, not per orthographic rule, which allows
it to generalize to unseen orthography.

9 Implementation Details

Our models are implemented in Python using the
DyNet deep learning library (Neubig et al., 2017).
The code is freely available for download.4

Sequence Model The sequence-to-sequence
model uses character embeddings of size 20, which
are shared across the encoder and decoder, with
a vocabulary size of 63. The hidden states of the
LSTMs are of size 40.

For training, we use Adam with an initial learn-
ing rate of 0.005, a batch size of 5, and train for a
maximum of 30 epochs. If after one epoch of the
training data, the loss on the validation set does not
decrease, we anneal the learning rate by half and
revert to the previous best model.

During decoding, we find the top 1 most prob-
able sequence as discussed in Section 6 unless
rescoring is used, in which we use the top 10.

Rescorer The rescorer is a 1-hidden-layer per-
ceptron with a tanh nonlinearity and 4 hidden
units. It is trained for a maximum of 5 epochs.

Distributional Model The DIST model is a 1-
hidden-layer perceptron with a tanh nonlinearity

4https://github.com/danieldeutsch/
acl2018
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and 100 hidden units. It is trained for a maximum
of 25 epochs.

10 Conclusion

In this work, we present a novel aggregation model
for derived word generation. This model learns to
choose between the predictions of orthographically-
and distributionally-informed models. This amelio-
rates suffix ambiguity and orthographic irregularity,
the salient problems of the generation task. Concur-
rently, we show that derivational transformations
can be usefully modeled as nonlinear functions on
distributional word embeddings. The distributional
and orthographic models aggregated contribute or-
thogonal information to the aggregate, as shown
by substantial improvements over state-of-the-art
results, and qualitative analysis. Two ways of incor-
porating corpus knowledge – constrained decoding
and rescoring – demonstrate further improvements
to our main contribution.
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Abstract

In this paper, we propose a joint archi-
tecture that captures language, rhyme and
meter for sonnet modelling. We assess the
quality of generated poems using crowd
and expert judgements. The stress and
rhyme models perform very well, as gen-
erated poems are largely indistinguishable
from human-written poems. Expert evalu-
ation, however, reveals that a vanilla lan-
guage model captures meter implicitly,
and that machine-generated poems still
underperform in terms of readability and
emotion. Our research shows the impor-
tance expert evaluation for poetry genera-
tion, and that future research should look
beyond rhyme/meter and focus on poetic
language.

1 Introduction

With the recent surge of interest in deep learning,
one question that is being asked across a num-
ber of fronts is: can deep learning techniques be
harnessed for creative purposes? Creative applica-
tions where such research exists include the com-
position of music (Humphrey et al., 2013; Sturm
et al., 2016; Choi et al., 2016), the design of
sculptures (Lehman et al., 2016), and automatic
choreography (Crnkovic-Friis and Crnkovic-Friis,
2016). In this paper, we focus on a creative textual
task: automatic poetry composition.

A distinguishing feature of poetry is its aes-
thetic forms, e.g. rhyme and rhythm/meter.1 In
this work, we treat the task of poem generation as
a constrained language modelling task, such that
lines of a given poem rhyme, and each line fol-
lows a canonical meter and has a fixed number

1Noting that there are many notable divergences from this
in the work of particular poets (e.g. Walt Whitman) and po-
etry types (such as free verse or haiku).

Shall I compare thee to a summer’s day?
Thou art more lovely and more temperate:
Rough winds do shake the darling buds of May,
And summer’s lease hath all too short a date:

Figure 1: 1st quatrain of Shakespeare’s Sonnet 18.

of stresses. Specifically, we focus on sonnets and
generate quatrains in iambic pentameter (e.g. see
Figure 1), based on an unsupervised model of lan-
guage, rhyme and meter trained on a novel corpus
of sonnets.

Our findings are as follows:

• our proposed stress and rhyme models work
very well, generating sonnet quatrains with
stress and rhyme patterns that are indistin-
guishable from human-written poems and rated
highly by an expert;
• a vanilla language model trained over our son-

net corpus, surprisingly, captures meter implic-
itly at human-level performance;
• while crowd workers rate the poems generated

by our best model as nearly indistinguishable
from published poems by humans, an expert
annotator found the machine-generated poems
to lack readability and emotion, and our best
model to be only comparable to a vanilla lan-
guage model on these dimensions;
• most work on poetry generation focuses on me-

ter (Greene et al., 2010; Ghazvininejad et al.,
2016; Hopkins and Kiela, 2017); our results
suggest that future research should look beyond
meter and focus on improving readability.

In this, we develop a new annotation framework
for the evaluation of machine-generated poems,
and release both a novel data of sonnets and the
full source code associated with this research.2

2https://github.com/jhlau/deepspeare
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2 Related Work

Early poetry generation systems were generally
rule-based, and based on rhyming/TTS dictionar-
ies and syllable counting (Gervás, 2000; Wu et al.,
2009; Netzer et al., 2009; Colton et al., 2012;
Toivanen et al., 2013). The earliest attempt at us-
ing statistical modelling for poetry generation was
Greene et al. (2010), based on a language model
paired with a stress model.

Neural networks have dominated recent re-
search. Zhang and Lapata (2014) use a com-
bination of convolutional and recurrent networks
for modelling Chinese poetry, which Wang et al.
(2016) later simplified by incorporating an atten-
tion mechanism and training at the character level.
For English poetry, Ghazvininejad et al. (2016) in-
troduced a finite-state acceptor to explicitly model
rhythm in conjunction with a recurrent neural lan-
guage model for generation. Hopkins and Kiela
(2017) improve rhythm modelling with a cascade
of weighted state transducers, and demonstrate the
use of character-level language model for English
poetry. A critical difference over our work is that
we jointly model both poetry content and forms,
and unlike previous work which use dictionaries
(Ghazvininejad et al., 2016) or heuristics (Greene
et al., 2010) for rhyme, we learn it automatically.

3 Sonnet Structure and Dataset

The sonnet is a poem type popularised by Shake-
speare, made up of 14 lines structured as 3 qua-
trains (4 lines) and a couplet (2 lines);3 an exam-
ple quatrain is presented in Figure 1. It follows a
number of aesthetic forms, of which two are par-
ticularly salient: stress and rhyme.

A sonnet line obeys an alternating stress
pattern, called the iambic pentameter, e.g.:

S− S+ S− S+ S− S+ S− S+ S− S+

Shall I compare thee to a summer’s day?
where S− and S+ denote unstressed and stressed
syllables, respectively.

A sonnet also rhymes, with a typical rhyming
scheme being ABAB CDCD EFEF GG. There are
a number of variants, however, mostly seen in the
quatrains; e.g. AABB or ABBA are also common.

We build our sonnet dataset from the latest
image of Project Gutenberg.4 We first create a

3There are other forms of sonnets, but the Shakespearean
sonnet is the dominant one. Hereinafter “sonnet” is used to
specifically mean Shakespearean sonnets.

4https://www.gutenberg.org/.

Partition #Sonnets #Words

Train 2685 367K
Dev 335 46K
Test 335 46K

Table 1: SONNET dataset statistics.

(generic) poetry document collection using the
GutenTag tool (Brooke et al., 2015), based on its
inbuilt poetry classifier and rule-based structural
tagging of individual poems.

Given the poems, we use word and character
statistics derived from Shakespeare’s 154 sonnets
to filter out all non-sonnet poems (to form the
“BACKGROUND” dataset), leaving the sonnet cor-
pus (“SONNET”).5 Based on a small-scale man-
ual analysis of SONNET, we find that the approach
is sufficient for extracting sonnets with high pre-
cision. BACKGROUND serves as a large corpus
(34M words) for pre-training word embeddings,
and SONNET is further partitioned into training,
development and testing sets. Statistics of SON-
NET are given in Table 1.6

4 Architecture

We propose modelling both content and forms
jointly with a neural architecture, composed of 3
components: (1) a language model; (2) a pentame-
ter model for capturing iambic pentameter; and (3)
a rhyme model for learning rhyming words.

Given a sonnet line, the language model uses
standard categorical cross-entropy to predict the
next word, and the pentameter model is similarly
trained to learn the alternating iambic stress pat-
terns.7 The rhyme model, on the other hand, uses a
margin-based loss to separate rhyming word pairs
from non-rhyming word pairs in a quatrain. For
generation we use the language model to generate
one word at a time, while applying the pentame-

5The following constraints were used to select sonnets:
8.0 6 mean words per line 6 11.5; 40 6 mean characters
per line 6 51.0; min/max number of words per line of 6/15;
min/max number of characters per line of 32/60; and min let-
ter ratio per line > 0.59.

6The sonnets in our collection are largely in Modern En-
glish, with possibly a small number of poetry in Early Mod-
ern English. The potentially mixed-language dialect data
might add noise to our system, and given more data it would
be worthwhile to include time period as a factor in the model.

7There are a number of variations in addition to the stan-
dard pattern (Greene et al., 2010), but our model uses only
the standard pattern as it is the dominant one.
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(a) Language model (b) Pentameter model

(c) Rhyme model

Figure 2: Architecture of the language, pentameter and rhyme models. Colours denote shared weights.

ter model to sample meter-conforming sentences
and the rhyme model to enforce rhyme. The ar-
chitecture of the joint model is illustrated in Fig-
ure 2. We train all the components together by
treating each component as a sub-task in a multi-
task learning setting.8

4.1 Language Model

The language model is a variant of an LSTM
encoder–decoder model with attention (Bahdanau
et al., 2015), where the encoder encodes the pre-
ceding context (i.e. all sonnet lines before the cur-
rent line) and the decoder decodes one word at a
time for the current line, while attending to the
preceding context.

In the encoder, we embed context words zi us-
ing embedding matrix Wwrd to yield wi, and feed
them to a biLSTM9 to produce a sequence of en-
coder hidden states hi = [~hi; ~hi]. Next we apply

8We stress that although the components appear to be dis-
jointed, the shared parameters allow the components to mu-
tually influence each other during joint training. To exem-
plify this, we found that the pentameter model performs very
poorly when we train each component separately.

9We use a single layer for all LSTMs.

a selective mechanism (Zhou et al., 2017) to each
hi. By defining the representation of the whole
context h = [~hC ; ~h1] (where C is the number of
words in the context), the selective mechanism fil-
ters the hidden states hi using h as follows:

h′i = hi � σ(Wahi +Uah+ ba)

where � denotes element-wise product. Here-
inafter W, U and b are used to refer to model
parameters. The intuition behind this procedure is
to selectively filter less useful elements from the
context words.

In the decoder, we embed words xt in the
current line using the encoder-shared embedding
matrix (Wwrd) to produce wt. In addition to
the word embeddings, we also embed the char-
acters of a word using embedding matrix Wchr

to produce ct,i, and feed them to a bidirectional
(character-level) LSTM:

~ut,i = LSTMf (ct,i, ~ut,i−1)

~ut,i = LSTMb(ct,i, ~ut,i+1)
(1)

We represent the character encoding of a word
by concatenating the last forward and first back-
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ward hidden states ut = [~ut,L; ~ut,1], where L is
the length of the word. We incorporate charac-
ter encodings because they provide orthographic
information, improve representations of unknown
words, and are shared with the pentameter model
(Section 4.2).10 The rationale for sharing the pa-
rameters is that we see word stress and language
model information as complementary.

Given the word embedding wt and character
encoding ut, we concatenate them together and
feed them to a unidirectional (word-level) LSTM
to produce the decoding states:

st = LSTM([wt;ut], st−1) (2)

We attend st to encoder hidden states h′i and
compute the weighted sum of h′i as follows:

eti = vᵀ
b tanh(Wbh

′
i +Ubst + bb)

at = softmax(et)

h∗t =
∑

i

atih
′
i

To combine st and h∗t , we use a gating unit
similar to a GRU (Cho et al., 2014; Chung et al.,
2014): s′t = GRU(st,h

∗
t ). We then feed s′t to a

linear layer with softmax activation to produce the
vocabulary distribution (i.e. softmax(Wouts

′
t +

bout), and optimise the model with standard cate-
gorical cross-entropy loss. We use dropout as reg-
ularisation (Srivastava et al., 2014), and apply it to
the encoder/decoder LSTM outputs and word em-
bedding lookup. The same regularisation method
is used for the pentameter and rhyme models.

As our sonnet data is relatively small for train-
ing a neural language model (367K words; see Ta-
ble 1), we pre-train word embeddings and reduce
parameters further by introducing weight-sharing
between output matrix Wout and embedding ma-
trix Wwrd via a projection matrix Wprj (Inan
et al., 2016; Paulus et al., 2017; Press and Wolf,
2017):

Wout = tanh(WwrdWprj)

4.2 Pentameter Model

This component is designed to capture the alter-
nating iambic stress pattern. Given a sonnet line,

10We initially shared the character encodings with the
rhyme model as well, but found sub-par performance for the
rhyme model. This is perhaps unsurprising, as rhyme and
stress are qualitatively very different aspects of forms.

the pentameter model learns to attend to the ap-
propriate characters to predict the 10 binary stress
symbols sequentially.11 As punctuation is not pro-
nounced, we preprocess each sonnet line to re-
move all punctuation, leaving only spaces and let-
ters. Like the language model, the pentameter
model is fashioned as an encoder–decoder net-
work.

In the encoder, we embed the characters using
the shared embedding matrix Wchr and feed them
to the shared bidirectional character-level LSTM
(Equation (1)) to produce the character encodings
for the sentence: uj = [~uj ; ~uj ].

In the decoder, it attends to the characters to pre-
dict the stresses sequentially with an LSTM:

gt = LSTM(u∗t−1,gt−1)

where u∗t−1 is the weighted sum of character en-
codings from the previous time step, produced by
an attention network which we describe next,12

and gt is fed to a linear layer with softmax acti-
vation to compute the stress distribution.

The attention network is designed to focus on
stress-producing characters, whose positions are
monotonically increasing (as stress is predicted se-
quentially). We first compute µt, the mean posi-
tion of focus:

µ′t = σ(vᵀ
c tanh(Wcgt +Ucµt−1 + bc))

µt =M ×min(µ′t + µt−1, 1.0)

where M is the number of characters in the son-
net line. Given µt, we can compute the (unnor-
malised) probability for each character position:

ptj = exp
(−(j − µt)2

2T 2

)

where standard deviation T is a hyper-parameter.
We incorporate this position information when
computing u∗t :

13

u′j = ptjuj

dtj = vᵀ
d tanh(Wdu

′
j +Udgt + bd)

f t = softmax(dt + logpt)

u∗t =
∑

j

btjuj

11That is, given the input line Shall I compare thee to a
summer’s day? the model is required to output S− S+ S−

S+ S− S+ S− S+ S− S+, based on the syllable boundaries
from Section 3.

12Initial input (u∗0) and state (g0) is a trainable vector and
zero vector respectively.

13Spaces are masked out, so they always yield zero atten-
tion weights.
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Intuitively, the attention network incorporates
the position information at two points, when com-
puting: (1) dtj by weighting the character encod-
ings; and (2) f t by adding the position log prob-
abilities. This may appear excessive, but prelimi-
nary experiments found that this formulation pro-
duces the best performance.

In a typical encoder–decoder model, the at-
tended encoder vector u∗t would be combined with
the decoder state gt to compute the output proba-
bility distribution. Doing so, however, would re-
sult in a zero-loss model as it will quickly learn
that it can simply ignore u∗t to predict the alternat-
ing stresses based on gt. For this reason we use
only u∗t to compute the stress probability:

P (S−) = σ(Weu
∗
t + be)

which gives the loss Lent =
∑

t− logP (S?t ) for
the whole sequence, where S?t is the target stress
at time step t.

We find the decoder still has the tendency to at-
tend to the same characters, despite the incorpo-
ration of position information. To regularise the
model further, we introduce two loss penalties: re-
peat and coverage loss.

The repeat loss penalises the model when it at-
tends to previously attended characters (See et al.,
2017), and is computed as follows:

Lrep =
∑

t

∑

j

min(f tj ,

t−1∑

t=1

f tj )

By keeping a sum of attention weights over all
previous time steps, we penalise the model when
it focuses on characters that have non-zero history
weights.

The repeat loss discourages the model from fo-
cussing on the same characters, but does not assure
that the appropriate characters receive attention.
Observing that stresses are aligned with the vow-
els of a syllable, we therefore penalise the model
when vowels are ignored:

Lcov =
∑

j∈V
ReLU(C −

10∑

t=1

f tj )

where V is a set of positions containing vowel
characters, and C is a hyper-parameter that de-
fines the minimum attention threshold that avoids
penalty.

To summarise, the pentameter model is opti-
mised with the following loss:

Lpm = Lent + αLrep + βLcov (3)

where α and β are hyper-parameters for weighting
the additional loss terms.

4.3 Rhyme Model

Two reasons motivate us to learn rhyme in an un-
supervised manner: (1) we intend to extend the
current model to poetry in other languages (which
may not have pronunciation dictionaries); and (2)
the language in our SONNET data is not Modern
English, and so contemporary dictionaries may
not accurately reflect the rhyme of the data.

Exploiting the fact that rhyme exists in a qua-
train, we feed sentence-ending word pairs of a
quatrain as input to the rhyme model and train it
to learn how to separate rhyming word pairs from
non-rhyming ones. Note that the model does not
assume any particular rhyming scheme — it works
as long as quatrains have rhyme.

A training example consists of a number of
word pairs, generated by pairing one target word
with 3 other reference words in the quatrain, i.e.
{(xt, xr), (xt, xr+1), (xt, xr+2)}, where xt is the
target word and xr+i are the reference words.14

We assume that in these 3 pairs there should be one
rhyming and 2 non-rhyming pairs. From prelim-
inary experiments we found that we can improve
the model by introducing additional non-rhyming
or negative reference words. Negative reference
words are sampled uniform randomly from the vo-
cabulary, and the number of additional negative
words is a hyper-parameter.

For each word x in the word pairs we embed
the characters using the shared embedding matrix
Wchr and feed them to an LSTM to produce the
character states uj .15 Unlike the language and
pentameter models, we use a unidirectional for-
ward LSTM here (as rhyme is largely determined
by the final characters), and the LSTM parameters
are not shared. We represent the encoding of the
whole word by taking the last state u = uL, where
L is the character length of the word.

Given the character encodings, we use a

14E.g. for the quatrain in Figure 1, a training example is
{(day, temperate), (day, may), (day, date)}.

15The character embeddings are the only shared parame-
ters in this model.
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margin-based loss to optimise the model:

Q = {cos(ut,ur), cos(ut,ur+1), ...}
Lrm = max(0, δ − top(Q, 1) + top(Q, 2))

where top(Q, k) returns the k-th largest element in
Q, and δ is a margin hyper-parameter.

Intuitively, the model is trained to learn a suffi-
cient margin (defined by δ) that separates the best
pair with all others, with the second-best being
used to quantify all others. This is the justifica-
tion used in the multi-class SVM literature for a
similar objective (Wang and Xue, 2014).

With this network we can estimate whether two
words rhyme by computing the cosine similarity
score during generation, and resample words as
necessary to enforce rhyme.

4.4 Generation Procedure
We focus on quatrain generation in this work, and
so the aim is to generate 4 lines of poetry. During
generation we feed the hidden state from the pre-
vious time step to the language model’s decoder
to compute the vocabulary distribution for the cur-
rent time step. Words are sampled using a tem-
perature between 0.6 and 0.8, and they are resam-
pled if the following set of words is generated: (1)
UNK token; (2) non-stopwords that were gener-
ated before;16 (3) any generated words with a fre-
quency > 2; (4) the preceding 3 words; and (5) a
number of symbols including parentheses, single
and double quotes.17 The first sonnet line is gen-
erated without using any preceding context.

We next describe how to incorporate the pen-
tameter model for generation. Given a sonnet line,
the pentameter model computes a loss Lpm (Equa-
tion (3)) that indicates how well the line conforms
to the iambic pentameter. We first generate 10 can-
didate lines (all initialised with the same hidden
state), and then sample one line from the candidate
lines based on the pentameter loss values (Lpm).
We convert the losses into probabilities by taking
the softmax, and a sentence is sampled with tem-
perature = 0.1.

To enforce rhyme, we randomly select one of
the rhyming schemes (AABB, ABAB or ABBA)
and resample sentence-ending words as necessary.
Given a pair of words, the rhyme model produces a
cosine similarity score that estimates how well the

16We use the NLTK stopword list (Bird et al., 2009).
17We add these constraints to prevent the model from being

too repetitive, in generating the same words.

two words rhyme. We resample the second word
of a rhyming pair (e.g. when generating the second
A in AABB) until it produces a cosine similarity >
0.9. We also resample the second word of a non-
rhyming pair (e.g. when generating the first B in
AABB) by requiring a cosine similarity 6 0.7.18

When generating in the forward direction we
can never be sure that any particular word is the
last word of a line, which creates a problem for re-
sampling to produce good rhymes. This problem
is resolved in our model by reversing the direc-
tion of the language model, i.e. generating the last
word of each line first. We apply this inversion
trick at the word level (character order of a word
is not modified) and only to the language model;
the pentameter model receives the original word
order as input.

5 Experiments

We assess our sonnet model in two ways: (1) com-
ponent evaluation of the language, pentameter and
rhyme models; and (2) poetry generation evalua-
tion, by crowd workers and an English literature
expert. A sample of machine-generated sonnets
are included in the supplementary material.

We tune the hyper-parameters of the model over
the development data (optimal configuration in the
supplementary material). Word embeddings are
initialised with pre-trained skip-gram embeddings
(Mikolov et al., 2013a,b) on the BACKGROUND

dataset, and are updated during training. For op-
timisers, we use Adagrad (Duchi et al., 2011) for
the language model, and Adam (Kingma and Ba,
2014) for the pentameter and rhyme models. We
truncate backpropagation through time after 2 son-
net lines, and train using 30 epochs, resetting the
network weights to the weights from the previous
epoch whenever development loss worsens.

5.1 Component Evaluation
5.1.1 Language Model
We use standard perplexity for evaluating the lan-
guage model. In terms of model variants, we
have:19

• LM: Vanilla LSTM language model;
• LM∗: LSTM language model that incorporates

character encodings (Equation (2));
18Maximum number of resampling steps is capped at 1000.

If the threshold is exceeded the model is reset to generate
from scratch again.

19All models use the same (applicable) hyper-parameter
configurations.
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shall i compare thee to a summer s day thou art more lovely and more temperate

rough winds do shake the darling buds of may and summer s lease hath all too short a date

Figure 3: Character attention weights for the first quatrain of Shakespeare’s Sonnet 18.

Model Ppl Stress Acc Rhyme F1

LM 90.13 – –
LM∗ 84.23 – –
LM∗∗ 80.41 – –

LM∗∗-C 83.68 – –
LM∗∗+PM+RM 80.22 0.74 0.91
Stress-BL – 0.80 –
Rhyme-BL – – 0.74
Rhyme-EM – – 0.71

Table 2: Component evaluation for the language
model (“Ppl” = perplexity), pentameter model
(“Stress Acc”), and rhyme model (“Rhyme F1”).
Each number is an average across 10 runs.

• LM∗∗: LSTM language model that incorporates
both character encodings and preceding con-
text;
• LM∗∗-C: Similar to LM∗∗, but preceding con-

text is encoded using convolutional networks,
inspired by the poetry model of Zhang and La-
pata (2014);20

• LM∗∗+PM+RM: the full model, with joint train-
ing of the language, pentameter and rhyme
models.
Perplexity on the test partition is detailed in Ta-

ble 2. Encouragingly, we see that the incorpora-
tion of character encodings and preceding context
improves performance substantially, reducing per-
plexity by almost 10 points from LM to LM∗∗. The
inferior performance of LM∗∗-C compared to LM∗∗

demonstrates that our approach of processing con-
text with recurrent networks with selective encod-
ing is more effective than convolutional networks.
The full model LM∗∗+PM+RM, which learns stress

20In Zhang and Lapata (2014), the authors use a series
of convolutional networks with a width of 2 words to con-
vert 5/7 poetry lines into a fixed size vector; here we use a
standard convolutional network with max-pooling operation
(Kim, 2014) to process the context.

and rhyme patterns simultaneously, also appears
to improve the language model slightly.

5.1.2 Pentameter Model
To assess the pentameter model, we use the
attention weights to predict stress patterns for
words in the test data, and compare them against
stress patterns in the CMU pronunciation dictio-
nary.21 Words that have no coverage or have non-
alternating patterns given by the dictionary are dis-
carded. We use accuracy as the metric, and a pre-
dicted stress pattern is judged to be correct if it
matches any of the dictionary stress patterns.

To extract a stress pattern for a word from the
model, we iterate through the pentameter (10 time
steps), and append the appropriate stress (e.g. 1st
time step = S−) to the word if any of its characters
receives an attention > 0.20.

For the baseline (Stress-BL) we use the pre-
trained weighted finite state transducer (WFST)
provided by Hopkins and Kiela (2017).22 The
WFST maps a sequence word to a sequence of
stresses by assuming each word has 1–5 stresses
and the full word sequence produces iambic pen-
tameter. It is trained using the EM algorithm on a
sonnet corpus developed by the authors.

We present stress accuracy in Table 2.
LM∗∗+PM+RM performs competitively, and infor-
mal inspection reveals that a number of mistakes
are due to dictionary errors. To understand the
predicted stresses qualitatively, we display atten-
tion heatmaps for the the first quatrain of Shake-
speare’s Sonnet 18 in Figure 3. The y-axis repre-
sents the ten stresses of the iambic pentameter, and

21http://www.speech.cs.cmu.edu/cgi-bin/
cmudict. Note that the dictionary provides 3 levels of
stresses: 0, 1 and 2; we collapse 1 and 2 to S+.

22https://github.com/JackHopkins/
ACLPoetry
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CMU Rhyming Pairs CMU Non-Rhyming Pairs

Word Pair Cos Word Pair Cos

(endeavour, never) 0.028 (blood, stood) 1.000
(nowhere, compare) 0.098 (mood, stood) 1.000

(supply, sigh) 0.164 (overgrown, frown) 1.000
(sky, high) 0.164 (understood, food) 1.000

(me, maybe) 0.165 (brood, wood) 1.000
(cursed, burst) 0.172 (rove, love) 0.999

(weigh, way) 0.200 (sire, ire) 0.999
(royally, we) 0.217 (moves, shoves) 0.998

(use, juice) 0.402 (afraid, said) 0.998
(dim, limb) 0.497 (queen, been) 0.996

Table 3: Rhyming errors produced by the model.
Examples on the left (right) side are rhyming
(non-rhyming) word pairs — determined using the
CMU dictionary — that have low (high) cosine
similarity. “Cos” denote the system predicted co-
sine similarity for the word pair.

x-axis the characters of the sonnet line (punctua-
tion removed). The attention network appears to
perform very well, without any noticeable errors.
The only minor exception is lovely in the second
line, where it predicts 2 stresses but the second
stress focuses incorrectly on the character e rather
than y. Additional heatmaps for the full sonnet are
provided in the supplementary material.

5.1.3 Rhyme Model
We follow a similar approach to evaluate the
rhyme model against the CMU dictionary, but
score based on F1 score. Word pairs that are not
included in the dictionary are discarded. Rhyme
is determined by extracting the final stressed
phoneme for the paired words, and testing if their
phoneme patterns match.

We predict rhyme for a word pair by feeding
them to the rhyme model and computing cosine
similarity; if a word pair is assigned a score >
0.8,23 it is considered to rhyme. As a baseline
(Rhyme-BL), we first extract for each word the
last vowel and all following consonants, and pre-
dict a word pair as rhyming if their extracted se-
quences match. The extracted sequence can be in-
terpreted as a proxy for the last syllable of a word.

Reddy and Knight (2011) propose an unsuper-
vised model for learning rhyme schemes in poems
via EM. There are two latent variables: φ specifies
the distribution of rhyme schemes, and θ defines

230.8 is empirically found to be the best threshold based on
development data.

the pairwise rhyme strength between two words.
The model’s objective is to maximise poem likeli-
hood over all possible rhyme scheme assignments
under the latent variables φ and θ. We train this
model (Rhyme-EM) on our data24 and use the
learnt θ to decide whether two words rhyme.25

Table 2 details the rhyming results. The rhyme
model performs very strongly at F1 > 0.90,
well above both baselines. Rhyme-EM performs
poorly because it operates at the word level (i.e.
it ignores character/orthographic information) and
hence does not generalise well to unseen words
and word pairs.26

To better understand the errors qualitatively, we
present a list of word pairs with their predicted
cosine similarity in Table 3. Examples on the
left side are rhyming word pairs as determined by
the CMU dictionary; right are non-rhyming pairs.
Looking at the rhyming word pairs (left), it ap-
pears that these words tend not to share any word-
ending characters. For the non-rhyming pairs, we
spot several CMU errors: (sire, ire) and (queen,
been) clearly rhyme.

5.2 Generation Evaluation

5.2.1 Crowdworker Evaluation
Following Hopkins and Kiela (2017), we present a
pair of quatrains (one machine-generated and one
human-written, in random order) to crowd work-
ers on CrowdFlower, and ask them to guess which
is the human-written poem. Generation quality is
estimated by computing the accuracy of workers
at correctly identifying the human-written poem
(with lower values indicate better results for the
model).

We generate 50 quatrains each for LM, LM∗∗ and
LM∗∗+PM+RM (150 in total), and as a control, gen-
erate 30 quatrains with LM trained for one epoch.
An equal number of human-written quatrains was
sampled from the training partition. A HIT con-
tained 5 pairs of poems (of which one is a control),
and workers were paid $0.05 for each HIT. Work-
ers who failed to identify the human-written poem
in the control pair reliably (minimum accuracy =
70%) were removed by CrowdFlower automati-

24We use the original authors’ implementation: https:
//github.com/jvamvas/rhymediscovery.

25A word pair is judged to rhyme if θw1,w2 > 0.02; the
threshold (0.02) is selected based on development perfor-
mance.

26Word pairs that did not co-occur in a poem in the training
data have rhyme strength of zero.
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Model Accuracy

LM 0.742
LM∗∗ 0.672

LM∗∗+PM+RM 0.532
LM∗∗+RM 0.532

Table 4: Crowdworker accuracy performance.

Model Meter Rhyme Read. Emotion

LM 4.00±0.73 1.57±0.67 2.77±0.67 2.73±0.51

LM∗∗ 4.07±1.03 1.53±0.88 3.10±1.04 2.93±0.93

LM∗∗+PM+RM 4.10±0.91 4.43±0.56 2.70±0.69 2.90±0.79

Human 3.87±1.12 4.10±1.35 4.80±0.48 4.37±0.71

Table 5: Expert mean and standard deviation rat-
ings on several aspects of the generated quatrains.

cally, and they were restricted to do a maximum
of 3 HITs. To dissuade workers from using search
engines to identify real poems, we presented the
quatrains as images.

Accuracy is presented in Table 4. We see a
steady decrease in accuracy (= improvement in
model quality) from LM to LM∗∗ to LM∗∗+PM+RM,
indicating that each model generates quatrains that
are less distinguishable from human-written ones.
Based on the suspicion that workers were using
rhyme to judge the poems, we tested a second
model, LM∗∗+RM, which is the full model with-
out the pentameter component. We found iden-
tical accuracy (0.532), confirming our suspicion
that crowd workers depend on only rhyme in their
judgements. These observations demonstrate that
meter is largely ignored by lay persons in poetry
evaluation.

5.2.2 Expert Judgement
To better understand the qualitative aspects of our
generated quatrains, we asked an English literature
expert (a Professor of English literature at a ma-
jor English-speaking university; the last author of
this paper) to directly rate 4 aspects: meter, rhyme,
readability and emotion (i.e. amount of emotion
the poem evokes). All are rated on an ordinal
scale between 1 to 5 (1 = worst; 5 = best). In
total, 120 quatrains were annotated, 30 each for
LM, LM∗∗, LM∗∗+PM+RM, and human-written po-
ems (Human). The expert was blind to the source
of each poem. The mean and standard deviation
of the ratings are presented in Table 5.

We found that our full model has the highest rat-
ings for both rhyme and meter, even higher than

human poets. This might seem surprising, but in
fact it is well established that real poets regularly
break rules of form to create other effects (Adams,
1997). Despite excellent form, the output of our
model can easily be distinguished from human-
written poetry due to its lower emotional impact
and readability. In particular, there is evidence
here that our focus on form actually hurts the read-
ability of the resulting poems, relative even to the
simpler language models. Another surprise is how
well simple language models do in terms of their
grasp of meter: in this expert evaluation, we see
only marginal benefit as we increase the sophisti-
cation of the model. Taken as a whole, this evalu-
ation suggests that future research should look be-
yond forms, towards the substance of good poetry.

6 Conclusion

We propose a joint model of language, meter and
rhyme that captures language and form for mod-
elling sonnets. We provide quantitative analy-
ses for each component, and assess the quality of
generated poems using judgements from crowd-
workers and a literature expert. Our research re-
veals that vanilla LSTM language model captures
meter implicitly, and our proposed rhyme model
performs exceptionally well. Machine-generated
generated poems, however, still underperform in
terms of readability and emotion.
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Abstract

Traditionally, Referring Expression Gen-
eration (REG) models first decide on the
form and then on the content of refer-
ences to discourse entities in text, typi-
cally relying on features such as salience
and grammatical function. In this paper,
we present a new approach (NeuralREG),
relying on deep neural networks, which
makes decisions about form and content
in one go without explicit feature extrac-
tion. Using a delexicalized version of the
WebNLG corpus, we show that the neu-
ral model substantially improves over two
strong baselines. Data and models are
publicly available1.

1 Introduction

Natural Language Generation (NLG) is the task of
automatically converting non-linguistic data into
coherent natural language text (Reiter and Dale,
2000; Gatt and Krahmer, 2018). Since the in-
put data will often consist of entities and the re-
lations between them, generating references for
these entities is a core task in many NLG sys-
tems (Dale and Reiter, 1995; Krahmer and van
Deemter, 2012). Referring Expression Genera-
tion (REG), the task responsible for generating
these references, is typically presented as a two-
step procedure. First, the referential form needs to
be decided, asking whether a reference at a given
point in the text should assume the form of, for ex-
ample, a proper name (“Frida Kahlo”), a pronoun
(“she”) or description (“the Mexican painter”). In
addition, the REG model must account for the dif-
ferent ways in which a particular referential form
can be realized. For example, both “Frida” and

1https://github.com/ThiagoCF05/
NeuralREG

“Kahlo” are name-variants that may occur in a
text, and she can alternatively also be described
as, say, “the famous female painter”.

Most of the earlier REG approaches focus ei-
ther on selecting referential form (Orita et al.,
2015; Castro Ferreira et al., 2016), or on select-
ing referential content, typically zooming in on
one specific kind of reference such as a pronoun
(e.g., Henschel et al., 2000; Callaway and Lester,
2002), definite description (e.g., Dale and Had-
dock, 1991; Dale and Reiter, 1995) or proper
name generation (e.g., Siddharthan et al., 2011;
van Deemter, 2016; Castro Ferreira et al., 2017b).
Instead, in this paper, we propose NeuralREG: an
end-to-end approach addressing the full REG task,
which given a number of entities in a text, pro-
duces corresponding referring expressions, simul-
taneously selecting both form and content. Our
approach is based on neural networks which gen-
erate referring expressions to discourse entities re-
lying on the surrounding linguistic context, with-
out the use of any feature extraction technique.

Besides its use in traditional pipeline NLG sys-
tems (Reiter and Dale, 2000), REG has also be-
come relevant in modern “end-to-end” NLG ap-
proaches, which perform the task in a more inte-
grated manner (see e.g. Konstas et al., 2017; Gar-
dent et al., 2017b). Some of these approaches
have recently focused on inputs which references
to entities are delexicalized to general tags (e.g.,
ENTITY-1, ENTITY-2) in order to decrease data
sparsity. Based on the delexicalized input, the
model generates outputs which may be likened
to templates in which references to the discourse
entities are not realized (as in “The ground of
ENTITY-1 is located in ENTITY-2.”).

While our approach, dubbed as NeuralREG,
is compatible with different applications of REG
models, in this paper, we concentrate on the last
one, relying on a specifically constructed set of

1959



78,901 referring expressions to 1,501 entities in
the context of the semantic web, derived from
a (delexicalized) version of the WebNLG corpus
(Gardent et al., 2017a,b). Both this data set and
the model will be made publicly available. We
compare NeuralREG against two baselines in an
automatic and human evaluation, showing that the
integrated neural model is a marked improvement.

2 Related work

In recent years, we have seen a surge of inter-
est in using (deep) neural networks for a wide
range of NLG-related tasks, as the generation of
(first sentences of) Wikipedia entries (Lebret et al.,
2016), poetry (Zhang and Lapata, 2014), and texts
from abstract meaning representations (e.g., Kon-
stas et al., 2017; Castro Ferreira et al., 2017a).
However, the usage of deep neural networks for
REG has remained limited and we are not aware
of any other integrated, end-to-end model for gen-
erating referring expressions in discourse.

There is, however, a lot of earlier work on
selecting the form and content of referring ex-
pressions, both in psycholinguistics and in com-
putational linguistics. In psycholinguistic mod-
els of reference, various linguistic factors have
been proposed as influencing the form of referen-
tial expressions, including cognitive status (Gun-
del et al., 1993), centering (Grosz et al., 1995)
and information density (Jaeger, 2010). In models
such as these, notions like salience play a central
role, where it is assumed that entities which are
salient in the discourse are more likely to be re-
ferred to using shorter referring expressions (like a
pronoun) than less salient entities, which are typi-
cally referred to using longer expressions (like full
proper names).

Building on these ideas, many REG models for
generating references in texts also strongly rely on
the concept of salience and factors contributing to
it. Reiter and Dale (2000) for instance, discussed
a straightforward rule-based method based on this
notion, stating that full proper names can be used
for initial references, typically less salient than
subsequent references, which, according to the
study, can be realized by a pronoun in case there
is no mention to any other entity of same person,
gender and number between the reference and its
antecedents. More recently, Castro Ferreira et al.
(2016) proposed a data-driven, non-deterministic
model for generating referential forms, taking into

account salience features extracted from the dis-
course such as grammatical position, givenness
and recency of the reference. Importantly, these
models do not specify which contents a particu-
lar reference, be it a proper name or description,
should have. To this end, separate models are typ-
ically used, including, for example, Dale and Re-
iter (1995) for generating descriptions, and Sid-
dharthan et al. (2011); van Deemter (2016) for
proper names.

Of course, when texts are generated in practical
settings, both form and content need to be cho-
sen. This was the case, for instance, in the GREC
shared task (Belz et al., 2010), which aimed to
evaluate models for automatically generated refer-
ring expressions grounded in discourse. The input
for the models were texts in which the referring
expressions to the topic of the relevant Wikipedia
entry were removed and appropriate references
throughout the text needed to be generated (by se-
lecting, for each gap, from a list of candidate refer-
ring expressions of different forms and with dif-
ferent contents). Some participating systems ap-
proached this with traditional pipelines for select-
ing referential form, followed by referential con-
tent, while others proposed more integrated meth-
ods. More details about the models can be seen on
Belz et al. (2010).

In sum, existing REG models for text genera-
tion strongly rely on abstract features such as the
salience of a referent for deciding on the form or
content of a referent. Typically, these features are
extracted automatically from the context, and en-
gineering relevant ones can be complex. More-
over, many of these models only address part of
the problem, either concentrating on the choice
of referential form or on deciding on the con-
tents of, for example, proper names or definite de-
scriptions. In contrast, we introduce NeuralREG,
an end-to-end approach based on neural networks
which generates referring expressions to discourse
entities directly from a delexicalized/wikified text
fragment, without the use of any feature extraction
technique. Below we describe our model in more
detail, as well as the data on which we develop and
evaluate it.

3 Data and processing

3.1 WebNLG corpus

Our data is based on the WebNLG corpus (Gar-
dent et al., 2017a), which is a parallel resource ini-
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Subject Predicate Object
108 St Georges Terrace location Perth
Perth country Australia
108 St Georges Terrace completionDate 1988@year
108 St Georges Terrace cost 120 million (Australian dollars)@USD
108 St Georges Terrace floorCount 50@Integer

↓
108 St Georges Terrace was completed in 1988 in Perth, Australia. It has a total of 50 floors and cost 120m Australian dollars.

Figure 1: Example of a set of triples (top) and corresponding text (bottom).

tially released for the eponymous NLG challenge.
In this challenge, participants had to automatically
convert non-linguistic data from the Semantic Web
into a textual format (Gardent et al., 2017b). The
source side of the corpus are sets of Resource De-
scription Framework (RDF) triples. Each RDF
triple is formed by a Subject, Predicate and Ob-
ject, where the Subject and Object are constants
or Wikipedia entities, and predicates represent a
relation between these two elements in the triple.
The target side contains English texts, obtained by
crowdsourcing, which describe the source triples.
Figure 1 depicts an example of a set of 5 RDF
triples and the corresponding text.

The corpus consists of 25,298 texts describing
9,674 sets of up to 7 RDF triples (an average of
2.62 texts per set) in 15 domains (Gardent et al.,
2017b). In order to be able to train and evalu-
ate our models for referring expression generation
(the topic of this study), we produced a delexical-
ized version of the original corpus.

3.2 Delexicalized WebNLG

We delexicalized the training and development
parts of the WebNLG corpus by first automatically
mapping each entity in the source representation
to a general tag. All entities that appear on the
left and right side of the triples were mapped to
AGENTs and PATIENTs, respectively. Entities
which appear on both sides in the relations of a
set were represented as BRIDGEs. To distinguish
different AGENTs, PATIENTs and BRIDGEs in a
set, an ID was given to each entity of each kind
(PATIENT-1, PATIENT-2, etc.). Once all entities
in the text were mapped to different roles, the first
two authors of this study manually replaced the re-
ferring expressions in the original target texts by
their respective tags. Figure 2 shows the entity
mapping and the delexicalized template for the ex-
ample in Figure 1 in its versions representing the
references with general tags and Wikipedia IDs.

We delexicalized 20,198 distinct texts describ-
ing 7,812 distinct sets of RDF triples, resulting
in 16,628 distinct templates. While this dataset
(which we make available) has various uses, we
used it to extract a collection of referring expres-
sions to Wikipedia entities in order to evaluate
how well our REG model can produce references
to entities throughout a (small) text.

3.3 Referring expression collection
Using the delexicalized version of the WebNLG
corpus, we automatically extracted all referring
expressions by tokenizing the original and delex-
icalized versions of the texts and then finding the
non overlapping items. For instance, by process-
ing the text in Figure 1 and its delexicalized tem-
plate in Figure 2, we would extract referring ex-
pressions like “108 St Georges Terrace” and “It”
to 〈 AGENT-1, 108 St Georges Terrace 〉, “Perth”
to 〈 BRIDGE-1, Perth 〉, “Australia” to 〈 PATIENT-
1, Australia 〉 and so on.

Once all texts were processed and the referring
expressions extracted, we filtered only the ones re-
ferring to Wikipedia entities, removing references
to constants like dates and numbers, for which no
references are generated by the model. In total,
the final version of our dataset contains 78,901
referring expressions to 1,501 Wikipedia entities,
in which 71.4% (56,321) are proper names, 5.6%
(4,467) pronouns, 22.6% (17,795) descriptions
and 0.4% (318) demonstrative referring expres-
sions. We split this collection in training, develop-
ing and test sets, totaling 63,061, 7,097 and 8,743
referring expressions in each one of them.

Each instance of the final dataset consists of a
truecased tokenized referring expression, the tar-
get entity (distinguished by its Wikipedia ID),
and the discourse context preceding and follow-
ing the relevant reference (we refer to these as
the pre- and pos-context). Pre- and pos-contexts
are the lowercased, tokenized and delexicalized
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Tag Entity
AGENT-1 108 St Georges Terrace
BRIDGE-1 Perth
PATIENT-1 Australia
PATIENT-2 1988@year
PATIENT-3 “120 million (Australian dollars)”@USD
PATIENT-4 50@Integer

AGENT-1 was completed in PATIENT-2 in BRIDGE-1 , PATIENT-1 . AGENT-1 has a total of PATIENT-4 floors and cost
PATIENT-3 .

↓Wiki

108 St Georges Terrace was completed in 1988 in Perth , Australia . 108 St Georges Terrace has a total of 50 floors and
cost 20 million (Australian dollars) .

Figure 2: Mapping between tags and entities for the related delexicalized/wikified templates.

pieces of text before and after the target refer-
ence. References to other discourse entities in
the pre- and pos-contexts are represented by their
Wikipedia ID, whereas constants (numbers, dates)
are represented by a one-word ID removing quotes
and replacing white spaces with underscores (e.g.,
120 million (Australian dollars) for “120 million
(Australian dollars)” in Figure 2).

Although the references to discourse entities are
represented by general tags in a delexicalized tem-
plate produced in the generation process (AGENT-
1, BRIDGE-1, etc.), for the purpose of disam-
biguation, NeuralREG’s inputs have the references
represented by the Wikipedia ID of their entities.
In this context, it is important to observe that the
conversion of the general tags to the Wikipedia
IDs can be done in constant time during the gen-
eration process, since their mapping, like the first
representation in Figure 2, is the first step of the
process. In the next section, we show in detail
how NeuralREG models the problem of generat-
ing a referring expression to a discourse entity.

4 NeuralREG

NeuralREG aims to generate a referring expres-
sion y = {y1, y2, ..., yT } with T tokens to refer to
a target entity token x(wiki) given a discourse pre-
context X(pre) = {x(pre)1 , x

(pre)
2 , ..., x

(pre)
m } and

pos-context X(pos) = {x(pos)1 , x
(pos)
2 , ..., x

(pos)
l }

with m and l tokens, respectively. The model
is implemented as a multi-encoder, attention-
decoder network with bidirectional (Schuster and
Paliwal, 1997) Long-Short Term Memory Lay-
ers (LSTM) (Hochreiter and Schmidhuber, 1997)
sharing the same input word-embedding matrix V ,
as explained further.

4.1 Context encoders

Our model starts by encoding the pre- and pos-
contexts with two separate bidirectional LSTM
encoders (Schuster and Paliwal, 1997; Hochreiter
and Schmidhuber, 1997). These modules learn
feature representations of the text surrounding the
target entity x(wiki), which are used for the re-
ferring expression generation. The pre-context
X(pre) = {x(pre)1 , x

(pre)
2 , ..., x

(pre)
m } is represented

by forward and backward hidden-state vectors
(
−→
h

(pre)
1 , · · · ,−→h (pre)

m ) and (
←−
h

(pre)
1 , · · · ,←−h (pre)

m ).
The final annotation vector for each encoding
timestep t is obtained by the concatenation of the
forward and backward representations h(pre)t =

[
−→
h

(pre)
t ,

←−
h

(pre)
t ]. The same process is repeated

for the pos-context resulting in representations
(
−→
h

(pos)
1 , · · · ,−→h (pos)

l ) and (
←−
h

(pos)
1 , · · · ,←−h (pos)

l )

and annotation vectors h(pos)t = [
−→
h

(pos)
t ,

←−
h

(pos)
t ].

Finally, the encoding of target entity x(wiki) is sim-
ply its entry in the shared input word-embedding
matrix Vwiki.

4.2 Decoder

The referring expression generation module is an
LSTM decoder implemented in 3 different ver-
sions: Seq2Seq, CAtt and HierAtt. All de-
coders at each timestep i of the generation process
take as input features their previous state si−1, the
target entity-embedding Vwiki, the embedding of
the previous word of the referring expression Vyi−1

and finally the summary vector of the pre- and pos-
contexts ci. The difference between the decoder
variations is the method to compute ci.

Seq2Seq models the context vector ci at each
timestep i concatenating the pre- and pos-context
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annotation vectors averaged over time:

ĥ(pre) =
1

N

N∑

i

h
(pre)
i (1)

ĥ(pos) =
1

N

N∑

i

h
(pos)
i (2)

ci = [ĥ(pre), ĥ(pos)] (3)

CAtt is an LSTM decoder augmented with an
attention mechanism (Bahdanau et al., 2015) over
the pre- and pos-context encodings, which is used
to compute ci at each timestep. We compute ener-
gies e(pre)ij and e(pos)ij between encoder states h(pre)i

and h(post)i and decoder state si−1. These scores
are normalized through the application of the soft-
max function to obtain the final attention proba-
bility α(pre)

ij and α(post)
ij . Equations 4 and 5 sum-

marize the process with k ranging over the two
encoders (k ∈ [pre, pos]), being the projection
matrices W (k)

a and U (k)
a and attention vectors v(k)a

trained parameters.

e
(k)
ij = v(k)Ta tanh(W (k)

a si−1 + U (k)
a h

(k)
j ) (4)

α
(k)
ij =

exp(e
(k)
ij )

∑N
n=1 exp(e

(k)
in )

(5)

In general, the attention probability α(k)
ij deter-

mines the amount of contribution of the jth to-
ken of k-context in the generation of the ith to-
ken of the referring expression. In each decoding
step i, a final summary-vector for each context c(k)i

is computed by summing the encoder states h(k)j

weighted by the attention probabilities α(k)
i :

c
(k)
i =

N∑

j=1

α
(k)
ij h

(k)
j (6)

To combine c(pre)i and c(pos)i into a single rep-
resentation, this model simply concatenate the
pre- and pos-context summary vectors ci =

[c
(pre)
i , c

(pos)
i ].

HierAtt implements a second attention mech-
anism inspired by Libovický and Helcl (2017) in
order to generate attention weights for the pre- and
pos-context summary-vectors c(pre)i and c(pos)i in-
stead of concatenate them. Equations 7, 8 and 9
depict the process, being the projection matrices

W
(k)
b and U

(k)
b as well as attention vectors v(k)b

trained parameters (k ∈ [pre, pos]).

e
(k)
i = v

(k)T
b tanh(W

(k)
b si−1 + U

(k)
b c

(k)
i ) (7)

β
(k)
i =

exp(e
(k)
i )

∑
n exp(e

(n)
i )

(8)

ci =
∑

k

β
(k)
i U

(k)
b c

(k)
i (9)

Decoding Given the summary-vector ci, the em-
bedding of the previous referring expression to-
ken Vyi−1 , the previous decoder state si−1 and the
entity-embedding Vwiki, the decoders predict their
next state which later is used to compute a prob-
ability distribution over the tokens in the output
vocabulary for the next timestep as Equations 10
and 11 show.

si = Φdec(si−1, [ci, Vyi−1 , Vwiki]) (10)

p(yi|y<i, X(pre),x(wiki), X(pos)) =

softmax(Wcsi + b)
(11)

In Equation 10, s0 and c0 are zero-initialized
vectors. In order to find the referring expression
y that maximizes the likelihood in Equation 11,
we apply a beam search with length normalization
with α = 0.6 (Wu et al., 2016):

lp(y) =
(5 + |y|)α
(5 + 1)α

(12)

The decoder is trained to minimize the negative
log likelihood of the next token in the target refer-
ring expression:

J(θ) = −
∑

i

log p(yi|y<i, X(pre), x(wiki), X(pos)) (13)

5 Models for Comparison

We compared the performance of NeuralREG
against two baselines: OnlyNames and a model
based on the choice of referential form method of
Castro Ferreira et al. (2016), dubbed Ferreira.

OnlyNames is motivated by the similarity
among the Wikipedia ID of an element and a
proper name reference to it. This method refers
to each entity by their Wikipedia ID, replacing
each underscore in the ID for whitespaces (e.g.,
Appleton International Airport to “Appleton In-
ternational Airport”).
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Ferreira works by first choosing whether a ref-
erence should be a proper name, pronoun, descrip-
tion or demonstrative. The choice is made by a
Naive Bayes method as Equation 14 depicts.

P (f | X) ∝
P (f)

∏
x∈X

P (x | f)

∑
f ′∈F

P (f ′)
∏
x∈X

P (x | f ′) (14)

The method calculates the likelihood of each
referential form f given a set of features X , con-
sisting of grammatical position and information
status (new or given in the text and sentence).
Once the choice of referential form is made, the
most frequent variant is chosen in the training cor-
pus given the referent, syntactic position and in-
formation status. In case a referring expression
for a wiki target is not found in this way, a back-
off method is applied by removing one factor at a
time in the following order: sentence information
status, text information status and grammatical po-
sition. Finally, if a referring expression is not
found in the training set for a given entity, the same
method as OnlyNames is used. Regarding the fea-
tures, syntactic position distinguishes whether a
reference is the subject, object or subject deter-
miner (genitive) in a sentence. Text and sentence
information statuses mark whether a reference is a
initial or a subsequent mention to an entity in the
text and the sentence, respectively. All features
were extracted automatically from the texts using
the sentence tokenizer and dependency parser of
Stanford CoreNLP (Manning et al., 2014).

6 Automatic evaluation

Data We evaluated our models on the training,
development and test referring expression sets de-
scribed in Section 3.3.

Metrics We compared the referring expressions
produced by the evaluated models with the gold-
standards ones using accuracy and String Edit Dis-
tance (Levenshtein, 1966). Since pronouns are
highlighted as the most likely referential form to
be used when a referent is salient in the discourse,
as argued in the introduction, we also computed
pronoun accuracy, precision, recall and F1-score
in order to evaluate the performance of the mod-
els for capturing discourse salience. Finally, we
lexicalized the original templates with the refer-
ring expressions produced by the models and com-
pared them with the original texts in the corpus
using accuracy and BLEU score (Papineni et al.,

2002) as a measure of fluency. Since our model
does not handle referring expressions for constants
(dates and numbers), we just copied their source
version into the template.

Post-hoc McNemar’s and Wilcoxon signed
ranked tests adjusted by the Bonferroni method
were used to test the statistical significance of the
models in terms of accuracy and string edit dis-
tance, respectively. To test the statistical signifi-
cance of the BLEU scores of the models, we used
a bootstrap resampling together with an approxi-
mate randomization method (Clark et al., 2011)2.

Settings NeuralREG was implemented using
Dynet (Neubig et al., 2017). Source and target
word embeddings were 300D each and trained
jointly with the model, whereas hidden units were
512D for each direction, totaling 1024D in the
bidirection layers. All non-recurrent matrices
were initialized following the method of Glo-
rot and Bengio (2010). Models were trained
using stochastic gradient descent with Adadelta
(Zeiler, 2012) and mini-batches of size 40. We
ran each model for 60 epochs, applying early stop-
ping for model selection based on accuracy on
the development set with patience of 20 epochs.
For each decoding version (Seq2Seq, CAtt and
HierAtt), we searched for the best combination
of drop-out probability of 0.2 or 0.3 in both the
encoding and decoding layers, using beam search
with a size of 1 or 5 with predictions up to 30
tokens or until 2 ending tokens were predicted
(EOS). The results described in the next section
were obtained on the test set by the NeuralREG
version with the highest accuracy on the develop-
ment set over the epochs.

Results Table 1 summarizes the results for all
models on all metrics on the test set and Table 2
depicts a text example lexicalized by each model.
The first thing to note in the results of the first table
is that the baselines in the top two rows performed
quite strong on this task, generating more than half
of the referring expressions exactly as in the gold-
standard. The method based on Castro Ferreira
et al. (2016) performed statistically better than On-
lyNames on all metrics due to its capability, albeit
to a limited extent, to predict pronominal refer-
ences (which OnlyNames obviously cannot).

We reported results on the test set for Neu-
ralREG+Seq2Seq and NeuralREG+CAtt using

2https://github.com/jhclark/multeval
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All References Pronouns Text
Acc. SED Acc. Prec. Rec. F-Score Acc. BLEU

OnlyNames 0.53D 4.05D - - - - 0.15D 69.03D

Ferreira 0.61C 3.18C 0.43B 0.57 0.54 0.55 0.19C 72.78C

NeuralREG+Seq2Seq 0.74A,B 2.32A,B 0.75A 0.77 0.78 0.78 0.28B 79.27A,B

NeuralREG+CAtt 0.74A 2.25A 0.75A 0.73 0.78 0.75 0.30A 79.39A

NeuralREG+HierAtt 0.73B 2.36B 0.73A 0.74 0.77 0.75 0.28A,B 79.01B

Table 1: (1) Accuracy (Acc.) and String Edit Distance (SED) results in the prediction of all referring
expressions; (2) Accuracy (Acc.), Precision (Prec.), Recall (Rec.) and F-Score results in the prediction
of pronominal forms; and (3) Accuracy (Acc.) and BLEU score results of the texts with the generated
referring expressions. Rankings were determined by statistical significance.

dropout probability 0.3 and beam size 5, and Neu-
ralREG+HierAtt with dropout probability of
0.3 and beam size of 1 selected based on the high-
est accuracy on the development set. Importantly,
the three NeuralREG variant models statistically
outperformed the two baseline systems. They
achieved BLEU scores, text and referential accu-
racies as well as string edit distances in the range
of 79.01-79.39, 28%-30%, 73%-74% and 2.25-
2.36, respectively. This means that NeuralREG
predicted 3 out of 4 references completely cor-
rect, whereas the incorrect ones needed an average
of 2 post-edition operations in character level to
be equal to the gold-standard. When considering
the texts lexicalized with the referring expressions
produced by NeuralREG, at least 28% of them are
similar to the original texts. Especially noteworthy
was the score on pronoun accuracy, indicating that
the model was well capable of predicting when to
generate a pronominal reference in our dataset.

The results for the different decoding meth-
ods for NeuralREG were similar, with the Neu-
ralREG+CAtt performing slightly better in terms
of the BLEU score, text accuracy and String
Edit Distance. The more complex Neural-
REG+HierAtt yielded the lowest results, even
though the differences with the other two models
were small and not even statistically significant in
many of the cases.

7 Human Evaluation

Complementary to the automatic evaluation, we
performed an evaluation with human judges, com-
paring the quality judgments of the original texts
to the versions generated by our various models.

Material We quasi-randomly selected 24 in-
stances from the delexicalized version of the
WebNLG corpus related to the test part of the re-

ferring expression collection. For each of the se-
lected instances, we took into account its source
triple set and its 6 target texts: one original (ran-
domly chosen) and its versions with the referring
expressions generated by each of the 5 models in-
troduced in this study (two baselines, three neural
models). Instances were chosen following 2 crite-
ria: the number of triples in the source set (ranging
from 2 to 7) and the differences between the target
texts.

For each size group, we randomly selected 4 in-
stances (of varying degrees of variation between
the generated texts) giving rise to 144 trials (=
6 triple set sizes ∗ 4 instances ∗ 6 text versions),
each consisting of a set of triples and a target text
describing it with the lexicalized referring expres-
sions highlighted in yellow.

Method The experiment had a latin-square de-
sign, distributing the 144 trials over 6 different
lists such that each participant rated 24 trials, one
for each of the 24 corpus instances, making sure
that participants saw equal numbers of triple set
sizes and generated versions. Once introduced to
a trial, the participants were asked to rate the flu-
ency (“does the text flow in a natural, easy to read
manner?”), grammaticality (“is the text grammat-
ical (no spelling or grammatical errors)?”) and
clarity (“does the text clearly express the data?”)
of each target text on a 7-Likert scale, focussing
on the highlighted referring expressions. The ex-
periment is available on the website of the author3.

Participants We recruited 60 participants, 10
per list, via Mechanical Turk. Their average age
was 36 years and 27 of them were females. The
majority declared themselves native speakers of

3https://ilk.uvt.nl/˜tcastrof/acl2018/
evaluation/
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Model Text

OnlyNames
alan shepard was born in new hampshire on 1923-11-18 . before alan shepard death in california
alan shepard had been awarded distinguished service medal (united states navy) an award higher
than department of commerce gold medal .

Ferreira
alan shepard was born in new hampshire on 1923-11-18 . before alan shepard death in california
him had been awarded distinguished service medal an award higher than department of commerce
gold medal .

Seq2Seq
alan shepard was born in new hampshire on 1923-11-18 . before his death in california him had
been awarded the distinguished service medal by the united states navy an award higher than the
department of commerce gold medal .

CAtt
alan shepard was born in new hampshire on 1923-11-18 . before his death in california he had been
awarded the distinguished service medal by the us navy an award higher than the department of
commerce gold medal .

HierAtt
alan shephard was born in new hampshire on 1923-11-18 . before his death in california he had been
awarded the distinguished service medal an award higher than the department of commerce gold
medal .

Original
alan shepard was born in new hampshire on 18 november 1923 . before his death in california he had
been awarded the distinguished service medal by the us navy an award higher than the department
of commerce gold medal .

Table 2: Example of text with references lexicalized by each model.

Fluency Grammar Clarity

OnlyNames 4.74C 4.68B 4.90B

Ferreira 4.74C 4.58B 4.93B

NeuralREG+Seq2Seq 4.95B,C 4.82A,B 4.97B

NeuralREG+CAtt 5.23A,B 4.95A,B 5.26A,B

NeuralREG+HierAtt 5.07B,C 4.90A,B 5.13A,B

Original 5.41A 5.17A 5.42A

Table 3: Fluency, Grammaticality and Clarity re-
sults obtained in the human evaluation. Rankings
were determined by statistical significance.

English (44), while 14 and 2 self-reported as fluent
or having a basic proficiency, respectively.

Results Table 3 summarizes the results. Inspec-
tion of the Table reveals a clear pattern: all three
neural models scored higher than the baselines on
all metrics, with especially NeuralREG+CAtt ap-
proaching the ratings for the original sentences,
although – again – differences between the neu-
ral models were small. Concerning the size of the
triple sets, we did not find any clear pattern.

To test the statistical significance of the pair-
wise comparisons, we used the Wilcoxon signed-
rank test corrected for multiple comparisons us-
ing the Bonferroni method. Different from the
automatic evaluation, the results of both base-
lines were not statistically significant for the three
metrics. In comparison with the neural models,
NeuralREG+CAtt significantly outperformed the
baselines in terms of fluency, whereas the other
comparisons between baselines and neural models
were not statistically significant. The results for

the 3 different decoding methods of NeuralREG
also did not reveal a significant difference. Finally,
the original texts were rated significantly higher
than both baselines in terms of the three met-
rics, also than NeuralREG+Seq2Seq and Neu-
ralREG+HierAtt in terms of fluency, and than
NeuralREG+Seq2Seq in terms of clarity.

8 Discussion

This study introduced NeuralREG, an end-to-end
approach based on neural networks which tack-
les the full Referring Expression Generation pro-
cess. It generates referring expressions for dis-
course entities by simultaneously selecting form
and content without any need of feature extraction
techniques. The model was implemented using an
encoder-decoder approach where a target referent
and its surrounding linguistic contexts were first
encoded and combined into a single vector repre-
sentation which subsequently was decoded into a
referring expression to the target, suitable for the
specific discourse context. In an automatic evalua-
tion on a collection of 78,901 referring expressions
to 1,501 Wikipedia entities, the different versions
of the model all yielded better results than the two
(competitive) baselines. Later in a complementary
human evaluation, the texts with referring expres-
sions generated by a variant of our novel model
were considered statistically more fluent than the
texts lexicalized by the two baselines.

Data The collection of referring expressions
used in our experiments was extracted from a
novel, delexicalized and publicly available version
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of the WebNLG corpus (Gardent et al., 2017a,b),
where the discourse entities were replaced with
general tags for decreasing the data sparsity. Be-
sides the REG task, these data can be useful for
many other tasks related to, for instance, the NLG
process (Reiter and Dale, 2000; Gatt and Krahmer,
2018) and Wikification (Moussallem et al., 2017).

Baselines We introduced two strong baselines
which generated roughly half of the referring ex-
pressions identical to the gold standard in an auto-
matic evaluation. These baselines performed rela-
tively well because they frequently generated full
names, which occur often for our wikified refer-
ences. However, they performed poorly when it
came to pronominalization, which is an important
ingredient for fluent, coherent text. OnlyNames,
as the name already reveals, does not manage to
generate any pronouns. However, the approach
of Castro Ferreira et al. (2016) also did not per-
form well in the generation of pronouns, revealing
a poor capacity to detect highly salient entities in
a text.

NeuralREG was implemented with 3 differ-
ent decoding architectures: Seq2Seq, CAtt
and HierAtt. Although all the versions
performed relatively similar, the concatenative-
attention (CAtt) version generated the closest re-
ferring expressions from the gold-standard ones
and presented the highest textual accuracy in the
automatic evaluation. The texts lexicalized by this
variant were also considered statistically more flu-
ent than the ones generated by the two proposed
baselines in the human evaluation.

Surprisingly, the most complex variant
(HierAtt) with a hierarchical-attention mech-
anism gave lower results than CAtt, producing
lexicalized texts which were rated as less fluent
than the original ones and not significantly more
fluent from the ones generated by the baselines.
This result appears to be not consistent with the
findings of Libovický and Helcl (2017), who
reported better results on multi-modal machine
translation with hierarchical-attention as opposed
to the flat variants (Specia et al., 2016).

Finally, our NeuralREG variant with the lowest
results were our ‘vanilla’ sequence-to-sequence
(Seq2Seq), whose the lexicalized texts were sig-
nificantly less fluent and clear than the original
ones. This shows the importance of the attention
mechanism in the decoding step of NeuralREG

in order to generate fine-grained referring expres-
sions in discourse.

Conclusion We introduced a deep learning
model for the generation of referring expressions
in discourse texts. NeuralREG decides both on
referential form and on referential content in an
integrated, end-to-end approach, without using ex-
plicit features. Using a new delexicalized version
of the WebNLG corpus (made publicly available),
we showed that the neural model substantially im-
proves over two strong baselines in terms of accu-
racy of the referring expressions and fluency of the
lexicalized texts.
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Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with ap-
plication to the biography domain. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, EMNLP’16, pages
1203–1213, Austin, Texas. Association for Compu-
tational Linguistics.

V. I. Levenshtein. 1966. Binary Codes Capable of Cor-
recting Deletions, Insertions and Reversals. Soviet
Physics Doklady, 10:707.
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Abstract

Stock movement prediction is a challeng-
ing problem: the market is highly stochas-
tic, and we make temporally-dependent
predictions from chaotic data. We treat
these three complexities and present a
novel deep generative model jointly ex-
ploiting text and price signals for this
task. Unlike the case with discriminative
or topic modeling, our model introduces
recurrent, continuous latent variables for a
better treatment of stochasticity, and uses
neural variational inference to address the
intractable posterior inference. We also
provide a hybrid objective with tempo-
ral auxiliary to flexibly capture predictive
dependencies. We demonstrate the state-
of-the-art performance of our proposed
model on a new stock movement predic-
tion dataset which we collected.1

1 Introduction

Stock movement prediction has long attracted both
investors and researchers (Frankel, 1995; Edwards
et al., 2007; Bollen et al., 2011; Hu et al., 2018).
We present a model to predict stock price move-
ment from tweets and historical stock prices.

In natural language processing (NLP), public
news and social media are two primary content re-
sources for stock market prediction, and the mod-
els that use these sources are often discriminative.
Among them, classic research relies heavily on
feature engineering (Schumaker and Chen, 2009;
Oliveira et al., 2013). With the prevalence of deep
neural networks (Le and Mikolov, 2014), event-
driven approaches were studied with structured
event representations (Ding et al., 2014, 2015).

1https://github.com/yumoxu/
stocknet-dataset

More recently, Hu et al. (2018) propose to mine
news sequence directly from text with hierarchical
attention mechanisms for stock trend prediction.

However, stock movement prediction is widely
considered difficult due to the high stochasticity
of the market: stock prices are largely driven by
new information, resulting in a random-walk pat-
tern (Malkiel, 1999). Instead of using only de-
terministic features, generative topic models were
extended to jointly learn topics and sentiments
for the task (Si et al., 2013; Nguyen and Shirai,
2015). Compared to discriminative models, gener-
ative models have the natural advantage in depict-
ing the generative process from market informa-
tion to stock signals and introducing randomness.
However, these models underrepresent chaotic so-
cial texts with bag-of-words and employ simple
discrete latent variables.

In essence, stock movement prediction is a time
series problem. The significance of the temporal
dependency between movement predictions is not
addressed in existing NLP research. For instance,
when a company suffers from a major scandal on a
trading day d1, generally, its stock price will have a
downtrend in the coming trading days until day d2,
i.e. [d1, d2].2 If a stock predictor can recognize this
decline pattern, it is likely to benefit all the predic-
tions of the movements during [d1, d2]. Otherwise,
the accuracy in this interval might be harmed. This
predictive dependency is a result of the fact that
public information, e.g. a company scandal, needs
time to be absorbed into movements over time
(Luss and d’Aspremont, 2015), and thus is largely
shared across temporally-close predictions.

Aiming to tackle the above-mentioned out-
standing research gaps in terms of modeling high
market stochasticity, chaotic market information
and temporally-dependent prediction, we propose

2We use the notation [a, b] to denote the interval of integer
numbers between a and b.
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StockNet, a deep generative model for stock
movement prediction.

To better incorporate stochastic factors, we gen-
erate stock movements from latent driven factors
modeled with recurrent, continuous latent vari-
ables. Motivated by Variational Auto-Encoders
(VAEs; Kingma and Welling, 2013; Rezende et al.,
2014), we propose a novel decoder with a vari-
ational architecture and derive a recurrent varia-
tional lower bound for end-to-end training (Sec-
tion 5.2). To the best of our knowledge, StockNet
is the first deep generative model for stock move-
ment prediction.

To fully exploit market information, StockNet
directly learns from data without pre-extracting
structured events. We build market sources by
referring to both fundamental information, e.g.
tweets, and technical features, e.g. historical stock
prices (Section 5.1).3 To accurately depict predic-
tive dependencies, we assume that the movement
prediction for a stock can benefit from learning to
predict its historical movements in a lag window.
We propose trading-day alignment as the frame-
work basis (Section 4), and further provide a novel
multi-task learning objective (Section 5.3).

We evaluate StockNet on a stock movement pre-
diction task with a new dataset that we collected.
Compared with strong baselines, our experiments
show that StockNet achieves state-of-the-art per-
formance by incorporating both data from Twitter
and historical stock price listings.

2 Problem Formulation

We aim at predicting the movement of a target
stock s in a pre-selected stock collection S on a
target trading day d. Formally, we use the market
information comprising of relevant social media
corporaM, i.e. tweets, and historical prices, in the
lag [d −∆d, d − 1] where ∆d is a fixed lag size.
We estimate the binary movement where 1 denotes
rise and 0 denotes fall,

y = 1
(
pcd > pcd−1

)
(1)

where pcd denotes the adjusted closing price ad-
justed for corporate actions affecting stock prices,
e.g. dividends and splits.4 The adjusted closing

3To a fundamentalist, stocks have their intrinsic values
that can be derived from the behavior and performance of
their company. On the contrary, technical analysis considers
only the trends and patterns of the stock price.

4 Technically, d − 1 may not be an eligible trading day
and thus has no available price information. In the rest of this

price is widely used for predicting stock price
movement (Xie et al., 2013) or financial volatility
(Rekabsaz et al., 2017).

3 Data Collection

In finance, stocks are categorized into 9 industries:
Basic Materials, Consumer Goods, Healthcare,
Services, Utilities, Conglomerates, Financial, In-
dustrial Goods and Technology.5 Since high-trade-
volume-stocks tend to be discussed more on Twit-
ter, we select the two-year price movements from
01/01/2014 to 01/01/2016 of 88 stocks to target,
coming from all the 8 stocks in Conglomerates and
the top 10 stocks in capital size in each of the other
8 industries (see supplementary material).

We observe that there are a number of tar-
gets with exceptionally minor movement ratios. In
a three-way stock trend prediction task, a com-
mon practice is to categorize these movements
to another “preserve” class by setting upper and
lower thresholds on the stock price change (Hu
et al., 2018). Since we aim at the binary clas-
sification of stock changes identifiable from so-
cial media, we set two particular thresholds, -
0.5% and 0.55% and simply remove 38.72% of the
selected targets with the movement percents be-
tween the two thresholds. Samples with the move-
ment percents ≤-0.5% and >0.55% are labeled
with 0 and 1, respectively. The two thresholds are
selected to balance the two classes, resulting in
26,614 prediction targets in the whole dataset with
49.78% and 50.22% of them in the two classes. We
split them temporally and 20,339 movements be-
tween 01/01/2014 and 01/08/2015 are for training,
2,555 movements from 01/08/2015 to 01/10/2015
are for development, and 3,720 movements from
01/10/2015 to 01/01/2016 are for test.

There are two main components in our dataset:6

a Twitter dataset and a historical price dataset.
We access Twitter data under the official license
of Twitter, then retrieve stock-specific tweets by
querying regexes made up of NASDAQ ticker
symbols, e.g. “\$GOOG\b” for Google Inc.. We
preprocess tweet texts using the NLTK package
(Bird et al., 2009) with the particular Twitter

paper, the problem is solved by keeping the notational con-
sistency with our recurrent model and using its time step t to
index trading days. Details will be provided in Section 4. We
use d here to make the formulation easier to follow.

5https://finance.yahoo.com/industries
6Our dataset is available at https://github.com/

yumoxu/stocknet-dataset.
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mode, including for tokenization and treatment of
hyperlinks, hashtags and the “@” identifier. To al-
leviate sparsity, we further filter samples by ensur-
ing there is at least one tweet for each corpus in
the lag. We extract historical prices for the 88 se-
lected stocks to build the historical price dataset
from Yahoo Finance.7

4 Model Overview

X

|D|

Z� ✓

y

Figure 1: Illustration of the generative process
from observed market information to stock move-
ments. We use solid lines to denote the generation
process and dashed lines to denote the variational
approximation to the intractable posterior.

We provide an overview of data alignment,
model factorization and model components.

As explained in Section 1, we assume that pre-
dicting the movement on trading day d can ben-
efit from predicting the movements on its former
trading days. However, due to the general princi-
ple of sample independence, building connections
directly across samples with temporally-close tar-
get dates is problematic for model training.

As an alternative, we notice that within a sam-
ple with a target trading day d there are likely to
be other trading days than d in its lag that can
simulate the prediction targets close to d. Moti-
vated by this observation and multi-task learning
(Caruana, 1998), we make movement predictions
not only for d, but also other trading days exist-
ing in the lag. For instance, as shown in Figure 2,
for a sample targeting 07/08/2012 and a 5-day
lag, 03/08/2012 and 06/08/2012 are eligible trad-
ing days in the lag and we also make predictions
for them using the market information in this sam-
ple. The relations between these predictions can
thus be captured within the scope of a sample.

As shown in the instance above, not every sin-
gle date in a lag is an eligible trading day, e.g.
weekends and holidays. To better organize and use
the input, we regard the trading day, instead of the

7http://finance.yahoo.com

calendar day used in existing research, as the ba-
sic unit for building samples. To this end, we first
find all the T eligible trading days referred in a
sample, in other words, existing in the time in-
terval [d − ∆d + 1, d]. For clarity, in the scope
of one sample, we index these trading days with
t ∈ [1, T ],8 and each of them maps to an ac-
tual (absolute) trading day dt. We then propose
trading-day alignment: we reorganize our inputs,
including the tweet corpora and historical prices,
by aligning them to these T trading days. Specif-
ically, on the tth trading day, we recognize mar-
ket signals from the corpus Mt in [dt−1, dt) and
the historical prices pt on dt−1, for predicting the
movement yt on dt. We provide an aligned sam-
ple for illustration in Figure 2. As a result, ev-
ery single unit in a sample is a trading day, and
we can predict a sequence of movements y =
[y1, . . . , yT ]. The main target is yT while the re-
mainder y∗ = [y1, . . . , yT−1] serves as the tempo-
ral auxiliary target. We use these in addition to the
main target to improve prediction accuracy (Sec-
tion 5.3).

We model the generative process shown in Fig-
ure 1. We encode observed market information
as a random variable X = [x1; . . . ;xT ], from
which we generate the latent driven factor Z =
[z1; . . . ; zT ] for our prediction task. For the afore-
mentioned multi-task learning purpose, we aim at
modeling the conditional probability distribution
pθ (y|X) =

∫
Z pθ (y, Z|X) instead of pθ(yT |X).

We write the following factorization for genera-
tion,

pθ (y, Z|X) = pθ (yT |X,Z) pθ(zT |z<T , X) (2)
T−1∏

t=1

pθ (yt|x≤t, zt) pθ (zt|z<t, x≤t, yt)

where for a given indexed matrix of T vectors
[v1; . . . ; vT ], we denote by v<t and v≤t the subma-
trix [v1; . . . ; vt−1] and the submatrix [v1; . . . ; vt],
respectively. Since y∗ is known in generation, we
use the posterior pθ (zt|z<t, x≤t, yt) , t < T to
incorporate market signals more accurately and
only use the prior pθ(zT |z<T , X) when generat-
ing zT . Besides, when t < T , yt is independent of
z<t while our main prediction target, yT is made
dependent on z<T through a temporal attention
mechanism (Section 5.3).

We show StockNet modeling the above gener-
ative process in Figure 2. In a nutshell, StockNet

8It holds that T ≥ 1 since d is undoubtedly a trading day.
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Figure 2: The architecture of StockNet. We use the main target of 07/08/2012 and the lag size of 5 for
illustration. Since 04/08/2012 and 05/08/2012 are not trading days (a weekend), trading-day alignment
helps StockNet to organize message corpora and historical prices for the other three trading days in the
lag. We use dashed lines to denote auxiliary components. Red points denoting temporal objectives are
integrated with a temporal attention mechanism to acquire the final training objective.

comprises three primary components following a
bottom-up fashion,

1. Market Information Encoder (MIE) that en-
codes tweets and prices to X;

2. Variational Movement Decoder (VMD) that
infers Z with X, y and decodes stock move-
ments y from X,Z;

3. Attentive Temporal Auxiliary (ATA) that in-
tegrates temporal loss through an attention
mechanism for model training.

5 Model Components

We detail next the components of our model (MIE,
VMD, ATA) and the way we estimate our model
parameters.

5.1 Market Information Encoder

MIE encodes information from social media and
stock prices to enhance market information qual-
ity, and outputs the market information input X
for VMD. Each temporal input is defined as

xt = [ct, pt] (3)

where ct and pt are the corpus embedding and the
historical price vector, respectively.

The basic strategy of acquiring ct is to first feed
messages into the Message Embedding Layer for
their low-dimensional representations, then selec-
tively gather them according to their quality. To
handle the circumstance that multiple stocks are
discussed in one single message, in addition to text
information, we incorporate the position informa-
tion of stock symbols mentioned in messages as
well. Specifically, the layer consists of a forward
GRU and a backward GRU for the preceding and
following contexts of a stock symbol, s, respec-
tively. Formally, in the message corpus of the tth
trading day, we denote the word sequence of the
kth message, k ∈ [1,K], as W where W`? =
s, `? ∈ [1, L], and its word embedding matrix as
E = [e1; e2; . . . ; eL]. We run the two GRUs as
follows,

−→
h f =

−−−→
GRU(ef ,

−→
h f−1) (4)

←−
h b =

←−−−
GRU(eb,

←−
h b+1) (5)

m = (
−→
h `? +

←−
h `?)/2 (6)

where f ∈ [1, . . . , `?], b ∈ [`?, . . . , L]. The stock
symbol is regarded as the last unit in both the
preceding and the following contexts where the
hidden values,

−→
h l? ,
←−
h l? , are averaged to acquire

the message embedding m. Gathering all message
embeddings for the tth trading day, we have a mes-
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sage embedding matrix Mt ∈ Rdm×K . In prac-
tice, the layer takes as inputs a five-rank tensor for
a mini-batch, and yields all Mt in the batch with
shared parameters.

Tweet quality varies drastically. Inspired by the
news-level attention (Hu et al., 2018), we weight
messages with their respective salience in col-
lective intelligence measurement. Specifically, we
first project Mt non-linearly to ut, the normalized
attention weight over the corpus,

ut = ζ(wᵀ
u tanh(Wm,uMt)) (7)

where ζ(·) is the softmax function and Wm,u ∈
Rdm×dm , wu ∈ Rdm×1 are model parameters.
Then we compose messages accordingly to ac-
quire the corpus embedding,

ct = Mtu
ᵀ
t . (8)

Since it is the price change that determines the
stock movement rather than the absolute price
value, instead of directly feeding the raw price
vector p̃t =

[
p̃ct , p̃

h
t , p̃

l
t

]
comprising of the adjusted

closing, highest and lowest price on a trading day
t, into the networks, we normalize it with its last
adjusted closing price, pt = p̃t/p̃

c
t−1 − 1. We then

concatenate ct with pt to form the final market in-
formation input xt for the decoder.

5.2 Variational Movement Decoder

The purpose of VMD is to recurrently infer and
decode the latent driven factor Z and the move-
ment y from the encoded market information X .

Inference
While latent driven factors help to depict the mar-
ket status leading to stock movements, the pos-
terior inference in the generative model shown
in Eq. (2) is intractable. Following the spirit of
the VAE, we use deep neural networks to fit la-
tent distributions, i.e. the prior pθ (zt|z<t, x≤t) and
the posterior pθ (zt|z<t, x≤t, yt), and sidestep the
intractability through neural approximation and
reparameterization (Kingma and Welling, 2013;
Rezende et al., 2014). We first employ a varia-
tional approximator qφ (zt|z<t, x≤t, yt) for the in-
tractable posterior. We observe the following fac-
torization,

qφ (Z|X, y) =
T∏

t=1

qφ (zt|z<t, x≤t, yt) . (9)

Neural approximation aims at minimizing
the Kullback-Leibler divergence between the
qφ (Z|X, y) and pθ (Z|X, y). Instead of optimiz-
ing it directly, we observe that the following equa-
tion naturally holds,

log pθ (y|X) (10)

=DKL [qφ (Z|X, y) ‖ pθ (Z|X, y)]

+Eqφ(Z|X,y) [log pθ (y|X,Z)]

−DKL [qφ (Z|X, y) ‖ pθ (Z|X)]

where DKL [q ‖ p] is the Kullback-Leibler diver-
gence between the distributions q and p. There-
fore, we equivalently maximize the following vari-
ational recurrent lower bound by plugging Eq. (2,
9) into Eq. (10),

L (θ, φ;X, y) (11)

=

T∑

t=1

Eqφ(zt|z<t,x≤t,yt)
{

log pθ (yt|x≤t, z≤t)−

DKL [qφ (zt|z<t, x≤t, yt) ‖ pθ (zt|z<t, x≤t)]
}

≤ log pθ (y|X)

where the likelihood term

pθ (yt|x≤t, z≤t) =

{
pθ (yt|x≤t, zt) , if t < T

pθ (yT |X,Z) , if t = T.
(12)

Li et al. (2017) also provide a lower bound for
inferring directly-connected recurrent latent vari-
ables in text summarization. In their work, priors
are modeled with pθ (zt) ∼ N (0, I), which, in
fact, turns the KL term into a static regularization
term encouraging sparsity. In Eq. (11), we provide
a more theoretically rigorous lower bound where
the KL term with pθ (zt|z<t, x≤t) plays a dynamic
role in inferring dependent latent variables for ev-
ery different model input and latent history.

Decoding
As per time series, VMD adopts an RNN with a
GRU cell to extract features and decode stock sig-
nals recurrently,

hst = GRU(xt, h
s
t−1). (13)

We let the approximator qφ (zt|z<t, x≤t, yt)
subject to a standard multivariate Gaussian distri-
bution N (µ, δ2I). We calculate µ and δ as

µt = W φ
z,µh

z
t + bφµ (14)

log δ2t = W φ
z,δh

z
t + bφδ (15)
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and the shared hidden representation hzt as

hzt = tanh(W φ
z [zt−1, xt, hst , yt] + bφz ) (16)

where W φ
z,µ,W

φ
z,δ,W

φ
z are weight matrices and

bφµ, b
φ
δ , b

φ
z are biases.

Since Gaussian distribution belongs to the
“location-scale” distribution family, we can fur-
ther reparameterize zt as

zt = µt + δt � ε (17)

where � denotes an element-wise product. The
noise term ε ∼ N (0, I) naturally involves stochas-
tic signals in our model.

Similarly, We let the prior pθ (zt|z<t, x≤t) ∼
N (µ′, δ′2I). Its calculation is the same as that of
the posterior except the absence of yt and indepen-
dent model parameters,

µ′t = W θ
o,µh

z
t
′ + bθµ (18)

log δ′2t = W θ
o,δh

z
t
′ + bθδ (19)

where

hzt
′ = tanh(W θ

z [zt−1, xt, hst ] + bθz). (20)

Following Zhang et al. (2016), differently from
the posterior, we set the prior zt = µ′t during de-
coding. Finally, we integrate deterministic features
and the final prediction hypothesis is given as

gt = tanh(Wg[xt, h
s
t , zt] + bg) (21)

ỹt = ζ(Wygt + by), t < T (22)

where Wg,Wy are weight matrices and bg, by are
biases. The softmax function ζ(·) outputs the con-
fidence distribution over up and down. As intro-
duced in Section 4, the decoding of the main target
yT depends on z<T and thus lies at the interface
between VMD and ATA. We will elaborate on it
in the next section.

5.3 Attentive Temporal Auxiliary
With the acquisition of a sequence of auxiliary
predictions Ỹ ∗ = [ỹ1; . . . ; ỹT−1], we incorporate
two-folded auxiliary effects into the main predic-
tion and the training objective flexibly by first in-
troducing a shared temporal attention mechanism.

Since each hypothesis of a temporal auxiliary
contributes unequally to the main prediction and
model training, as shown in Figure 3, temporal at-
tention calculates their weights in these two contri-
butions by employing two scoring components: an

g2 g3g1

Dependency Score

Information Score

Temporal Attention

Training Objective

1

gT

ỹT

Figure 3: The temporal attention in our model.
Squares are the non-linear projections of gt and
points are scores or normalized weights.

information score and a dependency score. Specif-
ically,

v′i = wᵀ
i tanh(Wg,iG

∗) (23)

v′d = gᵀT tanh(Wg,dG
∗) (24)

v∗ = ζ(v′i � v′d) (25)

where Wg,i,Wg,d ∈ Rdg×dg , wi ∈ Rdg×1 are
model parameters. The integrated representations
G∗ = [g1; . . . ; gT−1] and gT are reused as the fi-
nal representations of temporal market informa-
tion. The information score v′i evaluates historical
trading days as per their own information qual-
ity, while the dependency score v′d captures their
dependencies with our main target. We integrate
the two and acquire the final normalized attention
weight v∗ ∈ R1×(T−1) by feeding their element-
wise product into the softmax function.

As a result, the main prediction can benefit from
temporally-close hypotheses have been made and
we decode our main hypothesis ỹT as

ỹT = ζ(WT [Ỹ ∗v∗ᵀ, gT ] + bT ) (26)

where WT is a weight matrix and bT is a bias.
As to the model objective, we use the Monte

Carlo method to approximate the expectation term
in Eq. (11) and typically only one sample is used
for gradient computation. To incorporate varied
temporal importance at the objective level, we first
break down the approximated L into a series of
temporal objectives f ∈ RT×1 where ft comprises
a likelihood term and a KL term for a trading day
t,

ft = log pθ (yt|x≤t, z≤t) (27)

− λDKL [qφ (zt|z<t, x≤t, yt) ‖ pθ (zt|z<t, x≤t)]
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where we adopt the KL term annealing trick (Bow-
man et al., 2016; Semeniuta et al., 2017) and add
a linearly-increasing KL term weight λ ∈ (0, 1]
to gradually release the KL regularization effect in
the training procedure. Then we reuse v∗ to build
the final temporal weight vector v ∈ R1×T ,

v = [αv∗, 1] (28)

where 1 is for the main prediction and we adopt the
auxiliary weight α ∈ [0, 1] to control the overall
auxiliary effects on the model training. α is tuned
on the development set and its effects will be dis-
cussed at length in Section 6.5. Finally, we write
the training objective F by recomposition,

F (θ, φ;X, y) =
1

N

N∑

n

v(n)f (n) (29)

where our model can learn to generalize with
the selective attendance of temporal auxiliary. We
take the derivative of F with respect to all the
model parameters {θ, φ} through backpropagation
for the update.

6 Experiments

In this section, we detail our experimental setup
and results.

6.1 Training Setup
We use a 5-day lag window for sample construc-
tion and 32 shuffled samples in a batch.9 The max-
imal token number contained in a message and
the maximal message number on a trading day
are empirically set to 30 and 40, respectively, with
the excess clipped. Since all tweets in the batched
samples are simultaneously fed into the model,
we set the word embedding size to 50 instead of
larger sizes to control memory costs and make
model training feasible on one single GPU (11GB
memory). We set the hidden size of Message Em-
bedding Layer to 100 and that of VMD to 150.
All weight matrices in the model are initialized
with the fan-in trick and biases are initialized with
zero. We train the model with an Adam optimizer
(Kingma and Ba, 2014) with the initial learning
rate of 0.001. Following Bowman et al. (2016), we

9Typically the lag size is set between 3 and 10. As intro-
duced in Section 4, trading days are treated as basic units in
StockNet and 3 calendar days are thus too short to guarantee
the existence of more than one trading day in a lag, e.g. the
prediction for the movement of Monday. We also experiment
with 7 and 10 but they do not yield better results than 5.

use the input dropout rate of 0.3 to regularize latent
variables. Tensorflow (Abadi et al., 2016) is used
to construct the computational graph of StockNet
and hyper-parameters are tweaked on the develop-
ment set.

6.2 Evaluation Metrics

Following previous work for stock prediction (Xie
et al., 2013; Ding et al., 2015), we adopt the stan-
dard measure of accuracy and Matthews Corre-
lation Coefficient (MCC) as evaluation metrics.
MCC avoids bias due to data skew. Given the con-
fusion matrix

( tp fn
fp tn

)
containing the number of

samples classified as true positive, false positive,
true negative and false negative, MCC is calcu-
lated as

MCC =
tp× tn− fp× fn√

(tp + fp)(tp + fn)(tn + fp)(tn + fn)
.

(30)

6.3 Baselines and Proposed Models

We construct the following five baselines in differ-
ent genres,10

• RAND: a naive predictor making random
guess in up or down.
• ARIMA: Autoregressive Integrated Moving

Average, an advanced technical analysis
method using only price signals (Brown,
2004) .
• RANDFOREST: a discriminative Random For-

est classifier using Word2vec text represen-
tations (Pagolu et al., 2016).
• TSLDA: a generative topic model jointly

learning topics and sentiments (Nguyen and
Shirai, 2015).
• HAN: a state-of-the-art discriminative deep

neural network with hierarchical attention
(Hu et al., 2018).

To make a detailed analysis of all the primary
components in StockNet, in addition to HEDGE-
FUNDANALYST, the fully-equipped StockNet, we
also construct the following four variations,
• TECHNICALANALYST: the generative StockNet

using only historical prices.
• FUNDAMENTALANALYST: the generative Stock-

Net using only tweet information.
• INDEPENDENTANALYST: the generative Stock-

Net without temporal auxiliary targets.

10We do not treat event-driven models as comparable
methods since our model uses no event pre-extraction tool.
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Baseline models Acc. MCC StockNet variations Acc. MCC
RAND 50.89 -0.002266 TECHNICALANALYST 54.96 0.016456
ARIMA (Brown, 2004) 51.39 -0.020588 FUNDAMENTALANALYST 58.23 0.071704
RANDFOREST (Pagolu et al., 2016) 53.08 0.012929 INDEPENDENTANALYST 57.54 0.036610
TSLDA (Nguyen and Shirai, 2015) 54.07 0.065382 DISCRIMINATIVEANALYST 56.15 0.056493
HAN (Hu et al., 2018) 57.64 0.051800 HEDGEFUNDANALYST 58.23 0.080796

Table 1: Performance of baselines and StockNet variations in accuracy and MCC.
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Figure 4: (a) Performance of HEDGEFUNDANALYST with varied α, see Eq. (28). (b) Performance of
DISCRIMINATIVEANALYST with varied α.

• DISCRIMINATIVEANALYST: the discriminative
StockNet directly optimizing the likelihood
objective. Following Zhang et al. (2016), we
set zt = µ′t to take out the effects of the KL
term.

6.4 Results
Since stock prediction is a challenging task and
a minor improvement usually leads to large po-
tential profits, the accuracy of 56% is generally
reported as a satisfying result for binary stock
movement prediction (Nguyen and Shirai, 2015).
We show the performance of the baselines and
our proposed models in Table 1. TLSDA is the
best baseline in MCC while HAN is the best
baseline in accuracy. Our model, HEDGEFUNDAN-

ALYST achieves the best performance of 58.23 in
accuracy and 0.080796 in MCC, outperforming
TLSDA and HAN with 4.16, 0.59 in accuracy, and
0.015414, 0.028996 in MCC, respectively.

Though slightly better than random guess, clas-
sic technical analysis, e.g. ARIMA, does not yield
satisfying results. Similar in using only histori-
cal prices, TECHNICALANALYST shows an obvious
advantage in this task compared ARIMA. We be-
lieve there are two major reasons: (1) TECHNICAL-

ANALYST learns from training data and incorpo-
rates more flexible non-linearity; (2) our test set
contains a large number of stocks while ARIMA

is more sensitive to peculiar sequence station-
arity. It is worth noting that FUNDAMENTALANA-

LYST gains exceptionally competitive results with
only 0.009092 less in MCC than HEDGEFUNDAN-

ALYST. The performance of FUNDAMENTALANALYST

and TECHNICALANALYST confirm the positive ef-
fects from tweets and historical prices in stock
movement prediction, respectively. As an effective
ensemble of the two market information, HEDGE-

FUNDANALYST gains even better performance.
Compared with DISCRIMINATIVEANALYST, the

performance improvements of HEDGEFUNDANA-

LYST are not from enlarging the networks, demon-
strating that modeling underlying market status
explicitly with latent driven factors indeed benefits
stock movement prediction. The comparison with
INDEPENDENTANALYST also shows the effectiveness
of capturing temporal dependencies between pre-
dictions with the temporal auxiliary. However, the
effects of the temporal auxiliary are more complex
and will be analyzed further in the next section.

6.5 Effects of Temporal Auxiliary
We provide a detailed discuss of how the tempo-
ral auxiliary affects model performance. As intro-
duced in Eq. (28), the temporal auxiliary weight
α controls the overall effects of the objective-level
temporal auxiliary to our model. Figure 4 presents
how the performance of HEDGEFUNDANALYST and
DISCRIMINATIVEANALYST fluctuates with α.

As shown in Figure 4, enhanced by the temporal
auxiliary, HEDGEFUNDANALYST approaches the best
performance at 0.5, and DISCRIMINATIVEANALYST
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achieves its maximum at 0.7. In fact, objective-
level auxiliary can be regarded as a denoising reg-
ularizer: for a sample with a specific movement
as the main target, the market source in the lag
can be heterogeneous, e.g. affected by bad news,
tweets on earlier days are negative but turn to pos-
itive due to timely crises management. Without
temporal auxiliary tasks, the model tries to iden-
tify positive signals on earlier days only for the
main target of rise movement, which is likely to
result in pure noise. In such cases, temporal aux-
iliary tasks help to filter market sources in the
lag as per their respective aligned auxiliary move-
ments. Besides, from the perspective of training
variational models, the temporal auxiliary helps
HEDGEFUNDANALYST to encode more useful infor-
mation into the latent driven factor Z, which is
consistent with recent research in VAEs (Seme-
niuta et al., 2017). Compared with HEDGEFUND-

ANALYST that contains a KL term performing dy-
namic regularization, DISCRIMINATIVEANALYST re-
quires stronger regularization effects coming with
a bigger α to achieve its best performance.

Since y∗ also involves in generating yT through
the temporal attention, tweaking α acts as a trade-
off between focusing on the main target and gener-
alizing by denoising. Therefore, as shown in Fig-
ure 4, our models do not linearly benefit from
incorporating temporal auxiliary. In fact, the two
models follow a similar pattern in terms of per-
formance change: the curves first drop down with
the increase of α, except the MCC curve for DIS-

CRIMINATIVEANALYST rising up temporarily at 0.3.
After that, the curves ascend abruptly to their max-
imums, then keep descending till α = 1. Though
the start phase of increasing α even leads to worse
performance, when auxiliary effects are properly
introduced, the two models finally gain better re-
sults than those with no involvement of auxiliary
effects, e.g. INDEPENDENTANALYST.

7 Conclusion

We demonstrated the effectiveness of deep gen-
erative approaches for stock movement predic-
tion from social media data by introducing
StockNet, a neural network architecture for this
task. We tested our model on a new compre-
hensive dataset and showed it performs better
than strong baselines, including implementation
of previous work. Our comprehensive dataset is
publicly available at https://github.com/

yumoxu/stocknet-dataset.

Acknowledgments

The authors would like to thank the three anony-
mous reviewers and Miles Osborne for their help-
ful comments. This research was supported by a
grant from Bloomberg and by the H2020 project
SUMMA, under grant agreement 688139.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467 .

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. O’Reilly
Media, Inc.

Johan Bollen, Huina Mao, and Xiaojun Zeng. 2011.
Twitter mood predicts the stock market. Journal of
computational science 2(1):1–8.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, An-
drew Dai, Rafal Jozefowicz, and Samy Bengio.
2016. Generating sentences from a continuous
space. In Proceedings of The 20th SIGNLL Confer-
ence on Computational Natural Language Learning.
Berlin, Germany, pages 10–21.

Robert Goodell Brown. 2004. Smoothing, forecasting
and prediction of discrete time series. Courier Cor-
poration.

Rich Caruana. 1998. Multitask learning. In Learning
to learn, Springer, pages 95–133.

Xiao Ding, Yue Zhang, Ting Liu, and Junwen Duan.
2014. Using structured events to predict stock price
movement: An empirical investigation. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing. Doha, Qatar, pages
1415–1425.

Xiao Ding, Yue Zhang, Ting Liu, and Junwen Duan.
2015. Deep learning for event-driven stock predic-
tion. In Proceedings of the 24th International Con-
ference on Artificial Intelligence. Buenos Aires, Ar-
gentina, pages 2327–2333.

Robert D Edwards, WHC Bassetti, and John Magee.
2007. Technical analysis of stock trends. CRC
press.

Jeffrey A Frankel. 1995. Financial markets and mone-
tary policy. MIT Press.

1978



Ziniu Hu, Weiqing Liu, Jiang Bian, Xuanzhe Liu, and
Tie-Yan Liu. 2018. Listening to chaotic whispers:
A deep learning framework for news-oriented stock
trend prediction. In Proceedings of the Eleventh
ACM International Conference on Web Search and
Data Mining. ACM, Los Angeles, California, USA,
pages 261–269.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR
abs/1412.6980.

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114 .

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Proceed-
ings of the 31st International Conference on Inter-
national Conference on Machine Learning-Volume
32. JMLR. org, Beijing, China, pages 1188–1196.

Piji Li, Wai Lam, Lidong Bing, and Zihao Wang.
2017. Deep recurrent generative decoder for ab-
stractive text summarization. In Proceedings of the
2017 Conference on Empirical Methods in Natu-
ral Language Processing. Copenhagen, Denmark,
pages 2081–2090.

Ronny Luss and Alexandre d’Aspremont. 2015. Pre-
dicting abnormal returns from news using text clas-
sification. Quantitative Finance 15(6):999–1012.

Burton Gordon Malkiel. 1999. A random walk down
Wall Street: including a life-cycle guide to personal
investing. WW Norton & Company.

Thien Hai Nguyen and Kiyoaki Shirai. 2015. Topic
modeling based sentiment analysis on social media
for stock market prediction. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing. Bei-
jing, China, volume 1, pages 1354–1364.

Nuno Oliveira, Paulo Cortez, and Nelson Areal. 2013.
Some experiments on modeling stock market be-
havior using investor sentiment analysis and posting
volume from twitter. In Proceedings of the 3rd In-
ternational Conference on Web Intelligence, Mining
and Semantics. ACM, Madrid, Spain, page 31.

Venkata Sasank Pagolu, Kamal Nayan Reddy, Gana-
pati Panda, and Babita Majhi. 2016. Sentiment
analysis of twitter data for predicting stock market
movements. In Proceedings of 2016 International
Conference on Signal Processing, Communication,
Power and Embedded System. IEEE, Rajaseetapu-
ram, India, pages 1345–1350.

Navid Rekabsaz, Mihai Lupu, Artem Baklanov,
Alexander Dür, Linda Andersson, and Allan Han-
bury. 2017. Volatility prediction using financial dis-
closures sentiments with word embedding-based ir
models. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics.
Vancouver, Canada, volume 1, pages 1712–1721.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan
Wierstra. 2014. Stochastic backpropagation and ap-
proximate inference in deep generative models. In
Proceedings of the 31th International Conference
on Machine Learning. Beijing, China, pages 1278–
1286.

Robert P Schumaker and Hsinchun Chen. 2009. Tex-
tual analysis of stock market prediction using break-
ing financial news: The azfin text system. ACM
Transactions on Information Systems 27(2):12.

Stanislau Semeniuta, Aliaksei Severyn, and Erhardt
Barth. 2017. A hybrid convolutional variational au-
toencoder for text generation. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing. Copenhagen, Denmark,
pages 627–637.

Jianfeng Si, Arjun Mukherjee, Bing Liu, Qing Li,
Huayi Li, and Xiaotie Deng. 2013. Exploiting topic
based twitter sentiment for stock prediction. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers). Sofia, Bulgaria, volume 2, pages 24–29.

Boyi Xie, Rebecca J Passonneau, Leon Wu, and
Germán G Creamer. 2013. Semantic frames to pre-
dict stock price movement. In Proceedings of the
51st Annual Meeting of the Association for Com-
putational Linguistics. Sofia, Bulgaria, volume 1,
pages 873–883.

Biao Zhang, Deyi Xiong, Hong Duan, Min Zhang, et al.
2016. Variational neural machine translation. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. Austin,
Texas, USA, pages 521–530.

1979



Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 1980–1989
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

Rumor Detection on Twitter with Tree-structured Recursive Neural
Networks

Jing Ma1, Wei Gao2, Kam-Fai Wong1,3

1The Chinese University of Hong Kong, Hong Kong SAR
2Victoria University of Wellington, New Zealand

3MoE Key Laboratory of High Confidence Software Technologies, China
1{majing,kfwong}@se.cuhk.edu.hk, 2wei.gao@vuw.ac.nz

Abstract

Automatic rumor detection is technically
very challenging. In this work, we try to
learn discriminative features from tweets
content by following their non-sequential
propagation structure and generate more
powerful representations for identifying
different type of rumors. We propose
two recursive neural models based on a
bottom-up and a top-down tree-structured
neural networks for rumor representation
learning and classification, which natu-
rally conform to the propagation layout
of tweets. Results on two public Twit-
ter datasets demonstrate that our recursive
neural models 1) achieve much better per-
formance than state-of-the-art approaches;
2) demonstrate superior capacity on de-
tecting rumors at very early stage.

1 Introduction

Rumors have always been a social disease. In re-
cent years, it has become unprecedentedly conve-
nient for the “evil-doers” to create and disseminate
rumors in massive scale with low cost thanks to
the popularity of social media outlets on Twitter,
Facebook, etc. The worst effect of false rumors
could be devastating to individual and/or society.

Research pertaining rumors spans multiple dis-
ciplines, such as philosophy and humanities (Di-
Fonzo and Bordia, 2007; Donovan, 2007), social
psychology (Allport and Postman, 1965; Jaeger
et al., 1980; Rosnow and Foster, 2005), politi-
cal studies (Allport and Postman, 1946; Berin-
sky, 2017), management science (DiFonzo et al.,
1994; Kimmel, 2004) and recently computer sci-
ence and artificial intelligence (Qazvinian et al.,
2011; Ratkiewicz et al., 2011; Castillo et al., 2011;
Hannak et al., 2014; Zhao et al., 2015; Ma et al.,

2015). Rumor is commonly defined as informa-
tion that emerge and spread among people whose
truth value is unverified or intentionally false (Di-
Fonzo and Bordia, 2007; Qazvinian et al., 2011).
Analysis shows that people tend to stop spread-
ing a rumor if it is known as false (Zubiaga et al.,
2016b). However, identifying such misinforma-
tion is non-trivial and needs investigative jour-
nalism to fact check the suspected claim, which
is labor-intensive and time-consuming. The pro-
liferation of social media makes it worse due to
the ever-increasing information load and dynam-
ics. Therefore, it is necessary to develop automatic
and assistant approaches to facilitate real-time ru-
mor tracking and debunking.

For automating rumor detection, most of the
previous studies focused on text mining from se-
quential microblog streams using supervised mod-
els based on feature engineering (Castillo et al.,
2011; Kwon et al., 2013; Liu et al., 2015; Ma
et al., 2015), and more recently deep neural mod-
els (Ma et al., 2016; Chen et al., 2017; Ruchan-
sky et al., 2017). These methods largely ignore
or oversimplify the structural information asso-
ciated with message propagation which however
has been shown conducive to provide useful clues
for identifying rumors. Kernel-based method (Wu
et al., 2015; Ma et al., 2017) was thus proposed
to model the structure as propagation trees in or-
der to differentiate rumorous and non-rumorous
claims by comparing their tree-based similarities.
But such kind of approach cannot directly classify
a tree without pairwise comparison with all other
trees imposing unnecessary overhead, and it also
cannot automatically learn any high-level feature
representations out of the noisy surface features.

In this paper, we present a neural rumor de-
tection approach based on recursive neural net-
works (RvNN) to bridge the content semantics
and propagation clues. RvNN and its variants
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were originally used to compose phrase or sen-
tence representation for syntactic and semantic
parsing (Socher et al., 2011, 2012). Unlike pars-
ing, the input into our model is a propagation tree
rooted from a source post rather than the parse tree
of an individual sentence, and each tree node is
a responsive post instead of an individual words.
The content semantics of posts and the responsive
relationship among them can be jointly captured
via the recursive feature learning process along the
tree structure.

So, why can such neural model do better for
the task? Analysis has generally found that Twit-
ter could “self-correct” some inaccurate informa-
tion as users share opinions, conjectures and evi-
dences (Zubiaga et al., 2017). To illustrate our in-
tuition, Figure 1 exemplifies the propagation trees
of two rumors in our dataset, one being false and
the other being true1. Structure-insensitive meth-
ods basically relying on the relative ratio of differ-
ent stances in the text cannot do well when such
clue is unclear like this example. However, it can
be seen that when a post denies the false rumor,
it tends to spark supportive or affirmative replies
confirming the denial; in contrast, denial to a true
rumor tends to trigger question or denial in its
replies. This observation may suggest a more gen-
eral hypothesis that the repliers tend to disagree
with (or question) who support a false rumor or
deny a true rumor, and also they tend to agree with
who deny a false rumor or support a true rumor.
Meanwhile, a reply, rather than directly respond-
ing to the source tweet (i.e., the root), is usually re-
sponsive to its immediate ancestor (Lukasik et al.,
2016; Zubiaga et al., 2016a), suggesting obvious
local characteristic of the interaction. The recur-
sive network naturally models such structures for
learning to capture the rumor indicative signals
and enhance the representation by recursively ag-
gregating the signals from different branches.

To this end, we extend the standard RvNN into
two variants, i.e., a bottom-up (BU) model and a
top-down (TD) model, which represent the propa-
gation tree structure from different angles, in order
to visit the nodes and combine their representa-
tions following distinct directions. The important
merit of such architecture is that the node features
can be selectively refined by the recursion given
the connection and direction of all paths of the

1False (true) rumor means the veracity of the rumorous
claim is false (true).

(a) False rumor (b) True rumor

Figure 1: Propagation trees of two rumorous
source tweets. Nodes may express stances on their
parent as commenting, supporting, questioning or
denying. The edge arrow indicates the direction
from a response to its responded node, and the po-
larity is marked as ‘+’ (‘-’) for support (denial).
The same node color indicates the same stance on
the veracity of root node (i.e., source tweet).

tree. As a result, it can be expected that the dis-
criminative signals are better embedded into the
learned representations.

We evaluate our proposed approach based on
two public Twitter datasets. The results show that
our method outperforms strong rumor detection
baselines with large margin and also demonstrate
much higher effectiveness for detection at early
stage of propagation, which is promising for real-
time intervention and debunking. Our contribu-
tions are summarized as follows in three folds:

• This is the first study that deeply integrates
both structure and content semantics based
on tree-structured recursive neural networks
for detecting rumors from microblog posts.

• We propose two variants of RvNN models
based on bottom-up and top-down tree struc-
tures to generate better integrated representa-
tions for a claim by capturing both structural
and textural properties signaling rumors.

• Our experiments based on real-world Twitter
datasets achieve superior improvements over
state-of-the-art baselines on both rumor clas-
sification and early detection tasks. We make
the source codes in our experiments publicly
accessible 2.

2 Related Work

Most previous automatic approaches for rumor de-
tection (Castillo et al., 2011; Yang et al., 2012; Liu

2https://github.com/majingCUHK/Rumor_
RvNN
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et al., 2015) intended to learn a supervised classi-
fier by utilizing a wide range of features crafted
from post contents, user profiles and propagation
patterns. Subsequent studies were then conducted
to engineer new features such as those represent-
ing rumor diffusion and cascades (Friggeri et al.,
2014; Hannak et al., 2014) characterized by com-
ments with links to debunking websites. Kwon
et al. (2013) introduced a time-series-fitting model
based on the volume of tweets over time. Ma et al.
(2015) extended their model with more chronolog-
ical social context features. These approaches typ-
ically require heavy preprocessing and feature en-
gineering.

Zhao et al. (2015) alleviated the engineering ef-
fort by using a set of regular expressions (such
as “really?”, “not true”, etc) to find questing and
denying tweets, but the approach was oversimpli-
fied and suffered from very low recall. Ma et al.
(2016) used recurrent neural networks (RNN)
to learn automatically the representations from
tweets content based on time series. Recently, they
studied to mutually reinforce stance detection and
rumor classification in a neural multi-task learn-
ing framework (Ma et al., 2018). However, the
approaches cannot embed features reflecting how
the posts are propagated and requires careful data
segmentation to prepare for time sequence.

Some kernel-based methods were exploited to
model the propagation structure. Wu et al. (2015)
proposed a hybrid SVM classifier which combines
a RBF kernel and a random-walk-based graph ker-
nel to capture both flat and propagation patterns
for detecting rumors on Sina Weibo. Ma et al.
(2017) used tree kernel to capture the similarity
of propagation trees by counting their similar sub-
structures in order to identify different types of ru-
mors on Twitter. Compared to their studies, our
model can learn the useful features via a more nat-
ural and general approach, i.e., the tree-structured
neural network, to jointly generate representations
from both structure and content.

RvNN has demonstrated state-of-the-art perfor-
mances in a variety of tasks, e.g., images seg-
mentation (Socher et al., 2011), phrase represen-
tation from word vectors (Socher et al., 2012),
and sentiment classification in sentences (Socher
et al., 2013). More recently, a deep RvNN was
proposed to model the compositionality in natu-
ral language for fine-grained sentiment classifica-
tion by stacking multiple recursive layers (Irsoy

and Cardie, 2014). In order to avoid gradient van-
ishing, some studies integrated Long Short Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997) to RvNN (Zhu et al., 2015; Tai et al., 2015).
Mou et al. (2015) used a convolutional network
over tree structures for syntactic tree parsing of
natural language sentences.

3 Problem Statement

We define a Twitter rumor detection dataset as
a set of claims C = {C1, C2, · · · , C|C|}, where
each claim Ci corresponds to a source tweet ri
which consists of ideally all its relevant respon-
sive tweets in chronological order, i.e., Ci =
{ri, xi1, xi2, · · · , xim}where each xi∗ is a respon-
sive tweet of the root ri. Note that although the
tweets are notated sequentially, there are connec-
tions among them based on their reply or repost
relationships, which can form a propagation tree
structure (Wu et al., 2015; Ma et al., 2017) with ri
being the root node.

We formulate this task as a supervised classifi-
cation problem, which learns a classifier f from
labeled claims, that is f : Ci → Yi, where Yi takes
one of the four finer-grained classes: non-rumor,
false rumor, true rumor, and unverified rumor that
are introduced in the literature (Ma et al., 2017;
Zubiaga et al., 2016b).

An important issue of the tree structure is con-
cerned about the direction of edges, which can re-
sult in two different architectures of the model: 1)
a bottom-up tree; 2) a top-down tree, which are
defined as follows:

• Bottom-up tree takes the similar shape as
shown in Figure 1, where responsive nodes
always point to their responded nodes and
leaf nodes not having any response are laid
out at the furthest level. We represent a tree
as Ti = 〈Vi, Ei〉, where Vi = Ci which con-
sists of all relevant posts as nodes, and Ei de-
notes a set of all directed links, where for any
u, v ∈ Vi, u ← v exists if v responses to u.
This structure is similar to a citation network
where a response mimics a reference.

• Top-down tree naturally conforms to the di-
rection of information propagation, in which
a link u → v means the information flows
from u to v and v sees it and provides a re-
sponse to u. This structure reverses bottom-
up tree and simulates how information cas-
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Figure 2: A binarized sentence parse tree (left) and
its corresponding RvNN architecture (right).

cades from a source tweet, i.e., the root, to
all its receivers, i.e., the decedents, which is
similar as (Wu et al., 2015; Ma et al., 2017).

4 RvNN-based Rumor Detection

The core idea of our method is to strengthen the
high-level representation of tree nodes by the re-
cursion following the propagation structure over
different branches in the tree. For instance, the re-
sponsive nodes confirming or supporting a node
(e.g., “I agree”, “be right”, etc) can further rein-
force the stance of that node while denial or ques-
tioning responses (e.g., “disagree, “really?!) oth-
erwise weaken its stance. Compared to the kernel-
based method using propagation tree (Wu et al.,
2015; Ma et al., 2017), our method does not need
pairwise comparison among large number of sub-
trees, and can learn much stronger representation
of content following the response structure.

In this section, we will describe our extension
to the standard RvNN for modeling rumor detec-
tion based on the bottom-up and top-down archi-
tectures presented in Section 3.

4.1 Standard Recursive Neural Networks

RvNN is a type of tree-structured neural networks.
The original version of RvNN utilized binarized
sentence parse trees (Socher et al., 2012), in which
the representation associated with each node of
a parse tree is computed from its direct children.
The overall structure of the standard RvNN is il-
lustrated as the right side of Figure 2, correspond-
ing to the input parse tree at the left side.

Leaf nodes are the words in an input sen-
tence, each represented by a low-dimensional
word embedding. Non-leaf nodes are sentence
constituents, computed by recursion based on the
presentations of child nodes. Let p be the feature
vector of a parent node whose children are c1 and
c2, the representation of the parent is computed by
p = f(W ·[c1; c2]+b), where f(·) is the activation

function withW and b as parameters. This compu-
tation is done recursively over all tree nodes; the
learned hidden vectors of the nodes can then be
used for various classification tasks.

4.2 Bottom-up RvNN
The core idea of bottom-up model is to generate a
feature vector for each subtree by recursively visit-
ing every node from the leaves at the bottom to the
root at the top. In this way, the subtrees with sim-
ilar contexts, such as those subtrees having a de-
nial parent and a set of supportive children, will be
projected into the proximity in the representation
space. And thus such local rumor indicative fea-
tures are aggregated along different branches into
some global representation of the whole tree.

For this purpose, we make a natural extension
to the original RvNN. The overall structure of our
proposed bottom-up model is illustrated in Fig-
ure 3(b), taking a bottom-up tree (see Figure 3(a))
as input. Different from the standard RvNN, the
input of each node in the bottom-up model is a
post represented as a vector of words in the vocab-
ulary in terms of tfidf values. Here, every node
has an input vector, and the number of children of
nodes varies significantly3.

In rumor detection, long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997) and
gated recurrent units (GRU) (Cho et al., 2014)
were used to learn textual representation, which
adopts memory units to store information over
long time steps (Ma et al., 2016). In this paper,
we choose to extend GRU as hidden unit to model
long-distance interactions over the tree nodes be-
cause it is more efficient due to fewer parameters.
Let S(j) denote the set of direct children of the
node j. The transition equations of node j in the
bottom-up model are formulated as follows:

x̃j = xjE

hS =
∑

s∈S(j)
hs

rj = σ (Wrx̃j + UrhS)

zj = σ (Wzx̃j + UzhS)

h̃j = tanh (Whx̃j + Uh(hS � rj))
hj = (1− zj)� hS + zj � h̃j

(1)

3In standard RvNN, since an input instance is the parse
tree of a sentence, only leaf nodes have input vector, each
node representing a word of the input sentence, and the non-
leaf nodes are constituents of the sentence, and thus the num-
ber of children of a node is limited.
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(a) Bottom-up/Top-down tree (b) Bottom-up RvNN model (c) Top-down RvNN model

Figure 3: A bottom-up/top-down propagation tree and the corresponding RvNN-based models. The
black-color and red-color edges differentiate the bottom-up and top-down tree in Figure 3(a).

where xj is the original input vector of node j,
E denotes the parameter matrix for transforming
this input post, x̃j is the transformed representa-
tion of j, [W∗, U∗] are the weight connections in-
side GRU, and hj and hs refer to the hidden state
of j and its s-th child. Thus hS denotes the sum
of the hidden state of all the children of j assum-
ing that all children are equally important to j. As
with the standard GRU, � denotes element-wise
multiplication; a reset gate rj determines how to
combine the current input x̃j with the memory of
children, and an update gate zj defines how much
memory from the children is cascaded into the cur-
rent node; and h̃j denotes the candidate activation
of the hidden state of the current node. Different
from the standard GRU unit, the gating vectors in
our variant of GRU are dependent on the states of
many child units, allowing our model to incorpo-
rate representations from different children.

After recursive aggregation from bottom to up,
the state of root node (i.e., source tweet) can be re-
gard as the representation of the whole tree which
is used for supervised classification. So, an output
layer is connected to the root node for predicting
the class of the tree using a softmax function:

ŷ = Softmax(Vh0 + b) (2)

where h0 is the learned hidden vector of root node;
V and b are the weights and bias in output layer.

4.3 Top-down RvNN
This model is designed to leverage the structure
of top-down tree to capture complex propagation
patterns for classifying rumorous claims, which is
shown in Figure 3(c). It models how the informa-

tion flows from source post to the current node.
The idea of this top-down approach is to generate
a strengthened feature vector for each post consid-
ering its propagation path, where rumor-indicative
features are aggregated along the propagation his-
tory in the path. For example, if current post agree
with its parent’s stance which denies the source
post, the denial stance from the root node down to
the current node on this path should be reinforced.
Due to different branches of any non-leaf node, the
top-down visit to its subtree nodes is also recur-
sive. However, the nature of top-down tree lends
this model different from the bottom-up one. The
representation of each node is computed by com-
bining its own input and its parent node instead of
its children nodes. This process proceeds recur-
sively from the root node to its children until all
leaf nodes are reached.

Suppose that the hidden state of a non-leaf node
can be passed synchronously to all its child nodes
without loss. Then the hidden state hj of a node
j can be computed by combining the hidden state
hP(j) of its parent node P(j) and its own input
vector xj . Therefore, the transition equations of
node j can be formulated as a standard GRU:

x̃j = xjE

rj = σ
(
Wrx̃j + UrhP(j)

)

zj = σ
(
Wzx̃j + UzhP(j)

)

h̃j = tanh
(
Whx̃j + Uh(hP(j) � rj)

)

hj = (1− zj)� hP(j) + zj � h̃j

(3)

Through the top-down recursion, the learned
representations are eventually embedded into the
hidden vector of all the leaf nodes. Since the num-
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ber of leaf nodes varies, the resulting vectors can-
not be directly fed into a fixed-size neural layer
for output. Therefore, we add a max-pooling layer
to take the maximum value of each dimension of
the vectors over all the leaf nodes. This can also
help capture the most appealing indicative features
from all the propagation paths.

Based on the pooling result, we finally use a
softmax function in the output layer to predict the
label of the tree:

ŷ = Softmax(Vh∞ + b) (4)

where h∞ is the pooling vector over all leaf nodes,
V and b are parameters in the output layer.

Although both of the two RvNN models aim
to capture the structural properties by recursively
visiting all nodes, we can conjecture that the top-
down model would be better. The hypothesis is
that in the bottom-up case the final output relies on
the representation of single root, and its informa-
tion loss can be larger than the top-down one since
in the top-down case the representations embed-
ded into all leaf nodes along different propagation
paths can be incorporated via pooling holistically.

4.4 Model Training

The model is trained to minimize the squared error
between the probability distributions of the predic-
tions and the ground truth:

L(y, ŷ) =

N∑

n=1

C∑

c=1

(yc − ŷc)2 + λ||θ||22 (5)

where yc is the ground truth and ŷc is the pre-
diction probability of a class, N is the number of
training claims, C is the number of classes, ||.||2 is
the L2 regularization term over all model parame-
ters θ, and λ is the trade-off coefficient.

During training, all the model parameters are
updated using efficient back-propagation through
structure (Goller and Kuchler, 1996; Socher et al.,
2013), and the optimization is gradient-based fol-
lowing the Ada-grad update rule (Duchi et al.,
2011) to speed up the convergence. We empiri-
cally initialize the model parameters with uniform
distribution and set the vocabulary size as 5,000,
the size of embedding and hidden units as 100. We
iterate over all the training examples in each epoch
and continue until the loss value converges or the
maximum epoch number is met.

5 Experiments and Results

5.1 Datasets

For experimental evaluation, we use two publicly
available Twitter datasets released by Ma et al.
(2017), namely Twitter15 and Twitter164, which
respectively contains 1,381 and 1,181 propagation
trees (see (Ma et al., 2017) for detailed statistics).
In each dataset, a group of wide spread source
tweets along with their propagation threads, i.e.,
replies and retweets, are provided in the form of
tree structure. Each tree is annotated with one
of the four class labels, i.e., non-rumor, false ru-
mor, true rumor and unverified rumor. We remove
the retweets from the trees since they do not pro-
vide any extra information or evidence content-
wise. We build two versions for each tree, one for
the bottom-up tree and the other for the top-down
tree, by flipping the edges’ direction.

5.2 Experimental Setup

We make comprehensive comparisons between
our models and some state-of-the-art baselines on
rumor classification and early detection tasks.

- DTR: Zhao et al. (2015) proposed a Decision-
Tree-based Ranking model to identify trending ru-
mors by searching for inquiry phrases.

- DTC: The information credibility model using
a Decision-Tree Classifier (Castillo et al., 2011)
based on manually engineering various statistical
features of the tweets.

- RFC: The Random Forest Classier using 3 fit-
ting parameters as temporal properties and a set of
handcrafted features on user, linguistic and struc-
tural properties (Kwon et al., 2013).

- SVM-TS: A linear SVM classifier that uses
time-series to model the variation of handcrafted
social context features (Ma et al., 2015).

- SVM-BOW: A naive baseline we built by rep-
resenting text content using bag-of-words and us-
ing linear SVM for rumor classification.

- SVM-TK and SVM-HK: SVM classifier uses
a Tree Kernel (Ma et al., 2017) and that uses a Hy-
brid Kernel (Wu et al., 2015), respectively, both of
which model propagation structures with kernels.

- GRU-RNN: A detection model based on re-
current neural networks (Ma et al., 2016) with
GRU units for learning rumor representations by
modeling sequential structure of relevant posts.

4https://www.dropbox.com/s/
7ewzdrbelpmrnxu/rumdetect2017.zip?dl=0
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(a) Twitter15 dataset

Method NR FR TR UR
Acc. F1 F1 F1 F1

DTR 0.409 0.501 0.311 0.364 0.473
DTC 0.454 0.733 0.355 0.317 0.415
RFC 0.565 0.810 0.422 0.401 0.543
SVM-TS 0.544 0.796 0.472 0.404 0.483
SVM-BOW 0.548 0.564 0.524 0.582 0.512
SVM-HK 0.493 0.650 0.439 0.342 0.336
SVM-TK 0.667 0.619 0.669 0.772 0.645
GRU-RNN 0.641 0.684 0.634 0.688 0.571
BU-RvNN 0.708 0.695 0.728 0.759 0.653
TD-RvNN 0.723 0.682 0.758 0.821 0.654

(b) Twitter16 dataset

Method NR FR TR UR
Acc. F1 F1 F1 F1

DTR 0.414 0.394 0.273 0.630 0.344
DTC 0.465 0.643 0.393 0.419 0.403
RFC 0.585 0.752 0.415 0.547 0.563
SVM-TS 0.574 0.755 0.420 0.571 0.526
SVM-BOW 0.585 0.553 0.556 0.655 0.578
SVM-HK 0.511 0.648 0.434 0.473 0.451
SVM-TK 0.662 0.643 0.623 0.783 0.655
GRU-RNN 0.633 0.617 0.715 0.577 0.527
BU-RvNN 0.718 0.723 0.712 0.779 0.659
TD-RvNN 0.737 0.662 0.743 0.835 0.708

Table 1: Results of rumor detection. (NR: non-
rumor; FR: false rumor; TR: true rumor; UR: un-
verified rumor)

- BU-RvNN and TD-RvNN: Our bottom-up
and top-down RvNN models, respectively.

We implement DTC and RFC using Weka5,
SVM-based models using LibSVM6 and all
neural-network-based models with Theano7. We
conduct 5-fold cross-validation on the datasets and
use accuracy over all the four categories and F1
measure on each class to evaluate the performance
of models.

5.3 Rumor Classification Performance

As shown in Table 1, our proposed models ba-
sically yield much better performance than other
methods on both datasets via the modeling of in-
teraction structures of posts in the propagation.

It is observed that the performance of the 4
baselines in the first group based on handcrafted
features is obviously poor, varying between 0.409
and 0.585 in accuracy, indicating that they fail to
generalize due to the lack of capacity capturing
helpful features. Among these baselines, SVM-
TS and RFC perform relatively better because they

5www.cs.waikato.ac.nz/ml/weka
6www.csie.ntu.edu.tw/˜cjlin/libsvm
7deeplearning.net/software/theano

use additional temporal traits, but they are still
clearly worse than the models not relying on fea-
ture engineering. DTR uses a set of regular ex-
pressions indicative of stances. However, only
19.6% and 22.2% tweets in the two datasets con-
tain strings covered by these regular expressions,
rendering unsatisfactory result.

Among the two kernel methods that are based
on comparing propagation structures, we observe
that SVM-TK is much more effective than SVM-
HK. There are two reasons: 1) SVM-HK was
originally proposed and experimented on Sina
Weibo (Wu et al., 2015), which may not be gener-
alize well on Twitter. 2) SVM-HK loosely couples
two separate kernels: a RBF kernel based on hand-
crafted features, plus a random walk-based ker-
nel which relies on a set of pre-defined keywords
for jumping over the nodes probabilistically. This
under utilizes the propagation information due to
such oversimplified treatment of tree structure. In
contrast, SVM-TK is an integrated kernel and can
fully utilize the structure by comparing the trees
based on both textual and structural similarities.

It appears that using bag-of-words is already a
decent model evidenced as the fairly good perfor-
mance of SVM-BOW which is even better than
SVM-HK. This is because the features of SVM-
HK are handcrafted for binary classification (i.e.,
non-rumor vs rumor), ignoring the importance of
indicative words or units that benefit finer-grained
classification which can be captured more effec-
tively by SVM-BOW.

The sequential neural model GRU-RNN per-
forms slightly worse than SVM-TK, but much
worse than our recursive models. This is because
it is a special case of the recursive model where
each non-leaf node has only one child. It has to
rely on a linear chain as input, which missed out
valuable structural information. However, it does
learn high-level features from the post content via
hidden units of the neural model while SVM-TK
cannot which can only evaluates similarities based
on the overlapping words among subtrees. Our re-
cursive models are inherently tree-structured and
take advantages of representation learning follow-
ing the propagation structure, thus beats SVM-TK.

In the two recursive models, TD-RvNN outper-
forms BU-RvNN, which indicates that the bottom-
up model may suffer from larger information loss
than the top-down one. This verifies the hypothe-
sis we made in Section 4.3 that the pooling layer
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(a) Twitter15 (elapsed time) (b) Twitter16 (elapsed time) (c) Twitter15 (tweets count) (d) Twitter16 (tweets count)

Figure 4: Early rumor detection accuracy at different checkpoints in terms of elapsed time (tweets count).

Figure 5: A correctly detected false rumor at early stage by both of our models, where propagation paths
are marked with relevant stances. Note that edge direction is not shown as it applies to either case.

in the top-down model can effectively select im-
portant features embedded into the leaf nodes.

For only the non-rumor class, it seems that our
method does not perform so well as some feature-
engineering baselines. This can be explained by
the fact that these baselines are trained with ad-
ditional features such as user information (e.g.,
profile, verification status, etc) which may contain
clues for differentiating non-rumors from rumors.
Also, the responses to non-rumors are usually
much more diverse with little informative indi-
cation, making identification of non-rumors more
difficult based on content even with the structure.

5.4 Early Rumor Detection Performance

Detecting rumors at early state of propagation is
important so that interventions can be made in a
timely manner. We compared different methods
in term of different time delays measured by ei-
ther tweet count received or time elapsed since the
source tweet is posted. The performance is evalu-
ated by the accuracy obtained when we incremen-
tally add test data up to the check point given the
targeted time delay or tweets volume.

Figure 4 shows that the performance of our re-
cursive models climbs more rapidly and starts to
supersede the other models at the early stage. Al-
though all the methods are getting to their best per-

formance in the end, TD-RvNN and BU-RvNN
only need around 8 hours or about 90 tweets to
achieve the comparable performance of the best
baseline model, i.e., SVM-TK, which needs about
36 hours or around 300 posts, indicating superior
early detection performance of our method.

Figure 5 shows a sample tree at the early stage
of propagation that has been correctly classified as
a false rumor by both recursive models. We can
see that this false rumor demonstrates typical pat-
terns in subtrees and propagation paths indicative
of the falsehood, where a set of responses sup-
porting the parent posts that deny or question the
source post are captured by our bottom-up model.
Similarly, some patterns of propagation from the
root to leaf nodes like “support→deny→support”
are also seized by our top-down model. In com-
parison, sequential models may be confused be-
cause the supportive key terms such as “be right”,
“yeah”, “exactly!” dominate the responses, and
the SVM-TK may miss similar subtrees by just
comparing the surface words.

6 Conclusions and Future Work

We propose a bottom-up and a top-down tree-
structured model based on recursive neural net-
works for rumor detection on Twitter. The inher-
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ent nature of recursive models allows them using
propagation tree to guide the learning of represen-
tations from tweets content, such as embedding
various indicative signals hidden in the structure,
for better identifying rumors. Results on two pub-
lic Twitter datasets show that our method improves
rumor detection performance in very large mar-
gins as compared to state-of-the-art baselines.

In our future work, we plan to integrate other
types of information such as user properties into
the structured neural models to further enhance
representation learning and detect rumor spread-
ers at the same time. We also plan to use unsuper-
vised models for the task by exploiting structural
information.
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Abstract

Everyday billions of multimodal posts
containing both images and text are shared
in social media sites such as Snapchat,
Twitter or Instagram. This combination of
image and text in a single message allows
for more creative and expressive forms of
communication, and has become increas-
ingly common in such sites. This new
paradigm brings new challenges for nat-
ural language understanding, as the tex-
tual component tends to be shorter, more
informal, and often is only understood if
combined with the visual context. In this
paper, we explore the task of name tag-
ging in multimodal social media posts.
We start by creating two new multimodal
datasets: one based on Twitter posts1 and
the other based on Snapchat captions (ex-
clusively submitted to public and crowd-
sourced stories). We then propose a novel
model based on Visual Attention that not
only provides deeper visual understanding
on the decisions of the model, but also sig-
nificantly outperforms other state-of-the-
art baseline methods for this task. 2

1 Introduction

Social platforms, like Snapchat, Twitter, Insta-
gram and Pinterest, have become part of our
lives and play an important role in making com-
munication easier and accessible. Once text-
centric, social media platforms are becoming in-

∗∗This work was mostly done during the first author’s in-
ternship at Snap Research.

1The Twitter data and associated images presented in this
paper were downloaded from https://archive.org/
details/twitterstream

2We will make the annotations on Twitter data available
for research purpose upon request.

creasingly multimodal, with users combining im-
ages, videos, audios, and texts for better expres-
siveness. As social media posts become more mul-
timodal, the natural language understanding of the
textual components of these messages becomes in-
creasingly challenging. In fact, it is often the case
that the textual component can only be understood
in combination with the visual context of the mes-
sage.

In this context, here we study the task of Name
Tagging for social media containing both image
and textual contents. Name tagging is a key task
for language understanding, and provides input to
several other tasks such as Question Answering,
Summarization, Searching and Recommendation.
Despite its importance, most of the research in
name tagging has focused on news articles and
longer text documents, and not as much in mul-
timodal social media data (Baldwin et al., 2015).

However, multimodality is not the only chal-
lenge to perform name tagging on such data. The
textual components of these messages are often
very short, which limits context around names.
Moreover, there linguistic variations, slangs, ty-
pos and colloquial language are extremely com-
mon, such as using ‘looooove’ for ‘love’, ‘LosAn-
geles’ for ‘Los Angeles’, and ‘#Chicago #Bull’ for
‘Chicago Bulls’. These characteristics of social
media data clearly illustrate the higher difficulty
of this task, if compared to traditional newswire
name tagging.

In this work, we modify and extend the current
state-of-the-art model (Lample et al., 2016; Ma
and Hovy, 2016) in name tagging to incorporate
the visual information of social media posts us-
ing an Attention mechanism. Although the usually
short textual components of social media posts
provide limited contextual information, the ac-
companying images often provide rich informa-
tion that can be useful for name tagging. For ex-
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Figure 1: Examples of Modern Baseball associ-
ated with different images.

ample, as shown in Figure 1, both captions in-
clude the phrase ‘Modern Baseball’. It is not easy
to tell if each Modern Baseball refers to a name
or not from the textual evidence only. However
using the associated images as reference, we can
easily infer that Modern Baseball in the first sen-
tence should be the name of a band because of the
implicit features from the objects like instruments
and stage, and the Modern Baseball in the second
sentence refers to the sport of baseball because of
the pitcher in the image.

In this paper, given an image-sentence pair as
input, we explore a new approach to leverage vi-
sual context for name tagging in text. First, we
propose an attention-based model to extract visual
features from the regions in the image that are
most related to the text. It can ignore irrelevant
visual information. Secondly, we propose to use
a gate to combine textual features extracted by a
Bidirectional Long Short Term Memory (BLSTM)
and extracted visual features, before feed them
into a Conditional Random Fields(CRF) layer for
tag predication. The proposed gate architecture
plays the role to modulate word-level multimodal
features.

We evaluate our model on two labeled datasets
collected from Snapchat and Twitter respectively.
Our experimental results show that the proposed
model outperforms state-for-the-art name tagger
in multimodal social media.

The main contributions of this work are as fol-
lows:

• We create two new datasets for name tag-
ging in multimedia data, one using Twitter
and the other using crowd-sourced Snapchat
posts. These new datasets effectively consti-
tute new benchmarks for the task.

• We propose a visual attention model specif-
ically for name tagging in multimodal social
media data. The proposed end-to-end model

only uses image-sentence pairs as input with-
out any human designed features, and a Vi-
sual Attention component that helps under-
stand the decision making of the model.

2 Model

Figure 2 shows the overall architecture of our
model. We describe three main components of
our model in this section: BLSTM-CRF sequence
labeling model (Section 2.1), Visual Attention
Model (Section 2.3) and Modulation Gate (Sec-
tion 2.4).

Given a pair of sentence and image as input,
the Visual Attention Model extracts regional vi-
sual features from the image and computes the
weighted sum of the regional visual features as the
visual context vector, based on their relatedness
with the sentence. The BLSTM-CRF sequence la-
beling model predicts the label for each word in
the sentence based on both the visual context vec-
tor and the textual information of the words. The
modulation gate controls the combination of the
visual context vector and the word representations
for each word before the CRF layer.

2.1 BLSTM-CRF Sequence Labeling

We model name tagging as a sequence labeling
problem. Given a sequence of words: S =
{s1, s2, ..., sn}, we aim to predict a sequence of
labels: L = {l1, l2, ..., ln}, where li ∈ L and L is
a pre-defined label set.
Bidirectional LSTM. Long Short-term Memory
Networks (LSTMs) (Hochreiter and Schmidhuber,
1997) are variants of Recurrent Neural Networks
(RNNs) designed to capture long-range dependen-
cies of input. The equations of a LSTM cell are as
follows:

it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxfxt +Whfht−1 + bf )

c̃t = tanh(Wxcxt +Whcht−1 + bc)

ct = ft � ct−1 + it � c̃t
ot = σ(Wxoxt +Whoht−1 + bo)

ht = ot � tanh(ct)

where xt, ct and ht are the input, memory and hid-
den state at time t respectively. Wxi, Whi, Wxf ,
Whf , Wxc, Whc, Wxo, and Who are weight matri-
ces. � is the element-wise product function and σ
is the element-wise sigmoid function.
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Figure 2: Overall Architecture of the Visual Attention Name Tagging Model.

Name Tagging benefits from both of the past
(left) and the future (right) contexts, thus we im-
plement the Bidirectional LSTM (Graves et al.,
2013; Dyer et al., 2015) by concatenating the left
and right context representations, ht = [

−→
ht ,
←−
ht ],

for each word.
Character-level Representation. Follow-
ing (Lample et al., 2016), we generate the
character-level representation for each word using
another BLSTM. It receives character embeddings
as input and generates representations combining
implicit prefix, suffix and spelling information.
The final word representation xi is the concate-
nation of word embedding ei and character-level
representation ci.

ci = BLSTMchar(si) si ∈ S
xi = [ei, ci]

Conditional random fields (CRFs). For name
tagging, it is important to consider the constraints
of the labels in neighborhood (e.g., I-LOC must
follow B-LOC). CRFs (Lafferty et al., 2001) are
effective to learn those constraints and jointly pre-
dict the best chain of labels. We follow the imple-
mentation of CRFs in (Ma and Hovy, 2016).

2.2 Visual Feature Representation
We use Convolutional Neural Networks
(CNNs) (LeCun et al., 1989) to obtain the
representations of images. Particularly, we use
Residual Net (ResNet) (He et al., 2016), which

Figure 3: CNN for visual features extraction.

achieves state-of-the-art on ImageNet (Rus-
sakovsky et al., 2015) detection, ImageNet
localization, COCO (Lin et al., 2014) detection,
and COCO segmentation tasks. Given an input
pair (S, I), where S represents the word sequence
and I represents the image rescaled to 224x224
pixels, we use ResNet to extract visual features
for regional areas as well as for the whole image
(Fig 3):

Vg = ResNetg(I)

Vr = ResNetr(I)

where the global visual vector Vg, which repre-
sents the whole image, is the output before the
last fully connected layer3. The dimension of Vg
is 1,024. Vr are the visual representations for re-
gional areas and they are extracted from the last
convolutional layer of ResNet, and the dimension
is 1,024x7x7 as shown in Figure 3. 7x7 is the
number of regions in the image and 1,024 is the

3the last fully connect layer outputs the probabilities over
1,000 classes of objects.
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dimension of the feature vector. Thus each feature
vector of Vr corresponds to a 32x32 pixel region
of the rescaled input image.

2.3 Visual Attention Model

Figure 4: Example of partially related image and
sentence. (‘I have just bought Jeremy Pied.’)

The global visual representation is a reason-
able representation of the whole input image, but
not the best. Sometimes only parts of the im-
age are related to the associated sentence. For
example, the visual features from the right part
of the image in Figure 4 cannot contribute to in-
ferring the information in the associated sentence
‘I have just bought Jeremy Pied.’ In this work
we utilize visual attention mechanism to combat
the problem, which has been proven effective for
vision-language related tasks such as Image Cap-
tioning (Xu et al., 2015) and Visual Question An-
swering (Yang et al., 2016b; Lu et al., 2016), by
enforcing the model to focus on the regions in im-
ages that are mostly related to context textual in-
formation while ignoring irrelevant regions. Also
the visualization of attention can also help us to
understand the decision making of the model. At-
tention mechanism is mapping a query and a set
of key-value pairs to an output. The output is
a weighted sum of the values and the assigned
weight for each value is computed by a function
of the query and corresponding key. We encode
the sentence into a query vector using an LSTM,
and use regional visual representations Vr as both
keys and values.
Text Query Vector. We use an LSTM to encode
the sentence into a query vector, in which the in-
puts of the LSTM are the concatenations of word
embeddings and character-level word representa-
tions. Different from the LSTM model used for
sequence labeling in Section 2.1, the LSTM here
aims to get the semantic information of the sen-

tence and it is unidirectional:

Q = LSTMquery(S) (1)

Attention Implementation. There are many im-
plementations of visual attention mechanism such
as Multi-layer Perceptron (Bahdanau et al., 2014),
Bilinear (Luong et al., 2015), dot product (Lu-
ong et al., 2015), Scaled Dot Product (Vaswani
et al., 2017), and linear projection after summa-
tion (Yang et al., 2016b). Based on our experi-
mental results, dot product implementations usu-
ally result in more concentrated attentions and lin-
ear projection after summation results in more dis-
persed attentions. In the context of name tagging,
we choose the implementation of linear projec-
tion after summation because it is beneficial for
the model to utilize as many related visual fea-
tures as possible, and concentrated attentions may
make the model bias. For implementation, we first
project the text query vector Q and regional visual
features Vr into the same dimensions:

Pt = tanh(WtQ)

Pv = tanh(WvVr)

then we sum up the projected query vector with
each projected regional visual vector respectively:

A = Pt ⊕ Pv

the weights of the regional visual vectors:

E = softmax(WaA+ ba)

whereWa is weights matrix. The weighted sum of
the regional visual features is:

vc =
∑

αivi αi ∈ E, vi ∈ Vr

We use vc as the visual context vector to initial-
ize the BLSTM sequence labeling model in Sec-
tion 2.1. We compare the performances of the
models using global visual vector Vg and attention
based visual context vector Vc for initialization in
Section 4.

2.4 Visual Modulation Gate
The BLSTM-CRF sequence labeling model ben-
efits from using the visual context vector to ini-
tialize the LSTM cell. However, the better way
to utilize visual features for sequence labeling is
to incorporate the features at word level individ-
ually. However visual features contribute quite
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differently when they are used to infer the tags
of different words. For example, we can easily
find matched visual patterns from associated im-
ages for verbs such as ‘sing’, ‘run’, and ‘play’.
Words/Phrases such as names of basketball play-
ers, artists, and buildings are often well-aligned
with objects in images. However it is difficult to
align function words such as ‘the’, ‘of ’ and ‘well’
with visual features. Fortunately, most of the chal-
lenging cases in name tagging involve nouns and
verbs, the disambiguation of which can benefit
more from visual features.

We propose to use a visual modulation gate,
similar to (Miyamoto and Cho, 2016; Yang et al.,
2016a), to dynamically control the combination of
visual features and word representation generated
by BLSTM at word-level, before feed them into
the CRF layer for tag prediction. The equations
for the implementation of modulation gate are as
follows:

βv = σ(Wvhi + Uvvc + bv)

βw = σ(Wwhi + Uwvc + bw)

m = tanh(Wmhi + Umvc + bm)

wm = βw · hi + βv ·m

where hi is the word representation generated by
BLSTM, vc is the computed visual context vector,
Wv, Ww, Wm, Uv, Uw and Um are weight matri-
ces, σ is the element-wise sigmoid function, and
wm is the modulated word representations fed into
the CRF layer in Section 2.1. We conduct experi-
ments to evaluate the impact of modulation gate in
Section 4.

3 Datasets

We evaluate our model on two multimodal
datasets, which are collected from Twitter and
Snapchat respectively. Table 1 summarizes
the data statistics. Both datasets contain four
types of named entities: Location, Person,
Organization and Miscellaneous. Each
data instance contains a pair of sentence and im-
age, and the names in sentences are manually
tagged by three expert labelers.
Twitter name tagging. The Twitter name tagging
dataset contains pairs of tweets and their associ-
ated images extracted from May 2016, January
2017 and June 2017. We use sports and social
event related key words, such as concert, festi-
val, soccer, basketball, as queries. We don’t take

into consideration messages without images for
this experiment. If a tweet has more than one im-
age associated to it, we randomly select one of the
images.
Snap name tagging. The Snap name tagging
dataset consists of caption and image pairs exclu-
sively extracted from snaps submitted to public
and live stories. They were collected between May
and July of 2017. The data contains captions sub-
mitted to multiple community curated stories like
the Electric Daisy Carnival (EDC) music festival
and the Golden State Warrior’s NBA parade.

Both Twitter and Snapchat are social media
with plenty of multimodal posts, but they have ob-
vious differences with sentence length and image
styles. In Twitter, text plays a more important role,
and the sentences in the Twitter dataset are much
longer than those in the Snap dataset (16.0 tokens
vs 8.1 tokens). The image is often more related to
the content of the text and added with the purpose
of illustrating or giving more context. On the other
hand, as users of Snapchat use cameras to commu-
nicate, the roles of text and image are switched.
Captions are often added to complement what is
being portrayed by the snap. On our experiment
section we will show that our proposed model out-
performs baseline on both datasets.

We believe the Twitter dataset can be an im-
portant step towards more research in multimodal
name tagging and we plan to provide it as a bench-
mark upon request.

4 Experiment

4.1 Training
Tokenization. To tokenize the sentences, we use
the same rules as (Owoputi et al., 2013), except we
separate the hashtag ‘#’ with the words after.
Labeling Schema. We use the standard BIO
schema (Sang and Veenstra, 1999), because we
see little difference when we switch to BIOES
schema (Ratinov and Roth, 2009).
Word embeddings. We use the 100-dimensional
GloVe4 (Pennington et al., 2014) embeddings
trained on 2 billions tweets to initialize the lookup
table and do fine-tuning during training.
Character embeddings. As in (Lample et al.,
2016), we randomly initialize the character em-
beddings with uniform samples. Based on exper-
imental results, the size of the character embed-
dings affects little, and we set it as 50.

4https://nlp.stanford.edu/projects/glove/
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Training Development Testing

Snapchat Sentences 4,817 1,032 1,033
Tokens 39,035 8,334 8,110

Twitter Sentences 4,290 1,432 1,459
Tokens 68,655 22,872 23,051

Table 1: Sizes of the datasets in numbers of sentence and token.

Pretrained CNNs. We use the pretrained ResNet-
152 (He et al., 2016) from Pytorch.
Early Stopping. We use early stopping (Caruana
et al., 2001; Graves et al., 2013) with a patience of
15 to prevent the model from over-fitting.
Fine Tuning. The models are optimized with fine-
tuning on both the word-embeddings and the pre-
trained ResNet.
Optimization. The models achieve the best per-
formance by using mini-batch stochastic gradient
descent (SGD) with batch size 20 and momentum
0.9 on both datasets. We set an initial learning rate
of η0 = 0.03 with decay rate of ρ = 0.01. We use
a gradient clipping of 5.0 to reduce the effects of
gradient exploding.
Hyper-parameters. We summarize the hyper-
parameters in Table 2.

Hyper-parameter Value
LSTM hidden state size 300

Char LSTM hidden state size 50
visual vector size 100

dropout rate 0.5

Table 2: Hyper-parameters of the networks.

4.2 Results
Table 3 shows the performance of the baseline,
which is BLSTM-CRF with sentences as input
only, and our proposed models on both datasets.
BLSTM-CRF + Global Image Vector: use
global image vector to initialize the BLSTM-CRF.
BLSTM-CRF + Visual attention: use atten-
tion based visual context vector to initialize the
BLSTM-CRF.
BLSTM-CRF + Visual attention + Gate: modu-
late word representations with visual vector.

Our final model BLSTM-CRF + VISUAL AT-
TENTION + GATE, which has visual attention
component and modulation gate, obtains the best
F1 scores on both datasets. Visual features suc-
cessfully play a role of validating entity types. For
example, when there is a person in the image, it

is more likely to include a person name in the as-
sociated sentence, but when there is a soccer field
in the image, it is more likely to include a sports
team name.

All the models get better scores on Twitter
dataset than on Snap dataset, because the average
length of the sentences in Snap dataset (8.1 tokens)
is much smaller than that of Twitter dataset (16.0
tokens), which means there is much less contex-
tual information in Snap dataset.

Also comparing the gains from visual features
on different datasets, we find that the model bene-
fits more from visual features on Twitter dataset,
considering the much higher baseline scores on
Twitter dataset. Based on our observation, users
of Snapchat often post selfies with captions, which
means some of the images are not strongly related
to their associated captions. In contrast, users of
Twitter prefer to post images to illustrate texts

4.3 Attention Visualization

Figure 5 shows some good examples of the atten-
tion visualization and their corresponding name
tagging results. The model can successfully focus
on appropriate regions when the images are well
aligned with the associated sentences. Based on
our observation, the multimodal contexts in posts
related to sports, concerts or festival are usually
better aligned with each other, therefore the visual
features easily contribute to these cases. For ex-
ample, the ball and shoot action in example (a) in
Figure 5 indicates that the context should be re-
lated to basketball, thus the ‘Warriors’ should be
the name of a sports team. A singing person with a
microphone in example (b) indicates that the name
of an artist or a band (‘Radiohead’) may appear in
the sentence.

The second and the third rows in Figure 5 show
some more challenging cases whose tagging re-
sults benefit from visual features. In example (d),
the model pays attention to the big Apple logo,
thus tags the ‘Apple’ in the sentence as an Orga-
nization name. In example (e) and (i), a small
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Model
Snap Captions Twitter

Precision Recall F1 Precision Recall F1
BLSTM-CRF 57.71 58.65 58.18 78.88 77.47 78.17

BLSTM-CRF + Global Image Vector 61.49 57.84 59.61 79.75 77.32 78.51
BLSTM-CRF + Visual attention 65.53 57.03 60.98 80.81 77.36 79.05

BLSTM-CRF + Visual attention + Gate 66.67 57.84 61.94 81.62 79.90 80.75

Table 3: Results of our models on noisy social media data.

group of people indicates that it is likely to include
names of bands (‘Florence and the Machine’ and
‘BTS’). And a crowd can indicate an organization
(‘Warriorette’ in example (i)). A jersey shirt on
the table indicates a sports team. (‘Leicester’ in
example (h) can refer to both a city and a soccer
club based in it.)

4.4 Error Analysis

Figure 6 shows some failed examples that are cat-
egorized into three types: (1) bad alignments be-
tween visual and textual information; (2) blur im-
ages; (3) wrong attention made by the model.

Name tagging greatly benefits from visual fea-

tures when the sentences are well aligned with the
associated image as we show in Section 4.3. But it
is not always the case in social media. The exam-
ple (a) in Figure 6 shows a failed example resulted
from poor alignment between sentences and im-
ages. In this image, there are two bins standing in
front of a wall, but the sentence talks about bas-
ketball players. The unrelated visual information
makes the model tag ‘Cleveland’ as a Location,
however it refers to the basketball team ‘Cleveland
Cavaliers’.

The image in example (b) is blur, so the ex-
tracted visual information extracted actually intro-
duces noise instead of additional information. The

Figure 5: Examples of visual attentions and NER outputs.
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(a). Nice image of [PER Kevin Love] and [PER
Kyle Korver] during 1st half #NBAFinals #Cavsin9

#[LOC Cleveland]

(b). Very drunk in a #magnum concert (c). Looking forward to editing some SBU
baseball shots from Saturday.

Figure 6: Examples of Failed Visual Attention.

image in example (c) is about a baseball pitcher,
but our model pays attention to the top right cor-
ner of the image. The visual context feature com-
puted by our model is not related to the sentence,
and results in missed tagging of ‘SBU’, which is
an organization name.

5 Related Work

In this section, we summarize relevant background
on previous work on name tagging and visual at-
tention.
Name Tagging. In recent years, (Chiu and
Nichols, 2015; Lample et al., 2016; Ma and Hovy,
2016) proposed several neural network architec-
tures for named tagging that outperform tradi-
tional explicit features based methods (Chieu and
Ng, 2002; Florian et al., 2003; Ando and Zhang,
2005; Ratinov and Roth, 2009; Lin and Wu, 2009;
Passos et al., 2014; Luo et al., 2015). They all
use Bidirectional LSTM (BLSTM) to extract fea-
tures from a sequence of words. For character-
level representations, (Lample et al., 2016) pro-
posed to use another BLSTM to capture prefix
and suffix information of words, and (Chiu and
Nichols, 2015; Ma and Hovy, 2016) used CNN
to extract position-independent character features.
On top of BLSTM, (Chiu and Nichols, 2015) used
a softmax layer to predict the label for each word,
and (Lample et al., 2016; Ma and Hovy, 2016)
used a CRF layer for joint prediction. Com-
pared with traditional approaches, neural networks
based approaches do not require hand-crafted fea-
tures and achieved state-of-the-art performance
on name tagging (Ma and Hovy, 2016). How-
ever, these methods were mainly developed for
newswire and paid little attention to social me-
dia. For name tagging in social media, (Ritter
et al., 2011) leveraged a large amount of unla-
beled data and many dictionaries into a pipeline
model. (Limsopatham and Collier, 2016) adapted
the BLSTM-CRF model with additional word

shape information, and (Aguilar et al., 2017) uti-
lized an effective multi-task approach. Among
these methods, our model is most similar to (Lam-
ple et al., 2016), but we designed a new visual at-
tention component and a modulation control gate.
Visual Attention. Since the attention mechanism
was proposed by (Bahdanau et al., 2014), it has
been widely adopted to language and vision re-
lated tasks, such as Image Captioning and Visual
Question Answering (VQA), by retrieving the vi-
sual features most related to text context (Zhu
et al., 2016; Anderson et al., 2017; Xu and Saenko,
2016; Chen et al., 2015). (Xu et al., 2015) pro-
posed to predict a word based on the visual patch
that is most related to the last predicted word for
image captioning. (Yang et al., 2016b; Lu et al.,
2016) applied attention mechanism for VQA, to
find the regions in images that are most related to
the questions. (Yu et al., 2016) applied the visual
attention mechanism on video captioning. Our at-
tention implementation approach in this work is
similar to those used for VQA. The model finds
the regions in images that are most related to the
accompanying sentences, and then feed the visual
features into an BLSTM-CRF sequence labeling
model. The differences are: (1) we add visual con-
text feature at each step of sequence labeling; and
(2) we propose to use a gate to control the combi-
nation of the visual information and textual infor-
mation based on their relatedness. 2

6 Conclusions and Future Work

We propose a gated Visual Attention for name
tagging in multimodal social media. We con-
struct two multimodal datasets from Twitter and
Snapchat. Experiments show an absolute 3%-4%
F-score gain. We hope this work will encour-
age more research on multimodal social media in
the future and we plan on making our benchmark
available upon request.

Name Tagging for more fine-grained types (e.g.
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soccer team, basketball team, politician, artist) can
benefit more from visual features. For example, an
image including a pitcher indicates that the ‘Gi-
ants’ in context should refer to the baseball team
‘San Francisco Giants’. We plan to expand our
model to tasks such as fine-grained Name Tagging
or Entity Liking in the future.
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Abstract

We introduce the new Multimodal Named
Entity Disambiguation (MNED) task for
multimodal social media posts such as
Snapchat or Instagram captions, which
are composed of short captions with ac-
companying images. Social media posts
bring significant challenges for disam-
biguation tasks because 1) ambiguity not
only comes from polysemous entities, but
also from inconsistent or incomplete nota-
tions, 2) very limited context is provided
with surrounding words, and 3) there are
many emerging entities often unseen dur-
ing training. To this end, we build a new
dataset called SnapCaptionsKB, a collec-
tion of Snapchat image captions submitted
to public and crowd-sourced stories, with
named entity mentions fully annotated and
linked to entities in an external knowledge
base. We then build a deep zeroshot mul-
timodal network for MNED that 1) ex-
tracts contexts from both text and image,
and 2) predicts correct entity in the knowl-
edge graph embeddings space, allowing
for zeroshot disambiguation of entities un-
seen in training set as well. The proposed
model significantly outperforms the state-
of-the-art text-only NED models, showing
efficacy and potentials of the MNED task.

1 Introduction

Online communications are increasingly becom-
ing fast-paced and frequent, and hidden in these
abundant user-generated social media posts are
insights for understanding users and their pref-
erences. However, these social media posts of-
ten come in unstructured text or images, making
massive-scale opinion mining extremely challeng-

(a) Traditional NED (b) Multimodal NED

Figure 1: Examples of (a) a traditional NED task,
focused on disambiguating polysemous entities
based on surrounding textual contexts, and (b) the
proposed Multimodal NED task for short media
posts, which leverages both visual and textual con-
texts to disambiguate an entity. Note that mentions
are often lexically inconsistent or incomplete, and
thus a fixed candidates generation method (based
on exact mention-entity statistics) is not viable.

ing. Named entity disambiguation (NED), the task
of linking ambiguous entities from free-form text
mention to specific entities in a pre-defined knowl-
edge base (KB), is thus a critical step for extracting
structured information which leads to its applica-
tion for recommendations, advertisement, person-
alized assistance, etc.

While many previous approaches on NED
been successful for well-formed text in disam-
biguating polysemous entities via context reso-
lution, several additional challenges remain for
disambiguating entities from extremely short
and coarse text found in social media posts
(e.g. “juuustin ” as opposed to “I love
Justin Bieber/Justin Trudeau/etc.”). In many of
these cases it is simply impossible to disambiguate
entities from text alone, due to enormous num-
ber of surface forms arising from incomplete and
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inconsistent notations. In addition, social media
posts often include mentions of newly emerging
entities unseen in training sets, making traditional
context-based entity linking often not viable.

However, as popular social media platforms are
increasingly incorporating a mix of text and im-
ages (e.g. Snapchat, Instargram, Pinterest, etc.),
we can advance the disambiguation task to incor-
porate additional visual context for understanding
posts. For example, the mention of ‘juuustin’ is
completely ambiguous in its textual form, but an
accompanying snap image of a concert scene may
help disambiguate or re-rank among several lex-
ical candidates (e.g. Justin Bieber (a pop singer)
versus Justin Trudeau (a politician) in Figure 1).

To this end, we introduce a new task called Mul-
timodal Named Entity Disambiguation (MNED)
that handles unique challenges for social media
posts composed of extremely short text and im-
ages, aimed at disambiguationg entities by lever-
aging both textual and visual contexts.

We then propose a novel zeroshot MNED
model, which obtains visual context vectors from
images with a CNN (LeCun et al., 1989), and com-
bines with textual context extracted from a bidi-
rectional LSTM (Dyer et al., 2015) (Section 2.2).
In addition, we obtain embeddings representation
of 1M entities from a knowledge graph, and train
the MNED network to predict label embeddings of
entities in the same space as corresponding knowl-
edge graph embeddings (Section 2.4). This ap-
proach effectively allows for zeroshot prediction
of unseen entities, which is critical for scarce-label
scenario due to extensive human annotation efforts
required. Lastly, we develop a lexical embeddings
model that determines lexical similarity between a
mention and potential entities, to aid in prediction
of a correct entity (Section 2.3). Section 2.5 details
the model combining the components above.

Note that our method takes different perspec-
tives from the previous work on NED (He et al.,
2013; Yamada et al., 2016; Eshel et al., 2017) in
the following important ways. First, while most of
the previous methods generate fixed “candidates”
for disambiguation given a mention from mention-
entity pair statistics (thus disambiguation is lim-
ited for entities with exact surface form matches),
we do not fixate candidate generation, due to in-
tractable variety of surface forms for each named
entity and unforeseen mentions of emerging en-
tities. Instead, we have a lexical model incorpo-

rated into the discriminative score function that
serves as soft normalization of various surface
forms. Second, we extract auxiliary visual con-
texts for detected entities from user-generated im-
ages accompanied with textual posts, which is cru-
cial because captions in our dataset are substan-
tially shorter than text documents in most other
NED datasets. To the best of our knowledge, our
work is the first in using visual contexts for the
named entity disambiguation task. See Section 4
for the detailed literature review.

Our contributions are as follows: for the new
MNED task we introduce, we propose a deep
zeroshot multimodal network with (1) a CNN-
LSTM hybrid module that extracts contexts from
both image and text, (2) a zeroshot learning layer
which via embeddings projection allows for entity
linking with 1M knowledge graph entities even
for entities unseen from captions in training set,
and (3) a lexical language model called Deep Lev-
enshtein to compute lexical similarities between
mentions and entities, relaxing the need for fixed
candidates generation. We show that the proposed
approaches successfully disambiguate incomplete
mentions as well as polysemous entities, outper-
forming the state-of-the-art models on our newly
crawled SnapCaptionsKB dataset, composed of
12K image-caption pairs with named entities an-
notated and linked with an external KB.

2 Proposed Methods

Figure 2 illustrates the proposed model, which
maps each multimodal social media post data
to one of the corresopnding entities in the KB.
Given a multimodal input that contains a men-
tion of an ambiguous entity, we first extract tex-
tual and visual features contexts with RCNNs and
Bi-LSTMs, respectively (Section 2.2). We also
obtain lexical character-level representation of a
mention to compare with lexical representation
of KB entities, using a proposed model called
Deep Levenshtein (Section 2.3). We then get high-
dimensional label embeddings of KB entities con-
structed from a knowledge graph, where similar
entities are mapped as neighbors in the same space
(Section 2.4). Finally, we aggregate all the contex-
tual information extracted from surrounding text,
image, and lexical notation of a mention, and pre-
dict the best matching KB entity based on knowl-
edge graph label representation and lexical nota-
tion of KB entity candidates (Section 2.5).
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Figure 2: The main architecture of our Multimodal
NED network. We extract contextual informa-
tion from an image, surrounding words, and lex-
ical embeddings of a mention. The modality at-
tention module determines weights for modalities,
the weighted projections of which produce label
embeddings in the same space as knowledge-base
(KB) entity embeddings. We predict a final candi-
date by ranking based on similarities with KB en-
tity knowledge graph embeddings as well as with
lexical embeddings.

2.1 Notations

Let X = {x(i)}Ni=1 a set of N input social me-
dia posts samples for disambiguation, with cor-
responding ground truth named entities Y =
{y(i)}Ni=1 for y ∈ YKB, where YKB is a set of
entities in KB. Each input sample is composed
of three modalities: x = {xw;xv;xc}, where
xw = {xw,t}Lw

t=1 is a sequence of words with
length Lw surrounding a mention in a post, xv
is an image associated with a post (Section 2.2),
and xc = {xc,t}Lc

t=1 is a sequence of characters
comprising a mention (Section 2.3), respectively.
We denote high-dimensinal feature extractor func-
tions for each modality as: w(xw), c(xc), v(xv).
We represent each output label in two modali-
ties: y = {yKB;yc}, where yKB is a knowl-
edge base label embeddings representation (Sec-

tion 2.4), and and yc is a character embeddings
representation of KB entities (Section 2.3: Deep
Levenshtein).

We formulate our zeroshot multimodal NED
task as follows:

y = argmax
y′∈YKB

sim
(
fx→y(x),y

′)

where fx→y is a function with learnable parame-
ters that project multimodal input samples (x) into
the same space as label representations (y), and
sim(·) produces a similarity score between predic-
tion and ground truth KB entities.

2.2 Textual and Visual Contexts Features
Textual features: we represent textual context
of surrounding words of a mention with a Bi-
LSTM language model (Dyer et al., 2015) with
distributed word semantics embeddings. We use
the following implementation for the LSTM.

it = σ(Wxiht−1 +Wcict−1)

ct = (1− it)� ct−1
+ it � tanh(Wxcxw,t +Whcht−1)

ot = σ(Wxoxw,t +Whoht−1 +Wcoct)

ht = ot � tanh(ct)

w(xw) = [
−−→
hLw ;

←−−
hLw ] (1)

where ht is an LSTM hidden layer output at de-
coding step t, and w(xw) is an output textual rep-
resentation of bi-directional LSTM concatenating
left and right context at the last decoding step
t = Lw. Biase terms for gates are omitted for
simplicity of formulation.

For the Bi-LSTM sentence encoder, we use pre-
trained word embeddings obtained from an un-
supervised language model aimed at learning co-
occurrence statistics of words from a large external
corpus. Word embeddings are thus represented as
distributional semantics of words. In our experi-
ments, we use pre-trained embeddings from Stan-
ford GloVE model (Pennington et al., 2014).

Visaul features: we take the final activation of
a modified version of the recurrent convolutional
network model called Inception (GoogLeNet)
(Szegedy et al., 2015) trained on the ImageNet
dataset (Russakovsky et al., 2015) to classify mul-
tiple objects in the scene. The final layer repre-
sentation (v(xv)) thus encodes discriminative in-
formation describing what objects are shown in an
image, providing cues for disambiguation.
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2.3 Lexical Embeddings: Deep Levenshtein
While traditional NED tasks assume perfect lex-
ical match between mentions and their corresop-
nding entities, in our task it is important to ac-
count for various surface forms of mentions (nick-
names, mis-spellings, inconsistent notations, etc.)
corresponding to each entity. Towards this goal,
we train a separate deep neural network to com-
pute approximate Levenshtein distance which we
call Deep Levenshtein (Figure 3), composed of
a shared bi-directional character LSTM, shared
character embedding matrix, fully connected lay-
ers, and a dot product merge operation layer. The
optimization is as follows:

min
c

∥∥∥∥
1

2

(
c(xc) · c(x′c)>
‖c(xc)‖‖c(x′c)‖

+ 1

)
− sim(xc,x

′
c)

∥∥∥∥
2

(2)

where c(xc) = [
−−−→
hc,Lc ;

←−−−
hc,Lc ]

where c(·) is a bi-directional LSTM output vec-
tor for a character sequence defined similar as in
Eq.1, sim(·) is an output of the Deep Levenshtein
network, producing a normalized similarity score
with a range [0,1] based on Levenshtein edit dis-
tance, and (xc,x

′
c) is any pair of two strings. We

generate millions of these pairs as training data by
artificially corrupting seed strings by varying de-
grees (addition, deletion, replacement).

Once trained, it can produce a purely lexical
embedding of a string without semantic allusion
(via c(·)), and predict lexical similarity between
two strings based on their distance in the embed-
ding space. On an intuitive level, this component
effectively bypasses normalization steps, and in-
stead incorporates lexical similarities between in-
put mentions and output KB entities into the over-
all optimization of the disambiguation network.

We use by-product c(·) network to extract lex-
ical embedings of mentions and KB entities, and
freeze c in training of the disambiguation network.
We observe that this approach significantly out-
performs alternative ways to obtain character em-
beddings (e.g. having a character Bi-LSTM as a
part of the disambiguation network training, which
unnecessarily learns semantic allusions that are
prone to errors when notations are inconsistent.)

2.4 Label Embeddings from Knowledge
Graph

Due to the overwhelming variety of (newly trend-
ing) entities mentioned over social media posts, at

Figure 3: Deep Levenshtein, which predicts
approximate Levenshtein scores between two
strings. As a byproduct of this model, the shared
Bi-LSTM can produce lexical embeddings purely
based on lexical property of character sequences.

test phases we frequently encounter new named
entities that are unseen in the training data. In or-
der to address this issue, we propose a zeroshot
learning approach (Frome et al., 2013) by induc-
ing embeddings obtained from knowledge graphs
on KB entities. Knowledge graph label embed-
dings are learned from known relations among en-
tities within a graph (e.g. ‘IS-A’, ‘LOCATED-AT’,
etc.), the resulting embeddings of which can group
similar entities closer in the same space (e.g. ‘pop
stars’ are in a small cluster, ‘people’ and ‘organi-
zations’ clusters are far apart, etc.) (Bordes et al.,
2013; Wang et al., 2014; Nickel et al., 2016). Once
high-level mapping from contextual information
to label embeddings is learned, the knowledge-
graph based zeroshot approach can improve the
entity linking performance given ambiguous en-
tities unseen in training data. In brief formula-
tion, the model for obtaining embeddings from a
knowledge graph (composed of subject-relation-
object (s, r, o) triplets) is as follows:

P (Ir(s, o) = 1|e, er, θ) = scoreθ
(
e(s), er(r), e(o)

)

(3)
where Ir is an indicator function of a known re-
lation r for two entities (s,o) (1: valid relation, 0:
unknown relation), e is a function that extracts em-
beddings for entities, er extracts embeddings for
relations, and scoreθ(·) is a deep neural network
that produces a likelihood of a valid triplet.

In our experiments, we use the 1M subset of the
Freebase knowledge graph (Bast et al., 2014) to
obtain label embeddings with the Holographic KB
implementation by (Nickel et al., 2016).
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2.5 Deep Zeroshot MNED Network
(DZMNED)

Using the contextual information extracted from
surrounding text and an accompanying image
(Section 2.2) and lexical embeddings of a mention
(Section 2.3), we build a Deep Zeroshot MNED
network (DZMNED) which predicts a correspond-
ing KB entity based on its knowledge graph em-
beddings (Section 2.4) and lexical similarity (Sec-
tion 2.3) with the following objective:

min
W
LKB(x,yKB;Ww,Wv,Wf )+Lc(xc,yc;Wc)

where

LKB(·)=
1

N

N∑

i=1

∑

ỹ 6=y
(i)
KB

max[0, ỹ · y(i)
KB−f(x(i)) · (y(i)

KB− ỹ)>]

Lc(·) =
1

N

N∑

i=1

∑

ỹ 6=y
(i)
c

max[0, ỹ · y(i)
c −c(x(i)

c ) · (y(i)
c − ỹ)>]

R(W): regularization

where LKB(·) is the supervised hinge rank loss for
knowledge graph embeddings prediction, Lc(·) is
the loss for lexical mapping between mentions
and KB entities, x is a weighted average of three
modalities x = {xw;xv;xc} via the modality at-
tention module. f(·) is a transformation function
with stacked layers that projects weighted input to
the KB embeddings space, ỹ refers to the embed-
dings of negative samples randomly sampled from
KB entities except the ground truth label of the in-
stance, W = {Wf ,Wc,Ww,Wv} are the learn-
able parameters for f , c, w, and v respectively,
andR(W) is a weight decay regularization term.

Similarly to (Moon et al., 2018), we formulate
the modality attention module for our MNED
network as follows, which selectively attenuates
or amplifies modalities:

[aw;ac;av] = σ
(
Wm · [xw;xc;xv] + bm

)
(4)

αm =
exp(am)∑

m′∈{w,c,v}
exp(am′)

∀m ∈ {w, c, v}

x =
∑

m∈{w,c,v}
αmxm (5)

where α = [αw;αc;αv] ∈ R3 is an attention vec-
tor, and x is a final context vector that maximizes
information gain.

Intuitively, the model is trained to produce a
higher dot product similarity between the pro-
jected embeddings with its correct label than with
an incorrect negative label in both the knowledge
graph label embeddings and the lexical embed-
dings spaces, where the margin is defined as the
similarity between a ground truth sample and a
negative sample.

At test time, the following label-producing
nearest neighbor (1-NN) classifier is used for the
target task (we cache all the label embeddings to
avoid repetitive projections):

1-NN(x) = argmax
(yKB,yc)∈YKB

f(x) ·yKB
>+g(xc) ·yc

>

(6)
In summary, the model produces (1) projec-

tion of input modalities (mention, surrounding
text, image) into the knowledge graph embed-
dings space, and (2) lexical embeddings represen-
tation of mention, which then calculates a com-
bined score of contextual (knowledge graph) and
string similarities with each entity in YKB.

3 Empirical Evaluation

Task: Given a caption and an accompanying im-
age (if available), the goal is to disambiguate and
link a target mention in a caption to a correspond-
ing entity from the knowledge base (1M subset of
the Freebase knowledge graph (Bast et al., 2014)).

3.1 Datasets

Our SnapCaptionsKB dataset is composed of
12K user-generated image and textual caption
pairs where named entities in captions and their
links to KB entities are manually labeled by ex-
pert human annotators. These captions are col-
lected exclusively from snaps submitted to pub-
lic and crowd-sourced stories (aka Live Stories or
Our Stories). Examples of such stories are “New
York Story” or “Thanksgiving Story”, which are
aggregated collections of snaps for various pub-
lic venues, events, etc. Our data do not con-
tain raw images, and we only provide textual cap-
tions and obfuscated visual descriptor features ex-
tracted from the pre-trained InceptionNet. We
split the dataset randomly into train (70%), val-
idation (15%), and test sets (15%). The cap-
tions data have average length of 29.5 characters
(5.57 words) with vocabulary size 16,553, where
6,803 are considered unknown tokens from Stan-
ford GloVE embeddings (Pennington et al., 2014).
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Named entities annotated in the dataset include
many of new and emerging entities found in vari-
ous surface forms. To the best of our knowledge,
our SnapCaptionsKB is the only dataset that con-
tains image-caption pairs with human-annotated
named entities and their links to KB entities.

3.2 Baselines
We report performance of the following state-of-
the-art NED models as baselines, with several can-
didate generation methods and variations of our
proposed approach to examine contributions of
each component (W: word, C: char, V: visual).

Candidates generation: Note that our zeroshot
approach allows for entity disambiguation with-
out a fixed candidates generation process. In fact,
we observe that the conventional method for fixed
candidates generation harms the performance for
noisy social media posts with many emerging enti-
ties. This is because the difficulty of entity linking
at test time rises not only from multiple entities (e)
linking to a single mention (m), but also from each
entity found in multiple surface forms of mentions
(often unseen at train time). To show the efficacy
of our approach that does not require candidates
generation, we compare with the following candi-
dates generation methods:

• m→e hash list: This method retrieves KB en-
tity (e) candidates per mention (m) based on
exact (m, e) pair occurrence statistics from a
training corpora. This is the most predom-
inantly used candidates generation method
(He et al., 2013; Yamada et al., 2016; Eshel
et al., 2017). Note that this approach is es-
pecially vulnerable at test time to noisy men-
tions or emerging entities with no or a few
matching candidate entities from training set.

• k-NN: We also consider using lexical neigh-
bors of mentions from KB entities as can-
didates. This approach can be seen as soft
normalization to relax the issue of having to
match a variety of surface forms of a men-
tion to KB entities. We use our Deep Leven-
shtein (Section 2.3) to compute lexical em-
beddings of KB entities and mentions, and
retrieves Euclidean neighbors (and their pol-
ysemous entities) as candidates.

NED models: We choose as baselines the fol-
lowing state-of-the-art NED models for noisy text,
as well as several configurations of our proposed

approach to examine contributions of each compo-
nent (W: word, C: char, V: visual).

• sDA-NED (W only) (He et al., 2013): uses a
deep neural network with stacked denoising
autoencoders (sDA) to encode bag-of-words
representation of textual contexts and to di-
rectly compare mentions and entities.

• ARNN (W only) (Eshel et al., 2017): uses an
Attention RNN model that computes similar-
ity between word and entity embeddings to
disambiguate among fixed candidates.

• Deep Zeroshot (W only): uses the deep ze-
roshot architecture similar to Figure 2, but
uses word contexts (caption) only.

• (proposed) DZMNED + Deep Levenshtein
+ InceptionNet with modality attention
(W+C+V): is the proposed approach as de-
scribed in Figure 2.

• (proposed) DZMNED + Deep Levenshtein
+ InceptionNet w/o modality attention
(W+C+V): concatenates all the modality
vectors instead.

• (proposed) DZMNED + Deep Levenshtein
(W+C): only uses textual context.

• (proposed) DZMNED + Deep Levenshtein
w/o modality attention (W+C): does not use
the modality attention module, and instead
concatenates word and lexical embeddings.

3.3 Results

Parameters: We tune the parameters of each
model with the following search space (bold in-
dicate the choice for our final model): character
embeddings dimension: {25, 50, 100, 150, 200,
300}, word embeddings size: {25, 50, 100, 150,
200, 300}, knowledge graph embeddings size:
{100, 200, 300}, LSTM hidden states: {50, 100,
150, 200, 300}, and x dimension: {25, 50, 100,
150, 200, 300}. We optimize the parameters with
Adagrad (Duchi et al., 2011) with batch size 10,
learning rate 0.01, epsilon 10−8, and decay 0.1.

Main Results: Table 1 shows the Top-1, 3, 5,
10, and 50 candidates retrieval accuracy results
on the Snap Captions dataset. We see that the
proposed approach significantly outperforms the
baselines which use fixed candidates generation
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Modalities Model
Candidates
Generation

Accuracy (%)

Top-1 Top-3 Top-5 Top-10 Top-50

W ARNN (Eshel et al., 2017) m→e list 51.2 60.4 66.5 66.9 66.9
W ARNN 5-NN (lexical) 35.2 43.3 45.0 - -
W ARNN 10-NN (lexical) 31.9 40.1 44.5 50.7 -
W sDA-NED (He et al., 2013) m→e list 48.7 57.3 66.3 66.9 66.9

W Zeroshot N/A 43.6 63.8 67.1 70.5 77.2
W + C DZMNED N/A 67.0 72.7 74.8 76.8 85.0
W + C DZMNED + Modality Attention N/A 67.8 73.5 74.8 76.2 84.6
W + C + V DZMNED N/A 67.2 74.6 77.7 80.5 88.1
W + C + V DZMNED + Modality Attention N/A 68.1 75.5 78.2 80.9 87.9

Table 1: NED performance on the SnapCaptionsKB dataset at Top-1, 3, 5, 10, 50 accuracies. The classi-
fication is over 1M entities. Candidates generation methods: N/A, or over a fixed number of candidates
generated with methods: m→e hash list and kNN (lexical neighbors).

KB Embeddings Top-1 Top-5 Top-10

Trained with 1M entities 68.1 78.2 80.9

Trained with 10K entities 60.3 72.5 75.9
Random embeddings 41.4 45.8 48.0

Table 2: MNED performance (Top-1, 5, 10 accu-
racies) on SnapCaptionsKB with varying qualities
of KB embeddings. Model: DZMNED (W+C+V)

method. Note that m→ e hash list-based meth-
ods, which retrieve as candidates the KB entities
that appear in the training set of captions only, has
upper performance limit at 66.9%, showing the
limitance of fixed candidates generation method
for unseen entities in social media posts. k-NN
methods which retrieve lexical neighbors of men-
tion (in an attempt to perform soft normalization
on mentions) also do not perform well. Our pro-
posed zeroshot approaches, however, do not fixate
candidate generation, and instead compares com-
bined contextual and lexical similarities among
all 1M KB entities, achieving higher upper per-
formance limit (Top-50 retrieval accuracy reaches
88.1%). This result indicates that the proposed
zeroshot model is capable of predicting for un-
seen entities as well. The lexical sub-model can
also be interpreted as functioning as soft neural
mapping of mention to potential candidates, rather
than heuristic matching to fixed candidates.

In addition, when visual context is available
(W+C+V), the performance generally improves
over the textual models (W+C), showing that vi-
sual information can provide additional contexts
for disambiguation. The modality attention mod-
ule also adds performance gain by re-weighting
the modalities based on their informativeness.

Error Analysis: Table 3 shows example cases
where incorporation of visual contexts affects dis-
ambiguation of mentions in textual captions. For
example, polysemous entities such as ‘Jordan’ in
the caption “Taking the new Jordan for a walk”
or ‘CID’ as in “LETS GO CID” are hard to dis-
ambiguate due to the limited textual contexts pro-
vided, while visual information (e.g. visual tags
‘footwear’ for Jordan, ‘DJ’ for CID) provides sim-
ilarities to each mention’s distributional semantics
from other training examples. Mentions unseen
at train time (‘STEPHHHH’, ‘murica’) often re-
sort to lexical neighbors by (W+C), whereas vi-
sual contexts can help disambiguate better. A few
cases where visual contexts are not helpful include
visual tags that are not related to mentions, or do
not complement already ambiguous contexts.

Sensitivity to KB Embeddings Quality: The
proposed approach relies its prediction on entity
matching in the KB embeddings space, and hence
the quality of KB embeddings is crucial for suc-
cessful disambiguation. To characterize this as-
pect, we provide Table 2 which shows MNED per-
formance with varying quality of embeddings as
follows: KB embeddings learned from 1M knowl-
edge graph entities (same as in the main experi-
ments), from 10K subset of entities (less triplets
to train with in Eq.3, hence lower quality), and
random embeddings (poorest) - while all the other
parameters are kept the same. It can be seen that
the performance notably drops with lower quality
of KB embeddings. When KB embeddings are re-
placed by random embeddings, the network effec-
tively prevents the contextual zeroshot matching to
KB entities and relies only on lexical similarities,
achieving the poorest performance.
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Caption (target) Visual Tags GT
Top-1 Prediction

(W+C+V) (W+C)

+

“YA BOI STEPHHHH” sports equip, ball, parade, ... Stephen Curry (=GT) Stephenville
“Taking the new Jordan for a walk” footwear, shoe, sock, ... Air Jordan (=GT) Michael Jordan
“out for murica’s bday ” parade, flag, people, ... U.S.A. (=GT) Murcia (Spain)
“Come on now, Dre” club, DJ, night, ... Dr. Dre (=GT) Dre Kirkpatrick
“LETS GO CID” drum, DJ, drummer, ... CID (DJ) (=GT) CID (ORG)

-
“kick back hmu for addy.” weather, fog, tile, ... Adderall GoDaddy (=GT)
“@Sox to see get retired! ” sunglasses, stadium, ... Red Sox White Sox White Sox

Table 3: Error analysis: when do images help NED? Ground-truth (GT) and predictions of our model
with vision input (W+C+V) and the one without (W+C) for the underlined mention are shown. For
interpretability, visual tags (label output of InceptionNet) are presented instead of actual feature vectors.

4 Related Work

NED task: Most of the previous NED mod-
els leverage local textual information (He et al.,
2013; Eshel et al., 2017) and/or document-wise
global contexts (Hoffart et al., 2011; Chisholm and
Hachey, 2015; Pershina et al., 2015; Globerson
et al., 2016), in addition to other auxiliary con-
texts or priors for disambiguating a mention. Note
that most of the NED datasets (e.g. TAC KBP
(Ji et al., 2010), ACE (Bentivogli et al., 2010),
CoNLL-YAGO (Hoffart et al., 2011), etc.) are
extracted from standardized documents with web
links such as Wikipedia (with relatively ample tex-
tual contexts), and that named entitiy disambigua-
tion specifically for short and noisy social media
posts are rarely discussed. Note also that most
of the previous literature assume the availability
of “candidates” or web links for disambiguation
via mention-entity pair counts from training set,
which is vulnerable to inconsistent surface forms
of entities predominant in social media posts.

Our model improves upon the state-of-the-art
NED models in three very critical ways: (1) in-
corporation of visual contexts, (2) addition of the
zeroshot learning layer, which allows for disam-
biguation of unseen entities during training, and
(3) addition of the lexical model that computes
lexical similarity entities to correctly recognize in-
consistent surface forms of entities.

Multimodal learning studies learning of a joint
model that leverages contextual information from
multiple modalities in parallel. Some of the rele-
vant multimodal learning task to our MNED sys-
tem include the multimodal named entity recog-
nition task (Moon et al., 2018), which leverages
both text and image to classify each token in a
sentence to named entity or not. In their work,

they employ an entity LSTM that takes as in-
put each modality, and a softmax layer that out-
puts an entity label at each decoding step. Con-
trast to their work, our MNED addresses unique
challenges characterized by zeroshot ranking of
1M knowledge-base entities (vs. categorical en-
tity types prediction), incorporation of an external
knowledge graph, lexical embeddings, etc. An-
other is the multimodal machine translation task
(Elliott et al., 2015; Specia et al., 2016), which
takes as input text in source language as well as
an accompanying image to output a translated text
in target language. These models usually employ a
sequence-to-sequence architecture (e.g. target lan-
guage decoder takes as input both encoded source
language and images) often with traditional atten-
tion modules widely used in other image caption-
ing systems (Xu et al., 2015; Sukhbaatar et al.,
2015). To the best of our knowledge, our approach
is the first multimodal learning work at incorporat-
ing visual contexts for the NED task.

5 Conclusions

We introduce a new task called Multimodal
Named Entity Disambiguation (MNED), which is
applied on short user-generated social media posts
that are composed of text and accompanying im-
ages. Our proposed MNED model improves upon
the state-of-the-art models by 1) extracting visual
contexts complementary to textual contexts, 2) by
leveraging lexical embeddings into entity match-
ing which accounts for various surface forms of
entities, removing the need for fixed candidates
generation process, and 3) by performing entity
matching in the distributed knowledge graph em-
beddings space, allowing for matching of unseen
mentions and entities by context resolutions.
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Abstract

Social media user geolocation is vital to
many applications such as event detection.
In this paper, we propose GCN, a multiview
geolocation model based on Graph Con-
volutional Networks, that uses both text
and network context. We compare GCN
to the state-of-the-art, and to two base-
lines we propose, and show that our model
achieves or is competitive with the state-
of-the-art over three benchmark geoloca-
tion datasets when sufficient supervision is
available. We also evaluate GCN under a
minimal supervision scenario, and show it
outperforms baselines. We find that high-
way network gates are essential for control-
ling the amount of useful neighbourhood
expansion in GCN.

1 Introduction

User geolocation, the task of identifying the “home”
location of a user, is an integral component of many
applications ranging from public health monitor-
ing (Paul and Dredze, 2011; Chon et al., 2015;
Yepes et al., 2015) and regional studies of senti-
ment, to real-time emergency awareness systems
(De Longueville et al., 2009; Sakaki et al., 2010),
which use social media as an implicit information
resource about people.

Social media services such as Twitter rely on
IP addresses, WiFi footprints, and GPS data to ge-
olocate users. Third-party service providers don’t
have easy access to such information, and have to
rely on public sources of geolocation information
such as the profile location field, which is noisy and
difficult to map to a location (Hecht et al., 2011),
or geotagged tweets, which are publicly available
for only 1% of tweets (Cheng et al., 2010; Morstat-
ter et al., 2013). The scarcity of publicly available

location information motivates predictive user ge-
olocation from information such as tweet text and
social interaction data.

Most previous work on user geolocation takes
the form of either supervised text-based approaches
(Wing and Baldridge, 2011; Han et al., 2012) re-
lying on the geographical variation of language
use, or graph-based semi-supervised label propa-
gation relying on location homophily in user–user
interactions (Davis Jr et al., 2011; Jurgens, 2013).

Both text and network views are critical in geolo-
cating users. Some users post a lot of local content,
but their social network is lacking or is not repre-
sentative of their location; for them, text is the dom-
inant view for geolocation. Other users have many
local social interactions, and mostly use social me-
dia to read other people’s comments, and for inter-
acting with friends. Single-view learning would
fail to accurately geolocate these users if the more
information-rich view is not present. There has
been some work that uses both the text and network
views, but it either completely ignores unlabelled
data (Li et al., 2012a; Miura et al., 2017), or just
uses unlabelled data in the network view (Rahimi
et al., 2015b; Do et al., 2017). Given that the 1%
of geotagged tweets is often used for supervision,
it is crucial for geolocation models to be able to
leverage unlabelled data, and to perform well under
a minimal supervision scenario.

In this paper, we propose GCN, an end-to-end
user geolocation model based on Graph Convo-
lutional Networks (Kipf and Welling, 2017) that
jointly learns from text and network information
to classify a user timeline into a location. Our con-
tributions are: (1) we evaluate our model under
a minimal supervision scenario which is close to
real world applications and show that GCN outper-
forms two strong baselines; (2) given sufficient
supervision, we show that GCN is competitive, al-
though the much simpler MLP-TXT+NET outper-
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forms state-of-the-art models; and (3) we show that
highway gates play a significant role in controlling
the amount of useful neighbourhood smoothing in
GCN.1

2 Model

We propose a transductive multiview geolocation
model, GCN, using Graph Convolutional Networks
(“GCN”: Kipf and Welling (2017)). We also in-
troduce two multiview baselines: MLP-TXT+NET
based on concatenation of text and network, and
DCCA based on Deep Canonical Correlation Anal-
ysis (Andrew et al., 2013).

2.1 Multivew Geolocation
Let X ∈ R|U |×|V | be the text view, consisting of
the bag of words for each user in U using vo-
cabulary V , and A ∈ 1

|U |×|U | be the network
view, encoding user–user interactions. We partition
U = US ∪ UH into a supervised and heldout (un-
labelled) set, US and UH , respectively. The goal
is to infer the location of unlabelled samples YU ,
given the location of labelled samples YS , where
each location is encoded as a one-hot classification
label, yi ∈ 1

c with c being the number of target
regions.

2.2 GCN

GCN defines a neural network model f(X,A) with
each layer:

Â = D̃−
1
2 (A+ λI)D̃−

1
2

H(l+1) = σ
(
ÂH(l)W (l) + b

)
,

(1)

where D̃ is the degree matrix of A + λI; hyper-
parameter λ controls the weight of a node against
its neighbourhood, which is set to 1 in the orig-
inal model (Kipf and Welling, 2017); H0 = X
and the din × dout matrix W (l) and dout × 1 ma-
trix b are trainable layer parameters; and σ is an
arbitrary nonlinearity. The first layer takes an aver-
age of each sample and its immediate neighbours
(labelled and unlabelled) using weights in Â, and
performs a linear transformation using W and b
followed by a nonlinear activation function (σ). In
other words, for user ui, the output of layer l is
computed by:

~hl+1
i = σ

(∑
j∈nhood(i)

Âij~h
l
jW

l + bl
)
, (2)

1Code and data available at https://github.com/
afshinrahimi/geographconv

Highway GCN:
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Output GCN:

X = BoWtext
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predict location: ŷ

W l−1, bl−1, W l−1
h , bl−1

h

W 1, b1, W 1
h , b1h
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Figure 1: The architecture of GCN geolocation
model with layer-wise highway gates (W i

h, bih).
GCN is applied to a BoW model of user content
over the @-mention graph to predict user location.

where W l and bl are learnable layer parameters,
and nhood(i) indicates the neighbours of user ui.
Each extra layer in GCN extends the neighbour-
hood over which a sample is smoothed. For ex-
ample a GCN with 3 layers smooths each sample
with its neighbours up to 3 hops away, which is
beneficial if location homophily extends to a neigh-
bourhood of this size.

2.2.1 Highway GCN

Expanding the neighbourhood for label propaga-
tion by adding multiple GCN layers can improve
geolocation by accessing information from friends
that are multiple hops away, but it might also lead
to propagation of noisy information to users from
an exponentially increasing number of expanded
neighbourhood members. To control the required
balance of how much neighbourhood information
should be passed to a node, we use layer-wise gates
similar to highway networks. In highway networks
(Srivastava et al., 2015), the output of a layer is
summed with its input with gating weights T (~hl):

T (~hl) = σ
(
W l
t
~hl + blt

)

~hl+1 = ~hl+1 ◦ T (~hl) + ~hl ◦ (1− T (~hl)) ,
(3)

where ~hl is the incoming input to layer l + 1,
(W l

t , b
l
t) are gating weights and bias variables, ◦ is

elementwise multiplication, and σ is the Sigmoid
function.
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2.3 DCCA

Given two views X and Â (from Equation 1) of
data samples, CCA (Hotelling, 1936), and its deep
version (DCCA) (Andrew et al., 2013) learn func-
tions f1(X) and f2(Â) such that the correlation
between the output of the two functions is max-
imised:

ρ = corr(f1(X), f2(Â)) . (4)

The resulting representations of f1(X) and f2(Â)
are the compressed representations of the two
views where the uncorrelated noise between them
is reduced. The new representations ideally repre-
sent user communities for the network view, and
the language model of that community for the text
view, and their concatenation is a multiview repre-
sentation of data, which can be used as input for
other tasks.

In DCCA, the two views are first projected to a
lower dimensionality using a separate multilayer
perceptron for each view (the f1 and f2 functions of
Equation 4), the output of which is used to estimate
the CCA cost:

maximise: tr(W T
1 Σ12W2)

subject to: W T
1 Σ11W1 = W T

2 Σ22W2 = I
(5)

where Σ11 and Σ22 are the covariances of the two
outputs, and Σ12 is the cross-covariance. The
weights W1 and W2 are the linear projections of
the MLP outputs, which are used in estimating the
CCA cost. The optimisation problem is solved by
SVD, and the error is backpropagated to train the
parameters of the two MLPs and the final linear
projections. After training, the two networks are
used to predict new projections for unseen data.
The two projections of unseen data — the outputs
of the two networks — are then concatenated to
form a multiview sample representation, as shown
in Figure 2.

3 Experiments

3.1 Data
We use three existing Twitter user geolocation
datasets: (1) GEOTEXT (Eisenstein et al., 2010),
(2) TWITTER-US (Roller et al., 2012), and (3)
TWITTER-WORLD (Han et al., 2012). These
datasets have been used widely for training and
evaluation of geolocation models. They are all
pre-partitioned into training, development and test

maximally correlated

FC sigmoid

FC softmax

X: text BoW Â: Neighbours

predicted location: ŷ

FC linear

Unsupervised DCCA Supervised Geolocation

FC ReLU

CCA loss backprop

Figure 2: The DCCA model architecture: First the
two text and network views X and Â are fed into
two neural networks (left), which are unsupervis-
edly trained to maximise the correlation of their
outputs; next the outputs of the networks are con-
catenated, and fed as input to another neural net-
work (right), which is trained supervisedly to pre-
dict locations.

sets. Each user is represented by the concate-
nation of their tweets, and labelled with the lat-
itude/longitude of the first collected geotagged
tweet in the case of GEOTEXT and TWITTER-US,
and the centre of the closest city in the case of
TWITTER-WORLD. GEOTEXT and TWITTER-US
cover the continental US, and TWITTER-WORLD

covers the whole world, with 9k, 449k and 1.3m
users, respectively. The labels are the discretised
geographical coordinates of the training points us-
ing a k-d tree following Roller et al. (2012), with
the number of labels equal to 129, 256, and 930 for
GEOTEXT, TWITTER-US, and TWITTER-WORLD,
respectively.

3.2 Constructing the Views

We build matrix Â as in Equation 1 using the col-
lapsed @-mention graph between users, where two
users are connected (Aij = 1) if one mentions the
other, or they co-mention another user. The text
view is a BoW model of user content with binary
term frequency, inverse document frequency, and
l2 normalisation of samples.

3.3 Model Selection

For GCN, we use highway layers to control the
amount of neighbourhood information passed to a
node. We use 3 layers in GCN with size 300, 600,
900 for GEOTEXT, TWITTER-US and TWITTER-
WORLD respectively. Note that the final softmax
layer is also graph convolutional, which sets the
radius of the averaging neighbourhood to 4. The
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k-d tree bucket size hyperparameter which controls
the maximum number of users in each cluster is set
to 50, 2400, and 2400 for the respective datasets,
based on tuning over the validation set. The archi-
tecture of GCN-LP is similar, with the difference
that the text view is set to zero. In DCCA, for the
unsupervised networks we use a single sigmoid
hidden layer with size 1000 and a linear output
layer with size 500 for the three datasets. The loss
function is CCA loss, which maximises the output
correlations. The supervised multilayer perceptron
has one hidden layer with size 300, 600, 1000 for
GEOTEXT, TWITTER-US, and TWITTER-WORLD,
respectively, which we set by tuning over the devel-
opment sets. We evaluate the models using Median
error, Mean error, and Acc@161, accuracy of pre-
dicting a user within 161km or 100 miles from the
known location.

3.4 Baselines

We also compare DCCA and GCN with two base-
lines:

GCN-LP is based on GCN, but for input, instead
of text-based features , we use one-hot encoding
of a user’s neighbours, which are then convolved
with their k-hop neighbours using the GCN. This
approach is similar to label propagation in smooth-
ing the label distribution of a user with that of its
neighbours, but uses graph convolutional networks
which have extra layer parameters, and also a gat-
ing mechanism to control the smoothing neighbour-
hood radius. Note that for unlabelled samples, the
predicted labels are used for input after training
accuracy reaches 0.2.

MLP-TXT+NET is a simple transductive super-
vised model based on a single layer multilayer per-
ceptron where the input to the network is the con-
catenation of the text view X , the user content’s
bag-of-words and Â (Equation 1), which represents
the network view as a vector input. For the hidden
layer we use a ReLU nonlinearity, and sizes 300,
600, and 600 for GEOTEXT, TWITTER-US, and
TWITTER-WORLD, respectively.

4 Results and Analysis

4.1 Representation

Deep CCA and GCN are able to provide an un-
supervised data representation in different ways.

Deep CCA takes the two text-based and network-
based views, and finds deep non-linear transforma-
tions that result in maximum correlation between
the two views (Andrew et al., 2013). The represen-
tations can be visualised using t-SNE, where we
hope that samples with the same label are clustered
together. GCN, on the other hand, uses graph con-
volution. The representations of 50 samples from
each of 4 randomly chosen labels of GEOTEXT are
shown in Figure 3. As shown, Deep CCA seems
to slightly improve the representations from pure
concatenation of the two views. GCN, on the other
hand, substantially improves the representations.
Further application of GCN results in more sam-
ples clumping together, which might be desirable
when there is strong homophily.

4.2 Labelled Data Size

To achieve good performance in supervised tasks,
often large amounts of labelled data are required,
which is a big challenge for Twitter geolocation,
where only a small fraction of the data is geo-
tagged (about 1%). The scarcity of supervision
indicates the importance of semi-supervised learn-
ing where unlabelled (e.g. non-geotagged) tweets
are used for training. The three models we propose
(MLP-TXT+NET, DCCA, and GCN) are all trans-
ductive semi-supervised models that use unlabelled
data, however, they are different in terms of how
much labelled data they require to achieve accept-
able performance. Given that in a real-world sce-
nario, only a small fraction of data is geotagged,
we conduct an experiment to analyse the effect of
labelled samples on the performance of the three
geolocation models. We provided the three mod-
els with different fractions of samples that are la-
belled (in terms of % of dataset samples) while
using the remainder as unlabelled data, and anal-
ysed their Median error performance over the de-
velopment set of GEOTEXT, TWITTER-US, and
TWITTER-WORLD. Note that the text and net-
work view, and the development set, remain fixed
for all the experiments. As shown in Figure 4,
when the fraction of labelled samples is less than
10% of all the samples, GCN and DCCA outper-
form MLP-TXT+NET, as a result of having fewer
parameters, and therefore, lower supervision re-
quirement to optimise them. When enough training
data is available (e.g. more than 20% of all the sam-
ples), GCN and MLP-TXT+NET clearly outperform
DCCA, possibly as a result of directly modelling the
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(a) MLP-TXT+NET (b) DCCA (c) 1 GCN Â ·X (d) 2 GCN Â · Â ·X

Figure 3: Comparing t-SNE visualisations of 50 training samples from each of 4 randomly chosen regions
of GEOTEXT using various data representations: (a) concatenation of Â (Equation 1); (b) concatenation
of DCCA transformation of text-based and network-based views X and Â; (c) applying graph convolution
Â ·X; and (d) applying graph convolution twice Â · Â ·X
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Figure 4: The effect of the amount of labelled data available as a fraction of all samples for GEO-
TEXT, TWITTER-US, and TWITTER-WORLD on the development performance of GCN, DCCA, and
MLP-TXT+NET models in terms of Median error. The dataset sizes are 9k, 440k, and 1.4m for the three
datasets, respectively.

interactions between network and text views. When
all the training samples of the two larger datasets
(95% and 98% for TWITTER-US and TWITTER-
WORLD, respectively) are available to the mod-
els, MLP-TXT+NET outperforms GCN. Note that
the number of parameters increases from DCCA to
GCN and to MLP-TXT+NET. In 1% for GEOTEXT,
DCCA outperforms GCN as a result of having fewer
parameters and just a few labelled samples, insuffi-
cient to train the parameters of GCN.

4.3 Highway Gates
Adding more layers to GCN expands the graph
neighbourhood within which the user features are
averaged, and so might introduce noise, and con-
sequently decrease accuracy as shown in Figure 5
when no gates are used. We see that by adding
highway network gates, the performance of GCN
slightly improves until three layers are added,
but then by adding more layers the performance
doesn’t change that much as gates are allowing the
layer inputs to pass through the network without

much change. The performance peaks at 4 layers
which is compatible with the distribution of short-
est path lengths shown in Figure 6.

4.4 Performance

The performance of the three proposed models
(MLP-TXT+NET, DCCA and GCN) is shown in Ta-
ble 1. The models are also compared with super-
vised text-based methods (Wing and Baldridge,
2014; Cha et al., 2015; Rahimi et al., 2017b), a
network-based method (Rahimi et al., 2015a) and
GCN-LP, and also joint text and network mod-
els (Rahimi et al., 2017b; Do et al., 2017; Miura
et al., 2017). MLP-TXT+NET and GCN outper-
form all the text- or network-only models, and also
the hybrid model of Rahimi et al. (2017b), indi-
cating that joint modelling of text and network
features is important. MLP-TXT+NET is com-
petitive with Do et al. (2017), outperforming it
on larger datasets, and underperforming on GEO-
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GEOTEXT TWITTER-US TWITTER-WORLD

Acc@161↑ Mean↓ Median↓ Acc@161↑ Mean↓ Median↓ Acc@161↑ Mean↓ Median↓
Text (inductive)
Rahimi et al. (2017b) 38 844 389 54 554 120 34 1456 415
Wing and Baldridge (2014) — — — 48 686 191 31 1669 509
Cha et al. (2015) — 581 425 — — — — — —

Network (transductive)
Rahimi et al. (2015a) 58 586 60 54 705 116 45 2525 279
GCN-LP 58 576 56 53 653 126 45 2357 279

Text+Network (transductive)
Do et al. (2017) 62 532 32 66 433 45 53 1044 118
Miura et al. (2017) — — — 61 481 65 — — —
Rahimi et al. (2017b) 59 578 61 61 515 77 53 1280 104
MLP-TXT+NET 58 554 58 66 420 56 58 1030 53
DCCA 56 627 79 58 516 90 21 2095 913
GCN 60 546 45 62 485 71 54 1130 108

Text+Network (transductive)
MLP-TXT+NET 1% 8 1521 1295 14 1436 1411 8 3865 2041
DCCA 1% 7 1425 979 38 869 348 14 3014 1367
GCN 1% 6 1103 609 41 788 311 21 2071 853

Table 1: Geolocation results over the three Twitter datasets for the proposed models: joint text+network
MLP-TXT+NET, DCCA, and GCN and network-based GCN-LP. The models are compared with text-only
and network-only methods. The performance of the three joint models is also reported for minimal
supervision scenario where only 1% of the total samples are labelled. “—” signifies that no results were
reported for the given metric or dataset. Note that Do et al. (2017) use timezone, and Miura et al. (2017)
use the description and location fields in addition to text and network.
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Figure 5: The effect of adding more GCN layers
(neighbourhood expansion) to GCN in terms of me-
dian error over the development set of GEOTEXT

with and without the highway gates, and averaged
over 5 runs.

TEXT. However, it’s difficult to make a fair compar-
ison as they use timezone data in their feature set.
MLP-TXT+NET outperforms GCN over TWITTER-
US and TWITTER-WORLD, which are very large,
and have large amounts of labelled data. In a
scenario with little supervision (1% of the total
samples are labelled) DCCA and GCN clearly out-
perform MLP-TXT+NET, as they have fewer pa-
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Figure 6: The distribution of shortest path lengths
between all the nodes of the largest connected com-
ponent of GEOTEXT’s graph that constitute more
than 1% of total.

rameters. Except for Acc@161 over GEOTEXT

where the number of labelled samples in the mini-
mal supervision scenario is very low, GCN outper-
forms DCCA by a large margin, indicating that for
a medium dataset where only 1% of samples are
labelled (as happens in random samples of Twit-
ter) GCN is superior to MLP-TXT+NET and DCCA,
consistent with Section 4.2. Both MLP-TXT+NET
and GCN achieve state of the art results compared

2014



to network-only, text-only, and hybrid models. The
network-based GCN-LP model, which does label
propagation using Graph Convolutional Networks,
outperforms Rahimi et al. (2015a), which is based
on location propagation using Modified Adsorp-
tion (Talukdar and Crammer, 2009), possibly be-
cause the label propagation in GCN is parametrised.

4.5 Error Analysis

Although the performance of MLP-TXT+NET is
better than GCN and DCCA when a large amount
of labelled data is available (Table 1), under a sce-
nario where little labelled data is available (1% of
data), DCCA and GCN outperform MLP-TXT+NET,
mainly because the number of parameters in
MLP-TXT+NET grows with the number of sam-
ples, and is much larger than GCN and DCCA. GCN
outperforms DCCA and MLP-TXT+NET using 1%
of data, however, the distribution of errors in the
development set of TWITTER-US indicates higher
error for smaller states such as Rhode Island (RI),
Iowa (IA), North Dakota (ND), and Idaho (ID),
which is simply because the number of labelled
samples in those states is insufficient.

Although we evaluate geolocation models with
Median, Mean, and Acc@161, it doesn’t mean
that the distribution of errors is uniform over all
locations. Big cities often attract more local online
discussions, making the geolocation of users in
those areas simpler. For example users in LA are
more likely to talk about LA-related issues such
as their sport teams, Hollywood or local events
than users in the state of Rhode Island (RI), which
lacks large sport teams or major events. It is also
possible that people in less densely populated areas
are further apart from each other, and therefore, as a
result of discretisation fall in different clusters. The
non-uniformity in local discussions results in lower
geolocation performance in less densely populated
areas like Midwest U.S., and higher performance
in densely populated areas such as NYC and LA as
shown in Figure 7. The geographical distribution
of error for GCN, DCCA and MLP-TXT+NET under
the minimal supervision scenario is shown in the
supplementary material.

To get a better picture of misclassification be-
tween states, we built a confusion matrix based on
known state and predicted state for development
users of TWITTER-US using GCN using only 1%
of labelled data. There is a tendency for users to be
wrongly predicted to be in CA, NY, TX, and surpris-

ingly OH. Particularly users from states such as TX,
AZ, CO, and NV, which are located close to CA,
are wrongly predicted to be in CA, and users from
NJ, PA, and MA are misclassified as being in NY.
The same goes for OH and TX where users from
neighbouring smaller states are misclassified to be
there. Users from CA and NY are also misclas-
sified between the two states, which might be the
result of business and entertainment connections
that exist between NYC and LA/SF. Interestingly,
there are a number of misclassifications to FL for
users from CA, NY, and TX, which might be the
effect of users vacationing or retiring to FL. The
full confusion matrix between the U.S. states is
provided in the supplementary material.

4.6 Local Terms
In Table 2, local terms of a few regions detected
by GCN under minimal supervision are shown. The
terms that were present in the labelled data are
excluded to show how graph convolutions over the
social graph have extended the vocabulary. For
example, in case of Seattle, #goseahawks is an
important term not present in the 1% labelled data
but present in the unlabelled data. The convolution
over the social graph is able to utilise such terms
that don’t exist in the labelled data.

5 Related Work

Previous work on user geolocation can be broadly
divided into text-based, network-based and multi-
view approaches.

Text-based geolocation uses the geographical
bias in language use to infer the location of users.
There are three main text-based approaches to ge-
olocation: (1) gazetteer-based models which map
geographical references in text to location, but ig-
nore non-geographical references and vernacular
uses of language (Rauch et al., 2003; Amitay et al.,
2004; Lieberman et al., 2010); (2) geographical
topic models that learn region-specific topics, but
don’t scale to the magnitude of social media (Eisen-
stein et al., 2010; Hong et al., 2012; Ahmed et al.,
2013); and (3) supervised models which are of-
ten framed as text classification (Serdyukov et al.,
2009; Wing and Baldridge, 2011; Roller et al.,
2012; Han et al., 2014) or text regression (Iso et al.,
2017; Rahimi et al., 2017a). Supervised models
scale well and can achieve good performance with
sufficient supervision, which is not available in a
real world scenario.
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Figure 7: The geographical distribution of Median error of GCN using 1% of labelled data in each state
over the development set of TWITTER-US. The colour indicates error and the size indicates the number
of development users within the state.

Seattle, WA Austin, TX Jacksonville, FL Columbus, OH Charlotte, NC Phoenix, AZ New Orleans, LA Baltimore, MD

#goseahawks stubb unf laffayette #asheville clutterbuck mcneese bhop
smock gsd ribault #weareohio #depinga waffels keela #dsu
traffuck #meatsweats wahoowa #arcgis batesburg bahumbug pentecostals chestertown
ferran lanterna wjct #slammin stewey iedereen lutcher aduh
promissory pupper fscj #ouhc #bojangles rockharbor grogan umbc
chowdown effaced floridian #cow #occupyraleigh redtail suela lmt
ckrib #austin #jacksonville mommyhood gville gewoon cajuns assistly
#uwhuskies lmfbo #mer beering sweezy jms bmu slurpies

Table 2: Top terms for selected regions detected by GCN using only 1% of TWITTER-US for supervision.
We present the terms that were present only in unlabelled data. The terms include city names, hashtags,
food names and internet abbreviations.

Network-based methods leverage the location
homophily assumption: nearby users are more
likely to befriend and interact with each other.
There are four main network-based geolocation ap-
proaches: distance-based, supervised classification,
graph-based label propagation, and node embed-
ding methods. Distance-based methods model the
probability of friendship given the distance (Back-
strom et al., 2010; McGee et al., 2013; Gu et al.,
2012; Kong et al., 2014), supervised models use
neighbourhood features to classify a user into a
location (Rout et al., 2013; Malmi et al., 2015),
and graph-based label-propagation models propa-
gate the location information through the user–user
graph to estimate unknown labels (Davis Jr et al.,
2011; Jurgens, 2013; Compton et al., 2014). Node
embedding methods build heterogeneous graphs
between user–user, user–location and location–
location, and learn an embedding space to minimise
the distance of connected nodes, and maximise the
distance of disconnected nodes. The embeddings

are then used in supervised models for geoloca-
tion (Wang et al., 2017). Network-based models
fail to geolocate disconnected users: Jurgens et al.
(2015) couldn’t geolocation 37% of users as a re-
sult of disconnectedness.

Previous work on hybrid text and network meth-
ods can be broadly categorised into three main ap-
proaches: (1) incorporating text-based information
such as toponyms or locations predicted from a text-
based model as auxiliary nodes into the user–user
graph, which is then used in network-based mod-
els (Li et al., 2012a,b; Rahimi et al., 2015b,a); (2)
ensembling separately trained text- and network-
based models (Gu et al., 2012; Ren et al., 2012;
Jayasinghe et al., 2016; Ribeiro and Pappa, 2017);
and (3) jointly learning geolocation from several
information sources such as text and network in-
formation (Miura et al., 2017; Do et al., 2017),
which can capture the complementary information
in text and network views, and also model the in-
teractions between the two. None of the previous
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multiview approaches — with the exception of Li
et al. (2012a) and Li et al. (2012b) that only use
toponyms — effectively uses unlabelled data in the
text view, and use only the unlabelled information
of the network view via the user–user graph.

There are three main shortcomings in the previ-
ous work on user geolocation that we address in
this paper: (1) with the exception of few recent
works (Miura et al., 2017; Do et al., 2017), pre-
vious models don’t jointly exploit both text and
network information, and therefore the interaction
between text and network views is not modelled;
(2) the unlabelled data in both text and network
views is not effectively exploited, which is crucial
given the small amounts of available supervision;
and (3) previous models are rarely evaluated under
a minimal supervision scenario, a scenario which
reflects real world conditions.

6 Conclusion

We proposed GCN, DCCA and MLP-TXT+NET,
three multiview, transductive, semi-supervised ge-
olocation models, which use text and network in-
formation to infer user location in a joint setting.
We showed that joint modelling of text and network
information outperforms network-only, text-only,
and hybrid geolocation models as a result of mod-
elling the interaction between text and network
information. We also showed that GCN and DCCA
are able to perform well under a minimal super-
vision scenario similar to real world applications
by effectively using unlabelled data. We ignored
the context in which users interact with each other,
and assumed all the connections to hold location
homophily. In future work, we are interested in
modelling the extent to which a social interaction
is caused by geographical proximity (e.g. using
user–user gates).
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Abstract

Document modeling is essential to a va-
riety of natural language understanding
tasks. We propose to use external in-
formation to improve document modeling
for problems that can be framed as sen-
tence extraction. We develop a frame-
work composed of a hierarchical docu-
ment encoder and an attention-based ex-
tractor with attention over external infor-
mation. We evaluate our model on extrac-
tive document summarization (where the
external information is image captions and
the title of the document) and answer se-
lection (where the external information is
a question). We show that our model con-
sistently outperforms strong baselines, in
terms of both informativeness and fluency
(for CNN document summarization) and
achieves state-of-the-art results for answer
selection on WikiQA and NewsQA.1

1 Introduction

Recurrent neural networks have become one of
the most widely used models in natural lan-
guage processing (NLP). A number of variants
of RNNs such as Long Short-Term Memory
networks (LSTM; Hochreiter and Schmidhuber,
1997) and Gated Recurrent Unit networks (GRU;
Cho et al., 2014) have been designed to model
text capturing long-term dependencies in prob-
lems such as language modeling. However, doc-
ument modeling, a key to many natural language

∗The first three authors made equal contributions to this
paper. The work was done when the second author was visit-
ing Edinburgh.

1Our TensorFlow code and datasets are publicly avail-
able at https://github.com/shashiongithub/
Document-Models-with-Ext-Information.

understanding tasks, is still an open challenge. Re-
cently, some neural network architectures were
proposed to capture large context for modeling
text (Mikolov and Zweig, 2012; Ghosh et al.,
2016; Ji et al., 2015; Wang and Cho, 2016). Lin
et al. (2015) and Yang et al. (2016) proposed a hi-
erarchical RNN network for document-level mod-
eling as well as sentence-level modeling, at the
cost of increased computational complexity. Tran
et al. (2016) further proposed a contextual lan-
guage model that considers information at inter-
document level.

It is challenging to rely only on the document
for its understanding, and as such it is not sur-
prising that these models struggle on problems
such as document summarization (Cheng and La-
pata, 2016; Chen et al., 2016; Nallapati et al.,
2017; See et al., 2017; Tan and Wan, 2017) and
machine reading comprehension (Trischler et al.,
2016; Miller et al., 2016; Weissenborn et al., 2017;
Hu et al., 2017; Wang et al., 2017). In this pa-
per, we formalize the use of external information
to further guide document modeling for end goals.

We present a simple yet effective document
modeling framework for sentence extraction that
allows machine reading with “external attention.”
Our model includes a neural hierarchical docu-
ment encoder (or a machine reader) and a hier-
archical attention-based sentence extractor. Our
hierarchical document encoder resembles the ar-
chitectures proposed by Cheng and Lapata (2016)
and Narayan et al. (2018) in that it derives the doc-
ument meaning representation from its sentences
and their constituent words. Our novel sentence
extractor combines this document meaning repre-
sentation with an attention mechanism (Bahdanau
et al., 2015) over the external information to label
sentences from the input document. Our model ex-
plicitly biases the extractor with external cues and
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implicitly biases the encoder through training.

We demonstrate the effectiveness of our model
on two problems that can be naturally framed
as sentence extraction with external information.
These two problems, extractive document summa-
rization and answer selection for machine reading
comprehension, both require local and global con-
textual reasoning about a given document. Extrac-
tive document summarization systems aim at cre-
ating a summary by identifying (and subsequently
concatenating) the most important sentences in a
document, whereas answer selection systems se-
lect the candidate sentence in a document most
likely to contain the answer to a query. For docu-
ment summarization, we exploit the title and im-
age captions which often appear with documents
(specifically newswire articles) as external infor-
mation. For answer selection, we use word overlap
features, such as the inverse sentence frequency
(ISF, Trischler et al., 2016) and the inverse doc-
ument frequency (IDF) together with the query,
all formulated as external cues.

Our main contributions are three-fold: First, our
model ensures that sentence extraction is done in
a larger (rich) context, i.e., the full document is
read first before we start labeling its sentences for
extraction, and each sentence labeling is done by
implicitly estimating its local and global relevance
to the document and by directly attending to some
external information for importance cues.

Second, while external information has been
shown to be useful for summarization systems
using traditional hand-crafted features (Edmund-
son, 1969; Kupiec et al., 1995; Mani, 2001), our
model is the first to exploit such information in
deep learning-based summarization. We evalu-
ate our models automatically (in terms of ROUGE
scores) on the CNN news highlights dataset (Her-
mann et al., 2015). Experimental results show
that our summarizer, informed with title and im-
age captions, consistently outperforms summariz-
ers that do not use this information. We also con-
duct a human evaluation to judge which type of
summary participants prefer. Our results over-
whelmingly show that human subjects find our
summaries more informative and complete.

Lastly, with the machine reading capabilities of
our model, we confirm that a full document needs
to be “read” to produce high quality extracts al-
lowing a rich contextual reasoning, in contrast to
previous answer selection approaches that often

measure a score between each sentence in the doc-
ument and the question and return the sentence
with highest score in an isolated manner (Yin
et al., 2016; dos Santos et al., 2016; Wang et al.,
2016). Our model with ISF and IDF scores as ex-
ternal features achieves competitive results for an-
swer selection. Our ensemble model combining
scores from our model and word overlap scores
using a logistic regression layer achieves state-of-
the-art results on the popular question answering
datasets WikiQA (Yang et al., 2015) and NewsQA
(Trischler et al., 2016), and it obtains comparable
results to the state of the art for SQuAD (Rajpurkar
et al., 2016). We also evaluate our approach on the
MSMarco dataset (Nguyen et al., 2016) and elab-
orate on the behavior of our machine reader in a
scenario where each candidate answer sentence is
contextually independent of each other.

2 Document Modeling For Sentence
Extraction

Given a document D consisting of a sequence of n
sentences (s1, s2, ..., sn) , we aim at labeling each
sentence si in D with a label yi ∈ {0, 1} where
yi = 1 indicates that si is extraction-worthy and 0
otherwise. Our architecture resembles those pre-
viously proposed in the literature (Cheng and La-
pata, 2016; Nallapati et al., 2017). The main com-
ponents include a sentence encoder, a document
encoder, and a novel sentence extractor (see Fig-
ure 1) that we describe in more detail below. The
novel characteristics of our model are that each
sentence is labeled by implicitly estimating its (lo-
cal and global) relevance to the document and by
directly attending to some external information for
importance cues.

Sentence Encoder A core component of our
model is a convolutional sentence encoder (Kim,
2014; Kim et al., 2016) which encodes sentences
into continuous representations. We use temporal
narrow convolution by applying a kernel filter K
of width h to a window of h words in sentence
s to produce a new feature. This filter is applied
to each possible window of words in s to pro-
duce a feature map f ∈ Rk−h+1 where k is the
sentence length. We then apply max-pooling over
time over the feature map f and take the maximum
value as the feature corresponding to this particu-
lar filter K. We use multiple kernels of various
sizes and each kernel multiple times to construct
the representation of a sentence. In Figure 1, ker-
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nels of size 2 (red) and 4 (blue) are applied three
times each. The max-pooling over time operation
yields two feature lists fK2 and fK4 ∈ R3. The
final sentence embeddings have six dimensions.

Document Encoder The document encoder
composes a sequence of sentences to obtain a doc-
ument representation. We use a recurrent neural
network with LSTM cells to avoid the vanishing
gradient problem when training long sequences
(Hochreiter and Schmidhuber, 1997). Given a
document D consisting of a sequence of sentences
(s1, s2, . . . , sn), we follow common practice and
feed the sentences in reverse order (Sutskever
et al., 2014; Li et al., 2015; Filippova et al., 2015).

Sentence Extractor Our sentence extractor se-
quentially labels each sentence in a document
with 1 or 0 by implicitly estimating its relevance
in the document and by directly attending to the
external information for importance cues. It is im-
plemented with another RNN with LSTM cells
with an attention mechanism (Bahdanau et al.,
2015) and a softmax layer. Our attention mech-
anism differs from the standard practice of attend-
ing intermediate states of the input (encoder). In-
stead, our extractor attends to a sequence of p
pieces of external information E : (e1, e2, ..., ep)
relevant for the task (e.g., ei is a title or an im-
age caption for summarization) for cues. At time
ti, it reads sentence si and makes a binary predic-
tion, conditioned on the document representation
(obtained from the document encoder), the previ-
ously labeled sentences and the external informa-
tion. This way, our labeler is able to identify lo-
cally and globally important sentences within the
document which correlate well with the external
information.

Given sentence st at time step t, it returns a
probability distribution over labels as:

p(yt|st, D,E) = softmax(g(ht, h
′
t)) (1)

g(ht, h
′
t) = Uo(Vhht +W ′hh

′
t) (2)

ht = LSTM(st, ht−1)

h′t =
p∑

i=1

α(t,i)ei,

where α(t,i) =
exp(htei)∑
j exp(htej)

where g(·) is a single-layer neural network with
parameters Uo, Vh and W ′h. ht is an intermedi-

Document encoder

s5 s4 s3 s2 s1

Sentence Extractor

s1 s2 s3 s4 s5

y1 y2 y3 y4 y5

Convolutional Sentence encoder

Document External

s5 s4 s3 s2 s1 e1 e2 e3

⊕

North
Korea

fired
a

missile
over

Japan

[convolution] [max pooling]

Figure 1: Hierarchical encoder-decoder model
for sentence extraction with external attention.
s1, . . . , s5 are sentences in the document and, e1,
e2 and e3 represent external information. For the
extractive summarization task, eis are external in-
formation such as title and image captions. For the
answers selection task, eis are the query and word
overlap features.

ate RNN state at time step t. The dynamic con-
text vector h′t is essentially the weighted sum of
the external information (e1, e2, . . . , ep). Figure 1
summarizes our model.

3 Sentence Extraction Applications

We validate our model on two sentence extrac-
tion problems: extractive document summariza-
tion and answer selection for machine reading
comprehension. Both these tasks require local and
global contextual reasoning about a given docu-
ment. As such, they test the ability of our model
to facilitate document modeling using external in-
formation.
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Extractive Summarization An extractive sum-
marizer aims to produce a summary S by select-
ing m sentences from D (where m < n). In
this setting, our sentence extractor sequentially
predicts label yi ∈ {0, 1} (where 1 means that
si should be included in the summary) by as-
signing score p(yi|si,D ,E , θ) quantifying the rel-
evance of si to the summary. We assemble a
summary S by selecting m sentences with top
p(yi = 1|si,D ,E , θ) scores.

We formulate external information E as the se-
quence of the title and the image captions associ-
ated with the document. We use the convolutional
sentence encoder to get their sentence-level repre-
sentations.

Answer Selection Given a question q and a doc-
ument D , the goal of the task is to select one
candidate sentence si ∈ D in which the answer
exists. In this setting, our sentence extractor se-
quentially predicts label yi ∈ {0, 1} (where 1
means that si contains the answer) and assign
score p(yi|si,D ,E , θ) quantifying si’s relevance
to the query. We return as answer the sentence si
with the highest p(yi = 1|si,D ,E , θ) score.

We treat the question q as external information
and use the convolutional sentence encoder to get
its sentence-level representation. This simplifies
Eq. (1) and (2) as follow:

p(yt|st, D, q) = softmax(g(ht, q)) (3)

g(ht, q) = Uo(Vhht +Wqq),

where Vh and Wq are network parameters. We ex-
ploit the simplicity of our model to further assimi-
late external features relevant for answer selection:
the inverse sentence frequency (ISF, (Trischler
et al., 2016)), the inverse document frequency
(IDF) and a modified version of the ISF score
which we call local ISF. Trischler et al. (2016)
have shown that a simple ISF baseline (i.e., a sen-
tence with the highest ISF score as an answer)
correlates well with the answers. The ISF score
αsi for the sentence si is computed as αsi =∑

w∈si∩q IDF(w), where IDF is the inverse doc-
ument frequency score of word w, defined as:
IDF(w) = log N

Nw
, whereN is the total number of

sentences in the training set and Nw is the number
of sentences in which w appears. Note that, si ∩ q

refers to the set of words that appear both in si and
in q. Local ISF is calculated in the same manner
as the ISF score, only with setting the total num-
ber of sentences (N ) to the number of sentences in
the article that is being analyzed.

More formally, this modifies Eq. (3) as follows:

p(yt|st, D, q) = softmax(g(ht, q, αt, βt, γt)),(4)

where αt, βt and γt are the ISF, IDF and local ISF
scores (real values) of sentence st respectively .
The function g is calculated as follows:

g(ht, q, αt, βt, γt) =Uo (Vhht+

Wqq +Wisf(αt · 1)+
Widf(βt · 1) +Wlisf(γt · 1)

)
,

where Wisf , Widf and Wlisf are new parameters
added to the network and 1 is a vector of 1s of size
equal to the sentence embedding size. In Figure
1, these external feature vectors are represented
as 6-dimensional gray vectors accompanied with
dashed arrows.

4 Experiments and Results

This section presents our experimental setup and
results assessing our model in both the extractive
summarization and answer selection setups. In the
rest of the paper, we refer to our model as XNET

for its ability to exploit eXternal information to
improve document representation.

4.1 Extractive Document Summarization
Summarization Dataset We evaluated our
models on the CNN news highlights dataset (Her-
mann et al., 2015).2 We used the standard splits
of Hermann et al. (2015) for training, validation,
and testing (90,266/1,220/1,093 documents). We
followed previous studies (Cheng and Lapata,
2016; Nallapati et al., 2016, 2017; See et al.,
2017; Tan and Wan, 2017) in assuming that the

2Hermann et al. (2015) have also released the DailyMail
dataset, but we do not report our results on this dataset. We
found that the script written by Hermann et al. to crawl Dai-
lyMail articles mistakenly extracts image captions as part of
the main body of the document. As image captions often do
not have sentence boundaries, they blend with the sentences
of the document unnoticeably. This leads to the production
of erroneous summaries.
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“story highlights” associated with each article are
gold-standard abstractive summaries. We trained
our network on a named-entity-anonymized
version of news articles. However, we generated
deanonymized summaries and evaluated them
against gold summaries to facilitate human evalu-
ation and to make human evaluation comparable
to automatic evaluation.

To train our model, we need documents anno-
tated with sentence extraction information, i.e.,
each sentence in a document is labeled with 1
(summary-worthy) or 0 (not summary-worthy).
We followed Nallapati et al. (2017) and automat-
ically extracted ground truth labels such that all
positively labeled sentences from an article col-
lectively give the highest ROUGE (Lin and Hovy,
2003) score with respect to the gold summary.

We used a modified script of Hermann et al.
(2015) to extract titles and image captions, and
we associated them with the corresponding arti-
cles. All articles get associated with their titles.
The availability of image captions varies from 0 to
414 per article, with an average of 3 image cap-
tions. There are 40% CNN articles with at least
one image caption.

All sentences, including titles and image cap-
tions, were padded with zeros to a sentence length
of 100. All input documents were padded with
zeros to a maximum document length of 126. For
each document, we consider a maximum of 10 im-
age captions. We experimented with various num-
bers (1, 3, 5, 10 and 20) of image captions on the
validation set and found that our model performed
best with 10 image captions. We refer the reader
to the supplementary material for more implemen-
tation details to replicate our results.

Comparison Systems We compared the output
of our model against the standard baseline of sim-
ply selecting the first three sentences from each
document as the summary. We refer to this base-
line as LEAD in the rest of the paper.

We also compared our system against the sen-
tence extraction system of Cheng and Lapata
(2016). We refer to this system as POINTERNET

as the neural attention architecture in Cheng and
Lapata (2016) resembles the one of Pointer Net-
works (Vinyals et al., 2015).3 It does not ex-
ploit any external information.4 Cheng and Lap-

3The architecture of POINTERNET is closely related to
our model without external information.

4Adding external information to POINTERNET is an in-

MODELS R1 R2 R3 R4 RL Avg.
LEAD 49.2 18.9 9.8 6.0 43.8 25.5
POINTERNET 53.3 19.7 10.4 6.4 47.2 27.4
XNET+TITLE 55.0 21.6 11.7 7.5 48.9 28.9
XNET+CAPTION 55.3 21.3 11.4 7.2 49.0 28.8
XNET+FS 54.8 21.1 11.3 7.2 48.6 28.6

Combination Models (XNET+)
TITLE+CAPTION 55.4 21.8 11.8 7.5 49.2 29.2
TITLE+FS 55.1 21.6 11.6 7.4 48.9 28.9
CAPTION+FS 55.3 21.5 11.5 7.3 49.0 28.9
TITLE+CAPTION+FS 55.4 21.5 11.6 7.4 49.1 29.0

Table 1: Ablation results on the validation set.
We report R1, R2, R3, R4, RL and their aver-
age (Avg.). The first block of the table presents
LEAD and POINTERNET which do not use any ex-
ternal information. LEAD is the baseline system
selecting first three sentences. POINTERNET is
the sentence extraction system of Cheng and La-
pata. XNET is our model. The second and third
blocks of the table present different variants of
XNET. We experimented with three types of ex-
ternal information: title (TITLE), image captions
(CAPTION) and the first sentence (FS) of the docu-
ment. The bottom block of the table presents mod-
els with more than one type of external informa-
tion. The best performing model (highlighted in
boldface) is used on the test set.

ata (2016) report only on the DailyMail dataset.
We used their code (https://github.com/
cheng6076/NeuralSum) to produce results
on the CNN dataset.5

Automatic Evaluation To automatically assess
the quality of our summaries, we used ROUGE
(Lin and Hovy, 2003), a recall-oriented met-
ric, to compare our model-generated summaries
to manually-written highlights.6 Previous work
has reported ROUGE-1 (R1) and ROUGE-2 (R2)
scores to access informativeness, and ROUGE-L
(RL) to access fluency. In addition to R1, R2 and
RL, we also report ROUGE-3 (R3) and ROUGE-4
(R4) capturing higher order n-grams overlap to as-
sess informativeness and fluency simultaneously.

teresting direction of research but we do not pursue it here. It
requires decoding with multiple types of attentions and this
is not the focus of this paper.

5We are unable to compare our results to the extractive
system of Nallapati et al. (2017) because they report their re-
sults on the DailyMail dataset and their code is not available.
The abstractive systems of Chen et al. (2016) and Tan and
Wan (2017) report their results on the CNN dataset, however,
their results are not comparable to ours as they report on the
full-length F1 variants of ROUGE to evaluate their abstrac-
tive summaries. We report ROUGE recall scores which is
more appropriate to evaluate our extractive summaries.

6We used pyrouge, a Python package, to compute all
our ROUGE scores with parameters “-a -c 95 -m -n 4 -w 1.2.”
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We report our results on both full length (three
sentences with the top scores as the summary) and
fixed length (first 75 bytes and 275 bytes as the
summary) summaries. For full length summaries,
our decision of selecting three sentences is guided
by the fact that there are 3.11 sentences on aver-
age in the gold highlights of the training set. We
conduct our ablation study on the validation set
with full length ROUGE scores, but we report both
fixed and full length ROUGE scores for the test
set.

We experimented with two types of external
information: title (TITLE) and image captions
(CAPTION). In addition, we experimented with the
first sentence (FS) of the document as external in-
formation. Note that the latter is not external in-
formation, it is a sentence in the document. How-
ever, we wanted to explore the idea that the first
sentence of the document plays a crucial part in
generating summaries (Rush et al., 2015; Nallap-
ati et al., 2016). XNET with FS acts as a baseline
for XNET with title and image captions.

We report the performance of several variants
of XNET on the validation set in Table 1. We
also compare them against the LEAD baseline and
POINTERNET. These two systems do not use any
additional information. Interestingly, all the vari-
ants of XNET significantly outperform LEAD and
POINTERNET. When the title (TITLE), image cap-
tions (CAPTION) and the first sentence (FS) are
used separately as additional information, XNET

performs best with TITLE as its external informa-
tion. Our result demonstrates the importance of
the title of the document in extractive summariza-
tion (Edmundson, 1969; Kupiec et al., 1995; Mani,
2001). The performance with TITLE and CAP-
TION is better than that with FS. We also tried
possible combinations of TITLE, CAPTION and FS.
All XNET models are superior to the ones with-
out any external information. XNET performs best
when TITLE and CAPTION are jointly used as ex-
ternal information (55.4%, 21.8%, 11.8%, 7.5%,
and 49.2% for R1, R2, R3, R4, and RL respec-
tively). It is better than the the LEAD baseline by
3.7 points on average and than POINTERNET by
1.8 points on average, indicating that external in-
formation is useful to identify the gist of the doc-
ument. We use this model for testing purposes.

Our final results on the test set are shown in
Table 2. It turns out that for smaller summaries
(75 bytes) LEAD and POINTERNET are superior

MODELS R1 R2 R3 R4 RL
Fixed length: 75b

LEAD 20.1 7.1 3.5 2.1 14.6
POINTERNET 20.3 7.2 3.5 2.2 14.8
XNET 20.2 7.1 3.4 2.0 14.6

Fixed length: 275b
LEAD 39.1 14.5 7.6 4.7 34.6
POINTERNET 38.6 13.9 7.3 4.4 34.3
XNET 39.7 14.7 7.9 5.0 35.2

Full length summaries
LEAD 49.3 19.5 10.7 6.9 43.8
POINTERNET 51.7 19.7 10.6 6.6 45.7
XNET 54.2 21.6 12.0 7.9 48.1

Table 2: Final results on the test set. POINTER-
NET is the sentence extraction system of Cheng
and Lapata. XNET is our best model from Table
1. Best ROUGE score in each block and each col-
umn is highlighted in boldface.

Models 1st 2nd 3rd 4th
LEAD 0.15 0.17 0.47 0.21
POINTERNET 0.16 0.05 0.31 0.48
XNET 0.28 0.53 0.15 0.04
HUMAN 0.41 0.25 0.07 0.27

Table 3: Human evaluations: Ranking of various
systems. Rank 1st is best and rank 4th, worst.
Numbers show the percentage of times a system
gets ranked at a certain position.

to XNET. This result could be because LEAD (al-
ways) and POINTERNET (often) include the first
sentence in their summaries, whereas, XNET is
better capable at selecting sentences from vari-
ous document positions. This is not captured by
smaller summaries of 75 bytes, but it becomes
more evident with longer summaries (275 bytes
and full length) where XNET performs best across
all ROUGE scores. We note that POINTERNET

outperforms LEAD for 75-byte summaries, then
its performance drops behind LEAD for 275-byte
summaries, but then it outperforms LEAD for full
length summaries on the metrics R1, R2 and RL.
It shows that POINTERNET with its attention over
sentences in the document is capable of exploring
more than first few sentences in the document, but
it is still behind XNET which is better at identi-
fying salient sentences in the document. XNET

performs significantly better than POINTERNET

by 0.8 points for 275-byte summaries and by 1.9
points for full length summaries, on average for all
ROUGE scores.

Human Evaluation We complement our auto-
matic evaluation results with human evaluation.
We randomly selected 20 articles from the test set.
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Annotators were presented with a news article and
summaries from four different systems. These in-
clude the LEAD baseline, POINTERNET, XNET

and the human authored highlights. We followed
the guidelines in Cheng and Lapata (2016), and
asked our participants to rank the summaries from
best (1st) to worst (4th) in order of informativeness
(does the summary capture important information
in the article?) and fluency (is the summary writ-
ten in well-formed English?). We did not allow
any ties and we only sampled articles with non-
identical summaries. We assigned this task to five
annotators who were proficient English speakers.
Each annotator was presented with all 20 articles.
The order of summaries to rank was randomized
per article. An example of summaries our subjects
ranked is provided in the supplementary material.

The results of our human evaluation study are
shown in Table 3. As one might imagine, HUMAN

gets ranked 1st most of the time (41%). How-
ever, it is closely followed by XNET which ranked
1st 28% of the time. In comparison, POINTER-
NET and LEAD were mostly ranked at 3rd and
4th places. We also carried out pairwise com-
parisons between all models in Table 3 for their
statistical significance using a one-way ANOVA
with post-hoc Tukey HSD tests with (p < 0.01).
It showed that XNET is significantly better than
LEAD and POINTERNET, and it does not differ
significantly from HUMAN. On the other hand,
POINTERNET does not differ significantly from
LEAD and it differs significantly from both XNET

and HUMAN. The human evaluation results cor-
roborates our empirical results in Table 1 and Ta-
ble 2: XNET is better than LEAD and POINT-
ERNET in producing informative and fluent sum-
maries.

4.2 Answer Selection

Question Answering Datasets We run experi-
ments on four datasets collected for open domain
question-answering tasks: WikiQA (Yang et al.,
2015), SQuAD (Rajpurkar et al., 2016), NewsQA
(Trischler et al., 2016), and MSMarco (Nguyen
et al., 2016).

NewsQA was especially designed to present
lexical and syntactic divergence between ques-
tions and answers. It contains 119,633 questions
posed by crowdworkers on 12,744 CNN articles
previously collected by Hermann et al. (2015).
In a similar manner, SQuAD associates 100,000+

question with a Wikipedia article’s first paragraph,
for 500+ previously chosen articles. WikiQA was
collected by mining web-searching query logs and
then associating them with the summary section of
the Wikipedia article presumed to be related to the
topic of the query. A similar collection procedure
was followed to create MSMarco with the differ-
ence that each candidate answer is a whole para-
graph from a different browsed website associated
with the query.

We follow the widely used setup of leaving out
unanswered questions (Trischler et al., 2016; Yang
et al., 2015) and adapt the format of each dataset
to our task of answer sentence selection by label-
ing a candidate sentence with 1 if any answer span
is contained in that sentence. In the case of MS-
Marco, each candidate paragraph comes associ-
ated with a label, hence we treat each one as a sin-
gle long sentence. Since SQuAD keeps the official
test dataset hidden and MSMarco does not provide
labels for its released test set, we report results on
their official validation sets. For validation, we set
apart 10% of each official training set.

Our dataset splits consist of 92,525, 5,165 and
5,124 samples for NewsQA; 79,032, 8,567, and
10,570 for SQuAD; 873, 122, and 237 for Wik-
iQA; and 79,704, 9,706, and 9,650 for MSMarco,
for training, validation, and testing respectively.

Comparison Systems We compared the output
of our model against the ISF (Trischler et al.,
2016) and LOCALISF baselines. Given an ar-
ticle, the sentence with the highest ISF score is
selected as an answer for the ISF baseline and
the sentence with the highest local ISF score for
the LOCALISF baseline. We also compare our
model against a neural network (PAIRCNN) that
encodes (question, candidate) in an isolated man-
ner as in previous work (Yin et al., 2016; dos San-
tos et al., 2016; Wang et al., 2016). The architec-
ture uses the sentence encoder explained in earlier
sections to learn the question and candidate repre-
sentations. The distribution over labels is given by
p(yt|q) = p(yt|st, q) = softmax(g(st, q)) where
g(st, q) = ReLU(Wsq · [st; q] + bsq). In ad-
dition, we also compare our model against AP-
CNN (dos Santos et al., 2016), ABCNN (Yin
et al., 2016), L.D.C (Wang and Jiang, 2017), KV-
MemNN (Miller et al., 2016), and COMPAGGR, a
state-of-the-art system by Wang et al. (2017).

We experiment with several variants of our
model. XNET is the vanilla version of our sen-
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SQuAD WikiQA NewsQA MSMarco
ACC MAP MRR ACC MAP MRR ACC MAP MRR ACC MAP MRR

WRD CNT 77.84 27.50 27.77 51.05 48.91 49.24 44.67 46.48 46.91 20.16 19.37 19.51
WGT WRD CNT 78.43 28.10 28.38 49.79 50.99 51.32 45.24 48.20 48.64 20.50 20.06 20.23
AP-CNN - - - - 68.86 69.57 - - - - - -
ABCNN - - - - 69.21 71.08 - - - - - -
L.D.C - - - - 70.58 72.26 - - - - - -
KV-MemNN - - - - 70.69 72.65 - - - - - -
LOCALISF 79.50 27.78 28.05 49.79 49.57 50.11 44.69 48.40 46.48 20.21 20.22 20.39
ISF 78.85 28.09 28.36 48.52 46.53 46.72 45.61 48.57 48.99 20.52 20.07 20.23
PAIRCNN 32.53 46.34 46.35 32.49 39.87 38.71 25.67 40.16 39.89 14.92 34.62 35.14
COMPAGGR 85.52 91.05 91.05 60.76 73.12 74.06 54.54 67.63 68.21 32.05 52.82 53.43
XNET 35.50 58.46 58.84 54.43 69.12 70.22 26.18 42.28 42.43 15.45 35.42 35.97
XNETTOPK 36.09 59.70 59.32 55.00 68.66 70.24 29.41 46.69 46.97 17.04 37.60 38.16
LRXNET 85.63 91.10 91.85 63.29 76.57 75.10 55.17 68.92 68.43 32.92 31.15 30.41
XNET+ 79.39 87.32 88.00 57.08 70.25 71.28 47.23 61.81 61.42 23.07 42.88 43.42

Table 4: Results (in percentage) for answer selection comparing our approaches (bottom part) to base-
lines (top): AP-CNN (dos Santos et al., 2016), ABCNN (Yin et al., 2016), L.D.C (Wang and Jiang,
2017), KV-MemNN (Miller et al., 2016), and COMPAGGR, a state-of-the-art system by Wang et al.
(2017). (WGT) WRD CNT stands for the (weighted) word count baseline. See text for more details.

tence extractor conditioned only on the query q
as external information (Eq. (3)). XNET+ is an
extension of XNET which uses ISF, IDF and lo-
cal ISF scores in addition to the query q as exter-
nal information (Eqn. (4)). We also experimented
with a baseline XNETTOPK where we choose the
top k sentences with highest ISF score, and then
among them choose the one with the highest prob-
ability according to XNET. In our experiments,
we set k = 5. In the end, we experimented
with an ensemble network LRXNET which com-
bines the XNET score, the COMPAGGR score and
other word-overlap-based scores (tweaked and op-
timized for each dataset separately) for each sen-
tence using a logistic regression classifier. It uses
ISF and LocalISF scores for NewsQA, IDF and
ISF scores for SQuAD, sentence length, IDF and
ISF scores for WikiQA, and word overlap and ISF
score for MSMarco. We refer the reader to the
supplementary material for more implementation
and optimization details to replicate our results.

Evaluation Metrics We consider metrics that
evaluate systems that return a ranked list of can-
didate answers: mean average precision (MAP),
mean reciprocal rank (MRR), and accuracy
(ACC).

Results Table 4 gives the results for the test sets
of NewsQA and WikiQA, and the original vali-
dation sets of SQuAD and MSMarco. Our first
observation is that XNET outperforms PAIRCNN,
supporting our claim that it is beneficial to read
the whole document in order to make decisions,

instead of only observing each candidate in isola-
tion.

Secondly, we can observe that ISF is indeed
a strong baseline that outperforms XNET. This
means that just “reading” the document using a
vanilla version of XNET is not sufficient, and help
is required through a coarse filtering. Indeed,
we observe that XNET+ outperforms all baselines
except for COMPAGGR. Our ensemble model
LRXNET can ultimately surpass COMPAGGR on
majority of the datasets.

This consistent behavior validates the machine
reading capabilities and the improved document
representation with external features of our model
for answer selection. Specifically, the combination
of document reading and word overlap features is
required to be done in a soft manner, using a clas-
sification technique. Using it as a hard constraint,
with XNETTOPK, does not achieve the best re-
sult. We believe that often the ISF score is a bet-
ter indicator of answer presence in the vicinity of
certain candidate instead of in the candidate itself.
As such, XNET+ is capable of using this feature
in datasets with richer context.

It is worth noting that the improvement gained
by LRXNET over the state-of-the-art follows a
pattern. For the SQuAD dataset, the results are
comparable (less than 1%). However, the im-
provement for WikiQA reaches ∼3% and then the
gap shrinks again for NewsQA, with an improve-
ment of ∼1%. This could be explained by the fact
that each sample of the SQuAD is a paragraph,
compared to an article summary for WikiQA, and
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to an entire article for NewsQA. Hence, we further
strengthen our hypothesis that a richer context is
needed to achieve better results, in this case ex-
pressed as document length, but as the length of
the context increases the limitation of sequential
models to learn from long rich sequences arises.7

Interestingly, our model lags behind COM-
PAGGR on the MSMarco dataset. It turns out this
is due to contextual independence between can-
didates in the MSMarco dataset, i.e., each candi-
date is a stand-alone paragraph in this dataset, in
contrast to contextually dependent candidate sen-
tences from a document in the NewsQA, SQuAD
and WikiQA datasets. As a result, our models
(XNET+ and LRXNET) with document reading
abilities perform poorly. This can be observed by
the fact that XNET and PAIRCNN obtain com-
parable results. COMPAGGR performs better be-
cause comparing each candidate independently is
a better strategy.

5 Conclusion

We describe an approach to model documents
while incorporating external information that in-
forms the representations learned for the sentences
in the document. We implement our approach
through an attention mechanism of a neural net-
work architecture for modeling documents.

Our experiments with extractive document sum-
marization and answer selection tasks validates
our model in two ways: first, we demonstrate that
external information is important to guide docu-
ment modeling for natural language understanding
tasks. Our model uses image captions and the title
of the document for document summarization, and
the query with word overlap features for answer
selection and outperforms its counterparts that do
not use this information. Second, our external at-
tention mechanism successfully guides the learn-
ing of the document representation for the relevant
end goal. For answer selection, we show that in-
serting the query with word overlap features us-
ing our external attention mechanism outperforms
state-of-the-art systems that naturally also have ac-
cess to this information.
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Abstract

Most real-world document collections in-
volve various types of metadata, such as
author, source, and date, and yet the most
commonly-used approaches to modeling
text corpora ignore this information. While
specialized models have been developed
for particular applications, few are widely
used in practice, as customization typically
requires derivation of a custom inference
algorithm. In this paper, we build on recent
advances in variational inference methods
and propose a general neural framework,
based on topic models, to enable flexible in-
corporation of metadata and allow for rapid
exploration of alternative models. Our ap-
proach achieves strong performance, with
a manageable tradeoff between perplex-
ity, coherence, and sparsity. Finally, we
demonstrate the potential of our framework
through an exploration of a corpus of arti-
cles about US immigration.

1 Introduction

Topic models comprise a family of methods for
uncovering latent structure in text corpora, and are
widely used tools in the digital humanities, political
science, and other related fields (Boyd-Graber et al.,
2017). Latent Dirichlet allocation (LDA; Blei et al.,
2003) is often used when there is no prior knowl-
edge about a corpus. In the real world, however,
most documents have non-textual attributes such
as author (Rosen-Zvi et al., 2004), timestamp (Blei
and Lafferty, 2006), rating (McAuliffe and Blei,
2008), or ideology (Eisenstein et al., 2011; Nguyen
et al., 2015b), which we refer to as metadata.

Many customizations of LDA have been devel-
oped to incorporate document metadata. Two mod-
els of note are supervised LDA (SLDA; McAuliffe

and Blei, 2008), which jointly models words and
labels (e.g., ratings) as being generated from a la-
tent representation, and sparse additive genera-
tive models (SAGE; Eisenstein et al., 2011), which
assumes that observed covariates (e.g., author ide-
ology) have a sparse effect on the relative proba-
bilities of words given topics. The structural topic
model (STM; Roberts et al., 2014), which adds cor-
relations between topics to SAGE, is also widely
used, but like SAGE it is limited in the types of
metadata it can efficiently make use of, and how
that metadata is used. Note that in this work we
will distinguish labels (metadata that are gener-
ated jointly with words from latent topic represen-
tations) from covariates (observed metadata that
influence the distribution of labels and words).

The ability to create variations of LDA such as
those listed above has been limited by the expertise
needed to develop custom inference algorithms for
each model. As a result, it is rare to see such varia-
tions being widely used in practice. In this work,
we take advantage of recent advances in variational
methods (Kingma and Welling, 2014; Rezende
et al., 2014; Miao et al., 2016; Srivastava and Sut-
ton, 2017) to facilitate approximate Bayesian infer-
ence without requiring model-specific derivations,
and propose a general neural framework for topic
models with metadata, SCHOLAR.1

SCHOLAR combines the abilities of SAGE and
SLDA, and allows for easy exploration of the fol-
lowing options for customization:

1. Covariates: as in SAGE and STM, we incorpo-
rate explicit deviations for observed covariates,
as well as effects for interactions with topics.

2. Supervision: as in SLDA, we can use metadata
as labels to help infer topics that are relevant in
predicting those labels.
1Sparse Contextual Hidden and Observed Language

AutoencodeR.
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3. Rich encoder network: we use the encoding
network of a variational autoencoder (VAE) to
incorporate additional prior knowledge in the
form of word embeddings, and/or to provide
interpretable embeddings of covariates.

4. Sparsity: as in SAGE, a sparsity-inducing prior
can be used to encourage more interpretable
topics, represented as sparse deviations from a
background log-frequency.

We begin with the necessary background and
motivation (§2), and then describe our basic frame-
work and its extensions (§3), followed by a series
of experiments (§4). In an unsupervised setting,
we can customize the model to trade off between
perplexity, coherence, and sparsity, with improved
coherence through the introduction of word vec-
tors. Alternatively, by incorporating metadata we
can either learn topics that are more predictive of
labels than SLDA, or learn explicit deviations for
particular parts of the metadata. Finally, by com-
bining all parts of our model we can meaningfully
incorporate metadata in multiple ways, which we
demonstrate through an exploration of a corpus of
news articles about US immigration.

In presenting this particular model, we empha-
size not only its ability to adapt to the characteris-
tics of the data, but the extent to which the VAE
approach to inference provides a powerful frame-
work for latent variable modeling that suggests the
possibility of many further extensions. Our im-
plementation is available at https://github.
com/dallascard/scholar.

2 Background and Motivation

LDA can be understood as a non-negative
Bayesian matrix factorization model: the observed
document-word frequency matrix, X ∈ ZD×V
(D is the number of documents, V is the vocab-
ulary size) is factored into two low-rank matri-
ces, ΘD×K and BK×V , where each row of Θ,
θi ∈ ∆K is a latent variable representing a distri-
bution over topics in document i, and each row of
B, βk ∈ ∆V , represents a single topic, i.e., a dis-
tribution over words in the vocabulary.2 While it is
possible to factor the count data into unconstrained

2Z denotes nonnegative integers, and ∆K denotes the set
of K-length nonnegative vectors that sum to one. For a proper
probabilistic interpretation, the matrix to be factored is actually
the matrix of latent mean parameters of the assumed data
generating process, Xij ∼ Poisson(Λij). See Cemgil (2009)
or Paisley et al. (2014) for details.

matrices, the particular priors assumed by LDA
are important for interpretability (Wallach et al.,
2009). For example, the neural variational docu-
ment model (NVDM; Miao et al., 2016) allows
θi ∈ RK and achieves normalization by taking
the softmax of θ>i B. However, the experiments
in Srivastava and Sutton (2017) found the perfor-
mance of the NVDM to be slightly worse than LDA
in terms of perplexity, and dramatically worse in
terms of topic coherence.

The topics discovered by LDA tend to be parsi-
monious and coherent groupings of words which
are readily identifiable to humans as being related
to each other (Chang et al., 2009), and the resulting
mode of the matrix Θ provides a representation of
each document which can be treated as a measure-
ment for downstream tasks, such as classification
or answering social scientific questions (Wallach,
2016). LDA does not require — and cannot make
use of — additional prior knowledge. As such, the
topics that are discovered may bear little connec-
tion to metadata of a corpus that is of interest to a
researcher, such as sentiment, ideology, or time.

In this paper, we take inspiration from two mod-
els which have sought to alleviate this problem.
The first, supervised LDA (SLDA; McAuliffe and
Blei, 2008), assumes that documents have labels y
which are generated conditional on the correspond-
ing latent representation, i.e., yi ∼ p(y | θi).3 By
incorporating labels into the model, it is forced to
learn topics which allow documents to be repre-
sented in a way that is useful for the classification
task. Such models can be used inductively as text
classifiers (Balasubramanyan et al., 2012).

SAGE (Eisenstein et al., 2011), by contrast, is
an exponential-family model, where the key inno-
vation was to replace topics with sparse deviations
from the background log-frequency of words (d),
i.e., p(word | softmax(d+θ>i B)). SAGE can also
incorporate deviations for observed covariates, as
well as interactions between topics and covariates,
by including additional terms inside the softmax.
In principle, this allows for inferring, for example,
the effect on an author’s ideology on their choice
of words, as well as ideological variations on each
underlying topic. Unlike the NVDM, SAGE still
constrains θi to lie on the simplex, as in LDA.

SLDA and SAGE provide two different ways
that users might wish to incorporate prior knowl-

3Technically, the model conditions on the mean of the per-
word latent variables, but we elide this detail in the interest of
concision.
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edge as a way of guiding the discovery of topics
in a corpus: SLDA incorporates labels through a
distribution conditional on topics; SAGE includes
explicit sparse deviations for each unique value of
a covariate, in addition to topics.4

Because of the Dirichlet-multinomial conjugacy
in the original model, efficient inference algorithms
exist for LDA. Each variation of LDA, however,
has required the derivation of a custom inference
algorithm, which is a time-consuming and error-
prone process. In SLDA, for example, each type of
distribution we might assume for p(y | θ) would
require a modification of the inference algorithm.
SAGE breaks conjugacy, and as such, the authors
adopted L-BFGS for optimizing the variational
bound. Moreover, in order to maintain compu-
tational efficiency, it assumed that covariates were
limited to a single categorical label.

More recently, the variational autoencoder
(VAE) was introduced as a way to perform approxi-
mate posterior inference on models with otherwise
intractable posteriors (Kingma and Welling, 2014;
Rezende et al., 2014). This approach has previously
been applied to models of text by Miao et al. (2016)
and Srivastava and Sutton (2017). We build on their
work and show how this framework can be adapted
to seamlessly incorporate the ideas of both SAGE
and SLDA, while allowing for greater flexibility in
the use of metadata. Moreover, by exploiting au-
tomatic differentiation, we allow for modification
of the model without requiring any change to the
inference procedure. The result is not only a highly
adaptable family of models with scalable inference
and efficient prediction; it also points the way to
incorporation of many ideas found in the literature,
such as a gradual evolution of topics (Blei and Laf-
ferty, 2006), and hierarchical models (Blei et al.,
2010; Nguyen et al., 2013, 2015b).

3 SCHOLAR: A Neural Topic Model with
Covariates, Supervision, and Sparsity

We begin by presenting the generative story for our
model, and explain how it generalizes both SLDA
and SAGE (§3.1). We then provide a general expla-
nation of inference using VAEs and how it applies
to our model (§3.2), as well as how to infer docu-

4A third way of incorporating metadata is the approach
used by various “upstream” models, such as Dirichlet-
multinomial regression (Mimno and McCallum, 2008), which
uses observed metadata to inform the document prior. We hy-
pothesize that this approach could be productively combined
with our framework, but we leave this as future work.

ment representations and predict labels at test time
(§3.3). Finally, we discuss how we can incorporate
additional prior knowledge (§3.4).

3.1 Generative Story
Consider a corpus of D documents, where docu-
ment i is a list of Ni words, wi, with V words in
the vocabulary. For each document, we may have
observed covariates ci (e.g., year of publication),
and/or one or more labels, yi (e.g., sentiment).

Our model builds on the generative story of LDA,
but optionally incorporates labels and covariates,
and replaces the matrix product of Θ and B with a
more flexible generative network, fg, followed by
a softmax transform. Instead of using a Dirichlet
prior as in LDA, we employ a logistic normal prior
on θ as in Srivastava and Sutton (2017) to facilitate
inference (§3.2): we draw a latent variable, r,5

from a multivariate normal, and transform it to lie
on the simplex using a softmax transform.6

The generative story is shown in Figure 1a and
described in equations below:

For each document i of length Ni:
# Draw a latent representation on the sim-
plex from a logistic normal prior:
ri ∼ N (r | µ0(α), diag(σ2

0(α)))
θi = softmax(ri)
# Generate words, incorporating covariates:
ηi = fg(θi, ci)
For each word j in document i:

wij ∼ p(w | softmax(ηi))

# Similarly generate labels:
yi ∼ p(y | fy(θi, ci)),

where p(w | softmax(ηi)) is a multinomial distri-
bution and p(y | fy(θi, ci)) is a distribution appro-
priate to the data (e.g., multinomial for categorical
labels). fg is a model-specific combination of latent
variables and covariates, fy is a multi-layer neural
network, and µ0(α) and σ2

0(α) are the mean and
diagonal covariance terms of a multivariate nor-
mal prior. To approximate a symmetric Dirichlet

5r is equivalent to z in the original VAE. To avoid con-
fusion with topic assignment of words in the topic modeling
literature, we use r instead of z.

6Unlike the correlated topic model (CTM; Lafferty and
Blei, 2006), which also uses a logistic-normal prior, we fix the
parameters of the prior and use a diagonal covariance matrix,
rather than trying to infer correlations among topics. However,
it would be a straightforward extension of our framework to
place a richer prior on the latent document representations,
and learn correlations by updating the parameters of this prior
after each epoch, analogously to the variational EM approach
used for the CTM.
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prior with hyperparameter α, these are given by the
Laplace approximation (Hennig et al., 2012) to be
µ0,k(α) = 0 and σ20,k = (K − 1)/(αK).

If we were to ignore covariates, place a Dirichlet
prior on B, and let η = θ>i B, this model is equiv-
alent to SLDA with a logistic normal prior. Sim-
ilarly, we can recover a model that is like SAGE,
but lacks sparsity, if we ignore labels, and let

ηi = d+ θ>i B + c>i Bcov + (θi ⊗ ci)>Bint, (1)

where d is the V -dimensional background term
(representing the log of the overall word frequency),
θi ⊗ ci is a vector of interactions between topics
and covariates, and Bcov and Bint are additional
weight (deviation) matrices. The background is
included to account for common words with ap-
proximately the same frequency across documents,
meaning that the B∗ weights now represent both
positive and negative deviations from this back-
ground. This is the form of fg which we will use
in our experiments.

To recover the full SAGE model, we can place
a sparsity-inducing prior on each B∗. As in Eisen-
stein et al. (2011), we make use of the compound
normal-exponential prior for each element of the
weight matrices, B∗m,n, with hyperparameter γ,7

τm,n ∼ Exponential(γ), (2)

B∗m,n ∼ N (0, τm,n). (3)

We can choose to ignore various parts of this
model, if, for example, we don’t have any labels
or observed covariates, or we don’t wish to use
interactions or sparsity.8 Other generator networks
could also be considered, with additional layers to
represent more complex interactions, although this
might involve some loss of interpretability.

In the absence of metadata, and without sparsity,
our model is equivalent to the ProdLDA model
of Srivastava and Sutton (2017) with an explicit
background term, and ProdLDA is, in turn, a

7To avoid having to tune γ, we employ an improper Jef-
fery’s prior, p(τm,n) ∝ 1/τm,n, as in SAGE. Although this
causes difficulties in posterior inference for the variance terms,
τ , in practice, we resort to a variational EM approach, with
MAP-estimation for the weights, B, and thus alternate be-
tween computing expectations of the τ parameters, and up-
dating all other parameters using some variant of stochastic
gradient descent. For this, we only require the expectation of
each τmn for each E-step, which is given by 1/B2

m,n. We re-
fer the reader to Eisenstein et al. (2011) for additional details.

8We could also ignore latent topics, in which case we
would get a naïve Bayes-like model of text with deviations for
each covariate p(wij | ci) ∝ exp(d+ c>i Bcov).
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Figure 1: Figure 1a presents the generative story of
our model. Figure 1b illustrates the inference net-
work using the reparametrization trick to perform
variational inference on our model. Shaded nodes
are observed; double circles indicate deterministic
transformations of parent nodes.

special case of SAGE, without background log-
frequencies, sparsity, covariates, or labels. In the
next section we generalize the inference method
used for ProdLDA; in our experiments we validate
its performance and explore the effects of regular-
ization and word-vector initialization (§3.4). The
NVDM (Miao et al., 2016) uses the same approach
to inference, but does not not restrict document
representations to the simplex.

3.2 Learning and Inference
As in past work, each document i is assumed to
have a latent representation ri, which can be in-
terpreted as its relative membership in each topic
(after exponentiating and normalizing). In order
to infer an approximate posterior distribution over
ri, we adopt the sampling-based VAE framework
developed in previous work (Kingma and Welling,
2014; Rezende et al., 2014).

As in conventional variational inference, we
assume a variational approximation to the poste-
rior, qΦ(ri | wi, ci,yi), and seek to minimize the
KL divergence between it and the true posterior,
p(ri | wi, ci,yi), where Φ is the set of variational
parameters to be defined below. After some ma-
nipulations (given in supplementary materials), we
obtain the evidence lower bound (ELBO) for a sin-
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gle document,

L(wi) = EqΦ(ri|wi,ci,yi)



Ni∑

j=1

log p(wij | ri, ci)




+ EqΦ(ri|wi,ci,yi) [log p(yi | ri, ci)]
− DKL [qΦ(ri | wi, ci,yi) || p(ri | α)] .

(4)

As in the original VAE, we will encode the pa-
rameters of our variational distributions using a
shared multi-layer neural network. Because we
have assumed a diagonal normal prior on r, this
will take the form of a network which outputs a
mean vector, µi = fµ(wi, ci,yi) and diagonal of a
covariance matrix, σ2

i = fσ(wi, ci,yi), such that
qΦ(ri | wi, ci,yi) = N (µi,σ

2
i ). Incorporating

labels and covariates to the inference network used
by Miao et al. (2016) and Srivastava and Sutton
(2017), we use:

πi = fe([Wxxi; Wcci; Wyyi]), (5)

µi = Wµπi + bµ, (6)

logσ2
i = Wσπi + bσ, (7)

where xi is a V -dimensional vector representing
the counts of words in wi, and fe is a multilayer
perceptron. The full set of encoder parameters, Φ,
thus includes the parameters of fe and all weight
matrices and bias vectors in Equations 5–7 (see
Figure 1b).

This approach means that the expectations in
Equation 4 are intractable, but we can approximate
them using sampling. In order to maintain differen-
tiability with respect to Φ, even after sampling, we
make use of the reparameterization trick (Kingma
and Welling, 2014),9 which allows us to reparame-
terize samples from qΦ(r | wi, ci,yi) in terms of
samples from an independent source of noise, i.e.,

ε(s) ∼ N (0, I),

r
(s)
i = gΦ(wi, ci,yi, ε

(s)) = µi + σi · ε(s).

We thus replace the bound in Equation 4 with
a Monte Carlo approximation using a single sam-

9 The Dirichlet distribution cannot be directly reparame-
terized in this way, which is why we use the logistic normal
prior on θ to approximate the Dirichlet prior used in LDA.

ple10 of ε (and thereby of r):

L(wi)

≈
Ni∑

j=1

log p(wij | r(s)i , ci) + log p(yi | r(s)i , ci)

− DKL [qΦ(ri | wi, ci,yi) || p(ri | α)] .

(8)

We can now optimize this sampling-based approxi-
mation of the variational bound with respect to Φ,
B∗, and all parameters of fg and fy using stochas-
tic gradient descent. Moreover, because of this
stochastic approach to inference, we are not re-
stricted to covariates with a small number of unique
values, which was a limitation of SAGE. Finally,
the KL divergence term in Equation 8 can be com-
puted in closed form (see supplementary materials).

3.3 Prediction on Held-out Data

In addition to inferring latent topics, our model
can both infer latent representations for new docu-
ments and predict their labels, the latter of which
was the motivation for SLDA. In traditional vari-
ational inference, inference at test time requires
fixing global parameters (topics), and optimizing
the per-document variational parameters for the
test set. With the VAE framework, by contrast,
the encoder network (Equations 5–7) can be used
to directly estimate the posterior distribution for
each test document, using only a forward pass (no
iterative optimization or sampling).

If not using labels, we can use this approach di-
rectly, passing the word counts of new documents
through the encoder to get a posterior qΦ(ri |
wi, ci). When we also include labels to be pre-
dicted, we can first train a fully-observed model, as
above, then fix the decoder, and retrain the encoder
without labels. In practice, however, if we train
the encoder network using one-hot encodings of
document labels, it is sufficient to provide a vector
of all zeros for the labels of test documents; this is
what we adopt for our experiments (§4.2), and we
still obtain good predictive performance.

The label network, fy, is a flexible component
which can be used to predict a wide range of out-
comes, from categorical labels (such as star ratings;
McAuliffe and Blei, 2008) to real-valued outputs
(such as number of citations or box-office returns;

10Alternatively, one can average over multiple samples.
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Yogatama et al., 2011). For categorical labels, pre-
dictions are given by

ŷi = argmax
y ∈ Y

p(y | ri, ci). (9)

Alternatively, when dealing with a small set of
categorical labels, it is also possible to treat them as
observed categorical covariates during training. At
test time, we can then consider all possible one-hot
vectors, e, in place of ci, and predict the label that
maximizes the probability of the words, i.e.,

ŷi = argmax
y ∈ Y

Ni∑

j=1

log p(wij | ri, ey). (10)

This approach works well in practice (as we show
in §4.2), but does not scale to large numbers of
labels, or other types of prediction problems, such
as multi-class classification or regression.

The choice to include metadata as covariates, la-
bels, or both, depends on the data. The key point
is that we can incorporate metadata in two very
different ways, depending on what we want from
the model. Labels guide the model to infer topics
that are relevant to those labels, whereas covari-
ates induce explicit deviations, leaving the latent
variables to account for the rest of the content.

3.4 Additional Prior Information
A final advantage of the VAE framework is that
the encoder network provides a way to incorporate
additional prior information in the form of word
vectors. Although we can learn all parameters start-
ing from a random initialization, it is also possible
to initialize and fix the initial embeddings of words
in the model, Wx, in Equation 5. This leverages
word similarities derived from large amounts of un-
labeled data, and may promote greater coherence
in inferred topics. The same could also be done
for some covariates; for example, we could embed
the source of a news article based on its place on
the ideological spectrum. Conversely, if we choose
to learn these parameters, the learned values (Wy

and Wc) may provide meaningful embeddings of
these metadata (see section §4.3).

Other variants on topic models have also pro-
posed incorporating word vectors, both as a par-
allel part of the generative process (Nguyen et al.,
2015a), and as an alternative parameterization of
topic distributions (Das et al., 2015), but inference
is not scalable in either of these models. Because
of the generality of the VAE framework, we could

also modify the generative story so that word em-
beddings are emitted (rather than tokens); we leave
this for future work.

4 Experiments and Results

To evaluate and demonstrate the potential of this
model, we present a series of experiments below.
We first test SCHOLAR without observed meta-
data, and explore the effects of using regulariza-
tion and/or word vector initialization, compared to
LDA, SAGE, and NVDM (§4.1). We then evaluate
our model in terms of predictive performance, in
comparison to SLDA and an l2-regularized logistic
regression baseline (§4.2). Finally, we demonstrate
the ability to incorporate covariates and/or labels
in an exploratory data analysis (§4.3).

The scores we report are generalization to held-
out data, measured in terms of perplexity; coher-
ence, measured in terms of non-negative point-wise
mutual information (NPMI; Chang et al., 2009;
Newman et al., 2010), and classification accuracy
on test data. For coherence we evaluate NPMI us-
ing the top 10 words of each topic, both internally
(using test data), and externally, using a decade of
articles from the English Gigaword dataset (Graff
and Cieri, 2003). Since our model employs varia-
tional methods, the reported perplexity is an upper
bound based on the ELBO.

As datasets we use the familiar 20 newsgroups,
the IMDB corpus of 50,000 movie reviews (Maas
et al., 2011), and the UIUC Yahoo answers dataset
with 150,000 documents in 15 categories (Chang
et al., 2008). For further exploration, we also
make use of a corpus of approximately 4,000 time-
stamped news articles about US immigration, each
annotated with pro- or anti-immigration tone (Card
et al., 2015). We use the original author-provided
implementations of SAGE11 and SLDA,12 while
for LDA we use Mallet.13. Our implementation
of SCHOLAR is in TensorFlow, but we have also
provided a preliminary PyTorch implementation
of the core of our model.14 For additional details
about datasets and implementation, please refer to
the supplementary material.

It is challenging to fairly evaluate the relative
computational efficiency of our approach compared
to past work (due to the stochastic nature of our ap-

11github.com/jacobeisenstein/SAGE
12github.com/blei-lab/class-slda
13mallet.cs.umass.edu
14github.com/dallascard/scholar
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proach to inference, choices about hyperparameters
such as tolerance, and because of differences in im-
plementation). Nevertheless, in practice, the perfor-
mance of our approach is highly appealing. For all
experiments in this paper, our implementation was
much faster than SLDA or SAGE (implemented in
C and Matlab, respectively), and competitive with
Mallet.

4.1 Unsupervised Evaluation

Although the emphasis of this work is on incorpo-
rating observed labels and/or covariates, we briefly
report on experiments in the unsupervised setting.
Recall that, without metadata, SCHOLAR equates to
ProdLDA, but with an explicit background term.15

We therefore use the same experimental setup as
Srivastava and Sutton (2017) (learning rate, mo-
mentum, batch size, and number of epochs) and
find the same general patterns as they reported (see
Table 1 and supplementary material): our model
returns more coherent topics than LDA, but at the
cost of worse perplexity. SAGE, by contrast, attains
very high levels of sparsity, but at the cost of worse
perplexity and coherence than LDA. As expected,
the NVDM produces relatively low perplexity, but
very poor coherence, due to its lack of constraints
on θ.

Further experimentation revealed that the VAE
framework involves a tradeoff among the scores;
running for more epochs tends to result in bet-
ter perplexity on held-out data, but at the cost of
worse coherence. Adding regularization to encour-
age sparse topics has a similar effect as in SAGE,
leading to worse perplexity and coherence, but it
does create sparse topics. Interestingly, initializing
the encoder with pretrained word2vec embeddings,
and not updating them returned a model with the
best internal coherence of any model we considered
for IMDB and Yahoo answers, and the second-best
for 20 newsgroups.

The background term in our model does not have
much effect on perplexity, but plays an important
role in producing coherent topics; as in SAGE, the
background can account for common words, so
they are mostly absent among the most heavily
weighted words in the topics. For instance, words
like film and movie in the IMDB corpus are rel-
atively unimportant in the topics learned by our

15Note, however, that a batchnorm layer in ProdLDA may
play a similar role to a background term, and there are small
differences in implementation; please see supplementary ma-
terial for more discussion of this.

Ppl. NPMI NPMI Sparsity
Model ↓ (int.) ↑ (ext.) ↑ ↑
LDA 1508 0.13 0.14 0
SAGE 1767 0.12 0.12 0.79
NVDM 1748 0.06 0.04 0
SCHOLAR − B.G. 1889 0.09 0.13 0
SCHOLAR 1905 0.14 0.13 0
SCHOLAR + W.V. 1991 0.18 0.17 0
SCHOLAR + REG. 2185 0.10 0.12 0.58

Table 1: Performance of our various models in
an unsupervised setting (i.e., without labels or co-
variates) on the IMDB dataset using a 5,000-word
vocabulary and 50 topics. The supplementary ma-
terials contain additional results for 20 newsgroups
and Yahoo answers.

model, but would be much more heavily weighted
without the background term, as they are in topics
learned by LDA.

4.2 Text Classification

We next consider the utility of our model in the
context of categorical labels, and consider them
alternately as observed covariates and as labels
generated conditional on the latent representation.
We use the same setup as above, but tune number of
training epochs for our model using a random 20%
of training data as a development set, and similarly
tune regularization for logistic regression.

Table 2 summarizes the accuracy of various mod-
els on three datasets, revealing that our model offers
competitive performance, both as a joint model of
words and labels (Eq. 9), and a model which condi-
tions on covariates (Eq. 10). Although SCHOLAR

is comparable to the logistic regression baseline,
our purpose here is not to attain state-of-the-art per-
formance on text classification. Rather, the high
accuracies we obtain demonstrate that we are learn-
ing low-dimensional representations of documents
that are relevant to the label of interest, outperform-
ing SLDA, and have the same attractive properties
as topic models. Further, any neural network that
is successful for text classification could be incor-
porated into fy and trained end-to-end along with
topic discovery.

4.3 Exploratory Study

We demonstrate how our model might be used to
explore an annotated corpus of articles about immi-
gration, and adapt to different assumptions about
the data. We only use a small number of topics in
this part (K = 8) for compact presentation.
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20news IMDB Yahoo
Vocabulary size 2000 5000 5000
Number of topics 50 50 250

SLDA 0.60 0.64 0.65
SCHOLAR (labels) 0.67 0.86 0.73
SCHOLAR (covariates) 0.71 0.87 0.72
Logistic regression 0.70 0.87 0.76

Table 2: Accuracy of various models on three
datasets with categorical labels.

Tone as a label. We first consider using the an-
notations as a label, and train a joint model to infer
topics relevant to the tone of the article (pro- or
anti-immigration). Figure 2 shows a set of top-
ics learned in this way, along with the predicted
probability of an article being pro-immigration con-
ditioned on the given topic. All topics are coherent,
and the predicted probabilities have strong face
validity, e.g., “arrested charged charges agents op-
eration” is least associated with pro-immigration.

Tone as a covariate. Next we consider using
tone as a covariate, and build a model using both
tone and tone-topic interactions. Table 3 shows
a set of topics learned from the immigration data,
along with the most highly-weighted words in the
corresponding tone-topic interaction terms. As can
be seen, these interaction terms tend to capture dif-
ferent frames (e.g., “criminal” vs. “detainees”, and
“illegals” vs. “newcomers”, etc).

Combined model with temporal metadata. Fi-
nally, we incorporate both the tone annotations and
the year of publication of each article, treating the
former as a label and the latter as a covariate. In
this model, we also include an embedding matrix,
Wc, to project the one-hot year vectors down to a
two-dimensional continuous space, with a learned
deviation for each dimension. We omit the topics
in the interest of space, but Figure 3 shows the
learned embedding for each year, along with the
top terms of the corresponding deviations. As can
be seen, the model learns that adjacent years tend
to produce similar deviations, even though we have
not explicitly encoded this information. The left-
right dimension roughly tracks a temporal trend
with positive deviations shifting from the years of
Clinton and INS on the left, to Obama and ICE on
the right.16 Meanwhile, the events of 9/11 dom-
inate the vertical direction, with the words sept,

16The Immigration and Naturalization Service (INS) was
transformed into Immigration and Customs Enforcement
(ICE) and other agencies in 2003.

0 1

p(pro-immigration | topic)

arrested charged charges agents operation
state gov benefits arizona law bill bills
bush border president bill republicans
labor jobs workers percent study wages
asylum judge appeals deportation court
visas visa applications students citizenship
boat desert died men miles coast haitian
english language city spanish community

Figure 2: Topics inferred by a joint model of words
and tone, and the corresponding probability of pro-
immigration tone for each topic. A topic is repre-
sented by the top words sorted by word probability
throughout the paper.
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Figure 3: Learned embeddings of year-of-
publication (treated as a covariate) from combined
model of news articles about immigration.

hijackers, and attacks increasing in probability as
we move up in the space. If we wanted to look at
each year individually, we could drop the embed-
ding of years, and learn a sparse set of topic-year
interactions, similar to tone in Table 3.

5 Additional Related Work

The literature on topic models is vast; in addition
to papers cited throughout, other efforts to incorpo-
rate metadata into topic models include Dirichlet-
multinomial regression (DMR; Mimno and McCal-
lum, 2008), Labeled LDA (Ramage et al., 2009),
and MedLDA (Zhu et al., 2009). A recent paper
also extended DMR by using deep neural networks
to embed metadata into a richer document prior
(Benton and Dredze, 2018).

A separate line of work has pursued parame-
terizing unsupervised models of documents us-
ing neural networks (Hinton and Salakhutdinov,
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Base topics (each row is a topic) Anti-immigration interactions Pro-immigration interactions
ice customs agency enforcement homeland criminal customs arrested detainees detention center agency
population born percent americans english jobs million illegals taxpayers english newcomers hispanic city
judge case court guilty appeals attorney guilty charges man charged asylum court judge case appeals
patrol border miles coast desert boat guard patrol border agents boat died authorities desert border bodies
licenses drivers card visa cards applicants foreign sept visas system green citizenship card citizen apply
island story chinese ellis international smuggling federal charges island school ellis english story
guest worker workers bush labor bill bill border house senate workers tech skilled farm labor
benefits bill welfare republican state senate republican california gov state law welfare students tuition

Table 3: Top words for topics (left) and the corresponding anti-immigration (middle) and pro-immigration
(right) variations when treating tone as a covariate, with interactions.

2009; Larochelle and Lauly, 2012), including non-
Bayesian approaches (Cao et al., 2015). More re-
cently, Lau et al. (2017) proposed a neural language
model that incorporated topics, and He et al. (2017)
developed a scalable alternative to the correlated
topic model by simultaneously learning topic em-
beddings.

Others have attempted to extend the reparameter-
ization trick to the Dirichlet and Gamma distribu-
tions, either through transformations (Kucukelbir
et al., 2016) or a generalization of reparameteriza-
tion (Ruiz et al., 2016). Black-box and VAE-style
inference have been implemented in at least two
general purpose tools designed to allow rapid explo-
ration and evaluation of models (Kucukelbir et al.,
2015; Tran et al., 2016).

6 Conclusion

We have presented a neural framework for general-
ized topic models to enable flexible incorporation
of metadata with a variety of options. We take
advantage of stochastic variational inference to de-
velop a general algorithm for our framework such
that variations do not require any model-specific
algorithm derivations. Our model demonstrates
the tradeoff between perplexity, coherence, and
sparsity, and outperforms SLDA in predicting doc-
ument labels. Furthermore, the flexibility of our
model enables intriguing exploration of a text cor-
pus on US immigration. We believe that our model
and code will facilitate rapid exploration of docu-
ment collections with metadata.
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Abstract

Semantic hashing has become a power-
ful paradigm for fast similarity search
in many information retrieval systems.
While fairly successful, previous tech-
niques generally require two-stage train-
ing, and the binary constraints are han-
dled ad-hoc. In this paper, we present
an end-to-end Neural Architecture for Se-
mantic Hashing (NASH), where the binary
hashing codes are treated as Bernoulli la-
tent variables. A neural variational in-
ference framework is proposed for train-
ing, where gradients are directly back-
propagated through the discrete latent
variable to optimize the hash function.
We also draw connections between pro-
posed method and rate-distortion the-
ory, which provides a theoretical foun-
dation for the effectiveness of the pro-
posed framework. Experimental results on
three public datasets demonstrate that our
method significantly outperforms several
state-of-the-art models on both unsuper-
vised and supervised scenarios.

1 Introduction

The problem of similarity search, also called
nearest-neighbor search, consists of finding doc-
uments from a large collection of documents, or
corpus, which are most similar to a query doc-
ument of interest. Fast and accurate similarity
search is at the core of many information retrieval
applications, such as plagiarism analysis (Stein
et al., 2007), collaborative filtering (Koren, 2008),
content-based multimedia retrieval (Lew et al.,
2006) and caching (Pandey et al., 2009). Semantic
hashing is an effective approach for fast similarity
search (Salakhutdinov and Hinton, 2009; Zhang

∗ Equal contribution.

et al., 2010; Wang et al., 2014). By represent-
ing every document in the corpus as a similarity-
preserving discrete (binary) hashing code, the
similarity between two documents can be evalu-
ated by simply calculating pairwise Hamming dis-
tances between hashing codes, i.e., the number of
bits that are different between two codes. Given
that today, an ordinary PC is able to execute mil-
lions of Hamming distance computations in just a
few milliseconds (Zhang et al., 2010), this seman-
tic hashing strategy is very computationally attrac-
tive.

While considerable research has been devoted
to text (semantic) hashing, existing approaches
typically require two-stage training procedures.
These methods can be generally divided into two
categories: (i) binary codes for documents are first
learned in an unsupervised manner, then l binary
classifiers are trained via supervised learning to
predict the l-bit hashing code (Zhang et al., 2010;
Xu et al., 2015); (ii) continuous text representa-
tions are first inferred, which are binarized as a
second (separate) step during testing (Wang et al.,
2013; Chaidaroon and Fang, 2017). Because the
model parameters are not learned in an end-to-end
manner, these two-stage training strategies may re-
sult in suboptimal local optima. This happens be-
cause different modules within the model are opti-
mized separately, preventing the sharing of infor-
mation between them. Further, in existing meth-
ods, binary constraints are typically handled ad-
hoc by truncation, i.e., the hashing codes are ob-
tained via direct binarization from continuous rep-
resentations after training. As a result, the in-
formation contained in the continuous representa-
tions is lost during the (separate) binarization pro-
cess. Moreover, training different modules (map-
ping and classifier/binarization) separately often
requires additional hyperparameter tuning for each
training stage, which can be laborious and time-
consuming.
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In this paper, we propose a simple and generic
neural architecture for text hashing that learns bi-
nary latent codes for documents in an end-to-
end manner. Inspired by recent advances in neu-
ral variational inference (NVI) for text processing
(Miao et al., 2016; Yang et al., 2017; Shen et al.,
2017b), we approach semantic hashing from a
generative model perspective, where binary (hash-
ing) codes are represented as either deterministic
or stochastic Bernoulli latent variables. The infer-
ence (encoder) and generative (decoder) networks
are optimized jointly by maximizing a variational
lower bound to the marginal distribution of input
documents (corpus). By leveraging a simple and
effective method to estimate the gradients with re-
spect to discrete (binary) variables, the loss term
from the generative (decoder) network can be di-
rectly backpropagated into the inference (encoder)
network to optimize the hash function.

Motivated by the rate-distortion theory (Berger,
1971; Theis et al., 2017), we propose to inject
data-dependent noise into the latent codes during
the decoding stage, which adaptively accounts for
the tradeoff between minimizing rate (number of
bits used, or effective code length) and distortion
(reconstruction error) during training. The con-
nection between the proposed method and rate-
distortion theory is further elucidated, providing a
theoretical foundation for the effectiveness of our
framework.

Summarizing, the contributions of this paper
are: (i) to the best of our knowledge, we present
the first semantic hashing architecture that can
be trained in an end-to-end manner; (ii) we pro-
pose a neural variational inference framework to
learn compact (regularized) binary codes for doc-
uments, achieving promising results on both unsu-
pervised and supervised text hashing; (iii) the con-
nection between our method and rate-distortion
theory is established, from which we demonstrate
the advantage of injecting data-dependent noise
into the latent variable during training.

2 Related Work

Models with discrete random variables have at-
tracted much attention in the deep learning com-
munity (Jang et al., 2016; Maddison et al., 2016;
van den Oord et al., 2017; Li et al., 2017; Shu and
Nakayama, 2017). Some of these structures are
more natural choices for language or speech data,
which are inherently discrete. More specifically,
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Figure 1: NASH for end-to-end semantic hashing.
The inference network maps x→ z using an MLP
and the generative network recovers x as z → x̂.

van den Oord et al. (2017) combined VAEs with
vector quantization to learn discrete latent repre-
sentation, and demonstrated the utility of these
learned representations on images, videos, and
speech data. Li et al. (2017) leveraged both pair-
wise label and classification information to learn
discrete hash codes, which exhibit state-of-the-art
performance on image retrieval tasks.

For natural language processing (NLP), al-
though significant research has been made to learn
continuous deep representations for words or doc-
uments (Mikolov et al., 2013; Kiros et al., 2015;
Shen et al., 2018), discrete neural representations
have been mainly explored in learning word em-
beddings (Shu and Nakayama, 2017; Chen et al.,
2017). In these recent works, words are repre-
sented as a vector of discrete numbers, which are
very efficient storage-wise, while showing compa-
rable performance on several NLP tasks, relative
to continuous word embeddings. However, dis-
crete representations that are learned in an end-
to-end manner at the sentence or document level
have been rarely explored. Also there is a lack of
strict evaluation regarding their effectiveness. Our
work focuses on learning discrete (binary) repre-
sentations for text documents. Further, we em-
ploy semantic hashing (fast similarity search) as
a mechanism to evaluate the quality of learned bi-
nary latent codes.

3 The Proposed Method

3.1 Hashing under the NVI Framework

Inspired by the recent success of variational au-
toencoders for various NLP problems (Miao et al.,
2016; Bowman et al., 2015; Yang et al., 2017;
Miao et al., 2017; Shen et al., 2017b; Wang et al.,
2018), we approach the training of discrete (bi-
nary) latent variables from a generative perspec-
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tive. Let x and z denote the input document and
its corresponding binary hash code, respectively.
Most of the previous text hashing methods focus
on modeling the encoding distribution p(z|x), or
hash function, so the local/global pairwise simi-
larity structure of documents in the original space
is preserved in latent space (Zhang et al., 2010;
Wang et al., 2013; Xu et al., 2015; Wang et al.,
2014). However, the generative (decoding) pro-
cess of reconstructing x from binary latent code z,
i.e., modeling distribution p(x|z), has been rarely
considered. Intuitively, latent codes learned from a
model that accounts for the generative term should
naturally encapsulate key semantic information
from x because the generation/reconstruction ob-
jective is a function of p(x|z). In this regard, the
generative term provides a natural training objec-
tive for semantic hashing.

We define a generative model that simultane-
ously accounts for both the encoding distribu-
tion, p(z|x), and decoding distribution, p(x|z),
by defining approximations qφ(z|x) and qθ(x|z),
via inference and generative networks, gφ(x) and
gθ(z), parameterized by φ and θ, respectively.
Specifically, x ∈ Z |V |+ is the bag-of-words (count)
representation for the input document, where |V |
is the vocabulary size. Notably, we can also em-
ploy other count weighting schemes as input fea-
tures x, e.g., the term frequency-inverse document
frequency (TFIDF) (Manning et al., 2008). For
the encoding distribution, a latent variable z is
first inferred from the input text x, by construct-
ing an inference network gφ(x) to approximate
the true posterior distribution p(z|x) as qφ(z|x).
Subsequently, the decoder network gθ(z) maps z
back into input space to reconstruct the original
sequence x as x̂, approximating p(x|z) as qθ(x|z)
(as shown in Figure 1). This cyclic strategy, x →
z → x̂ ≈ x, provides the latent variable z with a
better ability to generalize (Miao et al., 2016).

To tailor the NVI framework for semantic hash-
ing, we cast z as a binary latent variable and as-
sume a multivariate Bernoulli prior on z: p(z) ∼
Bernoulli(γ) =

∏l
i=1 γ

zi
i (1 − γi)

1−zi , where
γi ∈ [0, 1] is component i of vector γ. Thus,
the encoding (approximate posterior) distribution
qφ(z|x) is restricted to take the form qφ(z|x) =
Bernoulli(h), where h = σ(gφ(x)), σ(·) is the sig-
moid function, and gφ(·) is the (nonlinear) infer-
ence network specified as a multilayer perceptron
(MLP). As illustrated in Figure 1, we can obtain

samples from the Bernoulli posterior either deter-
ministically or stochastically. Suppose z is a l-bit
hash code, for the deterministic binarization, we
have, for i = 1, 2, ......, l:

zi = 1σ(giφ(x))>0.5 =
sign(σ(giφ(x)− 0.5) + 1

2
,

(1)

where z is the binarized variable, and zi and giφ(x)
denote the i-th dimension of z and gφ(x), respec-
tively. The standard Bernoulli sampling in (1) can
be understood as setting a hard threshold at 0.5
for each representation dimension, therefore, the
binary latent code is generated deterministically.
Another strategy to obtain the discrete variable is
to binarize h in a stochastic manner:

zi = 1σ(giφ(x))>µi
=

sign(σ(giφ(x))− µi) + 1

2
,

(2)

where µi ∼ Uniform(0, 1). Because of this sam-
pling process, we do not have to assume a pre-
defined threshold value like in (1).

3.2 Training with Binary Latent Variables
To estimate the parameters of the encoder and
decoder networks, we would ideally maximize
the marginal distribution p(x) =

∫
p(z)p(x|z)dz.

However, computing this marginal is intractable
in most cases of interest. Instead, we maximize
a variational lower bound. This approach is typ-
ically employed in the VAE framework (Kingma
and Welling, 2013):

Lvae = Eqφ(z|x)
[
log

qθ(x|z)p(z)
qφ(z|x)

]
, (3)

= Eqφ(z|x)[log qθ(x|z)]−DKL(qφ(z|x)||p(z)),

where the Kullback-Leibler (KL) divergence
DKL(qφ(z|x)||p(z)) encourages the approximate
posterior distribution qφ(z|x) to be close to the
multivariate Bernoulli prior p(z). In this case,
DKL(qφ(z|x)|p(z)) can be written in closed-form
as a function of gφ(x):

DKL = gφ(x) log
gφ(x)

γ

+ (1− gφ(x)) log
1− gφ(x)
1− γ . (4)

Note that the gradient for the KL divergence term
above can be evaluated easily.
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For the first term in (3), we should in principle
estimate the influence of µi in (2) on qθ(x|z) by
averaging over the entire (uniform) noise distribu-
tion. However, a closed-form distribution does not
exist since it is not possible to enumerate all possi-
ble configurations of z, especially when the latent
dimension is large. Moreover, discrete latent vari-
ables are inherently incompatible with backpropa-
gation, since the derivative of the sign function is
zero for almost all input values. As a result, the
exact gradients of Lvae wrt the inputs before bina-
rization would be essentially all zero.

To estimate the gradients for binary latent vari-
ables, we utilize the straight-through (ST) estima-
tor, which was first introduced by Hinton (2012).
So motivated, the strategy here is to simply back-
propagate through the hard threshold by approxi-
mating the gradient ∂z/∂φ as 1. Thus, we have:

dEqφ(z|x)[log qθ(x|z)]
∂φ

=
dEqφ(z|x)[log qθ(x|z)]

dz

dz

dσ(giφ(x))

dσ(giφ(x))

dφ

≈
dEqφ(z|x)[log qθ(x|z)]

dz

dσ(giφ(x))

dφ
(5)

Although this is clearly a biased estimator, it has
been shown to be a fast and efficient method rela-
tive to other gradient estimators for discrete vari-
ables, especially for the Bernoulli case (Bengio
et al., 2013; Hubara et al., 2016; Theis et al.,
2017). With the ST gradient estimator, the first
loss term in (3) can be backpropagated into the
encoder network to fine-tune the hash function
gφ(x).

For the approximate generator qθ(x|z) in (3), let
xi denote the one-hot representation of ith word
within a document. Note that x =

∑
i xi is thus

the bag-of-words representation for document x.
To reconstruct the input x from z, we utilize a soft-
max decoding function written as:

q(xi = w|z) = exp(zTExw + bw)∑|V |
j=1 exp(z

TExj + bj)
, (6)

where q(xi = w|z) is the probability that xi is
word w ∈ V , qθ(x|z) =

∏
i q(xi = w|z) and

θ = {E, b1, . . . , b|V |}. Note that E ∈ Rd×|V | can
be interpreted as a word embedding matrix to be
learned, and {bi}|V |i=1 denote bias terms. Intuitively,
the objective in (6) encourages the discrete vector
z to be close to the embeddings for every word

that appear in the input document x. As shown in
Section 5.3.1, meaningful semantic structures can
be learned and manifested in the word embedding
matrix E.

3.3 Injecting Data-dependent Noise to z
To reconstruct text data x from sampled binary
representation z, a deterministic decoder is typi-
cally utilized (Miao et al., 2016; Chaidaroon and
Fang, 2017). Inspired by the success of employing
stochastic decoders in image hashing applications
(Dai et al., 2017; Theis et al., 2017), in our exper-
iments, we found that injecting random Gaussian
noise into z makes the decoder a more favorable
regularizer for the binary codes, which in practice
leads to stronger retrieval performance. Below, we
invoke the rate-distortion theory to perform some
further analysis, which leads to interesting find-
ings.

Learning binary latent codes z to represent a
continuous distribution p(x) is a classical informa-
tion theory concept known as lossy source coding.
From this perspective, semantic hashing, which
compresses an input document into compact bi-
nary codes, can be casted as a conventional rate-
distortion tradeoff problem (Theis et al., 2017;
Ballé et al., 2016):

min − log2R(z)︸ ︷︷ ︸
Rate

+β ·D(x, x̂)︸ ︷︷ ︸
Distortion

, (7)

where rate and distortion denote the effective code
length, i.e., the number of bits used, and the dis-
tortion introduced by the encoding/decoding se-
quence, respectively. Further, x̂ is the recon-
structed input and β is a hyperparameter that con-
trols the tradeoff between the two terms.

Considering the case where we have a Bernoulli
prior on z as p(z) ∼ Bernoulli(γ), and x
conditionally drawn from a Gaussian distribution
p(x|z) ∼ N (Ez, σ2I). Here, E = {ei}|V |i=1,
where ei ∈ Rd can be interpreted as a codebook
with |V | codewords. In our case, E corresponds
to the word embedding matrix as in (6).

For the case of stochastic latent variable z, the
objective function in (3) can be written in a form
similar to the rate-distortion tradeoff:

minEqφ(z|x)


− log qφ(z|x)︸ ︷︷ ︸

Rate

+
1

2σ2︸︷︷︸
β

||x− Ez||22︸ ︷︷ ︸
Distortion

+C


 ,

(8)
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where C is a constant that encapsulates the prior
distribution p(z) and the Gaussian distribution
normalization term. Notably, the trade-off hyper-
parameter β = σ−2/2 is closely related to the
variance of the distribution p(x|z). In other words,
by controlling the variance σ, the model can adap-
tively explore different trade-offs between the rate
and distortion objectives. However, the optimal
trade-offs for distinct samples may be different.

Inspired by the observations above, we propose
to inject data-dependent noise into latent variable
z, rather than to setting the variance term σ2 to a
fixed value (Dai et al., 2017; Theis et al., 2017).
Specifically, log σ2 is obtained via a one-layer
MLP transformation from gφ(x). Afterwards, we
sample z′ fromN (z, σ2I), which then replace z in
(6) to infer the probability of generating individual
words (as shown in Figure 1). As a result, the vari-
ances are different for every input document x, and
thus the model is provided with additional flexibil-
ity to explore various trade-offs between rate and
distortion for different training observations. Al-
though our decoder is not a strictly Gaussian dis-
tribution, as in (6), we found empirically that in-
jecting data-dependent noise into z yields strong
retrieval results, see Section 5.1.

3.4 Supervised Hashing

The proposed Neural Architecture for Semantic
Hashing (NASH) can be extended to supervised
hashing, where a mapping from latent variable z
to labels y is learned, here parametrized by a two-
layer MLP followed by a fully-connected softmax
layer. To allow the model to explore and balance
between maximizing the variational lower bound
in (3) and minimizing the discriminative loss, the
following joint training objective is employed:

L = −Lvae(θ, φ;x) + αLdis(η; z, y). (9)

where η refers to parameters of the MLP classi-
fier and α controls the relative weight between
the variational lower bound (Lvae) and discrimina-
tive loss (Ldis), defined as the cross-entropy loss.
The parameters {θ, φ, η} are learned end-to-end
via Monte Carlo estimation.

4 Experimental Setup

4.1 Datasets

We use the following three standard publicly
available datasets for training and evaluation:

(i) Reuters21578, containing 10,788 news docu-
ments, which have been classified into 90 differ-
ent categories. (ii) 20Newsgroups, a collection of
18,828 newsgroup documents, which are catego-
rized into 20 different topics. (iii) TMC (stands
for SIAM text mining competition), containing air
traffic reports provided by NASA. TMC consists
21,519 training documents divided into 22 differ-
ent categories. To make direct comparison with
prior works, we employed the TFIDF features on
these datasets supplied by (Chaidaroon and Fang,
2017), where the vocabulary sizes for the three
datasets are set to 10,000, 7,164 and 20,000, re-
spectively.

4.2 Training Details

For the inference networks, we employ a feed-
forward neural network with 2 hidden layers (both
with 500 units) using the ReLU non-linearity ac-
tivation function, which transform the input doc-
uments, i.e., TFIDF features in our experiments,
into a continuous representation. Empirically, we
found that stochastic binarization as in (2) shows
stronger performance than deterministic binariza-
tion, and thus use the former in our experiments.
However, we further conduct a systematic ablation
study in Section 5.2 to compare the two binariza-
tion strategies.

Our model is trained using Adam (Kingma and
Ba, 2014), with a learning rate of 1× 10−3 for all
parameters. We decay the learning rate by a fac-
tor of 0.96 for every 10,000 iterations. Dropout
(Srivastava et al., 2014) is employed on the output
of encoder networks, with the rate selected from
{0.7, 0.8, 0.9} on the validation set. To facilitate
comparisons with previous methods, we set the di-
mension of z, i.e., the number of bits within the
hashing code) as 8, 16, 32, 64, or 128.

4.3 Baselines

We evaluate the effectiveness of our framework on
both unsupervised and supervised semantic hash-
ing tasks. We consider the following unsuper-
vised baselines for comparisons: Locality Sensi-
tive Hashing (LSH) (Datar et al., 2004), Stack Re-
stricted Boltzmann Machines (S-RBM) (Salakhut-
dinov and Hinton, 2009), Spectral Hashing (SpH)
(Weiss et al., 2009), Self-taught Hashing (STH)
(Zhang et al., 2010) and Variational Deep Se-
mantic Hashing (VDSH) (Chaidaroon and Fang,
2017).
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Method 8 bits 16 bits 32 bits 64 bits 128 bits
LSH 0.2802 0.3215 0.3862 0.4667 0.5194

S-RBM 0.5113 0.5740 0.6154 0.6177 0.6452
SpH 0.6080 0.6340 0.6513 0.6290 0.6045
STH 0.6616 0.7351 0.7554 0.7350 0.6986

VDSH 0.6859 0.7165 0.7753 0.7456 0.7318
NASH 0.7113 0.7624 0.7993 0.7812 0.7559

NASH-N 0.7352 0.7904 0.8297 0.8086 0.7867
NASH-DN 0.7470 0.8013 0.8418 0.8297 0.7924

Table 1: Precision of the top 100 retrieved docu-
ments on Reuters dataset (Unsupervised hashing).

For supervised semantic hashing, we also com-
pare NASH against a number of baselines: Su-
pervised Hashing with Kernels (KSH) (Liu et al.,
2012), Semantic Hashing using Tags and Topic
Modeling (SHTTM) (Wang et al., 2013) and Su-
pervised VDSH (Chaidaroon and Fang, 2017). It
is worth noting that unlike all these baselines, our
NASH model is trained end-to-end in one-step.

4.4 Evaluation Metrics

To evaluate the hashing codes for similarity
search, we consider each document in the testing
set as a query document. Similar documents to
the query in the corresponding training set need
to be retrieved based on the Hamming distance of
their hashing codes, i.e. number of different bits.
To facilitate comparison with prior work (Wang
et al., 2013; Chaidaroon and Fang, 2017), the per-
formance is measured with precision. Specifically,
during testing, for a query document, we first re-
trieve the 100 nearest/closest documents accord-
ing to the Hamming distances of the correspond-
ing hash codes (i.e., the number of different bits).
We then examine the percentage of documents
among these 100 retrieved ones that belong to the
same label (topic) with the query document (we
consider documents having the same label as rel-
evant pairs). The ratio of the number of relevant
documents to the number of retrieved documents
(fixed value of 100) is calculated as the precision
score. The precision scores are further averaged
over all test (query) documents.

5 Experimental Results

We experimented with four variants for our NASH
model: (i) NASH: with deterministic decoder; (ii)
NASH-N: with fixed random noise injected to de-
coder; (iii) NASH-DN: with data-dependent noise
injected to decoder; (iv) NASH-DN-S: NASH-DN
with supervised information during training.
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Figure 2: Precision of the top 100 retrieved doc-
uments on Reuters dataset (Supervised hashing),
compared with other supervised baselines.

5.1 Semantic Hashing Evaluation

Table 1 presents the results of all models on
Reuters dataset. Regarding unsupervised seman-
tic hashing, all the NASH variants consistently
outperform the baseline methods by a substan-
tial margin, indicating that our model makes the
most effective use of unlabeled data and manage
to assign similar hashing codes, i.e., with small
Hamming distance to each other, to documents
that belong to the same label. It can be also
observed that the injection of noise into the de-
coder networks has improved the robustness of
learned binary representations, resulting in better
retrieval performance. More importantly, by mak-
ing the variances of noise adaptive to the specific
input, our NASH-DN achieves even better results,
compared with NASH-N, highlighting the impor-
tance of exploring/learning the trade-off between
rate and distortion objectives by the data itself.
We observe the same trend and superiority of our
NASH-DN models on the other two benchmarks,
as shown in Tables 3 and 4.

Another observation is that the retrieval results
tend to drop a bit when we set the length of hash-
ing codes to be 64 or larger, which also happens
for some baseline models. This phenomenon has
been reported previously in Wang et al. (2012);
Liu et al. (2012); Wang et al. (2013); Chaida-
roon and Fang (2017), and the reasons could be
twofold: (i) for longer codes, the number of data
points that are assigned to a certain binary code
decreases exponentially. As a result, many queries
may fail to return any neighbor documents (Wang
et al., 2012); (ii) considering the size of train-
ing data, it is likely that the model may over-
fit with long hash codes (Chaidaroon and Fang,
2017). However, even with longer hashing codes,
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Word weapons medical companies define israel book

NASH

gun treatment company definition israeli books
guns disease market defined arabs english

weapon drugs afford explained arab references
armed health products discussion jewish learning
assault medicine money knowledge jews reference

NVDM

guns medicine expensive defined israeli books
weapon health industry definition arab reference

gun treatment company printf arabs guide
militia disease market int lebanon writing
armed patients buy sufficient lebanese pages

Table 2: The five nearest words in the semantic space learned by NASH, compared with the results from
NVDM (Miao et al., 2016).

Method 8 bits 16 bits 32 bits 64 bits 128 bits
Unsupervised Hashing

LSH 0.0578 0.0597 0.0666 0.0770 0.0949
S-RBM 0.0594 0.0604 0.0533 0.0623 0.0642

SpH 0.2545 0.3200 0.3709 0.3196 0.2716
STH 0.3664 0.5237 0.5860 0.5806 0.5443

VDSH 0.3643 0.3904 0.4327 0.1731 0.0522
NASH 0.3786 0.5108 0.5671 0.5071 0.4664

NASH-N 0.3903 0.5213 0.5987 0.5143 0.4776
NASH-DN 0.4040 0.5310 0.6225 0.5377 0.4945

Supervised Hashing
KSH 0.4257 0.5559 0.6103 0.6488 0.6638

SHTTM 0.2690 0.3235 0.2357 0.1411 0.1299
VDSH-S 0.6586 0.6791 0.7564 0.6850 0.6916

VDSH-SP 0.6609 0.6551 0.7125 0.7045 0.7117
NASH-DN-S 0.6247 0.6973 0.8069 0.8213 0.7840

Table 3: Precision of the top 100 retrieved docu-
ments on 20Newsgroups dataset.

Method 8 bits 16 bits 32 bits 64 bits 128 bits
Unsupervised Hashing

LSH 0.4388 0.4393 0.4514 0.4553 0.4773
S-RBM 0.4846 0.5108 0.5166 0.5190 0.5137

SpH 0.5807 0.6055 0.6281 0.6143 0.5891
STH 0.3723 0.3947 0.4105 0.4181 0.4123

VDSH 0.4330 0.6853 0.7108 0.4410 0.5847
NASH 0.5849 0.6573 0.6921 0.6548 0.5998

NASH-N 0.6233 0.6759 0.7201 0.6877 0.6314
NASH-DN 0.6358 0.6956 0.7327 0.7010 0.6325

Supervised Hashing
KSH 0.6608 0.6842 0.7047 0.7175 0.7243

SHTTM 0.6299 0.6571 0.6485 0.6893 0.6474
VDSH-S 0.7387 0.7887 0.7883 0.7967 0.8018

VDSH-SP 0.7498 0.7798 0.7891 0.7888 0.7970
NASH-DN-S 0.7438 0.7946 0.7987 0.8014 0.8139

Table 4: Precision of the top 100 retrieved docu-
ments on TMC dataset.

our NASH models perform stronger than the base-
lines in most cases (except for the 20Newsgroups
dataset), suggesting that NASH can effectively al-
locate documents to informative/meaningful hash-
ing codes even with limited training data.

We also evaluate the effectiveness of NASH
in a supervised scenario on the Reuters dataset,

where the label or topic information is utilized dur-
ing training. As shown in Figure 2, our NASH-
DN-S model consistently outperforms several su-
pervised semantic hashing baselines, with vari-
ous choices of hashing bits. Notably, our model
exhibits higher Top-100 retrieval precision than
VDSH-S and VDSH-SP, proposed by Chaidaroon
and Fang (2017). This may be attributed to the fact
that in VDSH models, the continuous embeddings
are not optimized with their future binarization in
mind, and thus could hurt the relevance of learned
binary codes. On the contrary, our model is opti-
mized in an end-to-end manner, where the gradi-
ents are directly backpropagated to the inference
network (through the binary/discrete latent vari-
able), and thus gives rise to a more robust hash
function.

5.2 Ablation study

5.2.1 The effect of stochastic sampling
As described in Section 3, the binary latent vari-
ables z in NASH can be either deterministically
(via (1)) or stochastically (via (2)) sampled. We
compare these two types of binarization functions
in the case of unsupervised hashing. As illustrated
in Figure 3, stochastic sampling shows stronger re-
trieval results on all three datasets, indicating that
endowing the sampling process of latent variables
with more stochasticity improves the learned rep-
resentations.

5.2.2 The effect of encoder/decoder networks
Under the variational framework introduced here,
the encoder network, i.e., hash function, and de-
coder network are jointly optimized to abstract se-
mantic features from documents. An interesting
question concerns what types of network should
be leveraged for each part of our NASH model.
In this regard, we further investigate the effect of
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Category Title/Subject 8-bit code 16-bit code

Baseball

Dave Kingman for the hall of fame 1 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 0 1 1 0
Time of game 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 1

Game score report 1 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 0 1 1 0
Why is Barry Bonds not batting 4th? 1 1 1 0 1 1 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 1 1 0

Electronics

Building a UV flashlight 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 1
How to drive an array of LEDs 1 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1

2% silver solder 1 1 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 1
Subliminal message flashing on TV 1 0 1 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 1

Table 5: Examples of learned compact hashing codes on 20Newsgroups dataset.
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Figure 3: The precisions of the top 100 retrieved
documents for NASH-DN with stochastic or de-
terministic binary latent variables.

using an encoder or decoder with different non-
linearity, ranging from a linear transformation to
two-layer MLPs. We employ a base model with
an encoder of two-layer MLPs and a linear de-
coder (the setup described in Section 3), and the
ablation study results are shown in Table 6.

Network Encoder Decoder
linear 0.5844 0.6225

one-layer MLP 0.6187 0.3559
two-layer MLP 0.6225 0.1047

Table 6: Ablation study with different en-
coder/decoder networks.

It is observed that for the encoder networks, in-
creasing the non-linearity by stacking MLP layers
leads to better empirical results. In other words,
endowing the hash function with more modeling
capacity is advantageous to retrieval tasks. How-
ever, when we employ a non-linear network for
the decoder, the retrieval precision drops dramat-
ically. It is worth noting that the only difference
between linear transformation and one-layer MLP
is whether a non-linear activation function is em-
ployed or not.

This observation may be attributed the fact that
the decoder networks can be considered as a sim-

ilarity measure between latent variable z and the
word embeddings Ek for every word, and the
probabilities for words that present in the docu-
ment is maximized to ensure that z is informative.
As a result, if we allow the decoder to be too ex-
pressive (e.g., a one-layer MLP), it is likely that
we will end up with a very flexible similarity mea-
sure but relatively less meaningful binary repre-
sentations. This finding is consistent with several
image hashing methods, such as SGH (Dai et al.,
2017) or binary autoencoder (Carreira-Perpinán
and Raziperchikolaei, 2015), where a linear de-
coder is typically adopted to obtain promising re-
trieval results. However, our experiments may not
speak for other choices of encoder-decoder archi-
tectures, e.g., LSTM-based sequence-to-sequence
models (Sutskever et al., 2014) or DCNN-based
autoencoder (Zhang et al., 2017).

5.3 Qualitative Analysis

5.3.1 Analysis of Semantic Information
To understand what information has been learned
in our NASH model, we examine the matrix
E ∈ Rd×l in (6). Similar to (Miao et al., 2016;
Larochelle and Lauly, 2012), we select the 5 near-
est words according to the word vectors learned
from NASH and compare with the corresponding
results from NVDM.

As shown in Table 2, although our NASH model
contains a binary latent variable, rather than a con-
tinuous one as in NVDM, it also effectively group
semantically-similar words together in the learned
vector space. This further demonstrates that the
proposed generative framework manages to by-
pass the binary/discrete constraint and is able to
abstract useful semantic information from docu-
ments.

5.3.2 Case Study
In Table 5, we show some examples of the
learned binary hashing codes on 20Newsgroups
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dataset. We observe that for both 8-bit and 16-
bit cases, NASH typically compresses documents
with shared topics into very similar binary codes.
On the contrary, the hashing codes for documents
with different topics exhibit much larger Ham-
ming distance. As a result, relevant documents can
be efficiently retrieved by simply computing their
Hamming distances.

6 Conclusions

This paper presents a first step towards end-to-end
semantic hashing, where the binary/discrete con-
straints are carefully handled with an effective gra-
dient estimator. A neural variational framework
is introduced to train our model. Motivated by
the connections between the proposed method and
rate-distortion theory, we inject data-dependent
noise into the Bernoulli latent variable at the train-
ing stage. The effectiveness of our framework is
demonstrated with extensive experiments.
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Abstract

We present a new large-scale corpus of
Question-Answer driven Semantic Role
Labeling (QA-SRL) annotations, and the
first high-quality QA-SRL parser. Our cor-
pus, QA-SRL Bank 2.0, consists of over
250,000 question-answer pairs for over
64,000 sentences across 3 domains and
was gathered with a new crowd-sourcing
scheme that we show has high precision
and good recall at modest cost. We also
present neural models for two QA-SRL
subtasks: detecting argument spans for a
predicate and generating questions to label
the semantic relationship. The best models
achieve question accuracy of 82.6% and
span-level accuracy of 77.6% (under hu-
man evaluation) on the full pipelined QA-
SRL prediction task. They can also, as we
show, be used to gather additional annota-
tions at low cost.

1 Introduction

Learning semantic parsers to predict the predicate-
argument structures of a sentence is a long
standing, open challenge (Palmer et al., 2005;
Baker et al., 1998). Such systems are typically
trained from datasets that are difficult to gather,1

but recent research has explored training non-
experts to provide this style of semantic supervi-
sion (Abend and Rappoport, 2013; Basile et al.,
2012; Reisinger et al., 2015; He et al., 2015). In
this paper, we show for the first time that it is pos-
sible to go even further by crowdsourcing a large

∗Much of this work was done while these authors were
at the Allen Institute for Artificial Intelligence.

1The PropBank (Bonial et al., 2010) and FrameNet (Rup-
penhofer et al., 2016) annotation guides are 89 and 119 pages,
respectively.

In 1950 Alan M. Turing published "Computing machinery and 
intelligence" in Mind, in which he proposed that machines could be 

tested for intelligence using questions and answers.
Predicate Question Answer

published
1 Who published something? Alan M. Turing

2 What was published? “Computing Machinery and 
Intelligence”

3 When was something published? In 1950

proposed

4 Who proposed something? Alan M. Turing

5 What did someone propose? that machines could be tested for 
intelligent using questions and answers

6 When did someone propose something? In 1950

tested
7 What can be tested? machines
8 What can something be tested for? intelligence
9 How can something be tested? using questions and answers

using
10 What was being used? questions and answers
11 Why was something being used? tested for intelligence

Figure 1: An annotated sentence from our dataset.
Question 6 was not produced by crowd workers
in the initial collection, but was produced by our
parser as part of Data Expansion (see Section 5.)

scale dataset that can be used to train high quality
parsers at modest cost.

We adopt the Question-Answer-driven Seman-
tic Role Labeling (QA-SRL) (He et al., 2015)
annotation scheme. QA-SRL is appealing be-
cause it is intuitive to non-experts, has been
shown to closely match the structure of tra-
ditional predicate-argument structure annotation
schemes (He et al., 2015), and has been used for
end tasks such as Open IE (Stanovsky and Dagan,
2016). In QA-SRL, each predicate-argument re-
lationship is labeled with a question-answer pair
(see Figure 1). He et al. (2015) showed that high
precision QA-SRL annotations can be gathered
with limited training but that high recall is chal-
lenging to achieve; it is relatively easy to gather
answerable questions, but difficult to ensure that
every possible question is labeled for every verb.
For this reason, they hired and trained hourly an-
notators and only labeled a relatively small dataset
(3000 sentences).

Our first contribution is a new, scalable ap-
proach for crowdsourcing QA-SRL. We introduce
a streamlined web interface (including an auto-
suggest mechanism and automatic quality control
to boost recall) and use a validation stage to en-
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sure high precision (i.e. all the questions must
be answerable). With this approach, we produce
QA-SRL Bank 2.0, a dataset with 133,479 verbs
from 64,018 sentences across 3 domains, total-
ing 265,140 question-answer pairs, in just 9 days.
Our analysis shows that the data has high preci-
sion with good recall, although it does not cover
every possible question. Figure 1 shows example
annotations.

Using this data, our second contribution is a
comparison of several new models for learning a
QA-SRL parser. We follow a pipeline approach
where the parser does (1) unlabeled span detection
to determine the arguments of a given verb, and (2)
question generation to label the relationship be-
tween the predicate and each detected span. Our
best model uses a span-based representation sim-
ilar to that introduced by Lee et al. (2016) and a
custom LSTM to decode questions from a learned
span encoding. Our model does not require syn-
tactic information and can be trained directly from
the crowdsourced span labels.

Experiments demonstrate that the model does
well on our new data, achieving up to 82.2% span-
detection F1 and 47.2% exact-match question ac-
curacy relative to the human annotations. We also
demonstrate the utility of learning to predict easily
interpretable QA-SRL structures, using a simple
data bootstrapping approach to expand our dataset
further. By tuning our model to favor recall, we
over-generate questions which can be validated us-
ing our annotation pipeline, allowing for greater
recall without requiring costly redundant annota-
tions in the question writing step. Performing this
procedure on the training and development sets
grows them by 20% and leads to improvements
when retraining our models. Our final parser is
highly accurate, achieving 82.6% question accu-
racy and 77.6% span-level precision in an human
evaluation. Our data, code, and trained models
will be made publicly available.2

2 Data Annotation

A QA-SRL annotation consists of a set of
question-answer pairs for each verbal predicate in
a sentence, where each answer is a set of contigu-
ous spans from the sentence. QA-SRL questions
are defined by a 7-slot template shown in Table 1.
We introduce a crowdsourcing pipeline to collect
annotations rapidly, cheaply, and at large scale.

2http://qasrl.org

Figure 2: Interface for the generation step. Auto-
complete shows completions of the current QA-
SRL slot, and auto-suggest shows fully-formed
questions (highlighted green) based on the previ-
ous questions.

Pipeline Our crowdsourcing pipeline consists of
a generation and validation step. In the genera-
tion step, a sentence with one of its verbs marked
is shown to a single worker, who must write QA-
SRL questions for the verb and highlight their an-
swers in the sentence. The questions are passed
to the validation step, where n workers answer
each question or mark it as invalid. In each step,
no two answers to distinct questions may overlap
with each other, to prevent redundancy.

Instructions Workers are instructed that a valid
question-answer pair must satisfy three criteria:
1) the question is grammatical, 2) the question-
answer pair is asking about the time, place, par-
ticipants, etc., of the target verb, and 3) all correct
answers to each question are given.

Autocomplete We provide an autocomplete
drop-down to streamline question writing. Auto-
complete is implemented as a Non-deterministic
Finite Automaton (NFA) whose states correspond
to the 7 QA-SRL slots paired with a partial rep-
resentation of the question’s syntax. We use the
NFA to make the menu more compact by dis-
allowing obviously ungrammatical combinations
(e.g., What did been appeared?), and the syntactic
representation to auto-suggest complete questions
about arguments that have not yet been covered
(see Figure 2). The auto-suggest feature signifi-
cantly reduces the number of keystrokes required
to enter new questions after the first one, speeding
up the annotation process and making it easier for
annotators to provide higher recall.
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Wh Aux Subj Verb Obj Prep Misc
Who blamed someone
What did someone blame something on
Who refused to do something
When did someone refuse to do something
Who might put something somewhere
Where might someone put something

Table 1: Example QA-SRL questions, decomposed into their slot-based representation. See He et al.
(2015) for the full details. All slots draw from a small, deterministic set of options, including verb tense
(present, pastparticiple, etc.) Here we have replaced the verb-tense slot with its conjugated form.

Wikipedia Wikinews Science
Sentences 15,000 14,682 46,715

Verbs 32,758 34,026 66,653
Questions 75,867 80,081 143,388

Valid Qs 67,146 70,555 127,455

Table 2: Statistics for the dataset with questions
written by workers across three domains.

Payment and quality control Generation pays
5c for the first QA pair (required), plus 5c, 6c, etc.
for each successive QA pair (optional), to boost
recall. The validation step pays 8c per verb, plus
a 2c bonus per question beyond four. Generation
workers must write at least 2 questions per verb
and have 85% of their questions counted valid, and
validators must maintain 85% answer span agree-
ment with others, or they are disqualified from
further work. A validator’s answer is considered
to agree with others if their answer span overlaps
with answer spans provided by a majority of work-
ers.

Preprocessing We use the Stanford CoreNLP
tools (Manning et al., 2014) for sentence segmen-
tation, tokenizing, and POS-tagging. We identify
verbs by POS tag, with heuristics to filter out aux-
iliary verbs while retaining non-auxiliary uses of
“have” and “do.” We identify conjugated forms
of each verb for the QA-SRL templates by finding
them in Wiktionary.3

Dataset We gathered annotations for 133,479
verb mentions in 64,018 sentences (1.27M tokens)
across 3 domains: Wikipedia, Wikinews, and sci-
ence textbook text from the Textbook Question
Answering (TQA) dataset (Kembhavi et al., 2017).
We partitioned the source documents into train,
dev, and test, sampled paragraph-wise from each
document with an 80/10/10 split by sentence.

Annotation in our pipeline with n = 2 valida-

3www.wiktionary.org

tors took 9 days on Amazon Mechanical Turk.4

1,165 unique workers participated, annotating a
total of 299,308 questions. Of these, 265,140 (or
89%) were considered valid by both validators, for
an average of 1.99 valid questions per verb and
4.14 valid questions per sentence. See Table 2 for
a breakdown of dataset statistics by domain. The
total cost was $43,647.33, for an average of 32.7c
per verb mention, 14.6c per question, or 16.5c per
valid question. For comparison, He et al. (2015)
interviewed and hired contractors to annotate data
at much smaller scale for a cost of about 50c per
verb. Our annotation scheme is cheaper, far more
scalable, and provides more (though noisier) su-
pervision for answer spans.

To allow for more careful evaluation, we vali-
dated 5,205 sentences at a higher density (up to
1,000 for each domain in dev and test), re-running
the generated questions through validation with
n = 3 for a total of 6 answer annotations for each
question.

Quality Judgments of question validity had
moderate agreement. About 89.5% of validator
judgments rated a question as valid, and the agree-
ment rate between judgments of the same ques-
tion on whether the question is invalid is 90.9%.
This gives a Fleiss’s Kappa of 0.51. In the higher-
density re-run, validators were primed to be more
critical: 76.5% of judgments considered a ques-
tion valid, and agreement was at 83.7%, giving a
Fleiss’s Kappa of 0.55.

Despite being more critical in the denser anno-
tation round, questions marked valid in the origi-
nal dataset were marked valid by the new annota-
tors in 86% of cases, showing our data’s relatively
high precision. The high precision of our annota-
tion pipeline is also backed up by our small-scale
manual evaluation (see Coverage below).

Answer spans for each question also exhibit

4www.mturk.com
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P R F
He et al. (2015) 97.5 86.6 91.7
This work 95.7 72.4 82.4
This work (unfiltered) 94.9 85.4 89.9

Table 3: Precision and recall of our annotation
pipeline on a merged and validated subset of 100
verbs. The unfiltered number represents relaxing
the restriction that none of 2 validators marked the
question as invalid.

good agreement. On the original dataset, each an-
swer span has a 74.8% chance to exactly match
one provided by another annotator (up to two), and
on the densely annotated subset, each answer span
has an 83.1% chance to exactly match one pro-
vided by another annotator (up to five).

Coverage Accurately measuring recall for QA-
SRL annotations is an open challenge. For exam-
ple, question 6 in Figure 1 reveals an inferred tem-
poral relation that would not be annotated as part
of traditional SRL. Exhaustively enumerating the
full set of such questions is difficult, even for ex-
perts.

However, we can compare to the original QA-
SRL dataset (He et al., 2015), where Wikipedia
sentences were annotated with 2.43 questions
per verb. Our data has lower—but loosely
comparable—recall, with 2.05 questions per verb
in Wikipedia.

In order to further analyze the quality of our
annotations relative to (He et al., 2015), we rean-
notate a 100-verb subset of their data both manu-
ally (aiming for exhaustivity) and with our crowd-
sourcing pipeline. We merge the three sets of
annotations, manually remove bad questions (and
their answers), and calculate the precision and re-
call of the crowdsourced annotations and those of
He et al. (2015) against this pooled, filtered dataset
(using the span detection metrics described in Sec-
tion 4). Results, shown in Table 3, show that
our pipeline produces comparable precision with
only a modest decrease in recall. Interestingly, re-
adding the questions rejected in the validation step
greatly increases recall with only a small decrease
in precision, showing that validators sometimes
rejected questions considered valid by the authors.
However, we use the filtered dataset for our ex-
periments, and in Section 5, we show how another
crowdsourcing step can further improve recall.

3 Models

Given a sentence X = x0, . . . , xn, the goal of
a QA-SRL parser is to produce a set of tuples
(vi,Qi,Si), where v ∈ {0, . . . , n} is the index
of a verbal predicate, Qi is a question, and Si ∈
{(i, j) | i, j ∈ [0, n], j ≥ i} is a set of spans which
are valid answers. Our proposed parsers construct
these tuples in a three-step pipeline:

1. Verbal predicates are identified using the
same POS-tags and heuristics as in data col-
lection (see Section 2).

2. Unlabeled span detection selects a set Sv of
spans as arguments for a given verb v.

3. Question generation predicts a question for
each span in Sv. Spans are then grouped by
question, giving each question a set of an-
swers.

We describe two models for unlabeled span de-
tection in section 3.1, followed by question gen-
eration in section 3.2. All models are built on an
LSTM encoding of the sentence. Like He et al.
(2017), we start with an input Xv = {x0 . . .xn},
where the representation xi at each time step is
a concatenation of the token wi’s embedding and
an embedded binary feature (i = v) which indi-
cates whether wi is the predicate under consid-
eration. We then compute the output representa-
tion Hv = BILSTM(Xv) using a stacked alter-
nating LSTM (Zhou and Xu, 2015) with highway
connections (Srivastava et al., 2015) and recur-
rent dropout (Gal and Ghahramani, 2016). Since
the span detection and question generation mod-
els both use an LSTM encoding, this component
could in principle be shared between them. How-
ever, in preliminary experiments we found that
sharing hurt performance, so for the remainder of
this work each model is trained independently.

3.1 Span Detection

Given an encoded sentence Hv, the goal of span
detection is to select the spans Sv that correspond
to arguments of the given predicate. We explore
two models: a sequence-tagging model with BIO
encoding, and a span-based model which assigns
a probability to every possible span.

3.1.1 BIO Sequence Model
Our BIO model predicts a set of spans via a se-
quence y where each yi ∈ {B, I,O}, represent-
ing a token at the beginning, interior, or outside
of any span, respectively. Similar to He et al.
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(2017), we make independent predictions for each
token at training time, and use Viterbi decoding
to enforce hard BIO-constraints5 at test time. The
resulting sequences are in one-to-one correspon-
dence with sets Sv of spans which are pairwise
non-overlapping. The locally-normalized BIO-tag
distributions are computed from the BiLSTM out-
putsHv = {hv0, . . . ,hvn}:

p(yt | x) ∝ exp(wᵀ
tagMLP(hvt) + btag) (1)

3.1.2 Span-based Model
Our span-based model makes independent binary
decisions for all O(n2) spans in the sentence. Fol-
lowing Lee et al. (2016), the representation of a
span (i, j) is the concatenation of the BiLSTM
output at each endpoint:

svij = [hvi,hvj ]. (2)

The probability that the span is an argument of
predicate v is computed by the sigmoid function:

p(yij |Xv) = σ(wᵀ
spanMLP(svij) + bspan) (3)

At training time, we minimize the binary cross en-
tropy summed over all n2 possible spans, counting
a span as a positive example if it appears as an an-
swer to any question.

At test time, we choose a threshold τ and se-
lect every span that the model assigns probability
greater than τ , allowing us to trade off precision
and recall.

3.2 Question Generation

We introduce two question generation models.
Given a span representation svij defined in sub-
subsection 3.1.2, our models generate questions
by picking a word for each question slot (see Sec-
tion 2). Each model calculates a joint distribution
p(y | Xv, svij) over values y = (y1, . . . , y7) for
the question slots given a span svij , and is trained
to minimize the negative log-likelihood of gold
slot values.

3.2.1 Local Model
The local model predicts the words for each slot
independently:

p(yk |Xv, svij) ∝ exp(wᵀ
kMLP(svij) + bk).

(4)
5E.g., an I-tag should only follow a B-tag.

3.2.2 Sequence Model
The sequence model uses the machinery of an
RNN to share information between slots. At each
slot k, we apply a multiple layers of LSTM cells:

hl,k, cl,k = LSTMCELLl,k(hl−1,k,hl,k−1, cl,k−1)
(5)

where the initial input at each slot is a concate-
nation of the span representation and the embed-
ding of the previous word of the question: h0,k =
[svij ;yk−1]. Since each question slot predicts
from a different set of words, we found it bene-
ficial to use separate weights for the LSTM cells
at each slot k. During training, we feed in the gold
token at the previous slot, while at test time, we
use the predicted token. The output distribution
at slot k is computed via the final layers’ output
vector hLk:

p(yk |Xv, svij) ∝ exp(wᵀ
kMLP(hLk) + bk)

(6)

4 Initial Results

Automatic evaluation for QA-SRL parsing
presents multiple challenges. In this section,
we introduce automatic metrics that can help us
compare models. In Section 6, we will report
human evaluation results for our final system.

4.1 Span Detection
Metrics We evaluate span detection using a
modified notion of precision and recall. We count
predicted spans as correct if they match any of
the labeled spans in the dataset. Since each pre-
dicted span could potentially be a match to multi-
ple questions (due to overlapping annotations) we
map each predicted span to one matching question
in the way that maximizes measured recall using
maximum bipartite matching. We use both exact
match and intersection-over-union (IOU) greater
than 0.5 as matching criteria.

Results Table 4 shows span detection results on
the development set. We report results for the
span-based models at two threshold values τ : τ =
0.5, and τ = τ∗ maximizing F1. The span-based
model significantly improves over the BIO model
in both precision and recall, although the differ-
ence is less pronounced under IOU matching.

4.2 Question Generation
Metrics Like all generation tasks, evaluation
metrics for question generation must contend with

2055



Exact Match
P R F

BIO 69.0 75.9 72.2
Span (τ = 0.5) 81.7 80.9 81.3
Span (τ = τ∗) 80.0 84.7 82.2

IOU ≥ 0.5
P R F

BIO 80.4 86.0 83.1
Span (τ = 0.5) 87.5 84.2 85.8
Span (τ = τ∗) 83.8 93.0 88.1

Table 4: Results for Span Detection on the dense
development dataset. Span detection results are
given with the cutoff threshold τ at 0.5, and at
the value which maximizes F-score. The top chart
lists precision, recall and F-score with exact span
match, while the bottom reports matches where
the intersection over union (IOU) is ≥ 0.5.

EM PM SA
Local 44.2 62.0 83.2
Seq. 47.2 62.3 82.9

Table 5: Question Generation results on the dense
development set. EM - Exact Match accuracy, PM
- Partial Match Accuracy, SA - Slot-level accuracy

the fact that there are in general multiple possi-
ble valid questions for a given predicate-argument
pair. For instance, the question “Who did some-
one blame something on?” may be rephrased as
“Who was blamed for something?” However, due
to the constrained space of possible questions de-
fined by QA-SRL’s slot format, accuracy-based
metrics can still be informative. In particular, we
report the rate at which the predicted question ex-
actly matches the gold question, as well as a re-
laxed match where we only count the question
word (WH), subject (SBJ), object (OBJ) and Mis-
cellaneous (Misc) slots (see Table 1). Finally, we
report average slot-level accuracy.

Results Table 5 shows the results for question
generation on the development set. The sequen-
tial model’s exact match accuracy is significantly
higher, while word-level accuracy is roughly com-
parable, reflecting the fact that the local model
learns the slot-level posteriors.

4.3 Joint results

Table 6 shows precision and recall for joint span
detection and question generation, using exact

P R F
Span + Local 37.8 43.7 40.6

Span + Seq. (τ = 0.5) 39.6 45.8 42.4

Table 6: Joint span detection and question gener-
ation results on the dense development set, using
exact-match for both spans and questions.

match for both. This metric is exceedingly hard,
but it shows that almost 40% of predictions are
exactly correct in both span and question. In Sec-
tion 6, we use human evaluation to get a more ac-
curate assessment of our model’s accuracy.

5 Data Expansion

Since our trained parser can produce full QA-
SRL annotations, its predictions can be validated
by the same process as in our original annotation
pipeline, allowing us to focus annotation efforts
towards filling potential data gaps.

By detecting spans at a low probability cutoff,
we over-generate QA pairs for already-annotated
sentences. Then, we filter out QA pairs whose
answers overlap with answer spans in the exist-
ing annotations, or whose questions match exist-
ing questions. What remains are candidate QA
pairs which fill gaps in the original annotation. We
pass these questions to the validation step of our
crowdsourcing pipeline with n = 3 validators, re-
sulting in new labels.

We run this process on the training and devel-
opment partitions of our dataset. For the develop-
ment set, we use the trained model described in
the previous section. For the training set, we use
a relaxed version of jackknifing, training 5 models
over 5 different folds. We generate 92,080 ques-
tions at a threshold of τ = 0.2. Since in this case
many sentences have only one question, we re-
structure the pay to a 2c base rate with a 2c bonus
per question after the first (still paying no less than
2c per question).

Data statistics 46,017 (50%) of questions run
through the expansion step were considered valid
by all three annotators. In total, after filtering,
the expansion step increased the number of valid
questions in the train and dev partitions by 20%.
However, for evaluation, since our recall metric
identifies a single question for each answer span
(via bipartite matching), we filter out likely ques-
tion paraphrases by removing questions in the ex-
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Exact Match
P R F AUC

Original 80.8 86.8 83.7 .906
Expanded 82.9 86.4 84.6 .910

IOU ≥ 0.5
P R F AUC

Original 87.1 93.2 90.1 .946
Expanded 87.9 93.1 90.5 .949

(a) Span Detection results with τ∗.
EM PM WA

Original 50.5 64.4 84.1
Expanded 50.8 64.9 84.1

(b) Question Generation results

P R F
Original 47.5 46.9 47.2

Expanded 44.3 55.0 49.1

(c) Joint span detection and question generation results with
τ = 0.5

Table 7: Results on the expanded development set
comparing the full model trained on the original
data, and with the expanded data.

panded development set whose answer spans have
two overlaps with the answer spans of one ques-
tion in the original annotations. After this filtering,
the expanded development set we use for evalua-
tion has 11.5% more questions than the original
development set.

The total cost including MTurk fees was
$8,210.66, for a cost of 8.9c per question, or 17.8c
per valid question. While the cost per valid ques-
tion was comparable to the initial annotation, we
gathered many more negative examples (which
may serve useful in future work), and this method
allowed us to focus on questions that were missed
in the first round and improve the exhaustiveness
of the annotation (whereas it is not obvious how
to make fully crowdsourced annotation more ex-
haustive at a comparable cost per question).

Retrained model We retrained our final model
on the training set extended with the new valid
questions, yielding modest improvements on both
span detection and question generation in the de-
velopment set (see Table 7). The span detection
numbers are higher than on the original dataset,
because the expanded development data captures
true positives produced by the original model (and
the resulting increase in precision can be traded off
for recall as well).

6 Final Evaluation

We use the crowdsourced validation step to do
a final human evaluation of our models. We
test 3 parsers: the span-based span detection
model paired with each of the local and sequential
question generation models trained on the initial
dataset, and our final model (span-based span de-
tection and sequential question generation) trained
with the expanded data.

Methodology On the 5,205 sentence densely
annotated subset of dev and test, we generate QA-
SRL labels with all of the models using a span
detection threshold of τ = 0.2 and combine the
questions with the existing data. We filter out
questions that fail the autocomplete grammatical-
ity check (counting them invalid) and pass the data
into the validation step, annotating each question
to a total of 6 validator judgments. We then com-
pute question and span accuracy as follows: A
question is considered correct if 5 out of 6 anno-
tators consider it valid, and a span is considered
correct if its generated question is correct and the
span is among those selected for the question by
validators. We rank all questions and spans by the
threshold at which they are generated, which al-
lows us to compute accuracy at different levels of
recall.

Results Figure 3 shows the results. As expected,
the sequence-based question generation models
are much more accurate than the local model; this
is largely because the local model generated many
questions that failed the grammaticality check.
Furthermore, training with our expanded data re-
sults in more questions and spans generated at the
same threshold. If we choose a threshold value
which gives a similar number of questions per sen-
tence as were labeled in the original data annota-
tion (2 questions / verb), question and span accu-
racy are 82.64% and 77.61%, respectively.

Table 8 shows the output of our best system on
3 randomly selected sentences from our develop-
ment set (one from each domain). The model was
overall highly accurate—only one question and 3
spans are considered incorrect, and each mistake is
nearly correct,6 even when the sentence contains a
negation.

6The incorrect question “When did someone appear?”
would be correct if the Prep and Misc slots were corrected
to read “When did someone appear to do something?”
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(a) Question accuracy on Dev (b) Question accuracy on Test

(c) Span accuracy on Dev (d) Span accuracy on Test

Figure 3: Human evaluation accuracy for questions and spans, as each model’s span detection threshold is
varied. Questions are considered correct if 5 out of 6 annotators consider it valid. Spans are considered
correct if their question was valid, and the span was among those labeled by human annotators for
that question. The vertical line indicates a threshold value where the number of questions per sentence
matches that of the original labeled data (2 questions / verb).

7 Related Work

Resources and formalisms for semantics often
require expert annotation and underlying syntax
(Palmer et al., 2005; Baker et al., 1998; Banarescu
et al., 2013). Some more recent semantic re-
sources require less annotator training, or can
be crowdsourced (Abend and Rappoport, 2013;
Reisinger et al., 2015; Basile et al., 2012; Michael
et al., 2018). In particular, the original QA-SRL
(He et al., 2015) dataset is annotated by free-
lancers, while we developed streamlined crowd-
sourcing approaches for more scalable annotation.

Crowdsourcing has also been used for indirectly
annotating syntax (He et al., 2016; Duan et al.,
2016), and to complement expert annotation of
SRL (Wang et al., 2018). Our crowdsourcing ap-
proach draws heavily on that of Michael et al.

(2018), with automatic two-stage validation for
the collected question-answer pairs.

More recently, models have been developed for
these newer semantic resources, such as UCCA
(Teichert et al., 2017) and Semantic Proto-Roles
(White et al., 2017). Our work is the first high-
quality parser for QA-SRL, which has several
unique modeling challenges, such as its highly
structured nature and the noise in crowdsourcing.

Several recent works have explored neural mod-
els for SRL tasks (Collobert and Weston, 2007;
FitzGerald et al., 2015; Swayamdipta et al., 2017;
Yang and Mitchell, 2017), many of which em-
ploy a BIO encoding (Zhou and Xu, 2015; He
et al., 2017). Recently, span-based models have
proven to be useful for question answering (Lee
et al., 2016) and coreference resolution (Lee et al.,
2017), and PropBank SRL (He et al., 2018).
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Produced

What produced something? A much larger super eruption

Where did something produce something? in Colorado

What did something produce? over 5,000 cubic kilometers of material

A much larger super 
eruption in Colorado 
produced over 5,000 

cubic kilometers of 
material.

appeared

Where didn’t someone appear to do something? In the video

Who didn’t appear to do something? the perpetrators

When did someone appear? never

What didn’t someone appear to do?
look at the camera

to look at the camera

look

Where didn't someone look at something? In the video

Who didn’t look? the perpetrators

What didn’t someone look at? the camera

In the video, the 
perpetrators never 
appeared to look 

at the camera.

met

Who met someone?
Some of the vegetarians

vegetarians

Who met? he

What did someone meet? members of the Theosophical Society

founded

What had been founded?
members of the Theosophical Society

the Theosophical Society

When was something founded?
in 1875

1875

Why has something been founded? to further universal brotherhood

devoted
What was devoted to something? members of the Theosophical Society

What was something devoted to? the study of Buddhist and Hindu literature

Some of the vegetarians 
he met were members 

of the Theosophical 
Society, which had been 
founded in 1875 to 

further universal 
brotherhood, and which 

was devoted to the 
study of Buddhist and 

Hindu literature.

Table 8: System output on 3 randomly sampled sentences from the development set (1 from each of the
3 domains). Spans were selected with τ = 0.5. Questions and spans with a red background were marked
incorrect during human evaluation.

8 Conclusion

In this paper, we demonstrated that QA-SRL
can be scaled to large datasets, enabling a
new methodology for labeling and producing
predicate-argument structures at a large scale. We
presented a new, scalable approach for crowd-
sourcing QA-SRL, which allowed us to collect
QA-SRL Bank 2.0, a new dataset covering over
250,000 question-answer pairs from over 64,000
sentences, in just 9 days. We demonstrated the
utility of this data by training the first parser which
is able to produce high-quality QA-SRL struc-
tures. Finally, we demonstrated that the validation
stage of our crowdsourcing pipeline, in combina-
tion with our parser tuned for recall, can be used
to add new annotations to the dataset, increasing
recall.
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Abstract

Semantic role labeling (SRL) is dedicated
to recognizing the predicate-argument
structure of a sentence. Previous stud-
ies have shown syntactic information has
a remarkable contribution to SRL per-
formance. However, such perception
was challenged by a few recent neural
SRL models which give impressive perfor-
mance without a syntactic backbone. This
paper intends to quantify the importance
of syntactic information to dependency
SRL in deep learning framework. We
propose an enhanced argument labeling
model companying with an extended k-
order argument pruning algorithm for ef-
fectively exploiting syntactic information.
Our model achieves state-of-the-art results
on the CoNLL-2008, 2009 benchmarks for
both English and Chinese, showing the
quantitative significance of syntax to neu-
ral SRL together with a thorough empiri-
cal survey over existing models.

1 Introduction

Semantic role labeling (SRL), namely semantic
parsing, is a shallow semantic parsing task, which
aims to recognize the predicate-argument structure
of each predicate in a sentence, such as who did
what to whom, where and when, etc. Specifically,
we seek to identify arguments and label their se-
mantic roles given a predicate. SRL is an impor-

∗ These authors made equal contribution.† Correspond-
ing author. This paper was partially supported by National
Key Research and Development Program of China (No.
2017YFB0304100), National Natural Science Foundation of
China (No. 61672343 and No. 61733011), Key Project
of National Society Science Foundation of China (No. 15-
ZDA041), The Art and Science Interdisciplinary Funds of
Shanghai Jiao Tong University (No. 14JCRZ04).

tant method to obtain semantic information ben-
eficial to a wide range of natural language pro-
cessing (NLP) tasks, including machine transla-
tion (Shi et al., 2016), question answering (Berant
et al., 2013; Yih et al., 2016) and discourse relation
sense classification (Mihaylov and Frank, 2016).

There are two formulizations for semantic
predicate-argument structures, one is based on
constituents (i.e., phrase or span), the other is
based on dependencies. The latter proposed by
the CoNLL-2008 shared task (Surdeanu et al.,
2008) is also called semantic dependency pars-
ing, which annotates the heads of arguments rather
than phrasal arguments. Generally, SRL is de-
composed into multi-step classification subtasks
in pipeline systems, consisting of predicate identi-
fication and disambiguation, argument identifica-
tion and classification.

In prior work of SRL, considerable attention
has been paid to feature engineering that struggles
to capture sufficient discriminative information,
while neural network models are capable of ex-
tracting features automatically. In particular, syn-
tactic information, including syntactic tree feature,
has been show extremely beneficial to SRL since
a larger scale of empirical verification of Pun-
yakanok et al. (2008). However, all the work had
to take the risk of erroneous syntactic input, lead-
ing to an unsatisfactory performance.

To alleviate the above issues, Marcheggiani
et al. (2017) propose a simple but effective model
for dependency SRL without syntactic input. It
seems that neural SRL does not have to rely on
syntactic features, contradicting with the belief
that syntax is a necessary prerequisite for SRL as
early as Gildea and Palmer (2002). This dramatic
contradiction motivates us to make a thorough ex-
ploration on syntactic contribution to SRL.

This paper will focus on semantic dependency
parsing and formulate SRL as one or two se-
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quence tagging tasks with predicate-specific en-
coding. With the help of the proposed k-order
argument pruning algorithm over syntactic tree,
our model obtains state-of-the-art scores on the
CoNLL benchmarks for both English and Chinese.

In order to quantitatively evaluate the contri-
bution of syntax to SRL, we adopt the ratio be-
tween labeled F1 score for semantic dependencies
(Sem-F1) and the labeled attachment score (LAS)
for syntactic dependencies introduced by CoNLL-
2008 Shared Task1 as evaluation metric. Consid-
ering that various syntactic parsers contribute dif-
ferent syntactic inputs with various range of qual-
ity levels, the ratio provides a fairer comparison
between syntactically-driven SRL systems, which
will be surveyed by our empirical study.

2 Model

To fully disclose the predicate-argument structure,
typical SRL systems have to step by step perform
four subtasks. Since the predicates in CoNLL-
2009 (Hajič et al., 2009) corpus have been pre-
identified, we need to tackle three other subtasks,
which are formulized into two-step pipeline in this
work, predicate disambiguation and argument la-
beling. Namely, we do the work of argument iden-
tification and classification in one model.

Argument structure for each known predicate
will be disclosed by our argument labeler over
a sequence including possible arguments (candi-
dates). There are two ways to determine the se-
quence, one is to simply input the entire sentence
as a syntax-agnostic SRL system does, the other
is to select words according to syntactic parse
tree around the predicate as most previous SRL
systems did. The latter strategy usually works
through a syntactic tree based argument pruning
algorithm. We will use the proposed k-order ar-
gument pruning algorithm (Section 2.1) to get a
sequence w = (w1, . . . , wn) for each predicate.
Then, we represent each word wi ∈ w as xi (Sec-
tion 2.2). Eventually, we obtain contextual fea-
tures with sequence encoder (Section 2.3). The
overall role labeling model is depicted in Figure 1.

2.1 Argument Pruning

As pointed out by Punyakanok et al. (2008), syn-
tactic information is most relevant in identifying

1CoNLL-2008 is an English-only task, while CoNLL-
2009 extends to a multilingual one. Their main difference is
that predicates have been beforehand indicated for the latter.

BiLSTM

CNN

+

BiLSTM

Word 
Representation

Hidden Layer

Softmax

xie xre xpe xce xle xpos xde

Highway... ... ... ... ... ...

Figure 1: The Argument Labeling Model

the arguments, and the most crucial contribution
of full parsing is in the pruning stage. In this pa-
per, we propose a k-order argument pruning al-
gorithm inspired by Zhao et al. (2009b). First of
all, for node n and its descendant nd in a syn-
tactic dependency tree, we define the order to be
the distance between the two nodes, denoted as
D(n, nd). Then we define k-order descendants of
given node satisfying D(n, nd) = k, and k-order
traversal that visits each node from the given node
to its descendant nodes within k-th order. Note
that the definition of k-order traversal is somewhat
different from tree traversal in terminology.

A brief description of the proposed k-order
pruning algorithm is given as follow. Initially, we
set a given predicate as the current node in a syn-
tactic dependency tree. Then, collect all its argu-
ment candidates by the strategy of k-order traver-
sal. Afterwards, reset the current node to its syn-
tactic head and repeat the previous step till the root
of the tree. Finally, collect the root and stop. The
k-order argument algorithm is presented in Algo-
rithm 1 in detail. An example of a syntactic de-
pendency tree for sentence She began to trade the
art for money is shown in Figure 2.

The main reasons for applying the extended k-
order argument pruning algorithm are two-fold.
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Algorithm 1 k-order argument pruning algorithm
Input: A predicate p, the root node r given a syn-

tactic dependency tree T , the order k
Output: The set of argument candidates S

1: initialization set p as current node c, c = p
2: for each descendant ni of c in T do
3: if D(c, ni) ≤ k and ni /∈ S then
4: S = S + ni
5: end if
6: end for
7: find the syntactic head ch of c, and let c = ch
8: if c = r then
9: S = S + r

10: else
11: goto step 2
12: end if
13: return argument candidates set S

First, previous standard pruning algorithm may
hurt the argument coverage too much, even though
indeed arguments usually tend to surround their
predicate in a close distance. As a sequence tag-
ging model has been applied, it can effectively
handle the imbalanced distribution between argu-
ments and non-arguments, which is hardly tack-
led by early argument classification models that
commonly adopt the standard pruning algorithm.
Second, the extended pruning algorithm provides
a better trade-off between computational cost and
performance by carefully tuning k.

2.2 Word Representation

We produce a predicate-specific word represen-
tation xi for each word wi, where i stands for
the word position in an input sequence, follow-
ing Marcheggiani et al. (2017). However, we dif-
fer by (1) leveraging a predicate-specific indicator
embedding, (2) using deeper refined representa-
tion, including character and dependency relation
embeddings, and (3) applying recent advances in
RNNs, such as highway connections (Srivastava
et al., 2015).

In this work, word representation xi is the con-
catenation of four types of features: predicate-
specific feature, character-level, word-level and
linguistic features. Unlike previous work, we
leverage a predicate-specific indicator embedding
xiei rather than directly using a binary flag either
0 or 1. At character level, we exploit convolu-
tional neural network (CNN) with bidirectional
LSTM (BiLSTM) to learn character embedding

ROOT

the

She

began

to

trade

art

for

money

SBJ OPRD

IM

OBJ

NMOD NMOD

PMOD

1st-order 2nd-order 3rd-order

Figure 2: An example of first-order, second-order
and third-order argument pruning. Shadow part
indicates the given predicate.

xcei . As shown in Figure 1, the representation
calculated by the CNN is fed as input to BiL-
STM. At word level, we use a randomly initial-
ized word embedding xrei and a pre-trained word
embedding xpei . For linguistic features, we em-
ploy a randomly initialized lemma embedding xlei
and a randomly initialized POS tag embedding
xposi . In order to incorporate more syntactic in-
formation, we adopt an additional feature, the de-
pendency relation to syntactic head. Likewise,
it is a randomly initialized embedding xdei . The
resulting word representation is concatenated as
xi = [xiei , x

ce
i , x

re
i , x

pe
i , x

le
i , x

pos
i , xdei ].

2.3 Sequence Encoder

As Long short-term memory (LSTM) net-
works (Hochreiter and Schmidhuber, 1997) have
shown significant representational effectiveness to
NLP tasks, we thus use BiLSTM as the sen-
tence encorder. Given an input sequence x =
(x1, . . . , xn), BiLSTM processes the sequence in
both forward and backward direction to obtain two
separated hidden states,

−→
h i which handles data

from x1 to xi and
←−
h i which tackles data from xn

to xi for each word representation. Finally, we get
a contextual representation hi = [

−→
h i,
←−
h i] by con-

catenating the states of BiLSTM networks.
To get the final predicted semantic roles, we ex-

ploit a multi-layer perceptron (MLP) with high-
way connections on the top of BiLSTM networks,
which takes as input the hidden representation hi
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Hyperparameter values
die (indicator embedding) 16
dpe (pre-trained embedding) 100
dce (character embedding) 300
dre (word embedding) 100
dle (lemma embedding) 100
dpos (POS tag embedding) 32
dde (dependency label embedding) 64
LSTM hidden sizes 512
BiLSTM layers 4
Hidden layers 10
Learning rate 0.001
Word dropout 0.1

Table 1: Hyperparameter values.

of all time steps. The MLP network consists of 10
layers with highway connections and we employ
ReLU activations for the hidden layers. Finally,
we use a softmax layer over the outputs to maxi-
mize the likelihood of labels.

2.4 Predicate Disambiguation

Although predicates have been identified given
a sentence, predicate disambiguation is an in-
dispensable task, which aims to determine the
predicate-argument structure for an identified
predicate in a particular context. Here, we also
use the identical model (BiLSTM composed with
MLP) for predicate disambiguation, in which the
only difference is that we remove the syntactic de-
pendency relation feature in corresponding word
representation (Section 2.2). Exactly, given a
predicate p, the resulting word representation is
pi = [piei , p

ce
i , p

re
i , p

pe
i , p

le
i , p

pos
i ].

3 Experiments

Our model2 is evaluated on the CoNLL-2009
shared task both for English and Chinese datasets,
following the standard training, development and
test splits. The hyperparameters in our model were
selected based on the development set, and are
summarized in Table 1. Note that the parame-
ters of predicate model are the same as these in
argument model. All real vectors are randomly
initialized, and the pre-trained word embeddings
for English are GloVe vectors (Pennington et al.,
2014). For Chinese, we exploit Wikipedia doc-
uments to train Word2Vec embeddings (Mikolov

2The code is available at https://github.com/
bcmi220/srl_syn_pruning.
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Figure 3: Changing curves of coverage and reduc-
tion with different k value on English training set.
The coverage rate is the proportion of true argu-
ments in pruning output, while the reduction is the
one of pruned argument candidates in total tokens.

et al., 2013). During training procedures, we use
the categorical cross-entropy as objective, with
Adam optimizer (Kingma and Ba, 2015). We train
models for a maximum of 20 epochs and obtain
the nearly best model based on development re-
sults. For argument labeling, we preprocess cor-
pus with k-order argument pruning algorithm. In
addition, we use four CNN layers with single-
layer BiLSTM to induce character representations
derived from sentences. For English3, to fur-
ther enhance the representation, we adopt CNN-
BiLSTM character embedding structure from Al-
lenNLP toolkit (Peters et al., 2018).

3.1 Preprocessing

During the pruning of argument candidates, we
use the officially predicted syntactic parses pro-
vided by CoNLL-2009 shared-task organizers on
both English and Chinese. Figure 3 shows chang-
ing curves of coverage and reduction following k
on the English train set. According to our statis-
tics, the number of non-arguments is ten times
more than that of arguments, where the data dis-
tribution is fairly unbalanced. However, a proper
pruning strategy could alleviate this problem. Ac-
cordingly, the first-order pruning reduces more
than 50% candidates at the cost of missing 5.5%
true ones on average, and the second-order prunes
about 40% candidates with nearly 2.0% loss. The
coverage of third-order has achieved 99% and it
reduces approximately 1/3 corpus size.

It is worth noting that as k is larger than 19,

3For Chinese, we do not use character embedding.
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System (syntax-aware) P R F1

Single model
Zhao et al. (2009a) − − 86.2
Zhao et al. (2009c) − − 85.4
Björkelund et al. (2010) 87.1 84.5 85.8
Lei et al. (2015) − − 86.6
FitzGerald et al. (2015) − − 86.7
Roth and Lapata (2016) 88.1 85.3 86.7
Marcheggiani and Titov (2017) 89.1 86.8 88.0
Ours 89.7 89.3 89.5
Ensemble model
FitzGerald et al. (2015) − − 87.7
Roth and Lapata (2016) 90.3 85.7 87.9
Marcheggiani and Titov (2017) 90.5 87.7 89.1

System (syntax-agnostic) P R F1

Marcheggiani et al. (2017) 88.7 86.8 87.7
Ours 89.5 87.9 88.7

Table 2: Results on the English test set (WSJ).

there will come full coverage on all argument can-
didates for English training set, which let our high
order pruning algorithm degrade into a syntax-
agnostic setting. In this work, we use the tenth-
order pruning for pursuing the best performance.

3.2 Results

Our system performance is measured with the of-
ficial script from CoNLL-2009 benchmarks, com-
bining the output of our predicate disambigua-
tion with our semantic role labeling. Our predi-
cate disambiguation model achieves the accuracy
of 95.01% and 95.58%4 on development and test
sets, respectively. We compare our model per-
formance with the state-of-the-art models for de-
pendency SRL.5 Noteworthily, our model is lo-
cal and single without reranking, which neither
includes global inference nor combines multiple
models. The experimental results on the English
in-domain (WSJ) and out-of-domain (Brown) test
sets are shown in Tables 2 and 3, respectively.

For English, our syntax-aware model outper-
forms previously published best single model,
scoring 89.5% F1 with 1.5% absolute improve-
ment on the in-domain (WSJ) test data. Compared

4Note that we give a slightly better predicate model than
Roth and Lapata (2016), with 94.77% and 95.47% accuracy
on development and test sets, respectively.

5Here, we do not compare against span-based SRL mod-
els, which annotate roles for entire argument spans instead of
semantic dependencies.

System (syntax-aware) P R F1

Single model
Zhao et al. (2009a) − − 74.6
Zhao et al. (2009c) − − 73.3
Björkelund et al. (2010) 75.7 72.2 73.9
Lei et al. (2015) − − 75.6
FitzGerald et al. (2015) − − 75.2
Roth and Lapata (2016) 76.9 73.8 75.3
Marcheggiani and Titov (2017) 78.5 75.9 77.2
Ours 81.9 76.9 79.3
Ensemble model
FitzGerald et al. (2015) − − 75.5
Roth and Lapata (2016) 79.7 73.6 76.5
Marcheggiani and Titov (2017) 80.8 77.1 78.9

System (syntax-agnostic) P R F1

Marcheggiani et al. (2017) 79.4 76.2 77.7
Ours 81.7 76.1 78.8

Table 3: Results on English out-of-domain test set
(Brown).

System (syntax-aware) P R F1

Zhao et al. (2009a) 80.4 75.2 77.7
Björkelund et al. (2009) 82.4 75.1 78.6
Roth and Lapata (2016) 83.2 75.9 79.4
Marcheggiani and Titov (2017) 84.6 80.4 82.5
Ours 84.2 81.5 82.8

System (syntax-agnostic) P R F1

Marcheggiani et al. (2017) 83.4 79.1 81.2
Ours 84.5 79.3 81.8

Table 4: Results on the Chinese test set.

with ensemble models, our single model even pro-
vides better performance (+0.4% F1) than the sys-
tem (Marcheggiani and Titov, 2017), and signifi-
cantly surpasses all the rest models. In the syntax-
agnostic setting (without pruning and dependency
relation embedding), we also reach the new state-
of-the-art, achieving a performance gain of 1% F1.

On the out-of-domain (Brown) test set, we
achieve the new best results of 79.3% (syntax-
aware) and 78.8% (syntax-agnostic) in F1 scores.
Moreover, our syntax-aware model performs bet-
ter than the syntax-agnostic one.

Table 4 presents the results on Chinese test set.
Even though we use the same parameters as for
English, our model also outperforms the best re-
ported results by 0.3% (syntax-aware) and 0.6%
(syntax-agnostic) in F1 scores.
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System(without predicate sense) P R F1

1st-order 84.4 82.6 83.5
2nd-order 84.8 83.0 83.9
3rd-order 85.1 83.3 84.2
Marcheggiani and Titov (2017) 85.2 81.6 83.3

Table 5: SRL results without predicate sense.

Our system P R F1

BiLSTM 86.5 85.1 85.8
basic model 86.3 85.7 86.0
+ indicator embedding 86.8 85.8 86.3
+ character embedding 87.2 86.6 86.9
+ both 87.7 87.0 87.3
BiLSTM + both 87.3 86.7 87.0

Table 6: Ablation on development set. The “+”
denotes a specific version over the basic model.

3.3 Analysis

To evaluate the contributions of key factors in our
method, a series of ablation studies are performed
on the English development set.

In order to demonstrate the effectiveness of our
k-order pruning algorithm, we report the SRL per-
formance excluding predicate senses in evalua-
tion, eliminating the performance gain from pred-
icate disambiguation. Table 5 shows the results
from our syntax-aware model with lower order ar-
gument pruning. Compared to the best previous
model, our system still yields an increment in re-
call by more than 1%, leading to improvements in
F1 score. It demonstrates that refining syntactic
parser tree based candidate pruning does help in
argument recognition.

Table 6 presents the performance of our syntax-
agnostic SRL system with a basic configuration,
which removes components, including indicator
and character embeddings. Note that the first
row is the results of BiLSTM (removing MLP
from basic model), whose encoding is the same
as Marcheggiani et al. (2017). Experiments show
that both enhanced representations improve over
our basic model, and our adopted labeling model
is superior to the simple BiLSTM.

Figure 4 shows F1 scores in different k-order
pruning together with our syntax-agnostic model.
It also indicates that the least first-order pruning
fails to give satisfactory performance, the best per-
forming setting coming from a moderate setting of
k = 10, and the largest k shows that our argu-
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Figure 4: F1 scores by k-order pruning and the
syntax-agnostic result on English development set.

ment pruning falls back to syntax-agnostic type.
Meanwhile, from the best k setting to the lower
order pruning, we receive a much faster perfor-
mance drop, compared to the higher order prun-
ing until the complete syntax-agnostic case. The
proposed k-order pruning algorithm always works
even it reaches the syntax-agnostic setting, which
empirically explains why the current syntax-aware
and syntax-agnostic SRL models hold little per-
formance difference, as maximum k-order prun-
ing actually removes few words just like syntax-
agnostic model.

3.4 End-to-end SRL
In this work, we consider additional model that
integrates predicate disambiguation and argument
labeling into one sequence labeling model. In or-
der to implement an end-to-end model, we intro-
duce a virtual root (VR) for predicate disambigua-
tion similar to Zhao et al. (2013) who handled the
entire SRL task as word pair classification. Con-
cretely, we add a predicate sense feature to the in-
put sequence by concatenating a VR. The word
representation of VR is randomly initialized dur-
ing training. In Figure 5, we give an example se-
quence with the labels for the given sentence.

We also report results of our end-to-end model
on CoNLL-2009 test set with syntax-aware and
syntax-agnostic settings. As shown in Table 7,
our end-to-end model yields slightly weaker per-
formance compared with our pipeline. A reason-
able account for performance degradation is that
the training data has completely different genre
distributions over predicate senses and argument
roles, which may be somewhat confusing for inte-
grative model to make classification decisions.
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A2
A0

02

<VR>      Someone    makes      you      happy
NONE

A1

Figure 5: An example sequence with labels of end-
to-end model (makes is the given predicate).

Our system P R F1

syntax-aware (end-to-end) 89.3 88.7 89.0
syntax-aware (pipeline) 89.7 89.3 89.5
syntax-agnostic (end-to-end) 88.9 87.9 88.4
syntax-agnostic (pipeline) 89.5 87.9 88.7

Table 7: Comparison of results on CoNLL-2009
data between our end-to-end and pipeline models.

3.5 CoNLL-2008 SRL Setting

For a full SRL task, the predicate identification
subtask is also indispensable, which has been in-
cluded in CoNLL-2008 shared task. We thus eval-
uate our model in terms of data and setting of the
CoNLL-2008 benchmark (WSJ).

To identify predicates, we train the BiLSTM-
MLP sequence labeling model with same param-
eters in Section 2.4 to tackle the predicate identi-
fication and disambiguation subtasks in one shot,
and the only difference is that we remove the
predicate-specific indicator feature. The F1 score
of our predicate labeling model is 90.53% on in-
domain (WSJ) data. Compared with the best re-
ported results, we observe absolute improvements
in semantic F1 of 0.8% (in Table 8). Note that
as predicate identification is introduced, our same
model shows about 6% performance loss for either
syntax-agnostic or syntax-aware case, which indi-
cates that predicate identification should be care-
fully handled, as it is very needed in a complete
practical SRL system.

4 Syntactic Contribution

Syntactic information plays an informative role
in semantic role labeling. However, few studies
were done to quantitatively evaluate the syntac-
tic contribution to SRL. Furthermore, we observe
that most of the above compared neural SRL sys-
tems took the syntactic parser of (Björkelund et al.,
2010) as syntactic inputs instead of the one from
CoNLL-2009 shared task, which adopted a much
weaker syntactic parser. Especially (Marcheggiani
and Titov, 2017), adopted an external syntactic

System LAS Sem-F1

Johansson and Nugues (2008) 90.13 81.75
Zhao and Kit (2008) 87.52 77.67
Zhao et al. (2009b) 88.39 82.1 (80.53)

89.28 82.5 (80.94)
Zhao et al. (2013) 88.39 82.5 (80.91)

89.28 82.4 (80.88)
Ours (syntax-agnostic) − 82.9
Ours (syntax-aware) 86.0 83.3

Table 8: Results on the CoNLL-2008 in-domain
(WSJ) test set. The results in parenthesis are on
WSJ + Brown test set.

parser with even higher parsing accuracy. Con-
trarily, our SRL model is based on the automati-
cally predicted parse with moderate performance
provided by CoNLL-2009 shared task, but outper-
forms their models.

This section thus attempts to explore how much
syntax contributes to dependency-based SRL in
deep learning framework and how to effectively
evaluate relative performance of syntax-based
SRL. To this end, we conduct experiments for em-
pirical analysis with different syntactic inputs.

Syntactic Input In order to obtain different syn-
tactic inputs, we design a faulty syntactic tree gen-
erator (refer to STG hereafter), which is able to
produce random errors in the output parse tree like
a true parser does. To simplify implementation,
we construct a new syntactic tree based on the gold
standard parse tree. Given an input error probabil-
ity distribution estimated from a true parser output,
our algorithm presented in Algorithm 2 stochasti-
cally modifies the syntactic heads of nodes on the
premise of a valid tree.

Evaluation Measure For SRL task, the primary
evaluation measure is the semantic labeled F1

score. However, the score is influenced by the
quality of syntactic input to some extent, lead-
ing to unfaithfully reflecting the competence of
syntax-based SRL system. Namely, this is not the
outcome of a true and fair quantitative comparison
for these types of SRL models. To normalize the
semantic score relative to syntactic parse, we take
into account additional evaluation measure to esti-
mate the actual overall performance of SRL. Here,
we use the ratio between labeled F1 score for se-
mantic dependencies (Sem-F1) and the labeled at-
tachment score (LAS) for syntactic dependencies
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System LAS (%) P (%) R (%) Sem-F1 (%) Sem-F1/LAS (%)
Zhao et al. (2009c) [SRL-only] 86.0 − − 85.4 99.3
Zhao et al. (2009a) [Joint] 89.2 − − 86.2 96.6
Björkelund et al. (2010) 89.8 87.1 84.5 85.8 95.6
Lei et al. (2015) 90.4 − − 86.6 95.8
Roth and Lapata (2016) 89.8 88.1 85.3 86.7 96.5
Marcheggiani and Titov (2017) 90.3∗ 89.1 86.8 88.0 97.5
Ours + CoNLL-2009 predicted 86.0 89.7 89.3 89.5 104.0
Ours + Auto syntax 90.0 90.5 89.3 89.9 99.9
Ours + Gold syntax 100 91.0 89.7 90.3 90.3

Table 9: Results on English test set, in terms of labeled attachment score for syntactic dependencies
(LAS), semantic precision (P), semantic recall (R), semantic labeled F1 score (Sem-F1), the ratio Sem-
F1/LAS. A superscript * indicates LAS results from our personal communication with the authors.

Algorithm 2 Faulty Syntactic Tree Generator
Input: A gold standard syntactic tree GT , the

specific error probability p
Output: The new generative syntactic tree NT

1: N denotes the number of nodes in GT
2: for each node n ∈ GT do
3: r = random(0, 1), a random number
4: if r < p then
5: h = random(0, N ), a random integer
6: find the syntactic head nh of n in GT
7: modify nh = h, and get a new tree NT
8: if NT is a valid tree then
9: break

10: else
11: goto step 5
12: end if
13: end if
14: end for
15: return the new generative tree NT

proposed by Surdeanu et al. (2008) as evaluation
metric.6 The benefits of this measure are twofold:
quantitatively evaluating syntactic contribution to
SRL and impartially estimating the true perfor-
mance of SRL, independent of the performance of
the input syntactic parser.

Table 9 reports the performance of existing
models7 in term of Sem-F1/LAS ratio on CoNLL-
2009 English test set. Interestingly, even though
our system has significantly lower scores than oth-
ers by 3.8% LAS in syntactic components, we

6The idea of ratio score in Surdeanu et al. (2008) actually
was from author of this paper, Hai Zhao, which has been indi-
cated in the acknowledgement part of Surdeanu et al. (2008).

7Note that several SRL systems without providing syntac-
tic information are not listed in the table.
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Figure 6: The Sem-F1 scores of our mod-
els with different quality of syntactic inputs vs.
GCNs (Marcheggiani and Titov, 2017) on test set.

obtain the highest results both on Sem-F1 and
the Sem-F1/LAS ratio, respectively. These results
show that our SRL component is relatively much
stronger. Moreover, the ratio comparison in Table
9 also shows that since the CoNLL-2009 shared
task, most SRL works actually benefit from the
enhanced syntactic component rather than the im-
proved SRL component itself. All post-CoNLL
SRL systems, either traditional or neural types, did
not exceed the top systems of CoNLL-2009 shared
task, (Zhao et al., 2009c) (SRL-only track using
the provided predicated syntax) and (Zhao et al.,
2009a) (Joint track using self-developed parser).
We believe that this work for the first time reports
both higher Sem-F1 and higher Sem-F1/LAS ratio
since CoNLL-2009 shared task.

We also perform our first and tenth order prun-
ing models with different erroneous syntactic in-
puts generated from STG and evaluate their per-
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formance using the Sem-F1/LAS ratio. Figure 6
shows Sem-F1 scores at different quality of syn-
tactic parse inputs on the English test set whose
LAS varies from 85% to 100%. Compared to pre-
vious state-of-the-arts (Marcheggiani and Titov,
2017). Our tenth-order pruning model gives quite
stable SRL performance no matter the syntactic in-
put quality varies in a broad range, while our first-
order pruning model yields overall lower results
(1-5% F1 drop), owing to missing too many true
arguments. These results show that high-quality
syntactic parses may indeed enhance dependency
SRL. Furthermore, it indicates that our model with
an accurate enough syntactic input as Marcheg-
giani and Titov (2017), namely, 90% LAS, will
give a Sem-F1 exceeding 90% for the first time in
the research timeline of semantic role labeling.

5 Related Work

Semantic role labeling was pioneered by Gildea
and Jurafsky (2002). Most traditional SRL models
rely heavily on feature templates (Pradhan et al.,
2005; Zhao et al., 2009b; Björkelund et al., 2009).
Among them, Pradhan et al. (2005) combined fea-
tures derived from different syntactic parses based
on SVM classifier, while Zhao et al. (2009b) pre-
sented an integrative approach for dependency
SRL by greedy feature selection algorithm. Later,
Collobert et al. (2011) proposed a convolutional
neural network model of inducing word embed-
dings substituting for hand-crafted features, which
was a breakthrough for SRL task.

With the impressive success of deep neural net-
works in various NLP tasks (Zhang et al., 2016;
Qin et al., 2017; Cai et al., 2017), a series of neu-
ral SRL systems have been proposed. Foland and
Martin (2015) presented a dependency semantic
role labeler using convolutional and time-domain
neural networks, while FitzGerald et al. (2015) ex-
ploited neural network to jointly embed arguments
and semantic roles, akin to the work (Lei et al.,
2015), which induced a compact feature represen-
tation applying tensor-based approach. Recently,
researchers consider multiple ways to effectively
integrate syntax into SRL learning. Roth and La-
pata (2016) introduced dependency path embed-
ding to model syntactic information and exhib-
ited a notable success. Marcheggiani and Titov
(2017) leveraged the graph convolutional network
to incorporate syntax into neural models. Dif-
ferently, Marcheggiani et al. (2017) proposed a

syntax-agnostic model using effective word repre-
sentation for dependency SRL, which for the first
time achieves comparable performance as state-
of-the-art syntax-aware SRL models.

However, most neural SRL works seldom pay
much attention to the impact of input syntactic
parse over the resulting SRL performance. This
work is thus more than proposing a high perfor-
mance SRL model through reviewing the high-
lights of previous models, and presenting an ef-
fective syntactic tree based argument pruning. Our
work is also closely related to (Punyakanok et al.,
2008; He et al., 2017). Under the traditional meth-
ods, Punyakanok et al. (2008) investigated the
significance of syntax to SRL system and shown
syntactic information most crucial in the pruning
stage. He et al. (2017) presented extensive error
analysis with deep learning model for span SRL,
including discussion of how constituent syntactic
parser could be used to improve SRL performance.

6 Conclusion and Future Work

This paper presents a simple and effective neural
model for dependency-based SRL, incorporating
syntactic information with the proposed extended
k-order pruning algorithm. With a large enough
setting of k, our pruning algorithm will result in a
syntax-agnostic setting for the argument labeling
model, which smoothly unifies syntax-aware and
syntax-agnostic SRL in a consistent way. Experi-
mental results show that with the help of deep en-
hanced representation, our model outperforms the
previous state-of-the-art models in both syntax-
aware and syntax-agnostic situations.

In addition, we consider the Sem-F1/LAS ra-
tio as a mean of evaluating syntactic contribution
to SRL, and true performance of SRL independent
of the quality of syntactic parser. Though we again
confirm the importance of syntax to SRL with em-
pirical experiments, we are aware that since (Prad-
han et al., 2005), the gap between syntax-aware
and syntax-agnostic SRL has been greatly re-
duced, from as high as 10% to only 1-2% perfor-
mance loss in this work. However, maybe we will
never reach a satisfying conclusion, as whenever
one proposes a syntax-agnostic SRL system which
can outperform all syntax-aware ones at then, al-
ways there comes argument that you have never
fully explored creative new method to effectively
exploit the syntax input.
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Jan Hajič, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antònia Martı́, Lluı́s
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Abstract

We propose a learning approach for map-
ping context-dependent sequential instruc-
tions to actions. We address the prob-
lem of discourse and state dependencies
with an attention-based model that consid-
ers both the history of the interaction and
the state of the world. To train from start
and goal states without access to demon-
strations, we propose SESTRA, a learning
algorithm that takes advantage of single-
step reward observations and immediate
expected reward maximization. We eval-
uate on the SCONE domains, and show
absolute accuracy improvements of 9.8%-
25.3% across the domains over approaches
that use high-level logical representations.

1 Introduction

An agent executing a sequence of instruc-
tions must address multiple challenges, includ-
ing grounding the language to its observed en-
vironment, reasoning about discourse dependen-
cies, and generating actions to complete high-level
goals. For example, consider the environment and
instructions in Figure 1, in which a user describes
moving chemicals between beakers and mixing
chemicals together. To execute the second instruc-
tion, the agent needs to resolve sixth beaker and
last one to objects in the environment. The third
instruction requires resolving it to the rightmost
beaker mentioned in the second instruction, and
reasoning about the set of actions required to mix
the colors in the beaker to brown. In this paper,
we describe a model and learning approach to map
sequences of instructions to actions. Our model
considers previous utterances and the world state
to select actions, learns to combine simple actions
to achieve complex goals, and can be trained using

Start

Goal

throw out first beaker
POP 1, STOP

pour sixth beaker into last one
POP 6, POP 6, PUSH 7 O, PUSH 7 O, STOP

it turns brown
POP 7, POP 7, POP 7, PUSH 7 B, PUSH 7 B, PUSH 7 B, STOP

pour purple beaker into yellow one
POP 3, PUSH 5 P, STOP

throw out two units of brown one
POP 7, POP 7, STOP

Start

Goal
Figure 1: Example from the SCONE (Long et al.,
2016) ALCHEMY domain, including a start state (top),
sequence of instructions, and a goal state (bottom).
Each instruction is annotated with a sequence of ac-
tions from the set of actions we define for ALCHEMY.

goal states without access to demonstrations.
The majority of work on executing sequences

of instructions focuses on mapping instructions
to high-level formal representations, which are
then evaluated to generate actions (e.g., Chen and
Mooney, 2011; Long et al., 2016). For example,
the third instruction in Figure 1 will be mapped
to mix(prev_arg1), indicating that the mix action
should be applied to first argument of the previ-
ous action (Long et al., 2016; Guu et al., 2017). In
contrast, we focus on directly generating the se-
quence of actions. This requires resolving refer-
ences without explicitly modeling them, and learn-
ing the sequences of actions required to complete
high-level actions; for example, that mixing re-
quires removing everything in the beaker and re-
placing with the same number of brown items.

A key challenge in executing sequences of in-
structions is considering contextual cues from
both the history of the interaction and the state of
the world. Instructions often refer to previously
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mentioned objects (e.g., it in Figure 1) or actions
(e.g., do it again). The world state provides the set
of objects the instruction may refer to, and implic-
itly determines the available actions. For example,
liquid can not be removed from an empty beaker.
Both types of contexts continuously change during
an interaction. As new instructions are given, the
instruction history expands, and as the agent acts
the world state changes. We propose an attention-
based model that takes as input the current instruc-
tion, previous instructions, the initial world state,
and the current state. At each step, the model com-
putes attention encodings of the different inputs,
and predicts the next action to execute.

We train the model given instructions paired
with start and goal states without access to the
correct sequence of actions. During training, the
agent learns from rewards received through ex-
ploring the environment with the learned policy
by mapping instructions to sequences of actions.
In practice, the agent learns to execute instruc-
tions gradually, slowly correctly predicting pre-
fixes of the correct sequences of increasing length
as learning progress. A key challenge is learning
to correctly select actions that are only required
later in execution sequences. Early during learn-
ing, these actions receive negative updates, and the
agent learns to assign them low probabilities. This
results in an exploration problem in later stages,
where actions that are only required later are not
sampled during exploration. For example, in the
ALCHEMY domain shown in Figure 1, the agent
behavior early during execution of instructions can
be accomplished by only using POP actions. As
a result, the agent quickly learns a strong bias
against PUSH actions, which in practice prevents
the policy from exploring them again. We address
this with a learning algorithm that observes the re-
ward for all possible actions for each visited state,
and maximizes the immediate expected reward.

We evaluate our approach on SCONE (Long
et al., 2016), which includes three domains,
and is used to study recovering predicate logic
meaning representations for sequential instruc-
tions. We study the problem of generating a
sequence of low-level actions, and re-define the
set of actions for each domain. For example, we
treat the beakers in the ALCHEMY domain as
stacks and use only POP and PUSH actions. Our
approach robustly learns to execute sequential
instructions with up to 89.1% task-completion

accuracy for single instruction, and 62.7% for
complete sequences. Our code is available at
https://github.com/clic-lab/scone.

2 Technical Overview

Task and Notation Let S be the set of all pos-
sible world states, X be the set of all natural lan-
guage instructions, and A be the set of all actions.
An instruction x̄ ∈ X of length |x̄| is a sequence
of tokens 〈x1, ...x|x̄|〉. Executing an action modi-
fies the world state following a transition function
T : S ×A → S. For example, the ALCHEMY do-
main includes seven beakers that contain colored
liquids. The world state defines the content of each
beaker. We treat each beaker as a stack. The ac-
tions are POP N and PUSH N C, where 1 ≤ N ≤ 7
is the beaker number and C is one of six colors.
There are a total of 50 actions, including the STOP
action. Section 6 describes the domains in detail.

Given a start state s1 and a sequence of in-
structions 〈x̄1, . . . , x̄n〉, our goal is to generate the
sequence of actions specified by the instructions
starting from s1. We treat the execution of a se-
quence of instructions as executing each instruc-
tion in turn. The execution ē of an instruction x̄i
starting at a state s1 and given the history of the
instruction sequence 〈x̄1, . . . , x̄i−1〉 is a sequence
of state-action pairs ē = 〈(s1, a1), ..., (sm, am)〉,
where ak ∈ A, sk+1 = T (sk, ak). The final
action am is the special action STOP, which indi-
cates the execution has terminated. The final state
is then sm, as T (sk, STOP) = sk. Executing a
sequence of instructions in order generates a se-
quence 〈ē1, ..., ēn〉, where ēi is the execution of
instruction x̄i. When referring to states and ac-
tions in an indexed execution ēi, the k-th state and
action are si,k and ai,k. We execute instructions
one after the other: ē1 starts at the interaction ini-
tial state s1 and si+1,1 = si,|ēi|, where si+1,1 is the
start state of ēi+1 and si,|ēi| is the final state of ēi.

Model We model the agent with a neural net-
work policy (Section 4). At step k of execut-
ing the i-th instruction, the model input is the
current instruction x̄i, the previous instructions
〈x̄1, . . . , x̄i−1〉, the world state s1 at the begin-
ning of executing x̄i, and the current state sk.
The model predicts the next action ak to exe-
cute. If ak = STOP, we switch to the next in-
struction, or if at the end of the instruction se-
quence, terminate. Otherwise, we update the state
to sk+1 = T (sk, ak). The model uses attention to
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process the different inputs and a recurrent neural
network (RNN) decoder to generate actions (Bah-
danau et al., 2015).

Learning We assume access to a set of N in-
struction sequences, where each instruction in
each sequence is paired with its start and goal
states. During training, we create an exam-
ple for each instruction. Formally, the training
set is {(x̄(j)

i , s
(j)
i,1 , 〈x̄

(j)
1 , . . . , x̄

(j)
i−1〉, g

(j)
i )}N,n(j)

j=1,i=1,

where x̄(j)
i is an instruction, s(j)

i,1 is a start state,

〈x̄(j)
1 , . . . , x̄

(j)
i−1〉 is the instruction history, g(j)

i is
the goal state, and n(j) is the length of the j-th in-
struction sequence. This training data contains no
evidence about the actions and intermediate states
required to execute each instruction.1 We use a
learning method that maximizes the expected im-
mediate reward for a given state (Section 5). The
reward accounts for task-completion and distance
to the goal via potential-based reward shaping.

Evaluation We evaluate exact task comple-
tion for sequences of instructions on a test set
{(s(j)

1 , 〈x̄(j)
1 , . . . , x̄

(j)
nj 〉, g(j))}Nj=1, where g(j) is

the oracle goal state of executing instructions
x̄

(j)
1 , . . . ,x̄(j)

nj in order starting from s
(j)
1 . We also

evaluate single-instruction task completion using
per-instruction annotated start and goal states.

3 Related Work

Executing instructions has been studied using the
SAIL corpus (MacMahon et al., 2006) with focus
on navigation using high-level logical representa-
tions (Chen and Mooney, 2011; Chen, 2012; Artzi
and Zettlemoyer, 2013; Artzi et al., 2014) and low-
level actions (Mei et al., 2016). While SAIL in-
cludes sequences of instructions, the data demon-
strates limited discourse phenomena, and instruc-
tions are often processed in isolation. Approaches
that consider as input the entire sequence focused
on segmentation (Andreas and Klein, 2015). Re-
cently, other navigation tasks were proposed with
focus on single instructions (Anderson et al., 2018;
Janner et al., 2018). We focus on sequences of
environment manipulation instructions and mod-
eling contextual cues from both the changing en-
vironment and instruction history. Manipulation
using single-sentence instructions has been stud-

1This training set is a subset of the data used in previous
work (Section 6, Guu et al., 2015), in which training uses all
instruction sequences of length 1 and 2.

ied using the Blocks domain (Bisk et al., 2016,
2018; Misra et al., 2017; Tan and Bansal, 2018).
Our work is related to the work of Branavan et al.
(2009) and Vogel and Jurafsky (2010). While both
study executing sequences of instructions, similar
to SAIL, the data includes limited discourse de-
pendencies. In addition, both learn with rewards
computed from surface-form similarity between
text in the environment and the instruction. We
do not rely on such similarities, but instead use a
state distance metric.

Language understanding in interactive scenar-
ios that include multiple turns has been studied
with focus on dialogue for querying database sys-
tems using the ATIS corpus (Hemphill et al., 1990;
Dahl et al., 1994). Tür et al. (2010) surveys work
on ATIS. Miller et al. (1996), Zettlemoyer and
Collins (2009), and Suhr et al. (2018) modeled
context dependence in ATIS for generating formal
representations. In contrast, we focus on environ-
ments that change during execution and directly
generating environment actions, a scenario that is
more related to robotic agents than database query.

The SCONE corpus (Long et al., 2016) was
designed to reflect a broad set of discourse
context-dependence phenomena. It was stud-
ied extensively using logical meaning representa-
tions (Long et al., 2016; Guu et al., 2017; Fried
et al., 2018). In contrast, we are interested in
directly generating actions that modify the envi-
ronment. This requires generating lower-level ac-
tions and learning procedures that are otherwise
hardcoded in the logic (e.g., mixing action in Fig-
ure 1). Except for Fried et al. (2018), previous
work on SCONE assumes access only to the ini-
tial and final states during training. This form of
supervision does not require operating the agent
manually to acquire the correct sequence of ac-
tions, a difficult task in robotic agents with com-
plex control. Goal state supervision has been
studied for instructional language (e.g., Branavan
et al., 2009; Artzi and Zettlemoyer, 2013; Bisk
et al., 2016), and more extensively in question an-
swering when learning with answer annotations
only (e.g., Clarke et al., 2010; Liang et al., 2011;
Kwiatkowski et al., 2013; Berant et al., 2013; Be-
rant and Liang, 2014, 2015; Liang et al., 2017).

4 Model

We map sequences of instructions 〈x̄1, . . . , x̄n〉
to actions by executing the instructions in or-
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Utterance

initial state s1
<latexit sha1_base64="pSKeRC6KrabkRj9ZFy6P3Vrmkv4="></latexit><latexit sha1_base64="pSKeRC6KrabkRj9ZFy6P3Vrmkv4="></latexit><latexit sha1_base64="pSKeRC6KrabkRj9ZFy6P3Vrmkv4="></latexit>

Throw out first beaker It turns brownPour sixth beaker into last one
Previous Utterances: x̄1, x̄2

<latexit sha1_base64="7La+CCZxSF6irvZeZZfcBl4yF3Q="></latexit><latexit sha1_base64="7La+CCZxSF6irvZeZZfcBl4yF3Q="></latexit><latexit sha1_base64="7La+CCZxSF6irvZeZZfcBl4yF3Q="></latexit>

Current Utterance x̄3
<latexit sha1_base64="yHXbEQsJZWgzUchi9wCnpE+5bvg="></latexit><latexit sha1_base64="yHXbEQsJZWgzUchi9wCnpE+5bvg="></latexit><latexit sha1_base64="yHXbEQsJZWgzUchi9wCnpE+5bvg="></latexit>

MLP
<latexit sha1_base64="FGxIWEFcvBEhuII9AHi8VO3WDcA=">AAACJHicbZDNSgMxFIUz/tbxr9Wlm2ARXJUZEdRdwY0LhQrWKp2hZDK3NjTJDElGKcM8hVtd+zSuxIUbn8VM24W2Hggczr039/JFKWfaeN6Xs7C4tLyyWllz1zc2t7artZ1bnWSKQpsmPFF3EdHAmYS2YYbDXaqAiIhDJxqel/XOIyjNEnljRimEgjxI1meUGBvd54ES+OqyVfSqda/hjYXnjT81dTRVq1dzVoI4oZkAaSgnWnd9LzVhTpRhlEPhBpmGlNAheYCutZII0GE+vrjABzaJcT9R9kmDx+nviZwIrUcisp2CmIGerZXhv7VYlx/ObDf90zBnMs0MSDpZ3s84NgkukeCYKaCGj6whVDF7P6YDogg1FpzrBgokPNFECCLjPKBF1w/zMbi6XxSuJefPcpo37aPGWcO7Pq43vSnCCtpD++gQ+egENdEFaqE2okigZ/SCXp035935cD4nrQvOdGYX/ZHz/QNn6KPE</latexit><latexit sha1_base64="FGxIWEFcvBEhuII9AHi8VO3WDcA=">AAACJHicbZDNSgMxFIUz/tbxr9Wlm2ARXJUZEdRdwY0LhQrWKp2hZDK3NjTJDElGKcM8hVtd+zSuxIUbn8VM24W2Hggczr039/JFKWfaeN6Xs7C4tLyyWllz1zc2t7artZ1bnWSKQpsmPFF3EdHAmYS2YYbDXaqAiIhDJxqel/XOIyjNEnljRimEgjxI1meUGBvd54ES+OqyVfSqda/hjYXnjT81dTRVq1dzVoI4oZkAaSgnWnd9LzVhTpRhlEPhBpmGlNAheYCutZII0GE+vrjABzaJcT9R9kmDx+nviZwIrUcisp2CmIGerZXhv7VYlx/ObDf90zBnMs0MSDpZ3s84NgkukeCYKaCGj6whVDF7P6YDogg1FpzrBgokPNFECCLjPKBF1w/zMbi6XxSuJefPcpo37aPGWcO7Pq43vSnCCtpD++gQ+egENdEFaqE2okigZ/SCXp035935cD4nrQvOdGYX/ZHz/QNn6KPE</latexit><latexit sha1_base64="FGxIWEFcvBEhuII9AHi8VO3WDcA=">AAACJHicbZDNSgMxFIUz/tbxr9Wlm2ARXJUZEdRdwY0LhQrWKp2hZDK3NjTJDElGKcM8hVtd+zSuxIUbn8VM24W2Hggczr039/JFKWfaeN6Xs7C4tLyyWllz1zc2t7artZ1bnWSKQpsmPFF3EdHAmYS2YYbDXaqAiIhDJxqel/XOIyjNEnljRimEgjxI1meUGBvd54ES+OqyVfSqda/hjYXnjT81dTRVq1dzVoI4oZkAaSgnWnd9LzVhTpRhlEPhBpmGlNAheYCutZII0GE+vrjABzaJcT9R9kmDx+nviZwIrUcisp2CmIGerZXhv7VYlx/ObDf90zBnMs0MSDpZ3s84NgkukeCYKaCGj6whVDF7P6YDogg1FpzrBgokPNFECCLjPKBF1w/zMbi6XxSuJefPcpo37aPGWcO7Pq43vSnCCtpD++gQ+egENdEFaqE2okigZ/SCXp035935cD4nrQvOdGYX/ZHz/QNn6KPE</latexit>

Decoder

snippet
<latexit sha1_base64="ZQxgHwmHHzW9gN4+WfjZUN/xCJ0="></latexit><latexit sha1_base64="ZQxgHwmHHzW9gN4+WfjZUN/xCJ0="></latexit><latexit sha1_base64="ZQxgHwmHHzW9gN4+WfjZUN/xCJ0="></latexit>

Current state s3
<latexit sha1_base64="wP0LmfnIO0hDCuIKBqTz5N56Nd0="></latexit><latexit sha1_base64="wP0LmfnIO0hDCuIKBqTz5N56Nd0=">AAACNnicbVDLSsNAFJ34Nr5aXYmbwSK4KokK6q7gxmUFq0ITymRyWwdnkjBzo5YQ/Bq3uvZTXLkSt36C08dCWw8MHM65rzlRJoVBz3t3Zmbn5hcWl5bdldW19Y1KdfPKpLnm0OKpTPVNxAxIkUALBUq4yTQwFUm4ju7OBv71PWgj0uQS+xmEivUS0RWcoZU6le0A4RGLs1xrSJAaZAi0pKZz2KnUvLo3BJ0m/pjUyBjNTtVZCOKU58oO4pIZ0/a9DMOCaRRcQukGuYGM8TvWg7alCVNgwmL4h5LuWSWm3VTbZw8Zqr87CqaM6avIViqGt2bSG4j/erEZDJzYjt2TsBBJliMkfLS8m0uKKR2ERGOhgaPsW8K4FvZ+ym+ZZhxtlK4b2KzggadKsSQuAl62/bAoAq1ozS9L1ybnT+Y0TVoH9dO6d3FUa3jjCJfIDtkl+8Qnx6RBzkmTtAgnT+SZvJBX5835cD6dr1HpjDPu2SJ/4Hz/AG+Oqts=</latexit><latexit sha1_base64="wP0LmfnIO0hDCuIKBqTz5N56Nd0="></latexit>

a2<latexit sha1_base64="SUbkZWmj3PoRhhsHQX1zVFHCx3E=">AAACHnicbVDLSsNAFJ34qDW+Wl26GSyCq5IUQd0V3LisaG2hCWUyuW2HzkzCzEQpIZ/gVtd+jStxq3/j9LHQ1gMXDufcFydKOdPG876dtfWNzdJWedvd2d3bP6hUDx90kikKbZrwRHUjooEzCW3DDIduqoCIiEMnGl9P/c4jKM0SeW8mKYSCDCUbMEqMle5Iv9Gv1Ly6NwNeJf6C1NACrX7VKQVxQjMB0lBOtO75XmrCnCjDKIfCDTINKaFjMoSepZII0GE++7XAp1aJ8SBRtqTBM/X3RE6E1hMR2U5BzEgve1PxXy/W04VL183gMsyZTDMDks6PDzKOTYKnYeCYKaCGTywhVDH7P6Yjogg1NjLXDRRIeKKJEETGeUCLnh/meaAErvlF4drk/OWcVkm7Ub+qe7fntaa3iLCMjtEJOkM+ukBNdINaqI0oGqJn9IJenTfn3flwPueta85i5gj9gfP1A41QoT4=</latexit><latexit sha1_base64="SUbkZWmj3PoRhhsHQX1zVFHCx3E=">AAACHnicbVDLSsNAFJ34qDW+Wl26GSyCq5IUQd0V3LisaG2hCWUyuW2HzkzCzEQpIZ/gVtd+jStxq3/j9LHQ1gMXDufcFydKOdPG876dtfWNzdJWedvd2d3bP6hUDx90kikKbZrwRHUjooEzCW3DDIduqoCIiEMnGl9P/c4jKM0SeW8mKYSCDCUbMEqMle5Iv9Gv1Ly6NwNeJf6C1NACrX7VKQVxQjMB0lBOtO75XmrCnCjDKIfCDTINKaFjMoSepZII0GE++7XAp1aJ8SBRtqTBM/X3RE6E1hMR2U5BzEgve1PxXy/W04VL183gMsyZTDMDks6PDzKOTYKnYeCYKaCGTywhVDH7P6Yjogg1NjLXDRRIeKKJEETGeUCLnh/meaAErvlF4drk/OWcVkm7Ub+qe7fntaa3iLCMjtEJOkM+ukBNdINaqI0oGqJn9IJenTfn3flwPueta85i5gj9gfP1A41QoT4=</latexit><latexit sha1_base64="SUbkZWmj3PoRhhsHQX1zVFHCx3E=">AAACHnicbVDLSsNAFJ34qDW+Wl26GSyCq5IUQd0V3LisaG2hCWUyuW2HzkzCzEQpIZ/gVtd+jStxq3/j9LHQ1gMXDufcFydKOdPG876dtfWNzdJWedvd2d3bP6hUDx90kikKbZrwRHUjooEzCW3DDIduqoCIiEMnGl9P/c4jKM0SeW8mKYSCDCUbMEqMle5Iv9Gv1Ly6NwNeJf6C1NACrX7VKQVxQjMB0lBOtO75XmrCnCjDKIfCDTINKaFjMoSepZII0GE++7XAp1aJ8SBRtqTBM/X3RE6E1hMR2U5BzEgve1PxXy/W04VL183gMsyZTDMDks6PDzKOTYKnYeCYKaCGTywhVDH7P6Yjogg1NjLXDRRIeKKJEETGeUCLnh/meaAErvlF4drk/OWcVkm7Ub+qe7fntaa3iLCMjtEJOkM+ukBNdINaqI0oGqJn9IJenTfn3flwPueta85i5gj9gfP1A41QoT4=</latexit>

a3
<latexit sha1_base64="GbHL2sz697mZWBzIQupVbiLk95o=">AAACHnicbVDLSsNAFJ3UV42vVpduBovgqiQqqLuCG5cVrS00oUwmt+3QmUmYmSgl5BPc6tqvcSVu9W+cPhbaeuDC4Zz74kQpZ9p43rdTWlldW98ob7pb2zu7e5Xq/oNOMkWhRROeqE5ENHAmoWWY4dBJFRARcWhHo+uJ334EpVki7804hVCQgWR9Romx0h3pnfUqNa/uTYGXiT8nNTRHs1d11oM4oZkAaSgnWnd9LzVhTpRhlEPhBpmGlNARGUDXUkkE6DCf/lrgY6vEuJ8oW9Lgqfp7IidC67GIbKcgZqgXvYn4rxfrycKF66Z/GeZMppkBSWfH+xnHJsGTMHDMFFDDx5YQqpj9H9MhUYQaG5nrBgokPNFECCLjPKBF1w/zPFAC1/yicG1y/mJOy6R1Wr+qe7fntYY3j7CMDtEROkE+ukANdIOaqIUoGqBn9IJenTfn3flwPmetJWc+c4D+wPn6AY8IoT8=</latexit><latexit sha1_base64="GbHL2sz697mZWBzIQupVbiLk95o=">AAACHnicbVDLSsNAFJ3UV42vVpduBovgqiQqqLuCG5cVrS00oUwmt+3QmUmYmSgl5BPc6tqvcSVu9W+cPhbaeuDC4Zz74kQpZ9p43rdTWlldW98ob7pb2zu7e5Xq/oNOMkWhRROeqE5ENHAmoWWY4dBJFRARcWhHo+uJ334EpVki7804hVCQgWR9Romx0h3pnfUqNa/uTYGXiT8nNTRHs1d11oM4oZkAaSgnWnd9LzVhTpRhlEPhBpmGlNARGUDXUkkE6DCf/lrgY6vEuJ8oW9Lgqfp7IidC67GIbKcgZqgXvYn4rxfrycKF66Z/GeZMppkBSWfH+xnHJsGTMHDMFFDDx5YQqpj9H9MhUYQaG5nrBgokPNFECCLjPKBF1w/zPFAC1/yicG1y/mJOy6R1Wr+qe7fntYY3j7CMDtEROkE+ukANdIOaqIUoGqBn9IJenTfn3flwPmetJWc+c4D+wPn6AY8IoT8=</latexit><latexit sha1_base64="GbHL2sz697mZWBzIQupVbiLk95o=">AAACHnicbVDLSsNAFJ3UV42vVpduBovgqiQqqLuCG5cVrS00oUwmt+3QmUmYmSgl5BPc6tqvcSVu9W+cPhbaeuDC4Zz74kQpZ9p43rdTWlldW98ob7pb2zu7e5Xq/oNOMkWhRROeqE5ENHAmoWWY4dBJFRARcWhHo+uJ334EpVki7804hVCQgWR9Romx0h3pnfUqNa/uTYGXiT8nNTRHs1d11oM4oZkAaSgnWnd9LzVhTpRhlEPhBpmGlNARGUDXUkkE6DCf/lrgY6vEuJ8oW9Lgqfp7IidC67GIbKcgZqgXvYn4rxfrycKF66Z/GeZMppkBSWfH+xnHJsGTMHDMFFDDx5YQqpj9H9MhUYQaG5nrBgokPNFECCLjPKBF1w/zPFAC1/yicG1y/mJOy6R1Wr+qe7fntYY3j7CMDtEROkE+ukANdIOaqIUoGqBn9IJenTfn3flwPmetJWc+c4D+wPn6AY8IoT8=</latexit>

zc
3

<latexit sha1_base64="EJC7QrFvNSewx3yUndYnljjFodc=">AAACKXicbVA9T8MwFHTKd/gqMLJYVEhMVQJIwFaJhbFIlFZqQuU4L2DVdiLbAZUo/4MVZn4NE7DyR3DaDlA4ydLp7j2/00UZZ9p43odTm5tfWFxaXnFX19Y3Nutb29c6zRWFDk15qnoR0cCZhI5hhkMvU0BExKEbDc8rv3sPSrNUXplRBqEgt5IljBJjpZtAEHMXJcVjeUMHR4N6w2t6Y+C/xJ+SBpqiPdhyFoM4pbkAaSgnWvd9LzNhQZRhlEPpBrmGjNAhuYW+pZII0GExjl3ifavEOEmVfdLgsfpzoyBC65GI7GQVU896lfivF+vqw5nrJjkNCyaz3ICkk+NJzrFJcdULjpkCavjIEkIVs/kxvSOKUGPbc91AgYQHmgpBZFwEtOz7YVEESuCGX5aubc6f7ekv6Rw2z5re5XGj5U0rXEa7aA8dIB+doBa6QG3UQRQp9ISe0Yvz6rw5787nZLTmTHd20C84X98/k6ZN</latexit><latexit sha1_base64="EJC7QrFvNSewx3yUndYnljjFodc=">AAACKXicbVA9T8MwFHTKd/gqMLJYVEhMVQJIwFaJhbFIlFZqQuU4L2DVdiLbAZUo/4MVZn4NE7DyR3DaDlA4ydLp7j2/00UZZ9p43odTm5tfWFxaXnFX19Y3Nutb29c6zRWFDk15qnoR0cCZhI5hhkMvU0BExKEbDc8rv3sPSrNUXplRBqEgt5IljBJjpZtAEHMXJcVjeUMHR4N6w2t6Y+C/xJ+SBpqiPdhyFoM4pbkAaSgnWvd9LzNhQZRhlEPpBrmGjNAhuYW+pZII0GExjl3ifavEOEmVfdLgsfpzoyBC65GI7GQVU896lfivF+vqw5nrJjkNCyaz3ICkk+NJzrFJcdULjpkCavjIEkIVs/kxvSOKUGPbc91AgYQHmgpBZFwEtOz7YVEESuCGX5aubc6f7ekv6Rw2z5re5XGj5U0rXEa7aA8dIB+doBa6QG3UQRQp9ISe0Yvz6rw5787nZLTmTHd20C84X98/k6ZN</latexit><latexit sha1_base64="EJC7QrFvNSewx3yUndYnljjFodc=">AAACKXicbVA9T8MwFHTKd/gqMLJYVEhMVQJIwFaJhbFIlFZqQuU4L2DVdiLbAZUo/4MVZn4NE7DyR3DaDlA4ydLp7j2/00UZZ9p43odTm5tfWFxaXnFX19Y3Nutb29c6zRWFDk15qnoR0cCZhI5hhkMvU0BExKEbDc8rv3sPSrNUXplRBqEgt5IljBJjpZtAEHMXJcVjeUMHR4N6w2t6Y+C/xJ+SBpqiPdhyFoM4pbkAaSgnWvd9LzNhQZRhlEPpBrmGjNAhuYW+pZII0GExjl3ifavEOEmVfdLgsfpzoyBC65GI7GQVU896lfivF+vqw5nrJjkNCyaz3ICkk+NJzrFJcdULjpkCavjIEkIVs/kxvSOKUGPbc91AgYQHmgpBZFwEtOz7YVEESuCGX5aubc6f7ekv6Rw2z5re5XGj5U0rXEa7aA8dIB+doBa6QG3UQRQp9ISe0Yvz6rw5787nZLTmTHd20C84X98/k6ZN</latexit>

zp
3

<latexit sha1_base64="8Bany60kVwAIAuetY5K9K0r4ASs=">AAACKXicbVA9T8MwFHT4JnzDyGJRITFVCSABGxILY5EIrdSEynFeWgvbiWwHVKL8D1aY+TVMwMofwWk7QOEkS6e79/xOF+ecaeN5H87M7Nz8wuLSsruyura+sbm1faOzQlEIaMYz1YmJBs4kBIYZDp1cARExh3Z8d1H77XtQmmXy2gxziATpS5YySoyVbkNBzCBOy8fqNu8d9TYbXtMbAf8l/oQ00ASt3pazECYZLQRIQznRuut7uYlKogyjHCo3LDTkhN6RPnQtlUSAjspR7ArvWyXBaabskwaP1J8bJRFaD0VsJ+uYetqrxX+9RNcfTl036WlUMpkXBiQdH08Ljk2G615wwhRQw4eWEKqYzY/pgChCjW3PdUMFEh5oJgSRSRnSqutHZRkqgRt+Vbm2OX+6p78kOGyeNb2r48a5N6lwCe2iPXSAfHSCztElaqEAUaTQE3pGL86r8+a8O5/j0RlnsrODfsH5+gZWBaZa</latexit><latexit sha1_base64="8Bany60kVwAIAuetY5K9K0r4ASs=">AAACKXicbVA9T8MwFHT4JnzDyGJRITFVCSABGxILY5EIrdSEynFeWgvbiWwHVKL8D1aY+TVMwMofwWk7QOEkS6e79/xOF+ecaeN5H87M7Nz8wuLSsruyura+sbm1faOzQlEIaMYz1YmJBs4kBIYZDp1cARExh3Z8d1H77XtQmmXy2gxziATpS5YySoyVbkNBzCBOy8fqNu8d9TYbXtMbAf8l/oQ00ASt3pazECYZLQRIQznRuut7uYlKogyjHCo3LDTkhN6RPnQtlUSAjspR7ArvWyXBaabskwaP1J8bJRFaD0VsJ+uYetqrxX+9RNcfTl036WlUMpkXBiQdH08Ljk2G615wwhRQw4eWEKqYzY/pgChCjW3PdUMFEh5oJgSRSRnSqutHZRkqgRt+Vbm2OX+6p78kOGyeNb2r48a5N6lwCe2iPXSAfHSCztElaqEAUaTQE3pGL86r8+a8O5/j0RlnsrODfsH5+gZWBaZa</latexit><latexit sha1_base64="8Bany60kVwAIAuetY5K9K0r4ASs=">AAACKXicbVA9T8MwFHT4JnzDyGJRITFVCSABGxILY5EIrdSEynFeWgvbiWwHVKL8D1aY+TVMwMofwWk7QOEkS6e79/xOF+ecaeN5H87M7Nz8wuLSsruyura+sbm1faOzQlEIaMYz1YmJBs4kBIYZDp1cARExh3Z8d1H77XtQmmXy2gxziATpS5YySoyVbkNBzCBOy8fqNu8d9TYbXtMbAf8l/oQ00ASt3pazECYZLQRIQznRuut7uYlKogyjHCo3LDTkhN6RPnQtlUSAjspR7ArvWyXBaabskwaP1J8bJRFaD0VsJ+uYetqrxX+9RNcfTl036WlUMpkXBiQdH08Ljk2G615wwhRQw4eWEKqYzY/pgChCjW3PdUMFEh5oJgSRSRnSqutHZRkqgRt+Vbm2OX+6p78kOGyeNb2r48a5N6lwCe2iPXSAfHSCztElaqEAUaTQE3pGL86r8+a8O5/j0RlnsrODfsH5+gZWBaZa</latexit>

zs
1,3

<latexit sha1_base64="n3EkG0a5jSiHqVLmztodlUtaw1s=">AAACL3icbVBNS8QwFEz9tn6tevQSXAQPsrQqqLcFLx4VXBW2dUnTVw0maUlSdQ39K1717K/Ri3j1X5iue9DVgcAw817eMEnBmTZB8OaNjU9MTk3PzPpz8wuLS43llTOdl4pCh+Y8VxcJ0cCZhI5hhsNFoYCIhMN5cnNY++e3oDTL5anpFxALciVZxigxTuo1ViJBzHWS2YfqUvdsuLVT9RrNoBUMgP+ScEiaaIjj3rI3FaU5LQVIQznRuhsGhYktUYZRDpUflRoKQm/IFXQdlUSAju0gfIU3nJLiLFfuSYMH6s8NS4TWfZG4yTqqHvVq8V8v1fWHI9dNth9bJovSgKTfx7OSY5Pjuh2cMgXU8L4jhCrm8mN6TRShxnXo+5ECCXc0F4LI1Ea06oaxtZESuBlWle+aC0d7+ks6262DVnCy22wHwwpn0BpaR5soRHuojY7QMeogiu7RI3pCz96L9+q9ex/fo2PecGcV/YL3+QXRdKgL</latexit><latexit sha1_base64="n3EkG0a5jSiHqVLmztodlUtaw1s=">AAACL3icbVBNS8QwFEz9tn6tevQSXAQPsrQqqLcFLx4VXBW2dUnTVw0maUlSdQ39K1717K/Ri3j1X5iue9DVgcAw817eMEnBmTZB8OaNjU9MTk3PzPpz8wuLS43llTOdl4pCh+Y8VxcJ0cCZhI5hhsNFoYCIhMN5cnNY++e3oDTL5anpFxALciVZxigxTuo1ViJBzHWS2YfqUvdsuLVT9RrNoBUMgP+ScEiaaIjj3rI3FaU5LQVIQznRuhsGhYktUYZRDpUflRoKQm/IFXQdlUSAju0gfIU3nJLiLFfuSYMH6s8NS4TWfZG4yTqqHvVq8V8v1fWHI9dNth9bJovSgKTfx7OSY5Pjuh2cMgXU8L4jhCrm8mN6TRShxnXo+5ECCXc0F4LI1Ea06oaxtZESuBlWle+aC0d7+ks6262DVnCy22wHwwpn0BpaR5soRHuojY7QMeogiu7RI3pCz96L9+q9ex/fo2PecGcV/YL3+QXRdKgL</latexit><latexit sha1_base64="n3EkG0a5jSiHqVLmztodlUtaw1s=">AAACL3icbVBNS8QwFEz9tn6tevQSXAQPsrQqqLcFLx4VXBW2dUnTVw0maUlSdQ39K1717K/Ri3j1X5iue9DVgcAw817eMEnBmTZB8OaNjU9MTk3PzPpz8wuLS43llTOdl4pCh+Y8VxcJ0cCZhI5hhsNFoYCIhMN5cnNY++e3oDTL5anpFxALciVZxigxTuo1ViJBzHWS2YfqUvdsuLVT9RrNoBUMgP+ScEiaaIjj3rI3FaU5LQVIQznRuhsGhYktUYZRDpUflRoKQm/IFXQdlUSAju0gfIU3nJLiLFfuSYMH6s8NS4TWfZG4yTqqHvVq8V8v1fWHI9dNth9bJovSgKTfx7OSY5Pjuh2cMgXU8L4jhCrm8mN6TRShxnXo+5ECCXc0F4LI1Ea06oaxtZESuBlWle+aC0d7+ks6262DVnCy22wHwwpn0BpaR5soRHuojY7QMeogiu7RI3pCz96L9+q9ex/fo2PecGcV/YL3+QXRdKgL</latexit>

zs
3,3

<latexit sha1_base64="tM1KNEgIwbncVNhrpEpM3h4jr44=">AAACL3icbVBNS8QwFEz9tn6tevQSXAQPsrSuoN4ELx4VXBW2dUnTVw0maUlSdQ39K1717K/Ri3j1X5iue9DVgcAw817eMEnBmTZB8OaNjU9MTk3PzPpz8wuLS43llTOdl4pCh+Y8VxcJ0cCZhI5hhsNFoYCIhMN5cnNY++e3oDTL5anpFxALciVZxigxTuo1ViJBzHWS2YfqUvdse6td9RrNoBUMgP+ScEiaaIjj3rI3FaU5LQVIQznRuhsGhYktUYZRDpUflRoKQm/IFXQdlUSAju0gfIU3nJLiLFfuSYMH6s8NS4TWfZG4yTqqHvVq8V8v1fWHI9dNthdbJovSgKTfx7OSY5Pjuh2cMgXU8L4jhCrm8mN6TRShxnXo+5ECCXc0F4LI1Ea06oaxtZESuBlWle+aC0d7+ks62639VnCy0zwIhhXOoDW0jjZRiHbRATpCx6iDKLpHj+gJPXsv3qv37n18j455w51V9Ave5xfU6qgN</latexit><latexit sha1_base64="tM1KNEgIwbncVNhrpEpM3h4jr44=">AAACL3icbVBNS8QwFEz9tn6tevQSXAQPsrSuoN4ELx4VXBW2dUnTVw0maUlSdQ39K1717K/Ri3j1X5iue9DVgcAw817eMEnBmTZB8OaNjU9MTk3PzPpz8wuLS43llTOdl4pCh+Y8VxcJ0cCZhI5hhsNFoYCIhMN5cnNY++e3oDTL5anpFxALciVZxigxTuo1ViJBzHWS2YfqUvdse6td9RrNoBUMgP+ScEiaaIjj3rI3FaU5LQVIQznRuhsGhYktUYZRDpUflRoKQm/IFXQdlUSAju0gfIU3nJLiLFfuSYMH6s8NS4TWfZG4yTqqHvVq8V8v1fWHI9dNthdbJovSgKTfx7OSY5Pjuh2cMgXU8L4jhCrm8mN6TRShxnXo+5ECCXc0F4LI1Ea06oaxtZESuBlWle+aC0d7+ks62639VnCy0zwIhhXOoDW0jjZRiHbRATpCx6iDKLpHj+gJPXsv3qv37n18j455w51V9Ave5xfU6qgN</latexit><latexit sha1_base64="tM1KNEgIwbncVNhrpEpM3h4jr44=">AAACL3icbVBNS8QwFEz9tn6tevQSXAQPsrSuoN4ELx4VXBW2dUnTVw0maUlSdQ39K1717K/Ri3j1X5iue9DVgcAw817eMEnBmTZB8OaNjU9MTk3PzPpz8wuLS43llTOdl4pCh+Y8VxcJ0cCZhI5hhsNFoYCIhMN5cnNY++e3oDTL5anpFxALciVZxigxTuo1ViJBzHWS2YfqUvdse6td9RrNoBUMgP+ScEiaaIjj3rI3FaU5LQVIQznRuhsGhYktUYZRDpUflRoKQm/IFXQdlUSAju0gfIU3nJLiLFfuSYMH6s8NS4TWfZG4yTqqHvVq8V8v1fWHI9dNthdbJovSgKTfx7OSY5Pjuh2cMgXU8L4jhCrm8mN6TRShxnXo+5ECCXc0F4LI1Ea06oaxtZESuBlWle+aC0d7+ks62639VnCy0zwIhhXOoDW0jjZRiHbRATpCx6iDKLpHj+gJPXsv3qv37n18j455w51V9Ave5xfU6qgN</latexit>

�O(a2)
<latexit sha1_base64="SyYd38ATr7lW/RbaJR76zfrCZnQ=">AAACJnicbVDLSsNAFJ34rPHV6tLNYBHqpiQiqLuCG3dWsCo0sUwmt+3gPMLMRCkhn+FW136NKxF3forT2oVWD1w4nHNfnCTjzNgg+PDm5hcWl5YrK/7q2vrGZrW2dWVUril0qOJK3yTEAGcSOpZZDjeZBiISDtfJ3enYv74HbZiSl3aUQSzIQLI+o8Q6qRtlQ3Z73iC9g/1etR40gwnwXxJOSR1N0e7VvKUoVTQXIC3lxJhuGGQ2Loi2jHIo/Sg3kBF6RwbQdVQSASYuJj+XeM8pKe4r7UpaPFF/ThREGDMSiesUxA7NrDcW//VSM144c932j+OCySy3IOn38X7OsVV4HApOmQZq+cgRQjVz/2M6JJpQ66Lz/UiDhAeqhCAyLSJadsO4KCItcD0sS98lF87m9Jd0DponzeDisN4KphFW0A7aRQ0UoiPUQmeojTqIIoUe0RN69l68V+/Ne/9unfOmM9voF7zPL0QipCk=</latexit><latexit sha1_base64="SyYd38ATr7lW/RbaJR76zfrCZnQ=">AAACJnicbVDLSsNAFJ34rPHV6tLNYBHqpiQiqLuCG3dWsCo0sUwmt+3gPMLMRCkhn+FW136NKxF3forT2oVWD1w4nHNfnCTjzNgg+PDm5hcWl5YrK/7q2vrGZrW2dWVUril0qOJK3yTEAGcSOpZZDjeZBiISDtfJ3enYv74HbZiSl3aUQSzIQLI+o8Q6qRtlQ3Z73iC9g/1etR40gwnwXxJOSR1N0e7VvKUoVTQXIC3lxJhuGGQ2Loi2jHIo/Sg3kBF6RwbQdVQSASYuJj+XeM8pKe4r7UpaPFF/ThREGDMSiesUxA7NrDcW//VSM144c932j+OCySy3IOn38X7OsVV4HApOmQZq+cgRQjVz/2M6JJpQ66Lz/UiDhAeqhCAyLSJadsO4KCItcD0sS98lF87m9Jd0DponzeDisN4KphFW0A7aRQ0UoiPUQmeojTqIIoUe0RN69l68V+/Ne/9unfOmM9voF7zPL0QipCk=</latexit><latexit sha1_base64="SyYd38ATr7lW/RbaJR76zfrCZnQ=">AAACJnicbVDLSsNAFJ34rPHV6tLNYBHqpiQiqLuCG3dWsCo0sUwmt+3gPMLMRCkhn+FW136NKxF3forT2oVWD1w4nHNfnCTjzNgg+PDm5hcWl5YrK/7q2vrGZrW2dWVUril0qOJK3yTEAGcSOpZZDjeZBiISDtfJ3enYv74HbZiSl3aUQSzIQLI+o8Q6qRtlQ3Z73iC9g/1etR40gwnwXxJOSR1N0e7VvKUoVTQXIC3lxJhuGGQ2Loi2jHIo/Sg3kBF6RwbQdVQSASYuJj+XeM8pKe4r7UpaPFF/ThREGDMSiesUxA7NrDcW//VSM144c932j+OCySy3IOn38X7OsVV4HApOmQZq+cgRQjVz/2M6JJpQ66Lz/UiDhAeqhCAyLSJadsO4KCItcD0sS98lF87m9Jd0DponzeDisN4KphFW0A7aRQ0UoiPUQmeojTqIIoUe0RN69l68V+/Ne/9unfOmM9voF7zPL0QipCk=</latexit>

Start state

context zs
1,3

<latexit sha1_base64="WWUGQFpqtV8IiAsh8xOrQDgJrZk="></latexit><latexit sha1_base64="WWUGQFpqtV8IiAsh8xOrQDgJrZk="></latexit><latexit sha1_base64="WWUGQFpqtV8IiAsh8xOrQDgJrZk="></latexit>

Current state

context zs
3,3

<latexit sha1_base64="IHRIBcXwdmI+lhfupt36Qb2Aieo="></latexit><latexit sha1_base64="IHRIBcXwdmI+lhfupt36Qb2Aieo="></latexit><latexit sha1_base64="IHRIBcXwdmI+lhfupt36Qb2Aieo="></latexit>

Instruction history context zp
3

<latexit sha1_base64="1/uQc8uZl9PjheJu1+kCxdeR7gE="></latexit><latexit sha1_base64="1/uQc8uZl9PjheJu1+kCxdeR7gE="></latexit><latexit sha1_base64="1/uQc8uZl9PjheJu1+kCxdeR7gE="></latexit>

Instruction

context zc
3

<latexit sha1_base64="HArRW9tQp06NtIVv721UEWaLDn4="></latexit><latexit sha1_base64="HArRW9tQp06NtIVv721UEWaLDn4="></latexit><latexit sha1_base64="HArRW9tQp06NtIVv721UEWaLDn4="></latexit>

Figure 2: Illustration of the model architecture while generating the third action a3 in the third utterance x̄3 from
Figure 1. Context vectors computed using attention are highlighted in blue. The model takes as input vector
encodings from the current and previous instructions x̄1, x̄2, and x̄3, the initial state s1, the current state s3, and
the previous action a2. Instruction encodings are computed with a bidirectional RNN. We attend over the previous
and current instructions and the initial and current states. We use an MLP to select the next action.

der. The model generates an execution ē =
〈(s1, a1), . . . , (smi , ami)〉 for each instruction x̄i.
The agent context, the information available to the
agent at step k, is s̃k = (x̄i, 〈x̄1, . . . , x̄i−1〉, sk, ē[:
k]), where ē[: k] is the execution up until but
not including step k. In contrast to the world
state, the agent context also includes instruc-
tions and the execution so far. The agent policy
πθ(s̃k, a) is modeled as a probabilistic neural net-
work parametrized by θ, where s̃k is the agent con-
text at step k and a is an action. To generate exe-
cutions, we generate one action at a time, execute
the action, and observe the new world state. In
step k of executing the i-th instruction, the net-
work inputs are the current utterance x̄i, the previ-
ous instructions 〈x̄1, . . . , x̄i−1〉, the initial state s1

at beginning of executing x̄i, and the current state
sk. When executing a sequence of instructions,
the initial state s1 is either the state at the begin-
ning of executing the sequence or the final state of
the execution of the previous instruction. Figure 2
illustrates our architecture.

We generate continuous vector representations
for all inputs. Each input is represented as a set
of vectors that are then processed with an atten-
tion function to generate a single vector represen-
tation (Luong et al., 2015). We assume access to
a domain-specific encoding function ENC(s) that,
given a state s, generates a set of vectors S repre-
senting the objects in the state. For example, in the
ALCHEMY domain, a vector is generated for each
beaker using an RNN. Section 6 describes the dif-
ferent domains and their encoding functions.

We use a single bidirectional RNN with a
long short-term memory (LSTM; Hochreiter and
Schmidhuber, 1997) recurrence to encode the in-
structions. All instructions x̄1,. . . ,x̄i are encoded

with a single RNN by concatenating them to x̄′.
We use two delimiter tokens: one separates previ-
ous instructions, and the other separates the previ-
ous instructions from the current one. The forward
LSTM RNN hidden states are computed as:2

−−→
hj+1 =

−−−−−→
LSTME

(
φI(x′j+1);

−→
hj
)

,

where φI is a learned word embedding func-

tion and
−−−−−→
LSTME is the forward LSTM recur-

rence function. We use a similar computation
to compute the backward hidden states

←−
hj . For

each token x′j in x̄′, a vector representation h′j =[−→
hj ;
←−
hj

]
is computed. We then create two sets of

vectors, one for all the vectors of the current in-
struction and one for the previous instructions:

Xc = {h′j}J+|x̄i|
j=J

Xp = {h′j}j<Jj=0

where J is the index in x̄′ where the current in-
struction x̄i begins. Separating the vectors to two
sets will allows computing separate attention on
the current instruction and previous ones.

To compute each input representation dur-
ing decoding, we use a bi-linear attention func-
tion (Luong et al., 2015). Given a set of vectors
H , a query vector hq, and a weight matrix W, the
attention function ATTEND(H,hq,W) computes
a context vector z:

αi ∝ exp(hᵀ
iWhq) : i = 0, . . . , |H|

z =

|H|∑

i=1

αihi .

2To simplify the notation, we omit the memory cell (often
denoted as cj) from all LSTM descriptions. We use only the
hidden state hj to compute the intended representations (e.g.,
for the input text tokens). All LSTMs in this paper use zero
vectors as initial hidden state h0 and initial cell memory c0.
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We use a decoder to generate actions. At each
time step k, we compute an input representation
using the attention function, update the decoder
state, and compute the next action to execute. At-
tention is first computed over the vectors of the
current instruction, which is then used to attend
over the other inputs. We compute the context
vectors zck and zpk for the current instruction and
previous instructions:

zck = ATTEND(Xc,hdk−1,W
c)

zpk = ATTEND(Xp, [hdk−1, z
c
k],Wp) ,

where hdk−1 is the decoder hidden state for step
k− 1, and Xc and Xp are the sets of vector repre-
sentations for the current instruction and previous
instructions. Two attention heads are used over
both the initial and current states. This allows the
model to attend to more than one location in a state
at once, for example when transferring items from
one beaker to another in ALCHEMY. The cur-
rent state is computed by the transition function
sk = T (sk−1, ak−1), where sk−1 and ak−1 are the
state and action at step k − 1. The context vectors
for the initial state s1 and the current state sk are:

zs1,k = [ATTEND(ENC(s1), [hdk−1, z
c
k],Wsb,1);

ATTEND(ENC(s1), [hdk−1, z
c
k],Wsb,2)]

zsk,k = [ATTEND(ENC(sk), [hdk−1, z
c
k],Wsc,1);

ATTEND(ENC(sk), [hdk−1, z
c
k],Wsc,2)] ,

where all W∗,∗ are learned weight matrices.

We concatenate all computed context vectors
with an embedding of the previous action ak−1 to
create the input for the decoder:

hk = tanh([zck; zpk; zs1,k; zsk,k;φO(ak−1)]Wd + bd)

hdk = LSTMD
(
hk;hdk−1

)
,

where φO is a learned action embedding function
and LSTMD is the LSTM decoder recurrence.

Given the decoder state hdk, the next action ak
is predicted with a multi-layer perceptron (MLP).
The actions in our domains decompose to an ac-
tion type and at most two arguments.3 For exam-
ple, the action PUSH 1 B in ALCHEMY has the type
PUSH and two arguments: a beaker number and a
color. Section 6 describes the actions of each do-
main. The probability of an action is:

3We use a NULL argument for unused arguments.

hak = tanh(hdkW
a)

sk,aT = hakbaT
sk,a1 = hakba1
sk,a2 = hakba2

p(ak = aT (a1, a2) | s̃k; θ) ∝
exp(sk,aT + sk,a1 + sk,a2) ,

where aT , a1, and a2 are an action type, first ar-
gument, and second argument. If the predicted
action is STOP, the execution is complete. Other-
wise, we execute the action ak to generate the next
state sk+1, and update the agent context s̃k to s̃k+1

by appending the pair (sk, ak) to the execution ē
and replacing the current state with sk+1.

The model parameters θ include: the embed-
ding functions φI and φO; the recurrence param-

eters for
−−−−−→
LSTME ,

←−−−−−
LSTME , and LSTMD; WC ,

WP , Wsb,1, Wsb,2, Wsc,1, Wsc,2, Wd, Wa,
and bd; and the domain dependent parameters, in-
cluding the parameters of the encoding function
ENC and the action type, first argument, and sec-
ond argument weights baT , ba1 , and ba2 .

5 Learning

We estimate the policy parameters θ using an
exploration-based learning algorithm that maxi-
mizes the immediate expected reward. Broadly
speaking, during learning, we observe the agent
behavior given the current policy, and for each
visited state compute the expected immediate re-
ward by observing rewards for all actions. We
assume access to a set of training examples
{(x̄(j)

i , s
(j)
i,1 , 〈x̄

(j)
1 , . . . , x̄

(j)
i−1〉, g

(j)
i )}N,n(j)

j=1,i=1, where

each instruction x̄
(j)
i is paired with a start state

s
(j)
i,1 , the previous instructions in the sequence

〈x̄(j)
1 , . . . , x̄

(j)
i−1〉, and a goal state g(j)

i .

Reward The reward R(j)
i : S × S × A → R is

defined for each example j and instruction i:

R
(j)
i (s, a, s′) = P

(j)
i (s, a, s′) + φ

(j)
i (s′)− φ(j)

i (s) ,

where s is a source state, a is an action, and s′ is a
target state.4 P (j)

i (s, a, s′) is a problem reward and
φ

(j)
i (s′)− φ(j)

i (s) is a shaping term. The problem
reward P (j)

i (s, a, s′) is positive for stopping at the
goal g(j)

i and negative for stopping in an incorrect

4While the reward function is defined for any state-action-
state tuple, in practice, it is used during learning with tuples
that follow the system dynamics, s′ = T (s, a).
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Algorithm 1 SESTRA: Single-step Reward Observation.

Input: Training data {(x̄(j)
i , s

(j)
i,1 , 〈x̄

(j)
1 , . . . , x̄

(j)
i−1〉,

g
(j)
i )}N,n(j)

j=1,i=1, learning rate µ, entropy regularization
coefficient λ, episode limit horizon M .

Definitions: πθ is a policy parameterized by θ, BEG is a spe-
cial action to use for the first decoder step, and STOP
indicates end of an execution. T (s, a) is the state transi-
tion function, H is an entropy function, R(j)

i (s, a, s′) is
the reward function for example j and instruction i, and
RMSPROP divides each weight by a running average of
its squared gradient (Tieleman and Hinton, 2012).

Output: Parameters θ defining a learned policy πθ .
1: for t = 1, . . . , T, j = 1, . . . , N do
2: for i = 1, . . . , n(j) do
3: ē← 〈 〉, k ← 0, a0 ← BEG
4: » Rollout up to STOP or episode limit.
5: while ak 6= STOP ∧ k < M do
6: k ← k + 1
7: s̃k ← (x̄i, 〈x̄1, . . . , x̄i−1〉, sk, ē[: k])
8: » Sample an action from policy.
9: ak ∼ πθ(s̃k, ·)

10: sk+1 ← T (sk, ak)
11: ē← [ē; 〈(sk, ak)〉]
12: ∆← 0̄
13: for k′ = 1, . . . , k do
14: » Compute the entropy of πθ(s̃k′ , ·).
15: ∆← ∆ + λ∇θH(πθ(s̃k′ , ·))
16: for a ∈ A do
17: s′ ← T (sk′ , a)
18: » Compute gradient for action a.
19: ∆← ∆ +R

(j)
i (sk′ , a, s

′)∇θπθ(s̃k′ , a)

20: θ ← θ + µRMSPROP

(
∆

k

)

21: return θ

state or taking an invalid action:

P
(j)
i (s, a, s′) =





1.0 a = STOP ∧ s′ = g
(j)
i

−1.0 a = STOP ∧ s′ 6= g
(j)
i

−1.0− δ s = s′

−δ otherwise

,

where δ is a verbosity penalty. The case s =
s′ indicates that a was invalid in state s, as in
this domain, all valid actions except STOP mod-
ify the state. We use a potential-based shaping
term φ

(j)
i (s′)− φ(j)

i (s) (Ng et al., 1999), where
φ

(j)
i (s) = −||s− g(j)

i || computes the edit distance
between the state s and the goal, measured over
the objects in each state. The shaping term densi-
fies the reward, providing a meaningful signal for
learning in nonterminal states.

Objective We maximize the immediate ex-
pected reward over all actions and use entropy reg-
ularization. The gradient is approximated by sam-
pling an execution ē = 〈(s1, a1), . . . , (sk, ak)〉 us-
ing our current policy:

∇θJ =
1

k

k∑

k′=1

(∑

a∈A
R (sk, a, T (sk, a))∇θπ(s̃k, a)

+λ∇θH(π(s̃k, ·))
)
,

where H(π(s̃k, ·) is the entropy term.

Algorithm Algorithm 1 shows the Single-step
Reward Observation (SESTRA) learning algo-
rithm. We iterate over the training data T times
(line 1). For each example j and turn i, we first
perform a rollout by sampling an execution ē from
πθ with at most M actions (lines 5-11). If the roll-
out reaches the horizon without predicting STOP,
we set the problem reward P (j)

i to−1.0 for the last
step. Given the sampled states visited, we com-
pute the entropy (line 15) and observe the imme-
diate reward for all actions (line 19) for each step.
Entropy and rewards are used to accumulate the
gradient, which is applied to the parameters using
RMSPROP (Dauphin et al., 2015) (line 20).

Discussion Observing the rewards for all actions
for each visited state addresses an on-policy learn-
ing exploration problem. Actions that consistently
receive negative reward early during learning will
be visited with very low probability later on, and in
practice, often not explored at all. Because the net-
work is randomly initialized, these early negative
rewards are translated into strong general biases
that are not grounded well in the observed con-
text. Our algorithm exposes the agent to such ac-
tions later on when they receive positive rewards
even though the agent does not explore them dur-
ing rollout. For example, in ALCHEMY, POP ac-
tions are sufficient to complete the first steps of
good executions. As a result, early during learn-
ing, the agent learns a strong bias against PUSH
actions. In practice, the agent then will not ex-
plore PUSH actions again. In our algorithm, as the
agent learns to roll out the correct POP prefix, it is
then exposed to the reward for the first PUSH even
though it likely sampled another POP. It then un-
learns its bias towards predicting POP.

Our learning algorithm can be viewed as a cost-
sensitive variant of the oracle in DAGGER (Ross
et al., 2011), where it provides the rewards for all
actions instead of an oracle action. It is also related
to Locally Optimal Learning to Search (LOLS;
Chang et al., 2015) with two key distinctions: (a)
instead of using different roll-in and roll-out poli-
cies, we use the model policy; and (b) we branch
at each step, instead of once, but do not rollout
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Figure 3: Illustration of LOLS (left; Chang et al.,
2015) and our learning algorithm (SESTRA, right).
LOLS branches a single time, and samples complete
rollout for each branch to obtain the trajectory loss.
SESTRA uses a complete on-policy rollout and single-
step branching for all actions in each sample state.

ALC SCE TAN
# Sequences (train) 3657 3352 4189
# Sequences (dev) 245 198 199
# Sequences (test) 899 1035 800
Mean instruction

8.0±3.2 10.5±5.5 5.4±2.4length
Vocabulary size 695 816 475

Table 1: Data statistics for ALCHEMY (ALC), SCENE
(SCE), and TANGRAMS (TAN).

Refs/Ex 1 2 3 4

ALCHEMY 1.4 Coref. 28 7 2 0
Ellipsis 0 0 3 1

SCENE 2.4 Coref. 49 16 5 3
Ellipsis 0 0 0 0

TANGRAMS 1.7 Coref. 25 14 2 1
Ellipsis 4 0 0 0

Table 2: Counts of discourse phenomena in SCONE
from 30 randomly selected development interactions
for each domain. We count occurrences of coreference
between instructions (e.g., he leaves in SCENE) and el-
lipsis (e.g., then, drain 2 units in ALCHEMY), when the
last explicit mention of the referent was 1, 2, 3, or 4
turns in the past. We also report the average number of
multi-turn references per interaction (Refs/Ex).

from branched actions since we only optimize the
immediate reward. Figure 3 illustrates the compar-
ison. Our summation over immediate rewards for
all actions is related the summation of estimated
Q-values for all actions in the Mean Actor-Critic
algorithm (Asadi et al., 2017). Finally, our ap-
proach is related to Misra et al. (2017), who also
maximize the immediate reward, but do not ob-
serve rewards for all actions for each state.

6 SCONE Domains and Data

SCONE has three domains: ALCHEMY, SCENE,
and TANGRAMS. Each interaction contains five
instructions. Table 1 shows data statistics. Table 2
shows discourse reference analysis. State encod-
ings are detailed in the Supplementary Material.

ALCHEMY Each environment in ALCHEMY

contains seven numbered beakers, each contain-
ing up to four colored chemicals in order. Figure 1
shows an example. Instructions describe pouring
chemicals between and out of beakers, and mix-
ing beakers. We treat all beakers as stacks. There

are two action types: PUSH and POP. POP takes
a beaker index, and removes the top color. PUSH
takes a beaker index and a color, and adds the color
at the top of the beaker. To encode a state, we en-
code each beaker with an RNN, and concatenate
the last output with the beaker index embedding.
The set of vectors is the state embedding.

SCENE Each environment in SCENE contains
ten positions, each containing at most one person
defined by a shirt color and an optional hat
color. Instructions describe adding or removing
people, moving a person to another position, and
moving a person’s hat to another person. There
are four action types: ADD_PERSON, ADD_HAT,
REMOVE_PERSON, and REMOVE_HAT.
ADD_PERSON and ADD_HAT take a posi-
tion to place the person or hat and the color of
the person’s shirt or hat. REMOVE_PERSON
and REMOVE_HAT take the position to remove
a person or hat from. To encode a state, we use
a bidirectional RNN over the ordered positions.
The input for each position is a concatenation of
the color embeddings for the person and hat. The
set of RNN hidden states is the state embedding.

TANGRAMS Each environment in TANGRAMS

is a list containing at most five unique objects. In-
structions describe removing or inserting an object
into a position in the list, or swapping the positions
of two items. There are two action types: INSERT
and REMOVE. INSERT takes the position to insert
an object, and the object identifier. REMOVE takes
an object position. We embed each object by con-
catenating embeddings for its type and position.
The resulting set is the state embedding.

7 Experimental Setup

Evaluation Following Long et al. (2016), we
evaluate task completion accuracy using exact
match between the final state and the annotated
goal state. We report accuracy for complete in-
teractions (5utts), the first three utterances of each
interaction (3utts), and single instructions (Inst).
For single instructions, execution starts from the
annotated start state of the instruction.

Systems We report performance of ablations
and two baseline systems: POLICYGRADIENT:
policy gradient with cumulative episodic reward
without a baseline, and CONTEXTUALBANDIT:
the contextual bandit approach of Misra et al.
(2017). Both systems use the reward with the
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Figure 4: Instruction-level training accuracy per epoch
when training five models on SCENE, demonstrating
the effect of randomization in the learning method.
Three of five experiments fail to learn effective models.
The red and blue learning trajectories are overlapping.

shaping term and our model. We also report super-
vised learning results (SUPERVISED) by heuristi-
cally generating correct executions and comput-
ing maximum-likelihood estimate using context-
action demonstration pairs. Only the supervised
approach uses the heuristically generated labels.
Although the results are not comparable, we also
report the performance of previous approaches
to SCONE. All three approaches generate logical
representations based on lambda calculus. In con-
trast to our approach, this requires an ontology of
hand built symbols and rules to evaluate the logical
forms. Fried et al. (2018) uses supervised learning
with annotated logical forms.

Training Details For test results, we run each
experiment five times and report results for the
model with best validation interaction accuracy.
For ablations, we do the same with three experi-
ments. We use a batch size of 20. We stop train-
ing using a validation set sampled from the train-
ing data. We hold the validation set constant for
each domain for all experiments. We use patience
over the average reward, and select the best model
using interaction-level (5utts) validation accuracy.
We tune λ, δ, and M on the development set. The
selected values and other implementation details
are described in the Supplementary Material.

8 Results

Table 3 shows test results. Our approach signifi-
cantly outperforms POLICYGRADIENT and CON-
TEXTUALBANDIT, both of which suffer due to bi-
ases learned early during learning, hindering later
exploration. This problem does not appear in
TANGRAMS, where no action type is dominant at
the beginning of executions, and all methods per-
form well. POLICYGRADIENT completely fails
to learn ALCHEMY and SCENE due to observing
only negative total rewards early during learning.

Using a baseline, for example with an actor-critic
method, will potentially close the gap to CONTEX-
TUALBANDIT. However, it is unlikely to address
the on-policy exploration problem.

Table 4 shows development results, including
model ablation studies. Removing previous in-
structions (– previous instructions) or both states
(– current and initial state) reduces performance
across all domains. Removing only the initial state
(– initial state) or the current state (– current state)
shows mixed results across the domains. Provid-
ing access to both initial and current states in-
creases performance for ALCHEMY, but reduces
performance on the other domains. We hypoth-
esize that this is due to the increase in the num-
ber of parameters outweighing what is relatively
marginal information for these domains. In our
development and test results we use a single ar-
chitecture across the three domains, the full ap-
proach, which has the highest interactive-level ac-
curacy when averaged across the three domains
(62.7 5utts). We also report mean and standard
deviation for our approach over five trials. We ob-
serve exceptionally high variance in performance
on SCENE, where some experiments fail to learn
and training performance remains exceptionally
low (Figure 4). This highlights the sensitivity of
the model to the random effects of initialization,
dropout, and ordering of training examples.

We analyze the instruction-level errors made by
our best models when the agent is provided the
correct initial state for the instruction. We study
fifty examples in each domain to identify the type
of failures. Table 5 shows the counts of major error
categories. We consider multiple reference resolu-
tion errors. State reference errors indicate a failure
to resolve a reference to the world state. For exam-
ple, in ALCHEMY, the phrase leftmost red beaker
specifies a beaker in the environment. If the model
picked the correct action, but the wrong beaker,
we count it as a state reference. We distinguish
between multi-turn reference errors that should be
feasible, and these that that are impossible to solve
without access to states before executing previous
utterances, which are not provided to our model.
For example, in TANGRAMS, the instruction put
it back in the same place refers to a previously-
removed item. Because the agent only has access
to the world state after following this instruction, it
does not observe what kind of item was previously
removed, and cannot identify the item to add. We
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ALCHEMY SCENE TANGRAMS
System Inst 3utts 5utts Inst 3utts 5utts Inst 3utts 5utts
Long et al. (2016) – 56.8 52.3 – 23.2 14.7 – 64.9 27.6
Guu et al. (2017) – 66.9 52.9 – 64.8 46.2 – 65.8 37.1

Fried et al. (2018) – – 72.0 – – 72.7 – – 69.6

SUPERVISED 89.4 73.3 62.3 88.8 78.9 66.4 86.6 81.4 60.1

POLICYGRADIENT 0.0 0.0 0.0 0.0 1.3 0.2 84.1 77.4 54.9
CONTEXTUALBANDIT 73.8 36.0 25.7 15.1 2.9 4.4 84.8 76.9 57.9
Our approach 89.1 74.2 62.7 87.1 73.9 62.0 86.6 80.8 62.4

Table 3: Test accuracies for single instructions (Inst), first-three instructions (3utts), and full interactions (5utts).

ALCHEMY SCENE TANGRAMS
System Inst 3utts 5utts Inst 3utts 5utts Inst 3utts 5utts
SUPERVISED 92.0 83.3 71.4 85.3 72.7 60.6 86.1 81.9 58.3

POLICYGRADIENT 0.0 0.0 0.0 0.9 1.0 0.5 85.2 74.9 52.3
CONTEXTUALBANDIT 58.8 6.9 5.7 12.0 0.5 1.5 85.6 78.4 52.6

Our approach 92.1 82.9 71.8 83.9 68.7 56.1 88.5 82.4 60.3
– previous instructions 90.1 77.1 66.1 79.3 60.6 45.5 76.4 55.8 27.6
– current and initial state 25.7 4.5 3.3 17.5 0.0 0.0 45.4 15.1 3.5
– current state 89.8 78.0 62.9 83.0 68.7 54.0 87.6 78.4 60.8
– initial state 81.1 68.6 42.9 82.7 67.7 57.1 88.6 82.9 63.3

Our approach (µ± σ) 91.5
±1.4

80.4
±2.6

69.5
±5.0

62.9
±17.7

37.8
±23.5

29.0
±21.1

88.2
±0.6

80.8
±2.8

59.2
±2.3

Table 4: Development results, including model ablations. We also report mean µ and standard deviation σ for all
metrics for our approach across five experiments. We bold the best performing variations of our model.

Class ALC SCE TAN
State reference 23 13 7
Multi-turn reference 12 5 13
Impossible multi-turn reference 2 5 13
Ambiguous or incorrect label 2 19 12

Table 5: Common error counts in the three domains.

also find a significant number of errors due to am-
biguous or incorrect instructions. For example, the
SCENE instruction person in green appears on the
right end is ambiguous. In the annotated goal, it
is interpreted as referring to a person already in
the environment, who moves to the 10th position.
However, it can also be interpreted as a new person
in green appearing in the 10th position.

We also study performance with respect to
multi-turn coreference by observing whether the
model was able to identify the correct referent
for each occurrence included in the analysis in
Table 2. The models were able to correctly re-
solve 92.3%, 88.7%, and 76.0% of references in
ALCHEMY, SCENE, and TANGRAMS respectively.

Finally, we include attention visualization for
examples from the three domains in the Supple-
mentary Material.

9 Discussion

We propose a model to reason about context-
dependent instructional language that display
strong dependencies both on the history of the

interaction and the state of the world. Future
modeling work may include using intermediate
world states from previous turns in the interaction,
which is required for some of the most complex
references in the data. We propose to train our
model using SESTRA, a learning algorithm that
takes advantage of single-step reward observations
to overcome learned biases in on-policy learning.
Our learning approach requires additional reward
observations in comparison to conventional rein-
forcement learning. However, it is particularly
suitable to recovering from biases acquired early
during learning, for example due to biased action
spaces, which is likely to lead to incorrect blame
assignment in neural network policies. When the
domain and model are less susceptible to such bi-
ases, the benefit of the additional reward observa-
tions is less pronounced. One possible direction
for future work is to use an estimator to predict re-
wards for all actions, rather than observing them.
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Abstract

The success of many natural language pro-
cessing (NLP) tasks is bound by the num-
ber and quality of annotated data, but there
is often a shortage of such training data. In
this paper, we ask the question: “Can we
combine a neural network (NN) with regu-
lar expressions (RE) to improve supervised
learning for NLP?”. In answer, we develop
novel methods to exploit the rich expres-
siveness of REs at different levels within a
NN, showing that the combination signifi-
cantly enhances the learning effectiveness
when a small number of training examples
are available. We evaluate our approach
by applying it to spoken language under-
standing for intent detection and slot fill-
ing. Experimental results show that our
approach is highly effective in exploiting
the available training data, giving a clear
boost to the RE-unaware NN.

1 Introduction

Regular expressions (REs) are widely used in
various natural language processing (NLP) tasks
like pattern matching, sentence classification, se-
quence labeling, etc. (Chang and Manning, 2014).
As a technique based on human-crafted rules, it is
concise, interpretable, tunable, and does not rely
on much training data to generate. As such, it is
commonly used in industry, especially when the
available training examples are limited – a prob-
lem known as few-shot learning (GC et al., 2015).

While powerful, REs have a poor generaliza-
tion ability because all synonyms and variations
in a RE must be explicitly specified. As a re-
sult, REs are often ensembled with data-driven
methods, such as neural network (NN) based tech-
niques, where a set of carefully-written REs are

used to handle certain cases with high precision,
leaving the rest for data-driven methods.

We believe the use of REs can go beyond sim-
ple pattern matching. In addition to being a sepa-
rate classifier to be ensembled, a RE also encodes
a developer’s knowledge for the problem domain.
The knowledge could be, for example, the infor-
mative words (clue words) within a RE’s surface
form. We argue that such information can be uti-
lized by data-driven methods to achieve better pre-
diction results, especially in few-shot learning.

This work investigates the use of REs to im-
prove NNs – a learning framework that is widely
used in many NLP tasks (Goldberg, 2017). The
combination of REs and a NN allows us to ex-
ploit the conciseness and effectiveness of REs and
the strong generalization ability of NNs. This also
provides us an opportunity to learn from various
kinds of REs, since NNs are known to be good at
tolerating noises (Xie et al., 2016).

This paper presents novel approaches to com-
bine REswith a NN at different levels. At the input
layer, we propose to use the evaluation outcome of
REs as the input features of a NN (Sec.3.2). At the
network module level, we show how to exploit the
knowledge encoded in REs to guide the attention
mechanism of a NN (Sec. 3.3). At the output layer,
we combine the evaluation outcome of a RE with
the NN output in a learnable manner (Sec. 3.4).

We evaluate our approach by applying it to
two spoken language understanding (SLU) tasks,
namely intent detection and slot filling, which re-
spectively correspond to two fundamental NLP
tasks: sentence classification and sequence label-
ing. To demonstrate the usefulness of REs in real-
world scenarios where the available number of an-
notated data can vary, we explore both the few-
shot learning setting and the one with full train-
ing data. Experimental results show that our ap-
proach is highly effective in utilizing the available
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flights  from  Boston  to  Miami

Intent RE: Intent Label: flight

 /from  (__CITY)  to (__CITY)/

  O             O     B-fromloc.city   O    B-toloc.city

Sentence:

Slot Labels: 

Slot RE:

/^flights? from/
REtag: flight

city / toloc.cityREtag: city / fromloc.city

Figure 1: A sentence from the ATIS dataset. REs
can be used to detect the intent and label slots.

annotated data, yielding significantly better learn-
ing performance over the RE-unaware method.

Our contributions are as follows. (1) We present
the first work to systematically investigate meth-
ods for combining REs with NNs. (2) The pro-
posed methods are shown to clearly improve the
NN performance in both the few-shot learning and
the full annotation settings. (3) We provide a set
of guidance on how to combine REswith NNs and
RE annotation.

2 Background
2.1 Typesetting
In this paper, we use italic for emphasis like
intent detection, the Courier typeface for ab-
breviations like RE, bold italic for the first ap-
pearance of a concept like clue words, Courier
surrounded by / for regular expressions like
/list( the)? AIRLINE/, and underlined italic
for words of sentences in our dataset like Boston.

2.2 Problem Definition
Our work targets two SLU tasks: intent detection
and slot filling. The former is a sentence classifi-
cation task where we learn a function to map an
input sentence of n words, x = [x1, ..., xn], to a
corresponding intent label, c. The latter is a se-
quence labeling task for which we learn a func-
tion to take in an input query sentence of n words,
x = [x1, ..., xn], to produce a corresponding label-
ing sequence, y = [y1, ..., yn], where yi is the slot
label of the corresponding word, xi.

Take the sentence in Fig. 1 as an example. A
successful intent detector would suggest the in-
tent of the sentence as flight, i.e., querying about
flight-related information. A slot filler, on the
other hand, should identify the slots fromloc.city
and toloc.city by labeling Boston and Miami, re-
spectively, using the begin-inside-outside (BIO)
scheme.

2.3 The Use of Regular Expressions
In this work, a RE defines a mapping from a text
pattern to several REtags which are the same as

or related to the target labels (i.e., intent and slot
labels). A search function takes in a RE, applies it
to all sentences, and returns any texts that match
the pattern. We then assign the REtag (s) (that
are associated with the matching RE) to either the
matched sentence (for intent detection) or some
matched phrases (for slot filling).

Specifically, our REtags for intent detection
are the same as the intent labels. For example, in
Fig. 1, we get a REtag of flight that is the same
as the intent label flight.

For slot filling, we use two different sets of REs.
Given the group functionality of RE, we can assign
REtags to our interested RE groups (i.e., the ex-
pressions defined inside parentheses). The transla-
tion from REtags to slot labels depends on how
the corresponding REs are used. (1) When REs
are used at the network module level (Sec. 3.3),
the corresponding REtags are the same as the tar-
get slot labels. For instance, the slot RE in Fig. 1
will assign fromloc.city to the first RE group and
toloc.city to the second one. Here, CITY is a list
of city names, which can be replaced with a RE
string like /Boston|Miami|LA|.../. (2) If REs
are used in the input (Sec. 3.2) and the output lay-
ers (Sec. 3.4) of a NN, the corresponding REtag
would be different from the target slot labels. In
this context, the two RE groups in Fig. 1 would
be simply tagged as city to capture the commonal-
ity of three related target slot labels: fromloc.city,
toloc.city, stoploc.city. Note that we could use the
target slot labels as REtags for all the settings.
The purpose of abstracting REtags to a simpli-
fied version of the target slot labels here is to show
that REs can still be useful when their evaluation
outcome does not exactly match our learning ob-
jective. Further, as shown in Sec. 4.2, using sim-
plified REtags can also make the development of
REs easier in our tasks.

Intuitively, complicated REs can lead to bet-
ter performance but require more efforts to gen-
erate. Generally, there are two aspects affecting
RE complexity most: the number of RE groups1

and or clauses (i.e., expressions separated by the
disjunction operator |) in a RE group. Having a
larger number of RE groups often leads to better

1 When discussing complexity, we consider each
semantically independent consecutive word sequence
as a RE group (excluding clauses, such as \w+,
that can match any word). For instance, the RE:
/how long( \w+){1,2}? (it take|flight)/ has
two RE groups: (how long) and (it take|flight).
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precision but lower coverage on pattern matching,
while a larger number of or clauses usually gives
a higher coverage but slightly lower precision.

3 Our Approach

As depicted in Fig. 2, we propose to combine NNs
and REs from three different angles.

3.1 Base Models
We use the Bi-directional LSTM (BLSTM) as our
base NNmodel because it is effective in both intent
detection and slot filling (Liu and Lane, 2016).

Intent Detection. As shown in Fig. 2, the BLSTM
takes as input the word embeddings [x1, ..., xn] of
a n-word sentence, and produces a vector hi for
each word i. A self-attention layer then takes in
the vectors produced by the BLSTM to compute
the sentence embedding s:

s =
∑

i

αihi, αi =
exp(hᵀ

iWc)∑
i exp(h

ᵀ
iWc)

(1)

where αi is the attention for word i, c is a ran-
domly initialized trainable vector used to select
informative words for classification, and W is a
weight matrix. Finally, s is fed to a softmax clas-
sifier for intent classification.

Slot Filling. The model for slot filling is straight-
forward – the slot label prediction is generated by
a softmax classier which takes in the BLSTM’s out-
put hi and produces the slot label of word i. Note
that attention aggregation in Fig. 2 is only em-
ployed by the network module level method pre-
sented in Sec. 3.3.

3.2 Using REs at the Input Level
At the input level, we use the evaluation outcomes
of REs as features which are fed to NN models.

Intent Detection. Our REtag for intent detec-
tion is the same as our target intent label. Be-
cause real-world REs are unlikely to be perfect,
one sentence may be matched by more than one
RE. This may result in several REtags that are
conflict with each other. For instance, the sentence
list the Delta airlines flights to Miami can match
a RE: /list( the)? AIRLINE/ that outputs
tag airline, and another RE: /list( \w+){0,3}
flights?/ that outputs tag flight.

To resolve the conflicting situations illustrated
above, we average the randomly initialized train-
able tag embeddings to form an aggregated em-
bedding as the NN input. There are two ways to

use the aggregated embedding. We can append the
aggregated embedding to either the embedding of
every input word, or the input of the softmax clas-
sifier (see 1 in Fig. 2(a)). To determine which
strategy works best, we perform a pilot study. We
found that the first method causes the tag embed-
ding to be copied many times; consequently, the
NN tends to heavily rely on the REtags, and the
resulting performance is similar to the one given
by using REs alone in few-shot settings. Thus, we
adopt the second approach.

Slot Filling. Since the evaluation outcomes of slot
REs are word-level tags, we can simply embed
and average the REtags into a vector fi for each
word, and append it to the corresponding word
embedding wi (as shown in 1 in Fig. 2(b)). Note
that we also extend the slot REtags into the BIO
format, e.g., the REtags of phrase New York are
B-city and I-city if its original tag is city.

3.3 Using REs at the Network Module Level
At the network module level, we explore ways to
utilize the clue words in the surface form of a RE
(bold blue arrows and words in 2 of Fig. 2) to
guide the attention module in NNs.

Intent Detection. Taking the sentence in Fig. 1
for example, the RE: /ˆflights? from/ that leads
to intent flight means that flights from are the key
words to decide the intent flight. Therefore, the
attention module in NNs should leverage these two
words to get the correct prediction. To this end,
we extend the base intent model by making two
changes to incorporate the guidance from REs.

First, since each intent has its own clue words,
using a single sentence embedding for all intent la-
bels would make the attention less focused. There-
fore, we let each intent label k use different atten-
tion ak, which is then used to generate the sentence
embedding sk for that intent:

sk =
∑

i

αkihi, αki =
exp(hᵀ

iWack)∑
i exp(h

ᵀ
iWack)

(2)

where ck is a trainable vector for intent k which
is used to compute attention ak, hi is the BLSTM
output for word i, and Wa is a weight matrix.

The probability pk that the input sentence ex-
presses intent k is computed by:

pk =
exp(logitk)∑
k exp(logitk)

, logitk = wksk + bk

(3)
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(a) Intent Detection
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(b) Slot Filling (predicting slot label for Boston)

Figure 2: Overview of our methods. 1 , 2 , 3 refers to the methods in Sec. 3.2, 3.3, 3.4 respectively.

where wk, logitk, bk are weight vector, logit, and
bias for intent k, respectively.

Second, apart from indicating a sentence for
intent k (positive REs), a RE can also indicate
that a sentence does not express intent k (negative
REs). We thus use a new set of attention (negative
attentions, in contrast to positive attentions), to
compute another set of logits for each intent with
Eqs. 2 and 3. We denote the logits computed by
positive attentions as logitpk, and those by nega-
tive attentions as logitnk, the final logit for intent
k can then be calculated as:

logitk = logitpk − logitnk (4)

To use REs to guide attention, we add an atten-
tion loss to the final loss:

lossatt =
∑

k

∑

i

tki log(αki) (5)

where tki is set to 0 when none of the matched
REs (that leads to intent k) marks word i as a clue
word – otherwise tki is set to 1/lk, where lk is the
number of clue words for intent k (if no matched
RE leads to intent k, then tk∗ = 0). We use Eq. 5 to
compute the positive attention loss, lossatt p, for
positive REs and negative attention loss, lossatt n,
for negative ones. The final loss is computed as:

loss = lossc + βplossatt p + βnlossatt n (6)

where lossc is the original classification loss, βp
and βn are weights for the two attention losses.

Slot Filling. The two-side attention (positive and
negative attention) mechanism introduced for in-
tent prediction is unsuitable for slot filling. Be-
cause for slot filling, we need to compute atten-
tion for each word, which demands more compu-

tational and memory resources than doing that for
intent detection2.

Because of the aforementioned reason, we use a
simplified version of the two-side attention, where
all the slot labels share the same set of positive and
negative attention. Specifically, to predict the slot
label of word i, we use the following equations,
which are similar to Eq. 1, to generate a sentence
embedding spi with regard to word i from positive
attention:

spi =
∑

j

αpijhj , αpij =
exp(hᵀ

jWsphi)∑
j exp(h

ᵀ
jWsphi)

(7)
where hi and hj are the BLSTM outputs for word
i and j respectively, Wsp is a weight matrix, and
αpij is the positive attention value for word j with
respect to word i. Further, by replacing Wsp with
Wsn, we use Eq. 7 again to compute negative at-
tention and generate the corresponding sentence
embedding sni.

Finally, the prediction pi for word i can be cal-
culated as:

pi = softmax((Wp[spi;hi] + bp)
−(Wn[sni;hi] + bn))

(8)

where Wp, Wn, bp, bn are weight matrices and
bias vectors for positive and negative attention, re-
spectively. Here we append the BLSTM output hi
to spi and sni because the word i itself also plays a
crucial part in identifying its slot label.

3.4 Using REs at the Output Level
At the output level, REs are used to amend the
output of NNs. At this level, we take the same

2Since we need to assign a label to each word, if we still
compute attention for each slot label, we will have to compute
2× L× n2 attention values for one sentence. Here, L is the
number of tags and n is the sentence length. The BIO tagging
format will further double the number of tags.
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approach used for intent detection and slot filling
(see 3 in Fig. 2).

As mentioned in Sec. 2.3, the slot REs used in
the output level only produce a simplified version
of target slot labels, for which we can further an-
notate their corresponding target slot labels. For
instance, a RE that outputs city can lead to three
slot labels: fromloc.city, toloc.city, stoploc.city.

Let zk be a 0-1 indicator of whether there is at
least one matched RE that leads to target label k
(intent or slot label), the final logits of label k for
a sentence (or a specific word for slot filling) is:

logitk = logit′k + wkzk (9)

where logit′k is the logit produced by the origi-
nal NN, and wk is a trainable weight indicating the
overall confidence for REs that lead to target la-
bel k. Here we do not assign a trainable weight
for each RE because it is often that only a few sen-
tences match a RE.

We modify the logit instead of the final prob-
ability because a logit is an unconstrained real
value, which matches the property of wkzk bet-
ter than probability. Actually, when performing
model ensemble, ensembling with logits is often
empirically better than with the final probability3.
This is also the reason why we choose to operate
on logits in Sec. 3.3.

4 Evaluation Methodology

Our experiments aim to answer three questions:
Q1: Does the use of REs enhance the learning
quality when the number of annotated instances is
small? Q2: Does the use of REs still help when
using the full training data? Q3: How can we
choose from different combination methods?

4.1 Datasets
We use the ATIS dataset (Hemphill et al., 1990)
to evaluate our approach. This dataset is widely
used in SLU research. It includes queries of
flights, meal, etc. We follow the setup of Liu and
Lane (2016) by using 4,978 queries for training
and 893 for testing, with 18 intent labels and 127
slot labels. We also split words like Miami’s into
Miami ’s during the tokenization phase to reduce
the number of words that do not have a pre-trained
word embedding. This strategy is useful for few-
shot learning.

3 An example can be found in the ensemble version that
Juan et al. (2016) used in the Avazu Kaggle competition.

To answer Q1 , we also exploit the full few-shot
learning setting. Specifically, for intent detection,
we randomly select 5, 10, 20 training instances
for each intent to form the few-shot training set;
and for slot filling, we also explore 5, 10, 20 shots
settings. However, since a sentence typically con-
tains multiple slots, the number of mentions of fre-
quent slot labels may inevitably exceeds the target
shot count. To better approximate the target shot
count, we select sentences for each slot label in as-
cending order of label frequencies. That is k1-shot
dataset will contain k2-shot dataset if k1 > k2. All
settings use the original test set.

Since most existing few-shot learning meth-
ods require either many few-shot classes or some
classes with enough data for training, we also ex-
plore the partial few-shot learning setting for in-
tent detection to provide a fair comparison for ex-
isting few-shot learning methods. Specifically, we
let the 3 most frequent intents have 300 training
instances, and the rest remains untouched. This
is also a common scenario in real world, where
we often have several frequent classes and many
classes with limited data. As for slot filling, how-
ever, since the number of mentions of frequent slot
labels already exceeds the target shot count, the
original slot filling few-shot dataset can be directly
used to train existing few-shot learning methods.
Therefore, we do not distinguish full and partial
few-shot learning for slot filling.

4.2 Preparing REs

We use the syntax of REs in Perl in this work. Our
REs are written by a paid annotator who is famil-
iar with the domain. It took the annotator in total
less than 10 hours to develop all the REs, while
a domain expert can accomplish the task faster.
We use the 20-shot training data to develop the
REs, but word lists like cities are obtained from
the full training set. The development of REs
is considered completed when the REs can cover
most of the cases in the 20-shot training data with
resonable precision. After that, the REs are fixed
throughout the experiments.

The majority of the time for writing the REs is
proportional to the number of RE groups. It took
about 1.5 hours to write the 54 intent REs with on
average 2.2 groups per RE. It is straightforward to
write the slot REs for the input and output level
methods, for which it took around 1 hour to write
the 60 REs with 1.7 groups on average. By con-
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trast, writing slot REs to guide attention requires
more efforts as the annotator needs to carefully se-
lect clue words and annotate the full slot label. As
a result, it took about 5.5 hours to generate 115
REswith on average 3.3 groups. The performance
of the REs can be found in the last line of Table 1.

In practice, a positive RE for intent (or slot) k
can often be treated as negative REs for other in-
tents (or slots). As such, we use the positive REs
for intent (or slot) k as the negative REs for other
intents (or slots) in our experiments.

4.3 Experimental Setup

Hyper-parameters. Our hyper-parameters for the
BLSTM are similar to the ones used by Liu and
Lane (2016). Specifically, we use batch size 16,
dropout probability 0.5, and BLSTM cell size 100.
The attention loss weight is 16 (both positive and
negative) for full few-shot learning settings and 1
for other settings. We use the 100d GloVe word
vectors (Pennington et al., 2014) pre-trained on
Wikipedia and Gigaword (Parker et al., 2011), and
the Adam optimizer (Kingma and Ba, 2014) with
learning rate 0.001.

Evaluation Metrics. We report accuracy and
macro-F1 for intent detection, and micro/macro-
F1 for slot filling. Micro/macro-F1 are the har-
monic mean of micro/macro precision and re-
call. Macro-precision/recall are calculated by av-
eraging precision/recall of each label, and micro-
precision/recall are averaged over each prediction.

Competitors and Naming Conventions. Here,
a bold Courier typeface like BLSTM denotes the
notations of the models that we will compare in
Sec. 5.

Specifically, we compare our methods with the
baseline BLSTMmodel (Sec. 3.1). Since our atten-
tion loss method (Sec. 3.3) uses two-side attention,
we include the raw two-side attention model with-
out attention loss (+two) for comparison as well.
Besides, we also evaluate the RE output (REO),
which uses the REtags as prediction directly, to
show the quality of the REs that we will use in the
experiments.4

As for our methods for combinging REs with
NN, +feat refers to using REtag as input fea-
tures (Sec. 3.2), +posi and +neg refer to using
positive and negative attention loss respectively,

4 For slot filling, we evaluate the REs that use the target
slot labels as REtags.

+both refers to using both postive and negative
attention losses (Sec. 3.3), and +logitmeans us-
ing REtag to modify NN output (Sec. 3.4).

Moverover, since the REs can also be format-
ted as first-order-logic (FOL) rules, we also com-
pare our methods with the teacher-student frame-
work proposed by Hu et al. (2016a), which is a
general framework for distilling knowledge from
FOL rules into NN (+hu16). Besides, since we
consider few-short learning, we also include the
memory module proposed by Kaiser et al. (2017),
which performs well in various few-shot datasets
(+mem)5. Finally, the state-of-art model on the
ATIS dataset is also included (L&L16), which
jointly models the intent detection and slot filling
in a single network (Liu and Lane, 2016).

5 Experimental Results

5.1 Full Few-Shot Learning
To answer Q1 , we first explore the full few-shot
learning scenario.

Intent Detection. As shown in Table 1, except
for 5-shot, all approaches improve the baseline
BLSTM. Our network-module-level methods give
the best performance because our attention mod-
ule directly receives signals from the clue words
in REs that contain more meaningful information
than the REtag itself used by other methods. We
also observe that since negative REs are derived
from positive REs with some noises, posi per-
forms better than neg when the amount of avail-
able data is limited. However, neg is slightly bet-
ter in 20-shot, possibly because negative REs sig-
nificantly outnumbers the positive ones. Besides,
two alone works better than the BLSTM when
there are sufficient data, confirming the advantage
of our two-side attention architecture.

As for other proposed methods, the output level
method (logit) works generally better than the
input level method (feat), except for the 5-shot
case. We believe this is due to the fewer number
of RE related parameters and the shorter distance
that the gradient needs to travel from the loss to
these parameters – both make logit easier to
train. However, since logit directly modifies the
output, the final prediction is more sensitive to the
insufficiently trained weights in logit, leading
to the inferior results in the 5-shot setting.

5 We tune C and π0 of hu16, and choose (0.1, 0.3) for
intent, and (1, 0.3) for slot. We tune memory-size and k of
mem, and choose (1024, 64) for intent, and (2048, 64) for slot.
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Model Type Model Name
Intent Slot

5-shot 10-shot 20-shot 5-shot 10-shot 20-shot
Macro-F1 / Accuracy Macro-F1 / Accuracy

Base Model BLSTM 45.28 / 60.02 60.62 / 64.61 63.60 / 80.52 60.78 / 83.91 74.28 / 90.19 80.57 / 93.08
Input Level +feat 49.40 / 63.72 64.34 / 73.46 65.16 / 83.20 66.84 / 88.96 79.67 / 93.64 84.95 / 95.00

+logit 46.01 / 58.68 63.51 / 77.83 69.22 / 89.25 63.68 / 86.18 76.12 / 91.64 83.71 / 94.43Output Level
+hu16 47.22 / 56.22 61.83 / 68.42 67.40 / 84.10 63.37 / 85.37 75.67 / 91.06 80.85 / 93.47

Network Module
Level

+two 40.44 / 57.22 60.72 / 75.14 62.88 / 83.65 60.38 / 83.63 73.22 / 90.08 79.58 / 92.57
+two+posi 50.90 / 74.47 68.69 / 84.66 72.43 / 85.78 59.59 / 83.47 73.62 / 89.28 78.94 / 92.21
+two+neg 49.01 / 68.31 64.67 / 79.17 72.32 / 86.34 59.51 / 83.23 72.92 / 89.11 78.83 / 92.07
+two+both 54.86 / 75.36 71.23 / 85.44 75.58 / 88.80 59.47 / 83.35 73.55 / 89.54 79.02 / 92.22
+mem - - - 61.25 / 83.45 77.83 / 90.57 82.98 / 93.49Few-Shot Model
+mem+feat - - - 65.08 / 88.07 80.64 / 93.47 85.45 / 95.39

RE Output REO 70.31 / 68.98 42.33 / 70.79

Table 1: Results on Full Few-Shot Learning Settings. For slot filling, we do not distinguish full and
partial few-shot learning settings (see Sec. 4.1).

To compare with existing methods of combin-
ing NN and rules, we also implement the teacher-
student network (Hu et al., 2016a). This method
lets the NN learn from the posterior label distribu-
tion produced by FOL rules in a teacher-student
framework, but requires considerable amounts of
data. Therefore, although both hu16 and logit
operate at the output level, logit still performs
better than hu16 in these few-shot settings, since
logit is easier to train.

It can also be seen that starting from 10-shot,
two+both significantly outperforms pure REO.
This suggests that by using our attention loss to
connect the distributional representation of the NN
and the clue words of REs, we can generalize RE
patterns within a NN architecture by using a small
amount of annotated data.

Slot Filling. Different from intent detection, as
shown in Table 1, our attention loss does not work
for slot filling. The reason is that the slot label of
a target word (the word for which we are trying
to predict a slot label) is decided mainly by the se-
mantic meaning of the word itself, together with 0-
3 phrases in the context to provide supplementary
information. However, our attention mechanism
can only help in recognizing clue words in the con-
text, which is less important than the word itself
and have already been captured by the BLSTM, to
some extent. Therefore, the attention loss and the
attention related parameters are more of a burden
than a benefit. As is shown in Fig. 1, the model
recognizes Boston as fromloc.city mainly because
Boston itself is a city, and its context word from
may have already been captured by the BLSTM
and our attention mechanism does not help much.
By examining the attention values of +two trained
on the full dataset, we find that instead of mark-

ing informative context words, the attention tends
to concentrate on the target word itself. This ob-
servation further reinforces our hypothesis on the
attention loss.

On the other hand, since the REtags provide
extra information, such as type, about words in
the sentence, logit and feat generally work
better. However, different from intent detection,
feat only outperforms logit by a margin. This
is because feat can use the REtags of all words
to generate better context representations through
the NN, while logit can only utilize the REtag
of the target word before the final output layer. As
a result, feat actually gathers more information
from REs and can make better use of them than
logit. Again, hu16 is still outperformed by
logit, possibly due to the insufficient data sup-
port in this few-shot scenario. We also see that
even the BLSTM outperforms REO in 5-shot, in-
dicating while it is hard to write high-quality RE
patterns, using REs to boost NNs is still feasible.

Summary. The amount of extra information that
a NN can utilize from the combined REs signifi-
cantly affects the resulting performance. Thus, the
attention loss methods work best for intent detec-
tion and feat works best for slot filling. We also
see that the improvements from REs decreases as
having more training data. This is not surprising
because the implicit knowledge embedded in the
REs are likely to have already been captured by a
sufficient large annotated dataset and in this sce-
nario using the REs will bring in fewer benefits.

5.2 Partial Few-Shot Learning

To better understand the relationship between our
approach and existing few-shot learning methods,
we also implement the memory network method
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Model 5-shot 10-shot 20-shot
Macro-F1 / Accuracy

BLSTM 64.73 / 91.71 78.55 / 96.53 82.05 / 97.20
+hu16 65.22 / 91.94 84.49 / 96.75 84.80 / 97.42
+two 65.59 / 91.04 77.92 / 95.52 81.01 / 96.86
+two+both 66.62 / 92.05 85.75 / 96.98 87.97 / 97.76
+mem 67.54 / 91.83 82.16 / 96.75 84.69 / 97.42
+mem+posi 70.46 / 93.06 86.03 / 97.09 86.69 / 97.65

Table 2: Intent Detection Results on Partial Few-
Shot Learning Setting.

Model Intent Slot
Macro-F1/Accuracy Macro-F1/Micro-F1

BLSTM 92.50 / 98.77 85.01 / 95.47
+feat 91.86 / 97.65 86.7 / 95.55
+logit 92.48 / 98.77 86.94 / 95.42
+hu16 93.09 / 98.77 85.74 / 95.33
+two 93.64 / 98.88 84.45 / 95.05
+two+both 96.20 / 98.99 85.44 / 95.27
+mem 93.42 / 98.77 85.72 / 95.37
+mem+posi/feat 94.36 / 98.99 87.82 / 95.90
L&L16 - / 98.43 - / 95.98

Table 3: Results on Full Dataset. The left side of
‘/’ applies for intent, and the right side for slot.

(Kaiser et al., 2017) which achieves good results
in various few-shot datasets. We adapt their open-
source code, and add their memory module (mem)
to our BLSTM model.

Since the memory module requires to be trained
on either many few-shot classes or several classes
with extra data, we expand our full few-shot
dataset for intent detection, so that the top 3 intent
labels have 300 sentences (partial few-shot).

As shown in Table 2, mem works better than
BLSTM, and our attention loss can be further com-
bined with the memory module (mem+posi),
with even better performance. hu16 also works
here, but worse than two+both. Note that, the
memory module requires the input sentence to
have only one embedding, thus we only use one
set of positive attention for combination.

As for slot filling, since we already have ex-
tra data for frequent tags in the original few-shot
data (see Sec. 4.1), we use them directly to run the
memory module. As shown in the bottom of Table
1, mem also improves the base BLSTM, and gains
further boost when it is combined with feat6.

5.3 Full Dataset
To answer Q2, we also evaluate our methods on
the full dataset. As seen in Table 3, for intent de-
tection, while two+both still works, feat and
logit no longer give improvements. This shows

6For compactness, we only combine the best method in
each task with mem, but others can also be combined.

Model
Intent Slot

Macro-F1 / Accuracy Macro-F1 / Micro-F1
Complex Simple Complex Simple

BLSTM 63.60 / 80.52 80.57 / 93.08
+feat 65.16/83.20 66.51/80.40 84.95/95.00 83.88/94.71
+logit 69.22/89.25 65.09/83.09 83.71/94.43 83.22/93.94
+both 75.58/88.80 74.51/87.46 - -

Table 4: Results on 20-Shot Data with Simple
REs. +both refers to +two +both for short.

that since both REtag and annotated data provide
intent labels for the input sentence, the value of
the extra noisy tag from RE become limited as we
have more annotated data. However, as there is no
guidance on attention in the annotations, the clue
words from REs are still useful. Further, since
feat concatenates REtags at the input level,
the powerful NN makes it more likely to overfit
than logit, therefore feat performs even worse
when compared to the BLSTM.

As for slot filling, introducing feat and
logit can still bring further improvements. This
shows that the word type information contained in
the REtags is still hard to be fully learned even
when we have more annotated data. Moreover,
different from few-shot settings, two+both has
a better macro-F1 score than the BLSTM for this
task, suggesting that better attention is still useful
when the base model is properly trained.

Again, hu16 outperforms the BLSTM in both
tasks, showing that although the REtags are
noisy, their teacher-student network can still dis-
till useful information. However, hu16 is a gen-
eral framework to combine FOL rules, which is
more indirect in transferring knowledge from rules
to NN than our methods. Therefore, it is still infe-
rior to attention loss in intent detection and feat
in slot filling, which are designed to combine REs.

Further, mem generally works in this setting,
and can receive further improvement by combin-
ing our fusion methods. We can also see that
two+both works clearly better than the state-
of-art method (L&L16) in intent detection, which
jointly models the two tasks. And mem+feat is
comparative to L&L16 in slot filling.

5.4 Impact of the RE Complexity
We now discuss how the RE complexity affects the
performance of the combination. We choose to
control the RE complexity by modifying the num-
ber of groups. Specifically, we reduce the number
of groups for existing REs to decrease RE com-
plexity. To mimic the process of writing simple
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REs from scratch, we try our best to keep the key
RE groups. For intent detection, all the REs are
reduced to at most 2 groups. As for slot filling, we
also reduce the REs to at most 2 groups, and for
some simples case, we further reduce them into
word-list patterns, e.g., ( CITY).

As shown in Table 4, the simple REs already
deliver clear improvements to the base NN mod-
els, which shows the effectiveness of our meth-
ods, and indicates that simple REs are quite cost-
efficient since these simple REs only contain 1-2
RE groups and thus very easy to produce. We can
also see that using complex REs generally leads to
better results compared to using simple REs. This
indicates that when considering using REs to im-
prove a NN model, we can start with simple REs,
and gradually increase the RE complexity to im-
prove the performance over time7.

6 Related Work

Our work builds upon the following techniques,
while qualitatively differing from each

NN with Rules. On the initialization side, Li et
al. (2017) uses important n-grams to initialize the
convolution filters. On the input side, Wang et
al. (2017a) uses knowledge base rules to find rele-
vant concepts for short texts to augment input. On
the output side, Hu et al. (2016a; 2016b) and Guo
et al. (2017) use FOL rules to rectify the output
probability of NN, and then let NN learn from the
rectified distribution in a teacher-student frame-
work. Xiao et al. (2017), on the other hand, mod-
ifies the decoding score of NN by multiplying a
weight derived from rules. On the loss function
side, people modify the loss function to model the
relationship between premise and conclusion (De-
meester et al., 2016), and fit both human-annotated
and rule-annotated labels (Alashkar et al., 2017).
Since fusing in initialization or in loss function of-
ten require special properties of the task, these ap-
proaches are not applicable to our problem. Our
work thus offers new ways to exploit RE rules at
different levels of a NN.

NNs and REs. As for NNs and REs, previous
work has tried to use RE to speed up the decoding
phase of a NN (Strauß et al., 2016) and generating
REs from natural language specifications of the

7We do not include results of both for slot filling since
its REs are different from feat and logit, and we have
already shown that the attention loss method does not work
for slot filling.

RE (Locascio et al., 2016). By contrast, our work
aims to use REs to improve the prediction ability
of a NN.

Few-Shot Learning. Prior work either consid-
ers few-shot learning in a metric learning frame-
work (Koch et al., 2015; Vinyals et al., 2016), or
stores instances in a memory (Santoro et al., 2016;
Kaiser et al., 2017) to match similar instances in
the future. Wang et al. (2017b) further uses the se-
mantic meaning of the class name itself to provide
extra information for few-shot learning. Unlike
these previous studies, we seek to use the human-
generated REs to provide additional information.

Natural Language Understanding. Recurrent
neural networks are proven to be effective in both
intent detection (Ravuri and Stoicke, 2015) and
slot filling (Mesnil et al., 2015). Researchers also
find ways to jointly model the two tasks (Liu and
Lane, 2016; Zhang and Wang, 2016). However,
no work so far has combined REs and NNs to im-
prove intent detection and slot filling.

7 Conclusions
In this paper, we investigate different ways to com-
bine NNs and REs for solving typical SLU tasks.
Our experiments demonstrate that the combina-
tion clearly improves the NN performance in both
the few-shot learning and the full dataset settings.
We show that by exploiting the implicit knowl-
edge encoded within REs, one can significantly
improve the learning performance. Specifically,
we observe that using REs to guide the attention
module works best for intent detection, and us-
ing REtags as features is an effective approach
for slot filling. We provide interesting insights on
how REs of various forms can be employed to im-
prove NNs, showing that while simple REs are
very cost-effective, complex REs generally yield
better results.

Acknowledgement
This work is supported by the National High
Technology R&D Program of China (Grant No.
2015AA015403), the National Natural Science
Foundation of China (Grant Nos. 61672057 and
61672058); the UK Engineering and Physical Sci-
ences Research Council (EPSRC) under grants
EP/M01567X/1 (SANDeRs) and EP/M015793/1
(DIVIDEND); and the Royal Society International
Collaboration Grant (IE161012). For any corre-
spondence, please contact Yansong Feng.

2091



References
Taleb Alashkar, Songyao Jiang, Shuyang Wang, and

Yun Fu. 2017. Examples-rules guided deep neu-
ral network for makeup recommendation. In AAAI,
pages 941–947.

Angel X Chang and Christopher D Manning. 2014. To-
kensregex: Defining cascaded regular expressions
over tokens. Tech. Rep. CSTR 2014-02.

Thomas Demeester, Tim Rocktäschel, and Sebastian
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Abstract

Despite the effectiveness of recurrent neu-
ral network language models, their max-
imum likelihood estimation suffers from
two limitations. It treats all sentences that
do not match the ground truth as equally
poor, ignoring the structure of the out-
put space. Second, it suffers from “ex-
posure bias”: during training tokens are
predicted given ground-truth sequences,
while at test time prediction is conditioned
on generated output sequences. To over-
come these limitations we build upon the
recent reward augmented maximum likeli-
hood approach i.e. sequence-level smooth-
ing that encourages the model to predict
sentences close to the ground truth accord-
ing to a given performance metric. We
extend this approach to token-level loss
smoothing, and propose improvements to
the sequence-level smoothing approach.
Our experiments on two different tasks,
image captioning and machine translation,
show that token-level and sequence-level
loss smoothing are complementary, and
significantly improve results.

1 Introduction

Recurrent neural networks (RNNs) have recently
proven to be very effective sequence modeling
tools, and are now state of the art for tasks such
as machine translation (Cho et al., 2014; Sutskever
et al., 2014; Bahdanau et al., 2015), image caption-
ing (Kiros et al., 2014; Vinyals et al., 2015; Ander-
son et al., 2017) and automatic speech recognition
(Chorowski et al., 2015; Chiu et al., 2017).

The basic principle of RNNs is to iteratively
compute a vectorial sequence representation, by
applying at each time-step the same trainable func-

tion to compute the new network state from the
previous state and the last symbol in the sequence.
These models are typically trained by maximizing
the likelihood of the target sentence given an en-
coded source (text, image, speech).

Maximum likelihood estimation (MLE), how-
ever, has two main limitations. First, the training
signal only differentiates the ground-truth target
output from all other outputs. It treats all other
output sequences as equally incorrect, regardless
of their semantic proximity from the ground-truth
target. While such a “zero-one” loss is probably
acceptable for coarse grained classification of im-
ages, e.g. across a limited number of basic ob-
ject categories (Everingham et al., 2010) it be-
comes problematic as the output space becomes
larger and some of its elements become semanti-
cally similar to each other. This is in particular the
case for tasks that involve natural language gener-
ation (captioning, translation, speech recognition)
where the number of possible outputs is practically
unbounded. For natural language generation tasks,
evaluation measures typically do take into account
structural similarity, e.g. based on n-grams, but
such structural information is not reflected in the
MLE criterion. The second limitation of MLE is
that training is based on predicting the next token
given the input and preceding ground-truth output
tokens, while at test time the model predicts condi-
tioned on the input and the so-far generated output
sequence. Given the exponentially large output
space of natural language sentences, it is not obvi-
ous that the learned RNNs generalize well beyond
the relatively sparse distribution of ground-truth
sequences used during MLE optimization. This
phenomenon is known as “exposure bias” (Ran-
zato et al., 2016; Bengio et al., 2015).

MLE minimizes the KL divergence between a
target Dirac distribution on the ground-truth sen-
tence(s) and the model’s distribution. In this pa-
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per, we build upon the “loss smoothing” approach
by Norouzi et al. (2016), which smooths the Dirac
target distribution over similar sentences, increas-
ing the support of the training data in the output
space. We make the following main contributions:
• We propose a token-level loss smooth-

ing approach, using word-embeddings, to
achieve smoothing among semantically sim-
ilar terms, and we introduce a special proce-
dure to promote rare tokens.
• For sequence-level smoothing, we propose to

use restricted token replacement vocabular-
ies, and a “lazy evaluation” method that sig-
nificantly speeds up training.
• We experimentally validate our approach on

the MSCOCO image captioning task and the
WMT’14 English to French machine trans-
lation task, showing that on both tasks com-
bining token-level and sequence-level loss
smoothing improves results significantly over
maximum likelihood baselines.

In the remainder of the paper, we review the ex-
isting methods to improve RNN training in Sec-
tion 2. Then, we present our token-level and
sequence-level approaches in Section 3. Experi-
mental evaluation results based on image caption-
ing and machine translation tasks are laid out in
Section 4.

2 Related work

Previous work aiming to improve the generaliza-
tion performance of RNNs can be roughly divided
into three categories: those based on regulariza-
tion, data augmentation, and alternatives to maxi-
mum likelihood estimation.

Regularization techniques are used to increase
the smoothness of the function learned by the
network, e.g. by imposing an `2 penalty on the
network weights, also known as “weight decay”.
More recent approaches mask network activations
during training, as in dropout (Srivastava et al.,
2014) and its variants adapted to recurrent mod-
els (Pham et al., 2014; Krueger et al., 2017). In-
stead of masking, batch-normalization (Ioffe and
Szegedy, 2015) rescales the network activations
to avoid saturating the network’s non-linearities.
Instead of regularizing the network parameters or
activations, it is also possible to directly regular-
ize based on the entropy of the output distribution
(Pereyra et al., 2017).

Data augmentation techniques improve the ro-

bustness of the learned models by applying trans-
formations that might be encountered at test time
to the training data. In computer vision, this is
common practice, and implemented by, e.g., scal-
ing, cropping, and rotating training images (Le-
Cun et al., 1998; Krizhevsky et al., 2012; Paulin
et al., 2014). In natural language processing, ex-
amples of data augmentation include input noising
by randomly dropping some input tokens (Iyyer
et al., 2015; Bowman et al., 2015; Kumar et al.,
2016), and randomly replacing words with sub-
stitutes sampled from the model (Bengio et al.,
2015). Xie et al. (2017) introduced data augmenta-
tion schemes for RNN language models that lever-
age n-gram statistics in order to mimic Kneser-
Ney smoothing of n-grams models. In the con-
text of machine translation, Fadaee et al. (2017)
modify sentences by replacing words with rare
ones when this is plausible according to a pre-
trained language model, and substitutes its equiv-
alent in the target sentence using automatic word
alignments. This approach, however, relies on the
availability of additional monolingual data for lan-
guage model training.

The de facto standard way to train RNN lan-
guage models is maximum likelihood estimation
(MLE) (Cho et al., 2014; Sutskever et al., 2014;
Bahdanau et al., 2015). The sequential factoriza-
tion of the sequence likelihood generates an ad-
ditive structure in the loss, with one term corre-
sponding to the prediction of each output token
given the input and the preceding ground-truth
output tokens. In order to directly optimize for
sequence-level structured loss functions, such as
measures based on n-grams like BLEU or CIDER,
Ranzato et al. (2016) use reinforcement learn-
ing techniques that optimize the expectation of a
sequence-level reward. In order to avoid early con-
vergence to poor local optima, they pre-train the
model using MLE.

Leblond et al. (2018) build on the learn-
ing to search approach to structured prediction
(Daumé III et al., 2009; Chang et al., 2015) and
adapts it to RNN training. The model generates
candidate sequences at each time-step using all
possible tokens, and scores these at sequence-level
to derive a training signal for each time step. This
leads to an approach that is structurally close to
MLE, but computationally expensive. Norouzi
et al. (2016) introduce a reward augmented maxi-
mum likelihood (RAML) approach, that incorpo-
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rates a notion of sequence-level reward without
facing the difficulties of reinforcement learning.
They define a target distribution over output sen-
tences using a soft-max over the reward over all
possible outputs. Then, they minimize the KL di-
vergence between the target distribution and the
model’s output distribution. Training with a gen-
eral reward distribution is similar to MLE train-
ing, except that we use multiple sentences sam-
pled from the target distribution instead of only the
ground-truth sentences.

In our work, we build upon the work of
Norouzi et al. (2016) by proposing improvements
to sequence-level smoothing, and extending it to
token-level smoothing. Our token-level smooth-
ing approach is related to the label smoothing ap-
proach of Szegedy et al. (2016) for image clas-
sification. Instead of maximizing the probability
of the correct class, they train the model to pre-
dict the correct class with a large probability and
all other classes with a small uniform probabil-
ity. This regularizes the model by preventing over-
confident predictions. In natural language gen-
eration with large vocabularies, preventing such
“narrow” over-confident distributions is impera-
tive, since for many tokens there are nearly inter-
changeable alternatives.

3 Loss smoothing for RNN training

We briefly recall standard recurrent neural net-
work training, before presenting sequence-level
and token-level loss smoothing below.

3.1 Maximum likelihood RNN training
We are interested in modeling the conditional
probability of a sequence y = (y1, . . . , yT ) given
a conditioning observation x,

pθ(y|x) =

T∏

t=1

pθ(yt|x, y<t), (1)

where y<t = (y1, . . . , yt−1), the model parame-
ters are given by θ, and x is a source sentence or an
image in the contexts of machine translation and
image captioning, respectively.

In a recurrent neural network, the sequence y is
predicted based on a sequence of states ht,

pθ(yt|x, y<t) = pθ(yt|ht), (2)

where the RNN state is computed recursively as

ht =

{
fθ(ht−1, yt−1, x) for t ∈ {1, ..T},
gθ(x) for t = 0.

(3)

The input is encoded by gθ and used to initialize
the state sequence, and fθ is a non-linear function
that updates the state given the previous state ht−1,
the last output token yt−1, and possibly the input
x. The state update function can take different
forms, the ones including gating mechanisms such
as LSTMs (Hochreiter and Schmidhuber, 1997)
and GRUs (Chung et al., 2014) are particularly ef-
fective to model long sequences.

In standard teacher-forced training, the hidden
states will be computed by forwarding the ground
truth sequence y∗ i.e. in Eq. (3), the RNN has ac-
cess to the true previous token y∗t−1. In this case
we will note the hidden states h∗t .

Given a ground-truth target sequence y∗, maxi-
mum likelihood estimation (MLE) of the network
parameters θ amounts to minimizing the loss

`MLE(y∗, x) = − ln pθ(y
∗|x) (4)

= −
T∑

t=1

ln pθ(y
∗
t |h∗t ). (5)

The loss can equivalently be expressed as the KL-
divergence between a Dirac centered on the target
output (with δa(x) = 1 at x = a and 0 otherwise)
and the model distribution, either at the sequence-
level or at the token-level:

`MLE(y∗, x) = DKL
(
δy∗ ||pθ(y|x)

)
(6)

=
T∑

t=1

DKL
(
δy∗t ||pθ(yt|h

∗
t )
)
. (7)

Loss smoothing approaches considered in this pa-
per consist in replacing the Dirac on the ground-
truth sequence with distributions with larger sup-
port. These distributions can be designed in such
a manner that they reflect which deviations from
ground-truth predictions are preferred over others.

3.2 Sequence-level loss smoothing
The reward augmented maximum likelihood ap-
proach of Norouzi et al. (2016) consists in replac-
ing the sequence-level Dirac δy∗ in Eq. (6) with a
distribution

r(y|y∗) ∝ exp r(y, y∗)/τ, (8)

where r(y, y∗) is a “reward” function that mea-
sures the quality of sequence y w.r.t. y∗, e.g. met-
rics used for evaluation of natural language pro-
cessing tasks can be used, such as BLEU (Pap-
ineni et al., 2002) or CIDER (Vedantam et al.,
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2015). The temperature parameter τ controls
the concentration of the distribution around y∗.
When m > 1 ground-truth sequences are paired
with the same input x, the reward function can
be adapted to fit this setting and be defined
as r(y, {y∗(1), . . . , y∗(m)}). The sequence-level
smoothed loss function is then given by

`Seq(y∗, x) = DKL
(
r(y|y∗)||pθ(y|x)

)

= H(r(y|y∗))− Er[ln pθ(y|x)] , (9)

where the entropy term H(r(y|y∗)) does not de-
pend on the model parameters θ.

In general, expectation in Eq. (9) is intractable
due to the exponentially large output space, and
replaced with a Monte-Carlo approximation:

Er[− ln pθ(y|x)] ≈ −
L∑

l=1

ln pθ(y
l|x). (10)

Stratified sampling. Norouzi et al. (2016) show
that when using the Hamming or edit distance as a
reward, we can sample directly from r(y|y∗) us-
ing a stratified sampling approach. In this case
sampling proceeds in three stages. (i) Sample a
distance d from {0, . . . , T} from a prior distribu-
tion on d. (ii) Uniformly select d positions in the
sequence to be modified. (iii) Sample the d substi-
tutions uniformly from the token vocabulary.

Details on the construction of the prior distri-
bution on d for a reward based on the Hamming
distance can be found in Appendix A.

Importance sampling. For a reward based on
BLEU or CIDER , we cannot directly sample from
r(y|y∗) since the normalizing constant, or “parti-
tion function”, of the distribution is intractable to
compute. In this case we can resort to importance
sampling. We first sample L sequences yl from
a tractable proposal distribution q(y|y∗). We then
compute the importance weights

ωl ≈
r(yl|y∗)/q(yl|y∗)

∑L
k=1 r(y

k|y∗)/q(yk|y∗)
, (11)

where r(yk|y∗) is the un-normalized reward distri-
bution in Eq. (8). We finally approximate the ex-
pectation by reweighing the samples in the Monte
Carlo approximation as

Er[− ln pθ(y|x)] ≈ −
L∑

l=1

ωl ln pθ(y
l|x). (12)

In our experiments we use a proposal distribu-
tion based on the Hamming distance, which al-
lows for tractable stratified sampling, and gener-
ates sentences that do not stray away from the
ground truth.

We propose two modifications to the sequence-
level loss smoothing of Norouzi et al. (2016):
sampling to a restricted vocabulary (described in
the following paragraph) and lazy sequence-level
smoothing (described in section 3.4).

Restricted vocabulary sampling. In the strati-
fied sampling method for Hamming and edit dis-
tance rewards, instead of drawing from the large
vocabulary V , containing typically in the order of
104 words or more, we can restrict ourselves to a
smaller subset Vsub more adapted to our task. We
considered three different possibilities for Vsub.
V : the full vocabulary from which we sample

uniformly (default), or draw from our token-level
smoothing distribution defined below in Eq. (13).
Vrefs: uniformly sample from the set of tokens

that appear in the ground-truth sentence(s) associ-
ated with the current input.
Vbatch: uniformly sample from the tokens that

appear in the ground-truth sentences across all in-
puts that appear in a given training mini-batch.

Uniformly sampling from Vbatch has the effect
of boosting the frequencies of words that appear
in many reference sentences, and thus approxi-
mates to some extent sampling substitutions from
the uni-gram statistics of the training set.

3.3 Token-level loss smoothing

While the sequence-level smoothing can be di-
rectly based on performance measures of inter-
est such as BLEU or CIDEr, the support of the
smoothed distribution is limited to the number
of samples drawn during training. We propose
smoothing the token-level Diracs δy∗t in Eq. (7) to
increase its support to similar tokens. Since we
apply smoothing to each of the tokens indepen-
dently, this approach implicitly increases the sup-
port to an exponential number of sequences, un-
like the sequence-level smoothing approach. This
comes at the price, however, of a naive token-level
independence assumption in the smoothing.

We define the smoothed token-level distribu-
tion, similar as the sequence-level one, as a soft-
max over a token-level “reward” function,

r(yt|y∗t ) ∝ exp r(yt, y
∗
t )/τ, (13)
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where τ is again a temperature parameter. As
a token-level reward r(yt, y∗t ) we use the cosine
similarity between yt and y∗t in a semantic word-
embedding space. In our experiments we use
GloVe (Pennington et al., 2014); preliminary ex-
periments with word2vec (Mikolov et al., 2013)
yielded somewhat worse results.

Promoting rare tokens. We can further im-
prove the token-level smoothing by promoting rare
tokens. To do so, we penalize frequent tokens
when smoothing over the vocabulary, by subtract-
ing β freq(yt) from the reward, where freq(·) de-
notes the term frequency and β is a non-negative
weight. This modification encourages frequent to-
kens into considering the rare ones. We experi-
mentally found that it is also beneficial for rare
tokens to boost frequent ones, as they tend to
have mostly rare tokens as neighbors in the word-
embedding space. With this in mind, we define a
new token-level reward as:

rfreq(yt, y
∗
t ) = r(yt, y

∗
t ) (14)

− βmin

(
freq(yt)

freq(y∗t )
,
freq(y∗t )
freq(yt)

)
,

where the penalty term is strongest if both tokens
have similar frequencies.

3.4 Combining losses

In both loss smoothing methods presented above,
the temperature parameter τ controls the concen-
tration of the distribution. As τ gets smaller the
distribution peaks around the ground-truth, while
for large τ the uniform distribution is approached.
We can, however, not separately control the spread
of the distribution and the mass reserved for the
ground-truth output. We therefore introduce a sec-
ond parameter α ∈ [0, 1] to interpolate between
the Dirac on the ground-truth and the smooth dis-
tribution. Using ᾱ = 1 − α, the sequence-level
and token-level loss functions are then defined as

`αSeq(y∗, x) = α`Seq(y∗, x) + ᾱ`MLE(y∗, x) (15)

= αEr[`MLE(y, x)] + ᾱ`MLE(y∗, x)

`αTok(y∗, x) = α`Tok(y∗, x) + ᾱ`MLE(y∗, x) (16)

To benefit from both sequence-level and token-
level loss smoothing, we also combine them by ap-
plying token-level smoothing to the different se-
quences sampled for the sequence-level smooth-
ing. We introduce two mixing parameters α1 and

α2. The first controls to what extent sequence-
level smoothing is used, while the second controls
to what extent token-level smoothing is used. The
combined loss is defined as

`α1,α2

Seq, Tok(y∗, x, r) = α1Er[`Tok(y, x)] + ᾱ1`Tok(y∗, x)

= α1Er[α2`Tok(y, x) + ᾱ2`MLE(y, x)]

+ ᾱ1(α2`Tok(y∗, x) + ᾱ2`MLE(y∗, x)).
(17)

In our experiments, we use held out validation
data to set mixing and temperature parameters.

Algorithm 1 Sequence-level smoothing algorithm
Input: x, y∗

Output: `αseq(x, y
∗)

Encode x to initialize the RNN
Forward y∗ in the RNN to compute the hidden states h∗t
Compute the MLE loss `MLE(y∗, x)
for l ∈ {1, . . . , L} do

Sample yl ∼ r(|̇y∗)
if Lazy then

Compute `(yl, x) = −∑
t log pθ(y

l
t|h∗t )

else
Forward yl in the RNN to get its hidden states hlt
Compute `(yl, x) = `MLE(yl, x)

end if
end for
`αSeq(x, y

∗) = ᾱ`MLE(y∗, x) + α
L

∑
l `(y

l, x)

Lazy sequence smoothing. Although sequence-
level smoothing is computationally efficient com-
pared to reinforcement learning approaches (Ran-
zato et al., 2016; Rennie et al., 2017), it is slower
compared to MLE. In particular, we need to for-
ward each of the samples yl through the RNN in
teacher-forcing mode so as to compute its hidden
states hlt, which are used to compute the sequence
MLE loss as

`MLE(yl, x) = −
T∑

t=1

ln pθ(y
l
t|hlt). (18)

To speed up training, and since we already forward
the ground truth sequence in the RNN to evaluate
the MLE part of `αSeq(y∗, x), we propose to use the
same hidden states h∗t to compute both the MLE
and the sequence-level smoothed loss. In this case:

`lazy(yl, x) = −
T∑

t=1

ln pθ(y
l
t|h∗t ) (19)

In this manner, we only have a single instead of
L + 1 forwards-passes in the RNN. We provide
the pseudo-code for training in Algorithm 1.
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Without attention

Loss Reward Vsub BLEU-1 BLEU-4 CIDER

MLE 70.63 30.14 93.59
MLE + γH 70.79 30.29 93.61

Tok Glove sim 71.94 31.27 95.79
Tok Glove sim rfreq 72.39 31.76 97.47

Seq Hamming V 71.76 31.16 96.37
Seq Hamming Vbatch 71.46 31.15 96.53
Seq Hamming Vrefs 71.80 31.63 96.22

Seq, lazy Hamming V 70.81 30.43 94.26
Seq, lazy Hamming Vbatch 71.85 31.13 96.65
Seq, lazy Hamming Vrefs 71.96 31.23 95.34

Seq CIDER V 71.05 30.46 94.40
Seq CIDER Vbatch 71.51 31.17 95.78
Seq CIDER Vrefs 71.93 31.41 96.81

Seq, lazy CIDER V 71.43 31.18 96.32
Seq, lazy CIDER Vbatch 71.47 31.00 95.56
Seq, lazy CIDER Vrefs 71.82 31.06 95.66

Tok-Seq Hamming V 70.79 30.43 96.34
Tok-Seq Hamming Vbatch 72.28 31.65 96.73
Tok-Seq Hamming Vrefs 72.69 32.30 98.01
Tok-Seq CIDER V 70.80 30.55 96.89
Tok-Seq CIDER Vbatch 72.13 31.71 96.92
Tok-Seq CIDER Vrefs 73.08 32.82 99.92

With attention

BLEU-1 BLEU-4 CIDER

73.40 33.11 101.63
72.68 32.15 99.77

73.49 32.93 102.33
74.01 33.25 102.81

73.12 32.71 101.25
73.26 32.73 101.90
73.53 32.59 102.33

73.29 32.81 101.58
73.43 32.95 102.03
73.53 33.09 101.89

73.08 32.51 101.84
73.50 33.04 102.98
73.42 32.91 102.23

73.55 33.19 102.94
73.18 32.60 101.30
73.92 33.10 102.64

73.68 32.87 101.11
73.86 33.32 102.90
73.56 33.00 101.72
73.31 32.40 100.33
73.61 32.67 101.41
74.28 33.34 103.81

Table 1: MS-COCO ’s test set evaluation measures.

4 Experimental evaluation

In this section, we compare sequence prediction
models trained with maximum likelihood (MLE)
with our token and sequence-level loss smoothing
on two different tasks: image captioning and ma-
chine translation.

4.1 Image captioning

4.1.1 Experimental setup.
We use the MS-COCO datatset (Lin et al., 2014),
which consists of 82k training images each anno-
tated with five captions. We use the standard splits
of Karpathy and Li (2015), with 5k images for val-
idation, and 5k for test. The test set results are
generated via beam search (beam size 3) and are
evaluated with the MS-COCO captioning evalu-
ation tool. We report CIDER and BLEU scores
on this internal test set. We also report results ob-
tained on the official MS-COCO server that ad-
ditionally measures METEOR (Denkowski and
Lavie, 2014) and ROUGE-L (Lin, 2004). We ex-
periment with both non-attentive LSTMs (Vinyals
et al., 2015) and the ResNet baseline of the state-
of-the-art top-down attention (Anderson et al.,
2017).

The MS-COCO vocabulary consists of 9,800
words that occur at least 5 times in the training
set. Additional details and hyperparameters can

be found in Appendix B.1.

4.1.2 Results and discussion
Restricted vocabulary sampling In this sec-
tion, we evaluate the impact of the vocabulary
subset from which we sample the modified sen-
tences for sequence-level smoothing. We exper-
iment with two rewards: CIDER , which scores
w.r.t. all five available reference sentences, and
Hamming distance reward taking only a single ref-
erence into account. For each reward we train our
(Seq) models with each of the three subsets de-
tailed previously in Section 3.2, Restricted vocab-
ulary sampling.

From the results in Table 1 we note that for the
inattentive models, sampling from Vrefs or Vbatch
has a better performance than sampling from the
full vocabulary on all metrics. In fact, using
these subsets introduces a useful bias to the model
and improves performance. This improvement is
most notable using the CIDER reward that scores
candidate sequences w.r.t. to multiple references,
which stabilizes the scoring of the candidates.

With an attentive decoder, no matter the re-
ward, re-sampling sentences with words from Vref
rather than the full vocabulary V is better for both
reward functions, and all metrics. Additional ex-
perimental results, presented in Appendix B.2, ob-
tained with a BLEU-4 reward, in its single and
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BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDER SPICE

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

Google NIC+ (Vinyals et al., 2015) 71.3 89.5 54.2 80.2 40.7 69.4 30.9 58.7 25.4 34.6 53.0 68.2 94.3 94.6 18.2 63.6
Hard-Attention (Xu et al., 2015) 70.5 88.1 52.8 77.9 38.3 65.8 27.7 53.7 24.1 32.2 51.6 65.4 86.5 89.3 17.2 59.8
ATT-FCN+ (You et al., 2016) 73.1 90.0 56.5 81.5 42.4 70.9 31.6 59.9 25.0 33.5 53.5 68.2 94.3 95.8 18.2 63.1
Review Net+ (Yang et al., 2016) 72.0 90.0 55.0 81.2 41.4 70.5 31.3 59.7 25.6 34.7 53.3 68.6 96.5 96.9 18.5 64.9
Adaptive+ (Lu et al., 2017) 74.8 92.0 58.4 84.5 44.4 74.4 33.6 63.7 26.4 35.9 55.0 70.5 104.2 105.9 19.7 67.3

SCST:Att2all+† (Rennie et al., 2017) 78.1 93.7 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.7 - -
LSTM-A3+†◦ (Yao et al., 2017) 78.7 93.7 62.7 86.7 47.6 76.5 35.6 65.2 27.0 35.4 56.4 70.5 116 118 - -
Up-Down+†◦ (Anderson et al., 2017) 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5 - -

Ours: Tok-Seq CIDER 72.6 89.7 55.7 80.9 41.2 69.8 30.2 58.3 25.5 34.0 53.5 68.0 96.4 99.4 - -
Ours: Tok-Seq CIDER + 74.9 92.4 58.5 84.9 44.8 75.1 34.3 64.7 26.5 36.1 55.2 71.1 103.9 104.2 - -

Table 2: MS-COCO ’s server evaluation . (+) for ensemble submissions, (†) for submissions with CIDEr
optimization and (◦) for models using additional data.

multiple references variants, further corroborate
this conclusion.

Lazy training. From the results of Table 1, we
see that lazy sequence-level smoothing is compet-
itive with exact non-lazy sequence-level smooth-
ing, while requiring roughly equivalent training
time as MLE. We provide detailed timing results
in Appendix B.3.

Overall For reference, we include in Table 1
baseline results obtained using MLE, and our im-
plementation of MLE with entropy regularization
(MLE+γH) (Pereyra et al., 2017), as well as the
RAML approach of Norouzi et al. (2016) which
corresponds to sequence-level smoothing based on
the Hamming reward and sampling replacements
from the full vocabulary (Seq, Hamming, V)

We observe that entropy smoothing is not able
to improve performance much over MLE for the
model without attention, and even deteriorates for
the attention model. We improve upon RAML
by choosing an adequate subset of vocabulary for
substitutions.

We also report the performances of token-level
smoothing, where the promotion of rare tokens
boosted the scores in both attentive and non-
attentive models.

For sequence-level smoothing, choosing a task-
relevant reward with importance sampling yielded
better results than plain Hamming distance.

Moreover, we used the two smoothing schemes
(Tok-Seq) and achieved the best results with
CIDER as a reward for sequence-level smoothing
combined with a token-level smoothing that pro-
motes rare tokens improving CIDER from 93.59
(MLE) to 99.92 for the model without attention,
and improving from 101.63 to 103.81 with atten-
tion.

Qualitative results. In Figure 1 we showcase
captions obtained with MLE and our three vari-
ants of smoothing i.e. token-level (Tok), sequence-
level (Seq) and the combination (Tok-Seq). We
note that the sequence-level smoothing tend to
generate lengthy captions overall, which is main-
tained in the combination. On the other hand, the
token-level smoothing allows for a better recogni-
tion of objects in the image that stems from the
robust training of the classifier e.g. the ’cement
block’ in the top right image or the carrots in the
bottom right. More examples are available in Ap-
pendix B.4

Comparison to the state of the art. We com-
pare our model to state-of-the-art systems on the
MS-COCO evaluation server in Table 2. We sub-
mitted a single model (Tok-Seq, CIDER , Vrefs)
as well as an ensemble of five models with differ-
ent initializations trained on the training set plus
35k images from the dev set (a total of 117k im-
ages) to the MS-COCO server. The three best
results on the server (Rennie et al., 2017; Yao
et al., 2017; Anderson et al., 2017) are trained in
two stages where they first train using MLE, be-
fore switching to policy gradient methods based
on CIDEr. Anderson et al. (2017) reported an in-
crease of 5.8% of CIDER on the test split after
the CIDER optimization. Moreover, Yao et al.
(2017) uses additional information about image
regions to train the attributes classifiers, while An-
derson et al. (2017) pre-trains its bottom-up atten-
tion model on the Visual Genome dataset (Krishna
et al., 2017). Lu et al. (2017); Yao et al. (2017)
use the same CNN encoder as ours (ResNet-
152), (Vinyals et al., 2015; Yang et al., 2016) use
Inception-v3 (Szegedy et al., 2016) for image en-
coding and Rennie et al. (2017); Anderson et al.
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Figure 1: Examples of generated captions with the baseline MLE and our models with attention.

(2017) use Resnet-101, both of which have similar
performances to ResNet-152 on ImageNet classi-
fication (Canziani et al., 2016).

4.2 Machine translation

4.2.1 Experimental setup.
For this task we validate the effectiveness of our
approaches on two different datasets. The first is
WMT’14 English to French, in its filtered version,
with 12M sentence pairs obtained after dynami-
cally selecting a “clean” subset of 348M words
out of the original “noisy” 850M words (Bahdanau
et al., 2015; Cho et al., 2014; Sutskever et al.,
2014). The second benchmark is IWSLT’14 Ger-
man to English consisting of around 150k pairs
for training. In all our experiments we use the at-
tentive model of (Bahdanau et al., 2015) The hy-
perparameters of each of these models as well as
any additional pre-processing can be found in Ap-
pendix C.1

To assess the translation quality we report the
BLEU-4 metric.

4.2.2 Results and analysis

Loss Reward Vsub WMT’14 IWSLT’14

MLE 30.03 27.55

tok Glove sim 30.16 27.69
tok Glove sim rfreq 30.19 27.83

Seq Hamming V 30.85 27.98
Seq Hamming Vbatch 31.18 28.54
Seq BLEU-4 Vbatch 31.29 28.56

Tok-Seq Hamming Vbatch 31.36 28.70
Tok-Seq BLEU-4 Vbatch 31.39 28.74

Table 3: Tokenized BLEU score on WMT’14
En-Fr evaluated on the news-test-2014 set. And
Tokenzied, case-insensitive BLEU on IWSLT’14
De-En.

We present our results in Table 3. On both
benchmarks, we improve on both MLE and
RAML approach of Norouzi et al. (2016) (Seq,
Hamming, V): using the smaller batch-vocabulary
for replacement improves results, and using im-
portance sampling based on BLEU-4 further
boosts results. In this case, unlike in the cap-
tioning experiment, token-level smoothing brings
smaller improvements. The combination of both
smoothing approaches gives best results, similar
to what was observed for image captioning, im-
proving the MLE BLEU-4 from 30.03 to 31.39 on
WMT’14 and from 27.55 to 28.74 on IWSLT’14.
The outputs of our best model are compared to
the MLE in some examples showcased in Ap-
pendix C.

5 Conclusion

We investigated the use of loss smoothing ap-
proaches to improve over maximum likelihood es-
timation of RNN language models. We gener-
alized the sequence-level smoothing RAML ap-
proach of Norouzi et al. (2016) to the token-
level by smoothing the ground-truth target across
semantically similar tokens. For the sequence-
level, which is computationally expensive, we in-
troduced an efficient “lazy” evaluation scheme,
and introduced an improved re-sampling strat-
egy. Experimental evaluation on image captioning
and machine translation demonstrates the comple-
mentarity of sequence-level and token-level loss
smoothing, improving over both the maximum
likelihood and RAML.
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Abstract

Numeracy is the ability to understand and
work with numbers. It is a necessary skill
for composing and understanding documents
in clinical, scientific, and other technical
domains. In this paper, we explore different
strategies for modelling numerals with
language models, such as memorisation and
digit-by-digit composition, and propose a
novel neural architecture that uses a contin-
uous probability density function to model
numerals from an open vocabulary. Our evalu-
ation on clinical and scientific datasets shows
that using hierarchical models to distinguish
numerals from words improves a perplexity
metric on the subset of numerals by 2 and 4
orders of magnitude, respectively, over non-
hierarchical models. A combination of strate-
gies can further improve perplexity. Our con-
tinuous probability density function model
reduces mean absolute percentage errors by
18% and 54% in comparison to the second
best strategy for each dataset, respectively.

1 Introduction

Language models (LMs) are statistical models that as-
sign a probability over sequences of words. Language
models can often help with other tasks, such as speech
recognition (Mikolov et al., 2010; Prabhavalkar
et al., 2017), machine translation (Luong et al., 2015;
Gülçehre et al., 2017), text summarisation (Filippova
et al., 2015; Gambhir and Gupta, 2017), question
answering (Wang et al., 2017), semantic error de-
tection (Rei and Yannakoudakis, 2017; Spithourakis
et al., 2016a), and fact checking (Rashkin et al., 2017).

Numeracy and literacy refer to the ability to compre-
hend, use, and attach meaning to numbers and words,
respectively. Language models exhibit literacy by be-
ing able to assign higher probabilities to sentences that

Figure 1: Modelling numerals with a categorical
distribution over a fixed vocabulary maps all out-of-
vocabulary numerals to the same type, e.g. UNK,
and does not reflect the smoothness of the underlying
continuous distribution of certain attributes.

are both grammatical and realistic, as in this example:

‘I eat an apple’ (grammatical and realistic)
‘An apple eats me’ (unrealistic)

‘I eats an apple’ (ungrammatical)

Likewise, a numerate language model should be
able to rank numerical claims based on plausibility:

’John’s height is 1.75 metres’ (realistic)
’John’s height is 999.999 metres’ (unrealistic)

Existing approaches to language modelling treat
numerals similarly to other words, typically using
categorical distributions over a fixed vocabulary.
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However, this maps all unseen numerals to the
same unknown type and ignores the smoothness
of continuous attributes, as shown in Figure 1. In
that respect, existing work on language modelling
does not explicitly evaluate or optimise for numeracy.
Numerals are often neglected and low-resourced, e.g.
they are often masked (Mitchell and Lapata, 2009),
and there are only 15,164 (3.79%) numerals among
GloVe’s 400,000 embeddings pretrained on 6 billion
tokens (Pennington et al., 2014). Yet, numbers appear
ubiquitously, from children’s magazines (Joram et al.,
1995) to clinical reports (Bigeard et al., 2015), and
grant objectivity to sciences (Porter, 1996).

Previous work finds that numerals have higher
out-of-vocabulary rates than other words and proposes
solutions for representing unseen numerals as inputs
to language models, e.g. using numerical magnitudes
as features (Spithourakis et al., 2016b,a). Such work
identifies that the perplexity of language models on
the subset of numerals can be very high, but does
not directly address the issue. This paper focuses
on evaluating and improving the ability of language
models to predict numerals. The main contributions
of this paper are as follows:

1. We explore different strategies for modelling
numerals, such as memorisation and digit-by-
digit composition, and propose a novel neural
architecture based on continuous probability
density functions.

2. We propose the use of evaluations that adjust for
the high out-of-vocabulary rate of numerals and
account for their numerical value (magnitude).

3. We evaluate on a clinical and a scientific corpus
and provide a qualitative analysis of learnt rep-
resentations and model predictions. We find that
modelling numerals separately from other words
can drastically improve the perplexity of LMs,
that different strategies for modelling numerals
are suitable for different textual contexts, and that
continuous probability density functions can im-
prove the LM’s prediction accuracy for numbers.

2 Language Models

Let s1,s2,...,sL denote a document, where st is the
token at position t. A language model estimates
the probability of the next token given previous
tokens, i.e. p(st|s1,...,st−1). Neural LMs estimate
this probability by feeding embeddings, i.e. vectors
that represent each token, into a Recurrent Neural
Network (RNN) (Mikolov et al., 2010).

Token Embeddings Tokens are most commonly
represented by aD-dimensional dense vector that is
unique for each word from a vocabulary V of known
words. This vocabulary includes special symbols
(e.g. ‘UNK’) to handle out-of-vocabulary tokens,
such as unseen words or numerals. Let ws be the
one-hot representation of token s, i.e. a sparse binary
vector with a single element set to 1 for that token’s
index in the vocabulary, andE∈RD×|V| be the token
embeddings matrix. The token embedding for s is
the vector etoken

s =Ews.

Character-Based Embeddings A representation
for a token can be build from its constituent charac-
ters (Luong and Manning, 2016; Santos and Zadrozny,
2014). Such a representation takes into account the
internal structure of tokens. Let d1,d2,...,dN be the
characters of token s. A character-based embedding
for s is the final hidden state of a D-dimensional
character-level RNN: echars

s =RNN(d0,d1,...dL).

Recurrent and Output Layer The computation of
the conditional probability of the next token involves
recursively feeding the embedding of the current
token est and the previous hidden state ht−1 into a
D-dimensional token-level RNN to obtain the current
hidden state ht. The output probability is estimated
using the softmax function, i.e.

p(st|ht)=softmax(ψ(st))=
1
Ze

ψ(st)

Z=
∑
s′∈V

eψ(s
′), (1)

where ψ(.) is a score function.

Training and Evaluation Neural LMs are typi-
cally trained to minimise the cross entropy on the
training corpus:

Htrain=−
1

N

∑

st∈train
logp(st|s<t) (2)

A common performance metric for LMs is per to-
ken perplexity (Eq. 3), evaluated on a test corpus. It
can also be interpreted as the branching factor: the size
of an equally weighted distribution with equivalent
uncertainty, i.e. how many sides you need on a fair die
to get the same uncertainty as the model distribution.

PPtest=exp(Htest) (3)

3 Strategies for Modelling Numerals

In this section we describe models with different
strategies for generating numerals and propose the
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use of number-specific evaluation metrics that adjust
for the high out-of-vocabulary rate of numerals and
account for numerical values. We draw inspiration
from theories of numerical cognition. The triple code
theory (Dehaene et al., 2003) postulates that humans
process quantities through two exact systems (verbal
and visual) and one approximate number system that
semantically represents a number on a mental number
line. Tzelgov et al. (2015) identify two classes of
numbers: i) primitives, which are holistically retrieved
from long-term memory; and ii) non-primitives,
which are generated online. An in-depth review of
numerical and mathematical cognition can be found
in Kadosh and Dowker (2015) and Campbell (2005).

3.1 Softmax Model and Variants
This class of models assumes that numerals come
from a finite vocabulary that can be memorised
and retrieved later. The softmax model treats all
tokens (words and numerals) alike and directly uses
Equation 1 with score function:

ψ(st)=h
T
t e

token
st =hTt Eoutwst, (4)

where Eout ∈ RD×|V| is an output embeddings
matrix. The summation in Equation 1 is over the
complete target vocabulary, which requires mapping
any out-of-vocabulary tokens to special symbols, e.g.
‘UNKword’ and ‘UNKnumeral’.

Softmax with Digit-Based Embeddings The
softmax+rnn variant considers the internal syntax of
a numeral’s digits by adjusting the score function:

ψ(st)=h
T
t e

token
st +hTt e

chars
st

=hTt Eoutwst+h
T
t E

RNN
out wst,

(5)

where the columns of ERNN
out are composed of

character-based embeddings for in-vocabulary
numerals and token embeddings for the remaining
vocabulary. The character set comprises digits (0-9),
the decimal point, and an end-of-sequence character.
The model still requires normalisation over the whole
vocabulary, and the special unknown tokens are still
needed.

Hierarchical Softmax A hierarchical soft-
max (Morin and Bengio, 2005a) can help us decouple
the modelling of numerals from that of words. The
probability of the next token st is decomposed to that
of its class ct and the probability of the exact token
from within the class:

p(st|ht)=
∑
ct∈C

p(ct|ht)p(st|ct,ht)

p(ct|ht)=σ
(
hTt b
) (6)

where the valid token classes are C =
{word, numeral}, σ is the sigmoid function and b is
a D-dimensional vector. Each of the two branches
of p(st|ct,ht) can now be modelled by independently
normalised distributions. The hierarchical variants
(h-softmax and h-softmax+rnn) use two independent
softmax distributions for words and numerals. The
two branches share no parameters, and thus words
and numerals will be embedded into separate spaces.

The hierarchical approach allows us to use any
well normalised distribution to model each of its
branches. In the next subsections, we examine
different strategies for modelling the branch of
numerals, i.e. p(st|ct=numeral,ht). For simplicity,
we will abbreviate this to p(s).

3.2 Digit-RNN Model
Let d1,d2...dN be the digits of numeral s. A digit-by-
digit composition strategy estimates the probability
of the numeral from the probabilities of its digits:

p(s)=p(d1)p(d2|d1)...p(dN |d<N) (7)

The d-RNN model feeds the hidden state ht of the
token-level RNN into a character-level RNN (Graves,
2013; Sutskever et al., 2011) to estimate this proba-
bility. This strategy can accommodate an open vo-
cabulary, i.e. it eliminates the need for an UNKnumeral
symbol, as the probability is normalised one digit
at a time over the much smaller vocabulary of digits
(digits 0-9, decimal separator, and end-of-sequence).

3.3 Mixture of Gaussians Model
Inspired by the approximate number system and
the mental number line (Dehaene et al., 2003), our
proposed MoG model computes the probability of
numerals from a probability density function (pdf)
over real numbers, using a mixture of Gaussians for
the underlying pdf:

q(v)=
K∑

k=1

πkNk(v;µk,σ2k)

πk=softmax
(
BTht

)
,

(8)

where K is the number of components, πk are
mixture weights that depend on hidden state ht of
the token-level RNN, Nk is the pdf of the normal
distribution with mean µk ∈R and variance σ2k ∈R,
andB∈RD×K is a matrix.

The difficulty with this approach is that for any
continuous random variable, the probability that it
equals a specific value is always zero. To resolve this,
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Figure 2: Mixture of Gaussians model. The
probability of a numeral is decomposed into the
probability of its decimal precision and the probability
that an underlying number will produce the numeral
when rounded at the given precision.

we consider a probability mass function (pmf) that
discretely approximates the pdf:

Q̃(v|r)=
v+εr∫

v−εr

q(u)du=F(v+εr)−F(v−εr), (9)

where F(.) is the cumulative density function of q(.),
and εr =0.5×10−r is the number’s precision. The
level of discretisation r, i.e. how many decimal digits
to keep, is a random variable in N with distribution
p(r). The mixed joint density is:

p(s)=p(v,r)=p(r)Q̃(v|r) (10)

Figure 2 summarises this strategy, where we
model the level of discretisation by converting the
numeral into a pattern and use a RNN to estimate the
probability of that pattern sequence:

p(r)=p(SOS INT_PART .

r decimal digits︷ ︸︸ ︷
\d ... \d EOS) (11)

3.4 Combination of Strategies

Different mechanisms might be better for predicting
numerals in different contexts. We propose a
combination model that can select among different

strategies for modelling numerals:

p(s)=
∑

∀m∈M
αmp(s|m)

αm=softmax
(
ATht

)
,

(12)

where M={h-softmax, d-RNN, MoG}, and
A∈RD×|M|. Since both d-RNN and MoG are open-
vocabulary models, the unknown numeral token can
now be removed from the vocabulary of h-softmax.

3.5 Evaluating the Numeracy of LMs
Numeracy skills are centred around the understanding
of numbers and numerals. A number is a mathe-
matical object with a specific magnitude, whereas
a numeral is its symbolic representation, usually
in the positional decimal Hindu–Arabic numeral
system (McCloskey and Macaruso, 1995). In humans,
the link between numerals and their numerical values
boosts numerical skills (Griffin et al., 1995).

Perplexity Evaluation Test perplexity evaluated
only on numerals will be informative of the symbolic
component of numeracy. However, model compar-
isons based on naive evaluation using Equation 3
might be problematic: perplexity is sensitive to out-
of-vocabulary (OOV) rate, which might differ among
models, e.g. it is zero for open-vocabulary models. As
an extreme example, in a document where all words
are out of vocabulary, the best perplexity is achieved
by a trivial model that predicts everything as unknown.

Ueberla (1994) proposed Adjusted Perplexity
(APP; Eq. 14), also known as unknown-penalised
perplexity (Ahn et al., 2016), to cancel the effect of
the out-of-vocabulary rate on perplexity. The APP
is the perplexity of an adjusted model that uniformly
redistributes the probability of each out-of-vocabulary
class over all different types in that class:

p′(s)=

{
p(s) 1

|OOVc| if s∈OOVc
p(s) otherwise

(13)

where OOVc is an out-of-vocabulary class (e.g.
words and numerals), and |OOVc| is the cardinality
of each OOV set. Equivalently, adjusted perplexity
can be calculated as:

APPtest=exp

(
Htest+

∑

c

Hcadjust

)

Hcadjust=−
∑

t

|st∈OOVc|
N

log
1

|OOVc|

(14)

whereN is the total number of tokens in the test set
and |s∈OOVc| is the count of tokens from the test
set belonging in each OOV set.
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Evaluation on the Number Line While perplexity
looks at symbolic performance on numerals, this
evaluation focuses on numbers and particularly on
their numerical value, which is their most prominent
semantic content (Dehaene et al., 2003; Dehaene and
Cohen, 1995).

Let vt be the numerical value of token st
from the test corpus. Also, let v̂t be the value
of the most probable numeral under the model
st = argmax (p(st|ht,ct=num)). Any evaluation
metric from the regression literature can be used to
measure the models performance. To evaluate on the
number line, we can use any evaluation metric from
the regression literature. In reverse order of tolerance
to extreme errors, some of the most popular are Root
Mean Squared Error (RMSE), Mean Absolute Error
(MAE), and Median Absolute Error (MdAE):

ei = vi−v̂i

RMSE =

√
1
N

N∑
i=1
e2i

MAE = 1
N

N∑
i=1
|ei|

MdAE = median{|ei|}

(15)

The above are sensitive to the scale of the
data. If the data contains values from different
scales, percentage metrics are often preferred, such
as the Mean/Median Absolute Percentage Error
(MAPE/MdAPE):

pei = vi−v̂i
vi

MAPE = 1
N

N∑
i=1
|pei|

MdAPE = median{|pei|}

(16)

4 Data

To evaluate our models, we created two datasets with
documents from the clinical and scientific domains,
where numbers abound (Bigeard et al., 2015; Porter,
1996). Furthermore, to ensure that the numbers will
be informative of some attribute, we only selected
texts that reference tables.

Clinical Data Our clinical dataset comprises
clinical records from the London Chest Hospital.
The records where accompanied by tables with 20
numeric attributes (age, heart volumes, etc.) that they
partially describe, as well as include numbers not
found in the tables. Numeric tokens constitute only a
small proportion of each sentence (4.3%), but account

for a large part of the unique tokens vocabulary
(>40%) and suffer high OOV rates.

Scientific Data Our scientific dataset comprises
paragraphs from Cornell’s ARXIV 1 repository of
scientific articles, with more than half a million
converted papers in 37 scientific sub-fields. We used
the preprocessed ARXMLIV (Stamerjohanns et al.,
2010; Stamerjohanns and Kohlhase, 2008) 2 version,
where papers have been converted from LATEX
into a custom XML format using the LATEXML 3

tool. We then kept all paragraphs with at least one
reference to a table and a number.

Clinical Scientific
Train Dev Test Train Dev Test

#inst 11170 1625 3220 14694 2037 4231
maxLen 667 594 666 2419 1925 1782
avgLen 210.1 209.1 206.9 210.1 215.9 212.1
%word 95.7 95.7 95.7 96.1 96.1 96.0
%nums 4.3 4.3 4.3 3.9 3.9 4.0

min 0.0 0.0 0.0 0.0 0.0 0.0
median 59.5 59.0 60.0 5.0 4.0 4.5

mean 300.6 147.7 464.8 ∼1021 ∼107 ∼107
max ∼107 ∼105 ∼107 ∼1026 ∼1011 ∼1011

Table 1: Statistical description of the clinical and sci-
entific datasets: Number of instances (i.e. paragraphs),
maximum and average lengths, proportions of words
and numerals, descriptive statistics of numbers.

For both datasets, we lowercase tokens and
normalise numerals by omitting the thousands
separator ("2,000" becomes "2000") and leading
zeros ("007" becomes "7"). Special mathematical
symbols are tokenised separately, e.g. negation (“-1”
as “-”, “1”), fractions (“3/4” as “3”, “/”, “4”), etc. For
this reason, all numbers were non-negative. Table 1
shows descriptive statistics for both datasets.

5 Experimental Results and Discussion

We set the vocabularies to the 1,000 and 5,000 most
frequent token types for the clinical and scientific
datasets, respectively. We use gated token-character
embeddings (Miyamoto and Cho, 2016) for the input
of numerals and token embeddings for the input
and output of words, since the scope of our paper
is numeracy. We set the models’ hidden dimensions
to D = 50 and initialise all token embeddings to
pretrained GloVe (Pennington et al., 2014). All our

1ARXIV.ORG. Cornell University Library at http://arxiv.org/,
visited December 2016

2ARXMLIV. Project home page at http://arxmliv.kwarc.info/,
visited December 2016

3LATEXML. http://dlmf.nist.gov, visited December 2016
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Clinical Scientific

words numerals total words numerals total
Model PP APP PP APP PP APP PP APP PP APP PP APP

softmax 4.08 5.99 12.04 58443.72 4.28 8.91 33.96 51.83 127.12 3505856.25 35.79 80.62
softmax+rnn 4.03 5.91 11.57 56164.81 4.21 8.77 33.54 51.20 119.68 3300688.50 35.28 79.47

h-softmax 4.00 4.96 11.78 495.95 4.19 6.05 34.73 49.81 122.67 550.98 36.51 54.80
h-softmax+rnn 4.03 4.99 11.65 490.14 4.22 6.09 34.04 48.83 120.83 542.70 35.80 53.73

d-RNN 3.99 4.95 263.22 263.22 4.79 5.88 34.08 48.89 519.80 519.80 37.98 53.70
MoG 4.03 4.99 226.46 226.46 4.79 5.88 34.14 48.97 683.16 683.16 38.45 54.37

combination 4.01 4.96 197.59 197.59 4.74 5.82 33.64 48.25 520.95 520.95 37.50 53.03

Table 2: Test set perplexities for the clinical and scientific data. Adjusted perplexities (APP) are directly
comparable across all data and models, but perplexities (PP) are sensitive to the varying out-of-vocabulary rates.

Clinical Scientific
Model RMSE MAE MdAE MAPE% MdAPE% MdAE MAPE% MdAPE%

mean 1043.68 294.95 245.59 2353.11 409.47 ∼1020 ∼1023 ∼1022
median 1036.18 120.24 34.52 425.81 52.05 4.20 8039.15 98.65

softmax 997.84 80.29 12.70 621.78 22.41 3.00 1947.44 80.62
softmax+rnn 991.38 74.44 13.00 503.57 23.91 3.50 15208.37 80.00

h-softmax 1095.01 167.19 14.00 746.50 25.00 3.00 1652.21 80.00
h-softmax+rnn 1001.04 83.19 12.30 491.85 23.44 3.00 2703.49 80.00

d-RNN 1009.34 70.21 9.00 513.81 17.90 3.00 1287.27 52.45
MoG 998.78 57.11 6.92 348.10 13.64 2.10 590.42 90.00

combination 989.84 69.47 9.00 552.06 17.86 3.00 2332.50 88.89

Table 3: Test set regression evaluation for the clinical and scientific data. Mean absolute percentage error (MAPE)
is scale independent and allows for comparison across data, whereas root mean square and mean absolute errors
(RMSE, MAE) are scale dependent. Medians (MdAE, MdAPE) are informative of the distribution of errors.

RNNs are LSTMs (Hochreiter and Schmidhuber,
1997) with the biases of LSTM forget gate were
initialised to 1.0 (Józefowicz et al., 2015). We train
using mini-batch gradient decent with the Adam
optimiser (Kingma and Ba, 2014) and regularise with
early stopping and 0.1 dropout rate (Srivastava, 2013)
in the input and output of the token-based RNN.

For the mixture of Gaussians, we select the
mean and variances to summarise the data at
different granularities by fitting 7 separate mixture
of Gaussian models on all numbers, each with twice
as many components as the previous, for a total
of 27+1− 1 = 256 components. These models are
initialised at percentile points from the data and
trained with the expectation-minimisation algorithm.
The means and variances are then fixed and not
updated when we train the language model.

5.1 Quantitative Results

Perplexities Table 2 shows perplexities evaluated
on the subsets of words, numerals and all tokens of

the test data. Overall, all models performed better on
the clinical than on the scientific data. On words, all
models achieve similar perplexities in each dataset.

On numerals, softmax variants perform much
better than other models in PP, which is an artefact of
the high OOV-rate of numerals. APP is significantly
worse, especially for non-hierarchical variants, which
perform about 2 and 4 orders of magnitude worse
than hierarchical ones.

For open-vocabulary models, i.e. d-RNN, MoG,
and combination, PP is equivalent to APP. On
numerals, d-RNN performed better than softmax
variants in both datasets. The MoG model performed
twice as well as softmax variants on the clinical
dataset, but had the third worse performance in the
scientific dataset. The combination model had the
best overall APP results for both datasets.

Evaluations on the Number Line To factor out
model specific decoding processes for finding the
best next numeral, we use our models to rank a set
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of candidate numerals: we compose the union of
in-vocabulary numbers and 100 percentile points
from the training set, and we convert numbers into
numerals by considering all formats up to n decimal
points. We select n to represent 90% of numerals
seen at training, which yields n=3 and n=4 for the
clinical and scientific data, respectively.

Table 3 shows evaluation results, where we also
include two naive baselines of constant predictions:
with the mean and median of the training data. For
both datasets, RMSE and MAE were too sensitive to
extreme errors to allow drawing safe conclusions, par-
ticularly for the scientific dataset, where both metrics
were in the order of 109. MdAE can be of some use,
as 50% of the errors are absolutely smaller than that.

Along percentage metrics, MoG achieved the best
MAPE in both datasets (18% and 54% better that the
second best) and was the only model to perform better
than the median baseline for the clinical data. How-
ever, it had the worst MdAPE, which means that MoG
mainly reduced larger percentage errors. The d-RNN
model came third and second in the clinical and scien-
tific datasets, respectively. In the latter it achieved the
best MdAPE, i.e. it was effective at reducing errors for
50% of the numbers. The combination model did not
perform better than its constituents. This is possibly
because MoG is the only strategy that takes into
account the numerical magnitudes of the numerals.

5.2 Learnt Representations

Softmax versus Hierarchical Softmax Figure 3
visualises the cosine similarities of the output
token embeddings of numerals for the softmax and
h-softmax models. Simple softmax enforced high
similarities among all numerals and the unknown
numeral token, so as to make them more dissimilar
to words, since the model embeds both in the same
space. This is not the case for h-softmax that uses two
different spaces: similarities are concentrated along
the diagonal and fan out as the magnitude grows,
with the exception of numbers with special meaning,
e.g. years and percentile points.

Digit embeddings Figure 4 shows the cosine sim-
ilarities between the digits of the d-RNN output mode.
We observe that each primitive digit is mostly similar
to its previous and next digit. Similar behaviour was
found for all digit embeddings of all models.

5.3 Predictions from the Models

Next Numeral Figure 5 shows the probabilities
of different numerals under each model for two

Figure 3: Numeral embeddings for the softmax (top)
and h-softmax (bottom) models on the clinical data.
Numerals are sorted by value.

Figure 4: Cosine similarities for d-RNN’s output digit
embeddings trained on the scientific data.

examples from the clinical development set. Numer-
als are grouped by number of decimal points. The
h-softmax model’s probabilities are spiked, d-RNNs
are saw-tooth like and MoG’s are smooth, with the
occasional spike, whenever a narrow component
allows for it. Probabilities rapidly decrease for more
decimal digits, which is reminiscent of the theoretical
expectation that the probability of en exact value for
a continuous variable is zero.

Selection of Strategy in Combination Model
Table 4 shows development set examples with high
selection probabilities for each strategy of the com-
bination model, along with numerals with the highest
average selection per mode. The h-softmax model is
responsible for mostly integers with special functions,
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Clinical Scientific

h-
so

ftm
ax

Examples: “late enhancement ( > 75 %)”, “late
gadolinium enhancement ( < 25 %)”, “infarction
( 2 out of 17 segments )”, “infarct with 4 out of 17
segments nonviable”, “adenosine stress perfusion @
140 mcg”, “stress perfusion ( adenosine 140 mcg”
Numerals: 50, 17, 100, 75, 25, 1, 140, 2012, 2010,
2011, 8, 5, 2009, 2013, 7, 6, 2, 3, 2008, 4...

Examples: “sharp et al . 2004”, “li et al
. 2003”, “3.5× 10ˆ4”, “0.3× 10ˆ16”
Numerals: 1992, 2001, 1995, 2003,
2009, 1993, 2010, 1994, 1998, 2002,
2006, 1997, 2005, 1990, 10, 2008, 2007,
2004, 1983, 1991...

d-
R

N
N

Examples: “aortic root is dilated ( measured 37 x 37
mm”, “ascending aorta is not dilated ( 32 x 31 mm”
Numerals: 42, 33, 31, 43, 44, 21, 38, 36, 46, 37, 32,
39, 26, 28, 23, 29, 45, 40, 49, 94...

Examples: “ngc 6334 stars”, “ngc
2366 shows a wealth of small structures”
Numerals: 294, 4000, 238, 6334, 2363,
1275, 2366, 602, 375, 1068, 211, 6.4, 8.7,
600, 96, 0.65, 700, 1.17, 4861, 270...

M
oG

Examples: “stroke volume 46.1 ml”, “stroke volume
65.6 ml”, “stroke volume 74.5 ml”, “end diastolic
volume 82.6 ml”, “end diastolic volume 99.09 ml”,

“end diastolic volume 138.47 ml”
Numerals: 74.5, 69.3, 95.9, 96.5, 72.5, 68.6, 82.1,
63.7, 78.6, 69.6, 69.5, 82.2, 68.3, 73.2, 63.2, 82.6,
77.7, 80.7, 70.7, 70.4...

Examples: “hip 12961 and gl 676 a are
orbited by giant planets,” “velocities of
gl 676”, “velocities of hip 12961”
Numerals: 12961, 766, 7409, 4663, 44.3,
1819, 676, 1070, 5063, 323, 264, 163296,
2030, 77, 1.15, 196, 0.17, 148937, 0.43,
209458...

Table 4: Examples of numerals with highest probability in each strategy of the combination model.

Figure 5: Example model predictions for the
h-softmax (top), d-RNN (middle) and MoG (bottom)
models. Examples from the clinical development set.

e.g. years, typical drug dosages, percentile points,
etc. In the clinical data, d-RNN picks up two-digit
integers (mostly dimensions) and MoG is activated
for continuous attributes, which are mostly out of
vocabulary. In the scientific data, d-RNN and MoG
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Figure 6: Distributions of significant digits from
d-RNN model, data, and theoretical expectation
(Benford’s law).

showed affinity to different indices from catalogues of
astronomical objects: d-RNN mainly to NGC (Dreyer,
1888) and MoG to various other indices, such as
GL (Gliese, 1988) and HIP (Perryman et al., 1997).
In this case, MoG was wrongly selected for numerals
with a labelling function, which also highlights a
limitation of evaluating on the number line, when a
numeral is not used to represent its magnitude.

Significant Digits Figure 5 shows the distributions
of the most significant digits under the d-RNN model
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and from data counts. The theoretical estimate has
been overlayed, according to Benford’s law (Benford,
1938), also called the first-digit law, which applies
to many real-life numerals. The law predicts that the
first digit is 1 with higher probability (about 30%)
than 9 (< 5%) and weakens towards uniformity at
higher digits. Model probabilities closely follow
estimates from the data. Violations from Benford’s
law can be due to rounding (Beer, 2009) and can be
used as evidence for fraud detection (Lu et al., 2006).

6 Related Work

Numerical quantities have been recognised as impor-
tant for textual entailment (Lev et al., 2004; Dagan
et al., 2013). Roy et al. (2015) proposed a quantity
entailment sub-task that focused on whether a given
quantity can be inferred from a given text and, if so,
what its value should be. A common framework for
acquiring common sense about numerical attributes
of objects has been to collect a corpus of numerical
values in pre-specified templates and then model
attributes as a normal distribution (Aramaki et al.,
2007; Davidov and Rappoport, 2010; Iftene and
Moruz, 2010; Narisawa et al., 2013; de Marneffe
et al., 2010). Our model embeds these approaches
into a LM that has a sense for numbers.

Other tasks that deal with numerals are numerical
information extraction and solving mathematical prob-
lems. Numerical relations have at least one argument
that is a number and the aim of the task is to extract all
such relations from a corpus, which can range from
identifying a few numerical attributes (Nguyen and
Moschitti, 2011; Intxaurrondo et al., 2015) to generic
numerical relation extraction (Hoffmann et al., 2010;
Madaan et al., 2016). Our model does not extract
values, but rather produces an probabilistic estimate.

Much work has been done in solving arith-
metic (Mitra and Baral, 2016; Hosseini et al.,
2014; Roy and Roth, 2016), geometric (Seo et al.,
2015), and algebraic problems (Zhou et al., 2015;
Koncel-Kedziorski et al., 2015; Upadhyay et al., 2016;
Upadhyay and Chang, 2016; Shi et al., 2015; Kush-
man et al., 2014) expressed in natural language. Such
models often use mathematical background knowl-
edge, such as linear system solvers. The output of our
model is not based on such algorithmic operations,
but could be extended to do so in future work.

In language modelling, generating rare or unknown
words has been a challenge, similar to our unknown
numeral problem. Gulcehre et al. (2016) and Gu et al.
(2016) adopted pointer networks (Vinyals et al., 2015)

to copy unknown words from the source in translation
and summarisation tasks. Merity et al. (2016) and
Lebret et al. (2016) have models that copy from
context sentences and from Wikipedia’s infoboxes,
respectively. Ahn et al. (2016) proposed a LM that
retrieves unknown words from facts in a knowledge
graph. They draw attention to the inappropriateness of
perplexity when OOV-rates are high and instead pro-
pose an adjusted perplexity metric that is equivalent to
APP. Other methods aim at speeding up LMs to allow
for larger vocabularies (Chen et al., 2015), such as hi-
erarchical softmax (Morin and Bengio, 2005b), target
sampling (Jean et al., 2014), etc., but still suffer from
the unknown word problem. Finally, the problem
is resolved when predicting one character at a time,
as done by the character-level RNN (Graves, 2013;
Sutskever et al., 2011) used in our d-RNN model.

7 Conclusion

In this paper, we investigated several strategies for
LMs to model numerals and proposed a novel open-
vocabulary generative model based on a continuous
probability density function. We provided the first
thorough evaluation of LMs on numerals on two cor-
pora, taking into account their high out-of-vocabulary
rate and numerical value (magnitude). We found
that modelling numerals separately from other words
through a hierarchical softmax can substantially im-
prove the perplexity of LMs, that different strategies
are suitable for different contexts, and that a combina-
tion of these strategies can help improve the perplexity
further. Finally, we found that using a continuous
probability density function can improve prediction
accuracy of LMs for numbers by substantially
reducing the mean absolute percentage metric.

Our approaches in modelling and evaluation can
be used in future work in tasks such as approximate
information extraction, knowledge base completion,
numerical fact checking, numerical question answer-
ing, and fraud detection. Our code and data are
available at: https://github.com/uclmr/
numerate-language-models.

Acknowledgments

The authors would like to thank the anonymous
reviewers for their insightful comments and also
Steffen Petersen for providing the clinical dataset and
advising us on the clinical aspects of this work. This
research was supported by the Farr Institute of Health
Informatics Research and an Allen Distinguished
Investigator award.

2112



References
Sungjin Ahn, Heeyoul Choi, Tanel Pärnamaa, and Yoshua

Bengio. 2016. A neural knowledge language model.
arXiv preprint arXiv:1608.00318 .

Eiji Aramaki, Takeshi Imai, Kengo Miyo, and Kazuhiko
Ohe. 2007. Uth: Svm-based semantic relation clas-
sification using physical sizes. In Proceedings of the
4th International Workshop on Semantic Evaluations.
Association for Computational Linguistics, pages
464–467.

TW Beer. 2009. Terminal digit preference: beware
of benford’s law. Journal of clinical pathology
62(2):192–192.

Frank Benford. 1938. The law of anomalous numbers.
Proceedings of the American philosophical society
pages 551–572.

Elise Bigeard, Vianney Jouhet, Fleur Mougin, Frantz
Thiessard, and Natalia Grabar. 2015. Automatic
extraction of numerical values from unstructured data
in ehrs. In MIE. pages 50–54.

Jamie ID Campbell. 2005. Handbook of mathematical
cognition. Psychology Press.

Welin Chen, David Grangier, and Michael Auli. 2015.
Strategies for training large vocabulary neural language
models. arXiv preprint arXiv:1512.04906 .

Ido Dagan, Dan Roth, Mark Sammons, and Fabio Mas-
simo Zanzotto. 2013. Recognizing textual entailment:
Models and applications. Synthesis Lectures on
Human Language Technologies 6(4):1–220.

Dmitry Davidov and Ari Rappoport. 2010. Extraction
and approximation of numerical attributes from the
web. In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics. Association
for Computational Linguistics, pages 1308–1317.

Marie-Catherine de Marneffe, Christopher D Manning,
and Christopher Potts. 2010. Was it good? it was
provocative. learning the meaning of scalar adjectives.
In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics. Association
for Computational Linguistics, pages 167–176.

Stanislas Dehaene and Laurent Cohen. 1995. Towards an
anatomical and functional model of number processing.
Mathematical cognition 1(1):83–120.

Stanislas Dehaene, Manuela Piazza, Philippe Pinel,
and Laurent Cohen. 2003. Three parietal circuits
for number processing. Cognitive neuropsychology
20(3-6):487–506.

John Louis Emil Dreyer. 1888. A new general catalogue
of nebulæ and clusters of stars, being the catalogue of
the late sir john fw herschel, bart, revised, corrected,
and enlarged. Memoirs of the Royal Astronomical
Society 49:1.

Katja Filippova, Enrique Alfonseca, Carlos A. Col-
menares, Lukasz Kaiser, and Oriol Vinyals. 2015.
Sentence compression by deletion with lstms. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2015. pages 360–368.

Mahak Gambhir and Vishal Gupta. 2017. Recent auto-
matic text summarization techniques: a survey. Artif.
Intell. Rev. 47(1):1–66.

Wilhelm Gliese. 1988. The third catalogue of nearby stars.
Stand. Star Newsl. 13, 13 13.

Alex Graves. 2013. Generating sequences with recurrent
neural networks. arXiv preprint arXiv:1308.0850 .

Sharon Griffin, Robbie Case, and Allesandra Capodilupo.
1995. Teaching for understanding: The importance
of the central conceptual structures in the elementary
mathematics curriculum. .

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK Li.
2016. Incorporating copying mechanism in sequence-
to-sequence learning. arXiv preprint arXiv:1603.06393
.

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Pointing the
unknown words. arXiv preprint arXiv:1603.08148 .

Çaglar Gülçehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, and Yoshua Bengio. 2017. On integrating
a language model into neural machine translation.
Computer Speech & Language 45:137–148.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation 9(8):1735–
1780.

Raphael Hoffmann, Congle Zhang, and Daniel S
Weld. 2010. Learning 5000 relational extractors.
In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics. Association
for Computational Linguistics, pages 286–295.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
pages 523–533.

Adrian Iftene and Mihai-Alex Moruz. 2010. Uaic
participation at rte-6 .

Ander Intxaurrondo, Eneko Agirre, Oier Lopez De La-
calle, and Mihai Surdeanu. 2015. Diamonds in the
rough: Event extraction from imperfect microblog data.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
pages 641–650.

2113



Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2014. On using very large target
vocabulary for neural machine translation. arXiv
preprint arXiv:1412.2007 .

Elana Joram, Lauren B Resnick, and Anthony J Gabriele.
1995. Numeracy as cultural practice: An examination
of numbers in magazines for children, teenagers,
and adults. Journal for Research in Mathematics
Education pages 346–361.

Rafal Józefowicz, Wojciech Zaremba, and Ilya Sutskever.
2015. An empirical exploration of recurrent network
architectures. In Proceedings of the 32nd International
Conference on Machine Learning, ICML 2015. pages
2342–2350.

Roi Cohen Kadosh and Ann Dowker. 2015. The Oxford
handbook of numerical cognition. Oxford Library of
Psychology.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equations.
Transactions of the Association for Computational
Linguistics 3:585–597.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. In Proceedings of the
52nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). volume 1,
pages 271–281.

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with
application to the biography domain. arXiv preprint
arXiv:1603.07771 .

Iddo Lev, Bill MacCartney, Christopher D Manning, and
Roger Levy. 2004. Solving logic puzzles: From robust
processing to precise semantics. In Proceedings of
the 2nd Workshop on Text Meaning and Interpretation.
Association for Computational Linguistics, pages 9–16.

Fletcher Lu, J. Efrim Boritz, and H. Dominic Covvey.
2006. Adaptive fraud detection using benford’s law.
In Advances in Artificial Intelligence, 19th Conference
of the Canadian Society for Computational Studies of
Intelligence, Canadian AI 2006. pages 347–358.

Minh-Thang Luong and Christopher D Manning. 2016.
Achieving open vocabulary neural machine translation
with hybrid word-character models. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers).
volume 1, pages 1054–1063.

Thang Luong, Michael Kayser, and Christopher D. Man-
ning. 2015. Deep neural language models for machine
translation. In Proceedings of the 19th Conference on
Computational Natural Language Learning, CoNLL
2015. pages 305–309.

Aman Madaan, Ashish Mittal, Ganesh Ramakrishnan,
Sunita Sarawagi, et al. 2016. Numerical relation
extraction with minimal supervision. In Thirtieth AAAI
Conference on Artificial Intelligence.

Michael McCloskey and Paul Macaruso. 1995. Repre-
senting and using numerical information. American
Psychologist 50(5):351.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture models.
arXiv preprint arXiv:1609.07843 .

Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan Cer-
nocký, and Sanjeev Khudanpur. 2010. Recurrent neu-
ral network based language model. In INTERSPEECH
2010, 11th Annual Conference of the International
Speech Communication Association. pages 1045–1048.

Jeff Mitchell and Mirella Lapata. 2009. Language models
based on semantic composition. In Proceedings of the
2009 Conference on Empirical Methods in Natural
Language Processing: Volume 1-Volume 1. Association
for Computational Linguistics, pages 430–439.

Arindam Mitra and Chitta Baral. 2016. Learning to use
formulas to solve simple arithmetic problems. In ACL.

Yasumasa Miyamoto and Kyunghyun Cho. 2016. Gated
word-character recurrent language model. arXiv
preprint arXiv:1606.01700 .

Frederic Morin and Yoshua Bengio. 2005a. Hierarchical
probabilistic neural network language model. In
Proceedings of the Tenth International Workshop on
Artificial Intelligence and Statistics, AISTATS 2005.

Frederic Morin and Yoshua Bengio. 2005b. Hierarchical
probabilistic neural network language model. In
Aistats. Citeseer, volume 5, pages 246–252.

Katsuma Narisawa, Yotaro Watanabe, Junta Mizuno,
Naoaki Okazaki, and Kentaro Inui. 2013. Is a 204 cm
man tall or small? acquisition of numerical common
sense from the web. In Proceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). volume 1, pages
382–391.

Truc-Vien T Nguyen and Alessandro Moschitti. 2011.
End-to-end relation extraction using distant supervision
from external semantic repositories. In Proceedings of
the 49th Annual Meeting of the Association for Compu-
tational Linguistics: Human Language Technologies:
short papers-Volume 2. Association for Computational
Linguistics, pages 277–282.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP). pages 1532–1543.

Michael AC Perryman, L Lindegren, J Kovalevsky,
E Hoeg, U Bastian, PL Bernacca, M Crézé, F Donati,
M Grenon, M Grewing, et al. 1997. The hipparcos
catalogue. Astronomy and Astrophysics 323:L49–L52.

2114



Theodore M Porter. 1996. Trust in numbers: The pursuit
of objectivity in science and public life. Princeton
University Press.

Rohit Prabhavalkar, Kanishka Rao, Tara N. Sainath, Bo Li,
Leif Johnson, and Navdeep Jaitly. 2017. A comparison
of sequence-to-sequence models for speech recogni-
tion. In Interspeech 2017, 18th Annual Conference of
the International Speech Communication Association.
pages 939–943.

Hannah Rashkin, Eunsol Choi, Jin Yea Jang, Svitlana
Volkova, and Yejin Choi. 2017. Truth of varying
shades: Analyzing language in fake news and political
fact-checking. In Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language
Processing, EMNLP 2017. pages 2931–2937.

Marek Rei and Helen Yannakoudakis. 2017. Auxiliary
objectives for neural error detection models. In
Proceedings of the 12th Workshop on Innovative
Use of NLP for Building Educational Applications,
BEA@EMNLP 2017. pages 33–43.

Subhro Roy and Dan Roth. 2016. Solving gen-
eral arithmetic word problems. arXiv preprint
arXiv:1608.01413 .

Subhro Roy, Tim Vieira, and Dan Roth. 2015. Reasoning
about quantities in natural language. Transactions of
the Association for Computational Linguistics 3:1–13.

Cicero D Santos and Bianca Zadrozny. 2014. Learning
character-level representations for part-of-speech
tagging. In Proceedings of the 31st International
Conference on Machine Learning (ICML-14). pages
1818–1826.

Minjoon Seo, Hannaneh Hajishirzi, Ali Farhadi, Oren
Etzioni, and Clint Malcolm. 2015. Solving geometry
problems: Combining text and diagram interpretation.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing. pages
1466–1476.

Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiaojiang
Liu, and Yong Rui. 2015. Automatically solving
number word problems by semantic parsing and
reasoning. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP), Lisbon, Portugal.

Georgios P. Spithourakis, Isabelle Augenstein, and Sebas-
tian Riedel. 2016a. Numerically grounded language
models for semantic error correction. In Proceedings of
the 2016 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2016. pages 987–992.

Georgios P Spithourakis, Steffen E Petersen, and Se-
bastian Riedel. 2016b. Clinical text prediction with
numerically grounded conditional language models.
EMNLP 2016 page 6.

Nitish Srivastava. 2013. Improving neural networks with
dropout. University of Toronto 182.

Heinrich Stamerjohanns and Michael Kohlhase. 2008.
Transforming the arχiv to xml. In International
Conference on Intelligent Computer Mathematics.
Springer, pages 574–582.

Heinrich Stamerjohanns, Michael Kohlhase, Deyan Ginev,
Catalin David, and Bruce Miller. 2010. Transforming
large collections of scientific publications to xml.
Mathematics in Computer Science 3(3):299–307.

Ilya Sutskever, James Martens, and Geoffrey E Hinton.
2011. Generating text with recurrent neural networks.
In Proceedings of the 28th International Conference
on Machine Learning (ICML-11). pages 1017–1024.

Joseph Tzelgov, Dana Ganor-Stern, Arava Y Kallai, and
Michal Pinhas. 2015. Primitives and non-primitives
of numerical representations. Oxford library of psy-
chology. The Oxford handbook of numerical cognition
pages 45–66.

Joerg Ueberla. 1994. Analysing a simple language model·
some general conclusions for language models for
speech recognition. Computer Speech & Language
8(2):153–176.

Shyam Upadhyay and Ming-Wei Chang. 2016. An-
notating derivations: A new evaluation strategy and
dataset for algebra word problems. arXiv preprint
arXiv:1609.07197 .

Shyam Upadhyay, Ming-Wei Chang, Kai-Wei Chang, and
Wen-tau Yih. 2016. Learning from explicit and implicit
supervision jointly for algebra word problems. In Pro-
ceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing. pages 297–306.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015.
Pointer networks. In Advances in Neural Information
Processing Systems. pages 2692–2700.

Tong Wang, Xingdi Yuan, and Adam Trischler. 2017.
A joint model for question answering and question
generation. CoRR abs/1706.01450.

Lipu Zhou, Shuaixiang Dai, and Liwei Chen. 2015. Learn
to solve algebra word problems using quadratic pro-
gramming. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
Association for Computational Linguistics (Lisbon,
Portugal. pages 817–822.

2115



Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 2116–2125
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

To Attend or not to Attend:
A Case Study on Syntactic Structures for Semantic Relatedness

Amulya Gupta
Iowa State University

guptaam@iastate.edu

Zhu Zhang
Iowa State University

zhuzhang@iastate.edu

Abstract

With the recent success of Recurrent Neu-
ral Networks (RNNs) in Machine Trans-
lation (MT), attention mechanisms have
become increasingly popular. The pur-
pose of this paper is two-fold; firstly,
we propose a novel attention model on
Tree Long Short-Term Memory Networks
(Tree-LSTMs), a tree-structured general-
ization of standard LSTM. Secondly, we
study the interaction between attention
and syntactic structures, by experimenting
with three LSTM variants: bidirectional-
LSTMs, Constituency Tree-LSTMs, and
Dependency Tree-LSTMs. Our models
are evaluated on two semantic relatedness
tasks: semantic relatedness scoring for
sentence pairs (SemEval 2012, Task 6 and
SemEval 2014, Task 1) and paraphrase de-
tection for question pairs (Quora, 2017).1

1 Introduction

Recurrent Neural Networks (RNNs), in par-
ticular Long Short-Term Memory Networks
(LSTMs) (Hochreiter and Schmidhuber, 1997),
have demonstrated remarkable accomplishments
in Natural Language Processing (NLP) in recent
years. Several tasks such as information extrac-
tion, question answering, and machine transla-
tion have benefited from them. However, in their
vanilla forms, these networks are constrained by
the sequential order of tokens in a sentence. To
mitigate this limitation, structural (dependency or
constituency) information in a sentence was ex-
ploited and witnessed partial success in various
tasks (Goller and Kuchler, 1996; Yamada and

1Our code for experiments on the SICK dataset is pub-
licly available at https://github.com/amulyahwr/
acl2018

Knight, 2001; Quirk et al., 2005; Socher et al.,
2011; Tai et al., 2015).

On the other hand, alignment techniques
(Brown et al., 1993) and attention mechanisms
(Bahdanau et al., 2014) act as a catalyst to aug-
ment the performance of classical Statistical Ma-
chine Translation (SMT) and Neural Machine
Translation (NMT) models, respectively. In short,
both approaches focus on sub-strings of source
sentence which are significant for predicting target
words while translating. Currently, the combina-
tion of linear RNNs/LSTMs and attention mecha-
nisms has become a de facto standard architecture
for many NLP tasks.

At the intersection of sentence encoding and
attention models, some interesting questions
emerge: Can attention mechanisms be employed
on tree structures, such as Tree-LSTMs (Tai et al.,
2015)? If yes, what are the possible tree-based at-
tention models? Do different tree structures (in
particular constituency vs. dependency) have dif-
ferent behaviors in such models? With these ques-
tions in mind, we present our investigation and
findings in the context of semantic relatedness
tasks.

2 Background

2.1 Long Short-Term Memory Networks
(LSTMs)

Concisely, an LSTM network (Hochreiter and
Schmidhuber, 1997) (Figure 1) includes a memory
cell at each time step which controls the amount
of information being penetrated into the cell, ne-
glected, and yielded by the cell. Various LSTM
networks (Greff et al., 2017) have been explored
till now; we focus on one representative form. To
be more precise, we consider a LSTM memory
cell involving: an input gate it, a forget gate ft,
and an output gate ot at time step t. Apart from
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Figure 1: A linear LSTM network. wt is the word
embedding, ht is the hidden state vector, ct is the
memory cell vector and yt is the final processed
output at time step t.

the hidden state ht−1 and input embedding wt of
the current word, the recursive function in LSTM
also takes the previous time’s memory cell state,
ct−1, into account, which is not the case in sim-
ple RNN. The following equations summarize a
LSTM memory cell at time step t:

it = σ(wtW
i + ht−1Ri + bi) (1)

ft = σ(wtW
f + ht−1Rf + bf ) (2)

ot = σ(wtW
o + ht−1Ro + bo) (3)

ut = tanh(wtW
u + ht−1Ru + bu) (4)

ct = it � ut + ft � ct−1 (5)

ht = ot � tanh(ct) (6)

where:

• (W i,W f ,W o,Wu) ∈ RD x d represent in-
put weight matrices, where d is the dimension
of the hidden state vector and D is the dimen-
sion of the input word embedding, wt .

• (Ri, Rf , Ro, Ru) ∈ Rd x d represent recur-
rent weight matrices and (bi, bf , bo, bu) ∈
Rd represent biases.

• ct ∈Rd is the new memory cell vector at time
step t.

As can be seen in Eq. 5, the input gate it lim-
its the new information, ut, by employing the el-
ement wise multiplication operator �. Moreover,
the forget gate ft regulates the amount of infor-
mation from the previous state ct−1. Therefore,
the current memory state ct includes both new and
previous time step’s information but partially.

John ate an apple

nsubj

dobj

det

Figure 2: a. Left: A constituency tree; b. Right:
A dependency tree

A natural extension of LSTM network is a bidi-
rectional LSTM (bi-LSTM), which lets the se-
quence pass through the architecture in both direc-
tions and aggregate the information at each time
step. Again, it strictly preserves the sequential na-
ture of LSTMs.

2.2 Linguistically Motivated Sentence
Structures

Most computational linguists have developed a
natural inclination towards hierarchical structures
of natural language, which follow guidelines col-
lectively referred to as syntax. Typically, such
structures manifest themselves in parse trees. We
investigate two popular forms: Constituency and
Dependency trees.

2.2.1 Constituency structure
Briefly, constituency trees (Figure 2:a) indicate a
hierarchy of syntactic units and encapsulate phrase
grammar rules. Moreover, these trees explic-
itly demonstrate groups of phrases (e.g., Noun
Phrases) in a sentence. Additionally, they discrim-
inate between terminal (lexical) and non-terminal
nodes (non-lexical) tokens.

2.2.2 Dependency structure
In short, dependency trees (Figure 2:b) describe
the syntactic structure of a sentence in terms of the
words (lemmas) and associated grammatical rela-
tions among the words. Typically, these depen-
dency relations are explicitly typed, which makes
the trees valuable for practical applications such as
information extraction, paraphrase detection and
semantic relatedness.

2.3 Tree Long Short-Term Memory Network
(Tree-LSTM)

Child-Sum Tree-LSTM (Tai et al., 2015) is an epit-
ome of structure-based neural network which ex-
plicitly capture the structural information in a sen-
tence. Tai et al. demonstrated that information at
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respectively

IP, OP: Input and Output 
gate vectors for parent 
node respectively

fC0, fC1 : Forget gate 
vectors for first and 
second child 
respectively

Figure 3: A compositional view of parent node in
Tree-LSTM network.

a parent node can be consolidated selectively from
each of its child node. Architecturally, each gated
vector and memory state update of the head node
is dependent on the hidden states of its children in
the Tree-LSTM. Assuming a good tree structure
of a sentence, each node j of the structure incorpo-
rates the following equations.:

h̃j =
∑

k∈C(j)

hk (7)

ij = σ(wjW
i + h̃jR

i + bi) (8)

fjk = σ(wjW
f + hkR

f + bf ) (9)

oj = σ(wjW
o + h̃jR

o + bo) (10)

uj = tanh(wjW
u + h̃jR

u + bu) (11)

cj = ij � uj +
∑

k∈C(j)

fjk � ck (12)

hj = oj � tanh(cj) (13)

where:

• wj ∈ RD represents word embedding of all
nodes in Dependency structure and only ter-
minal nodes in Constituency structure. 2

• (W i,W f ,W o,Wu) ∈ RD x d represent in-
put weight matrices.

• (Ri, Rf , Ro, Ru) ∈ Rd x d represent recur-
rent weight matrices, and (bi, bf , bo, bu) ∈
Rd represent biases.

2wj is ignored for non-terminal nodes in a Constituency
structure by removing the wW terms in Equations 8-11.

w0 w1

h0

c0

h1

c1

w’0 w’1

h’1

c’1

a1 (Global align
weights)

c1 (context 
vector)

ĥ’1Attention layer

Figure 4: Global attention model

• cj ∈ Rd is the new memory state vector of
node j.

• C(j) is the set of children of node j.

• fjk ∈ Rd is the forget gate vector for child k
of node j.

Referring to Equation 12, the new memory cell
state, cj of node j, receives new information, uj ,
partially. More importantly, it includes the partial
information from each of its direct children, set
C(j), by employing the corresponding forget gate,
fjk.

When the Child-Sum Tree model is deployed
on a dependency tree, it is referred to as Depen-
dency Tree-LSTM, whereas a constituency-tree-
based instantiation is referred to as Constituency
Tree-LSTM.

2.4 Attention Mechanisms
Alignment models were first introduced in sta-
tistical machine translation (SMT) (Brown et al.,
1993), which connect sub-strings in the source
sentence to sub-strings in the target sentence.

Recently, attention techniques (which are ef-
fectively soft alignment models) in neural ma-
chine translation (NMT) (Bahdanau et al., 2014)
came into prominence, where attention scores are
calculated by considering words of source sen-
tence while decoding words in target language.
Although effective attention mechanisms (Luong
et al., 2015) such as Global Attention Model
(GAM) (Figure 4) and Local Attention Model
(LAM) have been developed, such techniques
have not been explored over Tree-LSTMs.

3 Inter-Sentence Attention on
Tree-LSTMs

We present two types of tree-based attention mod-
els in this section. With trivial adaptation, they can
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be deployed in the sequence setting (degenerated
trees).

3.1 Modified Decomposable Attention
(MDA)

Parikh et al. (2016)’s original decomposable inter-
sentence attention model only used word embed-
dings to construct the attention matrix, without
any structural encoding of sentences. Essentially,
the model incorporated three components:

Attend: Input representations (without se-
quence or structural encoding) of both sentences,
L and R, are soft-aligned.

Compare: A set of vectors is produced by sep-
arately comparing each sub-phrase of L to sub-
phrases in R. Vector representation of each sub-
phrase in L is a non-linear combination of rep-
resentation of word in sentence L and its aligned
sub-phrase in sentence R. The same holds true for
the set of vectors for sentence R.

Aggregate: Both sets of sub-phrases vectors are
summed up separately to form final sentence rep-
resentation of sentence L and sentence R.

We decide to augment the original decompos-
able inter-sentence attention model and general-
ize it into the tree (and sequence) setting. To be
more specific, we consider two input sequences:
L = (l1, l2....llenL

), R = (r1, r2....rlenR
) and

their corresponding input representations: L̄ = (l̄1,
l̄2....l̄lenL

), R̄ = (r̄1, r̄2....r̄lenR
); where lenL and

lenR represents number of words in L and R, re-
spectively.

3.1.1 MDA on dependency structure
Let’s assume sequences L andR have dependency
tree structures DL and DR. In this case, lenL and
lenR represents number of nodes in DL and DR,
respectively. After using a Tree-LSTM to encode
tree representations, which results in: D

′
L = (l̄

′
1,

l̄
′
2....l̄

′
lenL

), D
′
R = (r̄

′
1, r̄

′
2....r̄

′
lenR

), we gather un-
normalized attention weights, eij and normalize
them as follows:

eij = l̄
′
i(r̄
′
j)
T (14)

βi =

lenR∑

j=1

exp(eij)∑lenR
k=1 exp(eik)

∗ r̄′j (15)

αj =

lenL∑

i=1

exp(eij)∑lenL
k=1 exp(ekj)

∗ l̄′i (16)

From the equations above, we can infer that
the attention matrix will have a dimension lenL

x lenR. In contrast to the original model, we com-
pute the final representations of the each sentence
by concatenating the LSTM-encoded representa-
tion of root with the attention-weighted represen-
tation of the root 3:

h
′′
L = G([l̄

′
rootL

;βrootL ]) (17)

h
′′
R = G([r̄

′
rootR

;αrootR ]) (18)

where G is a feed-forward neural network. h
′′
L

and h
′′
R are final vector representations of input se-

quences L and R, respectively.

3.1.2 MDA on constituency structure
Let’s assume sequences L and R have con-
stituency tree structures CL and CR. Moreover,
assume CL and CR have total number of nodes
as NL (> lenL) and NR (> lenR), respectively.
As in 3.1.1, the attention mechanism is employed
after encoding the trees CL and CR. While en-
coding trees, terminal and non-terminal nodes are
handled in the same way as in the original Tree-
LSTM model (see 2.3).

It should be noted that we collect hidden states
of all the nodes (NL and NR) individually in CL
and CR during the encoding process. Hence, hid-
den states matrix will have dimension NL x d for
tree CL whereas for tree CR, it will have dimen-
sion NR x d; where d is dimension of each hidden
state. Therefore, attention matrix will have a di-
mension NL x NR. Finally, we employ Equations
14-18 to compute the final representations of se-
quences L and R.

3.2 Progressive Attention (PA)

In this section, we propose a novel attention mech-
anism on Tree-LSTM, inspired by (Quirk et al.,
2005) and (Yamada and Knight, 2001).

3.2.1 PA on dependency structure
Let’s assume a dependency tree structure of sen-
tence L = (l1, l2....llenL

) is available as DL; where
lenL represents number of nodes in DL. Simi-
larly, tree DR corresponds to the sentence R =
(r1, r2....rlenR

); where lenR represents number of
nodes in DR.

In PA, the objective is to produce the final vec-
tor representation of tree DR conditional on the
hidden state vectors of all nodes of DL. Similar to

3In the sequence setting, we compute the corresponding
representations for the last word in the sentence.
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the encoding process in NMT, we encode R by at-
tending each node of DR to all nodes in DL. Let’s
name this process Phase1. Next, Phase2 is per-
formed where L is encoded in the similar way to
get the final vector representation of DL.

Referring to Figure 5 and assuming Phase1 is
being executed, a hidden state matrix, HL, is ob-
tained by concatenating the hidden state vector of
every node in tree DL, where the number of nodes
inDL = 3. Next, treeDR is processed by calculat-
ing the hidden state vector at every node. Assume
that the current node being processed is nR2 of
DR, which has a hidden state vector, hR2. Before
further processing, normalized weights are calcu-
lated based on hR2 and HL. Formally,

Hpj = stack[hpj ] (19)

conpj = concat[Hpj , Hq] (20)

apj = softmax(tanh(conpjWc+b)∗Wa) (21)

where:

• p, q ∈ {L,R} and q 6= p

• Hq ∈ Rx x d represents a matrix obtained by
concatenating hidden state vectors of nodes
in treeDq; x is lenq of sentence q.

• Hpj ∈Rx x d represents a matrix obtained by
stacking hidden state, hpj , verticallyx times.

• conpj ∈ Rx x 2d represents the concatenated
matrix.

• apj ∈ Rx represents the normalized atten-
tion weights at node j of tree Dp; where Dp

is the dependency structure of sentence p.

• Wc ∈R2d x d andWa ∈Rd represent learned
weight matrices.

The normalized attention weights in above
equations provide an opportunity to align the sub-
tree at the current node, nR2, in DR to sub-trees
available at all nodes in DL. Next, a gated mecha-
nism is employed to compute the final vector rep-
resentation at node nR2.

Formally,

h
′
pj =

(x−1)∑

0

((1− apj) ∗Hq + (apj) ∗Hpj) (22)

where:

• h′
pj ∈ Rd represents the final vector repre-

sentation of node j in treeDp

• ∑(x−1)
0 represents column-wise sum

Assuming the final vector representation of tree
DR is h

′
R, the exact same steps are followed for

Phase2 with the exception that the entire process is
now conditional on tree DR. As a result, the final
vector representation of tree DL, h

′
L, is computed.

Lastly, the following equations are applied to
vectors h

′
L and h

′
R, before calculating the angle

and distance similarity (see Section 4).

h
′′
L = tanh(h

′
L + hL) (23)

h
′′
R = tanh(h

′
R + hR) (24)

where:

• hL ∈ Rd represents the vector representation
of treeDL without attention.

• hR ∈Rd represents the vector representation
of treeDR without attention.

3.2.2 PA on constituency structure
Let CL and CR represent constituency trees of L
and R, respectively; where CL and CR have total
number of nodes NL (> lenL) and NR (> lenR).
Additionally, let’s assume that trees CL and CR
have the same configuration of nodes as in Sec-
tion 3.1.2, and the encoding of terminal and non-
terminal nodes follow the same process as in Sec-
tion 3.1.2. Assuming we have already encoded all
NL nodes of tree CL using Tree-LSTM, we will
have the hidden state matrix, HL, with dimension
NL x d. Next, while encoding any node of CR, we
consider HL which results in an attention vector
having shape NL. Using Equations 19-22 4, we
retrieve the final hidden state of the current node.
Finally, we compute the representation of sentence
R based on attention to sentence L. We perform
Phase2 with the same process, except that we now
condition on sentence R.

In summary, the progressive attention mecha-
nism refers to all nodes in the other tree while en-
coding a node in the current tree, instead of wait-
ing till the end of the structural encoding to estab-
lish cross-sentence attention, as was done in the
decomposable attention model.

4At this point, we will consider Cq and Cp instead of
Dq and Dp, respectively, in Equations 19-22. Additionally,
x will be equal to total number of nodes in the constituency
tree.
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Figure 5: Progressive Attn-Tree-LSTM model

4 Evaluation Tasks

We evaluate our models on two tasks: (1) seman-
tic relatedness scoring for sentence pairs (SemEval
2012, Task 6 and SemEval 2014, Task 1) and
(2) paraphrase detection for question pairs (Quora,
2017).

4.1 Semantic Relatedness for Sentence Pairs

In SemEval 2012, Task 6 and SemEval 2014, Task
1, every sentence pair has a real-valued score that
depicts the extent to which the two sentences are
semantically related to each other. Higher score
implies higher semantic similarity between the
two sentences. Vector representations h

′′
L and h

′′
R

are produced by using our Modified Decomp-Attn
or Progressive-Attn models. Next, a similarity
score, ŷ between h

′′
L and h

′′
R is computed using the

same neural network (see below), for the sake of
fair comparison between our models and the orig-
inal Tree-LSTM (Tai et al., 2015).

hx = h
′′
L � h

′′
R (25)

h+ = |h′′L − h
′′
R| (26)

hs = σ(hxW
x + h+W

+ + bh) (27)

p̂θ = softmax(hsW
p + bp) (28)

ŷ = rT p̂θ (29)

where:

• rT = [1, 2..S]

• hx ∈Rd measures the sign similarity between
h
′′
L and h

′′
R

• h+ ∈ Rd measures the absolute distance be-
tween h

′′
L and h

′′
R

Following (Tai et al., 2015), we convert the re-
gression problem into a soft classification. We also
use the same sparse distribution, p, which was de-
fined in the original Tree-LSTM to transform the
gold rating for a sentence pair, such that y = rT p
and ŷ = rT p̂θ ≈ y. The loss function is the KL-
divergence between p and p̂:

J(θ) =

∑m
k=1KL(pk||p̂kθ)

m
+
λ||θ||22

2
(30)

• m is the number of sentence pairs in the
dataset.

• λ represents the regularization penalty.

4.2 Paraphrase Detection for Question Pairs
In this task, each question pair is labeled as either
paraphrase or not, hence the task is binary clas-
sification. We use Eqs. 25 - 28 to compute the

2121



predicted distribution p̂θ. The predicted label, ŷ,
will be:

ŷ = arg maxyp̂θ (31)

The loss function is the negative log-likelihood:

J(θ) = −
∑m

k=1 y
k log ŷk

m
+
λ||θ||22

2
(32)

5 Experiments

5.1 Semantic Relatedness for Sentence Pairs
We utilized two different datasets:

• The Sentences Involving Compositional
Knowledge (SICK) dataset (Marelli et al.
(2014)), which contains a total of 9,927
sentence pairs. Specifically, the dataset has
a split of 4500/500/4927 among training,
dev, and test. Each sentence pair has a score
S ∈ [1,5], which represents an average of
10 different human judgments collected by
crowd-sourcing techniques.

• The MSRpar dataset (Agirre et al., 2012),
which consists of 1,500 sentence pairs. In
this dataset, each pair is annotated with a
score S ∈ [0,5] and has a split of 750/750 be-
tween training and test.

We used the Stanford Parsers (Chen and Man-
ning, 2014; Bauer) to produce dependency and
constituency parses of sentences. Moreover,
we initialized the word embeddings with 300-
dimensional Glove vectors (Pennington et al.,
2014); the word embeddings were held fixed dur-
ing training. We experimented with different op-
timizers, among which AdaGrad performed the
best. We incorporated a learning rate of 0.025 and
regularization penalty of 10−4 without dropout.

5.2 Paraphrase Detection for Question Pairs
For this task, we utilized the Quora dataset (Iyer;
Kaggle, 2017). Given a pair of questions, the
objective is to identify whether they are seman-
tic duplicates. It is a binary classification prob-
lem where a duplicate question pair is labeled
as 1 otherwise as 0. The training set contains
about 400,000 labeled question pairs, whereas the
test set consists of 2.3 million unlabeled question
pairs. Moreover, the training dataset has only 37%
positive samples; average length of a question is
10 words. Due to hardware and time constraints,
we extracted 50,000 pairs from the original train-
ing while maintaining the same positive/negative

ratio. A stratified 80/20 split was performed on
this subset to produce the training/test set. Finally,
5% of the training set was used as a validation set
in our experiments.

We used an identical training configuration as
for the semantic relatedness task since the essence
of both the tasks is practically the same. We also
performed pre-processing to clean the data and
then parsed the sentences using Stanford Parsers.

6 Results

6.1 Semantic Relatedness for Sentence Pairs

Table 1 summarizes our results. According to
(Marelli et al., 2014), we compute three evalua-
tion metrics: Pearson’s r, Spearman’s ρ and Mean
Squared Error (MSE). We compare our attention
models against the original Tree-LSTM (Tai et al.,
2015), instantiated on both constituency trees and
dependency trees. We also compare earlier base-
lines with our models, and the best results are
in bold. Since Tree-LSTM is a generalization of
Linear LSTM, we also implemented our atten-
tion models on Linear Bidirectional LSTM (Bi-
LSTM). All results are average of 5 runs. It is wit-
nessed that the Progressive-Attn mechanism com-
bined with Constituency Tree-LSTM is overall the
strongest contender, but PA failed to yield any per-
formance gain on Dependency Tree-LSTM in ei-
ther dataset.

6.2 Paraphrase Detection for Question Pairs

Table 2 summarizes our results where best results
are highlighted in bold within each category. It
should be noted that Quora is a new dataset and
we have done our analysis on only 50,000 sam-
ples. Therefore, to the best of our knowledge,
there is no published baseline result yet. For this
task, we considered four standard evaluation met-
rics: Accuracy, F1-score, Precision and Recall.
The Progressive-Attn + Constituency Tree-LSTM
model still exhibits the best performance by a
small margin, but the Progressive-Attn mechanism
works surprisingly well on the linear bi-LSTM.

6.3 Effect of the Progressive Attention Model

Table 3 illustrates how various models operate on
two sentence pairs from SICK test dataset. As
we can infer from the table, the first pair demon-
strates an instance of the active-passive voice phe-
nomenon. In this case, the linear LSTM and
vanilla Tree-LSTMs really struggle to perform.

2122



Table 1: Results on test dataset for SICK and MSRpar semantic relatedness task. Mean scores are
presented based on 5 runs (standard deviation in parenthesis). Categories of results: (1) Previous models
(2) Dependency structure (3) Constituency structure (4) Linear structure

Dataset Model Pearson’s r Spearman’s ρ MSE

SICK

Illinois-LH (2014) 0.7993 0.7538 0.3692
UNAL-NLP (2014) 0.8070 0.7489 0.3550

Meaning factory (2014) 0.8268 0.7721 0.3224
ECNU (2014) 0.8414 - -

Dependency Tree-LSTM (2015) 0.8676 (0.0030) 0.8083 (0.0042) 0.2532 (0.0052)
Decomp-Attn (Dependency) 0.8239 (0.0120) 0.7614 (0.0103) 0.3326 (0.0223)

Progressive-Attn (Dependency) 0.8424 (0.0042) 0.7733 (0.0066) 0.2963 (0.0077)
Constituency Tree-LSTM (2015) 0.8582 (0.0038) 0.7966 (0.0053) 0.2734 (0.0108)

Decomp-Attn (Constituency) 0.7790 (0.0076) 0.7074 (0.0091) 0.4044 (0.0152)
Progressive-Attn (Constituency) 0.8625 (0.0032) 0.7997 (0.0035) 0.2610 (0.0057)

Linear Bi-LSTM 0.8398 (0.0020) 0.7782 (0.0041) 0.3024 (0.0044)
Decomp-Attn (Linear) 0.7899 (0.0055) 0.7173 (0.0097) 0.3897 (0.0115)

Progressive-Attn (Linear) 0.8550 (0.0017) 0.7873 (0.0020) 0.2761 (0.0038)

MSRpar

ParagramPhrase (2015) 0.426 - -
Projection (2015) 0.437 - -

GloVe (2015) 0.477 - -
PSL (2015) 0.416 - -

ParagramPhrase-XXL (2015) 0.448 - -
Dependency Tree-LSTM 0.4921 (0.0112) 0.4519 (0.0128) 0.6611 (0.0219)

Decomp-Attn (Dependency) 0.4016 (0.0124) 0.3310 (0.0118) 0.7243 (0.0099)
Progressive-Attn (Dependency) 0.4727 (0.0112) 0.4216 (0.0092) 0.6823 (0.0159)

Constituency Tree-LSTM 0.3981 (0.0176) 0.3150 (0.0204) 0.7407 (0.0170)
Decomp-Attn (Constituency) 0.3991 (0.0147) 0.3237 (0.0355) 0.7220 (0.0185)

Progressive-Attn (Constituency) 0.5104 (0.0191) 0.4764 (0.0112) 0.6436 (0.0346)
Linear Bi-LSTM 0.3270 (0.0303) 0.2205 (0.0111) 0.8098 (0.0579)

Decomp-Attn (Linear) 0.3763 (0.0332) 0.3025 (0.0587) 0.7290 (0.0206)
Progressive-Attn (Linear) 0.4773 (0.0206) 0.4453 (0.0250) 0.6758 (0.0260)

Table 2: Results on test dataset for Quora paraphrase detection task. Mean scores are presented based
on 5 runs (standard deviation in parenthesis). Categories of results: (1) Dependency structure (2) Con-
stituency structure (3) Linear structure

Model Accuracy F-1 score Precision Recall
(class=1) (class=1) (class=1)

Dependency Tree-LSTM 0.7897 (0.0009) 0.7060 (0.0050) 0.7298 (0.0055) 0.6840 (0.0139)
Decomp-Attn (Dependency) 0.7803 (0.0026) 0.6977 (0.0074) 0.7095 (0.0083) 0.6866 (0.0199)

Progressive-Attn (Dependency) 0.7896 (0.0025) 0.7113 (0.0087) 0.7214 (0.0117) 0.7025 (0.0266)
Constituency Tree-LSTM 0.7881 (0.0042) 0.7065 (0.0034) 0.7192 (0.0216) 0.6846 (0.0380)

Decomp-Attn (Constituency) 0.7776 (0.0004) 0.6942 (0.0050) 0.7055 (0.0069) 0.6836 (0.0164)
Progressive-Attn (Constituency) 0.7956 (0.0020) 0.7192 (0.0024) 0.7300 (0.0079) 0.7089 (0.0104)

Linear Bi-LSTM 0.7859 (0.0024) 0.7097 (0.0047) 0.7112 (0.0129) 0.7089 (0.0219)
Decomp-Attn (Linear) 0.7861 (0.0034) 0.7074 (0.0109) 0.7151 (0.0135) 0.7010 (0.0315)

Progressive-Attn (Linear) 0.7949 (0.0031) 0.7182 (0.0162) 0.7298 (0.0115) 0.7092 (0.0469)

However, when our progressive attention mech-
anism is integrated into syntactic structures (de-
pendency or constituency), we witness a boost in
the semantic relatedness score. Such desirable be-
havior is consistently observed in multiple active-
passive voice pairs. The second pair points to a
possible issue in data annotation. Despite the pres-
ence of strong negation, the gold-standard score
is 4 out of 5 (indicating high relatedness). Inter-
estingly, the Progressive-Attn + Dependency Tree-

LSTM model favors the negation facet and outputs
a low relatedness score.

7 Discussion

In this section, let’s revisit our research questions
in light of the experimental results.

First, can attention mechanisms be built for
Tree-LSTMs? Does it work? The answer is
yes. Our novel progressive-attention Tree-LSTM
model, when instantiated on constituency trees,
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Table 3: Effect of the progressive attention model
Test Pair Gold BiLSTM Const. Tree Dep. Tree

ID (no attn) (PA) (no attn) (PA) (no attn) (PA)

1 S1: The badger is burrowing a hole.
S2: A hole is being burrowed by the badger. 4.9 2.60 3.02 3.52 4.34 3.41 4.63

2 S1: There is no man screaming.
S2: A man is screaming. 4 3.44 3.20 3.65 3.50 3.51 2.15

significantly outperforms its counterpart without
attention. The same model can also be deployed
on sequences (degenerated trees) and achieve
quite impressive results.

Second, the performance gap between the two
attention models is quite striking, in the sense that
the progressive model completely dominate its de-
composable counterpart. The difference between
the two models is the pacing of attention, i.e.,
when to refer to nodes in the other tree while en-
coding a node in the current tree. The progres-
sive attention model garners it’s empirical superi-
ority by attending while encoding, instead of wait-
ing till the end of the structural encoding to es-
tablish cross-sentence attention. In retrospect, this
may justify why the original decomposable atten-
tion model in (Parikh et al., 2016) achieved com-
petitive results without any LSTM-type encoding.
Effectively, they implemented a naive version of
our progressive attention model.

Third, do structures matter/help? The overall
trend in our results is quite clear: the tree-based
models exhibit convincing empirical strength; lin-
guistically motivated structures are valuable. Ad-
mittedly though, on the relatively large Quora
dataset, we observe some diminishing returns of
incorporating structural information. It is not
counter-intuitive that the sheer size of data can
possibly allow structural patterns to emerge, hence
lessen the need to explicitly model syntactic struc-
tures in neural architectures.

Last but not least, in trying to assess the im-
pact of attention mechanisms (in particular the
progressive attention model), we notice that the
extra mileage gained on different structural en-
codings is different. Specifically, performance lift
on Linear Bi-LSTM > performance lift on Con-
stituency Tree-LSTM, and PA struggles to see per-
formance lift on dependency Tree-LSTM. Inter-
estingly enough, this observation is echoed by an
earlier study (Gildea, 2004), which showed that
tree-based alignment models work better on con-

stituency trees than on dependency trees.
In summary, our results and findings lead to sev-

eral intriguing questions and conjectures, which
call for investigation beyond the scope of our
study:

• Is it reasonable to conceptualize attention
mechanisms as an implicit form of structure,
which complements the representation power
of explicit syntactic structures?

• If yes, does there exist some trade-off be-
tween the modeling efforts invested into syn-
tactic and attention structures respectively,
which seemingly reveals itself in our empiri-
cal results?

• The marginal impact of attention on depen-
dency Tree-LSTMs suggests some form of
saturation effect. Does that indicate a closer
affinity between dependency structures (rela-
tive to constituency structures) and composi-
tional semantics (Liang et al., 2013)?

• If yes, why is dependency structure a better
stepping stone for compositional semantics?
Is it due to the strongly lexicalized nature of
the grammar? Or is it because the depen-
dency relations (grammatical functions) em-
body more semantic information?

8 Conclusion

In conclusion, we proposed a novel progressive at-
tention model on syntactic structures, and demon-
strated its superior performance in semantic relat-
edness tasks. Our work also provides empirical
ingredients for potentially profound questions and
debates on syntactic structures in linguistics.
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Abstract

Although much effort has recently been
devoted to training high-quality sentence
embeddings, we still have a poor un-
derstanding of what they are capturing.
“Downstream” tasks, often based on sen-
tence classification, are commonly used
to evaluate the quality of sentence repre-
sentations. The complexity of the tasks
makes it however difficult to infer what
kind of information is present in the repre-
sentations. We introduce here 10 probing
tasks designed to capture simple linguis-
tic features of sentences, and we use them
to study embeddings generated by three
different encoders trained in eight distinct
ways, uncovering intriguing properties of
both encoders and training methods.

1 Introduction

Despite Ray Mooney’s quip that you cannot cram
the meaning of a whole %&!$# sentence into a
single $&!#* vector, sentence embedding meth-
ods have achieved impressive results in tasks rang-
ing from machine translation (Sutskever et al.,
2014; Cho et al., 2014) to entailment detection
(Williams et al., 2018), spurring the quest for “uni-
versal embeddings” trained once and used in a va-
riety of applications (e.g., Kiros et al., 2015; Con-
neau et al., 2017; Subramanian et al., 2018). Posi-
tive results on concrete problems suggest that em-
beddings capture important linguistic properties of
sentences. However, real-life “downstream” tasks
require complex forms of inference, making it dif-
ficult to pinpoint the information a model is rely-
ing upon. Impressive as it might be that a system
can tell that the sentence “A movie that doesn’t
aim too high, but it doesn’t need to” (Pang and
Lee, 2004) expresses a subjective viewpoint, it is

hard to tell how the system (or even a human)
comes to this conclusion. Complex tasks can also
carry hidden biases that models might lock onto
(Jabri et al., 2016). For example, Lai and Hock-
enmaier (2014) show that the simple heuristic of
checking for explicit negation words leads to good
accuracy in the SICK sentence entailment task.

Model introspection techniques have been ap-
plied to sentence encoders in order to gain a bet-
ter understanding of which properties of the in-
put sentences their embeddings retain (see Sec-
tion 5). However, these techniques often depend
on the specifics of an encoder architecture, and
consequently cannot be used to compare different
methods. Shi et al. (2016) and Adi et al. (2017)
introduced a more general approach, relying on
the notion of what we will call probing tasks. A
probing task is a classification problem that fo-
cuses on simple linguistic properties of sentences.
For example, one such task might require to cat-
egorize sentences by the tense of their main verb.
Given an encoder (e.g., an LSTM) pre-trained on
a certain task (e.g., machine translation), we use
the sentence embeddings it produces to train the
tense classifier (without further embedding tun-
ing). If the classifier succeeds, it means that the
pre-trained encoder is storing readable tense infor-
mation into the embeddings it creates. Note that:
(i) The probing task asks a simple question, min-
imizing interpretability problems. (ii) Because of
their simplicity, it is easier to control for biases in
probing tasks than in downstream tasks. (iii) The
probing task methodology is agnostic with respect
to the encoder architecture, as long as it produces
a vector representation of sentences.

We greatly extend earlier work on probing tasks
as follows. First, we introduce a larger set of prob-
ing tasks (10 in total), organized by the type of lin-
guistic properties they probe. Second, we system-
atize the probing task methodology, controlling for
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a number of possible nuisance factors, and fram-
ing all tasks so that they only require single sen-
tence representations as input, for maximum gen-
erality and to ease result interpretation. Third, we
use our probing tasks to explore a wide range of
state-of-the-art encoding architectures and train-
ing methods, and further relate probing and down-
stream task performance. Finally, we are publicly
releasing our probing data sets and tools, hoping
they will become a standard way to study the lin-
guistic properties of sentence embeddings.1

2 Probing tasks

In constructing our probing benchmarks, we
adopted the following criteria. First, for general-
ity and interpretability, the task classification prob-
lem should only require single sentence embed-
dings as input (as opposed to, e.g., sentence and
word embeddings, or multiple sentence represen-
tations). Second, it should be possible to construct
large training sets in order to train parameter-rich
multi-layer classifiers, in case the relevant proper-
ties are non-linearly encoded in the sentence vec-
tors. Third, nuisance variables such as lexical cues
or sentence length should be controlled for. Fi-
nally, and most importantly, we want tasks that
address an interesting set of linguistic properties.
We thus strove to come up with a set of tasks that,
while respecting the previous constraints, probe a
wide range of phenomena, from superficial prop-
erties of sentences such as which words they con-
tain to their hierarchical structure to subtle facets
of semantic acceptability. We think the current
task set is reasonably representative of different
linguistic domains, but we are not claiming that
it is exhaustive. We expect future work to extend
it.

The sentences for all our tasks are extracted
from the Toronto Book Corpus (Zhu et al., 2015),
more specifically from the random pre-processed
portion made available by Paperno et al. (2016).
We only sample sentences in the 5-to-28 word
range. We parse them with the Stanford Parser
(2017-06-09 version), using the pre-trained PCFG
model (Klein and Manning, 2003), and we rely on
the part-of-speech, constituency and dependency
parsing information provided by this tool where
needed. For each task, we construct training sets
containing 100k sentences, and 10k-sentence val-

1https://github.com/facebookresearch/
SentEval/tree/master/data/probing

idation and test sets. All sets are balanced, having
an equal number of instances of each target class.

Surface information These tasks test the extent
to which sentence embeddings are preserving sur-
face properties of the sentences they encode. One
can solve the surface tasks by simply looking at
tokens in the input sentences: no linguistic knowl-
edge is called for. The first task is to predict the
length of sentences in terms of number of words
(SentLen). Following Adi et al. (2017), we group
sentences into 6 equal-width bins by length, and
treat SentLen as a 6-way classification task. The
word content (WC) task tests whether it is possible
to recover information about the original words in
the sentence from its embedding. We picked 1000
mid-frequency words from the source corpus vo-
cabulary (the words with ranks between 2k and
3k when sorted by frequency), and sampled equal
numbers of sentences that contain one and only
one of these words. The task is to tell which of
the 1k words a sentence contains (1k-way classifi-
cation). This setup allows us to probe a sentence
embedding for word content without requiring an
auxiliary word embedding (as in the setup of Adi
and colleagues).

Syntactic information The next batch of tasks
test whether sentence embeddings are sensitive to
syntactic properties of the sentences they encode.
The bigram shift (BShift) task tests whether an
encoder is sensitive to legal word orders. In this
binary classification problem, models must distin-
guish intact sentences sampled from the corpus
from sentences where we inverted two random ad-
jacent words (“What you are doing out there?”).

The tree depth (TreeDepth) task checks
whether an encoder infers the hierarchical struc-
ture of sentences, and in particular whether it can
group sentences by the depth of the longest path
from root to any leaf. Since tree depth is naturally
correlated with sentence length, we de-correlate
these variables through a structured sampling pro-
cedure. In the resulting data set, tree depth val-
ues range from 5 to 12, and the task is to catego-
rize sentences into the class corresponding to their
depth (8 classes). As an example, the following
is a long (22 tokens) but shallow (max depth: 5)
sentence: “[1 [2 But right now, for the time be-
ing, my past, my fears, and my thoughts [3 were [4
my [5business]]].]]” (the outermost brackets cor-
respond to the ROOT and S nodes in the parse).
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In the top constituent task (TopConst), sen-
tences must be classified in terms of the sequence
of top constituents immediately below the sen-
tence (S) node. An encoder that successfully ad-
dresses this challenge is not only capturing latent
syntactic structures, but clustering them by con-
stituent types. TopConst was introduced by Shi
et al. (2016). Following them, we frame it as a
20-way classification problem: 19 classes for the
most frequent top constructions, and one for all
other constructions. As an example, “[Then] [very
dark gray letters on a black screen] [appeared] [.]”
has top constituent sequence: “ADVP NP VP .”.

Note that, while we would not expect an un-
trained human subject to be explicitly aware of
tree depth or top constituency, similar information
must be implicitly computed to correctly parse
sentences, and there is suggestive evidence that the
brain tracks something akin to tree depth during
sentence processing (Nelson et al., 2017).

Semantic information These tasks also rely on
syntactic structure, but they further require some
understanding of what a sentence denotes. The
Tense task asks for the tense of the main-clause
verb (VBP/VBZ forms are labeled as present,
VBD as past). No target form occurs across the
train/dev/test split, so that classifiers cannot rely
on specific words (it is not clear that Shi and col-
leagues, who introduced this task, controlled for
this factor). The subject number (SubjNum) task
focuses on the number of the subject of the main
clause (number in English is more often explic-
itly marked on nouns than verbs). Again, there
is no target overlap across partitions. Similarly,
object number (ObjNum) tests for the number of
the direct object of the main clause (again, avoid-
ing lexical overlap). To solve the previous tasks
correctly, an encoder must not only capture tense
and number, but also extract structural informa-
tion (about the main clause and its arguments).
We grouped Tense, SubjNum and ObjNum with
the semantic tasks, since, at least for models that
treat words as unanalyzed input units (without
access to morphology), they must rely on what
a sentence denotes (e.g., whether the described
event took place in the past), rather than on struc-
tural/syntactic information. We recognize, how-
ever, that the boundary between syntactic and se-
mantic tasks is somewhat arbitrary.

In the semantic odd man out (SOMO) task, we
modified sentences by replacing a random noun

or verb o with another noun or verb r. To make
the task more challenging, the bigrams formed by
the replacement with the previous and following
words in the sentence have frequencies that are
comparable (on a log-scale) with those of the orig-
inal bigrams. That is, if the original sentence con-
tains bigrams wn−1o and own+1, the correspond-
ing bigrams wn−1r and rwn+1 in the modified
sentence will have comparable corpus frequencies.
No sentence is included in both original and modi-
fied format, and no replacement is repeated across
train/dev/test sets. The task of the classifier is to
tell whether a sentence has been modified or not.
An example modified sentence is: “ No one could
see this Hayes and I wanted to know if it was
real or a spoonful (orig.: ploy).” Note that judg-
ing plausibility of a syntactically well-formed sen-
tence of this sort will often require grasping rather
subtle semantic factors, ranging from selectional
preference to topical coherence.

The coordination inversion (CoordInv) bench-
mark contains sentences made of two coordinate
clauses. In half of the sentences, we inverted the
order of the clauses. The task is to tell whether
a sentence is intact or modified. Sentences
are balanced in terms of clause length, and no
sentence appears in both original and inverted
versions. As an example, original “They might
be only memories, but I can still feel each one”
becomes: “I can still feel each one, but they might
be only memories.” Often, addressing CoordInv
requires an understanding of broad discourse and
pragmatic factors.

Row Hum. Eval. of Table 2 reports human-
validated “reasonable” upper bounds for all the
tasks, estimated in different ways, depending on
the tasks. For the surface ones, there is always a
straightforward correct answer that a human an-
notator with enough time and patience could find.
The upper bound is thus estimated at 100%. The
TreeDepth, TopConst, Tense, SubjNum and Ob-
jNum tasks depend on automated PoS and pars-
ing annotation. In these cases, the upper bound
is given by the proportion of sentences correctly
annotated by the automated procedure. To esti-
mate this quantity, one linguistically-trained au-
thor checked the annotation of 200 randomly sam-
pled test sentences from each task. Finally, the
BShift, SOMO and CoordInv manipulations can
accidentally generate acceptable sentences. For
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example, one modified SOMO sentence is: “He
pulled out the large round onion (orig.: cork) and
saw the amber balm inside.”, that is arguably not
more anomalous than the original. For these tasks,
we ran Amazon Mechanical Turk experiments in
which subjects were asked to judge whether 1k
randomly sampled test sentences were acceptable
or not. Reported human accuracies are based on
majority voting. See Appendix for details.

3 Sentence embedding models

In this section, we present the three sentence en-
coders that we consider and the seven tasks on
which we train them.

3.1 Sentence encoder architectures
A wide variety of neural networks encoding sen-
tences into fixed-size representations exist. We fo-
cus here on three that have been shown to perform
well on standard NLP tasks.

BiLSTM-last/max For a sequence of T words
{wt}t=1,...,T , a bidirectional LSTM computes a
set of T vectors {ht}t. For t ∈ [1, . . . , T ], ht is
the concatenation of a forward LSTM and a back-
ward LSTM that read the sentences in two op-
posite directions. We experiment with two ways
of combining the varying number of (h1, . . . , hT )
to form a fixed-size vector, either by selecting
the last hidden state of hT or by selecting the
maximum value over each dimension of the hid-
den units. The choice of these models are moti-
vated by their demonstrated efficiency in seq2seq
(Sutskever et al., 2014) and universal sentence rep-
resentation learning (Conneau et al., 2017), re-
spectively.2

Gated ConvNet We also consider the non-
recurrent convolutional equivalent of LSTMs,
based on stacked gated temporal convolutions.
Gated convolutional networks were shown to per-
form well as neural machine translation encoders
(Gehring et al., 2017) and language modeling de-
coders (Dauphin et al., 2017). The encoder is com-
posed of an input word embedding table that is
augmented with positional encodings (Sukhbaatar
et al., 2015), followed by a stack of temporal con-
volutions with small kernel size. The output of
each convolutional layer is filtered by a gating
mechanism, similar to the one of LSTMs. Finally,

2We also experimented with a unidirectional LSTM, with
consistently poorer results.

max-pooling along the temporal dimension is per-
formed on the output feature maps of the last con-
volution (Collobert and Weston, 2008).

3.2 Training tasks
Seq2seq systems have shown strong results in ma-
chine translation (Zhou et al., 2016). They con-
sist of an encoder that encodes a source sen-
tence into a fixed-size representation, and a de-
coder which acts as a conditional language model
and that generates the target sentence. We train
Neural Machine Translation systems on three
language pairs using about 2M sentences from
the Europarl corpora (Koehn, 2005). We pick
English-French, which involves two similar lan-
guages, English-German, involving larger syn-
tactic differences, and English-Finnish, a distant
pair. We also train with an AutoEncoder objec-
tive (Socher et al., 2011) on Europarl source En-
glish sentences. Following Vinyals et al. (2015),
we train a seq2seq architecture to generate lin-
earized grammatical parse trees (see Table 1) from
source sentences (Seq2Tree). We use the Stan-
ford parser to generate trees for Europarl source
English sentences. We train SkipThought vectors
(Kiros et al., 2015) by predicting the next sentence
given the current one (Tang et al., 2017), on 30M
sentences from the Toronto Book Corpus, exclud-
ing those in the probing sets. Finally, following
Conneau et al. (2017), we train sentence encoders
on Natural Language Inference using the con-
catenation of the SNLI (Bowman et al., 2015) and
MultiNLI (Bowman et al., 2015) data sets (about
1M sentence pairs). In this task, a sentence en-
coder is trained to encode two sentences, which
are fed to a classifier and whose role is to dis-
tinguish whether the sentences are contradictory,
neutral or entailed. Finally, as in Conneau et al.
(2017), we also include Untrained encoders with
random weights, which act as random projections
of pre-trained word embeddings.

3.3 Training details
BiLSTM encoders use 2 layers of 512 hidden units
(∼4M parameters), Gated ConvNet has 8 convo-
lutional layers of 512 hidden units, kernel size
3 (∼12M parameters). We use pre-trained fast-
Text word embeddings of size 300 (Mikolov et al.,
2018) without fine-tuning, to isolate the impact of
encoder architectures and to handle words outside
the training sets. Training task performance and
further details are in Appendix.
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task source target

AutoEncoder
I myself was out on an island in the
Swedish archipelago , at Sandhamn .

I myself was out on an island in the Swedish
archipelago , at Sand@ ham@ n .

NMT En-Fr
I myself was out on an island in the
Swedish archipelago , at Sandhamn .

Je me trouvais ce jour là sur une île de l’ archipel sué-
dois , à Sand@ ham@ n .

NMT En-De
We really need to up our particular con-
tribution in that regard .

Wir müssen wirklich unsere spezielle Hilfs@ leistung
in dieser Hinsicht aufstocken .

NMT En-Fi
It is too early to see one system as a uni-
versal panacea and dismiss another .

Nyt on liian aikaista nostaa yksi järjestelmä jal@
usta@ lle ja antaa jollekin toiselle huono arvo@ sana .

SkipThought
the old sami was gone , and he was a
different person now .

the new sami didn ’t mind standing barefoot in dirty
white , sans ra@ y-@ bans and without beautiful
women following his every move .

Seq2Tree Dikoya is a village in Sri Lanka .
(ROOT (S (NP NNP )NP (VP VBZ (NP (NP DT NN )NP
(PP IN (NP NNP NNP )NP )PP )NP )VP . )S )ROOT

Table 1: Source and target examples for seq2seq training tasks.

4 Probing task experiments

Baselines Baseline and human-bound perfor-
mance are reported in the top block of Table 2.
Length is a linear classifier with sentence length
as sole feature. NB-uni-tfidf is a Naive Bayes
classifier using words’ tfidf scores as features, NB-
bi-tfidf its extension to bigrams. Finally, BoV-
fastText derives sentence representations by aver-
aging the fastText embeddings of the words they
contain (same embeddings used as input to the en-
coders).3

Except, trivially, for Length on SentLen and the
NB baselines on WC, there is a healthy gap be-
tween top baseline performance and human up-
per bounds. NB-uni-tfidf evaluates to what extent
our tasks can be addressed solely based on knowl-
edge about the distribution of words in the train-
ing sentences. Words are of course to some extent
informative for most tasks, leading to relatively
high performance in Tense, SubjNum and Ob-
jNum. Recall that the words containing the probed
features are disjoint between train and test parti-
tions, so we are not observing a confound here, but
rather the effect of the redundancies one expects
in natural language data. For example, for Tense,
since sentences often contain more than one verb
in the same tense, NB-uni-tfidf can exploit non-
target verbs as cues: the NB features most associ-
ated to the past class are verbs in the past tense (e.g
“sensed”, “lied”, “announced”), and similarly for
present (e.g “uses”, “chuckles”, “frowns”). Us-
ing bigram features (NB-bi-tfidf) brings in gen-
eral little or no improvement with respect to the
unigram baseline, except, trivially, for the BShift

3Similar results are obtained summing embeddings, and
using GloVe embeddings (Pennington et al., 2014).

task, where NB-bi-tfidf can easily detect unlikely
bigrams. NB-bi-tfidf has below-random perfor-
mance on SOMO, confirming that the semantic
intruder is not given away by superficial bigram
cues.

Our first striking result is the good overall per-
formance of Bag-of-Vectors, confirming early in-
sights that aggregated word embeddings capture
surprising amounts of sentence information (Pham
et al., 2015; Arora et al., 2017; Adi et al., 2017).
BoV’s good WC and SentLen performance was al-
ready established by Adi et al. (2017). Not sur-
prisingly, word-order-unaware BoV performs ran-
domly in BShift and in the more sophisticated se-
mantic tasks SOMO and CoordInv. More interest-
ingly, BoV is very good at the Tense, SubjNum,
ObjNum, and TopConst tasks (much better than
the word-based baselines), and well above chance
in TreeDepth. The good performance on Tense,
SubjNum and ObjNum has a straightforward ex-
planation we have already hinted at above. Many
sentences are naturally “redundant”, in the sense
that most tensed verbs in a sentence are in the
same tense, and similarly for number in nouns.
In 95.2% Tense, 75.9% SubjNum and 78.7% Ob-
jNum test sentences, the target tense/number fea-
ture is also the majority one for the whole sen-
tence. Word embeddings capture features such as
number and tense (Mikolov et al., 2013), so aggre-
gated word embeddings will naturally track these
features’ majority values in a sentence. BoV’s
TopConst and TreeDepth performance is more sur-
prising. Accuracy is well above NB, showing
that BoV is exploiting cues beyond specific words
strongly associated to the target classes. We con-
jecture that more abstract word features captured
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Task SentLen WC TreeDepth TopConst BShift Tense SubjNum ObjNum SOMO CoordInv
Baseline representations

Majority vote 20.0 0.5 17.9 5.0 50.0 50.0 50.0 50.0 50.0 50.0
Hum. Eval. 100 100 84.0 84.0 98.0 85.0 88.0 86.5 81.2 85.0
Length 100 0.2 18.1 9.3 50.6 56.5 50.3 50.1 50.2 50.0
NB-uni-tfidf 22.7 97.8 24.1 41.9 49.5 77.7 68.9 64.0 38.0 50.5
NB-bi-tfidf 23.0 95.0 24.6 53.0 63.8 75.9 69.1 65.4 39.9 55.7
BoV-fastText 66.6 91.6 37.1 68.1 50.8 89.1 82.1 79.8 54.2 54.8

BiLSTM-last encoder
Untrained 36.7 43.8 28.5 76.3 49.8 84.9 84.7 74.7 51.1 64.3
AutoEncoder 99.3 23.3 35.6 78.2 62.0 84.3 84.7 82.1 49.9 65.1
NMT En-Fr 83.5 55.6 42.4 81.6 62.3 88.1 89.7 89.5 52.0 71.2
NMT En-De 83.8 53.1 42.1 81.8 60.6 88.6 89.3 87.3 51.5 71.3
NMT En-Fi 82.4 52.6 40.8 81.3 58.8 88.4 86.8 85.3 52.1 71.0
Seq2Tree 94.0 14.0 59.6 89.4 78.6 89.9 94.4 94.7 49.6 67.8
SkipThought 68.1 35.9 33.5 75.4 60.1 89.1 80.5 77.1 55.6 67.7
NLI 75.9 47.3 32.7 70.5 54.5 79.7 79.3 71.3 53.3 66.5

BiLSTM-max encoder
Untrained 73.3 88.8 46.2 71.8 70.6 89.2 85.8 81.9 73.3 68.3
AutoEncoder 99.1 17.5 45.5 74.9 71.9 86.4 87.0 83.5 73.4 71.7
NMT En-Fr 80.1 58.3 51.7 81.9 73.7 89.5 90.3 89.1 73.2 75.4
NMT En-De 79.9 56.0 52.3 82.2 72.1 90.5 90.9 89.5 73.4 76.2
NMT En-Fi 78.5 58.3 50.9 82.5 71.7 90.0 90.3 88.0 73.2 75.4
Seq2Tree 93.3 10.3 63.8 89.6 82.1 90.9 95.1 95.1 73.2 71.9
SkipThought 66.0 35.7 44.6 72.5 73.8 90.3 85.0 80.6 73.6 71.0
NLI 71.7 87.3 41.6 70.5 65.1 86.7 80.7 80.3 62.1 66.8

GatedConvNet encoder
Untrained 90.3 17.1 30.3 47.5 62.0 78.2 72.2 70.9 61.4 59.6
AutoEncoder 99.4 16.8 46.3 75.2 71.9 87.7 88.5 86.5 73.5 72.4
NMT En-Fr 84.8 41.3 44.6 77.6 67.9 87.9 88.8 86.6 66.1 72.0
NMT En-De 89.6 49.0 50.5 81.7 72.3 90.4 91.4 89.7 72.8 75.1
NMT En-Fi 89.3 51.5 49.6 81.8 70.9 90.4 90.9 89.4 72.4 75.1
Seq2Tree 96.5 8.7 62.0 88.9 83.6 91.5 94.5 94.3 73.5 73.8
SkipThought 79.1 48.4 45.7 79.2 73.4 90.7 86.6 81.7 72.4 72.3
NLI 73.8 29.2 43.2 63.9 70.7 81.3 77.5 74.4 73.3 71.0

Table 2: Probing task accuracies. Classification performed by a MLP with sigmoid nonlinearity, taking
pre-learned sentence embeddings as input (see Appendix for details and logistic regression results).

by the embeddings (such as the part of speech of
a word) might signal different syntactic structures.
For example, sentences in the “WHNP SQ .” top
constituent class (e.g., “How long before you leave
us again?”) must contain a wh word, and will of-
ten feature an auxiliary or modal verb. BoV can
rely on this information to noisily predict the cor-
rect class.

Encoding architectures Comfortingly, proper
encoding architectures clearly outperform BoV.
An interesting observation in Table 2 is that dif-
ferent encoder architectures trained with the same
objective, and achieving similar performance on
the training task,4 can lead to linguistically dif-
ferent embeddings, as indicated by the probing
tasks. Coherently with the findings of Conneau
et al. (2017) for the downstream tasks, this sug-

4See Appendix for details on training task performance.

gests that the prior imposed by the encoder ar-
chitecture strongly preconditions the nature of the
embeddings. Complementing recent evidence that
convolutional architectures are on a par with recur-
rent ones in seq2seq tasks (Gehring et al., 2017),
we find that Gated ConvNet’s overall probing task
performance is comparable to that of the best
LSTM architecture (although, as shown in Ap-
pendix, the LSTM has a slight edge on down-
stream tasks). We also replicate the finding of
Conneau et al. (2017) that BiLSTM-max outper-
forms BiLSTM-last both in the downstream tasks
(see Appendix) and in the probing tasks (Table 2).
Interestingly, the latter only outperforms the for-
mer in SentLen, a task that captures a superficial
aspect of sentences (how many words they con-
tain), that could get in the way of inducing more
useful linguistic knowledge.
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Training tasks We focus next on how different
training tasks affect BiLSTM-max, but the pat-
terns are generally representative across architec-
tures. NMT training leads to encoders that are
more linguistically aware than those trained on
the NLI data set, despite the fact that we confirm
the finding of Conneau and colleagues that NLI is
best for downstream tasks (Appendix). Perhaps,
NMT captures richer linguistic features useful for
the probing tasks, whereas shallower or more ad-
hoc features might help more in our current down-
stream tasks. Suggestively, the one task where
NLI clearly outperforms NMT is WC. Thus, NLI
training is better at preserving shallower word fea-
tures that might be more useful in downstream
tasks (cf. Figure 2 and discussion there).

Unsupervised training (SkipThought and Au-
toEncoder) is not on a par with supervised tasks,
but still effective. AutoEncoder training leads, un-
surprisingly, to a model excelling at SentLen, but
it attains low performance in the WC prediction
task. This curious result might indicate that the
latter information is stored in the embeddings in a
complex way, not easily readable by our MLP. At
the other end, Seq2Tree is trained to predict an-
notation from the same parser we used to create
some of the probing tasks. Thus, its high perfor-
mance on TopConst, Tense, SubjNum, ObjNum
and TreeDepth is probably an artifact. Indeed,
for most of these tasks, Seq2Tree performance is
above the human bound, that is, Seq2Tree learned
to mimic the parser errors in our benchmarks. For
the more challenging SOMO and CoordInv tasks,
that only indirectly rely on tagging/parsing infor-
mation, Seq2Tree is comparable to NMT, that does
not use explicit syntactic information.

Perhaps most interestingly, BiLSTM-max al-
ready achieves very good performance without
any training (Untrained row in Table 2). Un-
trained BiLSTM-max also performs quite well
in the downstream tasks (Appendix). This ar-
chitecture must encode priors that are intrinsi-
cally good for sentence representations. Untrained
BiLSTM-max exploits the input fastText embed-
dings, and multiplying the latter by a random re-
current matrix provides a form of positional en-
coding. However, good performance in a task such
as SOMO, where BoV fails and positional infor-
mation alone should not help (the intruder is ran-
domly distributed across the sentence), suggests
that other architectural biases are at work. In-

triguingly, a preliminary comparison of untrained
BiLSTM-max and human subjects on the SOMO
sentences evaluated by both reveals that, whereas
humans have a bias towards finding sentences ac-
ceptable (62% sentences are rated as untampered
with, vs. 48% ground-truth proportion), the model
has a strong bias in the opposite direction (it rates
83% of the sentences as modified). A cursory
look at contrasting errors confirms, unsurprisingly,
that those made by humans are perfectly justi-
fied, while model errors are opaque. For exam-
ple, the sentence “I didn’t come here to reunite
(orig. undermine) you” seems perfectly acceptable
in its modified form, and indeed subjects judged
it as such, whereas untrained BiLSTM-max “cor-
rectly” rated it as a modified item. Conversely, it
is difficult to see any clear reason for the latter
tendency to rate perfectly acceptable originals as
modified. We leave a more thorough investigation
to further work. See similar observations on the
effectiveness of untrained ConvNets in vision by
Ulyanov et al. (2017).

Probing task comparison A good encoder,
such as NMT-trained BiLSTM-max, shows gen-
erally good performance across probing tasks. At
one extreme, performance is not particularly high
on the surface tasks, which might be an indirect
sign of the encoder extracting “deeper” linguistic
properties. At the other end, performance is still
far from the human bounds on TreeDepth, BShift,
SOMO and CoordInv. The last 3 tasks ask if a
sentence is syntactically or semantically anoma-
lous. This is a daunting job for an encoder that has
not been explicitly trained on acceptability, and it
is interesting that the best models are, at least to a
certain extent, able to produce reasonable anomaly
judgments. The asymmetry between the difficult
TreeDepth and easier TopConst is also interesting.
Intuitively, TreeDepth requires more nuanced syn-
tactic information (down to the deepest leaf of the
tree) than TopConst, that only requires identifying
broad chunks.

Figure 1 reports how probing task accuracy
changes in function of encoder training epochs.
The figure shows that NMT probing performance
is largely independent of target language, with
strikingly similar development patterns across
French, German and Finnish. Note in particular
the similar probing accuracy curves in French and
Finnish, while the corresponding BLEU scores (in
lavender) are consistently higher in the former lan-
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Figure 1: Probing task scores after each train-
ing epoch, for NMT and SkipThought. We also
report training score evolution: BLEU for NMT;
perplexity (PPL) for SkipThought.

guage. For both NMT and SkipThought, WC
performance keeps increasing with epochs. For
the other tasks, we observe instead an early flat-
tening of the NMT probing curves, while BLEU
performance keeps increasing. Most strikingly,
SentLen performance is actually decreasing, sug-
gesting again that, as a model captures deeper lin-
guistic properties, it will tend to forget about this
superficial feature. Finally, for the challenging
SOMO task, the curves are mostly flat, suggesting
that what BiLSTM-max is able to capture about
this task is already encoded in its architecture, and
further training doesn’t help much.

Probing vs. downstream tasks Figure 2 reports
correlation between performance on our probing
tasks and the downstream tasks available in the
SentEval5 suite, which consists of classification
(MR, CR, SUBJ, MPQA, SST2, SST5, TREC),
natural language inference (SICK-E), semantic
relatedness (SICK-R, STSB), paraphrase detec-
tion (MRPC) and semantic textual similarity (STS
2012 to 2017) tasks. Strikingly, WC is signifi-
cantly positively correlated with all downstream
tasks. This suggests that, at least for current mod-
els, the latter do not require extracting particu-
larly abstract knowledge from the data. Just rely-
ing on the words contained in the input sentences

5https://github.com/facebookresearch/
SentEval

can get you a long way. Conversely, there is a
significant negative correlation between SentLen
and most downstream tasks. The number of words
in a sentence is not informative about its linguis-
tic contents. The more models abstract away
from such information, the more likely it is they
will use their capacity to capture more interest-
ing features, as the decrease of the SentLen curve
along training (see Figure 1) also suggests. Co-
ordInv and, especially, SOMO, the tasks requir-
ing the most sophisticated semantic knowledge,
are those that positively correlate with the largest
number of downstream tasks after WC. We ob-
serve intriguing asymmetries: SOMO correlates
with the SICK-E sentence entailment test, but not
with SICK-R, which is about modeling sentence
relatedness intuitions. Indeed, logical entailment
requires deeper semantic analysis than modeling
similarity judgments. TopConst and the num-
ber tasks negatively correlate with various similar-
ity and sentiment data sets (SST, STS, SICK-R).
This might expose biases in these tasks: SICK-R,
for example, deliberately contains sentence pairs
with opposite voice, that will have different con-
stituent structure but equal meaning (Marelli et al.,
2014). It might also mirrors genuine factors af-
fecting similarity judgments (e.g., two sentences
differing only in object number are very similar).
Remarkably, TREC question type classification is
the downstream task correlating with most prob-
ing tasks. Question classification is certainly an
outlier among our downstream tasks, but we must
leave a full understanding of this behaviour to fu-
ture work (this is exactly the sort of analysis our
probing tasks should stimulate).

5 Related work

Adi et al. (2017) introduced SentLen, WC and a
word order test, focusing on a bag-of-vectors base-
line, an autoencoder and skip-thought (all trained
on the same data used for the probing tasks).
We recast their tasks so that they only require a
sentence embedding as input (two of their tasks
also require word embeddings, polluting sentence-
level evaluation), we extend the evaluation to more
tasks, encoders and training objectives, and we re-
late performance on the probing tasks with that
on downstream tasks. Shi et al. (2016) also use 3
probing tasks, including Tense and TopConst. It is
not clear that they controlled for the same factors
we considered (in particular, lexical overlap and
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Figure 2: Spearman correlation matrix be-
tween probing and downstream tasks. Corre-
lations based on all sentence embeddings we in-
vestigated (more than 40). Cells in gray denote
task pairs that are not significantly correlated (af-
ter correcting for multiple comparisons).

sentence length), and they use much smaller train-
ing sets, limiting classifier-based evaluation to lo-
gistic regression. Moreover, they test a smaller set
of models, focusing on machine translation.

Belinkov et al. (2017a), Belinkov et al. (2017b)
and Dalvi et al. (2017) are also interested in un-
derstanding the type of linguistic knowledge en-
coded in sentence and word embeddings, but their
focus is on word-level morphosyntax and lexical
semantics, and specifically on NMT encoders and
decoders. Sennrich (2017) also focuses on NMT
systems, and proposes a contrastive test to as-
sess how they handle various linguistic phenom-
ena. Other work explores the linguistic behaviour
of recurrent networks and related models by using
visualization, input/hidden representation deletion
techniques or by looking at the word-by-word be-
haviour of the network (e.g., Nagamine et al.,
2015; Hupkes et al., 2017; Li et al., 2016; Linzen
et al., 2016; Kàdàr et al., 2017; Li et al., 2017).
These methods, complementary to ours, are not
agnostic to encoder architecture, and cannot be
used for general-purpose cross-model evaluation.

Finally, Conneau et al. (2017) propose a large-
scale, multi-task evaluation of sentence embed-
dings, focusing entirely on downstream tasks.

6 Conclusion

We introduced a set of tasks probing the linguis-
tic knowledge of sentence embedding methods.
Their purpose is not to encourage the development
of ad-hoc models that attain top performance on
them, but to help exploring what information is

captured by different pre-trained encoders.
We performed an extensive linguistic evaluation

of modern sentence encoders. Our results suggest
that the encoders are capturing a wide range of
properties, well above those captured by a set of
strong baselines. We further uncovered interesting
patterns of correlation between the probing tasks
and more complex “downstream” tasks, and pre-
sented a set of intriguing findings about the lin-
guistic properties of various embedding methods.
For example, we found that Bag-of-Vectors is sur-
prisingly good at capturing sentence-level proper-
ties, thanks to redundancies in natural linguistic
input. We showed that different encoder architec-
tures trained with the same objective with similar
performance can result in different embeddings,
pointing out the importance of the architecture
prior for sentence embeddings. In particular, we
found that BiLSTM-max embeddings are already
capturing interesting linguistic knowledge before
training, and that, after training, they detect se-
mantic acceptability without having been exposed
to anomalous sentences before. We hope that our
publicly available probing task set will become a
standard benchmarking tool of the linguistic prop-
erties of new encoders, and that it will stir research
towards a better understanding of what they learn.

In future work, we would like to extend the
probing tasks to other languages (which should
be relatively easy, given that they are automati-
cally generated), investigate how multi-task train-
ing affects probing task performance and leverage
our probing tasks to find more linguistically-aware
universal encoders.
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Abstract

Distant supervision has become the stan-
dard method for relation extraction. How-
ever, even though it is an efficient method,
it does not come at no cost—The re-
sulted distantly-supervised training sam-
ples are often very noisy. To combat
the noise, most of the recent state-of-the-
art approaches focus on selecting one-
best sentence or calculating soft attention
weights over the set of the sentences of
one specific entity pair. However, these
methods are suboptimal, and the false
positive problem is still a key stumbling
bottleneck for the performance. We ar-
gue that those incorrectly-labeled candi-
date sentences must be treated with a hard
decision, rather than being dealt with soft
attention weights. To do this, our pa-
per describes a radical solution—We ex-
plore a deep reinforcement learning strat-
egy to generate the false-positive indicator,
where we automatically recognize false
positives for each relation type without
any supervised information. Unlike the
removal operation in the previous studies,
we redistribute them into the negative ex-
amples. The experimental results show
that the proposed strategy significantly im-
proves the performance of distant supervi-
sion comparing to state-of-the-art systems.

1 Introduction

Relation extraction is a core task in informa-
tion extraction and natural language understand-
ing. The goal of relation extraction is to predict
relations for entities in a sentence (Zelenko et al.,
2003; Bunescu and Mooney, 2005; GuoDong
et al., 2005). For example, given a sentence
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Figure 1: Our deep reinforcement learning frame-
work aims at dynamically recognizing false posi-
tive samples, and moving them from the positive
set to the negative set during distant supervision.

“Barack Obama is married to Michelle Obama.”,
a relation classifier aims at predicting the relation
of “spouse”. In downstream applications, rela-
tion extraction is the key module for construct-
ing knowledge graphs, and it is a vital compo-
nent of many natural language processing applica-
tions such as structured search, sentiment analysis,
question answering, and summarization.

A major issue encountered in the early devel-
opment of relation extraction algorithms is the
data sparsity issue—It is extremely expensive, and
almost impossible for human annotators to go
through a large corpus of millions of sentences
to provide a large amount of labeled training in-
stances. Therefore, distant supervision relation ex-
traction (Mintz et al., 2009; Hoffmann et al., 2011;
Surdeanu et al., 2012) becomes popular, because
it uses entity pairs from knowledge bases to se-
lect a set of noisy instances from unlabeled data.
In recent years, neural network approaches (Zeng
et al., 2014, 2015) have been proposed to train the
relation extractor under these noisy conditions. To
suppress the noisy(Roth et al., 2013), recent stud-
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ies (Lin et al., 2016) have proposed the use of at-
tention mechanisms to place soft weights on a set
of noisy sentences, and select samples. However,
we argue that only selecting one example or based
on soft attention weights are not the optimal strat-
egy: To improve the robustness, we need a system-
atic solution to make use of more instances, while
removing false positives and placing them in the
right place.

In this paper, we investigate the possibility of
using dynamic selection strategies for robust dis-
tant supervision. More specifically, we design a
deep reinforcement learning agent, whose goal is
to learn to choose whether to remove or remain
the distantly supervised candidate instance based
on the performance change of the relation classi-
fier. Intuitively, our agent would like to remove
false positives, and reconstruct a cleaned set of
distantly supervised instances to maximize the re-
ward based on the classification accuracy. Our
proposed method is classifier-independent, and it
can be applied to any existing distant supervision
model. Empirically, we show that our method
has brought consistent performance gains in var-
ious deep neural network based models, achieving
strong performances on the widely used New York
Times dataset (Riedel et al., 2010). Our contribu-
tions are three-fold:

• We propose a novel deep reinforcement
learning framework for robust distant super-
vision relation extraction.

• Our method is model-independent, meaning
that it could be applied to any state-of-the-art
relation extractors.

• We show that our method can boost the per-
formances of recently proposed neural rela-
tion extractors.

In Section 2, we will discuss related works on
distant supervision relation extraction. Next, we
will describe our robust distant supervision frame-
work in Section 3. In Section 4, empirical evalu-
ation results are shown. And finally, we conclude
in Section 5.

2 Related Work

Mintz et al. (2009) is the first study that combines
dependency path and feature aggregation for dis-
tant supervision. However, this approach would

introduce a lot of false positives, as the same en-
tity pair might have multiple relations. To alleviate
this issue, Hoffmann et al. (2011) address this is-
sue, and propose a model to jointly learn with mul-
tiple relations. Surdeanu et al. (2012) further pro-
pose a multi-instance multi-label learning frame-
work to improve the performance. Note that these
early approaches do not explicitly remove noisy
instances, but rather hope that the model would be
able to suppress the noise.

Recently, with the advance of neural network
techniques, deep learning methods (Zeng et al.,
2014, 2015) are introduced, and the hope is to
model noisy distant supervision process in the hid-
den layers. However, their approach only selects
one most plausible instance per entity pair, in-
evitably missing out a lot of valuable training in-
stances. Recently, Lin et al. (2016) propose an
attention mechanism to select plausible instances
from a set of noisy instances. However, we believe
that soft attention weight assignment might not
be the optimal solution, since the false positives
should be completely removed and placed in the
negative set. Ji et al. (2017) combine the external
knowledge to rich the representation of entity pair,
in which way to improve the accuracy of atten-
tion weights. Even though these above-mentioned
methods can select high-quality instances, they ig-
nore the false positive case: all the sentences of
one entity pair belongs to the false positives. In
this work, we take a radical approach to solve this
problem—We will make use of the distantly la-
beled resources as much as possible, while learn-
ing a independent false-positive indicator to re-
move false positives, and place them in the right
place. After our ACL submission, we notice that
a contemporaneous study Feng et al. (2018) also
adopts reinforcement learning to learn an instance
selector, but their reward is calculated from the
prediction probabilities. In contrast, while in our
method, the reward is intuitively reflected by the
performance change of the relation classifier. Our
approach is also complement to most of the ap-
proaches above, and can be directly applied on top
of any existing relation extraction classifiers.

3 Reinforcement Learning for Distant
Supervision

We introduce a performance-driven, policy-based
reinforcement learning method to heuristically
recognize false positive samples. Comparing to
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a prior study that has underutilized the distantly-
supervised samples (Lin et al., 2016), we consider
an RL agent for robust distant supervision rela-
tion extraction. We first describe the definitions of
our RL method, including the policy-based agent,
external environment, and pre-training strategy.
Next, we describe the retraining strategy for our
RL agent. The goal of our agent is to deter-
mine whether to retain or remove a distantly-
supervised sentence, based on the performance
change of relation classifier. Finally, we describe
the noisy-suppression method, where we teach our
policy-based agent to make a redistribution for a
cleaner distant supervision training dataset.

Distant supervision relation extraction is to pre-
dict the relation type of entity pair under the
automatically-generated training set. However,
the issue is that these distantly-supervised sen-
tences that mention this entity pair may not ex-
press the desired relation type. Therefore, what
our RL agent should do is to determine whether
the distantly-supervised sentence is a true posi-
tive instance for this relation type. For reinforce-
ment learning, external environment and RL agent
are two necessary components, and a robust agent
is trained from the dynamic interaction between
these two parts (Arulkumaran et al., 2017). First,
the prerequisite of reinforcement learning is that
the external environment should be modeled as
a Markov decision process (MDP). However, the
traditional setting of relation extraction cannot sat-
isfy this condition: the input sentences are inde-
pendent of each other. In other words, we cannot
merely use the information of the sentence being
processed as the state. Thus, we add the informa-
tion from the early states into the representation of
the current state, in which way to model our task
as a MDP problem (Fang et al., 2017). The other
component, RL agent, is parameterized with a pol-
icy network πθ(s, a) = p(a|s; θ). The probability
distribution of actions A = {aremove, aremain} is
calculated by policy network based on state vec-
tors. What needs to be noted is that, Deep Q Net-
work (DQN) (Mnih et al., 2013) is also a widely-
used RL method; however, it is not suitable for
our case, even if our action space is small. First,
we cannot compute the immediate reward for ev-
ery operation; In contrast, the accurate reward
can only be obtained after finishing processing the
whole training dataset. Second, the stochastic pol-
icy of the policy network is capable of prevent-

ing the agent from getting stuck in an intermedi-
ate state. The following subsections detailedly in-
troduce the definitions of the fundamental compo-
nents in the proposed RL method.

States In order to satisfy the condition of MDP,
the state s includes the information from the cur-
rent sentence and the sentences that have been re-
moved in early states. The semantic and syntactic
information of sentence is represented by a con-
tinuous real-valued vector. According to some
state-of-the-art supervised relation extraction ap-
proaches (Zeng et al., 2014; Nguyen and Grish-
man, 2015), we utilize both word embedding and
position embedding to convert sentence into vec-
tor. With this sentence vector, the current state is
the concatenation of the current sentence vector
and the average vector of the removed sentences
in early states. We give relatively larger weight for
the vector of the current sentence, in which way to
magnify the dominating influence of the current
sentence information for the decision of action.

Actions At each step, our agent is required to
determine whether the instance is false positive
for target relation type. Each relation type has
a agent1. There are two actions for each agent:
whether to remove or retain the current instance
from the training set. With the initial distantly-
supervised dataset that is blended with incorrectly-
labeled instances, we hope that our agent is ca-
pable of using the policy network to filter noisy
instances; Under this cleaned dataset, distant su-
pervision is then expected to achieve better per-
formance.

Rewards As previously mentioned, the intuition
of our model is that, when the incorrectly-labeled
instances are filtered, the better performance of re-
lation classifier will achieve. Therefore, we use the
change of performance as the result-driven reward
for a series of actions decided by the agent. Com-
pared to accuracy, we adopt the F1 score as the
evaluation criterion, since accuracy might not be
an indicative metric in a multi-class classification
setting where the data distribution could be imbal-
anced. Thus, the reward can be formulated as the

1We also tried the strategy that just builds a single agent
for all relation types: a binary classifier(TP/FP) or a multi-
class classifier(rela1/rela2/.../FP). But, it has the limitation
in the performance. We found that our one-agent-for-one-
relation strategy obtained better performance than the single
agent strategy.
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Figure 2: The proposed policy-based reinforcement learning framework. The agent tries to remove the
wrong-labeled sentences from the distantly-supervised positive dataset P ori. In order to calculate the
reward, P ori is split into the training part P orit and the validation part P oriv ; their corresponding negative
part are represented asNori

t andNori
v . In each epoch i, the agent performs a series of actions to recognize

the false positive samples from P orit and treat them as negative samples. Then, a new relation classifier
is trained under the new dataset {P it , N i

t}. With this relation classifier, F1 score is calculated from the
new validation set {P iv, N i

v}, where P iv is also filtered by the current agent. After that, the current reward
is measured as the difference of F1 between the adjacent epochs.

difference between the adjacent epochs:

Ri = α(F i1 − F i−1
1 ) (1)

As this equation shows, in step i, our agent is given
a positive reward only if F1 gets improved; oth-
erwise, the agent will receive a negative reward.
Under this setting, the value of reward is propor-
tional to the difference of F1, and α is used to con-
vert this difference into a rational numeric range.
Naturally, the value of the reward is in a contin-
uous space, which is more reasonable than a bi-
nary reward (−1 and 1), because this setting can
reflect the number of wrong-labeled instance that
the agent has removed. In order to avoid the ran-
domness of F1, we use the average F1 of last five
epochs to calculate the reward.

Policy Network For each input sentence, our
policy network is to determine whether it ex-
presses the target relation type and then make re-
moval action if it is irrelevant to the target rela-
tion type. Thus, it is analogous to a binary re-
lation classifier. CNN is commonly used to con-
struct relation classification system (Santos et al.,
2015; Xu et al., 2015; Shen and Huang, 2016),
so we adopt a simple CNN with window size
cw and kernel size ck, to model policy network
π(s; θ). The reason why we do not choice the vari-
ants of CNN (Zeng et al., 2015; Lin et al., 2016)

that are well-designed for distant supervision is
that these two models belong to bag-level mod-
els (dealing with a bag of sentences simultane-
ously) and deal with the multi-classification prob-
lem; We just need a model to do binary sentence-
level classification. Naturally, the simpler network
is adopted.

3.1 Training Policy-based Agent

Unlike the goal of distant supervision relation ex-
traction, our agent is to determine whether an an-
notated sentence expresses the target relation type
rather than predict the relationship of entity pair,
so sentences are treated independently despite be-
longing to the same entity pair. In distant su-
pervision training dataset, one relation type con-
tains several thousands or ten thousands sentences;
moreover, reward R can only be calculated after
processing the whole positive set of this relation
type. If we randomly initialize the parameters of
policy network and train this network by trial and
errors, it will waste a lot of time and be inclined to
poor convergence properties. In order to overcome
this problem, we adopt a supervised learning pro-
cedure to pre-train our policy network, in which
way to provide a general learning direction for our
policy-based agent.
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3.1.1 Pre-training Strategy
The pre-training strategy, inspired from
AlphaGo (Silver et al., 2016), is a common
strategy in RL related works to accelerate the
training of RL agents. Normally, they utilize a
small part of the annotated dataset to train policy
networks before reinforcement learning. For
example, AlphaGo uses the collected experts
moves to do a supervised learning for Go RL
agent. However, in distant supervision relation
extraction task, there is not any supervised in-
formation that can be used unless let linguistic
experts to do some manual annotations for part
of the entity pairs. However, this is expensive,
and it is not the original intention of distant
supervision. Under this circumstance, we propose
a compromised solution. With well-aligned
corpus, the true positive samples should have
evident advantage in quantity compared with
false positive samples in the distantly-supervised
dataset. So, for a specific relation type, we
directly treat the distantly-supervised positive
set as the positive set, and randomly extract
part of distantly-supervised negative set as the
negative set. In order to better consider prior
information during this pre-training procedure,
the amount of negative samples is 10 times of
the number of positive samples. It is because,
when learning with massive negative samples, the
agent is more likely to develop toward a better
direction. Cross-entropy cost function is used
to train this binary classifier, where the negative
label corresponds to the removing action, and the
positive label corresponds to the retaining action.

(2)
J(θ) =

∑

i

yilog[π(a = yi|si; θ)]

+ (1− yi)log[1− π(a = yi|si; θ)]

Due to the noisy nature of the distantly-labeled in-
stances, if we let this pre-training process overfit
this noisy dataset, the predicted probabilities of
most samples tend to be close to 0 or 1, which
is difficult to be corrected and unnecessarily in-
creases the training cost of reinforcement learning.
So, we stop this training process when the accu-
racy reaches 85% ∼ 90%. Theoretically, our ap-
proach can be explained as increasing the entropy
of the policy gradient agent, and preventing the en-
tropy of the policy being too low, which means
that the lack of exploration may be a concern.

3.1.2 Retraining Agent with Rewards

As shown in Figure 2, in order to discover
incorrectly-labeled instances without any super-
vised information, we introduce a policy-based
RL method. What our agent tries to deal with is
the noisy samples from the distantly-supervised
positive dataset; Here we call it as the DS pos-
itive dataset. We split it into the training posi-
tive set P orit and the validation positive set P oriv ;
naturally, both of these two set are noisy. Cor-
respondingly, the training negative set Nori

t and
the validation negative setNori

v are constructed by
randomly selected from the DS negative dataset.
In every epoch, the agent removes a noisy sam-
ple set Ψi from P orit according to the stochastic
policy π(a|s), and we obtain a new positive set
Pt = P orit − Ψi. Because Ψi is recognized as
the wrong-labeled samples, we redistribute it into
the negative set Nt = Nori

t + Ψi. Under this set-
ting, the scale of training set is constant for each
epoch. Now we utilize the cleaned data {Pt, Nt}
to train a relation classifier. The desirable situa-
tion is that RL agent has the capacity to increase
the performance of relation classifier through relo-
cating incorrectly-labeled false positive instances.
Therefore, we use the validation set {P oriv , Nori

v }
to measure the performance of the current agent.
First, this validation set is filtered and redistributed
by the current agent as {Pv, Nv}; the F1 score of
the current relation classifier is calculated from it.
Finally, the difference of F1 scores between the
current and previous epoch is used to calculate re-
ward. Next, we will introduce several strategies to
train a more robust RL agent.

Removing the fixed number of sentences in
each epoch In every epoch, we let the RL agent
to remove a fixed number of sentences or less
(when the number of the removed sentences in
one epoch does not reach this fixed number during
training), in which way to prevent the case that the
agent tries to remove more false positive instances
by removing more instances. Under the restriction
of fixed number, if the agent decides to remove
the current state, it means the chance of removing
other states decrease. Therefore, in order to obtain
a better reward, the agent should try to remove a
instance set that includes more negative instances.

Loss function The quality of the RL agent is re-
flected by the quality of the removed part. After
the pre-training process, the agent just possesses
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Algorithm 1 Retraining agent with rewards for relation k. For a clearer expression, k is omitted in the
following algorithm.
Require: Positive set {P orit , P oriv }, Negative set {Nori

t , Nori
v }, the fixed number of removal γt, γv

1: Load parameters θ from pre-trained policy network
2: Initialize s∗ as the all-zero vector with the same dimension of sj
3: for epoch i = 1→ N do
4: for sj ∈ P orit do
5: s̃j = concatenation(sj , s

∗)
6: Randomly sample aj ∼ π(a|s̃j ; θ); compute pj = π(a = 0|s̃j ; θ)
7: if aj == 0 then
8: Save tuple tj = (s̃j , pj) in T and recompute the average vector of removed sentences s∗

9: end if
10: end for
11: Rank T based on pj from high to low, obtain Trank
12: for ti in Trank[: γt] do
13: Add ti[0] into Ψi

14: end for
15: P it = P orit − Ψi, N

i
t = Nori

t + Ψi, and generate the new validation set {P iv, N i
v} with current

agent
16: Train the relation classifier based on {P it , N i

t}
17: Calculate F i1 on the new validation set {P iv, N i

v}, and Save F i1, Ψi

18: R = α(F i1 − F i−1
1 )

19: Ωi−1 = Ψi−1 −Ψi ∩Ψi−1; Ωi = Ψi −Ψi ∩Ψi−1

20:

21: Updata θ: g ∝ 5θ
∑Ωi log π(a|s; θ)R+5θ

∑Ωi−1 log π(a|s; θ)(−R)
22: end for

the ability to distinguish the obvious false posi-
tive instances, which means the discrimination of
the indistinguishable wrong-labeled instances are
still ambiguous. Particularly, this indistinguish-
able part is the criterion to reflect the quality of
the agent. Therefore, regardless of these easy-
distinguished instances, the different parts of the
removed parts in different epochs are the determi-
nant of the change of F1 scores. Therefore, we
definite two sets:

Ωi−1 = Ψi−1 − (Ψi ∩Ψi−1) (3)

Ωi = Ψi − (Ψi ∩Ψi−1) (4)

where Ψi is the removed part of epoch i. Ωi−1 and
Ωi are represented with the different colors in Fig-
ure 2. If F1 score increases in the epoch i, it means
the actions of the epoch i is more reasonable than
that in the epoch i− 1. In other words, Ωi is more
negative than Ωi−1. Thus, we assign the positive
reward to Ωi and the negative reward to Ωi−1, and
vice versa. In summary, the ultimate loss function

is formulated as follow:

(5)
J(θ) =

Ωi∑
log π(a|s; θ)R

+

Ωi−1∑
log π(a|s; θ)(−R)

3.2 Redistributing Training Dataset with
Policy-based Agents

Through the above reinforcement learning proce-
dure, for each relation type, we obtain a agent as
the false-positive indicator. These agents possess
the capability of recognizing incorrectly-labeled
instances of the corresponding relation types. We
adopt these agents as classifiers to recognize false
positive samples in the noisy distantly-supervised
training dataset. For one entity pair, if all the sen-
tence aligned from corpus are classified as false
positive, then this entity pair is redistributed into
the negative set.

4 Experiments

We adopt a policy-based RL method to generate
a series of relation indicators and use them to re-

2142



distribute training dataset by moving false positive
samples to negative sample set. Therefore, our ex-
periments are intended to demonstrate that our RL
agents possess this capability.

4.1 Datast and Evaluation Metrics

We evaluate the proposed method on a commonly-
used dataset2, which is first presented in Riedel
et al. (2010). This dataset is generated by aligning
entity pairs from Freebase with New York Times
corpus(NYT). Entity mentions of NYT corpus are
recognized by the Stanford named entity recog-
nizer (Finkel et al., 2005). The sentences from the
years 2005-2006 are used as the training corpus
and sentences from 2007 are used as the testing
corpus. There are 52 actual relations and a special
relation NA which indicates there is no relation
between the head and tail entities. The sentences
of NA are from the entity pairs that exist in the
same sentence of the actual relations but do not
appear in the Freebase.

Similar to the previous works, we adopt the
held-out evaluation to evaluate our model, which
can provide an approximate measure of the clas-
sification ability without costly human evaluation.
Similar to the generation of the training set, the
entity pairs in test set are also selected from Free-
base, which will be predicted under the sentences
discovered from the NYT corpus.

4.2 Experimental Settings

4.2.1 Policy-based Agent
The action space of our RL agent just includes two
actions. Therefore, the agent can be modeled as a
binary classifier. We adopt a single-window CNN
as this policy network. The detailed hyperparam-
eter settings are presented in Table 1. As for word
embeddings, we directly use the word embedding
file released by Lin et al. (2016)3, which just keeps
the words that appear more than 100 times in
NYT. Moreover, we have the same dimension set-
ting of the position embedding, and the maximum
length of relative distance is −30 and 30 (“-” and
“+” represent the left and right side of the enti-
ties). The learning rate of reinforcement learning
is 2e−5. For each relation type, the fixed num-
ber γt, γv are according to the pre-trained agent.
When one relation type has too many distant-
supervised positive sentences (for example, /lo-

2http://iesl.cs.umass.edu/riedel/ecml/
3https://github.com/thunlp/NRE

Hyperparameter Value
Window size cw 3
Kernel size ck 100

Batch size 64
Regulator α 100

Table 1: Hyperparameter settings.

ID Relation Original Pretrain RL
1 /peo/per/pob 55.60 53.63 55.74
2 /peo/per/n 78.85 80.80 83.63
3 /peo/per/pl 86.65 89.62 90.76
4 /loc/loc/c 80.78 83.79 85.39
5 /loc/cou/ad 90.9 88.1 89.86
6 /bus/per/c 81.03 82.56 84.22
7 /loc/cou/c 88.10 93.78 95.19
8 /loc/adm/c 86.51 85.56 86.63
9 /loc/nei/n 96.51 97.20 98.23
10 /peo/dec/p 82.2 83.0 84.6

Table 2: Comparison of F1 scores among
three cases: the relation classifier is trained
with the original dataset, the redistributed
dataset generated by the pre-trained agent, and
the redistributed dataset generated by our RL
agent respectively. The name of relation
types are abbreviated: /peo/per/pob represents
/people/person/place of birth

cation/location/contains has 75768 sentences), we
sample a subset of size 7,500 sentences to train
the agent. For the average vector of the removed
sentences, in the pre-training process and the first
state of the retraining process, it is set as all-zero
vector.

4.2.2 Relation Classifier for Calculating
Reward

In order to evaluate a series of actions by agent, we
use a simple CNN model, because the simple net-
work is more sensitive to the quality of the training
set. The proportion between P orit and P oriv is 2:1,
and they are all derived from the training set of
Riedel dataset; the corresponding negative sample
setsNori

t andNori
v are randomly selected from the

Riedel negative dataset, whose size is twice that of
their corresponding positive sets.

4.3 The Effectiveness of Reinforcement
Learning

In Table 2, we list the F1 scores before and after
adopting the proposed RL method. Even though
there are 52 actual relation types in Riedel dataset,
only 10 relation types have more than 1000 pos-
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Figure 3: Aggregate PR curves of CNN˙based
model.
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Figure 4: Aggregate PR curves of PCNN˙based
model.

itive instances4. Because of the randomness of
deep neural network on the small-scale dataset, we
just train policy-based agents for these 10 relation
types. First, compared with Original case, most of
the Pretrain agents yield obvious improvements:
It not only demonstrates the rationality of our pre-
training strategy, but also verifies our hypothe-
sis that most of the positive samples in Riedel
dataset are true positive. More significantly, af-
ter retraining with the proposed policy-based RL
method, the F1 scores achieve further improve-
ment, even for the case the Pretrain agents per-
form bad. These comparable results illustrate that
the proposed policy-based RL method is capable
of making agents develop towards a good direc-
tion.

4The supervised relation classification task Semeval-2010
Task 8 (Hendrickx et al., 2009) annotates nearly 1,000 in-
stances for each relation type.

Model - +RL p-value
CNN+ONE 0.177 0.190 1.24e-4
CNN+ATT 0.219 0.229 7.63e-4
PCNN+ONE 0.206 0.220 8.35e-6
PCNN+ATT 0.253 0.261 4.36e-3

Table 3: Comparison of AUC values between pre-
vious studies and our RL method, and the p-value
of t-test.

4.4 Impact of False Positive Samples

Zeng et al. (2015) and Lin et al. (2016) are both
the robust models to solve wrong labeling problem
of distant supervision relation extraction. Zeng
et al. (2015) combine at-least-one multi-instance
learning with deep neural network to extract only
one active sentence to predict the relation between
entity pair; Lin et al. (2016) combine all sen-
tences of one entity pair and assign soft attention
weights to them, in which way to generate a com-
positive relation representation for this entity pair.
However, the false positive phenomenon also in-
cludes the case that all the sentences of one en-
tity pair are wrong, which is because the corpus is
not completely aligned with the knowledge base.
This phenomenon is also common between Riedel
dataset and Freebase through our manual inspec-
tion. Obviously, there is nothing the above two
methods can do in this case.

The proposed RL method is to tackle this prob-
lem. We adopt our RL agents to redistribute Riedel
dataset by moving false positive samples into the
negative sample set. Then we use Zeng et al.
(2015) and Lin et al. (2016) to predict relations on
this cleaned dataset, and compare the performance
with that on the original Riedel dataset. As shown
in Figure 3 and Figure 4, under the assistant of our
RL agent, the same model can achieve obvious im-
provement with more reasonable training dataset.
In order to give the more intuitive comparison, we
calculate the AUC value of each PR curve, which
reflects the area size under these curves. These
comparable results also indicate the effectiveness
of our policy-based RL method. Moreover, as can
be seen from the result of t-test evaluation, all the
p-values are less than 5e-02, so the improvements
are significant.

4.5 Case Study

Figure 5 indicates that, for different relations, the
scale of the detected false positive samples is not
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Relation /people/person/place of birth
FP 1. GHETTO SUPERSTAR ( THE MAN THAT I AM) – Ranging from Pittsburgh

to Broadway, Billy Porter performs his musical memoir.
FP 1. “They are trying to create a united front at home in the face of the pressures Syria

is facing,“ said Sami Moubayed, a political analyst and writer here.
2. “Iran injected Syria with a lot of confidence: stand up, show defiance,“ said Sami
Moubayed, a political analyst and writer in Damascus.

Relation /people/deceased person/place of death
FP 1. Some New York city mayors – William O’Dwyer, Vincent R. Impellitteri and

Abraham Beame – were born abroad.
2. Plenty of local officials have, too, including two New York city mayors, James J.
Walker, in 1932, and William O’Dwyer, in 1950.

Table 4: Some examples of the false positive samples detected by our policy-based agent. Each row
denotes the annotated sentences of one entity pair.

proportional to the original scale, which is in ac-
cordance with the actual accident situation. At
the same time, we analyze the correlation between
the false positive phenomenon and the number of
sentences of entity pairs : With this the number
ranging from 1 to 5, the corresponding percent-
ages are [55.9%, 32.0%, 3.7%, 4.4%, 0.7%]. This
distribution is consistent with our assumption. Be-
cause Freebase is, to some extent, not completely
aligned with the NYT corpus, entity pairs with
fewer sentences are more likely to be false posi-
tive, which is the major factor hindering the per-
formance of the previous systems. In Table 4, we
present some false positive examples selected by
our agents. Taking entity pair (Sami Moubayed,
Syria) as an example, it is obvious that there is not
any valuable information reflecting relation /peo-
ple/person/place of birth. Both of these sentences
talks about the situation analysis of Syria from the
political analyst Sami Moubayed. We also found
that, for some entity pairs, even though there are
multiple sentences, all of them are identical. This
phenomenon also increases the probability of the
appearance of false positive samples.

5 Conclusion

In this work, we propose a deep reinforcement
learning framework for robust distant supervision.
The intuition is that, in contrast to prior works that
utilize only one instance per entity pair and use
soft attention weights to select plausible distantly
supervised examples, we describe a policy-based
framework to systematically learn to relocate the
false positive samples, and better utilize the un-
labeled data. More specifically, our goal is to
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Figure 5: This figure presents the scale of the re-
moved part for each relation type, where the hori-
zontal axis corresponds to the IDs in Table 2.

teach the reinforcement agent to optimize the se-
lection/redistribution strategy that maximizes the
reward of boosting the performance of relation
classification. An important aspect of our work
is that our framework does not depend on a spe-
cific form of the relation classifier, meaning that it
is a plug-and-play technique that could be poten-
tially applied to any relation extraction pipeline. In
experiments, we show that our framework boosts
the performance of distant supervision relation ex-
traction of various strong deep learning baselines
on the widely used New York Times - Freebase
dataset.
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Abstract

Embedding models for entities and rela-
tions are extremely useful for recovering
missing facts in a knowledge base. In-
tuitively, a relation can be modeled by
a matrix mapping entity vectors. How-
ever, relations reside on low dimension
sub-manifolds in the parameter space of
arbitrary matrices – for one reason, com-
position of two relations M1,M2 may
match a third M3 (e.g. composition
of relations currency of country
and country of film usually matches
currency of film budget), which
imposes compositional constraints to be
satisfied by the parameters (i.e. M1 ·M2 ≈
M3). In this paper we investigate a dimen-
sion reduction technique by training rela-
tions jointly with an autoencoder, which is
expected to better capture compositional
constraints. We achieve state-of-the-art on
Knowledge Base Completion tasks with
strongly improved Mean Rank, and show
that joint training with an autoencoder
leads to interpretable sparse codings of rela-
tions, helps discovering compositional con-
straints and benefits from compositional
training. Our source code is released at
github.com/tianran/glimvec.

1 Introduction

Broad-coverage knowledge bases (KBs) such as
Freebase (Bollacker et al., 2008) and DBPe-
dia (Auer et al., 2007) store a large amount of facts
in the form of 〈head entity, relation, tail entity〉
triples (e.g. 〈The Matrix, country of film,
Australia〉), which could support a wide range
of reasoning and question answering applications.
The Knowledge Base Completion (KBC) task aims

Figure 1: In joint training, relation parameters (e.g.
M1) receive updates from both a KB-learning ob-
jective, trying to predict entities in the KB; and a re-
construction objective from an autoencoder, trying
to recover relations from low dimension codings.

to predict the missing part of an incomplete triple,
such as 〈Finding Nemo, country of film, ?〉,
by reasoning from known facts stored in the KB.

As a most common approach (Wang et al., 2017),
modeling entities and relations to operate in a low
dimension vector space helps KBC, for three con-
ceivable reasons. First, when dimension is low,
entities modeled as vectors are forced to share pa-
rameters, so “similar” entities which participate
in many relations in common get close to each
other (e.g. Australia close to US). This could im-
ply that an entity (e.g. US) “type matches” a re-
lation such as country of film. Second, rela-
tions may share parameters as well, which could
transfer facts from one relation to other similar
relations, for example from 〈x, award winner,
y〉 to 〈x, award nominated, y〉. Third, spa-
tial positions might be used to implement com-
position of relations, as relations can be regarded
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as mappings from head to tail entities, and the
composition of two maps can match a third (e.g.
the composition of currency of country
and country of film matches the relation
currency of film budget), which could be
captured by modeling composition in a space.

However, modeling relations as mappings natu-
rally requires more parameters – a general linear
map between d-dimension vectors is represented by
a matrix of d2 parameters – which are less likely to
be shared, impeding transfers of facts between sim-
ilar relations. Thus, it is desired to reduce dimen-
sionality of relations; furthermore, the existence of
a composition of two relations (assumed to be mod-
eled by matricesM1,M2) matching a third (M3)
also justifies dimension reduction, because it im-
plies a compositional constraint M1 ·M2 ≈M3

that can be satisfied only by a lower dimension
sub-manifold in the parameter space1.

Previous approaches reduce dimensionality of
relations by imposing pre-designed hard con-
straints on the parameter space, such as constrain-
ing that relations are translations (Bordes et al.,
2013) or diagonal matrices (Yang et al., 2015),
or assuming they are linear combinations of a
small number of prototypes (Xie et al., 2017).
However, pre-designed hard constraints do not
seem to cope well with compositional constraints,
because it is difficult to know a priori which
two relations compose to which third relation,
hence difficult to choose a pre-design; and com-
positional constraints are not always exact (e.g.
the composition of currency of country
and headquarter location usually matches
business operation currency but not al-
ways), so hard constraints are less suited.

In this paper, we investigate an alternative ap-
proach by training relation parameters jointly with
an autoencoder (Figure 1). During training, the au-
toencoder tries to reconstruct relations from low di-
mension codings, with the reconstruction objective
back-propagating to relation parameters as well.
We show this novel technique promotes parame-
ter sharing between different relations, and drives
them toward low dimension manifolds (Sec.6.2).
Besides, we expect the technique to cope better
with compositional constraints, because it discov-
ers low dimension manifolds posteriorly from data,
and it does not impose any explicit hard constraints.

1It is noteworthy that similar compositional constraints
apply to most modeling schemes of relations, not just matrices.

Yet, joint training with an autoencoder is not
simple; one has to keep a subtle balance between
gradients of the reconstruction and KB-learning
objectives throughout the training process. We
are not aware of any theoretical principles directly
addressing this problem; but we found some im-
portant settings after extensive pre-experiments
(Sec.4). We evaluate our system using standard
KBC datasets, achieving state-of-the-art on several
of them (Sec.6.1), with strongly improved Mean
Rank. We discuss detailed settings that lead to the
performance (Sec.4.1), and we show that joint train-
ing with an autoencoder indeed helps discovering
compositional constraints (Sec.6.2) and benefits
from compositional training (Sec.6.3).

2 Base Model

A knowledge base (KB) is a set T of triples
of the form 〈h, r, t〉, where h, t ∈ E are enti-
ties and r ∈ R is a relation (e.g. 〈The Matrix,
country of film, Australia〉). A relation r has
its inverse r−1 ∈ R so that for every 〈h, r, t〉 ∈ T ,
we regard 〈t, r−1, h〉 as also in the KB. Under this
assumption and given T as training data, we con-
sider the Knowledge Base Completion (KBC) task
that predicts candidates for a missing tail entity in
an incomplete 〈h, r, ?〉 triple.

Most approaches tackle this problem by train-
ing a score function measuring the plausibility of
triples being facts. The model we implement in
this work represents entities h, t as d-dimension
vectors uh,vt respectively, and relation r as a d×d
matrix Mr. If uh,vt are one-hot vectors with di-
mension d = |E| corresponding to each entity, one
can take Mr as the adjacency matrix of entities
joined by relation r, so the set of tail entities filling
into 〈h, r, ?〉 is calculated by u>hMr (with each
nonzero entry corresponds to an answer). Thus,
we have u>hMrvt > 0 if and only if 〈h, r, t〉 ∈ T .
This motivates us to use u>hMrvt as a natural pa-
rameter to model plausibility of 〈h, r, t〉, even in
a low dimension space with d � |E|. Thus, we
define the score function as

s(h, r, t) := exp(u>hMrvt) (1)

for the basic model. This is similar to the bilinear
model of Nickel et al. (2011), except that we distin-
guish uh (the vector for head entities) from vt (the
vector for tail entities). It has also been proposed
in Tian et al. (2016), but for modeling dependency
trees rather than KBs.
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More generally, we consider composition of re-
lations r1/ . . . /rl to model paths in a KB (Guu
et al., 2015), as defined by r1, . . . , rl participating
in a sequence of facts such that the head entity
of each fact coincides with the tail of its previous.
For example, a sequence of two facts 〈The Matrix,
country of film, Australia〉 and 〈Australia,
currency of country, Australian Dollar〉
form a path of composition country of film /
currency of country, because the head of
the second fact (i.e. Australia) coincides with the
tail of the first. Using the previous d = |E| ana-
logue, one can verify that composition of relations
is represented by multiplication of adjacency ma-
trices, so we accordingly define

s(h, r1/ . . . /rl, t) := exp(u>hMr1 · · ·Mrlvt)

to measure the plausibility of a path. It is explored
in Guu et al. (2015) to learn a score function not
only for single facts but also for paths. This compo-
sitional training scheme is shown to bring valuable
information about the structure of the KB and may
help KBC. In this work, we conduct experiments
both with and without compositional training.

In order to learn parameters uh,vt,Mr of the
score function, we follow Tian et al. (2016) using
a Noise Contrastive Estimation (NCE) (Gutmann
and Hyvärinen, 2012) objective. For each path (or
triple) 〈h, r1/ . . . , t〉 taken from the KB, we gener-
ate negative samples by replacing the tail entity t
with some random noise t∗. Then, we maximize

L1 :=
∑

path

ln
s(h, r1/ . . . , t)

k + s(h, r1/ . . . , t)

+
∑

noise

ln
k

k + s(h, r1/ . . . , t∗)

as our KB-learning objective. Here, k is the num-
ber of noises generated for each path. When the
score function is regarded as probability, L1 rep-
resents the log-likelihood of “〈h, r1/ . . . , t〉 being
actual path and 〈h, r1/ . . . , t∗〉 being noise”. Max-
imizing L1 increases the scores of actual paths and
decreases the scores of noises.

3 Joint Training with an Autoencoder

Autoencoders learn efficient codings of high-
dimensional data while trying to reconstruct the
original data from the coding. By joint training
relation matrices with an autoencoder, we also ex-
pect it to help reducing the dimensionality of the
original data (i.e. relation matrices).

Formally, we define a vectorizationmr for each
relation matrix Mr, and use it as input to the au-
toencoder. mr is defined as a reshape of Mr flat-
tened into a d2-dimension vector, and normalized
such that ‖mr‖ =

√
d. We define

cr := ReLU(Amr) (2)

as the coding. Here A is a c × d2 matrix with
c � d2, and ReLU is the Rectified Linear Unit
function (Nair and Hinton, 2010). We reconstruct
the input from cr by multiplying a d2×cmatrixB.
We wantBcr to be more similar tomr than other
relations. For this purpose, we define a similarity

g(r1, r2) := exp(
1√
dc
m>r1Bcr2), (3)

which measures the length ofBcr2 projected to the
direction ofmr1 . In order to learn the parameters
A,B, we adopt the Noise Contrastive Estimation
scheme as in Sec.2, generate random noises r∗ for
each relation r and maximize

L2 :=
∑

r∈R
ln

g(r, r)

k + g(r, r)
+
∑

r∗∼R
ln

k

k + g(r, r∗)

as our reconstruction objective. Maximizing L2
increases mr’s similarity with Bcr, and decreases
it withBcr∗ .

During joint training, both L1 and L2 are si-
multaneously maximized, and the gradient ∇L2
propagates to relation matrices as well. Since ∇L2
depends on A and B, and A,B interact with all
relations, they promote indirect parameter sharing
between different relation matrices. In Sec.6.2, we
further show that joint training drives relations to-
ward a low dimension manifold.

4 Optimization Tricks

Joint training with an autoencoder is not simple.
Relation matrices receive updates from both∇L1
and ∇L2, but if they update ∇L1 too much, the
autoencoder has no effect; conversely, if they up-
date∇L2 too often, all relation matrices crush into
one cluster. Furthermore, an autoencoder should
learn from genuine patterns of relation matrices
that emerge from fitting the KB, but not the re-
verse – in which the autoencoder imposes arbitrary
patterns to relation matrices according to random
initialization. Therefore, it is not surprising that a
naive optimization of L1 + L2 does not work.

After extensive pre-experiments, we have found
some crucial settings for successful training. The
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most important “magic” is the scaling factor 1√
dc

in definition of the similarity function (3), perhaps
being combined with other settings as we discuss
below. We have tried different factors 1, 1√

d
, 1√

c

and 1
dc instead, with various combinations of d and

c; but the autoencoder failed to learn meaningful
codings in other settings. When the scaling factor
is too small (e.g. 1

dc ), all relations get almost the
same coding; conversely if the factor is too large
(e.g. 1), all codings get very close to 0.

The next important rule is to keep a balance be-
tween the updates coming from∇L1 and∇L2. We
use Stochastic Gradient Descent (SGD) for opti-
mization, and the common practice (Bottou, 2012)
is to set the learning rate as

α(τ) :=
η

1 + ηλτ
. (4)

Here, η, λ are hyper-parameters and τ is a counter
of processed data points. In this work, in order
to control the updates in detail to keep a balance,
we modify (4) to use a a step counter τr for each
relation r, counting “number of updates” instead of
data points2. That is, wheneverMr gets a nonzero
update from a gradient calculation, τr increases by
1. Furthermore, we use different hyper-parameters
for different “types of updates”, namely η1, λ1 for
updates coming from∇L1, and η2, λ2 for updates
coming from ∇L2. Thus, let ∆1 be the partial
gradient of ∇L1, and ∆2 the partial gradient of
∇L2, we updateMr by α1(τr)∆1 + α2(τr)∆2 at
each step, where

α1(τr) :=
η1

1 + η1λ1τr
, α2(τr) :=

η2
1 + η2λ2τr

.

The rule for setting η1, λ1 and η2, λ2 is that, η2
should be much smaller than η1, because η1, η2
control the magnitude of learning rates at the early
stage of training, with the autoencoder still largely
random and ∆2 not making much sense; on the
other hand, one has to choose λ1 and λ2 such that
‖∆1‖/λ1 and ‖∆2‖/λ2 are at the same scale, be-
cause the learning rates approach 1/(λ1τr) and
1/(λ2τr) respectively, as the training proceeds. In
this way, the autoencoder will not impose random
patterns to relation matrices according to its ini-
tialization at the early stage, and a balance is kept
between α1(τr)∆1 and α2(τr)∆2 later.

But how to estimate ‖∆1‖ and ‖∆2‖? It seems
that we can approximately calculate their scales

2Similarly, we set separate step counters for all head and
tail entities, and the autoencoder as well.

from initialization. In this work, we use i.i.d. Gaus-
sians of variance 1/d to initialize parameters, so the
initial Euclidean norms are ‖uh‖ ≈ 1, ‖vt‖ ≈ 1,
‖Mr‖ ≈

√
d, and ‖BAmr‖ ≈

√
dc. Thus, by

calculating ∇L1 and ∇L2 using (1) and (3), we
have approximately

‖∆1‖ ≈ ‖uhv>t ‖ ≈ 1, and

‖∆2‖ ≈ ‖
1√
dc
Bcr‖ ≈

1√
dc
‖BAmr‖ ≈ 1.

It suggests that, because of the scaling factor 1√
dc

in (3), we have ‖∆1‖ and ‖∆2‖ at the same scale,
so we can set λ1 = λ2. This might not be a mere
coincidence.

4.1 Training the Base Model

Besides the tricks for joint training, we also found
settings that significantly improve the base model
on KBC, as briefly discussed below. In Sec.6.3,
we will show performance gains by these settings
using the FB15k-237 validation set.

Normalization It is better to normalize relation
matrices to ‖Mr‖ =

√
d during training. This

might reduce fluctuations in entity vector updates.

Regularizer It is better to minimize ‖M>
r Mr−

1
d tr(M>

r Mr)I‖ during training. This regularizer
drivesMr toward an orthogonal matrix (Tian et al.,
2016) and might reduce fluctuations in entity vector
updates. As a result, all relation matrices trained in
this work are very close to orthogonal.

Initialization Instead of pure Gaussian, it is bet-
ter to initialize matrices as (I + G)/2, where G
is random. The identity matrix I helps passing
information from head to tail (Tian et al., 2016).

Negative Sampling Instead of a unigram distri-
bution, it is better to use a uniform distribution
for generating noises. This is somehow counter-
intuitive compared to training word embeddings.

5 Related Works

KBs have a wide range of applications (Berant
et al., 2013; Hixon et al., 2015; Nickel et al., 2016a)
and KBC has inspired a huge amount of research
(Bordes et al., 2013; Riedel et al., 2013; Socher
et al., 2013; Wang et al., 2014b,a; Xiao et al., 2016;
Nguyen et al., 2016; Toutanova et al., 2016; Das
et al., 2017; Hayashi and Shimbo, 2017).
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Among the previous works, TransE (Bordes
et al., 2013) is the classic method which repre-
sents a relation as a translation of the entity vector
space, and is partially inspired by Mikolov et al.
(2013)’s vector arithmetic method of solving word
analogy tasks. Although competitive in KBC, it
is speculated that this method is well-suited for 1-
to-1 relations but might be too simple to represent
N -to-N relations accurately(Wang et al., 2017).
Thus, extensions such as TransR (Lin et al., 2015b)
and STransE (Nguyen et al., 2016) are proposed
to map entities into a relation-specific vector space
before translation. The ITransF model (Xie et al.,
2017) further enhances this approach by imposing
a hard constraint that the relation-specific maps
should be linear combinations of a small number
of prototypical matrices. Our work inherits the
same motivation with ITransF in terms of promot-
ing parameter-sharing among relations.

On the other hand, the base model used in
this work originates from RESCAL (Nickel et al.,
2011), in which relations are naturally represented
as analogue to the adjacency matrices (Sec.2). Fur-
ther developments include HolE (Nickel et al.,
2016b) and ConvE (Dettmers et al., 2018) which
improve this approach in terms of parameter-
efficiency, by introducing low dimension factoriza-
tions of the matrices. We inherit the basic model of
RESCAL but draw additional training techniques
from Tian et al. (2016), and show that the base
model already can achieve near state-of-the-art per-
formance (Sec.6.1,6.3). This sends a message sim-
ilar to Kadlec et al. (2017), saying that training
tricks might be as important as model designs.

Nevertheless, we emphasize the novelty of this
work in that the previous models mostly achieve di-
mension reduction by imposing some pre-designed
hard constraints (Bordes et al., 2013; Yang et al.,
2015; Trouillon et al., 2016; Nickel et al., 2016b;
Xie et al., 2017; Dettmers et al., 2018), whereas the
constraints themselves are not learned from data; in
contrast, our approach by jointly training an autoen-
coder does not impose any explicit hard constraints,
so it leads to more flexible modeling.

Moreover, we additionally focus on leveraging
composition in KBC. Although this idea has been
frequently explored before (Guu et al., 2015; Nee-
lakantan et al., 2015; Lin et al., 2015a), our discus-
sion about the concept of compositional constraints
and its connection to dimension reduction has not
been addressed similarly in previous research. In

experiments, we will show (Sec.6.2,6.3) that joint
training with an autoencoder indeed helps finding
compositional constraints and benefits from com-
positional training.

Autoencoders have been used solo for learn-
ing distributed representations of syntactic trees
(Socher et al., 2011), words and images (Silberer
and Lapata, 2014), or semantic roles (Titov and
Khoddam, 2015). It is also used for pretraining
other deep neural networks (Erhan et al., 2010).
However, when combined with other models, the
learning of autoencoders, or more generally sparse
codings (Rubinstein et al., 2010), is usually con-
veyed in an alternating manner, fixing one part of
the model while optimizing the other, such as in
Xie et al. (2017). To our knowledge, joint training
with an autoencoder is not widely used previously
for reducing dimensionality.

Jointly training an autoencoder is not simple be-
cause it takes non-stationary inputs. In this work,
we modified SGD so that it shares traits with some
modern optimization algorithms such as Adagrad
(Duchi et al., 2011), in that they both set differ-
ent learning rates for different parameters. While
Adagrad sets them adaptively by keeping track of
gradients for all parameters, our modification of
SGD is more efficient and allows us to grasp a
rough intuition about which parameter gets how
much update. We believe our techniques and find-
ings in joint training with an autoencoder could be
helpful to reducing dimensionality and improving
interpretability in other neural network architec-
tures as well.

6 Experiments

We evaluate on standard KBC datasets, including
WN18 and FB15k (Bordes et al., 2013), WN18RR
(Dettmers et al., 2018) and FB15k-237 (Toutanova
and Chen, 2015). The statistical information of
these datasets are shown in Table 1.

WN18 collects word relations from WordNet
(Miller, 1995), and FB15k is taken from Free-
base (Bollacker et al., 2008); both have filtered
out low frequency entities. However, it is reported
in Toutanova and Chen (2015) that both WN18
and FB15k have information leaks because the in-
verses of some test triples appear in the training
set. FB15k-237 and WN18RR fix this problem by
deleting such triples from training and test data. In
this work, we do evaluate on WN18 and FB15k,
but our models are mainly tuned on FB15k-237.
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Dataset |E| |R| #Train #Valid #Test

WN18 40,943 18 141,442 5,000 5,000
FB15k 14,951 1,345 483,142 50,000 59,071
WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466

Table 1: Statistical information of the KBC datasets.
|E| and |R| denote the number of entities and rela-
tion types, respectively; #Train, #Valid, and #Test
are the numbers of triples in the training, validation,
and test sets, respectively.

For all datasets, we set the dimension d = 256
and c = 16, the SGD hyper-parameters η1 = 1/64,
η2 = 2−14 and λ1 = λ2 = 2−14. The training
batch size is 32 and the triples in each batch share
the same head entity. We compare the base model
(BASE) to our joint training with an autoencoder
model (JOINT), and the base model with compo-
sitional training (BASE+COMP) to our joint model
with compositional training (JOINT+COMP). When
compositional training is enabled (BASE+COMP,
JOINT+COMP), we use random walk to sample
paths of length 1 + X , where X is drawn from
a Poisson distribution of mean λ = 1.0.

For any incomplete triple 〈h, r, ?〉 in KBC test,
we calculate a score s(h, r, e) from (1), for every
entity e ∈ E such that 〈h, r, e〉 does not appear in
any of the training, validation, or test sets (Bordes
et al., 2013). Then, the calculated scores together
with s(h, r, t) for the gold triple is converted to
ranks, and the rank of the gold entity t is used for
evaluation. Evaluation metrics include Mean Rank
(MR), Mean Reciprocal Rank (MRR), and Hits at
10 (H10). Lower MR, higher MRR, and higher
H10 indicate better performance.

We consult MR and MRR on validation sets to
determine training epochs; we stop training when
both MR and MRR have stopped improving.

6.1 KBC Results
The results are shown in Table 2. We found
that joint training with an autoencoder mostly
improves performance, and the improvement be-
comes more clear when compositional training is
enabled (i.e., JOINT ≥ BASE and JOINT+COMP >
BASE+COMP). This is convincing because gener-
ally, joint training contributes with its regulariz-
ing effects, and drastic improvements are less ex-
pected3. When compositional training is enabled,

3The source code and trained models are publicly released
at https://github.com/tianran/glimvec, where

profession
profession−1
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film_release_region−1
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currency_of_film_budget

2 4 6 8 10 12 14 16

currency_of_film_budget
release_region_of_film

corporation_of_film
producer_of_film

writer_of_film

Figure 2: Examples of relation codings learned
from FB15k-237. Each row shows a 16 dimension
vector encoding a relation. Vectors are normalized
such that their entries sum to 1.

the system usually achieves better MR, though not
always improves in other measures. The perfor-
mance gains are more obvious on the WN18RR
and FB15k-237 datasets, possibly because WN18
and FB15k contain a lot of easy instances that can
be solved by a simple rule (Dettmers et al., 2018).

Furthermore, the numbers demonstrated by our
joint and base models are among the strongest in
the literature. We have conducted re-experiments
of several representative algorithms, and also com-
pare with state-of-the-art published results. For
re-experiments, we use Lin et al. (2015b)’s imple-
mentation4 of TransE (Bordes et al., 2013) and
TransR, which represent relations as vector transla-
tions; and Nickel et al. (2016b)’s implementation5

of RESCAL (Nickel et al., 2011) and HolE, where
RESCAL is most similar to the BASE model and
HolE is a more parameter-efficient variant. We ex-
perimented with the default settings, and found that
our models outperform most of them.

Among the published results, STransE (Nguyen
et al., 2016) and ITransF (Xie et al., 2017) are more
complicated versions of TransR, achieving the pre-
vious highest MR on WN18 but are outperformed
by our JOINT+COMP model. ITransF is most simi-
lar to our JOINT model in that they both learn sparse
codings for relations. On WN18RR and FB15k-
237, Dettmers et al. (2018)’s report of ComplEx

we also show the mean performance and deviations of multiple
random initializations, to give a more complete picture.

4https://github.com/thunlp/KB2E
5https://github.com/mnick/

holographic-embeddings
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Model WN18 FB15k WN18RR FB15k-237

MR H10 MR H10 MR MRR H10 MR MRR H10

JOINT 277 95.8 53 82.5 4233 .461∗ 53.4 212 .336 52.3∗
BASE 286 95.8 53 82.5 4371 .459 52.9 215 .337∗ 52.3∗

JOINT+COMP 191∗ 94.8 53 69.7 2268∗ .343 54.8∗ 197∗ .331 51.6
BASE+COMP 195 94.8 54 69.4 2447 .310 54.1 203 .328 51.5

TransE (Bordes et al., 2013) 292 92.0 66 70.4 4311 .202 45.6 278 .236 41.6
TransR (Lin et al., 2015b) 281 93.6 76 74.4 4222 .210 47.1 320 .282 45.9
RESCAL (Nickel et al., 2011) 911 58.0 163 41.0 9689 .105 20.3 457 .178 31.9
HolE (Nickel et al., 2016b) 724 94.3 293 66.8 8096 .376 40.0 1172 .169 30.9

STransE (Nguyen et al., 2016) 206 93.4 69 79.9 - - - - - -
ITransF (Xie et al., 2017) 205 94.2 65 81.0 - - - - - -
ComplEx (Trouillon et al., 2016) - 94.7 - 84.0 5261 .44 51 339 .247 42.8
Ensemble DistMult (Kadlec et al., 2017) 457 95.0 35.9 90.4 - - - - - -
IRN (Shen et al., 2017) 249 95.3 38 92.7∗ - - - - - -
ConvE (Dettmers et al., 2018) 504 95.5 64 87.3 5277 .46 48 246 .316 49.1
R-GCN+ (Schlichtkrull et al., 2017) - 96.4∗ - 84.2 - - - - .249 41.7
ProjE (Shi and Weninger, 2017) - - 34∗ 88.4 - - - - - -

Table 2: KBC results on the WN18, FB15k, WN18RR, and FB15k-237 datasets. The first and second
sectors compare our joint to the base models with and without compositional training, respectively; the
third sector shows our re-experiments and the fourth shows previous published results. Bold numbers are
the best in each sector, and (∗) indicates the best of all.

(Trouillon et al., 2016) and ConvE were previously
the best results. Our models mostly outperform
them. Other results include Kadlec et al. (2017)’s
simple but strong baseline and several recent mod-
els (Schlichtkrull et al., 2017; Shi and Weninger,
2017; Shen et al., 2017) which achieve best results
on FB15k or WN18 in some measure. Our models
have comparable results.

6.2 Intuition and Insight

What does the autoencoder look like? How does
joint training affect relation matrices? We address
these questions by analyses showing that (i) the
autoencoder learns sparse and interpretable codings
of relations, (ii) the joint training drives relation
matrices toward a low dimension manifold, and
(iii) it helps discovering compositional constraints.

Sparse Coding and Interpretability
Due to the ReLU function in (2), our autoencoder
learns sparse coding, with most relations having
large code values at only two or three dimensions.
This sparsity makes it easy to find patterns in the
model that to some extent explain the semantics of
relations. Figure 2 shows some examples.

In the first group of Figure 2, we show a small
number of relations that are almost always assigned
a near one-hot coding, regardless of initialization.
These are high frequency relations joining two
large categories (e.g. film and language), which

probably constitute the skeleton of a KB.
In the second group, we found the 12th di-

mension strongly correlates with currency; and
in the third group, we found the 4th dimension
strongly correlates with film. As for the relation
currency of film budget, it has large code
values at both dimensions. This kind of relation
clustering also seems independent of initialization.
Intuitively, it shows that the autoencoder may dis-
cover similarities between relations and promote
indirect parameter sharing among them. Yet, as
the autoencoder only reconstructs approximations
of relation matrices but never constrain them to
be exactly equal to the original, relation matrices
with very similar codings may still differ consid-
erably. For example, producer of film and
writer of film have codings of cosine simi-
larity 0.973, but their relation matrices only have6

a cosine similarity 0.338.

Low dimension manifold

In order to visualize the relation matrices learned
by our joint and base models, we use UMAP7

(McInnes and Healy, 2018) to embed Mr into a
2D plane8. We use relation matrices trained on

6Cosine similarity 0.338 is still high for matrices, due to
the high dimensionality of their parameter space.

7https://github.com/lmcinnes/umap
8UMAP is a recently proposed manifold learning algo-

rithm based on the fuzzy topological structure. We also tried
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(a) BASE (b) JOINT

(c) BASE+COMP (d) JOINT+COMP

Figure 3: By UMAP, relation matrices are embed-
ded into a 2D plane. Colors show frequencies of
relations; and lighter color means more frequent.

FB15k-237, and compare models trained by the
same number of epochs. The results are shown in
Figure 3.

We can see that Figure 3a and Figure 3c are
mostly similar, with high frequency relations scat-
tered randomly around a low frequency cluster, sug-
gesting that they come from various directions of a
high dimension space, with frequent relations prob-
ably being pulled further by the training updates.
On the other hand, in Figure 3b and Figure 3d we
found less frequent relations being clustered with
frequent ones, and multiple traces of low dimen-
sion structures. It suggests that joint training with
an autoencoder indeed drives relations toward a
low dimension manifold. In addition, Figure 3d
shows different structures against Figure 3b, which
we conjecture could be related to compositional
constraints discovered by compositional training.

Compositional constraints
In order to directly evaluate a model’s ability to
find compositional constraints, we extracted from
FB15k-237 a list of (r1/r2, r3) pairs such that
r1/r2 matches r3. Formally, the list is constructed
as below. For any relation r, we define a content
set C(r) as the set of (h, t) pairs such that 〈h, r, t〉
is a fact in the KB. Similarly, we define C(r1/r2)

t-SNE (van der Maaten and Hinton, 2008) but found UMAP
more insightful.

Model MR MRR

JOINT+COMP 130±27 .0481±.0090
BASE+COMP 150±3 .0280±.0010
RANDOMM2 181±19 .0356±.0100

Table 3: Performance at discovering compositional
constraints extracted from FB15k-237

as the set of (h, t) pairs such that 〈h, r1/r2, t〉 is
a path. We regard (r1/r2, r3) as a compositional
constraint if their content sets are similar; that
is, if |C(r1/r2) ∩ C(r3)| ≥ 50 and the Jaccard
similarity between C(r1/r2) and C(r3) is ≥ 0.4.
Then, after filtering out degenerated cases such as
r1 = r3 or r2 = r−11 , we obtained a list of 154
compositional constraints, e.g.
(currency of country/country of film,
currency of film budget).

For each compositional constraint (r1/r2, r3) in
the list, we take the matrices M1, M2 and M3

corresponding to r1, r2 and r3 respectively, and
rank M3 according to its cosine similarity with
M1M2, among all relation matrices. Then, we cal-
culate MR and MRR for evaluation. We compare
the JOINT+COMP model to BASE+COMP, as well
as a randomized baseline where M2 is selected ran-
domly from the relation matrices in JOINT+COMP

instead (RANDOMM2). The results are shown in
Table 3. We have evaluated 5 different random
initializations for each model, trained by the same
number of epochs, and we report the mean and
standard deviation. We verify that JOINT+COMP

performs better than BASE+COMP, indicating that
joint training with an autoencoder indeed helps dis-
covering compositional constraints. Furthermore,
the random baseline RANDOMM2 tests a hypothe-
sis that joint training might be just clustering M3

and M1 here, to the extent that M3 and M1 are so
close that even a random M2 can give the correct
answer; but as it turns out, JOINT+COMP largely
outperforms RANDOMM2, excluding this possibil-
ity. Thus, joint training performs better not simply
because it clusters relation matrices; it learns com-
positions indeed.

6.3 Losses and Gains

In the KBC task, where are the losses and what are
the gains of different settings? With additional eval-
uations, we show (i) some crucial settings for the
base model, and (ii) joint training with an autoen-
coder benefits more from compositional training.
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Settings MR MRR H10

BASE 214 .338 52.5

no normalization 309 .326 49.9
no regularizer 400 .328 51.3
pure Gaussian 221 .336 52.1

unigram distribution 215 .324 50.6

Table 4: Ablation of the four settings of the base
model as described in Sec.4.1

Crucial settings for the base model
It is noteworthy that our base model already
achieves strong results. This is due to several
detailed but crucial settings as we discussed in
Sec.4.1; Table 4 shows their gains on the FB15k-
237 validation data. The most dramatic improve-
ment comes from the regularizer that drives matri-
ces to orthogonal.

Gains with compositional training
One can force a model to focus more on (longer)
compositions of relations, by sampling longer paths
in compositional training. Since joint training with
an autoencoder helps discovering compositional
constraints, we expect it to be more helpful when
the sampled paths are longer. In this work, path
lengths are sampled from a Poisson distribution,
we thus vary the mean λ of the Poisson to control
the strength of compositional training. The results
on FB15k-237 are shown in Table 5.

We can see that, as λ gets larger, MR improves
much but MRR slightly drops. It suggests that in
FB15k-237, composition of relations might mainly
help finding more appropriate candidates for a miss-
ing entity, rather than pinpointing a correct one.
Yet, joint training improves base models even more
as the paths get longer, especially in MR. It further
supports our conjecture that joint training with an
autoencoder may strongly interact with composi-
tional training.

7 Conclusion

We have investigated a dimension reduction tech-
nique which trains a KB embedding model jointly
with an autoencoder. We have developed new train-
ing techniques and achieved state-of-the-art results
on several KBC tasks with strong improvements
in Mean Rank. Furthermore, we have shown that
the autoencoder learns low dimension sparse cod-
ings that can be easily explained; the joint training
technique drives high-dimensional data toward low

Model λ
Valid Test

MR MRR H10 MR MRR H10

BASE 0 209 .341 52.9 215 .337 52.3
JOINT 0 +1 -.001 -.2 -3 -.001 0

BASE 0.5 204 .337 52.2 211 .332 51.7
JOINT 0.5 -3 +.002 +.1 +1 +.002 +.2

BASE 1.0 191 .334 52.0 203 .328 51.5
JOINT 1.0 -5 +.002 -.1 -6 +.003 +.1

Table 5: Evaluation of BASE and gains by JOINT,
on FB15k-237 with different strengths of composi-
tional training. Bold numbers are improvements.

dimension manifolds; and the reduction of dimen-
sionality may interact strongly with composition,
help discovering compositional constraints and ben-
efit from compositional training. We believe these
findings provide insightful understandings of KB
embedding models and might be applied to other
neural networks beyond the KBC task.
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A Out-of-vocabulary Entities in KBC

Occasionally, a KBC test set may contain entities
that never appear in the training data. Such out-of-
vocabulary (OOV) entities pose a challenge to KBC
systems; while some systems address this issue by
explicitly learn an OOV entity vector (Dettmers
et al., 2018), our approach is described below. For
an incomplete triple 〈h, r, ?〉 in the test, if h is OOV,
we replace it with the most frequent entity that has
ever appeared as a head of relation r in the training
data. If the gold tail entity is OOV, we use the zero
vector for computing the score and the rank of the
gold entity.

Usually, OOV entities are rare and negligible
in evaluation; except for the WN18RR test data
which contains about 6.7% triples with OOV en-
tities. Here, we also report adjusted scores on
WN18RR in the setting that all triples with OOV
entities are removed from the test. The results are
shown in Table 6.

Model MR MRR H10

JOINT 3317 .493 57.2
BASE 3435 .492 56.7

JOINT+COMP 1507 .367 58.7
BASE+COMP 1629 .332 58.0

Table 6: Adjusted scores on WN18RR.
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Abstract

Most previous supervised event extraction
methods have relied on features derived
from manual annotations, and thus can-
not be applied to new event types without
extra annotation effort. We take a fresh
look at event extraction and model it as a
generic grounding problem: mapping each
event mention to a specific type in a tar-
get event ontology. We design a trans-
ferable architecture of structural and com-
positional neural networks to jointly rep-
resent and map event mentions and types
into a shared semantic space. Based on
this new framework, we can select, for
each event mention, the event type which
is semantically closest in this space as
its type. By leveraging manual annota-
tions available for a small set of exist-
ing event types, our framework can be
applied to new unseen event types with-
out additional manual annotations. When
tested on 23 unseen event types, this zero-
shot framework, without manual annota-
tions, achieves performance comparable
to a supervised model trained from 3,000
sentences annotated with 500 event men-
tions.1

1 Introduction

The goal of event extraction is to identify event
triggers and their arguments in unstructured text
data, and then to assign an event type to each trig-
ger and a semantic role to each argument. An ex-
ample is shown in Figure 1. Traditional supervised
methods have typically modeled this task of event

1The programs are publicly available for research purpose
at: https://github.com/wilburOne/ZeroShotEvent

extraction as a classification problem, by assign-
ing event triggers to event types from a pre-defined
fixed set. These methods rely heavily on man-
ual annotations and features specific to each event
type, and thus are not easily adapted to new event
types without extra annotation effort. Handling
new event types may even entail starting over,
without being able to re-use annotations from pre-
vious event types.

To make event extraction effective as new real-
world scenarios emerge, we take a look at this
task from the perspective of zero-shot learning,
ZSL (Frome et al., 2013; Norouzi et al., 2013;
Socher et al., 2013a). ZSL, as a type of trans-
fer learning, makes use of separate, pre-existing
classifiers to build a semantic, cross-concept space
that maps between their respective classes. The
resulting shared semantic space then allows for
building a novel “zero-shot” classifier, i,e,, requir-
ing no (zero) additional training examples, to han-
dle unseen cases. We observe that each event
mention has a structure consisting of a candidate
trigger and arguments, with corresponding pre-
defined name labels for the event type and argu-
ment roles. We propose to enrich the semantic
representations of each event mention and event
type with rich structures, and determine the type
based on the semantic similarity between an event
mention and each event type defined in a target on-
tology. Let’s consider two example sentences:

E1. The Government of China has ruled Tibet
since 1951 after dispatching troops to the
Himalayan region in 1950.

E2. Iranian state television stated that the con-
flict between the Iranian police and the
drug smugglers took place near the town of
mirjaveh.

In E1, as also diagrammed in Figure 1, dis-
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Figure 1: Event Mention Example: dispatching is the trigger of a Transport-Person event with four
arguments: the solid lines show the event annotations for the sentence while the dotted lines show the
Abstract Meaning Representation parsing output.

patching is the trigger for the event mention of
type Transport Person and in E2, conflict is the
trigger for the event mention of type Attack. We
make use of Abstract Meaning Representations
(AMR) (Banarescu et al., 2013) to identify the
candidate arguments and construct event mention
structures as shown in Figure 2 (top). Figure 2
(bottom) also shows event type structures defined
in the Automatic Content Extraction (ACE) guide-
line.2 We can see that a trigger and its event type
name usually have some shared meaning. Further-
more, their structures also tend to be similar: a
Transport Person event typically involves a Per-
son as its patient role, while an Attack event in-
volves a Person or Location as an Attacker. This
observation matches the theory by Pustejovsky
(1991): “the semantics of an event structure can
be generalized and mapped to event mention struc-
tures in a systematic and predictable way”.

Figure 2: Examples of Event Mention Structures
and Type Structures from ACE.

Inspired by this theory, for the first time, we
model event extraction as a generic grounding
problem, by mapping each mention to its semanti-
cally closest event type. Given an event ontology,

2https://en.wikipedia.org/wiki/Automatic content extraction

where each event type structure is well-defined,
we will refer to the event types for which we have
annotated event mentions as seen types, while
those without annotations as unseen types. Our
goal is to learn a generic mapping function inde-
pendent of event types, which can be trained from
annotations for a limited number of seen event
types and then used for any new unseen event
types. We design a transferable neural architec-
ture, which jointly learns and maps the structural
representations of event mentions and types into a
shared semantic space, by minimizing the distance
between each event mention and its corresponding
type. For event mentions with unseen types, their
structures will be projected into the same seman-
tic space using the same framework and assigned
types with top-ranked similarity values.

To summarize, to apply our new zero-shot trans-
fer learning framework to any new unseen event
types, we only need (1) a structured definition of
the unseen event type (its type name along with
role names for its arguments, from the event on-
tology); and (2) some annotations for one or a few
seen event types. Without requiring any additional
manual annotations for the new unseen types, our
ZSL framework achieves performance compara-
ble to supervised methods trained from a substan-
tial amount of training data for the same types.

2 Approach Overview

Briefly here, we overview the phases involved in
building our framework’s shared semantic space
that, in turn, is the basis for the ZSL framework.
Given a sentence s, we start by identifying candi-
date triggers and arguments based on AMR pars-
ing (Wang et al., 2015b). For the example shown
in Figure 1, we identify dispatching as a trigger,
and its candidate arguments: China, troops, Hi-
malayan and 1950. The details will be described
in Section 3.
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Figure 3: Architecture Overview. The blue circles denote event types and event type representations.
The dark grey diamonds and circles denote triggers and trigger representations from training set. The
light grey diamonds and circles denote triggers and trigger representations from testing set.

After this identification phase, we use our new
neural architecture, as depicted in Figure 3, to
classify triggers into event types. (The classifi-
cation of arguments into roles follows the same
pipeline.) For each trigger t, e.g., dispatch-01,
we determine its type by comparing its seman-
tic representation with that of any event type in
the event ontology. In order to incorporate the
contexts into the semantic representation of t, we
build a structure St using AMR as shown in Fig-
ure 3. Each structure is composed of a set of tu-
ples, e.g, 〈dispatch-01, :ARG0, China〉. We use a
matrix to represent each AMR relation, compos-
ing its semantics with two concepts for each tuple
(in Section 4), and feed all tuple representations
into a CNN to generate a dense vector represen-
tation VSt for the event mention structure (in Sec-
tion 5.1).

Given a target event ontology, for each type y,
e.g., Transport Person, we construct a type struc-
ture Sy consisting of its predefined roles, and use
a tensor to denote the implicit relation between
any type and argument role. We compose the se-
mantics of type and argument role with the ten-
sor for each tuple, e.g., 〈Transport Person, Des-
tination〉 (in Section 4). Then we generate the
event type structure representation VSy using the
same CNN (in Section 5.1). By minimizing the
semantic distance between dispatch-01 and Trans-

port Person using their dense vectors, VSt and VSy

respectively, we jointly map the representations of
event mention and event types into a shared se-
mantic space, where each mention is closest to its
annotated type.

After training that completes the construction
of the semantic space, the compositional functions
and CNNs are then used to project any new event
mention (e.g., donate-01) into the semantic space
and find its closest event type (e.g., Donation) (in
Section 5.3). In the next sections we will elaborate
each step in great detail.

3 Trigger and Argument Identification

Similar to Huang et al. (2016), we identify candi-
date triggers and arguments based on AMR Pars-
ing (Wang et al., 2015b) and apply the same word
sense disambiguation (WSD) tool (Zhong and Ng,
2010) to disambiguate word senses and link each
sense to OntoNotes, as shown in Figure 1.

Given a sentence, we consider all noun and verb
concepts that can be mapped to OntoNotes senses
by WSD as candidate event triggers. In addition,
the concepts that can be matched with verbs or
nominal lexical units in FrameNet (Baker et al.,
1998) are also considered as candidate triggers.
For each candidate trigger, we consider any con-
cepts that are involved in a subset of AMR rela-
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tions as candidate arguments 3. We manually se-
lect this subset of AMR relations that are useful for
capturing generic relations between event triggers
and arguments, as shown in Table 1.

Categories Relations
Core roles ARG0, ARG1, ARG2, ARG3, ARG4

Non-core roles mod, location, instrument, poss,
manner, topic, medium, prep-X

Temporal year, duration, decade, weekday, time
Spatial destination, path, location

Table 1: Event-Related AMR Relations.

4 Trigger and Type Structure
Composition

As Figure 3 shows, for each candidate trigger t,
we construct its event mention structure St based
on its candidate arguments and AMR parsing. For
each type y in the target event ontology, we con-
struct a structure Sy by including its pre-defined
roles and using its type as the root.

Each St or Sy is composed of a collection of
tuples. For each event mention structure, a tuple
consists of two AMR concepts and an AMR rela-
tion. For each event type structure, a tuple con-
sists of a type name and an argument role name.
Next we will describe how to compose semantic
representations for event mention and event type
respectively based on these structures.

Event Mention Structure For each tuple u =
〈w1, λ, w2〉 in an event mention structure, we use
a matrix to represent each AMR relation λ, and
compose the semantics of λ between two concepts
w1 and w2 as:

Vu = [V
′
w1
;V
′
w2
] = f([Vw1 ;Vw2 ] ·Mλ)

where Vw1 , Vw2 ∈ Rd are the vector representa-
tions of words w1 and w2. d is the dimension size
of each word vector. [ ; ] denotes the concatena-
tion of two vectors. Mλ ∈ R2d×2d is the matrix
representation for AMR relation λ. Vu is the com-
position representation of tuple u, which consists
of two updated vector representations V

′
w1

, V
′
w2

for
w1 and w2 by incorporating the semantics of λ.

Event Type Structure For each tuple u
′
= 〈y, r〉

in an event type structure, where y denotes the

3On the whole ACE2005 corpus, using the AMR
parser (Wang et al., 2015b), the coverage for trigger identi-
fication is 89.4% and the coverage for argument candidate
identification is 66.0%.

event type and r denotes an argument role, fol-
lowing Socher et al. (2013b), we assume an im-
plicit relation exists between any pair of type and
argument, and use a single and powerful tensor to
represent the implicit relation:

Vu′ = [V
′
y ;V

′
r ] = f([Vy;Vr]

T · U [1:2d] · [Vy;Vr])

where Vy and Vr are vector representations for y
and r. U [1:2d] ∈ R2d×2d×2d is a 3-order tensor.
V
′
u is the composition representation of tuple u

′
,

which consists of two updated vector representa-
tions V

′
y , V

′
r for y and r by incorporating the se-

mantics of their implicit relation U [1:2d].

5 Trigger and Argument Classification

5.1 Trigger Classification for Seen Types

Both event mention and event type structures are
relatively simple and can be represented with a set
of tuples. CNNs have been demonstrated effective
at capturing sentence level information by aggre-
gating compositional n-gram representations. In
order to generate structure-level representations,
we use CNN to learn to aggregate all edge and tu-
ple representations.

Input layer is a sequence of tuples, where the or-
der of tuples is from top to bottom in the structure.
Each tuple is represented by a d × 2 dimensional
vector, thus each mention structure and each type
structure are represented as a feature map of di-
mensionality d × 2h∗ and d × 2p∗ respectively,
where h∗ and p∗ are the maximal number of tu-
ples for event mention and type structures. We use
zero-padding to the right to make the volume of all
input structures consistent.

Convolution layer Take St with h∗ tuples:
u1, u2, ..., uh∗ as an example. The input matrix of
St is a feature map of dimensionality d× 2h∗. We
make ci as the concatenated embeddings of n con-
tinuous columns from the feature map, where n is
the filter width and 0 < i < 2h∗ + n. A convolu-
tion operation involves a filter W ∈ Rnd, which is
applied to each sliding window ci:

c
′
i = tanh(W · ci + b)

where c
′
i is the new feature representation, and

b ∈ Rd is a biased vector. We set filter width as
2 and stride as 2 to make the convolution function
operate on each tuple with two input columns.
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Max-Pooling: All tuple representations c
′
i are

used to generate the representation of the input se-
quence by max-pooling.

Learning: For each event mention t, we name
the correct type as positive and all the other types
in the target event ontology as negative. To train
the composition functions and CNN, we first con-
sider the following hinge ranking loss:

L1(t, y) =
∑

j∈Y, j 6=y
max{0,m− Ct,y + Ct,j}

Ct,y = cos([Vt;VSt ], [Vy;VSy ])

where y is the positive event type for t. Y is the
type set of the target event ontology. [Vt;VSt ] de-
notes the concatenation of representations of t and
St. j is a negative event type for t from Y . m is a
margin. Ct,y denotes the cosine similarity between
t and y.

The hinge loss is commonly used in zero-shot
visual object classification task. However, it tends
to overfit the seen types in our experiments. While
clever data augmentation can help alleviate over-
fitting, we design two strategies: (1) we add “neg-
ative” event mentions into the training process.
Here a “negative” event mention means that the
mention has no positive event type among all seen
types, namely it belongs to Other. (2) we design a
new loss function as follows:

Ld1(t, y) ={
max

j∈Y,j 6=y
max{0,m− Ct,y + Ct,j}, y 6= Other

max
j∈Y ′ ,j 6=y

′
max{0,m− Ct,y

′ + Ct,j}, y = Other

where Y is the type set of the event ontology. Y
′
is

the seen type set. y is the annotated type. y
′

is the
type which ranks the highest among all event types
for event mention t, while t belongs to Other.

By minimizing Ld1, we can learn the optimized
model which can compose structure representa-
tions and map both event mention and types into
a shared semantic space, where the positive type
ranks the highest for each mention.

5.2 Argument Classification for Seen Types
For each mention, we map each candidate ar-
gument to a specific role based on the seman-
tic similarity of the argument path. Take E1 as
an example. China is matched to Agent based
on the semantic similarity between dispatch-01→
:ARG0→ China and Transport-Person→Agent.

Given a trigger t and a candidate argument a,
we first extract a path Sa = (u1, u2, ..., up), which
connects t and a and consists of p tuples. Each
predefined role r is also represented as a structure
by incorporating the event type, Sr = 〈y, r〉. We
apply the same framework to take the sequence
of tuples contained in Sa and Sr into a weight-
sharing CNN to rank all possible roles for a.

Ld2(a, r) =



max
j∈Ry,j 6=r

max{0,m− Ca,r + Ca,j} r 6= Other

max
j∈R

Y
′ ,j 6=r

′
max{0,m− Ca,r

′ + Ca,j} r|y = Other

where Ry and RY ′ are the set of argument roles
which are predefined for trigger type y and all seen
types Y

′
. r is the annotated role and r

′
is the ar-

gument role which ranks the highest for a when a
or y is annotated as Other.

In our experiments, we sample various size of
“negative” training data for trigger and argument
labeling respectively. In the following section, we
describe how the negative training instances are
generated.

5.3 Zero-Shot Classification for Unseen
Types

During test, given a new event mention t
′
, we

compute its mention structure representation for
St′ and all event type structure representations for
SY = {Sy1 , Sy2 , ..., Syn} using the same param-
eters trained from seen types. Then we rank all
event types based on their similarity scores with
mention t

′
. The top ranked prediction for t

′
from

the event type set, denoted as ŷ(t
′
, 1), is given by:

ŷ(t
′
, 1) = argmax

y∈Y
cos([Vt′ ;VSt

′ ], [Vy;VSy ])

Moreover, ŷ(t
′
, k) denotes the kth most proba-

ble event type predicted for t
′
. We will investigate

the event extraction performance based on the top-
k predicted event types.

After determining the type y
′

for mention t
′
, for

each candidate argument, we adopt the same rank-
ing function to find the most appropriate role from
the role set defined for y

′
.

6 Experiments

6.1 Hyper-Parameters
We used the English Wikipedia dump to learn
trigger sense and argument embeddings based on
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the Continuous Skip-gram model (Mikolov et al.,
2013). Table 2 shows the hyper-parameters we
used to train models.

Parameter Name Value
Word Sense Embedding Size 200
Initial Learning Rate 0.1
# of Filters in Convolution Layer 500
Maximal # of Tuples for Mention Structure 10
Maximal # of Tuples for Argument Path 5
Maximal # of Tuples for Event Type Structure 5
Maximal # of Tuples for Argument Role Path 1

Table 2: Hyper-parameters.

6.2 ACE Event Classification

Setting N Seen Types for Training/Dev
A 1 Attack
B 3 Attack, Transport, Die
C 5 Attack, Transport, Die, Meet, Arrest-Jail
D 10 Attack, Transport, Die, Meet, Sentence,

Arrest-Jail, Transfer-Money, Elect,
Transfer-Ownership, End-Position

Table 3: Seen Types in Each Experiment Setting.

We first used the ACE event schema 4 as our
target event ontology and assumed the boundaries
of triggers and arguments as given. Of the 33 ACE
event types, we selected the top-N most popular
event types from ACE05 data as “seen” types, and
used 90% event annotations of these for training
and 10% for development. We set N as 1, 3, 5, 10
respectively. We tested the zero-shot classification
performance on the annotations for the remaining
23 unseen types. Table 3 shows the types that we
selected for training in each experiment setting.

The negative event mentions and arguments that
belong to Other were sampled from the output
of the system developed by Huang et al. (2016)
based on ACE05 training sentences, which groups
all candidate triggers and arguments into clusters
based on semantic representations and assigns a
type/role name to each cluster. We sampled the
negative event mentions from the clusters (e.g.,
Build, Threaten) which do not map to ACE event
types. We sampled the negative arguments from
the arguments of negative event mentions. Table 4
shows the statistics of the training, development
and testing data sets.

To show the effectiveness of structural similar-
ity in our approach, we designed a baseline, WSD-

4ACE event schema specification is at:
https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-
events-guidelines-v5.4.3.pdf

Embedding, which directly maps event mentions
and arguments to their candidate types and roles
using our pre-trained word sense embeddings. Ta-
ble 5 makes the contrast clear: structural similarity
(our approach) is much more effective than lexical
similarity (baseline) for both trigger and argument
classification. Also, as the number of seen types in
training increases, the performance of the transfer
model improves.

We further evaluated the performance of our
transfer approach on similar and distinct unseen
types. The 33 subtypes defined in ACE fall within
8 coarse-grained main types, such as Life and Jus-
tice. Each subtype belongs to one main type.
Subtypes that belong to the same main type tend
to have similar structures. For example, Trial-
Hearing and Charge-Indict have the same set of
argument roles. For training our transfer model,
we selected 4 subtypes of Justice: Arrest-Jail,
Convict, Charge-Indict, Execute. For testing,
we selected 3 other subtypes of Justice: Sentence,
Appeal, Release-Parole. Additionally, we selected
one subtype from each of the other seven main
types for comparison. Table 6 shows that, when
testing on a new unseen type, the more similar
it is to the seen types, the better performance is
achieved.

6.3 ACE Event Identification & Classification

The ACE2005 corpus includes the richest event
annotations currently available for 33 types. How-
ever, in real-world scenarios, there may be thou-
sands of event types of interest. To enrich the
target event ontology and assess our transferable
neural architecture on a large number of unseen
types, when trained on limited annotations of seen
types, we manually constructed a new event on-
tology which combined 33 ACE event types and
argument roles, and 1,161 frames from FrameNet,
except for the most generic frames such as En-
tity and Locale. Some ACE event types were eas-
ily aligned to frames, e.g., Die aligned to Death.
Some frames were instead more accurately treated
as inheritors of ACE types, such as Suicide-Attack,
which inherits from Attack. We manually mapped
the selected frames to ACE types.

We then compared our approach with the fol-
lowing state-of-the-art supervised methods:

• LSTM: A long short-term memory neural
network (Hochreiter and Schmidhuber, 1997)
based on distributed semantic features, similar
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Setting Training Development Test
# of Types,

Roles
# of Events # of

Arguments
# of

Events
# of

Arguments
# of

Types/Roles
# of

Events
# of

Arguments
A 1, 5 953/900 894/1,097 105/105 86/130

23/59 753 879B 3, 14 1,803/1,500 2,035/1,791 200/200 191/237
C 5, 18 2,033/1,300 2,281/1,503 225/225 233/241
D 10, 37 2537/700 2,816/879 281/281 322/365

Table 4: Statistics for Positive/Negative Instances in Training, Dev, and Test Sets for Each Experiment.

Setting Method Hit@k Trigger Classification (%) Hit@k Argument Classification (%)
k=1 k=3 k=5 k=1 k=3 k=5

WSD-Embedding 1.7 13.0 22.8 2.4 2.8 2.8
A

Our Approach

4.0 23.8 32.5 1.3 3.4 3.6
B 7.0 12.5 36.8 3.5 6.0 6.3
C 20.1 34.7 46.5 9.6 14.7 15.7
D 33.5 51.4 68.3 14.7 26.5 27.7

Table 5: Comparison between Structural Representation (Our Approach) and Word Sense Embedding
based Approaches on Hit@K Accuracy (%) for Trigger and Argument Classification.

Type Subtype Hit@k Trigger Classification
1 3 5

Justice Sentence 68.3 68.3 69.5
Justice Appeal 67.5 97.5 97.5
Justice Release-Parole 73.9 73.9 73.9
Conflict Attack 26.5 44.5 46.7
Transaction Transfer-Money 48.4 68.9 79.5
Business Start-Org 0 33.3 66.7
Movement Transport 2.6 3.7 7.8
Personnel End-Position 9.1 50.4 53.7
Contact Phone-Write 60.8 88.2 90.2
Life Injure 87.6 91.0 91.0

Table 6: Performance on Various Types Using Jus-
tice Subtypes for Training

to (Feng et al., 2016).

• Joint: A structured perceptron model based on
symbolic semantic features (Li et al., 2013).

For our approach, we followed the experiment
setting D in the previous section, using the same
training and development data sets for the 10 seen
types, but targeted all 1,194 event types in our
new event ontology, instead of just the 33 ACE
event types. For evaluation, we sampled 150 sen-
tences from the remaining ACE05 data, including
129 annotated event mentions for the 23 unseen
types. For both LSTM and Joint approaches, we
used the entire ACE05 annotated data for 33 ACE
event types for training except for the held-out 150
evaluation sentences.

We first identified the candidate triggers and ar-
guments, then mapped each of these to the target
event ontology. We evaluated our model on their
extracting of event mentions which were classified
into 23 testing ACE types. Table 7 shows the per-

formance.
To further demonstrate the effectiveness of

zero-shot learning in our framework and its im-
pact in saving human annotation effort, we used
the supervised LSTM approach for comparison.
The training data of LSTM contained 3,464 sen-
tences with 905 annotated event mentions for the
23 unseen event types. We divided these event an-
notations into 10 subsets and successively added
one subset at a time (10% of annotations) into the
training data of LSTM. Figure 4 shows the LSTM
learning curve. By contrast, without any anno-
tated mentions on the 23 unseen test event types
in its training set, our transfer learning approach
achieved performance comparable to that of the
LSTM, which was trained on 3,000 sentences5

with 500 annotated event mentions.

Figure 4: Comparison between Our Approach and
Supervised LSTM model on 23 Unseen Event
Types.

5The 3,000 sentences included all the sentences which
even have not any event annotations.
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Method Trigger Identification Trigger Identification
+ Classification

Arg Identification Arg Identification +
Classification

P R F P R F P R F P R F
Supervised LSTM 94.7 41.8 58.0 89.4 39.5 54.8 47.8 22.6 30.6 28.9 13.7 18.6
Supervised Joint 55.8 67.4 61.1 50.6 61.2 55.4 36.4 28.1 31.7 33.3 25.7 29.0

Transfer 85.7 41.2 55.6 75.5 36.3 49.1 28.2 27.3 27.8 16.1 15.6 15.8

Table 7: Event Trigger and Argument Extraction Performance (%) on Unseen ACE Types.

6.4 Impact of AMR

Recall that we used AMR parsing output to iden-
tify triggers and arguments in constructing event
structures. To assess the impact of the AMR
parser (Wang et al., 2015a) on event extraction, we
chose a subset of the ERE (Entity, Relation, Event)
corpus (Song et al., 2015) which has ground-truth
AMR annotations. This subset contains 304 doc-
uments with 1,022 annotated event mentions of
40 types. We selected the top-6 most popular
event types (Arrest-Jail, Execute, Die, Meet, Sen-
tence, Charge-Indict) with manual annotations of
548 event mentions as seen types. We sampled
500 negative event mentions from distinct types of
clusters generated from the system (Huang et al.,
2016) based on ERE training sentences. We com-
bined the annotated events for seen types and the
negative event mentions, and used 90% for train-
ing and 10% for development. For evaluation, we
selected 200 sentences from the remaining ERE
subset, which contains 128 Attack event mentions
and 40 Convict event mentions. Table 8 shows the
event extraction performances based on ground-
truth AMR and system AMR respectively.

We also compared AMR analyses with Seman-
tic Role Labeling (SRL) output (Palmer et al.,
2010) by keeping only the core roles (e.g., :ARG0,
:ARG1) from AMR annotations. As Table 8
shows, comparing the full AMR (top row) to this
SRL proxy (middle row), the fine-grained AMR
semantic relations such as :location, :instrument
appear to be more informative for inferring event
argument role labeling.

Method Trigger
Labeling

Argument
Labeling

P R F1 P R F1

Perfect AMR 79.1 47.1 59.1 25.4 21.4 23.2
Perfect AMR with
Core Roles only
(SRL)

77.1 47.0 58.4 19.7 16.9 18.2

System AMR 85.7 32.0 46.7 22.6 15.8 18.6

Table 8: Impact of AMR and Semantic Roles on
Trigger and Argument Extraction (%).

7 Related Work

Most previous event extraction methods have been
based on supervised learning, using either sym-
bolic features (Ji and Grishman, 2008; Miwa et al.,
2009; Liao and Grishman, 2010; Liu et al., 2010;
Hong et al., 2011; McClosky et al., 2011; Riedel
and McCallum, 2011; Li et al., 2013; Liu et al.,
2016) or distributional features (Chen et al., 2015;
Nguyen and Grishman, 2015; Feng et al., 2016;
Nguyen et al., 2016) derived from a large amount
of training data, and treating event types and ar-
gument role labels as symbols. These approaches
can achieve high quality for known event types,
but cannot be applied to new types without addi-
tional annotation effort. In contrast, we provide
a new angle on event extraction, modeling it as a
generic grounding task by taking advantage of rich
semantics of event types.

Some other IE paradigms such as Open IE
(Etzioni et al., 2005; Banko et al., 2007, 2008;
Etzioni et al., 2011; Ritter et al., 2012), Pre-
emptive IE (Shinyama and Sekine, 2006), On-
demand IE (Sekine, 2006), Liberal IE (Huang
et al., 2016, 2017), and semantic frame-based
event discovery (Kim et al., 2013) can discover
many events without pre-defined event schema.
These paradigms however rely on information re-
dundancy, and so they are not effective when the
input data only consists of a few sentences. Our
work can discover events from any size of input
corpus and can also be complementary with these
paradigms.

Our event extraction paradigm is similar to the
task of entity linking (Ji and Grishman, 2011)
in semantic mapping. However, entity linking
aims to map entity mentions to the same concept,
while our framework maps each event mention to
a specific category. In addition, Bronstein et al.
(2015) and Peng et al. (2016) employ an event-
independent similarity-based function for event
trigger detection, which follows few-shot learn-
ing setting and requires some trigger examples as
seeds. Lu and Roth (2012) design a structure pref-
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erence modeling framework, which can automati-
cally predict argument roles without any annotated
data, but it relies on manually constructed patterns.

Zero-Shot learning has been widely applied in
visual object classification (Frome et al., 2013;
Norouzi et al., 2013; Socher et al., 2013a; Chen
et al., 2017; Li et al., 2017; Xian et al., 2017;
Changpinyo et al., 2017), fine-grained name tag-
ging (Ma et al., 2016; Qu et al., 2016), relation
extraction (Verga et al., 2016; Levy et al., 2017),
semantic parsing (Bapna et al., 2017) and do-
main adaptation (Romera-Paredes and Torr, 2015;
Kodirov et al., 2015; Peng et al., 2017). In contrast
to these tasks, for our case, the number of seen
types in event extraction with manual annotations
is quite limited. The most popular event schemas,
such as ACE, define 33 event types while most vi-
sual object training sets contain more than 1,000
types. Therefore, methods proposed for zero-shot
visual-object classification cannot be directly ap-
plied to event extraction due to overfitting. In this
work, we designed a new loss function by creating
“negative” training instances to avoid overfitting.

8 Conclusions and Future Work

In this work, we take a fresh look at the event ex-
traction task and model it as a generic ground-
ing problem. We propose a transferable neu-
ral architecture, which leverages existing human-
constructed event schemas and manual annota-
tions for a small set of seen types, and transfers
the knowledge from the existing types to the ex-
traction of unseen types, to improve the scalability
of event extraction as well as to save human ef-
fort. To the best of our knowledge, this work is
the first time that zero-shot learning has been ap-
plied to event extraction. Without any annotation,
our approach can achieve performance compara-
ble to state-of-the-art supervised models trained
on a large amount of labeled data. In the future,
we will extend this framework to other Informa-
tion Extraction problems.
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Abstract

Fine-grained opinion analysis aims to ex-
tract aspect and opinion terms from each
sentence for opinion summarization. Su-
pervised learning methods have proven to
be effective for this task. However, in many
domains, the lack of labeled data hinders
the learning of a precise extraction model.
In this case, unsupervised domain adapta-
tion methods are desired to transfer knowl-
edge from the source domain to any un-
labeled target domain. In this paper, we
develop a novel recursive neural network
that could reduce domain shift effectively
in word level through syntactic relations.
We treat these relations as invariant “pivot
information” across domains to build struc-
tural correspondences and generate an aux-
iliary task to predict the relation between
any two adjacent words in the dependency
tree. In the end, we demonstrate state-of-
the-art results on three benchmark datasets.

1 Introduction

The problem of fine-grained opinion analysis in-
volves extraction of opinion targets (or aspect
terms) and opinion expressions (or opinion terms)
from each review sentence. For example, in the sen-
tence: “They offer good appetizers”, the aspect and
opinion terms are appetizers and good correspond-
ingly. Many supervised deep models have been pro-
posed for this problem (Liu et al., 2015; Yin et al.,
2016; Wang et al., 2017), and obtained promising
results. However, these methods fail to adapt well
across domains, because the aspect terms from two
different domains are usually disjoint, e.g., lap-
top v.s. restaurant, leading to large domain shift
in the feature vector space. Though unsupervised
methods (Hu and Liu, 2004; Qiu et al., 2011) can

deal with data with few labels, their performance
is unsatisfactory compared with supervised ones.

There have been a number of domain adaptation
methods for coarse-grained sentiment classification
problems across domains, where an overall senti-
ment polarity of a sentence or document is being
predicted. Nevertheless, very few approaches exist
for cross-domain fine-grained opinion analysis due
to the difficulties in fine-grained adaptation, which
is more challenging than coarse-grained problems.
Li et al. (2012) proposed a bootstrap method based
on the TrAdaBoost algorithm (Dai et al., 2007)
to iteratively expand opinion and aspect lexicons
in the target domain by exploiting source-domain
labeled data and cross-domain common relations
between aspect terms and opinion terms. However,
their model requires a seed opinion lexicon in the
target domain and pre-mined syntactic patterns as a
bridge. Ding et al. (2017) proposed to use rules to
generate auxiliary supervision on top of a recurrent
neural network to learn domain-invariant hidden
representation for each word. The performance
highly depends on the quality of the manually de-
fined rules and the prior knowledge of a sentiment
lexicon. In addition, the recurrent structure fails to
capture the syntactic interactions among words in-
trinsically for opinion extraction. The requirement
for rules makes the above methods non-flexible.

In this paper, we propose a novel cross-domain
Recursive Neural Network (RNN)1 for aspect and
opinion terms co-extraction across domains. Our
motivations are twofold: 1) The dependency re-
lations capture the interactions among different
words. These relations are especially important
for identifying aspect terms and opinion terms (Qiu
et al., 2011; Wang et al., 2016), which are also
domain-invariant within the same language. There-
fore, they can be used as “pivot” information to

1Here, we use RNN to denote recursive neural networks,
rather than recurrent neural networks.

2171



bridge the gap between different domains. 2) In-
spired by the idea of structural learning (Ando and
Zhang, 2005), the success of target task depends
on the ability of finding good predictive structures
learned from other related tasks, e.g., structural cor-
respondence learning (SCL) (Blitzer et al., 2006)
for coarse-grained cross-domain sentiment classifi-
cation. Here, we aim to generate an auxiliary task
on dependency relation classification. Different
from previous approaches, our auxiliary task and
the target extraction task are of heterogeneous label
spaces. We aim to integrate this auxiliary task with
distributed relation representation learning into a
recursive neural network.

Specifically, we generate a dependency tree for
each sentence from the dependency parser and con-
struct a unified RNN that integrates an auxiliary
task into the computation of each node. The aux-
iliary task is to classify the dependency relation
for each direct edge in the dependency tree by
learning a relation feature vector. To reduce la-
bel noise brought by inaccurate parsing trees, we
further propose to incorporate an autoencoder into
the auxiliary task to group the relations into dif-
ferent clusters. Finally, to model the sequential
context interaction, we develop a joint architec-
ture that combines RNN with a sequential labeling
model for aspect and opinion terms extraction. Ex-
tensive experiments are conducted to demonstrate
the advantage of our proposed model.

2 Related Work

Existing works for single-domain aspect/opinion
terms extraction include unsupervised methods
based on association rule mining (Hu and Liu,
2004), syntactic rule propagation (Qiu et al., 2011)
or topic modeling (Titov and McDonald, 2008; Lu
et al., 2009; Zhang et al., 2010), as well as su-
pervised methods based on extensive feature engi-
neering with graphical models (Jin and Ho, 2009;
Li et al., 2010) or deep learning (Liu et al., 2015;
Zhang et al., 2015; Wang et al., 2017; Yin et al.,
2016). Among exiting deep models, improved re-
sults are obtained using dependency relations (Yin
et al., 2016; Wang et al., 2016), which indicates the
significance of syntactic word interactions for tar-
get term extraction. In cross-domain setting, there
are very few works for aspect/opinion terms extrac-
tion including a pipelined approach (Li et al., 2012)
and a recurrent neural network (Ding et al., 2017).
Both of the methods require manual construction

of common and pivot syntactic patterns or rules,
which are indicative of aspect or opinion words.

There have been a number of domain adaptation
approaches proposed for coarse-grained sentiment
classification. Among existing methods, one active
line focuses on projecting original feature spaces
of two domains into the same low-dimensional
space to reduce domain shift using pivot features
as a bridge (Blitzer et al., 2007; Pan et al., 2010;
Bollegala et al., 2015; Yu and Jiang, 2016). An-
other line learns domain-invariant features via auto-
encoders (Glorot et al., 2011; Chen et al., 2012;
Zhou et al., 2016). Our work is more related to the
first line by utilizing pivot information to transfer
knowledge across domains, but we integrate the
idea into a unified deep structure that can fully uti-
lize syntactic structure for domain adaptation in
fine-grained sentiment analysis.

3 Problem Definition & Motivation

Our task is to extract opinion and aspect terms
within each review sentence. We denote a sen-
tence by a sequence of tokens x= (w1, w2, ..., wn).
The output is a sequence of token-level labels
y=(y1, y2, ..., yn), with yi∈{BA, IA,BO, IO,N}
that represents beginning of an aspect (BA), inside
of an aspect (IA), beginning of an opinion (BO),
inside of an opinion (IO) or none of the above (N).
A subsequence of labels started with “BA” and fol-
lowed by “IA” indicates a multi-word aspect term.
In unsupervised domain adaptation, we are given a
set of labeled review sentences from a source do-
main DS={(xSi ,ySi)}nS

i=1, and a set of unlabeled
sentences from a target domain DT = {xTj}nT

j=1.
Our goal is to predict token-level labels on DT .

Existing works for cross-domain aspect and/or
opinion terms extraction require hand-coded rules
and a sentiment lexicon in order to transfer knowl-
edge across domains. For example in Figure 1,
given a review sentence “They offer good appe-
tizers” in the source domain and “The laptop has
a nice screen” in the target domain. If nice has
been extracted as a common sentiment word, and
“OPINION-amod-ASPECT” has been identified as
a common syntactic pattern from the source do-
main, screen could be deduced as an aspect term us-
ing the identified syntactic pattern (Li et al., 2012).
Similarly, Ding et al. (2017) used a set of pre-
defined rules based on syntactic relations and a
sentiment lexicon to generate auxiliary labels to
learn high-level feature representations through a
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They

o�er

good

appetizers
nsubj

dobj

amod
The

laptop

has

a

screen

nice

det
det

nsubj dobj

amod

RESTAURANT LAPTOP

Figure 1: An example of two reviews with similar
syntactic patterns.

recurrent neural network.
On one hand, these previous attempts have ver-

ified that syntactic information between words,
which can be used as a bridge between domains, is
crucial for domain adaptation. On the other hand,
dependency-tree-based RNN (Socher et al., 2010)
has proven to be effective to learn high-level fea-
ture representation of each word by encoding syn-
tactic relations between aspect terms and opinion
terms (Wang et al., 2016). With the above findings,
we propose a novel RNN named Recursive Neural
Structural Correspondence Network (RNSCN) to
learn high-level representation for each word across
different domains. Our model is built upon depen-
dency trees generated from a dependency parser.
Different from previous approaches, we do not re-
quire any hand-coded rules or pre-selected pivot
features to construct correspondences, but rather
focus on the automatically generated dependency
relations as the pivots. The model associates each
direct edge in the tree with a relation feature vector,
which is used to predict the corresponding depen-
dency relation as an auxiliary task.

Note that the relation vector is the key in the
model: it associates with the two interacting words
and is used to construct structural correspondences
between two different domains. Hence, the aux-
iliary task guides the learning of relation vectors,
which in turn affects their correspondingly interac-
tive words. Specifically in Figure 1, the relation
vector for “amod” is computed from the features
of its child and parent words, and also used to pro-
duce the hidden representation of its parent. For
this relation path in both sentences, the auxiliary
task enforces close proximity for these two relation
vectors. This pushes the hidden representations for
their parent nodes appetizers and screen closer to
each other, provided that good and nice have sim-
ilar representations. In a word, the auxiliary task
bridges the gap between two different domains by
drawing the words with similar syntactic properties
closer to each other.

However, the relation vectors may be sensitive
to the accuracy of the dependency parser. It might

harm the learning process when some noise ex-
ists for certain relations, especially for informal
texts. This problem of noisy labels has been ad-
dressed using perceptual consistency (Reed et al.,
2015). Inspired by the taxonomy of dependency re-
lations (de Marneffe and Manning, 2008), relations
with similar functionalities could be grouped to-
gether, e.g., dobj, iobj and pobj all indicate objects.
We propose to use an auto-encoder to automatically
group these relations in an unsupervised manner.
The reconstruction loss serves as the consistency
objective that reduces label noise by aligning rela-
tion features with their intrinsic relation group.

4 Proposed Methodology

Our model consists of two components. The first
component is a Recursive Neural Structural Cor-
respondence Network (RNSCN), and the second
component is a sequence labeling classifier. In this
paper, we focus on Gated Recurrent Unit (GRU) as
an implementation for the sequence labeling classi-
fier. We choose GRU because it is able to deal with
long-term dependencies compared to a simple Re-
current neural network and requires less parameters
making it easier to train than LSTM. The resultant
deep learning model is denoted by RNSCN-GRU.
We also implement Conditional Random Field as
the sequence labeling classifier, and denote the
model by RNSCN-CRF accordingly.

The overall architecture of RNSCN-GRU with-
out auto-encoder on relation denoising is shown
in Figure 2. The left and right are two example
sentences from the source and the target domain,
respectively. In the first component, RNSCN, an
auxiliary task to predict the dependency relation for
each direct edge is integrated into a dependency-
tree-based RNN. We generate a relation vector for
each direct edge from its child node to parent node,
and use it to predict the relation and produce the
hidden representation for the parent node in the de-
pendency tree. To address the issues of noisy rela-
tion labels, we further incorporate an auto-encoder
into RNSCN, as will be shown in Figure 3.

While RNSCN mainly focuses on syntactic in-
teractions among the words, the second component,
GRU, aims to compute linear-context interactions.
GRU takes the hidden representation of each word
computed from RNSCN as inputs and further pro-
duces final representation of each word by taking
linear contexts into consideration. We describe
each component in detail in the following sections.
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Figure 2: The architecture of RNSCN-GRU.

4.1 Recursive Neural Structural
Correspondence Network

RNSCN is built on the dependency tree of each sen-
tence, which is pre-generated from a dependency
parser. Specifically, each node in the tree is asso-
ciated with a word wn, an input word embedding
xn∈Rd and a transformed hidden representation
hn∈Rd. Each direct edge in the dependency tree
associates with a relation feature vector rnm∈Rd
and a true relation label vector yRnm∈RK , where
K is the total number of dependency relations, n
and m denote the indices of the parent and child
word of the dependency edge, respectively. Based
on the dependency tree, the hidden representations
are generated in a recursive manner from leaf nodes
until reaching the root node. Consider the source-
domain sentence shown in Figure 2 as an illustra-
tive example, we first compute hidden representa-
tions for leaf nodes they and good:

h1=tanh(Wxx1 + b), h3=tanh(Wxx3 + b),

where Wx ∈ Rd×d transforms word embeddings
to hidden space. For non-leaf node appetizer, we
first generate the relation vector r43 for the depen-

dency edge x4 (appetizers) amod−−−−→ x3 (good) by

r43 = tanh(Whh3 + Wxx4),

where Wh ∈ Rd×d transforms the hidden repre-
sentation to the relation vector space. We then
compute the hidden representation for appetizer:

h4 = tanh(Wamodr43 + Wxx4 + b).

Moreover, the relation vector r43 is used for the
auxiliary task on relation prediction:

ŷR43 = softmax(WRr43 + bR),

where WR ∈ R
K×d is the relation classifica-

tion matrix. The supervised relation classifier en-
forces close proximity of similar {rnm}’s in the dis-
tributed relation vector space. The relation features
bridge the gap of word representations in different
domains by incorporating them into the forward
computations. In general, the hidden representation
hn for a non-leaf node is produced through

hn=tanh(
∑

m∈Mn

WRnmrnm + Wxxn + b), (1)

where rnm=tanh(Wh ·hm+Wx ·xn),Mn is the
set of child nodes of wn, and WRnm is the relation
transformation matrix tied with each relation Rnm.
The predicted label vector ŷRnm for rnm is

ŷRnm = softmax(WR · rnm + bR). (2)

Here we adopt the the cross-entropy loss for re-
lation classification between the predicted label
vector ŷRnm and the ground-truth yRnm to encode
relation side information into feature learning:

`R =
K∑

k=1

−yRnm[k] log ŷRnm[k]. (3)

Through the auxiliary task, similar relations en-
force participating words close to each other so
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that words with similar syntactic functionalities are
clustered across domains. On the other hand, the
pre-trained word embeddings group semantically-
similar words. By taking them as input to RNN,
together with the auxiliary task, our model encodes
both semantic and syntactic information.

4.2 Reduce Label Noise with Auto-encoders
As discussed in Section 3, it might be hard to learn
an accurate relation classifier when each class is
a unique relation, because the dependency parser
may generate incorrect relations as noisy labels. To
address it, we propose to integrate an autoencoder
into RNSCN. Suppose there is a set of latent groups
of relations: G = {1, 2, ..., |G|}, where each rela-
tion belongs to only one group. For each relation
vector, rnm, an autoencoder is performed before
feeding it into the auxiliary classifier (2). The goal
is to encode the relation vector to a probability dis-
tribution of assigning this relation to any group. As
can be seen Figure 3, each relation vector rnm is
first passed through the autoencoder as follows,

p(Gnm = i|rnm) =
exp(r>nmWencgi)∑

j∈G
exp(r>nmWencgj)

, (4)

where Gnm denotes the inherent relation group for
rnm, gi∈Rd represents the feature embedding for
group i, and Wenc∈Rd×d is the encoding matrix
that computes bilinear interactions between relation
vector rnm and relation group embedding gi. Thus,
p(Gnm = i|rnm) represents the probability of rnm
being mapped to group i. An accumulated relation
group embedding is computed as:

gnm =

|G|∑

i=1

p(Gnm = i|rnm)gi. (5)

For decoding, the decoder takes gnm as input and
tries to reconstruct the relation feature input rnm.
Moreover, gnm is also used as the higher-level fea-
ture vector for rnm for predicting the relation label.
Therefore, the objective for the auxiliary task in (3)
becomes:

`R = `R1 + α`R2 + β`R3 , (6)

where

`R1 = ‖rnm −Wdecgnm‖22 , (7)

`R2 =

K∑

k=1

−yRnm[k] log ŷRnm[k], (8)

`R3 =
∥∥∥I− Ḡ>Ḡ

∥∥∥
2

F
. (9)
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hm xn
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Figure 3: An autoencoder for relation grouping.

Here `R1 is the reconstruction loss with Wdec

being the decoding matrix, `R2 follows (3) with
ŷRnm = softmax(WRgnm + bR) and `R3 is the
regularization term on the correlations among la-
tent groups with I being the identity matrix and Ḡ
being a normalized group embedding matrix that
consists of normalized gi’s as column vectors. This
regularization term enforces orthogonality between
gi and gj for i 6= j. α and β are used to con-
trol the trade-off among different losses. With the
auto-encoder, the auxiliary task of relation classi-
fication is conditioned on group assignment. The
reconstruction loss further ensures the consistency
between relation features and groupings, which is
supposed to dominate classification loss when the
observed labels are inaccurate. We denote RNSCN
with auto-encoder by RNSCN+.

4.3 Joint Models for Sequence Labeling
RNSCN or RNSCN+ focuses on capturing and rep-
resenting syntactic relations to build a bridge be-
tween domains and learn more powerful represen-
tations for tokens. However, it ignores the linear-
chain correlations among tokens within a sentence,
which is important for aspect and opinion terms ex-
traction. Therefore, we propose a joint model, de-
noted by RNSCN-GRU (RNSCN+-GRU), which
integrates a GRU-based recurrent neural network
on top of RNSCN (RNSCN+), i.e., the input for
GRU is the hidden representations hn learned by
RNSCN or RNSCN+ for the n-th token in the sen-
tence. For simplicity in presentation, we denote the
computation of GRU by using the notation fGRU .
To be specific, by taking hn as input, the final fea-
ture representation h′n for each word is obtained
through

h′n = fGRU (h
′
n−1,hn;Θ), (10)

where Θ is the collection of the GRU parameters.
The final token-level prediction is made through

ŷn = softmax(Wl · h′n + bl), (11)

where Wl ∈ R5×d′ transforms a d′-dimensional
feature vector to class probabilities (note that we
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have 5 different classes as defined in Section 3).
The second joint model, namely RNSCN-CRF,

combines a linear-chain CRF with RNSCN to learn
the discriminative mapping from high-level fea-
tures to labels. The advantage of CRF is to learn
sequential interactions between each pair of adja-
cent words as well as labels and provide structural
outputs. Formally, the joint model aims to output
a sequence of labels with maximum conditional
probability given its input. Denote by y a sequence
of labels for a sentence and by H the embedding
matrix for each sentence (each column denotes a
hidden feature vector of a word in the sentence
learned by RNSCN), the inference is computed as:

ŷ= argmax
y

p(y|H)

= argmax
y

1

Z(H)

∏

c∈C
exp〈Wc, g(H,yc)〉(12)

whereC indicates the set of different cliques (unary
and pairwise cliques in the context of linear-chain).
Wc is tied for each different yc, which indicates
the labels for clique c. The operator 〈·, ·〉 is the
element-wise multiplication, and g(·) produces the
concatenation of {hn}’s in a context window of
each word. The above two models both consider
the sequential interaction of the words within each
sentence, but the formalization and training are
totally different. We will report the results for both
joint models in the experiment section.

4.4 Training
Recall that in our cross-domain setting, the labels
for terms extraction are only available in the source
domain, but the auxiliary relation labels can be
automatically produced for both domains via the
dependency parser. Besides the source domain la-
beled data DS = {(xSi ,ySi)}nS

i=1, we denote by
DR={(rj ,yRj )}nR

j=1 the combined source and tar-
get domain data with auxiliary relation labels. For
training, the total loss consists of token-prediction
loss `S and relation-prediction loss `R:

L =
∑

DS

`S(ySi , ŷSi) + γ
∑

DR

`R(rj ,y
R
j ), (13)

where γ is the trade-off parameter, `S is the cross-
entropy loss between the predicted extraction label
in (11) and the ground-truth, and `R is defined in
(6) for RNSCN+ or (3) for RNSCN. For RNSCN-
CRF, the loss becomes the negative log probability
of the true label given the corresponding input:

`S(ySi , ŷSi) = − log(ySi |hSi). (14)

Dataset Description # Sentences Training Testing
R Restaurant 5,841 4,381 1,460
L Laptop 3,845 2,884 961
D Device 3,836 2,877 959

Table 1: Data statistics with number of sentences.

The parameters for token-level predictions and
relation-level predictions are updated jointly such
that the information from the auxiliary task could
be propagated to the target task to obtain better
performance. This idea is in accordance with struc-
tural learning proposed by Ando and Zhang (2005),
which shows that multiple related tasks are use-
ful for finding the optimal hypothesis space. In
our case, the set of multiple tasks includes the tar-
get terms extraction task and the auxiliary relation
prediction task, which are closely related. The pa-
rameters are all shared across domains. The joint
model is trained using back-propagation from the
top layer of GRU or CRF to RNSCN until reaching
to the input word embeddings in the bottom.

5 Experiments

5.1 Data & Experimental Setup

The data is taken from the benchmark customer re-
views in three different domains, namely restaurant,
laptop and digital devices. The restaurant domain
contains a combination of restaurant reviews from
SemEval 2014 task 4 subtask 1 (Pontiki et al., 2014)
and SemEval 2015 task 12 subtask 1 (Pontiki et al.,
2015). The laptop domain consists of laptop re-
views from SemEval 2014 task 4 subtask 1. For
digital device, we take reviews from (Hu and Liu,
2004) containing sentences from 5 digital devices.
The statistics for each domain are shown in Table 1.
In our experiments, we randomly split the data in
each domain into training set and testing set with
the proportion being 3:1. To obtain more rigorous
result, we make three random splits for each do-
main and test the learned model on each split. The
number of sentences for training and testing after
each split is also shown in Table 1. Each sentence
is labeled with aspect terms and opinion terms.

For each cross-domain task, we conduct both
inductive and transductive experiments. Specifi-
cally, we train our model only on the training sets
from both (labeled) source and (unlabeled) target
domains. For testing, the inductive results are ob-
tained using the test data from the target domain,
and the transductive results are obtained using the
(unlabeled) training data from the target domain.
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The evaluation metric we used is F1 score. Fol-
lowing the setting from existing work, only exact
match could be counted as correct.

For experimental setup, we use Stanford Depen-
dency Parser (Klein and Manning, 2003) to gen-
erate dependency trees. There are in total 43 dif-
ferent dependency relations, i.e. 43 classes for the
auxiliary task. We set the number of latent rela-
tion groups as 20. The input word features for
RNSCN are pre-trained word embeddings using
word2vec (Mikolov et al., 2013) which is trained
on 3M reviews from the Yelp dataset2 and electron-
ics dataset in Amazon reviews3 (McAuley et al.,
2015). The dimension of word embeddings is 100.
Because of the relatively small size of the training
data compared with the number of parameters, we
firstly pre-train RNSCN for 5 epochs with mini-
batch size 30 and rmsprop initialized at 0.01. The
joint model of RNSCN+-GRU is then trained with
rmsprop initialized at 0.001 and mini-batch size 30.
The trade-off parameter α, β and γ are set to be
1, 0.001 and 0.1, respectively. The hidden-layer
dimension for GRU is 50, and the context win-
dow size is 3 for input feature vectors of GRU. For
the joint model of RNSCN-CRF, we implement
SGD with a decaying learning rate initialized at
0.02. The context window size is also 3 in this case.
Both joint models are trained for 10 epochs.

5.2 Comparison & Results
We compared our proposed model with several
baselines and variants of the proposed model:

• RNCRF: A joint model of recursive neural
network and CRF proposed by (Wang et al.,
2016) for single-domain aspect and opinion
terms extraction. We make all the parameters
shared across domains for target prediction.

• RNGRU: A joint model of RNN and GRU.
The hidden layer of RNN is taken as input
for GRU. We share all the parameters across
domains, similar to RNCRF.

• CrossCRF: A linear-chain CRF with hand-
engineered features that are useful for cross-
domain settings (Jakob and Gurevych, 2010),
e.g., POS tags, dependency relations.

• RAP: The Relational Adaptive bootstraPping
method proposed by (Li et al., 2012) that uses
TrAdaBoost to expand lexicons.

2http://www.yelp.com/dataset challenge
3http://jmcauley.ucsd.edu/data/amazon/links.html

• Hier-Joint: A recent deep model proposed
by Ding et al. (2017) that achieves state-of-
the-art performance on aspect terms extraction
across domains.

• RNSCN-GRU: Our proposed joint model in-
tegrating auxiliary relation prediction task into
RNN that is further combined with GRU.

• RNSCN-CRF: The second proposed model
similar to RNSCN-GRU, which replace GRU
with CRF.

• RNSCN+-GRU: Our final joint model with
auto-encoders to reduce auxiliary label noise.

Note that we do not implement other recent deep
adaptation models for comparison (Chen et al.,
2012; Yang and Hospedales, 2015), because Hier-
Joint (Ding et al., 2017) has already demonstrated
better performances than these models. The overall
comparison results with the baselines are shown
in Table 2 with average F1 scores and standard
deviations over three random splits. Clearly, the re-
sults for aspect terms (AS) transfer are much lower
than opinion terms (OP) transfer, which indicate
that the aspect terms are usually quite different
across domains, whereas the opinion terms could
be more common and similar. Hence the ability
to adapt the aspect extraction from the source do-
main to the target domain becomes more crucial.
On this behalf, our proposed model shows clear
advantage over other baselines for this more dif-
ficult transfer problem. Specifically, we achieve
6.77%, 5.88%, 10.55% improvement over the best-
performing baselines for aspect extraction in R→L,
L→D and D→L, respectively. By comparing with
RNCRF and RNGRU, we show that the structural
correspondence network is indeed effective when
integrated into RNN.

To show the effect of the integration of the au-
toencoder, we conduct experiments over different
variants of the proposed model in Table 3. RNSCN-
GRU represents the model without autoencoder,
which achieves much better F1 scores on most ex-
periments compared with the baselines in Table 2.
RNSCN+-GRU outperforms RNSCN-GRU in al-
most all experiments. This indicates the autoen-
coder automatically learns data-dependent group-
ings, which is able to reduce unnecessary label
noise. To further verify that the autoencoder indeed
reduces label noise when the parser is inaccurate,
we generate new noisy parse trees by replacing
some relations within each sentence with a random
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Models R→L R→D L→R L→D D→R D→L
AS OP AS OP AS OP AS OP AS OP AS OP

CrossCRF 19.72 59.20 21.07 52.05 28.19 65.52 29.96 56.17 6.59 39.38 24.22 46.67
(1.82) (1.34) (0.44) (1.67) (0.58) (0.89) (1.69) (1.49) (0.49) (3.06) (2.54) (2.43)

RAP 25.92 62.72 22.63 54.44 46.90 67.98 34.54 54.25 45.44 60.67 28.22 59.79
(2.75) (0.49) (0.52) (2.20) (1.64) (1.05) (0.64) (1.65) (1.61) (2.15) (2.42) (4.18)

Hier-Joint 33.66 - 33.20 - 48.10 - 31.25 - 47.97 - 34.74 -
(1.47) - (0.52) - (1.45) - (0.49) - (0.46) - (2.27)

RNCRF 24.26 60.86 24.31 51.28 40.88 66.50 31.52 55.85 34.59 63.89 40.59 60.17
(3.97) (3.35) (2.57) (1.78) (2.09) (1.48) (1.40) (1.09) (1.34) (1.59) (0.80) (1.20)

RNGRU 24.23 60.65 20.49 52.28 39.78 62.99 32.51 52.24 38.15 64.21 39.44 60.85
(2.41) (1.04) (2.68) (2.69) (0.61) (0.95) (1.12) (2.37) (2.82) (1.11) (2.79) (1.25)

RNSCN-CRF 35.26 61.67 32.00 52.81 53.38 67.60 34.63 56.22 48.13 65.06 46.71 61.88
(1.31) (1.35) (1.48) (1.29) (1.49) (0.99) (1.38) (1.10) (0.71) (0.66) (1.16) (1.52)

RNSCN-GRU 37.77 62.35 33.02 57.54 53.18 71.44 35.65 60.02 49.62 69.42 45.92 63.85
(0.45) (1.85) (0.58) (1.27) (0.75) (0.97) (0.77) (0.80) (0.34) (2.27) (1.14) (1.97)

RNSCN+-GRU 40.43 65.85 35.10 60.17 52.91 72.51 40.42 61.15 48.36 73.75 51.14 71.18
(0.96) (1.50) (0.62) (0.75) (1.82) (1.03) (0.70) (0.60) (1.14) (1.76) (1.68) (1.58)

Table 2: Comparisons with different baselines.

Models R→L R→D L→R L→D D→R D→L
AS OP AS OP AS OP AS OP AS OP AS OP

RNSCN-GRU 37.77 62.35 33.02 57.54 53.18 71.44 35.65 60.02 49.62 69.42 45.92 63.85
RNSCN-GRU (r) 32.97 50.18 26.21 53.58 35.88 65.73 32.87 57.57 40.03 67.34 40.06 59.18
RNSCN+-GRU 40.43 65.85 35.10 60.17 52.91 72.51 40.42 61.15 48.36 73.75 51.14 71.18

RNSCN+-GRU (r) 39.27 59.41 33.42 57.24 45.79 69.96 38.21 59.12 45.36 72.84 50.45 68.05

Table 3: Comparisons with different variants of the proposed model.

R→L R→D L→R L→D D→R D→L
AS OP AS OP AS OP AS OP AS OP AS OP

OUT

Hier-Joint 33.66 - 33.20 - 48.10 - 31.25 - 47.97 - 34.74 -
RNSCN+-GRU* 39.06 - 34.07 - 47.98 - 38.51 - 47.49 - 48.49 -
RNSCN+ 31.60 65.89 24.37 60.01 39.58 71.03 34.40 60.47 41.02 71.23 45.54 69.00
RNSCN+-GRU 40.43 65.85 35.10 60.17 52.91 72.51 40.42 61.15 48.36 73.75 51.14 71.18

IN

Hier-Joint 32.41 - 29.79 - 47.04 - 31.26 - 47.41 - 33.80 -
RNSCN+-GRU* 40.34 - 30.75 - 48.69 - 37.40 - 46.49 - 48.50 -
RNSCN+ 30.76 63.65 22.48 59.24 39.54 70.25 35.32 60.00 37.75 70.64 43.72 68.27
RNSCN+-GRU 41.27 65.44 33.58 60.28 52.48 72.10 39.73 60.18 47.10 72.19 50.23 70.21

Table 4: Comparisons with different transfer setting.

relation. Specifically, in each source domain, for
each relation that connects to any aspect or opin-
ion word, it has 0.5 probability of being replaced
by any other relation. In Table 3, We denote the
model with noisy relations with (r). Obviously, the
performance of RNSCN-GRU without an autoen-
coder significantly deteriorates when the auxiliary
labels are very noisy. On the contrary, RNSCN+-
GRU (r) achieves acceptable results compared to
RNSCN+-GRU. This proves that the autoencoder
makes the model more robust to label noise and
helps to adapt the information more accurately to
the target data. Note that a large drop for L→ R
in aspect extraction might be caused by a large por-
tion of noisy replacements for this particular data
which makes it too hard to train a good classifier.
This may not greatly influence opinion extraction,
as shown, because the two domains usually share
many common opinion terms. However, the signif-
icant difference in aspect terms makes the learning

more dependent on common relations.
The above comparisons are made using the test

data from target domains which are not available
during training (i.e., the inductive setting). For
more complete comparison, we also conduct exper-
iments in the transductive setting. We pick our best
model RNSCN+-GRU, and show the effect of dif-
ferent components. To do that, we first remove the
sequential structure on top, resulting in RNSCN+.
Moreover, we create another variant by removing
opinion term labels to show the effect of the dou-
ble propogation between aspect terms and opinion
terms. The resulting model is named RNSCN+-
GRU*. As shown in Table 4, we denote by OUT
and IN the inductive and transductive setting, re-
spectively. The results shown are the average F1
scores among three splits4. In general, RNSCN+-
GRU shows similar performances for both induc-
tive and transductive settings. This indicates the

4We omit standard deviation here due to the limit of space.
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G Word
1 this, the, their, my, here, it, I, our, not

2 quality, jukebox, maitre-d, sauces, portions,
volume, friend, noodles, calamari

3 in, slightly, often, overall, regularly,
since, back, much, ago

4 handy, tastier, white, salty, right, vibrant, first, ok

5 get, went, impressed, had, try, said,
recommended, call, love

6 is, are, feels, believes, seems, like, will, would

Table 5: Case studies on word clustering

robustness and the ability to learn well when test
data is not presented during training. Without opin-
ion labels, RNSCN+-GRU* still achieves better
results than Hier-Joint most of the time. Its lower
performance compared to RNSCN+-GRU also in-
dicates that in the cross-domain setting, the dual
information between aspects and opinions is bene-
ficial to find appropriate and discriminative relation
feature space. Finally, the results for RNSCN+

by removing GRU are lower than the joint model,
which proves the importance of combining syntac-
tic tree structure with sequential modeling.

To qualitatively show the effect of the auxiliary
task with auto-encoders for clustering syntactically
similar words across domains, we provide some
case studies on the predicted groups of some words
in Table 5. Specifically, for each relation in the
dependency tree, we use (4) to obtain the most
probable group to assign the word in the child node.
The left column shows the predicted group index
with the right column showing the corresponding
words. Clearly, the words in the same group have
similar syntactic functionalities, whereas the word
types vary across groups.

In the end, we verify the robustness and capa-
bility of the model by conducting sensitivity stud-
ies and experiments with varying number of unla-
beled target data for training, respectively. Figure 4
shows the sensitivity test for L→D, which indi-
cates that changing of the trade-off parameter γ
or the number of groups |G| does not affect the
model’s performance greatly, i.e., less than 1% for
aspect extraction and 2% for opinion extraction.
This proves that our model is robust and stable
against small variations. Figure 5 compares the
results of RNSCN+-GRU with Hier-Joint when
increasing the proportion of unlabeled target train-
ing data from 0 to 1. Obviously, our model shows
steady improvement with the increasing number
of unlabeled target data. This pattern proves our
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Figure 5: F1 vs proportion of unlabeled target data.

model’s capability of learning from target domain
for adaptation.

6 Conclusion

We propose a novel dependency-tree-based RNN,
namely RNSCN (or RNSCN+), for domain adap-
tation. The model integrates an auxiliary task into
representation learning of nodes in the dependency
tree. The adaptation takes place in a common re-
lation feature space, which builds the structural
correspondences using syntactic relations among
the words in each sentence. We further develop a
joint model to combine RNSCN/RNSCN+ with a
sequential labeling model for terms extraction.
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Abstract

Training a task-completion dialogue agent
via reinforcement learning (RL) is costly
because it requires many interactions with
real users. One common alternative is to
use a user simulator. However, a user
simulator usually lacks the language com-
plexity of human interlocutors and the bi-
ases in its design may tend to degrade the
agent. To address these issues, we present
Deep Dyna-Q, which to our knowledge
is the first deep RL framework that inte-
grates planning for task-completion dia-
logue policy learning. We incorporate into
the dialogue agent a model of the envi-
ronment, referred to as the world model,
to mimic real user response and gener-
ate simulated experience. During dialogue
policy learning, the world model is con-
stantly updated with real user experience
to approach real user behavior, and in
turn, the dialogue agent is optimized using
both real experience and simulated expe-
rience. The effectiveness of our approach
is demonstrated on a movie-ticket booking
task in both simulated and human-in-the-
loop settings1.

1 Introduction

Learning policies for task-completion dialogue is
often formulated as a reinforcement learning (RL)
problem (Young et al., 2013; Levin et al., 1997).
However, applying RL to real-world dialogue sys-
tems can be challenging, due to the constraint that
an RL learner needs an environment to operate
in. In the dialogue setting, this requires a dia-
logue agent to interact with real users and adjust

1The source code of this work is available at https://
github.com/MiuLab/DDQ

its policy in an online fashion, as illustrated in Fig-
ure 1(a). Unlike simulation-based games such as
Atari games (Mnih et al., 2015) and AlphaGo (Sil-
ver et al., 2016a, 2017) where RL has made its
greatest strides, task-completion dialogue systems
may incur significant real-world cost in case of
failure. Thus, except for very simple tasks (Singh
et al., 2002; Gašić et al., 2010, 2011; Pietquin
et al., 2011; Li et al., 2016a; Su et al., 2016b), RL
is too expensive to be applied to real users to train
dialogue agents from scratch.

One strategy is to convert human-interacting di-
alogue to a simulation problem (similar to Atari
games), by building a user simulator using human
conversational data (Schatzmann et al., 2007; Li
et al., 2016b). In this way, the dialogue agent can
learn its policy by interacting with the simulator
instead of real users (Figure 1(b)). The simulator,
in theory, does not incur any real-world cost and
can provide unlimited simulated experience for re-
inforcement learning. The dialogue agent trained
with such a user simulator can then be deployed to
real users and further enhanced by only a small
number of human interactions. Most of recent
studies in this area have adopted this strategy (Su
et al., 2016a; Lipton et al., 2016; Zhao and Eske-
nazi, 2016; Williams et al., 2017; Dhingra et al.,
2017; Li et al., 2017; Liu and Lane, 2017; Peng
et al., 2017b; Budzianowski et al., 2017; Peng
et al., 2017a).

However, user simulators usually lack the con-
versational complexity of human interlocutors,
and the trained agent is inevitably affected by bi-
ases in the design of the simulator. Dhingra et al.
(2017) demonstrated a significant discrepancy in
a simulator-trained dialogue agent when evalu-
ated with simulators and with real users. Even
more challenging is the fact that there is no uni-
versally accepted metric to evaluate a user simula-
tor (Pietquin and Hastie, 2013). Thus, it remains
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Figure 1: Three strategies of learning task-completion dialogue policies via RL.

controversial whether training task-completion di-
alogue agent via simulated users is a valid ap-
proach.

We propose a new strategy of learning dialogue
policy by interacting with real users. Compared
to previous works (Singh et al., 2002; Li et al.,
2016a; Su et al., 2016b; Papangelis, 2012), our di-
alogue agent learns in a much more efficient way,
using only a small number of real user interac-
tions, which amounts to an affordable cost in many
nontrivial dialogue tasks.

Our approach is based on the Dyna-Q frame-
work (Sutton, 1990) where planning is integrated
into policy learning for task-completion dialogue.
Specifically, we incorporate a model of the envi-
ronment, referred to as the world model, into the
dialogue agent, which simulates the environment
and generates simulated user experience. During
the dialogue policy learning, real user experience
plays two pivotal roles: first, it can be used to im-
prove the world model and make it behave more
like real users, via supervised learning; second, it
can also be used to directly improve the dialogue
policy via RL. The former is referred to as world
model learning, and the latter direct reinforcement
learning. Dialogue policy can be improved ei-
ther using real experience directly (i.e., direct re-
inforcement learning) or via the world model in-
directly (referred to as planning or indirect re-
inforcement learning). The interaction between
world model learning, direct reinforcement learn-
ing and planning is illustrated in Figure 1(c), fol-
lowing the Dyna-Q framework (Sutton, 1990).

The original papers on Dyna-Q and most its
early extensions used tabular methods for both
planning and learning (Singh, 1992; Peng and
Williams, 1993; Moore and Atkeson, 1993; Ku-
vayev and Sutton, 1996). This table-lookup repre-
sentation limits its application to small problems

only. Sutton et al. (2012) extends the Dyna ar-
chitecture to linear function approximation, mak-
ing it applicable to larger problems. In the dia-
logue setting, we are dealing with a much larger
action-state space. Inspired by Mnih et al. (2015),
we propose Deep Dyna-Q (DDQ) by combining
Dyna-Q with deep learning approaches to repre-
senting the state-action space by neural networks
(NN).

By employing the world model for planning, the
DDQ method can be viewed as a model-based RL
approach, which has drawn growing interest in the
research community. However, most model-based
RL methods (Tamar et al., 2016; Silver et al.,
2016b; Gu et al., 2016; Racanière et al., 2017) are
developed for simulation-based, synthetic prob-
lems (e.g., games), but not for human-in-the-loop,
real-world problems. To these ends, our main con-
tributions in this work are two-fold:
• We present Deep Dyna-Q, which to the best

of our knowledge is the first deep RL frame-
work that incorporates planning for task-
completion dialogue policy learning.
• We demonstrate that a task-completion dia-

logue agent can efficiently adapt its policy on
the fly, by interacting with real users via RL.
This results in a significant improvement in
success rate on a nontrivial task.

2 Dialogue Policy Learning via Deep
Dyna-Q (DDQ)

Our DDQ dialogue agent is illustrated in Fig-
ure 2, consisting of five modules: (1) an LSTM-
based natural language understanding (NLU)
module (Hakkani-Tür et al., 2016) for identifying
user intents and extracting associated slots; (2) a
state tracker (Mrkšić et al., 2016) for tracking the
dialogue states; (3) a dialogue policy which selects
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Figure 2: Illustration of the task-completion DDQ
dialogue agent.

the next action2 based on the current state; (4) a
model-based natural language generation (NLG)
module for converting dialogue actions to natural
language response (Wen et al.); and (5) a world
model for generating simulated user actions and
simulated rewards.

As illustrated in Figure 1(c), starting with an
initial dialogue policy and an initial world model
(both trained with pre-collected human conversa-
tional data), the training of the DDQ agent con-
sists of three processes: (1) direct reinforcement
learning, where the agent interacts with a real user,
collects real experience and improves the dialogue
policy; (2) world model learning, where the world
model is learned and refined using real experience;
and (3) planning, where the agent improves the di-
alogue policy using simulated experience.

Although these three processes conceptually
can occur simultaneously in the DDQ agent,
we implement an iterative training procedure, as
shown in Algorithm 1, where we specify the or-
der in which they occur within each iteration. In
what follows, we will describe these processes in
details.

2.1 Direct Reinforcement Learning

In this process (lines 5-18 in Algorithm 1) we use
the DQN method (Mnih et al., 2015) to improve
the dialogue policy based on real experience. We
consider task-completion dialogue as a Markov
Decision Process (MDP), where the agent inter-

2In the dialogue scenario, actions are dialogue-acts, con-
sisting of a single act and a (possibly empty) collection of
(slot = value) pairs (Schatzmann et al., 2007).

acts with a user in a sequence of actions to ac-
complish a user goal. In each step, the agent ob-
serves the dialogue state s, and chooses the action
a to execute, using an ε-greedy policy that selects a
random action with probability ε or otherwise fol-
lows the greedy policy a = argmaxa′Q(s, a′; θQ).
Q(s, a; θQ) which is the approximated value func-
tion, implemented as a Multi-Layer Perceptron
(MLP) parameterized by θQ. The agent then re-
ceives reward3 r, observes next user response au,
and updates the state to s′. Finally, we store the
experience (s, a, r, au, s′) in the replay buffer Du.
The cycle continues until the dialogue terminates.

We improve the value function Q(s, a; θQ) by
adjusting θQ to minimize the mean-squared loss
function, defined as follows:

L(θQ) = E(s,a,r,s′)∼Du [(yi −Q(s, a; θQ))
2]

yi = r + γmax
a′

Q′(s′, a′; θQ′) (1)

where γ ∈ [0, 1] is a discount factor, and Q′(.) is
the target value function that is only periodically
updated (line 42 in Algorithm 1). By differentiat-
ing the loss function with respect to θQ, we arrive
at the following gradient:

∇θQL(θQ) = E(s,a,r,s′)∼Du [(r+

γmax
a′

Q′(s′, a′; θQ′)−Q(s, a; θQ))

∇θQQ(s, a; θQ)]

(2)

As shown in lines 16-17 in Algorithm 1, in each
iteration, we improve Q(.) using minibatch Deep
Q-learning.

2.2 Planning

In the planning process (lines 23-41 in Algo-
rithm 1), the world model is employed to generate
simulated experience that can be used to improve
dialogue policy. K in line 24 is the number of
planning steps that the agent performs per step of
direct reinforcement learning. If the world model
is able to accurately simulate the environment, a
big K can be used to speed up the policy learn-
ing. In DDQ, we use two replay buffers, Du for
storing real experience and Ds for simulated ex-
perience. Learning and planning are accomplished

3In the dialogue scenario, reward is defined to measure
the degree of success of a dialogue. In our experiment, for
example, success corresponds to a reward of 80, failure to a
reward of−40, and the agent receives a reward of−1 at each
turn so as to encourage shorter dialogues.
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Algorithm 1 Deep Dyna-Q for Dialogue Policy
Learning
Require: N , ε, K, L, C, Z
Ensure: Q(s, a; θQ), M(s, a; θM )
1: initialize Q(s, a; θQ) and M(s, a; θM ) via pre-training

on human conversational data
2: initialize Q′(s, a; θQ′) with θQ′ = θQ
3: initialize real experience replay buffer Du using Reply

Buffer Spiking (RBS), and simulated experience replay
buffer Ds as empty

4: for n=1:N do
5: # Direct Reinforcement Learning starts
6: user starts a dialogue with user action au

7: generate an initial dialogue state s
8: while s is not a terminal state do
9: with probability ε select a random action a

10: otherwise select a = argmaxa′Q(s, a′; θQ)
11: execute a, and observe user response au and re-

ward r
12: update dialogue state to s′

13: store (s, a, r, au, s′) to Du

14: s = s′

15: end while
16: sample random minibatches of (s, a, r, s′) from Du

17: update θQ via Z-step minibatch Q-learning according
to Equation (2)

18: # Direct Reinforcement Learning ends
19: # World Model Learning starts
20: sample random minibatches of training samples

(s, a, r, au, s′) from Du

21: update θM via Z-step minibatch SGD of multi-task
learning

22: # World Model Learning ends
23: # Planning starts
24: for k=1:K do
25: t = FALSE, l = 0
26: sample a user goal G
27: sample user action au from G
28: generate an initial dialogue state s
29: while t is FALSE ∧ l ≤ L do
30: with probability ε select a random action a
31: otherwise select a = argmaxa′Q(s, a′; θQ)
32: execute a
33: world model responds with au, r and t
34: update dialogue state to s′

35: store (s, a, r, s′) to Ds

36: l = l + 1, s = s′

37: end while
38: sample random minibatches of (s, a, r, s′) from

Ds

39: update θQ via Z-step minibatch Q-learning ac-
cording to Equation (2)

40: end for
41: # Planning ends
42: every C steps reset θQ′ = θQ
43: end for

by the same DQN algorithm, operating on real ex-
perience in Du for learning and on simulated ex-
perience in Ds for planning. Thus, here we only
describe the way the simulated experience is gen-
erated.

Similar to Schatzmann et al. (2007), at the be-
ginning of each dialogue, we uniformly draw a
user goal G = (C,R), where C is a set of con-

straints and R is a set of requests (line 26 in Al-
gorithm 1). For movie-ticket booking dialogues,
constraints are typically the name and the date
of the movie, the number of tickets to buy, etc.
Requests can contain these slots as well as the
location of the theater, its start time, etc. Ta-
ble 3 presents some sampled user goals and di-
alogues generated by simulated and real users,
respectively. The first user action au (line 27)
can be either a request or an inform dialogue-
act. A request, such as request(theater;
moviename=batman), consists of a request
slot and multiple (> 1) constraint slots, uni-
formly sampled from R and C, respectively.
An inform contains constraint slots only. The
user action can also be converted to natural lan-
guage via NLG, e.g., "which theater will
show batman?"

In each dialogue turn, the world model takes
as input the current dialogue state s and the last
agent action a (represented as an one-hot vector),
and generates user response au, reward r, and a
binary variable t, which indicates whether the di-
alogue terminates (line 33). The generation is ac-
complished using the world model M(s, a; θM ), a
MLP shown in Figure 3, as follows:

h = tanh(Wh(s, a) + bh)

r = Wrh+ br

au = softmax(Wah+ ba)

t = sigmoid(Wth+ bt)

where (s, a) is the concatenation of s and a, and
W and b are parameter matrices and vectors, re-
spectively.

Task-Specific Representation

s: state a: agent action

au r t

Shared
layers

1

Figure 3: The world model architecture.
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2.3 World Model Learning

In this process (lines 19-22 in Algorithm 1),
M(s, a; θM ) is refined via minibatch SGD using
real experience in the replay buffer Du. As shown
in Figure 3,M(s, a; θM ) is a multi-task neural net-
work (Liu et al., 2015) that combines two classi-
fication tasks of simulating au and t, respectively,
and one regression task of simulating r. The lower
layers are shared across all tasks, while the top lay-
ers are task-specific.

3 Experiments and Results

We evaluate the DDQ method on a movie-ticket
booking task in both simulation and human-in-the-
loop settings.

3.1 Dataset

Raw conversational data in the movie-ticket book-
ing scenario was collected via Amazon Mechani-
cal Turk. The dataset has been manually labeled
based on a schema defined by domain experts, as
shown in Table 4, which consists of 11 dialogue
acts and 16 slots. In total, the dataset contains 280
annotated dialogues, the average length of which
is approximately 11 turns.

3.2 Dialogue Agents for Comparison

To benchmark the performance of DDQ, we have
developed different versions of task-completion
dialogue agents, using variations of Algorithm 1.
• A DQN agent is learned by standard DQN,

implemented with direct reinforcement learn-
ing only (lines 5-18 in Algorithm 1) in each
epoch.
• The DDQ(K) agents are learned by DDQ of

Algorithm 1, with an initial world model pre-
trained on human conversational data, as de-
scribed in Section 3.1. K is the number of
planning steps. We trained different versions
of DDQ(K) with different K’s.
• The DDQ(K, rand-init θM ) agents are

learned by the DDQ method with a randomly
initialized world model.
• The DDQ(K, fixed θM ) agents are learned

by DDQ with an initial world model pre-
trained on human conversational data. But
the world model is not updated afterwards.
That is, the world model learning part in Al-
gorithm 1 (lines 19-22) is removed. The
DDQ(K, fixed θM ) agents are evaluated in
the simulation setting only.

• The DQN(K) agents are learned by DQN,
but with K times more real experiences than
the DQN agent. DQN(K) is evaluated in the
simulation setting only. Its performance can
be viewed as the upper bound of its DDQ(K)
counterpart, assuming that the world model
in DDQ(K) perfectly matches real users.

Implementation Details All the models in these
agents (Q(s, a; θQ), M(s, a; θM )) are MLPs with
tanh activations. Each policy network Q(.) has
one hidden layer with 80 hidden nodes. As shown
in Figure 3, the world model M(.) contains two
shared hidden layers and three task-specific hid-
den layers, with 80 nodes in each. All the agents
are trained by Algorithm 1 with the same set of
hyper-parameters. ε-greedy is always applied for
exploration. We set the discount factor γ = 0.95.
The buffer sizes of both Du and Ds are set to
5000. The target value function is updated at
the end of each epoch. In each epoch, Q(.) and
M(.) are refined using one-step (Z = 1) 16-tuple-
minibatch update. 4 In planning, the maximum
length of a simulated dialogue is 40 (L = 40).
In addition, to make the dialogue training effi-
cient, we also applied a variant of imitation learn-
ing, called Reply Buffer Spiking (RBS) (Lipton
et al., 2016). We built a naive but occasionally suc-
cessful rule-based agent based on human conver-
sational dataset (line 1 in Algorithm 1), and pre-
filled the real experience replay buffer Du with
100 dialogues of experience (line 2) before train-
ing for all the variants of agents.

3.3 Simulated User Evaluation

In this setting the dialogue agents are optimized
by interacting with user simulators, instead of real
users. Thus, the world model is learned to mimic
user simulators. Although the simulator-trained
agents are sub-optimal when applied to real users
due to the discrepancy between simulators and real
users, the simulation setting allows us to perform
a detailed analysis of DDQ without much cost and
to reproduce the experimental results easily.

4We found in our experiments that setting Z > 1 im-
proves the performance of all agents, but does not change
the conclusion of this study: DDQ consistently outperforms
DQN by a statistically significant margin. Conceptually, the
optimal value of Z used in planning is different from that in
direct reinforcement learning, and should vary according to
the quality of the world model. The better the world model
is, the more aggressive update (thus bigger Z) is being used
in planning. We leave it to future work to investigate how to
optimize Z for planning in DDQ.
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Agent Epoch = 100 Epoch = 200 Epoch = 300
Success Reward Turns Success Reward Turns Success Reward Turns

DQN .4260 -3.84 31.93 .5308 10.78 22.72 .6480 27.66 22.21
DDQ(5) .6056 20.35 26.65 .7128 36.76 19.55 .7372 39.97 18.99
DDQ(5, rand-init θM ) .5904 18.75 26.21 .6888 33.47 20.36 .7032 36.06 18.64
DDQ(5, fixed θM ) .5540 14.54 25.89 .6660 29.72 22.39 .6860 33.58 19.49
DQN(5) .6560 29.38 21.76 .7344 41.09 16.07 .7576 43.97 15.88
DDQ(10) .6624 28.18 24.62 .7664 42.46 21.01 .7840 45.11 19.94
DDQ(10, rand-init θM ) .6132 21.50 26.16 .6864 32.43 21.86 .7628 42.37 20.32
DDQ(10, fixed θM ) .5884 18.41 26.41 .6196 24.17 22.36 .6412 26.70 22.49
DQN(10) .7944 48.61 15.43 .8296 54.00 13.09 .8356 54.89 12.77

Table 1: Results of different agents at training epoch = {100, 200, 300}. Each number is averaged
over 5 runs, each run tested on 2000 dialogues. Excluding DQN(5) and DQN(10) which serve as the
upper bounds, any two groups of success rate (except three groups: at epoch 100, DDQ(5, rand-init θM )
and DDQ(10, fixed θM ), at epoch 200, DDQ(5, rand-init θM ) and DDQ(10, rand-init θM ), at epoch
300, DQN and DDQ(10, fixed θM )) evaluated at the same epoch is statistically significant in mean with
p < 0.01. (Success: success rate)
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Figure 4: Learning curves of the DDQ(K) agents
withK = 2, 5, 10, 20. The DQN agent is identical
to a DDQ(K) agent with K = 0.

User Simulator We adapted a publicly avail-
able user simulator (Li et al., 2016b) to the task-
completion dialogue setting. During training, the
simulator provides the agent with a simulated user
response in each dialogue turn and a reward sig-
nal at the end of the dialogue. A dialogue is
considered successful only when a movie ticket
is booked successfully and when the information
provided by the agent satisfies all the user’s con-
straints. At the end of each dialogue, the agent
receives a positive reward of 2 ∗ L for success, or
a negative reward of −L for failure, where L is
the maximum number of turns in each dialogue,
and is set to 40 in our experiments. Furthermore,
in each turn, the agent receives a reward of −1,
so that shorter dialogues are encouraged. Read-
ers can refer to Appendix B for details on the user
simulator.
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Figure 5: Learning curves of DQN, DDQ(10),
DDQ(10, rand-init θM ), DDQ(10, fixed θM ), and
DQN(10).

Results The main simulation results are reported
in Table 1 and Figures 4 and 5. For each agent,
we report its results in terms of success rate, av-
erage reward, and average number of turns (aver-
aged over 5 repetitions of the experiments). Re-
sults show that the DDQ agents consistently out-
perform DQN with a statistically significant mar-
gin. Figure 4 shows the learning curves of differ-
ent DDQ agents trained using different planning
steps. Since the training of all RL agents started
with RBS using the same rule-based agent, their
performance in the first few epochs is very close.
After that, performance improved for all values of
K, but much more rapidly for larger values. Re-
call that the DDQ(K) agent with K=0 is identical
to the DQN agent, which does no planning but re-
lies on direct reinforcement learning only. Without
planning, the DQN agent took about 180 epochs
(real dialogues) to reach the success rate of 50%,
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Agent Epoch = 100 Epoch = 150 Epoch = 200
Success Reward Turns Success Reward Turns Success Reward Turns

DQN .0000 -58.69 39.38 .4080 -5.730 30.38 .4545 0.350 30.38
DDQ(5) .4620 00.78 31.33 .5637 15.05 26.17 .6000 19.84 26.32
DDQ(5, rand-init θM ) .3600 -11.67 31.74 .5500 13.71 26.58 .5752 16.84 26.37
DDQ(10) .5555 14.69 25.92 .6416 25.85 24.28 .7332 38.88 20.21
DDQ(10, rand-init θM ) .5010 6.27 29.70 .6055 22.11 23.11 .7023 36.90 21.20

Table 2: The performance of different agents at training epoch = {100, 150, 200} in the human-in-the-
loop experiments. The difference between the results of all agent pairs evaluated at the same epoch is
statistically significant (p < 0.01). (Success: success rate)

and DDQ(10) took only 50 epochs.
Intuitively, the optimal value of K needs to be

determined by seeking the best trade-off between
the quality of the world model and the amount
of simulated experience that is useful for improv-
ing the dialogue agent. This is a non-trivial opti-
mization problem because both the dialogue agent
and the world model are updated constantly during
training and the optimal K needs to be adjusted
accordingly. For example, we find in our experi-
ments that at the early stages of training, it is fine
to perform planning aggressively by using large
amounts of simulated experience even though they
are of low quality, but in the late stages of train-
ing where the dialogue agent has been signif-
icantly improved, low-quality simulated experi-
ence is likely to hurt the performance. Thus, in our
implementation of Algorithm 1, we use a heuris-
tic5 to reduce the value of K in the late stages of
training (e.g., after 150 epochs in Figure 4) to mit-
igate the negative impact of low-qualify simulated
experience. We leave it to future work how to op-
timize the planning step size during DDQ training
in a principled way.

Figure 5 shows that the quality of the world
model has a significant impact on the agent’s
performance. The learning curve of DQN(10)
indicates the best performance we can expect
with a perfect world model. With a pre-trained
world model, the performance of the DDQ agent
improves more rapidly, although eventually, the
DDQ and DDQ(rand-init θM ) agents reach the
same success rate after many epochs. The world
model learning process is crucial to both the ef-
ficiency of dialogue policy learning and the final
performance of the agent. For example, in the
early stages (before 60 epochs), the performances
of DDQ and DDQ(fixed θM ) remain very close to
each other, but DDQ reaches a success rate almost

5The heuristic is not presented in Algorithm 1. Readers
can refer to the released source code for details.
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Figure 6: Human-in-the-loop dialogue policy
learning curves in four different agents.

10% better than DDQ(fixed θM ) after 400 epochs.

3.4 Human-in-the-Loop Evaluation

In this setting, five dialogue agents (i.e., DQN,
DDQ(10), DDQ(10, rand-init θM ), DDQ(5), and
DDQ(5, rand-init θM )) are trained via RL by in-
teracting with real human users. In each dialogue
session, one of the agents was randomly picked to
converse with a user. The user was presented with
a user goal sampled from the corpus, and was in-
structed to converse with the agent to complete the
task. The user had the choice of abandoning the
task and ending the dialogue at any time, if she or
he believed that the dialogue was unlikely to suc-
ceed or simply because the dialogue dragged on
for too many turns. In such cases, the dialogue ses-
sion is considered failed. At the end of each ses-
sion, the user was asked to give explicit feedback
whether the dialogue succeeded (i.e., whether the
movie tickets were booked with all the user con-
straints satisfied). Each learning curve is trained
with two runs, with each run generating 150 dia-
logues (andK∗150 additional simulated dialogues
when planning is applied). In total, we collected
1500 dialogue sessions for training all five agents.

The main results are presented in Table 2 and
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Simulation Sample Real User Sample
movie-ticket booking user goal:
{

“request slots”: { “constraint slots”: {
“ticket”: “?” “numberofpeople”:“2”
“theater”: “?” “moviename”: “deadpool”
“starttime”: “?” “city”: “seattle”
“date”: “?” }
}
}

movie-ticket booking user goal:
{

“request slots”: { “constraint slots”: {
“ticket”: “?” “date”:“this weekend”
“theater”: “?” “numberofpeople”: “1”
“starttime”: “?” “moviename”: “batman”
} }
}

DQN agent
1 usr: Hi, what date can I book 2 tickets for deadpool? usr: Hi, which theater will show batman? I want 1 ticket.
2 agt: Which city would you like? agt: Which city would you like?
3 usr: I want to watch at seattle. usr: Boston.
4 agt: What time would you like to see it? agt: What time would you like to see it?
5 usr: What start time is available? usr: What start time is available?
6 agt: Which theater would you like? agt: What date would you like to see it?
7 usr: Which theater is available? usr: This weekend.
8 agt: What time would you like to see it? agt:Which theater would you like?
9 usr: What start time is available? usr: Which theater is available?
10 agt: Which theater would you like? agt: Which theater would you like?
11 usr: Which theater is available? usr: Which theater is available?
12 agt: How many tickets do you need? agt: What time would you like to see it?
13 usr: I want 2 tickets please! usr: What start time is available?
14 agt: Which theater would you like? agt: Which theater would you like?
15 usr: Which theater is available? usr: Thanks, I do not need the ticket.
16 agt: What time would you like to see it? agt: Thank you.

...
39 agt: Which theater would you like?
40 usr: Which theater is available?

Failure: Agent does not book the right ticket within the
max turns. Failure:

User terminates the dialogue before reaching the
max turns because the agent repeatly asks the same
question.

DDQ(10) agent
1 usr: Hi, when is deadpool playing at seattle? usr: Hi, which theater will show batman? I want 1 ticket.
2 agt: Tonight. agt: Century Eastport 16.
3 usr: What is the start time? usr: What is the start time?
4 agt: Which theater would you like? agt: 9PM.
5 usr: I want to watch it at amc pacific place 11. usr: Can I buy a ticket here?
6 agt: 10pm is available. agt: This weekend?
7 usr: I want 2 tickets please! usr: Yes, one ticket please!

8 agt: Great, here are 2 deadpool tickets for you
at amc pacific place 11 in seattle tonight 10 pm. agt: Sure, here it is - batman at Century Eastport 16,

9PM this weekend.
9 usr: Thank you. usr: Thank you.
10 agt: Thank you. agt: Thank you.

Success Success

Table 3: Two sample dialogue sessions by DQN and DDQ(10) agents trained at epoch 100: Left: simu-
lated user experiments; Right: human-in-the-loop experiments. (agt: agent, usr: user)

Figure 6, with each agent averaged over two in-
dependent runs. The results confirm what we ob-
served in the simulation experiments. The conclu-
sions are summarized as below:

• The DDQ agent significantly outperforms
DQN, as demonstrated by the comparison be-
tween DDQ(10) and DQN. Table 3 presents
four example dialogues produced by two di-
alogue agents interacting with simulated and
human users, respectively. The DQN agent,
after being trained with 100 dialogues, still
behaved like a naive rule-based agent that re-

quested information bit by bit in a fixed or-
der. When the user did not answer the request
explicitly (e.g., usr: which theater
is available?), the agent failed to re-
spond properly. On the other hand, with plan-
ning, the DDQ agent trained with 100 real
dialogues is much more robust and can com-
plete 50% of user tasks successfully.
• A largerK leads to more aggressive planning

and better results, as shown by DDQ(10) vs.
DDQ(5).
• Pre-training world model with human con-
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versational data improves the learning effi-
ciency and the agent’s performance, as shown
by DDQ(5) vs. DDQ(5, rand-init θM ), and
DDQ(10) vs. DDQ(10, rand-init θM ).

4 Conclusion

We propose a new strategy for a task-completion
dialogue agent to learn its policy by interacting
with real users. Compared to previous work, our
agent learns in a much more efficient way, us-
ing only a small number of real user interactions,
which amounts to an affordable cost in many non-
trivial domains. Our strategy is based on the Deep
Dyna-Q (DDQ) framework where planning is in-
tegrated into dialogue policy learning. The ef-
fectiveness of DDQ is validated by human-in-the-
loop experiments, demonstrating that a dialogue
agent can efficiently adapt its policy on the fly by
interacting with real users via deep RL.

One interesting topic for future research is ex-
ploration in planning. We need to deal with the
challenge of adapting the world model in a chang-
ing environment, as exemplified by the domain ex-
tension problem (Lipton et al., 2016). As pointed
out by Sutton and Barto (1998), the general prob-
lem here is a particular manifestation of the con-
flict between exploration and exploitation. In a
planning context, exploration means trying actions
that may improve the world model, whereas ex-
ploitation means trying to behave in the optimal
way given the current model. To this end, we want
the agent to explore in the environment, but not so
much that the performance would be greatly de-
graded.
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A Dataset Annotation Schema

Table 4 lists all annotated dialogue acts and slots
in details.

Annotations
request, inform, deny, confirm question,

Intent confirm answer, greeting, closing, not sure,
multiple choice, thanks, welcome

Slot

city, closing, date, distanceconstraints,
greeting, moviename, numberofpeople,
price, starttime, state, taskcomplete, theater,
theater chain, ticket, video format, zip

Table 4: The data annotation schema

B User Simulator

In the task-completion dialogue setting, the entire
conversation is around a user goal implicitly, but
the agent knows nothing about the user goal ex-
plicitly and its objective is to help the user to ac-
complish this goal. Generally, the definition of
user goal contains two parts:
• inform slots contain a number of slot-value

pairs which serve as constraints from the user.
• request slots contain a set of slots that user

has no information about the values, but
wants to get the values from the agent dur-
ing the conversation. ticket is a default slot
which always appears in the request slots
part of user goal.

To make the user goal more realistic, we add
some constraints in the user goal: slots are split
into two groups. Some of slots must appear in the
user goal, we called these elements as Required
slots. In the movie-booking scenario, it includes
moviename, theater, starttime, date, num-
berofpeople; the rest slots are Optional slots, for
example, theater chain, video format etc.

We generated the user goals from the labeled
dataset mentioned in Section 3.1, using two mech-
anisms. One mechanism is to extract all the slots
(known and unknown) from the first user turns (ex-
cluding the greeting user turn) in the data, since
usually the first turn contains some or all the re-
quired information from user. The other mech-
anism is to extract all the slots (known and un-
known) that first appear in all the user turns,
and then aggregate them into one user goal. We
dump these user goals into a file as the user-goal
database. Every time when running a dialogue, we
randomly sample one user goal from this user goal
database.
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Abstract

Asking good questions in large-scale,
open-domain conversational systems is
quite significant yet rather untouched.
This task, substantially different from tra-
ditional question generation, requires to
question not only with various patterns
but also on diverse and relevant topics.
We observe that a good question is a nat-
ural composition of interrogatives, topic
words, and ordinary words. Interroga-
tives lexicalize the pattern of questioning,
topic words address the key information
for topic transition in dialogue, and ordi-
nary words play syntactical and grammat-
ical roles in making a natural sentence. We
devise two typed decoders (soft typed de-
coder and hard typed decoder) in which
a type distribution over the three types is
estimated and used to modulate the final
generation distribution. Extensive exper-
iments show that the typed decoders out-
perform state-of-the-art baselines and can
generate more meaningful questions.

1 Introduction

Learning to ask questions (or, question generation)
aims to generate a question to a given input. De-
ciding what to ask and how is an indicator of ma-
chine understanding (Mostafazadeh et al., 2016),
as demonstrated in machine comprehension (Du
et al., 2017; Zhou et al., 2017b; Yuan et al., 2017)
and question answering (Tang et al., 2017; Wang
et al., 2017). Raising good questions is essen-
tial to conversational systems because a good sys-
tem can well interact with users by asking and re-
sponding (Li et al., 2016). Furthermore, asking

∗Authors contributed equally to this work.
†Corresponding author: Minlie Huang.

questions is one of the important proactive behav-
iors that can drive dialogues to go deeper and fur-
ther (Yu et al., 2016).

Question generation (QG) in open-domain con-
versational systems differs substantially from the
traditional QG tasks. The ultimate goal of this
task is to enhance the interactiveness and persis-
tence of human-machine interactions, while for
traditional QG tasks, seeking information through
a generated question is the major purpose. The re-
sponse to a generated question will be supplied in
the following conversations, which may be novel
but not necessarily occur in the input as that in tra-
ditional QG (Du et al., 2017; Yuan et al., 2017;
Tang et al., 2017; Wang et al., 2017; Mostafazadeh
et al., 2016). Thus, the purpose of this task is to
spark novel yet related information to drive the in-
teractions to continue.

Due to the different purposes, this task is unique
in two aspects: it requires to question not only in
various patterns but also about diverse yet rele-
vant topics. First, there are various questioning
patterns for the same input, such as Yes-no ques-
tions and Wh-questions with different interroga-
tives. Diversified questioning patterns make di-
alogue interactions richer and more flexible. In-
stead, traditional QG tasks can be roughly ad-
dressed by syntactic transformation (Andrenucci
and Sneiders, 2005; Popowich and Winne, 2013),
or implicitly modeled by neural models (Du et al.,
2017). In such tasks, the information questioned
on is pre-specified and usually determines the pat-
tern of questioning. For instance, asking Who-
question for a given person, or Where-question for
a given location.

Second, this task requires to address much more
transitional topics of a given input, which is the
nature of conversational systems. For instance, for
the input “I went to dinner with my friends”, we
may question about topics such as friend, cuisine,
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price, place and taste. Thus, this task generally
requires scene understanding to imagine and com-
prehend a scenario (e.g., dining at a restaurant)
that can be interpreted by topics related to the in-
put. However, in traditional QG tasks, the core in-
formation to be questioned on is pre-specified and
rather static, and paraphrasing is more required.

Figure 1: Good questions in conversational sys-
tems are a natural composition of interrogatives,
topic words, and ordinary words.

Undoubtedly, asking good questions in conver-
sational systems needs to address the above is-
sues (questioning with diversified patterns, and
addressing transitional topics naturally in a gen-
erated question). As shown in Figure 1, a good
question is a natural composition of interrogatives,
topic words, and ordinary words. Interrogatives
indicate the pattern of questioning, topic words ad-
dress the key information of topic transition, and
ordinary words play syntactical and grammatical
roles in making a natural sentence.

We thus classify the words in a question into
three types: interrogative, topic word, and or-
dinary word automatically. We then devise two
decoders, Soft Typed Decoder (STD) and Hard
Typed Decoder (HTD), for question generation in
conversational systems1. STD deals with word
types in a latent and implicit manner, while HTD
in a more explicit way. At each decoding position,
we firstly estimate a type distribution over word
types. STD applies a mixture of type-specific gen-
eration distributions where type probabilities are
the coefficients. By contrast, HTD reshapes the
type distribution by Gumbel-softmax and modu-
lates the generation distribution by type probabili-
ties. Our contributions are as follows:

• To the best of our knowledge, this is the first
study on question generation in the setting of

1To simplify the task, as a preliminary research, we con-
sider the one-round conversational system.

conversational systems. We analyze the key
differences between this new task and other
traditional question generation tasks.

• We devise soft and hard typed decoders to ask
good questions by capturing different roles of
different word types. Such typed decoders
may be applicable to other generation tasks
if word semantic types can be identified.

2 Related Work

Traditional question generation can be seen in
task-oriented dialogue system (Curto et al., 2012),
sentence transformation (Vanderwende, 2008),
machine comprehension (Du et al., 2017; Zhou
et al., 2017b; Yuan et al., 2017; Subramanian et al.,
2017), question answering (Qin, 2015; Tang et al.,
2017; Wang et al., 2017; Song et al., 2017), and
visual question answering (Mostafazadeh et al.,
2016). In such tasks, the answer is known and is
part of the input to the generated question. Mean-
while, the generation tasks are not required to pre-
dict additional topics since all the information has
been provided in the input. They are applicable
in scenarios such as designing questions for read-
ing comprehension (Du et al., 2017; Zhou et al.,
2017a; Yuan et al., 2017), and justifying the visual
understanding by generating questions to a given
image (video) (Mostafazadeh et al., 2016).

In general, traditional QG tasks can be ad-
dressed by the heuristic rule-based reordering
methods (Andrenucci and Sneiders, 2005; Ali
et al., 2010; Heilman and Smith, 2010), slot-
filling with question templates (Popowich and
Winne, 2013; Chali and Golestanirad, 2016; Lab-
utov et al., 2015), or implicitly modeled by recent
neural models(Du et al., 2017; Zhou et al., 2017b;
Yuan et al., 2017; Song et al., 2017; Subramanian
et al., 2017). These tasks generally do not require
to generate a question with various patterns: for a
given answer and a supporting text, the question
type is usually decided by the input.

Question generation in large-scale, open-
domain dialogue systems is relatively unexplored.
Li et al. (2016) showed that asking questions in
task-oriented dialogues can offer useful feedback
to facilitate learning through interactions. Several
questioning mechanisms were devised with hand-
crafted templates, but unfortunately not applicable
to open-domain conversational systems. Similar
to our goal, a visual QG task is proposed to gener-
ate a question to interact with other people, given
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an image as input (Mostafazadeh et al., 2016).

3 Methodology

3.1 Overview
The task of question generation in conversational
systems can be formalized as follows: given a
user post X = x1x2 · · ·xm, the system should
generate a natural and meaningful question Y =
y1y2 · · · yn to interact with the user, formally as

Y ∗ = argmax
Y

P(Y |X).

As aforementioned, asking good questions in
conversational systems requires to question with
diversified patterns and address transitional topics
naturally in a question. To this end, we classify
the words in a sentence into three types: interrog-
ative, topic word, and ordinary word, as shown in
Figure 1. During training, the type of each word
in a question is decided automatically2. We man-
ually collected about 20 interrogatives. The verbs
and nouns in a question are treated as topic words,
and all the other words as ordinary words. During
test, we resort to PMI (Church and Hanks, 1990)
to predict a few topic words for a given post.

On top of an encoder-decoder framework, we
propose two decoders to effectively use word
types in question generation. The first model is
soft typed decoder (STD). It estimates a type dis-
tribution over word types and three type-specific
generation distributions over the vocabulary, and
then obtains a mixture of type-specific distribu-
tions for word generation.

The second one is a hard form of STD, hard
typed decoder (HTD), in which we can control the
decoding process more explicitly by approximat-
ing the operation of argmax with Gumbel-softmax
(Jang et al., 2016). In both decoders, the final gen-
eration probability of a word is modulated by its
word type.

3.2 Encoder-Decoder Framework
Our model is based on the general encoder-
decoder framework (Cho et al., 2014; Sutskever
et al., 2014). Formally, the model encodes an in-
put sequence X = x1x2 · · ·xm into a sequence of
hidden states hi, as follows,

ht = GRU(ht−1, e(xt)),

2Though there may be errors in word type classification,
we found it works well in response generation.

where GRU denotes gated recurrent units (Cho
et al., 2014), and e(x) is the word vector of
word x. The decoder generates a word sequence
by sampling from the probability P(yt|y<t, X)
(y<t = y1y2 · · · yt−1, the generated subsequence)
which can be computed via

P(yt|y<t, X) = MLP(st, e(yt−1), ct),
st = GRU(st−1, e(yt−1), ct),

where st is the state of the decoder at the time step
t, and this GRU has different parameters with the
one of the encoder. The context vector ct is an
attentive read of the hidden states of the encoder as
ct =

∑T
i=1 αt,ihi, where the weight αt,i is scored

by another MLP(st−1, hi) network.

3.3 Soft Typed Decoder (STD)

In a general encoder-decoder model, the decoder
tends to generate universal, meaningless questions
like “What’s up?” and “So what?”. In order to
generate more meaningful questions, we propose a
soft typed decoder. It assumes that each word has
a latent type among the set {interrogative, topic
word, ordinary word}. The soft typed decoder
firstly estimates a word type distribution over la-
tent types in the given context, and then computes
type-specific generation distributions over the en-
tire vocabulary for different word types. The fi-
nal probability of generating a word is a mixture
of type-specific generation distributions where the
coefficients are type probabilities.

The final generation distribution P(yt|y<t, X)
from which a word can be sampled, is given by

P(yt|y<t, X) =

k∑

i=1

P(yt|tyt = ci, y<t, X) · P(tyt = ci|y<t, X), (1)

where tyt denotes the word type at time step t
and ci is a word type. Apparently, this formula-
tion states that the final generation probability is a
mixture of the type-specific generation probabili-
ties P(yt|tyt = ci, y<t, X), weighted by the prob-
ability of the type distributionP(tyt = ci|y<t, X).
We name this decoder as soft typed decoder. In
this model, word type is latent because we do not
need to specify the type of a word explicitly. In
other words, each word can belong to any of the
three types, but with different probabilities given
the current context.

The probability distribution over word types
C = {c1, c2, · · · , ck} (k = 3 in this paper) (termed
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Figure 2: Illustration of STD and HTD. STD applies a mixture of type-specific generation distributions
where type probabilities are the coefficients. In HTD, the type probability distribution is reshaped by
Gumbel-softmax and then used to modulate the generation distribution. In STD, the generation distribu-
tion is over the same vocabulary whereas dynamic vocabularies are applied in HTD.

as type distribution) is given by

P(tyt|y<t, X) = softmax(W0st + b0), (2)

where st is the hidden state of the decoder at time
step t, W0 ∈ Rk×d, and d is the dimension of the
hidden state.

The type-specific generation distribution is
given by

P(yt|tyt = ci, y<t, X) = softmax(Wcist + bci),

where Wci ∈ R|V |×d and |V | is the size of the
entire vocabulary. Note that the type-specific gen-
eration distribution is parameterized by Wci , indi-
cating that the distribution for each word type has
its own parameters.

Instead of using a single distribution
P(yt|y<t, X) as in a general Seq2Seq de-
coder, our soft typed decoder enriches the model
by applying multiple type-specific generation
distributions. This enables the model to express
more information about the next word to be gen-
erated. Also note that the generation distribution
is over the same vocabulary, and therefore there is
no need to specify word types explicitly.

3.4 Hard Typed Decoder (HTD)

In the soft typed decoder, we assume that each
word is a distribution over the word types. In this
sense, the type of a word is implicit. We do not
need to specify the type of each word explicitly. In
the hard typed decoder, words in the entire vocab-
ulary are dynamically classified into three types
for each post, and the decoder first estimates a type
distribution at each position and then generates a
word with the highest type probability. This pro-

cess can be formulated as follows:

c∗ = arg max
ci

P(tyt = ci|y<t, X), (3)

P(yt|y<t, X) = P(yt|tyt = c∗, y<t, X). (4)

This is essentially the hard form of Eq. 1, which
just selects the type with the maximal probabil-
ity. However, this argmax process may cause two
problems. First, such a cascaded decision pro-
cess (firstly selecting the most probable word type
and secondly choosing a word from that type) may
lead to severe grammatical errors if the first selec-
tion is wrong. Second, argmax is discrete and non-
differentiable, and it breaks the back-propagation
path during training.

To make best use of word types in hard typed
decoder, we address the above issues by apply-
ing Gumbel-Softmax (Jang et al., 2016) to approx-
imate the operation of argmax. There are several
steps in the decoder (see Figure 2):

First, the type of each word (interrogative,
topic, or ordinary) in a question is decided auto-
matically during training, as aforementioned.

Second, the generation probability distribution
is estimated as usual,

P(yt|y<t, X) = softmax(W0st + b0). (5)

Further, the type probability distribution at each
decoding position is estimated as follows,

P(tyt|y<t, X) = softmax(W1st + b1). (6)

Third, the generation probability for each word
is modulated by its corresponding type probabil-
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ity:

P ′(yt|y<t, X) = P(yt|y<t, X)·m(yt),

m(yt) =

{
1 , c(yt) = c∗

0 , c(yt) 6= c∗
(7)

where c(yt) looks up the word type of word yt,
and c∗ is the type with the highest probability as
defined in Eq. 3. This formulation has exactly the
effect of argmax, where the decoder will only gen-
erate words of type with the highest probability.

To make P∗(yt|y<t, X) a distribution, we nor-
malize these values by a normalization factor Z:

Z =
1∑

yt∈V P ′(yt|y<t, X)

where V is the decoding vocabulary. Then, the
final probability can be denoted by

P∗(yt|y<t, X) = Z · P ′(yt|y<t, X). (8)

As mentioned, in order to have an effect of
argmax but still maintain the differentiability, we
resort to Gumbel-Softmax (Jang et al., 2016),
which is a differentiable surrogate to the argmax
function. The type probability distribution is then
adjusted to the following form:

m(yt) = GS(P(tyt = c(yt)|y<t, X)),

GS(πi) =
e(log(πi)+gi)/τ

∑k
j=1 e

(log(πj)+gj)/τ
, (9)

where π1, π2, · · · , πk represents the probabilities
of the original categorical distribution, gj are i.i.d
samples drawn from Gumbel(0,1)3 and τ is a con-
stant that controls the smoothness of the distribu-
tion. When τ → 0, Gumbel-Softmax performs
like argmax, while if τ → ∞, Gumbel-Softmax
performs like a uniform distribution. In our ex-
periments, we set τ a constant between 0 and 1,
making Gumbel-Softmax smoother than argmax,
but sharper than normal softmax.

Note that in HTD, we apply dynamic vocabu-
laries for different responses during training. The
words in a response are classified into the three
types dynamically. A specific type probability will
only affect the words of that type. During test,
for each post, topic words are predicted with PMI,
interrogatives are picked from a small dictionary,
and the rest of words in the vocabulary are treated
as ordinary words.

3If u ∼ Uniform(0, 1), then g = −log(−log(u)) ∼
Gumbel(0, 1).

3.5 Loss Function

We adopt negative data likelihood (equivalent to
cross entropy) as the loss function, and addition-
ally, we apply supervision on the mixture weights
of word types, formally as follows:

Φ1 =
∑

t

− logP(yt = ỹt|y<t, X), (10)

Φ2 =
∑

t

− logP(tyt = t̃yt|y<t, X), (11)

Φ = Φ1 + λΦ2, (12)

where t̃yt represents the reference word type and
ỹt represents the reference word at time t. λ is a
factor to balance the two loss terms, and we set
λ=0.8 in our experiments.

Note that for HTD, we substitute P∗(yt =
wj |y<t, X) (as defined by Eq. 8) into Eq. 10.

3.6 Topic Word Prediction

The only difference between training and infer-
ence is the means of choosing topic words. Dur-
ing training, we identify the nouns and verbs in
a response as topic words; whereas during infer-
ence, we adopt PMI (Church and Hanks, 1990)
and Rel(ki, X) to predict a set of topic words ki
for an input post X , as defined below:

PMI(wx, wy) = log
p(wx, wy)

p1(wx) ∗ p2(wy)
,

Rel(ki, X) =
∑

wx∈X
ePMI(wx,ki),

where p1(w)/p2(w) represent the probability of
word w occurring in a post/response, respectively,
and p(wx, wy) is the probability of word wx oc-
curring in a post and wy in a response.

During inference, we predict at most 20 topic
words for an input post. Too few words will affect
the grammaticality since the predicted set contains
infrequent topic words, while too many words in-
troduce more common topics leading to more gen-
eral responses.

4 Experiment

4.1 Dataset

To estimate the probabilities in PMI, we collected
about 9 million post-response pairs from Weibo.
To train our question generation models, we dis-
tilled the pairs whereby the responses are in ques-
tion form with the help of around 20 hand-crafted
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templates. The templates contain a list of inter-
rogatives and other implicit questioning patterns.
Such patterns detect sentences led by words like
what, how many, how about or sentences ended
with a question mark. After that, we removed the
pairs whose responses are universal questions that
can be used to reply many different posts. This is a
simple yet effective way to avoid situations where
the type probability distribution is dominated by
interrogatives and ordinary words.

Ultimately, we obtained the dataset comprising
about 491,000 post-response pairs. We randomly
selected 5,000 pairs for testing and another 5,000
for validation. The average number of words in
post/response is 8.3/9.3 respectively. The dataset
contains 66,547 different words, and 18,717 words
appear more than 10 times. The dataset is avail-
able at: http://coai.cs.tsinghua.edu.
cn/hml/dataset/.

4.2 Baselines
We compared the proposed decoders with four
state-of-the-art baselines.
Seq2Seq: A simple encoder-decoder with atten-
tion mechanisms (Luong et al., 2015).
MA: The mechanism-aware (MA) model applies
multiple responding mechanisms represented by
real-valued vectors (Zhou et al., 2017a). The
number of mechanisms is set to 4 and we ran-
domly picked one response from the generated re-
sponses for evaluation to avoid selection bias.
TA: The topic-aware (TA) model generates in-
formative responses by incorporating topic words
predicted from the input post (Xing et al., 2017).
ERM: Elastic responding machine (ERM) adap-
tively selects a subset of responding mechanisms
using reinforcement learning (Zhou et al., 2018a).
The settings are the same as the original paper.

4.3 Experiment Settings
Parameters were set as follows: we set the vo-
cabulary size to 20, 000 and the dimension of
word vectors as 100. The word vectors were pre-
trained with around 9 million post-response pairs
from Weibo and were being updated during the
training of the decoders. We applied the 4-layer
GRU units (hidden states have 512 dimensions).
These settings were also applied to all the base-
lines. λ in Eq. 12 is 0.8. We set different val-
ues of τ in Gumbel-softmax at different stages of
training. At the early stage, we set τ to a small
value (0.6) to obtain a sharper reformed distri-

bution (more like argmax). After several steps,
we set τ to a larger value (0.8) to apply a more
smoothing distribution. Our codes are available
at: https://github.com/victorywys/
Learning2Ask_TypedDecoder.

4.4 Automatic Evaluation

We conducted automatic evaluation over the
5, 000 test posts. For each post, we obtained re-
sponses from the six models, and there are 30, 000
post-response pairs in total.

4.4.1 Evaluation Metrics
We adopted perplexity to quantify how well a
model fits the data. Smaller values indicate bet-
ter performance. To evaluate the diversity of the
responses, we employed distinct-1 and distinct-2
(Li et al., 2015). These two metrics calculates the
proportion of the total number of distinct unigrams
or bigrams to the total number of generated tokens
in all the generated responses.

Further, we calculated the proportion of the re-
sponses containing at least one topic word in the
list predicted by PMI. This is to evaluate the abil-
ity of addressing topic words in response. We term
this metric as topical response ratio (TRR). We
predicted 20 topic words with PMI for each post.

4.4.2 Results
Comparative results are presented in Table 1. STD
and HTD perform fairly well with lower perplex-
ities, higher distinct-1 and distinct-2 scores, and
remarkably better topical response ratio (TRR).
Note that MA has the lowest perplexity because
the model tends to generate more universal re-
sponses.

Model Perplexity Distinct-1 Distinct-2 TRR

Seq2Seq 63.71 0.0573 0.0836 6.6%
MA 54.26 0.0576 0.0644 4.5%
TA 58.89 0.1292 0.1781 8.7%
ERM 67.62 0.0355 0.0710 4.5%
STD 56.77 0.1325 0.2509 12.1%
HTD 56.10 0.1875 0.3576 43.6%

Table 1: Results of automatic evaluation.

Our decoders have better distinct-1 and distinct-
2 scores than baselines do, and HTD performs
much better than the strongest baseline TA. No-
ticeably, the means of using topic information in
our models differs substantially from that in TA.
Our decoders predict whether a topic word should
be decoded at each position, whereas TA takes as
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Models
Appropriateness Richness Willingness

Win (%) Lose (%) Tie (%) Win (%) Lose (%) Tie (%) Win (%) Lose (%) Tie (%)

STD vs. Seq2Seq 42.0 38.6 19.4 37.2∗∗ 15.2 47.6 45.4∗ 38.6 16.0
STD vs. MA 39.6∗ 31.2 29.2 32.6∗∗ 16.8 50.6 49.4∗∗ 27.0 23.6
STD vs. TA 42.2 40.0 17.8 49.0∗∗ 5.4 45.6 47.6∗ 40.2 12.2
STD vs. ERM 43.4∗ 34.4 22.2 60.6∗∗ 13.2 26.2 43.2∗ 36.8 20.0

HTD vs. Seq2Seq 50.6∗∗ 30.6 18.8 46.0∗∗ 10.2 43.8 58.4∗∗ 33.2 8.4
HTD vs. MA 54.8∗∗ 24.4 20.8 45.0∗∗ 17.0 38.0 67.0∗∗ 18.0 15.0
HTD vs. TA 52.0∗∗ 38.2 9.8 55.0∗∗ 5.4 39.6 62.6∗∗ 31.0 6.4
HTD vs. ERM 64.8∗∗ 23.2 12.0 72.2∗∗ 8.4 19.4 56.6∗∗ 36.6 6.8

HTD vs. STD 52.0∗∗ 33.0 15.0 38.0∗∗ 26.2 35.8 61.8∗∗ 30.6 7.6

Table 2: Annotation results. Win for “A vs. B” means A is better than B. Significance tests with Z-test
were conducted. Values marked with ∗ means p-value < 0.05, and ∗∗ for p-value < 0.01.

input topic word embeddings at all decoding posi-
tions.

Our decoders have remarkably better topic re-
sponse ratios (TRR), indicating that they are more
likely to include topic words in generation.

4.5 Manual Evaluation

We resorted to a crowdsourcing service for manual
annotation. 500 posts were sampled for manual
annotation4. We conducted pair-wise comparison
between two responses generated by two models
for the same post. In total, there are 4,500 pairs to
be compared. For each response pair, five judges
were hired to give a preference between the two
responses, in terms of the following three met-
rics. Tie was allowed, and system identifiers were
masked during annotation.

4.5.1 Evaluation Metrics

Each of the following metrics is evaluated inde-
pendently on each pair-wise comparison:
Appropriateness: measures whether a question is
reasonable in logic and content, and whether it is
questioning on the key information. Inappropriate
questions are either irrelevant to the post, or have
grammatical errors, or universal questions.
Richness: measures whether a response contains
topic words that are relevant to a given post.
Willingness to respond: measures whether a user
will respond to a generated question. This metric
is to justify how likely the generated questions can
elicit further interactions. If people are willing to
respond, the interactions can go further.

4During the sampling process, we removed those posts
that are only interpretable with other context or background.

4.5.2 Results
The label of each pair-wise comparison is decided
by majority voting from five annotators. Results
shown in Table 2 indicate that STD and HTD out-
perform all the baselines in terms of all the met-
rics. This demonstrates that our decoders produce
more appropriate questions, with richer topics.
Particularly, our decoders have substantially better
willingness scores, indicating that questions gen-
erated by our models are more likely to elicit fur-
ther interactions. Noticeably, HTD outperforms
STD significantly, indicating that it is beneficial to
specify word types explicitly and apply dynamic
vocabularies in generation.

We also observed that STD outperforms
Seq2Seq and TA, but the differences are not sig-
nificant in appropriateness. This is because STD
generated about 7% non-question responses which
were judged as inappropriate, while Seq2Seq and
TA generated universal questions (inappropriate
too but beat STD in annotation) to these posts.

4.5.3 Annotation Statistics
The proportion of the pair-wise annotations in
which at least three of five annotators assign the
same label to a record is 90.57%/93.11%/96.62%
for appropriateness/ richness/willingness, respec-
tively. The values show that we have fairly good
agreements with majority voting.

4.6 Questioning Pattern Distribution
To analyze whether the model can question with
various patterns, we manually annotated the ques-
tioning patterns of the responses to 100 sampled
posts. The patterns are classified into 11 types in-
cluding Yes-No, How-, Why-, What-, When-, and
Who- questions. We then calculated the KL diver-
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gence between the pattern type distribution by a
model and that by human (i.e., gold responses).

Results in Table 3 show that the pattern distri-
bution by our model is closer to that in human-
written responses, indicating that our decoders
can better learn questioning patterns from human
language. Further investigation reveals that the
baselines tend to generate simple questions like
What?(什么？) or Really?(真的吗), and con-
stantly focus on using one or two question pat-
terns whereas our decoders use more diversified
patterns as appeared in the human language.

Model Seq2Seq TA MA ERM STD HTD

KLD 0.431 0.416 0.332 0.276 0.072 0.140

Table 3: KL divergence between the questioning
pattern distribution by a model and that by human.

4.7 Examples of the Generated Questions

Table 4 presents some generated questions by our
decoders, which are more appropriate. On the con-
trary, Seq2Seq, MA and ERM tend to generate
more universal questions. These examples also
clearly show that asking questions in open-domain
conversational systems requires scene understand-
ing, which is verified by this scene example of
singing at karaoke(在卡拉ok唱歌).

Post: 我们昨天去唱歌了
We went to karaoke yesterday.

Seq2Seq: 什什什么么么时候?
When?

MA: 你怎怎怎么么么知道我是在问
How did you know I am questioning you?

TA: 什什什么么么?
What?

ERM: 什什什么么么情况?
What happened ?

STD: 去哪哪哪里里里唱歌?
Where did you sing karaoke?

HTD: 你们几几几个人唱歌?
How many people were singing with you?

Table 4: Generated question examples. Interroga-
tive words are bolded and topic words underlined.

To further understand how to ask good ques-
tions in conversational systems, we presented
more generated question examples by human and
our typed decoders. The first example (Post-1) in
Table 5 shows that a good question can be com-
posed of only interrogatives and ordinary words.
This shows the complexity of this task and also the
necessity of modeling interrogatives. Post-2 indi-
cates a typical questioning pattern which is ques-

Post-1: 不好不好。哼！讨厌你啦。
No, no. Humph, I hate you!

Human: 我怎怎怎么么么了?
What is wrong with me?

STD: 我怎怎怎么么么了?
What is wrong with me?

HTD: 我怎怎怎么么么了?
What is wrong with me?

Post-2: 刚用了杀虫剂，现在已经有效果了。
I just sprayed the insecticide, and now the effect appears.

Human: 这么快!效果怎怎怎么么么样?
So quick! What is the effect?

STD: 效果如如如何何何?
What is the effect?

HTD: 效果如如如何何何?
What is the effect?

Post-3: 我在体育中心上班。
I work at the sports center.

Human: 你每天从家过去要多多多久久久?
How long does it take you to go there from home?

STD: 你是什什什么么么部门的啊?
Which department are you from?

HTD: 那你是体育学院的学生吗吗吗?
Are you a student from the College of Physical Education?

Post-4: 今天的寿司真好吃。
The sushi today is so delicious!

Human: 我记得你不喜欢吃日式料理的不是吗吗吗?
I remember you didn’t like eating Japanese food, did you?

STD: 你什什什么么么时候来无锡，我请你。
When will you come to Wuxi? It is my treat.

HTD: 是吗吗吗?改天尝尝!
Really? I will try sometime!

Table 5: Examples for typical questioning pat-
terns. Interrogative words in response are bolded
and topic words are underlined.

tioning on a particular topic word (效果-effect)
of the input. While for Post-3, the questions are
asking about transitional topics of the input (上
班-work → 部门-department; 体育中心-sports
center → 体育学院-college of Physical Educa-
tion), indicating a typical case of topic transition
in our task (also seen in Post-4,寿司-sushi→日式
料理-Japanese food). This example also demon-
strates that for the same input, there are various
questioning patterns: a How-question asked by
human, a Which-question by STD, and a Yes-No
question by HTD. As for Post-4, the gold ques-
tion requires a background that is only shared be-
tween the poster and responder, while STD and
HTD tend to raise more general questions due to
the lack of such shared knowledge.

4.8 Visualization of Type Distribution

To gain more insights into how a word type in-
fluence the generation process, we visualized the
type probability at each decoding position in HTD.
This example (Figure 3) shows that the model can
capture word types well at different positions. For
instance, at the first and second positions, ordinary
words have the highest probabilities for generating
你-you and 喜欢-like, and at the third position, a
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topic word兔子-rabbit is predicted while the last
two positions are for interrogatives (a particle and
a question mark).

Figure 3: Type distribution examples from HTD.
The generated question is “你喜欢兔子吗？do
you like rabbit?”. EOS means end of sentence.

4.9 Error Analysis
We presented error type distribution by manually
analyzing 100 bad responses sampled from STD
and HTD respectively, where bad means the re-
sponse by our model is worse than that by some
baseline during the pair-wise annotation.

There are 4 typical error types: no topic words
(NoT) in a response (mainly universal questions),
wrong topics (WrT) where topic words are irrele-
vant, type generation error (TGE) where a wrong
word type is predicted (See Eq. 2) and it causes
grammatical errors, and other errors.

Error Type NoT WrT TGE Others

STD 34% 34% 29% 3%
HTD 29% 39% 29% 3%

Table 6: Error type distribution.

The error distribution is shown in Table 6. For
STD, most of the errors are attributed to no topic
or wrong topics, while for HTD, the majority of
errors fall into wrong topics.

NoT





Post-1: 今天好开心啊!
I am so happy today!

STD: 你怎怎怎么么么知道?
How do you know ?

WrT





Post-2: 海报非常棒，期待若曦与我们男人的首
度合作。
The poster is great and we look forward to our
first cooperation with Ruoxi.

HTD: 你海报怎怎怎么么么样啊?
How about your poster ?

TGE





Post-3: 又生病啦?吃点药就好了。
Got sick again? Just take some medicine and
you’ll be fine soon.

STD: 我也不知道怎怎怎么么么回事。
I don’t know what happened.

HTD: 肠胃痛了，上火吗吗吗?
Stomach aching, ulcer ?

Table 7: Cases for the error types with interroga-
tive words bolded and topic words underlined.

There are typical cases for these error types: (1)
Posts such as “I am so happy today!” contains

no topic words or rare topic words. In this case,
our method is unable to predict the topic words so
that the models tend to generate universal ques-
tions. This happens more frequently in STD be-
cause the topic words are not specified explicitly.
(2) Posts contains multiple topic words, but the
model sometimes focuses on an inappropriate one.
For instance, for Post-2 in Table 7, HTD focused
on 海报-poster but 合作-cooperation is a proper
one to be focused on. (3) For complex posts, the
models failed to predict the correct word type in
response. For Post-3, STD generated a declarative
sentence and HTD generated a question which,
however, is not adequate within the context.

These cases show that controlling the question-
ing patterns and the informativeness of the content
faces with the compatibility issue, which is chal-
lenging in language generation. These errors are
also partially due to the imperfect ability of topic
word prediction by PMI, which is challenging it-
self in open-domain conversational systems.

5 Conclusion and Future Work

We present two typed decoders to generate ques-
tions in open-domain conversational systems. The
decoders firstly estimate a type distribution over
word types, and then use the type distribution
to modulate the final word generation distribu-
tion. Through modeling the word types in lan-
guage generation, the proposed decoders are able
to question with various patterns and address novel
yet related transitional topics in a generated ques-
tion. Results show that our models can gener-
ate more appropriate questions, with richer topics,
thereby more likely to elicit further interactions.

The work can be extended to multi-turn conver-
sation generation by including an additional detec-
tor predicting when to ask a question. The detector
can be implemented by a classifier or some heuris-
tics. Furthermore, the typed decoders are applica-
ble to the settings where word types can be eas-
ily obtained, such as in emotional text generation
(Ghosh et al., 2017; Zhou et al., 2018b).
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Abstract

Chit-chat models are known to have sev-
eral problems: they lack specificity, do not
display a consistent personality and are of-
ten not very captivating. In this work we
present the task of making chit-chat more
engaging by conditioning on profile infor-
mation. We collect data and train models
to (i) condition on their given profile in-
formation; and (ii) information about the
person they are talking to, resulting in im-
proved dialogues, as measured by next ut-
terance prediction. Since (ii) is initially
unknown, our model is trained to engage
its partner with personal topics, and we
show the resulting dialogue can be used to
predict profile information about the inter-
locutors.

1 Introduction

Despite much recent success in natural language
processing and dialogue research, communication
between a human and a machine is still in its in-
fancy. It is only recently that neural models have
had sufficient capacity and access to sufficiently
large datasets that they appear to generate mean-
ingful responses in a chit-chat setting. Still, con-
versing with such generic chit-chat models for
even a short amount of time quickly exposes their
weaknesses (Serban et al., 2016; Vinyals and Le,
2015).

Common issues with chit-chat models include:
(i) the lack of a consistent personality (Li et al.,
2016a) as they are typically trained over many di-
alogs each with different speakers, (ii) the lack
of an explicit long-term memory as they are typ-
ically trained to produce an utterance given only
the recent dialogue history (Vinyals and Le, 2015);

1Work done while at Facebook AI Research.

and (iii) a tendency to produce non-specific an-
swers like “I don’t know” (Li et al., 2015). Those
three problems combine to produce an unsatisfy-
ing overall experience for a human to engage with.
We believe some of those problems are due to
there being no good publicly available dataset for
general chit-chat.

Because of the low quality of current conver-
sational models, and because of the difficulty in
evaluating these models, chit-chat is often ignored
as an end-application. Instead, the research com-
munity has focused on task-oriented communica-
tion, such as airline or restaurant booking (Bordes
and Weston, 2016), or else single-turn informa-
tion seeking, i.e. question answering (Rajpurkar
et al., 2016). Despite the success of the latter, sim-
pler, domain, it is well-known that a large quantity
of human dialogue centers on socialization, per-
sonal interests and chit-chat (Dunbar et al., 1997).
For example, less than 5% of posts on Twitter are
questions, whereas around 80% are about personal
emotional state, thoughts or activities, authored by
so called “Meformers” (Naaman et al., 2010).

In this work we make a step towards more
engaging chit-chat dialogue agents by endowing
them with a configurable, but persistent persona,
encoded by multiple sentences of textual descrip-
tion, termed a profile. This profile can be stored
in a memory-augmented neural network and then
used to produce more personal, specific, consis-
tent and engaging responses than a persona-free
model, thus alleviating some of the common is-
sues in chit-chat models. Using the same mecha-
nism, any existing information about the persona
of the dialogue partner can also be used in the
same way. Our models are thus trained to both
ask and answer questions about personal topics,
and the resulting dialogue can be used to build a
model of the persona of the speaking partner.

To support the training of such models, we
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present the PERSONA-CHAT dataset, a new dia-
logue dataset consisting of 164,356 utterances be-
tween crowdworkers who were randomly paired
and each asked to act the part of a given provided
persona (randomly assigned, and created by an-
other set of crowdworkers). The paired workers
were asked to chat naturally and to get to know
each other during the conversation. This produces
interesting and engaging conversations that our
agents can try to learn to mimic.

Studying the next utterance prediction task dur-
ing dialogue, we compare a range of models: both
generative and ranking models, including Seq2Seq
models and Memory Networks (Sukhbaatar et al.,
2015) as well as other standard retrieval baselines.
We show experimentally that in either the gener-
ative or ranking case conditioning the agent with
persona information gives improved prediction of
the next dialogue utterance. The PERSONA-CHAT

dataset is designed to facilitate research into al-
leviating some of the issues that traditional chit-
chat models face, and with the aim of making such
models more consistent and engaging, by endow-
ing them with a persona. By comparing against
chit-chat models built using the OpenSubtitles and
Twitter datasets, human evaluations show that our
dataset provides more engaging models, that are
simultaneously capable of being fluent and consis-
tent via conditioning on a persistent, recognizable
profile.

2 Related Work

Traditional dialogue systems consist of building
blocks, such as dialogue state tracking compo-
nents and response generators, and have typically
been applied to tasks with labeled internal dia-
logue state and precisely defined user intent (i.e.,
goal-oriented dialogue), see e.g. (Young, 2000).
The most successful goal-oriented dialogue sys-
tems model conversation as partially observable
Markov decision processes (POMDPs) (Young
et al., 2013). All those methods typically do not
consider the chit-chat setting and are more con-
cerned with achieving functional goals (e.g. book-
ing an airline flight) than displaying a personal-
ity. In particular, many of the tasks and datasets
available are constrained to narrow domains (Ser-
ban et al., 2015).

Non-goal driven dialogue systems go back to
Weizenbaum’s famous program ELIZA (Weizen-
baum, 1966), and hand-coded systems have con-

tinued to be used in applications to this day. For
example, modern solutions that build an open-
ended dialogue system to the Alexa challenge
combine hand-coded and machine-learned ele-
ments (Serban et al., 2017a). Amongst the sim-
plest of statistical systems that can be used in this
domain, that are based on data rather than hand-
coding, are information retrieval models (Sordoni
et al., 2015), which retrieve and rank responses
based on their matching score with the recent dia-
logue history. We use IR systems as a baseline in
this work.

End-to-end neural approaches are a class of
models which have seen growing recent interest.
A popular class of methods are generative re-
current systems like seq2seq applied to dialogue
(Sutskever et al., 2014; Vinyals and Le, 2015; Sor-
doni et al., 2015; Li et al., 2016b; Serban et al.,
2017b). Rooted in language modeling, they are
able to produce syntactically coherent novel re-
sponses, but their memory-free approach means
they lack long-term coherence and a persistent
personality, as discussed before. A promising di-
rection, that is still in its infancy, to fix this issue
is to use a memory-augmented network instead
(Sukhbaatar et al., 2015; Dodge et al., 2015) by
providing or learning appropriate memories.

Serban et al. (2015) list available corpora for
training dialogue systems. Perhaps the most rele-
vant to learning chit-chat models are ones based on
movie scripts such as OpenSubtitles and Cornell
Movie-Dialogue Corpus, and dialogue from web
platforms such as Reddit and Twitter, all of which
have been used for training neural approaches
(Vinyals and Le, 2015; Dodge et al., 2015; Li
et al., 2016b; Serban et al., 2017b). Naively train-
ing on these datasets leads to models with the
lack of a consistent personality as they will learn
a model averaged over many different speakers.
Moreover, the data does little to encourage the
model to engage in understanding and maintain-
ing knowledge of the dialogue partner’s personal-
ity and topic interests.

According to Serban et al. (2015)’s survey, per-
sonalization of dialogue systems is “an important
task, which so far has not received much atten-
tion”. In the case of goal-oriented dialogue some
work has focused on the agent being aware of the
human’s profile and adjusting the dialogue accord-
ingly, but without a personality to the agent it-
self (Lucas et al., 2009; Joshi et al., 2017). For
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the chit-chat setting, the most relevant work is (Li
et al., 2016a). For each user in the Twitter cor-
pus, personas were captured via distributed em-
beddings (one per speaker) to encapsulate individ-
ual characteristics such as background information
and speaking style, and they then showed using
those vectors improved the output of their seq2seq
model for the same speaker. Their work does not
focus on attempting to engage the other speaker by
getting to know them, as we do here. For that rea-
son, our focus is on explicit profile information,
not hard-to-interpret latent variables.

3 The PERSONA-CHAT Dataset

The aim of this work is to facilitate more en-
gaging and more personal chit-chat dialogue.
The PERSONA-CHAT dataset is a crowd-sourced
dataset, collected via Amazon Mechanical Turk,
where each of the pair of speakers condition their
dialogue on a given profile, which is provided.

The data collection consists of three stages:
(i) Personas: we crowdsource a set of 1155 pos-

sible personas, each consisting of at least 5 profile
sentences, setting aside 100 never seen before per-
sonas for validation, and 100 for test.

(ii) Revised personas: to avoid modeling that
takes advantage of trivial word overlap, we crowd-
source additional rewritten sets of the same 1155
personas, with related sentences that are rephrases,
generalizations or specializations, rendering the
task much more challenging.

(iii) Persona chat: we pair two Turkers and as-
sign them each a random (original) persona from
the pool, and ask them to chat. This resulted in a
dataset of 164,356 utterances over 10,981 dialogs,
15,705 utterances (968 dialogs) of which are set
aside for validation, and 15,119 utterances (1000
dialogs) for test.

The final dataset and its corresponding data col-
lection source code, as well as models trained on
the data, are all available open source in ParlAI2.

In the following, we describe each data collec-
tion stage and the resulting tasks in more detail.

3.1 Personas

We asked the crowdsourced workers to create a
character (persona) description using 5 sentences,
providing them only a single example:

2https://github.com/facebookresearch/
ParlAI/tree/master/projects/personachat

“I am a vegetarian. I like swimming. My father
used to work for Ford. My favorite band is Ma-
roon5. I got a new job last month, which is about
advertising design.”

Our aim was to create profiles that are natural
and descriptive, and contain typical topics of hu-
man interest that the speaker can bring up in con-
versation. Because the personas are not the real
profiles of the Turkers, the dataset does not con-
tain personal information (and they are told specif-
ically not to use any). We asked the workers to
make each sentence short, with a maximum of 15
words per sentence. This is advantageous both for
humans and machines: if they are too long, crowd-
sourced workers are likely to lose interest, and for
machines the task could become more difficult.

Some examples of the personas collected are
given in Table 1 (left).

3.2 Revised Personas

A difficulty when constructing dialogue datasets,
or text datasets in general, is that in order to en-
courage research progress, the task must be care-
fully constructed so that is neither too easy nor
too difficult for the current technology (Voorhees
et al., 1999). One issue with conditioning on tex-
tual personas is that there is a danger that hu-
mans will, even if asked not to, unwittingly re-
peat profile information either verbatim or with
significant word overlap. This may make any sub-
sequent machine learning tasks less challenging,
and the solutions will not generalize to more diffi-
cult tasks. This has been a problem in some re-
cent datasets: for example, the dataset curation
technique used for the well-known SQuAD dataset
suffers from this word overlap problem to a certain
extent (Chen et al., 2017).

To alleviate this problem, we presented the orig-
inal personas we collected to a new set of crowd-
workers and asked them to rewrite the sentences
so that a new sentence is about “a related char-
acteristic that the same person may have”, hence
the revisions could be rephrases, generalizations
or specializations. For example “I like basketball”
can be revised as “I am a big fan of Michael Jor-
dan” not because they mean the same thing but
because the same persona could contain both.

In the revision task, workers are instructed not
to trivially rephrase the sentence by copying the
original words. However, during the entry stage
if a non-stop word is copied we issue a warning,
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Original Persona Revised Persona

I love the beach. To me, there is nothing like a day at the seashore.
My dad has a car dealership My father sales vehicles for a living.
I just got my nails done I love to pamper myself on a regular basis.
I am on a diet now I need to lose weight.
Horses are my favorite animal. I am into equestrian sports.

I play a lot of fantasy videogames. RPGs are my favorite genre.
I have a computer science degree. I also went to school to work with technology.
My mother is a medical doctor The woman who gave birth to me is a physician.
I am very shy. I am not a social person.
I like to build model spaceships. I enjoy working with my hands.

Table 1: Example Personas (left) and their revised versions (right) from the PERSONA-CHAT dataset.
The revised versions are designed to be characteristics that the same persona might have, which could be
rephrases, generalizations or specializations.

Persona 1 Persona 2

I like to ski I am an artist
My wife does not like me anymore I have four children
I have went to Mexico 4 times this year I recently got a cat
I hate Mexican food I enjoy walking for exercise
I like to eat cheetos I love watching Game of Thrones

[PERSON 1:] Hi
[PERSON 2:] Hello ! How are you today ?
[PERSON 1:] I am good thank you , how are you.
[PERSON 2:] Great, thanks ! My children and I were just about to watch Game of Thrones.
[PERSON 1:] Nice ! How old are your children?
[PERSON 2:] I have four that range in age from 10 to 21. You?
[PERSON 1:] I do not have children at the moment.
[PERSON 2:] That just means you get to keep all the popcorn for yourself.
[PERSON 1:] And Cheetos at the moment!
[PERSON 2:] Good choice. Do you watch Game of Thrones?
[PERSON 1:] No, I do not have much time for TV.
[PERSON 2:] I usually spend my time painting: but, I love the show.

Table 2: Example dialog from the PERSONA-CHAT dataset. Person 1 is given their own persona (top left)
at the beginning of the chat, but does not know the persona of Person 2, and vice-versa. They have to get
to know each other during the conversation.

and ask them to rephrase, guaranteeing that the
instructions are followed. For example, “My fa-
ther worked for Ford.” can be revised to “My dad
worked in the car industry”, but not “My dad was
employed by Ford.” due to word overlap.

Some examples of the revised personas col-
lected are given in Table 1 (right).

3.3 Persona Chat

After collecting personas, we then collected the di-
alogues themselves, conditioned on the personas.
For each dialogue, we paired two random crowd-
workers, and gave them the instruction that they
will chit-chat with another worker, while playing
the part of a given character. We then provide them
with a randomly chosen persona from our pool,
different to their partners. The instructions are on

purpose quite terse and simply ask them to “chat
with the other person naturally and try to get to
know each other”. In an early study we noticed
the crowdworkers tending to talk about themselves
(their own persona) too much, so we also added
the instructions “both ask questions and answer
questions of your chat partner” which seemed to
help. We also gave a bonus for high quality di-
alogs. The dialog is turn-based, with a maximum
of 15 words per message. We again gave instruc-
tions to not trivially copy the character descrip-
tions into the messages, but also wrote explicit
code sending them an error if they tried to do so,
using simple string matching. We define a mini-
mum dialogue length which is randomly between
6 and 8 turns each for each dialogue. An example
dialogue from the dataset is given in Table 2.
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3.4 Evaluation

We focus on the standard dialogue task of pre-
dicting the next utterance given the dialogue his-
tory, but consider this task both with and without
the profile information being given to the learn-
ing agent. Our goal is to enable interesting direc-
tions for future research, where chatbots can for
instance have personalities, or imputed personas
could be used to make dialogue more engaging to
the user.

We consider this in four possible scenarios:
conditioning on no persona, your own persona,
their persona, or both. These scenarios can be tried
using either the original personas, or the revised
ones. We then evaluate the task using three met-
rics: (i) the log likelihood of the correct sequence,
measured via perplexity, (ii) F1 score, and (iii)
next utterance classification loss, following Lowe
et al. (2015). The latter consists of choosing N
random distractor responses from other dialogues
(in our setting, N=19) and the model selecting the
best response among them, resulting in a score of
one if the model chooses the correct response, and
zero otherwise (called hits@1 in the experiments).

4 Models

We consider two classes of model for next utter-
ance prediction: ranking models and generative
models. Ranking models produce a next utterance
by considering any utterance in the training set as a
possible candidate reply. Generative models gen-
erate novel sentences by conditioning on the dia-
logue history (and possibly, the persona), and then
generating the response word-by-word. Note one
can still evaluate the latter as ranking models by
computing the probability of generating a given
candidate, and ranking candidates by those scores.

4.1 Baseline ranking models

We first consider two baseline models, an IR base-
line (Sordoni et al., 2015) and a supervised embed-
ding model, Starspace (Wu et al., 2017)3. While
there are many IR variants, we adopt the sim-
plest one: find the most similar message in the
(training) dataset and output the response from
that exchange. Similarity is measured by the tf-
idf weighted cosine similarity between the bags
of words. Starspace is a recent model that also
performs information retrieval but by learning the

3github.com/facebookresearch/StarSpace

similarity between the dialog and the next ut-
terance by optimizing the embeddings directly
for that task using the margin ranking loss and
k-negative sampling. The similarity function
sim(q, c′) is the cosine similarity of the sum of
word embeddings of the query q and candidate c′.
Denoting the dictionary of D word embeddings as
W which is a D× d matrix, where Wi indexes the
ith word (row), yielding its d-dimensional embed-
ding, it embeds the sequences q and c′.

In both methods, IR and StarSpace, to incor-
porate the profile we simply concatenate it to the
query vector bag of words.

4.2 Ranking Profile Memory Network
Both the previous models use the profile infor-
mation by combining it with the dialogue history,
which means those models cannot differentiate be-
tween the two when deciding on the next utter-
ance. In this model we instead use a memory
network with the dialogue history as input, which
then performs attention over the profile to find rel-
evant lines from the profile to combine with the
input, and then finally predicts the next utterance.
We use the same representation and loss as in the
Starspace model, so without the profile, the two
models are identical. When the profile is available
attention is performed by computing the similarity
of the input q with the profile sentences pi, com-
puting the softmax, and taking the weighted sum:

q+ = q+
∑

sipi, si = Softmax(sim(q, pi))

where Softmax(zi) = ezi/
∑

j e
zj . One can then

rank the candidates c′ using sim(q+, c′). One can
also perform multiple “hops” of attention over the
profile rather than one, as shown here, although
that did not bring significant gains in our parame-
ter sweeps.

4.3 Key-Value Profile Memory Network
The key-value (KV) memory network (Miller
et al., 2016) was proposed as an improvement to
the memory network by performing attention over
keys and outputting the values (instead of the same
keys as in the original), which can outperform
memory networks dependent on the task and defi-
nition of the key-value pairs. Here, we apply this
model to dialogue, and consider the keys as dia-
log histories (from the training set), and the val-
ues as the next dialogue utterances, i.e., the replies
from the speaking partner. This allows the model
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to have a memory of past dialogues that it can di-
rectly use to help influence its prediction for the
current conversation. The model we choose is
identical to the profile memory network just de-
scribed in the first hop over profiles, while in the
second hop, q+ is used to attend over the keys and
output a weighted sum of values as before, pro-
ducing q++. This is then used to rank the candi-
dates c′ using sim(q++, c′) as before. As the set of
(key-value) pairs is large this would make training
very slow. In our experiments we simply trained
the profile memory network and used the same
weights from that model and applied this archi-
tecture at test time instead. Training the model di-
rectly would presumably give better results, how-
ever this heuristic already proved beneficial com-
pared to the original network.

4.4 Seq2Seq

The input sequence x is encoded by applying het =
LSTMenc(xt | het−1). We use GloVe (Pennington
et al., 2014) for our word embeddings. The final
hidden state, het , is fed into the decoder LSTMdec

as the initial state hd0. For each time step t, the
decoder then produces the probability of a word j
occurring in that place via the softmax, i.e.,

p(yt,j = 1 | yt−1, . . . , y1) =
exp(wjh

d
t )∑K

j′=1 exp(wj′h
d
t )
.

The model is trained via negative log likelihood.
The basic model can be extended to include
persona information, in which case we simply
prepend it to the input sequence x, i.e., x = ∀p ∈
P || x, where || denotes concatenation. For the
OpenSubtitles and Twitter datasets trained in Sec-
tion 5.2 we found training a language model (LM),
essentially just the decoder part of this model,
worked better and we report that instead.

4.5 Generative Profile Memory Network

Finally, we introduce a generative model that en-
codes each of the profile entries as individual
memory representations in a memory network.
As before, the dialogue history is encoded via
LSTMenc, the final state of which is used as the
initial hidden state of the decoder. Each entry pi =
〈pi,1, . . . , pi,n〉 ∈ P is then encoded via f(pi) =∑|pi|

j αipi,j . That is, we weight words by their in-
verse term frequency: αi = 1/(1 + log(1 + tf))
where tf is computed from the GloVe index via

Zipf’s law4. Let F be the set of encoded memo-
ries. The decoder now attends over the encoded
profile entries, i.e., we compute the mask at, con-
text ct and next input x̂t as:

at = softmax(FWah
d
t ),

ct = aᵀtF ; x̂t = tanh(Wc[ct−1, xt]).

If the model has no profile information, and hence
no memory, it becomes equivalent to the Seq2Seq
model.

5 Experiments

We first report results using automated evalua-
tion metrics, and subsequently perform an extrin-
sic evaluation where crowdsourced workers per-
form a human evaluation of our models.

5.1 Automated metrics

The main results are reported in Table 3. Overall,
the results show the following key points:

Persona Conditioning Most models improve
significantly when conditioning prediction on their
own persona at least for the original (non-revised)
versions, which is an easier task than the re-
vised ones which have no word overlap. For
example, the Profile Memory generation model
has improved perplexity and hits@1 compared to
Seq2Seq, and all the ranking algorithms (IR base-
line, Starspace and Profile Memory Networks) ob-
tain improved hits@1.

Ranking vs. Generative. Ranking models are
far better than generative models at ranking. This
is perhaps obvious as that is the metric they are
optimizing, but still the performance difference is
quite stark. It may be that the word-based proba-
bility which generative models use works well, but
is not calibrated well enough to give a sentence-
based probability which ranking requires. Human
evaluation is also used to compare these methods,
which we perform in Sec. 5.2.

Ranking Models. For the ranking models, the
IR baseline is outperformed by Starspace due to
its learnt similarity metric, which in turn is out-
performed by Profile Memory networks due to the
attention mechanism over the profiles (as all other
parts of the models are the same). Finally KV Pro-
file Memory networks outperform Profile Memory
Networks in the no persona case due to the ability
to consider neighboring dialogue history and next

4tf = 1e6 ∗ 1/(idx1.07)
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Method No Persona Original Persona Revised Persona
ppl hits@1 ppl hits@1 ppl hits@1

Generative Models
Seq2Seq 38.08 0.092 40.53 0.084 40.65 0.082
Profile Memory 38.08 0.092 34.54 0.125 38.21 0.108

Ranking Models
IR baseline - 0.214 - 0.410 - 0.207
Starspace - 0.318 - 0.491 - 0.322
Profile Memory - 0.318 - 0.509 - 0.354
KV Profile Memory - 0.349 - 0.511 - 0.351

Table 3: Evaluation of dialog utterance prediction with various models in three settings: without
conditioning on a persona, conditioned on the speakers given persona (“Original Persona”), or a revised
persona that does not have word overlap.

Method Persona
Model Profile Fluency Engagingness Consistency Detection

Human Self 4.31(1.07) 4.25(1.06) 4.36(0.92) 0.95(0.22)

Generative PersonaChat Models
Seq2Seq None 3.17(1.10) 3.18(1.41) 2.98(1.45) 0.51(0.50)
Profile Memory Self 3.08(1.40) 3.13(1.39) 3.14(1.26) 0.72(0.45)

Ranking PersonaChat Models
KV Memory None 3.81(1.14) 3.88(0.98) 3.36(1.37) 0.59(0.49)
KV Profile Memory Self 3.97(0.94) 3.50(1.17) 3.44(1.30) 0.81(0.39)

Twitter LM None 3.21(1.54) 1.75(1.04) 1.95(1.22) 0.57(0.50)
OpenSubtitles 2018 LM None 2.85(1.46) 2.13(1.07) 2.15(1.08) 0.35(0.48)
OpenSubtitles 2009 LM None 2.25(1.37) 2.12(1.33) 1.96(1.22) 0.38(0.49)
OpenSubtitles 2009 KV Memory None 2.14(1.20) 2.22(1.22) 2.06(1.29) 0.42(0.49)

Table 4: Human Evaluation of various PERSONA-CHAT models, along with a comparison to human per-
formance, and Twitter and OpenSubtitles based models (last 4 rows), standard deviation in parenthesis.

utterance pairs in the training set that are similar to
the current dialogue, however when using persona
information the performance is similar.

Revised Personas. Revised personas are much
harder to use. We do however still see some
gain for the Profile Memory networks compared
to none (0.354 vs. 0.318 hits@1). We also tried
two variants of training: with the original personas
in the training set or the revised ones, a compari-
son of which is shown in Table 6 of the Appendix.
Training on revised personas helps, both for test
examples that are in original form or revised form,
likely due to the model be forced to learn more
than simple word overlap, forcing the model to
generalize more (i.e., learn semantic similarity of
differing phrases).

Their Persona. We can also condition a model
on the other speaker’s persona, or both personas
at once, the results of which are in Tables 5 and 6
in the Appendix. Using “Their persona” has less
impact on this dataset. We believe this is because
most speakers tend to focus on themselves when
it comes to their interests. It would be interest-
ing how often this is the case in other datasets.
Certainly this is skewed by the particular instruc-
tions one could give to the crowdworkers. For
example if we gave the instructions “try not to
talk about yourself, but about the other’s interests’
likely these metrics would change.
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5.2 Human Evaluation

As automated metrics are notoriously poor for
evaluating dialogue (Liu et al., 2016) we also per-
form human evaluation using crowdsourced work-
ers. The procedure is as follows. We perform al-
most exactly the same setup as in the dataset col-
lection process itself as in Section 3.3. In that
setup, we paired two Turkers and assigned them
each a random (original) persona from the col-
lected pool, and asked them to chat. Here, from
the Turker’s point of view everything looks the
same except instead of being paired with a Turker
they are paired with one of our models instead
(they do not know this). In this setting, for both
the Turker and the model, the personas come from
the test set pool.

After the dialogue, we then ask the Turker some
additional questions in order to evaluate the qual-
ity of the model. We ask them to evaluate fluency,
engagingness and consistency (scored between 1-
5). Finally, we measure the ability to detect the
other speaker’s profile by displaying two possi-
ble profiles, and ask which is more likely to be
the profile of the person the Turker just spoke to.
More details of these measures are given in the
Appendix.

The results are reported in Table 4 for the best
performing generative and ranking models, in both
the No Persona and Self Persona categories, 100
dialogues each. We also evaluate the scores of hu-
man performance by replacing the chatbot with a
human (another Turker). This effectively gives us
upper bound scores which we can aim for with our
models. Finally, and importantly, we compare our
models trained on PERSONA-CHAT with chit-chat
models trained with the Twitter and OpenSubtitles
datasets (2009 and 2018 versions) instead, follow-
ing Vinyals and Le (2015). Example chats from a
few of the models are shown in the Appendix in
Tables 7, 8, 9, 10, 11 and 12.

Firstly, we see a difference in fluency, engag-
ingness and consistency between all PERSONA-
CHAT models and the models trained on OpenSub-
titles and Twitter. PERSONA-CHAT is a resource
that is particularly strong at providing training data
for the beginning of conversations, when the two
speakers do not know each other, focusing on ask-
ing and answering questions, in contrast to other
resources. We also see suggestions of more sub-
tle differences between the models, although these
differences are obscured by the high variance of

the human raters’ evaluations. For example, in
both the generative and ranking model cases, mod-
els endowed with a persona can be detected by the
human conversation partner, as evidenced by the
persona detection accuracies, whilst maintaining
fluency and consistency compared to their non-
persona driven counterparts.

Finding the balance between fluency, engage-
ment, consistency, and a persistent persona re-
mains a strong challenge for future research.

5.3 Profile Prediction

Two tasks could naturally be considered using
PERSONACHAT: (1) next utterance prediction
during dialogue, and (2) profile prediction given
dialogue history. The main study of this work has
been Task 1, where we have shown the use of pro-
file information. Task 2, however, can be used to
extract such information. While a full study is be-
yond the scope of this paper, we conducted some
preliminary experiments, the details of which are
in Appendix D. They show (i) human speaker’s
profiles can be predicted from their dialogue with
high accuracy (94.3%, similar to human perfor-
mance in Table 4) or even from the model’s di-
alogue (23% with KV Profile Memory) showing
the model is paying attention to the human’s inter-
ests. Further, the accuracies clearly improve with
further dialogue, as shown in Table 14. Combining
Task 1 and Task 2 into a full system is an exciting
area of future research.

6 Conclusion & Discussion

In this work we have introduced the PERSONA-
CHAT dataset, which consists of crowd-sourced di-
alogues where each participant plays the part of an
assigned persona; and each (crowd-sourced) per-
sona has a word-distinct paraphrase. We test vari-
ous baseline models on this dataset, and show that
models that have access to their own personas in
addition to the state of the dialogue are scored as
more consistent by annotators, although not more
engaging. On the other hand, we show that models
trained on PERSONA-CHAT (with or without per-
sonas) are more engaging than models trained on
dialogue from other resources (movies, Twitter).

We believe PERSONA-CHAT will be a useful re-
source for training components of future dialogue
systems. Because we have paired human gener-
ated profiles and conversations, the data aids the
construction of agents that have consistent per-
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sonalities and viewpoints. Furthermore, predict-
ing the profiles from a conversation moves chit-
chat tasks in the direction of goal-directed dia-
logue, which has metrics for success. Because we
collect paraphrases of the profiles, they cannot be
trivially matched; indeed, we believe the original
and rephrased profiles are interesting as a semantic
similarity dataset in their own right. We hope that
the data will aid training agents that can ask ques-
tions about users’ profiles, remember the answers,
and use them naturally in conversation.
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Abstract

In this paper, we explore the task of map-
ping spoken language utterances to one of
thousands of natural language understand-
ing domains in intelligent personal digital
assistants (IPDAs). This scenario is ob-
served in mainstream IPDAs in industry
that allow third parties to develop thou-
sands of new domains to augment built-
in first party domains to rapidly increase
domain coverage and overall IPDA ca-
pabilities. We propose a scalable neu-
ral model architecture with a shared en-
coder, a novel attention mechanism that
incorporates personalization information
and domain-specific classifiers that solves
the problem efficiently. Our architecture
is designed to efficiently accommodate
incremental domain additions achieving
two orders of magnitude speed up com-
pared to full model retraining. We con-
sider the practical constraints of real-time
production systems, and design to min-
imize memory footprint and runtime la-
tency. We demonstrate that incorporating
personalization significantly improves do-
main classification accuracy in a setting
with thousands of overlapping domains.

1 Introduction

Intelligent personal digital assistants (IPDAs) are
one of the most advanced and successful artifi-
cial intelligence applications that have spoken lan-
guage understanding (SLU). Many IPDAs have
recently emerged in industry including Amazon
Alexa, Google Assistant, Apple Siri, and Mi-
crosoft Cortana (Sarikaya, 2017). IPDAs have tra-
ditionally supported only dozens of well-separated
domains, each defined in terms of a specific ap-

plication or functionality such as calendar and lo-
cal search (Tur and de Mori, 2011; Sarikaya et al.,
2016). To rapidly increase domain coverage and
extend capabilities, some IPDAs have released
Software Development Toolkits (SDKs) to allow
third-party developers to quickly build and inte-
grate new domains, which we refer to as skills
henceforth. Amazon’s Alexa Skills Kit (Kumar
et al., 2017a), Google’s Actions and Microsoft’s
Cortana Skills Kit are all examples of such SDKs.
Alexa Skills Kit is the largest of these services
with over 40,000 skills.

For IPDAs, finding the most relevant skill to
handle an utterance is an open problem for three
reasons. First, the sheer number of skills makes
the task difficult. Unlike traditional systems that
have on the order of 10-20 built-in domains, large-
scale IPDAs can have up to 40,000 skills. Sec-
ond, the number of skills is rapidly expanding
with 100+ new skills added per week. Large-
scale IPDAs should be able to accommodate new
skills efficiently without compromising perfor-
mance. Third, unlike traditional built-in domains
that are carefully designed to be disjoint by a cen-
tral team, skills are built independently by differ-
ent developers and can cover overlapping func-
tionalities. For instance, there are over 50 recipe
skills in Alexa that can handle recipe-related utter-
ances.

One simple solution to this problem has been to
require the user to explicitly mention a skill name
and follow a strict invocation pattern as in ”Ask
{Uber} to {get me a ride}.” However, this signif-
icantly limits the natural interaction with IPDAs.
Users have to remember skill names and invoca-
tion patterns, and it places a cognitive burden on
users who tend to forget both. Skill discovery is
difficult with a pure voice user interface, it is hard
for users to know the capabilities of thousands of
skills a priori, which may leads to limited user en-
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gagement with skills and potentially with IPDAs.
In this paper, we propose a solution that ad-

dresses all three practical challenges without re-
quiring skill names or invocation patterns. Our
approach is based on a scalable neural model ar-
chitecture with a shared encoder, a skill atten-
tion mechanism and skill-specific classification
networks that can efficiently perform large-scale
skill classification in IPDAs using a weakly su-
pervised training dataset. We demonstrate that
our model achieves a high accuracy on a manu-
ally transcribed test set after being trained with
weak supervision. Moreover, our architecture is
designed to efficiently integrate new skills that ap-
pear in-between full model retraining cycles into
the model. Besides accuracy, we also keep prac-
tical constraints in mind and focus on minimiz-
ing memory footprint and runtime latency, while
ensuring architecture is scalable to thousands of
skills, all of which are important for real-time pro-
duction systems. Furthermore, we investigate two
different ways of incorporating user personaliza-
tion information into the model, our naive base-
line method adds the information as a 1-bit flag in
the feature space of the skill-specific networks, the
personalized attention technique computes a con-
vex combination of skill embeddings for the user’s
enabled skills and significantly outperforms the
naive personalization baseline. We show the ef-
fectiveness of our approach with extensive exper-
iments using 1,500 skills from a deployed IPDA
system.

2 Related Work

Traditional multi-domain SLU/NLU systems are
designed hierarchically, starting with domain clas-
sification to classify an incoming utterance into
one of many possible domains, followed by fur-
ther semantic analysis with domain-specific intent
classification and slot tagging (Tur and de Mori,
2011). Traditional systems have typically been
limited to a small number of domains, designed
by specialists to be well-separable. Therefore,
domain classification has been considered a less
complex task compared to other semantic anal-
ysis such as intent and slot predictions. Tradi-
tional domain classifiers are built using simple lin-
ear models such as Multinomial Logistic Regres-
sion or Support Vector Machines in a one-versus-
all setting for multi-class prediction. The models
typically use word n-gram features and also those

based on static lexicon match, and there have been
several recent studies applying deep learning tech-
niques (Xu and Sarikaya, 2014).

There is also a line of prior work on enhanc-
ing sequential text classification or tagging. Hier-
archical character-to-word level LSTM (Hochre-
iter and Schmidhuber, 1997) architectures similar
to our models have been explored for the Named
Entity Recognition task by Lample et al. (2016).
Character-informed sequence models have also
been explored for simple text classification with
small sets of classes by Xiao and Cho (2016).
Joulin et al. (2016) explored highly scalable text
classification using a shared hierarchical encoder,
but their hierarchical softmax-based output formu-
lation is unsuitable for incremental model updates.
Work on zero-shot domain classifier expansion by
Kumar et al. (2017b) struggled to rank incom-
ing domains higher than training domains. The
attention-based approach of Kim et al. (2017d)
does not require retraining from scratch, but it
requires keeping all models stored in memory
which is computationally expensive. Multi-Task
learning was used in the context of SLU by Tur
(2006) and has been further explored using neu-
ral networks for phoneme recognition (Seltzer and
Droppo, 2013) and semantic parsing (Fan et al.,
2017; Bapna et al., 2017). There have been many
other pieces of prior work on improving NLU sys-
tems with pre-training (Kim et al., 2015b; Celiky-
ilmaz et al., 2016; Kim et al., 2017e), multi-task
learning (Zhang and Wang, 2016; Liu and Lane,
2016; Kim et al., 2017b), transfer learning (El-
Kahky et al., 2014; Kim et al., 2015a,c; Chen et al.,
2016a; Yang et al., 2017), domain adaptation (Kim
et al., 2016; Jaech et al., 2016; Liu and Lane, 2017;
Kim et al., 2017d,c) and contextual signals (Bhar-
gava et al., 2013; Chen et al., 2016b; Hori et al.,
2016; Kim et al., 2017a).

3 Weakly Supervised Training Data
Generation

Our model addresses the domain classification
task in SLU systems. In traditional IPDA systems,
these domains are hand-crafted by experts to be
well separable and can easily be annotated by hu-
mans because they are small in number. The emer-
gence of self-service SLU results in a large num-
ber of potentially mutually overlapping SLU do-
mains. This means that eliciting large volumes of
high quality human annotations to train our model
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Figure 1: The overall architecture of the personalized dynamic domain classifier.

is no longer feasible, and we cannot assume that
domains are designed to be well separable.

Instead we can generate training data by adopt-
ing the weak supervision paradigm introduced by
(Hoffmann et al., 2011), which proposes using
heuristic labeling functions generate large num-
bers of noisy data samples. Clean data generation
with weak supervision is a challenging problem,
so we address it by decomposing it into two sim-
pler problems, of candidate generation and noise
suppression, however it remains important for our
model to be noise robust.

3.1 Data Programming
The key insight of the Data Programming ap-
proach is that O(1) simple labeling functions can
be used to approximate O(n) human annotated
data points with much less effort. We adopt the
formalism used by (Ratner et al., 2016) to treat
each of instance data generation rule as a rich gen-
erative model, defined by a labeling function λ and
describe different families of labeling functions.
Our data programming pipeline is analogous to the
noisy channel model proposed for spelling correc-
tion by (Kernighan et al., 1990), and consists of
a set of candidate generation and noise detection
functions.

arg max
µ

P (µ|si) = arg max
µ

P (si|µ). P (µ)

where µ and si represent utterances and the ith
skill respectively. P (si|µ) the probability of a skill

being valid for an utterance is approximated by
simple functions that act as candidate data genera-
tors λg ∈ Λg based on recognitions produced by a
family of query patterns λq ∈ Λq. P (µ) is repre-
sented by a family of simple functions that act as
noise detectors λn ∈ Λn, which mark utterances
as likely being noise.

We apply the technique to the query logs of a
popular IPDA, which has support for personalized
third party domains. Looking at the structure of
utterances that match query pattern λq, each utter-
ance of form ”Ask {Uber} to {get me a car}” can
be considered as being parametrized by the under-
lying latent command µz , that is ”Get me a car”,
a target domain corresponding to service st, which
in this case is Uber and the query recognition pat-
tern λq, in this case ”Ask {st} to {µz}”. Next we
assume that the distribution of latent commands
over domains are independent of the query pattern.

P (µz, st) ≈ P (µ, st, λq)

Making this simple distributional approximation
allows us to generate a large number of noisy train-
ing samples. The family of generator functions
λg ∈ Λg is thus defined such that uz = λig(µ, λ

i
q)

3.2 Noise Reduction
The distribution defined above contains a large
number of noisy positive samples. Related to
P (µ) in the noisy channel in the spell correction
context, we defined a small family of heuristic
noise detection functions λn ∈ Λn that discards
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training data instances that are not likely to be well
formed. For instance,

• λ1
n requires u to contain a minimum thresh-

old of information by removing those with
µz that has token length fewer than 3. Utter-
ances shorter than this mostly consist of non-
actionable commands.

• λ2
n discards all data samples below a certain

threshold of occurrences in live traffic, since
utterances that are rarely observed are more
likely to be ASR errors or unnatural.

• λ3
n discards the data samples for a domain if

they come from an overly broad pattern with
a catch-all behavior.

• λ4
n discards utterances that belong to shared

intents provided by the SLU SDK.

The end result of this stage is to retain utter-
ances such as ‘call me a cab’ from ‘Ask Uber to
call me a cab’ but discard ‘Boston’ from ‘Ask Ac-
cuweather for Boston’. One can easily imagine
extending this framework with other high recall
noise detectors, for example, using language mod-
els to discard candidates that are unlikely to be
spoken sentences.

4 Model Architecture

Our model consists of a shared encoder network
consisting of an orthography-sensitive hierarchical
LSTM encoder that feeds into a set of domain spe-
cific classification layers trained to make a binary
decision for each output label.

Our main novel contribution is the extension
of this architecture with a personalized attention
mechanism which uses the attention mechanism
of (Bahdanau et al., 2014) to attend to memory lo-
cations corresponding to the specific domains en-
abled by a user, and allows the system to learn
semantic representations of each domain via do-
main embeddings. As we will show, incorporat-
ing personalization features is key to disambiguat-
ing between multiple overlapping domains1, and
the personalized attention mechanism outperforms
more naive forms of personalization. The person-
alized attention mechanism first computes an at-
tention weight for each of enabled domains, per-
forms a convex combination to compute a context

1We assume that users can customize their IPDA settings
to enable certain domains.

vector and then concatenates this vector to the en-
coded utterance before the final domain classifica-
tion. Figure 1 depicts the model in detail.

Our model can efficiently accommodate new
domains not seen during initial training by keep-
ing the shared encoder frozen, bootstrapping a do-
main embedding based on existing ones, then opti-
mizing a small number of network parameters cor-
responding to domain-specific classifier, which is
orders of magnitude faster and more data efficient
than retraining the full classifier.

We make design decisions to ensure that our
model has a low memory and latency footprint.
We avoid expensive large vocabulary matrix mul-
tiplications on both the input and output stages,
and instead use a combination of character embed-
dings and word embeddings in the input stage.2

The output matrix is lightweight because each
domain-specific classifier is a matrix of only
201×2 parameters. The inference task can be triv-
ially parallelized across cores since there’s no re-
quirement to compute a partition function across
a high-dimensional softmax layer, which is the
slowest component of large label multiclass neu-
ral networks. Instead, we achieve comparability
between the probability scores generated by indi-
vidual models by using a customized loss formu-
lation.3

4.1 Shared Encoder

First we describe our shared hierarchical utterance
encoder, which is marked by the almond colored
box in Figure 1. Our hierarchical character to
word to utterance design is motivated by the need
to make the model operate on an open vocabulary
in terms of words and to make it robust to small
changes in orthography resulting from fluctuations
in the upstream ASR system, all while avoiding
expensive large matrix multiplications associated
with one-hot word encoding in large vocabulary
systems.

We denote an LSTM simply as a mapping φ :
Rd × Rd′ → Rd′ that takes a d dimensional in-
put vector x and a d′ dimensional state vector h
to output a new d′ dimensional state vector h′ =

2Using a one-hot representation of word vocabulary size
60,000 and hidden dimension 100 would require learning a
matrix of size 60000 x 100 - using 100-dim word embeddings
requires only aO(1) lookup followed by a 100 x 100 matrix,
thus allowing our model to be significantly smaller and faster
despite having what is effectively an open vocabulary

3Current inference consumes 50MB memory and the p99
latency is 15ms.
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φ(x, h). Let C denote the set of characters andW
the set of words in a given utterance. Let⊕ denote
the vector concatenation operation. We encode an
utterance using BiLSTMs, and the model parame-
ters Θ associated with this BiLSTM layer are

• Char embeddings ec ∈ R25 for each c ∈ C
• Char LSTMs φCf , φ

C
b : R25 × R25 → R25

• Word embeddings ew ∈ R50 for each w ∈ W
• Word LSTMs φWf , φ

W
b : R100 × R50 → R50

Let w1 . . . wn ∈ W denote a word sequence
where wordwi has characterwi(j) ∈ C at position
j. First, the model computes a character-sensitive
word representation vi ∈ R100 as

fCj = φCf
(
ewi(j), f

C
j−1

)
∀j = 1 . . . |wi|

bCj = φCb
(
ewi(j), b

C
j+1

)
∀j = |wi| . . . 1

vi = fC|wi| ⊕ b
C
1 ⊕ ewi

for each i = 1 . . . n.4 These word representa-
tion vectors are encoded by forward and backward
LSTMs for word φWf , φ

W
b as

fWi = φWf
(
vi, f

W
i−1

)
∀i = 1 . . . n

bWi = φWb
(
vi, b

W
i+1

)
∀i = n . . . 1

and induces a character and context-sensitive word
representation hi ∈ R100 as

hi = fWi ⊕ bWi

for each i = 1 . . . n. For convenience, we write
the entire operation as a mapping BiLSTMΘ:

(h1 . . . hn)← BiLSTMΘ(w1 . . . wn)

h̄ =

n∑

i=1

hi (1)

4.2 Domain Classification
Our Multitask domain classification formulation is
motivated by a desire to avoid computing the full
partition function during test time, which tends to
be the slowest component of a multiclass neural
network classifer, as has been documented before
by (Jozefowicz et al., 2016) and (Mikolov et al.,
2013), amongst others.

4For simplicity, we assume some random initial state vec-
tors such as fC0 and bC|wi|+1 when we describe LSTMs.

However, we also want access to reliable proba-
bility estimates instead of raw scores - we accom-
plish this by constructing a custom loss function.
During training, each domain classifier receives
in-domain (IND) and out-of-domain (OOD) utter-
ances, and we adapt the one-sided selection mech-
anism of (Kubat et al., 1997) to prevent OOD ut-
terances from overpowering IND utterances, thus
an utterance in a domain d ∈ D is considered as
an IND utterance in the viewpoint of domain d and
OOD for all other domains.

We first use the shared encoder to compute the
utterance representation h̄ as previously described.
Then we define the probability of domain d̃ for the
utterance by mapping h̄ to a 2-dimensional out-
put vector with a linear transformation for each
domain d̃ as

zd̃ = σ(W d̃ · h̄+ bd̃)

p(d̃|h̄) ∝





exp
(

[zd̃]IND

)
, if d̃ = d

exp
(

[zd̃]OOD

)
, otherwise

where σ is scaled exponential linear unit (SeLU)
for normalized activation outputs (Klambauer
et al., 2017) and [zd̃]IND and [zd̃]OOD denote the
values in the IND and OOD position of vector zd̃.

We define the joint domain classification loss
LD as the summation of positive (LP ) and neg-
ative (LN ) class loss functions 5:

LP
(

Θ,Θd̃
)

= − log p
(
d̃|h̄
)

LN
(

Θ,Θd̃
)

= − 1

k − 1


 ∑

d̄∈D,d̄ 6=d̃
log p

(
d̄|h̄
)



LD
(

Θ,Θd̃
)

= LP
(

Θ,Θd̃
)

+ LN
(

Θ,Θd̃
)

where k is the total number of domains. We di-
vide the second term by k − 1 so that LP and LN
are balanced in terms of the ratio of the training
examples for a domain to those for other domains.
While a softmax over the entire domains tends to
highlight only the ground-truth domain while sup-
pressing all the rest, the our joint domain classifi-
cation with a softmax over two classes is designed
to produce a more balanced confidence score per
domain independent of other domains.

5Θd̃ denotes the additional parameters in the classification
layer for domain d̃.
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4.3 Personalized Attention
We explore encoding a user’s domain preferences
in two ways. Our baseline method is a 1-bit
flag that is appended to the input features of each
domain-specific classifier. Our novel personalized
attention method induces domain embeddings by
supervising an attention mechanism to attend to
a user’s enabled domains with different weights
depending on their relevance. The domain em-
bedding matrix in Figure 1 represents the embed-
dings of a user’s enabled domains. We hypothe-
size that attention enables the network learn richer
representations of user preferences and domain
co-occurrence features.

Let eD(d̃) ∈ R100 and h̄ ∈ R100 denote the
domain embeddings for domain d̃ and the utter-
ance representation calculated by Eq. (1), respec-
tively. The domain attention weights for a given
user u who has a preferred domain list d(u) =(
d̃

(u)
1 , . . . , d̃

(u)
k

)
are calculated by the dot-product

operation,

ai = h̄ · eD
(
d̃

(u)
i

)
∀i = 1 . . . k

The final, normalized attention weights ā are ob-
tained after normalization via a softmax layer,

āi =
exp(ai)∑k
j=1 exp(aj)

∀i = 1 . . . k

The weighted combination of domain embeddings
is

S̄attended =
k∑

i=1

(
āi · eD

(
d̃

(u)
i

))

Finally the two representations of enabled do-
mains, namely the attention model and 1-bit flag
are then concatenated with the utterance represen-
tation and used to make per-domain predictions
via domain-specific affine transformations:

z̄att = h̄⊕ S̄attended

z̄1bit = h̄⊕ I(d̃ ∈ enabled)

Here I(d̄ ∈ enabled) is a 1-bit indicator for
whether the domain is enabled by the user or not.
z̄att and z̄1bit represent the encoded hidden state
of the Attention and 1-Bit Flag configura-
tions of the model from the experiment section. In
our experiments we will compare these two ways
of encoding personalization information, as well

as evaluate a variant that combines the two. In this
way we can ascertain whether the two personal-
ization signals are complementary via an ablation
study on the full model.

4.4 Domain Bootstrapping
Our model separates the responsibilities for utter-
ance representation and domain classification be-
tween the shared encoder and the domain-specific
classifiers. That is, the shared encoder needs to
be retrained only if it cannot encode an utter-
ance well (e.g., a new domain introduces com-
pletely new words) and the existing domain clas-
sifiers need to be retrained only when the shared
encoder changes. For adding new domains effi-
ciently without full retraining, the only two com-
ponents in the architecture need to be updated for
each new domain d̃new, are the domain embed-
dings for the new domain and its domain-specific
classifier.6 We keep the weights of the encoder
network frozen and use the hidden state vector h̄,
calculated by Eq. 1, as a feature vector to feed
into the downstream classifiers. To initialize the
m-dimensional domain embeddings ed̃new

, we use
the column-wise average of all utterance vectors in
the training data h̄avg, and project it to the domain
embedding space using a matrix U ∈ Rm×m.
Thus,

ed̃new
= U∗ · h̄avg

The parameters of U∗ are learned using the
column-wise average utterance vectors h̄avgj and
learned domain vectors for all existing domains dj

U∗ = arg min
U

||U · h̄avgj − edj || ∀dj ∈ D

This is a write-to-memory operation that creates
a new domain representation after attending to all
existing domain representations. We then train the
parameters of the domain-specific classifier with
the new domain’s data while keeping the encoder
fixed. This mechanism allows us to efficiently
support new domains that appear in-between full
model deployment cycles without compromising
performance on existing domains. A full model
refresh would require us to fully retrain with the
domains that have appeared in the intermediate pe-
riod.

6We have assumed that the shared encoder covers most
of the vocabulary of new domains; otherwise, the entire net-
work may need to be retrained. Based on our observation of
live usage data, this assumption is reasonable since the shared
encoder after initial training is still shown to cover 95% of the
vocabulary of new domains added in the subsequent week.
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WEAK Mturk
Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

Binary 78.29 87.90 88.92 73.79 85.35 86.45
MultiClass 78.58 87.12 88.11 73.78 84.54 85.55
MultiTask 80.46 89.27 90.16 75.66 86.48 87.66
1-Bit Flag 91.97 95.89 96.68 86.50 92.47 93.09
Attention* 94.83 97.11 98.35 89.64 95.39 96.70
1-Bit + Att 95.19 97.32 98.64 89.65 95.79 96.98

Table 1: The performance of different variants of our neural
model in terms of top-N accuracy. Binary trains a separate
binary classifier for each skill. MultiClass has a shared
encoder followed by a softmax. MultiTask replaces the
softmax with per-skill classifiers. 1-Bit Flag adds a sin-
gle bit for personalization to each skill classifier in MultiTask.
Attention extends MultiTask with personalized attention.
The last 3 models are personalized. *Best single encoding.

5 Experiments

In this section we aim to demonstrate the effec-
tiveness of our model architecture in two settings.
First, we will demonstrate that attention based per-
sonalization significantly outperforms the baseline
approach. Secondly, we will show that our model
new domain bootstrapping procedure results in ac-
curacies comparable to full retraining while re-
quiring less than 1% of the orignal training time.

5.1 Experimental Setup
Weak: This is a weakly supervised dataset was
generated by preprocessing utterances with strict
invocation patterns according to the setup men-
tioned in Section 3. The dataset consists of 5.34M
utterances from 637,975 users across 1,500 differ-
ent skills. Since we are interested in capturing the
temporal effects of the dataset as well as personal-
ization effects, we partitioned the data based both
on user and time. Our core training data for the ex-
periments in this paper was drawn from one month
of live usage, the validation data came from the
next 15 days of usage, and the test data came from
the subsequent 15 days. The training, validation
and test sets are user-independent, and each user
belongs to only one of the three sets to ensure no
leakage of information.

MTurk: Since the Weak dataset is generated by
weak supervision, we verified the performance of
our approach with human generated utterances. A
random sample of 12,428 utterances from the test
partition of users were presented to 300 human
judges, who were asked to produce two natural
ways to issue the same command. This dataset
is treated as a representative clean held out test set
on which we can observe the generalization of our
weakly supervised training and validation data to

natural language.

New Skills: In order to simulate the scenario
in which new skills appear within a week be-
tween model updates, we selected 250 new skills
which do not overlap with the skills in the Weak
dataset. The vocabulary size of 1,500 skills is
200K words, and on average, 5% of the vocabu-
lary for new skills is not covered. We randomly
sampled 4,000 unique utterances for each skill us-
ing the same weak supervision method, and split
them into 3,000 utterances for training and 1,000
for testing.

5.2 Results and Discussion

Generalization from Weakly Supervised to
Natural Utterances We first show the progres-
sion of model performance as we add more com-
ponents to show their individual contribution. Sec-
ondly, we show that training our models on a
weakly supervised dataset can generalize to nat-
ural speech by showing their test performance on
the human-annotated test data. Finally, we com-
pare two personalization strategies.

The full results are summarized in Table 1,
which shows the top-N test results separately for
the Weak dataset (weakly supervised) and MTurk
dataset (human-annotated). We report top-N ac-
curacy to show the potential for further re-ranking
or disambiguation downstream. For top-1 results
on the Weak dataset, using a separate binary clas-
sifier for each domain (Binary) shows a prediction
accuracy at 78.29% and using a softmax layer on
top of the shared encoder (MultiClass) shows a
comparable accuracy at 78.58%. The performance
shows a slight improvement when using the Mul-
titask neural loss structure, but adding personal-
ization signals to the Multitask structure showed
a significant boost in performance. We noted the
large difference between the 1-bit and attention ar-
chitecture. At 94.83% accuracy, attention resulted
in 35.6% relative error reduction over the 1-bit
baseline 91.97% on the Weak validation set and
23.25% relative on the MTurk test set. We hypoth-
esize that this may be because the attention mecha-
nism allows the model to focus on complementary
features in case of overlapping domains as well as
learning domain co-occurrence statistics, both of
which are not possible with the simple 1-bit flag.

When both personalization representations
were combined, the performance peaked at
95.19% for the Weak dataset and a more modest
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Time Accuracy
Binary 34.81 78.13
Expand 30.34 94.03
Refresh 5300.18 94.58

Table 2: Comparison of per-epoch training time (seconds)
and top-1 accuracy (%) on an NVIDIA Tesla M40 GPU.

89.65% for the MTurk dataset. The improvement
trend is extremely consistent across all top-N re-
sults for both of the Weak and MTurk datasets
across all experiments. The disambiguation task
is complex due to similar and overlapping skills,
but the results suggest that incorporating person-
alization signals equip the models with much bet-
ter discriminative power. The results also suggest
that the two mechanisms for encoding personal-
ization provide a small amount of complementary
information since combining them together is bet-
ter than using them individually. Although the per-
formance on the Weak dataset tends to be more
optimistic, the best performance on the human-
annotated test data is still close to 90% for top-1
accuracy, which suggests that training our model
with the samples derived from the invocation pat-
terns can generalize well to natural utterances.

Rapid Bootstrapping of New Skills We show
the results when new domains are added to an
IPDA and the model needs to efficiently accom-
modate them with a limited number of data sam-
ples. We show the classification performance
on the skills in the New Skills dataset while as-
suming we have access to the WEAK dataset to
pre-train our model for transfer learning. In the
Binary setting, a domain-specific binary classi-
fier is trained for each domain. Expand describes
the case in which we incrementally train on top
of an existing model. Refresh is the setting in
which the model is fully retrained from scratch
with the new data - which would be ideal in case
there were no time constraints.

We record the average training time for each
epoch and the performance is measured with top-1
classification accuracy over new skills. The exper-
iment results can be found in Table 2. Adapting a
new skill is two orders of magnitude faster (30.34
seconds) than retraining the model (5300.18 sec-
onds) while achieving 94.03% accuracy which is
comparable to 94.58% accuracy of full retraining.
The first two techniques can also be easily paral-
lelized unlike the Refresh configuration.

Top-1 Top-3 Top-5
Full 6.17 14.30 20.41

Enabled 85.62 96.15 98.06

Table 3: Top-N prediction accuracy (%) on the full skill set
(Full) and only enabled skills (Enabled).

Behavior of Attention Mechanism Our expec-
tation is that the model is able to learn to attend
the relevant skills during the inference process.
To study the behavior of the attention layer, we
compute the top-N prediction accuracy based on
the most relevant skills defined by the attention
weights. In this experiment, we considered the
subset of users who had enabled more than 20 do-
mains to exclude trivial cases7. The results are
shown in Table 3. When the model attends to
the entire set of 1500 (Full), the top-5 prediction
accuracy is 20.41%, which indicates that a large
number of skills can process the utterance, and
thus it is highly likely to miss the correct one in
the top-5 predictions. This ambiguity issue can
be significantly improved by users’ enabled do-
main lists as proved by the accuracies (Enabled):
85.62% for top-1, 96.15% for top-3, and 98.06%
for top-5.8 Thus the attention mechanism can thus
be viewed as an initial soft selection which is then
followed by a fine-grained selection at the classifi-
cation stage.

End-to-End User Evaluation All intermediate
metrics on this task are proxies to a human cus-
tomer’s eventual evaluation. In order to assess the
user experience, we need to measure its end-to-
end performance. For a brief end-to-end system
evaluation, 983 utterances from 283 domains were
randomly sampled from the test set in the large-
scale IPDA setting. 15 human judges (male=12,
female=3) rated the system responses, 1 judge per
utterance, on a 5-point Likert scale with 1 being
Terrible and 5 being Perfect. The judgment score
of 3 or above was taken as SUCCESS and 2 or be-
low as DEFECT. The end-to-end SUCCESS rate,

7Thus, the random prediction accuracy on enabled do-
mains is less than 5% and across the Full domain list is
0.066%

8Visual inspection of the embeddings confirms that mean-
ingful clusters are learned. We see clusters related to home
automation, commerce, cooking, trivia etc, we show some
examples in Figure 2, 3 and 4. However there are still other
clusters where the the relationships cannot be established as
easily. An example of these is show in Figure 5. The per-
sonalized attention mechanism is learned using the semantic
content as well as personalization signals, so we hypothesize
clusters like this may be capturing user tendencies to enable
these domains in a correlated manner.
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Figure 2: Embeddings of different domain categories visualized in 2D using TSNE (van der Maaten and Hinton, 2008).
Different colors represent different categories, for e.g. the large blue cluster on the left is Home Automation.

thus user satisfaction, was shown to be 95.52%.
The discrepancy between this score and the score
produced on MTurk dataset indicates that even in
cases in which the model makes classification mis-
takes, some of these interpretations remain percep-
tually meaningful to humans.

Figure 3: A large cluster of home automation domains.

Figure 4: A cluster of domains related to cooking.

Figure 5: A mixed cluster with several different domain
categories represented.

6 Conclusions

We have described a neural model architecture to
address large-scale skill classification in an IPDA
used by tens of millions of users every day. We
have described how personalization features and
an attention mechanism can be used for handling
ambiguity between domains. We have also shown
that the model can be extended efficiently and in-
crementally for new domains, saving multiple or-
ders of magnitude in terms of training time. The
model also addresses practical constraints of hav-
ing a low memory footprint, low latency and be-
ing easily parallelized, all of which are important
characteristics for real-time production systems.
In future work, we plan to incorporate various
types of context (e.g. anaphora, device-specific
capabilities) and dialogue history into a large-scale
NLU system.

2222



References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Ankur Bapna, Gokhan Tur, Dilek Hakkani-Tur, and
Larry Heck. 2017. Towards zero shot frame seman-
tic parsing for domain scaling. In Interspeech 2017.

A. Bhargava, Asli Celikyilmaz, Dilek Z. Hakkani-
Tur, and Ruhi Sarikaya. 2013. Easy contex-
tual intent prediction and slot detection. IEEE
International Conference on Acoustics, Speech and
Signal Processing, pages 8337–8341.

Asli Celikyilmaz, Ruhi Sarikaya, Dilek Hakkani-Tür,
Xiaohu Liu, Nikhil Ramesh, and Gökhan Tür. 2016.
A new pre-training method for training deep learn-
ing models with application to spoken language un-
derstanding. In Interspeech, pages 3255–3259.

Yun-Nung Chen, Dilek Hakkani-Tür, and Xiaodong
He. 2016a. Zero-shot learning of intent embeddings
for expansion by convolutional deep structured se-
mantic models. In Acoustics, Speech and Signal
Processing (ICASSP), 2016 IEEE International
Conference on, pages 6045–6049.

Yun-Nung Chen, Dilek Hakkani-Tür, Gokhan Tur,
Jianfeng Gao, and Li Deng. 2016b. End-to-
end memory networks with knowledge carryover
for multi-turn spoken language understanding. In
Interspeech.

Ali El-Kahky, Xiaohu Liu, Ruhi Sarikaya, Gokhan Tur,
Dilek Hakkani-Tur, and Larry Heck. 2014. Ex-
tending domain coverage of language understand-
ing systems via intent transfer between domains us-
ing knowledge graphs and search query click logs.
In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages
4067–4071. IEEE.

Xing Fan, Emilio Monti, Lambert Mathias, and Markus
Dreyer. 2017. Transfer learning for neural semantic
parsing. CoRR, abs/1706.04326.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke
Zettlemoyer, and Daniel S Weld. 2011. Knowledge-
based weak supervision for information extrac-
tion of overlapping relations. In Proceedings
of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language
Technologies-Volume 1, pages 541–550. Associa-
tion for Computational Linguistics.

Chiori Hori, Takaaki Hori, Shinji Watanabe, and
John R Hershey. 2016. Context-sensitive and role-
dependent spoken language understanding using
bidirectional and attention lstms. Interspeech, pages
3236–3240.

Aaron Jaech, Larry Heck, and Mari Ostendorf. 2016.
Domain adaptation of recurrent neural networks for
natural language understanding. In Interspeech.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring
the limits of language modeling. arXiv preprint
arXiv:1602.02410.

Mark D Kernighan, Kenneth W Church, and William A
Gale. 1990. A spelling correction program based on
a noisy channel model. In Proceedings of the 13th
conference on Computational linguistics-Volume 2,
pages 205–210. Association for Computational Lin-
guistics.

Young-Bum Kim, Minwoo Jeong, Karl Stratos, and
Ruhi Sarikaya. 2015a. Weakly supervised slot tag-
ging with partially labeled sequences from web
search click logs. In Proceedings of the 2015
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 84–92.

Young-Bum Kim, Sungjin Lee, and Ruhi Sarikaya.
2017a. Speaker-sensitive dual memory networks
for multi-turn slot tagging. In Automatic Speech
Recognition and Understanding Workshop (ASRU),
2017 IEEE, pages 547–553. IEEE.

Young-Bum Kim, Sungjin Lee, and Karl Stratos.
2017b. Onenet: Joint domain, intent, slot prediction
for spoken language understanding. In Automatic
Speech Recognition and Understanding Workshop
(ASRU), 2017 IEEE, pages 547–553. IEEE.

Young-Bum Kim, Karl Stratos, and Dongchan Kim.
2017c. Adversarial adaptation of synthetic or stale
data. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics,
pages 1297–1307. Association for Computational
Linguistics.

Young-Bum Kim, Karl Stratos, and Dongchan Kim.
2017d. Domain attention with an ensemble of ex-
perts. In Annual Meeting of the Association for
Computational Linguistics.

Young-Bum Kim, Karl Stratos, and Ruhi Sarikaya.
2015b. Pre-training of hidden-unit crfs. In
Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and
the 7th International Joint Conference on Natural
Language Processing, volume 2, pages 192–198.

Young-Bum Kim, Karl Stratos, and Ruhi Sarikaya.
2016. Frustratingly easy neural domain adap-
tation. In Proceedings of COLING 2016, the
26th International Conference on Computational
Linguistics: Technical Papers, pages 387–396.

2223



Young-Bum Kim, Karl Stratos, and Ruhi Sarikaya.
2017e. A framework for pre-training hidden-unit
conditional random fields and its extension to long
short term memory networks. Computer Speech &
Language, 46:311–326.

Young-Bum Kim, Karl Stratos, Ruhi Sarikaya, and
Minwoo Jeong. 2015c. New transfer learning tech-
niques for disparate label sets. In Proceedings of
the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing,
volume 1, pages 473–482.

Gunter Klambauer, Thomas Unterthiner, Andreas
Mayr, and Sepp Hochreiter. 2017. Self-normalizing
neural networks. CoRR, abs/1706.02515.

Miroslav Kubat, Stan Matwin, et al. 1997. Address-
ing the curse of imbalanced training sets: one-sided
selection. In ICML, volume 97, pages 179–186.
Nashville, USA.

Anjishnu Kumar, Arpit Gupta, Julian Chan, Sam
Tucker, Bjorn Hoffmeister, and Markus Dreyer.
2017a. Just ask: Building an architecture for ex-
tensible self-service spoken language understand-
ing. arXiv preprint arXiv:1711.00549.

Anjishnu Kumar, Pavankumar Reddy Muddireddy,
Markus Dreyer, and Björn Hoffmeister. 2017b.
Zero-shot learning across heterogeneous overlap-
ping domains. Proc. Interspeech 2017, pages 2914–
2918.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of NAACL-HLT, pages 260–270.

Bing Liu and Ian Lane. 2016. Attention-based recur-
rent neural network models for joint intent detection
and slot filling. In Interspeech, pages 685–689.

Bing Liu and Ian Lane. 2017. Multi-domain adversar-
ial learning for slot filling in spoken language un-
derstanding. In NIPS Workshop on Conversational
AI.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing high-dimensional data using t-sne.
Journal of Machine Learning Research, 9:2579–
2605.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Alexander J Ratner, Christopher M De Sa, Sen Wu,
Daniel Selsam, and Christopher Ré. 2016. Data
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Abstract

Multimodal affective computing, learning
to recognize and interpret human affect
and subjective information from multiple
data sources, is still challenging because:
(i) it is hard to extract informative features
to represent human affects from hetero-
geneous inputs; (ii) current fusion strate-
gies only fuse different modalities at ab-
stract levels, ignoring time-dependent in-
teractions between modalities. Addressing
such issues, we introduce a hierarchical
multimodal architecture with attention and
word-level fusion to classify utterance-
level sentiment and emotion from text and
audio data. Our introduced model outper-
forms state-of-the-art approaches on pub-
lished datasets, and we demonstrate that
our model’s synchronized attention over
modalities offers visual interpretability.

1 Introduction

With the recent rapid advancements in social me-
dia technology, affective computing is now a pop-
ular task in human-computer interaction. Senti-
ment analysis and emotion recognition, both of
which require applying subjective human concepts
for detection, can be treated as two affective com-
puting subtasks on different levels (Poria et al.,
2017a). A variety of data sources, including voice,
facial expression, gesture, and linguistic content
have been employed in sentiment analysis and
emotion recognition. In this paper, we focus on
a multimodal structure to leverage the advantages
of each data source. Specifically, given an utter-
ance, we consider the linguistic content and acous-
tic characteristics together to recognize the opin-
ion or emotion. Our work is important and useful

∗ Equally Contribution

because speech is the most basic and commonly
used form of human expression.

A basic challenge in sentiment analysis and
emotion recognition is filling the gap between
extracted features and the actual affective states
(Zhang et al., 2017). The lack of high-level fea-
ture associations is a limitation of traditional ap-
proaches using low-level handcrafted features as
representations (Seppi et al., 2008; Rozgic et al.,
2012). Recently, deep learning structures such
as CNNs and LSTMs have been used to extract
high-level features from text and audio (Eyben
et al., 2010a; Poria et al., 2015). However, not
all parts of the text and vocal signals contribute
equally to the predictions. A specific word may
change the entire sentimental state of text; a differ-
ent vocal delivery may indicate inverse emotions
despite having the same linguistic content. Re-
cent approaches introduce attention mechanisms
to focus the models on informative words (Yang
et al., 2016) and attentive audio frames (Mir-
samadi et al., 2017) for each individual modality.
However, to our knowledge, there is no common
multimodal structure with attention for utterance-
level sentiment and emotion classification. To ad-
dress such issue, we design a deep hierarchical
multimodal architecture with an attention mech-
anism to classify utterance-level sentiments and
emotions. It extracts high-level informative tex-
tual and acoustic features through individual bidi-
rectional gated recurrent units (GRU) and uses a
multi-level attention mechanism to select the in-
formative features in both the text and audio mod-
ule.

Another challenge is the fusion of cues from
heterogeneous data. Most previous works fo-
cused on combining multimodal information at
a holistic level, such as integrating independent
predictions of each modality via algebraic rules
(Wöllmer et al., 2013) or fusing the extracted
modality-specific features from entire utterances
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(Poria et al., 2016). They extract word-level fea-
tures in a text branch, but process audio at the
frame-level or utterance-level. These methods
fail to properly learn the time-dependent interac-
tions across modalities and restrict feature integra-
tion at timestamps due to the different time scales
and formats of features of diverse modalities (Po-
ria et al., 2017a). However, to determine human
meaning, it is critical to consider both the linguis-
tic content of the word and how it is uttered. A
loud pitch on different words may convey inverse
emotions, such as the emphasis on “hell” for anger
but indicating happy on “great”. Synchronized at-
tentive information across text and audio would
then intuitively help recognize the sentiments and
emotions. Therefore, we compute a forced align-
ment between text and audio for each word and
propose three fusion approaches (horizontal, ver-
tical, and fine-tuning attention fusion) to integrate
both the feature representations and attention at
the word-level.

We evaluated our model on four published sen-
timent and emotion datasets. Experimental results
show that the proposed architecture outperforms
state-of-the-art approaches. Our methods also al-
low for attention visualization, which can be used
for interpreting the internal attention distribution
for both single- and multi-modal systems. The
contributions of this paper are: (i) a hierarchical
multimodal structure with attention mechanism to
learn informative features and high-level associ-
ations from both text and audio; (ii) three word-
level fusion strategies to combine features and
learn correlations in a common time scale across
different modalities; (iii) word-level attention vi-
sualization to help human interpretation.

The paper is organized as follows: We list re-
lated work in section 2. Section 3 describes the
proposed structure in detail. We present the exper-
iments in section 4 and provide the result analysis
in section 5. We discuss the limitations in section
6 and conclude with section 7.

2 Related Work

Despite the large body of research on audio-visual
affective analysis, there is relatively little work on
combining text data. Early work combined human
transcribed lexical features and low-level hand-
crafted acoustic features using feature-level fu-
sion (Forbes-Riley and Litman, 2004; Litman and
Forbes-Riley, 2004). Others used SVMs fed bag

of words (BoW) and part of speech (POS) features
in addition to low-level acoustic features (Seppi
et al., 2008; Rozgic et al., 2012; Savran et al.,
2012; Rosas et al., 2013; Jin et al., 2015). All of
the above extracted low-level features from each
modality separately. More recently, deep learning
was used to extract higher-level multimodal fea-
tures. Bidirectional LSTMs were used to learn
long-range dependencies from low-level acoustic
descriptors and derivations (LLDs) and visual fea-
tures (Eyben et al., 2010a; Wöllmer et al., 2013).
CNNs can extract both textual (Poria et al., 2015)
and visual features (Poria et al., 2016) for multi-
ple kernel learning of feature-fusion. Later, hier-
archical LSTMs were used (Poria et al., 2017b).
A deep neural network was used for feature-level
fusion in (Gu et al., 2018) and (Zadeh et al.,
2017) introduced a tensor fusion network to fur-
ther improve the performance. A very recent work
using word-level fusion was provided by (Chen
et al., 2017). The key differences between this
work and the proposed architecture are: (i) we de-
sign a fine-tunable hierarchical attention structure
to extract word-level features for each individual
modality, rather than simply using the initialized
textual embedding and extracted LLDs from CO-
VAREP (Degottex et al., 2014); (ii) we propose di-
verse representation fusion strategies to combine
both the word-level representations and attention
weights, instead of using only word-level fusion;
(iii) our model allows visualizing the attention dis-
tribution at both the individual modality and at fu-
sion to help model interpretability.

Our architecture is inspired by the document
classification hierarchical attention structure that
works at both the sentence and word level (Yang
et al., 2016). For audio, an attention-based
BLSTM and CNN were applied to discovering
emotion from frames (Huang and Narayanan,
2016; Neumann and Vu, 2017). Frame-level
weighted-pooling with local attention was shown
to outperform frame-wise, final-frame, and frame-
level mean-pooling for speech emotion recogni-
tion (Mirsamadi et al., 2017).

3 Method

We introduce a multimodal hierarchical attention
structure with word-level alignment for sentiment
analysis and emotion recognition (Figure 1). The
model consists of three major parts: text atten-
tion module, audio attention module, and word-
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level fusion module. We first make a forced align-
ment between the text and audio during prepro-
cessing. Then, the text attention module and audio
attention module extract the features from the cor-
responding inputs (shown in Algorithm 1). The
word-level fusion module fuses the extracted fea-
ture vectors and makes the final prediction via a
shared representation (shown in Algorithm 2).

3.1 Forced Alignment and Preprocessing
The forced alignment between the audio and text
on the word-level prepares the different data for
feature extraction. We align the data at the word-
level because words are the basic unit in English
for human speech comprehension. We used ae-
neas1 to determine the time interval for each word
in the audio file based on the Sakoe-Chiba Band
Dynamic Time Warping (DTW) algorithm (Sakoe
and Chiba, 1978).

For the text input, we first embedded the
words into 300-dimensional vectors by word2vec
(Mikolov et al., 2013), which gives us the best re-
sult compared to GloVe and LexVec. Unknown
words were randomly initialized. Given a sentence
S with N words, let wi represent the ith word.
We embed the words through the word2vec em-
bedding matrix We by:

Ti =Wewi, i ∈ [1, N ] (1)

where Ti is the embedded word vector.
For the audio input, we extracted Mel-

frequency spectral coefficients (MFSCs) from raw
audio signals as acoustic inputs for two reasons.
Firstly, MFSCs maintain the locality of the data by
preventing new bases of spectral energies resulting
from discrete cosine transform in MFCCs extrac-
tion (Abdel-Hamid et al., 2014). Secondly, it has
more dimensions in the frequency domain that aid
learning in deep models (Gu et al., 2017). We used
64 filter banks to extract the MFSCs for each audio
frame to form the MFSCs map. To facilitate train-
ing, we only used static coefficients. Each word’s
MFSCs can be represented as a matrix with 64×n
dimensions, where n is the interval for the given
word in frames. We zero-pad all intervals to the
same length L, the maximum frame numbers of
the word in the dataset. We did extract LLD fea-
tures using OpenSmile (Eyben et al., 2010b) soft-
ware and combined them with the MFSCs during
our training stage. However, we did not find an

1https://www.readbeyond.it/aeneas/

Figure 1: Overall Architecture

obvious performance improvement, especially for
the sentiment analysis. Considering the training
cost of the proposed hierarchical acoustic architec-
ture, we decided the extra features were not worth
the tradeoff. The output is a 3D MFSCs map with
dimensions [N, 64, L].

3.2 Text Attention Module
To extract features from embedded text input at
the word level, we first used bidirectional GRUs,
which are able to capture the contextual informa-
tion between words. It can be represented as:

t h→i , t h
←
i = bi GRU(Ti), i ∈ [1, N ] (2)

where bi GRU is the bidirectional GRU, t h→i
and t h←i denote respectively the forward and
backward contextual state of the input text. We
combined t h→i and t h←i as t hi to represent the
feature vector for the ith word. We choose GRUs
instead of LSTMs because our experiments show
that LSTMs lead to similar performance (0.07%
higher accuracy) with around 25% more trainable
parameters.

To create an informative word representation,
we adopted a word-level attention strategy that
generates a one-dimensional vector denoting the
importance for each word in a sequence (Yang
et al., 2016). As defined by (Bahdanau et al.,
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Algorithm 1 FEATURE EXTRACTION
1: procedure FORCED ALIGNMENT
2: Determine time interval of each word
3: find wi←→ [Aij], j ∈ [1, L], i ∈ [1, N ]
4: end procedure
5: procedure TEXT BRANCH
6: Text Attention Module
7: for i ∈ [1, N ] do
8: Ti ← getEmbedded(wi)
9: t hi ← bi GRU(Ti)

10: t ei ← getEnergies(t hi)
11: t αi ← getDistribution(t ei)
12: end for
13: return t hi, t αi
14: end procedure
15: procedure AUDIO BRANCH
16: for i ∈ [1, N ] do
17: Frame-Level Attention Module
18: for j ∈ [1, L] do
19: f hij ← bi GRU(Aij)
20: f eij ← getEnergies(f hij)
21: f αij ← getDistribution(f eij)
22: end for
23: f Vi ← weightedSum(f αij , f hij)
24: Word-Level Attention Module
25: w hi ← bi GRU(f Vi)
26: w ei ← getEnergies(w hi)
27: w αi ← getDistribution(w ei)
28: end for
29: return w hi, w αi
30: end procedure

2014), we compute the textual attentive energies
t ei and textual attention distribution t αi by:

t ei = tanh(Wtt hi + bt), i ∈ [1, N ] (3)

t αi =
exp(t ei

>vt)∑N
k=1exp(t ek

>vt)
(4)

where Wt and bt are the trainable parameters and
vt is a randomly-initialized word-level weight vec-
tor in the text branch. To learn the word-level in-
teractions across modalities, we directly use the
textual attention distribution t αi and textual bidi-
rectional contextual state t hi as the output to aid
word-level fusion, which allows further computa-
tions between text and audio branch on both the
contextual states and attention distributions.

3.3 Audio Attention Module
We designed a hierarchical attention model with
frame-level acoustic attention and word-level at-

tention for acoustic feature extraction.
Frame-level Attention captures the important

MFSC frames from the given word to generate the
word-level acoustic vector. Similar to the text at-
tention module, we used a bidirectional GRU:

f h→ij , f h
←
ij = bi GRU(Aij), j ∈ [1, L] (5)

where f h→ij and f h←ij denote the forward and
backward contextual states of acoustic frames. Aij
denotes the MFSCs of the jth frame from the ith
word, i ∈ [1, N ]. f hij represents the hidden state
of the jth frame of the ith word, which consists
of f h→ij and f h←ij . We apply the same atten-
tion mechanism used for textual attention mod-
ule to extract the informative frames using equa-
tion 3 and 4. As shown in Figure 1, the input of
equation 3 is f hij and the output is the frame-
level acoustic attentive energies f eij . We cal-
culate the frame-level attention distribution f αij
by using f eij as the input for equation 4. We
form the word-level acoustic vector f Vi by taking
a weighted sum of bidirectional contextual state
f hij of the frame and the corresponding frame-
level attention distribution f αij Specifically,

f Vi =
∑

j
f αijf hij (6)

Word-level Attention aims to capture the
word-level acoustic attention distribution w αi
based on formed word vector f Vi. We first used
equation 2 to generate the word-level acoustic
contextual states w hi, where the input is f Vi
and w hi = (w h→i , w h←i ). Then, we compute
the word-level acoustic attentive energies w ei via
equation 3 as the input for equation 4. The final
output is an acoustic attention distribution w αi
from equation 4 and acoustic bidirectional contex-
tual state w hi.

3.4 Word-level Fusion Module
Fusion is critical to leveraging multimodal fea-
tures for decision-making. Simple feature con-
catenation without considering the time scales ig-
nores the associations across modalities. We in-
troduce word-level fusion capable of associating
the text and audio at each word. We propose three
fusion strategies (Figure 2 and Algorithm 2): hori-
zontal fusion, vertical fusion, and fine-tuning at-
tention fusion. These methods allow easy syn-
chronization between modalities, taking advan-
tage of the attentive associations across text and
audio, creating a shared high-level representation.
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Figure 2: Fusion strategies. t hi: word-level textual bidirectional state. t αi: word-level textual attention
distribution. w hi: word-level acoustic bidirectional state. w αi: word-level acoustic attention distribu-
tion. s αi: shared attention distribution. u αi: fine-tuning attention distribution. Vi: shared word-level
representation.

Algorithm 2 FUSION
1: procedure FUSION BRANCH
2: Horizontal Fusion (HF)
3: for i ∈ [1, N ] do
4: t Vi ← weighted(t αi, t hi)
5: w Vi ← weighted(w αi, w hi)
6: Vi ← dense([t Vi, w Vi])
7: end for
8: Vertical Fusion (VF)
9: for i ∈ [1, N ] do

10: hi ← dense([t hi, w hi])
11: s αi ← average([t αi, w αi])
12: Vi ← weighted(hi, s αi)
13: end for
14: Fine-tuning Attention Fusion (FAF)
15: for i ∈ [1, N ] do
16: u ei ← getEnergies(hi)
17: u αi ← getDistribution(u ei, s αi)
18: Vi ← weighted(hi, u αi)
19: end for
20: Decision Making
21: E ← convNet(V1, V2, ..., VN )
22: return E
23: end procedure

Horizontal Fusion (HF) provides the shared
representation that contains both the textual and
acoustic information for a given word (Figure 2
(a)). The HF has two steps: (i) combining the bidi-
rectional contextual states (t hi and w hi in Fig-
ure 1) and attention distributions for each branch
(t αi and w αi in Figure 1) independently to form
the word-level textual and acoustic representa-
tions. As shown in Figure 2, given the input (t αi,

t hi) and (w αi, w hi), we first weighed each in-
put branch by:

t Vi = t αit hi (7)

w Vi = w αiw hi (8)

where t Vi and w Vi are word-level representa-
tions for text and audio branches, respectively; (ii)
concatenating them into a single space and further
applying a dense layer to create the shared context
vector Vi, and Vi = (t Vi, w Vi). The HF com-
bines the unimodal contextual states and attention
weights; there is no attention interaction between
the text modality and audio modality. The shared
vectors retain the most significant characteristics
from respective branches and encourages the deci-
sion making to focus on local informative features.

Vertical Fusion (VF) combines textual atten-
tions and acoustic attentions at the word-level,
using a shared attention distribution over both
modalities instead of focusing on local informa-
tive representations (Figure 2 (b)). The VF is com-
puted in three steps: (i) using a dense layer after
the concatenation of the word-level textual (t hi)
and acoustic (w hi) bidirectional contextual states
to form the shared contextual state hi; (ii) averag-
ing the textual (t αi) and acoustic (w αi) atten-
tions for each word as the shared attention dis-
tribution s αi; (iii) computing the weight of hi
and s αi as final shared context vectors Vi, where
Vi = his αi. Because the shared attention dis-
tribution (s αi) is based on averages of unimodal
attentions, it is a joint attention of both textual and
acoustic attentive information.

Fine-tuning Attention Fusion (FAF) preserves
the original unimodal attentions and provides
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a fine-tuning attention for the final prediction
(Figure2 (c)). The averaging of attention weights
in vertical fusion potentially limits the representa-
tional power. Addressing such issue, we propose
a trainable attention layer to tune the shared atten-
tion in three steps: (i) computing the shared at-
tention distribution s αi and shared bidirectional
contextual states hi separately using the same ap-
proach as in vertical fusion; (ii) applying attention
fine-tuning:

u ei = tanh(Wuhi + bu) (9)

u αi =
exp(u ei

>vu)∑N
k=1exp(u ek

>vu)
+ s αi (10)

where Wu, bu, and vu are additional trainable pa-
rameters. The u αi can be understood as the sum
of the fine-tuning score and the original shared
attention distribution s αi; (iii) calculating the
weight of u αi and hi to form the final shared con-
text vector Vi.

3.5 Decision Making

The output of the fusion layer Vi is the ith shared
word-level vectors. To further make use of the
combined features for classification, we applied a
CNN structure with one convolutional layer and
one max-pooling layer to extract the final repre-
sentation from shared word-level vectors (Poria
et al., 2016; Wang et al., 2016). We set up various
widths for the convolutional filters (Kim, 2014)
and generated a feature map ck by:

fi = tanh(WcVi:i+k−1 + bc) (11)

ck = max{f1, f2, ..., fN} (12)

where k is the width of the convolutional filters, fi
represents the features from window i to i+k−1.
Wc and bc are the trainable weights and biases. We
get the final representation c by concatenating all
the feature maps. A softmax function is used for
the final classification.

4 Experiments

4.1 Datasets

We evaluated our model on four published
datasets: two multimodal sentiment datasets
(MOSI and YouTube) and two multimodal
emotion recognition datasets (IEMOCAP and
EmotiW).

MOSI dataset is a multimodal sentiment inten-
sity and subjectivity dataset consisting of 93 re-
views with 2199 utterance segments (Zadeh et al.,
2016). Each segment was labeled by five individ-
ual annotators between -3 (strong negative) to +3
(strong positive). We used binary labels based on
the sign of the annotations’ average.

YouTube dataset is an English multimodal
dataset that contains 262 positive, 212 negative,
and 133 neutral utterance-level clips provided by
(Morency et al., 2011). We only consider the pos-
itive and negative labels during our experiments.

IEMOCAP is a multimodal emotion dataset in-
cluding visual, audio, and text data (Busso et al.,
2008). For each sentence, we used the label agreed
on by the majority (at least two of the three an-
notators). In this study, we evaluate both the 4-
catgeory (happy+excited, sad, anger, and neutral)
and 5-catgeory(happy+excited, sad, anger, neu-
tral, and frustration) emotion classification prob-
lems. The final dataset consists of 586 happy,
1005 excited, 1054 sad, 1076 anger, 1677 neutral,
and 1806 frustration.

EmotiW2 is an audio-visual multimodal
utterance-level emotion recognition dataset con-
sist of video clips. To keep the consistency with
the IEMOCAP dataset, we used four emotion
categories as the final dataset including 150
happy, 117 sad, 133 anger, and 144 neutral. We
used IBM Watson3 speech to text software to
transcribe the audio data into text.

4.2 Baselines

We compared the proposed architecture to pub-
lished models. Because our model focuses on
extracting sentiment and emotions from human
speech, we only considered the audio and text
branch applied in the previous studies.

4.2.1 Sentiment Analysis Baselines
BL-SVM extracts a bag-of-words as textual fea-
tures and low-level descriptors as acoustic fea-
tures. An SVM structure is used to classify the
sentiments (Rosas et al., 2013).

LSTM-SVM uses LLDs as acoustic features
and bag-of-n-grams (BoNGs) as textual features.
The final estimate is based on decision-level fu-
sion of text and audio predictions (Wöllmer et al.,
2013).

2https://cs.anu.edu.au/few/ChallengeDetails.html
3https://www.ibm.com/watson/developercloud/speech-

to-text/api/v1/
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Sentiment Analysis (MOSI) Emotion Recognition (IEMOCAP)
Approach Category WA(%) UA(%) Weighted-F1 Approach Category WA(%) UA(%) Weighted-F1
BL-SVM* 2-class 70.4 70.6 0.668 SVM Trees 4-class 67.4 67.4 -
LSTM-SVM* 2-class 72.1 72.1 0.674 GSV-e Vector 4-class 63.2 62.3 -
C-MKL1 2-class 73.6 - 0.752 C-MKL2 4-class 65.5 65.0 -
TFN 2-class 75.2 - 0.760 H-DMS 5-class 60.4 60.2 0.594
LSTM(A) 2-class 73.5 - 0.703 UL-Fusion* 4-class 66.5 66.8 0.663
UL-Fusion* 2-class 72.5 72.5 0.730 DL-Fusion* 4-class 65.8 65.7 0.665
DL-Fusion* 2-class 71.8 71.8 0.720 Ours-HF 4-class 70.0 69.7 0.695
Ours-HF 2-class 74.1 74.4 0.744 Ours-VF 4-class 71.8 71.8 0.713
Ours-VF 2-class 75.3 75.3 0.755 Ours-FAF 4-class 72.7 72.7 0.726
Ours-FAF 2-class 76.4 76.5 0.768 Ours-FAF 5-class 64.6 63.4 0.644

Table 1: Comparison of models. WA = weighted accuracy. UA = unweighted accuracy. * denotes that
we duplicated the method from cited research with the corresponding dataset in our experiment.

C-MKL1 uses a CNN structure to capture the
textual features and fuses them via multiple kernel
learning for sentiment analysis (Poria et al., 2015).

TFN uses a tensor fusion network to extract in-
teractions between different modality-specific fea-
tures (Zadeh et al., 2017).

LSTM(A) introduces a word-level LSTM with
temporal attention structure to predict sentiments
on MOSI dataset (Chen et al., 2017).

4.2.2 Emotion Recognition Baselines
SVM Trees extracts LLDs and handcrafted bag-
of-words as features. The model automatically
generates an ensemble of SVM trees for emotion
classification (Rozgic et al., 2012).

GSV-eVector generates new acoustic represen-
tations from selected LLDs using Gaussian Super-
vectors and extracts a set of weighed handcrafted
textual features as an eVector. A linear kernel
SVM is used as the final classifier (Jin et al., 2015).

C-MKL2 extracts textual features using a CNN
and uses openSMILE to extract 6373 acoustic fea-
tures. Multiple kernel learning is used as the final
classifier (Poria et al., 2016).

H-DMS uses a hybrid deep multimodal struc-
ture to extract both the text and audio emotional
features. A deep neural network is used for
feature-level fusion (Gu et al., 2018).

4.2.3 Fusion Baselines
Utterance-level Fusion (UL-Fusion) focuses on
fusing text and audio features from an entire ut-
terance (Gu et al., 2017). We simply concatenate
the textual and acoustic representations into a joint
feature representation. A softmax function is used
for sentiment and emotion classification.

Decision-level Fusion (DL-Fusion) Inspired
by (Wöllmer et al., 2013), we extract textual and

acoustic sentence representations individually and
infer the results via two softmax classifiers, re-
spectively. As suggested by Wöllmer, we calculate
a weighted sum of the text (1.2) result and audio
(0.8) result as the final prediction.

4.3 Model Training

We implemented the model in Keras with Tensor-
flow as the backend. We set 100 as the dimension
for each GRU, meaning the bidirectional GRU di-
mension is 200. For the decision making, we se-
lected 2, 3, 4, and 5 as the filter width and apply
300 filters for each width. We used the rectified
linear unit (ReLU) activation function and set 0.5
as the dropout rate. We also applied batch nor-
malization functions between each layer to over-
come internal covariate shift (Ioffe and Szegedy,
2015). We first trained the text attention module
and audio attention module individually. Then, we
tuned the fusion network based on the word-level
representation outputs from each fine-tuning mod-
ule. For all training procedures, we set the learn-
ing rate to 0.001 and used Adam optimization and
categorical cross-entropy loss. For all datasets, we
considered the speakers independent and used an
80-20 training-testing split. We further separated
20% from the training dataset for validation. We
trained the model with 5-fold cross validation and
used 8 as the mini batch size. We set the same
amount of samples from each class to balance the
training dataset during each iteration.

5 Result Analysis

5.1 Comparison with Baselines

The experimental results of different datasets
show that our proposed architecture achieves
state-of-the-art performance in both sentiment
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analysis and emotion recognition (Table 1). We
re-implemented some published methods (Rosas
et al., 2013; Wöllmer et al., 2013) on MOSI to get
baselines.

For sentiment analysis, the proposed architec-
ture with FAF strategy achieves 76.4% weighted
accuracy, which outperforms all the five base-
lines (Table 1). The result demonstrates that
the proposed hierarchical attention architecture
and word-level fusion strategies indeed help im-
prove the performance. There are several find-
ings worth mentioning: (i) our model outper-
forms the baselines without using the low-level
handcrafted acoustic features, indicating the suf-
ficiency of MFSCs; (ii) the proposed approach
achieves performance comparable to the model us-
ing text, audio, and visual data together (Zadeh
et al., 2017). This demonstrates that the visual fea-
tures do not contribute as much during the fusion
and prediction on MOSI; (iii) we notice that (Po-
ria et al., 2017b) reports better accuracy (79.3%)
on MOSI, but their model uses a set of utterances
instead of a single utterance as input.

For emotion recognition, our model with FAF
achieves 72.7% accuracy, outperforming all the
baselines. The result shows the proposed model
brings a significant accuracy gain to emotion
recognition, demonstrating the pros of the fine-
tuning attention structure. It also shows that word-
level attention indeed helps extract emotional fea-
tures. Compared to C-MKL2 and SVM Trees that
require feature selection before fusion and predic-
tion, our model does not need an additional ar-
chitecture to select features. We further evalu-
ated our models on 5 emotion categories, includ-
ing frustration. Our model shows 4.2% perfor-
mance improvement over H-DMS and achieves
0.644 weighted-F1. As H-DMS only achieves
0.594 F1 and also uses low-level handcrafted fea-
tures, our model is more robust and efficient.

From Table 1, all the three proposed fusion
strategies outperform UL-Fusion and DL-Fusion
on both MOSI and IEMOCAP. Unlike utterance-
level fusion that ignores the time-scale-sensitive
associations across modalities, word-level fusion
combines the modality-specific features for each
word by aligning text and audio, allowing asso-
ciative learning between the two modalities, sim-
ilar to what humans do in natural conversation.
The result indicates that the proposed methods im-
prove the model performance by around 6% accu-

Modality
MOSI IEMOCAP

WA F1 WA F1
T 75.0 0.748 61.8 0.620
A 60.2 0.604 62.5 0.614

T+A 76.4 0.768 72.7 0.726
Table 2: Accuracy (%) and F1 score on text only
(T), audio only (A), and multi-modality using FAF
(T+A).

Approach

MOSI IEMOCAP
↓ ↓

YouTube EmotiW
WA F1 WA F1

Ours-HF 62.9 0.627 59.3 0.584
Ours-VF 64.7 0.643 60.8 0.591
Ours-FAF 66.2 0.665 61.4 0.608

Table 3: Accuracy (%) and F1 score for general-
ization testing.

racy. We also notice that the structure with FAF
outperforms the HF and VF on both MOSI and
IEMOCAP dataset, which demonstrates the effec-
tiveness and importance of the FAF strategy.

5.2 Modality and Generalization Analysis

From Table 2, we see that textual information
dominates the sentiment prediction on MOSI and
there is an only 1.4% accuracy improvement from
fusing text and audio. However, on IEMOCAP,
audio-only outperforms text-only, but as expected,
there is a significant performance improvement by
combining textual and audio. The difference in
modality performance might because of the more
significant role vocal delivery plays in emotional
expression than in sentimental expression.

We further tested the generalizability of the pro-
posed model. For sentiment generalization test-
ing, we trained the model on MOSI and tested
on the YouTube dataset (Table 3), which achieves
66.2% accuracy and 0.665 F1 scores. For emo-
tion recognition generalization testing, we tested
the model (trained on IEMOCAP) on EmotiW
and achieves 61.4% accuracy. The potential rea-
sons that may influence the generalization are: (i)
the biased labeling for different datasets (five an-
notators of MOSI vs one annotator of Youtube);
(ii) incomplete utterance in YouTube dataset (such
as “about”, “he”, etc.); (iii) without enough
speech information (EmotiW is a wild audio-
visual dataset that focuses on facial expression).
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Figure 3: Attention visualization.

5.3 Visualize Attentions
Our model allows us to easily visualize the atten-
tion weights of text, audio, and fusion to better
understand how the attention mechanism works.
We introduce the emotional distribution visual-
izations for word-level acoustic attention (w αi),
word-level textual attention (t αi), shared atten-
tion (s αi), and fine-tuning attention based on the
FAF structure (u αi) for two example sentences
(Figure 3). The color gradation represents the im-
portance of the corresponding source data at the
word-level.

Based on our visualization, the textual attention
distribution (t αi) denotes the words that carry the
most emotional significance, such as “hell” for
anger (Figure 3 a). The textual attention shows
that “don’t”, “like”, and “west-sider” have simi-
lar weights in the happy example (Figure 3 b). It
is hard to assign this sentence happy given only
the text attention. However, the acoustic atten-
tion focuses on “you’re” and “west-sider”, remov-
ing emphasis from “don’t” and “like”. The shared
attention (s αi) and fine-tuning attention (u αi)
successfully combine both textual and acoustic
attentions and assign joint attention to the cor-
rect words, which demonstrates that the proposed
method can capture emphasis from both modali-
ties at the word-level.

6 Discussion

There are several limitations and potential solu-
tions worth mentioning: (i) the proposed architec-
ture uses both the audio and text data to analyze
the sentiments and emotions. However, not all the
data sources contain or provide textual informa-
tion. Many audio-visual emotion clips only have
acoustic and visual information. The proposed ar-
chitecture is more related to spoken language anal-
ysis than predicting the sentiments or emotions
based on human speech. Automatic speech recog-
nition provides a potential solution for generating
the textual information from vocal signals. (ii)

The word alignment can be easily applied to hu-
man speech. However, it is difficult to align the
visual information with text, especially if the text
only describes the video or audio. Incorporating
visual information into an aligning model like ours
would be an interesting research topic. (iii) The
limited amount of multimodal sentiment analysis
and emotion recognition data is a key issue for cur-
rent research, especially for deep models that re-
quire a large number of samples. Compared large
unimodal sentiment analysis and emotion recog-
nition datasets, the MOSI dataset only consists of
2199 sentence-level samples. In our experiments,
the EmotiW and MOUD datasets could only be
used for generalization analysis due to their small
size. Larger and more general datasets are neces-
sary for multimodal sentiment analysis and emo-
tion recognition in the future.

7 Conclusion

In this paper, we proposed a deep multimodal ar-
chitecture with hierarchical attention for sentiment
and emotion classification. Our model aligned the
text and audio at the word-level and applied atten-
tion distributions on textual word vectors, acoustic
frame vectors, and acoustic word vectors. We in-
troduced three fusion strategies with a CNN struc-
ture to combine word-level features to classify
emotions. Our model outperforms the state-of-
the-art methods and provides effective visualiza-
tion of modality-specific features and fusion fea-
ture interpretation.
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Florian Eyben, Martin Wöllmer, and Björn Schuller.
2010b. Opensmile: the munich versatile and fast
open-source audio feature extractor. In Proceedings
of the 18th ACM international conference on Multi-
media, pages 1459–1462. ACM.

Kate Forbes-Riley and Diane Litman. 2004. Predicting
emotion in spoken dialogue from multiple knowl-
edge sources. In Proceedings of the Human Lan-
guage Technology Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: HLT-NAACL 2004.

Yue Gu, Shuhong Chen, and Ivan Marsic. 2018. Deep
multimodal learning for emotion recognition in spo-
ken language. arXiv preprint arXiv:1802.08332.

Yue Gu, Xinyu Li, Shuhong Chen, Jianyu Zhang, and
Ivan Marsic. 2017. Speech intention classification
with multimodal deep learning. In Canadian Con-
ference on Artificial Intelligence, pages 260–271.
Springer.

Che-Wei Huang and Shrikanth S Narayanan. 2016. At-
tention assisted discovery of sub-utterance structure

in speech emotion recognition. In INTERSPEECH,
pages 1387–1391.

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. In International
conference on machine learning, pages 448–456.

Qin Jin, Chengxin Li, Shizhe Chen, and Huimin Wu.
2015. Speech emotion recognition with acoustic
and lexical features. In Acoustics, Speech and Sig-
nal Processing (ICASSP), 2015 IEEE International
Conference on, pages 4749–4753. IEEE.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Diane J Litman and Kate Forbes-Riley. 2004. Pre-
dicting student emotions in computer-human tutor-
ing dialogues. In Proceedings of the 42nd Annual
Meeting on Association for Computational Linguis-
tics, page 351. Association for Computational Lin-
guistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Seyedmahdad Mirsamadi, Emad Barsoum, and Cha
Zhang. 2017. Automatic speech emotion recogni-
tion using recurrent neural networks with local at-
tention. In Acoustics, Speech and Signal Processing
(ICASSP), 2017 IEEE International Conference on,
pages 2227–2231. IEEE.

Louis-Philippe Morency, Rada Mihalcea, and Payal
Doshi. 2011. Towards multimodal sentiment analy-
sis: Harvesting opinions from the web. In Proceed-
ings of the 13th international conference on multi-
modal interfaces, pages 169–176. ACM.

Michael Neumann and Ngoc Thang Vu. 2017. At-
tentive convolutional neural network based speech
emotion recognition: A study on the impact of in-
put features, signal length, and acted speech. arXiv
preprint arXiv:1706.00612.

Soujanya Poria, Erik Cambria, Rajiv Bajpai, and Amir
Hussain. 2017a. A review of affective computing:
From unimodal analysis to multimodal fusion. In-
formation Fusion, 37:98–125.

Soujanya Poria, Erik Cambria, and Alexander Gel-
bukh. 2015. Deep convolutional neural network
textual features and multiple kernel learning for
utterance-level multimodal sentiment analysis. In
Proceedings of the 2015 conference on empiri-
cal methods in natural language processing, pages
2539–2544.

Soujanya Poria, Erik Cambria, Devamanyu Hazarika,
Navonil Majumder, Amir Zadeh, and Louis-Philippe
Morency. 2017b. Context-dependent sentiment

2234



analysis in user-generated videos. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
volume 1, pages 873–883.

Soujanya Poria, Iti Chaturvedi, Erik Cambria, and
Amir Hussain. 2016. Convolutional mkl based mul-
timodal emotion recognition and sentiment analysis.
In Data Mining (ICDM), 2016 IEEE 16th Interna-
tional Conference on, pages 439–448. IEEE.
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Abstract

Analyzing human multimodal language is
an emerging area of research in NLP. In-
trinsically human communication is mul-
timodal (heterogeneous), temporal and
asynchronous; it consists of the language
(words), visual (expressions), and acoustic
(paralinguistic) modalities all in the form
of asynchronous coordinated sequences.
From a resource perspective, there is a gen-
uine need for large scale datasets that al-
low for in-depth studies of multimodal lan-
guage. In this paper we introduce CMU
Multimodal Opinion Sentiment and Emo-
tion Intensity (CMU-MOSEI), the largest
dataset of sentiment analysis and emo-
tion recognition to date. Using data from
CMU-MOSEI and a novel multimodal fu-
sion technique called the Dynamic Fusion
Graph (DFG), we conduct experimentation
to investigate how modalities interact with
each other in human multimodal language.
Unlike previously proposed fusion tech-
niques, DFG is highly interpretable and
achieves competitive performance com-
pared to the current state of the art.

1 Introduction

Theories of language origin identify the combina-
tion of language and nonverbal behaviors (vision
and acoustic modality) as the prime form of com-
munication utilized by humans throughout evolu-
tion (Müller, 1866). In natural language processing,
this form of language is regarded as human multi-
modal language. Modeling multimodal language
has recently become a centric research direction in
both NLP and multimodal machine learning (Haz-
arika et al., 2018; Zadeh et al., 2018a; Poria et al.,
2017a; Baltrušaitis et al., 2017; Chen et al., 2017).

Studies strive to model the dual dynamics of multi-
modal language: intra-modal dynamics (dynamics
within each modality) and cross-modal dynamics
(dynamics across different modalities). However,
from a resource perspective, previous multimodal
language datasets have severe shortcomings in the
following aspects:
Diversity in the training samples: The diversity
in training samples is crucial for comprehensive
multimodal language studies due to the complex-
ity of the underlying distribution. This complexity
is rooted in variability of intra-modal and cross-
modal dynamics for language, vision and acoustic
modalities (Rajagopalan et al., 2016). Previously
proposed datasets for multimodal language are gen-
erally small in size due to difficulties associated
with data acquisition and costs of annotations.
Variety in the topics: Variety in topics opens the
door to generalizable studies across different do-
mains. Models trained on only few topics gener-
alize poorly as language and nonverbal behaviors
tend to change based on the impression of the topic
on speakers’ internal mental state.
Diversity of speakers: Much like writing styles,
speaking styles are highly idiosyncratic. Training
models on only few speakers can lead to degen-
erate solutions where models learn the identity of
speakers as opposed to a generalizable model of
multimodal language (Wang et al., 2016).
Variety in annotations Having multiple labels to
predict allows for studying the relations between
labels. Another positive aspect of having variety of
labels is allowing for multi-task learning which has
shown excellent performance in past research.

Our first contribution in this paper is to intro-
duce the largest dataset of multimodal sentiment
and emotion recognition called CMU Multimodal
Opinion Sentiment and Emotion Intensity (CMU-
MOSEI). CMU-MOSEI contains 23,453 annotated
video segments from 1,000 distinct speakers and

2236



250 topics. Each video segment contains manual
transcription aligned with audio to phoneme level.
All the videos are gathered from online video shar-
ing websites 1. The dataset is currently a part of the
CMU Multimodal Data SDK and is freely available
to the scientific community through Github 2.

Our second contribution is an interpretable fu-
sion model called Dynamic Fusion Graph (DFG) to
study the nature of cross-modal dynamics in multi-
modal language. DFG contains built-in efficacies
that are directly related to how modalities interact.
These efficacies are visualized and studied in detail
in our experiments. Aside interpretability, DFG
achieves superior performance compared to previ-
ously proposed models for multimodal sentiment
and emotion recognition on CMU-MOSEI.

2 Background

In this section we compare the CMU-MOSEI
dataset to previously proposed datasets for mod-
eling multimodal language. We then describe the
baselines and recent models for sentiment analysis
and emotion recognition.

2.1 Comparison to other Datasets

We compare CMU-MOSEI to an extensive pool of
datasets for sentiment analysis and emotion recog-
nition. The following datasets include a combina-
tion of language, visual and acoustic modalities as
their input data.

2.1.1 Multimodal Datasets
CMU-MOSI (Zadeh et al., 2016b) is a collection
of 2199 opinion video clips each annotated with
sentiment in the range [-3,3]. CMU-MOSEI is the
next generation of CMU-MOSI. The ICT-MMMO
(Wöllmer et al., 2013) consists of online social re-
view videos annotated at the video level for sen-
timent. YouTube (Morency et al., 2011) contains
videos from the social media web site YouTube that
span a wide range of product reviews and opinion
videos. MOUD (Perez-Rosas et al., 2013) consists
of product review videos in Spanish. Each video
consists of multiple segments labeled to display
positive, negative or neutral sentiment. IEMO-
CAP (Busso et al., 2008) consists of 151 videos
of recorded dialogues, with 2 speakers per session
for a total of 302 videos across the dataset. Each

1following creative commons license allows for personal
unrestricted use and redistribution of the videos

2https://github.com/A2Zadeh/CMU-
MultimodalDataSDK

Dataset # S # Sp Mod Sent Emo TL (hh:mm:ss)
CMU-MOSEI 23,453 1,000 {l, v, a} 3 3 65:53:36
CMU-MOSI 2,199 98 {l, v, a} 3 7 02:36:17
ICT-MMMO 340 200 {l, v, a} 3 7 13:58:29
YouTube 300 50 {l, v, a} 3 7 00:29:41
MOUD 400 101 {l, v, a} 3 7 00:59:00
SST 11,855 – {l} 3 7 –
Cornell 2,000 – {l} 3 7 –
Large Movie 25,000 – {l} 3 7 –
STS 5,513 – {l} 3 7 –
IEMOCAP 10,000 10 {l, v, a} 7 3 11:28:12
SAL 23 4 {v, a} 7 3 11:00:00
VAM 499 20 {v, a} 7 3 12:00:00
VAM-faces 1,867 20 {v} 7 3 –
HUMAINE 50 4 {v, a} 7 3 04:11:00
RECOLA 46 46 {v, a} 7 3 03:50:00
SEWA 538 408 {v, a} 7 3 04:39:00
SEMAINE 80 20 {v, a} 7 3 06:30:00
AFEW 1,645 330 {v, a} 7 3 02:28:03
AM-FED 242 242 {v} 7 3 03:20:25
Mimicry 48 48 {v, a} 7 3 11:00:00
AFEW-VA 600 240 {v, a} 7 3 00:40:00

Table 1: Comparison of the CMU-MOSEI dataset
with previous sentiment analysis and emotion
recognition datasets. #S denotes the number of
annotated data points. #Sp is the number of distinct
speakers. Mod indicates the subset of modalities
present from {(l)anguage, (v)ision, (a)udio}.
Sent and Emo columns indicate presence of sen-
timent and emotion labels. TL denotes the total
number of video hours.

segment is annotated for the presence of 9 emo-
tions (angry, excited, fear, sad, surprised, frustrated,
happy, disappointed and neutral) as well as valence,
arousal and dominance.

2.1.2 Language Datasets
Stanford Sentiment Treebank (SST) (Socher
et al., 2013) includes fine grained sentiment labels
for phrases in the parse trees of sentences collected
from movie review data. While SST has larger pool
of annotations, we only consider the root level an-
notations for comparison. Cornell Movie Review
(Pang et al., 2002) is a collection of 2000 movie-
review documents and sentences labeled with re-
spect to their overall sentiment polarity or subjec-
tive rating. Large Movie Review dataset (Maas
et al., 2011) contains text from highly polar movie
reviews. Sanders Tweets Sentiment (STS) con-
sists of 5513 hand-classified tweets each classified
with respect to one of four topics of Microsoft,
Apple, Twitter, and Google.

2.1.3 Visual and Acoustic Datasets
The Vera am Mittag (VAM) corpus consists of
12 hours of recordings of the German TV talk-
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show “Vera am Mittag” (Grimm et al., 2008). This
audio-visual data is labeled for continuous-valued
scale for three emotion primitives: valence, acti-
vation and dominance. VAM-Audio and VAM-
Faces are subsets that contain on acoustic and vi-
sual inputs respectively. RECOLA (Ringeval et al.,
2013) consists of 9.5 hours of audio, visual, and
physiological (electrocardiogram, and electroder-
mal activity) recordings of online dyadic interac-
tions. Mimicry (Bilakhia et al., 2015) consists of
audiovisual recordings of human interactions in
two situations: while discussing a political topic
and while playing a role-playing game. AFEW
(Dhall et al., 2012, 2015) is a dynamic temporal
facial expressions data corpus consisting of close
to real world environment extracted from movies.

Detailed comparison of CMU-MOSEI to the
datasets in this section is presented in Table 1.
CMU-MOSEI has longer total duration as well as
larger number of data point in total. Furthermore,
CMU-MOSEI has a larger variety in number of
speakers and topics. It has all three modalities pro-
vided, as well as annotations for both sentiment
and emotions.

2.2 Baseline Models

Modeling multimodal language has been the sub-
ject of studies in NLP and multimodal machine
learning. Notable approaches are listed as follows
and indicated with a symbol for reference in the
Experiments and Discussion section (Section 5).
# MFN: (Memory Fusion Network) (Zadeh

et al., 2018a) synchronizes multimodal sequences
using a multi-view gated memory that stores intra-
view and cross-view interactions through time.∎ MARN: (Multi-attention Recurrent Network)
(Zadeh et al., 2018b) models intra-modal and multi-
ple cross-modal interactions by assigning multiple
attention coefficients. Intra-modal and cross-modal
interactions are stored in a hybrid LSTM mem-
ory component. ∗ TFN (Tensor Fusion Network)
(Zadeh et al., 2017) models inter and intra modal
interactions by creating a multi-dimensional tensor
that captures unimodal, bimodal and trimodal in-
teractions. ◇ MV-LSTM (Multi-View LSTM) (Ra-
jagopalan et al., 2016) is a recurrent model that des-
ignates regions inside a LSTM to different views
of the data. § EF-LSTM (Early Fusion LSTM)
concatenates the inputs from different modalities
at each time-step and uses that as the input to a
single LSTM (Hochreiter and Schmidhuber, 1997;

Graves et al., 2013; Schuster and Paliwal, 1997).
In case of unimodal models EF-LSTM refers to a
single LSTM.

We also compare to the following baseline mod-
els: † BC-LSTM (Poria et al., 2017b), ♣ C-MKL
(Poria et al., 2016), ♭ DF (Nojavanasghari et al.,
2016), ♡ SVM (Cortes and Vapnik, 1995; Zadeh
et al., 2016b; Perez-Rosas et al., 2013; Park et al.,
2014), ● RF (Breiman, 2001), THMM (Morency
et al., 2011), SAL-CNN (Wang et al., 2016), 3D-
CNN (Ji et al., 2013). For language only base-
line models: ∪ CNN-LSTM (Zhou et al., 2015),
RNTN (Socher et al., 2013), ×: DynamicCNN
(Kalchbrenner et al., 2014), ⊳ DAN (Iyyer et al.,
2015), ≀ DHN (Srivastava et al., 2015), ⊲ RHN
(Zilly et al., 2016). For acoustic only baseline
models: AdieuNet (Trigeorgis et al., 2016), SER-
LSTM (Lim et al., 2016).

3 CMU-MOSEI Dataset

Understanding expressed sentiment and emotions
are two crucial factors in human multimodal lan-
guage. We introduce a novel dataset for multimodal
sentiment and emotion recognition called CMU
Multimodal Opinion Sentiment and Emotion Inten-
sity (CMU-MOSEI). In the following subsections,
we first explain the details of the CMU-MOSEI
data acquisition, followed by details of annotation
and feature extraction.

3.1 Data Acquisition

Social multimedia presents a unique opportunity
for acquiring large quantities of data from various
speakers and topics. Users of these social multime-
dia websites often post their opinions in the forms
of monologue videos; videos with only one per-
son in front of camera discussing a certain topic
of interest. Each video inherently contains three
modalities: language in the form of spoken text,
visual via perceived gestures and facial expressions,
and acoustic through intonations and prosody.

During our automatic data acquisition process,
videos from YouTube are analyzed for the presence
of one speaker in the frame using face detection
to ensure the video is a monologue. We limit the
videos to setups where the speaker’s attention is
exclusively towards the camera by rejecting videos
that have moving cameras (such as camera on bikes
or selfies recording while walking). We use a di-
verse set of 250 frequently used topics in online
videos as the seed for acquisition. We restrict the
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Figure 1: The diversity of topics of videos in CMU-
MOSEI, displayed as a word cloud. Larger words
indicate more videos from that topic. The most fre-
quent 3 topics are reviews (16.2%), debate (2.9%)
and consulting (1.8%) while the remaining topics
are almost uniformly distributed.

number of videos acquired from each channel to
a maximum of 10. This resulted in discovering
1,000 identities from YouTube. The definition of a
identity is proxy to the number of channels since
accurate identification requires quadratic manual
annotations, which is infeasible for high number
of speakers. Furthermore, we limited the videos
to have manual and properly punctuated transcrip-
tions provided by the uploader. The final pool of
acquired videos included 5,000 videos which were
then manually checked for quality of video, au-
dio and transcript by 14 expert judges over three
months. The judges also annotated each video
for gender and confirmed that each video is an
acceptable monologue. A set of 3228 videos re-
mained after manual quality inspection. We also
performed automatic checks on the quality of video
and transcript which are discussed in Section 3.3 us-
ing facial feature extraction confidence and forced
alignment confidence. Furthermore, we balance the
gender in the dataset using the data provided by the
judges (57% male to 43% female). This constitutes
the final set of raw videos in CMU-MOSEI. The
topics covered in the final set of videos are shown
in Figure 1 as a Venn-style word cloud (Copper-
smith and Kelly, 2014) with the size proportional
to the number of videos gathered for that topic.
The most frequent 3 topics are reviews (16.2%), de-
bate (2.9%) and consulting (1.8%). The remaining
topics are almost uniformly distributed 3.

The final set of videos are then tokenized into
3more detailed analysis such as exact percentages and

number of videos per topic are available in the supplementary
material

Total number of sentences 23453
Total number of videos 3228
Total number of distinct speakers 1000
Total number of distinct topics 250
Average number of sentences in a video 7.3
Average length of sentences in seconds 7.28
Total number of words in sentences 447143
Total of unique words in sentences 23026
Total number of words appearing at least 10 times in the dataset 3413
Total number of words appearing at least 20 times in the dataset 1971
Total number of words appearing at least 50 times in the dataset 888

Table 2: Summary of CMU-MOSEI dataset statis-
tics.

sentences using punctuation markers manually pro-
vided by transcripts. Due to the high quality of
the transcripts, using punctuation markers showed
better sentence quality than using the Stanford
CoreNLP tokenizer (Manning et al., 2014). This
was verified on a set of 20 random videos by two ex-
perts. After tokenization, a set of 23,453 sentences
were chosen as the final sentences in the dataset.
This was achieved by restricting each identity to
contribute at least 10 and at most 50 sentences to
the dataset. Table 2 shows high-level summary
statistics of the CMU-MOSEI dataset.

3.2 Annotation

Annotation of CMU-MOSEI follows closely the an-
notation of CMU-MOSI (Zadeh et al., 2016a) and
Stanford Sentiment Treebank (Socher et al., 2013).
Each sentence is annotated for sentiment on a [-3,3]
Likert scale of: [−3: highly negative, −2 negative,−1 weakly negative, 0 neutral, +1 weakly positive,+2 positive, +3 highly positive]. Ekman emotions
(Ekman et al., 1980) of {happiness, sadness, anger,
fear, disgust, surprise} are annotated on a [0,3] Lik-
ert scale for presence of emotion x: [0: no evidence
of x, 1: weakly x, 2: x, 3: highly x]. The anno-
tation was carried out by 3 crowdsourced judges
from Amazon Mechanical Turk platform. To avert
implicitly biasing the judges and to capture the raw
perception of the crowd, we avoided extreme anno-
tation training and instead provided the judges with
a 5 minutes training video on how to use the annota-
tion system. All the annotations have been carried
out by only master workers with higher than 98%
approval rate to assure high quality annotations 4.

Figure 2 shows the distribution of sentiment and
emotions in CMU-MOSEI dataset. The distribution

4Extensive statistics of the dataset including the crawl-
ing mechanism, the annotation UI, training procedure for the
workers, agreement scores are available in submitted supple-
mentary material available on arXiv.
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Figure 2: Distribution of sentiment and emotions in
the CMU-MOSEI dataset. The distribution shows
a natural skew towards more frequently used emo-
tions. However, the least frequent emotion, fear,
still has 1,900 data points which is an acceptable
number for machine learning studies.

shows a slight shift in favor of positive sentiment
which is similar to distribution of CMU-MOSI and
SST. We believe that this is an implicit bias in
online opinions being slightly shifted towards posi-
tive, since this is also present in CMU-MOSI. The
emotion histogram shows different prevalence for
different emotions. The most common category is
happiness with more than 12,000 positive sample
points. The least prevalent emotion is fear with
almost 1900 positive sample points which is an
acceptable number for machine learning studies.

3.3 Extracted Features
Data points in CMU-MOSEI come in video format
with one speaker in front of the camera. The ex-
tracted features for each modality are as follows
(for other benchmarks we extract the same fea-
tures):

Language: All videos have manual transcrip-
tion. Glove word embeddings (Pennington et al.,
2014) were used to extract word vectors from tran-
scripts. Words and audio are aligned at phoneme
level using P2FA forced alignment model (Yuan
and Liberman, 2008). Following this, the visual
and acoustic modalities are aligned to the words
by interpolation. Since the utterance duration of
words in English is usually short, this interpolation
does not lead to substantial information loss.

Visual: Frames are extracted from the full
videos at 30Hz. The bounding box of the face
is extracted using the MTCNN face detection al-
gorithm (Zhang et al., 2016). We extract facial
action units through Facial Action Coding System
(FACS) (Ekman et al., 1980). Extracting these
action units allows for accurate tracking and un-
derstanding of the facial expressions (Baltrušaitis

et al., 2016). We also extract a set of six basic
emotions purely from static faces using Emotient
FACET (iMotions, 2017). MultiComp OpenFace
(Baltrušaitis et al., 2016) is used to extract the set
of 68 facial landmarks, 20 facial shape parameters,
facial HoG features, head pose, head orientation
and eye gaze (Baltrušaitis et al., 2016). Finally,
we extract face embeddings from commonly used
facial recognition models such as DeepFace (Taig-
man et al., 2014), FaceNet (Schroff et al., 2015)
and SphereFace (Liu et al., 2017).

Acoustic: We use the COVAREP software (De-
gottex et al., 2014) to extract acoustic features
including 12 Mel-frequency cepstral coefficients,
pitch, voiced/unvoiced segmenting features (Drug-
man and Alwan, 2011), glottal source parameters
(Drugman et al., 2012; Alku et al., 1997, 2002),
peak slope parameters and maxima dispersion quo-
tients (Kane and Gobl, 2013). All extracted fea-
tures are related to emotions and tone of speech.

4 Multimodal Fusion Study

From the linguistics perspective, understanding the
interactions between language, visual and audio
modalities in multimodal language is a fundamen-
tal research problem. While previous works have
been successful with respect to accuracy metrics,
they have not created new insights on how the fu-
sion is performed in terms of what modalities are
related and how modalities engage in an interaction
during fusion. Specifically, to understand the fu-
sion process one must first understand the n-modal
dynamics (Zadeh et al., 2017). n-modal dynam-
ics state that there exists different combination of
modalities and that all of these combinations must
be captured to better understand the multimodal
language. In this paper, we define building the
n-modal dynamics as a hierarchical process and
propose a new fusion model called the Dynamic
Fusion Graph (DFG). DFG is easily interpretable
through what is called efficacies in graph connec-
tions. To utilize this new fusion model in a multi-
modal language framework, we build upon Mem-
ory Fusion Network (MFN) by replacing the origi-
nal fusion component in the MFN with our DFG.
We call this resulting model the Graph Memory
Fusion Network (Graph-MFN). Once the model
is trained end to end, we analyze the efficacies in
the DFG to study the fusion mechanism learned
for modalities in multimodal language. In addi-
tion to being an interpretable fusion mechanism,
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Figure 3: The structure of Dynamic Fu-
sion Graph (DFG) for three modalities of{(l)anguage, (v)ision, (a)coustic}. Dashed
lines in DFG show the dynamic connections be-
tween vertices controlled by the efficacies (α).

Graph-MFN also outperforms previously proposed
state-of-the-art models for sentiment analysis and
emotion recognition on the CMU-MOSEI.

4.1 Dynamic Fusion Graph

In this section we discuss the internal structure
of the proposed Dynamic Fusion Graph (DFG)
neural model (Figure 3. DFG has the following
properties: 1) it explicitly models the n-modal
interactions, 2) does so with an efficient num-
ber of parameters (as opposed to previous ap-
proaches such as Tensor Fusion (Zadeh et al.,
2017)) and 3) can dynamically alter its structure
and choose the proper fusion graph based on the
importance of each n-modal dynamics during in-
ference. We assume the set of modalities to be
M = {(l)anguage, (v)ision, (a)coustic}. The
unimodal dynamics are denoted as {l},{v},{a},
the bimodal dynamics as {l, v},{v, a},{l, a} and
trimodal dynamics as {l, v, a}. These dynamics are
in the form of latent representations and are each
considered as vertices inside a graph G = (V,E)
with V the set of vertices and E the set of edges.
A directional neural connection is established be-
tween two vertices vi and vj only if vi ⊂ vj . For
example, {l} ⊂ {l, v} which results in a connection
between < language > and < language, vision >.
This connection is denoted as an edge eij . Dj takes
as input all vi that satisfy the neural connection
formula above for vj .

We define an efficacy for each edge eij denoted
as αij . vi is multiplied by αij before being used as
input toDj . Each α is a sigmoid activated probabil-
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Figure 4: The overview of Graph Memory Fusion
Network (Graph-MFN) pipeline. Graph-MFN re-
places the fusion block in MFN with a Dynamic
Fusion Graph (DFG). For description of variables
and memory formulation please refer to the origi-
nal Memory Fusion Network paper (Zadeh et al.,
2018a).

ity neuron which indicates how strong or weak the
connection is between vi and vj . αs are the main
source of interpretability in DFG. The vector of
all αs is inferred using a deep neural network Dα
which takes as input singleton vertices in V (l, v,
and a). We leave it to the supervised training objec-
tive to learn parameters of Dα and make good use
of efficacies, thus dynamically controlling the struc-
ture of the graph. The singleton vertices are chosen
for this purpose since they have no incoming edges
thus no efficacy associated with those edges (no
efficacy is needed to infer the singleton vertices).
The same singleton vertices l, v, and a are the in-
puts to the DFG. In the next section we discuss
how these inputs are given to DFG. All vertices are
connected to the output vertex Tt of the network
via edges scaled by their respective efficacy. The
overall structure of the vertices, edges and respec-
tive efficacies is shown in Figure 3. There are a
total of 8 vertices (counting the output vertex), 19
edges and subsequently 19 efficacies.

4.2 Graph-MFN

To test the performance of DFG, we use a similar
recurrent architecture to Memory Fusion Network
(MFN). MFN is a recurrent neural model with three
main components 1) System of LSTMs: a set of
parallel LSTMs with each LSTM modeling a sin-
gle modality. 2) Delta-memory Attention Network
is the component that performs multimodal fusion
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Dataset MOSEI Sentiment MOSEI Emotions
Task Sentiment Anger Disgust Fear Happy Sad Surprise
Metric A2 F1 A5 A7 MAE r WA F1 WA F1 WA F1 WA F1 WA F1 WA F1
LANGUAGE
SOTA2 74.1§ 74.1⊳ 43.1≀ 42.9≀ 0.75§ 0.46≀ 56.0∪ 71.0× 59.0§ 67.1⊳ 56.2§ 79.7§ 53.0⊳ 44.1⊳ 53.8≀ 49.9≀ 53.2× 70.0⊳
SOTA1 74.3⊳ 74.1§ 43.2§ 43.2§ 0.74⊳ 0.47§ 56.6≀ 71.8● 64.0⊳ 72.6● 58.8× 89.8● 54.0§ 47.0§ 54.0§ 61.2● 54.3⊳ 85.3●
VISUAL
SOTA2 73.8§ 73.5§ 42.5⊳ 42.5⊳ 0.78≀ 0.41♡ 54.4≀ 64.6§ 54.4♡ 71.5⊲ 51.3§ 78.4§ 53.4≀ 40.8§ 54.3⊳ 60.8● 51.3⊳ 84.2§

SOTA1 73.9⊳ 73.7⊳ 42.7≀ 42.7≀ 0.78§ 0.43≀ 60.0§ 71.0● 60.3≀ 72.4● 64.2♡ 89.8● 57.4● 49.3● 57.7§ 61.5⊲ 51.8§ 85.4●
ACOUSTIC
SOTA2 74.2≀ 73.8△ 42.1△ 42.1△ 0.78⊳ 0.43§ 55.5⊲ 51.8△ 58.9⊳ 72.4● 58.5⊳ 89.8● 57.2∩ 55.5∩ 58.9⊲ 65.9⊲ 52.2♡ 83.6∩
SOTA1 74.2△ 73.9≀ 42.4∩ 42.4∩ 0.74∩ 0.43⊳ 56.4△ 71.9● 60.9§ 72.4● 62.7§ 89.8⊲ 61.5§ 61.4§ 62.0∩ 69.2∩ 54.3⊲ 85.4●
MULTIMODAL
SOTA2 76.0# 76.0# 44.7† 44.6† 0.72∗ 0.52∗ 56.0◇ 71.4♭ 65.2# 71.4# 56.7§ 89.9# 57.8§ 66.6∗ 58.9∗ 60.8# 52.2∗ 85.4●
SOTA1 76.4◇ 76.4◇ 44.8∗ 44.7∗ 0.72# 0.52# 60.5∗ 72.0● 67.0♭ 73.2● 60.0♡ 89.9● 66.5∗ 71.0∎ 59.2§ 61.8● 53.3# 85.4#

Graph-MFN 76.9 77.0 45.1 45.0 0.71 0.54 62.6 72.8 69.1 76.6 62.0 89.9 66.3 66.3 60.4 66.9 53.7 85.5

Table 3: Results for sentiment analysis and emotion recognition on the MOSEI dataset (reported results
are as of 5/11/2018. please check the CMU Multimodal Data SDK github for current state of the art and
new features for CMU-MOSEI and other datasets). SOTA1 and SOTA2 refer to the previous best and
second best state-of-the-art models (from Section 2) respectively. Compared to the baselines Graph-MFN
achieves superior performance in sentiment analysis and competitive performance in emotion recognition.
For all metrics, higher values indicate better performance except for MAE where lower values indicate
better performance.

by assigning coefficients to highlight cross-modal
dynamics. 3) Multiview Gated Memory is a com-
ponent that stores the output of multimodal fusion.
We replace the Delta-memory Attention Network
with DFG and refer to the modified model as Graph
Memory Fusion Network (Graph-MFN). Figure 4
shows the overall architecture of the Graph-MFN.

Similar to MFN, Graph-MFN employs a system
of LSTMs for modeling individual modalities. cl,
cv, and ca represent the memory of LSTMs for lan-
guage, vision and acoustic modalities respectively.
Dm, m ∈ {l, v, a} is a fully connected deep neural
network that takes in hm[t−1,t] the LSTM represen-
tation across two consecutive timestamps, which
allows the network to track changes in memory
dimensions across time. The outputs of Dl, Dv

and Da are the singleton vertices for the DFG. The
DFG models cross-modal interactions and encodes
the cross-modal representations in its output vertexTt for storage in the Multi-view Gated Memory
ut. The Multi-view Gated Memory functions using
a network Du that transforms Tt into a proposed
memory update ût. γ1 and γ2 are the Multi-view
Gated Memory’s retain and update gates respec-
tively and are learned using networks Dγ1 and Dγ2 .
Finally, a network Dz transforms Tt into a multi-
modal representation zt to update the system of
LSTMs. The output of Graph-MFN in all the ex-
periments is the output of each LSTM hmT as well
as contents of the Multi-view Gated Memory at
time T (last recurrence timestep), uT . This output

is subsequently connected to a classification or re-
gression layer for final prediction (for sentiment
and emotion recognition).

5 Experiments and Discussion

In our experiments, we seek to evaluate how modal-
ities interact during multimodal fusion by studying
the efficacies of DFG through time.

Table 3 shows the results on CMU-MOSEI. Ac-
curacy is reported as Ax where x is the number
of sentiment classes as well as F1 measure. For
regression we report MAE and correlation (r). For
emotion recognition due to the natural imbalances
across various emotions, we use weighted accuracy
(Tong et al., 2017) and F1 measure. Graph-MFN
shows superior performance in sentiment analy-
sis and competitive performance in emotion recog-
nition. Therefore, DFG is both an effective and
interpretable model for multimodal fusion.

To better understand the internal fusion mecha-
nism between modalities, we visualize the behavior
of the learned DFG efficacies in Figure 5 for vari-
ous cases (deep red denotes high efficacy and deep
blue denotes low efficacy).

Multimodal Fusion has a Volatile Nature:
The first observation is that the structure of the
DFG is changing case by case and for each case
over time. As a result, the model seems to be selec-
tively prioritizing certain dynamics over the others.
For example, in case (I) where all modalities are
informative, all efficacies seem to be high, imply-
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Acoustic modality uninformativeVision modality uninformative

Too much too fast, I mean we basically just 
get introduced to this character…

(angry voice)Acoustic:

Language:

Vision:

𝑙 → 𝑙, 𝑎
𝑎 → 𝑙, 𝑎
𝑙 → 𝑙, 𝑣

𝑎, 𝑣 → 𝒯
𝑙, 𝑎, 𝑣 → 𝒯

𝑎 → 𝑎, 𝑣

𝑙, 𝑣 → 𝒯

𝑣 → 𝑙, 𝑣

𝑣 → 𝑎, 𝑣
𝑙 → 𝑙, 𝑎, 𝑣
𝑎 → 𝑙, 𝑎, 𝑣
𝑣 → 𝑙, 𝑎, 𝑣

𝑙, 𝑎 → 𝑙, 𝑎, 𝑣
𝑙, 𝑣 → 𝑙, 𝑎, 𝑣
𝑎, 𝑣 → 𝑙, 𝑎, 𝑣
𝑙 → 𝒯
𝑎 → 𝒯
𝑣 → 𝒯

𝑙, 𝑎 → 𝒯

All I can say is he’s a pretty average guy.

(disappointed voice)

Language modality uninformative

What disappointed me was that one of the actors 
in the movie was there for short amount of time.

(neutral voice)

𝑙 → 𝑙, 𝑎
𝑎 → 𝑙, 𝑎
𝑙 → 𝑙, 𝑣

𝑎, 𝑣 → 𝒯
𝑙, 𝑎, 𝑣 → 𝒯

𝑎 → 𝑎, 𝑣

𝑙, 𝑣 → 𝒯

𝑣 → 𝑙, 𝑣

𝑣 → 𝑎, 𝑣
𝑙 → 𝑙, 𝑎, 𝑣
𝑎 → 𝑙, 𝑎, 𝑣
𝑣 → 𝑙, 𝑎, 𝑣

𝑙, 𝑎 → 𝑙, 𝑎, 𝑣
𝑙, 𝑣 → 𝑙, 𝑎, 𝑣
𝑎, 𝑣 → 𝑙, 𝑎, 𝑣
𝑙 → 𝒯
𝑎 → 𝒯
𝑣 → 𝒯

𝑙, 𝑎 → 𝒯

Vision and acoustic modalities informative

And he I don’t think he got mad when hah 
I don’t know maybe.

(frustrated voice)
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(I) (II) (III) (IV)

𝑡 = 1 𝑡 = 𝑇 𝑡 = 1 𝑡 = 𝑇 𝑡 = 1 𝑡 = 𝑇 𝑡 = 1 𝑡 = 𝑇

Figure 5: Visualization of DFG efficacies across time. The efficacies (thus the DFG structure) change
over time as DFG is exposed to new information. DFG is able choose which n-modal dynamics to rely
on. It also learns priors about human communication since certain efficacies (thus edges in DFG) remain
unchanged across time and across data points.

ing that the DFG is able to find useful informa-
tion in unimodal, bimodal and trimodal interac-
tions. However, in cases (II) and (III) where the
visual modality is either uninformative or contra-
dictory, the efficacies of v → l, v and v → l, a, v
and l, a→ l, a, v are reduced since no meaningful
interactions involve the visual modality.

Priors in Fusion: Certain efficacies remain un-
changed across cases and across time. These are
priors from Human Multimodal Language that
DFG learns. For example the model always seems
to prioritize fusion between language and audio in(l → l, a), and (a → l, a). Subsequently, DFG
gives low values to efficacies that rely unilater-
ally on language or audio alone: the (l → τ) and(a→ τ) efficacies seem to be consistently low. On
the other hand, the visual modality appears to have
a partially isolated behavior. In the presence of in-
formative visual information, the model increases
the efficacies of (v → τ) although the values of
other visual efficacies also increase.

Trace of Multimodal Fusion: We trace the
dominant path that every modality undergoes dur-
ing fusion: 1) language tends to first fuse with
audio via (l → l, a) and the language and acoustic
modalities together engage in higher level fusions
such as (l, a → l, a, v). Intuitively, this is aligned
with the close ties between language and audio
through word intonations. 2) The visual modality
seems to engage in fusion only if it contains mean-
ingful information. In cases (I) and (IV), all the
paths involving the visual modality are relatively
active while in cases (II) and (III) the paths involv-

ing the visual modality have low efficacies. 3) The
acoustic modality is mostly present in fusion with
the language modality. However, unlike language,
the acoustic modality also appears to fuse with the
visual modality if both modalities are meaningful,
such as in case (I).

An interesting observation is that in almost all
cases the efficacies of unimodal connections to ter-
minal T is low, implying that T prefers to not rely
on just one modality. Also, DFG always prefers
to perform fusion between language and audio as
in most cases both l → l, a and a → l, a have high
efficacies; intuitively in most natural scenarios lan-
guage and acoustic modalities are highly aligned.
Both of these cases show unchanging behaviors
which we believe DFG has learned as natural pri-
ors of human communicative signal.

With these observations, we believe that DFG
has successfully learned how to manage its internal
structure to model human communication.

6 Conclusion

In this paper we presented the largest dataset of
multimodal sentiment analysis and emotion recog-
nition called CMU Multimodal Opinion Sentiment
and Emotion Intensity (CMU-MOSEI). CMU-
MOSEI consists of 23,453 annotated sentences
from more than 1000 online speakers and 250 dif-
ferent topics. The dataset expands the horizons of
Human Multimodal Language studies in NLP. One
such study was presented in this paper where we
analyzed the structure of multimodal fusion in sen-
timent analysis and emotion recognition. This was
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done using a novel interpretable fusion mechanism
called Dynamic Fusion Graph (DFG). In our stud-
ies we investigated the behavior of modalities in in-
teracting with each other using built-in efficacies of
DFG. Aside analysis of fusion, DFG was trained in
the Memory Fusion Network pipeline and showed
superior performance in sentiment analysis and
competitive performance in emotion recognition.
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Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-
Philippe Morency. 2017. Multimodal machine learn-
ing: A survey and taxonomy. arXiv preprint
arXiv:1705.09406 .
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Koushik, Tadas Baltrušaitis, and Louis-Philippe
Morency. 2016. Deep multimodal fusion for persua-
siveness prediction. In Proceedings of the 18th ACM
International Conference on Multimodal Interaction.
ACM, New York, NY, USA, ICMI 2016, pages 284–
288. https://doi.org/10.1145/2993148.2993176.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up? sentiment classification using
machine learning techniques. In Proceedings of
EMNLP. pages 79–86.

Sunghyun Park, Han Suk Shim, Moitreya Chatterjee,
Kenji Sagae, and Louis-Philippe Morency. 2014.
Computational analysis of persuasiveness in social
multimedia: A novel dataset and multimodal pre-
diction approach. In Proceedings of the 16th In-
ternational Conference on Multimodal Interaction.
ACM, New York, NY, USA, ICMI ’14, pages 50–57.
https://doi.org/10.1145/2663204.2663260.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP. volume 14, pages 1532–
1543.

Veronica Perez-Rosas, Rada Mihalcea, and Louis-
Philippe Morency. 2013. Utterance-Level Multi-
modal Sentiment Analysis. In Association for Com-
putational Linguistics (ACL). Sofia, Bulgaria.

Soujanya Poria, Erik Cambria, Devamanyu Haz-
arika, Navonil Mazumder, Amir Zadeh, and Louis-
Philippe Morency. 2017a. Context dependent senti-
ment analysis in user generated videos. In Associa-
tion for Computational Linguistics.

Soujanya Poria, Erik Cambria, Devamanyu Haz-
arika, Navonil Mazumder, Amir Zadeh, and Louis-
Philippe Morency. 2017b. Context-dependent senti-
ment analysis in user-generated videos. In Associa-
tion for Computational Linguistics.

Soujanya Poria, Iti Chaturvedi, Erik Cambria, and
Amir Hussain. 2016. Convolutional mkl based mul-
timodal emotion recognition and sentiment analysis.
In Data Mining (ICDM), 2016 IEEE 16th Interna-
tional Conference on. IEEE, pages 439–448.

Shyam Sundar Rajagopalan, Louis-Philippe Morency,
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Abstract

Multimodal research is an emerging field
of artificial intelligence, and one of the
main research problems in this field is mul-
timodal fusion. The fusion of multimodal
data is the process of integrating multiple
unimodal representations into one compact
multimodal representation. Previous re-
search in this field has exploited the ex-
pressiveness of tensors for multimodal rep-
resentation. However, these methods often
suffer from exponential increase in dimen-
sions and in computational complexity in-
troduced by transformation of input into
tensor. In this paper, we propose the Low-
rank Multimodal Fusion method, which
performs multimodal fusion using low-rank
tensors to improve efficiency. We evaluate
our model on three different tasks: mul-
timodal sentiment analysis, speaker trait
analysis, and emotion recognition. Our
model achieves competitive results on all
these tasks while drastically reducing com-
putational complexity. Additional experi-
ments also show that our model can per-
form robustly for a wide range of low-rank
settings, and is indeed much more efficient
in both training and inference compared to
other methods that utilize tensor represen-
tations.

1 Introduction

Multimodal research has shown great progress in a
variety of tasks as an emerging research field of arti-
ficial intelligence. Tasks such as speech recognition
(Yuhas et al., 1989), emotion recognition, (De Silva
et al., 1997), (Chen et al., 1998), (Wöllmer et al.,
2013), sentiment analysis, (Morency et al., 2011)

∗ equal contributions

as well as speaker trait analysis and media descrip-
tion (Park et al., 2014a) have seen a great boost
in performance with developments in multimodal
research.

However, a core research challenge yet to be
solved in this domain is multimodal fusion. The
goal of fusion is to combine multiple modalities
to leverage the complementarity of heterogeneous
data and provide more robust predictions. In this
regard, an important challenge has been on scaling
up fusion to multiple modalities while maintaining
reasonable model complexity. Some of the recent
attempts (Fukui et al., 2016), (Zadeh et al., 2017)
at multimodal fusion investigate the use of tensors
for multimodal representation and show significant
improvement in performance. Unfortunately, they
are often constrained by the exponential increase
of cost in computation and memory introduced by
using tensor representations. This heavily restricts
the applicability of these models, especially when
we have more than two views of modalities in the
dataset.

In this paper, we propose the Low-rank Mul-
timodal Fusion, a method leveraging low-rank
weight tensors to make multimodal fusion efficient
without compromising on performance. The over-
all architecture is shown in Figure 1. We evalu-
ated our approach with experiments on three mul-
timodal tasks using public datasets and compare
its performance with state-of-the-art models. We
also study how different low-rank settings impact
the performance of our model and show that our
model performs robustly within a wide range of
rank settings. Finally, we perform an analysis of
the impact of our method on the number of param-
eters and run-time with comparison to other fusion
methods. Through theoretical analysis, we show
that our model can scale linearly in the number of
modalities, and our experiments also show a corre-
sponding speedup in training when compared with
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Figure 1: Overview of our Low-rank Multimodal Fusion model structure: LMF first obtains the unimodal
representation za, zv, zl by passing the unimodal inputs xa, xv, xl into three sub-embedding networks
fv, fa, fl respectively. LMF produces the multimodal output representation by performing low-rank
multimodal fusion with modality-specific factors. The multimodal representation can be then used for
generating prediction tasks.

other tensor-based models.
The main contributions of our paper are as fol-

lows:

• We propose the Low-rank Multimodal Fusion
method for multimodal fusion that can scale
linearly in the number of modalities.

• We show that our model compares to state-of-
the-art models in performance on three multi-
modal tasks evaluated on public datasets.

• We show that our model is computationally
efficient and has fewer parameters in compari-
son to previous tensor-based methods.

2 Related Work

Multimodal fusion enables us to leverage comple-
mentary information present in multimodal data,
thus discovering the dependency of information on
multiple modalities. Previous studies have shown
that more effective fusion methods translate to bet-
ter performance in models, and there’s been a wide
range of fusion methods.

Early fusion is a technique that uses feature
concatenation as the method of fusion of differ-
ent views. Several works that use this method of
fusion (Poria et al., 2016) , (Wang et al., 2016)
use input-level feature concatenation and use the

concatenated features as input, sometimes even re-
moving the temporal dependency present in the
modalities (Morency et al., 2011). The drawback
of this class of method is that although it achieves
fusion at an early stage, intra-modal interactions
are potentially suppressed, thus losing out on the
context and temporal dependencies within each
modality.

On the other hand, late fusion builds sepa-
rate models for each modality and then integrates
the outputs together using a method such as ma-
jority voting or weighted averaging (Wortwein
and Scherer, 2017), (Nojavanasghari et al., 2016).
Since separate models are built for each modality,
inter-modal interactions are usually not modeled
effectively.

Given these shortcomings, more recent work
focuses on intermediate approaches that model
both intra- and inter-modal dynamics. Fukui et al.
(2016) proposes to use Compact Bilinear Pooling
over the outer product of visual and linguistic repre-
sentations to exploit the interactions between vision
and language for visual question answering. Sim-
ilar to the idea of exploiting interactions, Zadeh
et al. (2017) proposes Tensor Fusion Network,
which computes the outer product between uni-
modal representations from three different modal-
ities to compute a tensor representation. These
methods exploit tensor representations to model
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inter-modality interactions and have shown a great
success. However, such methods suffer from expo-
nentially increasing computational complexity, as
the outer product over multiple modalities results in
extremely high dimensional tensor representations.

For unimodal data, the method of low-rank ten-
sor approximation has been used in a variety of
applications to implement more efficient tensor op-
erations. Razenshteyn et al. (2016) proposes a mod-
ified weighted version of low-rank approximation,
and Koch and Lubich (2010) applies the method
towards temporally dependent data to obtain low-
rank approximations. As for applications, Lei et al.
(2014) proposes a low-rank tensor technique for
dependency parsing while Wang and Ahuja (2008)
uses the method of low-rank approximation applied
directly on multidimensional image data (Datum-
as-is representation) to enhance computer vision
applications. Hu et al. (2017) proposes a low-rank
tensor-based fusion framework to improve the face
recognition performance using the fusion of facial
attribute information. However, none of these previ-
ous work aims to apply low-rank tensor techniques
for multimodal fusion.

Our Low-rank Multimodal Fusion method pro-
vides a much more efficient method to com-
pute tensor-based multimodal representations with
much fewer parameters and computational com-
plexity. The efficiency and performance of our ap-
proach are evaluated on different downstream tasks,
namely sentiment analysis, speaker-trait recogni-
tion and emotion recognition.

3 Low-rank Multimodal Fusion

In this section, we start by formulating the problem
of multimodal fusion and introducing fusion meth-
ods based on tensor representations. Tensors are
powerful in their expressiveness but do not scale
well to a large number of modalities. Our proposed
model decomposes the weights into low-rank fac-
tors, which reduces the number of parameters in
the model. This decomposition can be performed
efficiently by exploiting the parallel decomposition
of low-rank weight tensor and input tensor to com-
pute tensor-based fusion. Our method is able to
scale linearly with the number of modalities.

3.1 Multimodal Fusion using Tensor
Representations

In this paper, we formulate multimodal fusion as
a multilinear function f ∶ V1 × V2 × ... × VM →

H where V1, V2, ..., VM are the vector spaces of
input modalities and H is the output vector space.
Given a set of vector representations, {zm}Mm=1
which are encoding unimodal information of the
M different modalities, the goal of multimodal
fusion is to integrate the unimodal representations
into one compact multimodal representation for
downstream tasks.

Tensor representation is one successful approach
for multimodal fusion. It first requires a transfor-
mation of the input representations into a high-
dimensional tensor and then mapping it back to a
lower-dimensional output vector space. Previous
works have shown that this method is more effec-
tive than simple concatenation or pooling in terms
of capturing multimodal interactions (Zadeh et al.,
2017), (Fukui et al., 2016). Tensors are usually
created by taking the outer product over the input
modalities. In addition, in order to be able to model
the interactions between any subset of modalities
using one tensor, Zadeh et al. (2017) proposed a
simple extension to append 1s to the unimodal rep-
resentations before taking the outer product. The
input tensor Z formed by the unimodal representa-
tion is computed by:

Z = M⊗
m=1 zm, zm ∈ Rdm (1)

where⊗M
m=1 denotes the tensor outer product over

a set of vectors indexed by m, and zm is the input
representation with appended 1s.

The input tensor Z ∈ Rd1×d2×...dM is then passed
through a linear layer g(⋅) to to produce a vector
representation:

h = g(Z;W, b) = W ⋅ Z + b, h, b ∈ Rdy (2)

where W is the weight of this layer and b is the
bias. With Z being an order-M tensor (where
M is the number of input modalities), the weightW will naturally be a tensor of order-(M + 1) in
Rd1×d2×...×dM×dh . The extra (M +1)-th dimension
corresponds to the size of the output representation
dh. In the tensor dot productW ⋅Z , the weight ten-
sorW can be then viewed as dh order-M tensors.
In other words, the weight W can be partitioned
into W̃k ∈ Rd1×...×dM , k = 1, ..., dh. Each W̃k con-
tributes to one dimension in the output vector h, i.e.
hk = W̃k ⋅ Z . This interpretation of tensor fusion is
illustrated in Figure 2 for the bi-modal case.

One of the main drawbacks of tensor fusion
is that we have to explicitly create the high-
dimensional tensor Z . The dimensionality of Z
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will increase exponentially with the number of
modalities as∏Mm=1 dm. The number of parameters
to learn in the weight tensorW will also increase
exponentially. This not only introduces a lot of
computation but also exposes the model to risks of
overfitting.

3.2 Low-rank Multimodal Fusion with
Modality-Specific Factors

As a solution to the problems of tensor-based fu-
sion, we propose Low-rank Multimodal Fusion
(LMF). LMF parameterizes g(⋅) from Equation
2 with a set of modality-specific low-rank factors
that can be used to recover a low-rank weight ten-
sor, in contrast to the full tensorW . Moreover, we
show that by decomposing the weight into a set
of low-rank factors, we can exploit the fact that
the tensor Z actually decomposes into {zm}Mm=1,
which allows us to directly compute the output h
without explicitly tensorizing the unimodal repre-
sentations. LMF reduces the number of parameters
as well as the computation complexity involved
in tensorization from being exponential in M to
linear.

3.2.1 Low-rank Weight Decomposition
The idea of LMF is to decompose the weight tensorW into M sets of modality-specific factors. How-
ever, since W itself is an order-(M + 1) tensor,
commonly used methods for decomposition will
result in M + 1 parts. Hence, we still adopt the
view introduced in Section 3.1 thatW is formed by
dh order-M tensors W̃k ∈ Rd1×...×dM , k = 1, ..., dh
stacked together. We can then decompose each W̃k

separately.
For an order-M tensor W̃k ∈ Rd1×...×dM , there

always exists an exact decomposition into vectors
in the form of:

W̃k = R∑
i=1

M⊗
m=1w

(i)
m,k, w

(i)
m,k ∈ Rdm (3)

The minimal R that makes the decomposition valid
is called the rank of the tensor. The vector sets

{{w(i)m,k}Mm=1}Ri=1 are called the rank R decomposi-
tion factors of the original tensor.

In LMF, we start with a fixed rank r, and pa-
rameterize the model with r decomposition factors{{w(i)m,k}Mm=1}ri=1, k = 1, ..., dh that can be used to
reconstruct a low-rank version of these W̃k.

We can regroup and concatenate these vectors
into M modality-specific low-rank factors. Let
w
(i)
m = [w(i)m,1,w(i)m,2, ...,w(i)m,dh], then for modality

m, {w(i)m }ri=1 is its corresponding low-rank factors.
And we can recover a low-rank weight tensor by:

W = r∑
i=1

M⊗
m=1w

(i)
m (4)

Hence equation 2 can be computed by

h = ( r∑
i=1

M⊗
m=1w

(i)
m ) ⋅ Z (5)

Note that for all m, w
(i)
m ∈ Rdm×dh shares the

same size for the second dimension. We define
their outer product to be over only the dimensions
that are not shared: w(i)m ⊗w

(i)
n ∈ Rdm×dn×dh . A

bimodal example of this procedure is illustrated in
Figure 3.

Nevertheless, by introducing the low-rank fac-
tors, we now have to compute the reconstruction
ofW = ∑ri=1⊗M

m=1w(i)m for the forward computa-
tion. Yet this introduces even more computation.

3.2.2 Efficient Low-rank Fusion Exploiting
Parallel Decomposition

In this section, we will introduce an efficient pro-
cedure for computing h, exploiting the fact that
tensor Z naturally decomposes into the original
input {zm}Mm=1, which is parallel to the modality-
specific low-rank factors. In fact, that is the main
reason why we want to decompose the weight ten-
sor into M modality-specific factors.

Using the fact that Z =⊗M
m=1 zm, we can sim-

plify equation 5:

h = ( r∑
i=1

M⊗
m=1w

(i)
m ) ⋅ Z

= r∑
i=1(

M⊗
m=1w

(i)
m ⋅ Z)

= r∑
i=1(

M⊗
m=1w

(i)
m ⋅ M⊗

m=1 zm)
= M

Λ
m=1 [

r∑
i=1w

(i)
m ⋅ zm] (6)
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Figure 3: Decomposing weight tensor into low-rank factors (See Section 3.2.1 for details.)

where ΛM
m=1 denotes the element-wise product

over a sequence of tensors: Λ3
t=1 xt = x1 ○ x2 ○ x3.

An illustration of the trimodal case of equation 6
is shown in Figure 1. We can also derive equation
6 for a bimodal case to clarify what it does:

h = ( r∑
i=1w

(i)
a ⊗w(i)v ) ⋅ Z

= ( r∑
i=1w

(i)
a ⋅ za) ○ ( r∑

i=1w
(i)
v ⋅ zv) (7)

An important aspect of this simplification is that
it exploits the parallel decomposition of both Z
andW , so that we can compute h without actually
creating the tensor Z from the input representa-
tions zm. In addition, different modalities are de-
coupled in the simplified computation of h, which
allows for easy generalization of our approach to
an arbitrary number of modalities. Adding a new
modality can be simply done by adding another
set of modality-specific factors and extend Equa-
tion 7. Last but not least, Equation 6 consists of
fully differentiable operations, which enables the
parameters {w(i)m }ri=1m = 1, ...,M to be learned
end-to-end via back-propagation.

Using Equation 6, we can compute h directly
from input unimodal representations and their
modal-specific decomposition factors, avoiding the
weight-lifting of computing the large input ten-
sor Z and W , as well as the r linear transfor-
mation. Instead, the input tensor and subsequent
linear projection are computed implicitly together
in Equation 6, and this is far more efficient than
the original method described in Section 3.1. In-
deed, LMF reduces the computation complexity of
tensorization and fusion from O(dy∏Mm=1 dm) to
O(dy × r ×∑Mm=1 dm).

In practice, we use a slightly different form of
Equation 6, where we concatenate the low-rank

factors into M order-3 tensors and swap the or-
der in which we do the element-wise product and
summation:

h = r∑
i=1 [

M

Λ
m=1 [w(1)m ,w(2)m , ...,w(r)m ] ⋅ ẑm]

i,∶ (8)

and now the summation is done along the first di-
mension of the bracketed matrix. [⋅]i,∶ indicates the
i-th slice of a matrix. In this way, we can parame-
terize the model with M order-3 tensors, instead of
parameterizing with sets of vectors.

4 Experimental Methodology

We compare LMF with previous state-of-the-art
baselines, and we use the Tensor Fusion Networks
(TFN) (Zadeh et al., 2017) as a baseline for tensor-
based approaches, which has the most similar struc-
ture with us except that it explicitly forms the large
multi-dimensional tensor for fusion across different
modalities.

We design our experiments to better understand
the characteristics of LMF. Our goal is to answer
the following four research questions:
(1) Impact of Multimodal Low-rank Fusion: Di-
rect comparison between our proposed LMF model
and the previous TFN model.
(2) Comparison with the State-of-the-art: We
evaluate the performance of LMF and state-of-the-
art baselines on three different tasks and datasets.
(3) Complexity Analysis: We study the modal
complexity of LMF and compare it with the TFN
model.
(4) Rank Settings: We explore performance of
LMF with different rank settings.

The results of these experiments are presented
in Section 5.

4.1 Datasets
We perform our experiments on the following multi-
modal datasets, CMU-MOSI (Zadeh et al., 2016a),
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Dataset CMU-MOSI IEMOCAP POM
Level Segment Segment Video
# Train 1284 6373 600
# Valid 229 1775 100
# Test 686 1807 203

Table 1: The speaker independent data splits for
training, validation, and test sets.

POM (Park et al., 2014b), and IEMOCAP (Busso
et al., 2008) for sentiment analysis, speaker traits
recognition, and emotion recognition task, where
the goal is to identify speakers emotions based on
the speakers’ verbal and nonverbal behaviors.
CMU-MOSI The CMU-MOSI dataset is a collec-
tion of 93 opinion videos from YouTube movie
reviews. Each video consists of multiple opinion
segments and each segment is annotated with the
sentiment in the range [-3,3], where -3 indicates
highly negative and 3 indicates highly positive.
POM The POM dataset is composed of 903 movie
review videos. Each video is annotated with the fol-
lowing speaker traits: confident, passionate, voice
pleasant, dominant, credible, vivid, expertise, enter-
taining, reserved, trusting, relaxed, outgoing, thor-
ough, nervous, persuasive and humorous.
IEMOCAP The IEMOCAP dataset is a collection
of 151 videos of recorded dialogues, with 2 speak-
ers per session for a total of 302 videos across the
dataset. Each segment is annotated for the presence
of 9 emotions (angry, excited, fear, sad, surprised,
frustrated, happy, disappointed and neutral).

To evaluate model generalization, all datasets are
split into training, validation, and test sets such that
the splits are speaker independent, i.e., no identical
speakers from the training set are present in the
test sets. Table 1 illustrates the data splits for all
datasets in detail.

4.2 Features

Each dataset consists of three modalities, namely
language, visual, and acoustic modalities. To reach
the same time alignment across modalities, we
perform word alignment using P2FA (Yuan and
Liberman, 2008) which allows us to align the three
modalities at the word granularity. We calculate the
visual and acoustic features by taking the average
of their feature values over the word time interval
(Chen et al., 2017).
Language We use pre-trained 300-dimensional
Glove word embeddings (Pennington et al., 2014)
to encode a sequence of transcribed words into a
sequence of word vectors.

Visual The library Facet1 is used to extract a set of
visual features for each frame (sampled at 30Hz) in-
cluding 20 facial action units, 68 facial landmarks,
head pose, gaze tracking and HOG features (Zhu
et al., 2006).
Acoustic We use COVAREP acoustic analysis
framework (Degottex et al., 2014) to extract a set
of low-level acoustic features, including 12 Mel
frequency cepstral coefficients (MFCCs), pitch,
voiced/unvoiced segmentation, glottal source, peak
slope, and maxima dispersion quotient features.

4.3 Model Architecture
In order to compare our fusion method with previ-
ous work, we adopt a simple and straightforward
model architecture 2 for extracting unimodal rep-
resentations. Since we have three modalities for
each dataset, we simply designed three unimodal
sub-embedding networks, denoted as fa, fv, fl, to
extract unimodal representations za, zv, zl from uni-
modal input features xa, xv, xl. For acoustic and
visual modality, the sub-embedding network is a
simple 2-layer feed-forward neural network, and
for language modality, we used an LSTM (Hochre-
iter and Schmidhuber, 1997) to extract represen-
tations. The model architecture is illustrated in
Figure 1.

4.4 Baseline Models
We compare the performance of LMF to the follow-
ing baselines and state-of-the-art models in multi-
modal sentiment analysis, speaker trait recognition,
and emotion recognition.
Support Vector Machines Support Vector Ma-
chines (SVM) (Cortes and Vapnik, 1995) is a
widely used non-neural classifier. This baseline
is trained on the concatenated multimodal features
for classification or regression task (Pérez-Rosas
et al., 2013), (Park et al., 2014a), (Zadeh et al.,
2016b).
Deep Fusion The Deep Fusion model (DF) (No-
javanasghari et al., 2016) trains one deep neural
model for each modality and then combine the out-
put of each modality network with a joint neural
network.
Tensor Fusion Network The Tensor Fusion Net-
work (TFN) (Zadeh et al., 2017) explicitly models
view-specific and cross-view dynamics by creat-
ing a multi-dimensional tensor that captures uni-

1goo.gl/1rh1JN
2The source code of our model is available on Github at

https://github.com/Justin1904/Low-rank-Multimodal-Fusion
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modal, bimodal and trimodal interactions across
three modalities.
Memory Fusion Network The Memory Fusion
Network (MFN) (Zadeh et al., 2018a) accounts for
view-specific and cross-view interactions and con-
tinuously models them through time with a special
attention mechanism and summarized through time
with a Multi-view Gated Memory.
Bidirectional Contextual LSTM The Bidirec-
tional Contextual LSTM (BC-LSTM) (Zadeh et al.,
2017), (Fukui et al., 2016) performs context-
dependent fusion of multimodal data.
Multi-View LSTM The Multi-View LSTM (MV-
LSTM) (Rajagopalan et al., 2016) aims to capture
both modality-specific and cross-modality interac-
tions from multiple modalities by partitioning the
memory cell and the gates corresponding to multi-
ple modalities.
Multi-attention Recurrent Network The Multi-
attention Recurrent Network (MARN) (Zadeh et al.,
2018b) explicitly models interactions between
modalities through time using a neural component
called the Multi-attention Block (MAB) and storing
them in the hybrid memory called the Long-short
Term Hybrid Memory (LSTHM).

4.5 Evaluation Metrics

Multiple evaluation tasks are performed during our
evaluation: multi-class classification and regres-
sion. The multi-class classification task is applied
to all three multimodal datasets, and the regres-
sion task is applied to the CMU-MOSI and the
POM dataset. For binary classification and multi-
class classification, we report F1 score and accu-
racy Acc−k where k denotes the number of classes.
Specifically, Acc−2 stands for the binary classifica-
tion. For regression, we report Mean Absolute Er-
ror (MAE) and Pearson correlation (Corr). Higher
values denote better performance for all metrics
except for MAE.

5 Results and Discussion

In this section, we present and discuss the results
from the experiments designed to study the re-
search questions introduced in section 4.

5.1 Impact of Low-rank Multimodal Fusion

In this experiment, we compare our model directly
with the TFN model since it has the most similar
structure to our model, except that TFN explic-
itly forms the multimodal tensor fusion. The com-

parison reported in the last two rows of Table 2
demonstrates that our model significantly outper-
forms TFN across all datasets and metrics. This
competitive performance of LMF compared to TFN
emphasizes the advantage of Low-rank Multimodal
Fusion.

5.2 Comparison with the State-of-the-art

We compare our model with the baselines and state-
of-the-art models for sentiment analysis, speaker
traits recognition and emotion recognition. Results
are shown in Table 2. LMF is able to achieve com-
petitive and consistent results across all datasets.

On the multimodal sentiment regression task,
LMF outperforms the previous state-of-the-art
model on MAE and Corr. Note the multiclass
accuracy is calculated by mapping the range of
continuous sentiment values into a set of intervals
that are used as discrete classes.

On the multimodal speaker traits Recognition
task, we report the average evaluation score over
16 speaker traits and shows that our model achieves
the state-of-the-art performance over all three eval-
uation metrics on the POM dataset.

On the multimodal emotion recognition task, our
model achieves better results compared to the state-
of-the-art models across all emotions on the F1
score. F1-emotion in the evaluation metrics indi-
cates the F1 score for a certain emotion class.

5.3 Complexity Analysis

Theoretically, the model complexity of our fu-
sion method is O(dy × r × ∑Mm=1 dm) compared
to O(dy∏Mm=1 dm) of TFN from Section 3.1. In
practice, we calculate the total number of parame-
ters used in each model, where we choose M = 3,
d1 = 32, d2 = 32, d3 = 64, r = 4, dy = 1. Under
this hyper-parameter setting, our model contains
about 1.1e6 parameters while TFN contains about
12.5e6 parameters, which is nearly 11 times more.
Note that, the number of parameters above counts
not only the parameters in the multimodal fusion
stage but also the parameters in the subnetworks.

Furthermore, we evaluate the computational
complexity of LMF by measuring the training and
testing speeds between LMF and TFN. Table 3
illustrates the impact of Low-rank Multimodal Fu-
sion on the training and testing speeds compared
with TFN model. Here we set rank to be 4 since
it can generally achieve fairly competent perfor-
mance.

2253



Dataset CMU-MOSI POM IEMOCAP
Metric MAE Corr Acc-2 F1 Acc-7 MAE Corr Acc F1-Happy F1-Sad F1-Angry F1-Neutral
SVM 1.864 0.057 50.2 50.1 17.5 0.887 0.104 33.9 81.5 78.8 82.4 64.9
DF 1.143 0.518 72.3 72.1 26.8 0.869 0.144 34.1 81.0 81.2 65.4 44.0
BC-LSTM 1.079 0.581 73.9 73.9 28.7 0.840 0.278 34.8 81.7 81.7 84.2 64.1
MV-LSTM 1.019 0.601 73.9 74.0 33.2 0.891 0.270 34.6 81.3 74.0 84.3 66.7
MARN 0.968 0.625 77.1 77.0 34.7 - - 39.4 83.6 81.2 84.2 65.9
MFN 0.965 0.632 77.4 77.3 34.1 0.805 0.349 41.7 84.0 82.1 83.7 69.2
TFN 0.970 0.633 73.9 73.4 32.1 0.886 0.093 31.6 83.6 82.8 84.2 65.4
LMF 0.912 0.668 76.4 75.7 32.8 0.796 0.396 42.8 85.8 85.9 89.0 71.7

Table 2: Results for sentiment analysis on CMU-MOSI, emotion recognition on IEMOCAP and personality
trait recognition on POM. Best results are highlighted in bold.

Model Training Speed (IPS) Testing Speed (IPS)
TFN 340.74 1177.17
LMF 1134.82 2249.90

Table 3: Comparison of the training and testing
speeds between TFN and LMF. The second and
the third columns indicate the number of data point
inferences per second (IPS) during training and
testing time respectively. Both models are imple-
mented in the same framework with equivalent run-
ning environment.

Based on these results, performing a low-rank
multimodal fusion with modality-specific low-rank
factors significantly reduces the amount of time
needed for training and testing the model. On an
NVIDIA Quadro K4200 GPU, LMF trains with
an average frequency of 1134.82 IPS (data point
inferences per second) while the TFN model trains
at an average of 340.74 IPS.

5.4 Rank Settings

To evaluate the impact of different rank settings for
our LMF model, we measure the change in perfor-
mance on the CMU-MOSI dataset while varying

Figure 4: The Impact of different rank settings on
Model Performance: As the rank increases, the
results become unstable and low rank is enough in
terms of the mean absolute error.

the number of rank. The results are presented in
Figure 4. We observed that as the rank increases,
the training results become more and more unstable
and that using a very low rank is enough to achieve
fairly competent performance.

6 Conclusion

In this paper, we introduce a Low-rank Multi-
modal Fusion method that performs multimodal fu-
sion with modality-specific low-rank factors. LMF
scales linearly in the number of modalities. LMF
achieves competitive results across different mul-
timodal tasks. Furthermore, LMF demonstrates
a significant decrease in computational complex-
ity from exponential to linear time. In practice,
LMF effectively improves the training and testing
efficiency compared to TFN which performs multi-
modal fusion with tensor representations.

Future work on similar topics could explore the
applications of using low-rank tensors for attention
models over tensor representations, as they can be
even more memory and computationally intensive.
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Abstract

Theories of discourse coherence posit rela-
tions between discourse segments as a key
feature of coherent text. Our prior work
suggests that multiple discourse relations
can be simultaneously operative between
two segments for reasons not predicted by
the literature. Here we test how this joint
presence can lead participants to endorse
seemingly divergent conjunctions (e.g., but
and so) to express the link they see between
two segments. These apparent divergences
are not symptomatic of participant naïveté
or bias, but arise reliably from the concur-
rent availability of multiple relations be-
tween segments – some available through
explicit signals and some via inference. We
believe that these new results can both in-
form future progress in theoretical work
on discourse coherence and lead to higher
levels of performance in discourse parsing.

1 Introduction

A question that remains unresolved in work on
discourse coherence is the nature and number of re-
lations that can hold between clauses in a coherent
text (Halliday and Hasan, 1976; Stede, 2012).

Our earlier work (Rohde et al., 2015, 2016)
showed that, in the presence of explicit discourse
adverbials, people also infer additional discourse
relations that they take to hold jointly with those
associated with the adverbials. For example, in:

(1) It’s too far to walk. Instead let’s take the bus.

people infer a RESULT relation in the context of
the adverbial instead, which itself signals that the
bus stands in a SUBSTITUTION relation to walking.
We showed this using crowdsourced conjunction-
insertion experiments (Rohde et al., 2015, 2016), in
which participants were asked to insert into the gap
between two discourse segments, a conjunction that

best expressed how they took the segments to be re-
lated. Rohde et al. (2017) also asked participants to
select any other conjunctions that they took to con-
vey the same sense as their “best” choice. (More
details of these experiments are given in Section 3.)

All three studies showed participants selecting
conjunctions whose sense differed from that of the
explicit discourse adverbial. But Rohde et al. (2015,
2016) also showed participants often selecting con-
junctions that signal different coherence relations
than those selected by other participants. And Ro-
hde et al. (2017) showed participants often identi-
fying very different conjunctions as conveying the
same meaning. For example, in passage (2), with
the discourse adverbial in other words, one large
fraction of participants chose to insert OR, while
another large fraction inserted SO. Since the two
are neither synonymous nor representative of the
same relation, either the participants have come up
with different analyses of the passages (Section 2)
or something more surprising is at work.

(2) Unfortunately, nearly 75,000 acres of tropical forest
are converted or deforested every day ______ in other
words an area the size of Central Park disappears every
16 minutes. [SO∼OR]

Rohde et al. (2017) noted other cases where dif-
ferent pairs of conjunctions (e.g., BECAUSE and
BUT, BUT and OR, and BECAUSE and OR) ap-
pear systematically across participants and across
passages for particular adverbials, and speculated
on what these odd pairings may reveal, but did
not provide any empirical evidence for why this
happens. Here we present such evidence from an
experiment on three discourse adverbials (in other
words, otherwise, and instead).

After describing related work on multiple dis-
course relations (Section 2) and then our experi-
mental methodology (Section 3), we step through
results for these three adverbials. As a final piece
of evidence, we manipulate the presence and ab-
sence of a fourth adverbial, after all, in order to
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demonstrate that inference of the relation(s) be-
tween segments in a passage is not always driven
by the presence of such an adverbial.

2 Related Work

This is not the first work on discourse coherence to
acknowledge the possibility of multiple relations
holding between given discourse segments.

For example, the developers of Rhetorical Struc-
ture Theory acknowledged that even experienced
RST analysts may interpret a text differently in
terms of the relations they take to hold (Mann and
Thompson, 1988, p. 265). But while RST allows
for multiple alternative analyses of a text in terms
of discourse relations, in practice, researchers work-
ing in the RST framework standardly produce a
single analysis of a text, with a single relational
labeling, selecting the analysis that is “most plau-
sible in terms of the perceived goals of the writer”
(Mann et al., 1989, pp. 34–35). If that single an-
alysis is later mapped into a different structure to
support further processing – e.g., a binary branch-
ing tree structure – the mapping does not change
the chosen relational labeling.

Multiple relations may additionally hold in theo-
ries of discourse coherence that posit multiple lev-
els of text analysis. For example, following Grosz
and Sidner (1986), Moore and Pollack (1992) char-
acterized text as having both an informational struc-
ture (relating information conveyed by discourse
segments) and an intentional structure (relating the
functions of those segments with respect to what
the speaker is trying to accomplish through the
text). The kinds of relations at the two levels are
different, as can be seen in the following example
from (Moore and Pollack, 1992, p. 540):

(3) a. George Bush supports big business.
b. He’s sure to veto House Bill 1711.

At the level of intentions, (3a) aims to provide EVI-
DENCE for the claim in (3b), while at an informa-
tional level, (3a) serves as the CAUSE of the situa-
tion in (3b). RST would force annotators to choose
only the analysis that best reflected the perceived
goals of the writer.

Additionally, multiple relations can hold where
there are distinct explicit signals for distinct dis-
course relations holding between a pair of segments
(Cuenca and Marin, 2009; Fraser, 2013), as in:

(4) It’s too far to walk. So instead let’s take the bus.

where the conjunction so signals a RESULT relation
and the adverbial instead signals that taking the bus
stands in an SUBSTITUTION relation to walking.

Finally, a fourth way in which the previous lit-
erature has taken multiple discourse relations to
hold is when a single phrase or lexico-syntactic
construction jointly signals multiple discourse re-
lations as holding over a text – for example, since
as a subordinating conjunction may, in particular
contexts, signal both a TEMPORAL relation and a
CAUSAL relation, rather than just one or the other
(Miltsakaki et al., 2005).

We are aware of only two resources that allow
more than one discourse relation to be annotated
between two segments – the Penn Discourse Tree-
Bank (PDTB; Prasad et al., 2008, 2014) and, more
recently, the BECauSE Corpus 2.0 (Dunietz et al.,
2017). The PDTB allows multiple discourse re-
lations of the third and fourth types noted above.
It also allows them to be annotated if there is no
explicit connective between a pair of segments but
annotators see more than one sense relation as link-
ing them, as in the following variant of (4):

(5) It’s too far to walk. Let’s take the bus.

Here a RESULT relation can be associated with an
implicit token of so between the clauses, while a
SUBSTITUTION relation can be associated with an
implicit token of instead. The above are the main
cases in which PDTB annotates multiple relations.
Relevant to this paper, the PDTB does not anno-
tate implicit conjunction relations where there is
already an explicit discourse adverbial. Thus the
PDTB would either ignore the implicit RESULT re-
lation for (1) or (incorrectly) annotate instead in (1)
as conveying both SUBSTITUTION and RESULT.

Moreover, while the PDTB has been used
in training many (but not all) discourse parsers
(Marcu, 2000; Lin et al., 2014; Feng and Hirst,
2012; Xue et al., 2015, 2016; Ji and Eisenstein,
2014), discourse parsing has for the most part ig-
nored its annotations of multiple concurrent rela-
tions between clauses, except in the case of distinct
explicit connectives expressing distinct relations.
Instead, they have arbitrarily taken just a single re-
lation to hold, even though the relations are simply
recorded in an a priori canonical order. This prac-
tice is problematic because, for example, there may
well be a difference in the properties of segments
where two relations are jointly seen to hold, ver-
sus those segments in which only one or the other
holds. This can result in unwanted noise in the data
and lower the reliability of whatever is induced.

While our previous studies showed another
source of multiple discourse relations holding con-
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currently between discourse segments, the work
reported here explains how, in the context of mul-
tiple relations, participants can take very different
conjunctions to be conveying the same relation, and
what can change participants’ selection of a con-
junction to mark the relation they infer alongside
that conveyed by an explicit discourse adverbial.

3 Methodology

A locally crowdsourced conjunction-insertion task
provided a proxy for labelling relations between
adjacent discourse segments within a passage.

Our materials consisted of passages containing
an explicit discourse adverbial, preceded by a gap,
which effectively separated the passage into two
segments. The passages consisted of 16 with in
other words, 16 with instead, 16 with after all, and
48 with otherwise. Participants were asked to read
each passage and choose the conjunction(s) that
best expressed how the two segments link together.
The presentation of conjunction choices varied in
order for each participant, but always consisted of
AND, BECAUSE, BUT, OR, SO, NONE. While
the task admittedly encourages participants to se-
lect one (or more) conjunctions, our prior work
has shown that participants are very willing to use
NONE if no conjunction is appropriate. We there-
fore take their insertion of a conjunction as their en-
dorsement of the relation signaled by that conjunc-
tion. To further control data quality, we included
6 catch trials with an expected correct conjunction
like “To be ______ not to be”.

Three of the explicit discourse adverbials that
we chose are anaphoric: in other words, other-
wise, and instead (Webber et al., 2000). Unlike
conjunctions such as AND, BECAUSE, BUT, OR
and SO, they are not constrained by structure as
to what they establish discourse relations with. So
a conjunction-insertion task can be used to assess
links between the segments (see also Scholman and
Demberg 2017). Our three anaphoric adverbials
share a core meaning of ‘otherness’ via their lexical
semantics and flexibility in the relations they can
participate in, making them a fruitful set to com-
pare. The fourth adverbial, after all, allows us to
test a hypothesis that the inferred connection be-
tween clauses is not driven by the adverbial alone.

These particular adverbials were selected be-
cause they had yielded unexpected combinations
of conjunction insertions in our prior work (e.g.,
OR/SO with in other words). This is in con-

trast to adverbials like therefore and neverthe-
less, for which participants’ conjunction combi-
nations could be attributed to variation in the speci-
ficity of the conjunctions (SO/AND for therefore,
BUT/AND for nevertheless). For our selection of
a set of conjunctions to use as proxies for relation
labels, we included all the coordinating conjunc-
tions in English, as well as the subordinating con-
junction BECAUSE as EXPLANATION relations are
frequent.

All participants (N=28) were monolingual na-
tive English speakers who were selected following
a pre-test to measure their ability to consistently
insert conjunctions that captured the underlying co-
herence relations in a series of passages. All gave
informed consent. They each received £50 for their
time. Each participant saw one of two randomly
ordered lists. Passages were presented in batches
of 34, one batch per day for three days.

The materials were simplified variants of natu-
rally occurring passages. Some were also manipu-
lated systematically, in ways aimed at altering the
availability of different coherence relations. Pas-
sages are available via the “dataset” link on the
paper in the ACL anthology, and predictions about
them are laid out in Sections 4.1–4.4.

4 Datasets

4.1 In other words Dataset

Rohde et al. (2016) report an OR∼SO response
split for in other words when participants could in-
sert only their top choice of conjunction. Figure 1
shows SO dominating participants’ choice in all
cases, but OR showing up among their choices in
all but one passage (leftmost vertical bar). Addi-
tionally, several passages elicited BUT as the top
choice of some participants.
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Figure 1: Stacked bar chart for conjunction insertions in
passages with in other words (Rohde et al., 2016). Each
vertical bar represents a passage with one response from each
participant (N=28, no overlap with current participants).
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The in other words passages of the current ex-
periment tested two linked hypotheses: The first is
that OR∼SO response splits arise from two com-
ponents of the lexical semantics of the adverbial
itself: its sense of an evoked alternative and its
sense of a consequence via restatement, whereby
the truth of the second segment holds because it
provides a reformulated restatement of the first seg-
ment’s content. For passage (2), this corresponds to
the deforestation of 75,000 acres of tropical forest
entailing the disappearance of an area the size of
Central Park every 16 minutes.

The second hypothesis is that the prevalence of
and substitutability between SO and OR in (2) de-
pends on the immediately adjacency of the two seg-
ments. This was suggested by participant choices
of BUT (cf. Figure 1), as well as the observation
that in other words does not always license OR
via its lexical semantics and SO via entailment, as
shown in (6), where BUT has become more avail-
able. Note that none of the relations conveyed by
these conjunctions (CONTRAST or CONCESSION

for BUT, DISJUNCTION for OR, CONSEQUENCE

for SO) are already conveyed by the adverbial itself,
which for in other words) would be RESTATEMENT.

(6) Unfortunately, nearly 75,000 acres of tropical forest are
converted or deforested every day. I don’t know where
I heard that ______ in other words an area the size of
Central Park disappears every 16 minutes.

We tested these hypotheses by creating mini-
mal pairs of 16 passages containing in other words.
The pairs varied in the presence/absence of a meta-
linguistic comment intervening between the origi-
nal description and its reformulation, as in (7)–(8).

(7) Typically, a cast-iron wood-burning stove is 60 percent
efficient ______ in other words 40 percent of the wood
ends up as ash, smoke or lost heat.

(8) Typically, a cast-iron wood-burning stove is 60 percent
efficient. How this is measured is unclear ______ in
other words 40 percent of the wood ends up as ash,
smoke or lost heat.

For each passage, participants identified their
preferred conjunction and then any others that they
took to convey the same sense. Half the partici-
pants saw a given passage with no intervening meta-
linguistic comment, half with.

If our hypotheses are confirmed, it will show
that manipulating the immediately preceding seg-
ment can shift participants’ preference from rela-
tions associated with OR and SO (ALTERNATIVE

and CONSEQUENCE) to relations of CONTRAST or
CONCESSION. This would then be evidence that
adjacency affects what coherence relations partici-
pants take to be available.
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Figure 2: Stacked bar chart for participants’ (N=28) conjunc-
tion insertions in otherwise passages (Rohde et al., 2016)

4.2 Otherwise Dataset
Rohde et al. (2016) report surprising response splits
amongst BECAUSE∼BUT∼OR for otherwise in
their conjunction-insertion data (Figure 2). Given
that otherwise has several different functions (de-
scribed below), we hypothesize that different re-
sponse splits arise from the lexical semantics of
otherwise, combined with inference as to the func-
tion of the otherwise clause in a given passage.

One function of otherwise is in ARGUMENTA-
TION. Here, an otherwise clause provides a reason
for a given claim, as in (9). Another function is in
ENUMERATION, when the speaker first gives some
preferred or more salient options, the otherwise
clause introduces other alternative options, as in
(10). A third use is in expressing an EXCEPTION to
a generalization. Here, the main clause expresses a
generalization, while otherwise clause specifies an
exception (disjunctive alternative) to it, as in (11).

(9) Proper placement of the testing device is an important
issue ______ otherwise the test results will be inaccu-
rate.

(10) A baked potato, plonked on a side plate with sour
cream flecked with chives, is the perfect accompani-
ment ______ otherwise you could serve a green salad
and some good country bread.

(11) Mr. Lurie and Mr. Jarmusch actually catch a shark, a
thrashing 10-footer ______ otherwise the action is light.

Results presented in (Rohde et al., 2017) for
passages like (9) showed participant judgments of
OR and BECAUSE, but not BUT. Passages like
(10) yielded pairings of OR and BUT, but not
BECAUSE. Lastly, passages like (11) yielded re-
sponse splits between BUT and the less specific
AND (Knott, 1996).

Note that due to overlaps in conjunction choice,
some conjunctions cannot be unambiguously as-
sociated with a single use of otherwise: While
BECAUSE may unambiguously signal that a parti-
cipant has inferred ARGUMENTATION, OR might
indicate inference of either ARGUMENTATION or
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ENUMERATION. Thus we probe both participant
choices of connectives and (via paraphrase) the use
of otherwise that they take to hold.

We chose 16 passages for each use of otherwise,
based on our own category judgments. For each
passage, we asked participants to select the con-
junction that best expressed how its two segments
were related, and then any other connectives that
they took to express the same thing.

A paraphrase task was then used as further ev-
idence for the relation participants inferred in the
otherwise passages. After completing a given ses-
sion’s batch of passages, participants were asked
to select which of three options they took to be a
valid paraphrase of the passage. Each use of other-
wise was assigned a distinct paraphrase to link the
left-hand and right-hand segments (LHS, RHS).

• ARGUMENTATION: “A reason for 〈LHS〉 is
〈RHS〉.”

• EXCEPTION: “Generally 〈RHS〉. An excep-
tion is when 〈LHS〉.”

• ENUMERATION: “There’s more than one good
option for 〈goal〉. They are: 〈LHS〉, 〈RHS〉.”

We also allowed participants to choose a second
paraphrase if they thought it appropriate.

4.3 Instead Dataset
Rohde et al. (2016) report a range of participant
choices in conjunction-insertion passages involv-
ing instead (Figure 3). For passages on the left
of the figure, participants uniformly chose BUT,
while the passage on the far right yielded a strong
preference for SO. Elsewhere, some chose BUT
and some chose SO. (For the current experiment,
we ignore the fact that AND can contingently sub-
stitute for either BUT or SO as a connective in text
(Knott, 1996), focussing only on passages where
participants explicitly choose BUT and/or SO.)

Rohde et al. (2017) report even more surpris-
ing participant responses to passages such as (12),
where some participants selected both BUT and
SO as equally expressing how the segments in the
passage were related.
(12) There may not be a flight scheduled to Loja today

______ instead we can go to Cuenca. [BUT∼SO]

Neither the inter-participant split between BUT
and SO in (Rohde et al., 2016) nor the intra-
participant split between them (Rohde et al., 2017)
can be explained in terms of instead itself, since
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Figure 3: Stacked bar chart for participants’ (N=28) conjunc-
tion insertions in instead passages (Rohde et al., 2016)

instead simply conveys that what follows is an al-
ternative to an unrealised situation in the context
(Prasad et al., 2008; Webber, 2013). The current
experiment tests the hypothesis that this BUT∼SO
split is a consequence of inference from properties
of the segments themselves.

To test this hypothesis, we created 16 mini-
mal pairs of passages containing instead, one of
which emphasized the information structural par-
allelism between the clauses, as in (13a), and an-
other variant (13b) that de-emphasized that par-
allelism in favor of a causal link implied by a
downward-entailing construction such as too X
(Webber, 2013). For each passage, half the partici-
pants saw the parallelism variant in the conjunction-
insertion task, while half saw the causal variant.

(13) a. There was no flight scheduled to Loja yesterday
______ instead there were several to Cuenca.

b. There were too few flights scheduled to Loja yester-
day ______ instead we went to Cuenca.

4.4 After all Dataset
In (Rohde et al., 2017), we reported a
BECAUSE∼BUT response split for passages
containing after all. We speculated that this may
be because a passage such as (14) below presents
an argument in which the second segment serves
as a REASON (hence, BECAUSE) for the first
segment, but also serves to CONTRAST with it
(hence, BUT).
(14) Yes, I suppose there’s a certain element of danger in it

______ (after all) there’s a certain amount of danger in
living, whatever you do.

We hypothesize that the BECAUSE∼BUT split
cannot be a consequence of the adverbial after all,
which the Cambridge Dictionary indicates is “used
to add information that shows that what you have
just said is true”.1 If REASON and/or CONTRAST

1https://dictionary.cambridge.org/us/dictionary/
english/after-all
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Figure 4: Distribution of participants’ first choice of conjunction for passages with in other words. Each participant saw only
one variant. Each vertical bar represents a passage with the responses from each participant, color-coded by conjunction.

are being conveyed, it can’t be a consequence of
after all. As such, this response split must depend
on the reasoning that supports the inference of co-
herence between the two segments, separate from
the adverbial itself.

We test the hypothesis that the response split is
independent of the presence or absence of after all.
Starting with 16 passages that originally contained
after all, we created a variant of each passage with-
out the adverbial. The conjunction insertion task
was the same as with the other datasets.

5 Results

5.1 In other words: Inference and adjacency

Section 4.1 lays out the joint hypotheses that in-
ferred relations in passages with in other words
reflect two components of the lexical semantics of
the adverbial (leading to the OR∼SO split) and that
the presence of intervening material before in other
words reduces the availability of those relations,
favoring BUT instead.

Figure 4 shows the predicted pattern: The
no-intervening-content condition primarily yields
OR/SO responses (with variation across passages
on the OR-vs.-SO preference) with a relative in-
crease in BUT responses in the intervening-content
condition.2 Passage B corresponds to the pair of
examples (2)/(6), and passage C reflects (7)/(8).

For the analysis here and in Section 5.3, a rele-
vant first-choice conjunction was chosen and the
binary outcome of its insertion was modeled with a
mixed-effect logistic regression. Here, the insertion
of OR indeed varied with the presence/absence of
intervening material (β = −1.569, p < 0.005).

We posit that increases in BUT associated with
the intervening content indicate either an interrup-
tion of the meta-linguistic tangent or an intention
to signal a contrast with the negative affect of the

2For Passage P in Figure 4, participants may have linked
the in other words clause to the intervening material itself.

tangent itself (e.g., “I don’t know where. . . ”, “frus-
trating way of putting it”, “how this is measured is
unclear”). We speculate that the presence of BE-
CAUSE in passages with intervening content may
arise when that content implies that the situation
is somehow surprising, which in turn merits ex-
planation (e.g., “it’s an UNUSUAL role for her”,
“their ability to actually work sensitively is perhaps
QUESTIONABLE”, “it’s STRANGE to think of a
planet being born”). These hypotheses will them-
selves need to be tested.

5.2 Otherwise: Inference from semantic
features of segments

As noted in Section 4.2, passages containing oth-
erwise were used to test how semantic properties
of the segments themselves influenced conjunction
choice. The categorization of passages by the re-
searchers (16 ARGUMENTATION, 16 EXCEPTION,
16 ENUMERATION) predicts the conjunctions cho-
sen by participants. In aggregate, ≈99% of re-
sponses to ARGUMENTATION passages were BE-
CAUSE or OR or both. ≈92% of responses to EX-
CEPTION passages were BUT, AND, or both BUT
and AND. And ≈98% of responses to ENUMER-
ATION passages were BUT, AND, OR, or some
subset thereof. For analysis, a mixed-effect lo-
gistic regression modeled the binary outcome of
BUT insertion and showed significant variation
across the three categories (p < 0.001). This mea-
sure captures the difference between pairs of cate-
gories: ARGUMENTATION permits BECAUSE and
OR (hence BUT is rare) while ENUMERATION per-
mits BUT and OR (hence BUT is present) and EX-
CEPTION favors BUT (hence BUT is very frequent).
All pairwise comparisons yielded a main effect of
category on this dependent measure (p’s < 0.001).

Turning to individual passages, participant
choices are shown in Figures 5–7. For ARGUMEN-
TATION (Figure 5), the effect is uniformly strong,
with all passages showing BECAUSE or OR as
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Figure 6: Distribution of first and second choice conjunctions for EXCEPTION otherwise. The label “OR,AND” in the legend
implies both as second choices.
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Figure 8: Instead passages, pairing a parallel variant and a causal variant. Each column shows the distribution of participants’
first choice in the conjunction-insertion task. Each participant saw only one variant.

participants’ top choice, with OR or BECAUSE
chosen as equivalent (shown in the columns la-
belled “second”). For EXCEPTION (Figure 6), BUT
is consistently the participants’ top choice.

There are a few deviations from this near uni-
form endorsement of BUT for EXCEPTION (Fig-
ure 6, passages L–P). Any hypotheses, however,
would require further experimentation to test. For
example, in passage M (see (15)) and P (see (16)),
participants rarely identified any conjunction as
conveying the same sense as BUT. However, when
their top choice was BECAUSE, they also selected
OR as conveying the same sense. As noted above,
BECAUSE and OR predominate with otherwise
used in ARGUMENTATION. This raises the question
of why passages M and P lead some participants
to infer ARGUMENTATION and other participants,
either EXCEPTION or ENUMERATION.

(15) Democrats insist that the poor should be the priority,
and that tax relief should be directed at them _____
otherwise they lack a cogent vision of the needs of a
new economy.

(16) He said that the proposed bill would give states more
flexibility in deciding whether they wanted to use the
Federal money for outright grants to municipalities or
to set up loan programs _____ otherwise it left last fall’s
Congressional legislation unchanged.

Finally, though the pattern for ENUMERATION

(Figure 7) is harder to see, combinations of BUT,
OR and AND predominate as participants’ top
choices, with a few tokens of BECAUSE and SO,
but too few to analyse as anything but noise.

The above results reflect researcher-assigned use
labels. However, the confusion matrix in Table 1
shows that on the whole, participants agree with

that assignment. The column labelled Multiple
is for cases where participants offered two para-
phrases. For ARGUMENTATION, at least one para-
phrase always corresponded to EXCEPTION, while
for ENUMERATION, it did so for most of these to-
kens (9/14). We comment on this below.

While there was less agreement when partici-
pants offered multiple paraphrases for researcher-
assigned EXCEPTION, there may be too few to-
kens here to draw any kind of conclusion. In any
case, the results for ARGUMENTATION and ENU-
MERATION agree both across participants (in what
paraphrase they choose when they don’t choose
the researcher-assigned label) and within partici-
pants (in what pairs of paraphrases they gave for
the original passage).

The above results support our hypothesis that
variability in participants’ choice of conjunctions
follows from both the lexical semantics of other-
wise and the relation that participants infer between
the segments in the passage.

5.3 Instead: Inference from a single
manipulated property

On aggregate, participants responded very differ-
ently to the parallel and causal variants of instead
passages (cf. Section 4.3). Figure 8 shows that in
all cases, the parallel variant yielded more BUT re-
sponses, whereas the non-parallel (causal) variant
yielded significantly more SO responses (main ef-
fect of (non-)parallelism: β=−7.0008, p<0.001).3

Some of these results are very strong. For exam-
ple, Passage A (17) drew all BUT responses for the

3We analyzed only 15 passages for instead and after all,
due to a presentation error of the 16th for these adverbials.

Participant

Researcher ARGUMENTATION ENUMERATION EXCEPTION Multiple

ARGUMENTATION 401 (91.5%) 4 25 18
ENUMERATION 23 364 (81.4%) 46 14
EXCEPTION 21 29 393 (87.7%) 5

Table 1: Researcher labels assigned to otherwise passages vs. labels implied by participant paraphrases
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Figure 9: Distribution of first choice in conjunction selection task for passages with after all

parallel variant in (17a) and all SO responses for
the causal variant in (17b), as did Passage B. In a
few cases, however, the parallel variant drew vari-
able responses, even while its causal variant drew
strong SO responses. This is true of Passage O,
with parallel and causal variants in (18a–b).

(17) a. They could have been playing football in the village
green _____ instead they played in the street.

b. They didn’t like playing football in the village green
_____ instead they played in the street.

(18) a. Smugglers nowadays don’t use overland passages
_____ instead they use the seas to transport their
goods.

b. Smugglers’ overland passages nowadays are too
visible _____ instead they use the seas to transport
their goods.

One possible explanation is that participants var-
ied in the role they assigned to the positive claim in
the second segment of (18a) – either as a reason for
the negative claim in the first segment (BECAUSE),
as a contrast with that claim (BUT), or as its result
(SO). Although manipulating the segment to en-
hance either parallelism or causality can change
participant responses, it is clear that parallelism
alone doesn’t guarantee contrast.

5.4 After all: Adverb adds little to inference
Figure 9 shows participant choice of conjunction
when after all is present and when it is absent.
Their choice is largely the same for passages A–F
and K–N, with and without the adverbial. As for
passage O, since AND can contingently substitute
for BUT (Knott, 1996), the response pattern can
be considered the same as well. A by-passage cor-
relation between the rate of BUT and BECAUSE
responses across the two conditions confirms this
similarity (R2=.70, F(1,13)=30.98, p<0.001). The
outlier is passage G:
(19) There was a testy moment driving over the George Wash-

ington Bridge when the toll-taker charged him $24 for
his truck and trailer _____ after all it was New York.

With after all, the majority of participants chose
BUT as best expressing how the two segments are
connected, while without it, the majority chose BE-
CAUSE. Whatever explanation we gave here would
be pure speculation. We trust that the fact that the
other 14 passages demonstrate the predicted effect
provides sufficient evidence that splits in partici-
pant responses are not simply a result of the pres-
ence of a discourse adverbial.

6 Conclusion

While our previous work showed that multiple dis-
course relations can hold between two segments
– relations at the same semantic level, simultane-
ously available to a reader – we provided no evi-
dence as to what influences the particular relations
that are taken to be available. Our current experi-
ments have provided some such evidence. Specif-
ically, we have shown that participant responses
to systematically manipulated passages involving
discourse adverbials can be explained in terms of
both the lexical semantics of discourse adverbials
and properties of the passages that contain them.
As the conjunctions chosen by participants con-
vey senses that differ from those of the discourse
adverbials, we also provided evidence for the simul-
taneous availability of multiple coherence relations
that arise from both explicit signals and inference.
We hope the reader is now convinced that, in both
psycholinguistic research on discourse coherence
and computational work on discourse parsing, one
needs to identify and examine evidence for coher-
ence involving more than one discourse relation.
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Abstract

We present a generative probabilistic model
of documents as sequences of sentences,
and show that inference in it can lead to
extraction of long-range latent discourse
structure from a collection of documents.
The approach is based on embedding se-
quences of sentences from longer texts into
a 2- or 3-D spatial grids, in which one or
two coordinates model smooth topic transi-
tions, while the third captures the sequen-
tial nature of the modeled text. A signif-
icant advantage of our approach is that
the learned models are naturally visualiz-
able and interpretable, as semantic simi-
larity and sequential structure are modeled
along orthogonal directions in the grid. We
show that the method can capture discourse
structures in narrative text across multiple
genres, including biographies, stories, and
newswire reports. In particular, our method
can capture biographical templates from
Wikipedia, and is competitive with state-of-
the-art generative approaches on tasks such
as predicting the outcome of a story, and
sentence ordering.

1 Introduction

The ability to identify discourse patterns and nar-
rative themes from language is useful in a wide
range of applications and data analysis. From a
perspective of language understanding, learning
such latent structure from large corpora can pro-
vide background information that can aid machine
reading. For example, computers can use such
knowledge to predict what is likely to happen next

∗*Work done while first author was an intern at Microsoft
Research

in a narrative (Mostafazadeh et al., 2016), or rea-
son about which narratives are coherent and which
do not make sense (Barzilay and Lapata, 2008).
Similarly, knowledge of discourse is increasingly
important for language generation models. Modern
neural generation models, while good at capturing
surface properties of text – by fusing elements of
syntax and style – are still poor at modeling long
range dependencies that go across sentences (Li
and Jurafsky, 2017; Wang et al., 2017). Models of
long range flow in the text can thus be useful as
additional input to such methods.

Previously, the question of modeling discourse
structure in language has been explored through
several lenses, including from perspectives of lin-
guistics, cognitive science and information re-
trieval. Prominent among linguistic approaches
are Discourse Representation Theory (Asher,
1986) and Rhetorical Structure Theory (Mann and
Thompson, 1988); which formalize how discourse
context can constrain the semantics of a sentence,
and lay out ontologies of discourse relation types
between parts of a document. This line of research
has been largely constrained by the unavailability
of corpora of discourse relations, which are ex-
pensive to annotate. Another line of research has
focused on the task of automatic script induction,
building on earlier work in the 1970’s (Schank and
Abelson, 1977). More recently, methods based
on neural distributed representations have been ex-
plored (Li and Hovy, 2014; Kalchbrenner and Blun-
som, 2013; Le and Mikolov, 2014) to model the
flow of discourse. While these methods have had
varying degrees of success, they are largely opaque
and hard to interpret. In this work, we seek to pro-
vide a scalable model that can extract latent sequen-
tial structures from a collection of documents, and
can be naturally visualized to provide a summary
of the learned semantics and discourse trajectories.

In this work, we present an approach for extract-
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Figure 1: Modeling principle for Sequential Count-
ing Grids. We design the method to capture se-
mantic similarities between documents along XY
planes (e.g., biographies might be more similar to
literary fiction than news reports), as well extract
sequential trajectories along the Z axes similar to
those shown. The sequence of sentences in a doc-
ument is latently aligned to positions in the grid,
such that the model prefers alignments of contigu-
ous sentences to grid cells that are spatially close.

ing and visualizing sequential structure from a col-
lection of text documents. Our method is based
on embedding sentences in a document in a 3-
dimensional grid, such that contiguous sentences in
the document are likely to be embedded in the same
order in the grid. Further, sentences across docu-
ments that are semantically similar are also likely to
be embedded in the same neighborhood in the grid.
By leveraging the sequential order of sentences in
a large document collection, the method can induce
lexical semantics, as well as extract latent discourse
trajectories in the documents. Figure 1 shows a con-
ceptual schematic of our approach. The method
can learn semantic similarity (across XY planes),
as well as sequential discourse chains (along the
Z-axis). The parameters and latent structure of the
grid are learned by optimizing the likelihood of a
collection of documents under a generative model.
Our method outperforms state-of-the-art generative
methods on two tasks: predicting the outcome of a
story and coherence prediction; and is seen to yield
a flexible range of interpretable visualizations in
different domains of text. Our method is scalable,
and can incorporate a broad range of features. In
particular, the approach can work on simple tok-
enized text.

The remainder of this paper is organized as fol-
lows. In Section 2, we briefly summarize other
related work. In Section 3, we describe our method

in detail. We present experimental results in Sec-
tion 4, and conclude with a brief discussion.

2 Related work

Building on linguistic theories of discourse and
text coherence, several computational approaches
have attempted to model discourse structure from
multiple perspectives. Prominent among these are
Narrative Event Chains (Chambers and Jurafsky,
2008) which learn chains of events that follow a
pattern in a unsupervised framework, and the Entity
grid model (Barzilay and Lapata, 2008), which rep-
resents sentences in a context in terms of discourse
entities occurring in them and trains coherence clas-
sifiers over this representation. Other work extends
these using better models of events and discourse
entities (Lin et al., 2011; Pichotta and Mooney,
2015). Louis and Nenkova (2012) use manually
provided syntactic patterns for sentence representa-
tion, and model transitions in text as Markov prob-
abilities, which is related to our work. However,
while they use simple HMMs over discrete topics,
our method allows for a richer model that also cap-
tures smooth transition across them. Approaches
such as Kalchbrenner and Blunsom (2013); Li et al.
(2014); Li and Jurafsky (2017) model text through
recurrent neural architectures, but are hard to in-
terpret and visualize. Other approaches have ex-
plored applications related to modeling narrative
discourse in context of limited tasks such as story
cloze (Mostafazadeh et al., 2016) and identifying
similar narratives (Chaturvedi et al., 2018).

From a large scale document-mining perspective,
the question of extracting intra-document structure
remains largely underexplored. While early mod-
els such as LDA completely ignore ordering and
discourse elements of a documents, other methods
that use distributed embeddings of documents are
opaque (Le and Mikolov, 2014), even while they
can in principle model sequential structure within
a document. Methods such as HMM-LDA (Grif-
fiths et al., 2005) and Topics-over-time (Wang and
McCallum, 2006) address the related question of
topic evolution in a stream of documents, but these
approaches are too coarse to model intra-document
sequential structure. In terms of our technical ap-
proach, we build on previous research on grid-
based models (Jojic and Perina, 2011), which have
previously been used for topic-modeling for images
and text as unstructured bags-of-features.
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3 Sequential CG model

In this section, we present our method, which we
call Sequential Counting Grids, or Sequential
CG. We first present our notation, model formu-
lation and training approach. We discuss how the
method is designed to incorporate smoothness and
sequential structure, and how the method can be
efficiently scaled to train on large document collec-
tions. In Section 3.2, we present a mixture model
variant that combines Sequential CG with a uni-
gram language model.

3.1 Model description
We represent a document as a sequence s of sen-
tences, s = {s1, s2 . . . sD}, where D represents
the number of sentences in the document. In gen-
eral, we assume each sentence is represented as
a multiset of features si = {cz}i, where ciz repre-
sents the count of the feature indexed by z in the
ith sentence in the sequence.1

The Sequential CG consists of a 3-D grid G of
size Ex × Ey × Ez , where Ex, Ey and Ez denote
the extent of the grid along the X, Y and Z-axes
(see Figure 1). Let us denote an index of a position
in the grid by an integer-valued vector i = (ixiyiz).
The three components of the index together spec-
ify a XY location as well as a depth in the grid.
The Sequential CG model is parametrized by two
sets of parameters, πi,z and Pij. Here, πi,z repre-
sents a multinomial distribution over the vocabu-
lary of features z for each cell in the grid G, i.e.∑

z πi,z = 1 ∀ i ∈ G. To induce smoothness
across XY planes, we further define histogram dis-
tributions hi,z , which average the π distributions
in a 2-D neighborhood Wi (of size specified by
W = [Wx,Wy]) around the grid position i. This
notation follows Jojic and Perina (2011).

hi,z =
1

WxWy

∑

i′∈Wi

πi′,z (1)

The generative model assumes that individual sen-
tences in a document are generated by h distribu-
tions in the grid. Movements from one position i
to another j in the grid are modeled as transition
probabilities Pij. The generative process consists
of the following. We uniformly sample a starting
location i1 in the grid. We sample words in the first

1These may simply consist of tokens (words, entities and
MWEs) in the sentence, but can include additional informa-
tion, such as sentiment or event annotations, or other discrete
sentence-level representations

sentence s1 from πi1, and sample the next posi-
tion i2 from the distribution Pi1,:, and so on till we
generate sD. The alignments I = [i1, i2 . . . iD] of
individual sentences in a document with positions
in the grid are latent variables in our model.

Given the sequence of alignments I for a doc-
ument, the conditional likelihood of generating s
is given as a product of generating individual sen-
tences:

p(s| I) =
D∏

d

p({cdz}| id) =
D∏

d=1

∏

z

(hid,z)
cdz

(2)

Since the alignments of sequences to their posi-
tions in the grids I are latent, we marginalize over
these to maximize the likelihood of an observed col-
lection of documents S := {st}Tt=1. Here, T is the
total number of documents, and t is an index over
individual documents. Using Jensen’s inequality,
any distributions qtI over the hidden alignments It
provide lower-bounds on the data log-likelihood.

∑

t

log p(st|π) =
∑

t

log
(∑

I
p(st, I|π)

)

=
∑

t

log
(∑

I
qtI
p(st|I)p(I))

qtI

)

≥ −
∑

t

∑

I
qtI log q

t
I

+
∑

t

∑

I
qtI log

(
p(s|I, π)p(I))

(3)

Here, qtI denotes a variational distribution for each
of the data sequences st. The learning algorithm
consists of an iterative generalized EM procedure
(which can be interpreted as a block-coordinate
ascent in the latent variables qtI and the model pa-
rameters π and P). We maximize the lower bound
in Eqn 3 exactly by setting qtI to the posterior dis-
tribution of the data for the current values of the
parameters π (standard E step). Thus, we have

qtI ∝ p(s|I)p(I)

=
[ D∏

d=1

∏

z

(hid,z)
cdz(t)

][ D∏

d=2

Pid−1,id

] (4)

We do not need to explicitly compute the poste-
rior distribution qtI = p(I|s) at this point, but only
use it to compute the relevant expectation statistics
in the M-step. This can be done efficiently, as we
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see next. In the M-step, we consider qtI as fixed,
and maximize the objective in terms of the model
parameters π. Substituting this in Eqn 3, and focus-
ing on terms that depend on the model parameters
(π and P), we get

L(π,P) ≥
∑

t

∑

I
qtI log

(
p(s|I, π)p(I)) +Hq

=
∑

t

∑

I
qtI

(∑

d

∑

z

cdz(t) log hid,z

+
∑

d

logPid−1,id

)

=
∑

t

∑

I
EqtI

[∑

d

∑

z

Iitd=ic
d
z(t) log hid,z

]

+
∑

t

∑

I
EqtI

[∑

d

Iitd−1=i,itd=j logPij
]

(5)

Maximizing the likelihood w.r.t. P leads to the
following updates for the transition probabilities:2

Pij =
∑

t

∑
d P (i

t
d−1 = i, itd = j)∑

t

∑
d P (i

t
d−1 = i)

(6)

Here, the pairwise state-probabilities P (itd−1 =
i, itd = j) for adjacent sentences in a sequence
can be efficiently calculated using the Forward-
Backward algorithm. In Equation 5, rewriting the
term containing h in terms of π using Eqn 1 (and
ignoring constant terms WxWy), we get:

∑

t

∑

I
EqtI

[∑

d

∑

z

Iitd=ic
d
z(t) log

∑

i′∈Wi

πi′,z

]

=
∑

t

∑

I

∑

d

P (itd = i)
∑

z

cdz(t) log
∑

i′∈Wi

πi′,z

(7)

The presence of a summation inside of a loga-
rithm makes maximizing this objective for π harder.
For this, we simply use Jensen’s inequality intro-
ducing an additional variational distribution (for
the latent grid positions within window Wi ), and
maximize the lower bound. The final M-step up-
date for π becomes:

πi,z ∝
(∑

t

∑

d

cdz(t)
∑

k|i∈Wk

P (itd = k)

hk,z

)
πi,z

(8)
2Since the optimal value for the concave problem∑

j yj log xj s.t.
∑
j xj = 1 occurs when x∗j ∝ yj

As before, the state-probabilities P (itd = i) can be
computed using the Forward Backward algorithm.

Intuitively, the expected alignments in the
E-step are distributions over sequences of positions
in the grid that best explain the structure of
documents for the current value of Sequential
CG parameters. In the M-step, we assume these
distributions embedding documents into various
parts of the grid as given, and update the multi-
nomial parameters and transition probabilities.
Modeling the transitions as having a Markov
property allows us to use a dynamic programming
approach (Forward Backward algorithm) to exactly
compute the posterior probabilities required for
parameter updates. We note that at the onset of
the procedure, we need to initialize π randomly to
break symmetries. Unless otherwise stated, in all
experiments, we run EM to 200 iterations.

Correlating space with sequential structure:
The use of histogram distributions h to generate
data forces smoothness in the model along XY
planes due to adjacent cells in the grid sharing a
large number of parameters that contribute to their
histograms (due to overlapping windows). On the
other hand, in order to induce spatial proximity in
the grid to mimic the sequential flow of discourse
in documents, we constrain the transition matrix
P (which specifies transition preferences from one
position in the grid to another) to a sparse banded
matrix. In particular, a position i = (ix, iy, iz) in
the grid can only transition to itself, its 4 neighbors
in the same XY plane, and two cells in the suc-
ceeding two layers along the Z-axis ( (ix, iy, iz+1)
and (ix, iy, iz+2)). This is enforced by fixing other
elements in the transition matrix to 0, and only
updating allowable transitions.

As an important note about implementation de-
tails, we observe here that the Forward-Backward
procedure (which is repeatedly invoked during
model training) can be naturally formulated in
terms of matrix operations.3 This allows training
for the Sequential CG approach to be scalable for
large document collections.

In our formulation, we have presented a Sequen-
tial CG model for a 3-D grid. This can be adapted
to learn 2-D grids (trellis) by setting Ey = 1. In
our experiments, we found 3-D grids to be better

3To explain, if fd1×G are forward probabilities for step
d, and Od+1

G×G are observation probabilities for step d + 1,
fd+1 = fd ×P ×Od computes forward probabilities for the
next step in the sequence
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in terms of task performance and visualization (for
a comparable number of parameters).

3.2 Mixture model
The Sequential CG model described above can be
combined with other generative models (e.g., lan-
guage models) to get a mixture model. Here, we
show how a unigram language model can be com-
bined with Sequential CG. The rationale behind
this is that since the Sequential CG is primarily
designed to explain elements of documents that re-
flect sequential discourse structures, mixing with
a context-agnostic distribution can allow it to fo-
cus specifically on elements that reflect sequential
regularities. In experimental evaluation, we find
that such a mixture model shows distinctly differ-
ent behavior (see Section 4.1.1). Next, we briefly
describe updates for this approach.

Let µz denote the multinomial distribution over
features for the unigram model to be mixed with
the CG. Let βz be the mixing proportion for the
feature z, i.e. an occurrence of z is presumed to
come from the Sequential CG with probability βz ,
and from the unigram distribution with probability
1 − βz . Further, let αtz be binary variable that
denotes whether a particular instance of z comes
from the Sequential CG, or the unigram model.
Then, Equation 2 changes to:

p(s| I, α) =
∏

z,d

(
(hid,z)

cdzβz

)αtz(
µc

d
z
z (1−βz)

)1−αtz

Since we do not observe αtz (i.e., which distribu-
tion generated a particular feature in a particular
document), they are additional latent variables in
the model. Thus, we need to introduce a Bernoulli
variational distribution qαzt . Doing this modifies
relevant parts (containing qαzt) of Equation 5 to:

∑

t

∑

I
qtI

(∑

z

qαzt log
(
βz
∏

d

h
cdz(t)
id,z

)

+ (1− qαzt) log
((

1− βz)µ
∑
d c
d
z

z

)

+
∑

d

logPid−1,id

)
+Hqαzt

(9)

This leads to the following additional updates for
estimating qαzt (in the E-step)4 and βz (in the M-
step).

4Since the optimal value for the concave problem∑
j xj log

yj
xj

s.t.
∑
j xj = 1 occurs when x∗j ∝ yj

qαzt =
exp

(∑I
i P (itd=i)cdz(t) log hid,z

)
βz

exp

(∑I
i P (itd=i)cdz(t) log hid,z

)
βz+µ

∑
d c
d
z

z (1−βz)

In the M-step, βz can be estimated simply as the
fraction of times z is generated from the Sequential
CG component.

βz =
∑
t qαzt∑
t Iz

4 Evaluation

In this section, we analyze the performance of
our approach on text collections from several do-
mains (including short stories, newswire text and
biographies). We first qualitatively evaluate our
generative method on a dataset of biographical ex-
tracts from Wikipedia, which visually illustrates
biographical trajectories learned by the model, op-
erationalizing our model concept from Figure 1 in
real data (see Figure 2). Next, we evaluate our
method on two standard tasks requiring document
understanding: story cloze evaluation and sentence
ordering. Since our method is completely unsu-
pervised and is not tailored to specific tasks, com-
petitive performance on these tasks would indicate
that the method learns helpful regularities in text
structure, useful for general-purpose language un-
derstanding.

4.1 Visualizing Wikipedia biographies
We now qualitatively explore models learned by
our method on a dataset of biographies from
Wikipedia.5 For this, we use the data previously
collected and processed by Bamman and Smith
(2014). In all, the original dataset consists of ex-
tracts from biographies of about 240,000 individu-
als. For ease of training, we trained our method on
a subset of the 50,0000 shortest documents from
this set. The original paper uses the numerical or-
der of dates mentioned in the biographies to extract
biographical templates, but we do not use this infor-
mation. Figure 2 visualizes a Sequential CG model
learned on this dataset for on a grid of dimensions
E = 8 × 8 × 5, and a histogram window W of
dimensions 3× 3 . In general, we found that using
larger grids leads to smoother transitions and learn-
ing more intricate patterns including hierarchies
of trajectories, but here we show a model with a

5For all our experimental evaluation, we tokenize and lem-
matize text using the Stanford CoreNLP pipeline, but retain
entity-names and contiguous text-spans representing MWEs
as single units
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Figure 2: Visualization of a Sequential-CG model with grid size of 8×8×5, trained on 50,000 documents
from the Wikipedia biographies dataset. Cells in the grid show words with highest probabilities (empty
cells may indicate that no word has a substantially higher probability than others).

smaller grid for ease of visualization. Here, the
words in each cell in the grid denote the highest
probability assignments in that cell. Larger fonts
within a cell indicate higher probabilities.

We observe that the method successfully extracts
various biographical trajectories, as well as capture
a notion of similarity between them. To explain,
we observe that the lower-right part of the learned
grid largely models documents about sportpersons
(with discernable regions focusing on sports like
soccer, American football and ice-hockey). On
the other hand, the left-half of the grid is domi-
nated by biographies of people from the arts and
humanities (inlcuding artists, writers, musicians,
etc.). The top-center of the grid focuses on aca-
demicians and scientists, while the top-right repre-
sents biographies of political and military leaders.
We note smooth transitions between different re-
gions, which is precisely what we would expect
from the use of the smoothing filter that incorpo-
rates parameter sharing across cells in the method.
Further, as we go across the layers in the figure,
we note the biographical trajectories learned by the
model across the entire grid. For example, from
the grid, the life trajectory of a football player can
be visualized as being drafted, signing and playing
for a team, and eventually becoming a head-coach
or a hall-of-fame inductee.

4.1.1 Effects of mixing
The Sequential-CG method can be combined with
other generative models in a mixture model, fol-

lowing the approach previously described in Sec-
tion 3.2. A major reason to do this might be to
allow the base model to handle general content,
while allowing the Sequential-CG method to focus
on modeling context-sensitive words only. Here,
we empirically characterize the mixing behavior
for different categories of words.

Figure 3 shows the mixing proportion of differ-
ent words when the Sequential-CG model is com-
bined with a unigram model. In the figure, the
X-axis corresponds to words in the dataset with
decreasing frequency of occurrence, whereas the Y-
axis denotes the mixing proportions βz learned by
the mixture model. We note that the mixture model
learns to explain frequent as well as the long-tail
of rare words using the simple unigram model (as
seen from low mixing proportion of Sequential-CG
method). These regimes correspond to (1) stop-
words and very common nouns, and (2) rare words
respectively. In turn, this allows the Sequential-
CG component to preserve more probability mass
to explain the intermediate content words. Thus,
the Sequential-CG component only needs to model
words that reflect useful statistical sequential pat-
terns, without expending modeling effort on back-
ground content (common words) or noise (rare
words). For the long tail of infrequent words, we
observe that Sequential CG is much more likely to
generate verbs and adjectives, rather than nouns.
This is as we would expect, since verbs and adjec-
tives often denote events and sentiments, which can
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Figure 3: Learned mixing proportion (βz) in the
mixture model of Section 3.2 for words of different
frequencies. βz denotes the probability of a word
being generated from the Sequential CG model
(rather than from the Unigram model). The Se-
quential CG learns to model content words (with
intermediate ranks), and conserves modeling effort
by avoiding modeling both very common words
(that occur across contexts), as well as rare words.

be important elements in discourse trajectories.

4.2 Story-cloze
We next evaluate our method on the story-cloze task
presented by Mostafazadeh et al. (2016), which
tests common-sense understanding in context of
children stories. The task consists of identifying
the correct ending to a four-sentence long story
(called context in the original paper) and two possi-
ble ending options. The dataset for the task consists
of a collection of around 45K unlabeled 5-sentence
long stories as well as 3742 5-sentence stories with
two provided endings, with one labeled as the cor-
rect ending. For this task, we train our method on
grids of dimension 15× 15× 6 (E), and histogram
windows W of size 5× 5 on the unlabeled collec-
tion of stories. At test time, for each story, we are
provided two versions (a story-version v consists
of the provided context c, followed by a possible
ending e1, i.e. v = [c, e] ). For prediction, we need
to define a goodness score Sv for a story-version.

In the simplest case, this score can simply be the
log-likelihood log pSCG(v) of the story-version, ac-
cording to the Sequential-CG model. However, this
is problematic since this is biased towards choos-
ing shorter endings. To alleviate this, we define the
goodness score by discounting the log-likelihood
by the probability of the ending e itself, under a

Accuracy
Our Method variants
Sequential CG + Unigram Mixture 0.602
Sequential CG + Brown clustering 0.593
Sequential CG + Sentiment 0.581
Sequential CG 0.589
Sequential CG (unnormalized) 0.531
DSSM 0.585
GenSim 0.539
Skip-thoughts 0.552
Narrative-Chain(Stories) 0.494
N-grams 0.494

Table 1: Performance of our approach on story-
cloze task from Mostafazadeh et al. (2016) com-
pared with other unsupervised approaches (accu-
racy numbers as reported in Mostafazadeh et al.
(2016)).

simple unigram model.

Sv = log pSCG(c, e)− log puni(e)

The predicted ending is the story-version with
a higher score. Table 1 shows the performance
of variants of our approach for the task. Our base-
lines include previous approaches for the same task:
DSSM is a deep-learning based approach, which
maps the context and ending to the same space,
and is the best-performing method in Mostafazadeh
et al. (2016). GenSim and N-gram return the end-
ing that is more similar to the context based on
word2vec embeddings (Mikolov et al., 2013) and
n-grams, respectively. Narrative-Chains computes
the probability of each alternative based on event-
chains, following the approach of Chambers and
Jurafsky (2008).

We note that our method improves on the pre-
vious best unsupervised methods for the task.
This is quite surprising, since our Sequential-CG
model in this case is trained on bag-of-lemma
representations, and only needs sentence segmen-
tation, tokenization and lemmatization for pre-
processing. On the other hand, approaches such
as Narrative-Chains require parsing and event-
recognition, while approaches such as GenSim re-
quire learning word embeddings on large text cor-
pora for training. Further, we note that predicting
the ending without normalizing for the probability
of the words in the ending results in significantly
weaker performance, as expected. We train another
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Figure 4: Illustrative story-cloze examples where
the model correctly identifies the appropriate end-
ing (model score in parentheses).

variant of Sequential-CG with the sentence-level
sentiment annotation (from Stanford CoreNLP)
also added as a feature. This does not improve per-
formance, consistent with findings in Mostafazadeh
et al. (2016). We also experiment with a variant
where we perform Brown clustering (Brown et al.,
1992) of words in the unlabeled stories (K = 500
clusters), and include cluster-annotations as fea-
tures for training the method. Doing this explicitly
incorporates lexical similarity into the model, lead-
ing to a small improvement in performance. Finally,
a mixture model consisting of the Sequential-CG
and a unigram language model leads to a further
improvement in performance. The performance of
our unsupervised approach on this task indicates
that it can learn discourse structures that are helpful
for general language understanding.

The story-cloze task has recently also been ad-
dressed as a shared task at EACL (Mostafazadeh
et al., 2017) with a significantly expanded dataset,
and achieving much higher performance. How-
ever, we note that the proposed best-performing ap-
proaches (Chaturvedi et al., 2017; Schwartz et al.,
2017) for this task are all supervised, and hence not
included here for comparison.

Figure 4 shows examples where the model cor-
rectly identifies the ending. These show a mix
of behavior such as sentiment coherence (iden-
tifying dissonance between ‘wonderful surprise’
and ‘stolen’) and modeling causation (police being
called after being suspected).

4.3 Sentence Ordering

We next evaluate our method on the sentence order-
ing task, which requires distinguishing an original

Accidents Earthquakes
Sequential CG 0.813 0.946
VLV-GM (2017) 0.770 0.931
HMM (2012) 0.822 0.938
HMM+Entity (2012) 0.842 0.911
HMM+Content (2012) 0.742 0.953
Discriminative approaches
DM (2017) 0.930 0.992
Recursive (2014) 0.864 0.976
Entity-Grid (2008) 0.904 0.872
Graph (2013) 0.846 0.635

Table 2: Performance of our approach on sentence
ordering dataset from Barzilay and Lapata (2008).

document from a version consisting of permuta-
tions of sentences of the original (Barzilay and
Lapata, 2008; Louis and Nenkova, 2012). For this,
we use two datasets of documents and their per-
mutations from Barzilay and Lapata (2008), which
are used as standard evaluation for coherence pre-
diction tasks. These consist of (i) reports of ac-
cidents from the National Transportation Safety
Bureau (we refer to this data as accidents), and (ii)
newswire reports about earthquake events from the
Associated press (we refer to this as earthquakes).
Each dataset consists of 100 training documents,
and about 100 documents for testing. Also pro-
vided are about 20 generated permutations for each
document (resulting in 1986 test pairs for accidents,
and 1955 test pairs for earthquakes). Documents
in accidents consist of between 6 and 19 sentences
each, with a median of 11 sentences. Documents in
earthquakes consist of between 4 and 30 sentences
each, with a median of 10 sentences.

Since the datasets for these tasks only have a
relatively small number of training documents (100
each), we use Sequential-CG with smaller grids
(3×3×15), and don’t train a mixture model (which
needs to learn a parameter βz for each word in the
vocabulary). Further, we train for a much smaller
number of iterations to prevent overfitting (K = 3,
chosen through cross-validation on the training set).
During testing, since provided article pairs are sim-
ply permutations of each other and identical in
content, we do not need to normalize as needed in
Section 4.2. The score of a provided article is sim-
ply calculated as its log-likelihood. The article with
higher likelihood is predicted to be the original.

Table 2 shows performance of the method com-
pared with other approaches for coherence predic-
tion. We note that Sequential-CG performs com-
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Figure 5: Example of newswire report about an
earthquake event. Bold fonts represent words that
align particularly well with the learned model at
corresponding points in the narrative.

petitively with the state-of-the-art for generative
approaches for the task, while needing no other
annotation. In comparison, the HMM based ap-
proaches use significant annotation and syntactic
features. Sequential-CG also outperforms several
discriminative approaches for the task. In Figure 5
we illustrate the learned discourse trajectories in
terms of the most salient features in each sentence.
Words in bold are those identified by the model
to be most context-appropriate at the correspond-
ing point in the narrative. This is done by ranking
words by the ratio between their probabilities (π:,z)
in the grid weighted by alignment locations of the
document (qtI), and unigram probabilities.

5 Conclusion

We have presented a simple model for extracting
and visualizing latent discourse structure from un-
labeled documents. The approach is coarse, and
does not have explicit models for important ele-
ments such as entities and events in a discourse.
However, the method outperforms some previous
approaches on document understanding tasks, even
while ignoring syntactic structure within sentences.
The ability to visualize learning is a key component
of our method, which can find significant applica-
tions in data mining and data-discovery in large text
collections. More generally, similar approaches
can explore a wider range of scenarios involving
sequences of text. While here our focus was on
learning discourse structures at the document level,
similar methods can also be used at other scales,
such as for syntactic or morphological analysis.
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Abstract

Understanding temporal and causal rela-
tions between events is a fundamental nat-
ural language understanding task. Be-
cause a cause must occur earlier than its
effect, temporal and causal relations are
closely related and one relation often dic-
tates the value of the other. However,
limited attention has been paid to study-
ing these two relations jointly. This paper
presents a joint inference framework for
them using constrained conditional mod-
els (CCMs). Specifically, we formulate the
joint problem as an integer linear program-
ming (ILP) problem, enforcing constraints
that are inherent in the nature of time and
causality. We show that the joint inference
framework results in statistically signifi-
cant improvement in the extraction of both
temporal and causal relations from text.1

1 Introduction

Understanding events is an important component
of natural language understanding. An essential
step in this process is identifying relations between
events, which are needed in order to support appli-
cations such as story completion, summarization,
and timeline construction.

Among the many relation types that could exist
between events, this paper focuses on the joint ex-
traction of temporal and causal relations. It is well
known that temporal and causal relations interact
with each other and in many cases, the decision of
one relation is made primarily based on evidence
from the other. In Example 1, identifying the tem-
poral relation between e1:died and e2:exploded is

1The dataset and code used in this paper are available
at http://cogcomp.org/page/publication_
view/835

in fact a very hard case: There are no explicit tem-
poral markers (e.g., “before”, “after”, or “since”);
the events are in separate sentences so their syn-
tactic connection is weak; although the occurrence
time of e2:exploded is given (i.e., Friday) in text,
it is not given for e1:died. However, given the
causal relation, e2:exploded caused e1:died,it is
clear that e2:exploded happened before e1:died.
The temporal relation is dictated by the causal re-
lation.

Ex 1: Temporal relation dictated by causal relation.
More than 10 people (e1:died) on their way to the
nearest hospital, police said. A suicide car bomb
(e2:exploded) on Friday in the middle of a group of men
playing volleyball in northwest Pakistan.
Since e2:exploded is the reason of e1:died, the temporal
relation is thus e2 being before e1.
Ex 2: Causal relation dictated by temporal relation.
Mir-Hossein Moussavi (e3:raged) after government’s
efforts to (e4:stifle) protesters.
Since e3:raged is temporally after e4:stifle, e4 should
be the cause of e3.

On the other hand, causal relation extraction
can also benefit from knowing temporal relations.
In Example 2, it is unclear whether the govern-
ment stifled people because people raged, or peo-
ple raged because the government stifled people:
both situations are logically reasonable. However,
if we account for the temporal relation (that is,
e4:stifle happened before e3:raged), it is clear that
e4:stifle is the cause and e3:raged is the effect. In
this case, the causal relation is dictated by the tem-
poral relation.

The first contribution of this work is propos-
ing a joint framework for Temporal and Causal
Reasoning (TCR), inspired by these examples.
Assuming the availability of a temporal extraction
system and a causal extraction system, the pro-
posed joint framework combines these two using
a constrained conditional model (CCM) (Chang
et al., 2012) framework, with an integer linear pro-
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gramming (ILP) objective (Roth and Yih, 2004)
that enforces declarative constraints during the in-
ference phase. Specifically, these constraints in-
clude: (1) A cause must temporally precede its ef-
fect. (2) Symmetry constraints, i.e., when a pair
of events, (A,B), has a temporal relation r (e.g.,
before), then (B, A) must have the reverse relation
of r (e.g., after). (3) Transitivity constraints, i.e.,
the relation between (A,C) must be temporally
consistent with the relation derived from (A,B)
and (B, C). These constraints originate from the
one-dimensional nature of time and the physical
nature of causality and build connections between
temporal and causal relations, making CCM a nat-
ural choice for this problem. As far as we know,
very limited work has been done in joint extraction
of both relations. Formulating the joint problem
in the CCM framework is novel and thus the first
contribution of this work.

A key obstacle in jointly studying temporal and
causal relations lies in the absence of jointly anno-
tated data. The second contribution of this work
is the development of such a jointly annotated
dataset which we did by augmenting the Event-
Causality dataset (Do et al., 2011) with dense tem-
poral annotations. This dataset allows us to show
statistically significant improvements on both re-
lations via the proposed joint framework.

This paper also presents an empirical result
of improving the temporal extraction compo-
nent. Specifically, we incorporate explicit time
expressions present in the text and high-precision
knowledge-based rules into the ILP objective.
These sources of information have been success-
fully adopted by existing methods (Chambers
et al., 2014; Mirza and Tonelli, 2016), but were
never used within a global ILP-based inference
method. Results on TimeBank-Dense (Cassidy
et al., 2014), a benchmark dataset with temporal
relations only, show that these modifications can
also be helpful within ILP-based methods.

2 Related Work

Temporal and causal relations can both be repre-
sented by directed acyclic graphs, where the nodes
are events and the edges are labeled with either
before, after, etc. (in temporal graphs), or causes
and caused by (in causal graphs). Existing work
on temporal relation extraction was initiated by
(Mani et al., 2006; Chambers et al., 2007; Bethard
et al., 2007; Verhagen and Pustejovsky, 2008),

Ex 3: Global considerations are needed when mak-
ing local decisions.
The FAA on Friday (e5:announced) it will close
149 regional airport control towers because of forced
spending cuts. Before Friday’s (e6:announcement), it
(e7:said) it would consider keeping a tower open if the
airport convinces the agency it is in the ”national inter-
est” to do so.

which formulated the problem as that of learning
a classification model for determining the label of
each edge locally (i.e., local methods). A disad-
vantage of these early methods is that the result-
ing graph may break the symmetric and transitive
constraints. There are conceptually two ways to
enforce such graph constraints (i.e., global rea-
soning). CAEVO (Chambers et al., 2014) grows
the temporal graph in a multi-sieve manner, where
predictions are added sieve-by-sieve. A graph clo-
sure operation had to be performed after each sieve
to enforce constraints. This is solving the global
inference problem greedily. A second way is to
perform exact inference via ILP and the symme-
try and transitivity requirements can be enforced
as ILP constraints (Bramsen et al., 2006; Cham-
bers and Jurafsky, 2008; Denis and Muller, 2011;
Do et al., 2012; Ning et al., 2017).

We adopt the ILP approach in the temporal
component of this work for two reasons. First,
as we show later, it is straightforward to build a
joint framework with both temporal and causal re-
lations as an extension of it. Second, the rela-
tion between a pair of events is often determined
by the relations among other events. In Ex 3, if
a system is unaware of (e5, e6)=simultaneously
when trying to make a decision for (e5, e7), it
is likely to predict that e5 is before e72; but, in
fact, (e5, e7)=after given the existence of e6. Us-
ing global considerations is thus beneficial in this
context not only for generating globally consistent
temporal graphs, but also for making more reliable
pairwise decisions.

Prior work on causal relations in natural lan-
guage text was relatively sparse. Many causal ex-
traction work in other domains assumes the exis-
tence of ground truth timestamps (e.g., (Sun et al.,
2007; Güler et al., 2016)), but gold timestamps
rarely exist in natural language text. In NLP, peo-
ple have focused on causal relation identification
using lexical features or discourse relations. For

2Consider the case that “The FAA e5:announced. . . it
e7:said it would. . . ”. Even humans may predict that e5 is
before e7.
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example, based on a set of explicit causal dis-
course markers (e.g., “because”, “due to”, and “as
a result”), Hidey and McKeown (2016) built par-
allel Wikipedia articles and constructed an open
set of implicit markers called AltLex. A classi-
fier was then applied to identify causality. Duni-
etz et al. (2017) used the concept of construction
grammar to tag causally related clauses or phrases.
Do et al. (2011) considered global statistics over a
large corpora, the cause-effect association (CEA)
scores, and combined it with discourse relations
using ILP to identify causal relations. These work
only focused on the causality task and did not ad-
dress the temporal aspect.

However, as illustrated by Examples 1-2, tem-
poral and causal relations are closely related, as
assumed by many existing works (Bethard and
Martin, 2008; Rink et al., 2010). Here we ar-
gue that being able to capture both aspects in a
joint framework provides a more complete under-
standing of events in natural language documents.
Researchers have started paying attention to this
direction recently. For example, Mostafazadeh
et al. (2016b) proposed an annotation framework,
CaTeRs, which captured both temporal and causal
aspects of event relations in common sense stories.
CATENA (Mirza and Tonelli, 2016) extended the
multi-sieve framework of CAEVO to extracting
both temporal and causal relations and exploited
their interaction through post-editing temporal re-
lations based on causal predictions. In this paper,
we push this idea forward and tackle the problem
in a joint and more principled way, as shown next.

3 Temporal and Causal Reasoning

In this section, we explain the proposed joint infer-
ence framework, Temporal and Causal Reasoning
(TCR). To start with, we focus on introducing
the temporal component, and clarify how to de-
sign the transitivity constraints and how to enforce
other readily available prior knowledge to improve
its performance. With this temporal component
already explained, we further incorporate causal
relations and complete the TCR joint inference
framework. Finally, we transform the joint prob-
lem into an ILP so that it can be solved using off-
the-shelf packages.

3.1 Temporal Component

Let RT be the label set of temporal relations and
E and T be the set of all events and the set of all

time expressions (a.k.a. timex) in a document. For
notation convenience, we use EE to represent the
set of all event-event pairs; then ET and T T have
obvious definitions. Given a pair in EE or ET , as-
sume for now that we have corresponding classi-
fiers producing confidence scores for every tempo-
ral relation in RT . Let them be see(·) and set(·),
respectively. Then the inference formulation for
all the temporal relations within this document is:

Ŷ = arg max
Y ∈Y

∑

i∈EE
see{i 7→ Yi} +

∑

j∈ET
set{j 7→ Yj} (1)

where Yk ∈ RT is the temporal label of pair
k ∈ MM (Let M = E ∪ T be the set of all tem-
poral nodes), “k 7→ Yk” represents the case where
the label of pair k is predicted to be Yk, Y is a vec-
torization of all these Yk’s in one document, and Y
is the constrained space that Y lies in.

We do not include the scores for T T because
the temporal relationship between timexes can be
trivially determined using the normalized dates of
these timexes, as was done in (Do et al., 2012;
Chambers et al., 2014; Mirza and Tonelli, 2016).
We impose these relations via equality constraints
denoted as Y0. In addition, we add symmetry
and transitivity constraints dictated by the nature
of time (denoted by Y1), and other prior knowl-
edge derived from linguistic rules (denoted by Y2),
which will be explained subsequently. Finally, we
set Y = ∩2

i=0Yi in Eq. (1).
Transitivity Constraints. Let the dimension

of Y be n. Then a standard way to construct
the symmetry and transitivity constraints is shown
in (Bramsen et al., 2006; Chambers and Jurafsky,
2008; Denis and Muller, 2011; Do et al., 2012;
Ning et al., 2017)

Y1 =
{
Y ∈ Rn

T |∀m1,2,3 ∈ M, Y(m1,m2) = Ȳ(m2,m1),

Y(m1,m3) ∈ Trans(Y(m1,m2), Y(m2,m3))
}

where the bar sign is used to represent the reverse
relation hereafter, and Trans(r1, r2) is a set com-
prised of all the temporal relations from RT that
do not conflict with r1 and r2.

The construction of Trans(r1, r2) necessitates a
clearer definition of RT , the importance of which
is often overlooked by existing methods. Existing
approaches all followed the interval representation
of events (Allen, 1984), which yields 13 tempo-
ral relations (denoted by R̃T here) as shown in
Fig. 1. Most systems used a reduced set, for ex-
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Figure 1: Two possible interpretations to the label
set of RT = {b, a, i, ii, s, v} for the temporal relations
between (A, B). “x” means that the label is ignored.
Brackets represent time intervals along the time axis.
Scheme 2 is adopted consistently in this work.

ample, {before, after, includes, is included, simul-
taneously, vague}. For notation convenience, we
denote them RT = {b, a, i, ii, s, v}. Using a re-
duced set is more convenient in data annotation
and leads to better performance in practice.

However, there has been limited discussion in
the literature on how to interpret the reduced re-
lation types. For example, is the “before” in RT

exactly the same as the “before” in the original set
(R̃T ) (as shown on the left-hand-side of Fig. 1),
or is it a combination of multiple relations in R̃T

(the right-hand-side of Fig. 1)? We compare two
reduction schemes in Fig. 1, where scheme 1 ig-
nores low frequency labels directly and scheme
2 absorbs low frequency ones into their tempo-
rally closest labels. The two schemes barely have
differences when a system only looks at a single
pair of mentions at a time (this might explain the
lack of discussion over this issue in the literature),
but they lead to different Trans(r1, r2) sets and
this difference can be magnified when the prob-
lem is solved jointly and when the label distribu-
tion changes across domains. To completely cover
the 13 relations, we adopt scheme 2 in this work.

The resulting transitivity relations are shown
in Table 1. The top part of Table 1 is a com-
pact representation of three generic rules; for in-
stance, Line 1 means that the labels themselves
are transitive. Note that during human annotation,
if an annotator looks at a pair of events and de-
cides that multiple well-defined relations can ex-
ist, he/she labels it vague; also, when aggregating
the labels from multiple annotators, a label will be

No. r1 r2 Trans(r1, r2)
1 r r r
2 r s r

3 r1 r2 Trans(r̄2, r̄1)

4 b i b, i, v
5 b ii b, ii, v
6 b v b, i, ii, v
7 a i a, i, v
8 a ii a, ii, v
9 a v a, i, ii ,v
10 i v b, a, i, v
11 ii v b, a, ii, v

Table 1: Transitivity relations based on the label set
reduction scheme 2 in Fig. 1. If (m1,m2) 7→ r1 and
(m2,m3) 7→ r2, then the relation of (m1,m3) must be
chosen from Trans(r1, r2), ∀m1, m2, m3 ∈ M. The
top part of the table uses r to represent generic rules
compactly. Notations: before (b), after (a), includes
(i), is included (ii), simultaneously (s), vague (v), and r̄
represents the reverse relation of r.

changed to vague if the annotators disagree with
each other. In either case, vague is chosen to be
the label when a single well-defined relation can-
not be uniquely determined by the contextual in-
formation. This explains why a vague relation (v)
is always added in Table 1 if more than one label
in Trans(r1, r2) is possible. As for Lines 6, 9-11 in
Table 1 (where vague appears in Column r2), Col-
umn Trans(r1,r2) was designed in such a way that
r2 cannot be uniquely determined through r1 and
Trans(r1,r2). For instance, r1 is after on Line 9,
if we further put before into Trans(r1,r2), then r2

would be uniquely determined to be before, con-
flicting with r2 being vague, so before should not
be in Trans(r1,r2).

Enforcing Linguistic Rules. Besides the tran-
sitivity constraints represented by Y1 above, we
also propose to enforce prior knowledge to fur-
ther constrain the search space for Y . Specifically,
linguistic insight has resulted in rules for predict-
ing the temporal relations with special syntactic
or semantic patterns, as was done in CAEVO (a
state-of-the-art method). Since these rule predic-
tions often have high-precision, it is worthwhile
incorporating them in global reasoning methods as
well.

In the CCM framework, these rules can be rep-
resented as hard constraints in the search space for
Y . Specifically,

Y2 =
{

Yj = rule(j), ∀j ∈ J (rule)
}

, (2)

where J (rule) ⊆ MM is the set of pairs that can
be determined by linguistic rules, and rule(j) ∈
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RT is the corresponding decision for pair j ac-
cording to these rules. In this work, we used the
same set of rules designed by CAEVO for fair
comparison.

3.2 Full Model with Causal Relations

Now we have presented the joint inference frame-
work for temporal relations in Eq. (1). It is easier
to explain our complete TCR framework on top of
it. Let W be the vectorization of all causal rela-
tions and add the scores from the scoring function
for causality sc(·) to Eq. (1). Specifically, the full
inference formulation is now:

Ŷ , Ŵ = arg max
Y ∈Y,W∈WY

∑

i∈EE
see{i 7→ Yi} (3)

+
∑

j∈ET
set{j 7→ Yj} +

∑

k∈EE
sc{k 7→ Wk}

where WY is the search space for W . WY depends
on the temporal labels Y in the sense that

WY = {W ∈ Rm
C |∀i, j ∈ E , if W(i,j) = c, (4)

then W(j,i) = c̄, and Y(i,j) = b}

where m is the dimension of W (i.e., the total
number of causal pairs), RC = {c, c̄, null} is
the label set for causal relations (i.e., “causes”,
“caused by”, and “no relation”), and W(i,j) is the
causal label for pair (i, j). The constraint repre-
sented by WY means that if a pair of events i and j
are labeled to be “causes”, then the causal relation
between j and i must be “caused by”, and the tem-
poral relation between i and j must be “before”.

3.3 Scoring Functions

In the above, we have built the joint framework
on top of scoring functions see(·), set(·) and sc(·).
To get see(·) and set(·), we trained classifiers us-
ing the averaged perceptron algorithm (Freund and
Schapire, 1998) and the same set of features used
in (Do et al., 2012; Ning et al., 2017), and then
used the soft-max scores in those scoring func-
tions. For example, that means

see{i 7→ r} =
wT

r ϕ(i)∑
r′∈RT

wT
r′ϕ(i)

, i ∈ EE , r ∈ RT ,

where {wr} is the learned weight vector for rela-
tion r ∈ RT and ϕ(i) is the feature vector for pair
i ∈ EE .

Given a pair of ordered events, we need sc(·)
to estimate the scores of them being “causes” or

“caused by”. Since this scoring function has the
same nature as see(·), we can reuse the features
from see(·) and learn an averaged perceptron for
sc(·). In addition to these existing features, we
also use prior statistics retrieved using our tem-
poral system from a large corpus3, so as to know
probabilistically which event happens before an-
other event. For example, in Example 1, we have a
pair of events, e1:died and e2:exploded. The prior
knowledge we retrieved from that large corpus is
that die happens before explode with probability
15% and happens after explode with probability
85%. We think this prior distribution is correlated
with causal directionality, so it was also added as
features when training sc(·).

Note that the scoring functions here are imple-
mentation choice. The TCR joint framework is
fully extensible to other scoring functions.

3.4 Convert the Joint Inference into an ILP
Conveniently, the joint inference formulation in
Eq. (3) can be rewritten into an ILP and solved
using off-the-shelf optimization packages, e.g.,
(Gurobi Optimization, Inc., 2012). First, we de-
fine indicator variables yr

i = I{Yi = r}, where
I{·} is the indicator function, ∀i ∈ MM, ∀r ∈
RT . Then let pr

i = see{i 7→ r} if i ∈ EE ,
or pr

i = set{i 7→ r} if i ∈ ET ; similarly, let
wr

j = I{Wi = r} be the indicator variables for Wj

and qr
j be the score for Wj = r ∈ RC . Therefore,

without constraints Y and WY for now, Eq. (3) can
be written as:

ŷ, ŵ = arg max
∑

i∈EE∪ET

∑

r∈RT

pr
i y

r
i +

∑

j∈EE

∑

r∈RC

qr
j wr

j

s.t. yr
i , wr

j ∈ {0, 1},
∑

r∈RT

yr
i =

∑

r∈RC

wr
j = 1

The prior knowledge represented as Y and WY

can be conveniently converted into constraints for
this optimization problem. Specifically, Y1 has
two components, symmetry and transitivity:

Y1 : ∀i, j, k ∈ M, yr
i,j = yr̄

j,i, (symmetry)

yr1
i,j + yr2

j,k −
∑

r3∈Trans(r1,r2)

yr3
i,k ≤ 1 (transitivity)

where r̄ is the reverse relation of r (i.e., b̄ = a,
ī = ii, s̄ = s, and v̄ = v), and Trans(r1, r2) is de-
fined in Table 1. As for the transitivity constraints,

3https://catalog.ldc.upenn.edu/
LDC2008T19, which is disjoint to the test set used
here. Please refer to (Ning et al., 2018a) for more analysis
on using this corpus to acquire prior knowledge that aids
temporal relation classification.
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if both yr1
i,j and yr2

j,k are 1, then the constraint re-
quires at least one of yr3

i,k, r3 ∈ Trans(r1, r2) to be
1, which means the relation between i and k has
to be chosen from Trans(r1, r2), which is exactly
what Y1 is intended to do.

The rules in Y2 is written as

Y2 : yr
j = I{rule(j)=r}, ∀j ∈ J (rule) (linguistic rules)

where rule(j) and J (rule) have been defined in
Eq. (2). Converting the T T constraints, i.e., Y0,
into constraints is as straightforward as Y2, so we
omit it due to limited space.

Last, converting the constraints WY defined in
Eq. (4) can be done as following:

WY : wc
i,j = wc̄

j,i ≤ yb
i,j , ∀i, j ∈ E .

The equality part, wc
i,j = wc̄

j,i represents the sym-
metry constraint of causal relations; the inequality
part, wc

i,j ≤ yb
i,j represents that if event i causes

event j, then i must be before j.

4 Experiments

In this section, we first show on TimeBank-Dense
(TB-Dense) (Cassidy et al., 2014), that the pro-
posed framework improves temporal relation iden-
tification. We then explain how our new dataset
with both temporal and causal relations was col-
lected, based on which the proposed method im-
proves for both relations.

4.1 Temporal Performance on TB-Dense

Multiple datasets with temporal annotations are
available thanks to the TempEval (TE) workshops
(Verhagen et al., 2007, 2010; UzZaman et al.,
2013). The dataset we used here to demonstrate
our improved temporal component was TB-Dense,
which was annotated on top of 36 documents
out of the classic TimeBank dataset (Pustejovsky
et al., 2003). The main purpose of TB-Dense was
to alleviate the known issue of sparse annotations
in the evaluation dataset provided with TE3 (Uz-
Zaman et al., 2013), as pointed out in many previ-
ous work (Chambers, 2013; Cassidy et al., 2014;
Chambers et al., 2014; Ning et al., 2017). Anno-
tators of TB-Dense were forced to look at each
pair of events or timexes within the same sen-
tence or contiguous sentences, so that much fewer
links were missed. Since causal link annotation
is not available on TB-Dense, we only show our
improvement in terms of temporal performance on

# System P R F1

Ablation Study
1 Baseline 39.1 56.8 46.3
2 +Transitivity† 42.9 54.9 48.2
3 +ET 44.3 54.8 49.0
4 +Rules 45.4 58.7 51.2
5 +Causal 45.8 60.5 52.1

Existing Systems‡

6 ClearTK 53.0 26.4 35.2
7 CAEVO 56.0 41.6 47.8
8 Ning et al. (2017) 47.1 53.3 50.0

†This is technically the same with Do et al. (2012), or Ning
et al. (2017) without its structured learning component.
‡We added gold T T to both gold and system prediction.
Without this, Systems 6-8 had F1=28.7, 45.7, and 48.5,
respectively, same with the reported values in Ning et al.
(2017).

Table 2: Ablation study of the proposed system in
terms of the standard temporal awareness metric.
The baseline system is to make inference locally for
each event pair without looking at the decisions from
others. The “+” signs on lines 2-5 refer to adding a new
source of information on top of its preceding system,
with which the inference has to be global and done via
ILP. All systems are significantly different to its pre-
ceding one with p<0.05 (McNemar’s test).

TB-Dense. The standard train/dev/test split of TB-
Dense was used and parameters were tuned to op-
timize the F1 performance on dev. Gold events
and time expressions were also used as in existing
systems.

The contributions of each proposed information
sources are analyzed in the ablation study shown
in Table 2, where we can see the F1 score was
improved step-by-step as new sources of informa-
tion were added. Recall that Y1 represents tran-
sitivity constraints, ET represents taking event-
timex pairs into consideration, and Y2 represents
rules from CAEVO (Chambers et al., 2014). Sys-
tem 1 is the baseline we are comparing to, which
is a local method predicting temporal relations
one at a time. System 2 only applied Y1 via
ILP on top of all EE pairs by removing the 2nd
term in Eq. (1); for fair comparison with System
1, we added the same ET predictions from Sys-
tem 1. System 3 incorporated ET into the ILP
and mainly contributed to an increase in precision
(from 42.9 to 44.3); we think that there could be
more gain if more time expressions existed in the
testset. With the help of additional high-precision
rules (Y2), the temporal performance can further
be improved, as shown by System 4. Finally, us-
ing the causal extraction obtained via (Do et al.,
2011) in the joint framework, the proposed method
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achieved the best precision, recall, and F1 scores
in our ablation study (Systems 1-5). According
to the McNemar’s test (Everitt, 1992; Dietterich,
1998), all Systems 2-5 were significantly different
to its preceding system with p<0.05.

The second part of Table 2 compares sev-
eral state-of-the-art systems on the same test set.
ClearTK (Bethard, 2013) was the top perform-
ing system in TE3 in temporal relation extraction.
Since it was designed for TE3 (not TB-Dense), it
expectedly achieved a moderate recall on the test
set of TB-Dense. CAEVO (Chambers et al., 2014)
and Ning et al. (2017) were more recent methods
and achieved better scores on TB-Dense. Com-
pared with these state-of-the-art methods, the pro-
posed joint system (System 5) achieved the best
F1 score with a major improvement in recall. We
think the low precision compared to System 8 is
due to the lack of structured learning, and the
low precision compared to System 7 is propagated
from the baseline (System 1), which was tuned to
maximize its F1 score. However, the effectiveness
of the proposed information sources is already jus-
tified in Systems 1-5.

4.2 Joint Performance on Our New Dataset

4.2.1 Data Preparation

TB-Dense only has temporal relation annotations,
so in the evaluations above, we only evaluated
our temporal performance. One existing dataset
with both temporal and causal annotations avail-
able is the Causal-TimeBank dataset (Causal-TB)
(Mirza and Tonelli, 2014). However, Causal-TB is
sparse in temporal annotations and is even sparser
in causal annotations: In Table 3, we can see that
with four times more documents, Causal-TB still
has fewer temporal relations (denoted as T-Links
therein), compared to TB-Dense; as for causal re-
lations (C-Links), it has less than two causal re-
lations in each document on average. Note that
the T-Link sparsity of Causal-TB originates from
TimeBank, which is known to have missing links
(Cassidy et al., 2014; Ning et al., 2017). The C-
Link sparsity was a design choice of Causal-TB in
which C-Links were annotated based on only ex-
plicit causal markers (e.g., “A happened because
of B”).

Another dataset with parallel annotations is
CaTeRs (Mostafazadeh et al., 2016b), which
was primarily designed for the Story Cloze Test
(Mostafazadeh et al., 2016a) based on common

Doc Event T-Link C-Link
TB-Dense 36 1.6k 5.7k -

EventCausality 25 0.8k - 580
Causal-TB 183 6.8k 5.1k 318

New Dataset 25 1.3k 3.4k 172

Table 3: Statistics of our new dataset with both tem-
poral and causal relations annotated, compared with
existing datasets. T-Link: Temporal relation. C-Link:
Causal relation. The new dataset is much denser than
Causal-TB in both T-Links and C-Links.

sense stories. It is different to the newswire do-
main that we are working on. Therefore, we de-
cided to augment the EventCausality dataset pro-
vided in Do et al. (2011) with a modified version
of the dense temporal annotation scheme proposed
in Cassidy et al. (2014) and use this new dataset to
showcase the proposed joint approach.

The EventCausality dataset provides relatively
dense causal annotations on 25 newswire articles
collected from CNN in 2010. As shown in Table 3,
it has more than 20 C-Links annotated per doc-
ument on average (10 times denser than Causal-
TB). However, one issue is that its notion for
events is slightly different to that in the temporal
relation extraction regime. To construct parallel
annotations of both temporal and causal relations,
we preprocessed all the articles in EventCausal-
ity using ClearTK to extract events and then man-
ually removed some obvious errors in them. To
annotate temporal relations among these events,
we adopted the annotation scheme from TB-Dense
given its success in mitigating the issue of miss-
ing annotations with the following modifications.
First, we used a crowdsourcing platform, Crowd-
Flower, to collect temporal relation annotations.
For each decision of temporal relation, we asked
5 workers to annotate and chose the majority la-
bel as our final annotation. Second, we discov-
ered that comparisons involving ending points of
events tend to be ambiguous and suffer from low
inter-annotator agreement (IAA), so we asked the
annotators to label relations based on the starting
points of each event. This simplification does not
change the nature of temporal relation extraction
but leads to better annotation quality. For more
details about this data collection scheme, please
refer to (Ning et al., 2018b) for more details.

4.2.2 Results

Result on our new dataset jointly annotated with
both temporal and causal relations is shown in Ta-
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Temporal Causal
P R F1 Accuracy

1. Temporal Only 67.2 72.3 69.7 -
2. Causal Only - - - 70.5
3. Joint System 68.6 73.8 71.1 77.3

Enforcing Gold Relations in Joint System
4. Gold Temporal 100 100 100 91.9
5. Gold Causal 69.3 74.4 71.8 100

Table 4: Comparison between the proposed method
and existing ones, in terms of both temporal and
causal performances. See Sec. 4.2.1 for description
of our new dataset. Per the McNemar’s test, the joint
system is significantly better than both baselines with
p<0.05. Lines 4-5 provide the best possible perfor-
mance the joint system could achieve if gold tempo-
ral/causal relations were given.

ble 4. We split the new dataset into 20 documents
for training and 5 documents for testing. In the
training phase, the training parameters were tuned
via 5-fold cross validation on the training set.

Table 4 demonstrates the improvement of the
joint framework over individual components. The
“temporal only” baseline is the improved tempo-
ral extraction system for which the joint inference
with causal links has NOT been applied. The
“causal only” baseline is to use sc(·) alone for
the prediction of each pair. That is, for a pair i,
if sc{i 7→ causes} > sc{i 7→ caused by}, we
then assign “causes” to pair i; otherwise, we as-
sign “caused by” to pair i. Note that the “causal
accuracy” column in Table 4 was evaluated only
on gold causal pairs.

In the proposed joint system, the temporal and
causal scores were added up for all event pairs.
The temporal performance got strictly better in
precision, recall, and F1, and the causal perfor-
mance also got improved by a large margin from
70.5% to 77.3%, indicating that temporal signals
and causal signals are helpful to each other. Ac-
cording to the McNemar’s test, both improve-
ments are significant with p<0.05.

The second part of Table 4 shows that if
gold relations were used, how well each compo-
nent would possibly perform. Technically, these
gold temporal/causal relations were enforced via
adding extra constraints to ILP in Eq. (3) (imagine
these gold relations as a special rule, and convert
them into constraints like what we did in Eq. (2)).
When using gold temporal relations, causal accu-
racy went up to 91.9%. That is, 91.9% of the
C-Links satisfied the assumption that the cause is
temporally before the effect. First, this number is

much higher than the 77.3% on line 3, so there
is still room for improvement. Second, it means
in this dataset, there were 8.1% of the C-Links in
which the cause is temporally after its effect. We
will discuss this seemingly counter-intuitive phe-
nomenon in the Discussion section. When gold
causal relations were used (line 5), the tempo-
ral performance was slightly better than line 3 in
terms of both precision and recall. The small dif-
ference means that the temporal performance on
line 3 was already very close to its best. Compared
with the first line, we can see that gold causal
relations led to approximately 2% improvement
in precision and recall in temporal performance,
which is a reasonable margin given the fact that
C-Links are often much sparser than T-Links in
practice.

Note that the temporal performance in Table 4
is consistently better than those in Table 2 because
of the higher IAA in the new dataset. However,
the improvement brought by joint reasoning with
causal relations is the same, which further con-
firms the capability of the proposed approach.

5 Discussion

We have consistently observed that on the TB-
Dense dataset, if automatically tuned to optimize
its F1 score, a system is very likely to have low
precisions and high recall (e.g., Table 2). We no-
tice that our system often predicts non-vague rela-
tions when the TB-Dense gold is vague, resulting
in lower precision. However, on our new dataset,
the same algorithm can achieve a more balanced
precision and recall. This is an interesting phe-
nomenon, possibly due to the annotation scheme
difference which needs further investigation.

The temporal improvements in both Table 2 and
Table 4 are relatively small (although statistically
significant). This is actually not surprising be-
cause C-Links are much fewer than T-Links in
newswires which focus more on the temporal de-
velopment of stories. As a result, many T-Links
are not accompanied with C-Links and the im-
provements are diluted. But for those event pairs
having both T-Links and C-Links, the proposed
joint framework is an important scheme to syn-
thesize both signals and improve both. The com-
parison between Line 5 and Line 3 in Table 4 is
a showcase of the effectiveness. We think that a
deeper reason for the improvement achieved via
a joint framework is that causality often encodes
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Ex 4: Cause happened after effect.
The shares fell to a record low of ¥60 and (e8:finished)
at ¥67 before the market (e9:closed) for the New Year
holidays.
As she (e10:prepares) to (e11:host) her first show,
Crowley writes on what viewers should expect.

humans prior knowledge as global information
(e.g., “death” is caused by “explosion” rather than
causes “explosion”, regardless of the local con-
text), while temporality often focuses more on the
local context. From this standpoint, temporal in-
formation and causal information are complemen-
tary and helpful to each other.

When doing error analysis for the fourth line
of Table 4, we noticed some examples that break
the commonly accepted temporal precedence as-
sumption. It turns out that they are not annotation
mistakes: In Example 4, e8:finished is obviously
before e9:closed, but e9 is a cause of e8 since if
the market did not close, the shares would not fin-
ish. In the other sentence of Example 4, she pre-
pares before hosting her show, but e11:host is the
cause of e10:prepares since if not for hosting, no
preparation would be needed. In both cases, the
cause is temporally after the effect because people
are inclined to make projections for the future and
change their behaviors before the future comes.
The proposed system is currently unable to handle
these examples and we believe that a better defini-
tion of what can be considered as events is needed,
as part of further investigating how causality is ex-
pressed in natural language.

Finally, the constraints connecting causal rela-
tions to temporal relations are designed in this pa-
per as “if A is the cause of B, then A must be be-
fore B”. People have suggested other possibilities
that involve the includes and simultaneously rela-
tions. While these other relations are simply dif-
ferent interpretations of temporal precedence (and
can be easily incorporated in our framework), we
find that they rarely happen in our dataset.

6 Conclusion

We presented a novel joint framework, Temporal
and Causal Reasoning (TCR), using CCMs and
ILP to the extraction problem of temporal and
causal relations between events. To show the ben-
efit of TCR, we have developed a new dataset that
jointly annotates temporal and causal annotations,
and then exhibited that TCR can improve both
temporal and causal components. We hope that

this notable improvement can foster more interest
in jointly studying multiple aspects of events (e.g.,
event sequencing, coreference, parent-child rela-
tions) towards the goal of understanding events in
natural language.
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Abstract

Understanding a narrative requires reading
between the lines and reasoning about the
unspoken but obvious implications about
events and people’s mental states — a ca-
pability that is trivial for humans but re-
markably hard for machines. To facilitate
research addressing this challenge, we in-
troduce a new annotation framework to ex-
plain naive psychology of story characters
as fully-specified chains of mental states
with respect to motivations and emotional
reactions. Our work presents a new large-
scale dataset with rich low-level annota-
tions and establishes baseline performance
on several new tasks, suggesting avenues
for future research.

1 Introduction

Understanding a story requires reasoning about
the causal links between the events in the story
and the mental states of the characters, even when
those relationships are not explicitly stated. As
shown by the commonsense story cloze shared
task (Mostafazadeh et al., 2017), this reasoning is
remarkably hard for both statistical and neural ma-
chine readers – despite being trivial for humans.
This stark performance gap between humans and
machines is not surprising as most powerful lan-
guage models have been designed to effectively
learn local fluency patterns. Consequently, they
generally lack the ability to abstract away from
surface patterns in text to model more complex im-
plied dynamics, such as intuiting characters’ men-
tal states or predicting their plausible next actions.

In this paper, we construct a new annotation
formalism to densely label commonsense short
stories (Mostafazadeh et al., 2016) in terms of
the mental states of the characters. The result-

The band instructor told the 
band to start playing.

He often stopped the music 
when players were off-tone.

They grew tired and started 
playing worse after a while.

The instructor was furious 
and threw his chair.

He cancelled practice and 
expected us to perform 

tomorrow.

Instructor Players
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need rest
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Figure 1: A story example with partial annota-
tions for motivations (dashed) and emotional reac-
tions (solid). Open text explanations are in black
(e.g., “frustrated”) and formal theory labels are in
blue with brackets (e.g., “[esteem]”).

ing dataset offers three unique properties. First,
as highlighted in Figure 1, the dataset provides
a fully-specified chain of motivations and emo-
tional reactions for each story character as pre-
and post-conditions of events. Second, the annota-
tions include state changes for entities even when
they are not mentioned directly in a sentence (e.g.,
in the fourth sentence in Figure 1, players would
feel afraid as a result of the instructor throwing a
chair), thereby capturing implied effects unstated
in the story. Finally, the annotations encompass
both formal labels from multiple theories of psy-
chology (Maslow, 1943; Reiss, 2004; Plutchik,
1980) as well as open text descriptions of moti-
vations and emotions, providing a comprehensive
mapping between open text explanations and la-
bel categories (e.g., “to spend time with her son”
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fear
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Plutchik basic emotions

Figure 2: Theories of Motivation (Maslow and Reiss) and Emotional Reaction (Plutchik).

! Maslow’s category love). Our corpus1 spans
across 15k stories, amounting to 300k low-level
annotations for around 150k character-line pairs.

Using our new corpus, we present baseline per-
formance on two new tasks focusing on mental
state tracking of story characters: categorizing
motivations and emotional reactions using theory
labels, as well as describing motivations and emo-
tional reactions using open text. Empirical results
demonstrate that existing neural network models
including those with explicit or latent entity repre-
sentations achieve promising results.

2 Mental State Representations

Understanding people’s actions, motivations, and
emotions has been a recurring research focus
across several disciplines including philosophy
and psychology (Schachter and Singer, 1962;
Burke, 1969; Lazarus, 1991; Goldman, 2015). We
draw from these prior works to derive a set of
categorical labels for annotating the step-by-step
causal dynamics between the mental states of story
characters and the events they experience.

2.1 Motivation Theories

We use two popular theories of motivation: the
“hierarchy of needs” of Maslow (1943) and the
“basic motives” of Reiss (2004) to compile 5
coarse-grained and 19 fine-grained motivation cat-
egories, shown in Figure 2. Maslow’s “hierarchy
of needs” are comprised of five categories, rang-
ing from physiological needs to spiritual growth,
which we use as coarse-level categories. Reiss
(2004) proposes 19 more fine-grained categories
that provide a more informative range of motiva-
tions. For example, even though they both relate

1We make our dataset publicly available at https://
uwnlp.github.io/storycommonsense/

to the physiological needs Maslow category, the
food and rest motives from Reiss (2004) are very
different. While the Reiss theory allows for finer-
grained annotations of motivation, the larger set of
abstract concepts can be overwhelming for anno-
tators. Motivated by Straker (2013), we design a
hybrid approach, where Reiss labels are annotated
as sub-categories of Maslow categories.

2.2 Emotion Theory

Among several theories of emotion, we work with
the “wheel of emotions” of Plutchik (1980), as it
has been a common choice in prior literature on
emotion categorization (Mohammad and Turney,
2013; Zhou et al., 2016). We use the eight basic
emotional dimensions as illustrated in Figure 2.

2.3 Mental State Explanations

In addition to the motivation and emotion cate-
gories derived from psychology theories, we also
obtain open text descriptions of character mental
states. These open text descriptions allow learning
computational models that can explain the mental
states of characters in natural language, which is
likely to be more accessible and informative to end
users than having theory categories alone. Collect-
ing both theory categories and open text also al-
lows us to learn the automatic mappings between
the two, which generalizes the previous work of
Mohammad and Turney (2013) on emotion cate-
gory mappings.

3 Annotation Framework

In this study, we choose to annotate the simple
commonsense stories introduced by Mostafazadeh
et al. (2016). Despite their simplicity, these stories
pose a significant challenge to natural language
understanding models (Mostafazadeh et al., 2017).
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(1) Entity 
Resolution

(2a) Action  
Resolution

(2b) Affect 
Resolution

(3a) Motivation 

(3b) Emotional 
Reaction

Character mentions: 
I, me (lines 1,4,5), 
 Cousin (lines 1-5)

Character affect lines: 
I, me: 2-5 

Cousin: 2, 5

Character action lines: 
I, me: 1, 4, 5  

Cousin: 3, 4, 5

Motivation: 
… Line 1, I, me:  

love/family

Emotional Reaction: 
… Line 3, I, me: 

sad/disgusted/angry 

Story:  
(1) I let my cousin stay with me. 
(2) He had nowhere to go. 
(3) However, he was a slob. 
(4) I was about to kick him out. 
(5) When he cooked me a huge 

breakfast, I decided he could 
stay.

Figure 3: The annotation pipeline for the fine-grained annotations with an example story.

In addition, they depict multiple interactions be-
tween story characters, presenting rich opportu-
nities to reason about character motivations and
reactions. Furthermore, there are more than 98k
such stories currently available covering a wide
range of everyday scenarios.

Unique Challenges While there have been a va-
riety of annotated resources developed on the re-
lated topics of sentiment analysis (Mohammad
and Turney, 2013; Deng and Wiebe, 2015), en-
tity tracking (Hoffart et al., 2011; Weston et al.,
2015), and story understanding (Goyal et al.,
2010; Ouyang and McKeown, 2015; Lukin et al.,
2016), our study is the first to annotate the full
chains of mental state effects for story charac-
ters. This poses several unique challenges as an-
notations require (1) interpreting discourse (2) un-
derstanding implicit causal effects, and (3) un-
derstanding formal psychology theory categories.
In prior literature, annotations of this complexity
have typically been performed by experts (Deng
and Wiebe, 2015; Ouyang and McKeown, 2015).
While reliable, these annotations are prohibitively
expensive to scale up. Therefore, we introduce a
new annotation framework that pipelines a set of
smaller isolated tasks as illustrated in Figure 3. All
annotations were collected using crowdsourced
workers from Amazon Mechanical Turk.

3.1 Annotation Pipeline
We describe the components and workflow of the
full annotation pipeline shown in Figure 3 below.
The example story in the figure is used to illustrate
the output of various steps in the pipeline (full an-
notations for this example are in the appendix).

(1) Entity Resolution The first task in the
pipeline aims to discover (1) the set of charac-
ters Ei in each story i and (2) the set of sentences
Sij in which a specific character j 2 Ei is ex-

plicitly mentioned. For example, in the story in
Figure 3, the characters identified by annotators
are “I/me” and “My cousin”, whom appear in sen-
tences {1, 4, 5} and {1, 2, 3, 4, 5}, respectively.

We use Sij to control the workflow of later parts
of the pipeline by pruning future tasks for sen-
tences that are not tied to characters. Because Sij

is used to prune follow-up tasks, we take a high
recall strategy to include all sentences that at least
one annotator selected.

(2a) Action Resolution The next task identifies
whether a character j appearing in a sentence k
is taking any action to which a motivation can be
attributed. We perform action resolution only for
sentences k 2 Sij . In the running example, we
would want to know that the cousin in line 2 is
not doing anything intentional, allowing us to omit
this line in the next pipeline stage (3a) where a
character’s motives are annotated. Description of
state (e.g., “Alex is feeling blue”) or passive event
participation (e.g., “Alex trips”) are not considered
volitional acts for which the character may have an
underlying motive. For each line and story char-
acter pair, we obtain 4 annotations. Because pairs
can still be filtered out in the next stage of anno-
tation, we select a generous threshold where only
2 annotators must vote that an intentional action
took place for the sentence to be used as an input
to the motivation annotation task (3a).

(2b) Affect Resolution This task aims to iden-
tify all of the lines where a story character j has
an emotional reaction. Importantly, it is often pos-
sible to infer the emotional reaction of a character
j even when the character does not explicitly ap-
pear in a sentence k. For instance, in Figure 3, we
want to annotate the narrator’s reaction to line 2
even though they are not mentioned because their
emotional response is inferrable. We obtain 4 an-
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% Annotations 
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Figure 4: Examples of open-text explanations that annotators provided corresponding with the categories
they selected. The bars on the right of the categories represent the percentage of lines where annotators
selected that category (out of those character-line pairs with positive motivation/emotional reaction).

notations per character per line. The lines with at
least 2 annotators voting are used as input for the
next task: (3b) emotional reaction.

(3a) Motivation We use the output from the ac-
tion resolution stage (2a) to ask workers to anno-
tate character motives in lines where they inten-
tionally initiate an event. We provide 3 annota-
tors a line from a story, the preceding lines, and
a specific character. They are asked to produce
a free response sentence describing what causes
the character’s behavior in that line and to select
the most related Maslow categories and Reiss sub-
categories. In Figure 3, an annotator described
the motivation of the narrator in line 1 as want-
ing “to have company” and then selected the love
(Maslow) and family (Reiss) as categorical labels.
Because many annotators are not familiar with
motivational theories, we require them to com-
plete a tutorial the first time they attempt the task.

(3b) Emotional Reaction Simultaneously, we
use the output from the affect resolution stage (2b)
to ask workers what the emotional response of a
character is immediately following a line in which
they are affected. As with the motives, we give 3
annotators a line from a story, its previous context,
and a specific character. We ask them to describe
in open text how the character will feel following
the event in the sentence (up to three emotions).
As a follow-up, we ask workers to compare their
free responses against Plutchik categories by using
3-point likert ratings. In Figure 3, we include a re-
sponse for the emotional reaction of the narrator
in line 1. Even though the narrator was not men-
tioned directly in that line, an annotator recorded
that they will react to their cousin being a slob by
feeling “annoyed” and selected the Plutchik cate-
gories for sadness, disgust and anger.

Fine-grained

train dev test
# annotated stories 10000 2500 2500
# characters / story 2.03 2.02 1.82
# char-lines w/ motiv 40154 8762 6831
# char-lines w/ emot 76613 14532 13785

Table 1: Annotated data statistics for each dataset

3.2 Dataset Statistics and Insights
Cost The tasks corresponding to the theory cate-
gory assignments are the hardest and most expen-
sive in the pipeline (⇠$4 per story). Therefore, we
obtain theory category labels only for a third of our
annotated stories, which we assign to the develop-
ment and test sets. The training data is annotated
with a shortened pipeline with only open text de-
scriptions of motivations and emotional reactions
from two workers (⇠$1 per story).

Scale Our dataset to date includes a total of 300k
low-level annotations for motivation and emotion
across 15,000 stories (randomly selected from the
ROC story training set). It covers over 150,000
character-line pairs, in which 56k character-line
pairs have an annotated motivation and 105k have
an annotated change in emotion (i.e. a label other
than none). Table 1 shows the break down across
training, development, and test splits. Figure 4
shows the frequency of different labels being se-
lected for motivational and emotional categories
in cases with positive change.

Agreements For quality control, we removed
workers who consistently produced low-quality
work, as discussed in the Appendix. In the cate-
gorization sets (Maslow, Reiss and Plutchik), we
compare the performance of annotators by treat-
ing each individual category as a binary label (1
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Spiritual
Other -1.00 -0.11 -0.02 -0.11 0.00 -1.00 -0.02 -0.06 0.10 0.09 0.06 0.05 -0.07 -0.02 0.02 -0.06 -1.00 -0.03 0.05 0.04 0.02 -1.00 -0.10 -0.04
Idealism 0.02 0.26 0.04 0.04 -0.05 -0.09 0.01 0.01 0.06 -0.05 0.11 0.05 -0.18 0.00 0.02 -0.05 -0.07 -0.02 -0.01 0.01 -0.05 -0.03 -0.10 -0.17

Growth Indep 0.02 -0.01 0.18 0.10 0.13 0.05 0.02 0.06 0.01 0.02 0.00 0.00 -0.15 -0.06 -0.04 -0.10 -0.07 -0.09 -0.08 -0.01 -0.01 0.07 -0.14 -0.08
Serenity 0.01 0.03 0.06 0.27 0.06 0.01 -0.07 -0.07 -0.04 -0.09 -0.07 0.02 -0.07 -0.04 -0.08 -0.10 -0.07 0.01 -0.02 0.07 -0.05 0.02 -0.10 0.15
Curiosity -0.01 -0.02 0.13 0.03 0.40 -0.01 -0.04 -0.05 -0.04 -0.01 -0.08 -0.01 -0.16 -0.06 -0.07 -0.14 -0.01 -0.11 -0.12 -0.04 -0.10 0.08 -0.12 -0.07

Esteem

Other -1.00 0.14 0.04 0.02 0.04 0.31 -0.05 0.03 0.10 -0.12 0.05 -1.00 -0.07 0.08 -1.00 -1.00 -1.00 -0.14 -0.05 -0.07 0.03 -1.00 -0.09 -0.04
Approv 0.02 -0.01 0.03 -0.08 -0.05 0.08 0.16 0.14 0.02 0.08 0.05 0.01 -0.03 0.02 0.08 -0.08 0.07 -0.06 -0.11 -0.04 -0.01 -0.11 -0.17 -0.18
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Love

Other 0.03 0.00 0.02 -0.07 -0.05 -1.00 0.09 0.06 -0.05 -0.03 0.04 0.14 -0.03 0.17 0.07 -0.02 -0.03 -0.09 -0.11 -0.07 -0.14 0.00 -0.14 -0.04
Romance 0.07 -0.13 -0.15 -0.07 -0.18 -1.00 -0.04 -0.09 -0.13 -0.19 -0.10 -0.01 0.65 0.03 -0.01 0.01 -0.10 -0.23 -0.20 -0.13 -0.29 -0.20 -0.20 -0.11
Contact 0.03 0.00 -0.07 -0.02 -0.07 0.01 0.00 -0.02 -0.07 -0.08 -0.02 0.15 0.04 0.39 0.11 -0.02 -0.02 -0.17 -0.17 -0.14 -0.19 -0.07 -0.15 -0.14
Belong -0.06 -0.02 -0.01 -0.01 -0.01 -0.02 0.07 0.07 0.00 0.03 0.05 0.01 0.02 0.10 0.11 -0.08 -0.02 -0.03 -0.08 -0.06 -0.06 -0.05 -0.11 -0.12
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Other -1.00 -0.02 0.07 0.03 -0.02 -1.00 -0.04 0.05 -0.07 -0.03 0.02 0.08 -0.07 -0.14 0.03 -0.07 -1.00 0.00 -0.11 0.08 0.12 0.18 -0.07 -0.03
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Rest -0.02 -0.13 -0.05 0.15 -0.06 0.02 -0.22 -0.13 -0.16 -0.17 -0.17 -0.04 -0.15 -0.11 -0.11 -0.07 0.08 0.09 -0.02 0.02 -0.10 0.15 -0.05 0.56
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Figure 5: NPMI confusion matrix on motivational categories for all annotator pairs with color scaling
for legibility. The highest values are generally along diagonal or within Maslow categories (outlined in
black). We highlight a few common points of disagreement between thematically similar categories.

Label Type PPA KA % Agree w/
Maj. Lbl

Maslow
Dev .77 .30 0.88
Test .77 .31 0.89

Reiss
Dev .91 .24 0.95
Test .91 .24 0.95

Plutchik
Dev .71 .32 0.84
Test .70 .29 0.83

Table 2: Agreement Statistics (PPA = Pairwise
percent agreement of worker responses per binary
category, KA= Krippendorff’s Alpha)

if they included the category in their set of re-
sponses) and averaging the agreement per cate-
gory. For Plutchik scores, we count ‘moderately
associated’ ratings as agreeing with ‘highly’ asso-
ciated’ ratings. The percent agreement and Krip-
pendorff’s alpha are shown in Table 2. We also
compute the percent agreement between the indi-
vidual annotations and the majority labels.2

These scores are difficult to interpret by them-
selves, however, as annotator agreement in our
categorization system has a number of properties
that are not accounted for by these metrics (dis-
agreement preferences – joy and trust are closer
than joy and anger – that are difficult to quantify
in a principled way, hierarchical categories map-

2Majority label for the motivation categories is what was
agreed upon by at least two annotators per category. For
emotion categories, we averaged the point-wise ratings and
counted a category if the average rating was � 2.

ping Reiss subcategories from Maslow categories,
skewed category distributions that inflate PPA and
deflate KA scores, and annotators that could select
multiple labels for the same examples).

To provide a clearer understanding of agree-
ment within this dataset, we create aggregated
confusion matrices for annotator pairs. First, we
sum the counts of combinations of answers be-
tween all paired annotations (excluding none la-
bels). If an annotator selected multiple categories,
we split the count uniformly among the selected
categories. We compute NPMI over the total con-
fusion matrix. In Figure 5, we show the NPMI
confusion matrix for motivational categories.

In the motivation annotations, we find the high-
est scores on the diagonal (i.e., Reiss agreement),
with most confusions occurring between Reiss
motives in the same Maslow category (outlined
black in Figure 5). Other disagreements generally
involve Reiss subcategories that are thematically
similar, such as serenity (mental relaxation) and
rest (physical relaxation). We provide this analy-
sis for Plutchik categories in the appendix, finding
high scores along the diagonal with disagreements
typically occurring between categories in a “pos-
itive emotion” cluster (joy, trust) or a “negative
emotion” cluster (anger, disgust,sadness).

4 Tasks

The multiple modes covered by the annotations in
this new dataset allow for multiple new tasks to
be explored. We outline three task types below,
covering a total of eight tasks on which to evaluate.
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Figure 6: General model architectures for three
new task types

Differences between task type inputs and outputs
are summarized in Figure 6.

State Classification The three primary tasks
involve categorizing the psychological states of
story characters for each of the label sets (Maslow,
Reiss, Plutchik) collected for the dev and test splits
of our dataset. In each classification task, a model
is given a line of the story (along with optional pre-
ceding context lines) and a character and predicts
the motivation (or emotional reaction). A binary
label is predicted for each of the Maslow needs,
Reiss motives or Plutchik categories.

Annotation Classification Because the dev and
test sets contain paired classification labels
and free text explanations, we propose three
tasks where a model must predict the correct
Maslow/Reiss/Plutchik label given an emotional
reaction or motivation explanation.

Explanation Generation Finally, we can use
the free text explanations to train models to de-
scribe the psychological state of a character in free
text (examples in Figure 4). These explanations
allow for two conditional generation tasks where
the model must generate the words describing the
emotional reaction or motivation of the character.

5 Baseline Models

The general model architectures for the three tasks
are shown in Figure 6. We describe each model
component below. The state classification and ex-
planation generation models could be trained sep-
arately or in a multi-task set-up.

In the state classification and explanation gen-
eration tasks, a model is given a line from a story

xs containing N words {ws
0, w

s
1, . . . , w

s
N} from

vocabulary V , a character in that story ej 2 E
where E is the set of characters in the story, and
(optionally) the preceding sentences in the story
C = {x0 . . . ,xs�1} containing words from vo-
cabulary V . A representation for a character’s psy-
chological state is encoded as:

he = Encoder(xs,C[ej ]) (1)

where C[ej ] corresponds to the concatenated sub-
set of sentences in C where ej appears.

5.1 Encoders

While the end classifier or decoder is different
for each task, we use the same set of encoders
based on word embeddings, common neural net-
work architectures, or memory networks to formu-
late a representation of the sentence and charac-
ter, he. Unless specified, he is computed by en-
coding separate vector representations for the sen-
tence (xs ! hs) and character-specific context
(C[ej ] ! hc) and concatenating these encodings
(he = [hc;hs]). We describe the encoders below:

TF-IDF We learn a TD-IDF model on the full
training corpus of Mostafazadeh et al. (2016) (ex-
cluding the stories in our dev/test sets). To encode
the sentence, we extract TF-IDF features for its
words, yielding vs 2 RV . A projection and non-
linearity is applied to these features to yield hs:

hs = �(Wsv
s + bs) (2)

where Ws 2 Rd⇥H . The character vector hc is en-
coded in the same way on sentences in the context
pertaining to the character.

GloVe We extract pretrained Glove vectors
(Pennington et al., 2014) for each word in V . The
word embeddings are max-pooled, yielding em-
bedding vs 2 RH , where H is the dimensionality
of the Glove vectors. Using this max-pooled rep-
resentation, hs and hc are extracted in the same
manner as for TF-IDF features (Equation 2).

CNN We implement a CNN text categorization
model using the same configuration as Kim (2014)
to encode the sentence words. A sentence is rep-
resented as a matrix, vs 2 RM⇥d where each row
is a word embedding xs

n for a word ws
n 2 xs.

vs = [xs
0, x

s
1, . . . , x

s
N ] (3)

hs = CNN(vs) (4)
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where CNN represents the categorization model
from (Kim, 2014). The character vector hc is en-
coded in the same way with a separate CNN. Im-
plementation details are provided in the appendix.

LSTM A two-layer bi-LSTM encodes the sen-
tence words and concatenates the final time step
hidden states from both directions to yield hs. The
character vector hc is encoded the same way.

REN We use the “tied” recurrent entity network
from Henaff et al. (2017). A memory cell m is
initialized for each of the J characters in the story,
E = {e0, . . . , eJ}. The REN reads documents
one sentence at a time and updates mj for ej 2 E
after reading each sentence. Unlike the previous
encoders, all sentences of the context C are given
to the REN along with the sentence xs. The model
learns to distribute encoded information to the cor-
rect memory cells. The representation passed to
the downstream model is:

he = {mj}s (5)

where {mj}s is the memory vector in the cell cor-
responding to ej after reading xs. Implementation
details are provided in the appendix.

NPN We also include the neural process net-
work from Bosselut et al. (2018) with “tied” en-
tities, but “untied” actions that are not grounded to
particular concepts. The memory is initialized and
accessed similarly as the REN. Exact implementa-
tion details are provided in the appendix.

5.2 State Classifier
Once the sentence-character encoding he is ex-
tracted, the state classifier predicts a binary label
ŷz for every category z 2 Z where Z is the set
of category labels for a particular psychological
theory (e.g., disgust, surprise, etc. in the Plutchik
wheel). We use logistic regression as a classifier:

ŷz = �(Wzh
e + bz) (6)

where Wz and bz are a label-specific set of weights
and biases for classifying each label z 2 Z .

5.3 Explanation Generator
The explanation generator is a single-layer LSTM
(Hochreiter and Schmidhuber, 1997) that receives
the encoded sentence-character representation he

and predicts each word yt in the explanation using
the same method from Sutskever et al. (2014). Im-
plementation details are provided in the appendix.

5.4 Annotation Classifier
For annotation classification tasks, words from
open-text explanations are encoded with TF-IDF
features. The same classifier architecture from
Section 5.2 is used to predict the labels.

6 Experimental Setup

6.1 Training
State Classification The dev set D is split into
two portions of 80% (D1) and 20% (D2). D1 is
used to train the classifier and encoder. D2 is used
to tune hyperparameters. The model is trained
to minimize the weighted binary cross entropy of
predicting a class label yz for each class z:

L =
ZX

z=1

�zyz log ŷz +(1��z)(1�yz) log(1� ŷz)

(7)
where Z is the number of labels in each of the
three classifications tasks and �z is defined as:

�z = 1� e�
p

P (yz) (8)

where P (yz) is the marginal class probability of a
positive label for z in the training set.

Annotation Classification The dev set is split
in the same manner as for state classification. The
TF-IDF features are trained on the set of training
annotations Dt coupled with those from D1. The
model must minimize the same loss as in Equa-
tion 7. Details are provided in the appendix.

Explanation Generation We use the training
set of open annotations to train a model to predict
explanations. The decoder is trained to minimize
the negative loglikelihood of predicting each word
in the explanation of a character’s state:

Lgen = �
TX

t=1

log P (yt|y0, ..., yt�1,h
e) (9)

where he is the sentence-character representation
produced by an encoder from Section 5.1.

6.2 Metrics
Classification For the state and annotation clas-
sification task, we report the micro-averaged pre-
cision (P), recall (R), and F1 score of the Plutchik,
Maslow, and Reiss prediction tasks. We report the
results of selecting a label at random in the top
two rows of Table 3. Note that random is low be-
cause the distribution of positive instances for each
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Model
Maslow Reiss Plutchik

P R F1 P R F1 P R F1

Random 7.45 49.99 12.96 1.76 50.02 3.40 10.35 50.00 17.15
Random (Weighted) 8.10 8.89 8.48 2.25 2.40 2.32 12.28 11.79 12.03

TF-IDF 30.10 21.21 24.88 18.40 20.67 19.46 20.05 24.11 21.90
+ Entity Context 29.79 34.56 32.00 20.55 24.81 22.48 22.71 25.24 23.91

GloVe 25.15 29.70 27.24 16.65 18.83 17.67 15.19 30.56 20.29
+ Entity Context 27.02 37.00 31.23 16.99 26.08 20.58 19.47 46.65 27.48

LSTM 24.64 35.30 29.02 19.91 19.76 19.84 20.27 30.37 24.31
+ Entity Context 31.29 33.85 32.52 18.35 27.61 22.05 23.98 31.41 27.20
+ Explanation Training 30.34 40.12 34.55 21.38 28.70 24.51 25.31 33.44 28.81

CNN (Kim, 2014) 26.21 31.09 28.44 20.30 23.24 21.67 21.15 23.36 22.20
+ Entity Context 27.47 41.01 32.09 18.89 31.22 23.54 24.32 30.76 27.16
+ Explanation Training 29.30 44.18 35.23 17.87 37.52 24.21 24.47 38.87 30.04

REN (Henaff et al., 2017) 26.24 42.14 32.34 16.79 22.20 19.12 26.22 33.26 29.32
+ Explanation Training 26.85 44.78 33.57 16.73 26.55 20.53 25.30 37.30 30.15

NPN (Bosselut et al., 2018) 24.27 44.16 31.33 13.13 26.44 17.55 21.98 37.31 27.66
+ Explanation Training 26.60 39.17 31.69 15.75 20.34 17.75 24.33 40.10 30.29

Table 3: State Classification Results

category is very uneven: macro-averaged positive
class probabilities of 8.2, 1.7, and 9.9% per cate-
gory for Maslow, Reiss, and Plutchik respectively.

Generation Because explanations tend to be
short sequences (Figure 4) with high levels of syn-
onymy, traditional metrics such as BLEU are in-
adequate for evaluating generation quality. We
use the vector average and vector extrema metrics
from Liu et al. (2016) computed using the Glove
vectors of generated and reference words. We re-
port results in Table 5 on the dev set and compare
to a baseline that randomly samples an example
from the dev set as a generated sequence.

6.3 Ablations

Story Context vs. No Context Our dataset is
motivated by the importance of interpreting story
context to categorize emotional reactions and mo-
tivations of characters. To test this importance, we
ablate hc, the representation of the context sen-
tences pertaining to the character, as an input to the
state classifier for each encoder (except the REN
and NPN). In Table 3, this ablation is the first row
for each encoder presented.

Explanation Pretraining Because the state
classification and explanation generation tasks use
the same models to encode the story, we explore
initializing a classification encoder with parame-
ters trained on the generation task. For the CNN,
LSTM, and REN encoders, we pretrain a gener-
ator to produce emotion or motivation explana-

tions. We use the parameters from the emotion or
motivation explanation generators to initialize the
Plutchik or Maslow/Reiss classifiers respectively.

7 Experimental Results

State Classification We show results on the test
set for categorizing Maslow, Reiss, and Plutchik
states in Table 3. Despite the difficulty of the
task, all models outperform the random baseline.
Interestingly, the performance boost from adding
entity-specific contextual information (i.e., not ab-
lating hc) indicates that the models learn to condi-
tion on a character’s previous experience to clas-
sify its mental state at the current time step. This
effect can be seen in a story about a man whose
flight is cancelled. The model without context pre-
dicts the same emotional reactions for the man, his
wife and the pilot, but with context correctly pre-
dicts that the pilot will not have a reaction while
predicting that the man and his wife will feel sad.

For the CNN, LSTM, REN, and NPN models,
we also report results from pretraining encoder pa-
rameters using the free response annotations from
the training set. This pretraining offers a clear per-
formance boost for all models on all three predic-
tion tasks, showing that the parameters of the en-
coder can be pretrained on auxiliary tasks provid-
ing emotional and motivational state signal.

The best performing models in each task are
most effective at predicting Maslow physiological
needs, Reiss food motives, and Plutchik reactions
of joy. The relative ease of predicting motivations
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Maslow Reiss Plutchik

TFIDF 64.81 48.60 53.44

Table 4: F1 scores of predicting correct category
labels from free response annotations

Model
Motivation Emotion

Avg VE Avg VE

Random 56.02 45.75 40.23 39.98

LSTM 58.48 51.07 52.47 52.30
CNN 57.83 50.75 52.49 52.31
REN 58.83 51.79 53.95 53.79
NPN 57.77 51.77 54.02 53.85

Table 5: Vector average and extrema scores for
generation of annotation explanations

related to food (and physiological needs generally)
may be because they involve a more limited and
concrete set of actions such as eating or cooking.

Annotation Classification Table 4 shows that a
simple model can learn to map open text responses
to categorical labels. This further supports our hy-
pothesis that pretraining a classification model on
the free-response annotations could be helpful in
boosting performance on the category prediction.

Explanation Generation Finally, we provide
results for the task of generating explanations of
motivations and emotions in Table 5. Because the
explanations are closely tied to emotional and mo-
tivation states, the randomly selected explanation
can often be close in embedding space to the ref-
erence explanations, making the random baseline
fairly competitive. However, all models outper-
form the strong baseline on both metrics, indicat-
ing that the generated short explanations are closer
semantically to the reference annotation.

8 Related work

Mental State Annotations Incorporating emo-
tion theories into NLP tasks has been explored
in previous projects. Ghosh et al. (2017) mod-
ulate language model distributions by increasing
the probability of words that express certain affec-
tive LIWC (Tausczik and Pennebaker, 2016) cat-
egories. More generally, various projects tackle
the problem of generating text from a set of at-
tributes like sentiment or generic-ness (Ficler and
Goldberg, 2017; Dong et al., 2017). Similarly,

there is also a body of research in reasoning about
commonsense stories and discourse (Li and Juraf-
sky, 2017; Mostafazadeh et al., 2016) or detecting
emotional stimuli in stories (Gui et al., 2017). Pre-
vious work in plot units (Lehnert, 1981) developed
formalisms for affect and mental state in story nar-
ratives that included motivations and reactions. In
our work, we collect mental state annotations for
stories to used as a new resource in this space.

Modeling Entity State Recently, novel works in
language modeling (Ji et al., 2017; Yang et al.,
2016), question answering (Henaff et al., 2017),
and text generation (Kiddon et al., 2016; Bosselut
et al., 2018) have shown that modeling entity state
explicitly can boost performance while providing
a preliminary interface for interpreting a model’s
prediction. Entity modeling in these works, how-
ever, was limited to tracking entity reference (Kid-
don et al., 2016; Yang et al., 2016; Ji et al., 2017),
recognizing entity state similarity (Henaff et al.,
2017) or predicting simple attributes from entity
states (Bosselut et al., 2018). Our work provides
a new dataset for tracking emotional reactions and
motivations of characters in stories.

9 Conclusion

We present a large scale dataset as a resource
for training and evaluating mental state track-
ing of characters in short commonsense stories.
This dataset contains over 300k low-level annota-
tions for character motivations and emotional re-
actions. We provide benchmark results on this
new resource. Importantly, we show that modeling
character-specific context and pretraining on free-
response data can boost labeling performance.
While our work only use information present in
our dataset, we view our dataset as a future testbed
for evaluating models trained on any number of
resources for learning common sense about emo-
tional reactions and motivations.
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Abstract

In the era of big data, focused analysis for
diverse topics with a short response time
becomes an urgent demand. As a funda-
mental task, information filtering therefore
becomes a critical necessity. In this pa-
per, we propose a novel deep relevance
model for zero-shot document filtering,
named DAZER. DAZER estimates the
relevance between a document and a cat-
egory by taking a small set of seed words
relevant to the category. With pre-trained
word embeddings from a large external
corpus, DAZER is devised to extract the
relevance signals by modeling the hidden
feature interactions in the word embed-
ding space. The relevance signals are ex-
tracted through a gated convolutional pro-
cess. The gate mechanism controls which
convolution filters output the relevance
signals in a category dependent manner.
Experiments on two document collections
of two different tasks (i.e., topic catego-
rization and sentiment analysis) demon-
strate that DAZER significantly outper-
forms the existing alternative solutions, in-
cluding the state-of-the-art deep relevance
ranking models.

1 Introduction

Filtering irrelevant information and organizing rel-
evant information into meaningful topical cate-
gories is indispensable and ubiquitous. For ex-
ample, a data analyst tracking an emerging event
would like to retrieve the documents relevant to
a specific topic (category) from a large document
collection in a short response time. In the era
of big data, the potentially possible categories
covered by documents would be limitless. It

is unrealistic to manually identify a lot of posi-
tive examples for each possible category. How-
ever, new information needs indeed emerge ev-
erywhere in many real-world scenarios. Recent
studies on dataless text classification show promis-
ing results on reducing labeling effort (Liu et al.,
2004; Druck et al., 2008; Chang et al., 2008; Song
and Roth, 2014; Hingmire et al., 2013; Hingmire
and Chakraborti, 2014; Chen et al., 2015; Li et al.,
2016). Without any labeled document, a data-
less classifier performs text classification by us-
ing a small set of relevant words for each category
(called “seed words”). However, existing dataless
classifiers do not consider document filtering. We
need to provide the seed words for each category
covered by the document collection, which is of-
ten infeasible in the real world.

To this end, we are particularly interested in the
task of zero-shot document filtering. Here, zero-
shot means that the instances of the targeted cat-
egories are unseen during the training phase. To
facilitate zero-shot filtering, we take a small set
of seed words to represent a category of inter-
est. This is extremely useful when the informa-
tion need (i.e., the categories of interest) is dy-
namic and the text collection is large and tempo-
rally updated (e.g., the possible categories are hard
to know). Specifically, we propose a novel deep
relevance model for zero-shot document filtering,
named DAZER. In DAZER, we use the word em-
beddings learnt from an external large text cor-
pus to represent each word. A category can then
be well represented also in the embedding space
(called category embedding) through some com-
position with the word embeddings of the pro-
vided seed words. Given a small number of seed
words provided for a category as input, DAZER
is devised to produce a score indicating the rele-
vance between a document and the category. It
is intuitive to connect zero-shot document filtering
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with the task of ad-hoc retrieval. Indeed, by treat-
ing the seed words of each category as a query,
the zero-shot document filtering is equivalent to
ranking documents based on their relevance to the
query. The relevance ranking is a core task in in-
formation retrieval, and has been studied for many
years. Although they share the same formulation,
these two tasks diverge fundamentally. For ad-hoc
retrieval, a user constructs a query with a specific
information need. The relevant documents are as-
sumed to contain these query words. This is con-
firmed by the existing works that exact keyword
match is still the most important signal of rele-
vance in ad-hoc retrieval (Fang and Zhai, 2006;
Wu et al., 2007; Eickhoff et al., 2015; Guo et al.,
2016a,b).

For document filtering, the seed words for a cat-
egory are expected to convey the conceptual mean-
ing of the latter. It is impossible to list all the
words to fully cover the relevant documents of a
category. Therefore, it is essential to capture the
conceptual relevance for zero-shot document fil-
tering. The classical retrieval models simply es-
timate the relevance based on the query keyword
matching, which is far from capturing the concep-
tual relevance. The existing deep relevance mod-
els for ad-hoc retrieval utilize the statistics of the
hard/soft-match signals in terms of cosine simi-
larity between two word embeddings (Guo et al.,
2016a; Xiong et al., 2017). However, the scalar in-
formation like cosine similarity between two em-
bedding vectors is too coarse or limited to reflect
the conceptual relevance. On the contrary, we be-
lieve that the embedding features could provide
rich knowledge towards the conceptual relevance.
A key challenge is to endow DAZER a strong
generalization ability to also successfully extract
the relevance signals for unseen categories. To
achieve this purpose, we extract the relevance sig-
nals based on the hidden feature interactions be-
tween the category and each word in the embed-
ding space. Specifically, two element-wise opera-
tions are utilized in DAZER: element-wise sub-
traction and element-wise product. Since these
two kinds of interactions represent the relative in-
formation encoded in hidden embedding space,
we expect that the relevance signal extraction pro-
cess could generalize well to unseen categories.
Firstly, DAZER utilizes a gated convolutional op-
eration with k-max pooling to extract the rele-
vance signals. Then, DAZER abstracts higher-

level relevance features through a multi-layer per-
ceptron, which can be considered as a relevance
aggregation procedure. At last, DAZER calcu-
lates an overall score indicating the relevance be-
tween a document and the category. Without fur-
ther constraints, it is possible for DAZER to en-
code the bias towards the category-specific fea-
tures seen during the training (i.e., model over-
fitting). Therefore, we further introduce an ad-
versarial learning over the output of the relevance
aggregation procedure. The purpose is to ensure
that the higher-level relevance features contain no
category-dependent information, leading to a bet-
ter zero-shot filtering performance.

To the best of our knowledge, DAZER is the
first deep model to conduct zero-shot document
filtering. We conduct extensive experiments on
two real-world document collections from two
different domains (i.e., 20-Newsgroup for topic
categorization, and Movie Review for sentiment
analysis). Our experimetnal results suggest that
DAZER achieves promising filtering performance
and performs significantly better than the exist-
ing alternative solutions, including state-of-the-art
deep relevance ranking methods.

2 Deep Zero-Shot Document Filtering

Figure 1 illustrates the network structure of the
proposed DAZER model. It consists of two main
components: relevance signal extraction and rel-
evance aggregation. In the following, we present
each component in detail.

2.1 Relevance Signal Extraction
Given a document d = (w1, w2, ..., w|d|) and a set
of seed words Sc = {sc,i} for category c, we first
map each word w into its dense word embedding
representation ew ∈ Rle where le denotes the di-
mension number. The embedding representation
is pre-trained by using a representation learning
method from an external large text corpus. Since
our aim is to capture the conceptual relevance, we
simply take the averaged embedding of the seed
words to represent a category in the embedding
space: cc = 1/|Sc|

∑
s∈Sc es.

Interaction-based Representation. It is widely
recognized that word embeddings are useful be-
cause both syntactic and semantic information of
words are well encoded (Mikolov et al., 2013;
Pennington et al., 2014). The element-wise hid-
den feature difference is a kind of relative infor-
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Figure 1: The architecture of DAZER

Examples
catheism − eatheist ≈ cbaseball − ehitter

cautos − etoyata ≈ cmotorcycles − eyamaha

cbaseball − estadium ≈ cmed − ehosptial

creligion.misc − efaith ≈ cmed − epatient

Table 1: Examples by using embedding offset.

mation that captures the offset bettwen a word
and a category in the embedding space. These
embedding offsets contain more intricate relation-
ships for a word pair. A well known example
is: eking − equeen ≈ eman − ewoman (Mikolov
et al., 2013). Similar observations are made when
we calculate the embedding offset between words
and categories. Table 1 lists several interesting
patterns observed for the embedding offsets be-
tween a category and a word in 20-Newsgroup
dataset (ref. Section 3.2 for more details). We can
see that the embedding offsets are somehow con-
sistent with a particular relation between the two
category-word pairs.

An effective way to measure the relatedness
for two words is the inner product or cosine
similarity between two corresponding word em-
beddings. This can be considered as a partic-
ular linear combination of corresponding feature
products for the two embeddings: rel(e1, e2) =∑

i g(e1, e2, i)e1,i · e2,i = g(e1, e2)T (e1 �
e2) where g(e1, e2, i) refers to the weight cal-
culated for i-th dimension, and g(e1, e2) =
[g(e1, e2, 1); ...; g(e1, e2, le)], � is the element-
wise product operation. The element-wise product
between two embeddings is also a kind of relative
information. The sign of a product of two em-
beddings in a specific dimension indicates whether
the two embeddings share the same polarity in
this dimension. And the resultant value manifests
to what extent that this agreement/disagreement
reaches. It is intuitive that the element-wise

Examples
sign(cmideast � emuslim) ≈ sign(cmed � edoctor)
sign(cspace � eorbit) ≈ sign(chockey � eespn)
sign(celectronics � ecircuit) ≈ sign(cpc � econtroller)
sign(ccrypt � ealgorithm) ≈ sign(cspace � eburning)

Table 2: Examples by using element-wise prod-
uct.

product offers some kinds of semantic relations.
We conduct the element-wise product for each
category-word pair in 20-Newsgroup dataset. Ta-
ble 2 lists some interesting patterns we observe.
The sign(x) function returns 1 when x ≥ 0, oth-
erwise return −1. Shown in the table, the sign
pattern of the element-wise product encodes the
relevance information between a category and its
related words.

Inspired by these observations, we use these
two kinds of element-wise interactions to comple-
ment the representation of a word in a document.
Specifically, for each word w in document d, we
derive its interaction-based representation ecw to-
wards category c as follows:

ediffc,w = cc − ew (1)

eprodc,w = cc � ew (2)

ecw = [ew ⊕ ediffc,w ⊕ eprodc,w ] (3)

where ⊕ is the vector concatenation operation.
Note that these two kinds of feature interactions
are mainly overlooked by the existing literature.
The embedding offsets are used in deriving word
semantic hierarchies in (Fu et al., 2014). How-
ever, there is no existing work incorporating these
two kinds of feature interactions for relevance es-
timation. Here, we expect that these two kinds of
feature interactions can magnify the relevance in-
formation regarding the category.

Convolution with k-max Pooling. We utilize
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m convolution filters to extract the relevance sig-
nals for each word based on its local window of
size l in the document. Specifically, after cal-
culating the interaction-based representation d =
(ec1, e

c
2, ..., e

c
|d|) for document d and category c, we

apply the convolution operation as follows:

ri = W1e
c
i−l:i+l + b1 (4)

where ri ∈ Rm is the hidden features regard-
ing the relevance signal extracted for i-th word,
W1 ∈ Rm×3le(2l+1) and b1 ∈ Rm are the weight
matrix and the corresponding bias vector respec-
tively, eci−l:i+l refers to the concatenation from
eci−l to eci+l. Both l zero vectors are padded to
the begining and the end of the document. With a
local window of size l, the convolution operation
can extract more accurate relevance information
by taking the consecutive words (e.g., phrases)
into account. We then apply k-max pooling strat-
egy to obtain the k most active features for each
filter. Let rjk−max denote the k largest values for
filter j, we form the overall relevance signals rd
extracted by all m filters through the concatena-
tion: rc,d = [r1

k−max ⊕ r2
k−max...⊕ rmk−max].

Category-specific Gating Mechanism. Given a
specific word w, the interaction-based representa-
tion ecw for each category c could be very differ-
ent. Therefore, for a specific local context, the
extracted relevance signal from a particular con-
volution filter could be also distinct for different
categories. It is then reasonable to assume that the
relevance signals for a specific category are cap-
tured by a subset of filters. We propose to identify
which filters are relevant to a category through a
category-specific gating mechanism. Given cate-
gory c, category-specific gates ac ∈ Rm are calcu-
lated as follows:

ac = σ(W2ec + b2) (5)

where W2 ∈ Rm×3le and b2 ∈ Rm are the weight
matrix and bias vectors respectively, σ(·) is the
sigmoid function. With category-specific gating
mechanism, Equation 4 can be rewritten as fol-
lows: ri = ac � (W1e

c
i−l:i+l + b1)

Here, ac works as on-off switches for m filters.
While ac,j → 1 indicates that j-th filter should be
turned on to capture the relevance singals under
category c to its fullness, ac,j → 0 indicates that
the filter is turned off due to its irrelevance.

This collaboration of the convolution operation
and gating mechanism is similar to the Gated Lin-
ear Units (GLU) recently proposed in (Dauphin
et al., 2017). Given an input X, GLU calculates
the output as follow: h(X) = (XW + b) �
σ(XV + c) where the first term in the right side
refers to the convolution operation and the second
term in the right side refers to the gating mech-
anism. In GLU, both the convolution operation
and the gates share the same input X. In contrast,
in this work, we aim to identify which filters cap-
ture the relevance signals in a category-dependent
manner. The experimental results validate that this
category-dependent setting brings significant ben-
efit for zero-shot filtering performance (ref. Sec-
tion 3).

2.2 Relevance Aggregation
The raw relevance signals rc,d are somehow
category-dependent, since the relevant filters are
category-dependent. The hidden features regard-
ing the relevance are distilled through a fully-
connected hidden layer with nonlinearity:

hc,d = ga(W3rc,d + b3) (6)

where W3 ∈ Rla×3km and b3 ∈ Rla are the
weight matrix and bias vector respectively, ga(·)
is the tanh function. This procedure can be con-
sidered as a relevance aggregation process. Then,
the overall relevance score is then estimated as fol-
low:

f(c|d) = tanh(wThc,d + b) (7)

where w ∈ Rla and b are the parameters and bias
respective.

2.3 Model Training

Adversarial Learning The hidden features hc,d
are expected to be category-independent. How-
ever, there is no guarantee that the category-
specific information is not mixed with the rele-
vance information extracted in hc,d. Here, we in-
troduce an adversarial learning mechanism to en-
sure that no category-specific information can be
memorized during the training. Otherwise, the
proposed DAZER may not generalize well to un-
seen categories. Specifically, we introduce an cat-
egory classifier over hc,d to calculate the probabil-
ity that hc,d belongs to each category seen during
the training: pcat(·|hc,d) = softmax(W4hc,d +
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b4) where W4 ∈ RC×la and b4 ∈ RC are
the weight matrix and bias vector for the clas-
sifier, C is the number of categories covered by
the training set. We aim to optimize param-
eters φ = {W4,b4} to successfully classify
hc,d to its true category. Let θ denote the pa-
rameters regarding the calculation of hc,d, i.e.,
θ = {W1,W2,W3,b1,b2,b3}, φ is optimized
to minimize the negative log-likelihood:

Lcat(θ, φ) =
1

|T|
∑

(d,y)∈T
−pcat(y|hy,d) (8)

where T denotes the training set {(d, y)} such that
document d is relevant to category y. On the
other hand, we expect that hc,d carries no cate-
gory specific information, such that the classifier
can not perform the category classification pre-
cisely. Hence, we add the Gradient Reversal Layer
(GRL) (Ganin and Lempitsky, 2015; Ganin et al.,
2016) between hc,d and the category classifier. We
can consider GRL as a pseudo-function Rλ(x):

Rλ(x) = x;
∂Rλ
∂x

= −λI (9)

It means that θ is optimized to make hc,d indis-
tinguishable by the classifier. In Equation 9, pa-
rameter λ controls the importance of the adversar-
ial learning. DAZER is devised to return a rel-
evance score, we utilize the pairwise margin loss
for model training:

Lhinge(θ, δ) =
1

|T|
∑

(d,y)∈T
max(0,∆− f(y|d)

+ f(y|d−y )) (10)

where document d−y is the negative sample for cat-
egory y, ∆ is the margin and set to be 1 in this
work, and δ = {w, b}. Overall, the proposed
DAZER is an end-to-end neural network model.
The parameters Θ = {θ, φ, δ} are optimized via
back propagation and stochastic gradient descent.
Specifically, we utilize Adam (Kingma and Ba,
2014) algorithm for parameter update over mini-
batches. The final objective loss used in the train-
ing is as follow:

L(Θ) =Lhinge(θ, δ) + Lcat(θ, φ) + λΘ‖Θ‖2
(11)

where λΘ controls the importance of the regular-
izaton term.

Label Seed Words
very negative bad, horrible, negative, disgusting

negative bad, confused, unexpected, useless, negative
neutral normal, moderate, neutral, objective, impersonal
positive good, positive, outstanding, satisfied, pleased

very positive positive, impressive, unbelievable, awesome

Table 3: Seed words selected for Movie Review.

3 Experiment

In this section, we conduct experiments on two
real-world document collections to evaluate the ef-
fectiveness of the proposed DAZER1.

3.1 Existing Alternative Methods

Here, we compare the proposed DAZER against
the following alternative solutions.

BM25 Model: BM25 is a widely known retrieval
model based on keyword matching (Robertson and
Walker, 1994). The default parameter setting is
used in the experiments.

DSSM: DSSM utilizes a multi-layer perceptron to
extract hidden representations for both the docu-
ment and the query (Huang et al., 2013). Then, co-
sine similarity is calculated as the relevance score
based on the representation vectors. Since we
use pre-trained word embeddings from a large text
corpus, we choose to replace the letter-tri-grams
representation with the word embedding represen-
tation instead. We use the recommended network
setting by its authors.

DRMM: DRMM calculates the relevance based
on the histogram information of the semantic relat-
edness scores between each word in the document
and each query word (Guo et al., 2016a). The rec-
ommended network setting (i.e., LCH×IDF) and
parameter setting are used.

K-NRM: K-NRM is a kernel based neural
model for relevance ranking based on word-level
hard/soft matching signals (Xiong et al., 2017).
We use the recommended setting as in their paper.

DeepRank: DeepRank is a neural relevance
ranking model based on the query-centric con-
text (Pang et al., 2017). The recommended setting
is used for evaluation.

Seed-based Support Vector Machines (SSVM):
We build a seed-driven training set by labeling a
training document with a category if the document

1The implementation is available at https://github.com/WHUIR/
DAZER
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contains any seed word of that category. Then, we
adopt a one-class SVM implemented by sklearn2

for document filtering3. The optimal performance
is reported by tuning the hyper-parameter.

3.2 Datasets and Experimental Setup

20-Newsgroup (20NG)4 is a widely used bench-
mark for document classification research (Li
et al., 2016). It consists of approximately 20K
newsgroup articles from 20 different categories.
The bydate version with 18, 846 documents is
used here. As provided, the training set and test
set contain 60% and 40% documents respectively.

Movie Review5 is a collection of movie reviews in
English (Pang and Lee, 2005). The scale dataset
v1.0 is used in the experiments. Based on the
numerical ratings, we split these reviews into five
sentiment labels: very negative, negative, neu-
tral, positive and very positive, which contains
167, 1030, 1786, 1682, 341 reviews respectively.
For each sentiment label, we randomly split the
reviews into a training set (80%) and a test set
(20%).

Since our work targets at zero-shot document
filtering for unseen categories, the word embed-
dings pre-trained by Glove over a large text corpus
with total 840 billion tokens6 are used across all
the methods and the two datasets. The dimension
of the word embeddings is le = 300. No further
word embedding fine-tuning is applied. For both
datasets, the stop words are removed firstly. Then,
all the words are converted into their lowercased
forms. We further remove the words whose word
embeddings are not supported by Glove.

Evaluation Protocol. With the specified unseen
categories, we take all the training documents of
the other categories to train a model. Then, all
documents in the test set are used for evaluation.
For each unseen category, the task is to rank the
documents of that category higher than the oth-
ers. Here, we choose to report mean average pre-
cision (MAP) for performance evaluation. MAP is
a widely used metric to evaluate the ranking qual-
ity. The higher the relevant documents are ranked,

2
http://scikit-learn.org

3Signed distance to the separating hyperplan is used for ranking docu-
ments.

4
http://qwone.com/˜jason/20Newsgroups/

5The Movie Review dataset is available at http://www.cs.
cornell.edu/people/pabo/movie-review-data/

6
https://nlp.stanford.edu/projects/glove/

the larger the MAP value is, which means a bet-
ter filtering performance. For all neural networks
based models, the training documents from one
randomly sampled training category work as the
validation set for early stop. We report the aver-
aged results over 5 runs for all the methods (ex-
cluding SSVM and BM25). The statistical signifi-
cance is conducted by applying the student t-test.

Seed Word Selection. For 20NG dataset, we
directly use the seed words7 manually compiled
in (Song and Roth, 2014). These seed words
are selected from the category descriptions and
widely used in the works of dataless text classi-
fication (Song and Roth, 2014; Chen et al., 2015;
Li et al., 2016). For Movie Review, following the
seed word selection process (i.e., assisted by stan-
dard LDA) proposed in (Chen et al., 2015), we
manually select the seed words for each sentiment
label. Table 3 lists the seed words selected for each
sentiment label for Movie Review dataset. There
are on average 5.2 and 4.6 seed words for each cat-
egory over 20NG and Movie Review respectively.
It is worthwhile to highlight that no category infor-
mation is exploited within the seed word selection
process.

Parameter Setting. For DAZER, the number of
convolution filters is m = 50 and k = 3 is used
for k-max pooling. The dimension size for rele-
vance aggregation is la = 75. The local window
size l is set to be 2. The learning rate is 0.00001.
The models are trained with a batch size of 16 and
λΘ = 0.0001, λ = 0.1.

3.3 Performance Comparison

For 20NG dataset, we randomly create 9 docu-
ment filtering tasks which cover 10 out of 20 cate-
gories. For Movie Review, we take each sentiment
label as an unseen category for evaluation. Ta-
ble 4 lists the performance of 7 methods in terms
of MAP for these filtering tasks. Here, we make
the following observations.

First, the proposed DAZER significantly
achieves much better filtering performance on all
14 tasks across the two datasets. The averaged
MAP of DAZER over these 14 filtering tasks is
0.671. Note that only 5.2 and 4.6 seed words are
used on average for each task. The second best
performer is K-NRM, which achieves the second

7The seed words are available at https://github.com/WHUIR/
STM
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Dataset Category DAZER DRMM K-NRM DeepRank DSSM SSVM BM25

20NG

pc 0.535 0.382† 0.369† 0.144† 0.222† 0.117 0.313
med 0.826 0.662† 0.645† 0.033† 0.192† 0.104 0.403
baseball 0.764 0.731† 0.735† 0.294† 0.373† 0.291 0.414
space 0.780 0.593† 0.671† 0.285† 0.142† 0.140 0.641
med-space 0.805 0.640† 0.666† 0.101† 0.174† 0.122 0.522
atheism-
electronics

0.464 0.242† 0.346† 0.418† 0.219† 0.132 0.263

christian-
mideast

0.712 0.662† 0.657† 0.298† 0.327† 0.161 0.579

baseball-
hockey

0.782 0.642† 0.736† 0.332† 0.135† 0.438 0.444

pc-windowx-
electronics

0.489 0.274† 0.379† 0.183† 0.278† 0.120 0.314

Movie Review

very negative 0.290 0.119† 0.114† 0.097† 0.216† 0.080 0.134
negative 0.807 0.528† 0.557† 0.423† 0.478† 0.236 0.090
neutral 0.798 0.764† 0.749† 0.686† 0.678† 0.365 0.007
positive 0.862 0.696† 0.706† 0.655† 0.753† 0.300 0.090
very positive 0.479 0.250† 0.339† 0.217† 0.271† 0.063 0.066

Avg 0.671 0.513 0.548 0.298 0.318 0.191 0.306

Table 4: Performance of the 7 methods for zero-shot document filtering in terms of MAP. The best and
second best results are highlighted in boldface and underlined respectively, on each task. † indicates that
the difference to the best result is statistically significant at 0.05 level. Avg: averaged MAP over all tasks.

best on 7 tasks. Overall, the averaged performance
gain for DAZER over K-NRM is about 30.8%.

Second, We observe that DSSM performs sign-
ficantly better for sentiment analysis than for topic
categorization. As discussed in Section 4, DSSM
is designed to perform semantic matching. Com-
pared with topic categorization, sentiment analy-
sis is more like a semantic matching task. SSVM
delivers the worst performance on both datasets.
This illustrates that the quality of the labeled doc-
uments is essential for supervised learning tech-
niques. Apparently, recruiting training documents
with the provided seed words in a simple fashion
is error-prone. We also note that BM25 achieves
inconsistent performance over the two kinds of
tasks. It performs especially worse for sentiment
analysis. This is reasonable because there are
more diverse ways to express a specific sentiment.
It is hard to cover a reasonable proportion of doc-
uments with limited number of sentimental seed
words. In comparison, the proposed DAZER ob-
tains a consistent performance for both topic cate-
gorization and sentiment analysis.

3.4 Analysis of DAZER

Component Setting. Here, we further discuss the
impact of different component settings of DAZER
on both 20NG and Movie Review datasets. Ta-
ble 5 and 6 report the impacts of each component

setting via an ablation test on the two datasets re-
spectively. We can see that each component brings
significantly positive benefit for document filter-
ing. First, we can see that either element-wise sub-
traction or product contributes signifcantly to the
performance improvement. Specifically, from Ta-
ble 6, we can see that both the element-wise sub-
traction and element-wise product play equally on
Movie Review dataset. On the other hand, it is
observed that DAZER experiences significantly
a much larger performance degradation on 20NG
dataset. For example, a MAP of only 0.154 is
achieved when eprodc,w is excluded from DAZER
for the filtering task space. A much severer case
is for the filtering task baseball-hockey. By ex-
cluding eprodc,w , the MAP performance of DAZER
is reduced from 0.782 to 0.045. That is, the
element-wise product is more critical for extract-
ing relevance signals for topical categorization.
We also observe that these two hidden feature in-
teractions together play a more important role for
DAZER. For example, without both ediffc,w and
eprodc,w , DAZER only achieves a MAP of 0.126 for
filtering task space. The large performance deteri-
oration is also observed for other filtering tasks on
20NG dataset.

Either adversarial learning or category-specific
gate mechanism enhances the filtering perfor-
mance of DAZER, which validates the effective-
ness of the two components for enhancing con-
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Setting pc med baseball space med-space atheism-electronics christian-mideast baseball-hockey pc-windowx-electronics

DAZER 0.535 0.826 0.764 0.780 0.805 0.464 0.712 0.782 0.489
- ediff

c,w 0.524 0.810 0.755 0.785 0.802 0.454 0.705 0.788 0.462

- eprodc,w 0.219 0.043 0.200 0.154 0.139 0.217 0.244 0.045 0.141

- Gate 0.518 0.819 0.715 0.780 0.803 0.443 0.695 0.784 0.489
- Adv 0.531 0.819 0.749 0.775 0.795 0.458 0.701 0.779 0.485

Table 5: Impact of different settings for DAZER on 20NG. The best results are highlighted in boldface.
- ediffc,w : no element-wise subtraction; - eprodc,w : no element-wise product; - Gate: no category-specific gate
mechanism; - Adv: no adversarial learning.

Setting very negative negative neutral positive very positive

DAZER 0.290 0.807 0.798 0.862 0.479
- ediff

c,w 0.246 0.773 0.776 0.847 0.453

- eprod
c,w 0.258 0.779 0.785 0.847 0.430

- Gate 0.278 0.755 0.785 0.848 0.429
- Adv 0.261 0.779 0.776 0.827 0.444

Table 6: Impact of different settings for DAZER on Movie Review. The best results are highlighted in
boldface. - ediffc,w : no element-wise subtraction; - eprodc,w : no element-wise product; - Gate: no category-
specific gate mechanism; - Adv: no adversarial learning.

ceptual relevance extraction. Also, without using
adversarial learning, DAZER still achieves much
better filtering performance than the existing base-
line methods compared in Section 3.3. This obser-
vation is also held on 20NG dataset. This further
validates that the two kinds of hidden feature in-
teractions indeed encode rich knowledge towards
the conceptual relevance.

Impact of Seed Words. It has been recognized
that the less seed words incur worse document
classification performance in the existing data-
less document classification techniques (Song and
Roth, 2014; Chen et al., 2015; Li et al., 2016).
Following these works, we also use the words ap-
pearing in the category name of 20NG dataset as
the corresponding seed words8. There are on aver-
age 2.75 seed words for a category of 20NG. Ta-
ble 7 reports the MAP performace of each method
on 20NG dataset. The experimental results show
that all methods investigated in Section 3.3 ex-
perience signficant performance degradation for
most filtering tasks. We plan to incorporate the
pseudo-relevance feedback into DAZER to tackle
the scarcity of the seed words. One possible so-
lution is to enrich the architecture of DAZER to
allow few-shot document filtering. That is, the fil-
tering decisions of high-confidence are utilized to
derive more seed words for better filtering perfor-
mance.

8The seed words based on the category name are available
at https://github.com/WHUIR/STM

4 Related Work
Document filtering is the task to separate rele-
vant documents from the irrelevant ones for a spe-
cific topic (Robertson and Soboroff, 2002; Nanas
et al., 2010; Gao et al., 2013, 2015; Proskur-
nia et al., 2017). Both ranking and classifica-
tion based solutions have been developed (Har-
man, 1994; Robertson and Soboroff, 2002; Sobo-
roff and Robertson, 2003). In earlier days, a fil-
tering system is mainly devised to facilitate the
document retrieval for the long-term information
needs (Mostafa et al., 1997). The term-based
pattern mining techniques are widely developed
to perform document filtering. A network-based
topic profile is built to exploit the term correla-
tion patterns for document filtering (Nanas et al.,
2010). Frequent term patterns in terms of fine-
grained hidden topics are proposed in (Gao et al.,
2013, 2015) for doucment filtering. Very recently,
frequent term patterns are also utilized to perform
event-based microblog filtering (Proskurnia et al.,
2017). However, these approaches are all based
on supervised-learning, which requires a signifi-
cant amount of positive documents for each topic.
In the era of big data, the information space and
new information needs are continuously growing.
Retrieval of the relevance information in a short
response time becomes a fundamental need. Re-
cently, many works have been proposed to con-
duct document filtering in an entity-centric man-
ner (Frank et al., 2012; Balog and Ramampiaro,
2013; Zhou and Chang, 2013; Reinanda et al.,
2016). The task is to identify the documents rele-
vant to a specific entity that is well defined in an
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Dataset Category DEZA DRMM KNRM DeepRank DSSM SSVM BM25

20NG

pc 0.316 0.170 0.144 0.104 0.316 0.057 0.092
med 0.831 0.369 0.267 0.183 0.089 0.040 0.000
baseball 0.519 0.315 0.301 0.299 0.419 0.066 0.161
space 0.641 0.337 0.326 0.414 0.212 0.049 0.329
med-space 0.670 0.348 0.331 0.279 0.076 0.044 0.165
atheism-
electronics

0.359 0.266 0.253 0.499 0.141 0.042 0.091

christian-
mideast

0.564 0.582 0.492 0.196 0.418 0.061 0.093

baseball-
hockey

0.577 0.409 0.391 0.336 0.154 0.061 0.194

pc-windowx-
electronics

0.346 0.176 0.194 0.185 0.227 0.067 0.124

Table 7: Performance of the 7 methods for zero-shot document filtering in terms of MAP. The words ap-
pearing in the category name are used as the seed words. The best and second best results are highlighted
in boldface and underlined respectively, on each task.

external knowledge base. Specifically, Balog and
Ramampiaro (2013) examine the choice of classi-
fication against ranking approaches. They found
that ranking approach is more suitable for the fil-
tering task. Following this conclusion, we formu-
late the zero-shot document filtering as a relevance
ranking task. Many information needs may not be
well represented by a specific entity. Hence, these
entity-centric solutions are restricted to knowledge
base related tasks.

Many ad-hoc retrieval models can be used
to perform zero-shot document filtering. In-
deed, traditional term-based document filtering
approaches utilize many term-weighting schemes
developed for ad-hoc retrieval. Traditional ad-
hoc retrieval models mainly estimate the relevance
based on keyword matching. BM25 (Robertson
and Walker, 1994) can be considered as the op-
timal practice in this line of literature. The re-
cent advances in word embedding offer effective
learning of word semantic relations from a large
external corpus. Several neural relevance ranking
models are proposed to preform ad-hoc retrieval
based on word embeddings. Both K-NRM (Xiong
et al., 2017) and DRMM (Guo et al., 2016a) es-
timate the relevance based on the macro-statistics
of the hard/soft-match signals in terms of cosine
similarity between two word embeddings. Deep-
Rank (Pang et al., 2017) first measures the rel-
evance signals from the query-centric context of
each query keyword matching point through con-
volutional operations. Then, RNN based networks
are adopted to aggregate these relevance signals.
These works achieve significantly better retrieval
performance than the keyword matching based so-

lutions and represent the new state-of-the-art. The
relevance between a query and a document can
also be considered as a matching task between two
pieces of text. There are many deep matching
models, e.g., DSSM (Huang et al., 2013), ARC-
II (Hu et al., 2014), MatchPyramid (Pang et al.,
2016), Match-SRNN (Wan et al., 2016). These
models are mainly developed for some specific
semantic matching tasks, e.g., paraphrase identi-
fication. Therefore, information like grammati-
cal structure or sequence of words are often taken
into consideration, which is not applicable to seed
word based zero-shot document filtering.

5 Conclusion
In this paper, we propose a novel deep relevance
model for zero-shot document filtering, named
DAZER. To enable DAZER to capture con-
ceptual relevance and generalize well to unseen
categories, two kinds of feature interactions, a
gated convolutional network and an category-
independent adversarial learning are devised. The
experimental results over two different tasks val-
idate the superiority of the proposed model. In
the future, we plan to enrich the architecture of
DAZER to allow few-shot document filtering by
incorporating several labeled examples.
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Abstract

Recurrent neural network (RNN) has
achieved remarkable performance in text
categorization. RNN can model the en-
tire sequence and capture long-term de-
pendencies, but it does not do well in ex-
tracting key patterns. In contrast, convo-
lutional neural network (CNN) is good at
extracting local and position-invariant fea-
tures. In this paper, we present a novel
model named disconnected recurrent neu-
ral network (DRNN), which incorporates
position-invariance into RNN. By limiting
the distance of information flow in RNN,
the hidden state at each time step is re-
stricted to represent words near the current
position. The proposed model makes great
improvements over RNN and CNN mod-
els and achieves the best performance on
several benchmark datasets for text cate-
gorization.

1 Introduction

Text categorization is a fundamental and tradi-
tional task in natural language processing (NLP),
which can be applied in various applications such
as sentiment analysis (Tang et al., 2015), ques-
tion classification (Zhang and Lee, 2003) and topic
classification (Tong and Koller, 2001). Nowadays,
one of the most commonly used methods to han-
dle the task is to represent a text with a low dimen-
sional vector, then feed the vector into a softmax
function to calculate the probability of each cate-
gory. Recurrent neural network (RNN) and con-
volutional neural network (CNN) are two kinds of
neural networks usually used to represent the text.

RNN can model the whole sequence and cap-
ture long-term dependencies (Chung et al., 2014).
However, modeling the entire sequence sometimes

case1: One of the seven great unsolved
mysteries of mathematics may have been
cracked by a reclusive Russian.
case2: A reclusive Russian may have cracked
one of the seven great unsolved mysteries
of mathematics.

Table 1: Examples of topic classification

can be a burden, and it may neglect key parts for
text categorization (Yin et al., 2017). In contrast,
CNN is able to extract local and position-invariant
features well (Scherer et al., 2010; Collobert et al.,
2011). Table 1 is an example of topic classi-
fication, where both sentences should be classi-
fied as Science and Technology. The key phrase
that determines the category is unsolved myster-
ies of mathematics, which can be well extracted
by CNN due to position-invariance. RNN, how-
ever, doesn’t address such issues well because the
representation of the key phrase relies on all the
previous terms and the representation changes as
the key phrase moves.

In this paper, we incorporate position-
invariance into RNN and propose a novel model
named Disconnected Recurrent Neural Network
(DRNN). Concretely, we disconnect the informa-
tion transmission of RNN and limit the maximal
transmission step length as a fixed value k, so that
the representation at each step only depends on
the previous k − 1 words and the current word.
In this way, DRNN can also alleviate the burden
of modeling the entire document. To maintain
the position-invariance, we utilize max pooling to
extract the important information, which has been
suggested by Scherer et al. (2010).

Our proposed model can also be regarded as a
special 1D CNN where convolution kernels are re-
placed with recurrent units. Therefore, the maxi-
mal transmission step length can also be consid-
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ered as the window size in CNN. Another differ-
ence to CNN is that DRNN can increase the win-
dow size k arbitrarily without increasing the num-
ber of parameters.

We also find that there is a trade-off between
position-invariance and long-term dependencies in
the DRNN. When the window size is too large,
the position-invariance will disappear like RNN.
By contrast, when the window size is too small,
we will lose the ability to model long-term depen-
dencies just like CNN. We find that the optimal
window size is related to the type of task, but af-
fected little by training dataset sizes. Thus, we can
search the optimal window size by training on a
small dataset.

We conduct experiments on seven large-scale
text classification datasets introduced by Zhang
et al. (2015). The experimental results show that
our proposed model outperforms the other models
on all of these datasets.

Our contributions can be concluded as follows:
1. We propose a novel model to incorporate

position-variance into RNN. Our proposed model
can both capture long-term dependencies and local
information well.

2. We study the effect of different recurrent
units, pooling operations and window sizes on
model performance. Based on this, we propose an
empirical method to find the optimal window size.

3. Our proposed model outperforms the other
models and achieves the best performance on
seven text classification datasets.

2 Related Work

Deep neural networks have shown great success
in many NLP tasks such as machine translation
(Bahdanau et al., 2015; Tu et al., 2016), reading
comprehension (Hermann et al., 2015), sentiment
classification (Tang et al., 2015), etc. Nowadays,
nearly most of deep neural networks models are
based on CNN or RNN. Below, we will introduce
some important works about text classification
based on them.

Convolutional Neural Networks CNN has
been used in natural language processing because
of the local correlation and position-invariance.
Collobert et al. (2011) first utilize 1D CNN in
part of speech (POS), named entity recognition
(NER) and semantic role labeling (SRL). Kim
(2014) proposes to classify sentence by encoding

a sentence with multiple kinds of convolutional
filters. To capture the relation between words,
Kalchbrenner et al. (2014) propose a novel CNN
model with a dynamic k-max pooling. Zhang
et al. (2015) introduce an empirical exploration
on the use of character-level CNN for text classi-
fication. Shallow CNN cannot encode long-term
information well. Therefore, Conneau et al.
(2017) propose to use very deep CNN in text
classification and achieve good performance.
Similarly, Johnson and Zhang (2017) propose a
deep pyramid CNN which both achieves good
performance and reduces training time.

Recurrent Neural Networks RNN is suitable
for handling sequence input like natural lan-
guage. Thus, many RNN variants are used in text
classification. Tang et al. (2015) utilize LSTM
to model the relation of sentences. Similarly,
Yang et al. (2016) propose hierarchical attention
model which incorporates attention mechanism
into hierarchical GRU model so that the model
can better capture the important information of
a document. Wang and Tian (2016) incorporate
the residual networks (He et al., 2016) into RNN,
which makes the model handle longer sequence.
Xu et al. (2016) propose a novel LSTM with a
cache mechanism to capture long-range sentiment
information.

Hybrid model Some researchers attempt
to combine the advantages of CNN and RNN.
(Xiao and Cho, 2016) extract local and global
features by CNN and RNN separately. (Lai et al.,
2015) firstly model sentences by RNN, and then
use CNN to get the final representation. Shi
et al. (2016) replace convolution filters with deep
LSTM, which is similar to what is proposed in
this paper. The main differences are as follows.
Firstly, they regard their models as CNN and set a
small window size of 3, while we propose to use
a large window size. We argue that small window
size makes the model lose the ability to capture
long-term dependencies. Secondly, we utilize
max pooling but not mean pooling, because max
pooling can maintain position-invariance better
(Scherer et al., 2010). Finally, our DRNN model
is more general and can make use of different
kinds of recurrent units. We find that using GRU
as recurrent units outperforms LSTM which is
utilized by Shi et al. (2016).
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Figure 1: Three model architectures. In order to ensure the consistency of the hidden output, we pad
k − 1 zero vectors on the left of the input sequence for DRNN and CNN. Here window size k is 3.

3 Method

3.1 Recurrent Neural Network (RNN)
RNN is a class of neural network which models a
sequence by incorporating the notion of time step
(Lipton et al., 2015). Figure 1(a) shows the struc-
ture of RNN. Hidden states at each step depend on
all the previous inputs, which sometimes can be a
burden and neglect the key information (Yin et al.,
2017).

A variant of RNN has been introduced by Cho
et al. (2014) with the name of gated recurrent unit
(GRU). GRU is a special type of RNN, capable of
learning potential long-term dependencies by us-
ing gates. The gating units can control the flow of
information and mitigate the vanishing gradients
problem. GRU has two types of gates: reset gate
rt and update gate zt. The hidden state ht of GRU
is computed as

ht = (1− zt)� ht−1 + zt � h̃t (1)

where ht−1 is the previous state, h̃t is the candi-
date state computed with new input information
and � is the element-wise multiplication. The up-
date gate zt decides how much new information is
updated. zt is computed as follows:

zt = σ(Wzxt +Uzht−1) (2)

here xt is the input vector at step t. The candidate
state h̃t is computed by

h̃t = tanh(Wxt +U(rt � ht−1)) (3)

where rt is the reset gate which controls the flow
of previous information. Similarly to the update
gate, the reset gate rt is computed as:

rt = σ(Wrxt +Urht−1) (4)

We can see that the representation of step t de-
pends upon all the previous input vectors. Thus,
we can also express the tth step state shown in
Equation (5).

ht = GRU(xt,xt−1,xt−2, ...,x1) (5)

3.2 Disconntected Recurrent Neural
Networks (DRNN)

To reduce the burden of modeling the entire sen-
tence, we limit the distance of information flow in
RNN. Like other RNN variants, we feed the input
sequence into an RNN model and generate an out-
put vector at each step. One important difference
from RNN is that the state of our model at each
step is only related to the previous k−1 words but
not all the previous words. Here k is a hyperpa-
rameter called window size that we need to set.

Our proposed model DRNN is illustrated in Fig-
ure 1(b). Since the output at each step only de-
pends on the previous k − 1 words and current
word, the output can also be regarded as a repre-
sentation of a phrase with k words. Phrases with
the same k words will always have the same rep-
resentation no matter where they are. That is, we
incorporate the position-invariance into RNN by
disconnecting the information flow of RNN.

Similarly, we can get the state ht as follows:

ht = RNN(xt,xt−1,xt−2, ...,xt−k+1) (6)

Here k is the window size, and RNN can be
naive RNN, LSTM (Hochreiter and Schmidhuber,
1997), GRU or any other kinds of recurrent units.

3.3 Comparison with Convolutional Neural
Network (CNN)

DRNN can be considered as a special 1D CNN
which replace the convolution filters with recur-
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rent units. Let xt denote the tth input word vector.
Then for each position t we can get a window vec-
tor ct.

ct = [xt,xt−1,xt−2, ...,xt−k+1] (7)

here, we concatenate k word vectors and generate
vector ct. Then we can get the output of convolu-
tion as follows:

ht = Wct + b (8)

where W is a set of convolution filters and b is a
bias vector. Then a pooling operation can be ap-
plied after the convolutional layer and generate a
fixed size vector (Kim, 2014). Similarly to RNN
and DRNN, we can also represent the context vec-
tor of CNN as followings:

ht = Conv(xt,xt−1,xt−2, ...,xt−k+1) (9)

Obviously, the parameters of convolution filters
W increase as the window size k increases. By
contrast, for DRNN the parameters do not increase
with the increase of window size. Hence, DRNN
can mitigate overfitting problem caused by the in-
crease of parameters.

3.4 DRNN for Text Classification
DRNN is a general model framework, which can
be used for a variety of tasks. In this paper, we
only discuss how to apply DRNN in text catego-
rization.

We utilize GRU as recurrent units of DRNN and
get the context representation of each step. Every
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Figure 3: Dropout in DRNN. The dashed arrows
indicate connections where dropout is applied.
The left model only applies dropout in input and
output layers, but the right model applies dropout
in hidden states.

context vector can be considered as a representa-
tion of a text fragment. Then we feed the con-
text vectors into a multi-layer perceptron (MLP)
to extract high-level features as illustrated in Fig-
ure 2. Before feeding the vectors into MLP, we
utilize Batch Normalization (Ioffe and Szegedy,
2015) after DRNN, so that the model can allevi-
ate the internal covariate shift problem. To get the
text representation vector, we apply max pooing
after MLP layer to extract the most important in-
formation and position-invariant features (Scherer
et al., 2010).

Finally, We feed the text representation vector
into an MLP with rectified linear unit (ReLU) ac-
tivation and send the output of MLP to a softmax
function to predict the probability of each cate-
gory. We use cross entropy loss function as fol-
lows:

H(y, ŷ) =
∑

i

yi log ŷi (10)

where ŷi is the predicted probability and yi is the
true probability of class i.

To alleviate the overfitting problem, we apply
dropout regularization (Srivastava et al., 2014) in
DRNN model. Dropout is usually applied in the
input and output layers but not the hidden states
of RNN, because the number of previous states is
variable (Zaremba et al., 2014). In contrast, our
DRNN model has a fixed window size for output at
each step, so we also apply dropout in the hidden
states. In this paper, we apply dropout in the input
layer, output layer, and hidden states. The Figure
3 shows the difference to apply dropout between
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AG DBP Yelp P. Yelp F. Yah. A. Amz. F. Amz. P.

Tasks News Ontology SA SA QA SA SA
Train dataset 120k 560k 560k 650k 1.4M 3.6M 3M
Test dataset 7.6k 70k 38k 50k 60k 400k 650k
Average Lengths 45 55 153 155 112 93 91
Classes Number 4 14 2 5 10 5 2

Table 2: Dataset information. Here SA refers to sentiment analysis, and QA refers to question answering.

RNN and DRNN.

4 Experiments

4.1 Experimental Settings
Datasets Introduction We use 7 large-scale
text classification datasets which are proposed by
Zhang et al. (2015). We summarize the datasets
in Table 2. AG corpus is news and DBPedia is
an ontology which comes from the Wikipedia.
Yelp and Amazon corpus are reviews for which
we should predict the sentiment. Here P. means
that we only need to predict the polarities of the
dataset, while F. indicates that we need predict
the star number of the review. Yahoo! Answers
(Yah. A.) is a question answering dataset. We can
see that these datasets contain various domains
and sizes, which would be credible to validate our
models.

Implementation Details We tokenize all
the corpus with NLTK’s tokenizer (Bird and
Loper, 2004). We limit the vocabulary size of
each dataset as shown in Table 3. The words not
in vocabulary are replaced with a special token
UNK. Table 3 also shows the window sizes that
we set for these datasets.

We utilize the 300D GloVe 840B vectors (Pen-
nington et al., 2014) as our pre-trained word em-
beddings. For words that do not appear in GloVe,
we average the vector representations of 8 words
around the word in training dataset as its word vec-
tor, which has been applied by Wang and Jiang
(2016). When training our model, word embed-
dings are updated along with other parameters.

We use Adadelta (Zeiler, 2012) to optimize all
the trainable parameters. The hyperparameter of
Adadelta is set as Zeiler (2012) suggest that ε is
1e − 6 and ρ is 0.95. To avoid the gradient ex-
plosion problem, we apply gradient norm clipping
(Pascanu et al., 2013). The batch size is set to 128
and all the dimensions of input vectors and hidden

Corpus Window size Vocabulary size

AG 15 100k
DBP. 15 500k
Yelp P. 20 200k
Yelp F. 20 200k
Yah. A. 20 500k
Amz. F. 15 500k
Amz. P. 15 500k

Table 3: Experimental settings

states are set to 300.

4.2 Experimental Results

Table 4 shows that our proposed model signif-
icantly outperforms all the other models in 7
datasets. DRNN does not have too many hyper-
parameters. The main hyperparameter is the win-
dow size which can be determined by an empirical
method.

The top block shows the traditional methods
and some other neural networks which are not
based on RNN or CNN. The linear model (Zhang
et al., 2015) achieves a strong baseline in small
datasets, but performs not well in large data. Fast-
Text (Joulin et al., 2017) and region embedding
methods (Qiao et al., 2018) achieve comparable
performance with other CNN and RNN based
models.

The RNN based models are listed in the sec-
ond block and CNN based models are in the third
block. The D-LSTM (Yogatama et al., 2017) is a
discriminative LSTM model. Hierarchical atten-
tion network (HAN) (Yang et al., 2016) is a hier-
archical GRU model with attentive pooling. We
can see that very deep CNN (VDCNN) (Conneau
et al., 2017) performs well in large datasets. How-
ever, VDCNN is a CNN model with 29 convolu-
tional layers, which needs to be tuned more care-
fully. By contrast, our proposed model can achieve
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Models AG DBP. Yelp P. Yelp F. Yah. A. Amz. F. Amz. P.

Linear model (Zhang et al., 2015) 7.64 1.31 4.36 40.14 28.96 44.74 7.98
FastText (Joulin et al., 2017) 7.5 1.4 4.3 36.1 27.7 39.8 5.4
Region.emb (Qiao et al., 2018) 7.2 1.1 4.7 35.1 26.3 39.1 4.7

D-LSTM (Yogatama et al., 2017) 7.9 1.3 7.4 40.4 26.3 - -
HAN (Yang et al., 2016) - - - - 24.2 36.4 -

char-CNN (Zhang et al., 2015) 9.51 1.55 4.88 37.95 28.80 40.43 4.93
word-CNN (Zhang et al., 2015) 8.55 1.37 4.60 39.58 28.84 42.39 5.51
VDCNN (Conneau et al., 2017) 8.67 1.29 4.28 35.28 26.57 37.00 4.28

char-CRNN (Xiao and Cho, 2016) 8.64 1.43 5.51 38.18 28.26 40.77 5.87

DRNN 5.53 0.81 2.73 30.85 23.74 35.57 3.51

Table 4: Error rates (%) on seven datasets
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Figure 4: DGRU compared with CNN

better performance in these datasets by simply set-
ting a large window size.

Char-CRNN (Xiao and Cho, 2016) in the
fourth block is a model which combines position-
invariance of CNN and long-term dependencies of
RNN. Nevertheless, they do not achieve great im-
provements over other models. They first utilize
convolution operation to extract position-invariant
features, and then use RNN to capture long-term
dependencies. Here, modeling the whole sequence
with RNN leads to a loss of position-invariance.
Compared with their model, our model can bet-
ter maintain the position-invariance by max pool-
ing (Scherer et al., 2010). Table 4 shows that our
model achieves 10-50% relative error reduction
compared with char-CRNN in these datasets.

4.3 Comparison with RNN and CNN

In this section, we compare DRNN with CNN,
GRU and LSTM (Hochreiter and Schmidhuber,
1997). To make these models comparable, we im-

Models AG DBP. Yelp P.

CNN 6.30 1.13 4.08
GRU 6.25 0.96 3.41
LSTM 6.20 0.90 3.20
DRNN 5.53 0.81 2.73

Table 5: Comparison with RNN and CNN. Table
shows the error rate (%) on three datasets.

plement these models with the same architecture
shown in Figure 2. We just replace the DRNN with
CNN or RNN.

we firstly compare DRNN with CNN on AG
dataset. Figure 4 shows that DRNN performs far
better than CNN. In addition, the optimal window
size of CNN is 3, while for DRNN the optimal
window size is 15. It indicates that DRNN can
model longer sequence as window size increases.
By contrast, simply increasing the window size
of CNN only results in overfitting. That is also
why Conneau et al. (2017) design complex CNN
models to learn long-term dependencies other than
simply increase the window size of convolution
filters.

In addition, we also compare our model with
GRU and LSTM. The experimental results are
shown in Table 5. Our model DRNN achieves
much better performance than GRU and LSTM.

Qualitative Analysis To investigate why
DGRU performs better than CNN and GRU, we
do some error analysis on Yelp P. dataset. Table
6 shows two examples which have been both
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case1: I love Hampton Inn but this location is in serious need of remodeling and some deep cleaning.
Musty smell everywhere.
case2: Pretty good service, but really busy and noisy!! It gets a little overwhelming because the sales
people are very knowledgeable and bombard you with useless techy information to I guess impress
you?? Anyways I bought the Ipad 3 and it is freaking awesome and makes up for the store. I would
give the Ipad 3 a gazillion stars if I could. I left it at home today and got really sad when I was
driving away. Boo Hoo!!

Table 6: Examples of error analysis. The case 1 is a negative review and case 2 is a positive review.
The first example is misclassified by CNN and classified correctly by GRU. The second one is just the
contrary. DGRU classify both examples correctly.
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Figure 5: Component comparison

classified correctly by DRNN. The first example
is misclassified by CNN and classified correctly
by GRU. It is just contrary to the second example.
Considering the first example, CNN may extract
some key phrases such as I love and misclassifies
the example as Positive, while GRU can model
long sequence and capture the information after
but. For the second example, however, GRU still
captures the information after but and neglects
the key phrases such as pretty good service and
freaking awesome, which leads to the wrong
classification.

DGRU can both extract the local key features
such as pretty good service and capture long-term
information such as the sentence after but, which
makes it perform better than GRU and CNN.

4.4 Component Analysis
Recurrent Unit In this part, we study the im-
pact of different recurrent units on the effective-
ness of DRNN. We choose three types of recurrent
units: naive RNN, LSTM and GRU which have
been compared by Chung et al. (2014). We carry
out the experiments with different window sizes
to eliminate the impact of window sizes. All the
experiments in this part are conducted on the AG

dataset.

We find that the disconnected naive RNN per-
forms just a little worse than disconnected LSTM
(DLSTM) and disconnected GRU (DGRU) when
the window size is lower than 5. However, when
the window size is more than 10, its performance
decreases rapidly and the error rate becomes even
more than 20%. We believe that it is due to van-
ishing gradient problem of naive RNN.

From Figure 5(a), we can see that window sizes
affect the performance of DGRU and DLSTM.
DGRU achieves the best performance when the
window size is 15, while the best window size
for DLSTM is 5. The performance of DGRU is
always better than DLSTM no matter what the
window size is. We also find that the DGRU
model converges faster than DLSTM in the
process of training. Therefore, we apply GRU as
recurrent units of DRNN in this paper for all the
other experiments.

Pooling Method Pooling is a kind of method to
subsample the values to capture more important
information. In NLP, pooling can also convert a
variable-length tensor or vector into a fixed-length
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Figure 6: Window size analysis. For better comparing the trends of different tasks, (a) shows the error
reduction rates with different window sizes. (b) and (c) show the error rates of DBP. and Yelp P. with
different training set numbers.

one, so that it can be dealt with more easily.
There’re several kinds of pooling methods such as
max pooling, mean pooling and attentive pooling
(dos Santos et al., 2016).

We still conduct the experiments on AG dataset.
Figure 5(b) shows the experimental results of
three pooling methods along with different win-
dow sizes. From Figure 5(b), we can see that
the DRNN model with max pooling performs bet-
ter than the others. This may be because that
max pooling can capture position-invariant fea-
tures better (Scherer et al., 2010). We find atten-
tive pooling is not significantly affected by win-
dow sizes. However, the performance of mean
pooling becomes worse as the window becomes
larger.

4.5 Window size analysis

In this section, we mainly study what factors affect
the optimal window size. In addition to the recur-
rent units and pooling methods discussed above,
we believe the optimal window size may be also
related to the amount of training data and the type
of task.

In order to study the factors that affect the op-
timal window size, we conduct experiments on
three datasets: AG, DBP and Yelp Polarity. To
eliminate the influence of differrnt training data
sizes, we conduct experiments with the same train-
ing data size. From Figure 6(a) we can see that the
type of task has a great impact on the optimal win-
dow size. For AG and DBPedia, the optimal win-
dow size is 15. However, for Yelp P. the optimal
window size is 40 or even larger. The result is intu-
itive, because sentiment analysis such as Yelp of-
ten involves long-term dependencies (Tang et al.,
2015), while topic classification such as AG and
DBPedia relys more on the key phrases.

From Figure 6(b) and Figure 6(c) we can see the
effect of different training data sizes on the opti-
mal window size. Surprisingly, the effect of differ-
ent training data sizes on the optimal window size
seems little. We can see that for both DBPedia and
Yelp corpus, the trend of error rate with the win-
dow size is similar. This shows that the number of
training data has little effect on the choice of the
optimal window size. It also provides a good em-
pirical way for us to choose the optimal window
size. That is, conducting experiments on a small
dataset first to select the optimal window size.

5 Conclusion

In this paper, we incorporate position-invariance
into RNN, so that our proposed model DRNN can
both capture key phrases and long-term dependen-
cies. We conduct experiments to compare the ef-
fects of different recurrent units and pooling op-
erations. In addition, We also analyze what fac-
tors affect the optimal window size of DRNN and
present an empirical method to search it. The ex-
perimental results show that our proposed model
outperforms CNN and RNN models, and achieve
the best performance in seven large-scale text clas-
sification datasets.
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Abstract

Word embeddings are effective intermedi-
ate representations for capturing semantic
regularities between words, when learn-
ing the representations of text sequences.
We propose to view text classification as
a label-word joint embedding problem:
each label is embedded in the same space
with the word vectors. We introduce
an attention framework that measures the
compatibility of embeddings between text
sequences and labels. The attention is
learned on a training set of labeled samples
to ensure that, given a text sequence, the
relevant words are weighted higher than
the irrelevant ones. Our method maintains
the interpretability of word embeddings,
and enjoys a built-in ability to leverage
alternative sources of information, in ad-
dition to input text sequences. Extensive
results on the several large text datasets
show that the proposed framework out-
performs the state-of-the-art methods by
a large margin, in terms of both accuracy
and speed.

1 Introduction

Text classification is a fundamental problem in
natural language processing (NLP). The task is
to annotate a given text sequence with one (or
multiple) class label(s) describing its textual con-
tent. A key intermediate step is the text rep-
resentation. Traditional methods represent text
with hand-crafted features, such as sparse lexi-
cal features (e.g., n-grams) (Wang and Manning,
2012). Recently, neural models have been em-
ployed to learn text representations, including con-
volutional neural networks (CNNs) (Kalchbrenner

∗Corresponding author

et al., 2014; Zhang et al., 2017b; Shen et al., 2017)
and recurrent neural networks (RNNs) based on
long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997; Wang et al., 2018).

To further increase the representation flexibil-
ity of such models, attention mechanisms (Bah-
danau et al., 2015) have been introduced as an in-
tegral part of models employed for text classifi-
cation (Yang et al., 2016). The attention module
is trained to capture the dependencies that make
significant contributions to the task, regardless of
the distance between the elements in the sequence.
It can thus provide complementary information
to the distance-aware dependencies modeled by
RNN/CNN. The increasing representation power
of the attention mechanism comes with increased
model complexity.

Alternatively, several recent studies show that
the success of deep learning on text classification
largely depends on the effectiveness of the word
embeddings (Joulin et al., 2016; Wieting et al.,
2016; Arora et al., 2017; Shen et al., 2018a). Par-
ticularly, Shen et al. (2018a) quantitatively show
that the word-embeddings-based text classifica-
tion tasks can have the similar level of difficulty
regardless of the employed models, using the con-
cept of intrinsic dimension (Li et al., 2018). Thus,
simple models are preferred. As the basic build-
ing blocks in neural-based NLP, word embed-
dings capture the similarities/regularities between
words (Mikolov et al., 2013; Pennington et al.,
2014). This idea has been extended to compute
embeddings that capture the semantics of word se-
quences (e.g., phrases, sentences, paragraphs and
documents) (Le and Mikolov, 2014; Kiros et al.,
2015). These representations are built upon vari-
ous types of compositions of word vectors, rang-
ing from simple averaging to sophisticated archi-
tectures. Further, they suggest that simple models
are efficient and interpretable, and have the poten-
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tial to outperform sophisticated deep neural mod-
els.

It is therefore desirable to leverage the best of
both lines of works: learning text representations
to capture the dependencies that make significant
contributions to the task, while maintaining low
computational cost. For the task of text classifica-
tion, labels play a central role of the final perfor-
mance. A natural question to ask is how we can
directly use label information in constructing the
text-sequence representations.

1.1 Our Contribution

Our primary contribution is therefore to pro-
pose such a solution by making use of the la-
bel embedding framework, and propose the Label-
Embedding Attentive Model (LEAM) to improve
text classification. While there is an abundant lit-
erature in the NLP community on word embed-
dings (how to describe a word) for text representa-
tions, much less work has been devoted in compar-
ison to label embeddings (how to describe a class).
The proposed LEAM is implemented by jointly
embedding the word and label in the same latent
space, and the text representations are constructed
directly using the text-label compatibility.

Our label embedding framework has the fol-
lowing salutary properties: (i) Label-attentive text
representation is informative for the downstream
classification task, as it directly learns from a
shared joint space, whereas traditional methods
proceed in multiple steps by solving intermediate
problems. (ii) The LEAM learning procedure only
involves a series of basic algebraic operations, and
hence it retains the interpretability of simple mod-
els, especially when the label description is avail-
able. (iii) Our attention mechanism (derived from
the text-label compatibility) has fewer parameters
and less computation than related methods, and
thus is much cheaper in both training and test-
ing, compared with sophisticated deep attention
models. (iv) We perform extensive experiments
on several text-classification tasks, demonstrating
the effectiveness of our label-embedding attentive
model, providing state-of-the-art results on bench-
mark datasets. (v) We further apply LEAM to
predict the medical codes from clinical text. As
an interesting by-product, our attentive model can
highlight the informative key words for prediction,
which in practice can reduce a doctor’s burden on
reading clinical notes.

2 Related Work

Label embedding has been shown to be effective
in various domains and tasks. In computer vi-
sion, there has been a vast amount of research
on leveraging label embeddings for image clas-
sification (Akata et al., 2016), multimodal learn-
ing between images and text (Frome et al., 2013;
Kiros et al., 2014), and text recognition in im-
ages (Rodriguez-Serrano et al., 2013). It is par-
ticularly successful on the task of zero-shot learn-
ing (Palatucci et al., 2009; Yogatama et al., 2015;
Ma et al., 2016), where the label correlation cap-
tured in the embedding space can improve the
prediction when some classes are unseen. In
NLP, labels embedding for text classification has
been studied in the context of heterogeneous net-
works in (Tang et al., 2015) and multitask learning
in (Zhang et al., 2017a), respectively. To the au-
thors’ knowledge, there is little research on inves-
tigating the effectiveness of label embeddings to
design efficient attention models, and how to joint
embedding of words and labels to make full use
of label information for text classification has not
been studied previously, representing a contribu-
tion of this paper.

For text representation, the currently best-
performing models usually consist of an encoder
and a decoder connected through an attention
mechanism (Vaswani et al., 2017; Bahdanau et al.,
2015), with successful applications to sentiment
classification (Zhou et al., 2016), sentence pair
modeling (Yin et al., 2016) and sentence sum-
marization (Rush et al., 2015). Based on this
success, more advanced attention models have
been developed, including hierarchical attention
networks (Yang et al., 2016), attention over at-
tention (Cui et al., 2016), and multi-step atten-
tion (Gehring et al., 2017). The idea of attention is
motivated by the observation that different words
in the same context are differentially informative,
and the same word may be differentially important
in a different context. The realization of “context”
varies in different applications and model architec-
tures. Typically, the context is chosen as the target
task, and the attention is computed over the hidden
layers of a CNN/RNN. Our attention model is di-
rectly built in the joint embedding space of words
and labels, and the context is specified by the label
embedding.

Several recent works (Vaswani et al., 2017;
Shen et al., 2018b,c) have demonstrated that sim-
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ple attention architectures can alone achieve state-
of-the-art performance with less computational
time, dispensing with recurrence and convolutions
entirely. Our work is in the same direction, shar-
ing the similar spirit of retaining model simplicity
and interpretability. The major difference is that
the aforementioned work focused on self attention,
which applies attention to each pair of word tokens
from the text sequences. In this paper, we investi-
gate the attention between words and labels, which
is more directly related to the target task. Further-
more, the proposed LEAM has much less model
parameters.

3 Preliminaries

Throughout this paper, we denote vectors as bold,
lower-case letters, and matrices as bold, upper-
case letters. We use � for element-wise division
when applied to vectors or matrices. We use ◦ for
function composition, and ∆p for the set of one
hot vectors in dimension p.

Given a training set S = {(Xn,yn)}Nn=1 of
pair-wise data, where X ∈ X is the text sequence,
and y ∈ Y is its corresponding label. Specifically,
y is a one hot vector in single-label problem and
a binary vector in multi-label problem, as defined
later in Section 4.1. Our goal for text classification
is to learn a function f : X 7→ Y by minimizing
an empirical risk of the form:

min
f∈F

1

N

N∑

n=1

δ(yn, f(Xn)) (1)

where δ : Y × Y 7→ R measures the loss incurred
from predicting f(X) when the true label is y,
where f belongs to the functional space F . In the
evaluation stage, we shall use the 0/1 loss as a tar-
get loss: δ(y, z) = 0 if y = z, and 1 otherwise.
In the training stage, we consider surrogate losses
commonly used for structured prediction in differ-
ent problem setups (see Section 4.1 for details on
the surrogate losses used in this paper).

More specifically, an input sequence X of
length L is composed of word tokens: X =
{x1, · · · ,xL}. Each token xl is a one hot vec-
tor in the space ∆D, where D is the dictionary
size. Performing learning in ∆D is computation-
ally expensive and difficult. An elegant frame-
work in NLP, initially proposed in (Mikolov et al.,
2013; Le and Mikolov, 2014; Pennington et al.,
2014; Kiros et al., 2015), allows to concisely per-
form learning by mapping the words into an em-
bedding space. The framework relies on so called

word embedding: ∆D 7→ RP , where P is the
dimensionality of the embedding space. There-
fore, the text sequence X is represented via the
respective word embedding for each token: V =
{v1, · · · ,vL}, where vl ∈ RP . A typical text
classification method proceeds in three steps, end-
to-end, by considering a function decomposition
f = f0 ◦ f1 ◦ f2 as shown in Figure 1(a):

• f0 : X 7→ V, the text sequence is represented
as its word-embedding form V, which is a
matrix of P × L.

• f1 : V 7→ z, a compositional function f1 ag-
gregates word embeddings into a fixed-length
vector representation z.

• f2 : z 7→ y, a classifier f2 annotates the text
representation z with a label.

A vast amount of work has been devoted to de-
vising the proper functions f0 and f1, i.e., how
to represent a word or a word sequence, respec-
tively. The success of NLP largely depends on the
effectiveness of word embeddings in f0 (Bengio
et al., 2003; Collobert and Weston, 2008; Mikolov
et al., 2013; Pennington et al., 2014). They are
often pre-trained offline on large corpus, then re-
fined jointly via f1 and f2 for task-specific rep-
resentations. Furthermore, the design of f1 can
be broadly cast into two categories. The popu-
lar deep learning models consider the mapping as
a “black box,” and have employed sophisticated
CNN/RNN architectures to achieve state-of-the-
art performance (Zhang et al., 2015; Yang et al.,
2016). On the contrary, recent studies show that
simple manipulation of the word embeddings, e.g.,
mean or max-pooling, can also provide surpris-
ingly excellent performance (Joulin et al., 2016;
Wieting et al., 2016; Arora et al., 2017; Shen et al.,
2018a). Nevertheless, these methods only lever-
age the information from the input text sequence.

4 Label-Embedding Attentive Model

4.1 Model

By examining the three steps in the traditional
pipeline of text classification, we note that the use
of label information only occurs in the last step,
when learning f2, and its impact on learning the
representations of words in f0 or word sequences
in f1 is ignored or indirect. Hence, we propose a
new pipeline by incorporating label information in
every step, as shown in Figure 1(b):
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Figure 1: Illustration of different schemes for doc-
ument representations z. (a) Much work in NLP
has been devoted to directly aggregating word em-
bedding V for z. (b) We focus on learning label
embedding C (how to embed class labels in a Eu-
clidean space), and leveraging the “compatibility”
G between embedded words and labels to derive
the attention score β for improved z. Note that ⊗
denotes the cosine similarity between C and V. In
this figure, there are K=2 classes.

• f0: Besides embedding words, we also em-
bed all the labels in the same space, which
act as the “anchor points” of the classes to in-
fluence the refinement of word embeddings.

• f1: The compositional function aggregates
word embeddings into z, weighted by the
compatibility between labels and words.

• f2: The learning of f2 remains the same, as it
directly interacts with labels.

Under the proposed label embedding framework,
we specifically describe a label-embedding atten-
tive model.

Joint Embeddings of Words and Labels We
propose to embed both the words and the labels
into a joint space i.e., ∆D 7→ RP and Y 7→ RP .
The label embeddings are C = [c1, · · · , cK ],
where K is the number of classes.

A simple way to measure the compatibility of
label-word pairs is via the cosine similarity

G = (C>V)� Ĝ, (2)

where Ĝ is the normalization matrix of sizeK×L,
with each element obtained as the multiplication
of `2 norms of the c-th label embedding and l-th
word embedding: ĝkl = ‖ck‖‖vl‖.

To further capture the relative spatial informa-
tion among consecutive words (i.e., phrases1) and
introduce non-linearity in the compatibility mea-
sure, we consider a generalization of (2). Specif-
ically, for a text phase of length 2r + 1 cen-
tered at l, the local matrix block Gl−r:l+r in G
measures the label-to-token compatibility for the
“label-phrase” pairs. To learn a higher-level com-
patibility stigmatizationul between the l-th phrase
and all labels, we have:

ul = ReLU(Gl−r:l+rW1 + b1), (3)

where W1 ∈ R2r+1 and b1 ∈ RK are parameters
to be learned, and ul ∈ RK . The largest com-
patibility value of the l-th phrase wrt the labels is
collected:

ml = max-pooling(ul). (4)

Together, m is a vector of length L. The compat-
ibility/attention score for the entire text sequence
is:

β = SoftMax(m), (5)

where the l-th element of SoftMax is βl =
exp(ml)∑L

l′=1 exp(ml′ )
.

The text sequence representation can be sim-
ply obtained via averaging the word embeddings,
weighted by label-based attention score:

z =
∑

l

βlvl. (6)

Relation to Predictive Text Embeddings Pre-
dictive Text Embeddings (PTE) (Tang et al., 2015)
is the first method to leverage label embeddings
to improve the learned word embeddings. We
discuss three major differences between PTE and
our LEAM: (i) The general settings are different.
PTE casts the text representation through hetero-
geneous networks, while we consider text repre-
sentation through an attention model. (ii) In PTE,
the text representation z is the averaging of word
embeddings. In LEAM, z is weighted averaging
of word embeddings through the proposed label-
attentive score in (6). (iii) PTE only considers the
linear interaction between individual words and la-
bels. LEAM greatly improves the performance by
considering nonlinear interaction between phrase

1We call it “phrase” for convenience; it could be any
longer word sequence such as a sentence and paragraph etc.
when a larger window size r is considered.
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and labels. Specifically, we note that the text em-
bedding in PTE is similar with a very special case
of LEAM, when our window size r = 1 and at-
tention score β is uniform. As shown later in Fig-
ure 2(c) of the experimental results, LEAM can be
significantly better than the PTE variant.

Training Objective The proposed joint embed-
ding framework is applicable to various text clas-
sification tasks. We consider two setups in this
paper. For a learned text sequence representation
z = f1◦f0(X), we jointly optimize f = f0◦f1◦f2
over F , where f2 is defined according to the spe-
cific tasks:

• Single-label problem: categorizes each text
instance to precisely one of K classes, y ∈
∆K

min
f∈F

1

N

N∑

n=1

CE(yn, f2(zn)), (7)

where CE(·, ·) is the cross entropy between
two probability vectors, and f2(zn) =
SoftMax (z′n), with z′n = W2zn + b2 and
W2 ∈ RK×P , b2 ∈ RK are trainable param-
eters.

• Multi-label problem: categorizes each text
instance to a set of K target labels {yk ∈
∆2|k = 1, · · · ,K}; there is no constraint on
how many of the classes the instance can be
assigned to, and

min
f∈F

1

NK

N∑

n=1

K∑

k=1

CE(ynk, f2(znk), (8)

where f2(znk) = 1
1+exp(z′nk)

, and z′nk is the
kth column of z′n.

To summarize, the model parameters θ =
{V,C,W1, b1,W2, b2}. They are trained end-
to-end during learning. {W1, b1} and {W2, b2}
are weights in f1 and f2, respectively, which are
treated as standard neural networks. For the joint
embeddings {V,C} in f0, the pre-trained word
embeddings are used as initialization if available.

4.2 Learning & Testing with LEAM
Learning and Regularization The quality of
the jointly learned embeddings are key to the
model performance and interpretability. Ide-
ally, we hope that each label embedding acts as

the “anchor” points for each classes: closer to
the word/sequence representations that are in the
same classes, while farther from those in different
classes. To best achieve this property, we consider
to regularize the learned label embeddings ck to be
on its corresponding manifold. This is imposed by
the fact ck should be easily classified as the correct
label yk:

min
f∈F

1

K

K∑

n=1

CE(yk, f2(ck)), (9)

where f2 is specficied according to the problem
in either (7) or (8). This regularization is used as
a penalty in the main training objective in (7) or
(8), and the default weighting hyperparameter is
set as 1. It will lead to meaningful interpretabil-
ity of learned label embeddings as shown in the
experiments.

Interestingly in text classification, the class
itself is often described as a set of E words
{ei, i = 1, · · · , E}. These words are consid-
ered as the most representative description of each
class, and highly distinguishing between different
classes. For example, the Yahoo! Answers Topic
dataset (Zhang et al., 2015) contains ten classes,
most of which have two words to precisely de-
scribe its class-specific features, such as “Comput-
ers & Internet”, “Business & Finance” as well as
“Politics & Government” etc. We consider to use
each label’s corresponding pre-trained word em-
beddings as the initialization of the label embed-
dings. For the datasets without representative class
descriptions, one may initialize the label embed-
dings as random samples drawn from a standard
Gaussian distribution.

Testing Both the learned word and label embed-
dings are available in the testing stage. We clar-
ify that the label embeddings C of all class candi-
dates Y are considered as the input in the testing
stage; one should distinguish this from the use of
groundtruth label y in prediction. For a text se-
quence X, one may feed it through the proposed
pipeline for prediction: (i) f1: harvesting the word
embeddings V, (ii) f2: V interacts with C to ob-
tain G, pooled as β, which further attends V to
derive z, and (iii) f3: assigning labels based on
the tasks. To speed up testing, one may store G
offline, and avoid its online computational cost.
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Model Parameters Complexity Seq. Operation
CNN m · h · P O(m · h · L · P ) O(1)
LSTM 4 · h · (h+ P ) O(L · h2 + h · L · P ) O(L)
SWEM 0 O(L · P ) O(1)
Bi-BloSAN 7·P 2+5·P O(P 2 ·L2/R+P 2 ·L+P 2 ·R2) O(1)
Our model K · P O(K · L · P ) O(1)

Table 1: Comparisons of CNN, LSTM, SWEM
and our model architecture. Columns correspond
to the number of compositional parameters, com-
putational complexity and sequential operations

4.3 Model Complexity

We compare CNN, LSTM, Simple Word
Embeddings-based Models (SWEM) (Shen et al.,
2018a) and our LEAM wrt the parameters and
computational speed. For the CNN, we assume
the same size m for all filters. Specifically, h
represents the dimension of the hidden units in
the LSTM or the number of filters in the CNN; R
denotes the number of blocks in the Bi-BloSAN;
P denotes the final sequence representation
dimension. Similar to (Vaswani et al., 2017;
Shen et al., 2018a), we examine the number of
compositional parameters, computational com-
plexity and sequential steps of the four methods.
As shown in Table 1, both the CNN and LSTM
have a large number of compositional parameters.
Since K � m,h, the number of parameters in
our models is much smaller than for the CNN and
LSTM models. For the computational complexity,
our model is almost same order as the most simple
SWEM model, and is smaller than the CNN or
LSTM by a factor of mh/K or h/K.

5 Experimental Results

Setup We use 300-dimensional GloVe word em-
beddings Pennington et al. (2014) as initializa-
tion for word embeddings and label embeddings
in our model. Out-Of-Vocabulary (OOV) words
are initialized from a uniform distribution with
range [−0.01, 0.01]. The final classifier is imple-
mented as an MLP layer followed by a sigmoid
or softmax function depending on specific task.
We train our model’s parameters with the Adam
Optimizer (Kingma and Ba, 2014), with an ini-
tial learning rate of 0.001, and a minibatch size
of 100. Dropout regularization (Srivastava et al.,
2014) is employed on the final MLP layer, with
dropout rate 0.5. The model is implemented using
Tensorflow and is trained on GPU Titan X.

The code to reproduce the experimental results
is at https://github.com/guoyinwang/LEAM

Dataset # Classes # Training # Testing
AGNews 4 120k 7.6k
Yelp Binary 2 560 k 38k
Yelp Full 5 650k 38k
DBPedia 14 560k 70k
Yahoo 10 1400k 60k

Table 2: Summary statistics of five datasets, in-
cluding the number of classes, number of training
samples and number of testing samples.

5.1 Classification on Benchmark Datasets
We test our model on the same five standard
benchmark datasets as in (Zhang et al., 2015). The
summary statistics of the data are shown in Table
2, with content specified below:

• AGNews: Topic classification over four cat-
egories of Internet news articles (Del Corso
et al., 2005) composed of titles plus descrip-
tion classified into: World, Entertainment,
Sports and Business.

• Yelp Review Full: The dataset is obtained
from the Yelp Dataset Challenge in 2015, the
task is sentiment classification of polarity star
labels ranging from 1 to 5.

• Yelp Review Polarity: The same set of
text reviews from Yelp Dataset Challenge in
2015, except that a coarser sentiment defini-
tion is considered: 1 and 2 are negative, and
4 and 5 as positive.

• DBPedia: Ontology classification over four-
teen non-overlapping classes picked from
DBpedia 2014 (Wikipedia).

• Yahoo! Answers Topic: Topic classifica-
tion over ten largest main categories from Ya-
hoo! Answers Comprehensive Questions and
Answers version 1.0, including question title,
question content and best answer.

We compare with a variety of methods, in-
cluding (i) the bag-of-words in (Zhang et al.,
2015); (ii) sophisticated deep CNN/RNN models:
large/small word CNN, LSTM reported in (Zhang
et al., 2015; Dai and Le, 2015) and deep CNN (29
layer) (Conneau et al., 2017); (iii) simple compo-
sitional methods: fastText (Joulin et al., 2016) and
simple word embedding models (SWEM) (Shen
et al., 2018a); (iv) deep attention models: hier-
archical attention network (HAN) (Yang et al.,
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Model Yahoo DBPedia AGNews Yelp P. Yelp F.
Bag-of-words (Zhang et al., 2015) 68.90 96.60 88.80 92.20 58.00

Small word CNN (Zhang et al., 2015) 69.98 98.15 89.13 94.46 58.59
Large word CNN (Zhang et al., 2015) 70.94 98.28 91.45 95.11 59.48

LSTM (Zhang et al., 2015) 70.84 98.55 86.06 94.74 58.17
SA-LSTM (word-level) (Dai and Le, 2015) - 98.60 - - -
Deep CNN (29 layer) (Conneau et al., 2017) 73.43 98.71 91.27 95.72 64.26

SWEM (Shen et al., 2018a) 73.53 98.42 92.24 93.76 61.11
fastText (Joulin et al., 2016) 72.30 98.60 92.50 95.70 63.90

HAN (Yang et al., 2016) 75.80 - - - -
Bi-BloSAN� (Shen et al., 2018c) 76.28 98.77 93.32 94.56 62.13

LEAM 77.42 99.02 92.45 95.31 64.09
LEAM (linear) 75.22 98.32 91.75 93.43 61.03

Table 3: Test Accuracy on document classification tasks, in percentage. � We ran Bi-BloSAN using the
authors’ implementation; all other results are directly cited from the respective papers.

2016); (v) simple attention models: bi-directional
block self-attention network (Bi-BloSAN) (Shen
et al., 2018c). The results are shown in Table 3.

Testing accuracy Simple compositional meth-
ods indeed achieve comparable performance as the
sophisticated deep CNN/RNN models. On the
other hand, deep hierarchical attention model can
improve the pure CNN/RNN models. The recently
proposed self-attention network generally yield
higher accuracy than previous methods. All ap-
proaches are better than traditional bag-of-words
method. Our proposed LEAM outperforms the
state-of-the-art methods on two largest datasets,
i.e., Yahoo and DBPedia. On other datasets,
LEAM ranks the 2nd or 3rd best, which are simi-
lar to top 1 method in term of the accuracy. This
is probably due to two reasons: (i) the number
of classes on these datasets is smaller, and (ii)
there is no explicit corresponding word embed-
ding available for the label embedding initializa-
tion during learning. The potential of label embed-
ding may not be fully exploited. As the ablation
study, we replace the nonlinear compatibility (3)
to the linear one in (2) . The degraded performance
demonstrates the necessity of spatial dependency
and nonlinearity in constructing the attentions.

Nevertheless, we argue LEAM is favorable for
text classification, by comparing the model size
and time cost Table 4, as well as convergence
speed in Figure 2(a). The time cost is reported
as the wall-clock time for 1000 iterations. LEAM
maintains the simplicity and low cost of SWEM,
compared with other models. LEAM uses much
less model parameters, and converges significantly

Model # Parameters Time cost (s)
CNN 541k 171
LSTM 1.8M 598
SWEM 61K 63
Bi-BloSAN 3.6M 292
LEAM 65K 65

Table 4: Comparison of model size and speed.

faster than Bi-BloSAN. We also compare the per-
formance when only a partial dataset is labeled,
the results are shown in Figure 2(b). LEAM con-
sistently outperforms other methods with different
proportion of labeled data.

Hyper-parameter Our method has an addi-
tional hyperparameter, the window size r to define
the length of “phase” to construct the attention.
Larger r captures long term dependency, while
smaller r enforces the local dependency. We study
its impact in Figure 2(c). The topic classification
tasks generally requires a larger r, while senti-
ment classification tasks allows relatively smaller
r. One may safely choose r around 50 if not fine-
tuning. We report the optimal results in Table 3.

5.2 Representational Ability

Label embeddings are highly meaningful To
provide insight into the meaningfulness of the
learned representations, in Figure 3 we visual-
ize the correlation between label embeddings and
document embeddings based on the Yahoo date-
set. First, we compute the averaged document em-
beddings per class: z̄k = 1

|Sk|
∑

i∈Sk zi, where Sk
is the set of sample indices belonging to class k.
Intuitively, z̄k represents the center of embedded
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Figure 2: Comprehensive study of LEAM, including convergence speed, performance vs proportion of
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Figure 3: Correlation between the learned text sequence representation z and label embedding V. (a)
Cosine similarity matrix between averaged z̄ per class and label embedding V, and (b) t-SNE plot of
joint embedding of text z and labels V.

text manifold for class k. Ideally, the perfect label
embedding ck should be the representative anchor
point for class k. We compute the cosine similar-
ity between z̄k and ck across all the classes, shown
in Figure 3(a). The rows are averaged per-class
document embeddings, while columns are label
embeddings. Therefore, the on-diagonal elements
measure how representative the learned label em-
beddings are to describe its own classes, while
off-diagonal elements reflect how distinctive the
label embeddings are to be separated from other
classes. The high on-diagonal elements and low
off-diagonal elements in Figure 3(a) indicate the
superb ability of the label representations learned
from LEAM.

Further, since both the document and label em-
beddings live in the same high-dimensional space,
we use t-SNE (Maaten and Hinton, 2008) to vi-
sualize them on a 2D map in Figure 3(b). Each
color represents a different class, the point clouds
are document embeddings, and the label embed-
dings are the large dots with black circles. As can
be seen, each label embedding falls into the inter-

nal region of the respective manifold, which again
demonstrate the strong representative power of la-
bel embeddings.

Interpretability of attention Our attention
score β can be used to highlight the most infor-
mative words wrt the downstream prediction task.
We visualize two examples in Figure 4(a) for the
Yahoo dataset. The darker yellow means more im-
portant words. The 1st text sequence is on the
topic of “Sports”, and the 2nd text sequence is
“Entertainment”. The attention score can correctly
detect the key words with proper scores.

5.3 Applications to Clinical Text

To demonstrate the practical value of label embed-
dings, we apply LEAM for a real health care sce-
nario: medical code prediction on the Electronic
Health Records dataset. A given patient may have
multiple diagnoses, and thus multi-label learning
is required.

Specifically, we consider an open-access
dataset, MIMIC-III (Johnson et al., 2016), which

2328



AUC F1
Model Macro Micro Macro Micro P@5
Logistic Regression 0.829 0.864 0.477 0.533 0.546
Bi-GRU 0.828 0.868 0.484 0.549 0.591
CNN (Kim, 2014) 0.876 0.907 0.576 0.625 0.620
C-MemNN (Prakash et al., 2017) 0.833 - - - 0.42
Attentive LSTM (Shi et al., 2017) - 0.900 - 0.532 -
CAML (Mullenbach et al., 2018) 0.875 0.909 0.532 0.614 0.609
LEAM 0.881 0.912 0.540 0.619 0.612

Table 5: Quantitative results for doctor-notes multi-label classification task.

contains text and structured records from a
hospital intensive care unit. Each record includes
a variety of narrative notes describing a patients
stay, including diagnoses and procedures. They
are accompanied by a set of metadata codes from
the International Classification of Diseases (ICD),
which present a standardized way of indicating
diagnoses/procedures. To compare with previous
work, we follow (Shi et al., 2017; Mullenbach
et al., 2018), and preprocess a dataset consisting
of the most common 50 labels. It results in 8,067
documents for training, 1,574 for validation, and
1,730 for testing.

Results We compare against the three base-
lines: a logistic regression model with bag-of-
words, a bidirectional gated recurrent unit (Bi-
GRU) and a single-layer 1D convolutional net-
work (Kim, 2014). We also compare with three
recent methods for multi-label classification of
clinical text, including Condensed Memory Net-
works (C-MemNN) (Prakash et al., 2017), Atten-
tive LSTM (Shi et al., 2017) and Convolutional
Attention (CAML) (Mullenbach et al., 2018).

To quantify the prediction performance, we fol-
low (Mullenbach et al., 2018) to consider the
micro-averaged and macro-averaged F1 and area
under the ROC curve (AUC), as well as the preci-
sion at n (P@n). Micro-averaged values are cal-
culated by treating each (text, code) pair as a sep-
arate prediction. Macro-averaged values are cal-
culated by averaging metrics computed per-label.
P@n is the fraction of the n highestscored labels
that are present in the ground truth.

The results are shown in Table 5. LEAM pro-
vides the best AUC score, and better F1 and P@5
values than all methods except CNN. CNN con-
sistently outperforms the basic Bi-GRU architec-
ture, and the logistic regression baseline performs
worse than all deep learning architectures.

(a) Yahoo dataset

(b) Clinical text

Figure 4: Visualization of learned attention β.

We emphasize that the learned attention can be
very useful to reduce a doctor’s reading burden.
As shown in Figure 4(b), the health related words
are highlighted.

6 Conclusions

In this work, we first investigate label embed-
dings for text representations, and propose the
label-embedding attentive models. It embeds the
words and labels in the same joint space, and mea-
sures the compatibility of word-label pairs to at-
tend the document representations. The learn-
ing framework is tested on several large standard
datasets and a real clinical text application. Com-
pared with the previous methods, our LEAM al-
gorithm requires much lower computational cost,
and achieves better if not comparable performance
relative to the state-of-the-art. The learned atten-
tion is highly interpretable: highlighting the most
informative words in the text sequence for the
downstream classification task.
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Abstract

Topic models with sparsity enhancement
have been proven to be effective at learn-
ing discriminative and coherent latent top-
ics of short texts, which is critical to
many scientific and engineering applica-
tions. However, the extensions of these
models require carefully tailored graphi-
cal models and re-deduced inference al-
gorithms, limiting their variations and ap-
plications. We propose a novel sparsity-
enhanced topic model, Neural Sparse Top-
ical Coding (NSTC) base on a sparsity-
enhanced topic model called Sparse Top-
ical Coding (STC). It focuses on replac-
ing the complex inference process with the
back propagation, which makes the model
easy to explore extensions. Moreover, the
external semantic information of words in
word embeddings is incorporated to im-
prove the representation of short texts. To
illustrate the flexibility offered by the neu-
ral network based framework, we present
three extensions base on NSTC without
re-deduced inference algorithms. Experi-
ments on Web Snippet and 20Newsgroups
datasets demonstrate that our models out-
perform existing methods.

1 Introduction

Topic models with sparsity enhancement have
proven to be effective tools for exploratory analy-
sis of the overload of short text content. The latent
representations learned by these models are cen-
tral to many applications. However, these mod-
els have trouble to rapidly explore variations for
the approximate inference methods of them. Even
subtle variations on models can increase the com-
plexity of the inference methods, which is espe-

cially apparent for non-conjugate models.
With the development of deep learning, many

works combine topic models with neural language
model to overcome the computation complexity of
topic models (Larochelle and Lauly, 2012a; Cao
et al., 2015; Tian et al., 2016). Most of these meth-
ods adopt multiple neural network layers to model
the generation process of each document. Nev-
ertheless, these methods yield the same poor per-
formance in short texts as traditional topic mod-
els. There are also many works introducing new
techniques such as word embeddings to traditional
topic models. Word embeddings has proven to be
effective at capturing syntactic and semantic infor-
mation of words. Many works (Das et al., 2015;
Hu and Tsujii, 2016; Li et al., 2016) have shown
that the additional semantics in word embeddings
can enhance the performance of traditional topic
models. Yet these models have the same trouble in
making extensions as traditional topic models.

Base on the above observations, we propose
Neural Sparse Topical Coding (NSTC) by jointly
utilizing word embeddings and neural network
with a sparsity-enhanced topic model, Sparse Top-
ical Coding (STC). We adopt neural network to
model the generation process of STC to simplify
the complex inference and improve flexibility, and
incorporate external semantics provided by word
embeddings to improve the overall accuracy. To
illustrate the dramatic flexibility offered by the
end-to-end neural network, we present three ex-
tensions base on NSTC. Our proposed models
all benefit from both sides: 1) when compared
with the neural based topic models, which stuck
in the sparseness of word co-occurrence informa-
tion, they show how the sparsity mechanism and
word embeddings enrich the features and improve
the performance; 2) while with topic models with
sparsity enhancement, our models present how the
black-box inference method of neural network ac-
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celerates the training process and increases the
flexibility. To evaluate the effectiveness of our
models by conducting experiments on 20 News-
groups and Web Snippet datasets.

2 Related Work

Topic models with sparsity enhancement: The
performance of traditional topic models are com-
promised by the sparse word co-occurrence in-
formation when applied in short texts. To over-
come the bottleneck, there have been many ef-
forts to address the problem of sparsity in short
texts. Based on traditional LDA, (Williamson
et al., 2010) introduced a Spike and Slab prior to
model the sparsity in finite and infinite latent topic
structures of text. To consider the dual-sparsity
of topics per document and terms per topic, (Lin
et al., 2014) proposed a dual-sparse topic model
that addresses the sparsity in both the topic mix-
tures and the word usage. There are also some
non-probabilistic sparse topic models, which can
directly control the sparsity by imposing regular-
izers. For example, the non-negative matrix fac-
torization (NMF) (Heiler and Schnörr, 2006) for-
malized topic modeling as a problem of mini-
mizing loss function regularized by lasso. Simi-
larly, (Zhu and Xing, 2011) presented sparse top-
ical coding (STC) by utilizing the Laplacian prior
to directly control the sparsity of inferred repre-
sentations. Additionally, (Peng et al., 2016) pre-
sented sparse topical coding with sparse groups
(STCSG) to find sparse word and document rep-
resentations of texts. However, over complicated
inference procedure of these sparse topic models
make them difficult to rapidly explore variations.

Topic models with word embeddings: There
are many works tried to incorporate word embed-
dings with topic models to improve the perfor-
mance. (Das et al., 2015) proposed a new tech-
nique for topic modeling by treating the document
as a collection of word embeddings and topics it-
self as multivariate Gaussian distributions in the
embedding space. However, the assumption that
topics are unimodal in the embedding space is not
appropriate, since topically related words can oc-
cur distantly from each other in the embedding
space. Therefore, (Hu and Tsujii, 2016) proposed
latent concept topic model (LCTM), which mod-
eled a topic as a distribution of concepts, where
each concept defined another distribution of word
vectors. (Nguyen et al., 2015) proposed Latent

Feature Topic Modeling (LFTM), which extended
LDA to incorporate word embeddings as latent
features. (Li et al., 2016) focused on combing
the local information of word embeddings and
the global information of LDA, thus proposed a
model TopicVec yielded by the variational infer-
ence method. However, these models also have
trouble to rapidly explore variations.

Neural Topic Models: There are also some ef-
forts trying to combine topic models with neural
networks to represent words and documents si-
multaneously. (Larochelle and Lauly, 2012a) pro-
posed a neural network topic model that is sim-
ilarly inspired by the Replicated Softmax. (Cao
et al., 2015) proposed a novel neural topic model
(NTM) where the representation of words and
documents are efficiently and naturally combined
into a uniform framework. (Das et al., 2015) pro-
posed a new technique for topic modeling by treat-
ing the document as a collection of word embed-
dings and topics itself as multivariate Gaussian
distributions in the embedding space. To address
the limitations of the bag-of-words assumption,
(Tian et al., 2016) proposed Sentence Level Re-
current Topic Model (SLRTM) by using a Recur-
rent Neural Networks (RNN) based framework to
model long range dependencies between words.
Nevertheless, most of aforementioned works yield
poor performance in short texts.

3 Neural Sparse Topical Coding

Firstly, we define that D = {1, ..., M} is a doc-
ument set with size M , T = {1, ..., K} is a
topic collection with K topics, V = {1, .., N}
is a vocabulary with N words, and wd =
{wd,1, ..., wd,|I|} is a vector of terms representing
a document d, where I is the index of words in
document d, and wd,n(n ∈ I) is the frequency
of word n in document d. Moreover, we denote
β ∈ RN×K as a global topic dictionary for the
whole document set with K bases, θd ∈ RK

is the document code of each document d and
sd,n ∈ RK is the word code of each word n in
each document d. To yield interpretable patterns,
(θ, s, β) are constrained to be non-negative.

3.1 Sparse Topical Coding

STC is a hierarchical non-negative matrix factor-
ization for learning hierarchical latent representa-
tions of input samples. In STC, each document
and each word is represented as a low-dimensional
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code in topic space, which can be employed in
many tasks. Based on the global topic dictionary
β of all documents with K topic bases sampled
from a uniform distribution, the generative process
of each document d is described as follows:

1. Sample the document code θd from a prior
p(θd) ∼ Laplace(λ−1).

2. For each observed word n in document d:

(a) Sample the word code sd,n from a
conditional distribution p(sd,n|θd) ∼
supergaussian(θd, γ

−1, ρ−1).
(b) Sample the observed word count wd,n

from a distribution p(wd,n|sd,n ∗ βn) ∼
Poisson(sd,n ∗ βn)

To achieve sparse word codes, STC defines
p(sd,n|θd) as a product of two component dis-
tributions p(sd,n|θd) ∼ p(sd,n|θd, γ)p(sd,n|ρ),
where p(sd,n|θd, γ) is an isotropic Gaussian dis-
tribution, and p(sd,n|ρ) is a Laplace distribution.
The composite distribution is super-Gaussian:
p(sd,n|θd) ∝ exp(γ||sd,nθd||22ρ||sd,n||1). With the
Laplace term, the composite distribution tends to
yield sparse word codes. For the same purpose,
the prior distribution p(θd) of document codes
is a Laplace prior. Although STC has closed
form coordinate descent equations for parameters
(θ, s, β), it is inflexible for its complex inference
process.

3.2 Neural Network View of Sparse Topical
Coding

We devote to rebuild STC with a neural network to
simplify it’s inference process via BackPropoga-
tion. After generating the topic dictionary from
neural network, our model follows the generative
story below for each document d:

1. For each word n in document d:

(a) Sample a latent variable word code
sd,n ∼ fg(d, n).

(b) Sample the observed word count
wd,n from p(wd,n|sd,n, βn) ∼
Poisson(sd,n ∗ βn)

In our model, we have several assumptions:
1) To simplify our model and acclerate the infer-

ence process, we collapse the document code from
our model. As illuatrated in (Bai et al., 2013) and
STC paper (Zhu and Xing, 2011), we can naturally

generate each document code via a aggregation of
all sampled word codes among all topics, after in-
ferring the global topic dictionary and the word
codes of words belong to each document:

θd =
D∑

d=1

Nd∑

n=1

sd,nk βkn/
D∑

d=1

Nd∑

n=1

K∑

k=1

sd,nk βkn;

2) We replace the composite super-Gaussian
prior of the word codes and the uniform distri-
bution of the topic dictionary with the neural net-
work. In the topic dictionary neural network, we
introduce the word semantic information via word
embeddings to enrich the feature space for short
texts;

3) Similar to STC, the observed word count is
sampled from Poisson distribution, which is more
appropriate for the discrete count data than other
exponential family distributions.

3.3 Neural Sparse Topical Coding
In this section, we introduce the detailed layer
structures of NSTC in Figure 1. We explicitly ex-

( , )C d n

( , ) ( , ) ( )C d n s d n n

Word basis layer ( )nWord code layer ( , )s d n

Topic dictionaryWord code ,2dW

Lookup tableWE

1( )relu WE W

,2( , ) ( ( ,:))ds d n relu nW

( , )d n

Document d Word n

Figure 1: Schematic overview of NSTC.

plain each layer of NSTC below:
Input layer (n, d): A word n of document d ∈

D, where D is a document set.
Word embedding layer (WE ∈ RN×300): Sup-

posing the word number of the vocabulary is N ,
this layer devotes to transform each word to a
distributed embedding representation. Here, we
adopt the pre-trained embeddings by GloVe based
on a large Wikipedia dataset1.

Word code layers (sd ∈ RN×K): These lay-
ers generate the K-dimensional word code of in-
put word n in document d.

s(d, n) = fs(d, n) (1)

where fs is a multilayer perceptron. In order
to achieve interpretable word codes as in STC,

1http://nlp.stanford.edu/projects/glove/
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we constrain s to be non-negative, therefore we
apply the relu activation function on the output
of the neural network. Although imposing non-
negativity constraints could potentially result in
sparser and more interpretable patterns, we exert
l1 norm regularization on s to further keep the
sparse assumption.

Topic dictionary layers (β ∈ RN×K): These
layers aim at converting WE to a topic dictionary
similar to the one in STC.

β(n) = fβ(WE) (2)

where fβ is a multilayer perceptron. We make a
simplex projection among the output of topic dic-
tionary neural network.We normalize each column
of the dictionary via the simplex projection as fol-
low:

β.k = project(β.k), ∀k (3)

The simplex projection is the same as the sparse-
max activation function in (Martins and Astudillo,
2016), providing the theoretical base of its em-
ployment in a neural network trained with back-
propagation. After the simplex projection, each
column of the topic dictionary is promised to be
sparse, non-negative and united.

Score layer (Cd,n ∈ R1×1): NSTC outputs the
matching score of a word n and a document d with
the dot product of s(d, n) and β(n) in this layer.
The output score is utilized to approximate the ob-
served word count wd,n.

C(d, n) = s(d, n) ∗ β(n) (4)

Given the count wd,n of word n in document d,
we can directly use it to supervise the training pro-
cess. According to the architecture of our model,
for each word n and each document d, the cost
function is:

L = l(wd,n, C(d, n)) + λ||sd,n||1 (5)

where l is the log-Poisson loss, λ is the regulariza-
tion factors.

3.4 Extensions of NSTC

To future illustrate the benefits of a black box in-
ference method, which allows rapidly explore new
models, we present three variants of NSTC.

Deep l1 Approximation. STC is based on the
idea of sparse coding, in which the sparse code
s of the input w can be obtained by solving the

loss function for a given dictionary β. In (Gre-
gor and LeCun, 2010), the parameterized encoder,
named learned ISTA (LISTA) was proposed to ef-
ficiently approximate the l1 based sparse code.
Based on the consideration, we present a enhanced
NSTC via employing the deep l1 regularized en-
coder similar to LISTA, named NSTCE. We de-
vise a feed-forward neural network as illustrated
in Figure 2, to efficiently approximate the l1 based
sparse code s of the input w.

F (wd; Wd, bd) = relu(wd ∗ Wd + bd) (6)

The goal is to make the prediction of neural net-
work predictor F after the fixed depth as close
as possible to the optimal set of coefficients s∗ in
Eq.4. To jointly optimizing all parameters with the
dictionary β together, we add another term to the
loss function in Eq.4, and enforce the representa-
tion s to be as close as possible to the feed forward
prediction (Kavukcuoglu et al., 2010):

L =l(wd,n, C(d, n)) + λ||sd,n||1
+ α

∑

n

||sd − F (wd; Wd, bd)||22 (7)

Minimizing the loss with respect to s produces a
sparse representation that simultaneously recon-
structs the word count and is not too different from
the predicted representation.

w W

b

s

relu

Figure 2: Deep l1 encoder.

Group Sparse Regularization. Based on STC,
(Bai et al., 2013) presented GSTC to discover
document-level sparse or admixture proportion for
short texts, in which the group sparse is employed
to achieve sparse code at document level by taking
into account the structure of bag of words. Here,
we just need to add the group sparse regularization
on the weight matrix, to make a neural network
extension of GSTC, called NGSTC. We consider
each column of sd as a group.

L = l(wd,n, C(d, n)) + λ
K∑

k=1

||sd,.k||2 (8)

Sparse Group Lasso. Similar to GSTC,
STCSG (Peng et al., 2016) was proposed to learn
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sparse word and document codes, which relaxes
the normalization constraint of the inferred rep-
resentations with sparse group lasso. Base on
STCSG, we propose a novel neural topic model
called NSTCSG. We imposse the sparse group
lasso on the word code, and have the following
cost function:

L = l(wd,n, C(d, n))+λ1||sd,n||1+λ2

K∑

k=1

||sd,.k||2

(9)
These three models have the same neural network
structures as NSTC, and can be trained end to
end with out re-deduced mathematical inference.
Moreover, group and sparse group sparsity can
help reduce the intrinsic complexity of the model
by eliminating neurons as shown in Figure 3, and
thus can help obtain practical speed ups in deep
neural networks.

3.5 Optimization
For the first two models with the lasso regular-
izer, we can directly ulitize the end to end stochas-
tic gradient descent (SGD) to perform optimiz-
ing. The last two optimizing objectives of NGSTC
and NSTCSG are formed as a combination of
both smooth and non-smooth terms, they can be
solved via proximal stochastic gradient descent.
The proximal gradient algorithm first obtains the
intermediate solution via SGD on the loss only,
and then optimize for the regularization term via
performing Euclidean projection of it to the solu-
tion space, as in the following formulation:

min
st+1
d,n

R(st+1
d,n ) +

1

2
||st+1

d,n − s
t+ 1

2
d,n ||22 (10)

where R is the regularization, s
t+ 1

2
d,n the intermedi-

ate solution obtained by SGD, st+1
d,n is the variable

to obtain after the current iteration. For the group
lasso, the above problem has the closed-form so-
lution. The proximal operator for the group lasso
regularizer in Eq.8 is given as follow:

proxGL(sd,nk) = (1 − λ

||sd,.k||2
)+sd,nk (11)

The proximal operator for the sparse group lasso
regularizer in Eq.9 is given as follow:

proxSGL(sd,nk) =(1 − λ2

||sign(sd,.k, λ1)||2
)+

sign(sd,nk, λ1)

(12)

The detailed algorithm framework of NGSTC and
NSTCSG is shown in Algorithm 1.

Algorithm 1 Training Algorithm for our models

Require: a document d ∈ D
1: t = t + 1
2: repeat
3: Compute the partial derivatives of weight

matrices,s, and β with a non-regularized
objective;

4: Update weight matrices, s, and β using
SGD.

5: Update s using proximal operator
6: Update β using simplex projection.
7: until convergence

4 Experiments

4.1 Data and Setting
We perform our experiments on two benchmark
datasets:

• 20Newsgroups: is comprised of 18775
newsgroup articles with 20 categories, and
contains 60698 unique words2.

• Web Snippet: includes 12340 Web search
snippets with 8 categories, we remove the
words with fewer than 3 characters and
with document frequency less than 3 in the
dataset3.

We compare the performance of the NSTC with
the following baselines:

• LDA (Blei et al., 2001). A classical proba-
bilistic topic model. We use the LDA pack-
age4 for its implementation. We use the set-
tings with iteration number n = 2000, the
Dirichlet parameter for distribution over top-
ics α = 0.1 and the Dirichlet parameter for
distribution over words η = 0.01.

• STC (Zhu and Xing, 2011). It is a sparsity-
enhanced non-probabilistic topic model. We
use the code released by the authors5. We set
the regularization constants as λ = 0.3, ρ =
0.0001 and the maximum number of itera-
tions of hierarchical sparse coding, dictionary
learning as 100.

2http://www.qwone.com/ jason/20Newsgroups/
3http://jwebpro.sourceforge.net/data-web-snippets.tar.gz
4https://pypi.python.org/pypi/lda
5http://bigml.cs.tsinghua.edu.cn/ jun/stc.shtml/
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(a) (b) (c)

Figure 3: (a) Lasso: the Lasso penalty removes elements without optimizing neuron-level considerations
(highlighted in red). (b) Group lasso: when grouping weights from the the same input neuron into each
group, the group sparsity has an effect of completely removing some neurons (highlighted in red). (c)
Sparse group lasso: it combines the advantages of the former two formulations, which can remove some
neurons and elements (highlighted in red).

• DocNADE (Larochelle and Lauly, 2012b).
An unsupervised neural network topic model
of documents and has shown that it is a com-
petitive model both as a generative model and
as a document representation learning algo-
rithm6. In DocNADE, the hidden size is 50,
the learning rate is 0.0004 , the bath size is 64
and the max training number is 50000.

• GaussianLDA (Das et al., 2015). A new
technique for topic modeling by treating the
document as a collection of word embed-
dings and topics itself as multivariate Gaus-
sian distributions in the embedding space7.
We use default values for the parameters.

• TopicVec (Li et al., 2016). A model incorpo-
rates generative word embedding model with
LDA 8. We also use default values for the pa-
rameters.

Our three models are implemented in Python using
TensorFlow9. For both datasets, we use the pre-
trained 300-dimensional word embeddings from
Wikipedia by GloVe, and it is fixed during train-
ing. For each out-of-vocab word, we sample a
random vector from a normal distribution. In
practice, we use a regular learning rate 0.00001
for both dataset. We set the regularization factor
λ = 1, α = 1, λ1 = 0.6, λ2 = 0.4. In initial-
ization, all weight matrices are randomly initial-
ized with the uniformed distribution in the inter-
val [0, 0.001] for web snippet, and [0, 0.0001] for
20Newsgroups.

6https://github.com/huashiyiqike/TMBP/tree/master/DocN
ADE

7https://github.com/rajarshd/Gaussian LDA
8https://github.com/askerlee/topicvec
9https://www.tensorflow.org/

4.2 Classification Accuracy

We perform text classification tasks on Web Snip-
pet dataset and 20Newsgroups. For the Web Snip-
pet, we follow its original partition that consists
of 10060 training documents and 2280 test doc-
uments. On 20Newsgroups, we we keep 60%
documents for training and 40% for testing as in
(Zhu and Xing, 2011). We adopt the SVM as
the classifier with the document representations
learned by topic models. Figure 4 reports the con-
vergence curves of loss and accuracy over itera-
tions. The results show that the loss and accu-
racy of our method can achieve convergence af-
ter almost 100 epochs on web snippets and 50
epochs on 20Newsgroups with appropriate learn-
ing rate. Table 1 reports the classification ac-
curacy on both datasets under different methods
with different settings on the number of topics
K = {50, 100, 150, 200, 250}. We can found
that 1) The NSTCSG yields the highest accuracy,
followed by NGSTC, NSTCE and NSTC which
all outperform the DocNADE, GLDA, STC and
LDA. 2) The embedding based models (NSTCSG,
NGSTC, NSTCE, NSTC, DocNADE and GLDA)
generate better document representations than
STC and LDA separately, demonstrating the rep-
resentative power of neural networks based on
word embeddings. 3) Sparse models (NSTCSG,
NGSTC, NSTCE, NSTC and STC) are superior to
non-sparse models NTM and LDA separately. It
indicates that sparse topic models are more suit-
able to short documents. 4) The NSTCSG perform
better than NGSTC, followed by NSTC, which il-
lustrates both sparse group lasso and group lasso
penalty are contribute to learning the document
representations with clear semantic explanations.
5) The accuracies of DocNADE decrease with the
increasing of the topic K. This is may because
DocNADE may generate the document topic dis-
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tribution with many indistinct non-zeros due to the
data sparsity caused by the increasing number of
topics. Notice that LDA has the same performance
on the web snippet dataset.
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Figure 4: The loss and accuracy curves with the
iterations on two datasets,on different number of
topic K settings.
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Figure 5: The average sparsity ratio of word and
document codes.

4.3 Sparse Ratio

We further compare the sparsity of the learned la-
tent representations of words and documents from
different models on Web Snippet.

Word code: For each word n, we compute
the average word code and average sparsity ra-
tio of them as in (Zhu and Xing, 2011). Fig-
ure 5a presents the average word sparse ratio of
word codes discovered by different models for
Web Snippet. Note that the NGSTC can not yield
sparse word codes but sparse document codes. We
can see that 1) The NSTCSG learns the sparsest
word codes, followed by NSTC and STC, which

perform much better than NTM and LDA. 2) The
word codes discovered by LDA and NTM are
very dense for lacking the mechanism to learn the
focused topics. The sparsity in both models is
mainly caused by the data scarcity. 3)The rep-
resentations learned by sparse models (NSTCSG,
NSTC and STC) are much sparser, which indi-
cates each word concentrates on only a small num-
ber of topics in these models, and therefore the
word codes are more clear and semantically con-
centrated. 4) Meanwhile, the sparse ratio of STC
and NSTC are lower than NSTCSG. It proves the
sparse group lasso penalty can easily allow to pro-
vide networks with a high level of sparsity.

Document code: We further quantitatively
evaluate the average sparse ratio on latent repre-
sentations of documents from different models,
as shown in Figure 5b. We can see that 1) The
NSTCSG yields the highest sparsity ratio, fol-
lowed by NGSTC and STC, which outperform
NTM and LDA by a large margin. 2) The docu-
ment codes discovered by LDA and NTM are still
very dense, while the representations learned by
sparse models (NSTC and STC) are much sparser.
It indicates the sparse models can discover focused
topics and obtain discriminative representations of
documents. 3) Similar to the word code, NGSTC
outperforms NGSTC and STC. It demonstrates
that the sparse group lasso penalty can achieve bet-
ter sparsity than group lasso and lasso. 4) The
sparsity ratios of sparse models increase with the
topic numbers. The possible reason is that the
sparse models tend to learn the focused topic num-
ber which approaches to the real topic number, and
an increasing number of redundant topics can be
discarded. 5) The NSTCSG inherits the advan-
tages of NSTC and NGSTC, which can achieve
the sparse topic representations of words and doc-
uments.

4.4 Generative Model Evaluation

To further evaluate our models as a generative
model of documents, we show the test document
perplexity achieved by each topic model on the
20NewsGroups with 50 topic numbers in table 2.
Notice that the topic number in TopicVec can not
be specified to a fixed value, thus we follow the
set in (Li et al., 2016) with 281 topics. In table 3,
we show the top-9 words of learned focused top-
ics in 20 Newsgroups datasets. For each topic,
we list top-9 words according to their probabili-
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Table 1: Classification accuracy of different models on Web snippet and 20NG, with different number of
topic K settings.

Dataset Snippet 20NG
k 50 100 150 200 250 50 100 150 200 250

LDA 0.682 0.592 0.573 0.615 0.583 0.545 0.615 0.607 0.613 0.623
STC 0.678 0.699 0.724 0.731 0.723 0.602 0.631 0.647 0.652 0.654

DocNADE 0.656 0.656 0.645 0.646 0.647 0.682 0.670 0.646 0.583 0.573
GLDA 0.669 0.689 0.675 0.670 0.623 0.367 0.438 0.465 0.496 0.526
NSTC 0.734 0.756 0.791 0.793 0.789 0.634 0.671 0.682 0.690 0.72

NSTCE 0.739 0.778 0.801 0.803 0.810 0.631 0.681 0.682 0.701 0.721
NGSTC 0.773 0.792 0.813 0.811 0.821 0.670 0.681 0.701 0.712 0.737

NSTCSG 0.788 0.813 0.821 0.823 0.829 0.665 0.687 0.691 0.717 0.735

Table 2: Perplexity on test
dataset.

Model 20NG
LDA 1091
STC 611

DocNADE 896
TopicVec 650

NSTC 517

Table 3: Top Words of Learned Topics for 20Newsgroups.

computer sport drug weapon space-flight
computer hockey tobacco nuclear nasa
windows games drug guns flyers

ibm motorcycl fallacy crime space
drive team aids booming air
disk play hiv controller statelite

system groups dades firearms send
dos came illeg military launch
key rom same wiring apartment

hardware ball adict neutral la

ties under the corresponding topic. It is obvious
that the learned topics are clear and meaningful.
Such as economics, hockey, games, play, ball in
the topic about sport. In Figure 6, we also use
the 2-dimensional t-SNE method to get the visu-
alization of the learned latent representations for
Web Snippet and 20Newsgroups Dataset with 200
topics. For Web Snippet, we sample 10% of the
whole dataset. For 20newsgroups, we sample 30%
of the dataset. It is obvious to see that all doc-
uments are clustered into 8 and 20 distinct cate-
gories. It proves the semantic effectiveness of the
documents codes learned by our model.

5 Conclusion

In this paper, we propose a novel neural sparsity-
enhanced topic model NSTC, which improves
STC by incorporating the neural network and
word embeddings. Compared with other word
embedding based and neural network based topic
models, it overcomes the computation complex-
ity of topic models, and improve the generation of
representation over short documents. We present

Figure 6: T-SNE embeddings of learned document
representations for Web Snippet and 20News-
Groups. Different colors mean different cate-
gories.

three variants of NSTC to illustrate the great flex-
ibility of our framework. Experimental results
demonstrate the effectiveness and efficiency of our
models. For future work, we are interested in vari-
ous extensions, including combining STC with au-
toencoding variational Bayes (AVB).

Acknowledgments

This work is supported by the National Science
Foundation of China, under grant No.61472291
and grant No.61272110.

2339



References
Lu Bai, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng.

2013. Group sparse topical coding: from code to
topic. In Proceedings of the sixth ACM international
conference on Web search and data mining. ACM,
pages 315–324.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2001. Latent dirichlet allocation. Journal of Ma-
chine Learning Research 3:993–1022.

Ziqiang Cao, Sujian Li, Yang Liu, Wenjie Li, and Heng
Ji. 2015. A novel neural topic model and its super-
vised extension. In AAAI.

Rajarshi Das, Manzil Zaheer, and Chris Dyer. 2015.
Gaussian lda for topic models with word embed-
dings. In ACL.

Karol Gregor and Yann LeCun. 2010. Learning fast
approximations of sparse coding. In Proceedings
of the 27th International Conference on Machine
Learning (ICML-10). pages 399–406.

Matthias Heiler and Christoph Schnörr. 2006. Learn-
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Abstract

Measuring similarity between texts is an
important task for several applications.
Available approaches to measure docu-
ment similarity are inadequate for doc-
ument pairs that have non-comparable
lengths, such as a long document and its
summary. This is because of the lexi-
cal, contextual and the abstraction gaps be-
tween a long document of rich details and
its concise summary of abstract informa-
tion. In this paper, we present a document
matching approach to bridge this gap, by
comparing the texts in a common space
of hidden topics. We evaluate the match-
ing algorithm on two matching tasks and
find that it consistently and widely outper-
forms strong baselines. We also highlight
the benefits of the incorporation of domain
knowledge to text matching.

1 Introduction

Measuring the similarity between documents is
of key importance in several natural process-
ing applications including information retrieval
(Salton and Buckley, 1988), book recommenda-
tion (Gopalan et al., 2014), news categorization
(Ontrup and Ritter, 2002) and essay scoring (Lan-
dauer, 2003). A range of document similarity ap-
proaches have been proposed and effectively used
in recent applications including (Lai et al., 2015;
Bordes et al., 2015). Central to the tasks discussed
above is the assumption that the documents being
compared are of comparable lengths.

Advances in language processing approaches
to transform natural language understanding, such
as text summarization and recommendation, have
generated new requirements for comparing doc-
uments. For instance, summarization techniques

Table 1: A Sample Concept-Project Matching
Concept
Heredity: Inheritance and Variation of Traits
All cells contain genetic information in the form of DNA
molecules. Genes are regions in the DNA that contain
the instructions that code for the formation of proteins.

Project
Pedigree Analysis: A Family Tree of Traits
Do you have the same hair color or eye color as your
mother? When we look at members of a family it is easy
to see that some physical characteristics or traits are
shared. To start this project, you should draw a pedigree
showing the different members of your family. Ideally
you should include multiple people from at least three
generations.

(extractive and abstractive) are capable of auto-
matically generating textual summaries by con-
verting a long document of several hundred words
into a condensed text of only a few words while
preserving the core meaning of the original text
(Kedzie and McKeown, 2016). Conceivably, a re-
lated aspect of summarization is the task of bidi-
rectional matching of a summary and a document
or a set of documents, which is the focus of this
study. The document similarity considered in this
paper is between texts that have significant differ-
ences not only in length, but also in the abstraction
level (such as a definition of an abstract concept
versus a detailed instance of that abstract concept).

As an illustration, consider the task of match-
ing a Concept with a Project as shown in Table 1.
Here a Concept is a grade-level science curricu-
lum item and represents the summary. A Project,
listed in a collection of science projects, represents
the document. Projects typically are long texts
including an introduction, materials and proce-
dures, whereas science concepts are much shorter
in comparison having a title and a concise and ab-
stract description. The concepts and projects are
described in detail in Section 5.1. The matching
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task here is to automatically suggest a hands-on
project for a given concept in the curriculum, such
that the project can help reinforce a learner’s basic
understanding of the concept. Conversely, given a
science project, one may need to identify the con-
cept it covers by matching it to a listed concept in
the curriculum. This would be conceivable in the
context of an intelligent tutoring system.

Challenges to the matching task mentioned
above include: 1) The mismatch in the relative
lengths of the documents being compared – a long
piece of text (henceforth termed document) and a
short piece of text (termed summary) – gives rise
to the vocabulary mismatch problem, where the
document and the summary do not share a ma-
jority of terms. 2) The context mismatch prob-
lem arising because a document provides a reason-
able amount of text to infer the contextual mean-
ing of a term, but a summary only provides a lim-
ited context, which may or may not involve the
same terms considered in the document. These
challenges render existing approaches to compar-
ing documents–for instance, those that rely on
document representations (e.g., Doc2Vec (Le and
Mikolov, 2014))–inadequate, because the predom-
inance of non-topic words in the document intro-
duces noise to its representation while the sum-
mary is relatively noise-free, rendering Doc2Vec
inadequate for comparing them.

Our approach to the matching problem is to al-
low a multi-view generalization of the document,
where multiple hidden topics are used to estab-
lish a common ground to capture as much infor-
mation of the document and the summary as pos-
sible and use this to score the relevance of the
pair. We empirically validate our approach on two
tasks – that of project-concept matching in grade-
level science and that of scientific paper-summary
matching – using both custom-made and publicly
available datasets. The main contributions of this
paper are:
1. We propose an embedding-based hidden topic
model to extract topics and measure their impor-
tance in long documents.
2. We present a novel geometric approach to com-
pare documents with differing modality (a long
document to a short summary) and validate its per-
formance relative to strong baselines.
3. We explore the use of domain-specific word
embeddings for the matching task and show the
explicit benefit of incorporating domain knowl-

edge in the algorithm.
4. We make available the first dataset1 on project-
concept matching in the science domain to help
further research in this area.

2 Related Works

Document similarity approaches quantify the de-
gree of relatedness between two pieces of texts
of comparable lengths and thus enable matching
between documents. Traditionally, statistical ap-
proaches (e.g., (Metzler et al., 2007)) and vector-
space-based methods (including the robust Latent
Semantic Analysis (LSA) (Dumais, 2004)) have
been used for text similarity. More recently, neural
network-based methods have been used for doc-
ument representation and these include average
word embeddings (Mikolov et al., 2013), Doc2Vec
(Le and Mikolov, 2014), Skip-Thought vectors
(Kiros et al., 2015), recursive neural network-
based methods (Socher et al., 2014), LSTM archi-
tectures (Tai et al., 2015), and convolutional neural
networks (Blunsom et al., 2014).

Considering works that avoid using an ex-
plicit document representation for comparing
documents, the state-of-the-art method is Word
Mover’s Distance (WMD), which relies on pre-
trained word embeddings (Kusner et al., 2015).
Given these embeddings, the WMD defines the
distance between two documents as the best trans-
port cost of moving all words from one document
to another within the space of word embeddings.
The advantages of WMD are that it is hyper-
parameter free and achieves high retrieval accu-
racy on document classification tasks with docu-
ments of comparable lengths. However, it is com-
putationally expensive for long documents (Kus-
ner et al., 2015).

Clearly, what is lacking in prior literature is
a study of document similarity approaches that
match documents with widely different sizes. It is
this gap in literature that we expect to fill by way
of this study.
Latent Variable Models. Latent variable mod-
els including count-based and probabilistic models
have been studied in many previous works. Count-
based models such as Latent Semantic Indexing
(LSI) compare two documents based on their com-
bined vocabulary (Deerwester et al., 1990). When

1Our code and data are available at: https:
//github.com/HongyuGong/Document-
Similarity-via-Hidden-Topics.git
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(a) word geometry of general embedding (b) word geometry of science domain embeddings

Figure 1: Two key words “forces” and “matters” are shown in red and blue respectively. Red words
represent different senses of “forces”, and blue words carry senses of “matters”. “forces” mainly refers
to “army” and “matters” refers to “issues” in general embedding of (a), whereas “forces” shows its sense
of “gravity” and “matters” shows the sense of “solids” in science-domain embedding of (b)

documents have highly mismatched vocabularies
such as those that we study, relevant documents
might be classified as irrelevant. Our model is
built upon word-embeddings which is more robust
to such a vocabulary mismatch.

Probabilistic models such as Latent Dirichlet
Analysis (LDA) define topics as distributions over
words (Blei et al., 2003). In our model, topics are
low-dimensional real-valued vectors (more details
in Section 4.2).

3 Domain Knowledge

Domain information pertaining to specific areas of
knowledge is made available in texts by the use of
words with domain-specific meanings or senses.
Consequently, domain knowledge has been shown
to be critical in many NLP applications such as in-
formation extraction and multi-document summa-
rization (Cheung and Penn, 2013a), spoken lan-
guage understanding (Chen et al., 2015), aspect
extraction (Chen et al., 2013) and summarization
(Cheung and Penn, 2013b).

As will be described later, our distance metric
for comparing a document and a summary relies
on word embeddings. We show in this work, that
embeddings trained on a science-domain corpus
lead to better performance than embeddings on
the general corpus (WikiCorpus). Towards this,
we extract a science-domain sub-corpus from the
WikiCorpus, and the corpus extraction will be de-
tailed in Section 5.

To motivate the domain-specific behavior of
polysemous words, we will qualitatively explore
how domain-specific embeddings differ from the

general embeddings on two polysemous science
terms: forces and matters. Considering the fact
that the meaning of a word is dictated by its neigh-
bors, for each set of word embeddings, we plot the
neighbors of these two terms in Figure 1 on to 2 di-
mensions using Locally Linear Embedding (LLE),
which preserves word distances (Roweis and Saul,
2000). We then analyze the sense of the focus
terms–here, forces and matters.

From Figure 1(a), we see that for the word
forces, its general embedding is close to army,
soldiers, allies indicating that it is related with
violence and power in a general domain. Shift-
ing our attention to Figure 1(b), we see that for
the same term, its science embedding is closer
to torque, gravity, acceleration implying that its
science sense is more about physical interactions.
Likewise, for the word matters, its general embed-
ding is surrounded by affairs and issues, whereas,
its science embedding is closer to particles and
material, prompting that it represents substances.
Thus, we conclude that domain specific embed-
dings (here, science), is capable of incorporat-
ing domain knowledge into word representations.
We use this observation in our document-summary
matching system to which we turn next.

4 Model

Our model that performs the matching between
document and summary is depicted in Figure 2. It
is composed of three modules that perform prepro-
cessing, document topic generation, and relevance
measurement between a document and a summary.
Each of these modules is discussed below.
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Figure 2: The system for document-summary matching

4.1 Preprocessing
The preprocessing module tokenizes texts and re-
moves stop words and prepositions. This step al-
lows our system to focus on the content words
without impacting the meaning of original texts.

4.2 Topic Generation from Documents
We assume that a document (a long text) is a
structured collection of words, with the ‘structure’
brought about by the composition of topics. In
some sense, this ‘structure’ is represented as a set
of hidden topics. Thus, we assume that a docu-
ment is generated from certain hidden “topics”,
analogous to the modeling assumption in LDA.
However, unlike in LDA, the “topics” here are nei-
ther specific words nor the distribution over words,
but are are essentially a set of vectors. In turn, this
means that words (represented as vectors) con-
stituting the document structure can be generated
from the hidden topic vectors.

Introducing some notation, the word vectors in
a document are {w1, . . . ,wn}, and the hidden
topic vectors of the document are {h1, . . . ,hK},
where wi,hk 2 Rd, d = 300 in our experiments.

Linear operations using word embeddings have
been empirically shown to approximate their
compositional properties (e.g. the embedding
of a phrase is nearly the sum of the embed-
dings of its component words) (Mikolov et al.,
2013). This motivates the linear reconstruction
of the words from the document’s hidden topics
while minimizing the reconstruction error. We
stack the K topic vectors as a topic matrix
H = [h1, . . . ,hK ](K < d). We define the
reconstructed word vector w̃i for the word wi as
the optimal linear approximation given by topic
vectors: w̃i = H↵̃i, where

↵̃i = argmin
↵i2RK

kwi �H↵ik22. (1)

The reconstruction error E for the whole docu-
ment is the sum of each word’s reconstruction er-

ror and is given by: E =
nP

i=1
kwi � w̃ik22. This

being a function of the topic vectors, our goal is to
find the optimal H⇤ so as to minimize the error E:

H⇤ = argmin
H2Rd⇥K

E(H)

= argmin
H2Rd⇥K

nX

i=1

min
↵i

kwi �H↵ik22, (2)

where k·k is the Frobenius norm of a matrix.
Without loss of generality, we require the topic

vectors {hi}K
i=1 to be orthonormal, i.e., hT

i hj =
1(i=j). As we can see, the optimization problem
(2) describes an optimal linear space spanned by
the topic vectors, so the norm and the linear de-
pendency of the vectors do not matter. With the
orthonormal constraints, we simplify the form of
the reconstructed vector w̃i as:

w̃i = HHTwi. (3)

We stack word vectors in the document as a matrix
W = [w1, . . . ,wn]. The equivalent formulation
to problem (2) is:

min
H

kW �HHTWk22
s.t. HTH = I, (4)

where I is an identity matrix.
The problem can be solved by Singular Value

Decomposition (SVD), using which, the matrix
W can be decomposed as W = U⌃VT , where
UTU = I,VTV = I, and ⌃ is a diagonal ma-
trix where the diagonal elements are arranged in a
decreasing order of absolute values. We show in
the supplementary material that the first K vec-
tors in the matrix U are exactly the solution to
H⇤ = [h⇤1, . . . ,h

⇤
K ].

We find optimal topic vectors H⇤ =
[h⇤1, . . . ,h

⇤
K ] by solving problem (4). We

note that these topic vectors are not equally
important, and we say that one topic is more
important than another if it can reconstruct words

2344



with smaller error. Define Ek as the reconstruc-
tion error when we only use topic vector h⇤k to
reconstruct the document:

Ek = kW � h⇤kh
⇤
k
TWk22. (5)

Now define ik as the importance of topic h⇤k,
which measures the topic’s ability to reconstruct
the words in a document:

ik = kh⇤kTWk22 (6)

We show in the supplementary material that the
higher the importance ik is, the smaller the recon-
struction error Ek is. Now we normalize ik as īk so
that the importance does not scale with the norm
of the word matrix W , and so that the importances
of the K topics sum to 1. Thus,

īk = ik/(
KX

j=1

ij). (7)

The number of topics K is a hyperparameter in our
model. A small K may not cover key ideas of the
document, whereas a large K may keep trivial and
noisy information. Empirically we find that K =
15 captures most important information from the
document.

4.3 Topic Mapping to Summaries
We have extracted K topic vectors {h⇤k}K

k=1 from
the document matrix W, whose importance is re-
flected by {̄ik}K

k=1. In this module, we measure
the relevance of a document-summary pair. To-
wards this, a summary that matches the document
should also be closely related with the “topics”
of that document. Suppose the vectors of the
words in a summary are stacked as a d ⇥ m ma-
trix S = [s1, . . . , sm], where sj is the vector of
the j-th word in a summary. Similar to the recon-
struction of the document, the summary can also
be reconstructed from the documents’ topic vec-
tors as shown in Eq. (3). Let s̃k

j be the reconstruc-
tion of the summary word sj given by one topic
h⇤k: s̃k

j = h⇤kh
⇤
k
T sj .

Let r(h⇤k, sj) be the relevance between a topic
vector h⇤k and summary word sj . It is defined as
the cosine similarity between s̃k

j and sj :

r(h⇤k, sj) = sj
T s̃k

j /(ksjk2 · ks̃k
j k2). (8)

Furthermore, let r(h⇤k,S) be the relevance be-
tween a topic vector and the summary, defined to

be the average similarity between the topic vector
and the summary words:

r(h⇤k,S) =
1

m

mX

j=1

r(h⇤k, sj). (9)

The relevance between a topic vector and a sum-
mary is a real value between 0 and 1.

As we have shown, the topics extracted from
a document are not equally important. Natu-
rally, a summary relevant to more important top-
ics is more likely to better match the document.
Therefore, we define r(W,S) as the relevance be-
tween the document W and the summary S, and
r(W,S) is the sum of topic-summary relevance
weighted by the importance of the topic:

r(W,S) =

KX

k=1

īk · r(h⇤k,S), (10)

where īk is the importance of topic h⇤k as defined
in (7). The higher r(W,S) is, the better the sum-
mary matches the document.

We provide a visual representation of the doc-
uments as shown in Figure 3 to illustrate the no-
tion of hidden topics. The two documents are
from science projects: a genetics project, Pedigree
Analysis: A Family Tree of Traits (ScienceBud-
dies, 2017a), and a weather project, How Do the
Seasons Change in Each Hemisphere (Science-
Buddies, 2017b). We project all embeddings to a
three-dimensional space for ease of visualization.

As seen in Figure 3, the hidden topics recon-
struct the words in their respective documents to
the extent possible. This means that the words of a
document lie roughly on the plane formed by their
corresponding topic vectors. We also notice that
the summary words (heredity and weather respec-
tively for the two projects under consideration) lie
very close to the plane formed by the hidden topics
of the relevant project while remaining away from
the plane of the irrelevant project. This shows that
the words in the summary (and hence the summary
itself) can also be reconstructed from the hidden
topics of documents that match the summary (and
are hence ‘relevant’ to the summary). Figure 3
visually explains the geometric relations between
the summaries, the hidden topics and the docu-
ments. It also validates the representation power
of the extracted hidden topic vectors.
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Figure 3: Words mode and genes from the doc-
ument on genetics and words storm and atmo-
spheric from document on weather are represented
by pink and blue points respectively. Linear space
of hidden topics in genetics form the pink plane,
where summary word heredity (the red point)
roughly lies. Topic vectors of the document on
weather form the blue plane, and the summary
word weather (the darkblue point) lies almost on
the same plane.

5 Experiments

In this section, we evaluate our document-
summary matching approach on two specific ap-
plications where texts of different sizes are com-
pared. One application is that of concept-project
matching useful in science education and the other
is that of summary-research paper matching.

Word Embeddings. Two sets of 300-
dimension word embeddings were used in our ex-
periments. They were trained by the Continu-
ous Bag-of-Words (CBOW) model in word2vec
(Mikolov et al., 2013) but on different corpora.
One training corpus is the full English WikiCor-
pus of size 9 GB (Al-Rfou et al., 2013). The
second consists of science articles extracted from
the WikiCorpus. To extract these science articles,
we manually selected the science categories in
Wikipedia and considered all subcategories within
a depth of 3 from these manually selected root
categories. We then extracted all articles in the
aforementioned science categories resulting in a
science corpus of size 2.4 GB. The word vectors
used for documents and summaries are both from
the pretrained word2vec embeddings.
Baselines We include two state-of-the-art methods
of measuring document similarity for comparison
using their implementations available in gensim
(Řehůřek and Sojka, 2010).

(1) Word movers’ distance (WMD) (Kusner
et al., 2015). WMD quantifies the distance be-
tween a pair of documents based on word em-
beddings as introduced previously (c.f. Related
Work). We take the negative of their distance as
a measure of document similarity (here between a
document and a summary).
(2) Doc2Vec (Le and Mikolov, 2014). Document
representations have been trained with neural net-
works. We used two versions of doc2vec: one
trained on the full English Wikicorpus and a sec-
ond trained on the science corpus, same as the cor-
pora used for word embedding training. We used
the cosine similarity between two text vectors to
measure their relevance.

For a given document-summary pair, we com-
pare the scores obtained using the above two meth-
ods with that obtained using our method.

5.1 Concept-Project matching

Science projects are valuable resources for learn-
ers to instigate knowledge creation via experimen-
tation and observation. The need for matching a
science concept with a science project arises when
learners intending to delve deeper into certain con-
cepts search for projects that match a given con-
cept. Additionally, they may want to identify the
concepts with which a set of projects are related.

We note that in this task, science concepts are
highly concise summaries of the core ideas in
projects, whereas projects are detailed instructions
of the experimental procedures, including an intro-
duction, materials and a description of the proce-
dure, as shown in Table 1. Our matching method
provides a way to bridge the gap between abstract
concepts and detailed projects. The format of the
concepts and the projects is discussed below.
Concepts. For the purpose of this study we use
the concepts available in the Next Generation Sci-
ence Standards (NGSS) (NGSS, 2017). Each con-
cept is accompanied by a short description. For
example, one concept in life science is Heredity:
Inheritance and Variation of Traits. Its descrip-
tion is All cells contain genetic information in the
form of DNA molecules. Genes are regions in the
DNA that contain the instructions that code for the
formation of proteins. Typical lengths of concepts
are around 50 words.
Projects. The website Science Buddies (Science-
Buddies, 2017c) provides a list of projects from a
variety of science and engineering disciplines such
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Table 2: Classification results for the Concept-Project Matching task. All performance differences were
statistically significant at p = 0.01.

method topic science topic wiki wmd science wmd wiki doc2vec science doc2vec wiki
precision 0.758 ± 0.012 0.750 ± 0.009 0.643 ± 0.070 0.568 ± 0.055 0.615 ± 0.055 0.661 ± 0.084

recall 0.885 ± 0.071 0.842 ± 0.010 0.735 ± 0.119 0.661 ± 0.119 0.843 ± 0.066 0.737 ± 0.149

fscore 0.818 ± 0.028 0.791 ± 0.007 0.679 ± 0.022 0.595 ± 0.020 0.695 ± 0.019 0.681 ± 0.032

as physical sciences, life sciences and social sci-
ences. A typical project consists of an abstract, an
introduction, a description of the experiment and
the associated procedures. A project typically has
more than 1000 words.
Dataset. We prepared a representative dataset 537
pairs of projects and concepts involving 53 unique
concepts from NGSS and 230 unique projects
from Science Buddies. Engineering undergrad-
uate students annotated each pair with the deci-
sion whether it was a good match or not and re-
ceived research credit. As a result, each concept-
project pair received at least three annotations,
and upon consolidation, we considered a concept-
project pair to be a good match when a majority
of the annotators agreed. Otherwise it was not
considered a good match. The ratio between good
matches and bad matches in the collected data was
44 : 56.
Classification Evaluation. Annotations from stu-
dents provided the ground truth labels for the clas-
sification task. We randomly split the dataset into
tuning and test instances with a ratio of 1 : 9. A
threshold score was tuned on the tuning data, and
concept-project pairs with scores higher than this
threshold were classified as a good matches dur-
ing testing. We performed 10-fold cross valida-
tion, and report the average precision, recall, F1
score and their standard deviation in Table 2.

Our topic-based metric is denoted as “topic”,
and the general-domain and science-domain em-
beddings are denoted as “wiki” and “science”
respectively. We show the performance of our
method against the two baselines while vary-
ing the underlying embeddings, thus resulting
in 6 different combinations. For example,
“topic science” refers to our method with science
embeddings. From the table (column 1) we notice
the following: 1) Our method significantly outper-
forms the two baselines by a wide margin (⇡10%)
in both the general domain setting as well as the
domain-specific setting. 2) Using science domain-
specific word embeddings instead of the general
word embeddings results in the best performance

across all algorithms. This performance was ob-
served despite the word embeddings being trained
on a significantly smaller corpus compared to the
general domain corpus.

Besides the classification metrics, we also eval-
uated the directed matching from concepts to
projects with ranking metrics.
Ranking Evaluation Our collected dataset re-
sulted in having a many-to-many matching be-
tween concepts and projects. This is because
the same concept was found to be a good match
for multiple projects and the same project was
found to match many concepts. The previously
described classification task evaluated the bidirec-
tional concept-project matching. Next we eval-
uated the directed matching from concepts to
projects, to see how relevant these top ranking
projects are to a given input concepts. Here we
use precision@k (Radlinski and Craswell, 2010)
as the evaluation metric, considering the percent-
age of relevant ones among top-ranking projects.

For this part, we only considered the methods
using science domain embeddings as they have
shown superior performance in the classificaiton
task. For each concept, we check the precision@k
of matched projects and place it in one of k+1 bins
accordingly. For example, for k=3, if only two of
the three top projects are a correct match, the con-
cept is placed in the bin corresponding to 2/3. In
Figure 4, we show the percentage of concepts that
fall into each bin for the three different algorithms
for k=1,3,6.

We observe that recommendations using the
hidden topic approach fall more in the high value
bin compared to others, performing consistently
better than two strong baselines. The advan-
tage becomes more obvious at precision@6. It is
worth mentioning that wmd science falls behind
doc2vec science in the classification task while it
outperforms in the ranking task.

5.2 Text Summarization

The task of matching summaries and documents
is commonly seen in real life. For example, we
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(a) Precision@1 (b) Precision@3 (c) Precision@6

Figure 4: Ranking Performance of All Methods

use an event summary “Google’s AlphaGo beats
Korean player Lee Sedol in Go” to search for rel-
evant news, or use the summary of a scientific pa-
per to look for related research publications. Such
matching constitutes an ideal task to evaluate our
matching method between texts of different sizes.
Dataset. We use a dataset from the CL-SciSumm
Shared Task (Jaidka et al., 2016). The dataset con-
sists of 730 ACL Computational Linguistics re-
search papers covering 50 categories in total. Each
category consists of a reference paper (RP) and
around 10 citing papers (CP) that contain citations
to the RP. A human-generated summary for the RP
is provided and we use the 10 CP as being relevant
to the summary. The matching task here is be-
tween the summary and all CPs in each category.
Evaluation. For each paper, we keep all of its
content except the sections of experiments and ac-
knowledgement (these sections were omitted be-
cause often their content is often less related to
the topic of the summary). The typical summary
length is about 100 words, while a paper has more
than 2000 words. For each topic, we rank all 730
papers in terms of their relevance generated by our
method and baselines using both sets of embed-
dings. For evaluation, we use the information re-
trieval measure of precision@k, which considers
the number of relevant matches in the top-k match-
ings (Manning et al., 2008). For each combination
of the text similarity approaches and embeddings,
we show precision@k for different k’s in Figure 5.
We observe that our method with science embed-
ding achieves the best performance compared to
the baselines, once again showing not only the
benefits of our method but also that of incorpo-
rating domain knowledge.

6 Discussion

Analysis of Results. From the results of the two
tasks we observe that our method outperforms two

Figure 5: Summary-Article Matching

strong baselines. The reason for WMD’s poor
performance could be that the many uninforma-
tive words (those unrelated to the central topic)
make WMD overestimate the distance between the
document-summary pair. As for doc2vec, its sin-
gle vector representation may not be able to cap-
ture all the key topics of a document. A project
could contain multifaceted information, e.g., a
project to study how climate change affects grain
production is related to both environmental sci-
ence and agricultural science.

Effect of Topic Number. The number of hid-
den topics K is a hyperparameter in our setting.
We empirically evaluate the effect of topic number
in the task of concept-project mapping. Figure 6
shows the F1 scores and the standard deviations
at different K. As we can see, optimal K is 18.
When K is too small, hidden topics are too few
to capture key information in projects. Thus we
can see that the increase of topic number from 3
to 6 brings a big improvement to the performance.
Topic numbers larger than the optimal value de-
grade the performance since more topics incorpo-
rate noisy information. We note that the perfor-
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Figure 6: F1 score on concept-project matching
with different topic numbers K

mance changes are mild when the number of top-
ics are in the range of [18, 31]. Since topics are
weighted by their importance, the effect of noisy
information from extra hidden topics is mitigated.
Interpretation of Hidden Topics. We consider
the summary-paper matching as an example with
around 10 papers per category. We extracted
the hidden topics from each paper, reconstructed
words with these topics as shown in Eq. (3), and
selected the words which had the smallest recon-
struction errors. These words are thus closely re-
lated to the hidden topics, and we call them topic
words to serve as an interpretation of the hid-
den topics. We visualize the cloud of such topic
words on the set of papers about word sense dis-
ambiguation as shown in Figure 7. We see that the
words selected based on the hidden topics cover
key ideas such as disambiguation, represent, clas-
sification and sentence. This qualitatively vali-
dates the representation power of hidden topics.
More examples are available in the supplementary
material.

We interpret this to mean that proposed idea of
multiple hidden topics captures the key informa-
tion of a document. The extracted “hidden top-
ics” represent the essence of documents, suggest-
ing the appropriateness of our relevance metric to
measure the similarity between texts of different
sizes. Even though our focus in this study was the
science domain we point out that the results are
more generally valid since we made no domain-
specific assumptions.
Varying Sensitivity to Domain. As shown in the
results, the science-domain embeddings improved
the classification of concept-project matching for

Figure 7: Topic words from papers on word sense
disambiguation

the topic-based method by 2% in F1-score, WMD
by 8% and doc2vec by 1%, thus underscoring the
importance of domain-specific word embeddings.

Doc2vec is less sensitive to the domain, because
it provides document-level representation. Even
if some words cannot be disambiguated due to
the lack of domain knowledge, other words in the
same document can provide complementary infor-
mation so that the document embedding does not
deviate too much from its true meaning.

Our method, also a word embedding method, is
not as sensitive to domain as WMD. It is robust
to the polysemous words with domain-sensitive
semantics, since hidden topics are extracted in
the document level. Broader contexts beyond
just words provide complementary information for
word sense disambiguation.

7 Conclusion

We propose a novel approach to matching docu-
ments and summaries. The challenge we address
is to bridge the gap between detailed long texts and
its abstraction with hidden topics. We incorpo-
rate domain knowledge into the matching system
to gain further performance improvement. Our
approach has beaten two strong baselines in two
downstream applications, concept-project match-
ing and summary-research paper matching.
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Abstract

Predicting a reader’s rating of text quality
is a challenging task that involves estimat-
ing different subjective aspects of the text,
like structure, clarity, etc. Such subjec-
tive aspects are better handled using cogni-
tive information. One such source of cog-
nitive information is gaze behaviour. In
this paper, we show that gaze behaviour
does indeed help in effectively predicting
the rating of text quality. To do this, we
first model text quality as a function of
three properties - organization, coherence
and cohesion. Then, we demonstrate how
capturing gaze behaviour helps in predict-
ing each of these properties, and hence the
overall quality, by reporting improvements
obtained by adding gaze features to tra-
ditional textual features for score predic-
tion. We also hypothesize that if a reader
has fully understood the text, the corre-
sponding gaze behaviour would give a bet-
ter indication of the assigned rating, as op-
posed to partial understanding. Our exper-
iments validate this hypothesis by show-
ing greater agreement between the given
rating and the predicted rating when the
reader has a full understanding of the text.

1 Introduction

Automatically rating the quality of a text is an
interesting challenge in NLP. It has been stud-
ied since Page’s seminal work on automatic es-
say grading in the mid-1960s (Page, 1966). This
is due to the dependence of quality on different
aspects such as the overall structure of the text,
clarity, etc. that are highly qualitative in nature,
and whose scoring can vary from person to person
(Person, 2013).

Scores for such qualitative aspects cannot be
inferred solely from the text and would benefit
from psycholinguistic information, such as gaze
behaviour. Gaze based features have been used
for co-reference resolution (Ross et al., 2016),
sentiment analysis (Joshi et al., 2014) and trans-
lation annotation complexity estimation (Mishra
et al., 2013). They could also be very useful for
education applications, like evaluating readability
(Mishra et al., 2017) and in automatic essay grad-
ing.

In this paper, we consider the following quali-
tative properties of text: Organization, Coherence
and Cohesion. A text is well-organized if it begins
with an introduction, has a body and ends with a
conclusion. One of the other aspects of organiza-
tion is the fact that it takes into account how the
content of the text is split into paragraphs, with
each paragraph denoting a single idea. If the text is
too long, and not split into paragraphs, one could
consider the text to be badly organized1.

A text is coherent if it makes sense to a reader.
A text is cohesive if it is well connected. Coher-
ence and cohesion are two qualities that are closely
related. A piece of text that is well-connected usu-
ally makes sense. Conversely, a piece of text that
makes sense is usually well-connected. However,
it is possible for texts to be coherent but lack co-
hesion. Table 1 provides some examples for texts
that are coherent and cohesive, as well as those
that lack one of those qualities.

There are different ways to model coherence
and cohesion. Since coherence is a measure of
how much sense the text makes, it is a semantic
property of the text. It requires sentences within
the text to be interpreted, by themselves, as well as
with other sentences in the text (Van Dijk, 1980).

On the other hand, cohesion makes use of
1Refer supplementary material for example. We have

placed it there due to space constraints.
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Example Comments
My favourite colour is blue. I like it because it is calming and
it relaxes me. I often go outside in the summer and lie on the
grass and look into the clear sky when I am stressed. For this
reason, I’d have to say my favourite colour is blue.

Coherent and cohesive.

My favourite colour is blue. I’m calm and relaxed. In the sum-
mer I lie on the grass and look up.

Coherent but not cohesive. There is no link between the sen-
tences. However, the text makes sense due to a lot of implicit
clues (blue, favourite, relaxing, look up (and see the blue sky)).

My favourite colour is blue. Blue sports cars go very fast. Driv-
ing in this way is dangerous and can cause many car crashes. I
had a car accident once and broke my leg. I was very sad be-
cause I had to miss a holiday in Europe because of the injury.

Cohesive but not coherent. The sentences are linked by words
(that are in italics or in bold) between adjacent sentences. As
we can see, every pair of adjacent sentences are connected by
words / phrases, but the text does not make sense, since it first
starts with blue, and describes missing a holiday due to injury.

Table 1: Examples of coherence and cohesion2.

linguistic cues, such as references (demonstra-
tives, pronouns, etc.), ellipsis (leaving out implicit
words - Eg. Sam can type and I can [type] too),
substitution (use of a word or phrase to replace
something mentioned earlier - Eg. How’s the
croissant? I’d like to have one too.), conjunction
(and, but, therefore, etc.), cohesive nouns (prob-
lem, issue, investment, etc.) and lexis (linking dif-
ferent pieces of text by synonyms, hyponyms, lex-
ical chains, etc.) (Halliday and Hasan, 1976).

Using these properties, we model the overall
text quality rating. We make use of a Likert scale
(Likert, 1932) with a range of 1 to 4, for measur-
ing each of these properties; the higher the score,
the better is the text in terms of that property. We
model the text quality rating on a scale of 1 to 10,
using the three scores as input. In other words,

Quality(T ) = Org(T )+Chr(T )+Chs(T )−2,

where Quality(T ) is the text quality rating of
the text T . Org(T ), Chr(T ), and Chs(T ) cor-
respond to the Organization, Coherence, and
Cohesion scores respectively, for the text T , that
are given by a reader. We subtract 2 to scale the
scores from a range of 3 - 12, to a range of 1 - 10
for quality.

Texts with poor organization and/or cohesion
can force readers to regress i.e. go to previous sen-
tences or paragraphs. Texts with poor coherence
may lead readers to fixate more on different por-
tions of text to understand them. In other words,
such gaze behaviour indirectly captures the effort
needed by human readers to comprehend the text
(Just and Carpenter, 1980), which, in turn, may
influence the ratings given by them. Hence, these

2We took the examples from this site for
explaining coherence and cohesion: http:
//gordonscruton.blogspot.in/2011/08/
what-is-cohesion-coherence-cambridge.
html

properties seem to be a good indicators for overall
quality of texts.

In this paper, we address the following ques-
tion: Can information obtained from gaze be-
haviour help predict reader’s rating of quality of
text by estimating text’s organization, coherence,
and cohesion? Our work answers that question
in the affirmative. We found that using gaze fea-
tures does contribute in improving the prediction
of qualitative ratings of text by users.

Our work has the following contributions.
Firstly, we propose a novel way to predict read-
ers’ rating of text by recording their eye move-
ments as they read the texts. Secondly, we show
that if a reader has understood the text com-
pletely, their gaze behaviour is more reliable.
Thirdly, we also release our dataset3 to help in
further research in using gaze features in other
tasks involving predicting the quality of texts.

In this paper, we use the following terms related
to eye tracking. The interest area (IA) is an area
of the screen that is under interest. We mainly look
at words as interest areas. A fixation takes place
when the gaze is focused on a point of the screen.
A saccade is the movement of gaze between two
fixations. A regression is a special type of saccade
in which the reader refers back to something that
they had read earlier.

The rest of the paper is organized as follows.
Section 2 describes the motivation behind our
work. Section 3 describes related work in this
field. Section 4 describes the different features that
we used. Sections 5 and 6 describes our experi-
ments and results. Section 6 also contains analysis
of our experiments. Section 7 concludes our paper
and mentions future work.

3The dataset can be downloaded from http://www.
cfilt.iitb.ac.in/cognitive-nlp/
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Figure 1: Sample text showing fixations, saccades and regressions. This text was given scores of 4, 4,
and 3 for organization, coherence and cohesion. The circles denote fixations, and the lines are saccades.
Radius of the circles denote the duration of the fixation (in milliseconds), which is centred at the centre
of the circle. This is the output from SR Research Data Viewer software.

2 Motivation

Reader’s perception of text quality is subjective
and varies from person to person. Using cognitive
information from the reader can help in predicting
the score he / she will assign to the text. A well-
written text would not have people fixate too long
on certain words, or regress a lot to understand,
while a badly written text would do so.

Figure 1 shows the gaze behaviour for a sample
text. The circles denote fixations, and the arrows
denote saccades. If we capture the gaze behaviour,
as well as see how well the reader has understood
the text, we believe that we can get a clearer pic-
ture of the quality rating of the text.

One of the major concerns is How are we go-
ing to get the gaze data? This is because capa-
bility to gather eye-tracking data is not available
to the masses. However, top mobile device man-
ufacturers, like Samsung, have started integrat-
ing basic eye-tracking software into their smart-
phones (Samsung Smart Scroll) that are able to
detect where the eye is fixated, and can be used
in applications like scrolling through a web page.
Start-ups, like Cogisen4, have started using gaze
features in their applications, such as using gaze
information to improve input to image processing
systems. Recently, SR Research has come up with
a portable eye-tracking system5.

4www.cogisen.com
5https://www.sr-research.com/products/

eyelink-portable-duo/

3 Related Work

A number of studies have been done showing how
eye tracking can model aspects of text. Word
length has been shown to be positively correlated
with fixation count (Rayner, 1998) and fixation
duration (Henderson and Ferreira, 1993). Word
predictability (i.e. how well the reader can predict
the next word in a sentence) was also studied by
Rayner (1998), where he found that unpredictable
words are less likely to be skipped than predictable
words.

Shermis and Burstein (2013) gives a brief
overview of how text-based features are used in
multiple aspects of essay grading, including gram-
matical error detection, sentiment analysis, short-
answer scoring, etc. Their work also describes a
number of current essay grading systems that are
available in the market like E-rater R© (Attali and
Burstein, 2004). In recent years, there has been a
lot of work done on evaluating the holistic scores
of essays, using deep learning techniques (Alikan-
iotis et al., 2016; Taghipour and Ng, 2016; Dong
and Zhang, 2016).

There has been little work done to model text
organization, such as Persing et al. (2010) (us-
ing machine learning) and Taghipour (2017) (us-
ing neural networks). However, there has been a
lot of work done to model coherence and cohesion,
using methods like lexical chains (Somasundaran
et al., 2014), an entity grid (Barzilay and Lapata,
2005), etc. An interesting piece of work to model
coherence was done by Soricut and Marcu (2006)
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where they used a machine translation-based ap-
proach to model coherence. Zesch et al. (2015) use
topical overlap to model coherence for essay grad-
ing. Discourse connectors are used as a heuristic
to model cohesion by Zesch et al. (2015) and Pers-
ing and Ng (2015). Our work is novel because it
makes use of gaze behaviour to model and predict
coherence and cohesion in text.

In recent years, there has been some work in
using eye-tracking to evaluate certain aspects of
the text, like readability (Gonzalez-Garduño and
Søgaard, 2017; Mishra et al., 2017), grammatical-
ity (Klerke et al., 2015), etc.. Our work uses eye-
tracking to predict the score given by a reader to
a complete piece of text (rather than just a sen-
tence as done by Klerke et al. (2015)) and show
that the scoring is more reliable if the reader has
understood the text.

4 Features

In order to predict the scores of the different prop-
erties of the text, we use the following text and
gaze features.

4.1 Text-based Features

We use a set of text-based features to come up with
a baseline system to predict the scores for different
properties.

The first set of features that we use are length
and count-based features, such as word length,
word count, sentence length, count of transition
phrases6 etc. (Persing and Ng, 2015; Zesch et al.,
2015).

The next set of features that we use are com-
plexity features, namely the degree of polysemy,
coreference distance, and the Flesch Reading Ease
Score (FRES) (Flesch, 1948). These features help
in normalizing the gaze features for text complex-
ity. These features were extracted using Stan-
ford CoreNLP (Manning et al., 2014), and Mor-
phAdorner (Burns, 2013).

The third set of features that we use are stylis-
tic features such as the ratios of the number of
adjectives, nouns, prepositions, and verbs to the
number of words in the text. These features are
used to model the distributions of PoS tags in good
and bad texts. These were extracted using NLTK7

(Loper and Bird, 2002).

6https://writing.wisc.edu/Handbook/
Transitions.html

7http://www.nltk.org/

The fourth set of features that we use are word
embedding features. We use the average of word
vectors of each word in the essay, using Google
News word vectors (Mikolov et al., 2013). The
word embeddings are 300 dimensions. We also
calculate the mean and maximum similarities be-
tween the word vectors of the content words in ad-
jacent sentences of the text, using GloVe word em-
beddings8 (Pennington et al., 2014).

The fifth set of features that we use are lan-
guage modeling features. We use the count of
words that are absent in Google News word vec-
tors and misspelled words using the PyEnchant9

library. In order to check the grammaticality of the
text, we construct a 5-gram language model, using
the Brown Corpus (Francis and Kucera, 1979).

The sixth set of features are sequence features.
These features are particularly useful in modeling
organization (sentence and paragraph sequence
similarity) (Persing et al., 2010), coherence and
cohesion (PoS and lemma similarity). Pitler et al.
(2010) showed that cosine similarity of adjacent
sentences as one of the best predictors of linguis-
tic quality. Hence, we also create vectors for the
PoS tags and lemmas for each sentence in the text.
The dimension of the vector is the number of dis-
tinct PoS tags / lemmas.

The last set of features that we look at are en-
tity grid features. We define entities as the nouns
in the document, and do coreference resolution to
resolve pronouns. We then construct an entity grid
(Barzilay and Lapata, 2005) - a 1 or 0 grid that
checks whether an entity is present or not in a
given sentence. We take into account sequences of
entities across sentences that possess at least one
1, that are either bigrams, trigrams or 4-grams. A
sequence with multiple 1s denote entities that are
close to each other, while sequences with a soli-
tary 1 denote that an entity is just mentioned once
and we do not come across it again for a number
of sentences.

4.2 Gaze-based Features

The gaze-based features are dependent on the gaze
behaviour of the participant with respect to interest
areas.

8We found that using GloVe here and Google News for
the mean word vectors worked best.

9https://pypi.python.org/pypi/
pyenchant/
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Fixation Features
The First Fixation Duration (FFD) shows the
time the reader fixates on a word when he / she
first encounters it. An increased FFD intuitively
could mean that the word is more complex and
the reader spends more time in understanding the
word (Mishra et al., 2016).

The Second Fixation Duration (SFD) is the
duration in which the reader fixates on a partic-
ular interest area the second time. This happens
during a regression, when a reader is trying to link
the word he / she just read with an earlier word.

The Last Fixation Duration (LFD) is the du-
ration in which the reader fixates on a particular
interest area the final time. At this point, we be-
lieve that the interest area has been processed.

The Dwell Time (DT) is the total time the
reader fixates on a particular interest area. Like
first fixation, this also measures the complexity of
the word, not just by itself, but also with regard to
the entire text (since it takes into account fixations
when the word was regressed, etc.)

The Fixation Count (FC) is the number of fixa-
tions on a particular interest area. A larger fixation
count could mean that the reader frequently goes
back to read that particular interest area.

Regression Features
IsRegression (IR) is the number of interest areas
where a regression happened before reading ahead
and IsRegressionFull (IRF) is the number of in-
terest areas where a regression happened. The Re-
gression Count (RC) is the total number of regres-
sions. The Regression Time (RT) is the duration
of the regressions from an interest area. These re-
gression features could help in modeling semantic
links for coherence and cohesion.

Interest Area Features
The Skip Count (SC) is the number of interest
areas that have been skipped. The Run Count
(RC) is the number of interest areas that have at
least one fixation. A larger run count means that
more interest areas were fixated on. Badly writ-
ten texts would have higher run counts (and lower
skip counts), as well as fixation counts, because
the reader will fixate on these texts for a longer
time to understand them.

5 Experiment Details

In this section, we describe our experimental
setup, creation of the dataset, evaluation metric,

classifier details, etc.

5.1 Ordinal Classification vs. Regression

For each of the properties - organization, coher-
ence and cohesion, we make use of a Likert scale,
with scores of 1 to 4. Details of the scores are
given in Table 2. For scoring the quality, we use
the formula described in the Introduction. Since
we used a Likert scale, we make use of ordinal
classification, rather than regression. This is be-
cause each of the grades is a discrete value that can
be represented as an ordinal class (where 1 < 2 <
3 < 4), as compared to a continuous real number.

5.2 Evaluation Metric

For the predictions of our experiments, we use Co-
hen’s Kappa with quadratic weights - quadratic
weighted Kappa (QWK) (Cohen, 1968) because
of the following reasons. Firstly, unlike accuracy
and F-Score, Cohen’s Kappa takes into account
whether or not agreements happen by chance. Sec-
ondly, weights (either linear or quadratic) take into
account distance between the given score and the
expected score, unlike accuracy and F-score where
mismatches (either 1 vs. 4, or 1 vs.2) are penalized
the same. Quadratic weights reward matches and
penalize mismatches more than linear weights.

To measure the Inter-Annotator Agreement of
our raters, we make use of Gwet’s second-order
agreement coefficient (Gwet’s AC2) as it can han-
dle ordinal classes, weights, missing values, and
multiple raters rating the same document (Gwet,
2014).

5.3 Creation of the Dataset

In this subsection, we describe how we created
our dataset. We describe the way we made the
texts, the way they were annotated and the inter-
annotator agreements for the different properties.

Details of Texts
To the best of our knowledge there isn’t a pub-
licly available dataset with gaze features for tex-
tual quality. Hence, we decided to create our own.
Our dataset consists of a diverse set of 30 texts,
from Simple English Wikipedia (10 articles), En-
glish Wikipedia (8 articles), and online news ar-
ticles (12 articles)10. We did not wish to over-
burden the readers, so we kept the size of texts to

10The sources for the articles were https://simple.
wikipedia.org, https://en.wikipedia.org,
and https://newsela.com
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Property Grade Guidelines

Organization

1 Bad. There is no organization in the text.
2 OK. There is little / no link between the paragraphs, but they each describe an idea.
3 Good. Some paragraphs may be missing, but there is an overall link between them.
4 Very Good. All the paragraphs follow a flow from the Introduction to Conclusion.

Coherence

1 Bad. The sentences do not make sense.
2 OK. Groups of sentences may make sense together, but the text still may not make sense.
3 Good. Most of the sentences make sense. The text, overall, makes sense.
4 Very Good. The sentences and overall text make sense.

Cohesion

1 Bad. There is little / no link between any 2 adjacent sentences in the same paragraph.
2 OK. There is little / no link between adjacent paragraphs. However, each paragraph is cohesive
3 Good. All the sentences in a paragraph are linked to each other and contribute in understanding the paragraph.
4 Very Good. The text is well connected. All the sentences are linked to each other and help in understanding the text.

Table 2: Annotation guidelines for different properties of text.

approximately 200 words each. The original arti-
cles ranged from a couple hundred words (Simple
English Wikipedia) to over a thousand words (En-
glish Wikipedia). We first summarized the longer
articles manually. Then, for the many articles over
200 words, we removed a few of the paragraphs
and sentences. In this way, despite all the texts
being published, we were able to introduce some
poor quality texts into our dataset. The articles
were sampled from a variety of genres, such as
History, Science, Law, Entertainment, Education,
Sports, etc.

Details of Annotators
The dataset was annotated by 20 annotators in the
age group of 20-25. Out of the 20 annotators, the
distribution was 9 high school graduates (current
college students), 8 college graduates, and 3 anno-
tators with a post-graduate degree.

In order to check the eyesight of the annotators,
we had each annotator look at different parts of the
screen. While they did that, we recorded how their
fixations were being detected. Only if their fixa-
tions to particular parts of the screen tallied with
our requests, would we let them participate in an-
notation.

All the participants in the experiment were flu-
ent speakers of English. A few of them scored
over 160 in GRE Verbal test and/or over 110 in
TOEFL. Irrespective of their appearance in such
exams, each annotator was made to take an En-
glish test before doing the experiments. The par-
ticipants had to read a couple of passages, answer
comprehension questions and score them for orga-
nization, coherence and cohesion (as either good /
medium / bad). In case they either got both com-
prehension questions wrong, or labeled a good
passage bad (or vice versa), they failed the test11.

1125 annotators applied, but we chose only 20. 2 of the

Property Full Overall
Organization 0.610 0.519
Coherence 0.688 0.633
Cohesion 0.675 0.614

Table 3: Inter-Annotator Agreements (Gwet’s
AC2) for each of the properties.

In order to help the annotators, they were given
5 sample texts to differentiate between good and
bad organization, coherence and cohesion. Table
1 has some of those texts12.

Inter-Annotator Agreement
Each of the properties were scored in the range of
1 to 4. In addition, we also evaluated the partici-
pant’s understanding of the text by asking them a
couple of questions on the text. Table 3 gives the
inter-annotator agreement for each of the 3 prop-
erties that they rated. The column Full shows
the agreement only if the participant answered
both the questions correct. The Overall column
shows the agreement irrespective of the partici-
pant’s comprehension of the text.

5.4 System Details
We conducted the experiment by following stan-
dard norms in eye-movement research (Holmqvist
et al., 2011). The display screen is kept about 2
feet from the reader, and the camera is placed mid-
way between the reader and the screen. The reader
is seated and the position of his head is fixed using
a chin rest.

Before the text is displayed, we calibrate the
camera by having the participant fixate on 13

rejected annotators failed the test, while the other 3 had bad
eyesight.

12The texts for good and bad organization are too long to
provide in this paper. They will be uploaded in supplemen-
tary material.
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points on the screen and validate the calibration
so that the camera is able to predict the location of
the eye on the screen accurately. After calibration
and validation, the text is displayed on the screen
in Times New Roman typeface with font size 23.
The reader reads the text and while that happens,
we record the reader’s eye movements. The read-
ers were allowed to take as much time as they
needed to finish the text. Once the reader has fin-
ished, the reader moves to the next screen.

The next two screens each have a question that
is based on the passage. These questions are used
to verify that the reader did not just skim through
the passage, but understood it as well. The ques-
tions were multiple choice, with 4 options13. The
questions test literal comprehension (where the
reader has to recall something they read), and in-
terpretive comprehension (where the reader has to
infer the answer from the text they read). After
this, the reader scores the texts for organization,
coherence and cohesion. The participants then
take a short break (about 30 seconds to a couple
of minutes) before proceeding with the next text.
This is done to prevent reading fatigue over a pe-
riod of time. After each break, we recalibrate the
camera and validate the calibration again.

For obtaining gaze features from a participant,
we collect gaze movement patterns using an SR
Research Eye Link 1000 eye-tracker (monocular
stabilized head mode, sampling rate 500Hz). It
is able to collect all the gaze details that we re-
quire for our experiments. Reports are generated
for keyboard events (message report) and gaze be-
haviour (interest area report) using SR Research
Data Viewer software.

5.5 Classification Details
We also process the articles for obtaining the text
features as described in Section 4. Given that we
want to show the utility of gaze features, we ran
each of the following classifiers with 3 feature sets
- only text, only gaze, and all features.

We split the data into a training - test split of
sizes 70% and 30%. We used a Feed Forward
Neural Network with 1 hidden layer containing
100 neurons (Bebis and Georgiopoulos, 1994)14.

13Example Passage Text: The text in Figure 1
Question: “How many states did Ronald Reagan win in both
his Presidential campaigns?”
Correct Answer: “93” (44+49)

14We also used other classifiers, like Naive Bayes, Logistic
Regression and Random Forest. However, the neural network
outperformed them.

The size of the input vector was 361 features. Out
of these, there were 49 text features, plus 300
dimension word embeddings features, 11 gaze
features, and 1 class label. The data was split
using stratified sampling, to ensure that there is a
similar distribution of classes in each of the train-
ing and test splits. The Feed Forward Neural Net-
work was implemented using TensorFlow (Abadi
et al., 2015) in Python. We ran the neural network
over 10,000 epochs, with a learning rate of 0.001
in 10 batches. The loss function that we used was
the mean square error.

In order to see how much the participant’s un-
derstanding of the text would reflect on their scor-
ing, we also looked at the data based on how the
participant scored in the comprehension questions
after they read the article. We split the articles into
2 subsets here - Full, denoting that the partici-
pant answered both the questions correctly, and
Partial, denoting that they were able to answer
only one of the questions correctly. The read-
ers showed Full understanding in 269 instances
and Partial understanding in 261 instances. We
used the same setup here (same training - test split,
stratified sampling, and feed forward neural net-
work). We omit the remaining 70 instances where
the participant got none of the questions correct,
as the participant could have scored the texts com-
pletely randomly.

6 Results and Analysis

Table 4 shows the results of our experiments us-
ing the feed forward neural network classifier. The
first column is the property being evaluated. The
next 3 columns denote the results for the Text,
Gaze and Text+Gaze feature sets.

Property Text Gaze Text+Gaze
Organization 0.237 0.394 0.563
Coherence 0.261 0.285 0.550
Cohesion 0.120 0.229 0.451
Quality 0.230 0.304 0.552

Table 4: QWK scores for the three feature sets on
different properties.

The QWK scores are the predictions which we
obtain with respect to the scores of all the 30 doc-
uments, scored by all 20 raters. Textual features
when augmented with gaze based features show
significant improvement for all the properties.
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Figure 2: Relation between some of the different gaze features and the score. The gaze features are (a)
RD, (b) SFD, (c) FC and (d) RC. For figures (a) and (b), the units on the y-axis are milliseconds. For
figures (c) and (d) the numbers are a ratio to the number of interest areas in the text. The x-axis in all 4
graphs is the score given by the annotators.

We check the statistical significance of im-
provement of adding gaze based features for the
results in Table 4. To test our hypothesis - that
adding gaze features make a statistically signifi-
cant improvement - we run the t-test. Our null hy-
pothesis: Gaze based features do not help in pre-
diction, any more than text features themselves,
and whatever improvements happen when gaze
based features are added to the textual features,
are not statistically significant. We choose a sig-
nificance level of p < 0.001. For all the improve-
ments, we found them to be statistically significant
above this α level, rejecting our null hypothesis.

We also evaluate how the participant’s under-
standing of the text affects the way they score the
text. Table 5 shows the results of our experiments
taking the reader’s comprehension into account.
The first column is the property being evaluated.
The second column is the level of comprehension
- Full for the passages where the participant an-
swered both the questions correctly, and Partial
for the passages where the participant answered
one question correctly. The next 3 columns show
the results using the Text feature set, the Gaze fea-
ture set, and both (Text+Gaze) feature sets. From
this table, we see that wherever the gaze features
are used, there is far greater agreement for those

with Full understanding as compared to Partial
understanding.

Property Comp. Text Gaze Text+Gaze

Organization Full 0.319 0.319 0.563
Partial 0.115 0.179 0.283

Coherence Full 0.255 0.385 0.601
Partial 0.365 0.343 0.446

Cohesion Full 0.313 0.519 0.638
Partial 0.161 0.155 0.230

Quality Full 0.216 0.624 0.645
Partial 0.161 0.476 0.581

Table 5: QWK scores for the three feature sets
on different properties categorized on the basis of
reader comprehension.

Figure 2 shows a clear relationship between
some of the gaze features and the scores given by
readers for the properties - organization, cohesion
and coherence. In all the charts, we see that texts
with the lowest scores have the longest durations
(regression / fixation) as well as counts (of fixa-
tions and interest areas fixated).

Figure 3 shows the fixation heat maps for 3 texts
whose quality scores were good (10), medium (6)
and bad (3), read by the same participant. From
these heat maps, we see that the text rated good has
highly dense fixations for only a part of the text,
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(a) Good (rated 10) (b) Medium (rated 6) (c) Bad (rated 3)

Figure 3: Fixation heatmap examples for one of the participants from SR Research Data Viewer software.

as compared to the medium and bad texts. This
shows that badly written texts force the readers to
fixate a lot more than well-written texts.

6.1 Ablation Tests

In order to see which of the gaze feature sets is
important, we run a set of ablation tests. We ablate
the fixations, regressions and interest area feature
sets one at a time. We also ablated each of the
individual gaze features.

Property Fixation Regression Interest Areas
Organization -0.102 -0.017 -0.103
Coherence -0.049 -0.077 -0.088
Cohesion -0.015 -0.040 0.037
Quality 0.002 0.016 -0.056

Table 6: Difference in QWK scores when ablat-
ing three gaze behaviour feature sets for different
properties.

Table 6 gives the result of our ablation tests
on the three feature sets - fixation, regression and
interest area feature sets. The first column is
the property that we are measuring. The next 3
columns denote the difference between the pre-
dicted QWK that we got from ablating the fixation,
regression and interest area feature sets. We found
that the Interest Area feature set was the most im-
portant, followed by fixation and regression.

Among the individual features, Run Count
(RC) was found to be the most important for or-
ganization and quality. First Fixation Duration
(FFD) was the most important feature for coher-
ence, and IsRegressionFull (IRF) was the most
important feature for cohesion. We believe that
this is because the number of interest areas that are
fixated on at least once and the number of interest
areas that are skipped play an important role in de-
termining how much of the text was read and how
much was skipped. However, for cohesion, regres-
sion features are the most important, because they
show a link between the cohesive clues (like lexis,

references, etc.) in adjacent sentences.

7 Conclusion and Future Work

We presented a novel approach to predict reader’s
rating of texts. The approach estimates the over-
all quality on the basis of three properties - orga-
nization, coherence and cohesion. Although well
defined, predicting the score of these properties
for a text is quite challenging. It has been estab-
lished that cognitive information such as gaze be-
haviour can help in such subjective tasks (Mishra
et al., 2013, 2016). We hypothesized that gaze
behavior will assist in predicting the scores of
text quality. To evaluate this hypothesis, we col-
lected gaze behaviour data and evaluated the pre-
dictions using only the text-based features. When
we took gaze behaviour into account, we were
able to significantly improve our predictions of or-
ganization, coherence, cohesion and quality. We
found out that, in all cases, there was an improve-
ment in the agreement scores when the participant
who rated the text showed full understanding, as
compared to partial understanding, using only the
Gaze features and the Text+Gaze features. This in-
dicated that gaze behaviour is more reliable when
the reader has understood the text.

To the best of our knowledge, our work is pi-
oneering in using gaze information for predicting
text quality rating. In future, we plan to use use
approaches, like multi-task learning (Mishra et al.,
2018), in estimating gaze features and using those
estimated features for text quality prediction.
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Abstract

We propose a novel approach to OCR
post-correction that exploits repeated texts
in large corpora both as a source of noisy
target outputs for unsupervised training
and as a source of evidence when decod-
ing. A sequence-to-sequence model with
attention is applied for single-input correc-
tion, and a new decoder with multi-input
attention averaging is developed to search
for consensus among multiple sequences.
We design two ways of training the cor-
rection model without human annotation,
either training to match noisily observed
textual variants or bootstrapping from a
uniform error model. On two corpora of
historical newspapers and books, we show
that these unsupervised techniques cut the
character and word error rates nearly in
half on single inputs and, with the addi-
tion of multi-input decoding, can rival su-
pervised methods.

1 Introduction

Optical character recognition (OCR) software has
made vast quantities of printed material available
for retrieval and analysis, but severe recognition
errors in corpora with low quality of printing and
scanning or physical deterioration often hamper
accessibility (Chiron et al., 2017). Many digitiza-
tion projects have employed manual proofreading
to further correct OCR output (Holley, 2009), but
this is time consuming and depends on fostering
a community of volunteer workers. These prob-
lems with OCR are exacerbated in library-scale
digitization by commercial (e.g., Google Books,
Newspapers.com), government (e.g., Library of
Congress, Bibliothèque nationale de France), and
nonprofit (e.g., Internet Archive) organizations.

The scale of these projects not only makes it dif-
ficult to adapt OCR models to their diverse lay-
outs and typefaces but also makes it impractical to
present any OCR output other than a single-best
transcript.

Existing methods for automatic OCR post-
correction are mostly supervised methods that cor-
rect recognition errors in a single OCR output (Ko-
lak and Resnik, 2002; Kolak et al., 2003; Yama-
zoe et al., 2011). Those systems are not scalable
since human annotations are expensive to acquire,
and they are not capable of utilizing complemen-
tary sources of information. Another line of work
is ensemble methods (Lund et al., 2013, 2014)
combining OCR results from multiple scans of the
same document. Most of these ensemble meth-
ods, however, require aligning multiple OCR out-
puts (Lund and Ringger, 2009; Lund et al., 2011),
which is intractable in general and might introduce
noise into the later correction stage. Furthermore,
voting-based ensemble methods (Lund and Ring-
ger, 2009; Wemhoener et al., 2013; Xu and Smith,
2017) only work where the correct output exists
in one of the inputs, while classification methods
(Boschetti et al., 2009; Lund et al., 2011; Al Azawi
et al., 2015) are also trained on human annotations.

To address these challenges, we propose an un-
supervised OCR post-correction framework both
to correct single input text sequences and also to
exploit multiple candidate texts by simultaneously
aligning, correcting, and voting among input se-
quences. Our proposed method is based on the
observation that significant number of duplicate
and near-duplicate documents exist in many cor-
pora (Xu and Smith, 2017), resulting in OCR out-
put containing repeated texts with various quality.
As shown by the example in Table 1, different er-
rors (characters in red) are introduced when the
OCR system scans the same text in multiple edi-
tions, each with its own layout, fonts, etc. For ex-
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ample, in is recognized as m in the first output and
a is recognized as u in the third output, while the
second output is correctly recognized. Therefore,
duplicated texts with diverse errors could serve
as complementary information sources for each
other.

OCR eor**y that I have been slam in battle, for 1
Output sorry that I have been slain in battle, for I

sorry tha’ I have been s uin in battle, f r I
Original sorry that I have been slain in battle, for IText

Table 1: Example duplicate texts in OCR’d digital corpora

In this paper, we aim to train an unsupervised
correction model via utilizing the duplication in
OCR output. We propose to map each erroneous
OCR’d text unit to either its high-quality dupli-
cation or a consensus correction among its du-
plications via bootstrapping from an uniform er-
ror model. The baseline correction system is a
sequence-to-sequence model with attention (Bah-
danau et al., 2015), which has been shown to be ef-
fective in text correction tasks (Chollampatt et al.,
2016; Xie et al., 2016).

We also seek to improve the correction perfor-
mance for duplicated texts by integrating multi-
ple inputs. Previous work on combining mul-
tiple inputs in neural translation deal with data
from different domains, e.g., multilingual (Zoph
and Knight, 2016) or multimodal (Libovický and
Helcl, 2017) data. Therefore, their models need
to be trained on multiple inputs to learn parame-
ters to combine inputs from each domain. Given
that the inputs of our task are all from the same
domain, our model is trained on a single input
and introduces multi-input attention to generate
a consensus result merely for decoding. It does
not require learning extra parameters for atten-
tion combination and thus is more efficient to
train. Furthermore, average attention combina-
tion, a simple multi-input attention mechanism, is
proposed to improve both the effectiveness and ef-
ficiency of multi-input combination on the OCR
post-correction task.

We experiment with both supervised and un-
supervised training and with single- and multi-
input decoding on data from two manually tran-
scribed collections in English with diverse type-
faces, genres, and time periods: newspaper arti-
cles from the Richmond (Virginia) Daily Dispatch
(RDD) from 1860–1865 and books from 1500–

1800 from the Text Creation Partnership (TCP).
For both collections, which were manually tran-
scribed by other researchers and are in the pub-
lic domain, we aligned the one-best output of an
OCR system to the manual transcripts. We also
aligned the OCR in the training and evaluation sets
to other public-domain newspaper issues (from the
Library of Congress) and books (from the Inter-
net Archive) to find multiple duplicates as “wit-
nesses”, where available, for each line. Experi-
mental results on both datasets show that our pro-
posed averarge attention combination mechanism
is more effective than existing methods in integrat-
ing multiple inputs. Moreover, our noisy error cor-
rection model achieves comparable performance
with the supervised model via multiple-input de-
coding on duplicated texts.

In summary, our contributions are: (1) a scal-
able framework needing no supervision from hu-
man annotations to train the correction model; (2)
a multi-input attention mechanism incorporating
aligning, correcting, and voting on multiple se-
quences simultaneously for consensus decoding,
which is more efficient and effective than exist-
ing ensemble methods; and (3) a method that cor-
rects text either with or without duplicated ver-
sions, while most existing methods can only deal
with one of these cases.

2 Data Collection

We perform experiments on one-best OCR out-
put from two sources: two million issues from the
Chronicling America collection of historic U.S.
newspapers, which is the largest public-domain
full-text collection in the Library of Congress;1

and three million public-domain books in the In-
ternet Archive.2

For supervised training and for evaluation, we
aligned manually transcribed texts to these one-
best OCR transcripts: 1384 issues of the Rich-
mond (Virginia) Daily Dispatch from 1860–1865
(RDD)3 and 934 books from 1500–1800 from the

1chroniclingamerica.loc.gov: Historical
newspapers also constitute the largest digitized text col-
lections in the Australian National Library (Trove) and the
Europeana consortium.

2https://archive.org/details/texts.
Google Books and the Hathi Trust consortium also hold
many in-copyright books and require licensing agreements
to access public-domain materials.

3dlxs.richmond.edu/d/ddr/: the transcription
from the University of Richmond includes all articles but only
some advertisements.
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Text Creation Partnership (TCP).4 Both of these
manually transcribed collections, which were pro-
duced independently from the current authors, are
in the public domain and in English, although both
Chronicling America and the Internet Archive also
contain much non-English text.

To get more evidence for the correct reading of
an OCR’d line, we aligned each OCR’d RDD is-
sue to other issues of the RDD and other newspa-
pers from Chronicling America and aligned each
OCR’d TCP page to other pre-1800 books in the
Internet Archive. To perform these alignments be-
tween noisy OCR transcripts efficiently, we used
methods from our earlier work on text-reuse anal-
ysis (Smith et al., 2014; Wilkerson et al., 2015).
An inverted index of hashes of word 5-grams was
produced, and then all pairs from different pages
in the same posting list were extracted. Pairs of
pages with more than five shared hashed 5-grams
were aligned with the Smith-Waterman algorithm
with equal costs for insertion, deletion, and sub-
stitution, which returns a maximally aligned sub-
sequence in each pair of pages (Smith and Water-
man, 1981). Aligned passages that were at least
five lines long in the target RDD or TCP text were
output. For each target OCR line—i.e., each line
in the training or test set—there are thus, in addi-
tion to the ground-truth manual transcript, zero or
more witnesses from similar texts, to use the term
from textual criticism.

In our experiments on OCR correction, each
training and test example is a line of text follow-
ing the layout of the scanned image documents5.
The average number of characters per line is 42.4
for the RDD newspapers and 53.2 for the TCP
books. Table 2 lists statistics for the number of
OCR’d text lines with manual transcriptions and
additional witnesses. 43% of the manually tran-
scribed lines have witnesses in the RDD newspa-
pers, and 64% of them have witnesses in the TCP
books. In the full Chronicling America data, 44%
of lines align to at least one other witness. Al-
though not all OCR collections will have this level
of repetition, it is notable that these collections,
which are some of the largest public-domain dig-
ital libraries, do exhibit this kind of reprinting.
Similarly, at least 25% of the pages in Google’s
web crawls are duplicates (Henzinger, 2006). Al-
though we exploit text reuse, where available, to

4www.textcreationpartnership.org
5The datasets can be downloaded from http://www.

ccs.neu.edu/home/dongrui/ocr.html

improve decoding and unsupervised training, we
also show (Table 5) significant improvements to
OCR accuracy with only a single transcript.

Dataset # Lines # Lines
w/manual w/manual & witnesses

RDD 2.2M 0.95M (43%)
TCP 8.6M 5.5M (64%)

Table 2: Statistics for the number of OCR’d lines in million
(M) from the Richmond Dispatch and TCP Books with man-
ual transcriptions (Column 1) or with both transcriptions and
multiple witnesses (Column 2).

3 Methods

In this section, we first define our problem in
§3.1, followed by model description. In gen-
eral, we train an OCR error correction model via
an attention-based RNN encoder-decoder, which
takes a single erroneous OCR’d line as input and
outputs the corrected text (§3.2). At decoding
time, multi-input attention combination strategies
are introduced to allow the decoder to integrate in-
formation from multiple inputs (§3.3). Finally, we
discuss several unsupervised settings for training
the correction model in §3.4.

3.1 Problem Definition
Given a line of OCR’d text x, comprising the se-
quence of characters [x1, · · · , xTS ], our goal is to
map it to an error-free text y = [y1, · · · , yTT ] via
modeling p(y|x). Given p(y|x), we also seek to
model p(y|X) to search for consensus among du-
plicated texts X, where X = [x1, · · · ,xN ] are du-
plicated lines of OCR’d text.

3.2 Attention-based Seq2Seq Model
Similar to previous work (Bahdanau et al., 2015),
the encoder is a bidrectional RNN (Schuster and
Paliwal, 1997) that converts source sequence x =
[x1, · · · , xTS ] into a sequence of RNN states h =

[h1, · · · , hTS ], where hi = [
−→
h i,
←−
h i] is a concate-

nation of both forward and backward hidden states
at time step i(1 ≤ i ≤ TS). We have
−→
h i = f(xi,

−→
h i−1);

←−
h i = f(xi,

←−
h i+1), (1)

here f is the dynamic function, e.g., LSTM
(Hochreiter and Schmidhuber, 1997) or GRU
(Cho et al., 2014).

The decoder RNN predicts the output sequence
y = [y1, · · · , yTT ], through the following dynam-
ics and prediction model:

st = f(yt−1, st−1, ct); (2)
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p(yt|y<t,x) = g(yt−1, st, ct), (3)

where st is the RNN state and ct is the context
vector at time t. yt is the predicted symbol from
the target vocabulary at time t via prediction func-
tion g(·). The context vector is given as a linear
combination of the encoder hidden states:

ct =
TS∑

i=1

αt,ihi; αt,i =
eη(st−1,hi)

∑
τ e

η(st−1,hτ )
(4)

where αt,i is the weight for each hidden state hi
and η is the function that computes the strength of
each encoder hidden state according to current de-
coder hidden state. The loss function is the cross-
entropy loss per time step summed over the output
sequence y:

L(x,y) = −
TS∑

t=1

log p(yt|x, y<t) (5)

3.3 Multi-input Attention
Given a trained Seq2Seq model p(y|x), our goal
is to combine multiple input sequences X to gen-
erate the target sequence y, i.e., to utilize infor-
mation from multiple sources at decoding time.
Assume that N relevant source sequences X =
[x1, · · · ,xN ] are observed, where each sequence
xl = [xl,1, · · · , xl,Tl ] (1 ≤ l ≤ N ) and Tl is the
length of the lth sequence. Then, a sequence of
hidden states hl = [hl,1, · · · , hl,Tl ] is generated by
the encoder network for each input sequence xl.
At each decoding time step t, the decoder searches
through encoder hidden states H = [h1, · · · ,hN ]
to compute a global context vector ct. Different
strategies to combine attention from multiple en-
coders are described as follows.
Flat Attention Combination. Flat attention com-
bination assigns a weight αt,l,i to each encoder
hidden state hl,i for each input sequence xl as:

αt,l,i =
eη(st−1,hl,i)

∑N
l′=1

∑Tl′
τ=1 e

η(st−1,hl′,τ )
. (6)

Therefore, the global context vector is given by

ct =
N∑

l=1

Tl∑

i=1

αt,l,ihl,i. (7)

Flat attention combination is similar to single-
input decoding in that it concatenates all inputs
into a long sequence, except that the encoder hid-
den states are computed independently for each in-
put.

Hierarchical Attention Combination. The struc-
ture of hierarchical attention combination is pre-
sented in Figure 1. We first compute a context
vector for each input as:

ct,l =
Tl∑

i=1

αt,l,ihl,i; αt,l,i =
eη(st−1,hl,i)

∑Tl
τ=1 e

η(st−1,hl,τ )
.

(8)
Then a global context vector ct is computed as a
weighted sum of all the context vectors:

ct =
N∑

i=1

βt,lct,l, (9)

where βt,l is the weight assigned to each context
vector ct,l and computed in different ways as fol-
lows:

(a) Weighted Attention Combination. In
weighted attention combination, the weight for
each context vector is given by its dot product
with the decoder state in the transformed common
space:

βt,l =
eη(st−1,ct,l)

∑N
l′=1 e

η(st−1,ct,l′ )
. (10)

(b) Average Attention Combination. In aver-
age attention combination, each input sequence is
treated as equally weighted. Thus βt,l = 1

N for
each input sequence xl. It is more efficient than
the weighted attention combination in that it does
not need to compute a weight for each input.

Figure 1: Hierarchical attention combination.

These attention-combination methods do not
have parameters trained on multiple inputs and are
only introduced at decoding time. In contrast, Li-
bovický and Helcl (2017) and Zoph and Knight
(2016) introduce parameters for each type of input
and require training and decoding with the same
number of inputs.
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3.4 Training Settings

In this section, we introduce different settings
for training our correction model, a single-input
attention-based Seq2Seq model (§3.2), which
transforms each OCR’d text line into a corrected
version generated via different mechanisms.
Supervised Training. In this setting, the correc-
tion model is trained to map each OCR’d line into
the corresponding manual transcription, i.e., the
human annotation. We call the correction model
trained in this setting Seq2Seq-Super.
Unsupervised Training. In the absence of ground
truth transcriptions, we can use different meth-
ods to generate a noisy corrected version for each
OCR’d line.

(a) Noisy Training. In this setting, the correc-
tion model is trained to transform each OCR’d text
line to a selected high-quality witness. The quality
of the witnesses is measured by a 5-gram charac-
ter language model built on the New York Time
Corpus (Sandhaus, 2008) with KenLM toolkit
(Heafield, 2011). For each OCR’d line with mul-
tiple witnesses, a score is assigned to each witness
by the language model, divided by the number of
characters in it to reduce the effect of the length of
a witness. Then a witness with the highest score
is chosen as the noisy ground truth for each line.
Those lines with low score for all witnesses are
removed. We call the correction model trained in
this setting Seq2Seq-Noisy.

(b) Synthetic Training. In this setting, the er-
ror correction model is trained to recover a man-
ually corrupted out-of-domain corpus. We con-
struct the synthetic dataset by injecting uniformly
distributed insertion, deletion and substitution er-
rors into the New York Times corpus. Firstly,
the news articles are split into lines with random
length between [1, 70] following a Gaussian distri-
butionN(45, 5), which is similar to that of the real
world dataset. Then, a certain number of lines are
randomly selected and injected with equal num-
ber of insertion, deletion and substitution errors.
The correction model is then trained to recover the
original line from each corrupted line. We call this
model Seq2Seq-Syn.

(c) Synthetic Training with Bootstrapping. In
this setting, we propose to further improve the per-
formance of synthetic training via bootstrapping.
The correction model trained on synthetic dataset
does not perform well when correcting a given in-
put from real world dataset, due to their difference

in error distributions. But it achieves compara-
ble performance with the supervised model when
decoding lines with multiple witnesses, since the
model could further benefit from jointly aligning
and voting among multiple inputs. Thus, with
the multi-input attention mechanism introduced
in §3.3, we first generate a high-quality consen-
sus correction for each OCR’d line with witnesses
via the correction model trained on synthetic data.
Then, the a bootstrapped model is trained to trans-
form those lines into their consensus correction re-
sults. We call the correction model trained in this
setting Seq2Seq-Bootstrap.

4 Experiments

In this section, we first introduce the details of
our experimental setup (§4.1). Then, the results
of preliminary experiments comparing the perfor-
mance of different options for the single-input
Seq2Seq model and the multi-input attention com-
bination strategies are presented in §4.2. The main
experimental results for evaluating the correction
model trained in different training settings and de-
coded with/without multi-input attention are re-
ported and explained in §4.3. Further discussions
of our model are described in §4.4.

4.1 Experimental Setup
We begin by describing the data split, training de-
tails, baseline systems, and evaluation metrics.

4.1.1 Training Details
For both RDD newspapers and TCP books, we
randomly split the OCR’d lines into 80% training
and 20% test either by the date of the newspaper or
by the name of the books. For the RDD newspa-
pers, we have 1.7M training lines and 0.44M test
lines. For the TCP books, 2.8M lines are randomly
sampled from the whole training set for different
training settings to conduct a fair comparison with
noisy training, and about 1.6M lines are used for
testing.

Both the encoder and decoder of our model
has 3 layers with 400 hidden units for each layer,
where GRU is applied as the dynamic function.
Adam optimizer with a learning rate of 0.0003 and
default decay rates is used to train the correction
model . We train up to 40 epochs with a mini-
batch size of 128 and select the model with the
lowest perplexity on the development set. The de-
coder implements beam search with a beam width
of 100.
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4.1.2 Baselines and Comparisons

In preliminary experiments, we first compare the
neural translation model (§3.2) with a commonly
used Seq2Seq model, pruned conditional random
fields (PCRF) (Schnober et al., 2016) on the
single-input correction task. CRF models have
been shown to be very competitve on tasks such
as OCR post-correction, spelling correction, and
lemmatization. After that, we compare the differ-
ent multi-input attention strategies introduced in
§3.3 on multi-input correction task to choose the
best strategy for the main experiments.

In the main experiment, we compare the per-
formance of correction models trained in differ-
ent training settings and decode with and with-
out multiple witnesses. Two ensembles methods,
language model ranking (LMR) and majority vote
(Xu and Smith, 2017), are also considered as un-
supervised baseline methods. LMR chooses a sin-
gle high-quality witness for each OCR’d line by
a language model as the correction for that line.
Majority vote first aligns multiple input sequences
using a greedy pairwise algorithm (since multiple
sequence alignment is intractable) and then votes
on each position in the alignment, with a slight ad-
vantage given to the original OCR output in case
of ties. We also tried to use an exact unsupervised
method for consensus decoding based on dual de-
composition (Paul and Eisner, 2012). Their imple-
mentation, unfortunately, turned out not to return a
certificate of completion on most lines in our data
even after thousands of iterations.

4.1.3 Evaluation Metrics

Word error rate (WER) and character error rate
(CER) are used to compare the performance of
each method. Case is ignored. Lattice word er-
ror rate (LWER) and lattice character error rate
(LCER) are also computed as the oracle perfor-
mance for each method, which could reveal the
capability of each model to be applied to down-
stream tasks taking lattices as input, e.g., re-
ranking or retrieval of the correction hypothe-
ses (Taghva et al., 1996; Lam-Adesina and Jones,
2006). We compute the macro average for each
type of error rate, which allows us to use a paired
permutation significance test.

4.2 Preliminary Experiments

In this section, we conduct two preliminary ex-
periments to study different options for both the

single-input correction models and the multi-input
attention combination strategies.

4.2.1 Single Input Correction Model

Model CER WER
None 0.18133 0.41780
PCRF(order=5,w=4) 0.11403 0.25116
PCRF(order=5,w=6) 0.11535 0.25617
Attn 0.11028* 0.23405*

Table 3: CER and WER on single-input correction for
PCRF and Attn-Seq2Seq on RDD newspapers. Results from
Attn-Seq2Seq that are significantly better than the PCRF are
highlighted with *(p < 0.05, paired permutation test). The
best result for each column is in bold.

We first compare the attention-based Seq2Seq
(Attn-Seq2Seq) model, with a traditional Seq2Seq
model, PCRF, on single input correction task.
As the PCRF implementation of Schnober et al.
(2016) is highly memory and time consuming for
training on long sequences, we compare it with
Attn-Seq2Seq model on a smaller dataset with
100K lines randomly sampled from RDD news-
papers training set. The trained correction model
is then applied to correct the full test set. CER
and WER of the correction results from both mod-
els are listed in Table 3. We can find that the
Attn-Seq2Seq neural translation model works sig-
nificantly better than the PCRF when trained on a
dataset of the same size. The performance of the
Attn-Seq2seq model could be further improved by
including more training data or by multi-input de-
coding for duplicated texts, while the PCRF could
only be trained on limited data and is not able to
work on multiple inputs. Thus, we choose Attn-
Seq2Seq as our error correction model.

4.2.2 Multi-input Attention Combination
We also compare different attention combination
strategies on a multi-input decoding task. The re-
sults from Table 4 reveal that average attention
combination performs best among all the decod-
ing strategies on RDD newspapers and TCP books
datasets. It reduces the CER of single input de-
coding by 41.5% for OCR’d lines in RDD news-
papers and 9.76% for TCP books. The com-
parison between two hierarchical attention com-
bination strategies shows that averaging evidence
from each input works better than a weighted sum-
mation mechanism. Flat attention combination,
which merges all the inputs into a long sequence
when computing the strength of each encoder hid-
den state, obtains the worst performance in terms
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Decode RDD Newspapers TCP Books
CER LCER WER LWER CER LCER WER LWER

None 0.15149 0.04717 0.37111 0.13799 0.10590 0.07666 0.30549 0.23495
Single 0.07199 0.03300 0.14906 0.06948 0.04508 0.01407 0.11283 0.03392
Flat 0.07238 0.02904* 0.15818 0.06241* 0.05554 0.01727 0.13487 0.04079

Weighted 0.06882* 0.02145* 0.15221 0.05375 0.05516 0.01392* 0.1330 0.03669
Average 0.04210* 0.01399 * 0.09397 0.02863* 0.04072* 0.01021* 0.09786* 0.02092*

Table 4: Results of correcting lines in the RDD newspapers and TCP books with multiple witnesses when decoding with
different strategies using the same supervised model. Attention combination strategies that statistically significantly outperform
single-input decoding are highlighted with * (p < 0.05, paired-permutation test). Best result for each column is in bold.

of both CER and WER.

4.3 Main Results

We now present results on the full training and
test sets for the Richmond Daily Dispatch news-
papers and Text Creation Partnership books. All
results are on the same test set. The multi-input de-
coding experiments have access to additional wit-
nesses for each line, where available, but fall back
to single-input decoding when no additional wit-
nesses are present for a given line.

Table 5 presents the results for our model
trained in different training settings as well as
the baseline language model reranking (LMR) and
majority vote methods. Multiple input decoding
performs better than single input decoding for ev-
ery training setting, and the model trained in su-
pervised mode with multi-input decoding achieves
the best performance. The majority vote base-
line, which works only on more than two in-
puts, performs worst on both the TCP books
and RDD newspapers. Our proposed unsuper-
vised framework Seq2Seq-Noisy and Seq2Seq-
Boots achieves performance comparable with the
supervised model via multi-input decoding on the
RDD newspaper dataset. The performance of
Seq2Seq-Noisy is worse on the TCP Books than
the RDD newspapers, since those old books con-
tain the character long s 6, which is formerly used
where s occurred in the middle or at the begin-
ning of a word. These characters are recognized
as f in all the witnesses because of similar shape.
Thus, the model trained on noisy data are unable
to correct them into s. Nonetheless, by removing
the factor of long s, i.e., replacing the long s in the
ground truth with f, Seq2Seq-Noisy could achieve
a CER of 0.062 for single-input decoding and
0.058 for multi-input decoding on the TCP books.
Both Seq2Seq-Syn and Seq2Seq-Boots work bet-
ter on the RDD newspapers than the TCP books

6https://en.wikipedia.org/wiki/Long_s

dataset. We conjecture that it is because the syn-
thetic dataset is trained on (modern) newspapers,
which are more similar to the nineteenth-century
RDD newspapers. The long s problem also makes
it more difficult for the model trained on synthetic
data to work on the TCP books.

4.4 Discussion

In this section, we provide further analysis on dif-
ferent aspects of our method.
Does Corruption Rate Affect Synthetic Train-
ing? We first examine how the corruption rate of
the synthetic dataset would affect the performance
of the correction model. Figure 2 presents the
results of single-input correction and multi-input
correction tasks on the RDD newspapers and TCP
books when trained on synthetic data corrupted
with different error rate: 0.9, 0.12, 0.15. For both
tasks, the character error rate increases a little bit
when the correction model is trained to recover the
synthetic date with higher corruption rate. How-
ever, the performance is more stable on the RDD
newspapers than the TCP books when more errors
are introduced.

(a) RDD Newspapers (b) TCP Books

Figure 2: Performance of Seq2Seq-Syn trained on syn-
thetic data with different corruption rates.

Does Number of Witnesses Matter for
Multiple-Input Decoding? Here we want to
study the impact of the number of witnesses on
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Decode Model RDD Newspapers TCP Books
CER LCER WER LWER CER LCER WER LWER

None 0.18133 0.13552 0.41780 0.31544 0.10670 0.08800 0.31734 0.27227

Single

Seq2Seq-Super 0.09044 0.04469 0.17812 0.09063 0.04944 0.01498 0.12186 0.03500
Seq2Seq-Noisy 0.10524 0.05565 0.20600 0.11416 0.08704 0.05889 0.25994 0.15725
Seq2Seq-Syn 0.16136 0.11986 0.35802 0.26547 0.09551 0.06160 0.27845 0.18221

Seq2Seq-Boots 0.11037 0.06149 0.22750 0.13123 0.07196 0.03684 0.21711 0.11233

Multi

LMR 0.15507 0.13552 0.34653 0.31544 0.10862 0.08800 0.33983 0.27227
Majority Vote 0.16285 0.13552 0.40063 0.31544 0.11096 0.08800 0.34151 0.27227

Seq2Seq-Super 0.07731 0.03634 0.15393 0.07269 0.04668 0.01252 0.11236 0.02667
Seq2Seq-Noisy 0.09203* 0.04554* 0.17940 0.09269 0.08317 0.05588 0.24824 0.14885
Seq2Seq-Syn 0.12948 0.09112 0.28901 0.19977 0.08506 0.05002 0.24942 0.15169

Seq2Seq-Boots 0.09435 0.04976 0.19681 0.10604 0.06824* 0.03343* 0.20325* 0.09995*

Table 5: Results from model trained under different settings on single-input decoding and multiple-input decoding for both
the RDD newspapers and TCP books. All training is unsupervised except for supervised results in italics. Unsupervised
training settings with multi-input decoding that are significantly better than other unsupervised counterparts are highlighted
with * (p < 0.05, paired-permutation test). Best result among unsupervised training in each column is in bold.

(a) RDD Newspapers (b) TCP Books

Figure 3: Performance of different models on multiple decoding of lines with different number of witnesses.

the performance of multiple-input decoding. The
test set is divided into subgroups with varying
size according to their number of witnesses. Fig-
ure 3 presents the performance of multi-input cor-
rection on subgroups with different number of
witnesses. We can see that supervised training
achieves the best performance on each subgroup
for both datasets. On the RDD newspapers, the
performance of each training setting is signifi-
cantly improved when the number of witnesses in-
creases from 0 to 2, then the error rate tends to
be flat when more witnesses are observed. For
the TCP books, the character error rate for both
Seq2Seq-Syn and Seq2Seq-Boots decreases with
small fluctuation when the number of witnesses
increases. Seq2Seq-Noisy performs the worst al-
most on all subgroups on the TCP books since all
the witnesses suffers from the long s problem.

Can More Training Data Benefit Learning?
Figure 4 shows the test results for our correction
model trained on datasets of different size. As

the size of the training set increases, the CER of
our model decreases consistently for both single
and multiple input correction on the RDD newspa-
pers. However, the performance curve of correc-
tion model on TCP books dataset is flatter since it
is larger overall than RDD newspapers.

(a) RDD Newspapers (b) TCP Books

Figure 4: Performance of the supervised correction model
trained on different proportions of the RDD newspapers and
TCP books dataset.
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5 Related Work

Multi-Input OCR Correction. Ensemble meth-
ods have been shown to be effective in OCR post-
correction by combining OCR output from mul-
tiple scans of the same document (Lopresti and
Zhou, 1997; Klein and Kopel, 2002; Cecotti and
Belaı̈d, 2005; Lund et al., 2013). Existing methods
aim at generating consensus results by aligning
multiple inputs, followed by supervised methods
such as classification (Boschetti et al., 2009; Lund
et al., 2011; Al Azawi et al., 2015), or unsuper-
vised methods such as dictionary-based selection
(Lund and Ringger, 2009) and voting (Wemhoener
et al., 2013; Xu and Smith, 2017). While super-
vised ensemble methods require human annota-
tion for training, unsupervised selection methods
work only when the correct word or character ex-
ists in one of the inputs. Furthermore, those meth-
ods could not correct single inputs.
Multi-Input Attention. Multi-input attention has
already been explored in tasks such as machine
translation (Zoph and Knight, 2016; Libovický
and Helcl, 2017) and summarization (Wang and
Ling, 2016). Wang and Ling (2016) propose to
concatenate multiple inputs to generate a sum-
mary; this flat attention combination model might
be affected by the order of input sequences. Zoph
and Knight (2016) aims at developing a multi-
source translation model on a trilingual corpus
where the encoder for each language is combined
to pass to the decoder; however, it requires the
same number of inputs at training and decoding
time since the parameters depend on the number
of inputs. Libovický and Helcl (2017) explore dif-
ferent attention combination strategies for multi-
ple information sources such as image and text.
In contrast, our method does not require multi-
ple inputs for training, and the attention combina-
tion strategies are used to integrate multiple inputs
when decoding.

6 Conclusions

We have proposed an unsupervised framework
for OCR error correction, which can handle
both single-input and multi-input correction tasks.
An attention-based sequence-to-sequence model
is applied for single-input correction, based on
which a strategy of multi-input attention combi-
nation is designed to correct multiple input se-
quences simultaneously. The proposed strategy
naturally incorporates aligning, correcting, and

voting among multiple sequences, and is thus ef-
fective in improving the correction performance
for corpora containing duplicated text. We pro-
pose two ways of training the correction model
without human annotation by exploiting the dupli-
cation in the corpus. Experimental results on his-
torical books and newspapers show that these un-
supervised approaches significantly improve OCR
accuracy and, when multiple inputs are avail-
able, achieve performance comparable to super-
vised methods.
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Abstract

Text in many domains involves a signif-
icant amount of named entities. Predict-
ing the entity names is often challenging
for a language model as they appear less
frequent on the training corpus. In this
paper, we propose a novel and effective
approach to building a discriminative lan-
guage model which can learn the entity
names by leveraging their entity type in-
formation. We also introduce two bench-
mark datasets based on recipes and Java
programming codes, on which we evalu-
ate the proposed model. Experimental re-
sults show that our model achieves 52.2%
better perplexity in recipe generation and
22.06% on code generation than the state-
of-the-art language models.

1 Introduction

Language model is a fundamental component in
Natural Language Processing (NLP) and it sup-
ports various applications, including document
generation (Wiseman et al., 2017), text auto-
completion (Arnold et al., 2017), spelling correc-
tion (Brill and Moore, 2000), and many others.
Recently, language models are also successfully
used to generate software source code written in
programming languages like Java, C, etc. (Hin-
dle et al., 2016; Yin and Neubig, 2017; Hel-
lendoorn and Devanbu, 2017; Rabinovich et al.,
2017). These models have improved the language
generation tasks to a great extent, e.g., (Mikolov
et al., 2010; Galley et al., 2015). However, while
generating text or code with a large number of
named entities (e.g., different variable names in
source code), these models often fail to predict the
entity names properly due to their wide variations.
For instance, consider building a language model

for generating recipes. There are numerous simi-
lar, yet slightly different cooking ingredients (e.g.,
olive oil, canola oil, grape oil, etc.—all are dif-
ferent varieties of oil). Such diverse vocabularies
of the ingredient names hinder the language model
from predicting them properly.

To address this problem, we propose a novel
language model for texts with many entity names.
Our model learns the probability distribution over
all the candidate words by leveraging the en-
tity type information. For example, oil is the
type for named entities like olive oil, canola oil,
grape oil, etc.1 Such type information is even
more prevalent for source code corpus written in
statically typed programming languages (Bruce,
1993), since all the variables are by construct as-
sociated with types like integer, float, string, etc.

Our model exploits such deterministic type in-
formation of the named entities and learns the
probability distribution over the candidate words
by decomposing it into two sub-components: (i)
Type Model. Instead of distinguishing the individ-
ual names of the same type of entities, we first con-
sider all of them equal and represent them by their
type information. This reduces the vocab size to
a great extent and enables to predict the type of
each entity more accurately. (ii) Entity Composite
Model. Using the entity type as a prior, we learn
the conditional probability distribution of the ac-
tual entity names at inference time. We depict our
model in Fig. 1.

To evaluate our model, we create two bench-
mark datasets that involve many named entities.
One is a cooking recipe corpus2 where each recipe
contains a number of ingredients which are cate-

1Entity type information is often referred as category in-
formation or group information. In many applications, such
information can be easily obtained by an ontology or by a
pre-constructed entity table.

2 Data is crawled from http://www.ffts.com/
recipes.htm.
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place					proteins in							center				of									a									dish			with		vegetables on					each						side										.		

place				chicken in						center					of												a									dish					with				broccoli on						each						side								.		

entity name	w P(w|proteins) P(w)

q chicken 0.43 0.35	x	0.43

q beef 0.19 0.35	x	0.19

q .. .. ..

Language	Model	(type	model)

Language	Model	(entity	composite	type	model)

type P(type)

q proteins 0.35

q vegetables 0.11

q .. ..

type P(type)

q vegetables 0.52

q fruits 0.22

q .. ..

entity name	w P(w|vegetables) P(w)

q broccoli 0.26 0.52	x	0.26

q potatoes 0.21 0.52	x	0.21

q .. .. ..

Figure 1: An example illustrates the proposed model.
For a given context (i.e., types of context words as input),
the type model (in bottom red block) generates the type
of the next word (i.e., the probability of the type of the
next word as output). Further, for a given context and
type of each candidate (i.e., context words, correspond-
ing types of the context words, and type of the next word
generated by the type model as input), the entity compos-
ite model (in upper green block) predicts the next word
(actual entity name) by estimating the conditional proba-
bility of the next word as output. The proposed approach
conducts joint inference over both models to leverage type
information for generating text.

gorized into 8 super-ingredients (i.e., type); e.g.,
“proteins”, “vegetables”, “fruits”, “seasonings”,
“grains”, etc. Our second dataset comprises a
source code corpus of 500 open-source Android
projects collected from GitHub. We use an Ab-
stract Syntax Tree (AST) (Parsons, 1992) based
approach to collect the type information of the
code identifiers.

Our experiments show that although state-of-
the-art language models are, in general, good to
learn the frequent words with enough training in-
stances, they perform poorly on the entity names.
A simple addition of type information as an ex-
tra feature to a neural network does not guarantee
to improve the performance because more features
may overfit or need more model parameters on the
same data. In contrast, our proposed method sig-
nificantly outperforms state-of-the-art neural net-
work based language models and also the models
with type information added as an extra feature.

Overall, followings are our contributions:
• We analyze two benchmark language corpora

where each consists of a reasonable number
of entity names. While we leverage an ex-
isting corpus for recipe, we curated the code

corpus. For both datasets, we created auxil-
iary corpora with entity type information. All
the code and datasets are released.3

• We design a language model for text consist-
ing of many entity names. The model learns
to mention entities names by leveraging the
entity type information.
• We evaluate our model on our benchmark

datasets and establish a new baseline perfor-
mance which significantly outperforms state-
of-the-art language models.

2 Related Work and Background

Class Based Language Models. Building lan-
guage models by leveraging the deterministic
or probabilistic class properties of the words
(a.k.a, class-based language models) is an old
idea (Brown et al., 1992; Goodman, 2001). How-
ever, the objective of our model is different from
the existing class-based language models. The
key differences are two-folds: 1) Most existing
class-based language models (Brown et al., 1992;
Pereira et al., 1993; Niesler et al., 1998; Baker and
McCallum, 1998; Goodman, 2001; Maltese et al.,
2001) are generative n-gram models whereas ours
is a discriminative language model based on neu-
ral networks. The modeling principle and assump-
tions are very different. For example, we can-
not calculate the conditional probability by statis-
tical occurrence counting as these papers did. 2)
Our approaches consider building two models and
perform joint inference which makes our frame-
work general and easy to extend. In Section 4,
we demonstrate that our model can be easily in-
corporated with the state-of-art language model.
The closest work in this line is hierarchical neu-
ral language models (Morin and Bengio, 2005),
which model language with word clusters. How-
ever, their approaches do not focus on dealing
with named entities as our model does. A recent
work (Ji et al., 2017) studied the problem of build-
ing up a dynamic representation of named entity
by updating the representation for every contextu-
alized mention of that entity. Nonetheless, their
approach does not deal with the sparsity issue and
their goal is different from ours.

Language Models for Named Entities. In
some generation tasks, recently developed lan-
guage models address the problem of predict-

3https://github.com/uclanlp/NamedEntityLanguageModel
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ing entity names by copying/matching the entity
names from the reference corpus. For example,
Vinyals et al. (2015) calculates the conditional
probability of discrete output token sequence cor-
responding to positions in an input sequence. Gu
et al. (2016) develops a seq2seq alignment mech-
anism which directly copies entity names or long
phrases from the input sequence. Wiseman et al.
(2017) generates document from structured table
like basketball statistics using copy and recon-
struction method as well. Another related code
generation model (Yin and Neubig, 2017) parses
natural language descriptions into source code
considering the grammar and syntax in the tar-
get programming language (e.g., Python). Kid-
don et al. (2016) generates recipe for a given goal,
and agenda by making use of items on the agenda.
While generating the recipe it continuously moni-
tors the agenda coverage and focus on increasing
it. All of them are sequence-to-sequence learning
or end-to-end systems which differ from our gen-
eral purpose (free form) language generation task
(e.g., text auto-completion, spelling correction).

Code Generation. The way developers write
codes is not only just writing a bunch of instruc-
tions to run a machine, but also a form of com-
munication to convey their thought. As observed
by Donald E. Knuth (Knuth, 1992), “The prac-
titioner of literate programming can be regarded
as an essayist, whose main concern is exposition
and excellence of style. Such an author, with the-
saurus in hand, chooses the names of variables
carefully and explains what such variable means.”
Such comprehensible software corpora show sur-
prising regularity (Ray et al., 2015; Gabel and
Su, 2010) that is quite similar to the statistical
properties of natural language corpora and thus,
amenable to large-scale statistical analysis (Hindle
et al., 2012). (Allamanis et al., 2017) presented a
detailed survey.

Although similar, source code has some unique
properties that differentiate it from natural lan-
guage. For example, source code often shows
more regularities in local context due to common
development practices like copy-pasting (Ghare-
hyazie et al., 2017; Kim et al., 2005). This prop-
erty is successfully captured by cache based lan-
guage models (Hellendoorn and Devanbu, 2017;
Tu et al., 2014). Code is also less ambiguous than
natural language so that it can be interpreted by
a compiler. The constraints for generating cor-

rect code is implemented by combining language
model and program analysis technique (Raychev
et al., 2014). Moreover, code contains open vocab-
ulary—developers can coin new variable names
without changing the semantics of the programs.
Our model aims to addresses this property by
leveraging variable types and scope.

LSTM Language Model. In this paper, we use
LSTM language model as a running example to
describe our approach. Our language model uses
the LSTM cells to generate latent states for a
given context which captures the necessary fea-
tures from the text. At the output layer of our
model, we use Softmax probability distribution to
predict the next word based on the latent state.
Merity et al. (2017) is a LSTM-based language
model which achieves the state-of-the-art perfor-
mance on Penn Treebank (PTB) and WikiText-
2 (WT2) datasets. To build our recipe language
model we use this as a blackbox and for our code
generation task we use the simple LSTM model
both in forward and backward direction. A for-
ward directional LSTM starts from the beginning
of a sentence and goes from left to right sequen-
tially until the sentence ends, and vice versa. How-
ever, our approach is general and can be applied
with other types of language models.

3 A Probabilistic Model for Text with
Named Entities

In this section, we present our approach to build a
language model for text with name entities. Given
previous context w̄ = {w1, w2, .., wt−1}, the goal
of a language model is to predict the probabil-
ity of next word P (wt|w̄) at time step t, where
wt ∈ V text and V text is a fixed vocabulary set.
Because the size of vocabulary for named entities
is large and named entities often occur less fre-
quently in the training corpus, the language model
cannot generate these named entities accurately.
For example, in our recipe test corpus the word
“apple” occurs only 720 times whereas any kind of
“fruits” occur 27,726 times. Existing approaches
often either only generate common named entities
or omit entities when generating text (Jozefowicz
et al., 2016).

To overcome this challenge, we propose to
leverage the entity type information when model-
ing text with many entities. We assume each en-
tity is associated with an entity type in a finite set
of categories S = {s1, s2, .., si, .., sk}. Given a
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word w, s(w) reflects its entity type. If the word
is a named entity, then we denote s(w) ∈ S; oth-
erwise the type function returns the words itself
(i.e, s(w) = w). To simplify the notations, we use
s(w) 6∈ S to represent the case where the word is
not an entity. The entity type information given
by s(w) is an auxiliary information that we can
use to improve the language model. We use s(w̄)
to represent the entity type information of all the
words in context w̄ and use w to represent the cur-
rent word wt. Below, we show that a language
model for text with typed information can be de-
composed into the following two models: 1) a type
model θt that predicts the entity type of the next
word and 2) an entity composite model θv that pre-
dicts the next word based on a given entity type.

Our goal is to model the probability of next
word w given previous context w̄:

P (w|w̄; θt, θv) , (1)

where θt and θv are the parameters of the two
aforementioned models. As we assume the typed
information is given on the data, Eq. (1) is equiv-
alent to

P (w, s(w)|w̄, s(w̄); θt, θv) . (2)

A word can be either a named entity or not;
therefore, we consider the following two cases.

Case 1: next word is a named entity. In this
case, Eq. (2) can be rewritten as

P (s(w) = s|w̄, s(w̄); θt, θv)×
P (w|w̄, s(w̄), s(w) = s; θv, θt)

(3)

based on the rules of conditional probability.
We assume the type of the next token s(w) can

be predicted by a model θt using information of
s(w̄), and we can approximate the first term in Eq.
(3)

P (s(w)|w̄, s(w̄); θt, θv) ≈ P (s(w)|s(w̄), θt)
(4)

Similarly, we can make a modeling assumption to
simplify the second term as

P (w|w̄, s(w̄), s(w), θv, θt)

≈ P (w|w̄, s(w̄), s(w), θv).
(5)

Case 2: next word is not a named entity. In
this case, we can rewrite Eq. (2) to be

P (s(w) 6∈ S|w̄, s(w̄), θt)×
P (w|w̄, s(w̄), s(w) 6∈ S, θv) .

(6)

The first term in Eq. (6) can be modeled by

1−
∑

s∈S
P (s(w) = s|s(w̄), θt),

which can be computed by the type model4. The
second term can be again approximated by (5) and
further estimated by an entity composition model.

Typed Language Model. Combine the afore-
mentioned equations, the proposed language
model estimates P (w|w̄; θt, θv) by

P (w|w̄, s(w̄), s(w), θv)×{
P (s(w)|s(w̄), θt) if s(w) ∈ S
(1−∑s∈S P (s(w)=s|s(w̄), θt)) if s(w) 6∈ S

(7)

The first term can be estimated by an entity com-
posite model and the second term can be estimated
by a type model as discussed below.

3.1 Type model
The type model θt estimates the probability of
P (s(w)|s(w̄), θt). It can be viewed as a lan-
guage model builds on a corpus with all entities
replaced by their type. That is, assume the train-
ing corpus consists of x = {w1, w2, .., wn}. Us-
ing the type information provided in the auxiliary
source, we can replace each word w with their
corresponding type s(w) and generate a corpus of
T = {s(wi), s(w2), .., s(wn)}. Note that if wi is
not an named entity (i.e., s(w) 6∈ S), s(w) = w
and the vocabulary on T is V text ∪ S.5 Any lan-
guage modeling technique can be used in model-
ing the type model on the modified corpus T . In
this paper, we use the state-of-the-art model for
each individual task. The details will be discussed
in the experiment section.

3.2 Entity Composite Model
The entity composite model predicts the next word
based on modeling the conditional probability
P (w|w̄, s(w̄), s(w), θv), which can be derived by

P (w|w̄, s(w̄); θv)∑
ws∈Ω(s(w)) P (ws|w̄, s(w̄); θv)

, (8)

4Empirically for the non-entity words,
∑

s∈S P (s(w) =
s|s(w̄) ≈ 0

5In a preliminary experiment, we consider putting all
words with s(w) 6∈ S in a category “N/A”. However, because
most words on the training corpus are not named entities, the
type “N/A” dominates others and hinder the type model to
make accurate predictions.
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where Ω(s(w)) is the set of words of the same type
with w.

To model the types of context word s(w̄) in
P (w|w̄, s(w̄); θv), we consider learning a type
embedding along with the word embedding by
augmenting each word vector with a type vec-
tor when learning the underlying word representa-
tion. Specifically, we represent each word w as a
vector of [vw(w)T ; vt(s(w))T ]T , where vw(·) and
vt(·) are the word vectors and type vectors learned
by the model from the training corpus, respec-
tively. Finally, to estimate Eq. (8) using θv, when
computing the Softmax layer, we normalize over
only words in Ω(s(w)). In this way, the condi-
tional probability P (w|w̄, s(w̄), s(w), θv) can be
derived.

3.3 Training and Inference Strategies

We learn model parameters θt and θv indepen-
dently by training two language models type
model and entity composite model respectively.
Given the context of type, type model predicts the
type of the next word. Given the context and the
type information of the all candidate words, en-
tity composite model predicts the conditional ac-
tual word (e.g., entity name) as depicted in Fig
1. At inference time the generated probabilities
from these two models are combined according to
conditional probability (i.e., Eq. (7)) which gives
the final probability distribution over all candidate
words6.

Our proposed model is flexible to any language
model, training strategy, and optimization. As per
our experiments, we use ADAM stochastic mini-
batch optimization (Kingma and Ba, 2014). In Al-
gorithm 1, we summarize the language generation
procedure.

4 Experiments

We evaluate our proposed model on two different
language generation tasks where there exist a lot of
entity names in the text. In this paper, we release
all the codes and datasets. The first task is recipe
generation. For this task, we analyze a cooking
recipe corpus. Each instance in this corpus is an
individual recipe and consists of many ingredi-

6While calculating the final probability distribution over
all candidate words, with our joint inference schema, a strong
state-of-art language model, without the type information, it-
self can work sufficiently well and replace the entity com-
posite model. Our experiments using (Merity et al., 2017) in
Section 4.1 validate this claim.

Algorithm 1: Language Generation
Input: Language corpus

X = {w1, w2, .., wn}, type s(w) of
the words, integer number m.

Output: θt, θv, {W1,W2, ..,Wm}
1 Training Phase:
2 Generate T = { s(w1), s(w2), .., s(wn)}
3 Train type model θt on T
4 Train entity composite model θv on X using

[wi; s(wi)] as input

5 Test Phase (Generation Phase):
6 for i = 1 to m do
7 for w ∈Vtext do
8 Compute P (s(w)|s(w̄), θt)
9 Compute P (w|w̄, s(w̄), s(w), θv)

10 Compute P (w|w̄; θt, θv) using Eq.(7)
11 end
12 Wi←argmaxwP (w|w̄; θt, θv)

13 end

ents’. Our second task is code generation. We
construct a Java code corpus where each instance
is a Java method (i.e., function). These tasks are
challenging because they have the abundance of
entity names and state-of-the-art language models
fail to predict them properly as a result of insuffi-
cient training observations. Although in this paper,
we manually annotate the types of the recipe in-
gredients, in other applications it can be acquired
automatically. For example: in our second task of
code generation, the types are found using Eclipse
JDT framework. In general, using DBpedia ontol-
ogy (e.g., “Berlin” has an ontology “Location”),
Wordnet hierarchy (e.g., “Dog” is an “Animal”),
role in sports (e.g., “Messi” plays in “Forward”;
also available in DBpedia7), Thesaurus (e.g., “re-
nal cortex”, “renal pelvis”, “renal vein”, all are
related to “kidney”), Medscape (e.g., “Advil” and
“Motrin” are actually “Ibuprofen”), we can get the
necessary type information. As for the applica-
tions where the entity types cannot be extracted
automatically by these frameworks (e.g., recipe in-
gredients), although there is no exact strategy, any
reasonable design can work. Heuristically, while
annotating manually in our first task, we choose
the total number of types in such a way that each
type has somewhat balanced (similar) size.

We use the same dimensional word embedding

7 http://dbpedia.org/page/Lionel Messi
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(400 for recipe corpus, 300 for code corpus) to
represent both of the entity name (e.g., “apple”)
and their entity type (e.g., “fruits”) in all the mod-
els. Note that in our approach, the type model
only replaces named entities with entity type when
it generates next word. If next word is not a
named entity, it will behave like a regular language
model. Therefore, we set both models with the
same dimensionality. Accordingly, for the entity
composite model which takes the concatenation of
the entity name and the entity type, the concate-
nated input dimension is 800 and 600 respectively
for recipe and code corpora.

4.1 Recipe Generation

Recipe Corpus Pre-processing: Our recipe cor-
pus collection is inspired by (Kiddon et al., 2016).
We crawl the recipes from “Now Youre Cooking!
Recipe Software” 8. Among more than 150,000
recipes in this dataset, we select similarly struc-
tured/formatted (e.g, title, blank line then ingre-
dient lists followed by a recipe) 95,786 recipes.
We remove all the irrelevant information (e.g., au-
thor’s name, data source) and keep only two in-
formation: ingredients and recipes. We set aside
the randomly selected 20% of the recipes for test-
ing and from the rest, we keep randomly selected
80% for the training and 20% for the develop-
ment. Similar to (Kiddon et al., 2016), we pre-
process the dataset and filter out the numerical
values, special tokens, punctuation, and symbols.9

Quantitatively, the data we filter out is negligible;
in terms of words, we keep 9,994,365 words out
of 10,231,106 and the number of filter out words
is around ∼2%. We release both of the raw and
cleaned data for future challenges. As the ingredi-
ents are the entity names in our dataset, we process
it separately to get the type information.

Retrieving Ingredient Type: As per our type
model, for each word w, we require its type s(w).
We only consider ingredient type for our experi-
ment. First, we tokenize the ingredients and con-
sider each word as an ingredient. We manually
classify the ingredients into 8 super-ingredients:
“fruits”, “proteins”, “sides”, “seasonings”, “veg-
etables”, “dairy”, “drinks”, and “grains”. Some-

8http://www.ffts.com/recipes.htm
9For example, in our crawled raw dataset, we find that

some recipes have lines like “===MMMMM===” which are
totally irrelevant to our task. For the words with numerical
values like “100 ml”, we only remove the “100” and keep the
“ml” since our focus is not to predict the exact number.

times, ingredients are expressed using multiple
words; for such ingredient phrase, we classify
each word in the same group (e.g., for “boneless
beef” both “boneless” and “beef” are classified as
“proteins”). We classify the most frequent 1,224
unique ingredients, 10 which cover 944,753 out
of 1,241,195 mentions (top 76%) in terms of fre-
quency of the ingredients. In our experiments,
we omit the remainder 14,881 unique ingredients
which are less frequent and include some mis-
spelled words. The number of unique ingredients
in the 8 super ingredients is 110, 316, 140, 180,
156, 80, 84, and 158 respectively. We prepare the
modified type corpus by replacing each actual in-
gredient’s name w in the original recipe corpus by
the type (i.e., super ingredients s(w)) to train the
type model.

Recipe Statistics: In our corpus, the total num-
ber of distinct words in vocabulary is 52,468;
number of unique ingredients (considering split-
ting phrasal ingredients also) is 16,105; number
of tokens is 8,716,664. In number of instances
train/dev/test splits are 61,302/15,326/19,158. The
average instance size of a meaningful recipe is 91
on the corpus.

Configuration: We consider the state-of-the art
LSTM-based language model proposed in (Mer-
ity et al., 2017) as the basic component for build-
ing the type model, and entity composite model.
We use 400 dimensional word embedding as de-
scribed in Section 4. We train the embedding for
our dataset. We use a minibatch of 20 instances
while training and back-propagation through time
value is set to 70. Inside of this (Merity et al.,
2017) language model, it uses 3 layered LSTM
architecture where the hidden layers are 1150 di-
mensional and has its own optimization and reg-
ularization mechanism. All the experiments are
done using PyTorch and Python 3.5.

Baselines: Our first baseline is ASGD Weight-
Dropped LSTM (AWD LSTM) (Merity et al.,
2017), which we also use to train our models (see
’Configuration’ in 4.1). This model achieves the
state-of-the-art performance on benchmark Penn
Treebank (PTB), and WikiText-2 (WT2) language
corpus. Our second baseline is the same language
model (AWD LSTM) with the type information
added as an additional feature (i.e., same as entity
composite model).

10We consider both singular and plural forms. The number
of singular formed annotated ingredients are 797.
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Model Dataset Vocabulary Perplexity
(Recipe Corpus) Size

AWD LSTM original 52,472 20.23

AWD LSTM modified type 51,675 17.62
type model

AWD LSTM original 52,472 18.23
with type feature

our model original 52,472 9.67

Table 1: Comparing the performance of recipe gen-
eration task. All the results are on the test set of the
corresponding corpus. AWD LSTM (type model) is our
type model implemented with the baseline language model
AWD LSTM (Merity et al., 2017). Our second baseline is
the same language model (AWD LSTM) with the type in-
formation added as an additional feature for each word.

Results of Recipe Generation. We compare
our model with the baselines using perplexity met-
ric—lower perplexity means the better prediction.
Table 1 summarizes the result. The 3rd row shows
that adding type as a simple feature does not
guarantee a significant performance improvement
while our proposed method significantly outper-
forms both baselines and achieves 52.2% improve-
ment with respect to baseline in terms of perplex-
ity. To illustrate more, we provide an example
snippet of our test corpus: “place onion and gin-
ger inside chicken . allow chicken to marinate for
hour .”. Here, for the last mention of the word
“chicken”, the standard language model assigns
probability 0.23 to this word, while ours assigns
probability 0.81.

4.2 Code Generation
Code Corpus Pre-processing. We crawl 500
Android open source projects from GitHub11.
GitHub is the largest open source software forge
where anyone can contribute (Ray et al., 2014).
Thus, GitHub also contains trivial projects like
student projects, etc. In our case, we want to study
the coding practices of practitioners so that our
model can learn to generate quality code. To en-
sure this, we choose only those Android projects
from GitHub that are also present in Google Play
Store12. We download the source code of these
projects from GitHub using an off the shelf tool
GitcProc (Casalnuovo et al., 2017).

Since real software continuously evolves to
cater new requirements or bug fixes, to make our
modeling task more realistic, we further study dif-

11https://github.com
12https://play.google.com/store?hl=en

ferent project versions. We partition the codebase
of a project into multiple versions based on the
code commit history retrieved from GitHub; each
version is taken at an interval of 6 months. For
example, anything committed within the first six
months of a project will be in the first version,
and so on. We then build our code suggestion
task mimicking how a developer develops code in
an evolving software—based on the past project
history, developers add new code. To implement
that we train our language model on past project
versions and test it on the most recent version, at
method granularity. However, it is quite difficult
for any language model to generate a method from
the scratch if the method is so new that even the
method signature (i.e., method declaration state-
ment consisting of method name and parameters)
is not known. Thus, during testing, we only fo-
cus on the methods that the model has seen before
but some new tokens are added to it. This is simi-
lar to the task when a developer edits a method to
implement a new feature or bug-fix.

Since we focus on generating the code for ev-
ery method, we train/test the code prediction task
at method level—each method is similar to a sen-
tence and each token in the method is equivalent
to a word. Thus, we ignore the code outside the
method scope like global variables, class decla-
rations, etc. We further clean our dataset by re-
moving user-defined “String” tokens as they in-
crease the diversity of the vocabularies signifi-
cantly, although having the same type. For ex-
ample, the word sequences “Hello World!” and
“Good wishes for ACL2018!!” have the same type
java.lang.String.VAR.

Retrieving Token Type: For every token w in
a method, we extract its type information s(w).
A token type can be Java built-in data types
(e.g., int, double, float, boolean etc.,) or user or
framework defined classes (e.g., java.lang.String,
io.segment.android.flush.FlushThread etc.). We
extract such type information for each token by
parsing the Abstract Syntax Tree (AST) of the
source code13. We extract the AST type infor-
mation of each token using Eclipse JDT frame-
work14. Note that, language keywords like for,
if, etc. are not associated with any type. Next,
we prepare the type corpus by replacing the

13AST represents source code as a tree by capturing its ab-
stract syntactic structure, where each node represents a con-
struct in the source code.

14https://www.eclipse.org/jdt/
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variable names with corresponding type informa-
tion. For instance, if variable var is of type
java.lang.Integer, in the type corpus we replace
var by java.lang.Integer. Since multiple packages
might contain classes of the same name, we retain
the fully qualified name for each type15.

Code Corpus Statistics: In our corpus, the
total number of distinct words in vocabulary is
38,297; the number of unique AST type (including
all user-defined classes) is 14,177; the number of
tokens is 1,440,993. The number of instances used
for train and testing is 26,600 and 3,546. Among
these 38,297 vocabulary words, 37,411 are seen at
training time while the rests are new.

Configuration: To train both type model and
entity composite model, we use forward and back-
ward LSTM (See Section 2) and combine them
at the inference/generation time. We train 300-
dimensional word embedding for each token as
described in Section 4 initialized by GLOVE (Pen-
nington et al., 2014). Our LSTM is single lay-
ered and the hidden size is 300. We implement
our model on using PyTorch and Python 3.5. Our
training corpus size 26,600 and we do not split
it further into smaller train and development set;
rather we use them all to train for one single epoch
and record the result on the test set.

Baselines: Our first baseline is standard LSTM
language model which we also use to train our
modules (see ‘Configuration’ in 4.2). Similar to
our second baseline for recipe generation we also
consider LSTM with the type information added
as more features16 as our another baseline. We
further compare our model with state-of-the-art
token-based language model for source code SLP-
Core (Hellendoorn and Devanbu, 2017).

Results of Code Generation: Table 2 shows
that adding type as simple features does not
guarantee a significant performance improvement
while our proposed method significantly outper-
forms both forward and backward LSTM base-
lines. Our approach with backward LSTM has
40.3% better perplexity than original backward
LSTM and forward has 63.14% lower (i.e., bet-
ter) perplexity than original forward LSTM. With
respect to SLP-Core performance, our model is
22.06% better in perplexity. We compare our
model with SLP-Core details in case study-2.

15Also the AST type of a very same variable may differ in
two different methods. Hence, the context is limited to each
method.

16LSTM with type is same as entity composite model.

Model Dataset Vocabulary Perplexity
(Code Corpus) Size

SLP-Core original 38,297 3.40

fLSTM original 38,297 21.97
fLSTM [type model] modified type 14,177 7.94
fLSTM with type feature original 38,297 20.05
our model (fLSTM) original 38,297 12.52

bLSTM original 38,297 7.19
bLSTM [type model] modified type 14,177 2.58
bLSTM with type feature original 38,297 6.11
our model (bLSTM) original 38,297 2.65

Table 2: Comparing the performance of code genera-
tion task. All the results are on the test set of the corre-
sponding corpus. fLSTM, bLSTM denotes forward and
backward LSTM respectively. SLP-Core refers to (Hel-
lendoorn and Devanbu, 2017).

5 Quantitative Error Analysis

To understand the generation performance of our
model and interpret the meaning of the numbers
in Table 1 and 2, we further perform the following
case studies.

5.1 Case Study-1: Recipe Generation
As the reduction of the perplexity does not neces-
sarily mean the improvement of the accuracy, we
design a “fill in the blank task” task to evaluate our
model. A blank place in this task will contain an
ingredient and we check whether our model can
predict it correctly. In particular, we choose six
ingredients from different frequency range (low,
mid, high) based on how many times they have
appeared in the training corpus. Following Table
shows two examples with four blanks (underlined
with the true answer).

Example fill in the blank task

1. Sprinkle chicken pieces lightly with salt.
2. Mix egg and milk and pour over bread.

We further evaluate our model on a multiple
choice questioning (MCQ) strategy where the fill
in the blank problem remains same but the options
for the correct answers are restricted to the six in-
gredients. Our intuition behind this case-study is
to check when there is an ingredient whether our
model can learn it. If yes, we then quantify the
learning using standard accuracy metric and com-
pare with the state-of-the-art model to evaluate
how much it improves the performance. We also
measure how much the accuracy improvement de-
pends on the training frequency.

Table 3 shows the result. Our model outper-
forms the fill in the blank task for both cases,
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Accuracy
Ingredient Train Freq. #Blanks Free-Form MCQ

AWD LSTM Our AWD LSTM Our

Milk 14, 136 4,001 26.94 59.34 80.83 94.90
Salt 33,906 9,888 37.12 62.47 89.29 95.75
Apple 7,205 720 1.94 30.28 37.65 89.86
Bread 11,673 3,074 32.43 52.64 78.85 94.53
Tomato 12,866 1,815 2.20 35.76 43.53 88.76
Chicken 19,875 6,072 22.50 45.24 77.70 94.63

Table 3: Performance of fill in the blank task.

i.e., without any options (free-form) and MCQ.
Note that, the percentage of improvement is in-
versely proportional to the training frequencies of
the ingredients—less-frequent ingredients achieve
a higher accuracy improvement (e.g., “Apple” and
“Tomato”). This validates our intuition of learning
to predict the type first more accurately with lower
vocabulary set and then use conditional probabil-
ity to predict the actual entity considering the type
as a prior.

5.2 Case Study-2: Code Generation

Programming language source code shows regu-
larities both in local and global context (e.g., vari-
ables or methods used in one source file can also
be created or referenced from another library file).
SLP-Core (Hellendoorn and Devanbu, 2017) is a
state-of-the-art code generation model that cap-
tures this global and local information using a
nested cache based n-gram language model. They
further show that considering such code structure
into account, a simple n-gram based SLP-Core
outperforms vanilla deep learning based models
like RNN, LSTM, etc.

In our case, as our example instance is a Java
method, we only have the local context. There-
fore, to evaluate the efficiency of our proposed
model, we further analyze that exploiting only the
type information are we even learning any global
code pattern? If yes, then how much in compar-
ison to the baseline (SLP-Core)? To investigate
these questions, we provide all the full project
information to SLP-Core (Hellendoorn and De-
vanbu, 2017) corresponding to our train set. How-
ever, at test-time, to establish a fair comparison,
we consider the perplexity metric for the same
methods. SLP-Core achieves a perplexity 3.40
where our backward LSTM achieves 2.65. This
result shows that appropriate type information can
actually capture many inherent attributes which
can be exploited to build a good language model
for programming language.

6 Conclusion

Language model often lacks in performance to
predict entity names correctly. Applications with
lots of named entities, thus, obviously suffer. In
this work, we propose to leverage the type infor-
mation of such named entities to build an effective
language model. Since similar entities have the
same type, the vocabulary size of a type based lan-
guage model reduces significantly. The prediction
accuracy of the type model increases significantly
with such reduced vocabulary size. Then, using
the entity type information as prior we build an-
other language model which predicts the true en-
tity name according to the conditional probability
distribution. Our evaluation and case studies con-
firm that the type information of the named entities
captures inherent text features too which leads to
learn intrinsic text pattern and improve the perfor-
mance of overall language model.
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Abstract

Hypertext documents, such as web pages
and academic papers, are of great impor-
tance in delivering information in our daily
life. Although being effective on plain
documents, conventional text embedding
methods suffer from information loss if di-
rectly adapted to hyper-documents. In this
paper, we propose a general embedding
approach for hyper-documents, namely,
hyperdoc2vec, along with four crite-
ria characterizing necessary information
that hyper-document embedding models
should preserve. Systematic comparisons
are conducted between hyperdoc2vec
and several competitors on two tasks, i.e.,
paper classification and citation recom-
mendation, in the academic paper do-
main. Analyses and experiments both val-
idate the superiority of hyperdoc2vec
to other models w.r.t. the four criteria.

1 Introduction

The ubiquitous World Wide Web has boosted re-
search interests on hypertext documents, e.g., per-
sonal webpages (Lu and Getoor, 2003), Wikipedia
pages (Gabrilovich and Markovitch, 2007), as well
as academic papers (Sugiyama and Kan, 2010).
Unlike independent plain documents, a hypertext
document (hyper-doc for short) links to another
hyper-doc by a hyperlink or citation mark in its
textual content. Given this essential distinction,
hyperlinks or citations are worth specific model-
ing in many tasks such as link-based classifica-
tion (Lu and Getoor, 2003), web retrieval (Page
et al., 1999), entity linking (Cucerzan, 2007), and
citation recommendation (He et al., 2010).

To model hypertext documents, various ef-
forts (Cohn and Hofmann, 2000; Kataria et al.,

2010; Perozzi et al., 2014; Zwicklbauer et al.,
2016; Wang et al., 2016) have been made to de-
pict networks of hyper-docs as well as their con-
tent. Among potential techniques, distributed rep-
resentation (Mikolov et al., 2013; Le and Mikolov,
2014) tends to be promising since its validity and
effectiveness are proven for plain documents on
many natural language processing (NLP) tasks.

Conventional attempts on utilizing embedding
techniques in hyper-doc-related tasks generally
fall into two types. The first type (Berger et al.,
2017; Zwicklbauer et al., 2016) simply downcasts
hyper-docs to plain documents and feeds them into
word2vec (Mikolov et al., 2013) (w2v for short)
or doc2vec (Le and Mikolov, 2014) (d2v for
short). These approaches involve downgrading
hyperlinks and inevitably omit certain information
in hyper-docs. However, no previous work inves-
tigates the information loss, and how it affects the
performance of such downcasting-based adapta-
tions. The second type designs sophisticated em-
bedding models to fulfill certain tasks, e.g., cita-
tion recommendation (Huang et al., 2015b), pa-
per classification (Wang et al., 2016), and entity
linking (Yamada et al., 2016), etc. These models
are limited to specific tasks, and it is yet unknown
whether embeddings learned for those particular
tasks can generalize to others. Based on the above
facts, we are interested in two questions:

• What information should hyper-doc embed-
ding models preserve, and what nice property
should they possess?

• Is there a general approach to learning task-
independent embeddings of hyper-docs?

To answer the two questions, we formalize the
hyper-doc embedding task, and propose four cri-
teria, i.e., content awareness, context awareness,
newcomer friendliness, and context intent aware-
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ness, to assess different models. Then we discuss
simple downcasting-based adaptations of existing
approaches w.r.t. the above criteria, and demon-
strate that none of them satisfy all four. To this
end, we propose hyperdoc2vec (h-d2v for
short), a general embedding approach for hyper-
docs. Different from most existing approaches,
h-d2v learns two vectors for each hyper-doc to
characterize its roles of citing others and being
cited. Owning to this, h-d2v is able to directly
model hyperlinks or citations without downgrad-
ing them. To evaluate the learned embeddings, we
employ two tasks in the academic paper domain1,
i.e., paper classification and citation recommenda-
tion. Experimental results demonstrate the supe-
riority of h-d2v. Comparative studies and con-
trolled experiments also confirm that h-d2v ben-
efits from satisfying the above four criteria.

We summarize our contributions as follows:

• We propose four criteria to assess different
hyper-document embedding models.

• We propose hyperdoc2vec, a general em-
bedding approach for hyper-documents.

• We systematically conduct comparisons with
competing approaches, validating the superi-
ority of h-d2v in terms of the four criteria.

2 Related Work

Network representation learning is a related
topic to ours since a collection of hyper-docs re-
semble a network. To embed nodes in a network,
Perozzi et al. (2014) propose DeepWalk, where
nodes and random walks are treated as pseudo
words and texts, and fed to w2v for node vectors.
Tang et al. (2015b) explicitly embed second-order
proximity via the number of common neighbors of
nodes. Grover and Leskovec (2016) extend Deep-
Walk with second-order Markovian walks. To im-
prove classification tasks, Tu et al. (2016) explore
a semi-supervised setting that accesses partial la-
bels. Compared with these models, h-d2v learns
from both documents’ connections and contents
while they mainly focus on network structures.

Document embedding for classification is an-
other focused area to apply document embeddings.

1Although limited in tasks and domains, we expect that
our embedding approach can be potentially generalized to, or
serve as basis to more sophisticated methods for, similar tasks
in the entity domain, e.g., Wikipedia page classification and
entity linking. We leave them for future work.

Le and Mikolov (2014) employ learned d2v vec-
tors to build different text classifiers. Tang et al.
(2015a) apply the method in (Tang et al., 2015b)
on word co-occurrence graphs for word embed-
dings, and average them for document vectors. For
hyper-docs, Ganguly and Pudi (2017) and Wang
et al. (2016) target paper classification in unsuper-
vised and semi-supervised settings, respectively.
However, unlike h-d2v, they do not explicitly
model citation contexts. Yang et al. (2015)’s ap-
proach also addresses embedding hyper-docs, but
involves matrix factorization and does not scale.

Citation recommendation is a direct downstream
task to evaluate embeddings learned for a cer-
tain kind of hyper-docs, i.e., academic papers. In
this paper we concentrate on context-aware cita-
tion recommendation (He et al., 2010). Some pre-
vious studies adopt neural models for this task.
Huang et al. (2015b) propose Neural Probabilistic
Model (NPM) to tackle this problem with embed-
dings. Their model outperforms non-embedding
ones (Kataria et al., 2010; Tang and Zhang, 2009;
Huang et al., 2012). Ebesu and Fang (2017) also
exploit neural networks for citation recommenda-
tion, but require author information as additional
input. Compared with h-d2v, these models are
limited in a task-specific setting.

Embedding-based entity linking is another topic
that exploits embeddings to model certain hyper-
docs, i.e., Wikipedia (Huang et al., 2015a; Yamada
et al., 2016; Sun et al., 2015; Fang et al., 2016; He
et al., 2013; Zwicklbauer et al., 2016), for entity
linking (Shen et al., 2015). It resembles citation
recommendation in the sense that linked entities
highly depend on the contexts. Meanwhile, it re-
quires extra steps like candidate generation, and
can benefit from sophisticated techniques such as
collective linking (Cucerzan, 2007).

3 Preliminaries

We introduce notations and definitions, then for-
mally define the embedding problem. We also pro-
pose four criteria for hyper-doc embedding models
w.r.t their appropriateness and informativeness.

3.1 Notations and Definitions
Let w ∈ W be a word from a vocabulary W , and
d ∈ D be a document id (e.g., web page URLs and
paper DOIs) from an id collection D. After filter-
ing out non-textual content, a hyper-document H
is reorganized as a sequence of words and doc ids,
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Figure 1: An example of Zhao and Gildea (2010) citing Papineni et al. (2002) and existing approaches.

i.e., W ∪D. For example, web pages could be sim-
plified as streams of words and URLs, and papers
are actually sequences of words and cited DOIs.

If a document id dt with some surrounding
words C appear in the hyper-doc of ds, i.e., Hds ,
we stipulate that a hyper-link 〈ds, C, dt〉 is formed.
Herein ds, dt ∈ D are ids of the source and tar-
get documents, respectively; C ⊆ W are context
words. Figure 1(a) exemplifies a hyperlink.

3.2 Problem Statement
Given a corpus of hyper-docs {Hd}d∈D with D
and W , we want to learn document and word em-
bedding matrices D ∈ Rk×|D| and W ∈ Rk×|W |

simultaneously. The i-th column di of D is a k-
dimensional embedding vector for the i-th hyper-
doc with id di. Similarly, wj , the j-th column
of W, is the vector for word wj . Once embed-
dings for hyper-docs and words are learned, they
can facilitate applications like hyper-doc classifi-
cation and citation recommendation.

3.3 Criteria for Embedding Models
A reasonable model should learn how contents and
hyperlinks in hyper-docs impact both D and W.
We propose the following criteria for models:

• Content aware. Content words of a hyper-
doc play the main role in describing it, so
the document representation should depend
on its own content. For example, the words
in Zhao and Gildea (2010) should affect and
contribute to its embedding.

• Context aware. Hyperlink contexts usu-
ally provide a summary for the target docu-
ment. Therefore, the target document’s vec-
tor should be impacted by words that others
use to summarize it, e.g., paper Papineni et al.
(2002) and the word “BLEU” in Figure 1(a).

• Newcomer friendly. In a hyper-document
network, it is inevitable that some documents

are not referred to by any hyperlink in other
hyper-docs. If such “newcomers” do not
get embedded properly, downstream tasks in-
volving them are infeasible or deteriorated.

• Context intent aware. Words around a hy-
perlink, e.g., “evaluate . . . by” in Figure 1(a),
normally indicate why the source hyper-doc
makes the reference, e.g., for general refer-
ence or to follow/oppose the target hyper-
doc’s opinion or practice. Vectors of those
context words should be influenced by both
documents to characterize such semantics or
intents between the two documents.

We note that the first three criteria are for hyper-
docs, while the last one is desired for word vectors.

4 Representing Hypertext Documents

In this section, we first give the background of two
prevailing techniques, word2vec and doc2vec.
Then we present two conversion approaches for
hyper-documents so that w2v and d2v can be ap-
plied. Finally, we address their weaknesses w.r.t.
the aforementioned four criteria, and propose our
hyperdoc2vec model. In the remainder of this
paper, when the context is clear, we mix the use of
terms hyper-doc/hyperlink with paper/citation.

4.1 word2vec and doc2vec
w2v (Mikolov et al., 2013) has proven effective
for many NLP tasks. It integrates two models, i.e.,
cbow and skip-gram, both of which learn two
types of word vectors, i.e., IN and OUT vectors.
cbow sums up IN vectors of context words and
make it predictive of the current word’s OUT vec-
tor. skip-gram uses the IN vector of the current
word to predict its context words’ OUT vectors.

As a straightforward extension to w2v, d2v
also has two variants: pv-dm and pv-dbow.
pv-dm works in a similar manner as cbow, ex-
cept that the IN vector of the current document
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Desired Property
Impacts Task? Addressed by Approach?

Classification Citation Rec-
ommendation w2v d2v-nc d2v-cac h-d2v

Context aware � � � × � �
Content aware � � × � � �
Newcomer friendly � � × � � �
Context intent aware × � × × × �

Table 1: Analysis of tasks and approaches w.r.t. desired properties.

Model Output

DI DO WI WO

w2v � � � �
d2v (pv-dm) � × � �
d2v (pv-dbow) � × × �
h-d2v � � � �

Table 2: Output of models.

is regarded as a special context vector to average.
Analogously, pv-dbow uses IN document vec-
tor to predict its words’ OUT vectors, following
the same structure of skip-gram. Therefore in
pv-dbow, words’ IN vectors are omitted.

4.2 Adaptation of Existing Approaches
To represent hyper-docs, a straightforward strat-
egy is to convert them into plain documents in a
certain way and apply w2v and d2v. Two conver-
sions following this strategy are illustrated below.

Citation as word. This approach is adopted by
Berger et al. (2017).2 As Figure 1(b) shows, doc-
ument ids D are treated as a collection of spe-
cial words. Each citation is regarded as an oc-
currence of the target document’s special word.
After applying standard word embedding meth-
ods, e.g., w2v, we obtain embeddings for both
ordinary words and special “words”, i.e., docu-
ments. In doing so, this approach allows target
documents interacting with context words, thus
produces context-aware embeddings for them.

Context as content. It is often observed in aca-
demic papers when citing others’ work, an author
briefly summarizes the cited paper in its citation
context. Inspired by this, we propose a context-
as-content approach as in Figure 1(c). To start, we
remove all citations. Then all citation contexts of a
target document dt are copied into dt as additional
contents to make up for the lost information. Fi-
nally, d2v is applied to the augmented documents
to generate document embeddings. With this ap-
proach, the generated document embeddings are
both context- and content-aware.

4.3 hyperdoc2vec

Besides citation-as-word with w2v and context-
as-content with d2v (denoted by d2v-cac for
short), there is also an alternative using d2v on
documents with citations removed (d2v-nc for

2It is designed for document visualization purposes.

short). We made a comparison of these approaches
in Table 1 in terms of the four criteria stated in Sec-
tion 3.3. It is observed that none of them satisfy all
criteria, where the reasons are as follows.

First, w2v is not content aware. Following our
examples in the academic paper domain, consider
the paper (hyper-doc) Zhao and Gildea (2010)
in Figure 1(a), from w2v’s perspective in Fig-
ure 1(b), “. . . computing the machine translation
BLEU . . . ” and other text no longer have as-
sociation with Zhao and Gildea (2010), thus not
contributing to its embedding. In addition, for
papers being just published and having not ob-
tained citations yet, they will not appear as special
“words” in any text. This makes w2v newcomer-
unfriendly, i.e., unable to produce embeddings for
them. Second, being trained on a corpus without
citations, d2v-nc is obviously not context aware.
Finally, in both w2v and d2v-cac, context words
interact with the target documents without treat-
ing the source documents as backgrounds, which
forces IN vectors of words with context intents,
e.g., “evaluate” and “by” in Figure 1(a), to simply
remember the target documents, rather than cap-
ture the semantics of the citations.

The above limitations are caused by the conver-
sions of hyper-docs where certain information in
citations is lost. For a citation 〈ds, C, dt〉, citation-
as-word only keeps the co-occurrence information
between C and dt. Context-as-content, on the
other hand, mixes C with the original content of
dt. Both approaches implicitly downgrade cita-
tions 〈ds, C, dt〉 to 〈C, dt〉 for adaptation purposes.

To learn hyper-doc embeddings without such
limitations, we propose hyperdoc2vec. In this
model, two vectors of a hyper-doc d, i.e., IN and
OUT vectors, are adopted to represent the docu-
ment of its two roles. The IN vector dI character-
izes d being a source document. The OUT vector
dO encodes its role as a target document. We note
that learning those two types of vectors is advan-
tageous. It enables us to model citations and con-
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A citation

Figure 2: The hyperdoc2vec model.

tents simultaneously without sacrificing informa-
tion on either side. Next, we describe the details
of h-d2v in modeling citations and contents.

To model citations, we adopt the architecture in
Figure 2. It is similar to pv-dm, except that docu-
ments rather than words are predicted at the output
layer. For a citation 〈ds, C, dt〉, to allow context
words C interacting with both vectors, we average
dI

s of ds with word vectors of C, and make the re-
sulted vector predictive of dO

t of dt. Formally, for
all citations C = {〈ds, C, dt〉}, we aim to optimize
the following average log probability objective:

max
DI ,DO,WI

1

|C|
∑

〈ds,C,dt〉∈C
log P (dt|ds, C) (1)

To model the probability P (dt|ds, C) where dt is
cited in ds with C, we average their IN vectors

x =
1

1 + |C|

(
dI

s +
∑

w∈C

wI

)
(2)

and use x to compose a multi-class softmax clas-
sifier on all OUT document vectors

P (dt|ds, C) =
exp(x�dO

t )∑
d∈D exp(x�dO)

(3)

To model contents’ impact on document vec-
tors, we simply consider an additional objective
function that is identical to pv-dm, i.e., enumer-
ate words and contexts, and use the same input ar-
chitecture as Figure 2 to predict the OUT vector
of the current word. Such convenience owes to the
fact that using two vectors makes the model pa-
rameters compatible with those of pv-dm. Note
that combining the citation and content objectives
leads to a joint learning framework. To facilitate
easier and faster training, we adopt an alterna-
tive pre-training/fine-tuning or retrofitting frame-
work (Faruqui et al., 2015). We initialize with a
predefined number of pv-dm iterations, and then
optimize Eq. 1 based on the initialization.

Dataset Docs Citations Years

NIPS
Train 1,590 512 Up to 1998
Test 150 89 1999
Total 1,740 601 Up to 1999

ACL
Train 18,845 91,792 Up to 2012
Test 1,563 16,937 2013
Total 20,408 108,729 Up to 2013

DBLP
Train 593,378 2,565,625 Up to 2009
Test 55,736 308,678 From 2010
Total 649,114 2,874,303 All years

Table 3: The statistics of three datasets.

Finally, similar to w2v (Mikolov et al., 2013)
and d2v (Le and Mikolov, 2014), to make training
efficient, we adopt negative sampling:

log σ(x�dO
t ) +

n∑

i=1

Edi∼PN (d) log σ(−x�dO
i )

(4)
and use it to replace every log P (dt|ds, C). Fol-
lowing Huang et al. (2015b), we adopt a uniform
distribution on D as the distribution PN (d).

Unlike the other models in Table 1, h-d2v sat-
isfies all four criteria. We refer to the example in
Figure 2 to make the points clear. First, when op-
timizing Eq. 1 with the instance in Figure 2, the
update to dO of Papineni et al. (2002) depends
on wI of context words such as “BLEU”. Sec-
ond, we pre-train dI with contents, which makes
the document embeddings content aware. Third,
newcomers can depend on their contents for dI ,
and update their OUT vectors when they are sam-
pled3 in Eq. 4. Finally, the optimization of Eq. 1
enables mutual enhancement between vectors of
hyper-docs and context intent words, e.g., “evalu-
ate by”. Under the background of a machine trans-
lation paper Zhao and Gildea (2010), the above
two words help point the citation to the BLEU pa-
per (Papineni et al., 2002), thus updating its OUT
vector. The intent “adopting tools/algorithms” of
“evaluate by” is also better captured by iterating
over many document pairs with them in between.

5 Experiments

In this section, we first introduce datasets and ba-
sic settings used to learn embeddings. We then
discuss additional settings and present experimen-
tal results of the two tasks, i.e., document classifi-
cation and citation recommendation, respectively.

3Given a relatively large n.
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Model Original w/ DeepWalk
Macro Micro Macro Micro

DeepWalk 61.67 69.89 61.67 69.89
w2v (I) 10.83 41.84 31.06 50.93
w2v (I+O) 9.36 41.26 25.92 49.56
d2v-nc 70.62 77.86 70.64 78.06
d2v-cac 71.83 78.09 71.57 78.59

h-d2v (I) 68.81 76.33 73.96 79.93
h-d2v (I+O) 72.89 78.99 73.24 79.55

Table 4: F1 scores on DBLP.

Model Content Aware/ Original w/ DeepWalk
Newcomer Friendly Macro Micro Macro Micro

DeepWalk - 66.57 76.56 66.57 76.56

w2v (I) × / × 19.77 47.32 59.80 72.90
w2v (I+O) × / × 15.97 45.66 50.77 70.08

d2v-nc �/ � 61.54 73.73 69.37 78.22
d2v-cac �/ � 65.23 75.93 70.43 78.75
h-d2v (I) �/ � 58.59 69.79 66.99 75.63
h-d2v (I+O) �/ � 66.64 75.19 68.96 76.61

Table 5: F1 on DBLP when newcomers are discarded.

5.1 Datasets and Experimental Settings

We use three datasets from the academic paper do-
main, i.e., NIPS4, ACL anthology5 and DBLP6,
as shown in Table 3. They all contain full text of
papers, and are of small, medium, and large size,
respectively. We apply ParsCit7 (Councill et al.,
2008) to parse the citations and bibliography sec-
tions. Each identified citation string referring to a
paper in the same dataset, e.g., [1] or (Author et al.,
2018), is replaced by a global paper id. Consecu-
tive citations like [1, 2] are regarded as multiple
ground truths occupying one position. Following
He et al. (2010), we take 50 words before and after
a citation as the citation context.

Gensim (Řehůřek and Sojka, 2010) is used to
implement all w2v and d2v baselines as well as
h-d2v. We use cbow for w2v and pv-dbow for
d2v, unless otherwise noted. For all three base-
lines, we set the (half) context window length to
50. For w2v, d2v, and the pv-dm-based ini-
tialization of h-d2v, we run 5 epochs following
Gensim’s default setting. For h-d2v, its iteration
is set to 100 epochs with 1000 negative samples.
The dimension size k of all approaches is 100. All
other parameters in Gensim are kept as default.

5.2 Document Classification

In this task, we classify the research fields of pa-
pers given their vectors learned on DBLP. To ob-
tain labels, we use Cora8, a small dataset of Com-
puter Science papers and their field categories.
We keep the first levels of the original categories,

4https://cs.nyu.edu/ roweis/data.html
5http://clair.eecs.umich.edu/aan/index.php (2013 release)
6http://zhou142.myweb.cs.uwindsor.ca/academicpaper.html

This page has been unavailable recently. They provide a
larger CiteSeer dataset and a collection of DBLP paper
ids. To better interpret results from the Computer Science
perspective, we intersect them and obtain the DBLP dataset.

7https://github.com/knmnyn/ParsCit
8http://people.cs.umass.edu/˜mccallum/data.html

e.g., “Artificial Intelligence” of “Artificial Intelli-
gence - Natural Language Processing”, leading to
10 unique classes. We then intersect the dataset
with DBLP, and obtain 5,975 labeled papers.

For w2v and h-d2v outputing both IN and
OUT document vectors, we use IN vectors or con-
catenations of both vectors as features. For new-
comer papers without w2v vectors, we use zero
vectors instead. To enrich the features with net-
work structure information, we also try concate-
nating them with the output of DeepWalk (Perozzi
et al., 2014), a representative network embedding
model. The model is trained on the citation net-
work of DBLP with an existing implementation9

and default parameters. An SVM classifier with
RBF kernel is used. We perform 5-fold cross vali-
dation, and report Macro- and Micro-F1 scores.

5.2.1 Classification Performance
In Table 4, we demonstrate the classification re-
sults. We have the following observations.

First, adding DeepWalk information almost al-
ways leads to better classification performance,
except for Macro-F1 of the d2v-cac approach.

Second, owning to different context awareness,
d2v-cac consistently outperforms d2v-nc in
terms of all metrics and settings.

Third, w2v has the worst performance. The rea-
son may be that w2v is neither content aware nor
newcomer friendly. We will elaborate more on the
impacts of the two properties in Section 5.2.2.

Finally, no matter whether DeepWalk vectors
are used, h-d2v achieves the best F1 scores.
However, when OUT vectors are involved, h-d2v
with DeepWalk has slightly worse performance.
A possible explanation is that, when h-d2v IN
and DeepWalk vectors have enough information to
train the SVM classifiers, adding another 100 fea-
tures (OUT vectors) only increase the parameter

9https://github.com/phanein/deepwalk
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Model NIPS ACL Anthology DBLP
Rec MAP MRR nDCG Rec MAP MRR nDCG Rec MAP MRR nDCG

w2v (cbow, I4I) 5.06 1.29 1.29 2.07 12.28 5.35 5.35 6.96 3.01 1.00 1.00 1.44
w2v (cbow, I4O) 12.92 6.97 6.97 8.34 15.68 8.54 8.55 10.23 13.26 7.29 7.33 8.58
d2v-nc (pv-dbow, cosine) 14.04 3.39 3.39 5.82 21.09 9.65 9.67 12.29 7.66 3.25 3.25 4.23
d2v-cac (same as d2v-nc) 14.61 4.94 4.94 7.14 28.01 11.82 11.84 15.59 15.67 7.34 7.36 9.16
NPM (Huang et al., 2015b) 7.87 2.73 3.13 4.03 12.86 5.98 5.98 7.59 6.87 3.28 3.28 4.07

h-d2v (random init, I4O) 3.93 0.78 0.78 1.49 30.98 16.76 16.77 20.12 17.22 8.82 8.87 10.65
h-d2v (pv-dm retrofitting, I4O) 15.73 6.68 6.68 8.80 31.93 17.33 17.34 20.76 21.32 10.83 10.88 13.14

Table 6: Top-10 citation recommendation results (dimension size k = 100).

space of the classifiers and the training variance.
For w2v with or without DeepWalk, it is also the
case. This may be because information in w2v’s
IN and OUT vectors is fairly redundant.

5.2.2 Impacts of Content Awareness and
Newcomer Friendliness

Because content awareness and newcomer friend-
liness are highly correlated in Table 1, to isolate
and study their impacts, we decouple them as fol-
lows. In the 5,975 labeled papers, we keep 2,052
with at least one citation, and redo experiments in
Table 4. By carrying out such controlled exper-
iments, we expect to remove the impact of new-
comers, and compare all approaches only with re-
spect to different content awareness. In Table 5,
we provide the new scores obtained.

By comparing Tables 4 and 5, we observe that
w2v benefits from removing newcomers with zero
vectors, while all newcomer friendly approaches
get lower scores because of fewer training exam-
ples. Even though the change, w2v still cannot
outperform the other approaches, which reflects
the positive impact of content awareness on the
classification task. It is also interesting that Deep-
Walk becomes very competitive. This implies that
structure-based methods favor networks with bet-
ter connectivity. Finally, we note that Table 5 is
based on controlled experiments with intentionally
skewed data. The results are not intended for com-
parison among approaches in practical scenarios.

5.3 Citation Recommendation

When writing papers, it is desirable to recommend
proper citations for a given context. This could be
achieved by comparing the vectors of the context
and previous papers. We use all three datasets for
this task. Embeddings are trained on papers before
1998, 2012, and 2009, respectively. The remain-
ing papers in each dataset are used for testing.

We compare h-d2vwith all approaches in Sec-

tion 4.2, as well as NPM10 (Huang et al., 2015b)
mentioned in Section 2, the first embedding-based
approach for the citation recommendation task.
Note that the inference stage involves interactions
between word and document vectors and is non-
trivial. We describe our choices as below.

First, for w2v vectors, Nalisnick et al. (2016)
suggest that the IN-IN similarity favors word pairs
with similar functions (e.g., “red” and “blue”),
while the IN-OUT similarity characterizes word
co-occurrence or compatibility (e.g., “red” and
“bull”). For citation recommendation that relies on
the compatibility between context words and cited
papers, we hypothesize that the IN-for-OUT (or
I4O for short) approach will achieve better results.
Therefore, for w2v-based approaches, we average
IN vectors of context words, then score and and
rank OUT document vectors by dot product.

Second, for d2v-based approaches, we use the
learned model to infer a document vector d for
the context words, and use d to rank IN document
vectors by cosine similarity. Among multiple at-
tempts, we find this choice to be optimal.

Third, for h-d2v, we adopt the same scoring
and ranking configurations as for w2v.

Finally, for NPM, we adopt the same ranking
strategy as in Huang et al. (2015b). Following
them, we focus on top-10 results and report the
Recall, MAP, MRR, and nDCG scores.

5.3.1 Recommendation Performance
In Table 6, we report the citation recommendation
results. Our observations are as follows.

First, among all datasets, all methods perform
relatively well on the medium-sized ACL dataset.
This is because the smallest NIPS dataset provides

10Note that the authors used n = 1000 for negative sam-
pling, and did not report the number of training epoches. Af-
ter many trials, we find that setting the number of both the
negative samples and epoches at 100 to be relatively effective
and affordable w.r.t. training time.
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Figure 3: Varying k on DBLP. The scores of w2v
keeps increasing to 26.63 at k = 1000, and then
begins to drop. Although at the cost of a larger
model and longer training/inference time, it still
cannot outperform h-d2v of 30.37 at k = 400.

too few citation contexts to train a good model.
Moreover, DBLP requires a larger dimension size
k to store more information in the embedding vec-
tors. We increase k and report the Rec@10 scores
in Figure 3. We see that all approaches have bet-
ter performance when k increases to 200, though
d2v-based ones start to drop beyond this point.

Second, the I4I variant of w2v has the worst
performance among all approaches. This obser-
vation validates our hypothesis in Section 5.3.

Third, the d2v-cac approach outperforms its
variant d2v-nc in terms of all datasets and met-
rics. This indicates that context awareness matters
in the citation recommendation task.

Fourth, the performance of NPM is sandwiched
between those of w2v’s two variants. We have
tried our best to reproduce it. Our explanation is
that NPM is citation-as-word-based, and only de-
pends on citation contexts for training. Therefore,
it is only context aware but neither content aware
nor newcomer friendly, and behaves like w2v.

Finally, when retrofitting pv-dm, h-d2v gen-
erally has the best performance. When we substi-
tute pv-dm with random initialization, the perfor-
mance is deteriorated by varying degrees on differ-
ent datasets. This implies that content awareness
is also important, if not so important than context
awareness, on the citation recommendation task.

5.3.2 Impact of Newcomer Friendliness
Table 7 analyzes the impact of newcomer friendli-
ness. Opposite from what is done in Section 5.2.2,
we only evaluate on testing examples where at
least a ground-truth paper is a newcomer. Please
note that newcomer unfriendly approaches do not

Model Newcomer
Friendly Rec MAP MRR nDCG

w2v (I4O) × 3.64 3.23 3.41 2.73
NPM × 1.37 1.13 1.15 0.92

d2v-nc � 6.48 3.52 3.54 3.96
d2v-cac � 8.16 5.13 5.24 5.21
h-d2v � 6.41 4.95 5.21 4.49

Table 7: DBLP results evaluated on 63,342 cita-
tion contexts with newcomer ground-truth.

Category Description

Weak Weakness of cited approach

CoCoGM Contrast/Comparison in Goals/Methods (neutral)
CoCo- Work stated to be superior to cited work
CoCoR0 Contrast/Comparison in Results (neutral)
CoCoXY Contrast between 2 cited methods

PBas Author uses cited work as basis or starting point
PUse Author uses tools/algorithms/data/definitions
PModi Author adapts or modifies tools/algorithms/data
PMot This citation is positive about approach used or

problem addressed (used to motivate work in cur-
rent paper)

PSim Author’s work and cited work are similar
PSup Author’s work and cited work are compati-

ble/provide support for each other
Neut Neutral description of cited work, or not enough

textual evidence for above categories, or unlisted
citation function

Table 8: Annotation scheme of citation functions
in Teufel et al. (2006).

necessarily get zero scores. The table shows that
newcomer friendly approaches are superior to un-
friendly ones. Note that, like Table 5, this table is
also based on controlled experiments and not in-
tended for comparing approaches.

5.3.3 Impact of Context Intent Awareness
In this section, we analyze the impact of context
intent awareness. We use Teufel et al. (2006)’s
2,824 citation contexts11 with annotated citation
functions, e.g., emphasizing weakness (Weak) or
using tools/algorithms (PBas) of the cited papers.
Table 8 from Teufel et al. (2006) describes the full
annotating scheme. Teufel et al. (2006) also use
manual features to evaluate citation function clas-
sification. To test all models on capturing con-
text intents, we average all context words’ IN vec-
tors (trained on DBLP) as features. Noticing that
pv-dbow does not output IN word vectors, and
OUT vectors do not provide reasonable results, we
use pv-dm here instead. We use SVM with RBF

11The number is 2,829 in the original paper. The inconsis-
tency may be due to different regular expressions we used.
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Query and Ground Truth Result Ranking of w2v Result Ranking of d2v-cac Result Ranking of h-d2v

. . . We also evaluate our model
by computing the machine trans-
lation BLEU score (Papineni
et al., 2002) using the Moses
system (Koehn et al., 2007). . .

(Papineni et al., 2002) BLEU: a
Method for Automatic Evalua-
tion of Machine Translation
(Koehn et al., 2007) Moses:
Open Source Toolkit for Sta-
tistical Machine Translation

1. HMM-Based Word Alignment in
Statistical Translation
2. Indirect-HMM-based Hypothe-
sis Alignment for Combining Outputs
from Machine Translation Systems
3. The Alignment Template Approach
to Statistical Machine Translation

. . .
9. Moses: Open Source Toolkit for
Statistical Machine Translation
57. BLEU: a Method for Automatic
Evaluation of Machine Translation

1. Discriminative Reranking for Ma-
chine Translation
2. Learning Phrase-Based Head Trans-
duction Models for Translation of Spo-
ken Utterances
3. Cognates Can Improve Statistical
Translation Models

. . .
6. BLEU: a Method for Automatic
Evaluation of Machine Translation
29. Moses: Open Source Toolkit for
Statistical Machine Translation

1. BLEU: a Method for Au-
tomatic Evaluation of Machine
Translation
2. Statistical Phrase-Based
Translation
3. Improved Statistical Align-
ment Models
4. HMM-Based Word Align-
ment in Statistical Translation
5. Moses: Open Source Toolkit
for Statistical Machine Trans-
lation

Table 9: Papers recommended by different approaches for a citation context in Zhao and Gildea (2010).
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Figure 4: F1 of citation function classification.

kernels and default parameters. Following Teufel
et al. (2006), we use 10-fold cross validation.

Figure 4 depicts the F1 scores. Scores of Teufel
et al. (2006)’s approach are from the original pa-
per. We omit d2v-nc because it is very inferior to
d2v-cac. We have the following observations.

First, Teufel et al. (2006)’s feature-engineering-
based approach has the best performance. Note
that we cannot obtain their original cross valida-
tion split, so the comparison may not be fair and is
only for consideration in terms of numbers.

Second, among all embedding-based methods,
h-d2v has the best citation function classification
results, which is close to Teufel et al. (2006)’s.

Finally, the d2v-cac vectors are only good at
Neutral, the largest class. On the other classes and
global F1, they are outperformed by w2v vectors.

To study how citation function affects citation
recommendation, we combine the 2,824 labeled
citation contexts and another 1,075 labeled con-
texts the authors published later to train an SVM,
and apply it to the DBLP testing set to get cita-
tion functions. We evaluate citation recommenda-
tion performance of w2v (I4O), d2v-cac, and
h-d2v on a per-citation-function basis. In Fig-
ure 5, we break down Rec@10 scores on citation
functions. On the six largest classes (marked by
solid dots), h-d2v outperforms all competitors.
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Figure 5: Rec@10 w.r.t. citation functions.

To better investigate the impact of context intent
awareness, Table 9 shows recommended papers of
the running example of this paper. Here, Zhao and
Gildea (2010) cited the BLEU metric (Papineni
et al., 2002) and Moses tools (Koehn et al., 2007)
of machine translation. However, the additional
words “machine translation” lead both w2v and
d2v-cac to recommend many machine transla-
tion papers. Only our h-d2v manages to recog-
nize the citation function “using tools/algorithms
(PBas)”, and concentrates on the citation intent to
return the right papers in top-5 results.

6 Conclusion

We focus on the hyper-doc embedding problem.
We propose that hyper-doc embedding algorithms
should be content aware, context aware, new-
comer friendly, and context intent aware. To meet
all four criteria, we propose a general approach,
hyperdoc2vec, which assigns two vectors to
each hyper-doc and models citations in a straight-
forward manner. In doing so, the learned embed-
dings satisfy all criteria, which no existing model
is able to. For evaluation, paper classification and
citation recommendation are conducted on three
academic paper datasets. Results confirm the ef-
fectiveness of our approach. Further analyses also
demonstrate that possessing the four properties
helps h-d2v outperform other models.
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Abstract

This paper presents the Entity-Duet Neu-
ral Ranking Model (EDRM), which intro-
duces knowledge graphs to neural search
systems. EDRM represents queries and
documents by their words and entity an-
notations. The semantics from knowledge
graphs are integrated in the distributed
representations of their entities, while the
ranking is conducted by interaction-based
neural ranking networks. The two com-
ponents are learned end-to-end, making
EDRM a natural combination of entity-
oriented search and neural information re-
trieval. Our experiments on a commer-
cial search log demonstrate the effective-
ness of EDRM. Our analyses reveal that
knowledge graph semantics significantly
improve the generalization ability of neu-
ral ranking models.

1 Introduction

The emergence of large scale knowledge graphs
has motivated the development of entity-oriented
search, which utilizes knowledge graphs to im-
prove search engines. The recent progresses in
entity-oriented search include better text represen-
tations with entity annotations (Xiong et al., 2016;
Raviv et al., 2016), richer ranking features (Dal-
ton et al., 2014), entity-based connections between
query and documents (Liu and Fang, 2015; Xiong
and Callan, 2015), and soft-match query and doc-
uments through knowledge graph relations or em-
beddings (Xiong et al., 2017c; Ensan and Bagheri,
2017). These approaches bring in entities and se-
mantics from knowledge graphs and have greatly
improved the effectiveness of feature-based search
systems.

∗Corresponding author: M. Sun (sms@tsinghua.edu.cn)

Another frontier of information retrieval is the
development of neural ranking models (neural-
IR). Deep learning techniques have been used to
learn distributed representations of queries and
documents that capture their relevance relations
(representation-based) (Shen et al., 2014), or
to model the query-document relevancy directly
from their word-level interactions (interaction-
based) (Guo et al., 2016a; Xiong et al., 2017b; Dai
et al., 2018). Neural-IR approaches, especially the
interaction-based ones, have greatly improved the
ranking accuracy when large scale training data
are available (Dai et al., 2018).

Entity-oriented search and neural-IR push the
boundary of search engines from two different as-
pects. Entity-oriented search incorporates human
knowledge from entities and knowledge graph
semantics. It has shown promising results on
feature-based ranking systems. On the other
hand, neural-IR leverages distributed representa-
tions and neural networks to learn more sophis-
ticated ranking models form large-scale training
data. However, it remains unclear how these two
approaches interact with each other and whether
the entity-oriented search has the same advantage
in neural-IR methods as in feature-based systems.

This paper explores the role of entities and
semantics in neural-IR. We present an Entity-
Duet Neural Ranking Model (EDRM) that incor-
porates entities in interaction-based neural rank-
ing models. EDRM first learns the distributed rep-
resentations of entities using their semantics from
knowledge graphs: descriptions and types. Then
it follows a recent state-of-the-art entity-oriented
search framework, the word-entity duet (Xiong
et al., 2017a), and matches documents to queries
with both bag-of-words and bag-of-entities. In-
stead of manual features, EDRM uses interaction-
based neural models (Dai et al., 2018) to match
query and documents with word-entity duet rep-
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resentations. As a result, EDRM combines entity-
oriented search and the interaction based neural-
IR; it brings the knowledge graph semantics
to neural-IR and enhances entity-oriented search
with neural networks.

One advantage of being neural is that EDRM can
be learned end-to-end. Given a large amount of
user feedback from a commercial search log, the
integration of knowledge graph semantics to neu-
ral ranker, is learned jointly with the modeling of
query-document relevance in EDRM. It provides a
convenient data-driven way to leverage external
semantics in neural-IR.

Our experiments on a Sogou query log and CN-
DBpedia demonstrate the effectiveness of enti-
ties and semantics in neural models. EDRM sig-
nificantly outperforms the word-interaction-based
neural ranking model, K-NRM (Xiong et al.,
2017a), confirming the advantage of entities in en-
riching word-based ranking. The comparison with
Conv-KNRM (Dai et al., 2018), the recent state-
of-the-art neural ranker that models phrase level
interactions, provides a more interesting observa-
tion: Conv-KNRM predicts user clicks reason-
ably well, but integrating knowledge graphs using
EDRM significantly improves the neural model’s
generalization ability on more difficult scenarios.

Our analyses further revealed the source of
EDRM’s generalization ability: the knowledge
graph semantics. If only treating entities as ids
and ignoring their semantics from the knowledge
graph, the entity annotations are only a cleaner
version of phrases. In neural-IR systems, the em-
beddings and convolutional neural networks have
already done a decent job in modeling phrase-
level matches. However, the knowledge graph se-
mantics brought by EDRM can not yet be captured
solely by neural networks; incorporating those hu-
man knowledge greatly improves the generaliza-
tion ability of neural ranking systems.

2 Related Work

Current neural ranking models can be categorized
into two groups: representation based and inter-
action based (Guo et al., 2016b). The earlier
works mainly focus on representation based mod-
els. They learn good representations and match
them in the learned representation space of query
and documents. DSSM (Huang et al., 2013) and its
convolutional version CDSSM (Shen et al., 2014)
get representations by hashing letter-tri-grams to a

low dimension vector. A more recent work uses
pseudo-labeling as a weak supervised signal to
train the representation based ranking model (De-
hghani et al., 2017).

The interaction based models learn word-level
interaction patterns from query-document
pairs. ARC-II (Hu et al., 2014) and
MatchPyramind (Pang et al., 2016) uti-
lize Convolutional Neural Network (CNN) to
capture complicated patterns from word-level
interactions. The Deep Relevance Matching
Model (DRMM) (Guo et al., 2016b) uses pyramid
pooling (histogram) to summarize the word-level
similarities into ranking models. K-NRM and
Conv-KNRM use kernels to summarize word-
level interactions with word embeddings and
provide soft match signals for learning to rank.
There are also some works establishing position-
dependent interactions for ranking models (Pang
et al., 2017; Hui et al., 2017). Interaction based
models and representation based models can also
be combined for further improvements (Mitra
et al., 2017).

Recently, large scale knowledge graphs such
as DBpedia (Auer et al., 2007), Yago (Suchanek
et al., 2007) and Freebase (Bollacker et al., 2008)
have emerged. Knowledge graphs contain human
knowledge about real-word entities and become an
opportunity for search system to better understand
queries and documents. There are many works fo-
cusing on exploring their potential for ad-hoc re-
trieval. They utilize knowledge as a kind of pseudo
relevance feedback corpus (Cao et al., 2008) or
weight words to better represent query according
to well-formed entity descriptions. Entity query
feature expansion (Dietz and Verga, 2014) uses re-
lated entity attributes as ranking features.

Another way to utilize knowledge graphs in in-
formation retrieval is to build the additional con-
nections from query to documents through related
entities. Latent Entity Space (LES) builds an un-
supervised model using latent entities’ descrip-
tions (Liu and Fang, 2015). EsdRank uses re-
lated entities as a latent space, and performs learn-
ing to rank with various information retrieval fea-
tures (Xiong and Callan, 2015). AttR-Duet
develops a four-way interaction to involve cross
matches between entity and word representations
to catch more semantic relevance patterns (Xiong
et al., 2017a).

There are many other attempts to integrate
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knowledge graphs in neural models in related
tasks (Miller et al., 2016; Gupta et al., 2017;
Ghazvininejad et al., 2018). Our work shares a
similar spirit and focuses on exploring the effec-
tiveness of knowledge graph semantics in neural-
IR.

3 Entity-Duet Neural Ranking Model

This section first describes the standard architec-
ture in current interaction based neural ranking
models. Then it presents our Entity-Duet Neural
Ranking Model, including the semantic entity rep-
resentation which integrates the knowledge graph
semantics, and then the entity-duet ranking frame-
work. The overall architecture of EDRM is shown
in Figure 1.

3.1 Interaction based Ranking Models

Given a query q and a document d, interaction
based models first build the word-level transla-
tion matrix between q and d (Berger and Lafferty,
1999). The translation matrix describes word pairs
similarities using word correlations, which are
captured by word embedding similarities in inter-
action based models.

Typically, interaction based ranking models first
map each word t in q and d to an L-dimensional
embedding ~vt with an embedding layer Embw:

~vt = Embw(t). (1)

It then constructs the interaction matrix M
based on query and document embeddings. Each
element M ij in the matrix, compares the ith word
in q and the jth word in d, e.g. using the cosine
similarity of word embeddings:

M ij = cos(~vtqi
, ~vtdj

). (2)

With the translation matrix describing the term
level matches between query and documents, the
next step is to calculate the final ranking score
from the matrix. Many approaches have been de-
veloped in interaction base neural ranking models,
but in general, that would include a feature extrac-
tor φ() on M and then one or several ranking lay-
ers to combine the features to the ranking score.

3.2 Semantic Entity Representation

EDRM incorporates the semantic information
about an entity from the knowledge graphs into its
representation. The representation includes three

embeddings: entity embedding, description em-
bedding, and type embedding, all in L dimension
and are combined to generate the semantic repre-
sentation of the entity.

Entity Embedding uses an L-dimensional em-
bedding layer Embe to get an entity embedding
~vemb
e for e:

~vemb
e = Embe(e). (3)

Description Embedding encodes an entity de-
scription which containsmwords and explains the
entity. EDRM first employs the word embedding
layer Embw to embed the description word w to
~vw. Then it combines all embeddings in text to an
embedding matrix ~Vw. Next, it leverages convolu-
tional filters to slide over the text and compose the
h length n-gram as ~gje:

~gje = ReLu(WCNN · ~V j:j+h
w +~bCNN), (4)

where WCNN and ~bCNN are two parameters of the
covolutional filter.

Then we use max pooling after the convolution
layer to generate the description embedding ~vdes

e :

~vdes
e = max(~g1e , ..., ~g

j
e, ..., ~g

m
e ). (5)

Type Embedding encodes the categories of en-
tities. Each entity e has n kinds of types Fe =
{f1, ..., fj , ..., fn}. EDRM first gets the fj embed-
ding ~vfj through the type embedding layer Embtp:

~vemb
fj = Embtp(e). (6)

Then EDRM utilizes an attention mechanism to
combine entity types to the type embedding ~vtype

e :

~vtype
e =

n∑

j

aj~vfj , (7)

where aj is the attention score, calculated as:

aj =
exp(Pj)∑n
l exp(Pl)

, (8)

Pj = (
∑

i

Wbow~vti) · ~vfj . (9)

Pj is the dot product of the query or document
representation and type embedding fj . We lever-
age bag-of-words for query or document encod-
ing. Wbow is a parameter matrix.

Combination. The three embeddings are com-
bined by an linear layer to generate the semantic
representation of the entity:

~vsem
e = ~vemb

e +We(~vdes
e ⊕ ~vtype

e )T +~be. (10)

We is an L×2Lmatrix and~be is an L-dimensional
vector.
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Figure 1: The architecture of EDRM.

3.3 Neural Entity-Duet Framework

Word-entity duet (Xiong et al., 2017a) is a recently
developed framework in entity-oriented search. It
utilizes the duet representation of bag-of-words
and bag-of-entities to match q-d with hand crafted
features. This work introduces it to neural-IR.

We first construct bag-of-entities qe and de with
entity annotation as well as bag-of-words qw and
dw for q and d. The duet utilizes a four-way inter-
action: query words to document words (qw-dw),
query words to documents entities (qw-de), query
entities to document words (qe-dw) and query en-
tities to document entities (qe-de).

Instead of features, EDRM uses a transla-
tion layer that calculates similarity between a
pair of query-document terms: (~viwq or ~vieq )
and (~vj

wd or ~vj
ed

). It constructs the interaction
matrix M = {Mww,Mwe,Mew,Mee}. And
Mww,Mwe,Mew,Mee denote interactions of qw-
dw, qw-de, qe-dw, qe-de respectively. And ele-
ments in them are the cosine similarities of cor-
responding terms:

M ij
ww = cos(~viwq , ~vj

wd);M ij
ee = cos(~vieq , ~v

j

ed
)

M ij
ew = cos(~vieq , ~v

j

wd);M ij
we = cos(~viwq , ~vj

ed
).

(11)

The final ranking feature Φ(M) is a concatena-
tion (⊕) of four cross matches (φ(M)):

Φ(M) = φ(Mww)⊕φ(Mwe)⊕φ(Mew)⊕φ(Mee), (12)

where the φ can be any function used in interaction
based neural ranking models.

The entity-duet presents an effective way to
cross match query and document in entity and
word spaces. In EDRM, it introduces the knowl-
edge graph semantics representations into neural-
IR models.

4 Integration with Kernel based Neural
Ranking Models

The duet translation matrices provided by EDRM
can be plugged into any standard interac-
tion based neural ranking models. This sec-
tion expounds special cases where it is inte-
grated with K-NRM (Xiong et al., 2017b) and
Conv-KNRM (Dai et al., 2018), two recent state-
of-the-arts.
K-NRM uses K Gaussian kernels to extract

the matching feature φ(M) from the transla-
tion matrix M . Each kernel Kk summarizes
the translation scores as soft-TF counts, gener-
ating a K-dimensional feature vector φ(M) =
{K1(M), ...,KK(M)}:

Kk(M) =
∑

j

exp(−M
ij − µk

2δ2k
). (13)

µk and δk are the mean and width for the kth ker-
nel. Conv-KNRM extend K-NRM incorporating h-
gram compositions ~gih from text embedding ~VT us-
ing CNN:

~gih = relu(Wh · ~V i:i+h
T + ~vh). (14)

Then a translation matrixMhq ,hd is constructed.
Its elements are the similarity scores of h-gram
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pairs between query and document:

Mhq,hd = cos(~gihq
, ~gjhd

). (15)

We also extend word n-gram cross matches to
word entity duet matches:

Φ(M) = φ(M1,1)⊕ ...⊕φ(Mhq,hd)⊕ ...⊕φ(Mee). (16)

Each ranking feature φ(Mhq ,hd) contains three
parts: query hq-gram and document hd-gram
match feature (φ(Mwwhq,hd )), query entity and
document hd-gram match feature (φ(Mew1,hd )),
and query hq-gram and document entity match
feature (φ(Mwwhq,1)):

φ(Mhq,hd) = φ(Mwwhq,hd )⊕φ(Mew1,hd )⊕φ(Mwehq,1).
(17)

We then use learning to rank to combine ranking
feature Φ(M) to produce the final ranking score:

f(q, d) = tanh(ωT
r Φ(M) + br). (18)

ωr and br are the ranking parameters. tanh is the
activation function.

We use standard pairwise loss to train the
model:

l =
∑

q

∑

d+,d−∈D+,−
q

max(0, 1− f(q, d+) + f(q, d−)),

(19)

where the d+ is a document ranks higher than d−.
With sufficient training data, the whole model

is optimized end-to-end with back-propagation.
During the process, the integration of the knowl-
edge graph semantics, entity embedding, descrip-
tion embeddings, type embeddings, and matching
with entities-are learned jointly with the ranking
neural network.

5 Experimental Methodology

This section describes the dataset, evaluation met-
rics, knowledge graph, baselines, and implemen-
tation details of our experiments.

Dataset. Our experiments use a query log
from Sogou.com, a major Chinese searching en-
gine (Luo et al., 2017). The exact same dataset
and training-testing splits in the previous research
(Xiong et al., 2017b; Dai et al., 2018) are used.
They defined the ad-hoc ranking task in this
dataset as re-ranking the candidate documents pro-
vided by the search engine. All Chinese texts are
segmented by ICTCLAS (Zhang et al., 2003), af-
ter that they are treated the same as English.

(a) Statistic of queries (b) Statistic of documents

Figure 2: Query and document distributions.
Queries and documents are grouped by the num-
ber of entities.

Prior research leverages clicks to model user be-
haviors and infer reliable relevance signals using
click models (Chuklin et al., 2015). DCTR and
TACM are two click models: DCTR calculates the
relevance scores of a query-document pair based
on their click through rates (CTR); TACM (Wang
et al., 2013) is a more sophisticated model that
uses both clicks and dwell times. Following pre-
vious research (Xiong et al., 2017b), both DCTR
and TACM are used to infer labels. DCTR inferred
relevance labels are used in training. Three testing
scenarios are used: Testing-SAME, Testing-DIFF
and Testing-RAW.

Testing-SAME uses DCTR labels, the same as
in training. Testing-DIFF evaluates models perfor-
mance based on TACM inferred relevance labels.
Testing-RAW evaluates ranking models through
user clicks, which tests ranking performance for
the most satisfying document. Testing-DIFF and
Testing-RAW are harder scenarios that challenge
the generalization ability of all models, because
their training labels and testing labels are gener-
ated differently (Xiong et al., 2017b).

Evaluation Metrics. NDCG@1 and
NDCG@10 are used in Testing-SAME and
Testing-DIFF. MRR is used for Testing-Raw.
Statistic significances are tested by permutation
test with P< 0.05. All are the same as in previous
research (Xiong et al., 2017b).

Knowledge Graph. We use CN-DBpedia (Xu
et al., 2017), a large scale Chinese knowledge
graph based on Baidu Baike, Hudong Baike,
and Chinese Wikipedia. CN-DBpedia contains
10,341,196 entities and 88,454,264 relations. The
query and document entities are annotated by
CMNS, the commonness (popularity) based en-
tity linker (Hasibi et al., 2017). CN-DBpedia and
CMNS provide good coverage on our queries and
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Table 1: Ranking accuracy of EDRM-KNRM, EDRM-CKNRM and baseline methods. Relative per-
formances compared with K-NRM are in percentages. †, ‡, §, ¶, ∗ indicate statistically significant
improvements over DRMM†, CDSSM‡, MP§, K-NRM¶ and Conv-KNRM∗ respectively.

Testing-SAME Testing-DIFF Testing-RAW
Method NDCG@1 NDCG@10 NDCG@1 NDCG@10 MRR
BM25 0.1422 −46.24% 0.2868 −31.67% 0.1631 −45.63% 0.3254 −23.04% 0.2280 −33.86%
RankSVM 0.1457 −44.91% 0.3087 −26.45% 0.1700 −43.33% 0.3519 −16.77% 0.2241 −34.99%
Coor-Ascent 0.1594 −39.74% 0.3547 −15.49% 0.2089 −30.37% 0.3775 −10.71% 0.2415 −29.94%

DRMM 0.1367 −48.34% 0.3134 −25.34% 0.2126‡ −29.14% 0.3592§ −15.05% 0.2335 −32.26%
CDSSM 0.1441 −45.53% 0.3329 −20.69% 0.1834 −38.86% 0.3534 −16.41% 0.2310 −33.00%
MP 0.2184†‡ −17.44% 0.3792†‡ −9.67% 0.1969 −34.37% 0.3450 −18.40% 0.2404 −30.27%
K-NRM 0.2645 – 0.4197 – 0.3000 – 0.4228 – 0.3447 –
Conv-KNRM 0.3357†‡§¶ +26.90% 0.4810†‡§¶ +14.59% 0.3384†‡§¶ +12.81% 0.4318†‡§ +2.14% 0.3582†‡§ +3.91%

EDRM-KNRM 0.3096†‡§¶ +17.04% 0.4547†‡§¶ +8.32% 0.3327†‡§¶ +10.92% 0.4341†‡§¶ +2.68% 0.3616†‡§¶ +4.90%

EDRM-CKNRM 0.3397†‡§¶ +28.42% 0.4821†‡§¶ +14.86% 0.3708†‡§¶∗ +23.60% 0.4513†‡§¶∗ +6.74% 0.3892†‡§¶∗ +12.90%

documents. As shown in Figure 2, the majority
of queries have at least one entity annotation; the
average number of entity annotated per document
title is about four.

Baselines. The baselines include feature-based
ranking models and neural ranking models. Most
of the baselines are borrowed from previous re-
search (Xiong et al., 2017b; Dai et al., 2018).

Feature-based baselines include two learning
to rank systems, RankSVM (Joachims, 2002) and
coordinate ascent (Coor-Accent) (Metzler and
Croft, 2006). The standard word-based unsuper-
vised retrieval model, BM25, is also compared.

Neural baselines include CDSSM (Shen et al.,
2014), MatchPyramid (MP) (Pang et al., 2016),
DRMM (Grauman and Darrell, 2005), K-NRM
(Xiong et al., 2017b) and Conv-KNRM (Dai et al.,
2018). CDSSM is representation based. It uses
CNN to build query and document representations
on word letter-tri-grams (or Chinese characters).
MP and DRMM are both interaction based models.
They use CNNs or histogram pooling to extract
features from embedding based translation matrix.

Our main baselines are K-NRM and
Conv-KNRM, the recent state-of-the-art neu-
ral models on the Sogou-Log dataset. The goal
of our experiments is to explore the effectiveness
of knowledge graphs in these state-of-the-art
interaction based neural models.

Implementation Details. The dimension of
word embedding, entity embedding and type em-
bedding are 300. Vocabulary size of entities and
words are 44,930 and 165,877. Conv-KNRM uses
one layer CNN with 128 filter size for the n-
gram composition. Entity description encoder is
a one layer CNN with 128 and 300 filter size for
Conv-KNRM and K-NRM respectively.

All models are implemented with PyTorch.
Adam is utilized to optimize all parameters with
learning rate = 0.001, ε = 1e − 5 and early stop-
ping with the practice of 5 epochs.

There are two versions of EDRM: EDRM-KNRM
and EDRM-CKNRM, integrating with K-NRM and
Conv-KNRM respectively. The first one (K-NRM)
enriches the word based neural ranking model
with entities and knowledge graph semantics; the
second one (Conv-KNRM) enriches the n-gram
based neural ranking model.

6 Evaluation Results

Four experiments are conducted to study the ef-
fectiveness of EDRM: the overall performance, the
contributions of matching kernels, the ablation
study, and the influence of entities in different sce-
narios. We also do case studies to show effect of
EDRM on document ranking.

6.1 Ranking Accuracy

The ranking accuracies of the ranking methods are
shown in Table 1. K-NRM and Conv-KNRM out-
perform other baselines in all testing scenarios by
large margins as shown in previous research.
EDRM-KNRM out performs K-NRM by over 10%

improvement in Testing-SAME and Testing-DIFF.
EDRM-CKNRM has almost same performance on
Testing-SAME with Conv-KNRM. A possible rea-
son is that, entity annotations provide effective
phrase matches, but Conv-KNRM is also able to
learn phrases matches automatically from data.
However, EDRM-CKNRM has significant improve-
ment on Testing-DIFF and Testing-RAW. Those
demonstrate that EDRM has strong ability to over-
come domain differences from different labels.
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Table 2: Ranking accuracy of adding diverse semantics based on K-NRM and Conv-KNRM. Rela-
tive performances compared are in percentages. †, ‡, §, ¶, ∗, ∗∗ indicate statistically significant im-
provements over K-NRM† (or Conv-KNRM†), +Embed‡, +Type§, +Description¶, +Embed+Type∗ and
+Embed+Description∗∗ respectively.

Testing-SAME Testing-DIFF Testing-RAW
Method NDCG@1 NDCG@10 NDCG@1 NDCG@10 MRR
K-NRM 0.2645 – 0.4197 – 0.3000 – 0.4228 – 0.3447 –
+Embed 0.2743 +3.68% 0.4296 +2.35% 0.3134 +4.48% 0.4306 +1.86% 0.3641† +5.62%
+Type 0.2709 +2.41% 0.4395† +4.71% 0.3126 +4.20% 0.4373† +3.43% 0.3531 +2.43%

+Description 0.2827 +6.86% 0.4364† +3.97% 0.3181 +6.04% 0.4306 +1.86% 0.3691†§∗ +7.06%
+Embed+Type 0.2924† +10.52% 0.4533†‡§¶ +8.00% 0.3034 +1.13% 0.4297 +1.65% 0.3544 +2.79%
+Embed+Description 0.2891 +9.29% 0.4443†‡ +5.85% 0.3197 +6.57% 0.4304 +1.80% 0.3564 +3.38%

Full Model 0.3096†‡§ +17.04% 0.4547†‡§¶ +8.32% 0.3327†∗ +10.92% 0.4341† +2.68% 0.3616† +4.90%

Conv-KNRM 0.3357 – 0.4810 – 0.3384 – 0.4318 – 0.3582 –
+Embed 0.3382 +0.74% 0.4831 +0.44% 0.3450 +1.94% 0.4413 +2.20% 0.3758† +4.91%
+Type 0.3370 +0.38% 0.4762 −0.99% 0.3422 +1.12% 0.4423† +2.42% 0.3798† +6.02%
+Description 0.3396 +1.15% 0.4807 −0.05% 0.3533 +4.41% 0.4468† +3.47% 0.3819† +6.61%
+Embed+Type 0.3420 +1.88% 0.4828 +0.39% 0.3546 +4.79% 0.4491† +4.00% 0.3805† +6.22%
+Embed+Description 0.3382 +0.73% 0.4805 −0.09% 0.3608 +6.60% 0.4494† +4.08% 0.3868† +7.99%

Full Model 0.3397 +1.19% 0.4821 +0.24% 0.3708†‡§ +9.57% 0.4513†‡ +4.51% 0.3892†‡ +8.65%

(a) Kernel weight distribution for EDRM-KNRM. (b) Kernel weight distribution for EDRM-CKNRM.

Figure 3: Ranking contribution for EDRM. Three scenarios are presented: Exact VS. Soft compares the
weights of exact match kernel and others; Solo Word VS. Others shows the proportion of only text based
matches; In-space VS. Cross-space compares in-space matches and cross-space matches.

These results show the effectiveness and the
generalization ability of EDRM. In the following
experiments, we study the source of this general-
ization ability.

6.2 Contributions of Matching Kernels

This experiment studies the contribution of knowl-
edge graph semantics by investigating the weights
learned on the different types of matching kernels.

As shown in Figure 3(a), most of the weight
in EDRM-KNRM goes to soft match (Exact VS.
Soft); entity related matches play an as impor-
tant role as word based matches (Solo Word VS.
Others); cross-space matches are more impor-
tant than in-space matches (In-space VS. Cross-
space). As shown in Figure 3(b), the percentages
of word based matches and cross-space matches
are more important in EDRM-CKNRM compared to
in EDRM-KNRM.

The contribution of each individual match type
in EDRM-CKNRM is shown in Figure 4. The

weight of unigram, bigram, trigram, and entity is
almost uniformly distributed, indicating the effec-
tiveness of entities and all components are impor-
tant in EDRM-CKNRM.

6.3 Ablation Study

This experiment studies which part of the knowl-
edge graph semantics leads to the effectiveness
and generalization ability of EDRM.

There are three types of embeddings incorpo-
rating different aspects of knowledge graph in-
formation: entity embedding (Embed), descrip-
tion embedding (Description) and type embedding
(Type). This experiment starts with the word-only
K-NRM and Conv-KNRM, and adds these three
types of embedding individually or two-by-two
(Embed+Type and Embed+Description).

The performances of EDRM with different
groups of embeddings are shown in Table 2.
The description embeddings show the greatest im-
provement among the three embeddings. Entity
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Figure 4: Individual kernel weight for EDRM-
CKNRM. X-axis and y-axis denote document and
query respectively.

type plays an important role only combined with
other embeddings. Entity embedding improves
K-NRM while has little effect on Conv-KNRM.
This result further confirms that the signal from
entity names are captured by the n-gram CNNs
in Conv-KNRM. Incorporating all of three embed-
dings usually gets the best ranking performance.

This experiments shows that knowledge graph
semantics are crucial to EDRM’s effectiveness.
Conv-KNRM learns good phrase matches that
overlap with the entity embedding signals. How-
ever, the knowledge graph semantics (descriptions
and types) is hard to be learned just from user
clicks.

6.4 Performance on Different Scenarios

This experiment analyzes the influence of knowl-
edge graphs in two different scenarios: multiple
difficulty degrees and multiple length degrees.

Query Difficulty Experiment studies EDRM’s
performance on testing queries at different diffi-
culty, partitioned by Conv-KNRM’s MRR value:
Hard (MRR < 0.167), Ordinary (MRR ∈
[0.167, 0.382], and Easy (MRR > 0.382). As
shown in Figure 5, EDRM performs the best on
hard queries.

Query Length Experiment evaluates EDRM’s
effectiveness on Short (1 words), Medium (2-3
words) and Long (4 or more words) queries. As
shown in Figure 6, EDRM has more win cases
and achieves the greatest improvement on short
queries. Knowledge embeddings are more cru-
cial when limited information is available from the
original query text.

(a) K-NRM VS. EDRM (b) Conv-KNRM VS. EDRM

Figure 5: Performance VS. Query Difficulty. The
x-axises mark three query difficulty levels. The y-
axises are the Win/Tie/Loss (left) and MRR (right)
in the corresponding group.

(a) K-NRM VS. EDRM (b) Conv-KNRM VS. EDRM

Figure 6: Performance VS. Query Length. The x-
axises mark three query length levels, and y-axises
are the Win/Tie/Loss (left) and MRR (right) in the
corresponding group.

These two experiments reveal that the effec-
tiveness of EDRM is more observed on harder or
shorter queries, whereas the word-based neural
models either find it difficult or do not have suf-
ficient information to leverage.

6.5 Case Study

Table 3 provide examples reflecting two possible
ways, in which the knowledge graph semantics
could help the document ranking.

First, the entity descriptions explain the mean-
ing of entities and connect them through the word
space. Meituxiuxiu web version and Meilishuo
are two websites providing image processing and
shopping services respectively. Their descriptions
provide extra ranking signals to promote the re-
lated documents.

Second, entity types establish underlying rel-
evance patterns between query and documents.
The underlying patterns can be captured by cross-
space matches. For example, the types of the
query entity Crayon Shin-chan and GINTAMA
overlaps with the bag-of-words in the relevant
documents. They can also be captured by the
entity-based matches through their type overlaps,
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Table 3: Examples of entity semantics connecting query and title. All the examples are correctly ranked
by EDRM-CKNRM. Table 3a shows query-document pairs. Table 3b lists the related entity semantics
that include useful information to match the query-document pair. The examples and related semantics
are picked by manually examining the ranking changes between different variances of EDRM-CKNRM.

(a) Query and document examples. Entities are emphasized.

Query Document
Meituxiuxiu web version Meituxiuxiu web version: An online picture processing tools
Home page of Meilishuo Home page of Meilishuo - Only the correct popular fashion

Master Lu Master Lu official website: System optimization, hardware test, phone evaluation
Crayon Shin-chan: The movie Crayon Shin-chan: The movie online - Anime

GINTAMA GINTAMA: The movie online - Anime - Full HD online watch

(b) Semantics of related entities. The first two rows and last two rows show entity descriptions and entity types respectively.

Entity Content
Meituxiuxiu web version Description: Meituxiuxiu is the most popular Chinese image processing software,

launched by the Meitu company
Meilishuo Description: Meilishuo, the largest women’s fashion e-commerce platform,

dedicates to provide the most popular fashion shopping experience
Crayon Shin-chan, GINTAMA Type: Anime; Cartoon characters; Comic

Master Lu, System Optimization Type: Hardware test; Software; System tool

for example, between the query entity Master Lu
and the document entity System Optimization.

7 Conclusions

This paper presents EDRM, the Entity-Duet Neu-
ral Ranking Model that incorporating knowl-
edge graph semantics into neural ranking sys-
tems. EDRM inherits entity-oriented search to
match query and documents with bag-of-words
and bag-of-entities in neural ranking models. The
knowledge graph semantics are integrated as dis-
tributed representations of entities. The neural
model leverages these semantics to help docu-
ment ranking. Using user clicks from search logs,
the whole model—the integration of knowledge
graph semantics and the neural ranking networks–
is trained end-to-end. It leads to a data-driven
combination of entity-oriented search and neural
information retrieval.

Our experiments on the Sogou search log and
CN-DBpedia demonstrate EDRM’s effectiveness
and generalization ability over two state-of-the-
art neural ranking models. Our further analy-
ses reveal that the generalization ability comes
from the integration of knowledge graph seman-
tics. The neural ranking models can effectively
model n-gram matches between query and docu-
ment, which overlaps with part of the ranking sig-
nals from entity-based matches: Solely adding the
entity names may not improve the ranking accu-
racy much. However, the knowledge graph se-

mantics, introduced by the description and type
embeddings, provide novel ranking signals that
greatly improve the generalization ability of neu-
ral rankers in difficult scenarios.

This paper preliminarily explores the role of
structured semantics in deep learning models.
Though mainly fouced on search, we hope our
findings shed some lights on a potential path to-
wards more intelligent neural systems and will
motivate more explorations in this direction.
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Abstract

Modeling natural language inference is a
very challenging task. With the avail-
ability of large annotated data, it has re-
cently become feasible to train complex
models such as neural-network-based in-
ference models, which have shown to
achieve the state-of-the-art performance.
Although there exist relatively large anno-
tated data, can machines learn all knowl-
edge needed to perform natural language
inference (NLI) from these data? If not,
how can neural-network-based NLI mod-
els benefit from external knowledge and
how to build NLI models to leverage it?
In this paper, we enrich the state-of-the-art
neural natural language inference models
with external knowledge. We demonstrate
that the proposed models improve neural
NLI models to achieve the state-of-the-art
performance on the SNLI and MultiNLI
datasets.

1 Introduction

Reasoning and inference are central to both hu-
man and artificial intelligence. Natural language
inference (NLI), also known as recognizing tex-
tual entailment (RTE), is an important NLP prob-
lem concerned with determining inferential rela-
tionship (e.g., entailment, contradiction, or neu-
tral) between a premise p and a hypothesis h. In
general, modeling informal inference in language
is a very challenging and basic problem towards
achieving true natural language understanding.

In the last several years, larger anno-
tated datasets were made available, e.g., the
SNLI (Bowman et al., 2015) and MultiNLI
datasets (Williams et al., 2017), which made
it feasible to train rather complicated neural-
network-based models that fit a large set of
parameters to better model NLI. Such models
have shown to achieve the state-of-the-art per-
formance (Bowman et al., 2015, 2016; Yu and
Munkhdalai, 2017b; Parikh et al., 2016; Sha et al.,
2016; Chen et al., 2017a,b; Tay et al., 2018).

While neural networks have been shown to be
very effective in modeling NLI with large train-
ing data, they have often focused on end-to-end
training by assuming that all inference knowledge
is learnable from the provided training data. In
this paper, we relax this assumption and explore
whether external knowledge can further help NLI.
Consider an example:

• p: A lady standing in a wheat field.

• h: A person standing in a corn field.

In this simplified example, when computers are
asked to predict the relation between these two
sentences and if training data do not provide the
knowledge of relationship between “wheat” and
“corn” (e.g., if one of the two words does not ap-
pear in the training data or they are not paired in
any premise-hypothesis pairs), it will be hard for
computers to correctly recognize that the premise
contradicts the hypothesis.

In general, although in many tasks learning tab-
ula rasa achieved state-of-the-art performance, we
believe complicated NLP problems such as NLI
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could benefit from leveraging knowledge accumu-
lated by humans, particularly in a foreseeable fu-
ture when machines are unable to learn it by them-
selves.

In this paper we enrich neural-network-based
NLI models with external knowledge in co-
attention, local inference collection, and inference
composition components. We show the proposed
model improves the state-of-the-art NLI models
to achieve better performances on the SNLI and
MultiNLI datasets. The advantage of using exter-
nal knowledge is more significant when the size of
training data is restricted, suggesting that if more
knowledge can be obtained, it may bring more
benefit. In addition to attaining the state-of-the-
art performance, we are also interested in under-
standing how external knowledge contributes to
the major components of typical neural-network-
based NLI models.

2 Related Work

Early research on natural language inference and
recognizing textual entailment has been performed
on relatively small datasets (refer to MacCartney
(2009) for a good literature survey), which in-
cludes a large bulk of contributions made under
the name of RTE, such as (Dagan et al., 2005;
Iftene and Balahur-Dobrescu, 2007), among many
others.

More recently the availability of much larger
annotated data, e.g., SNLI (Bowman et al.,
2015) and MultiNLI (Williams et al., 2017), has
made it possible to train more complex mod-
els. These models mainly fall into two types
of approaches: sentence-encoding-based models
and models using also inter-sentence attention.
Sentence-encoding-based models use Siamese ar-
chitecture (Bromley et al., 1993). The parameter-
tied neural networks are applied to encode both
the premise and the hypothesis. Then a neural
network classifier is applied to decide relationship
between the two sentences. Different neural net-
works have been utilized for sentence encoding,
such as LSTM (Bowman et al., 2015), GRU (Ven-
drov et al., 2015), CNN (Mou et al., 2016), BiL-
STM and its variants (Liu et al., 2016c; Lin et al.,
2017; Chen et al., 2017b; Nie and Bansal, 2017),
self-attention network (Shen et al., 2017, 2018),
and more complicated neural networks (Bowman
et al., 2016; Yu and Munkhdalai, 2017a,b; Choi
et al., 2017). Sentence-encoding-based models

transform sentences into fixed-length vector rep-
resentations, which may help a wide range of
tasks (Conneau et al., 2017).

The second set of models use inter-sentence at-
tention (Rocktäschel et al., 2015; Wang and Jiang,
2016; Cheng et al., 2016; Parikh et al., 2016;
Chen et al., 2017a). Among them, Rocktäschel
et al. (2015) were among the first to propose neu-
ral attention-based models for NLI. Chen et al.
(2017a) proposed an enhanced sequential infer-
ence model (ESIM), which is one of the best mod-
els so far and is used as one of our baselines in this
paper.

In this paper we enrich neural-network-based
NLI models with external knowledge. Unlike
early work on NLI (Jijkoun and de Rijke, 2005;
MacCartney et al., 2008; MacCartney, 2009) that
explores external knowledge in conventional NLI
models on relatively small NLI datasets, we aim to
merge the advantage of powerful modeling ability
of neural networks with extra external inference
knowledge. We show that the proposed model
improves the state-of-the-art neural NLI models
to achieve better performances on the SNLI and
MultiNLI datasets. The advantage of using exter-
nal knowledge is more significant when the size of
training data is restricted, suggesting that if more
knowledge can be obtained, it may have more ben-
efit. In addition to attaining the state-of-the-art
performance, we are also interested in understand-
ing how external knowledge affect major compo-
nents of neural-network-based NLI models.

In general, external knowledge has shown to be
effective in neural networks for other NLP tasks,
including word embedding (Chen et al., 2015;
Faruqui et al., 2015; Liu et al., 2015; Wieting
et al., 2015; Mrksic et al., 2017), machine trans-
lation (Shi et al., 2016; Zhang et al., 2017b), lan-
guage modeling (Ahn et al., 2016), and dialogue
systems (Chen et al., 2016b).

3 Neural-Network-Based NLI Models
with External Knowledge

In this section we propose neural-network-based
NLI models to incorporate external inference
knowledge, which, as we will show later in Sec-
tion 5, achieve the state-of-the-art performance.
In addition to attaining the leading performance
we are also interested in investigating the effects
of external knowledge on major components of
neural-network-based NLI modeling.
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Figure 1 shows a high-level general view of the
proposed framework. While specific NLI systems
vary in their implementation, typical state-of-the-
art NLI models contain the main components (or
equivalents) of representing premise and hypoth-
esis sentences, collecting local (e.g., lexical) in-
ference information, and aggregating and compos-
ing local information to make the global decision
at the sentence level. We incorporate and investi-
gate external knowledge accordingly in these ma-
jor NLI components: computing co-attention, col-
lecting local inference information, and compos-
ing inference to make final decision.

3.1 External Knowledge

As discussed above, although there exist relatively
large annotated data for NLI, can machines learn
all inference knowledge needed to perform NLI
from the data? If not, how can neural network-
based NLI models benefit from external knowl-
edge and how to build NLI models to leverage it?

We study the incorporation of external,
inference-related knowledge in major compo-
nents of neural networks for natural language
inference. For example, intuitively knowledge
about synonymy, antonymy, hypernymy and
hyponymy between given words may help model
soft-alignment between premises and hypotheses;
knowledge about hypernymy and hyponymy
may help capture entailment; knowledge about
antonymy and co-hyponyms (words sharing the
same hypernym) may benefit the modeling of
contradiction.

In this section, we discuss the incorporation of
basic, lexical-level semantic knowledge into neu-
ral NLI components. Specifically, we consider ex-
ternal lexical-level inference knowledge between
word wi and wj , which is represented as a vec-
tor rij and is incorporated into three specific com-
ponents shown in Figure 1. We will discuss the
details of how rij is constructed later in the exper-
iment setup section (Section 4) but instead focus
on the proposed model in this section. Note that
while we study lexical-level inference knowledge
in the paper, if inference knowledge about larger
pieces of text pairs (e.g., inference relations be-
tween phrases) are available, the proposed model
can be easily extended to handle that. In this paper,
we instead let the NLI models to compose lexical-
level knowledge to obtain inference relations be-
tween larger pieces of texts.

3.2 Encoding Premise and Hypothesis
Same as much previous work (Chen et al.,
2017a,b), we encode the premise and the hypoth-
esis with bidirectional LSTMs (BiLSTMs). The
premise is represented as a = (a1, . . . , am) and
the hypothesis is b = (b1, . . . , bn), where m
and n are the lengths of the sentences. Then a
and b are embedded into de-dimensional vectors
[E(a1), . . . ,E(am)] and [E(b1), . . . ,E(bn)] using
the embedding matrix E ∈ Rde×|V |, where |V | is
the vocabulary size and E can be initialized with
the pre-trained word embedding. To represent
words in its context, the premise and the hypothe-
sis are fed into BiLSTM encoders (Hochreiter and
Schmidhuber, 1997) to obtain context-dependent
hidden states as and bs:

asi = Encoder(E(a), i) , (1)

bsj = Encoder(E(b), j) . (2)

where i and j indicate the i-th word in the premise
and the j-th word in the hypothesis, respectively.

3.3 Knowledge-Enriched Co-Attention
As discussed above, soft-alignment of word pairs
between the premise and the hypothesis may ben-
efit from knowledge-enriched co-attention mech-
anism. Given the relation features rij ∈ Rdr be-
tween the premise’s i-th word and the hypothesis’s
j-th word derived from the external knowledge,
the co-attention is calculated as:

eij = (asi )
Tbsj + F (rij) . (3)

The function F can be any non-linear or linear
functions. In this paper, we use F (rij) = λ1(rij),
where λ is a hyper-parameter tuned on the devel-
opment set and 1 is the indication function as fol-
lows:

1(rij) =

{
1 if rij is not a zero vector ;

0 if rij is a zero vector .
(4)

Intuitively, word pairs with semantic relationship,
e.g., synonymy, antonymy, hypernymy, hyponymy
and co-hyponyms, are probably aligned together.
We will discuss how we construct external knowl-
edge later in Section 4. We have also tried a two-
layer MLP as a universal function approximator
in function F to learn the underlying combination
function but did not observe further improvement
over the best performance we obtained on the de-
velopment datasets.
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Figure 1: A high-level view of neural-network-based NLI models enriched with external knowledge in
co-attention, local inference collection, and inference composition.

Soft-alignment is determined by the co-
attention matrix e ∈ Rm×n computed in Equa-
tion (3), which is used to obtain the local relevance
between the premise and the hypothesis. For the
hidden state of the i-th word in the premise, i.e.,
asi (already encoding the word itself and its con-
text), the relevant semantics in the hypothesis is
identified into a context vector aci using eij , more
specifically with Equation (5).

αij =
exp(eij)∑n
k=1 exp(eik)

, aci =
n∑

j=1

αijb
s
j , (5)

βij =
exp(eij)∑m
k=1 exp(ekj)

, bcj =
m∑

i=1

βija
s
i , (6)

where α ∈ Rm×n and β ∈ Rm×n are the nor-
malized attention weight matrices with respect to
the 2-axis and 1-axis. The same calculation is per-
formed for each word in the hypothesis, i.e., bsj ,
with Equation (6) to obtain the context vector bcj .

3.4 Local Inference Collection with External
Knowledge

By way of comparing the inference-related seman-
tic relation between asi (individual word repre-
sentation in premise) and aci (context representa-
tion from hypothesis which is align to word asi ),
we can model local inference (i.e., word-level in-
ference) between aligned word pairs. Intuitively,
for example, knowledge about hypernymy or hy-
ponymy may help model entailment and knowl-
edge about antonymy and co-hyponyms may help
model contradiction. Through comparing asi and

aci , in addition to their relation from external
knowledge, we can obtain word-level inference
information for each word. The same calcula-
tion is performed for bsj and bcj . Thus, we collect
knowledge-enriched local inference information:

am
i = G([as

i ;a
c
i ;a

s
i − ac

i ;a
s
i ◦ ac

i ;

n∑

j=1

αijrij ]) , (7)

bmj = G([bsj , b
c
j ; b

s
j − bcj ; bsj ◦ bcj ;

m∑

i=1

βijrji]) , (8)

where a heuristic matching trick with difference
and element-wise product is used (Mou et al.,
2016; Chen et al., 2017a). The last terms in Equa-
tion (7)(8) are used to obtain word-level infer-
ence information from external knowledge. Take
Equation (7) as example, rij is the relation fea-
ture between the i-th word in the premise and
the j-th word in the hypothesis, but we care
more about semantic relation between aligned
word pairs between the premise and the hypoth-
esis. Thus, we use a soft-aligned version through
the soft-alignment weight αij . For the i-th word
in the premise, the last term in Equation (7) is
a word-level inference information based on ex-
ternal knowledge between the i-th word and the
aligned word. The same calculation for hypoth-
esis is performed in Equation (8). G is a non-
linear mapping function to reduce dimensionality.
Specifically, we use a 1-layer feed-forward neural
network with the ReLU activation function with
a shortcut connection, i.e., concatenate the hidden
states after ReLU with the input

∑n
j=1 αijrij (or∑m

i=1 βijrji) as the output ami (or bmj ).
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3.5 Knowledge-Enhanced Inference
Composition

In this component, we introduce knowledge-
enriched inference composition. To determine the
overall inference relationship between the premise
and the hypothesis, we need to explore a compo-
sition layer to compose the local inference vectors
(am and bm) collected above:

avi = Composition(am, i) , (9)

bvj = Composition(bm, j) . (10)

Here, we also use BiLSTMs as building blocks
for the composition layer, but the responsibility
of BiLSTMs in the inference composition layer
is completely different from that in the input en-
coding layer. The BiLSTMs here read local in-
ference vectors (am and bm) and learn to judge
the types of local inference relationship and dis-
tinguish crucial local inference vectors for overall
sentence-level inference relationship. Intuitively,
the final prediction is likely to depend on word
pairs appearing in external knowledge that have
some semantic relation. Our inference model con-
verts the output hidden vectors of BiLSTMs to
the fixed-length vector with pooling operations
and puts it into the final classifier to determine
the overall inference class. Particularly, in addi-
tion to using mean pooling and max pooling sim-
ilarly to ESIM (Chen et al., 2017a), we propose
to use weighted pooling based on external knowl-
edge to obtain a fixed-length vector as in Equation
(11)(12).

aw =

m∑

i=1

exp(H(
∑n

j=1 αijrij))∑m
i=1 exp(H(

∑n
j=1 αijrij))

av
i , (11)

bw =

n∑

j=1

exp(H(
∑m

i=1 βijrji))∑n
j=1 exp(H(

∑m
i=1 βijrji))

bvj . (12)

In our experiments, we regard the function H as
a 1-layer feed-forward neural network with ReLU
activation function. We concatenate all pooling
vectors, i.e., mean, max, and weighted pooling,
into the fixed-length vector and then put the vector
into the final multilayer perceptron (MLP) clas-
sifier. The MLP has one hidden layer with tanh
activation and softmax output layer in our exper-
iments. The entire model is trained end-to-end,
through minimizing the cross-entropy loss.

4 Experiment Set-Up

4.1 Representation of External Knowledge

Lexical Semantic Relations As described in
Section 3.1, to incorporate external knowledge
(as a knowledge vector rij) to the state-of-the-
art neural network-based NLI models, we first
explore semantic relations in WordNet (Miller,
1995), motivated by MacCartney (2009). Specif-
ically, the relations of lexical pairs are derived as
described in (1)-(4) below. Instead of using Jiang-
Conrath WordNet distance metric (Jiang and Con-
rath, 1997), which does not improve the perfor-
mance of our models on the development sets, we
add a new feature, i.e., co-hyponyms, which con-
sistently benefit our models.

(1) Synonymy: It takes the value 1 if the words in
the pair are synonyms in WordNet (i.e., be-
long to the same synset), and 0 otherwise. For
example, [felicitous, good] = 1, [dog, wolf] =
0.

(2) Antonymy: It takes the value 1 if the words
in the pair are antonyms in WordNet, and 0
otherwise. For example, [wet, dry] = 1.

(3) Hypernymy: It takes the value 1− n/8 if one
word is a (direct or indirect) hypernym of the
other word in WordNet, where n is the num-
ber of edges between the two words in hier-
archies, and 0 otherwise. Note that we ignore
pairs in the hierarchy which have more than 8
edges in between. For example, [dog, canid]
= 0.875, [wolf, canid] = 0.875, [dog, carni-
vore] = 0.75, [canid, dog] = 0

(4) Hyponymy: It is simply the inverse of the hy-
pernymy feature. For example, [canid, dog]
= 0.875, [dog, canid] = 0.

(5) Co-hyponyms: It takes the value 1 if the two
words have the same hypernym but they do
not belong to the same synset, and 0 other-
wise. For example, [dog, wolf] = 1.

As discussed above, we expect features like syn-
onymy, antonymy, hypernymy, hyponymy and co-
hyponyms would help model co-attention align-
ment between the premise and the hypothesis.
Knowledge of hypernymy and hyponymy may help
capture entailment; knowledge of antonymy and
co-hyponyms may help model contradiction. Their
final contributions will be learned in end-to-end
model training. We regard the vector r ∈ Rdr as
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the relation feature derived from external knowl-
edge, where dr is 5 here. In addition, Table 1 re-
ports some key statistics of these features.

Feature #Words #Pairs
Synonymy 84,487 237,937
Antonymy 6,161 6,617
Hypernymy 57,475 753,086
Hyponymy 57,475 753,086
Co-hyponyms 53,281 3,674,700

Table 1: Statistics of lexical relation features.

In addition to the above relations, we also use
more relation features in WordNet, including in-
stance, instance of, same instance, entailment,
member meronym, member holonym, substance
meronym, substance holonym, part meronym, part
holonym, summing up to 15 features, but these ad-
ditional features do not bring further improvement
on the development dataset, as also discussed in
Section 5.

Relation Embeddings In the most recent years
graph embedding has been widely employed to
learn representation for vertexes and their relations
in a graph. In our work here, we also capture
the relation between any two words in WordNet
through relation embedding. Specifically, we em-
ployed TransE (Bordes et al., 2013), a widely used
graph embedding methods, to capture relation em-
bedding between any two words. We used two
typical approaches to obtaining the relation em-
bedding. The first directly uses 18 relation em-
beddings pretrained on the WN18 dataset (Bordes
et al., 2013). Specifically, if a word pair has a cer-
tain type relation, we take the corresponding re-
lation embedding. Sometimes, if a word pair has
multiple relations among the 18 types; we take an
average of the relation embedding. The second ap-
proach uses TransE’s word embedding (trained on
WordNet) to obtain relation embedding, through
the objective function used in TransE, i.e., l ≈
t− h, where l indicates relation embedding, t in-
dicates tail entity embedding, and h indicates head
entity embedding.

Note that in addition to relation embedding
trained on WordNet, other relational embedding
resources exist; e.g., that trained on Freebase
(WikiData) (Bollacker et al., 2007), but such
knowledge resources are mainly about facts (e.g.,
relationship between Bill Gates and Microsoft)
and are less for commonsense knowledge used in

general natural language inference (e.g., the color
yellow potentially contradicts red).

4.2 NLI Datasets

In our experiments, we use Stanford Natural Lan-
guage Inference (SNLI) dataset (Bowman et al.,
2015) and Multi-Genre Natural Language Infer-
ence (MultiNLI) (Williams et al., 2017) dataset,
which focus on three basic relations between a
premise and a potential hypothesis: the premise
entails the hypothesis (entailment), they contradict
each other (contradiction), or they are not related
(neutral). We use the same data split as in previ-
ous work (Bowman et al., 2015; Williams et al.,
2017) and classification accuracy as the evaluation
metric. In addition, we test our models (trained on
the SNLI training set) on a new test set (Glockner
et al., 2018), which assesses the lexical inference
abilities of NLI systems and consists of 8,193 sam-
ples. WordNet 3.0 (Miller, 1995) is used to extract
semantic relation features between words. The
words are lemmatized using Stanford CoreNLP
3.7.0 (Manning et al., 2014). The premise and the
hypothesis sentences fed into the input encoding
layer are tokenized.

4.3 Training Details

For duplicability, we release our code1. All our
models were strictly selected on the development
set of the SNLI data and the in-domain devel-
opment set of MultiNLI and were then tested on
the corresponding test set. The main training de-
tails are as follows: the dimension of the hid-
den states of LSTMs and word embeddings are
300. The word embeddings are initialized by
300D GloVe 840B (Pennington et al., 2014), and
out-of-vocabulary words among them are initial-
ized randomly. All word embeddings are updated
during training. Adam (Kingma and Ba, 2014)
is used for optimization with an initial learning
rate of 0.0004. The mini-batch size is set to 32.
Note that the above hyperparameter settings are
same as those used in the baseline ESIM (Chen
et al., 2017a) model. ESIM is a strong NLI
baseline framework with the source code made
available at https://github.com/lukecq1231/nli (the
ESIM core code has also been adapted to sum-
marization (Chen et al., 2016a) and question-
answering tasks (Zhang et al., 2017a)).

The trade-off λ for calculating co-

1https://github.com/lukecq1231/kim
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attention in Equation (3) is selected in
[0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50] based on the
development set. When training TransE for
WordNet, relations are represented with vectors
of 20 dimension.

5 Experimental Results

5.1 Overall Performance

Table 2 shows the results of state-of-the-art models
on the SNLI dataset. Among them, ESIM (Chen
et al., 2017a) is one of the previous state-of-the-art
systems with an 88.0% test-set accuracy. The pro-
posed model, namely Knowledge-based Inference
Model (KIM), which enriches ESIM with external
knowledge, obtains an accuracy of 88.6%, the best
single-model performance reported on the SNLI
dataset. The difference between ESIM and KIM is
statistically significant under the one-tailed paired
t-test at the 99% significance level. Note that the
KIM model reported here uses five semantic rela-
tions described in Section 4. In addition to that, we
also use 15 semantic relation features, which does
not bring additional gains in performance. These
results highlight the effectiveness of the five se-
mantic relations described in Section 4. To further
investigate external knowledge, we add TransE re-
lation embedding, and again no further improve-
ment is observed on both the development and test
sets when TransE relation embedding is used (con-
catenated) with the semantic relation vectors. We
consider this is due to the fact that TransE embed-
ding is not specifically sensitive to inference in-
formation; e.g., it does not model co-hyponyms
features, and its potential benefit has already been
covered by the semantic relation features used.

Table 3 shows the performance of models on the
MultiNLI dataset. The baseline ESIM achieves
76.8% and 75.8% on in-domain and cross-domain
test set, respectively. If we extend the ESIM with
external knowledge, we achieve significant gains
to 77.2% and 76.4% respectively. Again, the gains
are consistent on SNLI and MultiNLI, and we ex-
pect they would be orthogonal to other factors
when external knowledge is added into other state-
of-the-art models.

5.2 Ablation Results

Figure 2 displays the ablation analysis of differ-
ent components when using the external knowl-
edge. To compare the effects of external knowl-
edge under different training data scales, we ran-

Model Test
LSTM Att. (Rocktäschel et al., 2015) 83.5
DF-LSTMs (Liu et al., 2016a) 84.6
TC-LSTMs (Liu et al., 2016b) 85.1
Match-LSTM (Wang and Jiang, 2016) 86.1
LSTMN (Cheng et al., 2016) 86.3
Decomposable Att. (Parikh et al., 2016) 86.8
NTI (Yu and Munkhdalai, 2017b) 87.3
Re-read LSTM (Sha et al., 2016) 87.5
BiMPM (Wang et al., 2017) 87.5
DIIN (Gong et al., 2017) 88.0
BCN + CoVe (McCann et al., 2017) 88.1
CAFE (Tay et al., 2018) 88.5

ESIM (Chen et al., 2017a) 88.0
KIM (This paper) 88.6

Table 2: Accuracies of models on SNLI.

Model In Cross
CBOW (Williams et al., 2017) 64.8 64.5
BiLSTM (Williams et al., 2017) 66.9 66.9
DiSAN (Shen et al., 2017) 71.0 71.4
Gated BiLSTM (Chen et al., 2017b) 73.5 73.6
SS BiLSTM (Nie and Bansal, 2017) 74.6 73.6
DIIN * (Gong et al., 2017) 77.8 78.8
CAFE (Tay et al., 2018) 78.7 77.9

ESIM (Chen et al., 2017a) 76.8 75.8
KIM (This paper) 77.2 76.4

Table 3: Accuracies of models on MultiNLI. * in-
dicates models using extra SNLI training set.

domly sample different ratios of the entire training
set, i.e., 0.8%, 4%, 20% and 100%. “A” indicates
adding external knowledge in calculating the co-
attention matrix as in Equation (3), “I” indicates
adding external knowledge in collecting local in-
ference information as in Equation (7)(8), and “C”
indicates adding external knowledge in compos-
ing inference as in Equation (11)(12). When we
only have restricted training data, i.e., 0.8% train-
ing set (about 4,000 samples), the baseline ESIM
has a poor accuracy of 62.4%. When we only
add external knowledge in calculating co-attention
(“A”), the accuracy increases to 66.6% (+ absolute
4.2%). When we only utilize external knowledge
in collecting local inference information (“I”), the
accuracy has a significant gain, to 70.3% (+ ab-
solute 7.9%). When we only add external knowl-
edge in inference composition (“C”), the accuracy
gets a smaller gain to 63.4% (+ absolute 1.0%).
The comparison indicates that “I” plays the most
important role among the three components in us-
ing external knowledge. Moreover, when we com-
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pose the three components (“A,I,C”), we obtain
the best result of 72.6% (+ absolute 10.2%). When
we use more training data, i.e., 4%, 20%, 100%
of the training set, only “I” achieves a significant
gain, but “A” or “C” does not bring any signifi-
cant improvement. The results indicate that ex-
ternal semantic knowledge only helps co-attention
and composition when limited training data is lim-
ited, but always helps in collecting local inference
information. Meanwhile, for less training data, λ
is usually set to a larger value. For example, the
optimal λ on the development set is 20 for 0.8%
training set, 2 for the 4% training set, 1 for the
20% training set and 0.2 for the 100% training set.

Figure 3 displays the results of using different
ratios of external knowledge (randomly keep dif-
ferent percentages of whole lexical semantic rela-
tions) under different sizes of training data. Note
that here we only use external knowledge in col-
lecting local inference information as it always
works well for different scale of the training set.
Better accuracies are achieved when using more
external knowledge. Especially under the condi-
tion of restricted training data (0.8%), the model
obtains a large gain when using more than half of
external knowledge.

Figure 2: Accuracies of models of incorporat-
ing external knowledge into different NLI compo-
nents, under different sizes of training data (0.8%,
4%, 20%, and the entire training data).

5.3 Analysis on the (Glockner et al., 2018)
Test Set

In addition, Table 4 shows the results on a newly
published test set (Glockner et al., 2018). Com-
pared with the performance on the SNLI test

Figure 3: Accuracies of models under differ-
ent sizes of external knowledge. More external
knowledge corresponds to higher accuracies.

Model SNLI Glockner’s(∆)
(Parikh et al., 2016)* 84.7 51.9 (-32.8)
(Nie and Bansal, 2017)* 86.0 62.2 (-23.8)
ESIM * 87.9 65.6 (-22.3)
KIM (This paper) 88.6 83.5 ( -5.1)

Table 4: Accuracies of models on the SNLI and
(Glockner et al., 2018) test set. * indicates the re-
sults taken from (Glockner et al., 2018).

set, the performance of the three baseline mod-
els dropped substantially on the (Glockner et al.,
2018) test set, with the differences ranging from
22.3% to 32.8% in accuracy. Instead, the proposed
KIM achieves 83.5% on this test set (with only a
5.1% drop in performance), which demonstrates
its better ability of utilizing lexical level inference
and hence better generalizability.

Figure 5 displays the accuracy of ESIM
and KIM in each replacement-word category of
the (Glockner et al., 2018) test set. KIM outper-
forms ESIM in 13 out of 14 categories, and only
performs worse on synonyms.

5.4 Analysis by Inference Categories
We perform more analysis (Table 6) using the sup-
plementary annotations provided by the MultiNLI
dataset (Williams et al., 2017), which have 495
samples (about 1/20 of the entire development set)
for both in-domain and out-domain set. We com-
pare against the model outputs of the ESIM model
across 13 categories of inference. Table 6 reports
the results. We can see that KIM outperforms
ESIM on overall accuracies on both in-domain and
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Category Instance ESIM KIM
Antonyms 1,147 70.4 86.5
Cardinals 759 75.5 93.4
Nationalities 755 35.9 73.5
Drinks 731 63.7 96.6
Antonyms WordNet 706 74.6 78.8
Colors 699 96.1 98.3
Ordinals 663 21.0 56.6
Countries 613 25.4 70.8
Rooms 595 69.4 77.6
Materials 397 89.7 98.7
Vegetables 109 31.2 79.8
Instruments 65 90.8 96.9
Planets 60 3.3 5.0
Synonyms 894 99.7 92.1

Overall 8,193 65.6 83.5

Table 5: The number of instances and accu-
racy per category achieved by ESIM and KIM on
the (Glockner et al., 2018) test set.

Category In-domain Cross-domain
ESIM KIM ESIM KIM

Active/Passive 93.3 93.3 100.0 100.0
Antonym 76.5 76.5 70.0 75.0
Belief 72.7 75.8 75.9 79.3
Conditional 65.2 65.2 61.5 69.2
Coreference 80.0 76.7 75.9 75.9
Long sentence 82.8 78.8 69.7 73.4
Modal 80.6 79.9 77.0 80.2
Negation 76.7 79.8 73.1 71.2
Paraphrase 84.0 72.0 86.5 89.2
Quantity/Time 66.7 66.7 56.4 59.0
Quantifier 79.2 78.4 73.6 77.1
Tense 74.5 78.4 72.2 66.7
Word overlap 89.3 85.7 83.8 81.1

Overall 77.1 77.9 76.7 77.4

Table 6: Detailed Analysis on MultiNLI.

cross-domain subset of development set. KIM out-
performs or equals ESIM in 10 out of 13 cate-
gories on the cross-domain setting, while only 7
out of 13 categories on in-domain setting. It indi-
cates that external knowledge helps more in cross-
domain setting. Especially, for antonym category
in cross-domain set, KIM outperform ESIM sig-
nificantly (+ absolute 5.0%) as expected, because
antonym feature captured by external knowledge
would help unseen cross-domain samples.

5.5 Case Study

Table 7 includes some examples from the SNLI
test set, where KIM successfully predicts the in-
ference relation and ESIM fails. In the first exam-

P/G Sentences
e/c p: An African person standing in a wheat

field.
h: A person standing in a corn field.

e/c p: Little girl is flipping an omelet in the
kitchen.
h: A young girl cooks pancakes.

c/e p: A middle eastern marketplace.
h: A middle easten store.

c/e p: Two boys are swimming with boogie
boards.
h: Two boys are swimming with their floats.

Table 7: Examples. Word in bold are key words
in making final prediction. P indicates a predicted
label and G indicates gold-standard label. e and c
denote entailment and contradiction, respectively.

ple, the premise is “An African person standing in
a wheat field” and the hypothesis “A person stand-
ing in a corn field”. As the KIM model knows that
“wheat” and “corn” are both a kind of cereal, i.e,
the co-hyponyms relationship in our relation fea-
tures, KIM therefore predicts the premise contra-
dicts the hypothesis. However, the baseline ESIM
cannot learn the relationship between “wheat” and
“corn” effectively due to lack of enough samples
in the training sets. With the help of external
knowledge, i.e., “wheat” and “corn” having the
same hypernym “cereal”, KIM predicts contradic-
tion correctly.

6 Conclusions

Our neural-network-based model for natural lan-
guage inference with external knowledge, namely
KIM, achieves the state-of-the-art accuracies. The
model is equipped with external knowledge in its
main components, specifically, in calculating co-
attention, collecting local inference, and compos-
ing inference. We provide detailed analyses on our
model and results. The proposed model of infus-
ing neural networks with external knowledge may
also help shed some light on tasks other than NLI.
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Abstract

We consider the problem of learning tex-
tual entailment models with limited super-
vision (5K-10K training examples), and
present two complementary approaches
for it. First, we propose knowledge-guided
adversarial example generators for incor-
porating large lexical resources in entail-
ment models via only a handful of rule
templates. Second, to make the entailment
model—a discriminator—more robust, we
propose the first GAN-style approach for
training it using a natural language ex-
ample generator that iteratively adjusts
based on the discriminator’s performance.
We demonstrate effectiveness using two
entailment datasets, where the proposed
methods increase accuracy by 4.7% on
SciTail and by 2.8% on a 1% training
sub-sample of SNLI. Notably, even a sin-
gle hand-written rule, negate, improves
the accuracy on the negation examples in
SNLI by 6.1%.

1 Introduction

The impressive success of machine learning mod-
els on large natural language datasets often does
not carry over to moderate training data regimes,
where models often struggle with infrequently ob-
served patterns and simple adversarial variations.
A prominent example of this phenomenon is tex-
tual entailment, the fundamental task of decid-
ing whether a premise text entails (�) a hypoth-
esis text. On certain datasets, recent deep learn-
ing entailment systems (Parikh et al., 2016; Wang
et al., 2017; Gong et al., 2018) have achieved
close to human level performance. Nevertheless,
the problem is far from solved, as evidenced by
how easy it is to generate minor adversarial ex-

Table 1: Failure examples from the SNLI dataset:
negation (Top) and re-ordering (Bottom). P is
premise, H is hypothesis, and S is prediction made
by an entailment system (Parikh et al., 2016).

P: The dog did not eat all of the chickens.
H: The dog ate all of the chickens.
S: entails (score 56:5%)
P: The red box is in the blue box.
H: The blue box is in the red box.
S: entails (score 92:1%)

amples that break even the best systems. As Ta-
ble 1 illustrates, a state-of-the-art neural system
for this task, namely the Decomposable Attention
Model (Parikh et al., 2016), fails when faced with
simple linguistic phenomena such as negation, or
a re-ordering of words. This is not unique to a
particular model or task. Minor adversarial exam-
ples have also been found to easily break neural
systems on other linguistic tasks such as reading
comprehension (Jia and Liang, 2017).

A key contributor to this brittleness is the use
of specific datasets such as SNLI (Bowman et al.,
2015) and SQuAD (Rajpurkar et al., 2016) to drive
model development. While large and challenging,
these datasets also tend to be homogeneous. E.g.,
SNLI was created by asking crowd-source work-
ers to generate entailing sentences, which then
tend to have limited linguistic variations and an-
notation artifacts (Gururangan et al., 2018). Con-
sequently, models overfit to sufficiently repetitive
patterns—and sometimes idiosyncrasies—in the
datasets they are trained on. They fail to cover
long-tail and rare patterns in the training distribu-
tion, or linguistic phenomena such as negation that
would be obvious to a layperson.

To address this challenge, we propose to train
textual entailment models more robustly using ad-
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versarial examples generated in two ways: (a)
by incorporating knowledge from large linguistic
resources, and (b) using a sequence-to-sequence
neural model in a GAN-style framework.

The motivation stems from the following ob-
servation. While deep-learning based textual en-
tailment models lead the pack, they generally do
not incorporate intuitive rules such as negation,
and ignore large-scale linguistic resources such
as PPDB (Ganitkevitch et al., 2013) and Word-
Net (Miller, 1995). These resources could help
them generalize beyond specific words observed
during training. For instance, while the SNLI
dataset contains the pattern two men � people, it
does not contain the analogous pattern two dogs �
animals found easily in WordNet.

Effectively integrating simple rules or linguis-
tic resources in a deep learning model, however,
is challenging. Doing so directly by substantially
adapting the model architecture (Sha et al., 2016;
Chen et al., 2018) can be cumbersome and limit-
ing. Incorporating such knowledge indirectly via
modified word embeddings (Faruqui et al., 2015;
Mrkšić et al., 2016), as we show, can have little
positive impact and can even be detrimental.

Our proposed method, which is task-specific
but model-independent, is inspired by data-
augmentation techniques. We generate new
training examples by applying knowledge-guided
rules, via only a handful of rule templates, to the
original training examples. Simultaneously, we
also use a sequence-to-sequence or seq2seq model
for each entailment class to generate new hypothe-
ses from a given premise, adaptively creating new
adversarial examples. These can be used with any
entailment model without constraining model ar-
chitecture.

We also introduce the first approach to train a
robust entailment model using a Generative Ad-
versarial Network or GAN (Goodfellow et al.,
2014) style framework. We iteratively improve
both the entailment system (the discriminator)
and the differentiable part of the data-augmenter
(specifically the neural generator), by training
the generator based on the discriminator’s perfor-
mance on the generated examples. Importantly,
unlike the typical use of GANs to create a strong
generator, we use it as a mechanism to create a
strong and robust discriminator.

Our new entailment system, called AdvEntuRe,
demonstrates that in the moderate data regime,

adversarial iterative data-augmentation via only a
handful of linguistic rule templates can be sur-
prisingly powerful. Specifically, we observe 4.7%
accuracy improvement on the challenging SciTail
dataset (Khot et al., 2018) and a 2.8% improve-
ment on 10K-50K training subsets of SNLI. An
evaluation of our algorithm on the negation ex-
amples in the test set of SNLI reveals a 6.1% im-
provement from just a single rule.

2 Related Work

Adversarial example generation has recently re-
ceived much attention in NLP. For example, Jia
and Liang (2017) generate adversarial examples
using manually defined templates for the SQuAD
reading comprehension task. Glockner et al.
(2018) create an adversarial dataset from SNLI
by using WordNet knowledge. Automatic meth-
ods (Iyyer et al., 2018) have also been proposed to
generate adversarial examples through paraphras-
ing. These works reveal how neural network sys-
tems trained on a large corpus can easily break
when faced with carefully designed unseen ad-
versarial patterns at test time. Our motivation is
different. We use adversarial examples at train-
ing time, in a data augmentation setting, to train a
more robust entailment discriminator. The gener-
ator uses explicit knowledge or hand written rules,
and is trained in a end-to-end fashion along with
the discriminator.

Incorporating external rules or linguistic re-
sources in a deep learning model generally re-
quires substantially adapting the model architec-
ture (Sha et al., 2016; Liang et al., 2017; Kang
et al., 2017). This is a model-dependent approach,
which can be cumbersome and constraining. Sim-
ilarly non-neural textual entailment models have
been developed that incorporate knowledge bases.
However, these also require model-specific engi-
neering (Raina et al., 2005; Haghighi et al., 2005;
Silva et al., 2018).

An alternative is the model- and task-
independent route of incorporating linguis-
tic resources via word embeddings that are
retro-fitted (Faruqui et al., 2015) or counter-
fitted (Mrkšić et al., 2016) to such resources. We
demonstrate, however, that this has little positive
impact in our setting and can even be detrimen-
tal. Further, it is unclear how to incorporate
knowledge sources into advanced representations
such as contextual embeddings (McCann et al.,
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2017; Peters et al., 2018). We thus focus on a
task-specific but model-independent approach.

Logical rules have also been defined to label ex-
isting examples based on external resources (Hu
et al., 2016). Our focus here is on generating new
training examples.

Our use of the GAN framework to create a bet-
ter discriminator is related to CatGANs (Wang and
Zhang, 2017) and TripleGANs (Chongxuan et al.,
2017) where the discriminator is trained to classify
the original training image classes as well as a new
‘fake’ image class. We, on the other hand, gener-
ate examples belonging to the same classes as the
training examples. Further, unlike the earlier fo-
cus on the vision domain, this is the first approach
to train a discriminator using GANs for a natural
language task with discrete outputs.

3 Adversarial Example Generation

We present three different techniques to create ad-
versarial examples for textual entailment. Specifi-
cally, we show how external knowledge resources,
hand-authored rules, and neural language genera-
tion models can be used to generate such exam-
ples. Before describing these generators in detail,
we introduce the notation used henceforth.

We use lower-case letters for single instances
(e.g., x; p; h), upper-case letters for sets of in-
stances (e.g., X;P;H ), blackboard bold for mod-
els (e.g., D), and calligraphic symbols for discrete
spaces of possible values (e.g., class labels C). For
the textual entailment task, we assume each exam-
ple is represented as a triple (p, h, c), where p is
a premise (a natural language sentence), h is a hy-
pothesis, and c is an entailment label: (a) entails
(v) if h is true whenever p is true; (b) contradicts
(f) if h is false whenever p is true; or (c) neu-
tral (#) if the truth value of h cannot be concluded
from p being true.1

We will introduce various example generators
in the rest of this section. Each such generator, G�,
is defined by a partial function f� and a label g�. If
a sentence s has a certain property required by f�
(e.g., contains a particular string), f� transforms
it into another sentence s0 and g� provides an en-
tailment label from s to s0. Applied to a sentence
s, G� thus either “fails” (if the pre-requisite isn’t
met) or generates a new entailment example triple,�
s; f�(s); g�

�
. For instance, consider the generator

1The symbols are based on Natural Logic (Lakoff, 1970)
and use the notation of MacCartney and Manning (2012).

Source ρ f�(s) g�
Knowledge Base, GKB

WordNet

hyper(x; y) v

anto(x, y) f
syno(x, y) Replace x

with y in s v

PPDB x � y v

SICK c(x; y) c

Hand-authored, GH

Domain knowledge neg negate(s) f
Neural Model, Gs2s

Training data (s2s, c) Gs2s
c (s) c

Table 2: Various generators G� characterized by
their source, (partial) transformation function f�
as applied to a sentence s, and entailment label g�

for �:=hypernym(car, vehicle) with the (partial)
transformation function f�:=“Replace car with
vehicle” and the label g�:=entails. f� would fail
when applied to a sentence not containing the
word “car”. Applying f� to the sentence s=“A
man is driving the car” would generate s’=“A
man is driving the vehicle”, creating the example
(s; s0; entails).

The seven generators we use for experimenta-
tion are summarized in Table 2 and discussed in
more detail subsequently. While these particu-
lar generators are simplistic and one can easily
imagine more advanced ones, we show that train-
ing using adversarial examples created using even
these simple generators leads to substantial accu-
racy improvement on two datasets.

3.1 Knowledge-Guided Generators

Large knowledge-bases such as WordNet and
PPDB contain lexical equivalences and other re-
lationships highly relevant for entailment models.
However, even large datasets such as SNLI gen-
erally do not contain most of these relationships
in the training data. E.g., that two dogs entails
animals isn’t captured in the SNLI data. We de-
fine simple generators based on lexical resources
to create adversarial examples that capture the un-
derlying knowledge. This allows models trained
on these examples to learn these relationships.

As discussed earlier, there are different ways
of incorporating such symbolic knowledge into
neural models. Unlike task-agnostic ways of ap-
proaching this goal from a word embedding per-
spective (Faruqui et al., 2015; Mrkšić et al., 2016)
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or the model-specific approach (Sha et al., 2016;
Chen et al., 2018), we use this knowledge to gener-
ate task-specific examples. This allows any entail-
ment model to learn how to use these relationships
in the context of the entailment task, helping them
outperform the above task-agnostic alternative.

Our knowledge-guided example genera-
tors, GKB

� , use lexical relations available in a
knowledge-base: � := r(x; y) where the relation
r (such as synonym, hypernym, etc.) may differ
across knowledge bases. We use a simple (partial)
transformation function, f�(s):=“Replace x in s
with y”, as described in an earlier example. In
some cases, when part-of-speech (POS) tags are
available, the partial function requires the tags for
x in s and in r(x; y) to match. The entailment
label g� for the resulting examples is also defined
based on the relation r , as summarized in Table 2.

This idea is similar to Natural Logic Inference
or NLI (Lakoff, 1970; Sommers, 1982; Angeli
and Manning, 2014) where words in a sentence
can be replaced by their hypernym/hyponym to
produce entailing/neutral sentences, depending on
their context. We propose a context-agnostic use
of lexical resources that, despite its simplicity, al-
ready results in significant gains. We use three
sources for generators:

WordNet (Miller, 1995) is a large, hand-
curated, semantic lexicon with synonymous words
grouped into synsets. Synsets are connected by
many semantic relations, from which we use hy-
ponym and synonym relations to generate entailing
sentences, and antonym relations to generate con-
tradicting sentences2. Given a relation r(x; y), the
(partial) transformation function f� is the POS-tag
matched replacement of x in s with y, and requires
the POS tag to be noun or verb. NLI provides a
more robust way of using these relations based on
context, which we leave for future work.

PPDB (Ganitkevitch et al., 2013) is a large
resource of lexical, phrasal, and syntactic para-
phrases. We use 24,273 lexical paraphrases in
their smallest set, PPDB-S (Pavlick et al., 2015),
as equivalence relations, x � y. The (partial)
transformation function f� for this generator is
POS-tagged matched replacement of x in s with
y, and the label g� is entails.

2A similar approach was used in a parallel work to gener-
ate an adversarial dataset from SNLI (Glockner et al., 2018).

SICK (Marelli et al., 2014) is dataset with en-
tailment examples of the form (p; h; c), created to
evaluate an entailment model’s ability to capture
compositional knowledge via hand-authored rules.
We use the 12,508 patterns of the form c(x; y) ex-
tracted by Beltagy et al. (2016) by comparing sen-
tences in this dataset, with the property that for
each SICK example (p; h; c), replacing (when ap-
plicable) x with y in p produces h. For simplic-
ity, we ignore positional information in these pat-
terns. The (partial) transformation function f� is
replacement of x in s with y, and the label g� is c.

3.2 Hand-Defined Generators

Even very large entailment datasets have no or
very few examples of certain otherwise common
linguistic constructs such as negation,3 causing
models trained on them to struggle with these con-
structs. A simple model-agnostic way to allevi-
ate this issue is via a negation example generator
whose transformation function f�(s) is negate(s),
described below, and the label g� is contradicts.
negate(s): If s contains a ‘be’ verb (e.g., is,

was), add a “not” after the verb. If not, also add
a “did” or “do” in front based on its tense. E.g.,
change “A person is crossing” to “A person is not
crossing” and “A person crossed” to “A person
did not cross.” While many other rules could be
added, we found that this single rule covered a
majority of the cases. Verb tenses are also consid-
ered4 and changed accordingly. Other functions
such as dropping adverbial clauses or changing
tenses could be defined in a similar manner.

Both the knowledge-guided and hand-defined
generators make local changes to the sentences
based on simple rules. It should be possible to ex-
tend the hand-defined rules to cover the long tail
(as long as they are procedurally definable). How-
ever, a more scalable approach would be to extend
our generators to trainable models that can cover
a wider range of phenomena than hand-defined
rules. Moreover, the applicability of these rules
generally depends on the context which can also
be incorporated in such trainable generators.

3.3 Neural Generators

For each entailment class c, we use a trainable
sequence-to-sequence neural model (Sutskever

3Only 211 examples (2.11%) in the SNLI training set con-
tain negation triggers such as not, ’nt, etc.

4https://www.nodebox.net/code/index.php/Linguistics
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et al., 2014; Luong et al., 2015) to generate an en-
tailment example (s; s0; c) from an input sentence
s. The seq2seq model, trained on examples la-
beled c, itself acts as the transformation function
f� of the corresponding generator Gs2s

c . The la-
bel g� is set to c. The joint probability of seq2seq
model is:

Gs2s
c (Xc ;�c) = Gs2s

c (Hc ; Pc ;�c) (1)

= ΠiP (hi;cjpi;c ;�c)P (hi ) (2)

The loss function for training the seq2seq is:

O�c = argmin
�c

L(Hc ;Gs2s
c (Xc ;�c)) (3)

where L is the cross-entropy loss between the
original hypothesisHc and the predicted hypothe-
sis. Cross-entropy is computed for each predicted
word wi against the same in Hc given the se-
quence of previous words in Hc . O�c are the op-
timal parameters in Gs2s

c that minimize the loss
for class c. We use the single most likely output
to generate sentences in order to reduce decoding
time.

3.4 Example Generation
The generators described above are used to cre-
ate new entailment examples from the training
data. For each example (p; h; c) in the data, we
can create two new examples:

�
p; f�(p); g�

�
and�

h; f�(h); g�
�
.

The examples generated this way using GKB

and GH can, however, be relatively easy, as the
premise and hypothesis would differ by only a
word or so. We therefore compose such simple
(“first-order”) generated examples with the orig-
inal input example to create more challenging
“second-order” examples. We can create second-
order examples by composing the original exam-
ple (p; h; c) with a generated sentence from hy-
pothesis, f�(h) and premise, f�(p). Figure 1 de-
picts how these two kinds of examples are gener-
ated from an input example (p; h; c).

First, we consider the second-order example be-
tween the original premise and the transformed
hypothesis: (p; f�(h);

L
(c; g�)), where

L
, de-

fined in the left half of Table 3, composes the input
example label c (connecting p and h) and the gen-
erated example label g� to produce a new label.
For instance, if p entails h and h entails f�(h),
p would entail f�. In other words,

L
(v;v) is

v. For example, composing (“A man is playing

P H

P' H'

Entailment in data (x)

Generation (z) 

First/Second-order 
entailment between z & x

Figure 1: Generating first-order (blue) and
second-order (red) examples.

p) h h) h′ p) h′ p) h p) p′ p′) h
c g�

L
c g�

N
v v v v v ?
v f f v f ?
v # # v # #
f v ? f v ?
f f ? f f ?
f # # f # #
# v # # v #
# f # # f #
# # # # # #

Table 3: Entailment label composition functionsL
(left) and

N
(right) for creating second-order

examples. c and g� are the original and generated
labels, resp. v: entails,f: contradicts, #: neutral,
?: undefined

soccer”, “A man is playing a game”, v) with a
generated hypothesis f�(h): “A person is playing
a game.” will give a new second-order entailment
example: (“A man is playing soccer”, “A person is
playing a game”, v).

Second, we create an example from the
generated premise to the original hypothesis:
(f�(p); h;

N
(g�; c)). The composition function

here, denoted
N

and defined in the right half of
Table 3, is often undetermined. For example, if
p entails f�(p) and p entails h, the relation be-
tween f�(p) and h is undetermined i.e.

N
(v;v

) =?. While this particular composition
N

often
leads to undetermined or neutral relations, we use
it here for completeness. For example, compos-
ing the previous example with a generated neu-
tral premise, f�(p): “A person is wearing a cap”
would generate an example (“A person is wearing
a cap”, “A man is playing a game”, #)

The composition function
L

is the same as
the “join” operation in natural logic reason-
ing (Icard III and Moss, 2014), except for two dif-
ferences: (a) relations that do not belong to our
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three entailment classes are mapped to ‘?’, and
(b) the exclusivity/alternation relation is mapped
to contradicts. The composition function

N
, on

the other hand, does not map to the join operation.

3.5 Implementation Details

Given the original training examples X, we gener-
ate the examples from each premise and hypothe-
sis in a batch using GKB and GH. We also generate
new hypothesis per class for each premise using
Gs2s
c . Using all the generated examples to train the

model would, however, overwhelm the original
training set. For examples, our knowledge-guided
generators GKB can be applied in 17,258,314 dif-
ferent ways.

To avoid this, we sub-sample our synthetic ex-
amples to ensure that they are proportional to the
input examplesX , specifically they are bounded to
˛jX j where ˛ is tuned for each dataset. Also, as
seen in Table 3, our knowledge-guided generators
are more likely to generate neutral examples than
any other class. To make sure that the labels are
not skewed, we also sub-sample the examples to
ensure that our generated examples have the same
class distribution as the input batch. The SciTail
dataset only contains two classes: entails mapped
to v and neutral mapped to f. As a result, gen-
erated examples that do not belong to these two
classes are ignored.

The sub-sampling, however, has a negative side-
effect where our generated examples end up us-
ing a small number of lexical relations from the
large knowledge bases. On moderate datasets, this
would cause the entailment model to potentially
just memorize these few lexical relations. Hence,
we generate new entailment examples for each
mini-batch and update the model parameters based
on the training+generated examples in this batch.

The overall example generation procedure goes
as follows: For each mini-batch X (1) randomly
choose 3 applicable rules per source and sentence
(e.g., replacing men with people based on PPDB
in premise is one rule), (2) produce examplesZal l
using GKB, GH and Gs2s, (3) randomly sub-select
examples Z from Zal l to ensure the balance be-
tween classes and jZj= ˛jX j.

4 AdvEntuRe

Figure 2 shows the complete architecture of our
model, AdvEntuRe (ADVersarial training for tex-
tual ENTailment Using Rule-based Examples.).

The entailment model D is shown with the white
box and two proposed generators are shown using
black boxes. We combine the two symbolic un-
trained generators, GKB and GH into a single Grule

model. We combine the generated adversarial ex-
amples Z with the original training examples X to
train the discriminator. Next, we describe how the
individual models are trained and finally present
our new approach to train the generator based on
the discriminator’s performance.

4.1 Discriminator Training
We use one of the state-of-the-art entailment mod-
els (at the time of its publication) on SNLI, de-
composable attention model (Parikh et al., 2016)
with intra-sentence attention as our discriminator
D. The model attends each word in hypothesis
with each word in the premise, compares each pair
of the attentions, and then aggregates them as a fi-
nal representation. This discriminator model can
be easily replaced with any other entailment model
without any other change to the AdvEntuRe archi-
tecture. We pre-train our discriminator D on the
original dataset, X=(P, H, C) using:

D(X ; � ) = argmax
OC

D( OC jP;H ; � ) (4)

O� = argmin
�

L(C;D(X ; � )) (5)

where L is cross-entropy loss function between
the true labels, Y and the predicted classes, and
O� are the learned parameters.

4.2 Generator Training
Our knowledge-guided and hand-defined genera-
tors are symbolic parameter-less methods which
are not currently trained. For simplicity, we will
refer to the set of symbolic rule-based generators
as Grule := GKB [GH. The neural generator Gs2s,
on the other hand, can be trained as described ear-
lier. We leave the training of the symbolic models
for future work.

4.3 Adversarial Training
We now present our approach to iteratively train
the discriminator and generator in a GAN-style
framework. Unlike traditional GAN (Goodfellow
et al., 2014) on image/text generation that aims
to obtain better generators, our goal is to build
a robust discriminator regularized by the genera-
tors (Gs2s and Grule). The discriminator and gen-
erator are iteratively trained against each other to
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[H → H’, WordNet("part of” → “piece of”), C] The 
chromosomes are a piece of our body cells
[P → P’, NEG, C] Humans don’t have 23 chromosome 
pairs

Data

[P → H, C] The chromosomes are pulled to the two pairs 
of chromosomes, that are identical
[P → H, C] The chromosomes are a part of our body 
cells

x z

G
rule

G
s2s

D

[P] Humans have 23 
chromosome pairs 
[H] The chromosomes are a 
part of our body cells

C

ρPPDB/WordNet
SICK/Hand

Figure 2: Overview of AdvEntuRe, our model for knowledge-guided textual entailment.

Algorithm 1 Training procedure for AdvEntuRe.

1: pretrain discriminator D( O� ) on X;
2: pretrain generators Gs2s

c ( O�) on X;
3: for number of training iterations do
4: for mini-batch B  X do
5: generate examples from G
6: ZG(G(B;�),
7: balance X and ZG s.t. jZG j � ˛jX j
8: optimize discriminator:
9: O� = argmin� LD(X +ZG ; � )

10: optimize generator:
11: O� = argmin� LGs2s(ZG ;LD;�)

12: Update �  O� ;�  O�

achieve better discrimination on the augmented
data from the generator and better example gen-
eration against the learned discriminator. Algo-
rithm 1 shows our training procedure.

First, we pre-train the discriminator D and the
seq2seq generators Gs2s on the original data X .
We alternate the training of the discriminator and
generators over K iterations (set to 30 in our ex-
periments).

For each iteration, we take a mini-batch B from
our original data X . For each mini-batch, we
generate new entailment examples, ZG using our
adversarial examples generator. Once we collect
all the generated examples, we balance the ex-
amples based on their source and label (as de-
scribed in Section 3.5). In each training itera-
tion, we optimize the discriminator against the
augmented training data, X + ZG and use the
discriminator loss to guide the generator to pick
challenging examples. For every mini-batch of
examples X + ZG , we compute the discrimina-

tor loss L(C ;D(X + ZG ; � )) and apply the neg-
ative of this loss to each word of the generated
sentence in Gs2s. In other words, the discrimina-
tor loss value replaces the cross-entropy loss used
to train the seq2seq model (similar to a REIN-
FORCE (Williams, 1992) reward). This basic ap-
proach uses the loss over the entire batch to update
the generator, ignoring whether specific examples
were hard or easy for the discriminator. Instead,
one could update the generator per example based
on the discriminator’s loss on that example. We
leave this for future work.

5 Experiments

Our empirical assessment focuses on two key
questions: (a) Can a handful of rule templates im-
prove a state-of-the-art entailment system, espe-
cially with moderate amounts of training data? (b)
Can iterative GAN-style training lead to an im-
proved discriminator?

To this end, we assess various models on the
two entailment datasets mentioned earlier: SNLI
(570K examples) and SciTail (27K examples).5 To
test our hypothesis that adversarial example based
training prevents overfitting in small to moderate
training data regimes, we compare model accura-
cies on the test sets when using 1%, 10%, 50%,
and 100% subsamples of the train and dev sets.

We consider two baseline models: D, the De-
composable Attention model (Parikh et al., 2016)
with intra-sentence attention using pre-trained
word embeddings (Pennington et al., 2014); and
Dretro which extends D with word embeddings
initialized by retrofitted vectors (Faruqui et al.,
2015). The vectors are retrofitted on PPDB, Word-

5SNLI has a 96.4%/1.7%/1.7% split and SciTail has a
87.3%/4.8%/7.8% split on train, valid, and test sets, resp.
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Table 4: Test accuracies with different subsam-
pling ratios on SNLI (top) and SciTail (bottom).

SNLI 1% 10% 50% 100%
D 57.68 75.03 82.77 84.52
Dretro 57.04 73.45 81.18 84.14
AdvEntuRe
x D + Gs2s 58.35 75.66 82.91 84.68
x D + Grule 60.45 77.11 83.51 84.40
x D + Grule + Gs2s 59.33 76.03 83.02 83.25

SciTail 1% 10% 50% 100%
D 56.60 60.84 73.24 74.29
Dretro 59.75 67.99 69.05 72.63
AdvEntuRe
x D + Gs2s 65.78 70.77 74.68 76.92
x D + Grule 61.74 66.53 73.99 79.03
x D + Grule + Gs2s 63.28 66.78 74.77 78.60

Net, FrameNet, and all of these, with the best re-
sults for each dataset reported here.

Our proposed model, AdvEntuRe, is evaluated
in three flavors: D augmented with examples gen-
erated by Grule, Gs2s, or both, where Grule =

GKB[GH. In the first two cases, we create new ex-
amples for each batch in every epoch using a fixed
generator (cf. Section 3.5). In the third case (D +

Grule + Gs2s), we use the GAN-style training.
We uses grid search to find the best hyper-

parameters for D based on the validation set: hid-
den size 200 for LSTM layer, embedding size 300,
dropout ratio 0.2, and fine-tuned embeddings.

The ratio between the number of generated vs.
original examples, ˛ is empirically chosen to be
1.0 for SNLI and 0.5 for SciTail, based on vali-
dation set performance. Generally, very few gen-
erated examples (small ˛) has little impact, while
too many of them overwhelm the original dataset
resulting in worse scores (cf. Appendix for more
details).

5.1 Main Results

Table 4 summarizes the test set accuracies of the
different models using various subsampling ratios
for SNLI and SciTail training data.

We make a few observations. First, Dretro is in-
effective or even detrimental in most cases, except
on SciTail when 1% (235 examples) or 10% (2.3K
examples) of the training data is used. The gain in
these two cases is likely because retrofitted lexical
rules are helpful with extremely less data training
while not as data size increases.

On the other hand, our method always achieves

Table 5: Test accuracies across various rules R
and classes C. Since SciTail has two classes, we
only report results on two classes of Gs2s

R/C SNLI (5%) SciTail (10%)

D
+
G

ru
le

D 69.18 60.84
+ PPDB 72.81 (+3.6%) 65.52 (+4.6%)
+ SICK 71.32 (+2.1%) 67.49 (+6.5%)
+ WordNet 71.54 (+2.3%) 64.67 (+3.8%)
+ HAND 71.15 (+1.9%) 69.05 (+8.2%)
+ all 71.31 (+2.1%) 64.16 (+3.3%)

D
+
G

s2
s

D 69.18 60.84
+ positive 71.21 (+2.0%) 67.49 (+6.6%)
+ negative 71.76 (+2.6%) 68.95 (+8.1%)
+ neutral 71.72 (+2.5%) -
+ all 72.28 (+3.1%) 70.77 (+9.9%)

the best result compared to the baselines (D and
Dretro). Especially, significant improvements are
made in less data setting: +2.77% in SNLI (1%)
and 9.18% in SciTail (1%). Moreover, D + Grule’s
accuracy on SciTail (100%) also outperforms
the previous state-of-the-art model (DGEM (Khot
et al., 2018), which achieves 77.3%) for that
dataset by 1.7%.

Among the three different generators combined
with D, both Grule and Gs2s are useful in Sci-
Tail, while Grule is much more useful than Gs2s on
SNLI. We hypothesize that seq2seq model trained
on large training sets such as SNLI will be able
to reproduce the input sentences. Adversarial ex-
amples from such a model are not useful since
the entailment model uses the same training exam-
ples. However, on smaller sets, the seq2seq model
would introduce noise that can improve the robust-
ness of the model.

5.2 Ablation Study

To evaluate the impact of each generator, we per-
form ablation tests against each symbolic genera-
tor in D + Grule and the generator Gs2s

c for each
entailment class c. We use a 5% sample of SNLI
and a 10% sample of SciTail. The results are sum-
marized in Table 5.

Interestingly, while PPDB (phrasal para-
phrases) helps the most (+3.6%) on SNLI, simple
negation rules help significantly (+8.2%) on Sc-
iTail dataset. Since most entailment examples in
SNLI are minor rewrites by Turkers, PPDB often
contains these simple paraphrases. For SciTail, the
sentences are authored independently with lim-
ited gains from simple paraphrasing. However, a
model trained on only 10% of the dataset (2.3K
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Table 6: Given a premise P (underlined), examples of hypothesis sentences H’ generated by seq2seq
generators Gs2s, and premise sentences P’ generated by rule based generators Grule, on the full SNLI
data. Replaced words or phrases are shown in bold. This illustrates that even simple, easy-to-define
rules can generate useful adversarial examples.

P a person on a horse jumps over a broken down airplane

H’: Gs2s
c=v a person is on a horse jumps over a rail, a person jumping over a plane

H’: Gs2s
c=f a person is riding a horse in a field with a dog in a red coat

H’: Gs2s
c=# a person is in a blue dog is in a park

P (or H) a dirt bike rider catches some air going off a large hill

P’: GKB(PPDB)
�=�;g�=v a dirt motorcycle rider catches some air going off a large hill

P’: GKB(SICK)
�=c;g�=# a dirt bike man on yellow bike catches some air going off a large hill

P’: GKB(WordNet)
�=syno;g�=v a dirt bike rider catches some atmosphere going off a large hill

P’: GHand
�=neg;g�=f a dirt bike rider do not catch some air going off a large hill

examples) would end up learning a model relying
on purely word overlap. We believe that the sim-
ple negation examples introduce neutral examples
with high lexical overlap, forcing the model to find
a more informative signal.

On the other hand, using all classes for Gs2s re-
sults in the best performance, supporting the ef-
fectiveness of the GAN framework for penaliz-
ing or rewarding generated sentences based on
D’s loss. Preferential selection of rules within the
GAN framework remains a promising direction.

5.3 Qualitative Results

Table 6 shows examples generated by various
methods in AdvEntuRe. As shown, both seq2seq
and rule based generators produce reasonable sen-
tences according to classes and rules. As ex-
pected, seq2seq models trained on very few exam-
ples generate noisy sentences. The quality of our
knowledge-guided generators, on the other hand,
does not depend on the training set size and they
still produce reliable sentences.

5.4 Case Study: Negation

For further analysis of the negation-based gener-
ator in Table 1, we collect only the negation ex-
amples in test set of SNLI, henceforth referred to
as nega-SNLI. Specifically, we extract examples
where either the premise or the hypothesis con-
tains “not”, “no”, “never”, or a word that ends with
“n’t’. These do not cover more subtle ways of ex-
pressing negation such as “seldom” and the use of
antonyms. nega-SNLI contains 201 examples with
the following label distribution: 51 (25.4%) neu-

tral, 42 (20.9%) entails, 108 (53.7%) contradicts.
Table 7 shows examples in each category.

Table 7: Negation examples in nega-SNLI

v
P: several women are playing volleyball.
H: this doesn’t look like soccer.

#

P: a man with no shirt on is performing
with a baton.
H: a man is trying his best at the national
championship of baton.

f
P: island native fishermen reeling in their
nets after a long day’s work.
H: the men did not go to work today but
instead played bridge.

While D achieves an accuracy of only 76.64%6

on nega-SNLI, D + GH with negate is substan-
tially more successful (+6.1%) at handling nega-
tion, achieving an accuracy of 82.74%.

6 Conclusion

We introduced an adversarial training architec-
ture for textual entailment. Our seq2seq and
knowledge-guided example generators, trained in
an end-to-end fashion, can be used to make any
base entailment model more robust. The effec-
tiveness of this approach is demonstrated by the
significant improvement it achieves on both SNLI
and SciTail, especially in the low to medium data
regimes. Our rule-based generators can be ex-
panded to cover more patterns and phenomena,
and the seq2seq generator extended to incorporate
per-example loss for adversarial training.

6This is much less than the full test accuracy of 84.52%.
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Abstract

Research on distributed word representa-
tions is focused on widely-used languages
such as English. Although the same meth-
ods can be used for other languages,
language-specific knowledge can enhance
the accuracy and richness of word vec-
tor representations. In this paper, we look
at improving distributed word representa-
tions for Korean using knowledge about
the unique linguistic structure of Korean.
Specifically, we decompose Korean words
into the jamo level, beyond the character-
level, allowing a systematic use of sub-
word information. To evaluate the vectors,
we develop Korean test sets for word sim-
ilarity and analogy and make them pub-
licly available. The results show that our
simple method outperforms word2vec and
character-level Skip-Grams on semantic
and syntactic similarity and analogy tasks
and contributes positively toward down-
stream NLP tasks such as sentiment anal-
ysis.

1 Introduction

Word vector representations built from a large cor-
pus embed useful semantic and syntactic knowl-
edge. They can be used to measure the similar-
ity between words and can be applied to various
downstream tasks such as document classification
(Yang et al., 2016), conversation modeling (Ser-
ban et al., 2016), and machine translation (Neishi
et al., 2017). Most previous research for learning
the vectors focuses on English (Collobert and We-
ston, 2008; Mikolov et al., 2013b,a; Pennington
et al., 2014; Liu et al., 2015; Cao and Lu, 2017)
and thus leads to difficulties and limitations in

directly applying those techniques to a language
with a different internal structure from that of En-
glish.

The mismatch is especially significant for mor-
phologically rich languages such as Korean where
the morphological richness could be captured by
subword level embedding such as character em-
bedding. It has been already shown that decom-
posing a word into subword units and using them
as inputs improves performance for downstream
NLP such as text classification (Zhang et al.,
2015), language modeling (Kim et al., 2016), and
machine translation (Ling et al., 2015; Lee et al.,
2017). Despite their effectiveness in capturing
syntactic features of diverse languages, decom-
posing a word into a set of n-grams and learning
n-gram vectors does not consider the unique lin-
guistic structures of various languages. Thus, re-
searchers have integrated language-specific struc-
tures to learn word vectors, for example subchar-
acter components of Chinese characters (Yu et al.,
2017) and syntactic information (such as prefixes
or post-fixes) derived from external sources for
English (Cao and Lu, 2017).

For Korean, integrating Korean linguistic struc-
ture at the level of jamo, the consonants and vow-
els that are much more rigidly defined than En-
glish, is shown to be effective for sentence parsing
(Stratos, 2017). Previous work has looked at im-
proving the vector representations of Korean us-
ing the character-level decomposition (Choi et al.,
2017), but there is room for further investigation
because Korean characters can be decomposed to
jamos which are smaller units than the characters.

In this paper, we propose a method to integrate
Korean-specific subword information to learn Ko-
rean word vectors and show improvements over
previous baselines methods for word similarity,
analogy, and sentiment analysis. Our first contri-
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bution is the method to decompose the words into
both character-level units and jamo-level units and
train the subword vectors through the Skip-Gram
model. Our second major contribution is the Ko-
rean evaluation datasets for word similarity and
analogy tasks, a translation of the WS-353 with
annotations by 14 Korean native speakers, and
10,000 items for semantic and syntactic analogies,
developed with Korean linguistic expertise. Using
those datasets, we show that our model improves
performance over other baseline methods without
relying on external resources for word decomposi-
tion.

2 Related Work

2.1 Language-specific features for NLP

Recent studies in NLP field flourish with devel-
opment of various word vector models. Although
such studies aim for universal usage, distinct char-
acteristics of individual languages still remain as a
barrier for a unified model. The aforementioned
issue is even more prominent when it comes to
languages that have rich morphology but lack re-
sources for research (Berardi et al., 2015). Accord-
ingly, various studies dealing with language spe-
cific NLP technique proposed considering linguis-
tics traits in models.

A large portion of these papers was dedicated to
Chinese. Since Chinese is a logosyllabic language,
(Yu et al., 2017) relevant studies focused on in-
corporation of different subword level features on
word embedding, such as word internal structure
(Wang et al., 2017), subcharacter component,(Yu
et al., 2017), syllable (Assylbekov et al., 2017),
radicals (Yin et al., 2016), and sememe (Niu et al.,
2017).

The Korean language is a member of the agglu-
tinative languages (Song, 2006), so previous stud-
ies have tried fusing the complex internal structure
into the model. For example, a grammatical com-
position called ’Josa’ in combination with word
embedding is utilized in semantic role labeling
(Nam and Kim, 2016) and exploiting jamo to han-
dle morphological variation (Stratos, 2017). Also
considered in prior work to obtain the word vec-
tor presentations for Korean is the syllable (Choi
et al., 2017).

2.2 Subword features for NLP

Applying subword features to various NLP tasks
has become popular in the NLP field. Typically,

character-level information is useful when com-
bined with the neural network based models. (Va-
nia and Lopez, 2017; Assylbekov et al., 2017;
Cao and Lu, 2017) Previous papers showed per-
formance enhancement in various tasks includ-
ing language modeling (Bojanowski et al., 2017,
2015), machine translation (Ling et al., 2015),
text classification (Zhang et al., 2015; Ling et al.,
2015) and parsing (Yu and Vu, 2017). In addition,
the character n-gram fused model was suggested
as a solution for a small dataset due to its robust-
ness against data sparsity (Cao and Lu, 2017).

3 Model

We introduce our model training Korean word
vector representations based on a subword-level
information Skip-Gram. First, we briefly explain
the hierarchical composition structure of Korean
words to show how we decompose a Korean word
into a sequence of subword components (jamo).
Then, we extract character and jamo n-grams from
the decomposed sequence to compute word vec-
tors as a mean of the extracted n-grams. We train
the vectors by widely-used Skip-Gram model.

3.1 Decomposition of Korean Words

Korean words are formed by an explicit hierar-
chical structure which can be exploited for better
modeling. Every word can be decomposed into a
sequence of characters, which in turn can be de-
composed into jamos, the smallest lexicographic
units representing the consonants and vowels of
the language. Unlike English which has a more
flexible sequences of consonants and vowels mak-
ing up syllables (e.g., ”straight”), a Korean ”char-
acter” which is similar to a syllable in English has
a rigid structure of three jamos. They have names
that reflect the position in a character: 1) chosung
(syllable onset), 2) joongsung (syllable nucleus),
and 3) jongsung (syllable coda). The prefix cho in
chosung means ”first”, joong in joongsung means
”middle”, and jong in jongsung means ”end” of a
character. Each component indicates how the char-
acter should be pronounced. With the exception of
empty consonants, chosung and jongsung are con-
sonants while joongsung are vowels. The jamos
are written with the chosung on top, with joong-
sung on the right of or below chosung, and jong-
sung on the bottom (see Fig. 1).

As shown in the top of Fig. 1, some characters
such as ‘해Sun’ lack jongsung. In this case, we add
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(a) chosung (b) joongsung (c) jongsung

Figure 1: Example of the composition of a Korean
character. Each character is comprised of 3 parts as
shown in example of ’달Moon’. On the other hand,
as in the top case ’해Sun’, some characters lack the
last component, ’jongsung’.

an empty jongsung symbol e such that a charac-
ter always has three (jamos). Thus, the character
‘달Moon’ is decomposed into {ㄷ, ㅏ, ㄹ}, and
‘해Sun’ into {ㅎ,ㅐ, e}.

When decomposing a word, we keep the order
of the characters and the order of jamos (chosung,
joongsung, and jongsung) within the character. By
following this rule, we ensure that a Korean word
with N characters will have 3N jamos in order.
Lastly, the symbols for start of a word < and end of
a word > are added to the sequence. For example,
the word ‘강아지puppy’ will be decomposed to a
sequence of jamos: {<, ㄱ, ㅏ, ㅇ, ㅇ, ㅏ, e, ㅈ,
ㅣ, e, >}.

3.2 Extracting N-grams from jamo Sequence

We extract the following jamo-level and character-
level n-grams from the decomposed Korean
words: 1) character-level n-grams, and 2) inter-
character jamo-level n-grams. These two levels of
subword features can be successfully integrated
into jamo-level n-grams by ensuring a character
has three jamos, adding empty jongsung symbol
to the sequence. For better understanding, we start
with the word ‘먹었다ate’.
Character-level n-grams. Since we add the
empty jongsung symbol e when decomposing
characters, we can find jamo-level trigrams repre-
senting a single character in the decomposed jamo
sequence of a word. For example, there are three
character-level unigrams in the word ‘먹었다ate’:

{ㅁ,ㅓ,ㄱ}, {ㅇ,ㅓ,ㅆ}, {ㄷ,ㅏ, e}
Next, we find character-level n-grams by us-

ing the extracted unigrams. Adjacent unigrams
are attached to construct n-grams. There are two
character-level bigrams, and one trigram in the ex-
ample:

{ㅁ,ㅓ,ㄱ,ㅇ,ㅓ,ㅆ}, {ㅇ,ㅓ,ㅆ,ㄷ,ㅏ, e}
{ㅁ,ㅓ,ㄱ,ㅇ,ㅓ,ㅆ,ㅇ,ㅓ,ㅆ,ㄷ,ㅏ, e}
Lastly, we add the total jamo sequence of a word

including < and > to the set of extracted character-
level n-grams.
Inter-character jamo-level n-grams. Since Ko-
rean is a member of the agglutinative language,
a syntactic character is attached to the semantic
part in the word, and this generates many vari-
ations. These variations are often determined by
jamo-level information. For example, usage of the
subjective case ‘이’ or ‘가’ is determined by the
existence of jongsung in the previous character. In
order to learn these regularities, we consider jamo-
level n-grams across adjacent characters as well.
For instance, there are 6 inter-character jamo-level
trigrams in the example:

{<,ㅁ,ㅓ}, {ㅓ,ㄱ,ㅇ}, {ㄱ,ㅇ,ㅓ},
{ㅆ,ㄷ,ㅏ}, {ㅓ,ㅆ,ㄷ}, {ㅏ, e, >}

3.3 Subword Information Skip-Gram

Suppose the training corpus contains a sequence
of words {..., wt−2, wt−1, wt, wt+1, wt+2, ...}, the
Skip-Gram model maximizes the log probability
of context word wt+j under a target word wt:

1

T

T∑

t=1

2c∑

−c≤j≤c,j 6=0

log p(wt+j |wt) (1)

where c is the size of context window, t is to-
tal number of words in the corpus. The origi-
nal Skip-Gram model use softmax function out-
puts for log p(wt+j |wt) in Eq. 1, however, it re-
quires large computational cost. To avoid com-
puting softmax precisely, we approximately max-
imize the log probability by Noise Contrastive Es-
timation, and it can be simplified to the negative
sampling using the binary logistic loss:

log(1 + e−s(wt+j ,wt)) +

nc∑

n=1

log(1 + es(wt+j ,wn))

(2)
where nc is the number of negative samples,

and s(wt+j , wt) is a scoring function. The func-
tion computes the dot product between the input
of the target word vector wt and the output of the
context word vectorwt+j . In Skip-Gram (Mikolov
et al., 2013a), an input of a wordwt is uniquely as-
signed over the training corpus; however, the vec-
tor in the Subword Information Skip-Gram model
(Bojanowski et al., 2017) is the mean vector of the

2431



set of n-grams extracted from the word. Formally,
the scoring function s(wt, wt+j) is:

1

|Gt|

|Gt|∑

gt∈Gt

zTgtvt+j (3)

where the decomposed set of n-grams of wt is
Gt and its elements are gt, |Gt| is total number of
elements of Gt. In general, the n-grams for 3 ≤
n ≤ 6 is extracted from a word, regardless of the
subword-level or compositionality of a word.

Similarly, we construct a vector representation
of a Korean word by using the extracted two types
of n-grams. We compute the sum of jamo-level n-
grams, sum of character-level n-grams, and com-
pute mean of the vectors. Let us denote character-
level n-grams of wt to Gct, and inter-character
jamo-level n-grams Gjt, then we obtain the scor-
ing function s(wt, wt+j) as follows:

1

N
(

|Gct|∑

gct∈Gct

zTgctvt+j +
|Gjt|∑

gjt∈Gjt

zTgjtvt+j) (4)

where zgjt is the vector representation of the jamo-
level n-gram gjt, and zgct is that of the character-
level n-gram gct. N is sum of the number of
character-level n-grams and the number of inter-
character jamo-level n-grams |Gct|+ |Gjt|.

4 Experiments

4.1 Corpus
We collect a corpus of Korean documents from
various sources to cover a wide context of word
usages. The corpus used to train the models in-
clude: 1) Korean Wikipedia, 2) online news arti-
cles, and 3) Sejong Corpus. The corpus contains
0.12 billion tokens with 638,708 unique words.
We discard words that occur fewer than ten times
in the entire corpus. Details of the corpus are
shown in Table 1.
Korean Wikipedia. First, we choose Korean
Wikipedia articles1 for training word vector rep-
resentations. The corpus contains 0.4M articles,
3.3M sentences and 43.4M words.
Online News Articles. We collect online news ar-
ticles of 5 major press from following sections:
1) society, 2) politics, 3) economics, 4) foreign,
5) culture, 6) digital. The articles were published
from September to November, 2017. The corpus
contains 3.2M sentences and 47.1M words.

1https://dumps.wikimedia.org/kowiki/20171103/

# of
words

# of
sent-
ences

# of
unique
words

Wikipedia 43.4M 3.3M 299,528
Online News 47.1M 3.2M 282,955
Sejong Corpus 31.4M 2.2M 231,332
Total 121.9M 8.8M 638,708

Table 1: Number of tokens, sentences and unique
words of corpus used to train the word vector rep-
resentations. We aggregate three sources to make
the corpus containing 0.12 billions word tokens
with 0.6M unique words.

Sejong Corpus. This data is a publicly available
corpus2 which is collected under a national re-
search project named the “21st century Sejong
Project”. The corpus was developed from 1998 to
2007, and contains formal text (newpapers, dic-
tionaries, novels, etc) and informal text (transcrip-
tions of TV shows and radio programs, etc). Thus,
the corpus covers topics and context of language
usage which could not be dealt with Wikipedia or
news articles. We exclude some documents con-
taining unnatural sentences such as POS-tagged
sentences.

4.2 Evaluation Tasks and Datasets

We evaluate the performance of word vectors
through word similarity task and word analogy
task. However, to best of our knowledge, there is
no Korean evaluation dataset for either task. Thus
we first develop the evaluation datasets. We also
test the word vectors for sentiment analysis.

4.2.1 Word Similarity Evaluation Dataset
Translating the test set. We develop a Korean
version of the word similarity evaluation set. Two
graduate students who speak Korean as native lan-
guage translated the English word pairs in WS-353
(Finkelstein et al., 2001). Then, 14 Korean native
speakers annotated the similarity between pairs
by giving scores from 0 to 10 for the translated
pairs, following written instructions. The original
English instructions were translated into Korean
as well. Among the 14 scores for each pair, we
exclude the minimum and maximum scores and
compute the mean of the rest of the scores. The
correlation between the original scores and the an-
notated scores of the translated pairs is .82, which

2https://ithub.korean.go.kr/user/main.do
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indicates that the translations are sufficiently reli-
able. We attribute the difference to the linguistic
and cultural differences. We make the Korean ver-
sion of WS-353 publicly available.3

4.2.2 Word Analogy Evaluation Dataset
We develop the word analogy test items to evalu-
ate the performance of word vectors. The evalua-
tion dataset consists of 10,000 items and includes
5,000 items for evaluating the semantic features
and 5,000 for the syntactic features. We also re-
lease our word analogy evaluation dataset for fu-
ture research.

Semantic Feature Evaluation To evaluate the se-
mantic features of word vectors, we refer to the
English version of the word analogy test sets.
(Mikolov et al., 2013a; Gladkova et al., 2016). We
cover the features in both sets and translated items
into Korean. The items are clustered to five cate-
gories including miscellaneous items. Each cate-
gory consists of 1,000 items.

• Capital-Country (Capt.) includes two word
pairs representing the relation between the
country name and its capital:
아테네Athens : 그리스Greece = 바그다드Baghdad :

이라크Iraq

• Male-Female (Gend.) evaluates the relation
between male and female:
왕자prince:공주princess =신사gentlemen:숙녀ladies

• Name-Nationality (Name) evaluates the rela-
tion between the name of celebrities or stars
and their nationality:
간디Gandhi :인도India =링컨Lincoln :미국USA

• Country-Language (Lang.) evaluates the re-
lation between the country name and its offi-
cial language:
아르헨티나Argentina :스페인어Spanish =미국USA :

영어English

• Miscellaneous (Mics.) includes various se-
mantic features, such as pairs of a young an-
imals, sound of animals, and Korean-specific
color-words or regions, etc..
개구리Frog :올챙이tadpole =말horse :망아지pony

닭chicken:꼬꼬댁cackling=호랑이tiger:으르렁growl

파란blue:새파란bluish=노란yellow:샛노란yellowish

부산Busan :경상남도South Gyeongsang Province

=대구Daegu :경상북도North Gyeongsang Province

Syntactic Feature Evaluation We define five
representative syntactic categories and develop

3https://github.com/SungjoonPark/KoreanWordVectors

Korean-specific test items, rather than trying to
cover the existing categories in the original sets
(Mikolov et al., 2013a; Gladkova et al., 2016).
This is because most of the syntactic features in
these sets are not available in Korean.

We develop the test set with linguistic expert
knowledge of Korean. The following case is a
good example. In Korean, the subject marker is at-
tached to the back of a word, and other case mark-
ers are also explicit at the word level. Here, word
level refers to ‘a phrase delimited by two whites-
paces around it’. Unlike Korean, in English, sub-
jects are determined by the position in a sentence
(i.e., subject comes before the verb), so the case is
not explicitly marked in the word. Similarly, there
are other important and unique syntactic features
of the Korean language, of which we choose the
following five categories to evaluate the word vec-
tors:

• Case contains various case markers attached
to common nouns. This evaluates a case in
Korean which is represented within a word-
level:
교수Professor :교수가Professor+case가

=축구soccer :축구가soccer+case가

• Tense includes a verb variation of two tenses,
one of which is a present tense and a past
tense for the other:
싸우다fight :싸웠다fought =오다come :왔다came

• Voice has a pair of verb voice, one for an ac-
tive voice and a passive voice for the other. It
evaluates the voice which is represented by a
verbal suffix:
팔았다sold :팔렸다be sold

=평가했다evaluated :평가됐다was evaluated

• Verb ending form includes various verb end-
ing forms. The various forms are part of ver-
bal inflection in Korean:
가다go :가고go+form고

=쓰다write :쓰고write+form고

• Honorific (Honr.) evaluates a morphological
variation for verbs in Korean. An honorific
expression is one of the most distinctive fea-
ture in Korean compared to other languages.
This test set introduces the honorific mor-
pheme ‘-시-’ which is used in verbs:
도왔다helped :도우셨다helped+honorific시

=됐다done :되셨다done+honorific시

4.2.3 Sentiment Analysis
We perform a binary sentiment classification task
for evaluation of word vectors. Given a sequence
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of words, the trained classifier should predict the
sentiment from the inputs while maintaining the
input word vectors fixed.
Dataset We choose Naver Sentiment Movie Cor-
pus4. Scraped from Korean portal site Naver, the
dataset contains 200K movie reviews. Each review
is no longer than 140 characters and contain bi-
nary label according to its sentiment (1 for posi-
tive and 0 for negative). The number of samples
in both sentiments is equal with 100K of positives
and 100K of negatives in sum. We sample from
the dataset for training (100K), validation (25K),
and test set (25K). Again, each set’s ratio of sen-
timent class is balanced. Although we apply sim-
ple preprocessing of stripping out punctuation and
emoticon, the dataset is still noisy with typos, seg-
mentation errors and abnormal word usage since
its original source is raw comments from portal
site.

Classifier In order to build sentiment classifier,
we adopt single layer LSTM with 300 hidden
units and 0.5 dropout rates. Given the final state
of LSTM unit, sigmoid activation function is ap-
plied for output prediction. We use cross-entropy
loss and optimize parameters through Adam opti-
mizer (Kingma and Ba, 2014) with learning rate
of 0.001.

4.3 Comparison Models

We compare performance of our model to compar-
ison models including word-level, character-level,
and jamo-level Skip-Gram models trained by neg-
ative sampling. Hyperparameters of each models
are tuned over word similarity task. We fix the
number of training epochs 5.
Skip-Gram (SG) We first compare the per-
formance with word-level Skip-Gram model
(Mikolov et al., 2013a) where a unique vector is
assigned for every unique words in the corpus. We
set the number of dimensions as 300, number of
negative samples to 5, and window size to 5.
Character-level Skip-Gram (SISG(ch)) splits
words to character-level n-grams based on sub-
word information skip-gram. (Bojanowski et al.,
2017). We set the number of dimensions as 300,
number of negative samples to 5, and window size
to 5. The n was set to 2-4.
Jamo-level Skip-Gram with Empty Jongsung
Symbol (SISG(jm)) splits words to jamo-level n-
grams based on subword information skip-gram.

4https://github.com/e9t/nsmc
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Figure 2: Spearman’s correlation coefficient of
word similarity task for each models. The results
show higher consistency to human word similarity
judgment on our method.

(Bojanowski et al., 2017). In addition, if a charac-
ter lacks jongsung, the symbol e is added. We set
the number of dimensions as 300, number of neg-
ative samples to 5, and window size to 5. The n
was set to 3-6. Note that setting n=3-6 and adding
the jongsung symbol makes this model as a spe-
cific case of our model, containing jamo-level n-
grams (n=3-6) and character-level n-grams (n=1-
2) as well.

4.4 Optimization

In order to train our model, we apply stochastic
gradient descent with linearly scheduled learning
rate decay. Initial learning rate is set to .025. To
speed up the training, we train the vectors in par-
allel with shared parameters, and they are updated
asynchronously.

For our model, we set n of character n-grams
to 1-4 or 1-6, and n of inter-character jamo-
level n-grams to 3-5. We name both model as
SISG(ch4+jm) and SISG(ch6+jm), respectively.
The number of dimension is set to 300, window
size to 5, and negative samples to 5. We train our
model 5 epochs over training corpus.

5 Results

Word Similarity. We report Spearman’s correla-
tion coefficient between the human judgment and
model’s cosine similarity for the similarity of word
pairs. Fig. 2 presents the results. For word-level
skip-gram, Spearman’s correlation is .599. If we
decompose words into characters n-grams in or-
der to construct word vectors (SISG(Ch)), perfor-
mance is highly improved to .658. It indicates that
decomposing words itself is helpful to learn good
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Model
Analogy
Semantic Syntactic
Capt Gend Name Lang Misc Case Tense Voice Form Honr

SG 0.460 0.551 0.537 0.435 0.574 0.521 0.597 0.594 0.685 0.634
SISG(ch) 0.469 0.584 0.608 0.439 0.614 0.422 0.559 0.550 0.656 0.489
SISG(jm) 0.442 0.515 0.574 0.362 0.565 0.228 0.421 0.434 0.537 0.367
SISG(ch4+jm) 0.431 0.504 0.570 0.361 0.556 0.212 0.415 0.434 0.501 0.364
SISG(ch6+jm) 0.425 0.498 0.561 0.354 0.554 0.210 0.414 0.426 0.507 0.367

Table 2: Performance of our method and comparison models. Average cosine distance for each category
in word analogy task are reported. Overall, our model outperforms comparison models, showing close
distance between predicted vector a+ b− c and the target vector d (a:b=c:d). Specifically, performance
is improved more in syntactic analogies.

Korean word vectors, which is morphologically
rich language. Moreover, if the words are decom-
posed to deeper level (SISG(jm)), performance is
further improved to .671.

Next, addition of an empty jongsung sym-
bol e to jamo sequence, which reflects Korean-
specific linguistic regularities, improves the qual-
ity of word vectors. SISG(jm), specific case of our
model, shows higher correlation coefficient than
the other baselines. Lastly, when we extend num-
ber of characters to learn in a word to 4 or 6, our
models outperform others.
Word Analogy. In general, given an item a:b=c:d
and corresponding word vectors ua, ub, uc, ud, the
vector ua+ub−uc is used to compute cosine dis-
tances between the vector and the others. Then the
vectors are ranked in terms of the distance by as-
cending order and if the vector ud is found at the
top, the item is counted as correct. Top 1 accuracy
or error rate for each category is frequently used
metric for this task, however, in this case these
rank-based measures may not be an appropriate
measure since the total number of unique n-grams
(e.g., SISG) or unique words (e.g., SG) over the
same corpus largely differ from each other. For fair
comparison, we directly report cosine distances
between the vector ua + ub − uc and ud of each
category, rather than evaluating ranks of the vec-
tors. Formally, given an item a:b=c:d, we compute
3COSADD based metric:

1− cos(ua + ub − uc,ud) (5)

We report the average cosine distance between
predicted vector ua + ub − uc and target vector
ud of each category.

In semantic analogies, decomposing word into
character helps little for learning semantic fea-

tures. However, jamo-level n-grams help repre-
senting overall semantic features and our model
show higher performance compared to baseline
models. One exception is Name-Nationality cat-
egory since it mainly consists of items including
proper nouns, and decomposing these nouns does
not help learning the semantic feature of the word.
For example, it is obvious that the semantic fea-
tures of both words ‘간디Ghandi’ and ‘인도India’
could not be derived from that of characters or
jamo n-grams comprising those words.

On the other hand, decomposing words does
help to learn syntactic features for all categories,
and decomposing a word to even deeper levels
makes learning those features more effectively.
Our model outperforms all other baselines, and
the amount of decreased cosine distances com-
pared to that of word-level Skip-Gram is larger
than semantic categories. Korean language is ag-
glutinative language that character-level syntactic
affixes are attached to the root of the word, and
the combination of them determines final form
the word. Also, the form can be reduced with
jamo-level transformation. This is the main rea-
son that we can learn syntactic feature of Korean
words if we decompose a word into character-level
and jamo-level simultanously. We observe similar
tendency when using 3COSMUL distance metric.
(Levy and Goldberg, 2014)

Sentiment Analysis. We report accuracy, loss,
precision, recall and f1 score for binary sentiment
classification task over test set. Although overall
performance is homogeneous, our method which
decompose a word to 1-6 character n-grams and 3-
5 jamo n-grams show slightly higher performance
over comparison models. In addition, our ap-
proach show better results compared to character-
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Model
Acc.
(%)

Prc. Rec. F1

SG 76.15 .746 .792 .768
SISG(ch) 76.26 .774 .741 .757
SISG(jm) 76.53 .790 .722 .754
SISG(ch4+jm) 76.28 .755 .776 .765
SISG(ch6+jm) 76.54 .750 .795 .772

Table 3: Performance of sentiment classification
task. 3-5 jamo n-grams and 1-6 chracter n-grams
show slightly higher performance in terms of ac-
curacy and f1-score over comparison models.

Word Sim.
# of chars

4 5 6 all

# of
jamos

2-4 0.660 0.655 0.659 0.651
3-4 0.660 0.650 0.652 0.660
3-5 0.677 0.672 0.677 0.675
3-6 0.665 0.663 0.664 0.669

Table 4: Spearman’s correlation coefficient of
Word similarity task by n-gram of jamos and char-
acters. Performance are improved when the 3-5
gram of jamos and 1-4 or 1-6 gram of characters.

level SISG or jamo-level SISG. On the other hand,
word-level Skip-Gram show comparable F1-score
to our model, and is even higher than other com-
parison models. This is because the dataset con-
tains significant amount of proper nouns, such as
movie or actor names, and these word’s semantic
representations are captured better by word-level
representations, as shown in word analogy task.

Effect of Size n in both n-grams. Table. 4 shows
performance of word similarity task for each
number of inter-character jamo-level n-grams and
character-level n-grams. For the n of jamo-level n-
grams, including n=5,6 of n-grams and excluding
bigrams show higher performance. Meanwhile, n
of character-level n-grams, including all of the
character n-grams while decomposing a word does
not guarantee performance improvement. Since
most of the Korean word consists of no more than
6 characters (97.2% of total corpus), it seems max-
imum number of n=6 in character n-gram is large
enough to learn word vectors. In addition, words
with no more than 4 characters takes 82.6% of to-
tal corpus, so that n=4 sufficient to learn character
n-grams as well.

6 Conclusion and Discussions

In this paper, we present how to decompose a
Korean character into a sequence of jamos with
empty jongsung symbols, then extract character-
level n-grams and intercharacter jamo-level n-
grams from that sequence. Both n-grams construct
a word vector representation by computing the av-
erage of n-grams, and these vectors are trained
by subword-level information Skip-Gram. Prior to
evaluating the performance of the vectors, we de-
veloped test set for word similarity and word anal-
ogy tasks for Korean.

We demonstrated the effectiveness of the
learned word vectors in capturing the seman-
tic and syntactic information by evaluating these
vectors with word similarity and word analogy
tasks. Specifically, the vectors using both jamo and
character-level information can represent syntac-
tic features more precisely even in an agglutina-
tive language. Furthermore, sentiment classifica-
tion results of our work indicate that the represen-
tative power of the vectors positively contributes
to downstream NLP task.

Decomposing Korean word into jamo-level or
character unigram helps capturing syntactic infor-
mation. For example, Korean words add a charac-
ter to the root of the word (e.g., ‘-은’ subjective
case, ‘-었’ for past tense ‘-시-’ for honorific, ‘-히-
’ for voice, and ‘-고-’ for verb ending form.) Then
composed word can be reduced to have fewer
characters by transforming jamos, such as ‘되었
다’ to ‘됐다’. Hence, the inter-character jamo-
level n-grams also help capture these features. On
the other hand, larger n-grams such as character-
level trigram will learn unique meaning of that
word since those larger component of the word
will mostly occur with that word. By leveraging
both features, our method produces word vectors
reflecting linguistic features effectively, and thus,
outperforms previous word-level approaches.

Since Korean words are divisible once more
into grapheme level, resulting in longer sequence
of jamos for a given word, we plan to explore
potential applicability of deeper level of subword
information in Korean. Meanwhile, we will fur-
ther train our model over noisy data and investi-
gate how it is dealing with noisy words. Generally,
informal Korean text contains intentional typos
(‘맛잇다‘delicious’ with typo’), stand-alone jamo as a
character, (‘ㅋㅋlol’) and segmentation errors. (‘같
이가다‘go together’ without space’). Since these errors
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occur frequently, it is important to apply the vec-
tors in training NLP models over real-word data.
We plan to apply these vectors for various neu-
ral network based NLP models, such as conversa-
tion modeling. Lastly, since our method can cap-
ture Korean syntactic features through jamo and
character n-grams, we can apply the same idea to
other tasks such as POS tagging and parsing.
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Abstract

Sememes are minimum semantic units of
concepts in human languages, such that
each word sense is composed of one or
multiple sememes. Words are usually
manually annotated with their sememes
by linguists, and form linguistic common-
sense knowledge bases widely used in var-
ious NLP tasks. Recently, the lexical se-
meme prediction task has been introduced.
It consists of automatically recommend-
ing sememes for words, which is expected
to improve annotation efficiency and con-
sistency. However, existing methods of
lexical sememe prediction typically rely
on the external context of words to rep-
resent the meaning, which usually fails
to deal with low-frequency and out-of-
vocabulary words. To address this issue
for Chinese, we propose a novel frame-
work to take advantage of both internal
character information and external context
information of words. We experiment on
HowNet, a Chinese sememe knowledge
base, and demonstrate that our framework
outperforms state-of-the-art baselines by a
large margin, and maintains a robust per-
formance even for low-frequency words. i

1 Introduction

A sememe is an indivisible semantic unit for hu-
man languages defined by linguists (Bloomfield,
1926). The semantic meanings of concepts (e.g.,
words) can be composed by a finite number of se-
memes. However, the sememe set of a word is
∗Work done while doing internship at Tsinghua University.
† Equal contribution. Huiming Jin proposed the overall idea, designed the first experiment, conducted both experiments, and

wrote the paper; Hao Zhu made suggestions on ensembling, proposed the second experiment, and spent a lot of time on
proofreading the paper and making revisions. All authors helped shape the research, analysis and manuscript.
‡ Corresponding author: Z. Liu (liuzy@tsinghua.edu.cn)
i Code is available at https://github.com/thunlp/Character-enhanced-Sememe-Prediction

职位
(occupation)

HostOf

define

RelateTo

sememes

sense

word

domain

Word embedding

匠 (craftsman)
铁 (iron)

金属
(metal)

工
(industrial)

人
(human)

ironsmith

铁匠 (ironsmith)
External information

Internal information

Figure 1: Sememes of the word “铁匠” (iron-
smith) in HowNet, where occupation, human and
industrial can be inferred by both external (con-
texts) and internal (characters) information, while
metal is well-captured only by the internal infor-
mation within the character “铁” (iron).

not explicit, which is why linguists build knowl-
edge bases (KBs) to annotate words with sememes
manually.

HowNet is a classical widely-used sememe KB
(Dong and Dong, 2006). In HowNet, linguists
manually define approximately 2, 000 sememes,
and annotate more than 100, 000 common words
in Chinese and English with their relevant se-
memes in hierarchical structures. HowNet is well
developed and has a wide range of applications in
many NLP tasks, such as word sense disambigua-
tion (Duan et al., 2007), sentiment analysis (Fu
et al., 2013; Huang et al., 2014) and cross-lingual
word similarity (Xia et al., 2011).

Since new words and phrases are emerging ev-
ery day and the semantic meanings of existing
concepts keep changing, it is time-consuming and
work-intensive for human experts to annotate new
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concepts and maintain consistency for large-scale
sememe KBs. To address this issue, Xie et al.
(2017) propose an automatic sememe prediction
framework to assist linguist annotation. They
assumed that words which have similar seman-
tic meanings are likely to share similar sememes.
Thus, they propose to represent word meanings
as embeddings (Pennington et al., 2014; Mikolov
et al., 2013) learned from a large-scale text cor-
pus, and they adopt collaborative filtering (Sar-
war et al., 2001) and matrix factorization (Koren
et al., 2009) for sememe prediction, which are con-
cluded as Sememe Prediction with Word Embed-
dings (SPWE) and Sememe Prediction with Se-
meme Embeddings (SPSE) respectively. How-
ever, those methods ignore the internal informa-
tion within words (e.g., the characters in Chinese
words), which is also significant for word under-
standing, especially for words which are of low-
frequency or do not appear in the corpus at all.
In this paper, we take Chinese as an example and
explore methods of taking full advantage of both
external and internal information of words for se-
meme prediction.

In Chinese, words are composed of one or mul-
tiple characters, and most characters have corre-
sponding semantic meanings. As shown by Yin
(1984), more than 90% of Chinese characters in
modern Chinese corpora are morphemes. Chinese
words can be divided into single-morpheme words
and compound words, where compound words ac-
count for a dominant proportion. The meanings
of compound words are closely related to their
internal characters as shown in Fig. 1. Taking a
compound word “铁匠” (ironsmith) for instance,
it consists of two Chinese characters: “铁” (iron)
and “匠” (craftsman), and the semantic meaning
of “铁匠” can be inferred from the combination
of its two characters (iron + craftsman → iron-
smith). Even for some single-morpheme words,
their semantic meanings may also be deduced
from their characters. For example, both charac-
ters of the single-morpheme word “徘徊” (hover)
represent the meaning of “hover” or “linger”.
Therefore, it is intuitive to take the internal char-
acter information into consideration for sememe
prediction.

In this paper, we propose a novel framework for
Character-enhanced Sememe Prediction (CSP),
which leverages both internal character informa-
tion and external context for sememe prediction.

CSP predicts the sememe candidates for a tar-
get word from its word embedding and the corre-
sponding character embeddings. Specifically, we
follow SPWE and SPSE as introduced by Xie et al.
(2017) to model external information and pro-
pose Sememe Prediction with Word-to-Character
Filtering (SPWCF) and Sememe Prediction with
Character and Sememe Embeddings (SPCSE) to
model internal character information. In our ex-
periments, we evaluate our models on the task of
sememe prediction using HowNet. The results
show that CSP achieves state-of-the-art perfor-
mance and stays robust for low-frequency words.

To summarize, the key contributions of this
work are as follows: (1) To the best of our knowl-
edge, this work is the first to consider the inter-
nal information of characters for sememe predic-
tion. (2) We propose a sememe prediction frame-
work considering both external and internal infor-
mation, and show the effectiveness and robustness
of our models on a real-world dataset.

2 Related Work

Knowledge Bases. Knowledge Bases (KBs),
aiming to organize human knowledge in structural
forms, are playing an increasingly important role
as infrastructural facilities of artificial intelligence
and natural language processing. KBs rely on
manual efforts (Bollacker et al., 2008), automatic
extraction (Auer et al., 2007), manual evaluation
(Suchanek et al., 2007), automatic completion and
alignment (Bordes et al., 2013; Toutanova et al.,
2015; Zhu et al., 2017) to build, verify and enrich
their contents. WordNet (Miller, 1995) and Ba-
belNet (Navigli and Ponzetto, 2012) are the repre-
sentative of linguist KBs, where words of similar
meanings are grouped to form thesaurus (Nastase
and Szpakowicz, 2001). Apart from other linguis-
tic KBs, sememe KBs such as HowNet (Dong and
Dong, 2006) can play a significant role in under-
standing the semantic meanings of concepts in hu-
man languages and are favorable for various NLP
tasks: information structure annotation (Gan and
Wong, 2000), word sense disambiguation (Gan
et al., 2002), word representation learning (Niu
et al., 2017; Faruqui et al., 2015), and sentiment
analysis (Fu et al., 2013) inter alia. Hence, lexi-
cal sememe prediction is an important task to con-
struct sememe KBs.

Automatic Sememe Prediction. Automatic se-
meme prediction is proposed by Xie et al. (2017).
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For this task, they propose SPWE and SPSE,
which are inspired by collaborative filtering (Sar-
war et al., 2001) and matrix factorization (Koren
et al., 2009) respectively. SPWE recommends the
sememes of those words that are close to the unla-
belled word in the embedding space. SPSE learns
sememe embeddings by matrix factorization (Ko-
ren et al., 2009) within the same embedding space
of words, and it then recommends the most rele-
vant sememes to the unlabelled word in the em-
bedding space. In these methods, word embed-
dings are learned based on external context infor-
mation (Pennington et al., 2014; Mikolov et al.,
2013) on large-scale text corpus. These meth-
ods do not exploit internal information of words,
and fail to handle low-frequency words and out-
of-vocabulary words. In this paper, we propose
to incorporate internal information for lexical se-
meme prediction.

Subword and Character Level NLP. Subword
and character level NLP models the internal in-
formation of words, which is especially useful
to address the out-of-vocabulary (OOV) problem.
Morphology is a typical research area of sub-
word level NLP. Subword level NLP has also been
widely considered in many NLP applications, such
as keyword spotting (Narasimhan et al., 2014),
parsing (Seeker and Çetinoğlu, 2015), machine
translation (Dyer et al., 2010), speech recogni-
tion (Creutz et al., 2007), and paradigm comple-
tion (Sutskever et al., 2014; Bahdanau et al., 2015;
Cotterell et al., 2016a; Kann et al., 2017; Jin and
Kann, 2017). Incorporating subword information
for word embeddings (Bojanowski et al., 2017;
Cotterell et al., 2016b; Chen et al., 2015; Wieting
et al., 2016; Yin et al., 2016) facilitates modeling
rare words and can improve the performance of
several NLP tasks to which the embeddings are
applied. Besides, people also consider character
embeddings which have been utilized in Chinese
word segmentation (Sun et al., 2014).

The success of previous work verifies the feasi-
bility of utilizing internal character information of
words. We design our framework for lexical se-
meme prediction inspired by these methods.

3 Background and Notation

In this section, we first introduce the organization
of sememes, senses and words in HowNet. Then
we offer a formal definition of lexical sememe pre-
diction and develop our notation.

3.1 Sememes, Senses and Words in HowNet

HowNet provides sememe annotations for Chi-
nese words, where each word is represented as a
hierarchical tree-like sememe structure. Specifi-
cally, a word in HowNet may have various senses,
which respectively represent the semantic mean-
ings of the word in the real world. Each sense is
defined as a hierarchical structure of sememes. For
instance, as shown in the right part of Fig. 1, the
word “铁匠” (ironsmith) has one sense, namely
ironsmith. The sense ironsmith is defined by the
sememe “人” (human) which is modified by se-
meme “职位” (occupation), “金属” (metal) and
“工” (industrial). In HowNet, linguists use about
2, 000 sememes to describe more than 100, 000
words and phrases in Chinese with various com-
binations and hierarchical structures.

3.2 Formalization of the Task

In this paper, we focus on the relationships be-
tween the words and the sememes. Following the
settings of Xie et al. (2017), we simply ignore the
senses and the hierarchical structure of sememes,
and we regard the sememes of all senses of a word
together as the sememe set of the word.

We now introduce the notation used in this pa-
per. Let G = (W,S, T ) denotes the sememe
KB, where W = {w1, w2, . . . , w|W |} is the set of
words, S is the set of sememes, and T ⊆ W × S
is the set of relation pairs between words and se-
memes. We denote the Chinese character set as
C, with each word wi ∈ C+. Each word w has
its sememe set Sw = {s|(w, s) ∈ T}. Take the
word “铁匠” (ironsmith) for example, the sememe
set S铁匠 (ironsmith) consists of “人” (human), “职
位” (occupation), “金属” (metal) and “工” (indus-
trial).

Given a word w ∈ C+, the task of lexical se-
meme prediction aims to predict the correspond-
ing P (s|w) of sememes in S to recommend them
to w.

4 Methodology

In this section, we present our framework for lex-
ical sememe prediction (SP). For each unlabelled
word, our framework aims to recommend the most
appropriate sememes based on the internal and ex-
ternal information. Because of introducing char-
acter information, our framework can work for
both high-frequency and low-frequency words.
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Our framework is the ensemble of two parts:
sememe prediction with internal information (i.e.,
internal models), and sememe prediction with ex-
ternal information (i.e., external models). Explic-
itly, we adopt SPWE, SPSE, and their ensemble
(Xie et al., 2017) as external models, and we take
SPWCF, SPCSE, and their ensemble as internal
models.

In the following sections, we first introduce
SPWE and SPSE. Then, we show the details
of SPWCF and SPCSE. Finally, we present the
method of model ensembling.

4.1 SP with External Information

SPWE and SPSE are introduced by Xie et al.
(2017) as the state of the art for sememe predic-
tion. These methods represent word meanings
with embeddings learned from external informa-
tion, and apply the ideas of collaborative filtering
and matrix factorization in recommendation sys-
tems for sememe predication.

SP with Word Embeddings (SPWE) is based
on the assumption that similar words should have
similar sememes. In SPWE, the similarity of
words are measured by cosine similarity. The
score function P (sj |w) of sememe sj given a
word w is defined as:

P (sj |w) ∼
∑

wi∈W
cos(w,wi) ·Mij · cri , (1)

where w and wi are pre-trained word embeddings
of words w and wi. Mij ∈ {0, 1} indicates
the annotation of sememe sj on word wi, where
Mij = 1 indicates the word sj ∈ Swi and other-
wise is not. ri is the descend cosine word simi-
larity rank between w and wi, and c ∈ (0, 1) is a
hyper-parameter.

SP with Sememe Embeddings (SPSE) aims
to map sememes into the same low-dimensional
space of the word embeddings to predict the se-
mantic correlations of the sememes and the words.
This method learns two embeddings s and s̄ for
each sememe by solving matrix factorization with
the loss function defined as:

L =
∑

wi∈W,sj∈S

(
wi · (sj + s̄j) + bi + b′j −Mij

)2

+ λ
∑

sj ,sk∈S
(sj · s̄k −Cjk)

2 ,
(2)

where M is the same matrix used in SPWE. C
indicates the correlations between sememes, in

which Cjk is defined as the point-wise mutual in-
formation PMI(sj , sk). The sememe embeddings
are learned by factorizing the word-sememe ma-
trix M and the sememe-sememe matrix C syn-
chronously with fixed word embeddings. bi and
b′j denote the bias of wi and sj , and λ is a hyper-
parameter. Finally, the score of sememe sj given
a word w is defined as:

P (sj |w) ∼ w · (sj + s̄j) . (3)

4.2 SP with Internal Information
We design two methods for sememe prediction
with only internal character information without
considering contexts as well as pre-trained word
embeddings.

4.2.1 SP with Word-to-Character Filtering
(SPWCF)

Inspired by collaborative filtering (Sarwar et al.,
2001), we propose to recommend sememes for
an unlabelled word according to its similar words
based on internal information. Instead of using
pre-trained word embeddings, we consider words
as similar if they contain the same characters at the
same positions.

In Chinese, the meaning of a character may
vary according to its position within a word (Chen
et al., 2015). We consider three positions within a
word: Begin, Middle, and End. For example,
as shown in Fig. 2, the character at the Begin po-
sition of the word “火车站” (railway station) is
“火” (fire), while “车” (vehicle) and “站” (station)
are at the Middle and End position respectively.
The character “站” usually means station when it
is at the End position, while it usually means stand
at the Begin position like in “站立” (stand), “站
岗哨兵” (standing guard) and “站起来” (stand
up).

高 等 教 育
Begin EndMiddle

Figure 2: An example of the position of characters
in a word.

Formally, for a word w = c1c2...c|w|, we de-
fine πB(w) = {c1}, πM (w) = {c2, ..., c|w−1|},
πE(w) = {c|w|}, and

Pp(sj |c) ∼
∑

wi∈W∧c∈πp(wi)
Mij∑

wi∈W∧c∈πp(wi)
|Swi |

, (4)
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that represents the score of a sememe sj given a
character c and a position p, where πp may be πB ,
πM , or πE . M is the same matrix used in Eq. (1).
Finally, we define the score function P (sj |w) of
sememe sj given a word w as:

P (sj |w) ∼
∑

p∈{B,M,E}

∑

c∈πp(w)
Pp(sj |c). (5)

SPWCF is a simple and efficient method. It
performs well because compositional semantics
are pervasive in Chinese compound words, which
makes it straightforward and effective to find sim-
ilar words according to common characters.

4.2.2 SP with Character and Sememe
Embeddings (SPCSE)

The method Sememe Prediction with Word-to-
Character Filtering (SPWCF) can effectively rec-
ommend the sememes that have strong correla-
tions with characters. However, just like SPWE,
it ignores the relations between sememes. Hence,
inspired by SPSE, we propose Sememe Predic-
tion with Character and Sememe Embeddings
(SPCSE) to take the relations between sememes
into account. In SPCSE, we instead learn the se-
meme embeddings based on internal character in-
formation, then compute the semantic distance be-
tween sememes and words for prediction.

Inspired by GloVe (Pennington et al., 2014) and
SPSE, we adopt matrix factorization in SPCSE,
by decomposing the word-sememe matrix and
the sememe-sememe matrix simultaneously. In-
stead of using pre-trained word embeddings in
SPSE, we use pre-trained character embeddings
in SPCSE. Since the ambiguity of characters is
stronger than that of words, multiple embeddings
are learned for each character (Chen et al., 2015).
We select the most representative character and
its embedding to represent the word meaning.
Because low-frequency characters are much rare
than those low-frequency words, and even low-
frequency words are usually composed of com-
mon characters, it is feasible to use pre-trained
character embeddings to represent rare words.
During factorizing the word-sememe matrix, the
character embeddings are fixed.

We set Ne as the number of embeddings for
each character, and each character c has Ne em-
beddings c1, ..., cNe . Given a word w and a se-
meme s, we select the embedding of a charac-
ter of w closest to the sememe embedding by co-
sine distance as the representation of the word w,

铁 (iron) 1

铁 (iron) 2

铁 (iron) 3

匠 (craftsman) 1

匠 (craftsman) 2

匠 (craftsman) 3

金属 (metal) 金属 (metal)

prediction

铁匠 (ironsmith)

0.87
0.47
0.70

0.88
1.15
1.04

Figure 3: An example of adopting multiple-
prototype character embeddings. The numbers are
the cosine distances. The sememe “金属” (metal)
is the closest to one embedding of “铁” (iron).

as shown in Fig. 3. Specifically, given a word
w = c1...c|w| and a sememe sj , we define

k̂, r̂ = argmin
k,r

[
1− cos(crk, (s

′
j + s̄′j))

]
, (6)

where k̂ and r̂ indicate the indices of the character
and its embedding closest to the sememe sj in the
semantic space. With the same word-sememe ma-
trix M and sememe-sememe correlation matrix C
in Eq. (2), we learn the sememe embeddings with
the loss function:

L =
∑

wi∈W,sj∈S

(
cr̂
k̂ ·
(
s′j + s̄′j

)
+ bc

k̂ + b′′j −Mij

)2

+ λ′
∑

sj ,sq∈S

(
s′j · s̄′q −Cjq

)2
,

(7)

where s′j and s̄′j are the sememe embeddings for
sememe sj , and cr̂

k̂
is the embedding of the char-

acter that is the closest to sememe sj within wi.
Note that, as the characters and the words are not
embedded into the same semantic space, we learn
new sememe embeddings instead of using those
learned in SPSE, hence we use different notations
for the sake of distinction. bck and b′′j denote the
biases of ck and sj , and λ′ is the hyper-parameter
adjusting the two parts. Finally, the score function
of word w = c1...c|w| is defined as:

P (sj |w) ∼ cr̂
k̂
·
(
s′j + s̄′j

)
. (8)

4.3 Model Ensembling

SPWCF / SPCSE and SPWE / SPSE take differ-
ent sources of information as input, which means
that they have different characteristics: SPWCF /
SPCSE only have access to internal information,
while SPWE / SPSE can only make use of external
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information. On the other hand, just like the dif-
ference between SPWE and SPSE, SPWCF origi-
nates from collaborative filtering, whereas SPCSE
uses matrix factorization. All of those methods
have in common that they tend to recommend the
sememes of similar words, but they diverge in
their interpretation of similar.

SPCSE

word

high-frequency words
low-frequency words

Legend

SPWCF

SPSE

SPWE
External

Internal

CSP

Figure 4: The illustration of model ensembling.

Hence, to obtain better prediction performance,
it is necessary to combine these models. We de-
note the ensemble of SPWCF and SPCSE as the
internal model, and we denote the ensemble of
SPWE and SPSE as the external model. The
ensemble of the internal and the external mod-
els is our novel framework CSP. In practice, for
words with reliable word embeddings, i.e., high-
frequency words, we can use the integration of the
internal and the external models; for words with
extremely low frequencies (e.g., having no reliable
word embeddings), we can just use the internal
model and ignore the external model, because the
external information is noise in this case. Fig. 4
shows model ensembling in different scenarios.
For the sake of comparison, we use the integration
of SPWCF, SPCSE, SPWE, and SPSE as CSP in
our all experiments. In this paper, two models are
integrated by simple weighted addition.

5 Experiments

In this section, we evaluate our models on the task
of sememe prediction. Additionally, we analyze
the performance of different methods for various
word frequencies. We also execute an elaborate
case study to demonstrate the mechanism of our
methods and the advantages of using internal in-
formation.

5.1 Dataset

We use the human-annotated sememe KB HowNet
for sememe prediction. In HowNet, 103, 843

words are annotated with 212, 539 senses, and
each sense is defined as a hierarchical structure
of sememes. There are about 2, 000 sememes in
HowNet. However, the frequencies of some se-
memes in HowNet are very low, such that we con-
sider them unimportant and remove them. Our fi-
nal dataset contains 1, 400 sememes. For learning
the word and character embeddings, we use the
Sogou-T corpusii (Liu et al., 2012), which contains
2.7 billion words.

5.2 Experimental Settings

In our experiments, we evaluate SPWCF, SPCSE,
and SPWCF + SPCSE which only use internal
information, and the ensemble framework CSP
which uses both internal and external informa-
tion for sememe prediction. We use the state-
of-the-art models from Xie et al. (2017) as our
baselines. Additionally, we use the SPWE model
with word embeddings learned by fastText (Bo-
janowski et al., 2017) that considers both internal
and external information as a baseline.

For the convenience of comparison, we select
60, 000 high-frequency words in Sogou-T corpus
from HowNet. We divide the 60, 000 words into
train, dev, and test sets of size 48, 000, 6, 000,
and 6, 000, respectively, and we keep them fixed
throughout all experiments except for Section 5.4.
In Section 5.4, we utilize the same train and dev
sets, but use other words from HowNet as the test
set to analyze the performance of our methods for
different word frequency scenarios. We select the
hyper-parameters on the dev set for all models in-
cluding the baselines and report the evaluation re-
sults on the test set.

We set the dimensions of the word, sememe,
and character embeddings to be 200. The word
embeddings are learned by GloVe (Pennington
et al., 2014). For the baselines, in SPWE, the
hyper-parameter c is set to 0.8, and the model con-
siders no more than K = 100 nearest words. We
set the probability of decomposing zero elements
in the word-sememe matrix in SPSE to be 0.5%.
λ in Eq. (2) is 0.5. The model is trained for 20
epochs, and the initial learning rate is 0.01, which
decreases through iterations. For fastText, we use
skip-gram with hierarchical softmax to learn word
embeddings, and we set the minimum length of
character n-grams to be 1 and the maximum length

ii Sogou-T corpus is provided by Sogou Inc., a Chinese
commercial search engine company. https://www.
sogou.com/labs/resource/t.php
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of character n-grams to be 2. For model ensem-
bling, we use λSPWE

λSPSE
= 2.1 as the addition weight.

For SPCSE, we use Cluster-based Character
Embeddings (Chen et al., 2015) to learn pre-
trained character embeddings, and we set Ne to
be 3. We set λ′ in Eq. (7) to be 0.1, and the model
is trained for 20 epochs. The initial learning rate is
0.01 and decreases during training as well. Since
generally each character can relate to about 15 -
20 sememes, we set the probability of decompos-
ing zero elements in the word-sememe matrix in
SPCSE to be 2.5%. The ensemble weight of SP-
WCF and SPCSE λSPWCF

λSPCSE
= 4.0. For better per-

formance of the final ensemble model CSP, we set
λ = 0.1 and λSPWE

λSPSE
= 0.3125, though 0.5 and 2.1

are the best for SPSE and SPWE + SPSE. Finally,
we choose λinternal

λexternal
= 1.0 to integrate the internal

and external models.

5.3 Sememe Prediction

5.3.1 Evaluation Protocol
The task of sememe prediction aims to recom-
mend appropriate sememes for unlabelled words.
We cast this as a multi-label classification task,
and adopt mean average precision (MAP) as the
evaluation metric. For each unlabelled word in the
test set, we rank all sememe candidates with the
scores given by our models as well as baselines,
and we report the MAP results. The results are
reported on the test set, and the hyper-parameters
are tuned on the dev set.

5.3.2 Experiment Results
The evaluation results are shown in Table 1. We
can observe that:

Method MAP

SPSE 0.411
SPWE 0.565
SPWE+SPSE 0.577

SPWCF 0.467
SPCSE 0.331
SPWCF + SPCSE 0.483

SPWE + fastText 0.531
CSP 0.654

Table 1: Evaluation results on sememe prediction.
The result of SPWCF + SPCSE is bold for com-
paring with other methods (SPWCF and SPCSE)
which use only internal information.

(1) Considerable improvements are obtained via
model ensembling, and the CSP model achieves
state-of-the-art performance. CSP combines the
internal character information with the external
context information, which significantly and con-
sistently improves performance on sememe pre-
diction. Our results confirm the effectiveness of a
combination of internal and external information
for sememe prediction; since different models fo-
cus on different features of the inputs, the ensem-
ble model can absorb the advantages of both meth-
ods.

(2) The performance of SPWCF + SPCSE is
better than that of SPSE, which means using only
internal information could already give good re-
sults for sememe prediction as well. Moreover,
in internal models, SPWCF performs much better
than SPCSE, which also implies the strong power
of collaborative filtering.

(3) The performance of SPWCF + SPCSE is
worse than SPWE + SPSE. This indicates that it
is still difficult to figure out the semantic mean-
ings of a word without contextual information, due
to the ambiguity and meaning vagueness of in-
ternal characters. Moreover, some words are not
compound words (e.g., single-morpheme words or
transliterated words), whose meanings can hardly
be inferred directly by their characters. In Chi-
nese, internal character information is just partial
knowledge. We present the results of SPWCF and
SPCSE merely to show the capability to use the in-
ternal information in isolation. In our case study,
we will demonstrate that internal models are pow-
erful for low-frequency words, and can be used to
predict senses that do not appear in the corpus.

5.4 Analysis on Different Word Frequencies

To verify the effectiveness of our models on differ-
ent word frequencies, we incorporate the remain-
ing words in HowNetiii into the test set. Since the
remaining words are low-frequency, we mainly fo-
cus on words with long-tail distribution. We count
the number of occurrences in the corpus for each
word in the test set and group them into eight cat-
egories by their frequency. The evaluation results
are shown in Table 2, from which we can observe
that:

iii In detail, we do not use the numeral words, punctua-
tions, single-character words, the words do not appear in
Sogou-T corpus (because they need to appear at least for
one time to get the word embeddings), and foreign abbre-
viations.
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word frequency 6 50 51– 100 101 – 1,000 1,001 – 5,000 5,001 – 10,000 10,001 – 30,000 >30,000
occurrences 8537 4868 3236 2036 663 753 686

SPWE 0.312 0.437 0.481 0.558 0.549 0.556 0.509
SPSE 0.187 0.273 0.339 0.409 0.407 0.424 0.386

SPWE + SPSE 0.284 0.414 0.478 0.556 0.548 0.554 0.511
SPWCF 0.456 0.414 0.400 0.443 0.462 0.463 0.479
SPCSE 0.309 0.291 0.286 0.312 0.339 0.353 0.342

SPWCF + SPCSE 0.467 0.437 0.418 0.456 0.477 0.477 0.494
SPWE + fastText 0.495 0.472 0.462 0.520 0.508 0.499 0.490

CSP 0.527 0.555 0.555 0.626 0.632 0.641 0.624

Table 2: MAP scores on sememe prediction with different word frequencies.

words models Top 5 sememes

钟表匠
(clockmaker)

internal 人人人(human),职职职位位位(occupation),部件(part),时时时间间间(time),告告告诉诉诉(tell)
external 人人人(human),专(ProperName),地方(place),欧洲(Europe),政(politics)

ensemble 人人人(human),职职职位位位(occupation),告告告诉诉诉(tell),时时时间间间(time),用用用具具具(tool)

奥斯卡
(Oscar)

internal 专专专(ProperName),地方(place),市(city),人(human),国都(capital)
external 奖奖奖励励励(reward),艺艺艺(entertainment),专专专(ProperName),用具(tool),事事事情情情(fact)

ensemble 专专专(ProperName),奖奖奖励励励(reward),艺艺艺(entertainment),著名(famous),地方(place)

Table 3: Examples of sememe prediction. For each word, we present the top 5 sememes predicted by the
internal model, external model and the final ensemble model (CSP). Bold sememes are correct.

(1) The performances of SPSE, SPWE, and
SPWE + SPSE decrease dramatically with
low-frequency words compared to those with
high-frequency words. On the contrary, the
performances of SPWCF, SPCSE, and SP-
WCF + SPCSE, though weaker than that on high-
frequency words, is not strongly influenced in the
long-tail scenario. The performance of CSP also
drops since CSP also uses external information,
which is not sufficient with low-frequency words.
These results show that the word frequencies and
the quality of word embeddings can influence the
performance of sememe prediction methods, es-
pecially for external models which mainly con-
centrate on the word itself. However, the internal
models are more robust when encountering long-
tail distributions. Although words do not need
to appear too many times for learning good word
embeddings, it is still hard for external models
to recommend sememes for low-frequency words.
While since internal models do not use external
word embeddings, they can still work in such sce-
nario. As for the performance on high-frequency
words, since these words are used widely, the
ambiguity of high-frequency words is thus much
stronger, while the internal models are still stable
for high-frequency words.

(2) The results also indicate that even low-
frequency words in Chinese are mostly composed
of common characters, and thus it is possible

to utilize internal character information for se-
meme prediction on words with long-tail distribu-
tion (even on those new words that never appear
in the corpus). Moreover, the stability of the MAP
scores given by our methods on various word fre-
quencies also reflects the reliability and universal-
ity of our models in real-world sememe annota-
tions in HowNet. We will give detailed analysis in
our case study.

5.5 Case Study

The results of our main experiments already show
the effectiveness of our models. In this case study,
we further investigate the outputs of our models
to confirm that character-level knowledge is truly
incorporated into sememe prediction.

In Table 3, we demonstrate the top 5 sememes
for “钟表匠” (clockmaker) and “奥斯卡” (Os-
car, i.e., the Academy Awards). “钟表匠” (clock-
maker) is a typical compound word, while “奥
斯卡” (Oscar) is a transliterated word. For each
word, the top 5 results generated by the internal
model (SPWCF + SPCSE), the external model
(SPWE + SPSE) and the ensemble model (CSP)
are listed.

The word “钟表匠” (clockmaker) is composed
of three characters: “钟” (bell, clock), “表” (clock,
watch) and “匠” (craftsman). Humans can intu-
itively conclude that clock + craftsman → clock-
maker. However, the external model does not per-
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form well for this example. If we investigate the
word embedding of “钟表匠” (clockmaker), we
can know why this method recommends these un-
reasonable sememes. The closest 5 words in the
train set to “钟表匠” (clockmaker) by cosine sim-
ilarity of their embeddings are: “瑞士” (Switzer-
land), “卢梭” (Jean-Jacques Rousseau), “鞋匠”
(cobbler), “发明家” (inventor) and “奥地利人”
(Austrian). Note that none of these words are di-
rectly relevant to bells, clocks or watches. Hence,
the sememes “时间” (time), “告诉” (tell), and “用
具” (tool) cannot be inferred by those words, even
though the correlations between sememes are in-
troduced by SPSE. In fact, those words are related
to clocks in an indirect way: Switzerland is fa-
mous for watch industry; Rousseau was born into
a family that had a tradition of watchmaking; cob-
bler and inventor are two kinds of occupations as
well. With the above reasons, those words usu-
ally co-occur with “钟表匠” (clockmaker), or usu-
ally appear in similar contexts as “钟表匠” (clock-
maker). It indicates that related word embeddings
as used in an external model do not always recom-
mend related sememes.

The word “奥斯卡” (Oscar) is created by the
pronunciation of Oscar. Therefore, the meaning
of each character in “奥斯卡” (Oscar) is unrelated
to the meaning of the word. Moreover, the char-
acters “奥”, “斯”, and “卡” are common among
transliterated words, thus the internal method rec-
ommends “专” (ProperName) and “地方” (place),
etc., since many transliterated words are proper
nouns or place names.

6 Conclusion and Future Work

In this paper, we introduced character-level inter-
nal information for lexical sememe prediction in
Chinese, in order to alleviate the problems caused
by the exclusive use of external information. We
proposed a Character-enhanced Sememe Predic-
tion (CSP) framework which integrates both inter-
nal and external information for lexical sememe
prediction and proposed two methods for utiliz-
ing internal information. We evaluated our CSP
framework on the classical manually annotated se-
meme KB HowNet. In our experiments, our meth-
ods achieved promising results and outperformed
the state of the art on sememe prediction, espe-
cially for low-frequency words.

We will explore the following research direc-
tions in the future: (1) Concepts in HowNet are an-

notated with hierarchical structures of senses and
sememes, but those are not considered in this pa-
per. In the future, we will take structured anno-
tations into account. (2) It would be meaningful
to take more information into account for blend-
ing external and internal information and design
more sophisticated methods. (3) Besides Chinese,
many other languages have rich subword-level in-
formation. In the future, we will explore meth-
ods of exploiting internal information in other lan-
guages. (4) We believe that sememes are universal
for all human languages. We will explore a general
framework to recommend and utilize sememes for
other NLP tasks.
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Abstract

Because word semantics can substantially
change across communities and contexts,
capturing domain-specific word semantics
is an important challenge. Here, we pro-
pose SEMAXIS, a simple yet powerful
framework to characterize word seman-
tics using many semantic axes in word-
vector spaces beyond sentiment. We
demonstrate that SEMAXIS can capture
nuanced semantic representations in mul-
tiple online communities. We also show
that, when the sentiment axis is examined,
SEMAXIS outperforms the state-of-the-
art approaches in building domain-specific
sentiment lexicons.

1 Introduction

In lexicon-based text analysis, a common, tacit as-
sumption is that the meaning of each word does
not change significantly across contexts. This ap-
proximation, however, falls short because context
can strongly alter the meaning of words (Fischer,
1958; Eckert and McConnell-Ginet, 2013; Hovy,
2015; Hamilton et al., 2016b). For instance, the
word kill may be used much more positively in the
context of video games than it would be in a news
story; the word soft may be used much more nega-
tively in the context of sports than it is in the con-
text of toy animals (Hamilton et al., 2016a). Thus,
lexicon-based analysis exhibits a clear limitation
when two groups with strongly dissimilar lexical
contexts are compared.

Recent breakthroughs in vector-space repre-
sentation, such as word2vec (Mikolov et al.,
2013b), provide new opportunities to tackle this
challenge of context-dependence, because in these
approaches, the representation of each word is
learned from its context. For instance, a re-

cent study shows that a propagation method on
the vector space embedding can infer context-
dependent sentiment values of words (Hamilton
et al., 2016a). Yet, it remains to be seen whether it
is possible to generalize this idea to general word
semantics other than sentiment.

In this work, we propose SEMAXIS, a
lightweight framework to characterize domain-
specific word semantics beyond sentiment. SE-
MAXIS characterizes word semantics with re-
spect to many semantic perspectives in a domain-
specific word-vector space. To systematically dis-
cover the manifold of word semantics, we induce
732 semantic axes based on the antonym pairs
from ConceptNet (Speer et al., 2017). We would
like to emphasize that, although some of the in-
duced axes can be considered as an extended ver-
sion of sentiment analysis, such as an axis of ‘re-
spectful’ (positive) and ‘disrespectful’ (negative),
some cannot be mapped to a positive and negative
relationship, such as ‘exogeneous’ and ‘endoge-
neous,’ and ‘loose’ and ‘monogamous.’ Based on
this rich set of semantic axes, SEMAXIS captures
nuanced semantic representations across corpora.
The key contributions of this paper are:
• We propose a general framework to charac-

terize the manifold of domain-specific word
semantics.
• We systematically identify semantic axes

based on the antonym pairs in ConceptNet.
• We demonstrate that SEMAXIS can capture

semantic differences between two corpora.
• We provide a systematic evaluation in

comparison to the state-of-the-art, domain-
specific sentiment lexicon construction
methodologies.

Although the idea of defining a semantic axis
and assessing the meaning of a word with a vec-
tor projection is not new, it has not been demon-
strated that this simple method can effectively in-
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duce context-aware semantic lexicons. All of the
inferred lexicons along with code for SEMAXIS

and all methods evaluated are made available in
the SEMAXIS package released with this paper1.

2 Related Work

For decades, researchers have been developing
computational techniques for text analysis, includ-
ing: sentiment analysis (Pang and Lee, 2004),
stance detection (Biber and Finegan, 1988), point
of view (Wiebe, 1994), and opinion mining (Pang
and Lee, 2004). The practice of creating and shar-
ing large-scale annotated lexicons also accelerated
the research (Stone et al., 1966; Bradley and Lang,
1999; Pennebaker et al., 2001; Dodds et al., 2011;
Mohammad et al., 2016, 2017).

These approaches can be roughly grouped
into two major categories: lexicon-based ap-
proach (Turney, 2002; Taboada et al., 2011) and
classification-based approach (Pang et al., 2002;
Kim, 2014; Socher et al., 2013). Although
the recent advancement of neural networks in-
creases the potential of the latter approach, the
former has been widely used for its simplicity
and transparency. ANEW (Bradley and Lang,
1999), LIWC (Pennebaker et al., 2001), SO-
CAL (Taboada et al., 2011), SentiWordNet (Esuli
and Sebastiani, 2006), and LabMT (Dodds et al.,
2011) are well-known lexicons.

A clear limitation of the lexicon-based approach
is that it overlooks the context-dependent seman-
tic changes. Scholars reported that the meaning of
a word can be altered by context, such as com-
munities (Yang and Eisenstein, 2015; Hamilton
et al., 2016a), diachronic changes (Hamilton et al.,
2016b) or demographic (Rosenthal and McKe-
own, 2011; Eckert and McConnell-Ginet, 2013;
Green, 2002; Hovy, 2015), geography (Trudg-
ill, 1974), political and cultural attitudes (Fischer,
1958) and personal variations (Yang and Eisen-
stein, 2017). Recently, a few studies have shown
the importance of taking such context into ac-
counts. For example, Hovy et al. (2015) showed
that, by including author demographics such as
age and gender, the accuracy of sentiment anal-
ysis and topic classification can be improved. It
was also shown that, without domain-specific lex-
icons, the performance of sentiment analysis can
be significantly degraded (Hamilton et al., 2016a).

Building domain-specific sentiment lexicons
1https://github.com/ghdi6758/SemAxis

through human input (crowdsourcing or experts)
requires not only significant resources but also
careful control of biases (Dodds et al., 2011; Mo-
hammad and Turney, 2010). The challenge is
exacerbated because ‘context’ is difficult to con-
cretely operationalize and there can be numer-
ous contexts of interest. For resource-scarce lan-
guages, such problems become even more crit-
ical (Hong et al., 2013). Automatically build-
ing lexicons from web-scale resources (Velikovich
et al., 2010; Tang et al., 2014) may solve this
problem but poses a severe risk of unintended bi-
ases (Loughran and McDonald, 2011).

Inducing domain-specific lexicons from the un-
labeled corpora reduces the cost of dictionary
building (Hatzivassiloglou and McKeown, 1997;
Rothe et al., 2016). Although earlier research
utilize syntactic (grammatical) structures (Hatzi-
vassiloglou and McKeown, 1997; Widdows and
Dorow, 2002), the approach of learning word-
vector representations has gained a lot of momen-
tum (Rothe et al., 2016; Hamilton et al., 2016a;
Velikovich et al., 2010; Fast et al., 2016).

The most relevant work is SENTPROP (Hamil-
ton et al., 2016a), which constructs domain-
specific sentiment lexicons using graph propaga-
tion techniques (Velikovich et al., 2010; Rao and
Ravichandran, 2009). In contrast to SENTPROP’s
sentiment-focused approach, we provide a frame-
work to understand the semantics of words with
respect to 732 semantic axes based on Concept-
Net (Speer et al., 2017).

3 SEMAXIS Framework

Our framework, SEMAXIS, involves three steps:
constructing a word embedding, defining a se-
mantic axis, and mapping words onto the seman-
tic axis. Although they seem straightforward, the
complexities and challenges in each step can add
up. In particular, we tackle the issues of treating
small corpora and selecting pole words.

3.1 The Basics of SEMAXIS

3.1.1 Building word embeddings
The first step in our approach is to obtain word
vectors from a given corpus. In principle, any stan-
dard method, such as Positive Pointwise Mutual
Information (PPMI), Singular-Value Decomposi-
tion (SVD), or word2vec, can be used. Here, we
use the word2vec model because word2vec is
easier to train and is known to be more robust than
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competing methods (Levy et al., 2015).

3.1.2 Defining a semantic axis and computing
the semantic axis vector

A semantic axis is defined by the vector between
two sets of ‘pole’ words that are antonymous to
each other. For instance, a sentiment axis can be
defined by a set of the most positive words on one
end and the most negative words on the other end.
Similarly, any antonymous word pair can be used
to define a semantic axis (e.g., ‘clean’ vs. ‘dirty’
or ‘respectful’ vs. ‘disrespectful’).

Once two sets of pole words for the correspond-
ing axis are chosen, we compute the average vec-
tor for each pole. Then, by subtracting one vec-
tor from the other, we obtain the semantic axis
vector that encodes the antonymous relationship
between two sets of words. More formally, let
S+={v+1 , v+2 , ..., v+n } and S−={v−1 , v−2 , ..., v−m}
be two sets of pole word vectors that have an
antonym relationship. Then, the average vectors
for each set are computed as V+= 1

n

∑n
1 v

+
i and

V−= 1
m

∑m
1 v
−
j . From the two average vectors,

the semantic axis vector, Vaxis (from S− to S+),
can be defined as:

Vaxis = V+ −V− (1)

3.1.3 Projecting words onto a semantic axis
Once the semantic axis vector is obtained, we can
compute the cosine similarity between the axis
vector and a word vector. The resulting cosine
similarity captures how closely the word is aligned
to the semantic axis. Given a word vector vw for
a word w, the score of the word w along with the
given semantic axis, Vaxis, is computed as:

score(w)Vaxis
= cos(vw,Vaxis)

=
vw ·Vaxis

‖ vw ‖‖ Vaxis ‖
(2)

A higher score means that the word w is more
closely aligned to S+ than S−. When Vaxis is
a sentiment axis, a higher score is corresponds to
more positive sentiment.

3.2 SEMAXIS for Comparative Text Analysis

Although aforementioned steps are conceptually
simple, there are two practical challenges: 1) deal-
ing with small corpus and 2) finding good pole
words for building a semantic axis.

3.2.1 Semantic relations encoded in word
embeddings

Since semantic relations are particularly impor-
tant in our method, we need to ensure that our
word embedding maintains general semantic re-
lations. This can be evaluated by analogy tasks.
In particular, we use the Google analogy test
dataset (Mikolov et al., 2013a), which contains
19,544 questions — 8,869 semantic and 10,675
syntactic questions — in 14 relation types, such
as capital-world pairs and opposite relationships.

3.2.2 Dealing with small corpus
As in other machine learning tasks, the amount of
data critically influences the performance of word
embedding methods. However, the corpora of our
interest are often too small to facilitate the learning
of rich semantic relationships therein. To mitigate
this issue, we propose to pre-train a word embed-
ding using a background corpus and update with
the target corpora. In doing so, we capture the se-
mantic changes while maintaining general seman-
tic relations offered by the large reference model.

The vector-space embedding drifts from the ref-
erence model as we train with the target corpus. If
trained too much with the smaller target corpus,
it will lose the ‘good’ initial embedding from the
huge reference corpus. If trained too little, it will
not be able to capture context-dependent semantic
changes. Our goal is thus to minimize the loss in
general semantic relations while maximizing the
characteristic semantic relations in the new texts.

Consider a corpus of our interest C and a ref-
erence corpus R. The model M is pre-trained on
R, and then we start training it on C. We use the
superscript e to represent the e-th epoch of train-
ing. That is, M e

C is the model after the e-th epoch
trained on C. Then, we evaluate the model regard-
ing two aspects: general semantic relations and
context-dependent semantic relations. The former
is measured by the overall accuracy of the anal-
ogy test (Mikolov et al., 2013a). The latter is
measured by tracking the semantic changes of the
top k words in the given corpus C. The semantic
changes of the words are measured by the changes
in their scores, ∆, on a certain axis; for instance, a
sentiment axis, between consecutive epochs. We
stop learning when two conditions are satisfied:
(1) When the accuracy of the analogy test drops by
α; and (2) When ∆ is lower than β. In principle,
the model can be updated with the target corpus as
long as the accuracy does not drop. We then use β
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to control the epochs. When ∆ is low, the gain by
updating the model becomes negligible compared
to the cost and thus we can stop updating.

3.3 Identifying rich semantic axes for
SEMAXIS

The primary advantage of SEMAXIS is that it can
be easily extended to examine diverse perspectives
of texts as it is lightweight. Although the axis can
be defined by any pair of words in principle, we
propose a systematic way to define the axes.

3.3.1 732 Pre-defined Semantic Axes
We begin with a pair of antonyms, called initial
pole words. For instance, a sentiment axis, which
is a basis of sentiment analyses, can be defined by
a pair of sentiment antonyms, such as ‘good’ and
‘bad.’

To build a comprehensive set of initial pole
words, we compile a list of antonyms from Con-
ceptNet 5.5, which is the latest release of a knowl-
edge graph among concepts (Speer et al., 2017).
We extract all the antonym concepts marked as
‘/r/Antonym’ edges. Then, we filter out non-
English concepts and multi-word concepts. In ad-
dition, we eliminate duplicated antonyms that in-
volve synonyms. For instance, only one of the
(empower, prohibit) and (empower, forbid) needs
to be kept because ‘prohibit’ and ‘forbid’ are syn-
onyms, marked as ‘/r/Synonym’ in ConceptNet.

To further refine the antonym pairs, we cre-
ate a crowdsourcing task on Figure Eight, for-
merly known as CrowdFlower. Specifically, we
ask crowdworkers: Do these two words have op-
posite meanings? We include those word pairs that
a majority of crowdworkers agree to have an op-
posite meaning. The word pairs that the majority
of crowdsource workers disagree were mostly er-
roneous antonym pairs, such as ‘5’ and ‘3’, and
‘have’ and ‘has.’ We then filter out the antonyms
that are highly similar to each other. For example,
(‘advisedly’ and ‘accidentally’) and (‘purposely’
and ‘accidentally’) show the cosine similarity of
0.5148, while ‘advisedly’ and ‘purposely’ are not
marked as synonyms in ConceptNet. Although
we use the threshold of 0.4 in this work, a differ-
ent threshold can be chosen depending on the pur-
pose. Finally, we eliminate concepts that do not
appear in the pre-trained Google News 100B word
embeddings. As a result, we obtain 732 pairs of
antonyms. Each pair of antonyms becomes initial
pole words to define one of the diverse axes for

SEMAXIS.
We assess the semantic diversity of the axes by

computing cosine similarity between every possi-
ble pair of the axes. The absolute mean value of
the cosine similarity is 0.062, and the standard de-
viation is 0.050. These low cosine similarity and
standard deviation values indicate that the chosen
axes have a variety of directions, covering diverse
and distinct semantics.

3.3.2 Augmenting pole words
We then expand the two initial pole words to larger
sets of pole words, called expanded pole words, to
obtain more robust results. If we use only two ini-
tial pole words to define the corresponding axis,
the result will be sensitive to the choice of those
words. Since the initial pole words are not nec-
essarily the best combinations possible, we would
like to augment it so that it is more robust to the
choice of the initial pole words.

To address this issue, we find the l closest words
of each initial pole word in the word embedding.
We then compute the geometric center (average
vector) of l+1 words (including the initial pole
word) and regard it as the vector representation
of that pole of the axis. For instance, refining an
axis representing a ‘good’ and ‘bad’ relation, we
first find the l closest words for each of ‘good’
and ‘bad’ and then compute the geometric center
of them. The newly computed geometric centers
then become both ends of the axis representing a
‘good’ and ‘bad’ relation. We demonstrate how
this approach improves the explanatory power of
an axis describing a corresponding antonym rela-
tion in Section 4.3.

4 SEMAXIS Validation

In this section, we quantitatively evaluate our ap-
proach using the ground-truth data and by com-
paring our method against the standard baselines
and state-of-the-art approaches. We reproduce
the evaluation task introduced by Hamilton et al.
(2016a), recreating Standard English and Twitter
sentiment lexicons for evaluation. We then com-
pare the accuracy of sentiment classification with
three other methods that generate domain-specific
sentiment lexicons.

It is worth noting that we validate SEMAXIS

based on a sentiment axis mainly due to the avail-
ability of the well-established ground-truth data
and evaluation process. Nevertheless, as the sen-
timent axis in the SEMAXIS framework is not
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specifically or manually designed but established
based on the corresponding pole words, the vali-
dation based on the sentiment axis can be gener-
alized to other axes that are similarly established
based on other corresponding pole words.
Standard English: We use well-known General
Inquirer lexicon (Stone et al., 1966) and contin-
uous valence scores collected by Warriner et al.
(2013) to evaluate the performance of SEMAXIS

compared to other state-of-the-art methods. We
test all of the methods by using the off-the-shelf
Google news embedding constructed from 1011

tokens (Google, 2013).
Twitter: We evaluate our approach with the test
dataset from the 2015 SemEval task 10E competi-
tion (Rosenthal et al., 2015) using the embedding
constructed by Rothe et al. (2016).

Domain Positive pole words Negative pole words

Standard good, lovely, excellent,
fortunate, pleasant, de-
lightful, perfect, loved,
love, happy

bad, horrible, poor,
unfortunate, unpleas-
ant, disgusting, evil,
hated, hate, unhappy

Twitter love, loved, loves,
awesome, nice, amaz-
ing, best, fantastic,
correct, happy

hate, hated, hates,
terrible, nasty, aw-
ful, worst, horrible,
wrong, sad

Table 1: Manually selected pole words used for
the evaluation task in (Hamilton et al., 2016a).
These pole words are called seed words in (Hamil-
ton et al., 2016a)

4.1 Evaluation Setup
We compare our method against state-of-the-art
approaches that generate domain-specific senti-
ment lexicons.

State-of-the-art approaches: Our baseline
for the standard English is a WordNet-based
method, which performs label propagation over a
WordNet-derived graph (San Vicente et al., 2014).
For Twitter, we use Sentiment140, a distantly su-
pervised approach that uses signals from emoti-
cons (Mohammad and Turney, 2010). Moreover,
on both datasets, we compare against two state-of-
the-art sentiment induction methods: DENSIFIER,
a method that learns orthogonal transformations of
word vectors (Rothe et al., 2016), and SENTPROP,
a method with a label propagation approach on
word embeddings (Hamilton et al., 2016a). Seed
words, which are called pole words in our work,
are listed in Table 1.

Evaluation metrics: We evaluate the aforemen-
tioned approaches according to (i) their binary
classification accuracy (positive and negative), (ii)
ternary classification performance (positive, neu-
tral, and negative), and (iii) Kendall τ rank-
correlation with continuous human-annotated po-
larity scores. Since all methods result in senti-
ment scores of words rather than assigning a class
of sentiment, we label words as positive, neu-
tral, or negative using the class-mass normaliza-
tion method (Zhu et al., 2003). This normaliza-
tion uses knowledge of the label distribution of a
test dataset and simply assigns labels to best match
this distribution. For the implementation of other
methods, we directly use the source code with-
out any modification or tuning (SocialSent, 2016)
used in (Hamilton et al., 2016a).

4.2 Evaluation Results
Table 2 summarizes the performance. Surpris-
ingly, SEMAXIS — the simplest approach — out-
performs others on both Standard English and
Twitter datasets across all measures.

Standard English

Method AUC Ternary F1 Tau

SEMAXIS 92.2 61.0 0.48
DENSIFIER 91.0 58.2 0.46
SENTPROP 88.4 56.1 0.41
WordNet 89.5 58.7 0.34

Twitter

Method AUC Ternary F1 Tau

SEMAXIS 90.0 59.2 0.57
DENSIFIER 88.5 58.8 0.55
SENTPROP 85.0 58.2 0.50

Sentiment140 86.2 57.7 0.51

Table 2: Evaluation results. Our method performs
best on both Standard English and Twitter.

4.3 Sensitivity to Pole Words
As discussed in Section 3.3.2, because the axes are
derived from pole words, the choice of the pole
words can significantly affect the performance.
We compare the robustness of three methods for
selecting pole words: 1) using sentiment lexicons;
2) using two pole words only (initial pole words);
and 3) using l closest words on the word2vec
model as well as the two initial pole words (ex-
panded pole words). For the first, we choose two
sets of pole words that have the highest scores and
the lowest scores in two widely used sentiment
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lexicons, ANEW (Bradley and Lang, 1999) and
LabMT (Dodds et al., 2011). Then, for the two
pole words, we match 1-of-10 positive pole words
and 1-of-10 negative pole words in Table 1, result-
ing in 100 pairs of pole words. For these 100 pairs,
in addition to the two initial pole words, we then
use the l closest words (l = 10) of each of them to
evaluate the third method.

We compare these three methods by quantifying
how well SEMAXIS performs for the evaluation
task. The average AUC for the two pole words
method is 78.2. We find that one of the 100 pairs
— ‘good’ and ‘bad’ — shows the highest AUC
(92.4). However, another random pair (‘happy’
and ‘evil’) results in the worst performance with
the AUC of 67.2. In other words, an axis de-
fined by only two pole words is highly sensitive
to the choice of the word pair. By contrast, when
an axis is defined by aggregating l closest words,
the average AUC increases to 80.6 (the minimum
performance is above 71.2). Finally, using pre-
established sentiment lexicons results in the worst
performance (the AUC of 77.8 for ANEW and
67.5 for LabMT). These results show that identify-
ing an axis is a crucial step in SEMAXIS, and using
l closest words in addition to initial pole words is
a more robust method to define the axis.

5 SEMAXIS in the Wild

We now demonstrate how SEMAXIS can be used
in comparative text analysis to capture nuanced
linguistic representations beyond the sentiment.
As an example, we use Reddit (Reddit, 2005), one
of the most popular online communities. Reddit
is known to serve diverse sub-communities with
different linguistic styles (Zhang et al., 2017). We
focus on a few pairs of subreddits that are known
to express different views. We also choose them to
capture a wide range of topics from politics to reli-
gion, entertainment, and daily life to demonstrate
the broad applicability of SEMAXIS.

5.1 Dataset, Pre-processing, Reference
model, and Hyper-parameters

We use Reddit 2016 comment datasets that are
publicly available (/u/Dewarim, 2017). We build
a corpus from each subreddit by extracting all the
comments posted on that subreddit. When the size
of two corpora used for comparison is consider-
ably different, we undersample the bigger corpus
for a fair comparison. Every corpus then under-

goes the same pre-processing, where we first re-
move punctuation and stop words, then replace
URLs with its domain name.

Reference model for Reddit data As we
discussed earlier, many datasets of our in-
terest are likely too small to obtain good
vector representations. For example, two
popular subreddits, /r/The Donald and
/r/SandersForPresident2, show only
59.8% and 42.1% in analogy test, respectively.3

Therefore, as we proposed, we first create a pre-
trained word embedding with a larger background
corpus and perform additional training with target
subreddits. We sample 1 million comments
from each of the top 200 subreddits, resulting
in 20 million comments. Using this sample, we
build a word embedding, denoted as Reddit20M,
using the CBOW model with a window size of
five, a minimum word count of 10, the negative
sampling, and down-sampling of frequent terms
as suggested in (Levy et al., 2015). For the
subsequent training with the target corpora, we
train the model with a small starting learning rate,
0.005; Using different rates, such as 0.01 and
0.001, did not make much difference. We further
tune the model with the dimension size of 300 and
the number of the epoch of 100 using the analogy
test results.

Category Reddit20M Google300D

World 28.34 70.2
family 94.58 90.06
Gram1-9 70.21 73.40

Total 67.88 77.08

Table 3: Results of analogy tests, comparing 20M
sample texts from Reddit vs. Google 100B News.

Table 3 shows the results of the analogy
test using our Reddit20M in comparison with
Google300D, which is the Google News em-
bedding used in previous sections. As one
can expect, Reddit20M shows worse perfor-
mance than Google300D. However, the four cat-
egories (capital-common-countries, capital-world,
currency, and city-in-state denoted by World),
which require some general knowledge on the
world, drive the 10% decrease in overall accu-

2/r/ is a common notation for indicating subreddits.
3For both corpora, continuous bag-of-words (CBOW)

model with the dimension size of 300 achieves the highest
accuracy in the analogy test.
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racy. Other categories show comparable or even
better accuracy. For example, Reddit20M outper-
forms Google300D by 4.52% in the family cate-
gory. Since Reddit is a US-based online commu-
nity, the Reddit model may not be able to properly
capture semantic relationships in World category.
By contrast, for the categories for testing grammar
(denoted by Gram1-9), Reddit20M shows compa-
rable performances with Google300D (70.21 vs.
73.4). In this study, we use Reddit20M as a refer-
ence model and update it with new target corpora.

Figure 1: Changes of word semantics (box plot)
and accuracy (line graph) over epoch for the model
for /r/SandersForPresident

Updating the reference model As we explained
in Section 3.2.2, we stop updating the reference
model depending on the accuracy of the analogy
test and semantic changes of the top 1000 words of
the given corpus. In our experiments, we set α =
0.3 and β = 0.001. Figure 1 shows the accuracy
of the analogy test over epoch as a line plot and
the semantic changes of words as a box plot for
the model for /r/SandersForPresident.
The model gradually loses general semantic rela-
tion over epochs, and the characteristic semantic
changes stabilize after about 10 epochs. Given the
α and β, we use the embedding after 10 epochs
of training with the target subreddit data. We
note that the results are consistent when epoch is
greater than 10. We choose the number of epoch
for other corpora based on the same tactic.

5.2 Confirming well-known language
representations

Once we have word embeddings for given sub-
reddits by updating the pre-trained model, we can
compare the languages of two subreddits. As
a case study, we compare supporters of Donald
Trump (/r/The Donald) and Bernie Sanders

(/r/SandersForPresident)4, and examine
the semantic differences in diverse issues, such as
gun and minority, based on different axes. This
can be easily compared with our educated guess
learned from the 2016 U.S. Election.

Starting from a topic word (e.g., ‘gun’) and its
closest word (e.g., ‘guns’), we compute the aver-
age vector of the two words. We then find the clos-
est word from the computed average vector and
repeat this process to collect 30 topical terms in
each word embedding. Then, we remove words
that have appeared less than n times in both cor-
pora. The higher n leads to less coverage of top-
ical terms but eliminate noise. We set n = 100
in the following experiments. We consider the re-
maining words as topic words.

Figure 2 compares how the minority-related
terms are depicted in the two subreddits. Fig-
ure 2(a) and 2(b) show how minority issues are
perceived in two communities with respect to
‘Sentiment’ and ‘Respect’ . The x-axis is the value
for each word on the Sentiment axis for Trump
supporters, and the y-axis is the difference be-
tween the value for Trump and Sanders supporters.
If the y-value is greater than 0, then it means the
word is more ‘positive’ among Trump supporters
compared to that among Sanders supporters.

Some terms perceived more positively (e.g.,
‘immigration’ and ‘minorities’) while other terms
were perceived more negatively (‘black’, ‘latino’,
‘hispanic’) among Trump supporters (Figure 2(a)).
As this positive perception on immigration and
minorities is unexpected, we examine the actual
comments. Through the manual inspection of rel-
evant comments, we find that Trump supporters
often mention that they ‘agree’ with or ‘support’
the idea of banning immigration, resulting in hav-
ing a term ‘immigration’ as more positive than
Sanders supporters. However, when examining
those words on the ‘Disrespect’ vs. ‘Respect’ axis
(Figure 2(b)), most of the minority groups are con-
sidered disrespectful by Trump supporters com-
pared to Sanders supporters, demonstrating a ben-
efit of examining multiple semantic axes that can
reflect rich semantics beyond basic sentiments.

Then, one would expect that ‘Gun’ would be
more positively perceived for Trump supporters
compared to for Sanders supporters. Beyond the
sentiment, we examine how ‘gun’ is perceived in

4Both subreddits have a policy of banning users who post
content critical of the candidate. Thus, we assume most of
the users in these subreddits are supporters of the candidate.
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(a) Minority (Hate vs Amazing) (b) Minority (Disrespect vs Respect)

Figure 2: Trump supporters vs Sanders supporters on Minority issue

two communities for ‘Arousal’ and ‘Safety’ axes.
We find that Trump supporters are generally posi-
tive about gun-related issues, and Sanders support-
ers associate ‘gun’ with more arousal and danger.

We also examine two other subreddits:
/r/atheism and /r/Christianity. As
their names indicate, the former is the subreddit
for atheists and the latter is the subreddit for
Christians. We expect that the two groups would
have different perspectives regarding ‘god’ and
‘evolution.’ When examining the four words
‘god,’ ‘pray,’ ‘evolution,’ and ‘science’ on the
‘Unholy’ vs. ‘Holy’ axis, ‘god’ and ‘pray’ appear
to be more ‘holy’ in /r/Christianity while
‘evolution’ and ‘science’ appear more ‘unholy’
than in /r/Atheism, which fits in our intuition.

As another example, we examine the /r/PS4
and /r/NintendoSwitch subreddits. PS4 is
a video game console released by Sony and Nin-
tendo Switch is released by Nintendo. Although
both video game consoles originated from Japan,
Nintendo Switch targets more family (children)
and casual gamers with more playful and eas-
ier games while the games for PS4 target adult
and thus tend to be more violent and more diffi-
cult to play. We examine three terms (‘Nintendo,’
‘Mario,’ and ‘Zelda’) from Nintendo Switch and
three terms (‘Sony,’ ‘Uncharted,’ and ‘Killzone’)
from Sony on the ‘Casual’ vs. ‘Hardcore’ axis.5

We find that ‘Mario’ and ‘Zelda’ are perceived
more casual in /r/PS4, and ‘Uncharted’ and
‘Killzone’ are more hardcore in /r/PS4 than
/r/NintendoSwitch. Although both ‘Nin-
tendo’ and ‘Sony’ have negative values, ‘Nin-

5Mario and Zelda are popular Nintendo Switch games,
and Uncharted and Killzone are popular PS4 games.

tendo’ was considered more casual than ‘Sony’
in /r/PS4. Overall, our method effectively cap-
tures context-dependent semantic changes beyond
the basic sentiments.

5.3 Comparative Text Analysis with Diverse
Axes

Let us show how SEMAXIS can find, for a given
word, a set of the best axes that describe its seman-
tic. We map the word on our predefined 732 axes,
which are explained in Section 3.3.1, and rank the
axes based on the projection values on the axes. In
other words, the top axes describe the word with
the highest strength.

Figure 3(a) shows the top 20 axes with
the largest projection values for ‘Men’ in
/r/AskWomen and /r/AskMen, which are
the subreddits where people expect replies from
each gender. In /r/AskWomen, compared with
/r/AskMen, ‘Men’ seems to be perceived as
more vanishing, more established, less systematic,
less monogamous, more enthusiastic, less social,
more uncluttered, less vulnerable, and more un-
apologetic. This observed perception of men from
women’s perspective seems to concur with the
common gender stereotype, demonstrating strong
potential of SEMAXIS.

Likewise, in Figure 3(b), we examine how
a word ‘Mario’ is perceived in two subred-
dits /r/NintendoSwitch and /r/PS4. In
/r/NintendoSwitch, ‘Mario’ is perceived,
compared with /r/PS4, as more luxurious, fa-
mous, unobjectionable, open, capable, likable,
successful, loving, honorable, and controllable.
On the other hand, users in /r/PS4 consider
‘Mario’ to be more virtual, creative, durable,
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(a) Men in /r/AskWomen and /r/AskMen (b) Mario in /r/NintendoSwitch and /r/PS4

Figure 3: An example of comparative text analysis using SEMAXIS: (a) ‘Men’ in /r/AskWomen and
/r/AskMen and (b) ‘Mario’ in /r/NintendoSwitch and /r/PS4

satisfying, popular, undetectable, and unstop-
pable. ‘Mario’ is perceived more positively in
/r/NintendoSwitch than in /r/PS4, as ex-
pected. Furthermore, SEMAXIS reveals detailed
and nuanced perceptions of different communities.

6 Discussion and Conclusion

We have proposed SEMAXIS to examine a nu-
anced representation of words based on diverse
semantic axes. We have shown that SEMAXIS

can construct good domain-specific sentiment lex-
icons by projecting words on the sentiment axis.
We have also demonstrated that our approach
can reveal nuanced context-dependence of words
through the lens of numerous semantic axes.

There are two major limitations. First, we per-
formed the quantitative evaluation only with the
sentiment axis, even though we supplemented it
with more qualitative examples. We used the sen-
timent axis because it is better studied and more
methods exist, but ideally it would be better to
perform evaluation across many semantic axes.
We hope that SEMAXIS can facilitate research on
other semantic axes so that we will have labeled
datasets for other axes as well. Secondly, Gaffney
and Matias (2018) recently reported the Reddit
data used in this study is incomplete. The authors
suggest using the data with caution, particularly
when analyzing user interactions. Although our
work examine communities in Reddit, we focus
on the difference of the word semantics. Thus,

we believe the effect of deleted comment would
be marginal in our analyses.

Despite these limitations, we identify the fol-
lowing key implications. First, SEMAXIS of-
fers a framework to examine texts on diverse se-
mantic axes beyond the sentiment axis, through
the 732 systematically induced semantic axes that
capture common antonyms. Our study may facil-
itate further investigations on context-dependent
text analysis techniques and applications. Sec-
ond, the unsupervised nature of SEMAXIS pro-
vides a powerful way to build lexicons of any
semantic axis, including the sentiment axis, for
non-English languages, particularly the resource-
scarce languages.
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Abstract
We present a novel end-to-end reinforce-
ment learning approach to automatic tax-
onomy induction from a set of terms.
While prior methods treat the problem as a
two-phase task (i.e., detecting hypernymy
pairs followed by organizing these pairs
into a tree-structured hierarchy), we ar-
gue that such two-phase methods may suf-
fer from error propagation, and cannot ef-
fectively optimize metrics that capture the
holistic structure of a taxonomy. In our ap-
proach, the representations of term pairs
are learned using multiple sources of in-
formation and used to determine which
term to select and where to place it on the
taxonomy via a policy network. All com-
ponents are trained in an end-to-end man-
ner with cumulative rewards, measured
by a holistic tree metric over the train-
ing taxonomies. Experiments on two pub-
lic datasets of different domains show that
our approach outperforms prior state-of-
the-art taxonomy induction methods up to
19.6% on ancestor F1. 1

1 Introduction

Many tasks in natural language understanding
(e.g., information extraction (Demeester et al.,
2016), question answering (Yang et al., 2017), and
textual entailment (Sammons, 2012)) rely on lexi-
cal resources in the form of term taxonomies (cf.
rightmost column in Fig. 1). However, most exist-
ing taxonomies, such as WordNet (Miller, 1995)
and Cyc (Lenat, 1995), are manually curated and
thus may have limited coverage or become un-
available in some domains and languages. There-
fore, recent efforts have been focusing on auto-
matic taxonomy induction, which aims to organize

1Code and data can be found at https://github.
com/morningmoni/TaxoRL

a set of terms into a taxonomy based on relevant
resources such as text corpora.

Prior studies on automatic taxonomy induc-
tion (Gupta et al., 2017; Camacho-Collados, 2017)
often divide the problem into two sequential sub-
tasks: (1) hypernymy detection (i.e., extracting
term pairs of “is-a” relation); and (2) hyper-
nymy organization (i.e., organizing is-a term pairs
into a tree-structured hierarchy). Methods devel-
oped for hypernymy detection either harvest new
terms (Yamada et al., 2009; Kozareva and Hovy,
2010) or presume a vocabulary is given and study
term semantics (Snow et al., 2005; Fu et al., 2014;
Tuan et al., 2016; Shwartz et al., 2016). The hy-
pernymy pairs extracted in the first subtask form a
noisy hypernym graph, which is then transformed
into a tree-structured taxonomy in the hypernymy
organization subtask, using different graph prun-
ing methods including maximum spanning tree
(MST) (Bansal et al., 2014; Zhang et al., 2016),
minimum-cost flow (MCF) (Gupta et al., 2017)
and other pruning heuristics (Kozareva and Hovy,
2010; Velardi et al., 2013; Faralli et al., 2015;
Panchenko et al., 2016).

However, these two-phase methods encounter
two major limitations. First, most of them ig-
nore the taxonomy structure when estimating the
probability that a term pair holds the hypernymy
relation. They estimate the probability of differ-
ent term pairs independently and the learned term
pair representations are fixed during hypernymy
organization. In consequence, there is no feed-
back from the second phase to the first phase and
possibly wrong representations cannot be rectified
based on the results of hypernymy organization,
which causes the error propagation problem. Sec-
ondly, some methods (Bansal et al., 2014; Zhang
et al., 2016) do explore the taxonomy space by
regarding the induction of taxonomy structure as
inferring the conditional distribution of edges. In
other words, they use the product of edge proba-
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Figure 1: An illustrative example showing the process of taxonomy induction. The input vocabulary
V0 is {“working dog”, “pinscher”, “shepherd dog”, ...}, and the initial taxonomy T0 is empty. We use
a virtual “root” node to represent T0 at t = 0. At time t = 5, there are 5 terms on the taxonomy T5

and 3 terms left to be attached: Vt = {“shepherd dog”, “collie”, “affenpinscher”}. Suppose the term
“affenpinscher” is selected and put under “pinscher”, then the remaining vocabulary Vt+1 at next time
step becomes {“shepherd dog”, “collie”}. Finally, after |V0| time steps, all the terms are attached to the
taxonomy and V|V0| = V8 = {}. A full taxonomy is then constructed from scratch.

bilities to represent the taxonomy quality. How-
ever, the edges are treated equally, while in reality,
they contribute to the taxonomy differently. For
example, a high-level edge is likely to be more
important than a bottom-out edge because it has
much more influence on its descendants. In ad-
dition, these methods cannot explicitly capture the
holistic taxonomy structure by optimizing global
metrics.

To address the above issues, we propose to
jointly conduct hypernymy detection and organi-
zation by learning term pair representations and
constructing the taxonomy simultaneously. Since
it is infeasible to estimate the quality of all pos-
sible taxonomies, we design an end-to-end rein-
forcement learning (RL) model to combine the
two phases. Specifically, we train an RL agent that
employs the term pair representations using multi-
ple sources of information and determines which
term to select and where to place it on the tax-
onomy via a policy network. The feedback from
hypernymy organization is propagated back to the
hypernymy detection phase, based on which the
term pair representations are adjusted. All compo-
nents are trained in an end-to-end manner with cu-
mulative rewards, measured by a holistic tree met-
ric over the training taxonomies. The probability
of a full taxonomy is no longer a simple aggre-
gated probability of its edges. Instead, we assess
an edge based on how much it can contribute to
the whole quality of the taxonomy.

We perform two sets of experiments to eval-
uate the effectiveness of our proposed approach.
First, we test the end-to-end taxonomy induction
performance by comparing our approach with the
state-of-the-art two-phase methods, and show that
our approach outperforms them significantly on

the quality of constructed taxonomies. Second, we
use the same (noisy) hypernym graph as the input
of all compared methods, and demonstrate that our
RL approach does better hypernymy organization
through optimizing metrics that can capture holis-
tic taxonomy structure.

Contributions. In summary, we have made the
following contributions: (1) We propose a deep
reinforcement learning approach to unify hyper-
nymy detection and organization so as to induct
taxonomies in an end-to-end manner. (2) We de-
sign a policy network to incorporate semantic in-
formation of term pairs and use cumulative re-
wards to measure the quality of constructed tax-
onomies holistically. (3) Experiments on two pub-
lic datasets from different domains demonstrate
the superior performance of our approach com-
pared with state-of-the-art methods. We also show
that our method can effectively reduce error prop-
agation and capture global taxonomy structure.

2 Automatic Taxonomy Induction

2.1 Problem Definition

We define a taxonomy T = (V, R) as a tree-
structured hierarchy with term set V (i.e., vocab-
ulary), and edge set R (which indicates is-a rela-
tionship between terms). A term v ∈ V can be ei-
ther a unigram or a multi-word phrase. The task of
end-to-end taxonomy induction takes a set of train-
ing taxonomies and related resources (e.g., back-
ground text corpora) as input, and aims to learn a
model to construct a full taxonomy T by adding
terms from a given vocabulary V0 onto an empty
hierarchy T0 one at a time. An illustration of the
taxonomy induction process is shown in Fig. 1.
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2.2 Modeling Hypernymy Relation
Determining which term to select from V0 and
where to place it on the current hierarchy requires
understanding of the semantic relationships be-
tween the selected term and all the other terms.
We consider multiple sources of information (i.e.,
resources) for learning hypernymy relation rep-
resentations of term pairs, including dependency
path-based contextual embedding and distribu-
tional term embeddings (Shwartz et al., 2016).

Path-based Information. We extract the shortest
dependency paths between each co-occurring term
pair from sentences in the given background cor-
pora. Each path is represented as a sequence of
edges that goes from term x to term y in the de-
pendency tree, and each edge consists of the word
lemma, the part-of-speech tag, the dependency la-
bel and the edge direction between two contiguous
words. The edge is represented by the concatena-
tion of embeddings of its four components:

Ve = [Vl, , Vpos, Vdep, Vdir].

Instead of treating the entire dependency path
as a single feature, we encode the sequence of de-
pendency edges Ve1 , Ve2 , ..., Vek

using an LSTM
so that the model can focus on learning from parts
of the path that are more informative while ig-
noring others. We denote the final output of the
LSTM for path p as Op, and use P(x, y) to repre-
sent the set of all dependency paths between term
pair (x, y). A single vector representation of the
term pair (x, y) is then computed as PP(x,y), the
weighted average of all its path representations by
applying an average pooling:

PP(x,y) =

∑
p∈P(x,y) c(x,y)(p) · Op∑

p∈P(x,y) c(x,y)(p)
,

where c(x,y)(p) denotes the frequency of path p in
P(x, y). For those term pairs without dependency
paths, we use a randomly initialized empty path to
represent them as in Shwartz et al. (2016).

Distributional Term Embedding. The previous
path-based features are only applicable when two
terms co-occur in a sentence. In our experiments,
however, we found that only about 17% of term
pairs have sentence-level co-occurrences.2 To al-
leviate the sparse co-occurrence issue, we concate-
nate the path representation PP(x,y) with the word

2In comparison, more than 70% of term pairs have
sentence-level co-occurrences in BLESS (Baroni and Lenci,
2011), a standard hypernymy detection dataset.

embeddings of x and y, which capture the distri-
butional semantics of two terms.

Surface String Features. In practice, even the
embeddings of many terms are missing because
the terms in the input vocabulary may be multi-
word phrases, proper nouns or named entities,
which are likely not covered by the external pre-
trained word embeddings. To address this issue,
we utilize several surface features described in
previous studies (Yang and Callan, 2009; Bansal
et al., 2014; Zhang et al., 2016). Specifically, we
employ Capitalization, Ends with, Contains, Suffix
match, Longest common substring and Length dif-
ference. These features are effective for detecting
hypernyms solely based on the term pairs.

Frequency and Generality Features. Another
feature source that we employ is the hyper-
nym candidates from TAXI3 (Panchenko et al.,
2016). These hypernym candidates are extracted
by lexico-syntactic patterns and may be noisy. As
only term pairs and the co-occurrence frequen-
cies of them (under specific patterns) are available,
we cannot recover the dependency paths between
these terms. Thus, we design two features that are
similar to those used in (Panchenko et al., 2016;
Gupta et al., 2017). 4

• Normalized Frequency Diff. For a hyponym-
hypernym pair (xi, xj) where xi is the hy-
ponym and xj is the hypernym, its normal-
ized frequency is defined as freqn(xi, xj) =

freq(xi,xj)
maxk freq(xi,xk) , where freq(xi, xj) denotes the
raw frequency of (xi, xj). The final fea-
ture score is defined as freqn(xi, xj) −
freqn(xj , xi), which down-ranks synonyms and
co-hyponyms. Intuitively, a higher score in-
dicates a higher probability that the term pair
holds the hypernymy relation.

• Generality Diff. The generality g(x) of a term x
is defined as the logarithm of the number of its
distinct hyponyms, i.e., g(x) = log(1+|hypo|),
where for any hypo ∈ hypo, (hypo, x) is a hy-
pernym candidate. A high g(x) of the term x
implies that x is general since it has many dis-
tinct hyponyms. The generality of a term pair is
defined as the difference in generality between
xj and xi: g(xj) − g(xi). This feature would

3http://tudarmstadt-lt.github.io/taxi/
4Since the features use additional resource, we wouldn’t

include them unless otherwise specified.
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promote term pairs with the right level of gener-
ality and penalize term pairs that are either too
general or too specific.

The surface, frequency, and generality features
are binned and their embeddings are concatenated
as a part of the term pair representation. In sum-
mary, the final term pair representation Rxy has
the following form:

Rxy = [PP(x,y), Vwx , Vwy , VF (x,y)],

where PP(x,y), Vwx , Vwy , VF (x,y) denote the path
representation, the word embedding of x and y,
and the feature embeddings, respectively.

Our approach is general and can be flexibly ex-
tended to incorporate different feature representa-
tion components introduced by other relation ex-
traction models (Zhang et al., 2017; Lin et al.,
2016; Shwartz et al., 2016). We leave in-depth
discussion of the design choice of hypernymy re-
lation representation components as future work.

3 Reinforcement Learning for
End-to-End Taxonomy Induction

We present the reinforcement learning (RL) ap-
proach to taxonomy induction in this section. The
RL agent employs the term pair representations
described in Section 2.2 as input, and explores
how to generate a whole taxonomy by selecting
one term at each time step and attaching it to the
current taxonomy. We first describe the environ-
ment, including the actions, states, and rewards.
Then, we introduce how to choose actions via a
policy network.

3.1 Actions

We regard the process of building a taxonomy as
making a sequence of actions. Specifically, we de-
fine that an action at at time step t is to (1) se-
lect a term x1 from the remaining vocabulary Vt;
(2) remove x1 from Vt, and (3) attach x1 as a hy-
ponym of one term x2 that is already on the cur-
rent taxonomy Tt. Therefore, the size of action
space at time step t is |Vt| × |Tt|, where |Vt| is
the size of the remaining vocabulary Vt, and |Tt|
is the number of terms on the current taxonomy.
At the beginning of each episode, the remaining
vocabulary V0 is equal to the input vocabulary and
the taxonomy T0 is empty. During the taxonomy
induction process, the following relations always
hold: |Vt| = |Vt−1| − 1, |Tt| = |Tt−1| + 1, and

|Vt| + |Tt| = |V0|. The episode terminates when
all the terms are attached to the taxonomy, which
makes the length of one episode equal to |V0|.

A remaining issue is how to select the first term
when no terms are on the taxonomy. One approach
that we tried is to add a virtual node as root and
consider it as if a real node. The root embedding
is randomly initialized and updated with other pa-
rameters. This approach presumes that all tax-
onomies share a common root representation and
expects to find the real root of a taxonomy via the
term pair representations between the virtual root
and other terms. Another approach that we ex-
plored is to postpone the decision of root by ini-
tializing T with a random term as current root at
the beginning of one episode, and allowing the se-
lection of new root by attaching one term as the
hypernym of current root. In this way, it over-
comes the lack of prior knowledge when the first
term is chosen. The size of action space then be-
comes |At| = |Vt| × |Tt| + |Vt|, and the length of
one episode becomes |V0| − 1. We compare the
performance of the two approaches in Section 4.

3.2 States
The state s at time t comprises the current taxon-
omy Tt and the remaining vocabulary Vt. At each
time step, the environment provides the informa-
tion of current state, based on which the RL agent
takes an action. Once a term pair (x1, x2) is se-
lected, the position of the new term x1 is automati-
cally determined since the other term x2 is already
on the taxonomy and we can simply attach x1 by
adding an edge between x1 and x2.

3.3 Rewards
The agent takes a scalar reward as feedback of
its actions to learn its policy. One obvious re-
ward is to wait until the end of taxonomy induc-
tion, and then compare the predicted taxonomy
with gold taxonomy. However, this reward is de-
layed and difficult to measure individual actions
in our scenario. Instead, we use reward shap-
ing, i.e., giving intermediate rewards at each time
step, to accelerate the learning process. Empir-
ically, we set the reward r at time step t to be
the difference of Edge-F1 (defined in Section 4.2
and evaluated by comparing the current taxonomy
with the gold taxonomy) between current and last
time step: rt = F1et − F1et−1 . If current Edge-
F1 is better than that at last time step, the reward
would be positive, and vice versa. The cumula-
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Figure 2: The architecture of the policy network. The dependency paths are encoded and concatenated
with word embeddings and feature embeddings, and then fed into a two-layer feed-forward network.

tive reward from current time step to the end of
an episode would cancel the intermediate rewards
and thus reflect whether current action improves
the overall performance or not. As a result, the
agent would not focus on the selection of current
term pair but have a long-term view that takes fol-
lowing actions into account. For example, suppose
there are two actions at the same time step. One
action attaches a leaf node to a high-level node,
and the other action attaches a non-leaf node to
the same high-level node. Both attachments form
a wrong edge but the latter one is likely to receive
a higher cumulative reward because its following
attachments are more likely to be correct.

3.4 Policy Network

After we introduce the term pair representations
and define the states, actions, and rewards, the
problem becomes how to choose an action from
the action space, i.e., which term pair (x1, x2)
should be selected given the current state? To
solve the problem, we parameterize each action a
by a policy network π(a | s; WRL). The architec-
ture of our policy network is shown in Fig. 2. For
each term pair, its representation is obtained by the
path LSTM encoder, the word embeddings of both
terms, and the embeddings of features. By stack-
ing the term pair representations, we can obtain an
action matrix At with size (|Vt| × |Tt|)× dim(R),
where (|Vt| × |Tt|) denotes the number of possi-
ble actions (term pairs) at time t and dim(R) de-
notes the dimension of term pair representation R.
At is then fed into a two-layer feed-forward net-
work followed by a softmax layer which outputs

the probability distribution of actions.5 Finally, an
action at is sampled based on the probability dis-
tribution of the action space:

Ht = ReLU(W1
RLAT

t + b1
RL),

π(a | s; WRL) = softmax(W2
RLHt + b2

RL),

at ∼ π(a | s; WRL).

At the time of inference, instead of sampling an
action from the probability distribution, we greed-
ily select the term pair with the highest probability.

We use REINFORCE (Williams, 1992), one in-
stance of the policy gradient methods as the opti-
mization algorithm. Specifically, for each episode,
the weights of the policy network are updated as
follows:

WRL = WRL + α

T∑

t=1

∇logπ(at | s; WRL) · vt,

where vi =
∑T

t=i γ
t−irt is the culmulative future

reward at time i and γ ∈ [0, 1] is a discounting
factor of future rewards.

To reduce variance, 10 rollouts for each training
sample are run and the rewards are averaged. An-
other common strategy for variance reduction is
to use a baseline and give the agent the difference
between the real reward and the baseline reward
instead of feeding the real reward directly. We use
a moving average of the reward as the baseline for
simplicity.

5We tried to encode induction history by feeding repre-
sentations of previously selected term pairs into an LSTM,
and leveraging the output of the LSTM as history representa-
tion (concatenating it with current term pair representations
or passing it to a feed-forward network). However, we didn’t
observe clear performance change.
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3.5 Implementation Details

We use pre-trained GloVe word vectors (Penning-
ton et al., 2014) with dimensionality 50 as word
embeddings. We limit the maximum number of
dependency paths between each term pair to be
200 because some term pairs containing general
terms may have too many dependency paths. We
run with different random seeds and hyperparam-
eters and use the validation set to pick the best
model. We use an Adam optimizer with initial
learning rate 10−3. We set the discounting factor γ
to 0.4 as it is shown that using a smaller discount
factor than defined can be viewed as regulariza-
tion (Jiang et al., 2015). Since the parameter up-
dates are performed at the end of each episode, we
cache the term pair representations and reuse them
when the same term pairs are encountered again
in the same episode. As a result, the proposed ap-
proach is very time efficient – each training epoch
takes less than 20 minutes on a single-core CPU
using DyNet (Neubig et al., 2017).

4 Experiments

We design two experiments to demonstrate the ef-
fectiveness of our proposed RL approach for tax-
onomy induction. First, we compare our end-to-
end approach with two-phase methods and show
that our approach yields taxonomies with higher
quality through reducing error propagation and
optimizing towards holistic metrics. Second, we
conduct a controlled experiment on hypernymy
organization, where the same hypernym graph is
used as the input of both our approach and the
compared methods. We show that our RL method
is more effective at hypernymy organization.

4.1 Experiment Setup

Here we introduce the details of our two experi-
ments on validating that (1) the proposed approach
can effectively reduce error propagation; and (2)
our approach yields better taxonomies via opti-
mizing metrics on holistic taxonomy structure.

Performance Study on End-to-End Taxonomy
Induction. In the first experiment, we show that
our joint learning approach is superior to two-
phase methods. Towards this goal, we compare
with TAXI (Panchenko et al., 2016), a typical
two-phase approach, two-phase HypeNET, im-
plemented by pairwise hypernymy detection and
hypernymy organization using MST, and Bansal

et al. (2014). The dataset we use in this experi-
ment is from Bansal et al. (2014), which is a set of
medium-sized full-domain taxonomies consisting
of bottom-out full subtrees sampled from Word-
Net. Terms in different taxonomies are from var-
ious domains such as animals, general concepts,
daily necessities. Each taxonomy is of height
four (i.e., 4 nodes from root to leaf) and contains
(10, 50] nodes. The dataset contains 761 non-
overlapped taxonomies in total and is partitioned
by 70/15/15% (533/114/114) as training, valida-
tion, and test set, respectively.

Testing on Hypernymy Organization. In the
second experiment, we show that our approach
is better at hypernymy organization by leverag-
ing the global taxonomy structure. For a fair
comparison, we reuse the hypernym graph as in
TAXI (Panchenko et al., 2016) and SubSeq (Gupta
et al., 2017) so that the inputs of each model are
the same. Specifically, we restrict the action space
to be the same as the baselines by considering only
term pairs in the hypernym graph, rather than all
|V |×|T | possible term pairs. As a result, it is pos-
sible that at some point no more hypernym candi-
dates can be found but the remaining vocabulary is
still not empty. If the induction terminates at this
point, we call it a partial induction. We can also
continue the induction by restoring the original ac-
tion space at this moment so that all the terms in V
are eventually attached to the taxonomy. We call
this setting a full induction. In this experiment,
we use the English environment and science tax-
onomies in the SemEval-2016 task 13 (TExEval-
2) (Bordea et al., 2016). Each taxonomy is com-
posed of hundreds of terms, which is much larger
than the WordNet taxonomies. The taxonomies
are aggregated from existing resources such as
WordNet, Eurovoc6, and the Wikipedia Bitaxon-
omy (Flati et al., 2014). Since this dataset provides
no training data, we train our model using the
WordNet dataset in the first experiment. To avoid
possible overlap between these two sources, we
exclude those taxonomies constructed from Word-
Net.

In both experiments, we combine three pub-
lic corpora – the latest Wikipedia dump, the
UMBC web-based corpus (Han et al., 2013) and
the One Billion Word Language Modeling Bench-
mark (Chelba et al., 2013). Only sentences where
term pairs co-occur are reserved, which results in

6http://eurovoc.europa.eu/drupal/
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Model Pa Ra F1a Pe Re F1e

TAXI 66.1 13.9 23.0 54.8 18.0 27.1
HypeNET 32.8 26.7 29.4 26.1 17.2 20.7

HypeNET+MST 33.7 41.1 37.0 29.2 29.2 29.2
TaxoRL (RE) 35.8 47.4 40.8 35.4 35.4 35.4
TaxoRL (NR) 41.3 49.2 44.9 35.6 35.6 35.6

Bansal et al. (2014) 48.0 55.2 51.4 - - -
TaxoRL (NR) + FG 52.9 58.6 55.6 43.8 43.8 43.8

Table 1: Results of the end-to-end taxonomy in-
duction experiment. Our approach significantly
outperforms two-phase methods (Panchenko et al.,
2016; Shwartz et al., 2016; Bansal et al., 2014).
Bansal et al. (2014) and TaxoRL (NR) + FG are
listed separately because they use extra resources.

a corpus with size 2.6 GB for the WordNet dataset
and 810 MB for the TExEval-2 dataset. Depen-
dency paths between term pairs are extracted from
the corpus via spaCy7.

4.2 Evaluation Metrics

Ancestor-F1. It compares the ancestors (“is-a”
pairs) on the predicted taxonomy with those on the
gold taxonomy. We use Pa, Ra, F1a to denote the
precision, recall, and F1-score, respectively:

Pa =
|is-asys ∧ is-agold|

|is-asys|
, Ra =

|is-asys ∧ is-agold|
|is-agold|

.

Edge-F1. It is more strict than Ancestor-F1 since

it only compares predicted edges with gold edges.
Similarly, we denote edge-based metrics as Pe,
Re, and F1e, respectively. Note that Pe = Re =
F1e if the number of predicted edges is the same
as gold edges.

4.3 Results

Comparison on End-to-End Taxonomy Induc-
tion. Table 1 shows the results of the first exper-
iment. HypeNET (Shwartz et al., 2016) uses ad-
ditional surface features described in Section 2.2.
HypeNET+MST extends HypeNET by first con-
structing a hypernym graph using HypeNET’s out-
put as weights of edges and then finding the
MST (Chu, 1965) of this graph. TaxoRL (RE)
denotes our RL approach which assumes a com-
mon Root Embedding, and TaxoRL (NR) denotes
its variant that allows a New Root to be added.

We can see that TAXI has the lowest F1a while
HypeNET performs the worst in F1e. Both TAXI
and HypeNET’s F1a and F1e are lower than 30.
HypeNET+MST outperforms HypeNET in both

7https://spacy.io/

Model Pa Ra F1a Pe Re F1e

Env

TAXI (DAG) 50.1 32.7 39.6 33.8 26.8 29.9
TAXI (tree) 67.5 30.8 42.3 41.1 23.1 29.6

SubSeq - - - - - 22.4
TaxoRL (Partial) 51.6 36.4 42.7 37.5 24.2 29.4
TaxoRL (Full) 47.2 54.6 50.6 32.3 32.3 32.3

Sci

TAXI (DAG) 61.6 41.7 49.7 38.8 34.8 36.7
TAXI (tree) 76.8 38.3 51.1 44.8 28.8 35.1

SubSeq - - - - - 39.9
TaxoRL (Partial) 84.6 34.4 48.9 56.9 33.0 41.8
TaxoRL (Full) 68.3 52.9 59.6 37.9 37.9 37.9

Table 2: Results of the hypernymy orga-
nization experiment. Our approach outper-
forms Panchenko et al. (2016); Gupta et al. (2017)
when the same hypernym graph is used as input.
The precision of partial induction in both metrics
is high. The precision of full induction is relatively
lower but its recall is much higher.

F1a and F1e, because it considers the global tax-
onomy structure, although the two phases are per-
formed independently. TaxoRL (RE) uses ex-
actly the same input as HypeNET+MST and yet
achieves significantly better performance, which
demonstrates the superiority of combining the
phases of hypernymy detection and hypernymy
organization. Also, we found that presuming a
shared root embedding for all taxonomies can be
inappropriate if they are from different domains,
which explains why TaxoRL (NR) performs bet-
ter than TaxoRL (RE). Finally, after we add the
frequency and generality features (TaxoRL (NR)
+ FG), our approach outperforms Bansal et al.
(2014), even if a much smaller corpus is used.8

Analysis on Hypernymy Organization. Table 2
lists the results of the second experiment. TAXI
(DAG) (Panchenko et al., 2016) denotes TAXI’s
original performance on the TExEval-2 dataset.9

Since we don’t allow DAG in our setting, we con-
vert its results to trees (denoted by TAXI (tree)) by
only keeping the first parent of each node. Sub-
Seq (Gupta et al., 2017) also reuses TAXI’s hy-
pernym candidates. TaxoRL (Partial) and Tax-
oRL (Full) denotes partial induction and full in-
duction, respectively. Our joint RL approach out-
performs baselines in both domains substantially.
TaxoRL (Partial) achieves higher precision in both
ancestor-based and edge-based metrics but has rel-

8Bansal et al. (2014) use an unavailable resource (Brants
and Franz, 2006) which contains one trillion tokens while our
public corpus contains several billion tokens. The frequency
and generality features are sparse because the vocabulary that
TAXI (in the TExEval-2 competition) used for focused crawl-
ing and hypernymy detection was different.

9alt.qcri.org/semeval2016/task13/index.php?id=evaluation
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atively lower recall since it discards some terms.
In addition, it achieves the best F1e in science
domain. TaxoRL (Full) has the highest recall in
both domains and metrics, with the compromise
of lower precision. Overall, TaxoRL (Full) per-
forms the best in both domains in terms of F1a

and achieves best F1e in environment domain.

5 Ablation Analysis and Case Study

In this section, we conduct ablation analysis and
present a concrete case for better interpreting our
model and experimental results.

Table 3 shows the ablation study of TaxoRL
(NR) on the WordNet dataset. As one may find,
different types of features are complementary to
each other. Combining distributional and path-
based features performs better than using either of
them alone (Shwartz et al., 2016). Adding surface
features helps model string-level statistics that are
hard to capture by distributional or path-based fea-
tures. Significant improvement is observed when
more data is used, meaning that standard corpora
(such as Wikipedia) might not be enough for com-
plicated taxonomies like WordNet.

Fig. 3 shows the results of taxonomy about fil-
ter. We denote the selected term pair at time step
t as (hypo, hyper, t). Initially, the term water filter
is randomly chosen as the taxonomy root. Then,
a wrong term pair (water filter, air filter, 1) is se-
lected possibly due to the noise and sparsity of fea-
tures, which makes the term air filter become the
new root. (air filter, filter, 2) is selected next and
the current root becomes filter that is identical to
the real root. After that, term pairs such as (fuel
filter, filter, 3), (coffee filter, filter, 4) are selected
correctly, mainly because of the substring inclu-
sion intuition. Other term pairs such as (colander,
strainer, 13), (glass wool, filter, 16) are discovered
later, largely by the information encoded in the de-
pendency paths and embeddings. For those undis-
covered relations, (filter tip, air filter) has no de-
pendency path in the corpus. sifter is attached to
the taxonomy before its hypernym sieve. There is
no co-occurrence between bacteria bed (or drain
basket) and other terms. In addition, it is hard to
utilize the surface features since they “look differ-
ent” from other terms. That is also why (bacteria
bed, air filter, 17) and (drain basket, air filter, 18)
are attached in the end: our approach prefers to
select term pairs with high confidence first.

Model Pa Ra F1a F1e

Distributional Info 27.1 24.3 25.6 13.8
Path-based Info 27.8 48.5 33.7 27.4

D + P 36.6 39.4 37.9 28.3
D + P + Surface Features 41.3 49.2 44.9 35.6

D + P + S + FG 52.9 58.6 55.6 43.8

Table 3: Ablation study on the WordNet
dataset (Bansal et al., 2014). Pe and Re are omit-
ted because they are the same as F1e for each
model. We can see that our approach benefits from
multiple sources of information which are comple-
mentary to each other.

6 Related Work

6.1 Hypernymy Detection

Finding high-quality hypernyms is of great impor-
tance since it serves as the first step of taxonomy
induction. In previous works, there are mainly
two categories of approaches for hypernymy de-
tection, namely pattern-based and distributional
methods. Pattern-based methods consider lexico-
syntactic patterns between the joint occurrences of
term pairs for hypernymy detection. They gen-
erally achieve high precision but suffer from low
recall. Typical methods that leverage patterns for
hypernym extraction include (Hearst, 1992; Snow
et al., 2005; Kozareva and Hovy, 2010; Panchenko
et al., 2016; Nakashole et al., 2012). Distributional
methods leverage the contexts of each term sepa-
rately. The co-occurrence of term pairs is hence
unnecessary. Some distributional methods are de-
veloped in an unsupervised manner. Measures
such as symmetric similarity (Lin et al., 1998) and
those based on distributional inclusion hypothe-
sis (Weeds et al., 2004; Chang et al., 2017) were
proposed. Supervised methods, on the other hand,
usually have better performance than unsuper-
vised methods for hypernymy detection. Recent
works towards this direction include (Fu et al.,
2014; Rimell, 2014; Yu et al., 2015; Tuan et al.,
2016; Shwartz et al., 2016).

6.2 Taxonomy Induction

There are many lines of work for taxonomy in-
duction in the prior literature. One line of
works (Snow et al., 2005; Yang and Callan, 2009;
Shen et al., 2012; Jurgens and Pilehvar, 2015)
aims to complete existing taxonomies by attach-
ing new terms in an incremental way. Snow et al.
(2005) enrich WordNet by maximizing the prob-
ability of an extended taxonomy given evidence
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of relations from text corpora. Shen et al. (2012)
determine whether an entity is on the taxonomy
and either attach it to the right category or link it
to an existing one based on the results. Another
line of works (Suchanek et al., 2007; Ponzetto and
Strube, 2008; Flati et al., 2014) focuses on the tax-
onomy induction of existing encyclopedias (e.g.,
Wikipedia), mainly by employing the nature that
they are already organized into semi-structured
data. To deal with the issue of incomplete cov-
erage, some works (Liu et al., 2012; Dong et al.,
2014; Panchenko et al., 2016; Kozareva and Hovy,
2010) utilize data from domain-specific resources
or the Web. Panchenko et al. (2016) extract hy-
pernyms by patterns from general purpose corpora
and domain-specific corpora bootstrapped from
the input vocabulary. Kozareva and Hovy (2010)
harvest new terms from the Web by employing
Hearst-like lexico-syntactic patterns and validate
the learned is-a relations by a web-based concept
positioning procedure.

Many works (Kozareva and Hovy, 2010; Anh
et al., 2014; Velardi et al., 2013; Bansal et al.,
2014; Zhang et al., 2016; Panchenko et al., 2016;
Gupta et al., 2017) cast the task of hypernymy
organization as a graph optimization problem.
Kozareva and Hovy (2010) begin with a set of root
terms and leaf terms and aim to generate interme-
diate terms by deriving the longest path from the
root to leaf in a noisy hypernym graph. Velardi
et al. (2013) induct a taxonomy from the hyper-
nym graph via optimal branching and a weighting
policy. Bansal et al. (2014) regard the induction
of a taxonomy as a structured learning problem
by building a factor graph to model the relations
between edges and siblings, and output the MST
found by the Chu-Liu/Edmond’s algorithm (Chu,
1965). Zhang et al. (2016) propose a probabilis-
tic Bayesian model which incorporates visual fea-
tures (images) in addition to text features (words)
to improve the performance. The optimal taxon-
omy is also found by the MST. Gupta et al. (2017)
extract hypernym subsequences based on hyper-
nym pairs, and regard the task of taxonomy in-
duction as an instance of the minimum-cost flow
problem.

7 Conclusion and Future Work

This paper presents a novel end-to-end reinforce-
ment learning approach for automatic taxonomy
induction. Unlike previous two-phase methods
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Figure 3: The gold taxonomy in WordNet is on the
left. The predicted taxonomy is on the right. The
numbers indicate the order of term pair selections.
Term pairs with high confidence are selected first.

that treat term pairs independently or equally,
our approach learns the representations of term
pairs by optimizing a holistic tree metric over the
training taxonomies. The error propagation be-
tween two phases is thus effectively reduced and
the global taxonomy structure is better captured.
Experiments on two public datasets from differ-
ent domains show that our approach outperforms
state-of-the-art methods significantly. In the fu-
ture, we will explore more strategies towards term
pair selection (e.g., allow the RL agent to remove
terms from the taxonomy) and reward function de-
sign. In addition, study on how to effectively en-
code induction history will be interesting.
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Abstract

Word Sense Disambiguation (WSD) aims
to identify the correct meaning of poly-
semous words in the particular context.
Lexical resources like WordNet which are
proved to be of great help for WSD in
the knowledge-based methods. However,
previous neural networks for WSD always
rely on massive labeled data (context), ig-
noring lexical resources like glosses (sense
definitions). In this paper, we integrate
the context and glosses of the target word
into a unified framework in order to make
full use of both labeled data and lexi-
cal knowledge. Therefore, we propose
GAS: a gloss-augmented WSD neural net-
work which jointly encodes the context
and glosses of the target word. GAS mod-
els the semantic relationship between the
context and the gloss in an improved mem-
ory network framework, which breaks
the barriers of the previous supervised
methods and knowledge-based methods.
We further extend the original gloss of
word sense via its semantic relations in
WordNet to enrich the gloss informa-
tion. The experimental results show that
our model outperforms the state-of-the-
art systems on several English all-words
WSD datasets.

1 Introduction

Word Sense Disambiguation (WSD) is a funda-
mental task and long-standing challenge in Nat-
ural Language Processing (NLP). There are sev-
eral lines of research on WSD. Knowledge-based
methods focus on exploiting lexical resources to
infer the senses of word in the context. Super-
vised methods usually train multiple classifiers

with manual designed features. Although super-
vised methods can achieve the state-of-the-art per-
formance (Raganato et al., 2017b,a), there are still
two major challenges.

Firstly, supervised methods (Zhi and Ng, 2010;
Iacobacci et al., 2016) usually train a dedicated
classifier for each word individually (often called
word expert). So it can not easily scale up to
all-words WSD task which requires to disam-
biguate all the polysemous word in texts 1. Recent
neural-based methods (Kågebäck and Salomons-
son, 2016; Raganato et al., 2017a) solve this prob-
lem by building a unified model for all the polyse-
mous words, but they still can’t beat the best word
expert system.

Secondly, all the neural-based methods always
only consider the local context of the target
word, ignoring the lexical resources like Word-
Net (Miller, 1995) which are widely used in the
knowledge-based methods. The gloss, which ex-
tensionally defines a word sense meaning, plays a
key role in the well-known Lesk algorithm (Lesk,
1986). Recent studies (Banerjee and Pedersen,
2002; Basile et al., 2014) have shown that enrich-
ing gloss information through its semantic rela-
tions can greatly improve the accuracy of Lesk al-
gorithm.

To this end, our goal is to incorporate the gloss
information into a unified neural network for all
of the polysemous words. We further consider ex-
tending the original gloss through its semantic re-
lations in our framework. As shown in Figure 1,
the glosses of hypernyms and hyponyms can en-
rich the original gloss information as well as help
to build better a sense representation. Therefore,
we integrate not only the original gloss but also
the related glosses of hypernyms and hyponyms
into the neural network.

1If there are N polysemous words in texts, they need to
train N classifiers individually.
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bed2
Original gloss

a plot of ground in which 
plants are growing

a small area of ground covered by 
specific vegetation

flowerbed1

a bed in which 
flowers are growing

seedbed1

a bed where seedlings are 
grown before transplanting

turnip_bed1

a bed in which 
turnips are growing

Example sentence
the gardener planted a 

bed of roses

  

H
yp

e
rn

ym
y

H
yp

o
n

ym
y

plot2

Figure 1: The hypernym (green node) and hy-
ponyms (blue nodes) for the 2nd sense bed2 of
bed, which means a plot of ground in which plants
are growing, rather than the bed for sleeping in.
The figure shows that bed2 is a kind of plot2, and
bed2 includes flowerbed1, seedbed1, etc.

In this paper, we propose a novel model GAS: a
gloss-augmented WSD neural network which is a
variant of the memory network (Sukhbaatar et al.,
2015b; Kumar et al., 2016; Xiong et al., 2016).
GAS jointly encodes the context and glosses of the
target word and models the semantic relationship
between the context and glosses in the memory
module. In order to measure the inner relationship
between glosses and context more accurately, we
employ multiple passes operation within the mem-
ory as the re-reading process and adopt two mem-
ory updating mechanisms.

The main contributions of this paper are listed
as follows:

• To the best of our knowledge, our model is
the first to incorporate the glosses into an
end-to-end neural WSD model. In this way,
our model can benefit from not only massive
labeled data but also rich lexical knowledge.

• In order to model semantic relationship of
context and glosses, we propose a gloss-
augmented neural network (GAS) in an im-
proved memory network paradigm.

• We further expand the gloss through its se-
mantic relations to enrich the gloss informa-
tion and better infer the context. We extend
the gloss module in GAS to a hierarchical
framework in order to mirror the hierarchies
of word senses in WordNet.

• The experimental results on several English
all-words WSD benchmark datasets show
that our model outperforms the state-of-the-
art systems.

2 Related Work

Knowledge-based, supervised and neural-based
methods have already been applied to WSD task
(Navigli, 2009).

Knowledge-based WSD methods mainly ex-
ploit two kinds of knowledge to disambiguate pol-
ysemous words: 1) The gloss, which defines a
word sense meaning, is mainly used in Lesk al-
gorithm (Lesk, 1986) and its variants. 2) The
structure of the semantic network, whose nodes
are synsets 2 and edges are semantic relations,
is mainly used in graph-based algorithms (Agirre
et al., 2014; Moro et al., 2014).

Supervised methods (Zhi and Ng, 2010; Ia-
cobacci et al., 2016) usually involve each target
word as a separate classification problem (often
called word expert) and train classifiers based on
manual designed features.

Although word expert supervised WSD meth-
ods perform best in terms of accuray, they are less
flexible than knowledge-based methods in the all-
words WSD task (Raganato et al., 2017a). To
deal with this problem, recent neural-based meth-
ods aim to build a unified classifier which shares
parameters among all the polysemous words.
Kågebäck and Salomonsson (2016) leverages the
bidirectional long short-term memory network
which shares model parameters among all the pol-
ysemous words. Raganato et al. (2017a) transfers
the WSD problem into a neural sequence labeling
task. However, none of the neural-based methods
can totally beat the best word expert supervised
methods on English all-words WSD datasets.

What’s more, all of the previous supervised
methods and neural-based methods rarely take the
lexical resources like WordNet (Fellbaum, 1998)
into consideration. Recent studies on sense em-
beddings have proved that lexical resources are
helpful. Chen et al. (2015) trains word sense
embeddings through learning sentence level em-
beddings from glosses using a convolutional neu-
ral networks. Rothe and Schütze (2015) extends
word embeddings to sense embeddings by using
the constraints and semantic relations in WordNet.
They achieve an improvement of more than 1%
in WSD performance when using sense embed-
dings as WSD features for SVM classifier. This
work shows that integrating structural information
of lexical resources can help to word expert su-
pervised methods. However, sense embeddings

2A synset is a set of words that denote the same sense.
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can only indirectly help to WSD (as SVM clas-
sifier features). Raganato et al. (2017a) shows that
the coarse-grained semantic labels in WordNet can
help to WSD in a multi-task learning framework.
As far as we know, there is no study directly inte-
grates glosses or semantic relations of the Word-
Net into an end-to-end model.

In this paper, we focus on how to integrate
glosses into a unified neural WSD system. Mem-
ory network (Sukhbaatar et al., 2015b; Kumar
et al., 2016; Xiong et al., 2016) is initially pro-
posed to solve question answering problems. Re-
cent researches show that memory network ob-
tains the state-of-the-art results in many NLP tasks
such as sentiment classification (Li et al., 2017)
and analysis (Gui et al., 2017), poetry generation
(Zhang et al., 2017), spoken language understand-
ing (Chen et al., 2016), etc. Inspired by the suc-
cess of memory network used in many NLP tasks,
we introduce it into WSD. We make some adap-
tations to the initial memory network in order to
incorporate glosses and capture the inner relation-
ship between the context and glosses.

3 Incorporating Glosses into Neural
Word Sense Disambiguation

In this section, we first give an overview of the
proposed model GAS: a gloss-augmented WSD
neural network which integrates the context and
the glosses of the target word into a unified frame-
work. After that, each individual module is de-
scribed in detail.

3.1 Architecture of GAS

The overall architecture of the proposed model is
shown in Figure 2. It consists of four modules:

• Context Module: The context module en-
codes the local context (a sequence of sur-
rounding words) of the target word into a dis-
tributed vector representation.

• Gloss Module: Like the context module, the
gloss module encodes all the glosses of the
target word into a separate vector representa-
tions of the same size. In other words, we can
get |st| word sense representations according
to |st| 3 senses of the target word, where |st|
is the sense number of the target word wt .

3st is the sense set {s1t , s2t , . . . , spt } corresponding to the
target word xt

Gloss
Module

        

Context
Module

Memory
Module

Scoring
Module

Figure 2: Overview of Gloss-augmented Memory
Network for Word Sense Disambiguation.

• Memory Module: The memory module is
employed to model the semantic relationship
between the context embedding and gloss
embedding produced by context module and
gloss module respectively.

• Scoring Module: In order to benefit from
both labeled contexts and gloss knowledge,
the scoring module takes the context embed-
ding from context module and the last step
result from the memory module as input. Fi-
nally it generates a probability distribution
over all the possible senses of the target word.

Detailed architecture of the proposed model is
shown in Figure 3. The next four sections will
show detailed configurations in each module.

3.2 Context Module
Context module encodes the context of the target
word into a vector representation, which is also
called context embedding in this paper.

We leverage the bidirectional long short-term
memory network (Bi-LSTM) for taking both the
preceding and following words of the target word
into consideration. The input of this mod-
ule [x1, . . . , xt−1, xt+1, . . . , xTx ] is a sequence
of words surrounding the target word xt, where
Tx is the length of the context. After apply-
ing a lookup operation over the pre-trained word
embedding matrix M ∈ RD×V , we transfer a
one hot vector xi into a D-dimensional vec-
tor. Then, the forward LSTM reads the segment
(x1, . . . , xt−1) on the left of the target word xt
and calculates a sequence of forward hidden states
(
−→
h1, . . . ,

−→
h t−1). The backward LSTM reads the

segment (xTx , . . . , xt+1) on the right of the tar-
get word xt and calculates a sequence of backward
hidden states (

←−
h Tx , . . . ,

←−
h t+1). The context vec-

tor c is finally concatenated as

c = [
−→
h t−1 :

←−
h t+1] (1)
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Figure 3: Detailed architecture of our proposed model, which consists of a context module, a gloss
module, a memory module and a scoring module. The context module encodes the adjacent words
surrounding the target word into a vector c. The gloss module encodes the original gloss or extended
glosses into a vector gi. In the memory module, we calculate the inner relationship (as attention) between
context c and each gloss gi and then update the memory as mi at pass i. In the scoring module, we make
final predictions based on the last pass attention of memory module and the context vector c. Note
that GAS only uses the original gloss, while GASext uses the entended glosses through hypernymy and
hyponymy relations. In other words, the relation fusion layer (grey dotted box) only belongs to GASext.

where : is the concatenation operator.

3.3 Gloss Module
The gloss module encodes each gloss of the target
word into a fixed size vector like the context vec-
tor c, which is also called gloss embedding. We
further enrich the gloss information by taking se-
mantic relations and their associated glosses into
consideration.

This module contains a gloss reader layer and
a relation fusion layer. Gloss reader layer gener-
ates a vector representations for a gloss. Relation
fusion layer aims at modeling the semantic rela-
tions of each gloss in the expanded glosses list
which consists of related glosses of the original
gloss. Our model GAS with extended glosses is
denoted as GASext. GAS only encodes the orig-
inal gloss, while GASext encodes the expanded
glosses from hypernymy and hyponymy relations
(details in Figure 3).

3.3.1 Gloss Reader Layer
Gloss reader layer contains two parts: gloss ex-
pansion and gloss encoder. Gloss expansion is to
enrich the original gloss information through its

hypernymy and hyponymy relations in WordNet.
Gloss encoder is to encode each gloss into a vec-
tor representation.

Gloss Expansion: We only expand the glosses
of nouns and verbs via their corresponding hyper-
nyms and hyponyms. There are two reasons: One
is that most of polysemous words (about 80%) are
nouns and verbs; the other is that the most frequent
relations among word senses for nouns and verbs
are the hypernymy and hyponymy relations 4.

The original gloss is denoted as g0. Breadth-
first search method with a limited depth K is
employed to extract the related glosses. The
glosses of hypernyms within K depth are de-
noted as [g−1, g−2, . . . , g−L1 ]. The glosses
of hyponyms within K depth are denoted as
[g+1, g+2, . . . , g+L2 ]

5. Note that g+1 and g−1 are
the glosses of the nearest word sense.

Gloss Encoder: We denote the j-th 6 gloss in

4In WordNet, more than 95% of relations for nouns and
80% for verbs are hypernymy and hyponymy relations.

5Since one synset has one or more direct hypernyms and
hyponyms, L1 >= K and L2 >= K.

6Since GAS don’t have gloss expansion, j is always 0 and
gi = gi

0. See more in Figure 3.
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the expanded glosses list for ith sense of the target
word as a sequence of G words. Like the con-
text encoder, the gloss encoder also leverages Bi-
LSTM units to process the words sequence of the
gloss. The gloss representation gij is computed as
the concatenation of the last hidden states of the
forward and backward LSTM.

gij = [
−→
h
i,j

G :
←−
h
i,j

1 ] (2)

where j ∈ [−L1, . . . ,−1, 0,+1, . . . ,+L2] and :
is the concatenation operator .

3.3.2 Relation Fusion Layer
Relation fusion layer models the hypernymy
and hyponymy relations of the target word
sense. A forward LSTM is employed to
encode the hypernyms’ glosses of ith sense
(gi−L1

, . . . , gi−1, g
i
0) as a sequence of forward

hidden states (
−→
h
i

−L1
, . . . ,

−→
h
i

−1,
−→
h
i

0). A back-
ward LSTM is employed to encode the hy-
ponyms’ glosses of ith sense (gi+L2

, . . . , gi+1, g
i
0)

as a sequence of backward hidden states
(
←−
h
i

+L2
, . . . ,

←−
h
i

+1,
←−
h
i

0). In order to highlight the
original gloss gi0, the enhanced ith sense represen-
tation is concatenated as the final state of the for-
ward and backward LSTM.

gi = [
−→
h
i

0 :
←−
h
i

0] (3)

3.4 Memory Module
The memory module has two inputs: the context
vector c from the context module and the gloss
vectors {g1, g2, . . . , g|st|} from the gloss module,
where |st| is the number of word senses. We
model the inner relationship between the context
and glosses by attention calculation. Since one-
pass attention calculation may not fully reflect the
relationship between the context and glosses (de-
tails in Section 4.4.2), the memory module adopts
a repeated deliberation process. The process re-
peats reading gloss vectors in the following passes,
in order to highlight the correct word sense for the
following scoring module by a more accurate at-
tention calculation. After each pass, we update
the memory to refine the states of the current pass.
Therefore, memory module contains two phases:
attention calculation and memory update.

Attention Calculation: For each pass k, the at-
tention eki of gloss gi is generally computed as

eki = f(gi,m
k−1, c) (4)

where mk−1 is the memory vector in the (k − 1)-
th pass while c is the context vector. The scor-
ing function f calculates the semantic relation-
ship of the gloss and context, taking the vector
set (gi,mk−1, c) as input. In the first pass, the at-
tention reflects the similarity of context and each
gloss. In the next pass, the attention reflects the
similarity of adapted memory and each gloss. A
dot product is applied to calculate the similarity of
each gloss vector and context (or memory) vector.
We treat c as m0. So, the attention αki of gloss gi
at pass k is computed as a dot product of gi and
mk−1:

eki = gi ·mk−1 (5)

αki =
exp(eki )∑|st|
j=1 exp(e

j
i )

(6)

Memory Update: After calculating the atten-
tion, we store the memory state in uk which is a
weighted sum of gloss vectors and is computed as

uk =

n∑

i=1

αki gi (7)

where n is the hidden size of LSTM in the con-
text module and gloss module. And then, we up-
date the memory vectormk from last pass memory
mk−1, context vector c, and memory state uk. We
propose two memory update methods:

• Linear: we update the memory vector mk by
a linear transformation from mk−1

mk = Hmk−1 + uk (8)

where H ∈ R2n×2n.

• Concatenation: we get a new memory for k-
th pass by taking both the gloss embedding
and context embedding into consideration

mk = ReLU(W [mk−1 : uk : c] + b) (9)

where : is the concatenation operator, W ∈
Rn×6n and b ∈ R2n.

3.5 Scoring Module
The scoring module calculates the scores for all
the related senses {s1t , s2t , . . . , spt } corresponding
to the target word xt and finally outputs a sense
probability distribution over all senses.

The overall score for each word sense is deter-
mined by gloss attention αTMi from the last pass
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in the memory module, where TM is the number
of passes in the memory module. The eTM ( αTM
without Softmax) is regarded as the gloss score.

scoreg = eTM (10)

Meanwhile, a fully-connected layer is em-
ployed to calculate the context score.

scorec =Wxtc+ bxt (11)

where Wxt ∈ R|st|×2n, bxt ∈ R|st|, |st| is the
number of senses for the target word xt and n is
the number of hidden units in the LSTM.

It’s noteworthy that in Equation 11, each am-
biguous word xt has its corresponding weight ma-
trix Wxt and bias bxt in the scoring module.

In order to balance the importance of back-
ground knowledge and labeled data, we introduce
a parameter λ ∈ RN 7 in the scoring module
which is jointly learned during the training pro-
cess. The probability distribution ŷ over all the
word senses of the target word is calculated as:

ŷ = Softmax(λxtscorec + (1− λxt)scoreg)

where λxt is the parameter for word xt, and
λxt ∈ [0, 1].

During training, all model parameters are
jointly learned by minimizing a standard cross-
entropy loss between ŷ and the true label y.

4 Experiments and Evaluation

4.1 Dataset

Evaluation Dataset: we evaluate our model on
several English all-words WSD datasets. For
fair comparison, we use the benchmark datasets
proposed by Raganato et al. (2017b) which in-
cludes five standard all-words fine-grained WSD
datasets from the Senseval and SemEval competi-
tions. They are Senseval-2 (SE2), Senseval-3 task
1 (SE3), SemEval-07 task 17 (SE7), SemEval-13
task 12 (SE13), and SemEval-15 task 13 (SE15).
Following by Raganato et al. (2017a), we choose
SE7, the smallest test set as the development (val-
idation) set, which consists of 455 labeled in-
stances. The last four test sets consist of 6798
labeled instances with four types of target words,
namely nouns, verbs, adverbs and adjectives. We

7N is the number of polysemous words in the training
corpora.

extract word sense glosses from WordNet3.0 be-
cause Raganato et al. (2017b) maps all the sense
annotations 8 from its original version to 3.0.

Training Dataset: We choose SemCor 3.0 as
the training set, which was also used by Raganato
et al. (2017a), Raganato et al. (2017b), Iacobacci
et al. (2016), Zhi and Ng (2010), etc. It consists of
226,036 sense annotations from 352 documents,
which is the largest manually annotated corpus for
WSD. Note that all the systems listed in Table 1
are trained on SemCor 3.0.

4.2 Implementation Details

We use the validation set (SE7) to find the optimal
settings of our framework: the hidden state size
n, the number of passes |TM |, the optimizer, etc.
We use pre-trained word embeddings with 300 di-
mensions9, and keep them fixed during the train-
ing process. We employ 256 hidden units in both
the gloss module and the context module, which
means n=256. Orthogonal initialization is used for
weights in LSTM and random uniform initializa-
tion with range [-0.1, 0.1] is used for others. We
assign gloss expansion depthK the value of 4. We
also experiment with the number of passes |TM |
from 1 to 5 in our framework, finding |TM | = 3
performs best. We use Adam optimizer (Kingma
and Ba, 2014) in the training process with 0.001
initial learning rate. In order to avoid overfitting,
we use dropout regularization and set drop rate
to 0.5. Training runs for up to 100 epochs with
early stopping if the validation loss doesn’t im-
prove within the last 10 epochs.

4.3 Systems to be Compared

In this section, we describe several knowledge-
based methods, supervised methods and neural-
based methods which perform well on the English
all-words WSD datasets for comparison.

4.3.1 Knowledge-based Systems
• Leskext+emb: Basile et al. (2014) is a vari-

ant of Lesk algorithm (Lesk, 1986) by us-
ing a word similarity function defined on a
distributional semantic space to calculate the
gloss-context overlap. This work shows that
glosses are important to WSD and enriching

8The original WordNet version of SE2, SE3, SE7, SE13,
SE15 are 1.7, 1.7.1, 2.1, 3.0 and 3.0, respectively.

9We download the pre-trained word embeddings from
https://github.com/stanfordnlp/GloVe, and
we select the smaller Wikipedia 2014 + Gigaword 5.
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Test Datasets Concatenation of Test Datasets
System SE2 SE3 SE13 SE15 Noun Verb Adj Adv All
MFS baseline 65.6 66.0 63.8 67.1 67.7 49.8 73.1 80.5 65.5
Leskext+emb (Basile et al., 2014) 63.0 63.7 66.2 64.6 70.0 51.1 51.7 80.6 64.2
Babelfy (Moro et al., 2014) 67.0 63.5 66.4 70.3 68.9 50.7 73.2 79.8 66.4
IMS (Zhi and Ng, 2010) 70.9 69.3 65.3 69.5 70.5 55.8 75.6 82.9 68.9
IMS+emb (Iacobacci et al., 2016) 72.2 70.4 65.9 71.5 71.9 56.6 75.9 84.7 70.1
Bi-LSTM (Kågebäck and Salomonsson, 2016) 71.1 68.4 64.8 68.3 69.5 55.9 76.2 82.4 68.4
Bi-LSTM+att.+LEX (Raganato et al., 2017a)* 72.0 69.4 66.4 72.4 71.6 57.1 75.6 83.2 69.9
Bi-LSTM+att.+LEX+POS (Raganato et al., 2017a)* 72.0 69.1 66.9 71.5 71.5 57.5 75.0 83.8 69.9
GAS (Linear)* 72.0 70.0 66.7 71.6 71.7 57.4 76.5 83.5 70.1
GAS (Concatenation)* 72.1 70.2 67.0 71.8 72.1 57.2 76.0 84.4 70.3
GASext (Linear)* 72.4 70.1 67.1 72.1 71.9 58.1 76.4 84.7 70.4
GASext (Concatenation)* 72.2 70.5 67.2 72.6 72.2 57.7 76.6 85.0 70.6

Table 1: F1-score (%) for fine-grained English all-words WSD on the test sets. Bold font indicates best
systems. The * represents the neural network models using external knowledge. The fives blocks list
the MFS baseline, two knowledge-based systems, two supervised systems (feature-based), three neural-
based systems and our models, respectively.

.

gloss information via its semantic relations
can help to WSD.

• Babelfy: Moro et al. (2014) exploits the se-
mantic network structure from BabelNet and
builds a unified graph-based architecture for
WSD and Entity Linking.

4.3.2 Supervised Systems
The supervised systems mentioned in this paper
refers to traditional feature-based systems which
train a dedicated classifier for every word individ-
ually (word expert).

• IMS: Zhi and Ng (2010) selects a linear Sup-
port Vector Machine (SVM) as its classifier
and makes use of a set of features surround-
ing the target word within a limited window,
such as POS tags, local words and local col-
locations.

• IMS+emb: Iacobacci et al. (2016) selects
IMS as the underlying framework and makes
use of word embeddings as features which
makes it hard to beat in most of WSD
datasets.

4.3.3 Neural-based Systems
Neural-based systems aim to build an end-to-end
unified neural network for all the polysemous
words in texts.

• Bi-LSTM: Kågebäck and Salomonsson
(2016) leverages a bidirectional LSTM
network which shares model parameters
among all words. Note that this model is
equivalent to our model if we remove the
gloss module and memory module of GAS.

• Bi-LSTM+att.+LEX and its variant Bi-
LSTM+att.+LEX+POS : Raganato et al.
(2017a) transfers WSD into a sequence learn-
ing task and propose a multi-task learn-
ing framework for WSD, POS tagging and
coarse-grained semantic labels (LEX). These
two models have used the external knowl-
edge, for the LEX is based on lexicographer
files in WordNet.

Moreover, we introduce MFS baseline, which
simply selects the most frequent sense in the train-
ing data set.

4.4 Results and Discussion

4.4.1 English all-words results
In this section, we show the performance of our
proposed model in the English all-words task. Ta-
ble 1 shows the F1-score results on the four test
sets mentioned in Section 4.1. The systems in
the first four blocks are implemented by Raganato
et al. (2017a,b) except for the single Bi-LSTM
model. The last block lists the performance of
our proposed model GAS and its variant GASext
which extends the gloss module in GAS.

GAS and GASext achieves the state-of-the-
art performance on the concatenation of all test
datasets. Although there is no one system al-
ways performs best on all the test sets 10, we can
find that GASext with concatenation memory up-
dating strategy achieves the best results 70.6 on
the concatenation of the four test datasets. Com-
pared with other three neural-based methods in the

10 Because the source of the four datasets are extremely
different which belongs to different domains.
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Context: He plays a pianist in the film
Glosses Pass 1 Pass 2 Pass 3 Pass 4 Pass 5
g1: participate in games or sport
g2: perform music on a instrument
g3: act a role or part

Table 2: An example of attention weights in the memory module within 5 passes. Darker colors mean that
the attention weight is higher. Case studies show that the proposed multi-pass operation can recognize
the correct sense by enlarging the attention gap between correct senses and incorrect ones.

Pass SE2 SE3 SE13 SE15 ALL
1 71.6 70.3 67.0 72.5 70.3
2 71.9 70.2 67.1 72.8 70.4
3 72.2 70.5 67.2 72.6 70.6
4 72.1 70.4 67.2 72.4 70.5
5 72.0 70.4 67.1 71.5 70.3

Table 3: F1-score (%) of different passes from 1
to 5 on the test data sets. It shows that appropri-
ate number of passes can boost the performance as
well as avoid over-fitting of the model.

.
fourth block, we can find that our best model out-
performs the previous best neural network models
(Raganato et al., 2017a) on every individual test
set. The IMS+emb, which trains a dedicated classi-
fier for each word individually (word expert) with
massive manual designed features including word
embeddings, is hard to beat for neural networks
models. However, our best model can also beat
IMS+emb on the SE3, SE13 and SE15 test sets.

Incorporating glosses into neural WSD can
greatly improve the performance and extending
the original gloss can further boost the results.
Compared with the Bi-LSTM baseline which only
uses labeled data, our proposed model greatly im-
proves the WSD task by 2.2% F1-score with the
help of gloss knowledge. Furthermore, compared
with the GAS which only uses original gloss as
the background knowledge, GASext can further
improve the performance with the help of the
extended glosses through the semantic relations.
This proves that incorporating extended glosses
through its hypernyms and hyponyms into the neu-
ral network models can boost the performance for
WSD.

4.4.2 Multiple Passes Analysis
To better illustrate the influence of multiple passes,
we give an example in Table 2. Consider the situ-
ation that we meet an unknown word x 11, we look

11x refers to word play in reality.

up from the dictionary and find three word senses
and their glosses corresponding to x.

We try to figure out the correct meaning of x
according to its context and glosses of different
word senses by the proposed memory module. In
the first pass, the first sense is excluded, for there
are no relevance between the context and g1. But
the g2 and g3 may need repeated deliberation, for
word pianist is similar to the word music and role
in the two glosses. By re-reading the context and
gloss information of the target word in the follow-
ing passes, the correct word sense g3 attracts much
more attention than the other two senses. Such re-
reading process can be realized by multi-pass op-
eration in the memory module.

Furthermore, Table 3 shows the effectiveness
of multi-pass operation in the memory module.
It shows that multiple passes operation performs
better than one pass, though the improvement is
not significant. The reason of this phenomenon is
that for most target words, one main word sense
accounts for the majority of their appearances.
Therefore, in most circumstances, one-pass infer-
ence can lead to the correct word senses. Case
studies in Table 2 show that the proposed multi-
pass inference can help to recognize the infrequent
senses like the third sense for word play. In Ta-
ble 3, with the increasing number of passes, the
F1-score increases. However, when the number
of passes is larger than 3, the F1-score stops in-
creasing or even decreases due to over-fitting. It
shows that appropriate number of passes can boost
the performance as well as avoid over-fitting of the
model.

5 Conclusions and Future Work

In this paper, we seek to address the problem of in-
tegrating the glosses knowledge of the ambiguous
word into a neural network for WSD. We further
extend the gloss information through its semantic
relations in WordNet to better infer the context. In
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this way, we not only make use of labeled context
data but also exploit the background knowledge to
disambiguate the word sense. Results on four En-
glish all-words WSD data sets show that our best
model outperforms the existing methods.

There is still one challenge left for the fu-
ture. We just extract the gloss, missing the struc-
tural properties or graph information of lexical re-
sources. In the next step, we will consider integrat-
ing the rich structural information into the neural
network for Word Sense Disambiguation.
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Abstract

Sentiment analysis in low-resource lan-
guages suffers from a lack of annotated
corpora to estimate high-performing mod-
els. Machine translation and bilingual word
embeddings provide some relief through
cross-lingual sentiment approaches. How-
ever, they either require large amounts of
parallel data or do not sufficiently capture
sentiment information. We introduce Bilin-
gual Sentiment Embeddings (BLSE), which
jointly represent sentiment information in a
source and target language. This model
only requires a small bilingual lexicon,
a source-language corpus annotated for
sentiment, and monolingual word embed-
dings for each language. We perform ex-
periments on three language combinations
(Spanish, Catalan, Basque) for sentence-
level cross-lingual sentiment classification
and find that our model significantly out-
performs state-of-the-art methods on four
out of six experimental setups, as well as
capturing complementary information to
machine translation. Our analysis of the re-
sulting embedding space provides evidence
that it represents sentiment information in
the resource-poor target language without
any annotated data in that language.

1 Introduction

Cross-lingual approaches to sentiment analysis are
motivated by the lack of training data in the vast
majority of languages. Even languages spoken
by several million people, such as Catalan, often
have few resources available to perform sentiment
analysis in specific domains. We therefore aim
to harness the knowledge previously collected in
resource-rich languages.

Previous approaches for cross-lingual sentiment
analysis typically exploit machine translation based
methods or multilingual models. Machine trans-
lation (MT) can provide a way to transfer senti-
ment information from a resource-rich to resource-
poor languages (Mihalcea et al., 2007; Balahur and
Turchi, 2014). However, MT-based methods re-
quire large parallel corpora to train the translation
system, which are often not available for under-
resourced languages.

Examples of multilingual methods that have
been applied to cross-lingual sentiment analysis
include domain adaptation methods (Prettenhofer
and Stein, 2011), delexicalization (Almeida et al.,
2015), and bilingual word embeddings (Mikolov
et al., 2013; Hermann and Blunsom, 2014; Artetxe
et al., 2016). These approaches however do not in-
corporate enough sentiment information to perform
well cross-lingually, as we will show later.

We propose a novel approach to incorporate sen-
timent information in a model, which does not have
these disadvantages. Bilingual Sentiment Embed-
dings (BLSE) are embeddings that are jointly opti-
mized to represent both (a) semantic information in
the source and target languages, which are bound
to each other through a small bilingual dictionary,
and (b) sentiment information, which is annotated
on the source language only. We only need three
resources: (i) a comparably small bilingual lexicon,
(ii) an annotated sentiment corpus in the resource-
rich language, and (iii) monolingual word embed-
dings for the two involved languages.

We show that our model outperforms previous
state-of-the-art models in nearly all experimental
settings across six benchmarks. In addition, we
offer an in-depth analysis and demonstrate that our
model is aware of sentiment. Finally, we provide a
qualitative analysis of the joint bilingual sentiment
space. Our implementation is publicly available at
https://github.com/jbarnesspain/blse.
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2 Related Work

Machine Translation: Early work in cross-lingual
sentiment analysis found that machine translation
(MT) had reached a point of maturity that enabled
the transfer of sentiment across languages. Re-
searchers translated sentiment lexicons (Mihalcea
et al., 2007; Meng et al., 2012) or annotated corpora
and used word alignments to project sentiment an-
notation and create target-language annotated cor-
pora (Banea et al., 2008; Duh et al., 2011; Demirtas
and Pechenizkiy, 2013; Balahur and Turchi, 2014).

Several approaches included a multi-view repre-
sentation of the data (Banea et al., 2010; Xiao and
Guo, 2012) or co-training (Wan, 2009; Demirtas
and Pechenizkiy, 2013) to improve over a naive
implementation of machine translation, where only
the translated data is used. There are also ap-
proaches which only require parallel data (Meng
et al., 2012; Zhou et al., 2016; Rasooli et al., 2017),
instead of machine translation.

All of these approaches, however, require large
amounts of parallel data or an existing high qual-
ity translation tool, which are not always available.
A notable exception is the approach proposed by
Chen et al. (2016), an adversarial deep averaging
network, which trains a joint feature extractor for
two languages. They minimize the difference be-
tween these features across languages by learning
to fool a language discriminator, which requires
no parallel data. It does, however, require large
amounts of unlabeled data.

Bilingual Embedding Methods: Recently pro-
posed bilingual embedding methods (Hermann and
Blunsom, 2014; Chandar et al., 2014; Gouws et al.,
2015) offer a natural way to bridge the language
gap. These particular approaches to bilingual em-
beddings, however, require large parallel corpora
in order to build the bilingual space, which are not
available for all language combinations.

An approach to create bilingual embeddings that
has a less prohibitive data requirement is to create
monolingual vector spaces and then learn a projec-
tion from one to the other. Mikolov et al. (2013)
find that vector spaces in different languages have
similar arrangements. Therefore, they propose a
linear projection which consists of learning a rota-
tion and scaling matrix. Artetxe et al. (2016, 2017)
improve upon this approach by requiring the pro-
jection to be orthogonal, thereby preserving the
monolingual quality of the original word vectors.

Given source embeddings S, target embed-
dings T , and a bilingual lexicon L, Artetxe et al.
(2016) learn a projection matrix W by minimizing
the square of Euclidean distances

argmin
W

∑

i

||S′W − T ′||2F , (1)

where S′ ∈ S and T ′ ∈ T are the word embedding
matrices for the tokens in the bilingual lexicon L.
This is solved using the Moore-Penrose pseudoin-
verse S′+ = (S′TS′)−1S′T as W = S′+T ′, which
can be computed using SVD. We refer to this ap-
proach as ARTETXE.

Gouws and Søgaard (2015) propose a method to
create a pseudo-bilingual corpus with a small task-
specific bilingual lexicon, which can then be used
to train bilingual embeddings (BARISTA). This
approach requires a monolingual corpus in both
the source and target languages and a set of trans-
lation pairs. The source and target corpora are
concatenated and then every word is randomly kept
or replaced by its translation with a probability of
0.5. Any kind of word embedding algorithm can be
trained with this pseudo-bilingual corpus to create
bilingual word embeddings.

These last techniques have the advantage of re-
quiring relatively little parallel training data while
taking advantage of larger amounts of monolingual
data. However, they are not optimized for senti-
ment.

Sentiment Embeddings: Maas et al. (2011) first
explored the idea of incorporating sentiment in-
formation into semantic word vectors. They pro-
posed a topic modeling approach similar to latent
Dirichlet allocation in order to collect the semantic
information in their word vectors. To incorporate
the sentiment information, they included a second
objective whereby they maximize the probability
of the sentiment label for each word in a labeled
document.

Tang et al. (2014) exploit distantly annotated
tweets to create Twitter sentiment embeddings. To
incorporate distributional information about tokens,
they use a hinge loss and maximize the likelihood
of a true n-gram over a corrupted n-gram. They
include a second objective where they classify the
polarity of the tweet given the true n-gram. While
these techniques have proven useful, they are not
easily transferred to a cross-lingual setting.

Zhou et al. (2015) create bilingual sentiment
embeddings by translating all source data to the
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target language and vice versa. This requires the
existence of a machine translation system, which is
a prohibitive assumption for many under-resourced
languages, especially if it must be open and freely
accessible. This motivates approaches which can
use smaller amounts of parallel data to achieve
similar results.

3 Model

In order to project not only semantic similarity and
relatedness but also sentiment information to our
target language, we propose a new model, namely
Bilingual Sentiment Embeddings (BLSE), which
jointly learns to predict sentiment and to minimize
the distance between translation pairs in vector
space. We detail the projection objective in Sec-
tion 3.1, the sentiment objective in Section 3.2, and
the full objective in Section 3.3. A sketch of the
model is depicted in Figure 1.

3.1 Cross-lingual Projection

We assume that we have two precomputed vector
spaces S = Rv×d and T = Rv′×d′ for our source
and target languages, where v (v′) is the length of
the source vocabulary (target vocabulary) and d
(d′) is the dimensionality of the embeddings. We
also assume that we have a bilingual lexicon L
of length n which consists of word-to-word trans-
lation pairs L = {(s1, t1), (s2, t2), . . . , (sn, tn)}
which map from source to target.

In order to create a mapping from both origi-
nal vector spaces S and T to shared sentiment-
informed bilingual spaces z and ẑ, we employ two
linear projection matrices, M and M ′. During
training, for each translation pair in L, we first look
up their associated vectors, project them through
their associated projection matrix and finally mini-
mize the mean squared error of the two projected
vectors. This is very similar to the approach taken
by Mikolov et al. (2013), but includes an additional
target projection matrix.

The intuition for including this second matrix is
that a single projection matrix does not support the
transfer of sentiment information from the source
language to the target language. Without M ′, any
signal coming from the sentiment classifier (see
Section 3.2) would have no affect on the target
embedding space T , and optimizing M to predict
sentiment and projection would only be detrimental
to classification of the target language. We analyze
this further in Section 6.3. Note that in this con-

figuration, we do not need to update the original
vector spaces, which would be problematic with
such small training data.

The projection quality is ensured by minimizing
the mean squared error12

MSE =
1

n

n∑

i=1

(zi − ẑi)
2 , (2)

where zi = Ssi ·M is the dot product of the embed-
ding for source word si and the source projection
matrix and ẑi = Tti ·M ′ is the same for the target
word ti.

3.2 Sentiment Classification

We add a second training objective to optimize
the projected source vectors to predict the senti-
ment of source phrases. This inevitably changes
the projection characteristics of the matrix M , and
consequently M ′ and encourages M ′ to learn to
predict sentiment without any training examples in
the target language.

To train M to predict sentiment, we re-
quire a source-language corpus Csource =
{(x1, y1), (x2, y2), . . . , (xi, yi)} where each sen-
tence xi is associated with a label yi.

For classification, we use a two-layer feed-
forward averaging network, loosely following Iyyer
et al. (2015)3. For a sentence xi we take the word
embeddings from the source embedding S and av-
erage them to ai ∈ Rd. We then project this vector
to the joint bilingual space zi = ai ·M . Finally,
we pass zi through a softmax layer P to get our
prediction ŷi = softmax(zi · P ).

To train our model to predict sentiment, we min-
imize the cross-entropy error of our predictions

H = −
n∑

i=1

yi log ŷi − (1− yi) log(1− ŷi) . (3)

3.3 Joint Learning

In order to jointly train both the projection com-
ponent and the sentiment component, we combine
the two loss functions to optimize the parameter

1We omit parameters in equations for better readability.
2We also experimented with cosine distance, but found

that it performed worse than Euclidean distance.
3Our model employs a linear transformation after the aver-

aging layer instead of including a non-linearity function. We
choose this architecture because the weights M and M ′ are
also used to learn a linear cross-lingual projection.
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Figure 1: Bilingual Sentiment Embedding Model (BLSE)

EN ES CA EU

B
in

ar
y + 1258 1216 718 956

− 473 256 467 173
Total 1731 1472 1185 1129

4-
cl

as
s

++ 379 370 256 384
+ 879 846 462 572
− 399 218 409 153
−− 74 38 58 20

Total 1731 1472 1185 1129

Table 1: Statistics for the OpeNER English (EN)
and Spanish (ES) as well as the MultiBooked Cata-
lan (CA) and Basque (EU) datasets.

matrices M , M ′, and P by

J =
∑

(x,y)∈Csource

∑

(s,t)∈L
αH(x, y)+(1−α) ·MSE(s, t) ,

(4)
where α is a hyperparameter that weights sentiment
loss vs. projection loss.

3.4 Target-language Classification

For inference, we classify sentences from a target-
language corpus Ctarget. As in the training proce-
dure, for each sentence, we take the word embed-
dings from the target embeddings T and average
them to ai ∈ Rd. We then project this vector to the
joint bilingual space ẑi = ai ·M ′. Finally, we pass

Spanish Catalan Basque

Sentences 23 M 9.6 M 0.7 M
Tokens 610 M 183 M 25 M
Embeddings 0.83 M 0.4 M 0.14 M

Table 2: Statistics for the Wikipedia corpora and
monolingual vector spaces.

ẑi through a softmax layer P to get our prediction
ŷi = softmax(ẑi · P ).

4 Datasets and Resources

4.1 OpeNER and MultiBooked

To evaluate our proposed model, we conduct ex-
periments using four benchmark datasets and three
bilingual combinations. We use the OpeNER En-
glish and Spanish datasets (Agerri et al., 2013)
and the MultiBooked Catalan and Basque datasets
(Barnes et al., 2018). All datasets contain hotel
reviews which are annotated for aspect-level senti-
ment analysis. The labels include Strong Negative
(−−), Negative (−), Positive (+), and Strong Pos-
itive (++). We map the aspect-level annotations
to sentence level by taking the most common label
and remove instances of mixed polarity. We also
create a binary setup by combining the strong and
weak classes. This gives us a total of six experi-
ments. The details of the sentence-level datasets
are summarized in Table 1. For each of the experi-
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Figure 2: Binary and four class macro F1 on Span-
ish (ES), Catalan (CA), and Basque (EU).

ments, we take 70 percent of the data for training,
20 percent for testing and the remaining 10 percent
are used as development data for tuning.

4.2 Monolingual Word Embeddings

For BLSE, ARTETXE, and MT, we require monolin-
gual vector spaces for each of our languages. For
English, we use the publicly available GoogleNews
vectors4. For Spanish, Catalan, and Basque, we
train skip-gram embeddings using the Word2Vec
toolkit4 with 300 dimensions, subsampling of 10−4,
window of 5, negative sampling of 15 based on a
2016 Wikipedia corpus5 (sentence-split, tokenized
with IXA pipes (Agerri et al., 2014) and lower-
cased). The statistics of the Wikipedia corpora are
given in Table 2.

4.3 Bilingual Lexicon

For BLSE, ARTETXE, and BARISTA, we also re-
quire a bilingual lexicon. We use the sentiment
lexicon from Hu and Liu (2004) (to which we refer
in the following as Bing Liu) and its translation
into each target language. We translate the lexicon
using Google Translate and exclude multi-word ex-
pressions.6 This leaves a dictionary of 5700 trans-
lations in Spanish, 5271 in Catalan, and 4577 in
Basque. We set aside ten percent of the translation
pairs as a development set in order to check that the
distances between translation pairs not seen during
training are also minimized during training.

4https://code.google.com/archive/p/word2vec/
5http://attardi.github.io/wikiextractor/
6Note that we only do that for convenience. Using a ma-

chine translation service to generate this list could easily be
replaced by a manual translation, as the lexicon is comparably
small.

5 Experiments

5.1 Setting

We compare BLSE (Sections 3.1–3.3) to ARTETXE

(Section 2) and BARISTA (Section 2) as baselines,
which have similar data requirements and to ma-
chine translation (MT) and monolingual (MONO)
upper bounds which request more resources. For
all models (MONO, MT, ARTETXE, BARISTA),
we take the average of the word embeddings in
the source-language training examples and train a
linear SVM7. We report this instead of using the
same feed-forward network as in BLSE as it is the
stronger upper bound. We choose the parameter c
on the target language development set and evalu-
ate on the target language test set.

Upper Bound MONO. We set an empirical up-
per bound by training and testing a linear SVM
on the target language data. As mentioned in Sec-
tion 5.1, we train the model on the averaged em-
beddings from target language training data, tuning
the c parameter on the development data. We test
on the target language test data.

Upper Bound MT. To test the effectiveness of
machine translation, we translate all of the senti-
ment corpora from the target language to English
using the Google Translate API8. Note that this
approach is not considered a baseline, as we as-
sume not to have access to high-quality machine
translation for low-resource languages of interest.

Baseline ARTETXE. We compare with the ap-
proach proposed by Artetxe et al. (2016) which
has shown promise on other tasks, such as word
similarity. In order to learn the projection matrix
W , we need translation pairs. We use the same
word-to-word bilingual lexicon mentioned in Sec-
tion 3.1. We then map the source vector space
S to the bilingual space Ŝ = SW and use these
embeddings.

Baseline BARISTA. We also compare with the
approach proposed by Gouws and Søgaard (2015).
The bilingual lexicon used to create the pseudo-
bilingual corpus is the same word-to-word bilin-
gual lexicon mentioned in Section 3.1. We follow
the authors’ setup to create the pseudo-bilingual
corpus. We create bilingual embeddings by train-
ing skip-gram embeddings using the Word2Vec
toolkit on the pseudo-bilingual corpus using the
same parameters from Section 4.2.

7LinearSVC implementation from scikit-learn.
8https://translate.google.com
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Our method: BLSE. We implement our model
BLSE in Pytorch (Paszke et al., 2016) and initial-
ize the word embeddings with the pretrained word
embeddings S and T mentioned in Section 4.2.
We use the word-to-word bilingual lexicon from
Section 4.3, tune the hyperparameters α, training
epochs, and batch size on the target development
set and use the best hyperparameters achieved on
the development set for testing. ADAM (Kingma
and Ba, 2014) is used in order to minimize the
average loss of the training batches.

Binary 4-class

ES CA EU ES CA EU

U
pp

er
B

ou
nd

s
M

O
N

O P 75.0 79.0 74.0 55.2 50.0 48.3
R 72.3 79.6 67.4 42.8 50.9 46.5
F1 73.5 79.2 69.8 45.5 49.9 47.1

M
T

P 82.3 78.0 75.6 51.8 58.9 43.6
R 76.6 76.8 66.5 48.5 50.5 45.2
F1 79.0 77.2 69.4 48.8 52.7 43.6

B
L

SE

P 72.1 **72.8 **67.5 **60.0 38.1 *42.5
R **80.1 **73.0 **72.7 *43.4 38.1 37.4
F1 **74.6 **72.9 **69.3 *41.2 35.9 30.0

B
as

el
in

es A
rt

et
xe P 75.0 60.1 42.2 40.1 21.6 30.0

R 64.3 61.2 49.5 36.9 29.8 35.7
F1 67.1 60.7 45.6 34.9 23.0 21.3

B
ar

is
ta P 64.7 65.3 55.5 44.1 36.4 34.1

R 59.8 61.2 54.5 37.9 38.5 34.3
F1 61.2 60.1 54.8 39.5 36.2 33.8

E
ns

em
bl

e
A

rt
et

xe P 65.3 63.1 70.4 43.5 46.5 50.1
R 61.3 63.3 64.3 44.1 48.7 50.7
F1 62.6 63.2 66.4 43.8 47.6 49.9

B
ar

is
ta P 60.1 63.4 50.7 48.3 52.8 50.8

R 55.5 62.3 50.4 46.6 53.7 49.8
F1 56.0 62.5 49.8 47.1 53.0 47.8

B
L

SE

P 79.5 84.7 80.9 49.5 54.1 50.3
R 78.7 85.5 69.9 51.2 53.9 51.4
F1 80.3 85.0 73.5 50.3 53.9 50.5

Table 3: Precision (P), Recall (R), and macro F1 of
four models trained on English and tested on Span-
ish (ES), Catalan (CA), and Basque (EU). The bold
numbers show the best results for each metric per
column and the highlighted numbers show where
BLSE is better than the other projection methods,
ARTETXE and BARISTA (** p < 0.01, * p < 0.05).

Ensembles We create an ensemble of MT

and each projection method (BLSE, ARTETXE,
BARISTA) by training a random forest classifier
on the predictions from MT and each of these ap-
proaches. This allows us to evaluate to what extent
each projection model adds complementary infor-
mation to the machine translation approach.

5.2 Results

In Figure 2, we report the results of all four meth-
ods. Our method outperforms the other projection
methods (the baselines ARTETXE and BARISTA)
on four of the six experiments substantially. It per-
forms only slightly worse than the more resource-
costly upper bounds (MT and MONO). This is espe-
cially noticeable for the binary classification task,
where BLSE performs nearly as well as machine
translation and significantly better than the other
methods. We perform approximate randomization
tests (Yeh, 2000) with 10,000 runs and highlight
the results that are statistically significant (**p <
0.01, *p < 0.05) in Table 3.

In more detail, we see that MT generally per-
forms better than the projection methods (79–69
F1 on binary, 52–44 on 4-class). BLSE (75–69
on binary, 41–30 on 4-class) has the best perfor-
mance of the projection methods and is comparable
with MT on the binary setup, with no significant
difference on binary Basque. ARTETXE (67–46
on binary, 35–21 on 4-class) and BARISTA (61–
55 on binary, 40–34 on 4-class) are significantly
worse than BLSE on all experiments except Cata-
lan and Basque 4-class. On the binary experiment,
ARTETXE outperforms BARISTA on Spanish (67.1
vs. 61.2) and Catalan (60.7 vs. 60.1) but suffers
more than the other methods on the four-class ex-
periments, with a maximum F1 of 34.9. BARISTA

Model vo
c

m
od

ne
g

kn
ow

ot
he

r

to
ta

l

MT
bi 49 26 19 14 5 113
4 147 94 19 21 12 293

ARTETXE
bi 80 44 27 14 7 172
4 182 141 19 24 19 385

BARISTA
bi 89 41 27 20 7 184
4 191 109 24 31 15 370

BLSE
bi 67 45 21 15 8 156
4 146 125 29 22 19 341

Table 4: Error analysis for different phenomena.
See text for explanation of error classes.
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Figure 3: Macro F1 for translation pairs in the
Spanish 4-class setup.

is relatively stable across languages.
ENSEMBLE performs the best, which shows that

BLSE adds complementary information to MT. Fi-
nally, we note that all systems perform successively
worse on Catalan and Basque. This is presum-
ably due to the quality of the word embeddings, as
well as the increased morphological complexity of
Basque.

6 Model and Error Analysis

We analyze three aspects of our model in further
detail: (i) where most mistakes originate, (ii) the ef-
fect of the bilingual lexicon, and (iii) the effect and
necessity of the target-language projection matrix
M ′.

6.1 Phenomena

In order to analyze where each model struggles, we
categorize the mistakes and annotate all of the test
phrases with one of the following error classes: vo-
cabulary (voc), adverbial modifiers (mod), negation
(neg), external knowledge (know) or other. Table 4
shows the results.

Vocabulary: The most common way to express
sentiment in hotel reviews is through the use of
polar adjectives (as in “the room was great) or the
mention of certain nouns that are desirable (“it
had a pool”). Although this phenomenon has the
largest total number of mistakes (an average of
71 per model on binary and 167 on 4-class), it is
mainly due to its prevalence. MT performed the
best on the test examples which according to the an-
notation require a correct understanding of the vo-
cabulary (81 F1 on binary /54 F1 on 4-class), with
BLSE (79/48) slightly worse. ARTETXE (70/35)
and BARISTA (67/41) perform significantly worse.

This suggests that BLSE is better ARTETXE and
BARISTA at transferring sentiment of the most im-
portant sentiment bearing words.

Negation: Negation is a well-studied phe-
nomenon in sentiment analysis (Pang et al., 2002;
Wiegand et al., 2010; Zhu et al., 2014; Reitan et al.,
2015). Therefore, we are interested in how these
four models perform on phrases that include the
negation of a key element, for example “In general,
this hotel isn’t bad”. We would like our models
to recognize that the combination of two negative
elements “isn’t” and “bad” lead to a Positive label.

Given the simple classification strategy, all mod-
els perform relatively well on phrases with negation
(all reach nearly 60 F1 in the binary setting). How-
ever, while BLSE performs the best on negation in
the binary setting (82.9 F1), it has more problems
with negation in the 4-class setting (36.9 F1).

Adverbial Modifiers: Phrases that are modified
by an adverb, e. g., the food was incredibly good,
are important for the four-class setup, as they often
differentiate between the base and Strong labels.
In the binary case, all models reach more than 55
F1. In the 4-class setup, BLSE only achieves 27.2
F1 compared to 46.6 or 31.3 of MT and BARISTA,
respectively. Therefore, presumably, our model
does currently not capture the semantics of the
target adverbs well. This is likely due to the fact
that it assigns too much sentiment to functional
words (see Figure 6).

External Knowledge Required: These errors
are difficult for any of the models to get cor-
rect. Many of these include numbers which imply
positive or negative sentiment (350 meters from
the beach is Positive while 3 kilometers from the
beach is Negative). BLSE performs the best (63.5
F1) while MT performs comparably well (62.5).
BARISTA performs the worst (43.6).

Binary vs. 4-class: All of the models suffer
when moving from the binary to 4-class setting;
an average of 26.8 in macro F1 for MT, 31.4 for
ARTETXE, 22.2 for BARISTA, and for 36.6 BLSE.
The two vector projection methods (ARTETXE and
BLSE) suffer the most, suggesting that they are
currently more apt for the binary setting.

6.2 Effect of Bilingual Lexicon

We analyze how the number of translation pairs
affects our model. We train on the 4-class Span-
ish setup using the best hyper-parameters from the
previous experiment.
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Figure 4: Average cosine similarity between a subsample of translation pairs of same polarity (“sentiment
synonyms”) and of opposing polarity (“sentiment antonyms”) in both target and source languages in each
model. The x-axis shows training epochs. We see that BLSE is able to learn that sentiment synonyms
should be close to one another in vector space and sentiment antonyms should not.

Research into projection techniques for bilingual
word embeddings (Mikolov et al., 2013; Lazaridou
et al., 2015; Artetxe et al., 2016) often uses a lex-
icon of the most frequent 8–10 thousand words
in English and their translations as training data.
We test this approach by taking the 10,000 word-
to-word translations from the Apertium English-
to-Spanish dictionary9. We also use the Google
Translate API to translate the NRC hashtag senti-
ment lexicon (Mohammad et al., 2013) and keep
the 22,984 word-to-word translations. We perform
the same experiment as above and vary the amount
of training data from 0, 100, 300, 600, 1000, 3000,
6000, 10,000 up to 20,000 training pairs. Finally,
we compile a small hand translated dictionary of
200 pairs, which we then expand using target lan-
guage morphological information, finally giving
us 657 translation pairs10. The macro F1 score for
the Bing Liu dictionary climbs constantly with the
increasing translation pairs. Both the Apertium
and NRC dictionaries perform worse than the trans-
lated lexicon by Bing Liu, while the expanded hand
translated dictionary is competitive, as shown in
Figure 3.

While for some tasks, e. g., bilingual lexicon
induction, using the most frequent words as trans-
lation pairs is an effective approach, for sentiment
analysis, this does not seem to help. Using a trans-
lated sentiment lexicon, even if it is small, gives
better results.

9http://www.meta-share.org
10The translation took approximately one hour. We can

extrapolate that hand translating a sentiment lexicon the size
of the Bing Liu lexicon would take no more than 5 hours.
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Figure 5: BLSE model (solid lines) compared to a
variant without target language projection matrix
M ′ (dashed lines). “Translation” lines show the
average cosine similarity between translation pairs.
The remaining lines show F1 scores for the source
and target language with both varints of BLSE. The
modified model cannot learn to predict sentiment
in the target language (red lines). This illustrates
the need for the second projection matrix M ′.

6.3 Analysis of M ′

The main motivation for using two projection ma-
trices M and M ′ is to allow the original embed-
dings to remain stable, while the projection ma-
trices have the flexibility to align translations and
separate these into distinct sentiment subspaces. To
justify this design decision empirically, we perform
an experiment to evaluate the actual need for the
target language projection matrix M ′: We create a
simplified version of our model without M ′, using
M to project from the source to target and then P
to classify sentiment.
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The results of this model are shown in Figure 5.
The modified model does learn to predict in the
source language, but not in the target language.
This confirms that M ′ is necessary to transfer sen-
timent in our model.

7 Qualitative Analyses of Joint Bilingual
Sentiment Space

In order to understand how well our model trans-
fers sentiment information to the target language,
we perform two qualitative analyses. First, we
collect two sets of 100 positive sentiment words
and one set of 100 negative sentiment words. An
effective cross-lingual sentiment classifier using
embeddings should learn that two positive words
should be closer in the shared bilingual space than a
positive word and a negative word. We test if BLSE

is able to do this by training our model and after
every epoch observing the mean cosine similarity
between the sentiment synonyms and sentiment
antonyms after projecting to the joint space.

We compare BLSE with ARTETXE and BARISTA

by replacing the Linear SVM classifiers with the
same multi-layer classifier used in BLSE and ob-
serving the distances in the hidden layer. Figure 4
shows this similarity in both source and target lan-
guage, along with the mean cosine similarity be-
tween a held-out set of translation pairs and the
macro F1 scores on the development set for both
source and target languages for BLSE, BARISTA,
and ARTETXE. From this plot, it is clear that BLSE

is able to learn that sentiment synonyms should be
close to one another in vector space and antonyms
should have a negative cosine similarity. While
the other models also learn this to some degree,
jointly optimizing both sentiment and projection
gives better results.

Secondly, we would like to know how well the
projected vectors compare to the original space.
Our hypothesis is that some relatedness and simi-
larity information is lost during projection. There-
fore, we visualize six categories of words in t-SNE
(Van der Maaten and Hinton, 2008): positive senti-
ment words, negative sentiment words, functional
words, verbs, animals, and transport.

The t-SNE plots in Figure 6 show that the posi-
tive and negative sentiment words are rather clearly
separated after projection in BLSE. This indicates
that we are able to incorporate sentiment informa-
tion into our target language without any labeled
data in the target language. However, the downside

BLSE

Original

Figure 6: t-SNE-based visualization of the Spanish
vector space before and after projection with BLSE.
There is a clear separation of positive and negative
words after projection, despite the fact that we have
used no labeled data in Spanish.

of this is that functional words and transportation
words are highly correlated with positive sentiment.

8 Conclusion

We have presented a new model, BLSE, which
is able to leverage sentiment information from a
resource-rich language to perform sentiment analy-
sis on a resource-poor target language. This model
requires less parallel data than MT and performs
better than other state-of-the-art methods with sim-
ilar data requirements, an average of 14 percentage
points in F1 on binary and 4 pp on 4-class cross-
lingual sentiment analysis. We have also performed
a phenomena-driven error analysis which showed
that BLSE is better than ARTETXE and BARISTA

at transferring sentiment, but assigns too much sen-
timent to functional words. In the future, we will
extend our model so that it can project multi-word
phrases, as well as single words, which could help
with negations and modifiers.
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Española para el Procesamiento del Lenguaje Nat-
ural 51(Septiembre):215–218.

Mariana S. C. Almeida, Claudia Pinto, Helena Figueira,
Pedro Mendes, and André F. T. Martins. 2015.
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Abstract

Word embeddings have been widely used
in sentiment classification because of their
efficacy for semantic representations of
words. Given reviews from different do-
mains, some existing methods for word
embeddings exploit sentiment informa-
tion, but they cannot produce domain-
sensitive embeddings. On the other hand,
some other existing methods can generate
domain-sensitive word embeddings, but
they cannot distinguish words with sim-
ilar contexts but opposite sentiment po-
larity. We propose a new method for
learning domain-sensitive and sentiment-
aware embeddings that simultaneously
capture the information of sentiment se-
mantics and domain sensitivity of individ-
ual words. Our method can automatically
determine and produce domain-common
embeddings and domain-specific embed-
dings. The differentiation of domain-
common and domain-specific words en-
ables the advantage of data augmentation
of common semantics from multiple do-
mains and capture the varied semantics of
specific words from different domains at
the same time. Experimental results show
that our model provides an effective way
to learn domain-sensitive and sentiment-
aware word embeddings which benefit
sentiment classification at both sentence
level and lexicon term level.

∗ This work was partially done when Bei Shi was an
intern at Tencent AI Lab. This project is substantially sup-
ported by a grant from the Research Grant Council of the
Hong Kong Special Administrative Region, China (Project
Code: 14203414).

1 Introduction

Sentiment classification aims to predict the sen-
timent polarity, such as “positive” or “negative”,
over a piece of review. It has been a long-standing
research topic because of its importance for many
applications such as social media analysis, e-
commerce, and marketing (Liu, 2012; Pang et al.,
2008). Deep learning has brought in progress
in various NLP tasks, including sentiment clas-
sification. Some researchers focus on design-
ing RNN or CNN based models for predicting
sentence level (Kim, 2014) or aspect level sen-
timent (Li et al., 2018; Chen et al., 2017; Wang
et al., 2016). These works directly take the word
embeddings pre-trained for general purpose as ini-
tial word representations and may conduct fine
tuning in the training process. Some other re-
searchers look into the problem of learning task-
specific word embeddings for sentiment classifi-
cation aiming at solving some limitations of ap-
plying general pre-trained word embeddings. For
example, Tang et al. (2014b) develop a neural net-
work model to convey sentiment information in
the word embeddings. As a result, the learned
embeddings are sentiment-aware and able to dis-
tinguish words with similar syntactic context but
opposite sentiment polarity, such as the words
“good” and “bad”. In fact, sentiment information
can be easily obtained or derived in large scale
from some data sources (e.g., the ratings provided
by users), which allows reliable learning of such
sentiment-aware embeddings.

Apart from these words (e.g. “good” and
“bad”) with consistent sentiment polarity in differ-
ent contexts, the polarity of some sentiment words
is domain-sensitive. For example, the word
“lightweight” usually connotes a positive senti-
ment in the electronics domain since a lightweight
device is easier to carry. In contrast, in the movie
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domain, the word “lightweight” usually connotes a
negative opinion describing movies that do not in-
voke deep thoughts among the audience. This ob-
servation motivates the study of learning domain-
sensitive word representations (Yang et al., 2017;
Bollegala et al., 2015, 2014). They basically learn
separate embeddings of the same word for differ-
ent domains. To bridge the semantics of individual
embedding spaces, they select a subset of words
that are likely to be domain-insensitive and align
the dimensions of their embeddings. However,
the sentiment information is not exploited in these
methods although they intend to tackle the task of
sentiment classification.

In this paper, we aim at learning word em-
beddings that are both domain-sensitive and
sentiment-aware. Our proposed method can
jointly model the sentiment semantics and do-
main specificity of words, expecting the learned
embeddings to achieve superior performance for
the task of sentiment classification. Specifically,
our method can automatically determine and pro-
duce domain-common embeddings and domain-
specific embeddings. Domain-common embed-
dings represent the fact that the semantics of
a word including its sentiment and meaning in
different domains are very similar. For exam-
ple, the words “good” and “interesting” are usu-
ally domain-common and convey consistent se-
mantic meanings and positive sentiments in dif-
ferent domains. Thus, they should have simi-
lar embeddings across domains. On the other
hand, domain-specific word embeddings represent
the fact that the sentiments or meanings across
domains are different. For example, the word
“lightweight” represents different sentiment polar-
ities in the electronics domain and the movie do-
main. Moreover, some polysemous words have
different meanings in different domains. For ex-
ample, the term “apple” refers to the famous tech-
nology company in the electronics domain or a
kind of fruit in the food domain.

Our model exploits the information of sen-
timent labels and context words to distinguish
domain-common and domain-specific words. If a
word has similar sentiments and contexts across
domains, it indicates that the word has com-
mon semantics in these domains, and thus it is
treated as domain-common. Otherwise, the word
is considered as domain-specific. The learning
of domain-common embeddings can allow the ad-

vantage of data augmentation of common seman-
tics of multiple domains, and meanwhile, domain-
specific embeddings allow us to capture the varied
semantics of specific words in different domains.
Specifically, for each word in the vocabulary, we
design a distribution to depict the probability of
the word being domain-common. The inference
of the probability distribution is conducted based
on the observed sentiments and contexts. As men-
tioned above, we also exploit the information of
sentiment labels for the learning of word embed-
dings that can distinguish words with similar syn-
tactic context but opposite sentiment polarity.

To demonstrate the advantages of our domain-
sensitive and sentiment-aware word embeddings,
we conduct experiments on four domains, includ-
ing books, DVSs, electronics, and kitchen appli-
ances. The experimental results show that our
model can outperform the state-of-the-art mod-
els on the task of sentence level sentiment clas-
sification. Moreover, we conduct lexicon term
sentiment classification in two common sentiment
lexicon sets to evaluate the effectiveness of our
sentiment-aware embeddings learned from mul-
tiple domains, and it shows that our model out-
performs the state-of-the-art models on most do-
mains.

2 Related Works

Traditional vector space models encode individual
words using the one-hot representation, namely,
a high-dimensional vector with all zeroes ex-
cept in one component corresponding to that
word (Baeza-Yates et al., 1999). Such represen-
tations suffer from the curse of dimensionality,
as there are many components in these vectors
due to the vocabulary size. Another drawback
is that semantic relatedness of words cannot be
modeled using such representations. To address
these shortcomings, Rumelhart et al. (1988) pro-
pose to use distributed word representation in-
stead, called word embeddings. Several tech-
niques for generating such representations have
been investigated. For example, Bengio et al. pro-
pose a neural network architecture for this pur-
pose (Bengio et al., 2003; Bengio, 2009). Later,
Mikolov et al. (2013) propose two methods that
are considerably more efficient, namely skip-gram
and CBOW. This work has made it possible to
learn word embeddings from large data sets, which
has led to the current popularity of word embed-
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dings. Word embedding models have been ap-
plied to many tasks, such as named entity recogni-
tion (Turian et al., 2010), word sense disambigua-
tion (Collobert et al., 2011; Iacobacci et al., 2016;
Zhang and Hasan, 2017; Dave et al., 2018), pars-
ing (Roth and Lapata, 2016), and document clas-
sification (Tang et al., 2014a,b; Shi et al., 2017).

Sentiment classification has been a long-
standing research topic (Liu, 2012; Pang et al.,
2008; Chen et al., 2017; Moraes et al., 2013).
Given a review, the task aims at predicting the
sentiment polarity on the sentence level (Kim,
2014) or the aspect level (Li et al., 2018; Chen
et al., 2017). Supervised learning algorithms have
been widely used in sentiment classification (Pang
et al., 2002). People usually use different ex-
pressions of sentiment semantics in different do-
mains. Due to the mismatch between domain-
specific words, a sentiment classifier trained in
one domain may not work well when it is directly
applied to other domains. Thus cross-domain
sentiment classification algorithms have been ex-
plored (Pan et al., 2010; Li et al., 2009; Glo-
rot et al., 2011). These works usually find com-
mon feature spaces across domains and then share
learned parameters from the source domain to the
target domain. For example, Pan et al. (2010)
propose a spectral feature alignment algorithm to
align words from different domains into unified
clusters. Then the clusters can be used to reduce
the gap between words of the two domains, which
can be used to train sentiment classifiers in the tar-
get domain. Compared with the above works, our
model focuses on learning both domain-common
and domain-specific embeddings given reviews
from all the domains instead of only transferring
the common semantics from the source domain to
the target domain.

Some researchers have proposed some methods
to learn task-specific word embeddings for senti-
ment classification (Tang et al., 2014a,b). Tang
et al. (2014b) propose a model named SSWE to
learn sentiment-aware embedding via incorporat-
ing sentiment polarity of texts in the loss func-
tions of neural networks. Without the consid-
eration of varied semantics of domain-specific
words in different domains, their model cannot
learn sentiment-aware embeddings across multi-
ple domains. Some works have been proposed
to learn word representations considering multi-
ple domains (Yang et al., 2017; Bach et al., 2016;

Bollegala et al., 2015). Most of them learn sep-
arate embeddings of the same word for differ-
ent domains. Then they choose pivot words ac-
cording to frequency-based statistical measures
to bridge the semantics of individual embedding
spaces. A regularization formulation enforcing
that word representations of pivot words should
be similar in different domains is added into the
original word embedding framework. For exam-
ple, Yang et al. (2017) use Sørensen-Dice coeffi-
cient (Sørensen, 1948) for detecting pivot words
and learn word representations across domains.
Even though they evaluate the model via the task
of sentiment classification, sentiment information
associated with the reviews are not considered in
the learned embeddings. Moreover, the selection
of pivot words is according to frequency-based
statistical measures in the above works. In our
model, the domain-common words are jointly de-
termined by sentiment information and context
words.

3 Model Description

We propose a new model, named DSE, for learn-
ing Domain-sensitive and Sentiment-aware word
Embeddings. For presentation clarity, we describe
DSE based on two domains. Note that it can be
easily extended for more than two domains, and
we remark on how to extend near the end of this
section.

3.1 Design of Embeddings

We assume that the input consists of text reviews
of two domains, namely Dp and Dq. Each review
r in Dp and Dq is associated with a sentiment la-
bel y which can take on the value of 1 and 0 de-
noting that the sentiment of the review is positive
and negative respectively.

In our DSE model, each word w in the
whole vocabulary Λ is associated with a domain-
common vector U cw and two domain-specific vec-
tors, namely Upw specific to the domain p and U qw
specific to the domain q. The dimension of these
vectors is d. The design of U cw, Upw and U qw re-
flects one characteristic of our model: allowing a
word to have different semantics across different
domains. The semantic of each word includes not
only the semantic meaning but also the sentiment
orientation of the word. If the semantic of w is
consistent in the domains p and q, we use the vec-
tor U cw for both domains. Otherwise, w is repre-
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sented by Upw and U qw for p and q respectively.
In traditional cross-domain word embedding

methods (Yang et al., 2017; Bollegala et al., 2015,
2016), each word is represented by different vec-
tors in different domains without differentiation of
domain-common and domain-specific words. In
contrast to these methods, for each wordw, we use
a latent variable zw to depict its domain common-
ality. When zw = 1, it means that w is common
in both domains. Otherwise, w is specific to the
domain p or the domain q.

In the standard skip-gram model (Mikolov
et al., 2013), the probability of predicting the
context words is only affected by the relatedness
with the target words. In our DSE model, pre-
dicting the context words also depends on the
domain-commonality of the target word, i.e zw.
For example, assume that there are two domains,
e.g. the electronics domain and the movie do-
main. If zw = 1, it indicates a high probability
of generating some domain-common words such
as “good”, “bad” or “satisfied”. Otherwise, the
domain-specific words are more likely to be gen-
erated such as “reliable”, “cheap” or “compacts”
for the electronics domain. For a word w, we as-
sume that the probability of predicting the context
word wt is formulated as follows:

p(wt|w) =
∑

k∈{0,1}
p(wt|w, zw = k)p(zw = k)

(1)
If w is a domain-common word without differ-

entiating p and q, the probability of predicting wt
can be defined as:

p(wt|w, zw = 1) =
exp(U cw · Vwt)∑
w′∈Λ exp(U cw · Vw′)

(2)

where Λ is the whole vocabulary and Vw′ is the
output vector of the word w′.

If w is a domain-specific word, the probability
of p(wt|w, zw = 0) is specific to the occurrence of
w in Dp or Dq. For individual training instances,
the occurrences of w inDp orDq have been estab-
lished. Then the probability of p(wt|w, zw = 0)
can be defined as follows:

p(wt|w, zw = 0) =





exp(Up
w·Vwt )∑

w′∈Λ exp(Up
w·Vw′ )

, if w ∈ Dp

exp(Uq
w·Vwt )∑

w′∈Λ exp(Uq
w·Vw′ )

, if w ∈ Dq

(3)

3.2 Exploiting Sentiment Information
In our DSE model, the prediction of review sen-
timent depends on not only the text information
but also the domain-commonality. For exam-
ple, the domain-common word “good” has high
probability to be positive in different reviews
across multiple domains. However, for the word
“lightweight”, it would be positive in the electron-
ics domain, but negative in the movie domain. We
define the polarity yw of each wordw to be consis-
tent with the sentiment label of the review: if we
observe that a review is associated with a positive
label, the words in the review are associated with a
positive label too. Then, the probability of predict-
ing the sentiment for the wordw can be defined as:

p(yw|w) =
∑

k∈{0,1}
p(yw|w, zw = k)p(zw = k)

(4)
If zw = 1, the word w is a domain-common word.
The probability p(yw = 1|w, zw = 1) can be de-
fined as:

p(yw = 1|w, zw = 1) = σ(U cw · s) (5)

where σ(·) is the sigmoid function and the vector
s with dimension d represents the boundary of the
sentiment. Moreover, we have:

p(yw = 0|w, zw = 1) = 1−p(yw = 1|w, zw = 1)
(6)

If w is a domain-specific word, similarly, the
probability p(yw = 1|w, zw = 0) is defined as:

p(yw = 1|w, zw = 0) =

{
σ(Upw · s) if w ∈ Dp
σ(U qw · s) if w ∈ Dq

(7)

3.3 Inference Algorithm
We need an inference method that can learn,
given Dp and Dq, the values of the model pa-
rameters, namely, the domain-common embed-
ding U cw, and the domain-specific embeddings Upw
and U qw, as well as the domain-commonality dis-
tribution p(zw) for each word w. Our inference
method combines the Expectation-Maximization
(EM) method with a negative sampling scheme. It
is summarized in Algorithm 1. In the E-step, we
use the Bayes rule to evaluate the posterior distri-
bution of zw for each word and derive the objective
function. In the M-step, we maximize the objec-
tive function with the gradient descent method and
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Algorithm 1 EM negative sampling for DSE
1: Initialize U cw, Upw, U qw, V , s, p(zw)
2: for iter = 1 to Max iter do
3: for each review r in Dp and Dq do
4: for each word w in r do
5: Sample negative instances from

the distribution P.
6: Update p(zw|w, cw, yw) by Eq. 11

and Eq. 15 respectively.
7: end for
8: end for
9: Update p(zw) using Eq. 13

10: Update U cw, Upw, U qw, V , s via Maximizing
Eq. 14

11: end for

update the corresponding embeddings U cw, Upw and
U qw.

With the input of Dp and Dq, the likelihood
function of the whole training set is:

L = Lp + Lq (8)

where Lp and Lq are the likelihood of Dp and Dq
respectively.

For each review r from Dp, to learn domain-
specific and sentiment-aware embeddings, we
wish to predict the sentiment label and context
words together. Therefore, the likelihood function
is defined as follows:

Lp =
∑

r∈Dp

∑

w∈r
log p(yw, cw|w) (9)

where yw is the sentiment label and cw is the set
of context words of w. For the simplification of
the model, we assume that the sentiment label yw
and the context words cw of the word w are condi-
tionally dependent. Then the likelihood Lp can be
rewritten as:

Lp =
∑

r∈Dp

∑

w∈r

∑

wt∈cw
log p(wt|w)+

∑

r∈Dp

∑

w∈r
log p(yw|w)

(10)

where p(wt|w) and p(yw|w) are defined in Eq. 1
and Eq. 4 respectively. The likelihood of the re-
views from Dq, i.e Lq, is defined similarly.

For each word w in the review r, in the E-step,
the posterior probability of zw given cw and yw is:

p(zw = k|w, cw, yw) =
p(zw = k)p(yw|w, zw = k)

∏
wt∈cw

p(wt|w, zw = k)

∑
k′∈{0,1}

p(zw = k′)p(yw|w, zw = k′)
∏

wt∈cw
p(wt|w, zw = k′)

(11)

In the M-step, given the posterior distribution of
zw in Eq. 11, the goal is to maxmize the following
Q function:

Q =
∑

r∈{Dp,Dq}

∑

w∈r

∑

zw

p(zw|w, yw, wt+j)

× log(p(zw)p(cw, y|z, wt))
=

∑

r∈{Dp,Dq}

∑

w∈r

∑

zw

p(zw|w, yw, cw)

[log p(zw) + log(yw|z, w)+
∑

wt∈cw
log p(wt|zw, w)]

(12)

Using the Lagrange multiplier, we can obtain
the update rule of p(zw), satisfying the normaliza-
tion constraints that

∑
zw∈0,1 p(zw) = 1 for each

word w:

p(zw) =

∑
r∈{Dp,Dq}

∑
w∈r p(zw|w, yw, cw)

∑
r∈{Dp,Dq} n(w, r)

(13)
where n(w, r) is the number of occurrence of the
word w in the review r.

To obtainU cw, Upw andU qw, we collect the related
items in Eq. 12 as follows:

QU =
∑

r∈{Dp,Dq}

∑

w∈r

∑

zw

p(zw|w, yw, wt+j)

[log(yw|zw, w) +
∑

wt∈cw
log p(wt|zw, w)]

(14)

Note that computing the value p(wt|w, zw)
based on Eq. 2 and Eq. 3 is not feasible in prac-
tice, given that the computation cost is propor-
tional to the size of Λ. However, similar to the
skip-gram model, we can rely on negative sam-
pling to address this issue. Therefore we esti-
mate the probability of predicting the context word
p(wt|w, zw = 1) as follows:

log p(wt|w, zw = 1) ∝ log σ(U cw · Vwt)

+

n∑

i=1

Ewi∼P [log σ(−U cw · Vwi)]

(15)
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where wi is a negative instance which is sam-
pled from the word distribution P (.). Mikolov
et al. (2013) have investigated many choices for
P (w) and found that the best P (w) is equal to
the unigram distribution Unigram(w) raised to the
3/4rd power. We adopt the same setting. The
probability p(wt|w, zw = 0) in Eq. 3 can be ap-
proximated in a similar manner.

After the substitution of p(wt|w, zw), we use
the Stochastic Gradient Descent method to maxi-
mize Eq. 14, and obtain the update of U cw, Upw and
U qw.

3.4 More Discussions

In our model, for simplifying the inference algo-
rithm and saving the computational cost, we as-
sume that the target word wt in the context and the
sentiment label yw of the word w are condition-
ally independent. Such technique has also been
used in other popular models such as the bi-gram
language model. Otherwise, we need to consider
the term p(wt|w, yw), which complicates the in-
ference algorithm.

We define the formulation of the term
p(wt|w, z) to be similar to the original skip-
gram model instead of the CBOW model. The
CBOW model averages the context words to
predict the target word. The skip-gram model
uses pairwise training examples which are much
easier to integrate with sentiment information.

Note that our model can be easily extended
to more than two domains. Similarly, we use
a domain-specific vector for each word in each
domain and each word is also associated with a
domain-common vector. We just need to extend
the probability distribution of zw from Bernoulli
distribution to Multinomial distribution according
to the number of domains.

4 Experiment

4.1 Experimental Setup

We conducted experiments on the Amazon prod-
uct reviews collected by Blitzer et al. (2007). We
use four product categories: books (B), DVDs (D),
electronic items (E), and kitchen appliances (K).
A category corresponds to a domain. For each do-
main, there are 17,457 unlabeled reviews on aver-
age associated with rating scores from 1.0 to 5.0
for each domain. We use unlabeled reviews with
rating score higher than 3.0 as positive reviews and
unlabeled reviews with rating score lower than 3.0

as negative reviews for embedding learning. We
first remove reviews whose length is less than 5
words. We also remove punctuations and the stop
words. We also stem each word to its root form us-
ing Porter Stemmer (Porter, 1980). Note that this
review data is used for embedding learning, and
the learned embeddings are used as feature vectors
of words to conduct the experiments in the later
two subsections.

Given the reviews from two domains, namely,
Dp and Dq, we compare our results with the fol-
lowing baselines and state-of-the-art methods:

SSWE The SSWE model1 proposed by Tang et
al. (2014b) can learn sentiment-aware word
embeddings from tweets. We employ this
model on the combined reviews from Dp and
Dq and then obtain the embeddings.

Yang’s Work Yang et al. (2017) have proposed a
method2 to learn domain-sensitive word em-
beddings. They choose pivot words and add
a regularization item into the original skip-
gram objective function enforcing that word
representations of pivot words for the source
and target domains should be similar. The
method trains the embeddings of the source
domain first and then fixes the learned em-
bedding to train the embedding of the target
domain. Therefore, the learned embedding
of the target domain benefits from the source
domain. We denote the method as Yang in
short.

EmbeddingAll We learn word embeddings from
the combined unlabeled review data of Dp
andDq using the skip-gram method (Mikolov
et al., 2013).

EmbeddingCat We learn word embeddings from
the unlabeled reviews of Dp and Dq re-
spectively. To represent a word for review
sentiment classification, we concatenate its
learned word embeddings from the two do-
mains.

EmbeddingP and EmbeddingQ In Embed-
dingP, we use the original skip-gram
method (Mikolov et al., 2013) to learn word

1We use the implementation from https:
//github.com/attardi/deepnl/wiki/
Sentiment-Specific-Word-Embeddings.

2We use the implementation from http://statnlp.
org/research/lr/.
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B & D B & E B & K D & E D & K E & K
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

BOW 0.680 0.653 0.738 0.720 0.734 0.725 0.705 0.685 0.706 0.689 0.739 0.715
EmbeddingP 0.753 0.740 0.752 0.745 0.742 0.741 0.740 0.746 0.707 0.702 0.761 0.760
EmbeddingQ 0.736 0.732 0.697 0.697 0.706 0.701 0.762 0.759 0.758 0.759 0.783 0.780

EmbeddingCat 0.769 0.731 0.768 0.763 0.763 0.763 0.787 0.773 0.770 0.770 0.807 0.803
EmbeddingAll 0.769 0.759 0.765 0.740 0.775 0.767 0.783 0.779 0.779 0.776 0.819 0.815

Yang 0.767 0.752 0.775 0.766 0.760 0.755 0.791 0.785 0.762 0.760 0.805 0.804
SSWE 0.783 0.772 0.791 0.780 0.801 0.792 0.825 0.815 0.795 0.790 0.835 0.824
DSEc 0.773 0.750 0.783 0.781 0.775 0.773 0.797 0.792 0.784 0.776 0.806 0.800
DSEw 0.794†\ 0.793†\ 0.806†\ 0.802†\ 0.797† 0.793† 0.843†\ 0.832†\ 0.829†\ 0.827†\ 0.856†\ 0.853†\

Table 1: Results of review sentiment classification. The markers † and \ refer to p-value < 0.05 when
comparing with Yang and SSWE respectively.

embeddings only from the unlabeled reviews
of Dp. Similarly, we only adopt the unla-
beled reviews from Dq to learn embeddings
in EmbeddingQ.

BOW We use the traditional bag of words model
to represent each review in the training data.

For our DSE model, we have two variants to
represent each word. The first variant DSEc rep-
resents each word via concatenating the domain-
common vector and the domain-specific vector.
The second variant DSEw concatenates domain-
common word embeddings and domain-specific
word embeddings by considering the domain-
commonality distribution p(zw). For individual
review instances, the occurrences of w in Dp or
Dq have been established. The representation of
w is specific to the occurrence of w in Dp or Dq.
Specifically, each word w can be represented as
follows:

Uw =





if w ∈ Dp
U cw × p(zw)⊕ Upw × (1.0− p(zw))

if w ∈ Dq
U cw × p(zw)⊕ U qw × (1.0− p(zw))

(16)

where ⊕ denotes the concatenation operator.
For all word embedding methods, we set the di-

mension to 200. For the skip-gram based methods,
we sample 5 negative instances and the size of the
windows for each target word is 3. For our DSE
model, the number of iterations for the whole re-
views is 100 and the learning rate is set to 1.0.

4.2 Review Sentiment Classification
For the task of review sentiment classification, we
use 1000 positive and 1000 negative sentiment re-

views labeled by Blitzer et al. (2007) for each do-
main to conduct experiments. We randomly se-
lect 800 positive and 800 negative labeled reviews
from each domain as training data, and the remain-
ing 200 positive and 200 negative labeled reviews
as testing data. We use the SVM classifier (Fan
et al., 2008) with linear kernel to train on the train-
ing reviews for each domain, with each review
represented as the average vector of its word em-
beddings.

We use two metrics to evaluate the performance
of sentiment classification. One is the standard ac-
curacy metric. The other one is Macro-F1, which
is the average of F1 scores for both positive and
negative reviews.

We conduct multiple trials by selecting every
possible two domains from books (B), DVDs (D),
electronic items (E) and kitchen appliances (K).
We use the average of the results of each two do-
mains. The experimental results are shown in Ta-
ble 1.

From Table 1, we can see that compared with
other baseline methods, our DSEw model can
achieve the best performance of sentiment classi-
fication across most combinations of the four do-
mains. Our statistical t-tests for most of the com-
binations of domains show that the improvement
of our DSEw model over Yang and SSWE is sta-
tistically significant respectively (p-value < 0.05)
at 95% confidence level. It shows that our method
can capture the domain-commonality and senti-
ment information at the same time.

Even though both of the SSWE model and
our DSE model can learn sentiment-aware word
embeddings, our DSEw model can outperform
SSWE. It demonstrates that compared with gen-
eral sentiment-aware embeddings, our learned
domain-common and domain-specific word em-
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B & D B & E B & K D & E D & K E & K
HL MPQA HL MPQA HL MPQA HL MPQA HL MPQA HL MPQA

EmbeddingP 0.740 0.733 0.742 0.734 0.747 0.735 0.744 0.701 0.745 0.709 0.628 0.574
EmbeddingQ 0.743 0.701 0.627 0.573 0.464 0.453 0.621 0.577 0.462 0.450 0.465 0.453

EmbeddingCat 0.780 0.772 0.773 0.756 0.772 0.751 0.744 0.728 0.755 0.702 0.683 0.639
EmbeddingAll 0.777 0.769 0.773 0.730 0.762 0.760 0.712 0.707 0.749 0.724 0.670 0.658

Yang 0.780 0.775 0.789 0.762 0.781 0.770 0.762 0.736 0.756 0.713 0.634 0.614
SSWE 0.816 0.801 0.831 0.817 0.822 0.808 0.826 0.785 0.784 0.772 0.707 0.659
DSE 0.802 0.788 0.833 0.828 0.832 0.799 0.804 0.797 0.796 0.786 0.725 0.683

Table 2: Results of lexicon term sentiment classification.

beddings can capture semantic variations of words
across multiple domains.

Compared with the method of Yang which
learns cross-domain embeddings, our DSEw
model can achieve better performance. It is be-
cause we exploit sentiment information to dis-
tinguish domain-common and domain-specific
words during the embedding learning process.
The sentiment information can also help the model
distinguish the words which have similar contexts
but different sentiments.

Compared with EmbeddingP and EmbeddingQ,
the methods of EmbeddingAll and Embedding-
Cat can achieve better performance. The reason
is that the data augmentation from other domains
helps sentiment classification in the original do-
main. Our DSE model also benefits from such
kind of data augmentation with the use of reviews
from Dp and Dq.

We observe that our DSEw variant performs
better than the variant of DSEc. Compared with
DSEc, our DSEw variant adds the item of p(zw) as
the weight to combine domain-common embed-
dings and domain-specific embeddings. It shows
that the domain-commonality distribution in our
DSE model, i.e p(wz), can effectively model the
domain-sensitive information of each word and
help review sentiment classification.

4.3 Lexicon Term Sentiment Classification

To further evaluate the quality of the sentiment se-
mantics of the learned word embeddings, we also
conduct lexicon term sentiment classification on
two popular sentiment lexicons, namely HL (Hu
and Liu, 2004) and MPQA (Wilson et al., 2005).
The words with neutral sentiment and phrases are
removed. The statistics of HL and MPQA are
shown in Table 3.

We conduct multiple trials by selecting every
possible two domains from books (B), DVDs (D),
electronics items (E) and kitchen appliances (K).

Lexicon Positive Negative Total
HL 1,331 2,647 3,978
MPQA 1,932 2,817 3,075

Table 3: Statistics of the sentiment lexicons.

For each trial, we learn the word embeddings. For
our DSE model, we only use the domain-common
part to represent each word because the lexicons
are usually not associated with a particular do-
main. For each lexicon, we select 80% to train the
SVM classifier with linear kernel and the remain-
ing 20% to test the performance. The learned em-
bedding is treated as the feature vector for the lex-
icon term. We conduct 5-fold cross validation on
all the lexicons. The evaluation metric is Macro-
F1 of positive and negative lexicons.

Table 2 shows the experimental results of lex-
icon term sentiment classification. Our DSE
method can achieve competitive performance
among all the methods. Compared with SSWE,
our DSE is still competitive because both of them
consider the sentiment information in the embed-
dings. Our DSE model outperforms other methods
which do not consider sentiments such as Yang,
EmbeddingCat and EmbeddingAll. Note that the
advantage of domain-sensitive embeddings would
be insufficient for this task because the sentiment
lexicons are not domain-specific.

5 Case Study

Table 4 shows the probabilities of “lightweight”,
“die”, “mysterious”, and “great” to be domain-
common for different domain combinations. For
“lightweight”, its domain-common probability for
the books domain and the DVDs domain (“B &
D”) is quite high, i.e. p(z = 1) = 0.999, and
the review examples in the last column show that
the word “lightweight” expresses the meaning of
lacking depth of content in books or movies. Note
that most reviews of DVDs are about movies.
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Term Domain p(z = 1) Sample Reviews

“lightweight”

B & D 0.999 - I find Seth Godin’s books incredibly lightweight. There is really nothing of any
substance here.(B)
- I love the fact that it’s small and lightweight and fits into a tiny pocket on my
camera case so I never lose track of it.(E)
- These are not ”lightweight” actors. (D)
- This vacuum does a pretty good job. It is lightweight and easy to use.(K)

B & E 0.404
B & K 0.241
D & E 0.380
D & K 0.013
E & K 0.696

“die”

B & E 0.435 - I’m glad Brando lived long enough to get old and fat, and that he didn’t die
tragically young like Marilyn, JFK, or Jimi Hendrix.(B)
- Like many others here, my CD-changer died after a couple of weeks and it
wouldn’t read any CD.(E)
- I had this toaster for under 3 years when I came home one day and it smoked and
died. (K)

B & K 0.492

E & K 0.712

“mysterious”

- This novel really does cover the gamut: stunning twists, genuine love, beautiful
settings, desire for riches, mysterious murders, detective investigations, false
accusations, and self vindication.(B)
- Caller ID functionality for Vonage mysteriously stopped working even though
this phone’s REN is rated at 0.1b. (E)

B & E 0.297

“great”

B & D 0.760 - This is a great book for anyone learning how to handle dogs.(B)
- This is a great product, and you can get it, along with any other products on
Amazon up to $500 Free!(E)
- I grew up with drag racing in the 50s, 60s & 70s and this film gives a great view
of what it was like.(D)
- This is a great mixer its a little loud but worth it for the power you get.(K)

B & E 0.603
B & K 0.628
D & E 0.804
D & K 0.582
E & K 0.805

Table 4: Learned domain-commonality for some words. p(z = 1) denotes the probability that the word
is domain-common. The letter in parentheses indicates the domain of the review.

In the electronics domain and the kitchen appli-
ances domain (“E & K”), “lightweight” means
light material or weighing less than average, thus
the domain-common probability for these two do-
mains is also high, 0.696. In contrast, for the other
combinations, the probability of “lightweight” to
be domain-common is much smaller, which in-
dicates that the meaning of “lightweight” varies.
Similarly, “die” in the domains of electronics and
kitchen appliances (“E & K”) means that some-
thing does not work any more, thus, we have
p(z = 1) = 0.712. While for the books do-
main, it conveys meaning that somebody passed
away in some stories. The word “mysterious” con-
veys a positive sentiment in the books domain, in-
dicating how wonderful a story is, but it conveys a
negative sentiment in the electronics domain typi-
cally describing that a product breaks down unpre-
dictably. Thus, its domain-common probability is
small. The last example is the word “great”, and it
usually has positive sentiment in all domains, thus
has large values of p(z = 1) for all domain com-
binations.

6 Conclusions

We propose a new method of learning domain-
sensitive and sentiment-aware word embeddings.
Compared with existing sentiment-aware embed-

dings, our model can distinguish domain-common
and domain-specific words with the considera-
tion of varied semantics across multiple domains.
Compared with existing domain-sensitive meth-
ods, our model detects domain-common words ac-
cording to not only similar context words but also
sentiment information. Moreover, our learned em-
beddings considering sentiment information can
distinguish words with similar syntactic context
but opposite sentiment polarity. We have con-
ducted experiments on two downstream sentiment
classification tasks, namely review sentiment clas-
sification and lexicon term sentiment classifica-
tion. The experimental results demonstrate the ad-
vantages of our approach.
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Abstract

The task of adopting a model with good
performance to a target domain that is
different from the source domain used for
training has received considerable atten-
tion in sentiment analysis. Most exist-
ing approaches mainly focus on learning
representations that are domain-invariant
in both the source and target domains.
Few of them pay attention to domain
specific information, which should also
be informative. In this work, we pro-
pose a method to simultaneously extract
domain specific and invariant represen-
tations and train a classifier on each of
the representation, respectively. And we
introduce a few target domain labeled data
for learning domain-specific information.
To effectively utilize the target domain
labeled data, we train the domain-invariant
representation based classifier with both
the source and target domain labeled data
and train the domain-specific representa-
tion based classifier with only the target
domain labeled data. These two classifiers
then boost each other in a co-training style.
Extensive sentiment analysis experiments
demonstrated that the proposed method
could achieve better performance than
state-of-the-art methods.

1 Introduction

Sentiment classification aims to automatically
predict sentiment polarity of user generated sen-
timent data like movie reviews. The exponential
increase in the availability of online reviews and
recommendations makes it an interesting topic in
research and industrial areas. However, reviews

∗Corresponding author.

excellent

great

disappointing
insightful

delicious

confusing fast

Book Review Kitchen Review

Figure 1: Top indicators extracted with logistic
regression for Book and Kitchen domains. The
overlap between the two ellipses denotes the
shared features between these two domains.

can span so many different domains that it is
difficult to gather annotated training data for all of
them. This has motivated much research on cross-
domain sentiment classification which transfers
the knowledge from label rich domain (source
domain) to the label few domain (target domain).

In recent years, the most popular cross-domain
sentiment classification approach is to extract
domain invariant features, whose distribution in
the source domain is close to that in the target
domain. (Glorot et al., 2011; Fernando et al.,
2013; Kingma and Welling, 2013; Aljundi et al.,
2015; Baochen Sun, 2015; Long et al., 2015;
Ganin et al., 2016; Zellinger et al., 2017). And
based on this representation, it trains a classifier
with the source rich labeled data. Specifically,
for data of the source domain Xs and data of
the target domain Xt, it trains a feature generator
G(·) with restriction P (G(Xs)) ≈ P (G(Xt)).
And the classifier is trained on G(Xs) with the
source labels Ys. The main difference of these
approaches is the mechanism to incorporate the
restriction on G(·) into the system. The major
limitation of this framework is that it losses the
domain specific information. As depicted in
Figure1, even if it can perfectly extract the domain
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invariant features (e.g., excellent), it will loss some
strong indicators (e.g., delicious, fast) of the target
Kitchen domain. We believe that it can achieve
greater improvement if it can effectively make use
of this information.

Thus, in this work, we try to explore a path to
use the target domain specific information with as
few as possible target labeled data. Specifically,
we first introduce a novel method to extract the
domain invariant and domain specific features
of target domain data. Then, we treat these
two representations as two different views of the
target domain data and accordingly train a domain
invariant classifier and a target domain specific
classifier, respectively. Because the domain invari-
ant representation is compatible with both source
data and target data, we train the domain invariant
classifier with both source and target labeled data.
And for the target domain specific classifier, we
train it with target labeled data only. Based on
these two classifiers, we perform co-training on
target unlabeled data, which can further improve
the usage of target data in a bootstrap style.

In summary, the contributions of this paper
include: (i) This is the first work to explore the
usage of target domain specific information in
cross-domain sentiment classification task. (ii)
We propose a novel to extract the domain spe-
cific representation of target domain data, which
encodes the individual characteristics of the target
domain.

2 Related Work

Domain adaptation aims to generalize a classifier
that is trained on a source domain, for which
typically plenty of labeled data is available, to a
target domain, for which labeled data is scarce.
In supervised domain adaptation, cross-domain
classifiers are learnt by using labeled source
samples and a small number of labeled target
samples (Hoffman et al., 2014). A common
practice is training the cross-domain classifiers
with the labeled source data and then fine-tuning
the classifier with the target labeled data (Pan and
Yang, 2010). Meanwhile, some unsupervised and
semi-supervised cross domain methods (Ganin
et al., 2016; Louizos et al., 2015; Zellinger et al.,
2017) are proposed by combining the transfer
of classifiers with the match of distributions.
These methods focus on extracting the domain-
invariant features with the help of unlabeled data.

Specifically, Ganin et al., (2016) incorporated
an adversarial framework to perform this task.
It trained the feature generator to minimize the
classification loss and simutaneously deceive the
discriminator, which is trained to distinguish the
domain of the input data coming from. Louizos et
al., (2015) used the Maximum Mean Discrepancy
(Borgwardt et al., 2006) regularizer to constrain
the feature generator to extract the domain in-
variant features. And similarly, Zellinger et al.,
(2017) proposed the central moment discrepancy
(CMD) metric for the role of domain regularizer.
The above methods either treat it no difference
between domain specific information and domain
invariant information or just ignore the domain
specific information during in the process of
learning adaptive classifiers.

One of the most related work is the DSN model
(Bousmalis et al., 2016). It proposed to extract
the domain specific and the domain invariant
representations, simultaneously. However, It does
not explored the usage of the domain specific
information. Its classifier was still only trained
on the domain invariant representation. This work
differs from it in the following two aspects. First,
we make use of the source and target unlabeled
data to extract domain specific information, in-
stead of relying on the orthogonality constraint
between the extra representation and the domain
invariant counterpart. It is achieved by forcing the
distribution of the source examples and that of the
target examples in the domain specific space to be
different. We argue that this can avoid the po-
tential problem of the orthogonality constraint in
that the domain specific representation can be well
predicted by the domain invariant representation,
while simultaneously meeting the orthogonality
constraint. For example, let X = (0,Z) be the
domain invariant representation and Y = (Z,0)
be the domain specific representation, then X
can be uniquely determined by Y , while in the
meanwhile X ⊥ Y . Second, we apply a co-
training framework to make use of the domain
specific representation, rather than simply treating
it as a regularizer for extracting the domain
invariant representation.

Another related work is the CODA model
(Chen et al., 2011). It also applied a co-training
framework for semi-supervised domain adapta-
tion. However, instead of dividing the feature
space into domain invariant and domain specific
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Figure 2: The general architecture of the proposed model. The source data Xs and target data Xt are
mapped to a domain invariant representation and a target domain specific representation by feature maps
Ec and Et, respectively. In the space of the domain invariant representation, the distributions of source
data Hs

inv and target data Ht
common are forced to be similar by minimizing a certain distance Lsim. In

contrast, in the space of the target domain specific representation, the distributions of source data Hs
spec

and target data Ht
spec are forced to be different by minimizing the distance Ldiff . Based on the domain

invariant representation, a classifier Fc is trained with the source rich labeled data and some of the target
labeled data. In addition, based on the target domain specific representation, a classifier Ft is trained
with the target labeled data only. These two classifiers teach each other in a co-training framework based
on the target unlabeled data Ut.

parts, it randomly separated the features space.

3 Approach

We consider the following domain
adaptation setting. The source domain
consists of a set of ns fully labeled points
Ds = {(xs1,ys1), · · · , (xsns

,ysns
)} ⊂ Rd × Y

drawn from the distribution Ps(X,Y). And the
target data is divided into nl (nl � ns) labeled
points Dl

t = {(xt1,yt1), · · · , (xtnl
,ytnl
} ⊂ Rd ×Y

from the distribution Pt(X,Y) and
nu (nu � nl) unlabeled points Du

t =
{(xtnl+1,y

t
nl+1), · · · , (xtnl+nu

,ytnl+nu
} ⊂ Rd

from the marginal distribution Pt(X). The goal
is to build a classifier for the target domain data
using the source domain data and a few labeled
target domain data.

In the following section, we first introduce
the CMD metric, which is used to measure the
probability distribution discrepancy between two
random variables. Then, we describe our method
to extract the domain specific and domain invari-
ant representations of target domain examples,
using the CMD-based regularizer. Finally, we
show how to combine these two representations
using a co-training framework.

3.1 Central Moment Discrepancy (CMD)
The CMD metric was proposed by Zellinger et
al.(2017) to measure the discrepancy between
the probability distributions of two (high-
dimensional) random variables. It is one of the
state-of-the-art metrics and is used as a domain
regularizer for domain adaptation. Here, we
introduce its definition as a domain regularizer.

Definition 1 (CMD regularizer). Let X and
Y be bounded random samples with respective
probability distributions p and q on the interval
[a, b]N . The CMD regularizer CMDK is defined
by

CMDK(X,Y ) =
1

|b− a| ‖ E(X)− E(Y ) ‖2

+
1

|b− a|k
K∑

k=2

‖ Ck(X)− Ck(Y ) ‖2,

(1)

where E(X) = 1
|X|
∑

x∈X x is the empirical
expectation vector computed on the sampleX and

Ck(X) =

(
E(

N∏

i=1

(Xi − E(Xi))
ri

)

ri≥0,
∑N

i ri=k

,

is the vector of all kth order sample central
moments of the coordinates of X .
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An intuitive understanding of this metric is that
if two probability distributions are similar, their
central moment of each order should be close.

3.2 Extract Domain Invariant and Domain
Specific Representations

In this work, we aim to extract a domain invari-
ant representation, as well as a domain specific
counterpart, for each target example. This makes
our work different from most of the existing
works, which only focus on the domain invariant
representation. The general architecture of the
proposed model is illustrated in Figure 2. Data
are mapped into a domain invariant hidden space
and target domain specific hidden space using two
different mappers Et and Ec, respectively:

Hs
spec = Et(Xs;θ

t
e)

Ht
spec = Et(Xt;θ

t
e)

Hs
inv = Ec(Xs;θ

c
e)

Ht
inv = Ec(Xt;θ

c
e).

(2)

Here,Et refers to the domain invariant mapper and
Ec is the target domain specific mapper. θte and
θce denote their corresponding parameters. The
subscript e denotes encode. Based on the hidden
presentations Ht

inv and Ht
spec, we build an auto-

encoder for the target domain examples:

X̂t = Dt(H
t
inv,H

t
spec;θ

t
d), (3)

with respect to parameters θtd, where the subscript
d denotes decode. The corresponding reconstruc-
tion loss is defined by the mean square error:

Lrecon =
1

nt

nt∑

i

1

k
||Xi

t − X̂t
i||22, (4)

where k is the dimension of the input feature
vector, and Xi

t denotes the ith example of the
target domain data. Note that in this work, only
target examples are passed to the auto-encoder
because we only want to extract target domain
specific information.

For Ec, we hope that it only encodes features
shared by both the source and target domains.
From the distribution view, we hope that the
distributions of the mapped outputs, by Ec, of
source and target data are similar. To this end,
we apply the CMD regularizer onto the hidden
representation of source data Hs

inv and that of

target data Ht
inv. The corresponding loss is

defined by:

Lsim = CMDK(Hs
inv,H

t
inv). (5)

Minimizing this loss will force the distribution of
Hs
inv and Ht

inv to be similar, which in turn en-
courages Ec to encode domain invariant features.

And for the domain specific encoder Et, we
hope that it only encodes features dominated by
the target domain. Ideally, these features should
commonly appear in the target domain while
hardly appear in the source domain. We argue
that this can also be obtained by forcing the
distribution of these features in the target domain
to differ from that in the source domain, because
the target specific auto-encoder Dt should filter
out features that hardly appear in the target domain
while commonly appear in the source domain.
Based on this intuition, we apply a signal flipped
CMD regularizer onto the mapped representation
of source dataHs

spec and that of target dataHt
spec.

The corresponding loss is defined by:

Ldiff = −CMDK(Hs
spec,H

t
spec). (6)

Minimizing this loss encourages the distribution
of Hs

spec to differ from that of Ht
spec, which

in turn encourage Et to encode domain specific
features.

3.3 Co-Training with Domain Invariant and
Domain Specific Representations

The co-training algorithm assumes that the data
set is presented in two separate views, and two
classifiers are trained for each view. In each
iteration, some unlabeled examples that are con-
fidently predicted according to exactly one of the
two classifiers are moved to the training set. In this
way, one classifier provides the predicted labels
to the unlabeled examples, on which the other
classifier may be uncertain.

In this work, we treat the domain invariant
representation and the domain specific represen-
tation as the two separate views of target domain
examples. Based on the domain invariant repre-
sentation, we train a domain invariant classifier,
Fc, with respect to parameters θc. In addition,
based on the domain specific representation, we
train a domain specific classifier, Ft, with respect
to parameters θt.

Because the distribution of the source examples
is compatible with that of the target examples in

2508



input:
Ls: labeled source domain examples
Lt: labeled target domain examples
Ut: unlabeled target domain

examples
Hs
inv: Invariant representation of Ls

Ht
inv: Invariant representation of Lt

Ht
spec: Specific representation of Lt

repeat
Train classifier Fc with Ls and Lt
based on Hs

inv and Ht
inv;

Apply classifier Fc to label Ut;
Select p positive and n negative the
most confidently predicted examples U ct
from Ut;
Train classifier Ft with Lt based on
Ht
spec;

Apply classifier Ft to label Ut;
Select p positive and n negative the
most confidently predicted examples U tt
from Ut;
Remove examples U ct ∪ U tt from Ut;
Add examples U ct ∪ U tt and their
corresponding labels to Lt;

until best performance obtained on the
developing data set;

Algorithm 1: Co-Training for Domain
Adaptation

the domain invariant hidden space, we use both the
source rich labels and a few target labels to train
the classifier Fc. To train the classifier Ft, only
the target labels are used. The entire procedure is
described in Algorithm 1.

3.4 Model Learning
The training of this model is divided into two parts
with one for the domain invariant classifier, Fc,
and another one for the domain specific classifier,
Ft. For Fc, the goal of training is to minimize
the following loss with respect to parameters Θ =
{θce,θce,θtd,θc}:

L = Lrecon(θce,θte,θtd) + αLc(θce,θc)
+ γLsim(θce) + λLdiff (θte),

(7)

where α, γ, and λ are weights that control the
interaction of the loss terms. L(θ) means that
loss, L, is optimized on the parameters θ during
training. And Lc denotes the classification loss
on the domain invariant representation, which

is defined by the negative log-likelihood of the
ground truth class for examples of both source and
target domains:

Lc =
1

ns + lt

ns∑

i=1

−Y i
s logFc(Y

i
s |Ec(Lis))

+
1

ns + lt

lt∑

i=1

−Y i
t logFc(Y

i
t |Ec(Lit)),

(8)

where Y i
s is the one-hot encoding of the class label

for the ith source example, Y i
t is that for the ith

labeled target example, and lt denotes the dynamic
number of target labeled data in each iteration.

For Ft, the goal of training is to minimize the
following loss with respect to parameters Θ =
{θce,θte,θtd,θt}:

L = Lrecon(θce,θte,θtd) + βLt(θte,θt)
+ γLsim(θce) + λLdiff (θte),

(9)

where γ and λ are the same weights as those for
the classifier Fc, and β is the weight that controls
the portion of classification loss,Lt, on the domain
specific representation, which is defined by the
negative log-likelihood of the ground truth class
for examples of the target domain only:

Lt =
1

lt

lt∑

i=1

−Y i
t logFt(Y

i
t |Et(Lit)) (10)

4 Experiment

4.1 Dataset
Domain adaptation for sentiment classification
has been widely studied in the NLP community.
The major experiments were performed on the
benchmark made of reviews of Amazon products
gathered by Blitzer et al. (2007). This data
set1 contains Amazon product reviews from four
different domains: Books, DVD, Electronics, and
Kitchen appliances from Amazon.com. Each
review was originally associated with a rating of 1-
5 stars. For simplicity, we are only concerned with
whether or not a review is positive (higher than 3
stars) or negative (3 stars or lower). Reviews are
encoded in 5,000 dimensional tf-idf feature vec-
tors of bag-of-words unigrams and bigrams. From
this data, we constructed 12 cross-domain binary
classification tasks. Each domain adaptation
task consists of 2,000 labeled source examples,

1https://www.cs.jhu.edu/ mdredze/datasets/sentiment/
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S→T
Supervised Learning Unsupervised Transfer Semi-supervised Transfer

SO ST CMD DSN CMD-ft DSN-ft CODA CoCMD (p-value)
B→D 81.7±0.2 81.6±0.4 82.6±0.3 82.8±0.4 82.7±0.1 82.7±0.6 81.9±0.4 83.1±0.1(.003)
B→E 74.0±0.6 75.8±0.2 81.5±0.6 81.9±0.5 82.4±0.6 82.3±0.8 77.5±2.0 83.0±0.6(.061)
B→K 76.4±1.0 78.2±0.6 84.4±0.3 84.4±0.6 84.7±0.5 84.8±0.9 80.4±0.8 85.3±0.7(.039)
D→B 79.5±0.3 80.0±0.4 80.7±0.6 80.1±1.3 81.0±0.7 81.1±1.2 80.6±0.3 81.8±0.5(.022)
D→E 75.6±0.7 77.0±0.3 82.2±0.5 81.4±1.1 82.5±0.7 81.3±1.2 79.4±0.7 83.4±0.6(.019)
D→K 79.5±0.4 80.4±0.6 84.8±0.2 83.3±0.7 84.5±0.9 83.8±0.8 82.4±0.5 85.5±0.8(.055)
E→B 72.3±1.5 74.7±0.4 74.9±0.6 75.1±0.4 76.2±0.6 76.3±1.4 73.6±0.7 76.9±0.6(.094)
E→D 74.2±0.6 75.4±0.4 77.4±0.3 77.1±0.3 77.7±0.7 77.1±1.1 75.9±0.2 78.3±0.1(.079)
E→K 85.6±0.6 85.7±0.7 86.4±0.9 87.2±0.7 86.7±0.3 87.1±0.9 86.1±0.4 87.3±0.4(.093)
K→B 73.1±0.1 73.8±0.3 75.8±0.3 76.4±0.5 76.4±0.5 76.2±0.3 74.3±1.0 77.2±0.4(.016)
K→D 75.2±0.7 76.6±0.9 77.7±0.4 78.0±1.4 78.8±0.4 78.5±0.5 77.5±0.4 79.6±0.5(.039)
K→E 85.4±1.0 85.3±1.6 86.7±0.6 86.7±0.7 87.3±0.3 87.2±0.4 86.4±0.5 87.2±0.4(.512)

Table 1: Average prediction accuracy with 5 runs on target domain testing data set. The left group of
models refer to previous state-of-the-art methods and the right group of models refer to the proposed
model and some of its variants. We list the p-values of the T-test between CoCMD and CMD-ft for more
intuitive understanding.

2,000 unlabeled target examples, and 50 labeled
target examples for training. To fine-tune the
hyper-parameters, we randomly select 500 target
examples as developing data set, leaving 2,500-
5,500 examples for testing. All of the compared
methods and CoCMD share this setting.

4.2 Compared Methods

CoCMD is systematically compared with: 1)
neural network classifier without any domain
adaptation trained on labeled source data only
(SO); 2) neural network classifier without any
domain adaptation trained on the union of labeled
source and target data (ST); 3) unsupervised
central moment discrepancy trained with labeled
source data only (CMD) (Zellinger et al., 2017); 4)
unsupervised domain separation network (DSN)
(Bousmalis et al., 2016); 5) semi-supervised CMD
trained on labeled source data and then fine-
tuned on labeled target data (CMD-ft); 6) semi-
supervised DSN trained on labeled source data
and then fine-tuned on labeled target data (DSN-
ft); 7) semi-supervised Co-training for domain
adaptation (CODA) (Chen et al., 2011).

4.3 Implementation Detail

CoCMD was imeplented with a similar architec-
ture to that of Ganin et al., (2016) and Zellinger
et al., (2017), with one dense hidden layer with
50 hidden nodes and sigmoid activation functions.
The classifiers consist of a softmax layer with

two dimensional outputs. And the decoder was
implemented with a multilayer perceptron (MLP)
with one dense hidden layer, tanh activation
functions, and relu output functions.

Model optimization was performed using the
RmsProp (Tieleman and Hinton, 2012) update
rule with learning rate set to 0.005 for all of the
tasks.Hyper-parameter K of the CMD regularizer
was set to 3 for all of the tasks, according to
the experiment result of Zellinger et al. (2017).
For the hyper-parameters α, β, γ, and λ, we
took the values that achieve the best performance
on the developing data set via a grid search
{0.01, 0.1, 1, 10, 100}. However, instead of build-
ing grids on α, β, γ, and λ all at the same time,
we first fine-tuned the values of α and β with the
values of γ and λ fixed at 1. After that, we fine-
tuned the values of γ and λ with α and β fixed
at the best values obtained at last step. Though,
this practice may miss the best combination of
these hyper-parameters, it can greatly reduce the
time consuming for fine-tuning and still obtain
acceptable results. And for each iteration of the
co-training, we set p = n = 5.

4.4 Result

Table 1 shows the average classification accuracy
of our proposed model and the baselines over all
12 domain adaptation tasks. We can first observe
that the proposed model CoCMD outperforms
the compared methods over almost all of the
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Source-only CoCMD: Invariant CoCMD: Specific

(a) books → dvd

(e) electronics → kitchen

(h) books → kitchen

Source-only CoCMD: Invariant CoCMD: Specific

Source-only CoCMD: Invariant CoCMD: Specific

(b) books → dvd (c) books → dvd

(f) electronics → kitchen (g) electronics → kitchen

(i) books → kitchen (j) books → kitchen

Figure 3: The distribution of source and target data in the hidden space of different representations. The
red points denote the source examples and the blue ones denote the target examples. The pictures of
each row correspond to the B→D, E→K, and B→K task. The pictures of each column correspond to the
hidden space, He

c , of the source-only model, the domain invariant representation, and the target specific
representation of the proposed model.

12 tasks except for the K→E task. And by
comparing the results of CMD-based methods and
DSN-based methods, we can find out that just
extracting the domain specific information but
not making further usage does not offer much
improvement to the adaptation performance for
sentiment classification task. This approves the
necessary to explore the usage of domain specific
information.

If organizing the domain B and D into a
group and organizing the domain E and K into
another group, we can observe that the domain
adaptation methods achieve greater improvement
on the standard classifiers over cross-group tasks
(e.g., B → K) than over within-group tasks (e.g.,
B→ D). Similar observation can also be observed
by comparing ST with SO, CMD with CMD-ft,
and DSN with DSN-ft. The possible explanation
is that domains within the same group are more
close. Thus adapting over within group tasks
is easier than adapting over cross group tasks,
if without any domain adaptation regularizer.
In addition, we can also observe that CoCMD

achieve relatively greater improvement on CMD
baseline over the cross-group tasks that over the
within-group tasks. We argue that this is because
domains in the same group contain relatively
less domain individual characteristic. While for
domains cross the groups, the domain specific
information usually takes a larger share of all of
the information. Because the additional part of our
proposed method compared to the CMD baseline,
is built on the domain specific information, the
improvement should be relatively less for within-
group tasks. Further analysis of the proposed
model in the next section empirically proves this
explanation.

4.5 Model Analysis

In this section, we look into how similar two
domains are to each other in the space of domain
invariant representation and domain specific rep-
resentation.
A-distance Study: Some of previous works
proposed to make use of a proxy of the A-
distance (Ben-David et al., 2007) to measure
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Figure 4: Proxy A-distance between domains of
the Amazon benchmark for the 4 different tasks.

the distance of two domains. The proxy was
defined by 2(1− 2ε), where ε is the generalization
error of a linear SVM classifier trained on the
binary classification problem to distinguish inputs
between the source and target domains. Figure
4 shows the results of each pair of domains.
We observe several trends: Firstly, the proxy
A-distance of within-group domain pairs (i.e.,
BD and EK) is consistently smaller than that
of the cross-group domain pairs (i.e., BK and
DE) on all of the hidden spaces. Secondly, the
proxy A-distance on the domain specific space is
consistently larger than its corresponding value on
the hidden space of SO model, as expected. While
the proxy A-distance value on domain invariant
space is generally smaller than its corresponding
value on the hidden space of SO model, except
for BK domain pair. A possible explanation
is that the balance of classification loss and
domain discrepancy loss makes there is still some
target domain specific information in the domain
invariant space, introduced by the target unlabeled
data.
Visualization: For more intuitive understanding
of the behaviour of the proposed model, we
further perform a visualization of the domain
invariant representation and the domain specific
representation, respectively. For this purpose,
we reduce the dimension of the hidden space
to 2 using principle component analysis (PCA)
(Wold et al., 1987). Due to space constraints we
choose three tasks: two within-group tasks (B→D
and E→K) and a cross-group task (B→K). For
comparison, we also display the distribution of
each domain in the hidden space of the SO model.
The results are shown in Figure 3.

Pictures of the first column in Figure 3 show
the original distribution of the source and target
examples in the hidden space of SO model. As
can be seen, there is a great overlap between
the distributions of the domain B and the domain
D domains and between the distributions of the
domain E and the domain K. While there is quite
a gap between the distribution of the domain B
and the domain K. This strengthens our argument
that within-group domains share relatively more
common information than cross-group domains.
Pictures of the second column show the distri-
bution of the source and target examples in the
domain invariant hidden space of the proposed
model. From these pictures we can see that the
distributions of the source and target data are quite
similar in this presentation. This demonstrates
the effectiveness of the CMD regularizer for ex-
tracting domain invariant representation. Pictures
of the third column show the distribution of the
source and target examples in the domain specific
hidden space of the proposed model. As can
be seen from these pictures, examples of the
source and target domains are separated very
well. This demonstrates the effectiveness of our
proposed method for extracting domain specific
information.

5 Conclusion

In this work, we investigated the importance of
domain specific information for domain adap-
tation. In contrast with most of the previous
methods, which pay more attention to domain
invariant information, we showed that domain
specific information could also be beneficially
used in the domain adaptation task with a small
amount of in-domain labeled data. Specifically,
we proposed a novel method, based on the CMD
metric, to simultaneously extract domain invariant
feature and domain specific feature for target
domain data. With these two different features,
we performed co-training with labeled data from
the source domain and a small amount of labeled
data from the target domain. Sentiment analysis
experiments demonstrated the effectiveness of this
method.
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Abstract

Aspect based sentiment analysis (ABSA)
can provide more detailed information
than general sentiment analysis, because
it aims to predict the sentiment polarities
of the given aspects or entities in text.
We summarize previous approaches into
two subtasks: aspect-category sentiment
analysis (ACSA) and aspect-term senti-
ment analysis (ATSA). Most previous ap-
proaches employ long short-term mem-
ory and attention mechanisms to predict
the sentiment polarity of the concerned
targets, which are often complicated and
need more training time. We propose a
model based on convolutional neural net-
works and gating mechanisms, which is
more accurate and efficient. First, the
novel Gated Tanh-ReLU Units can selec-
tively output the sentiment features ac-
cording to the given aspect or entity. The
architecture is much simpler than attention
layer used in the existing models. Sec-
ond, the computations of our model could
be easily parallelized during training, be-
cause convolutional layers do not have
time dependency as in LSTM layers, and
gating units also work independently. The
experiments on SemEval datasets demon-
strate the efficiency and effectiveness of
our models. 1

1 Introduction

Opinion mining and sentiment analysis (Pang and
Lee, 2008) on user-generated reviews can pro-
vide valuable information for providers and con-
sumers. Instead of predicting the overall sen-

1The code and data is available at https://github.
com/wxue004cs/GCAE

timent polarity, fine-grained aspect based senti-
ment analysis (ABSA) (Liu and Zhang, 2012) is
proposed to better understand reviews than tradi-
tional sentiment analysis. Specifically, we are in-
terested in the sentiment polarity of aspect cate-
gories or target entities in the text. Sometimes,
it is coupled with aspect term extractions (Xue
et al., 2017). A number of models have been
developed for ABSA, but there are two different
subtasks, namely aspect-category sentiment anal-
ysis (ACSA) and aspect-term sentiment analysis
(ATSA). The goal of ACSA is to predict the sen-
timent polarity with regard to the given aspect,
which is one of a few predefined categories. On
the other hand, the goal of ATSA is to identify
the sentiment polarity concerning the target enti-
ties that appear in the text instead, which could be
a multi-word phrase or a single word. The num-
ber of distinct words contributing to aspect terms
could be more than a thousand. For example, in
the sentence “Average to good Thai food, but terri-
ble delivery.”, ATSA would ask the sentiment po-
larity towards the entity Thai food; while ACSA
would ask the sentiment polarity toward the aspect
service, even though the word service does not ap-
pear in the sentence.

Many existing models use LSTM lay-
ers (Hochreiter and Schmidhuber, 1997) to
distill sentiment information from embedding
vectors, and apply attention mechanisms (Bah-
danau et al., 2014) to enforce models to focus on
the text spans related to the given aspect/entity.
Such models include Attention-based LSTM
with Aspect Embedding (ATAE-LSTM) (Wang
et al., 2016b) for ACSA; Target-Dependent
Sentiment Classification (TD-LSTM) (Tang et al.,
2016a), Gated Neural Networks (Zhang et al.,
2016) and Recurrent Attention Memory Network
(RAM) (Chen et al., 2017) for ATSA. Attention
mechanisms has been successfully used in many
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NLP tasks. It first computes the alignment scores
between context vectors and target vector; then
carry out a weighted sum with the scores and the
context vectors. However, the context vectors
have to encode both the aspect and sentiment
information, and the alignment scores are applied
across all feature dimensions regardless of the dif-
ferences between these two types of information.
Both LSTM and attention layer are very time-
consuming during training. LSTM processes one
token in a step. Attention layer involves exponen-
tial operation and normalization of all alignment
scores of all the words in the sentence (Wang
et al., 2016b). Moreover, some models needs the
positional information between words and targets
to produce weighted LSTM (Chen et al., 2017),
which can be unreliable in noisy review text.
Certainly, it is possible to achieve higher accuracy
by building more and more complicated LSTM
cells and sophisticated attention mechanisms; but
one has to hold more parameters in memory, get
more hyper-parameters to tune and spend more
time in training. In this paper, we propose a fast
and effective neural network for ACSA and ATSA
based on convolutions and gating mechanisms,
which has much less training time than LSTM
based networks, but with better accuracy.

For ACSA task, our model has two separate
convolutional layers on the top of the embedding
layer, whose outputs are combined by novel gat-
ing units. Convolutional layers with multiple fil-
ters can efficiently extract n-gram features at many
granularities on each receptive field. The pro-
posed gating units have two nonlinear gates, each
of which is connected to one convolutional layer.
With the given aspect information, they can selec-
tively extract aspect-specific sentiment informa-
tion for sentiment prediction. For example, in the
sentence “Average to good Thai food, but terrible
delivery.”, when the aspect food is provided, the
gating units automatically ignore the negative sen-
timent of aspect delivery from the second clause,
and only output the positive sentiment from the
first clause. Since each component of the proposed
model could be easily parallelized, it has much
less training time than the models based on LSTM
and attention mechanisms. For ATSA task, where
the aspect terms consist of multiple words, we ex-
tend our model to include another convolutional
layer for the target expressions. We evaluate our
models on the SemEval datasets, which contains

restaurants and laptops reviews with labels on as-
pect level. To the best of our knowledge, no CNN-
based model has been proposed for aspect based
sentiment analysis so far.

2 Related Work

We present the relevant studies into following two
categories.

2.1 Neural Networks

Recently, neural networks have gained much pop-
ularity on sentiment analysis or sentence classifi-
cation task. Tree-based recursive neural networks
such as Recursive Neural Tensor Network (Socher
et al., 2013) and Tree-LSTM (Tai et al., 2015),
make use of syntactic interpretation of the sen-
tence structure, but these methods suffer from
time inefficiency and parsing errors on review
text. Recurrent Neural Networks (RNNs) such as
LSTM (Hochreiter and Schmidhuber, 1997) and
GRU (Chung et al., 2014) have been used for sen-
timent analysis on data instances having variable
length (Tang et al., 2015; Xu et al., 2016; Lai
et al., 2015). There are also many models that use
convolutional neural networks (CNNs) (Collobert
et al., 2011; Kalchbrenner et al., 2014; Kim, 2014;
Conneau et al., 2016) in NLP, which also prove
that convolution operations can capture composi-
tional structure of texts with rich semantic infor-
mation without laborious feature engineering.

2.2 Aspect based Sentiment Analysis

There is abundant research work on aspect based
sentiment analysis. Actually, the name ABSA is
used to describe two different subtasks in the lit-
erature. We classify the existing work into two
main categories based on the descriptions of senti-
ment analysis tasks in SemEval 2014 Task 4 (Pon-
tiki et al., 2014): Aspect-Term Sentiment Analysis
and Aspect-Category Sentiment Analysis.

Aspect-Term Sentiment Analysis. In the first
category, sentiment analysis is performed toward
the aspect terms that are labeled in the given sen-
tence. A large body of literature tries to utilize the
relation or position between the target words and
the surrounding context words either by using the
tree structure of dependency or by simply counting
the number of words between them as a relevance
information (Chen et al., 2017).

Recursive neural networks (Lakkaraju et al.,
2014; Dong et al., 2014; Wang et al., 2016a) rely
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on external syntactic parsers, which can be very
inaccurate and slow on noisy texts like tweets and
reviews, which may result in inferior performance.

Recurrent neural networks are commonly used
in many NLP tasks as well as in ABSA prob-
lem. TD-LSTM (Tang et al., 2016a) and gated
neural networks (Zhang et al., 2016) use two or
three LSTM networks to model the left and right
contexts of the given target individually. A fully-
connected layer with gating units predicts the sen-
timent polarity with the outputs of LSTM layers.

Memory network (Weston et al., 2014) coupled
with multiple-hop attention attempts to explicitly
focus only on the most informative context area
to infer the sentiment polarity towards the tar-
get word (Tang et al., 2016b; Chen et al., 2017).
Nonetheless, memory network simply bases its
knowledge bank on the embedding vectors of in-
dividual words (Tang et al., 2016b), which makes
itself hard to learn the opinion word enclosed
in more complicated contexts. The performance
is improved by using LSTM, attention layer and
feature engineering with word distance between
surrounding words and target words to produce
target-specific memory (Chen et al., 2017).

Aspect-Category Sentiment Analysis. In this
category, the model is asked to predict the sen-
timent polarity toward a predefined aspect cate-
gory. Attention-based LSTM with Aspect Embed-
ding (Wang et al., 2016b) uses the embedding vec-
tors of aspect words to selectively attend the re-
gions of the representations generated by LSTMs.

3 Gated Convolutional Network with
Aspect Embedding

In this section, we present a new model for ACSA
and ATSA, namely Gated Convolutional network
with Aspect Embedding (GCAE), which is more
efficient and simpler than recurrent network based
models (Wang et al., 2016b; Tang et al., 2016a;
Ma et al., 2017; Chen et al., 2017). Recurrent neu-
ral networks sequentially compose hidden vectors
hi = f(hi−1), which does not enable paralleliza-
tion over inputs. In the attention layer, softmax
normalization also has to wait for all the alignment
scores computed by a similarity function. Hence,
they cannot take advantage of highly-parallelized
modern hardware and libraries. Our model is built
on convolutional layers and gating units. Each
convolutional filter computes n-gram features at
different granularities from the embedding vectors

at each position individually. The gating units on
top of the convolutional layers at each position
are also independent from each other. Therefore,
our model is more suitable to parallel computing.
Moreover, our model is equipped with two kinds
of effective filtering mechanisms: the gating units
on top of the convolutional layers and the max
pooling layer, both of which can accurately gen-
erate and select aspect-related sentiment features.

We first briefly review the vanilla CNN for text
classification (Kim, 2014). The model achieves
state-of-the-art performance on many standard
sentiment classification datasets (Le et al., 2017).

The CNN model consists of an embedding
layer, a one-dimension convolutional layer and a
max-pooling layer. The embedding layer takes the
indices wi ∈ {1, 2, . . . , V } of the input words
and outputs the corresponding embedding vec-
tors vi ∈ RD. D denotes the dimension size
of the embedding vectors. V is the size of the
word vocabulary. The embedding layer is usu-
ally initialized with pre-trained embeddings such
as GloVe (Pennington et al., 2014), then they are
fine-tuned during the training stage. The one-
dimension convolutional layer convolves the in-
puts with multiple convolutional kernels of differ-
ent widths. Each kernel corresponds a linguistic
feature detector which extracts a specific pattern
of n-gram at various granularities (Kalchbrenner
et al., 2014). Specifically, the input sentence is
represented by a matrix through the embedding
layer, X = [v1,v2, . . . ,vL], where L is the length
of the sentence with padding. A convolutional fil-
ter Wc ∈ RD×k maps k words in the receptive
field to a single feature c. As we slide the filter
across the whole sentence, we obtain a sequence
of new features c = [c1, c2, . . . , cL].

ci = f(Xi:i+K ∗Wc + bc) , (1)

where bc ∈ R is the bias, f is a non-linear acti-
vation function such as tanh function, ∗ denotes
convolution operation. If there are nk filters of
the same width k, the output features form a ma-
trix C ∈ Rnk×Lk . For each convolutional filter,
the max-over-time pooling layer takes the maxi-
mal value among the generated convolutional fea-
tures, resulting in a fixed-size vector whose size is
equal to the number of filters nk. Finally, a soft-
max layer uses the vector to predict the sentiment
polarity of the input sentence.

Figure 1 illustrates our model architecture. The
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Figure 1: Illustration of our model GCAE for
ACSA task. A pair of convolutional neuron com-
putes features for a pair of gates: tanh gate and
ReLU gate. The ReLU gate receives the given
aspect information to control the propagation of
sentiment features. The outputs of two gates are
element-wisely multiplied for the max pooling
layer.

Gated Tanh-ReLU Units (GTRU) with aspect em-
bedding are connected to two convolutional neu-
rons at each position t. Specifically, we compute
the features ci as

ai = relu(Xi:i+k ∗Wa +Vava + ba) (2)

si = tanh(Xi:i+k ∗Ws + bs) (3)

ci = si × ai , (4)

where va is the embedding vector of the given as-
pect category in ACSA or computed by another
CNN over aspect terms in ATSA. The two convo-
lutions in Equation 2 and 3 are the same as the
convolution in the vanilla CNN, but the convo-
lutional features ai receives additional aspect in-
formation va with ReLU activation function. In
other words, si and ai are responsible for generat-
ing sentiment features and aspect features respec-
tively. The above max-over-time pooling layer
generates a fixed-size vector e ∈ Rdk , which
keeps the most salient sentiment features of the
whole sentence. The final fully-connected layer
with softmax function uses the vector e to pre-
dict the sentiment polarity ŷ. The model is trained
by minimizing the cross-entropy loss between the
ground-truth y and the predicted value ŷ for all
data samples.

L = −
∑

i

∑

j

yji log ŷ
j
i , (5)

where i is the index of a data sample, j is the index
of a sentiment class.

4 Gating Mechanisms

The proposed Gated Tanh-ReLU Units control
the path through which the sentiment information
flows towards the pooling layer. The gating mech-
anisms have proven to be effective in LSTM. In as-
pect based sentiment analysis, it is very common
that different aspects with different sentiments ap-
pear in one sentence. The ReLU gate in Equation 2
does not have upper bound on positive inputs but
strictly zero on negative inputs. Therefore, it can
output a similarity score according to the relevance
between the given aspect information va and the
aspect feature ai at position t. If this score is zero,
the sentiment features si would be blocked at the
gate; otherwise, its magnitude would be amplified
accordingly. The max-over-time pooling further
removes the sentiment features which are not sig-
nificant over the whole sentence.

In language modeling (Dauphin et al., 2017;
Kalchbrenner et al., 2016; van den Oord et al.,
2016; Gehring et al., 2017), Gated Tanh Units
(GTU) and Gated Linear Units (GLU) have shown
effectiveness of gating mechanisms. GTU is rep-
resented by tanh(X ∗W+ b)× σ(X ∗V+ c), in
which the sigmoid gates control features for pre-
dicting the next word in a stacked convolutional
block. To overcome the gradient vanishing prob-
lem of GTU, GLU uses (X∗W+b)×σ(X∗V+c)
instead, so that the gradients would not be down-
scaled to propagate through many stacked convo-
lutional layers. However, a neural network that
has only one convolutional layer would not suf-
fer from gradient vanish problem during training.
We show that on text classification problem, our
GTRU is more effective than these two gating
units.

5 GCAE on ATSA

ATSA task is defined to predict the sentiment po-
larity of the aspect terms in the given sentence.
We simply extend GCAE by adding a small con-
volutional layer on aspect terms, as shown in Fig-
ure 2. In ACSA, the aspect information controlling
the flow of sentiment features in GTRU is from
one aspect word; while in ATSA, such informa-
tion is provided by a small CNN on aspect terms
[wi, wi+1, . . . , wi+k]. The additional CNN ex-
tracts the important features from multiple words
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Figure 2: Illustration of model GCAE for ATSA task. It has an additional convolutional layer on aspect
terms.

while retains the ability of parallel computing.

6 Experiments

6.1 Datasets and Experiment Preparation
We conduct experiments on public datasets from
SemEval workshops (Pontiki et al., 2014), which
consist of customer reviews about restaurants and
laptops. Some existing work (Wang et al., 2016b;
Ma et al., 2017; Chen et al., 2017) removed “con-
flict” labels from four sentiment labels, which
makes their results incomparable to those from the
workshop report (Kiritchenko et al., 2014). We
reimplemented the compared methods, and used
hyper-parameter settings described in these refer-
ences.

The sentences which have different sentiment
labels for different aspects or targets in the sen-
tence are more common in review data than in
standard sentiment classification benchmark. The
sentence in Table 1 shows the reviewer’s different
attitude towards two aspects: food and delivery.
Therefore, to access how the models perform on
review sentences more accurately, we create small
but difficult datasets, which are made up of the
sentences having opposite or different sentiments
on different aspects/targets. In Table 1, the two
identical sentences but with different sentiment la-
bels are both included in the dataset. If a sentence
has 4 aspect targets, this sentence would have 4
copies in the data set, each of which is associated
with different target and sentiment label.

For ACSA task, we conduct experiments on

restaurant review data of SemEval 2014 Task 4.
There are 5 aspects: food, price, service, ambi-
ence, and misc; 4 sentiment polarities: positive,
negative, neutral, and conflict. By merging restau-
rant reviews of three years 2014 - 2016, we obtain
a larger dataset called “Restaurant-Large”. Incom-
patibilities of data are fixed during merging. We
replace conflict labels with neutral labels in the
2014 dataset. In the 2015 and 2016 datasets, there
could be multiple pairs of “aspect terms” and “as-
pect category” in one sentence. For each sentence,
let p denote the number of positive labels minus
the number of negative labels. We assign a sen-
tence a positive label if p > 0, a negative label if
p < 0, or a neutral label if p = 0. After removing
duplicates, the statistics are show in Table 2. The
resulting dataset has 8 aspects: restaurant, food,
drinks, ambience, service, price, misc and loca-
tion.

For ATSA task, we use restaurant reviews and
laptop reviews from SemEval 2014 Task 4. On
each dataset, we duplicate each sentence na times,
which is equal to the number of associated aspect
categories (ACSA) or aspect terms (ATSA) (Ruder
et al., 2016b,a). The statistics of the datasets are
shown in Table 2.

The sizes of hard data sets are also shown in Ta-
ble 2. The test set is designed to measure whether
a model can detect multiple different sentiment
polarities in one sentence toward different enti-
ties. Without such sentences, a classifier for over-
all sentiment classification might be good enough
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Sentence aspect category/term sentiment label
Average to good Thai food, but terrible delivery. food positive
Average to good Thai food, but terrible delivery. delivery negative

Table 1: Two example sentences in one hard test set of restaurant review dataset of SemEval 2014.

for the sentences associated with only one senti-
ment label.

In our experiments, word embedding vectors
are initialized with 300-dimension GloVe vectors
which are pre-trained on unlabeled data of 840 bil-
lion tokens (Pennington et al., 2014). Words out of
the vocabulary of GloVe are randomly initialized
with a uniform distribution U(−0.25, 0.25). We
use Adagrad (Duchi et al., 2011) with a batch size
of 32 instances, default learning rate of 1e−2, and
maximal epochs of 30. We only fine tune early
stopping with 5-fold cross validation on training
datasets. All neural models are implemented in
PyTorch.

6.2 Compared Methods

To comprehensively evaluate the performance of
GCAE, we compare our model against the follow-
ing models.

NRC-Canada (Kiritchenko et al., 2014) is the
top method in SemEval 2014 Task 4 for ACSA and
ATSA task. SVM is trained with extensive fea-
ture engineering: various types of n-grams, POS
tags, and lexicon features. The sentiment lexicons
improve the performance significantly, but it re-
quires large scale labeled data: 183 thousand Yelp
reviews, 124 thousand Amazon laptop reviews, 56
million tweets, and 3 sentiment lexicons labeled
manually.

CNN (Kim, 2014) is widely used on text clas-
sification task. It cannot directly capture aspect-
specific sentiment information on ACSA task, but
it provides a very strong baseline for sentiment
classification. We set the widths of filters to 3, 4,
5 with 100 features each.

TD-LSTM (Tang et al., 2016a) uses two LSTM
networks to model the preceding and following
contexts of the target to generate target-dependent
representation for sentiment prediction.

ATAE-LSTM (Wang et al., 2016b) is an
attention-based LSTM for ACSA task. It appends
the given aspect embedding with each word em-
bedding as the input of LSTM, and has an atten-
tion layer above the LSTM layer.

IAN (Ma et al., 2017) stands for interactive

attention network for ATSA task, which is also
based on LSTM and attention mechanisms.

RAM (Chen et al., 2017) is a recurrent atten-
tion network for ATSA task, which uses LSTM
and multiple attention mechanisms.

GCN stands for gated convolutional neural net-
work, in which GTRU does not have the aspect
embedding as an additional input.

6.3 Results and Analysis

6.3.1 ACSA
Following the SemEval workshop, we report the
overall accuracy of all competing models over the
test datasets of restaurant reviews as well as the
hard test datasets. Every experiment is repeated
five times. The mean and the standard deviation
are reported in Table 4.

LSTM based model ATAE-LSTM has the worst
performance of all neural networks. Aspect-based
sentiment analysis is to extract the sentiment in-
formation closely related to the given aspect. It is
important to separate aspect information and sen-
timent information from the extracted information
of sentences. The context vectors generated by
LSTM have to convey the two kinds of informa-
tion at the same time. Moreover, the attention
scores generated by the similarity scoring function
are for the entire context vector.

GCAE improves the performance by 1.1% to
2.5% compared with ATAE-LSTM. First, our
model incorporates GTRU to control the sentiment
information flow according to the given aspect in-
formation at each dimension of the context vec-
tors. The element-wise gating mechanism works
at fine granularity instead of exerting an alignment
score to all the dimensions of the context vectors
in the attention layer of other models. Second,
GCAE does not generate a single context vector,
but two vectors for aspect and sentiment features
respectively, so that aspect and sentiment informa-
tion is unraveled. By comparing the performance
on the hard test datasets against CNN, it is easy
to see the convolutional layer of GCAE is able to
differentiate the sentiments of multiple entities.

Convolutional neural networks CNN and GCN
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Positive Negative Neutral Conflict
Train Test Train Test Train Test Train Test

Restaurant-Large 2710 1505 1198 680 757 241 - -
Restaurant-Large-Hard 182 92 178 81 107 61 - -
Restaurant-2014 2179 657 839 222 500 94 195 52
Restaurant-2014-Hard 139 32 136 26 50 12 40 19

Table 2: Statistics of the datasets for ACSA task. The hard dataset is only made up of sentences having
multiple aspect labels associated with multiple sentiments.

Positive Negative Neutral Conflict
Train Test Train Test Train Test Train Test

Restaurant 2164 728 805 196 633 196 91 14
Restaurant-Hard 379 92 323 62 293 83 43 8
Laptop 987 341 866 128 460 169 45 16
Laptop-Hard 159 31 147 25 173 49 17 3

Table 3: Statistics of the datasets for ATSA task.

are not designed for aspect based sentiment anal-
ysis, but their performance exceeds that of ATAE-
LSTM.

The performance of SVM (Kiritchenko et al.,
2014) depends on the availability of the features
it can use. Without the large amount of sentiment
lexicons, SVM perform worse than neural meth-
ods. With multiple sentiment lexicons, the perfor-
mance is increased by 7.6%. This inspires us to
work on leveraging sentiment lexicons in neural
networks in the future.

The hard test datasets consist of replicated sen-
tences with different sentiments towards differ-
ent aspects. The models which cannot utilize
the given aspect information such as CNN and
GCN perform poorly as expected, but GCAE has
higher accuracy than other neural network mod-
els. GCAE achieves 4% higher accuracy than
ATAE-LSTM on Restaurant-Large and 5% higher
on SemEval-2014 on ACSA task. However, GCN,
which does not have aspect modeling part, has
higher score than GCAE on the original restaurant
dataset. It suggests that GCN performs better than
GCAE when there is only one sentiment label in
the given sentence, but not on the hard test dataset.

6.3.2 ATSA

We apply the extended version of GCAE on ATSA
task. On this task, the aspect terms are marked
in the sentences and usually consist of multi-
ple words. We compare IAN (Ma et al., 2017),
RAM (Chen et al., 2017), TD-LSTM (Tang et al.,
2016a), ATAE-LSTM (Wang et al., 2016b), and

our GCAE model in Table 5. The models other
than GCAE is based on LSTM and attention
mechanisms. IAN has better performance than
TD-LSTM and ATAE-LSTM, because two atten-
tion layers guides the representation learning of
the context and the entity interactively. RAM also
achieves good accuracy by combining multiple at-
tentions with a recurrent neural network, but it
needs more training time as shown in the follow-
ing section. On the hard test dataset, GCAE has
1% higher accuracy than RAM on restaurant data
and 1.7% higher on laptop data. GCAE uses the
outputs of the small CNN over aspect terms to
guide the composition of the sentiment features
through the ReLU gate. Because of the gating
mechanisms and the convolutional layer over as-
pect terms, GCAE outperforms other neural mod-
els and basic SVM. Again, large scale sentiment
lexicons bring significant improvement to SVM.

6.4 Training Time

We record the training time of all models un-
til convergence on a validation set on a desktop
machine with a 1080 Ti GPU, as shown in Ta-
ble 6. LSTM based models take more training
time than convolutional models. On ATSA task,
because of multiple attention layers in IAN and
RAM, they need even more time to finish the
training. GCAE is much faster than other neural
models, because neither convolutional operation
nor GTRU has time dependency compared with
LSTM and attention layer. Therefore, it is easier
for hardware and libraries to parallel the comput-
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Models
Restaurant-Large Restaurant 2014

Test Hard Test Test Hard Test
SVM* - - 75.32 -
SVM + lexicons* - - 82.93 -
ATAE-LSTM 83.91±0.49 66.32±2.28 78.29±0.68 45.62±0.90
CNN 84.28±0.15 50.43±0.38 79.47±0.32 44.94±0.01
GCN 84.48±0.06 50.08±0.31 79.67±0.35 44.49±1.52
GCAE 85.92±0.27 70.75±1.19 79.35±0.34 50.55±1.83

Table 4: The accuracy of all models on test sets and on the subsets made up of test sentences that have
multiple sentiments and multiple aspect terms. Restaurant-Large dataset is created by merging all the
restaurant reviews of SemEval workshops within three years. ‘*’: the results with SVM are retrieved
from NRC-Canada (Kiritchenko et al., 2014).

Models
Restaurant Laptop

Test Hard Test Test Hard Test
SVM* 77.13 - 63.61 -
SVM + lexicons* 80.16 - 70.49 -
TD-LSTM 73.44±1.17 56.48±2.46 62.23±0.92 46.11±1.89
ATAE-LSTM 73.74±3.01 50.98±2.27 64.38±4.52 40.39±1.30
IAN 76.34±0.27 55.16±1.97 68.49±0.57 44.51±0.48
RAM 76.97±0.64 55.85±1.60 68.48±0.85 45.37±2.03
GCAE 77.28±0.32 56.73±0.56 69.14±0.32 47.06±2.45

Table 5: The accuracy of ATSA subtask on SemEval 2014 Task 4. ‘*’: the results with SVM are retrieved
from NRC-Canada (Kiritchenko et al., 2014)

Model ATSA
ATAE 25.28
IAN 82.87
RAM 64.16
TD-LSTM 19.39
GCAE 3.33

Table 6: The time to converge in seconds on ATSA
task.

Gates
Restaurant-Large Restaurant 2014
Test Hard Test Test Hard Test

GTU 84.62 60.25 79.31 51.93
GLU 84.74 59.82 79.12 50.80
GTRU 85.92 70.75 79.35 50.55

Table 7: The accuracy of different gating units on
restaurant reviews on ACSA task.

ing process. Since the performance of SVM is re-
trieved from the original paper, we are not able to
compare the training time of SVM.

6.5 Gating Mechanisms
In this section, we compare GLU (X ∗W + b)×
σ(X ∗Wa +Vva + ba) (Dauphin et al., 2017),

Average to good Thai food but terrible delivery

food

delivery

Figure 3: The outputs of the ReLU gates in GTRU.

GTU tanh(X∗W+ b)×σ(X∗Wa+Vva+ ba)
(van den Oord et al., 2016), and GTRU used in
GCAE. Table 7 shows that all of three gating
units achieve relatively high accuracy on restau-
rant datasets. GTRU outperforms the other gates.
It has a convolutional layer generating aspect fea-
tures via ReLU activation function, which controls
the magnitude of the sentiment signals according
to the given aspect information. On the other hand,
the sigmoid function in GTU and GLU has the up-
per bound +1, which may not be able to distill
sentiment features effectively.

7 Visualization

In this section, we take a concrete review sen-
tence as an example to illustrate how the proposed
gate GTRU works. It is more difficult to visualize
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the weights generated by the gates than the atten-
tion weights in other neural networks. The atten-
tion weight score is a global score over the words
and the vector dimensions; whereas in our model,
there are Nword ×Nfilter ×Ndimension gate outputs.
Therefore, we train a small model with only one
filter which is only three word wide. Then, for
each word, we sum the Ndimension outputs of the
ReLU gates. After normalization, we plot the val-
ues on each word in Figure 3. Given different
aspect targets, the ReLU gates would control the
magnitude of the outputs of the tanh gates.

8 Conclusions and Future Work

In this paper, we proposed an efficient convolu-
tional neural network with gating mechanisms for
ACSA and ATSA tasks. GTRU can effectively
control the sentiment flow according to the given
aspect information, and two convolutional layers
model the aspect and sentiment information sep-
arately. We prove the performance improvement
compared with other neural models by extensive
experiments on SemEval datasets. How to lever-
age large-scale sentiment lexicons in neural net-
works would be our future work.
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Abstract

Deep convolutional neural networks excel
at sentiment polarity classification, but tend
to require substantial amounts of training
data, which moreover differs quite signifi-
cantly between domains. In this work, we
present an approach to feed generic cues
into the training process of such networks,
leading to better generalization abilities
given limited training data. We propose
to induce sentiment embeddings via super-
vision on extrinsic data, which are then fed
into the model via a dedicated memory-
based component. We observe significant
gains in effectiveness on a range of differ-
ent datasets in seven different languages.

1 Introduction

Over the past decades, sentiment analysis has
grown from an academic endeavour to an essential
analytics tool. Across the globe, people are voicing
their opinion in online social media, product review
sites, booking platforms, blogs, etc. Hence, it is
important to keep abreast of ongoing developments
in all pertinent markets, accounting for different
domains as well as different languages. In recent
years, deep neural architectures based on convolu-
tional or recurrent layers have become established
as the preeminent models for supervised sentiment
polarity classification. At the same time, it is also
frequently observed that deep neural networks tend
to be particularly data-hungry. This is a problem
in many real-world settings, where large amounts
of training examples may be too costly to obtain
for every target domain. A model trained on movie
reviews, for instance, will fare very poorly on the
task of assessing restaurant or hotel reviews, let
alone tweets about politicians.

In this paper, we investigate how extrinsic sig-
nals can be incorporated into deep neural networks

for sentiment analysis. Numerous papers have
found the use of regular pre-trained word vector
representations to be beneficial for sentiment anal-
ysis (Socher et al., 2013; Kim, 2014; dos Santos
and de C. Gatti, 2014). In our paper, we instead
consider word embeddings specifically specialized
for the task of sentiment analysis, studying how
they can lead to stronger and more consistent gains,
despite the fact that the embeddings were obtained
using out-of-domain data.

An intuitive solution would be to concatenate
regular embeddings, which provide semantic re-
latedness cues, with sentiment polarity cues that
are captured in additional dimensions. We instead
propose a bespoke convolutional neural network
architecture with a separate memory module dedi-
cated to the sentiment embeddings. Our empirical
study shows that the sentiment embeddings can
lead to consistent gains across different datasets in
a diverse set of domains and languages if a suitable
neural network architecture is used.

2 Approach

2.1 Sentiment Embedding Computation

Our goal is to incorporate external cues into a deep
neural network such that the network is able to
generalize better even when training data is scarce.
While in computer vision, weights pre-trained on
ImageNet are often used for transfer learning, the
most popular way to incorporate external informa-
tion into deep neural networks for text is to draw on
word embeddings trained on vast amounts of word
context information (Mikolov et al., 2013; Penning-
ton et al., 2014; Peters et al., 2018). Indeed, the
semantic relatedness signals provided by such rep-
resentations often lead to slightly improved results
in polarity classification tasks (Socher et al., 2013;
Kim, 2014; dos Santos and de C. Gatti, 2014).

However, the co-occurrence-based objectives of
word2vec and GloVe do not consider sentiment
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specifically. We thus seek to examine how com-
plementary sentiment-specific information from an
external source can give rise to further gains.

Transfer Learning. To this end, our goal is to in-
duce sentiment embeddings that capture sentiment
polarity signals in multiple domains and hence may
be useful across a range of different sentiment anal-
ysis tasks. The multi-domain nature of these dis-
tinguish them from the kinds of generic polarity
scores captured in sentiment polarity lexicons. We
achieve this via transfer learning from trained mod-
els, benefiting from supervision on a series of senti-
ment polarity tasks from different domains. Given
a training collection consisting of n binary clas-
sification tasks (e.g., with documents in n differ-
ent domains), we learn n corresponding polarity
prediction models. From these, we then extract
token-level scores that are tied to specific predic-
tion outcomes. Specifically, we train n linear mod-
els fi(x) = wᵀ

i x+ bi for tasks i = 1, . . . , n. Then,
each vocabulary word index j is assigned a new n-
dimensional word vector xj = (w1,j , · · · , wn,j)
that incorporates the linear coefficients for that
word across the different linear models.

A minor challenge is that naı̈vely using bag-of-
word features can lead to counter-intuitive weights.
If a word such as “pleased” in one domain mainly
occurs after the word “not”, while the reviews in
another domain primarily used “pleased” in its un-
negated form, then “pleased” would be assessed as
possessing opposite polarities in different domains.
To avoid this, we assume that features are prepro-
cessed to better reflect whether words occur in a
negated context. In our experiments, we simply
treat occurrences of “not 〈word〉” as a single fea-
ture “not 〈word〉”. Of course, one can replace this
heuristic with much more sophisticated techniques
that fully account for the scope of a wider range of
negation constructions.

Graph-Based Extension. Most sentiment-related
resources are available for the English language.
To produce vectors for other languages in our
experiments, we rely on cross-lingual projec-
tion via graph-based propagation (de Melo, 2015;
de Melo, 2017; Dong and de Melo, 2018). At
this point, we have a set of initial sentiment em-
bedding vectors ṽx ∈ Rn for words x ∈ V0.
We assume that we have a lexical knowledge
graph GL = (V,AL) with a node set consist-
ing of an extended multilingual vocabulary V ⊇
V0 and a set of weighted directed arcs AL =

{(x1, x′1, w1), . . . , (xm, x
′
m, wm)}. Each such arc

reflects a weighted semantic connection between
two vocabulary items x, x′ ∈ V , where vocabulary
items are words labeled with their respective lan-
guage. Typically, many of the arcs in the GL would
reflect translational equivalence, but in our experi-
ments, we also include monolingual links between
semantically related words. Given this data, we
aim to minimize

−
∑

x∈V
vᵀ
x


 1∑

(x,x′,w)∈AL

w

∑

(x,x′,w)∈AL

wvx′




+C
∑

x∈V0
‖vx − ṽx‖2 (1)

The first component of this objective seeks to en-
sure that sentiment embeddings of words accord
with those of their connected words, in terms of the
dot product. The second part ensures that the devi-
ation from any available initial word vectors ṽx is
minimal (for some very high constant C). For opti-
mization, we preinitialize vx = ṽx for all x ∈ V0,
and then rely on stochastic gradient descent steps.

2.2 Dual-Module Memory based CNNs
To feed this sentiment information into our archi-
tecture, we propose a Dual-Module Memory based
Convolutional Neural Network (DM-MCNN) ap-
proach, which incorporates a dedicated memory
module to process the sentiment embeddings, as
illustrated in Fig. 1. While the module with regular
word embeddings enables the model to learn salient
patterns and harness the nearest neighbour and lin-
ear substructure properties of word embeddings,
we conjecture that a separate sentiment memory
module allows for better exploiting the information
brought to the table by the sentiment embeddings.

Convolutional Module Inputs and Filters. The
Convolutional Module input of the DM-MCNN is
a sentence matrix S ∈ Rs×d, the rows of which
represent the words of the input sentence after to-
kenization. In the case of S, i.e., in the regular
module, each word is represented by its conven-
tional word vector representation. Here, s refers
to the length of a sentence, and d represents the
dimensionality of the regular word vectors.

We perform convolutional operations on these
matrices via linear filters. Given rows representing
discrete words, we rely on weight matrices W ∈
Rh×d with region size h. We use the notation Si:j

to denote the sub-matrix of S from row i to row
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Figure 1: (a) Dual-Module Memory based Convolutional Neural Network architecture. (b) Single layer in
Memory Module

j. Supposing that the weight matrix has a filter
width of h, a wide convolution (Kalchbrenner et al.,
2014) is induced such that out-of-range submatrix
values Si,j with i < 1 or i > s are taken to be
zero. Thus, applying the filter on sub-matrices of
S yields the output sequence o ∈ Rs+h−1 as

oi = W� Si:i+h−1, (2)

where the � operator provides the sum of an
element-wise multiplication. Wide convolutions
ensure that filters can cover words at the margins
of the normal weight matrix.

Next, the ci in feature maps c ∈ Rs+h−1 are
computed as: ci = f(oi+ b), where i = 1, . . . , s+
h− 1, the parameter b ∈ R is a bias term, and f is
an activation function.

Multiple Layers in Memory Module. The mem-
ory module obtains as input a sequence of senti-
ment embedding vectors for the input, and attempts
to draw conclusions about the overall sentiment po-
larity of the entire input sequence. Given a set of
sentence words S = {w1, w2, w3, . . . , wn}, each
word is mapped to its sentiment embedding vector
of dimension ds and we denote this set of vectors
as Vs. The preliminary sentiment level vp is also
a vector of dimensionality ds. We take the mean
of all sentiment vectors vi for words wi ∈ S to

initialize vp. Next, we compute a vector s of sim-
ilarities si between vp and each sentiment word
vector vi, by taking the inner product, followed by
`2-normalization and a softmax:

si =
exp

vᵀ
pvi

‖vᵀ
pvi‖2∑

i
exp

vᵀ
pvi

‖vᵀ
pvi‖2

(3)

As the sentiment embeddings used in our paper are
generated from a linear model, the degree of cor-
respondence between vp and vi can adequately be
assessed by the inner product. The resulting vector
of scores s can be regarded as yielding sentiment
weights for each word in the sentence. We apply
`2-normalization to ensure a more balanced weight
distribution. The output sentiment level vector vo

is then a sum over the sentiment inputs vi weighted
by the `2-normalized vector of similarities:

vo =
∑

i

si
‖s‖2

vi (4)

This processing can be repeated in multiple
passes, akin to how end-to-end memory networks
for question answering often perform multiple hops
(Sukhbaatar et al., 2015). While in the first itera-
tion, vp was set to the mean sentiment vector, sub-
sequent passes may allow us to iteratively refine
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this vector. Assuming that vko has been produced
by the k-th pass, then the subsequent level vk+1

p in
the next pass is:

vk+1
p = vko + vkp (5)

The intuition here is that multiple passes can enable
the model to adaptively retrieve iterative sentiment
level statistics beyond the initial average sentiment
information.

Merging Layer and Prediction. Subsequently,
for the convolutional module, 1d-max pooling is
applied to c, which ought to capture the most promi-
nent signals. In the memory module, the final
sentiment vector is modulated by a weight matrix
Ws ∈ Rl×ds to form a feature vector of dimension-
ality l. In general, we can use multiple filters to
obtain several features in the convolutional module,
while the memory module allows for adjusting the
number of passes over the memory.

Finally, the outputs of these two modules are
concatenated to form a fixed-length vector, which
is passed to a fully connected softmax layer to
obtain the final output probabilities.

Loss Function and Training. Our loss function is
the cross-entropy function

L = − 1

n

n∑

i=1

∑

c∈C
yi,c ln ŷi,c, (6)

where n is the number of training examples, C is
the set of (two) classes, yi,c are ground truth labels
for a given training example and class c, and ŷi,c
are corresponding label probabilities predicted by
the model, as emitted by the softmax layer. We
train our model using Adam optimization (Kingma
and Ba, 2014) for better robustness across different
datasets. Further details about our training regime
follow in the Experiments section.

3 Experiments

We now turn to our extensive empirical evaluation,
which assesses the effectiveness of our novel archi-
tecture with sentiment word vectors.

3.1 Experimental Setup
Datasets. For evaluation, we use real world
datasets for 7 different languages, taken from a
range of different sources that cover several do-
mains. These are summarized in Table 1, with ISO
639-3 language codes. In our experimental setup,
these are all cast as binary polarity classification

Table 1: Dataset Descriptions

Language Source Domain train test
en SST Movies 6,920 1,821

AFF Food 5,945 1,189
es SE16-T5 Restaurants 2,070 881
ru TA Hotels 2,387 682
de TA Restaurants 1,687 481
cs TA Restaurants 1,722 491
it TA Hotels 3,437 982
ja TA Restaurants 1,435 411

tasks, for which we use accuracy as our evaluation
metric.
• The Stanford Sentiment Treebank (SST)

dataset (Socher et al., 2013) consists of movie
reviews taken from the Rotten Tomatoes web-
site, including binary labels. We only used
sentence-level data in our experiment.
• The SemEval-2016 Task 5 (SE16-T5) dataset

(Pontiki et al., 2016) provides Spanish reviews
of restaurants. It targeted aspect-based senti-
ment analysis, so we converted the entity-level
annotations to sentence-level polarity labels
via voting. As the number of entities per sen-
tence is often one or very low, this process
is reasonably precise. In any case, it enables
us to compare the ability of different model
variants to learn to recognize pertinent words.
• From TripAdvisor (TA), we crawled German,

Russian, Italian, Czech, and Japanese reviews
of restaurants and hotels. We removed three-
star reviews, as these can be regarded as neu-
tral ones, so reviews with a rating < 3 are
considered negative, while those with a rating
> 3 were deemed positive.
• The Amazon Fine Food Reviews AFF

(McAuley and Leskovec, 2013) dataset pro-
vides food reviews left on Amazon. We chose
a random subset of it with preprocessing as
for TripAdvisor.

As there was no test set provided for TripAdvisor
or for the Amazon Fine Food Reviews data, we
randomly partitioned this data into training, val-
idation, and test splits with a 80%/10%/20% ra-
tio. Additionally, 10% of the training sets from
SE16-T5 were randomly extracted and reserved for
validation, while SST provides its own validation
set. The new datasets are available from http:
//gerard.demelo.org/sentiment/.

Embeddings. The standard pre-trained word vec-
tors used for English are the GloVe (Pennington
et al., 2014) ones trained on 840 billion tokens of
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Table 2: DM-MCNN Model Parameter Settings.

(a) General configuration.

Description Values

Convol. Module
filter region size (3,4,5)

feature maps 100
pooling 1d-max pooling

Memory Module # passes (k) 2
feature vector size 100

dropout rate 0.5
optimizer Adam

activation function ReLU
batch size 50

(b) Learning rate α used in DM-MCNN un-
der 7 languages.

en es de ru
α 0.0004 0.0008 0.003 0.003

cs it ja
α 0.003 0.003 0.003

Common Crawl data1, while for other languages,
we rely on the Facebook fastText Wikipedia em-
beddings (Bojanowski et al., 2016) as input repre-
sentations. All of these are 300-dimensional. The
vectors are either fed to the CNN, or to the convo-
lutional module of the DM-MCNN during initial-
ization, while unknown words are initialized with
zeros. All words, including the unknown ones, are
fine-tuned during the training process.

For our transfer learning approach, our experi-
ments rely on the multi-domain sentiment dataset
by Blitzer et al. (2007), collected from Amazon cus-
tomers reviews. This dataset includes 25 categories
of products and is used to generate our sentiment
embeddings using linear models. Specifically, we
train linear SVMs using scikit-learn to extract word
coefficients in each domain and also for the union
of all domains together, yielding a 26-dimensional
sentiment embedding.

For comparison and analysis, we also consider
several alternative forms of infusing external cues.
Firstly, lexicon-driven methods have often been
used for domain-independent sentiment analysis.
We consider a recent sentiment lexicon called
VADER (Hutto and Gilbert, 2014). The polar-
ity scores assigned to words by the lexicon are
taken as the components of a set of 1-dimensional
word vectors (dividing the original scores by the
difference between max and min polarity scores
for normalization). Secondly, as another particu-
larly strong alternative, we consider the SocialSent
Reddit community-specific lexicons mined by the

1https://nlp.stanford.edu/projects/glove/

Stanford NLP group (Hamilton et al., 2016). These
contain separate domain-specific scores for 250
different Reddit communities, and hence result in
250-dimensional embeddings.

For cross-lingual projection, we extract links
between words from a 2017 dump of the English
edition of Wiktionary. We restrict the vocabulary
link set to include the languages in Table 1, mining
corresponding translation, synonymy, derivation,
and etymological links from Wiktionary.

Neural Network Details. For CNNs, we make use
of the well-known CNN-non-static architecture and
hyperparameters proposed by Kim (2014), with a
learning rate of 0.0006, obtained by tuning on the
validation data. For our DM-MCNN models, the
configuration of the convolutional module is the
same as for CNNs, and the remaining hyperparam-
eter values were as well tuned on the validation
sets. An overview of the relevant network parame-
ter values is given in Table 2.

For greater efficiency and better convergence
properties, the training relies on mini-batches. Our
implementation considers the maximal sentence
length in each mini-batch and zero-pads all other
sentences to this length under convolutional mod-
ule, thus enabling uniform and fast processing of
each mini-batch. All neural network architectures
are implemented using the PyTorch framework2.

3.2 Results and Analysis

Baseline Results. Our main results are summa-
rized in Table 3. We compare both regular CNNs
and our dual-module alternative DM-MCNNs un-
der a variety of settings. A common approach is
to use a CNN with randomly initialized word vec-
tors. Comparing this to CNNs with GloVe/fastText
embeddings, where GloVe is used for English, and
fastText is used for all other languages, we observe
substantial improvements across all datasets. This
shows that word vectors do tend to convey perti-
nent word semantics signals that enable models to
generalize better. Note also that the accuracy us-
ing GloVe on the English movies review dataset is
consistent with numbers reported in previous work
(Zhang and Wallace, 2015).

Dual-Module Architecture. Next, we consider
our DM-MCNNs with their dual-module mecha-
nism to take advantage of transfer learning. We ob-
serve fairly consistent and sometimes quite substan-

2http://pytorch.org
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Table 3: Accuracy on several different English and non-English datasets from different domains, compar-
ing our architecture against CNNs. Rest.: restaurants domain.

Approach d
en es ru de cs it ja

Movies Food Rest. Hotels Rest. Rest. Hotels Rest.
CNN
— Random Init. 300 80.78 86.63 81.50 90.18 88.09 90.00 93.18 78.59
— Word Vec. Init. 300 85.72 87.97 85.13 92.82 92.10 92.46 96.20 77.62
Our Approach
— With fine-tuning 300/26 86.99 90.08 85.02 93.40 93.14 93.08 95.50 85.40
— No fine-tuning 300/26 86.38 88.81 85.70 94.87 94.59 93.48 96.20 77.62
CNN with Concatenated Sentiment Embeddings
— VADER 301 85.89 88.39 84.90 92.31 88.36 93.08 96.34 77.62
— SocialSent 550 84.90 88.48 82.63 92.23 91.48 86.56 94.51 76.64
— Our Embeddings 326 86.05 89.07 84.56 92.72 93.56 91.24 95.78 77.62
Our Model with Alternative Sentiment Embeddings
— Random 300/26 86.16 87.97 85.24 93.99 93.14 92.67 96.20 80.29
— VADER 300/1 86.33 88.39 84.45 94.18 92.31 92.87 96.48 75.43
— SocialSent 300/250 86.38 87.89 83.09 93.40 92.31 93.28 96.62 81.02

tial gains over CNNs with just the GloVe/fastText
vectors. We see that the sentiment embeddings
provide important complementary signals beyond
what is provided in regular word embeddings, and
that our dual-module approach succeeds at exploit-
ing these signals across a range of different do-
mains and languages. Our transfer learning ap-
proach leads to sentiment embeddings that capture
signals from multiple domains. The model suc-
cessfully picks the pertinent parts of this signal
for datasets from domains as different as movie
reviews and food reviews.

We report results for two different training con-
ditions. In the first condition (with fine-tuning), the
sentiment embedding matrix is preinitialized using
the data from our transfer learning procedure, but
the model is then able to modify these arbitrarily
via backpropagation. In the second condition (no
fine-tuning), we simply use our sentiment embed-
ding matrix as is, and do not update it. Instead, the
model is able to update its various other parame-
ters, particularly its various weight matrices and
bias vectors. While both training conditions outper-
form the CNN baseline, there is no obvious winner
among the two. When the training data set is very
small and hence there is a significant risk of overfit-
ting, one may be best advised to forgo fine-tuning.
In contrast, when it is somewhat larger (as for our
English datasets, which each have over 5,000 train-
ing instances) or when the language is particularly
idiosyncratic or not covered sufficiently well by our
cross-lingual projection procedure (such as perhaps
for Japanese), then fine-tuning is recommended. In
this case, fine-tuning may allow the model to adjust
the embeddings to cater to domain-specific mean-

ings and corpus-specific correlations, while also
overcoming possible sparsity of the cross-lingual
vectors resulting from a lack of coverage of the
translation dictionary.

It is important to note that many of the results
in Table 3 stem from embeddings that were cre-
ated automatically using cross-lingual projection.
Our transfer learning embeddings were induced
from entirely English data. Although the automati-
cally projected cross-lingual embeddings are very
noisy and limited in their coverage, particularly
with respect to inflected forms, our model succeeds
in exploiting them to obtain substantial gains in
several different languages and domains.

Alternative Embedding Methods. For a more de-
tailed analysis, we conducted additional experi-
ments with alternative embedding conditions. In
particular, as a simpler means of achieving gains
over standard CNNs, we propose to use CNNs
with word vectors augmented with sentiment cues.
Given that regular word embeddings appear to be
useful for capturing semantics, one may conjecture
that extending these word vectors with additional
dimensions to capture sentiment information can
lead to improved results. For this, we simply con-
catenate the regular word embeddings with differ-
ent forms of sentiment embeddings that we have
obtained, including those from the sentiment lexi-
con VADER, from the Stanford SocialSent project,
and from our transfer learning procedure via Ama-
zon reviews. To conduct these experiments, we also
produced cross-lingual projections of the VADER
and SocialSent embedding data.

The results of using these embeddings as op-
posed to regular ones are somewhat mixed. Con-
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catenating the VADER embeddings or our trans-
fer learning ones leads to minor improvements on
English, and our cross-lingual projection of them
leads to occasional gains, but the results are far
from consistent. Even on English, adding the 250-
dimensional SocialSent embedding seems to de-
grade the effectiveness of the CNN, although all
input information that was previously there contin-
ues to be provided to it. This suggests that a simple
concatenation may harm the model’s ability to har-
ness the semantic information carried by regular
word vectors. This risk seems more pronounced
for larger-dimensional sentiment embeddings.

In contrast, with our DM-MCNNs approach, the
sentiment information is provided to the model in
a separate memory module that makes multiple
passes over this data before combining it with the
regular CNN module’s signals. Thus, the model
can exploit the two kinds of information indepen-
dently, and learn a suitable way to aggregate them
to produce an overall output classification.

This hence demonstrates not only that the senti-
ment embeddings tend to provide important com-
plementary signals but also that a dual-module ap-
proach is best-suited to incorporate such signals
into deep neural models.

We also analysed our DM-MCNNs with alterna-
tive embeddings. When we feed random sentiment
embeddings into them, not unexpectedly, in many
cases the results do not improve much. This is be-
cause our memory module has been designed to
leverage informative prior information and to re-
weight its signals based on this assumption. Hence,
it is important to feed genuine sentiment cues into
the memory module. Yet, on some languages,
we nevertheless note improvements over the CNN
baseline. In these cases, even if similarities be-
tween pairs of sentiment vectors initially do not
carry any significance, backpropagation may have
succeeded in updating the sentiment embedding
matrix such that eventually the memory module
becomes able to discern salient patterns in the data.

We also considered our DM-MCNNs when feed-
ing the VADER or SocialSent embeddings into the
memory module. In this case, it also mostly suc-
ceeded in outperforming the CNN baseline. In fact,
on the Italian TripAdvisor dataset, the SocialSent
embeddings yielded the overall strongest results.
In all other cases, however, our transfer learning
embeddings proved more effective. We believe that
this is because they are obtained in a data-driven

manner based on an objective that directly seeks to
optimize for classification accuracy.

Influence of Training Set Size. To look into the
effect of our approach with restricted training data,
we first consider the SST dataset as an instructive
example. We set the training set size to 20%, 50%,
100% of its original size and compared our full dual
module model with sentiment embeddings against
state-of-the-art methods.

The results are given in Table 4. Our dual mod-
ule CNN has a sizeable lead over other methods
when only using 20% of SST training set. Given
that we study how to incorporate extrinsic cues
into a deep neural model, we consider CNN-Rule-
q (Hu et al., 2016) and Gumbel Tree-LSTM (Choi
et al., 2017) as the relevant baseline methods. The
CNN-Rule-q method used an iterative distillation
method that exploits structured information from
logical rules, which for SST is based on the word
but to determine the weights in the neural network.
The Gumbel Tree-LSTM approach incorporates
a Straight-Through Gumbel-Softmax into a tree-
structured LSTM architecture that learns how to
compose task-specific tree structures starting from
plain raw text. They all require a large amount of
data to pick up sufficient information during train-
ing, while our method is able to efficiently capture
sentiment information from our transfer learning
even though the data is scarce.

For further analysis, we also artificially reduce
the training set sizes to 50% of the original sizes
given in Table 1 for our multilingual datasets. The
results are plotted in Fig. 2. We compare: 1) the
CNN model baseline, 2) the CNN model but con-
catenating our sentiment embeddings from transfer
learning, and 3) our full dual module model with
these sentiment embeddings. We already saw in Ta-
ble 3 that we obtain reasonable gains over generic
embeddings when using the full training sets.

In Fig. 2, we additionally observe that the gains
are overall much more remarkable on smaller train-
ing sets. This shows that the sentiment embeddings
are most useful when they are of high quality and
domain-specific training data is scarce, although a
modest amount of training data is still needed for
the model to be able to adapt to the target domain.

Inspection of the DM-MCNN-learned Deep
Sentiment Information. To further investigate
what the model is learning, we examine the changes
of weights of words on the English SST dataset
when using the VADER sentiment embeddings
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Table 4: Accuracy on SST with increasing training sizes

Model 20% 50% 100%

CNN (Kim, 2014) 83.14 84.29 85.72
CNN-Rule-q (Hu et al., 2016) 83.75 85.45 86.49
Gumbel Tree-LSTM (Choi et al., 2017) 84.04 84.83 86.80
DC-MCNN (ours) 85.06 86.16 86.99
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Figure 2: Effectiveness of three embedding alternatives on 6 languages at a reduced training size (compar-
ing 50% and 100%).

with DM-MCNNs. Although these are not as
powerful as our transfer learning embeddings, the
VADER embeddings are the most easily inter-
pretable here, since they are one-dimensional, and
thus can be regarded as word-specific weights. The
result is visualized in Fig. 3. Here, the dark-shaded
segments (in blue) refer to the original weights,
while the light-shaded segments (in red) refer to
the adjusted weights after training. The medium-
shaded segments (in purple) reflect the overlap be-
tween the two. Hence, whenever we observe a dark
(blue) segment above a medium (purple) segment
in a bar, we can infer that the fine-tuned weight
for a word (e.g., for “plays” in Fig. 3) was lower
than the original weight of that word. Conversely,
whenever we observe a light (red) segment at the
top, the weight increased during training (e.g., for
hilarious). Generally, dark (blue) segments reflect
decreased weight magnitudes and light (red) ones
reflect increased weight magnitudes, both on the
positive and on the negative side.

We consider in Fig. 3 the top 50 weight changes
only of words that were already covered by the
original VADER sentiment embeddings. Here, it is

worth noting that the weight magnitudes of positive
words such as “laugh”, “appealing” and negative
words such as “lack”, “missing” increase further,
while words such as “damn”, “interest”, “war” see
decreases in magnitude, presumably due to their
ambiguity and context (e.g., “damn good”, “lost
the interest”, descriptions of war movies). Hence,
the figure confirms that our DM-MCNN approach
is able to exploit and customize the provided sen-
timent weights for the target domain. However,
unlike the VADER data, our transfer learning ap-
proach results in multi-dimensional sentiment em-
beddings that can more easily capture multiple do-
mains right from the start, thus making it possible
to use them even without further fine-tuning.

4 Related Work

Sentiment Mining and Embeddings. There is a
long history of work on collecting word polarity
scores manually (Hu and Liu, 2004) or via graph-
based propagation from seeds (Kim and Hovy,
2004; Baccianella et al., 2010). Maas et al. (2011)
present a probabilistic topic model that exploits sen-
timent supervision during training, leading to rep-
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Figure 3: Top 50 weight changes of words fine-tuned by the sentiment memory module of the DM-MCNN,
using the one-dimensional VADER embeddings, but considering only words with non-zero values in the
original VADER data. Here, the dark shade (blue) refers to the original value of word vectors, while the
light shade (red) refers to their fine-tuned values after training. The medium intensity (purple) corresponds
to the overlap between the original and fine-tuned word vectors.

resentations that include sentiment signals. How-
ever, in their experiments, the semantic-only mod-
els mostly outperform the corresponding full mod-
els with extra sentiment signals. Tang et al. (2014)
showed that one can acquire sentiment informa-
tion by learning from millions of training examples
via distant supervision. While prior work used
such signals for rule-based sentiment analysis or
for feature engineering in SVMs and other shallow
models, our study examines how they are best be
incorporated into deep neural models, as the base-
line of naı̈vely feeding them into the model does
not work sufficiently well.

Neural Architectures. In terms of architectures,
deep recursive neural networks (Socher et al., 2013)
were soon outperformed by deep convolutional
and recurrent neural networks (İrsoy and Cardie,
2014; Kim, 2014). Recent work has investigated
more involved models, with ingredients such as
Tree-LSTMs (Tai et al., 2015; Looks et al., 2017),
hierarchical attention (Yang et al., 2016), user
and product attention (Chen et al., 2016), aspect-
specific modeling (Wang et al., 2015), and part of
speech-specific transition functions (Huang et al.,
2017). Large ensemble models also tend to outper-
form individually trained sentiment analysis mod-
els (Looks et al., 2017). The goal of our study is not
necessarily to devise the most sophisticated state-
of-the-art neural architecture, but to demonstrate
how external sentiment cues can be incorporated
such architectures. Our initial explorations relied

on a simple dual-channel convolutional neural net-
work (Dong and de Melo, 2018). The present work
proposes a more sophisticated approach, drawing
on ideas from attention mechanisms in machine
translation (Bahdanau et al., 2014) as well as from
memory networks (Weston et al., 2014) and iter-
ative attention (Kumar et al., 2015), which have
proven useful for tasks such as question answer-
ing. We incorporate these ideas into a separate
memory module that operates alongside the regular
convolutional module.

5 Conclusions

Deep neural networks are widely used in senti-
ment polarity classification, but suffer from their
dependence on very large annotated training cor-
pora. In this paper, we study how to incorporate
extrinsic cues into the network, beyond just generic
word embeddings. We have found that this is best
achieved using a dual-module approach that en-
courages the learning of models with favourable
generalization abilities. Our experiments show that
this can lead to gains across a number of different
languages and domains. Our embeddings and mul-
tilingual datasets are freely available from http:
//gerard.demelo.org/sentiment/.
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Abstract

The use of user/product information in
sentiment analysis is important, especially
for cold-start users/products, whose num-
ber of reviews are very limited. How-
ever, current models do not deal with the
cold-start problem which is typical in re-
view websites. In this paper, we present
Hybrid Contextualized Sentiment Classi-
fier (HCSC), which contains two mod-
ules: (1) a fast word encoder that returns
word vectors embedded with short and
long range dependency features; and (2)
Cold-Start Aware Attention (CSAA), an
attention mechanism that considers the ex-
istence of cold-start problem when atten-
tively pooling the encoded word vectors.
HCSC introduces shared vectors that are
constructed from similar users/products,
and are used when the original distinct
vectors do not have sufficient informa-
tion (i.e. cold-start). This is decided
by a frequency-guided selective gate vec-
tor. Our experiments show that in terms
of RMSE, HCSC performs significantly
better when compared with on famous
datasets, despite having less complexity,
and thus can be trained much faster. More
importantly, our model performs signifi-
cantly better than previous models when
the training data is sparse and has cold-
start problems.

1 Introduction

Sentiment classification is the fundamental task of
sentiment analysis (Pang et al., 2002), where we
are to classify the sentiment of a given text. It is
widely used on online review websites as they con-
tain huge amounts of review data that can be clas-
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Figure 1: Conceptual schema of HCSC applied to
users. The same idea can be applied to products.

sified a sentiment. In these websites, a sentiment is
usually represented as an intensity (e.g. 4 out of 5).
The reviews are written by users who have bought
a product. Recently, sentiment analysis research
has focused on personalization (Zhang, 2015) to
recommend product to users, and vise versa.

To this end, many have used user and prod-
uct information not only to develop personaliza-
tion but also to improve the performance of the
classification model (Tang et al., 2015). Indeed,
these information are important in two ways. First,
some expressions are user-specific for a certain
sentiment intensity. For example, the phrase “very
salty” may have different sentiments for a person
who likes salty food and a person who likes oth-
erwise. This is also apparent in terms of prod-
ucts. Second, these additional contexts help mit-
igate data sparsity and cold-start problems. Cold-
start is a problem when the model cannot draw
useful information from users/products where data
is insufficient. User and product information can
help by introducing a frequent user/product with
similar attributes to the cold-start user/product.

Thanks to the promising results of deep neu-
ral networks to the sentiment classification task
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(Glorot et al., 2011; Tang et al., 2014), more re-
cent models incorporate user and product informa-
tion to convolutional neural networks (Tang et al.,
2015) and deep memory networks (Dou, 2017),
and have shown significant improvements. The
current state-of-the-art model, NSC (Chen et al.,
2016a), introduced an attention mechanism called
UPA which is based on user and product infor-
mation and applied this to a hierarchical LSTM.
The main problem with current models is that they
use user and product information naively as an
ordinary additional context, not considering the
possible existence of cold-start problems. This
makes NSC more problematic than helpful in re-
ality since majority of the users in review websites
have very few number of reviews.

To this end, we propose the idea shown in Fig-
ure 1. It can be described as follows: If the
model does not have enough information to cre-
ate a user/product vector, then we use a vector
computed from other user/product vectors that are
similar. We introduce a new model called Hy-
brid Contextualized Sentiment Classifier (HCSC),
which consists of two modules. First, we build a
fast yet effective word encoder that accepts word
vectors and outputs new encoded vectors that are
contextualized with short- and long-range con-
texts. Second, we combine these vectors into one
pooled vector through a novel attention mecha-
nism called Cold-Start Aware Attention (CSAA).
The CSAA mechanism has three components:
(a) a user/product-specific distinct vector derived
from the original user/product information of the
review, (b) a user/product-specific shared vec-
tor derived from other users/products, and (c)
a frequency-guided selective gate which decides
which vector to use. Multiple experiments are
conducted with the following results: In the orig-
inal non-sparse datasets, our model performs sig-
nificantly better than the previous state-of-the-art,
NSC, in terms of RMSE, despite being less com-
plex. In the sparse datasets, HCSC performs sig-
nificantly better than previous competing models.

2 Related work

Previous studies have shown that using additional
contexts for sentiment classification helps improve
the performance of the classifier. We survey sev-
eral competing baseline models that use user and
product information and other models using other
kinds of additional context.

Baselines: Models with user and product infor-
mation User and product information are help-
ful to improve the performance of a sentiment
classifier. This argument was verified by Tang
et al. (2015) through the observation at the con-
sistency between user/product information and
the sentiments and expressions found in the text.
Listed below are the following models that employ
user and product information:

• JMARS (Diao et al., 2014) jointly models
the aspects, ratings, and sentiments of a re-
view while considering the user and product
information using collaborative filtering and
topic modeling techniques.
• UPNN (Tang et al., 2015) uses a CNN-based

classifier and extends it to incorporate user-
and product-specific text preference matrix
in the word level which modifies the word
meaning.
• TLFM+PRC (Song et al., 2017) is a text-

driven latent factor model that unifies user-
and product-specific latent factor models rep-
resented using the consistency assumption by
Tang et al. (2015).
• UPDMN (Dou, 2017) uses an LSTM clas-

sifier as the document encoder and modi-
fies the encoded vector using a deep mem-
ory network with other documents of the
user/product as the memory.
• TUPCNN (Chen et al., 2016b) extends the

CNN-based classifier by adding temporal
user and product embeddings, which are ob-
tained from a sequential model and learned
through the temporal order of reviews.
• NSC (Chen et al., 2016a) is the current state-

of-the-art model that utilizes a hierarchical
LSTM model (Yang et al., 2016) and incor-
porates user and product information in the
attention mechanism.

Models with other additional contexts Other
additional contexts used previously are spatial
(Yang et al., 2017) and temporal (Fukuhara et al.,
2007) features which help contextualize the sen-
timent based on the location where and the time
when the text is written. Inferred contexts were
also used as additional contexts for sentiment clas-
sifiers, such as latent topics (Lin and He, 2009)
and aspects (Jo and Oh, 2011) from a topic model,
argumentation features (Wachsmuth et al., 2015),
and more recently, latent review clusters (Am-
playo and Hwang, 2017). These additional con-
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Figure 2: Full architecture of HCSC, which consists of the Hybrid Contextualized Word Encoder (middle), and
user-specific (left) and product-specific (right) Cold-Start Aware Attention (CSAA).

texts were especially useful when data is sparse,
i.e. number of instances is small or there exists
cold-start entities.

Our model differs from the baseline models
mainly because we consider the possible exis-
tence of the data sparsity problem. Through this,
we are able to construct more effective models
that are comparably powerful yet more efficient
complexity-wise than the state-of-the-art, and are
better when the training data is sparse. Ultimately,
our goal is to demonstrate that, similar to other
additional contexts, user and product information
can be used to effectively mitigate the problem
caused by cold-start users and products.

3 Our model

In this section, we present our model, Hybrid
Contextualized Sentiment Classifier (HCSC)1

which consists of a fast hybrid contextualized
word encoder and an attention mechanism called
Cold-Start Aware Attention (CSAA). The word
encoder returns word vectors with both local and
global contexts to cover both short and long range
dependency relationship between words. The
CSAA then incorporates user and product infor-
mation to the contextualized words through an at-
tention mechanism that considers the possible ex-
istence of cold-start problems. The full architec-
ture of the model is presented in Figure 2. We

1The data and code used in this paper are available here:
https://github.com/rktamplayo/HCSC.

describe the subparts of the model below.

3.1 Hybrid contextualized word encoder

The base model is a word encoder that transforms
vectors of words {wi} in the text to new word vec-
tors. In this paper, we present a fast yet very effec-
tive word encoder based on two different off-the-
shelf classifiers.

The first part of HCWE is based on a CNN
model which is widely used in text classification
(Kim, 2014). This encoder contextualizes words
based on local context words to capture short
range relationships between words. Specifically,
we do the convolution operation using filter matri-
ces Wf ∈ Rh×d with filter size h to a window of
h words. We do this for different sizes of h. This
produces new feature vectors ci,h as shown below,
where f(.) is a non-linear function:

ci,h = f([wi−(h−1)/2; ...;wi+(h−1)/2]
>Wf + bf )

The convolution operation reduces the number
of words differently depending on the filter size
h. To prevent loss of information and to pro-
duce the same amount of feature vectors ci,h, we
pad the texts dynamically such that when the fil-
ter size is h, the number of paddings on each side
is (h − 1)/2. This requires the filter sizes to be
odd numbers. Finally, we concatenate all feature
vectors of different h’s for each i as the new word
vector:

wcnni = [ci,h1 ; ci,h2 ; ...]
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The second part of HCWE is based on an RNN
model which is used when texts are longer and in-
clude word dependencies that may not be captured
by the CNN model. Specifically, we use a bidi-
rectional LSTM and concatenate the forward and
backward hidden state vectors as the new word
vector, as shown below:

−→
h i = LSTM(wi,

−→
h i−1)

←−
h i = LSTM(wi,

←−
h i+1)

wrnni = [
−→
h i;
←−
h i]

The answer to the question whether to use lo-
cal or global context to encode words for senti-
ment classification is still unclear, and both CNN
and RNN models have previous empirical evi-
dence that they perform better than the other (Kim,
2014; McCann et al., 2017). We believe that both
short and long range relationships, captured by
CNN and RNN respectively, are useful for senti-
ment classification. There are already previous at-
tempts to intricately combine both CNN and RNN
(Zhou et al., 2016), resulting to a slower model.
On the other hand, HCWE resorts to combine
them by simply concatenating the word vectors
encoded from both CNN and RNN encoders, i.e.
wi = [wcnni ;wrnni ]. This straightforward yet
fast alternative outputs a word vector with seman-
tics contextualized from both local and global con-
texts. Moreover, they perform as well as complex
hierarchical structured models (Yang et al., 2016;
Chen et al., 2016a) which train very slow.

3.2 Cold-start aware attention

Incorporating the user and product information
of the text as context vectors u and p to atten-
tively pool the word vectors, i.e. e(wi, u, p) =
v>tanh(Wwwi + Wuu + Wpp + b), has been
proven to improve the performance of sentiment
classifiers (Chen et al., 2016a). However, this
method assumes that the user and product vectors
are always present. This is not the case in real
world settings where a user/product may be new
and has just got its first review. In this case, the
vectors u and p are rendered useless and may also
contain noisy signals that decrease the overall per-
formance of the models.

To this end, we present an attention mecha-
nism called Cold-Start Aware Attention (CSAA).
CSAA operates on the idea that a cold-start
user/product can use the information of other sim-

ilar users/products with sufficient number of re-
views. CSAA separates the construction of pooled
vectors for user and for product, unlike previ-
ous methods that use both user/product informa-
tion to create a single pooled vector. Construct-
ing a user/product-specific pooled vector consists
of three parts: the distinct pooled vector created
using the original user/product, the shared pooled
vector created using similar users/products, and
the selective gate to select between the distinct
and shared vectors. Finally, the user- and product-
specific pooled vectors are combined into one final
pooled vector.

In the following paragraphs, we discuss the
step-by-step process on how the user-specific
pooled vector is constructed. A similar process is
done to construct the product-specific pooled vec-
tor, but is not presented here for conciseness.

The user-specific distinct pooled vector vdu is
created using a method similar to the additive at-
tention mechanism (Bahdanau et al., 2014), i.e.
vdu = att({wi}, u), where the context vector is the
distinct vector of user u, as shown in the equation
below. An equivalent method is used to create the
distinct product-specific pooled vector vdp .

edu(wi, u) = vd>tanh(W d
wwi +W d

uu+ bd)

adui =
exp(edu(wi, u))∑
j exp(e

d
u(wj , u))

vdu =
∑

i

adui × wi

The user-specific shared pooled vector vsu is cre-
ated using the same method above, but using a
shared context vector u′. The shared context vec-
tor u′ is constructed using the vectors of other
users and weighted based on a similarity weight.
Similarity is defined as how similar the word us-
ages of two users are. This means that if a user
uk uses words similarly to the word usage of the
original user u, then uk receives a high similarity
weight. The similarity weight asuk is calculated as
the softmax of the product of µ({wi}) and uk with
a project matrix in the middle, where µ({wi}) is
the average of the word vectors. The similarity
weights are used to create u′, as shown below.
Similar method is used for the shared product-
specific pooled vector vsp.
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esu(µ({wi}), uk) = µ({wi})W s
uuk

asuk =
exp(esu(wi, uk))∑
j exp(e

s
u(wi, uj))

u′ =
∑

k

asuk × uk

vsu = att({wi}, u′)

We select between the user-specific distinct and
shared pooled vector, vdu and vsu, into one user-
specific pooled vector vu through a gate vector gu.
The vector gu should put more weight to the dis-
tinct vector when user u is not cold-start and to
the shared vector when u is otherwise. We use a
frequency-guided selective gate that utilizes the
frequency, i.e. the number of reviews user u has
written. The challenge is that we do not know how
many reviews should be considered cold-start or
not. This is automatically learned through a two-
parameter Weibull cumulative distribution where
given the review frequency of the user f(u), a
learned shape vector ku and a learned scale vector
λu, a probability vector is sampled and is used as
the gate vector gu to create vu, according to the
equation below. We normalized f(u) by divid-
ing it to the average user review frequency. The
relu function ensures that both ku and λu are non-
negative vectors. The final product-specific pooled
vector vp is created in a similar manner.

gu = 1− exp
(
−
( f(u)

relu(λu)

)relu(ku))

vu = gu × vdu + (1− gu)× vsu

Finally, we combine both the user- and product-
specific pooled vector, vu and vp, into one pooled
vector vup. This is done by using a gate vector
gup created using a sigmoidal transformation of
the concatenation of vu and vp, as illustrated in
the equation below.

gup = σ(Wg[vu; vp] + bg)

vup = gup × vu + (1− gup)× vp

We note that our attention mechanism can be
applied to any word encoders, including the basic
bag of words (BoW) to more recent models such
as CNN and RNN. Later (in Section 4.2), we show
that CSAA improves the performance of simpler
models greatly.

3.3 Training objective
Normally, a sentiment classifier transforms the fi-
nal vector vup, usually in a linear fashion, into a
vector with a dimension equivalent to the num-
ber of classes C. A softmax layer is then used to
obtain a probability distribution y′ over the senti-
ment classes. Finally, the full model uses a cross-
entropy over all training documents D as objec-
tive function L during training, where y is the gold
probability distribution:

y′ = softmax(Wvup + b)

L = −
∑

d∈D

∑

c∈C
y(d)c · log(y′(d)c )

However, HCSC has a nice architecture
which can be used to improve the train-
ing. It contains seven pooled vectors V =
{vdu, vdp , vsu, vsp, vu, vp, vup} that are essentially in
the same vector space. This is because these
vectors are created using weighted sums of ei-
ther the encoded word vectors through attention
or the parent pooled vectors through the selective
gates. Therefore, we can train separate classifiers
for each pooled vectors using the same parame-
ters W and b. Specifically, for each v ∈ V, we
calculate the loss Lv using the above formulas.
The final loss is then the sum of all the losses, i.e.
L =

∑
v∈V Lv.

4 Experiments

In this section, we present our experiments and
the corresponding results. We use the models de-
scribed in Section 2 as baseline models: JMARS
(Diao et al., 2014), UPNN (Tang et al., 2015),
TLFM+PRC (Song et al., 2017), UPDMN (Dou,
2017), TUPCNN (Chen et al., 2016b), and NSC
(Chen et al., 2016a), where NSC is the model with
state-of-the-art results.

4.1 Experimental settings
Implementation We set the size of the word,
user, and product vectors to 300 dimensions. We
use pre-trained GloVe embeddings2 (Pennington
et al., 2014) to initialize our word vectors. We
simply set the parameters for both BiLSTMs and
CNN to produce an output with 300 dimensions:
For the BiLSTMs, we set the state sizes of the
LSTMs to 75 dimensions, for a total of 150 dimen-
sions. For CNN, we set h = 3, 5, 7, each with 50

2https://nlp.stanford.edu/projects/
glove/
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Datasets Classes
Train Dev Test

#docs #users #prods #docs #users #prods #docs #users #prods
IMDB 10 67426 1310 1635 8381 1310 1574 9112 1310 1578

Yelp 2013 5 62522 1631 1633 7773 1631 1559 8671 1631 1577

Datasets Classes
Sparse20 Sparse50 Sparse80

#docs #users #prods #docs #users #prods #docs #users #prods
IMDB 10 44261 1042 1323 17963 659 840 2450 250 312

Yelp 2013 5 38687 1301 1288 16058 818 823 2406 352 304

Table 1: Dataset statistics

feature maps, for a total of 150 dimensions. These
two are concatenated to create a 300-dimension
encoded word vectors. We use dropout (Srivastava
et al., 2014) on all non-linear connections with a
dropout rate of 0.5. We set the batch size to 32.
Training is done via stochastic gradient descent
over shuffled mini-batches with the Adadelta up-
date rule (Zeiler, 2012), with l2 constraint (Hinton
et al., 2012) of 3. We perform early stopping using
a subset of the given development dataset. Train-
ing and experiments are all done using a NVIDIA
GeForce GTX 1080 Ti graphics card.

Additionally, we also implement two versions
of our model where the word encoder is a sub-
part of HCSC, i.e. (a) the CNN-based model
(CNN+CSAA) and (b) the RNN-based model
(RNN+CSAA). For the CNN-based model, we
use 100 feature maps for each of the filter sizes
h = 3, 5, 7, for a total of 300 dimensions. For the
RNN-based model, we set the state sizes of the
LSTMs to 150, for a total of 300 dimensions.

Datasets and evaluation We evaluate and com-
pare our models with other competing models
using two widely used sentiment classification
datasets with available user and product informa-
tion: IMDB and Yelp 2013. Both datasets are
curated by Tang et al. (2015), where they are di-
vided into train, dev, and test sets using a 8:1:1 ra-
tio, and are tokenized and sentence-splitted using
Stanford CoreNLP (Manning et al., 2014). In ad-
dition, we create three subsets of the train dataset
to test the robustness of the models on sparse
datasets. To create these datasets, we randomly re-
move all the reviews of x% of all users and prod-
ucts, where x = 20, 50, 80. These datasets are
not only more sparse than the original datasets,
but also have smaller number of users and prod-
ucts, introducing cold-start users and products. All
datasets are summarized in Table 1. Evaluation is
done using two metrics: the Accuracy which mea-
sures the overall sentiment classification perfor-
mance and the RMSE which measures the diver-

Models
IMDB Yelp 2013

Acc. RMSE Acc. RMSE
JMARS - 1.773∗ - 0.985∗

UPNN 0.435∗ 1.602∗ 0.596∗ 0.784∗

TLFM+PRC - 1.352∗ - 0.716∗

UPDMN 0.465∗ 1.351∗ 0.639∗ 0.662
TUPCNN 0.488∗ 1.451∗ 0.639∗ 0.694∗

NSC 0.533 1.281∗ 0.650 0.692∗

CNN+CSAA 0.522∗ 1.256∗ 0.654 0.665
RNN+CSAA 0.527∗ 1.237∗ 0.654 0.667

HCSC 0.542 1.213 0.657 0.660

Table 2: Accuracy and RMSE values of competing
models on the original non-sparse datasets. An aster-
isk indicates that HCSC is significantly better than the
model (p < 0.01).

gence between predicted and ground truth classes.
We notice very minimal differences among perfor-
mances of different runs.

4.2 Comparisons on original datasets

We report the results on the original datasets
in Table 2. On both datasets, HCSC outper-
forms all previous models based on both accuracy
and RMSE. Based on accuracy, HCSC performs
significantly better than all previous models ex-
cept NSC, where it performs slightly better with
0.9% and 0.7% increase on IMDB and Yelp 2013
datasets. Based on RMSE, HCSC performs sig-
nificantly better than all previous models, except
when compared with UPDMN on the Yelp 2013
datasets, where it performs slightly better. We note
that RMSE is a better metric because it measures
how close the wrongly predicted sentiment and the
ground truth sentiment are. Although NSC per-
forms as well as HCSC based on accuracy, it per-
forms worse based on RMSE, which means that its
predictions deviate far from the original sentiment.

It is also interesting to note that when CSAA
is used as attentive pooling, both simple CNN
and RNN models perform just as well as NSC,
despite NSC being very complex and model-
ing the documents with compositionality (Chen
et al., 2016a). This is especially true when com-
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Models Sparse20 Sparse50 Sparse80
NSC(LA) 0.469 0.428 0.309

NSC 0.497 0.408 0.292
CNN+CSAA 0.497 0.444 0.343
RNN+CSAA 0.505 0.455 0.364

HCSC 0.505 0.456 0.368

(a) IMDB Datasets
Models Sparse20 Sparse50 Sparse80

NSC(LA) 0.624 0.590 0.523
NSC 0.626 0.592 0.511

CNN+CSAA 0.626 0.605 0.522
RNN+CSAA 0.633 0.603 0.527

HCSC 0.636 0.608 0.538

(b) Yelp 2013 Datasets

Table 3: Accuracy values of competing models when
the training data used is sparse. Bold-faced values are
the best accuracies in the column, while red values are
accuracies worse than NSC(LA).

pared using RMSE, where both CNN+CSAA and
RNN+CSAA perform significantly better (p <
0.01) than NSC. This proves that CSAA is an ef-
fective use of the user and product information for
sentiment classification.

4.3 Comparisons on sparse datasets

Table 3 shows the accuracy of NSC (Chen
et al., 2016a) and our models CNN+CSAA,
RNN+CSAA, and HCSC on the sparse datasets.
As shown in the table, on all datasets with dif-
ferent levels of sparsity, HCSC performs the best
among the competing models. The difference be-
tween the accuracy of HCSC and NSC increases as
the level of sparsity intensifies: While the HCSC
only gains 0.8% and 1.0% over NSC on the less
sparse Sparse20 IMDB and Yelp 2013 datasets, it
improves over NSC significantly with 7.6% and
2.7% increase on the more sparse Sparse80 IMDB
and Yelp 2013 datasets, respectively.

We also run our experiments using NSC with-
out user and product information, i.e. NSC(LA)
which reduces the model into a hierarchical LSTM
model (Yang et al., 2016). Results show that
although the use of user and product informa-
tion in NSC improves the model on less sparse
datasets (as also shown in the original paper (Chen
et al., 2016a)), it decreases the performance of the
model on more sparse datasets: It performs 2.0%,
1.7%, and 1.2% worse than NSC(LA) on Sparse50
IMDB, Sparse80 IMDB, and Sparse80 Yelp 2013
datasets. We argue that this is because NSC does
not consider the existence of cold-start problems,
which makes the additional user and product in-
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Figure 3: Accuracy per user/product review frequency
on both datasets. The review frequency value f repre-
sents the frequencies in the range [f, f + 10), except
when f = 100, which represents the frequencies in the
range [f,∞).

formation more noisy than helpful.

5 Analysis

In this section, we show further interesting anal-
yses of the properties of HCSC. We use the
Sparse50 datasets and the corresponding results of
several models as the experimental data.

Performance per review frequency We in-
vestigate the performance of the model over
users/products with different number of reviews.
Figure 3 shows plots of accuracy of both NSC and
HCSC over (a) different user review frequency on
IMDB dataset and (b) different product review fre-
quency on Yelp 2013 dataset. On both plots, we
observe that when the review frequency is small,
the performance gain of HCSC over NSC is very
large. However, as the review frequency becomes
larger, the performance gain of HCSC over NSC
decreases to a very marginal increase. This means
that HCSC finds its improvements over NSC from
cold-start users and products, in which NSC does
not consider explicitly.

How few is cold-start? One intriguing question
is when do we say that a user/product is cold-
start or not. Obviously, users/products with no
previous reviews at all should be considered cold-
start, however the cut-off point between cold-start
and non-cold-start entities is vague. Although we
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Example 1
Text: four words, my friends… fresh. baked. soft. pretzels. freq(user): 0 (cold start) freq(product): 13 (cold start)

four words , my friends ... fresh . baked . soft . pretzels .

user distinct

user shared

product distinct

product shared

𝒈𝒖 = 𝟎.𝟎𝟎
𝟏 − 𝒈𝒖 = 𝟏. 𝟎𝟎

𝒈𝒑 = 𝟎.𝟒𝟗

𝟏 − 𝒈𝒑 = 𝟎.𝟓𝟏

Example 2
Text: delicios new york style thin crust pizza with simple topping combinations as it should. ... 

we enjoyed the dining atmosphere but the waitress we had rushed us to leave .
freq(user): 65 freq(product): 117

delicios new york style thin crust pizza with simple topping combinations as it should

𝒈𝒖 = 𝟎.𝟗𝟔
𝟏 − 𝒈𝒖 = 𝟎. 𝟎𝟒

𝒈𝒑 = 𝟏.𝟎𝟎

𝟏 − 𝒈𝒑 = 𝟎.𝟎𝟎

user distinct

user shared

product distinct

product shared

we enjoyed the dining atmosphere but the waitress we had rushed us to leave

user distinct

user shared

product distinct

product shared

Figure 4: Visualization of attention and gate values of two examples from the Yelp 2013 dataset. Example 2 is
truncated, leaving only the important parts. Gate values g’s are the average of the values in the original gate vector.
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Figure 5: Graph of the user/product-specific Weibull
cumulative distribution on both datasets.

cannot provide an exact answer to this question,
HCSC is able to provide a nice visualization by re-
ducing the shape and scale vectors, k and λ, of the
frequency-guided selective gate into their averages
and draw a Weibull cumulative distribution graph,
as shown in Figure 5. The figure provides us these
observations: First, users have a more lenient cold-
start cut-off point compared to products; in the
IMDB dataset, a user only needs approximately at
least five reviews to use at least 80% of its own in-
formation (i.e. distinct vector). On the other hand,
products tend to need more reviews to be consid-
ered sufficient and not cold start; in the IMDB
dataset, a product needs approximately 40 reviews
to use at least 80% of its own information. This
explains the marginal increase in performance of
previous models when only product information is
used as additional context, as reported by previous
papers (Tang et al., 2015; Chen et al., 2016a).

On the different pooled vectors We visualize
the attention and gate values of two example re-
sults from HCSC in Figure 4 to investigate on how

Models IMDB Yelp 2013
NSC 7331 6569

CNN+CSAA 256 (28.6x) 146 (45.0x)
RNN+CSAA 968 (7.6x) 561 (11.7x)

HCSC 1110 (6.6x) 615 (10.7x)

Table 4: Time (in seconds) to process the first 100
batches of competing models for each dataset. The
numbers in the parenthesis are the speedup of time
when compared to NSC.

user/product vectors, and distinct/shared vectors
work. In the first example, both user and prod-
uct are cold-start. The user distinct vector focuses
its attention to wrong words, since it is not able
to use any useful information from the user at all.
In this case, HCSC uses the user shared vector by
using a gate vector gu = 0. The user shared vec-
tor correctly attends to important words such as
fresh, baked, soft, and pretzels. In the second ex-
ample, both user and product are not cold-start. In
this case, the distinct vectors are used almost en-
tirely by setting the gates close to 1. Still, the cor-
responding shared vectors are similar to the dis-
tinct vectors, proving that HCSC is able to create
useful user/product-specific context from similar
users/products. Finally, we look at the differing at-
tention values of users and products. We observe
that user vectors focus on words that describe the
product or express their emotions (e.g. fresh and
enjoyed). On the other hand, product vectors focus
more on words pertaining to the products/services
(e.g. pretzels and waitress).

On the time complexity of models Finally,
we report the time in seconds to run 100
batches of data of the models NSC, CNN+CSAA,
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RNN+CSAA, and HCSC in Figure 4. NSC takes
too long to train, needing at least 6500 seconds
to process 100 batches of data. This is because it
uses two non-parallelizable LSTMs on top of each
other. Our models, on the other hand, only use
one (or none in the case of CNN+CSAA) level of
BiLSTM. This results to at least 6.6x speedup on
the IMDB datasets, and at least 10.7x speedup on
the Yelp 2013 datasets. This means that HCSC
does not sacrifice a lot of time complexity to ob-
tain better results.

6 Conclusion

We propose Hybrid Contextualized Sentiment
Classifier (HCSC) with a fast word encoder which
contextualizes words to contain both short and
long range word dependency features, and an at-
tention mechanism called Cold-start Aware Atten-
tion (CSAA) which considers the existence of the
cold-start problem among users and products by
using a shared vector and a frequency-guided se-
lective gate, in addition to the original distinct vec-
tor. Our experimental results show that our model
performs significantly better than previous mod-
els. These improvements increase when the level
of sparsity in data increases, which confirm that
HCSC is able to deal with the cold-start problem.
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Abstract

This paper studies how the argumentation
strategies of participants in deliberative dis-
cussions can be supported computationally.
Our ultimate goal is to predict the best next
deliberative move of each participant. In
this paper, we present a model for delibera-
tive discussions and we illustrate its oper-
ationalization. Previous models have been
built manually based on a small set of dis-
cussions, resulting in a level of abstraction
that is not suitable for move recommenda-
tion. In contrast, we derive our model statis-
tically from several types of metadata that
can be used for move description. Applied
to six million discussions from Wikipedia
talk pages, our approach results in a model
with 13 categories along three dimensions:
discourse acts, argumentative relations, and
frames. On this basis, we automatically
generate a corpus with about 200,000 turns,
labeled for the 13 categories. We then oper-
ationalize the model with three supervised
classifiers and provide evidence that the
proposed categories can be predicted.

1 Introduction

Deliberation is the type of discussions where the
aim is to find the best choice from a set of possible
actions (Walton, 2010). This type is influential for
making decisions in different processes including
collaborative writing. Studies have shown the posi-
tive impact of deliberation on the quality of several
document types, such as scientific papers, research
proposals, political reports, and Wikipedia articles,
among others (Kraut et al., 2012).

However, deliberative discussions may fail, ei-
ther by agreeing on the wrong action, or by reach-
ing no agreement. While the former is hard to

measure, the latter is, for example, clearly reflected
in the number of disputed discussions on Wikipedia
(Wang and Cardie, 2014).

Although agreement can never be guaranteed,
a deliberative argumentation strategy of a discus-
sion’s participants makes it more likely (Kittur
et al., 2007). With strategy, we here mean the se-
quence of moves that participants take during the
discussion. Such a sequence is effective if it leads
to a successful discussion. To achieve effectiveness,
every participant has to understand the current state
of a discussion and to come up with a next deliber-
ative move that best serves the discussion. For new-
comers, this requires substantial effort and time,
especially when a discussion grows due to conflicts
and back-and-forth arguments. Here, automated
tools can help by annotating ongoing discussions
with a label for each move or by providing a textual
summary of past moves (Zhang et al., 2017a,b). A
way to go beyond that is to let the tool recommend
the best possible moves according to an effective
strategy. This is the ultimate goal of our research.

As a substantial step towards this goal, two fun-
damental research questions are addressed in the pa-
per at hand: (1) How to model deliberative discus-
sions in light of the aim of agreement, and (2) how
to operationalize the model in order to identify dif-
ferent argumentation strategies and to learn about
their effectiveness.

Different models of deliberative discussions
have been proposed in previous studies. These
models were developed based on expert analyses
of a small set of sampled discussions (see Section
2). However, the small size, in fact, confines the
ability to develop a representative model, which
should ideally cover a wide range of moves while
being abstract to fit the majority of discussions.

To overcome this limitation, we propose to de-
rive a model statistically from a large set of discus-
sions. We approach this based on different types of
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metadata that people use to describe their moves on
Wikipedia talk pages, the richest source of delibera-
tive discussions on the web. Particularly, we extract
the entire set of about six million discussions from
all English Wikipedia talk pages. We parse each
discussion to identify its structural components,
such as turns, users, and time stamps. Besides, we
store four types of metadata from the turns: the
user tag, a shortcut, an in-line template, and links.
To learn from the metadata, we cluster the types’
instances based on their semantic similarity. Then,
we map each cluster to a specific concept (e.g., ‘pro-
viding a source’), and the related concepts into a set
of categories (e.g., ‘providing evidence’). Table 2
shows the categories of our model.

Analyzing the distribution of these categories,
we find that each turn ideally should have (1) one
of six categories that we call discourse acts, (2) one
of three categories that we call argumentative re-
lations, and (3) one of four categories that we call
frames. As such, our model is in line with three
well-established theories: speech act theory (Searle,
1969), argumentation theory (Peldszus and Stede,
2013), and framing theory (P. Levin et al., 1998).
A model instance is sketched in Figure 1.

Based on the model, we generate a new large-
scale corpus using the metadata automatically:
Webis-WikiDebate-18 corpus. Basically, if a turn
in a discussion has metadata that belongs to a spe-
cific category according to the above-mentioned
analysis, it is labeled with that category. The cor-
pus includes 2400 turns labeled with a discourse
act, 7437 turns labeled with a relation, and 182,321
turns labeled with a frame.

To operationalize our model, we train three su-
pervised classifiers for acts, relations, and frames
on the corpus. The classifiers employ a rich set
of linguistic features that has been shown to be
effective in similar tasks (Ferschke et al., 2012).
The results of our experiments suggest that we are
able to predict the labels with a comparable perfor-
mance to the one achieved in similar tasks.

Overall, the contribution of this paper is three-
fold: (1) A data-driven approach for creating a new
model of deliberative discussions that is aligned
with well-established theories, (2) a corpus with
about 200,000 turns labeled for 13 different cate-
gories, and (3) a classification approach that pre-
dicts the labels of turns. All developed resources
are freely available at https://www.webis.
de/data/data.html.

2 Related Work

Modeling deliberative discussions in Wikipedia has
been already addressed in different studies. The
central goal of these studies is to minimize the co-
ordination effort among discussion participants. In
particular, Ferschke et al. (2012) have proposed a
model of 17 dialogue acts, each belonging to one
of four categories: article criticism, explicit per-
formative, information content, and interpersonal.
The model was derived by performing a manual
analysis of 30 talk pages in the Simple English
Wikipedia. Based on the model, a new corpus of
1367 turns has been created and used to train and
evaluate a multi-label classifier for predicting the
model’s acts. Another model is the one proposed
by Viegas et al. (2007). The model consists of 11
different dialogue acts. These acts have been used
to manually label 25 talk pages from the English
Wikipedia. Furthermore, Bender et al. (2011) have
developed a model for authority claims and align-
ment moves in Wikipedia discussions. The model
then has been used to label 47 talk pages.

Rooted in the limitation of being derived from
a small sample, these models obtain low coverage
and/or are over-abstracted. This is indicated by
labels such as ‘other’ (Viegas et al., 2007) or by a
very abstract ‘information providing’ act (Ferschke
et al., 2012), which covers 78% of the turns. We
argue that recommending such moves for new par-
ticipants will not be useful. On the other hand, the
model of Ferschke et al. (2012) does not include
anything similar to ‘propose alternative action’, for
example, although such a concept was shown to be
important in deliberative dialogues (Walton, 2010).

Moreover, no existing model distinguishes the
three dimensions of turns: act, relation, and frame.
They either consider only one dimension or mix an
act with a relation, such as in the label: ‘criticizing
unsuitable or unnecessary content’ (Ferschke et al.,
2012). This is a problem for predicting the next
best deliberative move. For example, consider a
discussion about adding new content to an article,
where the participants support the action with dif-
ferent acts (e.g., ‘providing evidence’), but all of
them consider the ‘writing quality’ frame. A new
turn attacks the action by providing evidence that
the action would violate the ‘neutral point of view’.
The best next move should actually consider this
frame, since no content that violates ‘neutral point
of view’ policy should be added, regardless of its
adherence to the ‘writing quality’.
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Figure 1: Left: An excerpt of a discussion in a Wikipedia talk page. Right: The labels of each turn in the
discussion according to our proposed model.

In contrast, our approach of deriving the model
using thousands of different ‘descriptions’ of
moves written by the numerous Wikipedia users
is, in our view, more likely to give a representa-
tive picture of how people argue in deliberative
discussions. This, in turn, leads not only to high
coverage, but also to better abstraction. Our model
is in line with three well-known theories, which we
summarize in the next paragraph.

Speech act is a widely accepted theory in prag-
matics (Searle, 1969). Based on this theory, many
research papers have been proposed for modeling
different domains, such as one-on-one live chat
(Kim et al., 2010), persuasiveness in blogs (Anand
et al., 2011), twitter conversations (Zarisheva and
Scheffler, 2015), and online dialogues (Khanpour
et al., 2016). In the context of argumentation the-
ory (Peldszus and Stede, 2013), agreement detec-
tion is a related direction of work which has been
studied in discussions (Rosenthal and McKeown,
2015). Notably, Andreas et al. (2012) annotated
822 turns from 50 talk pages with three labels:
‘agreement’, ‘disagreement’, and ‘non’. Anyhow,
over the last few years, argumentation mining be-
came a hot topic in our community, where several
studies have went beyond the agreement detection

to investigate the identification of the ‘support’ and
‘attack’ relations in argumentation discourses (Peld-
szus and Stede, 2013). Finally, framing is one of
the important theories in discourse analysis (Ent-
man, 1993). This theory has been studied widely
in different domains, such as news article (Naderi
and Hirst, 2017) and political debates (Tsur et al.,
2015). These three theories back up the essence of
our proposed model. We found that a participant in
a discussion writes her text considering a specific
act, an argumentative relation, and a frame.

The metadata in Wikipedia have been used for
different tasks. The ‘infobox’ has been exploited
in the tasks of question answering (Morales et al.,
2016) and summarization (Ye et al., 2009), among
others. Moreover, Wang and Cardie (2014) have
used specific discussion templates to identify dis-
cussions that are disputed. Besides Wikipedia,
metadata such as ‘point for’, ‘point against’, and
‘introduction’ have been used successfully for mod-
eling argumentativeness in debate platforms (Al-
Khatib et al., 2016a). Also, The metadata for user
interactions, such as the ‘delta indicator’ and users
votes in Reddit ChangeMyView discussions have
been used to model the persuasiveness of a text
(Tan et al., 2016).
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We started the investgation of strategies for writ-
ing argumentative texts in previous work. In (Al-
Khatib et al., 2016b), we have presented a corpus
for argumentation strategies in news editorials. We
then used this corpus and other data in (Al-Khatib
et al., 2017) to identify patterns of strategies across
different general topics. In contrast to those two
studies targeting monological texts, here we ad-
dress argumentation strategies in dialogical texts.

3 Modeling Deliberative Discussions

The web is full of platforms where users can share
and discuss opinions, beliefs, and ideas. In case of
deliberative discussions, in particular, participants
try to find the best action from several choices. Ap-
parently, the participants there follow a strategy to
achieve an effective discussion, i.e., each partici-
pant tries to come with the best deliberative move
that leads to achieve the goal of discussion.

The numerous deliberative discussions on these
platforms do not only include user-written text, but
also different types of metadata that users add to
benefit the coordination between them. For exam-
ple, users vote for specific posts, summarize texts,
include references to the sources they use, refer
to the discussion policies of a platform, or report
bad behavior of others. Overall, the available meta-
data represents a valuable resource that provides
insights into three main aspects of a discussion:
The functions of users’ moves, the users’ roles, and
the discussion topics along with their flows. We
propose to exploit the metadata for modeling argu-
mentation strategies in deliberative discussions.

To this end, we proceed in four general steps:
(1) metadata inspection, which includes investigat-
ing the used metadata and its functions, (2) con-
cept origination, where clusters of similar metadata
are created and mapped to corresponding concepts,
(3) concept categorization, where similar concepts
are abstracted into a defined set of categories, and
(4) category composition, where possible overlaps
between categories should be identified.

The idea of this approach is not only to model the
strategies, but also to allow for an operationaliza-
tion of the resulting model by providing a dataset
for training classifiers. In particular, the metadata
can also be used to label discussions based on dis-
tant supervision (Mintz et al., 2009). In the follow-
ing, we describe how we implement our approach
to derive a new model of Wikipedia discussions,
using the metadata provided by the participants.

3.1 Discussion Parsing

As part of the management policies of Wikipedia,
each article has an associated page called ‘Talk’.
The main purpose of the talk page is to allow users
to discuss how to improve the article through spe-
cific actions that they agree on. Most of these dis-
cussions can be seen as deliberative, since all partic-
ipants share the same goal: finding the best action
to improve the article.

When a user has a proposal on how to improve
an article, she can open a discussion on the article’s
talk page, specifying a title and the main topic of
discussion. Usually, the topic denotes a sugges-
tion to perform a specific action, such as adding,
merging, or deleting certain content of the article,
among others. Ideally, multiple users then partic-
ipate in the discussion about whether the action
would improve the article or not.

Each single comment written by a user at a spe-
cific time is called a ‘turn’. A turn may reply di-
rectly to the main topic of the discussion or to any
other turn. Overall, a discussion consists of the
title, the main topic, and a number of turns written
by users with attached time stamps (see Figure 1).
Based on a manual inspection of the turns’ texts
of 50 discussions, we found four general types of
metadata used by the participants: user tags, short-
cuts, inline-templates, and external links.

To derive a model from Wikipedia, we need to
extract and parse the whole set of discussions on all
talk pages, including both ongoing and closed ones.
This is all but trivial, particularly due to the fact that
the creation of a discussion is solely done by the
users; although Wikipedia describes the required
format of the different parts of a discussion in de-
tail, not all users follow the format, often forgetting
required symbols or mistakenly confusing a symbol
with another one. In the implementation of our ap-
proach, we built upon the English Wikipedia dump
created on March 1st, 2017. Given a Wikipedia
dump, we parse it in the following steps:

Extraction of Talk Pages First, we obtain the
talk pages. We use the Java Wikipedia Library
(JWPL) from Zesch et al. (2008), which converts
a Wikipedia dump into a database that provides an
easy-to-use access to the dump components.

Extraction of Discussions Next, we extract the
discussions from the talk pages. To this end, we
develop several regular expressions that capture the
format for starting and ending a discussion.
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Corpus Component Instances

Page 5 807 046
Discussion 5 941 534
Discussion template 144 824
Turn 20 816 860

Registered users 739 244
Turns by registered users 10 926 670
Turns by anonymous user 9 890 190

Tag 99 889
Shortcut 425 583
Inline template 3 382 443
Links 4 824 085

Turns with tag and shortcut 2 347
Turns with tag and inline template 61 521
Turns with shortcut and inline template 170 065

Table 1: Instance counts of the different compo-
nents of the Webis-WikiDiscussions-18 corpus.

Identification of Structure Given the discus-
sion, we identify their structure. We created a
specific template to mine the title. The topic of
the discussion is simply given by the first turn. To
identify and correctly segment all users’ turns, we
use several indicators, for instance, indentations.

Identification of Turn Metadata Finally, we
identify the metadata of each turn. We analyzed
how users include the tags in their turns, finding
that they usually start a turn with a user tag in triple
quotation marks. A shortcut starts with ‘WP:’, fol-
lowed by a name for the shortcut, together encap-
sulated by brackets. Also templates are placed
between double parentheses, but they do not start
with ‘WP:’. Links are simply identified by either
of the affixes ‘www.’ and ‘http:’.

3.2 The Webis-WikiDiscussions-18 Corpus

The result of the parsing process is a large-scale
corpus of Wikipedia discussions. In particular, the
Webis-WikiDiscussions-18 corpus we created con-
tains about six million discussions, consisting of
about 20 million turns. The turns comprise around
74,000 different tags with a total of about 100,000
instances, around 7000 different shortcuts with
about 400,000 instances, and around 51,000 dif-
ferent inline templates with about 3.3 million in-
stances. Half of the turns are written by registered
users. Table 1 lists the exact instance counts.

3.3 Model Derivation

We now explain how we derive a model of delib-
erative discussions from the metadata obtained in
the previous subsection. The derivation process

includes the four steps outlined in the beginning of
this section.

Metadata Inspection As mentioned before, a
turn on Wikipedia includes up to four types of
metadata: user tag, shortcut, inline template, and
external link. Each type has a specific definition, a
suggested usage, and properties that we discuss in
the following paragraphs.

A user tag is a short text that a discussion par-
ticipant uses to describe or summarize her contri-
bution. Most tags indicate the main function of
the contribution, such as ‘proposal’ and ‘question’.
Users can define any free-text tag they want us-
ing a noun, verb, etc. Analyzing the tags in the
crawled discussions, we found the most frequent
tags to be rather general and meaningful, whereas
less frequent tags often capture aspects of the topic
of discussion, such as ‘Israel-Venezuela relations’
in the discussion about ‘Foreign relations of Israel’.
Sometimes, tags are used to get the attention of spe-
cific users, such as ‘For who reverted my change’.
Unfortunately, many users also misuse tags, for
example, by including the whole turn’s text there
or by encoding meaningless information.

A shortcut is an abbreviation text link that redi-
rects the user to some page on Wikipedia. Although
shortcuts may link to any Wikipedia page, they are
often used to link to rules or policies. The respec-
tive pages belong to one of five categories:
(1) Behavioral guidelines: Pages that describe how
users should interact with each other (e.g., during
a discussion). This includes that users should be
“good-faith” (WP:AGF), among others.
(2) Content guidelines: Pages that describe how
to identify and include information in the articles,
such as those about how an article should have
reliable and accepted sources (WP:RELIABLE).
(3) Style guidelines: Pages that contain advice
on writing style, formatting, grammar, and sim-
ilar. This includes how to write the introduction
(WP:LEAD) and headings (WP:HEADINGS), and
what style to use for the content (WP:MOS).
(4) Notability guidelines: Pages that illustrate the
conditions of testing whether a given topic warrants
its own article. The most common shortcut in this
category is (WP:N).
(5) Editing guidelines: Pages that provide informa-
tion on the metadata of articles, such as the articles’
categories (WP:CAT).

Overall, we found that shortcuts are used partic-
ularly frequently for style, content, and behavioral
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guidelines in Wikipedia discussions. The partic-
ipants mainly use them to discuss the impact of
applying an action that has been proposed to be
performed on a Wikipedia article. For example,
adding a lot of content to the introduction of an
article may violate the style guidelines. A user can
indicate this by referring to the style rules using the
shortcut (WP:LEAD).

An inline template is a Wikipedia page that has
been created to be included in other pages. Inline
templates usually comprise specific patterns that
are used in many articles, such as standard warn-
ings or boilerplate messages. For example, there
are templates for including a quotation, citation, or
code, among others. Templates are used frequently
in Wikipedia discussions, with the objective of writ-
ing readable and well structured turns.

An external link, finally, points to a web page
outside Wikipedia. External links occur both in
Wikipedia articles and in Wikipedia discussions.
While there are some restrictions for using them
in articles, they can be used without restriction in
discussions. We found that these links are used
in Wikipedia discussions to point to evidence on
the linked web pages. In particular, they often
link to research, news, search engines, educational
institutions, and blogs.

Concept Origination We analyzed the usage of
the four types of metadata in Wikipedia discussions
and identified a set of concepts. Each concept pri-
marily describes the turn that a participant writes:

User tags: We explored all 376 tags that oc-
curred at least 35 times. As discussed before, the
tags could be seen as a keywords that describe the
turns. Often, different tags refer to the same con-
cept, for example, ‘conclusion’, ‘summary’, and
‘overall’ all capture the concept of ‘summarization’,
i.e., the main function of the respective turns is to
summarize the discussion. As a result, we identi-
fied 32 clusters. We examined some turns belong-
ing to each cluster, and mapped each cluster to a
specific concept that describes it.

Shortcuts: Analogously, we explored all 99
shortcuts that occurred at least 900 times. Since
the shortcuts themselves do not describe the turn,
but rather the policy pages they refer to, we ana-
lyzed these pages by reading their first paragraphs
and by checking their relation to the pages of the
five shortcut categories we discussed before (e.g.,
‘behavioral’). This resulted in the identification of

12 concepts. We found that each shortcut concept
describes the main quality aspect that a turn ad-
dresses. For example, ‘writing content’ specifies
how a proposed action influences the quality of the
writing of the associated article.

Inline-templates: Our investigation of this type
led only to concepts that we already found before
for the tags and shortcuts, such as ‘stating a fact’.

External links: Similar to the templates, we iden-
tified concepts in the links that we also observed in
the tags, such as ‘providing source’.

Concept Categorization The concepts that we
identified in the user tags can be grouped into six
categories that we see as ‘discourse acts’:

1. Socializing: All concepts related to social in-
teraction, such as thanking, apologizing, or
welcoming other users.

2. Providing evidence: All concepts concerning
the provision of evidence. Evidence may be
given in form of a quote, an example, a fact,
references, a source, and similar.

3. Enhancing the understanding: All concepts
related to helping users understand the topic
of discussion or a discussion itself. This can
be done by giving background information,
by clarifying misunderstandings, or by sum-
marizing the discussion, among others.

4. Recommending an act: All concepts propos-
ing to add a new aspect to the discussion, to
ask more users to participate in the discus-
sion, or to come up with an alternative to the
proposed action.

5. Asking a question: All concepts related to
questions serving different purposes, such as
obtaining information on the topic of discus-
sion, requesting reasons of specific decisions,
and similar.

6. Finalizing the discussion: All concepts related
to the decision of a discussion, including re-
porting the decision, committing it, or closing
the discussion to move it to the archive.

In addition, we identified three further categories
based on the user tags, which we see as relevant to
‘argumentation theory’. Each represents a relation
between the turn and the topic of discussion or
between the turn and another turn:

1. Support relation: The turn agrees with or sup-
ports another turn or the topic of discussion,
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for instance, by providing an argument in fa-
vor of the one in the ‘supported’ turn.

2. Attack relation: The opposite of the ‘support
relation’, i.e., the turn disagrees or attacks
another turn or the topic of discussion.

3. Neutral relation: The turn has a neutral rela-
tion to another turn or the topic of discussion
when it neither support nor attack it.

Finally, we identified four categories based on
the shortcuts that we see as relevant to ‘framing
theory’. They target a quality dimension of the
article or of the discussion itself:

1. Writing quality: Turns that mainly address
issues related to the quality of writing of an
article, such as whether adding new content
complies with the style guidelines for lead
sections, the layout, or similar.

2. Verifiability and factual accuracy: Turns that
address issues related to the quality of ref-
erences, the reliability of sources, copyright
violations, plagiarism, and similar.

3. Neutral point of view: Turns that focus on a
fair representation of viewpoints and on how
to avoid bias.

4. Dialogue management: Turns that concen-
trate on issues related to managing the dis-
cussion, such as reporting abusive language,
preserving respect between users, encourag-
ing newcomer participants, and similar.

Category Composition Given these categories,
we investigated the interaction between them in
20 discussions, for instance, to see whether the
categories are orthogonal. We found that each turn
may have one discourse act, one relation, and one
frame at the same time. For example, a turn may
support another turn by providing evidence (say, of
the type ‘source’), while focusing on the writing
quality frame. Table 2 shows the categories of our
model and their concepts.

4 Model Operationalization

In this section, we present the operationalization
process of our proposed model for deliberative ar-
gumentation strategies. First, we explain the con-
struction of Webis-WikiDebate-18: a large-scale
corpus for our model that we generated automati-
cally based on the metadata in discussions. Then,
we discuss the development and evaluation of a

classification approach which we use for predicting
the model’s categories.

4.1 The Webis-WikiDebate-18 Corpus
To create a corpus for our model, we decided to
rely again on the metadata. In particular, for each
category in our model, we retrieved the metadata
instances that had been used to derive the category,
and then labeled any turn that included any meta-
data with this category. For example, the user tag
‘overall’ was used to originate the concept ‘summa-
rization’, which was abstracted into the category
‘enhancing the understanding’. Accordingly, all the
turns that included this tag were labeled with the
category ‘enhancing the understanding’. This pro-
cess is in line with the distant supervision paradigm.
In case a turn contained metadata belonging to two
categories, we excluded it from the corpus. This
happened with some shortcuts in particular. Basi-
cally, such cases indicate that some turns address
more than one frame.

Overall, the corpus comprises 2400 turns la-
beled with one of the six discourse act categories,
7437 turns with one of the relation categories, and
182,321 turns with one of the frame categories. In
order to verify the reliability of the corpus, we ran-
domly sampled about 100 turns from each category,
ensuring that all the category’s concepts are taken
into consideration. The turns in the samples were
verified (i.e., whether they belong to the assigned
category) by a worker hired from the freelancing
platform upwork.com. The worker was a native
speaker of English with deep expertise in writing.
Table 3 shows statistics of the corpus, including the
percentage of turns in each sample that belong to
the assigned category according to the expert. In
general, this verification result is comparable to the
inter-annotator agreement achieved in some related
studies (Ferschke et al., 2012).

4.2 Classification Approach
Based on the Webis-WikiDebate-18 corpus, we
develop three supervised classifiers: one for the
discourse acts, one for the relations, and one for the
frames. Since this paper does not aim at proposing
a novel approach for the classification tasks, but
rather at showing the ability to operationalize the
model, we follow existing work that has proposed
methods for the tasks at hand. Particularly, we
implement a rich set of features that have been used
by others before. These features capture lexical,
semantic, style, and pragmatic properties of turns.
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Dimension Category Concepts

Discourse act Socializing (1) Thank a user, (2) Apologize from a user, (3) Welcome a user,
(4) Express anger

Providing evidence (1) Provide a quote, (2) Reference, (3) Source, (4) Give an example,
(5) State a fact, (6) Explain a rational

Enhancing the understanding (1) Provide background info, (2) Info on the history of similar discussions,
(3) Introduce the topic of discussion, (4) Clarify a misunderstanding,
(5) Correct previous own or other’s turn, (6) Write a discussion summary,
(7) Conduct a survey on participants, (8) Request info

Recommending an act (1) Propose alternative action on the article,
(2) Suggest a new process of discussion, (3) Propose asking a third party

Asking a question (1) Ask a general question about the topic,
(2) Question a proposal or arguments in a turn

Finalizing the discussion (1) Report the decision, (2) Commit the decision, (3) Close the discussion

Argumentative Support (1) Agree, (2) Support

relation Neutral (1) Be neutral.

Attack (1) Disagree, (2) Attack, (3) Counter-attack

Frame Writing quality (1) Naming articles, (2) Writing content, (3) Formatting, (4) images,
(5) Layout and list

Verifiability and factual accuracy (1) Reliable sources, (2) Proper citation (3) Good argument

Neutral point of view (1) Neutral point of view

Dialogue management (1) Be bold. (2) Be civil, (3) Don’t game the system

Table 2: The concepts covered by each category of each of the three principle dimensions of our model.

Dimension Category Turns Prec.

Discourse act Socializing 83 0.71
Providing evidence 781 0.49
Enhancing the understanding 671 0.56
Recommending an act 137 0.82
Asking a question 106 0.71
Finalizing the discussion 622 0.71

Argumentative Support 2895 1.00
relation Neutral 1937 0.63

Attack 2605 1.00

Frame Writing quality 19893 0.51
Verifiability and factual ac. 72049 0.89
Neutral point of view 60007 0.89
Dialogue management 30372 0.74

Table 3: Number of turns in each category of Webis-
WikiDebate-18 corpus and the precision of sampled
turns for each category according to an expert.

In short, we used the following features: The fre-
quency of word 1–3-grams, character 1–3-grams,
chunk 1–3-grams, function word 1–3-grams, and
of the first 1–3 tokens in a turn. The number
of characters, syllables, tokens, phrases, and sen-
tences in a turn. the frequencies of part-of-speech
tag 1–3-grams. The mean SentiWordNet score of
the words in a turn (http://sentiwordnet.
isti.cnr.it). The frequency of each word
class of the General Inquirer (http://www.
wjh.harvard.edu/~inquirer). The depth

level of turns in the discussion. For the relation
classifier, we had additional features that consider
the target of the relation (the parent turn), namely,
the cosine, euclidean, manhattan, and jaccard simi-
larity between turn and parent turn.

4.3 Experiments and Results

As a preprocessing step, we cleaned the turns in
the Webis-WikiDebate-18 Corpus by removing all
the metadata: user tags, shortcuts, user and time
stamps, etc. Then, we grouped the turns that belong
to the discourse act categories in a single dataset
(say, the ‘discourse act dataset’). The same was
performed for the turns belonging to relations and
frames. We then split each of the three datasets
randomly into training (60%), development (20%),
and test (20%) sets. We ensured that turns from the
same discussion should appear only in either of the
split sets, in order to avoid biasing the classifiers
by topical information.

We trained different machine learning models
on the training sets and evaluated them on the de-
velopment sets. The models included those which
had been used before in similar tasks, such as naive
bayes, logistic regression, support vector machine,
and random forest. We tried both under and over-
sampling on the training sets. The best results in the
three tasks were achieved by using support vector
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Dimension Category Prec. Rec. F1

Discourse act Socializing 0.14 0.11 0.13
Providing evidence 0.63 0.77 0.69
Enhancing the understand. 0.62 0.55 0.58
Recommending an act 0.13 0.09 0.10
Asking a question 0.80 0.19 0.31
Finalizing the discussion 0.67 0.74 0.71

Argumentative Support 0.53 0.59 0.56
relation Neutral 0.55 0.50 0.52

Attack 0.50 0.49 0.50

Frame Writing quality 0.74 0.47 0.57
Verifiability and factual ac. 0.62 0.74 0.67
Neutral point of view 0.59 0.56 0.58
Dialogue management 0.64 0.56 0.60

Table 4: The precision, recall, and F1-score of our
classifiers for all categories of the three dimensions.

machine without sampling the training sets.
We used the support vector machine implemen-

tation from the LibLinear library (Fan et al., 2008)
on the test sets and report the results in Table 4.
Overall, the three classifiers achieved results that
are comparable to the results of previous methods
on the corresponding tasks (Ferschke et al., 2012;
Zhang et al., 2017a). We obtained the best results
in the frame task, followed by relations and then
discourse acts. Apparently, the results correlate
with the size of the datasets. In case of discourse
acts, the classifier achieves low F1-scores for ‘so-
cializing’, ‘recommending an act’, and ‘asking a
question’. These categories have a significantly
smaller number of turns compared to other cate-
gories, which makes identifying them harder. The
effectiveness of classifying the relation and frame
categories, on the other hand, appears promising
given the difficulty of these tasks.

We point that we considered mainly the turns’
texts in our experiments. In principle, this helps to
get an idea about the effectiveness of our approach
in Wikipedia as well as other registers for discus-
sions. Nevertheless, including the metadata and
structural information of the analyzed discussions
is definitely worthwhile in general, and will natu-
rally tend to lead to notably higher effectiveness.

5 Discussion and Conclusion

While our approach to modeling argumentation
strategies in deliberative discussions may seem
Wikipedia-specific, the derivation of concepts and
categories from metadata can be transferred to
other online discussion platforms. We expect the
general derivation steps to be the same, whereas

the techniques applied within each step may differ
depending on the types, frequency, and quality of
metadata. For example, the consistent usage of the
most common user tags in Wikipedia discussions
helps originating concepts manually. In contrast,
other metadata might require the use of computa-
tional methods, such as clustering, keyphrase ex-
traction, and textual entailment.

Unlike previous approaches to the modeling of
discussions on Wikipedia, our model decouples
the three principle dimensions of discussions: dis-
course acts, argumentative relations, and frames.
We argue that the distinction of these dimensions
is key to develop tool support for discussion par-
ticipants, for example, for recommending the best
possible move in an ongoing discussion.

Also, our model helps analyzing the influence
of user interaction and behavior on the effective-
ness of discussion decisions. For example, some
Wikipedia users focus on the frame ‘well written’
while ignoring others, which may negatively affect
the accuracy of an article’s content. Also, users of-
ten attack other turns, instead of considering neutral
acts such as clarifications of misunderstandings.

Many categories in our model will apply to delib-
erative discussions in general, particularly the dis-
course acts and argumentative relations. While the
found frames are more Wikipedia-specific, similar
play a role on collaborative writing platforms. For
example, when writing a scientific paper, possible
frames are the ‘writing quality’ or the ‘verifiability
of content and citations’.

Besides the model, we created two large-scale
corpora: The Webis-WikiDiscussions-18 corpus, in-
cluding the entire set of Wikipedia discussions (at
the time of parsing) with annotated discussion struc-
ture and metadata, and the Webis-WikiDebate-18
corpus, where turns are labeled for their discourse
acts, argumentative relations, and frames. We be-
lieve that these corpora will help foster research on
tasks such as argument mining, among others.

Finally, we operationalized our Wikipedia dis-
cussion model in three support vector machine clas-
sifiers with tailored features. Our experiment re-
sults confirm that categories of our model can be
predicted successfully. In future work, we plan to
study how to distinguish effective from ineffective
discussions based on our model as well as how to
learn from the strategies used in successful discus-
sions, in order to predict the best next deliberative
move in an ongoing discussion.
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Abstract

We present a new dataset of image caption
annotations, Conceptual Captions, which
contains an order of magnitude more im-
ages than the MS-COCO dataset (Lin et al.,
2014) and represents a wider variety of
both images and image caption styles. We
achieve this by extracting and filtering im-
age caption annotations from billions of
webpages. We also present quantitative
evaluations of a number of image cap-
tioning models and show that a model
architecture based on Inception-ResNet-
v2 (Szegedy et al., 2016) for image-feature
extraction and Transformer (Vaswani et al.,
2017) for sequence modeling achieves the
best performance when trained on the Con-
ceptual Captions dataset.

1 Introduction

Automatic image description is the task of pro-
ducing a natural-language utterance (usually a sen-
tence) which correctly reflects the visual content
of an image. This task has seen an explosion in
proposed solutions based on deep learning architec-
tures (Bengio, 2009), starting with the winners of
the 2015 COCO challenge (Vinyals et al., 2015a;
Fang et al., 2015), and continuing with a variety of
improvements (see e.g. Bernardi et al. (2016) for a
review). Practical applications of automatic image
description systems include leveraging descriptions
for image indexing or retrieval, and helping those
with visual impairments by transforming visual sig-
nals into information that can be communicated via
text-to-speech technology. The scientific challenge
is seen as aligning, exploiting, and pushing further
the latest improvements at the intersection of Com-
puter Vision and Natural Language Processing.

Alt-text: A Pakistani worker helps
to clear the debris from the Taj Ma-
hal Hotel November 7, 2005 in Bal-
akot, Pakistan.

Conceptual Captions: a worker
helps to clear the debris.

Alt-text: Musician Justin Timber-
lake performs at the 2017 Pilgrim-
age Music & Cultural Festival on
September 23, 2017 in Franklin,
Tennessee.

Conceptual Captions: pop artist
performs at the festival in a city.

Figure 1: Examples of images and image descrip-
tions from the Conceptual Captions dataset; we
start from existing alt-text descriptions, and auto-
matically process them into Conceptual Captions
with a balance of cleanliness, informativeness, flu-
ency, and learnability.

There are two main categories of advances re-
sponsible for increased interest in this task. The
first is the availability of large amounts of anno-
tated data. Relevant datasets include the ImageNet
dataset (Deng et al., 2009), with over 14 million
images and 1 million bounding-box annotations,
and the MS-COCO dataset (Lin et al., 2014), with
120,000 images and 5-way image-caption anno-
tations. The second is the availability of power-
ful modeling mechanisms such as modern Con-
volutional Neural Networks (e.g. Krizhevsky et al.
(2012)), which are capable of converting image pix-
els into high-level features with no manual feature-
engineering.

In this paper, we make contributions to both
the data and modeling categories. First, we
present a new dataset of caption annotations∗,
Conceptual Captions (Fig. 1), which has an or-
der of magnitude more images than the COCO

∗https://github.com/google-research-datasets/conceptual-
captions
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dataset. Conceptual Captions consists of about
3.3M 〈image, description〉 pairs. In contrast with
the curated style of the COCO images, Concep-
tual Captions images and their raw descriptions
are harvested from the web, and therefore repre-
sent a wider variety of styles. The raw descriptions
are harvested from the Alt-text HTML attribute†

associated with web images. We developed an au-
tomatic pipeline (Fig. 2) that extracts, filters, and
transforms candidate image/caption pairs, with the
goal of achieving a balance of cleanliness, informa-
tiveness, fluency, and learnability of the resulting
captions.

As a contribution to the modeling category, we
evaluate several image-captioning models. Based
on the findings of Huang et al. (2016), we use
Inception-ResNet-v2 (Szegedy et al., 2016) for
image-feature extraction, which confers optimiza-
tion benefits via residual connections and com-
putationally efficient Inception units. For cap-
tion generation, we use both RNN-based (Hochre-
iter and Schmidhuber, 1997) and Transformer-
based (Vaswani et al., 2017) models. Our results
indicate that Transformer-based models achieve
higher output accuracy; combined with the reports
of Vaswani et al. (2017) regarding the reduced num-
ber of parameters and FLOPs required for training
& serving (compared with RNNs), models such as
T2T8x8 (Section 4) push forward the performance
on image-captioning and deserve further attention.

2 Related Work

Automatic image captioning has a long history (Ho-
dosh et al., 2013; Donahue et al., 2014; Karpa-
thy and Fei-Fei, 2015; Kiros et al., 2015). It
has accelerated with the success of Deep Neu-
ral Networks (Bengio, 2009) and the availability
of annotated data as offered by datasets such as
Flickr30K (Young et al., 2014) and MS-COCO (Lin
et al., 2014).

The COCO dataset is not large (order of 106 im-
ages), given the training needs of DNNs. In spite
of that, it has been very popular, in part because
it offers annotations for images with non-iconic
views, or non-canonical perspectives of objects,
and therefore reflects the composition of everyday
scenes (the same is true about Flickr30K (Young
et al., 2014)). COCO annotations–category label-
ing, instance spotting, and instance segmentation–
are done for all objects in an image, including those
†https://en.wikipedia.org/wiki/Alt attribute

in the background, in a cluttered environment, or
partially occluded. Its images are also annotated
with captions, i.e. sentences produced by human an-
notators to reflect the visual content of the images
in terms of objects and their actions or relations.

A large number of DNN models for image cap-
tion generation have been trained and evaluated
using COCO captions (Vinyals et al., 2015a; Fang
et al., 2015; Xu et al., 2015; Ranzato et al., 2015;
Yang et al., 2016; Liu et al., 2017; Ding and Soricut,
2017). These models are inspired by sequence-to-
sequence models (Sutskever et al., 2014; Bahdanau
et al., 2015) but use CNN-based encodings in-
stead of RNNs (Hochreiter and Schmidhuber, 1997;
Chung et al., 2014). Recently, the Transformer ar-
chitecture (Vaswani et al., 2017) has been shown
to be a viable alternative to RNNs (and CNNs) for
sequence modeling. In this work, we evaluate the
impact of the Conceptual Captions dataset on the
image captioning task using models that combine
CNN, RNN, and Transformer layers.

Also related to this work is the Pinterest image
and sentence-description dataset (Mao et al., 2016).
It is a large dataset (order of 108 examples), but its
text descriptions do not strictly reflect the visual
content of the associated image, and therefore can-
not be used directly for training image-captioning
models.

3 Conceptual Captions Dataset Creation

The Conceptual Captions dataset is programmat-
ically created using a Flume (Chambers et al.,
2010) pipeline. This pipeline processes billions
of Internet webpages in parallel. From these web-
pages, it extracts, filters, and processes candidate
〈image, caption〉 pairs. The filtering and process-
ing steps are described in detail in the following
sections.

Image-based Filtering The first filtering stage,
image-based filtering, discards images based on
encoding format, size, aspect ratio, and offensive
content. It only keeps JPEG images where both
dimensions are greater than 400 pixels, and the
ratio of larger to smaller dimension is no more than
2. It excludes images that trigger pornography or
profanity detectors. These filters discard more than
65% of the candidates.

Text-based Filtering The second filtering stage,
text-based filtering, harvests Alt-text from HTML
webpages. Alt-text generally accompanies images,
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[Alt-text not processed:
undesired image format, 

aspect ratio or size]

ALT-TEXT

“Ferrari dice”

“The meaning of life”

“Demi Lovato wearing a 
black Ester Abner Spring 
2018 gown and Stuart 
Weitzman sandals at the 
2017 American Music 
Awards”

IMAGE

[Alt-text discarded]

CAPTION

“pop rock artist 
wearing a black 
gown and sandals 
at awards”

[Alt-text discarded:
Text does not contain 

prep./article]

[Alt-text discarded:
No text vs. 

image-object 
overlap]

Image 
Filtering

Text 
Filtering

Img/Text 
Filtering

Text 
Transform

PIPELINE

IMAGEIMAGEIMAGE

Figure 2: Conceptual Captions pipeline steps with examples and final output.

and intends to describe the nature or the content of
the image. Because these Alt-text values are not in
any way restricted or enforced to be good image
descriptions, many of them have to be discarded,
e.g., search engine optimization (SEO) terms, or
Twitter hash-tag terms.

We analyze candidate Alt-text using the Google
Cloud Natural Language APIs, specifically part-
of-speech (POS), sentiment/polarity, and pornogra-
phy/profanity annotations. On top of these annota-
tions, we have the following heuristics:

• a well-formed caption should have a high
unique word ratio covering various POS tags;
candidates with no determiner, no noun, or no
preposition are discarded; candidates with a
high noun ratio are also discarded;

• candidates with a high rate of token repetition
are discarded;

• capitalization is a good indicator of well-
composed sentences; candidates where the
first word is not capitalized, or with too high
capitalized-word ratio are discarded;

• highly unlikely tokens are a good indicator of
not desirable text; we use a vocabulary VW of
1B token types, appearing at least 5 times in

the English Wikipedia, and discard candidates
that contain tokens that are not found in this
vocabulary.

• candidates that score too high or too low on
the polarity annotations, or trigger the pornog-
raphy/profanity detectors, are discarded;

• predefined boiler-plate prefix/suffix sequences
matching the text are cropped, e.g. “click to
enlarge picture”, “stock photo”; we also drop
text which begins/ends in certain patterns, e.g.
“embedded image permalink”, “profile photo”.

These filters only allow around 3% of the incoming
candidates to pass to the later stages.

Image&Text-based Filtering In addition to the
separate filtering based on image and text content,
we filter out candidates for which none of the text
tokens can be mapped to the content of the image.
To this end, we use classifiers available via the
Google Cloud Vision APIs to assign class labels to
images, using an image classifier with a large num-
ber of labels (order of magnitude of 105). Notably,
these labels are also 100% covered by the Vw token
types.

Images are generally assigned between 5 to 20
labels, though the exact number depends on the
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Original Alt-text Harrison Ford and Calista Flockhart attend the premiere of ‘Hollywood Homicide’ at the
29th American Film Festival September 5, 2003 in Deauville, France.

Conceptual Captions actors attend the premiere at festival.
what-happened “Harrison Ford and Calista Flockhart” mapped to “actors”; name, location, and date dropped.

Original Alt-text Side view of a British Airways Airbus A319 aircraft on approach to land with landing gear
down - Stock Image

Conceptual Captions side view of an aircraft on approach to land with landing gear down
what-happened phrase “British Airways Airbus A319 aircraft” mapped to “aircraft”; boilerplate removed.

Original Alt-text Two sculptures by artist Duncan McKellar adorn trees outside the derelict Norwich Union
offices in Bristol, UK - Stock Image

Conceptual Captions sculptures by person adorn trees outside the derelict offices
what-happened object count (e.g. “Two”) dropped; proper noun-phrase hypernymized to “person”; proper-

noun modifiers dropped; location dropped; boilerplate removed.

Table 1: Examples of Conceptual Captions as derived from their original Alt-text versions.

image. We match these labels against the candi-
date text, taking into account morphology-based
stemming as provided by the text annotation. Can-
didate 〈image, caption〉 pairs with no overlap are
discarded. This filter discards around 60% of the
incoming candidates.

Text Transformation with Hypernymization
In the current version of the dataset, we consid-
ered over 5 billion images from about 1 billion
English webpages. The filtering criteria above are
designed to be high-precision (which comes with
potentially low recall). From the original input can-
didates, only 0.2% 〈image, caption〉 pairs pass the
filtering criteria described above.

While the remaining candidate captions tend
to be appropriate Alt-text image descriptions (see
Alt-text in Fig. 1), a majority of these candidate
captions contain proper names (people, venues,
locations, etc.), which would be extremely diffi-
cult to learn as part of the image captioning task.
To give an idea of what would happen in such
cases, we train an RNN-based captioning model
(see Section 4) on non-hypernymized Alt-text data
and present an output example in Fig. 3. If auto-
matic determination of person identity, location,
etc. is needed, it should be attempted as a sepa-
rate task and would need to leverage image meta-
information about the image (e.g. location).

Using the Google Cloud Natural Language APIs,
we obtain named-entity and syntactic-dependency
annotations. We then use the Google Knowl-
edge Graph (KG) Search API to match the named-
entities to KG entries and exploit the associated hy-
pernym terms. For instance, both “Harrison Ford”
and “Calista Flockhart” identify as named-entities,

Alt-text (groundtruth):
Jimmy Barnes performs at the
Sydney Entertainment Centre

Model output: Singer Justin
Bieber performs onstage during
the Billboard Music Awards at
the MGM

Figure 3: Example of model output trained on
clean, non-hypernymized Alt-text data.

so we match them to their corresponding KG en-
tries. These KG entries have “actor” as their hyper-
nym, so we replace the original surface tokens with
that hypernym.

The following steps are applied to achieve text
transformations:

• noun modifiers of certain types (proper nouns,
numbers, units) are removed;

• dates, durations, and preposition-based loca-
tions (e.g., “in Los Angeles”) are removed;

• named-entities are identified, matched against
the KG entries, and substitute with their hy-
pernym;

• resulting coordination noun-phrases with the
same head (e.g., “actor and actor”) are re-
solved into a single-head, pluralized form
(e.g., “actors”);

Around 20% of samples are discarded during this
transformation because it can leave sentences too
short or inconsistent.

Finally, we perform another round of text analy-
sis and entity resolution to identify concepts with
low-count. We cluster all resolved entities (e.g.,
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“actor”, “dog”, “neighborhood”, etc.) and keep
only the candidates for which all detected types
have a count of over 100 (around 55% of the can-
didates). These remaining 〈image, caption〉 pairs
contain around 16,000 entity types, guaranteed to
be well represented in terms of number of examples.
Table 1 contains several examples of before/after-
transformation pairs.

Conceptual Captions Quality To evaluate the
precision of our pipeline, we consider a random
sample of 4K examples extracted from the test split
of the Conceptual Captions dataset. We perform a
human evaluation on this sample, using the same
methodology described in Section 5.4.

GOOD (out of 3)
1+ 2+ 3

Conceptual Captions 96.9% 90.3% 78.5%

Table 2: Human evaluation results on a sample
from Conceptual Captions.

The results are presented in Table 2 and show
that, out of 3 annotations, over 90% of the captions
receive a majority (2+) of GOOD judgments. This
indicates that the Conceptual Captions pipeline,
though involving extensive algorithmic processing,
produces high-quality image captions.

Examples Unique Tokens/Caption
Tokens Mean StdDev Median

Train 3,318,333 51,201 10.3 4.5 9.0
Valid. 28,355 13,063 10.3 4.6 9.0

Test 22,530 11,731 10.1 4.5 9.0

Table 3: Statistics over Train/Validation/Test splits
for Conceptual Captions.

We present in Table 3 statistics over the
Train/Validation/Test splits for the Conceptual Cap-
tions dataset. The training set consists of slightly
over 3.3M examples, while there are slightly over
28K examples in the validation set and 22.5K ex-
amples in the test set. The size of the training set
vocabulary (unique tokens) is 51,201. Note that the
test set has been cleaned using human judgements
(2+ GOOD), while both the training and valida-
tion splits contain all the data, as produced by our
automatic pipeline. The mean/stddev/median statis-
tics for tokens-per-caption over the data splits are
consistent with each other, at around 10.3/4.5/9.0,
respectively.

4 Image Captioning Models

In order to assess the impact of the Conceptual Cap-
tions dataset, we consider several image captioning
models previously proposed in the literature. These
models can be understood using the illustration in
Fig. 4, as they mainly differ in the way in which
they instantiate some of these components.

Encoder

<GO> people playing frisbee

Decoder

people playing frisbee in

Image Embedding

X

H

Y

Z

Figure 4: The main model components.

There are three main components to this archi-
tecture:

• A deep CNN that takes a (preprocessed) im-
age and outputs a vector of image embeddings
X = (x1,x2, ...,xL).

• An Encoder module that takes the image
embeddings and encodes them into a tensor
H = fenc(X).

• A Decoder model that generates outputs zt =
fdec(Y1:t,H) at each step t, conditioned on
H as well as the decoder inputs Y1:t.

We explore two main instantiations of this architec-
ture. One uses RNNs with LSTM cells (Hochreiter
and Schmidhuber, 1997) to implement the fenc and
fdec functions, corresponding to the Show-And-
Tell (Vinyals et al., 2015b) model. The other uses
Transformer self-attention networks (Vaswani et al.,
2017) to implement fenc and fdec. All models in
this paper use Inception-ResNet-v2 as the CNN
component (Szegedy et al., 2016).

4.1 RNN-based Models
Our instantiation of the RNN-based model is
close to the Show-And-Tell (Vinyals et al., 2015b)
model.

hl , RNNenc(xl,hl−1), and H = hL,

zt , RNNdec(yt, zt−1), where z0 = H .
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In the original Show-And-Tell model, a single im-
age embedding of the entire image is fed to the first
cell of an RNN, which is also used for text gener-
ation. In our model, a single image embedding is
fed to an RNNenc with only one cell, and then a dif-
ferent RNNdec is used for text generation. We tried
both single image (1x1) embeddings and 8x8 parti-
tions of the image, where each partition has its own
embedding. In the 8x8 case, image embeddings are
fed in a sequence to the RNNenc. In both cases, we
apply plain RNNs without cross attention, same as
the Show-And-Tell model. RNNs with cross atten-
tion were used in the Show-Attend-Tell model (Xu
et al., 2015), but we find its performance to be
inferior to the Show-And-Tell model.

4.2 Transformer Model
In the Transformer-based models, both the encoder
and the decoder contain a stack of N layers. We
denote the n-th layer in the encoder by Xn =
{xn,1, . . . ,xn,L}, and X0 = X, H = XN . Each
of these layers contains two sub-layers: a multi-
head self-attention layer ATTN, and a position-wise
feedforward network FFN:

x′n,j =ATTN(xn,j ,Xn;W
e
q ,W

e
k,W

e
v)

,softmax(〈xn,j W
e
q ,Xn We

k〉)Xn We
v

x(n+1),j =FFN(x′n,j ;W
e
f )

where We
q, W

e
k, and We

v are the encoder weight
matrices for query, key, and value transformation
in the self-attention sub-layer; and We

f denotes the
encoder weight matrix of the feedforward sub-layer.
Similar to the RNN-based model, we consider us-
ing a single image embedding (1x1) and a vector
of 8x8 image embeddings.

In the decoder, we denote the n-th layer by
Zn = {zn,1, . . . , zn,T } and Z0 = Y. There are
two main differences between the decoder and en-
coder layers. First, the self-attention sub-layer in
the decoder is masked to the right, in order to pre-
vent attending to “future” positions (i.e. zn,j does
not attend to zn,(j+1), . . . , zn,T ). Second, in be-
tween the self-attention layer and the feedforward
layer, the decoder adds a third cross-attention layer
that connects zn,j to the top-layer encoder repre-
sentation H = XN .

z′n,j =ATTN(zn,j ,Zn,1:j ;W
d
q ,W

d
k,W

d
v)

z′′n,j =ATTN(z′n,j ,H;Wc
q ,W

c
k,W

c
v)

z(n+1),j =FFN(z′′n,j ;W
d
f )

where Wd
q , Wd

k, and Wd
v are the weight matrices

for query, key, and value transformation in the de-
coder self-attention sub-layer; Wc

q, W
c
k, Wc

v are
the corresponding decoder weight matrices in the
cross-attention sub-layer; and Wd

f is the decoder
weight matrix of the feedforward sub-layer.

The Transformer-based models utilize position
information at the embedding layer. In the 8x8 case,
the 64 embedding vectors are serialized to a 1D
sequence with positions from [0, . . . , 63]. The po-
sition information is modeled by applying sine and
cosine functions at each position and with differ-
ent frequencies for each embedding dimension, as
in (Vaswani et al., 2017), and subsequently added
to the embedding representations.

5 Experimental Results

In this section, we evaluate the impact of using
the Conceptual Captions dataset (referred to as
’Conceptual’ in what follows) for training image
captioning models. To this end, we train the
models described in Section 4 under two exper-
imental conditions: using the training & devel-
opment sets provided by the COCO dataset (Lin
et al., 2014), versus training & development sets
using the Conceptual dataset. We quantitatively
evaluate the resulting models using three differ-
ent test sets: the blind COCO-C40 test set (in-
domain for COCO-trained models, out-of-domain
for Conceptual-trained models); the Conceptual
test set (out-of-domain for COCO-trained mod-
els, in-domain for Conceptual-trained models); and
the Flickr (Young et al., 2014) 1K test set (out-
of-domain for both COCO-trained models and
Conceptual-trained models).

5.1 Dataset Details

COCO Image Captions The COCO image cap-
tioning dataset is normally divided into 82K images
for training, and 40K images for validation. Each
of these images comes with at least 5 groundtruth
captions. Following standard practice, we combine
the training set with most of the validation dataset
for training our model, and only hold out a subset
of 4K images for validation.

Conceptual Captions The Conceptual Captions
dataset contains around 3.3M images for training,
28K for validation and 22.5K for the test set. For
more detailed statistics, see Table 3.
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COCO-trained

RNN8x8 a group of men standing
in front of a building

a couple of people walk-
ing down a walkway

a child sitting at a table
with a cake on it

a close up of a stuffed
animal on a table

T2T8x8 a group of men in uni-
form and ties are talking

a narrow hallway with a
clock and two doors

a woman cutting a birth-
day cake at a party

a picture of a fish on the
side of a car

Conceptual-trained

RNN8x8
graduates line up for
the commencement cer-
emony

a view of the nave a child ’s drawing at a
birthday party

a cartoon business-
man thinking about
something

T2T8x8 graduates line up to re-
ceive their diplomas

the cloister of the cathe-
dral

learning about the arts
and crafts

a cartoon businessman
asking for help

Figure 5: Side by side comparison of model outputs under two training conditions. Conceptual-based
models (lower half) tend to hallucinate less, are more expressive, and handle well a larger variety of
images. The two images in the middle are from Flickr; the other two are from Conceptual Captions.

5.2 Experimental Setup

Image Preprocessing Each input image is first
preprocessed by random distortion and cropping
(using a random ratio from 50%∼100%). This
prevents models from overfitting individual pixels
of the training images.

Encoder-Decoder For RNN-based models, we
use a 1-layer, 512-dim LSTM as the RNN cell. For
the Transformer-based models, we use the default
setup from (Vaswani et al., 2017), with N = 6
encoder and decoder layers, a hidden-layer size of
512, and 8 attention heads.

Text Handling Training captions are truncated
to maximum 15 tokens. We use a token type min-
count of 4, which results in around 9,000 token
types for the COCO dataset, and around 25,000
token types for the Conceptual Captions dataset.
All other tokens are replaced with special token
〈UNK〉. The word embedding matrix has size 512
and is tied to the output projection matrix.

Optimization All models are trained using MLE
loss and optimized using Adagrad (Duchi et al.,
2011) with learning rate 0.01. Mini-batch size is 25.
All model parameters are trained for a total number
of 5M steps, with batch updates asynchronously
distributed across 40 workers. The final model
is selected based on the best CIDEr score on the
development set for the given training condition.

Inference During inference, the decoder predic-
tion of the previous position is fed to the input of
the next position. We use a beam search of beam

size 4 to compute the most likely output sequence.

5.3 Qualitative Results

Before we present the numerical results for our
experiments, we discuss briefly the patterns that
we have observed.

One difference between COCO-trained models
and Conceptual-trained models is their ability to
use the appropriate natural language terms for the
entities in an image. For the left-most image in
Fig. 5, COCO-trained models use “group of men”
to refer to the people in the image; Conceptual-
based models use the more appropriate and infor-
mative term “graduates”. The second image, from
the Flickr test set, makes this even more clear. The
Conceptual-trained T2T8x8 model is perfectly ren-
dering the image content as “the cloister of the
cathedral”. None of the other models come close
to producing such an accurate description.

A second difference is that COCO-trained mod-
els often seem to hallucinate objects. For instance,
they hallucinate “front of building” for the first im-
age, “clock and two doors” for the second, and
“birthday cake” for the third image. In contrast,
Conceptual-trained models do not seem to have
this problem. We hypothesize that the hallucina-
tion issue for COCO-based models comes from
the high correlations present in the COCO data
(e.g., if there is a kid at a table, there is also cake).
This high degree of correlation in the data does not
allow the captioning model to correctly disentan-
gle and learn representations at the right level of
granularity.
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Model Training 1+ 2+ 3+
RNN8x8 COCO 0.390 0.276 0.173
T2T8x8 COCO 0.478 0.362 0.275
RNN8x8 Conceptual 0.571 0.418 0.277
T2T8x8 Conceptual 0.659 0.506 0.355

Table 4: Human eval results on Flickr 1K Test.

A third difference is the resilience to a large
spectrum of image types. COCO only contains nat-
ural images, and therefore a cartoon image like the
fourth one results in massive hallucination effects
for COCO-trained models (“stuffed animal”, “fish”,
“side of car”). In contrast, Conceptual-trained mod-
els handle such images with ease.

5.4 Quantitative Results
In this section, we present quantitative results on
the quality of the outputs produced by several im-
age captioning models. We present both automatic
evaluation results and human evaluation results.

5.4.1 Human Evaluation Results
For human evaluations, we use a pool of profes-
sional raters (tens of raters), with a double-blind
evaluation condition. Raters are asked to assign a
GOOD or BAD label to a given 〈image, caption〉
input, using just common-sense judgment. This
approximates the reaction of a typical user, who
normally would not accept predefined notions of
GOOD vs. BAD. We ask 3 separate raters to rate
each input pair and report the percentage of pairs
that receive k or more (k+) GOOD annotations.

In Table 4, we report the results on the Flickr
1K test set. This evaluation is out-of-domain for
both training conditions, so all models are on rel-
atively equal footing. The results indicate that the
Conceptual-based models are superior. In 50.6%
(for the T2T8x8 model) of cases, a majority of an-
notators (2+) assigned a GOOD label. The results
also indicate that the Transformer-based models are
superior to the RNN-based models by a good mar-
gin, by over 8-points (for 2+) under both COCO
and Conceptual training conditions.

Model Training CIDEr ROUGE-L METEOR
RNN1x1 COCO 1.021 0.694 0.348
RNN8x8 COCO 1.044 0.698 0.354
T2T1x1 COCO 1.032 0.700 0.358
T2T8x8 COCO 1.032 0.700 0.356
RNN1x1 Conceptual 0.403 0.445 0.191
RNN8x8 Conceptual 0.410 0.437 0.189
T2T1x1 Conceptual 0.348 0.403 0.171
T2T8x8 Conceptual 0.345 0.400 0.170

Table 5: Auto metrics on the COCO C40 Test.

Model Training CIDEr ROUGE-L SPICE
RNN1x1 COCO 0.183 0.149 0.062
RNN8x8 COCO 0.191 0.152 0.065
T2T1x1 COCO 0.184 0.148 0.062
T2T8x8 COCO 0.190 0.151 0.064
RNN1x1 Conceptual 1.351 0.326 0.235
RNN8x8 Conceptual 1.401 0.330 0.240
T2T1x1 Conceptual 1.588 0.331 0.254
T2T8x8 Conceptual 1.676 0.336 0.257

Table 6: Auto metrics on the 22.5K Conceptual
Captions Test set.

Model Training CIDEr ROUGE-L SPICE
RNN1x1 COCO 0.340 0.414 0.101
RNN8x8 COCO 0.356 0.413 0.103
T2T1x1 COCO 0.341 0.404 0.101
T2T8x8 COCO 0.359 0.416 0.103
RNN1x1 Conceptual 0.269 0.310 0.076
RNN8x8 Conceptual 0.275 0.309 0.076
T2T1x1 Conceptual 0.226 0.280 0.068
T2T8x8 Conceptual 0.227 0.277 0.066

Table 7: Auto metrics on the Flickr 1K Test.

5.4.2 Automatic Evaluation Results
In this section, we report automatic evaluation re-
sults, using established image captioning metrics.

For the COCO C40 test set (Fig. 5), we report
the numerical values returned by the COCO on-
line evaluation server‡, using the CIDEr (Vedantam
et al., 2015), ROUGE-L (Lin and Och, 2004), and
METEOR (Banerjee and Lavie, 2005) metrics. For
Conceptual Captions (Fig. 6) and Flickr (Fig. 7)
test sets, we report numerical values for the CIDEr,
ROUGE-L, and SPICE (Anderson et al., 2016)§.
For all metrics, higher number means closer dis-
tance between the candidates and the groundtruth
captions.

The automatic metrics are good at detecting in-
vs out-of-domain situations. For COCO-models
tested on COCO, the results in Fig. 5 show CIDEr
scores in the 1.02-1.04 range, for both RNN- and
Transformer-based models; the scores drop in the
0.35-0.41 range (CIDEr) for the Conceptual-based
models tested against COCO groundtruth. For
Conceptual-models tested on the Conceptual Cap-
tions test set, the results in Fig. 6 show scores
as high as 1.468 CIDEr for the T2T8x8 model,
which corroborates the human-eval results for the
Transformer-based models being superior to the
RNN-based models; the scores for the COCO-
based models tested against Conceptual Captions
groundtruth are all below 0.2 CIDEr.

The automatic metrics fail to corroborate the
‡http://mscoco.org/dataset/#captions-eval.
§https://github.com/tylin/coco-caption.
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human evaluation results. According to the auto-
matic metrics, the COCO-trained models are su-
perior to the Conceptual-trained models (CIDEr
scores in the mid-0.3 for the COCO-trained con-
dition, versus mid-0.2 for the Conceptual-trained
condition), and the RNN-based models are supe-
rior to Transformer-based models. Notably, these
are the same metrics which score humans lower
than the methods that won the COCO 2015 chal-
lenge (Vinyals et al., 2015a; Fang et al., 2015),
despite the fact that humans are still much better
at this task. The failure of these metrics to align
with the human evaluation results casts again grave
doubts on their ability to drive progress in this field.
A significant weakness of these metrics is that hal-
lucination effects are under-penalized (a small pre-
cision penalty for tokens with no correspondent
in the reference), compared to human judgments
that tend to dive dramatically in the presence of
hallucinations.

6 Conclusions

We present a new image captioning dataset, Con-
ceptual Captions, which has several key character-
istics: it has around 3.3M examples, an order of
magnitude larger than the COCO image-captioning
dataset; it consists of a wide variety of images,
including natural images, product images, profes-
sional photos, cartoons, drawings, etc.; and, its
captions are based on descriptions taken from orig-
inal Alt-text attributes, automatically transformed
to achieve a balance between cleanliness, informa-
tiveness, and learnability.

We evaluate both the quality of the resulting
image/caption pairs, as well as the performance of
several image-captioning models when trained on
the Conceptual Captions data. The results indicate
that such models achieve better performance, and
avoid some of the pitfalls seen with COCO-trained
models, such as object hallucination. We hope that
the availability of the Conceptual Captions dataset
will foster considerable progress on the automatic
image-captioning task.
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Abstract

We conduct the most comprehensive study
to date into translating words via images.
To facilitate research on the task, we in-
troduce a large-scale multilingual corpus
of images, each labeled with the word
it represents. Past datasets have been
limited to only a few high-resource lan-
guages and unrealistically easy translation
settings. In contrast, we have collected
by far the largest available dataset for
this task, with images for approximately
10,000 words in each of 100 languages.
We run experiments on a dozen high re-
source languages and 20 low resources lan-
guages, demonstrating the effect of word
concreteness and part-of-speech on trans-
lation quality. To improve image-based
translation, we introduce a novel method
of predicting word concreteness from im-
ages, which improves on a previous state-
of-the-art unsupervised technique. This
allows us to predict when image-based
translation may be effective, enabling con-
sistent improvements to a state-of-the-art
text-based word translation system. Our
code and the Massively Multilingual Image
Dataset (MMID) are available at http:
//multilingual-images.org/.

1 Introduction

Learning the translations of words is important
for machine translation and other tasks in natu-
ral language processing. Typically this learning
is done using sentence-aligned bilingual parallel
texts. However, for many languages, there are not

∗These authors contributed equally; listed alphabetically.

Figure 1: Our dataset and approach allow translations to be
discovered by comparing the images associated with foreign
and English words. Shown here are five images for the Indone-
sian word kucing, a word with high predicted concreteness,
along with its top 4 ranked translations using CNN features.

sufficiently large parallel texts to effectively learn
translations. In this paper, we explore the question
of whether it is possible to learn translations with
images. We systematically explore an idea origi-
nally proposed by Bergsma and Van Durme (2011):
translations can be identified via images associated
with words in different languages that have a high
degree of visual similarity. This is illustrated in
Figure 1.

Most previous image datasets compiled for the
task of learning translations were limited to the
translation of nouns in a few high-resource lan-
guages. In this work, we present a new large-scale
dataset that contains images for 100 languages, and
is not restricted by part-of-speech. We collected im-
ages using Google Image Search for up to 10,000
words in each of 100 foreign languages, and their
English translations. For each word, we collected
up to 100 images and the text on images’ corre-
sponding web pages.

We conduct a broad range of experiments to eval-
uate the utility of image features across a number
of factors:
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• We evaluate on 12 high-resource and 20 low-
resource languages.

• We evaluate translation quality stratified by
part-of-speech, finding that nouns and adjec-
tives are translated with much higher accuracy
than adverbs and verbs.

• We present a novel method for predicting
word concreteness from image features that
better correlates with human perception than
existing methods. We show that choosing con-
crete subsets of words to translate results in
higher accuracy.

• We augment a state-of-the-art text-based word
translation system with image feature scores
and find consistent improvements to the text-
only system, ranging from 3.12% absolute
top-1 accuracy improvement at 10% recall to
1.30% absolute improvement at 100% recall.

A further contribution of this paper is our dataset,
which is the largest of its kind and should be a stan-
dard for future work in learning translations from
images. The dataset may facilitate research into
multilingual, multimodal models, and translation
of low-resource languages.

2 Related Work

The task of learning translations without sentence-
aligned bilingual parallel texts is often called bilin-
gual lexicon induction (Rapp, 1999; Fung and Yee,
1998). Most work in bilingual lexicon induction
has focused on text-based methods. Some re-
searchers have used similar spellings across related
languages to find potential translations (Koehn
and Knight, 2002; Haghighi et al., 2008). Oth-
ers have exploited temporal similarity of word
frequencies to induce translation pairs (Schafer
and Yarowsky, 2002; Klementiev and Roth, 2006).
Irvine and Callison-Burch (2017) provide a sys-
tematic study of different text-based features used
for bilingual lexicon induction. Recent work has
focused on building joint distributional word em-
bedding spaces for multiple languages, leveraging a
range of levels of language supervision from bilin-
gual dictionaries to comparable texts (Vulić and
Korhonen, 2016; Wijaya et al., 2017).

The most closely related work to ours is research
into bilingual lexicon induction using image simi-
larity by Bergsma and Van Durme (2011) and Kiela
et al. (2015). Their work differs from ours in that

they focused more narrowly on the translation of
nouns for a limited number of high resource lan-
guages. Bergsma and Van Durme (2011) compiled
datasets for Dutch, English, French, German, Ital-
ian, and Spanish by downloading 20 images for
up to 500 concrete nouns in each of the foreign
languages, and 20,000 English words.

Another dataset was generated by Vulic and
Moens (2013) who collected images for 1,000
words in Spanish, Italian, and Dutch, along with
the English translations for each. Their dataset also
consists of only nouns, but includes abstract nouns.
Our corpus will allow researchers to explore im-
age similarity for bilingual lexicon induction on a
much wider range of languages and parts of speech,
which is especially desirable given the potential
utility of the method for improving translation be-
tween languages with little parallel text.

The ability of images to usefully represent a
word is strongly dependent on how concrete or
abstract the word is. The terms abstractness and
concreteness are used in the psycholinguistics and
cognitive psychology literature. Concrete words
directly reference a sense experience (Paivio et al.,
1968), while abstract words can denote ideas, emo-
tions, feelings, qualities or other abstract or intan-
gible concepts. Concreteness ratings are closely
correlated with imagery ratings, defined as the
ease with which a word arouses a mental image
(Gilhooly and Logie, 1980; Friendly et al., 1982).
Intuitively, concrete words are easier to represent
visually, so a measure of a word’s concreteness
ought to be able to predict the effectiveness of us-
ing images to translate the word.

Kiela et al. (2014) defines an unsupervised
method called image dispersion that approximates
a word’s concreteness by taking the average pair-
wise cosine distance of a set of image representa-
tions of the word. Kiela et al. (2015) show that
image dispersion helps predict the usefulness of
image representations for translation. In this paper,
we introduce novel supervised approaches for pre-
dicting word concreteness from image and textual
features. We make use of a dataset created by Brys-
baert et al. (2014) containing human evaluations of
concreteness for 39,954 English words.

Concurrently with our work, Hartmann and
Søgaard (2017) released an unpublished arXiv draft
challenging the efficacy of using images for transla-
tion. Their work presents several difficulties of us-
ing image features for translation, difficulties which
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our methods address. They find that image features
are only useful in translating simple nouns. While
we did indeed find that nouns perform better than
other parts of speech, we do not find that images are
only effective in translating simple words. Instead,
we show a gradual degradation in performance as
words become more abstract. Their dataset is re-
stricted to six high-resource languages and a small
vocabulary of 557 English words. In contrast, we
present results for over 260,000 English words and
32 foreign languages.

Recent research in the NLP and computer vision
communities has been enabled by large collections
of images associated with words or longer texts.
Object recognition has seen dramatic gains in part
due to the ImageNet database (Deng et al., 2009),
which contains 500-1000 images associated with
80,000 synsets in WordNet. Ferraro et al. (2015)
surveys existing corpora that are used in vision
and language research. Other NLP+Vision tasks
that have been enabled by the availability of large
datasets include caption generation for images, ac-
tion recognition in videos, visual question answer-
ing, and others.

Most existing work on multilingual NLP+Vision
relies on having a corpus of images manually an-
notated with captions in several languages, as in
the Multi30K dataset (Elliott et al., 2016). Sev-
eral works have proposed using image features to
improve sentence level translations or to translate
image captions (Gella et al., 2017; Hitschler and
Riezler, 2016; Miyazaki and Shimizu, 2016). Fu-
naki and Nakayama (2015) show that automatically
scraped data from websites in English and Japanese
can be used to effectively perform zero-shot learn-
ing for the task of cross-lingual document retrieval.
Since collecting multilingual annotations is diffi-
cult at a large-scale or for low-resource languages,
our approach relies only on data scraped automati-
cally from the web.

3 Corpus Construction

We present a new dataset for image-based word
translation that is more expansive than any previous
ones, encompassing all parts-of-speech, the gamut
of abstract to concrete, and both low- and high-
resource languages.

3.1 Dictionaries

We collect images for words in 100 bilingual dic-
tionaries created by Pavlick et al. (2014). They

selected the 10,000 most frequent words on
Wikipedia pages in the foreign language, and then
collected their translations into English via crowd-
sourcing. We will denote these dictionaries as
CROWDTRANS. The superset of English trans-
lations for all foreign words consists of 263,102
translations. The English portion of their data tends
to be much noisier than the foreign portion due to
its crowdsourced nature (e.g. misspellings, or defi-
nition included with translations.)

We computed part-of-speech for entries in each
dictionary. We found that while nouns are the most
common, other parts-of-speech are reasonably rep-
resented (Section 5.1).

3.2 Method

For each English and foreign word, we query
Google Image Search to collect 100 images as-
sociated with the word. A potential criticism of our
use of Google Image Search is that it may be using
a bilingual dictionary to translate queries into En-
glish (or other high resource languages) and return-
ing images associated with the translated queries
(Kilgarriff, 2007). We take steps (Section 3.3) to
filter out images that did not appear on pages writ-
ten in the language that we are gathering images
for. After assembling the collection of images asso-
ciated with words, we construct low-dimensional
vector representations of the images using convolu-
tional neural networks (CNNs). We also save the
text from each web page that an image appeared on.
Further detail on our corpus construction pipeline
can be found in Section 2 of the supplemental ma-
terials.

3.3 Filtering by Web Page Language

We used the following heuristic to filter images: if
text could be extracted from an image’s web page,
and the expected language was in the top-3 most
likely languages output by the CLD21 language de-
tection system then we kept the image; otherwise it
was discarded. This does not filter all images from
webpages with English text; instead it acknowl-
edges the presence of English in the multilingual
web and keeps images from pages with some target-
language presence. An average of approximately
42% of images for each foreign language remained
after the language-filtering step.

1https://github.com/CLD2Owners/cld2
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Language Concreteness Ratings Overall1-2 2-3 3-4 4-5
English .804 .814 .855 .913 .857
French .622 .653 .706 .828 .721

Indonesian .505 .569 .665 .785 .661
Uzbek .568 .530 .594 .683 .601

All .628 .649 .713 .810 .717
# Words 77 292 292 302 963

Table 1: The proportion of images determined to be good
representations of their corresponding word. In columns 2-5,
we bucket the results by the word’s ground-truth concreteness,
while column 6 shows the results over all words. The last row
shows the number of words in each bucket of concreteness,
and the number of words overall for each language.

3.4 Manual Evaluation of Images

By using a dataset scraped from the web, we ex-
pect some fraction of the images for each word
to be incorrectly labeled. To confirm the overall
quality of our dataset, we asked human evaluators
on Amazon Mechanical Turk to label a subset of
the images returned by queries in four languages:
our target language, English; a representative high-
resource language, French; and two low-resource
languages, Indonesian and Uzbek. In total, we col-
lected 36,050 judgments of whether the images re-
turned by Google Image Search were a good match
for the keyword. Details on the experimental setup
can be found in Section 1 of the Supplemental Ma-
terials.

Table 1 shows the fraction of images that were
judged to be good representations of the search
word. It also demonstrates that as the concreteness
of a word increases, the proportion of good images
associated with that word increases as well. We
further discuss the role of concreteness in Section
6.1. Overall, 85% of the English images, 72% of
French, 66% of Indonesian, and 60% of Uzbek
were judged to be good.

4 Finding Translations Using Images

Can images help us learn translations for low-
resource languages? In this section we replicate
prior work in high-resource languages, and then
evaluate on a wide array of low-resource languages.

Although we scraped images and text for 100
languages, we have selected a representative set of
32 for evaluation. Kiela et al. (2015) established
that CNN features are superior to the SIFT plus
color histogram features used by Bergsma and Van
Durme (2011), and so we restrict all analysis to the
former.

4.1 Translation Prediction with AVGMAX

To learn the English translation of each foreign
word, we rank the English words as candidate trans-
lations based on their visual similarity with the for-
eign words. We take the cosine similarity score for
each image if associated the foreign word wf with
each of image ie for the English word we, and then
compute the average maximum similarity as

AVGMAX(wf , we) =
1

|wf |
∑

if∈wf

max
ie∈we

(cosine(if , ie))

Each image is represented by a 4096-dimensional
vector from the fully connected 7th (FC7) layer
of a CNN trained on ImageNet (Krizhevsky et al.,
2012). AvgMax is the best-performing method
described by Bergsma and Van Durme (2011) on
images created with SIFT and color histogram fea-
tures. It was later validated on CNN features by
Kiela et al. (2015).

The number of candidate English words is the
number of entries in the bilingual dictionary after
filtering out dictionary entries where the English
word and foreign word are identical. In order to
compare with Kiela et al. (2015), we evaluate the
models’ rankings using Mean Reciprocal Rank
(MRR), top-1, top-5 and top-20 accuracy. We
prefer the more interpretable top-k accuracy in
our subsequent experiments. We choose to follow
Wijaya et al. (2017) in standardizing to k = 10,
and we report top-1 accuracy only when it is
particularly informative.

4.2 Replication of Prior Work
We evaluate on the five languages–Dutch, French,
German, Italian, and Spanish–which have been the
focus of prior work. Table 2 shows the results re-
ported by Kiela et al. (2015) on the BERGSMA500
dataset, along with results using our image crawl
method (Section 3.2) on BERGSMA500’s vocabu-
lary.

On all five languages, our dataset performs bet-
ter than that of Kiela et al. (2015). We attribute
this to improvements in image search since they
collected images. We additionally note that in the
BERGSMA500 vocabularies, approximately 11%
of the translation pairs are string-identical, like film
↔ film. In all subsequent experiments, we remove
trivial translation pairs like this.

We also evaluate the identical model on our full
data set, which contains 8,500 words, covering all
parts of speech and the full range of concreteness
ratings. The top-1 accuracy of the model is 23% on
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our more realistic and challenging data set, versus
68% on the easier concrete nouns set.

4.3 High- and Low-resource Languages

To determine whether image-based translation is
effective for low resource languages, we sample 12
high-resource languages (HIGHRES), and 20 low-
resource languages (LOWRES). Table 3 reports the
top-10 accuracy across all 32 languages.

For each language, we predict a translation
for each foreign word in the language’s CROWD-
TRANS dictionary. This comes to approximately
7,000 to 10,000 foreign words per language. We
find that high-resource languages’ image features
are more predictive of translation than those of
low-resource languages. Top-10 accuracy is 29%
averaged across high-resource languages, but only
16% for low-resource languages. This may be due
to the quality of image search in each language,
and the number of websites in each language in-
dexed by Google, as suggested by Table 1. The
difficulty of the translation task is dependent on the
size of the English vocabulary used, as distinguish-
ing between 5, 000 English candidates as in Slovak
is not as difficult as distinguishing between 10, 000
words as in Tamil.

4.4 Large Target Vocabulary

How does increasing the number of candidate trans-
lations affect accuracy? Prior work used an English
vocabulary of 500 or 1,000 words, where the cor-
rect English translation is guaranteed to appear.
This is unrealistic for many tasks such as machine
translation, where the target language vocabulary
is likely to be large. To evaluate a more realistic
scenario, we take the union of the English vocab-
ulary of every dictionary in CROWDTRANS, and
run the same translation experiments as before. We
call this large common vocabulary LARGEENG.

Confirming our intuition, experiments with
LARGEENG give significantly lower top-10 accu-
racies across parts of speech, but still provide dis-
criminative power. We find .181 average top-10
accuracy using LARGEENG, whereas on the same
languages, average accuracy on the CROWDTRANS

vocabularies was .260. The full results for these
experiments are reported in Table 4.

5 Evaluation by Part-of-speech

Can images be used to translate words other than
nouns? This section presents our methods for de-

dataset BERGSMA500 BERGSMA500 all
Kiela et al. (2015) (ours) (ours)

# words 500 500 8,500
MRR 0.658 0.704 0.277
Top 1 0.567 0.679 0.229
Top 5 0.692 0.763 0.326
Top 20 0.774 0.811 0.385

Table 2: Our results are consistently better than those reported
by Kiela et al. (2015), averaged over Dutch, French, German,
Italian, and Spanish on a similar set of 500 concrete nouns.
The rightmost column shows the added challenge with our
larger, more realistic dataset.

HIGHRES All VB RB JJ NN #
Spanish .417 .144 .157 .329 .593 9.9k
French .366 .104 .107 .315 .520 10.5k
Dutch .365 .085 .064 .262 .511 10.5k
Italian .323 .086 .085 .233 .487 8.9k
German .307 .071 .098 .164 .463 10.1k
Swedish .283 .048 .048 .146 .328 9.6k
Turkish .263 .035 .143 .233 .346 10.2k
Romanian .255 .029 .080 .150 .301 9.1k
Hungarian .240 .030 .082 .193 .352 10.9k
Bulgarian .236 .024 .106 .116 .372 8.6k
Arabic .223 .036 .084 .149 .344 10.2k
Serbian .218 .023 .111 .090 .315 8.3k
Average .291 .059 .097 .198 .411 9.7k
LOWRES
Thai .367 .139 .143 .264 .440 5.6k
Indonesian .306 .103 .041 .238 .404 10.3k
Vietnamese .303 .079 .058 .106 .271 6.6k
Bosnian .212 .035 .084 .103 .277 7.5k
Slovak .195 .024 .042 .095 .259 6.5k
Ukrainian .194 .024 .131 .070 .273 5.0k
Latvian .194 .028 .058 .114 .266 7.1k
Hindi .163 .024 .068 .057 .231 9.4k
Cebuano .153 .014 .070 .098 .180 7.7k
Azerbaijani .150 .016 .031 .113 .174 6.2k
Welsh .138 .007 .025 .033 .062 7.6k
Albanian .127 .013 .017 .080 .154 6.0k
Bengali .120 .026 .050 .063 .173 12.5k
Tamil .089 .006 .013 .030 .140 9.9k
Uzbek .082 .093 .066 .114 .077 12.4k
Urdu .073 .005 .017 .032 .108 11.1k
Telugu .065 .002 .018 .010 .095 9.6k
Nepali .059 .002 .039 .018 .089 11.6k
Gujarati .039 .004 .016 .012 .056 12.0k
Average .159 .034 .052 .087 .196 8.7k

Table 3: Top-10 accuracy on 12 high-resource languages
and 20 low-resource languages. The parts of speech Noun,
Adjective, Adverb, and Verb are referred to as NN, JJ, RB, VB,
respectively. The “all” column reports accuracy on the entire
dictionary. The “#” column reports the size of the English
vocabulary used for each experiment.
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Language All VB RB JJ NN
Arabic .149 .015 .053 .078 .219
Bengali .066 .009 .042 .025 .084
Dutch .265 .042 .039 .164 .350
French .268 .051 .092 .196 .368
German .220 .035 .040 .080 .321
Indonesian .211 .050 .035 .156 .257
Italian .233 .046 .028 .139 .350
Spanish .320 .068 .076 .207 .449
Turkish .171 .011 .086 .139 .201
Uzbek .057 .121 .075 .104 .045
LARGEENG Avg .181 .041 .055 .118 .244
SMALL Avg .260 .089 .078 .210 .392

Table 4: Top-10 accuracy on the expanded English dictionary
task. For each experiment, 263,102 English words were used
as candidate translations for each foreign word. The SMALL
average is given for reference, averaging the results from
Table 3 across the same 10 languages.

termining part-of-speech for foreign words even in
low-resource languages, and presents our image-
based translation results across part-of-speech.

5.1 Assigning POS Labels

To show the performance of our translation method
for each particular POS, we first assign a POS tag
to each foreign word. Since we evaluate on high-
and low-resource languages, many of which do not
have POS taggers, we POS tag English words, and
transfer the tag to their translations. We scraped the
text on the web pages associated with the images of
each English word, and collected the sentences that
contained each query (English) word. We chose to
tag words in sentential context, rather than simply
collecting parts of speech from a dictionary, be-
cause many words have multiple senses, often with
different parts of speech.

We assign universal POS tags (Petrov et al.,
2012) using spaCy2, giving each word its majority
tag. We gathered part-of-speech tags for 42% of the
English words in our translations. Of the remaining
untagged English entries, 40% were multi-word ex-
pressions, and 18% were not found in the text of
the web pages that we scraped.

When transferring POS tags to foreign words,
we only considered foreign words where every En-
glish translation had the same POS. Across all 32
languages, on average, we found that, after filtering,
65% of foreign words were nouns, 14% were verbs,
14% were adjectives, 3% were adverbs, and 3%
were other (i.e. they were labeled a different POS).

2https://spacy.io

Figure 2: Shown here are five images for the abstract Indone-
sian word konsep, along with its top 4 ranked translations
using CNN features. The actual translation, concept, was
ranked 3,465.

5.2 Accuracy by Part-of-speech

As we see in the results in Table 3, the highest trans-
lation performance is obtained for nouns, which
confirms the observation by Hartmann and Søgaard
(2017). However, we see considerable signal in
translating adjectives as well, with top-10 accura-
cies roughly half that of nouns. This trend extends
to low-resource languages. We also see that trans-
lation quality is relatively poor for adverbs and
verbs. There is higher variation in our performance
on adverbs across languages, because there were
relatively few adverbs (3% of all words.) From
these results, it is clear that one can achieve higher
accuracy by choosing to translate only nouns and
adjectives.

Analysis by part-of-speech only indirectly
addresses the question of when translation with
images is useful. For example, Figure 2 shows that
nouns like concept translate incorrectly because
of a lack of consistent visual representation.
However, verbs like walk may have concrete visual
representation. Thus, one might perform better
overall at translation on concrete words, regardless
of part-of-speech.

6 Evaluation by Concreteness

Can we effectively predict the concreteness of
words in a variety of languages? If so, can these
predictions be used to determine when translation
via images is helpful? In this section, we answer
both of these questions in the affirmative.

6.1 Predicting Word Concreteness

Previous work has used image dispersion as a mea-
sure of word concreteness (Kiela et al., 2014). We
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introduce a novel supervised method for predicting
word concreteness that more strongly correlates
with human judgements of concreteness.

To train our model, we took Brysbaert et al.
(2014)’s dataset, which provides human judgments
for about 40k words, each with a 1-5 abstractness-
to-concreteness score, and scraped 100 images
from English Google Image Search for each word.
We then trained a two-layer perceptron with one
hidden layer of 32 units, to predict word concrete-
ness. The inputs to the network were the element-
wise mean and standard deviation (concatenated
into a 8094-dimensional vector)of the CNN fea-
tures for each of the images corresponding to a
word. To better assess this image-only approach,
we also experimented with using the distributional
word embeddings of Salle et al. (2016) as input. We
used these 300-dimensional vectors either seper-
ately or concatentated with the image-based fea-
tures. Our final network was trained with a cross-
entropy loss, although an L2 loss performed nearly
as well. We randomly selected 39,000 words as
our training set. Results on the remaining held-out
validation set are visualized in Figure 3.

Although the concatenated image and word em-
bedding features performed the best, we do not
expect to have high-quality word embeddings for
words in low-resource languages. Therefore, for
the evaluation in Section 6.2, we used the image-
embeddings-only model to predict concreteness for
every English and foreign word in our dataset.

6.2 Accuracy by Predicted Concreteness

It has already been shown that the images of more
abstract words provide a weaker signal for trans-
lation (Kiela et al., 2015). Using our method for
predicting concreteness, we determine which im-
ages sets are most concrete, and thereby estimate
the likelihood that we will obtain a high quality
translation.

Figure 4 shows the reduction in translation ac-
curacy as increasingly abstract words are included
in the set. The concreteness model can be used to
establish recall thresholds. For the 25% of foreign
words we predict to be most concrete, (25% re-
call,) AVGMAX achieves top-10 accuracy of 47.0%
for high-resource languages and 32.8% for low-
resource languages. At a 50% most-concrete recall
treshold, top-10 translation accuracies are 25.0%
and 37.8% for low- and high-resource languages re-
spectively, compared to 18.6% and 29.3% at 100%

recall.

7 Translation with Images and Text

Translation via image features performs worse
than state-of-the-art distributional similarity-based
methods. For example, Wijaya et al. (2017) demon-
strate top-10 accuracies in range of above 85% on
the VULIC1000 a 1,000-word dataset, whereas
with only image features, Kiela et al. (2015) report
top-10 accuracies below 60%. However, there may
be utility in combining the two methods, as it is
likely that visual and textual distributional repre-
sentations are contributing different information,
and fail in different cases.

We test this intuition by combining image scores
with the current state-of-the-art system of Wijaya
et al. (2017), which uses Bayesian Personalized
Ranking (BPR). In their arXiv draft, Hartmann and
Søgaard (2017) presented a negative result when di-
rectly combining image representations with distri-
butional representations into a single system. Here,
we present a positive result by formalizing the prob-
lem as a reranking task. Our intuition is that we
hope to guide BPR, clearly the stronger system,
with aid from image features and a predicted con-
creteness value, instead of joining them as equals
and potentially washing out the stronger signal.

7.1 Reranking Model
For each foreign word wf and each English word
we, we have multiple scores for the pair pf,e =
(wf , we), used to rankwe against all otherwe′ ∈ E,
where E is the English dictionary used in the ex-
periment. Specifically, we have TXT(pf,e) and IM-
AGE(pf,e) for all pairs. For each foreign word, we
also have the concreteness score, CNC(wf ), pre-
dicted from its image set by the method described
in Section 6.1.

We use a small bilingual dictionary, taking all
pairs pf,e and labeling them {±1}, with 1 denoting
the words are translations. We construct training
data out of the dictionary, treating each labeled pair
as an independent observation. We then train a
2-layer perceptron (MLP), with 1 hidden layer of
4 units, to predict translations from the individual
scores, minimizing the squared loss.3

MLP(pf,e) =

MLP
(

[TXT(pf,e); IMAGE(pf,e); CNC(wf )]
)

= {±1}
3We use DyNet (Neubig et al., 2017) for constructing and

training our network with the Adam optimization method
(Kingma and Ba, 2014).
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Figure 3: Plots visualizing the distribution of concreteness predictions on the validation set for our three trained models and for
image dispersion. Spearman correlation coefficients are shown. For the model trained only on images, the three worst failure
cases are annotated. False positives tend to occur when one concrete meaning of an abstract word dominates the search results
(i.e. many photos of “satisfyingly” show food). False negatives often stem from related proper nouns or an overabundance of
clipart, as is the case for “fishhook.”

Figure 4: The black curve shows mean top-10 accuracy over
the HIGHRES and LOWRES sets sorted by predicted concrete-
ness. The gray curves show the 25th and 75th percentiles.

Once the model is trained, we fix each foreign
word wf , and score all pairs (wf , we′) for all e′ ∈
E, using the learned model MLP(pf,e′). Using
these scores, we sort E for each wf .

7.2 Evaluation

We evaluate our text-based and image-based com-
bination method by translating Bosnian, Dutch,
French, Indonesian, Italian, and Spanish into En-
glish. For each language, we split our bilingual
dictionary (of 8,673 entries, on average) into 2,000
entries for a testing set, 20% for training the text-
based BPR system, 35% for training the reranking
MLP, and the rest for a development set. We filtered
out multi-word phrases, and translations where wf
and we are string identical.

We compare three models: TXT is Wijaya
et al. (2017)’s text-based state-of-the-art model.

TXT+IMG is our MLP-learned combination of
the two features. TXT+IMG+CNC uses our pre-
dicted concreteness of the foreign word as well.
We evaluate all models on varying percents of test-
ing data sorted by predicted concreteness, as in
Section 6.2. As shown in Figure 5, both image-
augmented methods beat TXT across concreteness
thresholds on the top-1 accuracy metric.

Results across the 6 languages are reported in
Table 5. Confirming our intuition, images are use-
ful at high concreteness, improving the SOA text-
based method 3.21% at 10% recall. At 100% recall
our method with images still improves the SOA by
1.3%. For example, the text-only system translates
the Bosnian word košarkaški incorrectly as foot-
ball, whereas the image+text system produces the
correct basketball.

Further, gains are more pronounced for low-
resource languages than for high-resource lan-
guages. Concreteness scores are useful for high-
resource languages, for example Spanish, where
TXT+IMG falls below TXT alone on more ab-
stract words, but TXT+IMG+CNC remains an im-
provement. Finally, we note that the text-only sys-
tem also performs better on concrete words than
abstract words, indicating a general trend of ease
in translating concrete words regardless of method.

8 Summary

We have introduced a large-scale multilingual im-
age resource, and used it to conduct the most com-
prehensive study to date on using images to learn
translations. Our Massively Multilingual Image
Dataset will serve as a standard for future work in
image-based translation due to its size and general-
ity, covering 100 languages, hundreds of thousands
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Figure 5: Reranking top-1 and top-10 accuracies of our image+text combination sytems compared to the text-only Bayesian
Personalized Ranking system. The X-axis shows percent of foreign words evaluated on, sorted by decreasing predicted
concreteness.

% words evaluated
Method 10% 50% 100%

High-Res
TXT .746 .696 .673
TXT+IMG .771 .708 .678
TXT+IMG+Cnc .773 .714 .685

Low-Res
TXT .601 .565 .549
TXT+IMG .646 .590 .562
TXT+IMG+Cnc .643 .589 .563

Table 5: Top-1 accuracy results across high-resource (Dutch,
French, Italian, Spanish) and low-resource (Bosnian, Indone-
sian) languages. Words evaluated on are again sorted by con-
creteness for the sake of analysis. The best result on each %
of test data is bolded.

of words, and a broad range of parts of speech. Us-
ing this corpus, we demonstrated the substantial
utility in supervised prediction of word concrete-
ness when using image features, improving over
the unsupervised state-of-the-art and finding that
image-based translation is much more accurate for
concrete words. Because of the text we collected
with our corpus, we were also able to collect part-
of-speech information and demonstrate that im-
age features are useful in translating adjectives and
nouns. Finally, we demonstrate a promising path
forward, showing that incorporating images can im-
prove a state-of-the-art text-based word translation
system.

9 Dataset and Code

The MMID will be distributed both in raw
form and for a subset of languages in mem-
ory compact featurized versions from http:
//multilingual-images.org along with
code we used in our experiments. Additional de-
tails are given in our Supplemental Materials doc-

ument, which also describes our manual image
annotation setup, and gives numerous illustrative
examples of our system’s predictions.

Acknowledgements

We gratefully acknowledge Amazon for its sup-
port of this research through the Amazon Research
Awards program and through AWS Research Cred-
its.

This material is based in part on research spon-
sored by DARPA under grant number HR0011-15-
C-0115 (the LORELEI program). The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for Governmental purposes. The views
and conclusions contained in this publication are
those of the authors and should not be interpreted
as representing official policies or endorsements of
DARPA and the U.S. Government.

References
Shane Bergsma and Benjamin Van Durme. 2011.

Learning bilingual lexicons using the visual similar-
ity of labeled web images. In Proceedings of the
International Joint Conference on Artificial Intelli-
gence.

Marc Brysbaert, Amy Beth Warriner, and Victor Ku-
perman. 2014. Concreteness ratings for 40 thousand
generally known English word lemmas. Behavior
research methods, 46(3):904–911.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li, and Li Fei-Fei. 2009. ImageNet: A large-scale
hierarchical image database. In Computer Vision
and Pattern Recognition, 2009. IEEE Conference on,
pages 248–255. IEEE.

2574



Desmond Elliott, Stella Frank, Khalil Sima’an, and Lu-
cia Specia. 2016. Multi30k: Multilingual english-
german image descriptions. CoRR, abs/1605.00459.

Francis Ferraro, Nasrin Mostafazadeh, Ting-Hao
Huang, Lucy Vanderwende, Jacob Devlin, Michel
Galley, and Margaret Mitchell. 2015. A survey of
current datasets for vision and language research.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
207–213, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Michael Friendly, Patricia E. Franklin, David Hoff-
man, and David C. Rubin. 1982. The Toronto
word pool: Norms for imagery, concreteness, ortho-
graphic variables, and grammatical usage for 1,080
words. Behavior Research Methods & Instrumenta-
tion, 14(4):375–399.

Ruka Funaki and Hideki Nakayama. 2015. Image-
mediated learning for zero-shot cross-lingual doc-
ument retrieval. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 585–590. Association for Compu-
tational Linguistics.

Pascale Fung and Lo Yuen Yee. 1998. An IR approach
for translating new words from nonparallel, compa-
rable texts. In Proceedings of the 17th international
Conference on Computational Linguistics, volume 1,
pages 414–420. Association for Computational Lin-
guistics.

Spandana Gella, Rico Sennrich, Frank Keller, and
Mirella Lapata. 2017. Image pivoting for learning
multilingual multimodal representations. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2839–
2845, Copenhagen, Denmark. Association for Com-
putational Linguistics.

K. J. Gilhooly and R. H. Logie. 1980. Age-of-
acquisition, imagery, concreteness, familiarity, and
ambiguity measures for 1,944 words. Behavior Re-
search Methods & Instrumentation, 12(4):395–427.

Aria Haghighi, Percy Liang, Taylor Berg-Kirkpatrick,
and Dan Klein. 2008. Learning bilingual lexicons
from monolingual corpora. In ACL, volume 2008,
pages 771–779.

Mareike Hartmann and Anders Søgaard. 2017. Limi-
tations of cross-lingual learning from image search.
CoRR, abs/1709.05914.

Julian Hitschler and Stefan Riezler. 2016. Multi-
modal pivots for image caption translation. CoRR,
abs/1601.03916.

Ann Irvine and Chris Callison-Burch. 2017. A com-
prehensive analysis of bilingual lexicon induction.
Computational Linguistics, 43(2):273–310.

Douwe Kiela, Felix Hill, Anna Korhonen, and Stephen
Clark. 2014. Improving multi-modal representa-
tions using image dispersion: Why less is sometimes
more. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 835–841, Baltimore,
Maryland. Association for Computational Linguis-
tics.
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Abstract

Medical imaging is widely used in clin-
ical practice for diagnosis and treat-
ment. Report-writing can be error-prone
for unexperienced physicians, and time-
consuming and tedious for experienced
physicians. To address these issues, we
study the automatic generation of medical
imaging reports. This task presents sev-
eral challenges. First, a complete report
contains multiple heterogeneous forms of
information, including findings and tags.
Second, abnormal regions in medical im-
ages are difficult to identify. Third, the re-
ports are typically long, containing mul-
tiple sentences. To cope with these chal-
lenges, we (1) build a multi-task learning
framework which jointly performs the pre-
diction of tags and the generation of para-
graphs, (2) propose a co-attention mecha-
nism to localize regions containing abnor-
malities and generate narrations for them,
(3) develop a hierarchical LSTM model to
generate long paragraphs. We demonstrate
the effectiveness of the proposed methods
on two publicly available datasets.

1 Introduction

Medical images, such as radiology and pathol-
ogy images, are widely used in hospitals for the
diagnosis and treatment of many diseases, such
as pneumonia and pneumothorax. The reading
and interpretation of medical images are usually
conducted by specialized medical professionals.
For example, radiology images are read by ra-
diologists. They write textual reports (Figure 1)
to narrate the findings regarding each area of the
body examined in the imaging study, specifically

Figure 1: An exemplar chest x-ray report. In the
impression section, the radiologist provides a di-
agnosis. The findings section lists the radiology
observations regarding each area of the body ex-
amined in the imaging study. The tags section lists
the keywords which represent the critical informa-
tion in the findings. These keywords are identified
using the Medical Text Indexer (MTI).

whether each area was found to be normal, abnor-
mal or potentially abnormal.

For less-experienced radiologists and patholo-
gists, especially those working in the rural area
where the quality of healthcare is relatively low,
writing medical-imaging reports is demanding.
For instance, to correctly read a chest x-ray im-
age, the following skills are needed (Delrue et al.,
2011): (1) thorough knowledge of the normal
anatomy of the thorax, and the basic physiology
of chest diseases; (2) skills of analyzing the radio-
graph through a fixed pattern; (3) ability of eval-
uating the evolution over time; (4) knowledge of
clinical presentation and history; (5) knowledge of
the correlation with other diagnostic results (labo-
ratory results, electrocardiogram, and respiratory
function tests).

For experienced radiologists and pathologists,
writing imaging reports is tedious and time-
consuming. In nations with large population such
as China, a radiologist may need to read hundreds
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of radiology images per day. Typing the findings
of each image into computer takes about 5-10 min-
utes, which occupies most of their working time.
In sum, for both unexperienced and experienced
medical professionals, writing imaging reports is
unpleasant.

This motivates us to investigate whether it is
possible to automatically generate medical image
reports. Several challenges need to be addressed.
First, a complete diagnostic report is comprised
of multiple heterogeneous forms of information.
As shown in Figure 1, the report for a chest x-
ray contains impression which is a sentence, find-
ings which are a paragraph, and tags which are a
list of keywords. Generating this heterogeneous
information in a unified framework is technically
demanding. We address this problem by building
a multi-task framework, which treats the predic-
tion of tags as a multi-label classification task, and
treats the generation of long descriptions as a text
generation task.

Second, how to localize image-regions and at-
tach the right description to them are challeng-
ing. We solve these problems by introducing a
co-attention mechanism, which simultaneously at-
tends to images and predicted tags and explores
the synergistic effects of visual and semantic in-
formation.

Third, the descriptions in imaging reports are
usually long, containing multiple sentences. Gen-
erating such long text is highly nontrivial. Rather
than adopting a single-layer LSTM (Hochreiter
and Schmidhuber, 1997), which is less capable
of modeling long word sequences, we leverage
the compositional nature of the report and adopt
a hierarchical LSTM to produce long texts. Com-
bined with the co-attention mechanism, the hierar-
chical LSTM first generates high-level topics, and
then produces fine-grained descriptions according
to the topics.

Overall, the main contributions of our work are:

• We propose a multi-task learning framework
which can simultaneously predict the tags
and generate the text descriptions.

• We introduce a co-attention mechanism for
localizing sub-regions in the image and gen-
erating the corresponding descriptions.

• We build a hierarchical LSTM to generate
long paragraphs.

• We perform extensive experiments to show
the effectiveness of the proposed methods.

The rest of the paper is organized as follows.
Section 2 reviews related works. Section 3 intro-
duces the method. Section 4 present the experi-
mental results and Section 5 concludes the paper.

2 Related Works

Textual labeling of medical images There have
been several works aiming at attaching “texts” to
medical images. In their settings, the target “texts”
are either fully-structured or semi-structured (e.g.
tags, templates), rather than natural texts. Kisilev
et al. (2015) build a pipeline to predict the at-
tributes of medical images. Shin et al. (2016)
adopt a CNN-RNN based framework to predict
tags (e.g. locations, severities) of chest x-ray
images. The work closest to ours is recently
contributed by (Zhang et al., 2017), which aims
at generating semi-structured pathology reports,
whose contents are restricted to 5 predefined top-
ics.

However, in the real-world, different physicians
usually have different writing habits and different
x-ray images will represent different abnormali-
ties. Therefore, collecting semi-structured reports
is less practical and thus it is important to build
models to learn from natural reports. To the best
of our knowledge, our work represents the first
one that generates truly natural reports written by
physicians, which are usually long and cover di-
verse topics.

Image captioning with deep learning Image
captioning aims at automatically generating text
descriptions for given images. Most recent im-
age captioning models are based on a CNN-RNN
framework (Vinyals et al., 2015; Fang et al., 2015;
Karpathy and Fei-Fei, 2015; Xu et al., 2015; You
et al., 2016; Krause et al., 2017).

Recently, attention mechanisms have been
shown to be useful for image captioning (Xu et al.,
2015; You et al., 2016). Xu et al. (2015) introduce
a spatial-visual attention mechanism over image
features extracted from intermediate layers of the
CNN. You et al. (2016) propose a semantic atten-
tion mechanism over tags of given images. To bet-
ter leverage both the visual features and semantic
tags, we propose a co-attention mechanism for re-
port generation.

Instead of only generating one-sentence caption
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Figure 2: Illustration of the proposed model. MLC denotes a multi-label classification network. Seman-
tic features are the word embeddings of the predicted tags. The boldfaced tags “calcified granuloma” and
“granuloma” are attended by the co-attention network.

for images, Krause et al. (2017) and Liang et al.
(2017) generate paragraph captions using a hier-
archical LSTM. Our method also adopts a hierar-
chical LSTM for paragraph generation, but unlike
Krause et al. (2017), we use a co-attention network
to generate topics.

3 Methods

3.1 Overview

A complete diagnostic report for a medical image
is comprised of both text descriptions (long para-
graphs) and lists of tags, as shown in Figure 1. We
propose a multi-task hierarchical model with co-
attention for automatically predicting keywords
and generating long paragraphs. Given an image
which is divided into regions, we use a CNN to
learn visual features for these patches. Then these
visual features are fed into a multi-label classifi-
cation (MLC) network to predict the relevant tags.
In the tag vocabulary, each tag is represented by a
word-embedding vector. Given the predicted tags
for a specific image, their word-embedding vec-
tors serve as the semantic features of this image.
Then the visual features and semantic features are
fed into a co-attention model to generate a context
vector that simultaneously captures the visual and
semantic information of this image. As of now, the
encoding process is completed.

Next, starting from the context vector, the de-
coding process generates the text descriptions.
The description of a medical image usually con-
tains multiple sentences, and each sentence fo-
cuses on one specific topic. Our model leverages
this compositional structure to generate reports in
a hierarchical way: it first generates a sequence
of high-level topic vectors representing sentences,
then generates a sentence from each topic vector.
Specifically, the context vector is inputted into a

sentence LSTM, which unrolls for a few steps and
produces a topic vector at each step. A topic vector
represents the semantics of a sentence to be gen-
erated. Given a topic vector, the word LSTM takes
it as input and generates a sequence of words to
form a sentence. The termination of the unrolling
process is controlled by the sentence LSTM.

3.2 Tag Prediction

The first task of our model is predicting the tags
of the given image. We treat the tag prediction
task as a multi-label classification task. Specifi-
cally, given an image I , we first extract its features
{vn}Nn=1 ∈ RD from an intermediate layer of a
CNN, and then feed {vn}Nn=1 into a multi-label
classification (MLC) network to generate a distri-
bution over all of the L tags:

pl,pred(li = 1|{vn}Nn=1) ∝ exp(MLCi({vn}Nn=1)) (1)

where l ∈ RL is a tag vector, li = 1/0 denote the
presence and absence of the i-th tag respectively,
and MLCi means the i-th output of the MLC net-
work.

For simplicity, we extract visual features from
the last convolutional layer of the VGG-19 model
(Simonyan and Zisserman, 2014) and use the last
two fully connected layers of VGG-19 for MLC.

Finally, the embeddings of the M most likely
tags {am}Mm=1 ∈ RE are used as semantic features
for topic generation.

3.3 Co-Attention

Previous works have shown that visual attention
alone can perform fairly well for localizing ob-
jects (Ba et al., 2015) and aiding caption gener-
ation (Xu et al., 2015). However, visual attention
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does not provide sufficient high level semantic in-
formation. For example, only looking at the right
lower region of the chest x-ray image (Figure 1)
without accounting for other areas, we might not
be able to recognize what we are looking at, not
to even mention detecting the abnormalities. In
contrast, the tags can always provide the needed
high level information. To this end, we propose a
co-attention mechanism which can simultaneously
attend to visual and semantic modalities.

In the sentence LSTM at time step s, the joint
context vector ctx(s) ∈ RC is generated by a
co-attention network fcoatt({vn}Nn=1, {am}Mm=1,
h
(s−1)
sent ), where h

(s−1)
sent ∈ RH is the sentence

LSTM hidden state at time step s − 1. The co-
attention network fcoatt uses a single layer feed-
forward network to compute the soft visual atten-
tions and soft semantic attentions over input image
features and tags:

αv,n ∝ exp(Wvatt tanh(Wvvn +Wv,hh
(s−1)
sent )) (2)

αa,m ∝ exp(Waatt tanh(Waam +Wa,hh
(s−1)
sent )) (3)

where Wv, Wv,h, and Wvatt are parameter ma-
trices of the visual attention network. Wa, Wa,h,
and Waatt are parameter matrices of the semantic
attention network.

The visual and semantic context vectors are
computed as:

v
(s)
att =

N∑

n=1

αv,nvn, a
(s)
att =

M∑

m=1

αa,mam.

There are many ways to combine the visual and
semantic context vectors such as concatenation
and element-wise operations. In this paper, we
first concatenate these two vectors as [v

(s)
att;a

(s)
att],

and then use a fully connected layer Wfc to ob-
tain a joint context vector:

ctx(s) = Wfc[v
(s)
att;a

(s)
att]. (4)

3.4 Sentence LSTM
The sentence LSTM is a single-layer LSTM that
takes the joint context vector ctx ∈ RC as its
input, and generates topic vector t ∈ RK for
word LSTM through topic generator and deter-
mines whether to continue or stop generating cap-
tions by a stop control component.

Topic generator We use a deep output layer
(Pascanu et al., 2014) to strengthen the context in-
formation in topic vector t(s), by combining the
hidden state h

(s)
sent and the joint context vector

ctx(s) of the current step:

t(s) = tanh(Wt,hsenth
(s)
sent +Wt,ctxctx

(s)) (5)

where Wt,hsent and Wt,ctx are weight parame-
ters.

Stop control We also apply a deep output layer
to control the continuation of the sentence LSTM.
The layer takes the previous and current hidden
state h

(s−1)
sent , h(s)

sent as input and produces a distri-
bution over {STOP=1, CONTINUE=0}:

p(STOP |h(s−1)
sent ,h

(s)
sent) ∝

exp{Wstop tanh(Wstop,s−1h
(s−1)
sent +Wstop,sh

(s)
sent)}

(6)

where Wstop, Wstop,s−1 and Wstop,s are parame-
ter matrices. If p(STOP |h(s−1)

sent ,h
(s)
sent) is greater

than a predefined threshold (e.g. 0.5), then the sen-
tence LSTM will stop producing new topic vec-
tors and the word LSTM will also stop producing
words.

3.5 Word LSTM
The words of each sentence are generated by a
word LSTM. Similar to (Krause et al., 2017), the
topic vector t produced by the sentence LSTM and
the special START token are used as the first and
second input of the word LSTM, and the subse-
quent inputs are the word sequence.

The hidden state hword ∈ RH of the word
LSTM is directly used to predict the distribution
over words:

p(word|hword) ∝ exp(Wouthword) (7)

where Wout is the parameter matrix. After each
word-LSTM has generated its word sequences, the
final report is simply the concatenation of all the
generated sequences.

3.6 Parameter Learning
Each training example is a tuple (I , l, w) where I
is an image, l denotes the ground-truth tag vector,
and w is the diagnostic paragraph, which is com-
prised of S sentences and each sentence consists
of Ts words.
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Given a training example (I , l, w), our model
first performs multi-label classification on I and
produces a distribution pl,pred over all tags. Note
that l is a binary vector which encodes the pres-
ence and absence of tags. We can obtain the
ground-truth tag distribution by normalizing l:
pl = l/||l||1. The training loss of this step is a
cross-entropy loss `tag between pl and pl,pred.

Next, the sentence LSTM is unrolled for S steps
to produce topic vectors and also distributions over
{STOP, CONTINUE}: psstop. Finally, the S topic
vectors are fed into the word LSTM to generate
words ws,t. The training loss of caption gen-
eration is the combination of two cross-entropy
losses: `sent over stop distributions psstop and `word
over word distributions ps,t. Combining the pieces
together, we obtain the overall training loss:

`(I, l,w) = λtag`tag

+ λsent

S∑

s=1

`sent(p
s
stop, I{s = S})

+ λword

S∑

s=1

Ts∑

t=1

`word(ps,t, ws,t)

(8)

In addition to the above training loss, there is
also a regularization term for visual and seman-
tic attentions. Similar to (Xu et al., 2015), let
α ∈ RN×S and β ∈ RM×S be the matrices of vi-
sual and semantic attentions respectively, then the
regularization loss over α and β is:

`reg = λreg[
N∑

n

(1−
S∑

s

αn,s)
2+

M∑

m

(1−
S∑

s

βm,s)
2] (9)

Such regularization encourages the model to pay
equal attention over different image regions and
different tags.

4 Experiments

In this section, we evaluate the proposed model
with extensive quantitative and qualitative experi-
ments.

4.1 Datasets
We used two publicly available medical image
datasets to evaluate our proposed model.

IU X-Ray The Indiana University Chest X-
Ray Collection (IU X-Ray) (Demner-Fushman
et al., 2015) is a set of chest x-ray images paired
with their corresponding diagnostic reports. The

dataset contains 7,470 pairs of images and reports.
Each report consists of the following sections: im-
pression, findings, tags1, comparison, and indica-
tion. In this paper, we treat the contents in impres-
sion and findings as the target captions2 to be gen-
erated and the Medical Text Indexer (MTI) anno-
tated tags as the target tags to be predicted (Figure
1 provides an example).

We preprocessed the data by converting all to-
kens to lowercases, removing all of non-alpha to-
kens, which resulting in 572 unique tags and 1915
unique words. On average, each image is asso-
ciated with 2.2 tags, 5.7 sentences, and each sen-
tence contains 6.5 words. Besides, we find that
top 1,000 words cover 99.0% word occurrences in
the dataset, therefore we only included top 1,000
words in the dictionary. Finally, we randomly se-
lected 500 images for validation and 500 images
for testing.

PEIR Gross The Pathology Education Informa-
tional Resource (PEIR) digital library3 is a pub-
lic medical image library for medical education.
We collected the images together with their de-
scriptions in the Gross sub-collection, resulting in
the PEIR Gross dataset that contains 7,442 image-
caption pairs from 21 different sub-categories.
Different from the IU X-Ray dataset, each caption
in PEIR Gross contains only one sentence. We
used this dataset to evaluate our model’s ability of
generating single-sentence report.

For PEIR Gross, we applied the same prepro-
cessing as IU X-Ray, which yields 4,452 unique
words. On average, each image contains 12.0
words. Besides, for each caption, we selected 5
words with the highest tf-idf scores as tags.

4.2 Implementation Details

We used the full VGG-19 model (Simonyan and
Zisserman, 2014) for tag prediction. As for
the training loss of the multi-label classification
(MLC) task, since the number of tags for semantic
attention is fixed as 10, we treat MLC as a multi-
label retrieval task and adopt a softmax cross-
entropy loss (a multi-label ranking loss), similar
to (Gong et al., 2013; Guillaumin et al., 2009).

1There are two types of tags: manually generated (MeSH)
and Medical Text Indexer (MTI) generated.

2The impression and findings sections are concatenated
together as a long paragraph, since impression can be viewed
as a conclusion or topic sentence of the report.

3PEIR is c©University of Alabama at Birmingham, De-
partment of Pathology. (http://peir.path.uab.edu/library/)
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Dataset Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDER

IU X-Ray

CNN-RNN (Vinyals et al., 2015) 0.316 0.211 0.140 0.095 0.159 0.267 0.111
LRCN (Donahue et al., 2015) 0.369 0.229 0.149 0.099 0.155 0.278 0.190
Soft ATT (Xu et al., 2015) 0.399 0.251 0.168 0.118 0.167 0.323 0.302
ATT-RK (You et al., 2016) 0.369 0.226 0.151 0.108 0.171 0.323 0.155
Ours-no-Attention 0.505 0.383 0.290 0.224 0.200 0.420 0.259
Ours-Semantic-only 0.504 0.371 0.291 0.230 0.207 0.418 0.286
Ours-Visual-only 0.507 0.373 0.297 0.238 0.211 0.426 0.300
Ours-CoAttention 0.517 0.386 0.306 0.247 0.217 0.447 0.327

PEIR Gross

CNN-RNN (Vinyals et al., 2015) 0.247 0.178 0.134 0.092 0.129 0.247 0.205
LRCN (Donahue et al., 2015) 0.261 0.184 0.136 0.088 0.135 0.254 0.203
Soft ATT (Xu et al., 2015) 0.283 0.212 0.163 0.113 0.147 0.271 0.276
ATT-RK (You et al., 2016) 0.274 0.201 0.154 0.104 0.141 0.264 0.279
Ours-No-Attention 0.248 0.180 0.133 0.093 0.131 0.242 0.206
Ours-Semantic-only 0.263 0.191 0.145 0.098 0.138 0.261 0.274
Ours-Visual-only 0.284 0.209 0.156 0.105 0.149 0.274 0.280
Ours-CoAttention 0.300 0.218 0.165 0.113 0.149 0.279 0.329

Table 1: Main results for paragraph generation on the IU X-Ray dataset (upper part), and single sentence
generation on the PEIR Gross dataset (lower part). BLUE-n denotes the BLEU score that uses up to
n-grams.

In paragraph generation, we set the dimensions
of all hidden states and word embeddings as 512.
For words and tags, different embedding matri-
ces were used since a tag might contain multi-
ple words. We utilized the embeddings of the 10
most likely tags as the semantic feature vectors
{am}M=10

m=1 . We extracted the visual features from
the last convolutional layer of the VGG-19 net-
work, which yields a 14× 14× 512 feature map.

We used the Adam (Kingma and Ba, 2014)
optimizer for parameter learning. The learning
rates for the CNN (VGG-19) and the hierarchi-
cal LSTM were 1e-5 and 5e-4 respectively. The
weights (λtag, λsent, λword and λreg) of different
losses were set to 1.0. The threshold for stop con-
trol was 0.5. Early stopping was used to prevent
over-fitting.

4.3 Baselines

We compared our method with several state-
of-the-art image captioning models: CNN-RNN
(Vinyals et al., 2015), LRCN (Donahue et al.,
2015), Soft ATT (Xu et al., 2015), and ATT-RK
(You et al., 2016). We re-implemented all of these
models and adopt VGG-19 (Simonyan and Zis-
serman, 2014) as the CNN encoder. Consider-
ing these models are built for single sentence cap-
tions and to better show the effectiveness of the
hierarchical LSTM and the attention mechanism
for paragraph generation, we also implemented a
hierarchical model without any attention: Ours-
no-Attention. The input of Ours-no-Attention is
the overall image feature of VGG-19, which has
a dimension of 4096. Ours-no-Attention can be
viewed as a CNN-RNN (Vinyals et al., 2015)
equipped with a hierarchical LSTM decoder. To

further show the effectiveness of the proposed co-
attention mechanism, we also implemented two
ablated versions of our model: Ours-Semantic-
only and Ours-Visual-only, which takes solely the
semantic attention or visual attention context vec-
tor to produce topic vectors.

4.4 Quantitative Results

We report the paragraph generation (upper part of
Table 1) and one sentence generation (lower part
of Table 1) results using the standard image cap-
tioning evaluation tool 4 which provides evalua-
tion on the following metrics: BLEU (Papineni
et al., 2002), METEOR (Denkowski and Lavie,
2014), ROUGE (Lin, 2004), and CIDER (Vedan-
tam et al., 2015).

For paragraph generation, as shown in the upper
part of Table 1, it is clear that models with a single
LSTM decoder perform much worse than those
with a hierarchical LSTM decoder. Note that the
only difference between Ours-no-Attention and
CNN-RNN (Vinyals et al., 2015) is that Ours-
no-Attention adopts a hierarchical LSTM decoder
while CNN-RNN (Vinyals et al., 2015) adopts
a single-layer LSTM. The comparison between
these two models directly demonstrates the ef-
fectiveness of the hierarchical LSTM. This re-
sult is not surprising since it is well-known that a
single-layer LSTM cannot effectively model long
sequences (Liu et al., 2015; Martin and Cundy,
2018). Additionally, employing semantic atten-
tion alone (Ours-Semantic-only) or visual atten-
tion alone (Ours-Visual-only) to generate topic
vectors does not seem to help caption generation
a lot. The potential reason might be that visual at-

4https://github.com/tylin/coco-caption
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Figure 3: Illustration of paragraph generated by Ours-CoAttention, Ours-no-Attention, and Soft Atten-
tion models. The underlined sentences are the descriptions of detected abnormalities. The second image
is a lateral x-ray image. Top two images are positive results, the third one is a partial failure case and the
bottom one is failure case. These images are from test dataset.

tention can only capture the visual information of
sub-regions of the image and is unable to correctly
capture the semantics of the entire image. Se-
mantic attention is inadequate of localizing small
abnormal image-regions. Finally, our full model
(Ours-CoAttention) achieves the best results on all
of the evaluation metrics, which demonstrates the
effectiveness of the proposed co-attention mecha-
nism.

For the single-sentence generation results
(shown in the lower part of Table 1), the ab-
lated versions of our model (Ours-Semantic-only
and Ours-Visual-only) achieve competitive scores
compared with the state-of-the-art methods. Our
full model (Ours-CoAttention) outperforms all of
the baseline, which indicates the effectiveness of
the proposed co-attention mechanism.

4.5 Qualitative Results

4.5.1 Paragraph Generation
An illustration of paragraph generation by three
models (Ours-CoAttention, Ours-no-Attention
and Soft Attention models) is shown in Figure 3.

We can find that different sentences have different
topics. The first sentence is usually a high level de-
scription of the image, while each of the following
sentences is associated with one area of the image
(e.g. “lung”, “heart”). Soft Attention and Ours-
no-Attention models detect only a few abnormal-
ities of the images and the detected abnormali-
ties are incorrect. In contrast, Ours-CoAttention
model is able to correctly describe many true ab-
normalities (as shown in top three images). This
comparison demonstrates that co-attention is bet-
ter at capturing abnormalities.

For the third image, Ours-CoAttention model
successfully detects the area (“right lower lobe”)
which is abnormal (“eventration”), however, it
fails to precisely describe this abnormality. In ad-
dition, the model also finds abnormalities about
“interstitial opacities” and “atheroscalerotic calci-
fication”, which are not considered as true abnor-
mality by human experts. The potential reason for
this mis-description might be that this x-ray image
is darker (compared with the above images), and
our model might be very sensitive to this change.
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Figure 4: Visualization of co-attention for three examples. Each example is comprised of four things: (1)
image and visual attentions; (2) ground truth tags and semantic attention on predicted tags; (3) generated
descriptions; (4) ground truth descriptions. For the semantic attention, three tags with highest attention
scores are highlighted. The underlined tags are those appearing in the ground truth.

The image at the bottom is a failure case of
Ours-CoAttention. However, even though the
model makes the wrong judgment about the ma-
jor abnormalities in the image, it does find some
unusual regions: “lateral lucency” and “left lower
lobe”.

To further understand models’ ability of detect-
ing abnormalities, we present the portion of sen-
tences which describe the normalities and abnor-
malities in Table 2. We consider sentences which
contain “no”, “normal”, “clear”, “stable” as sen-
tences describing normalities. It is clear that Ours-
CoAttention best approximates the ground truth
distribution over normality and abnormality.

Method Normality Abnormality Total
Soft Attention 0.510 0.490 1.0

Ours-no-Attention 0.753 0.247 1.0
Ours-CoAttention 0.471 0.529 1.0

Ground Truth 0.385 0.615 1.0

Table 2: Portion of sentences which describe the
normalities and abnormalities in the image.

4.5.2 Co-Attention Learning

Figure 4 presents visualizations of co-attention.
The first property shown by Figure 4 is that the
sentence LSTM can generate different topics at
different time steps since the model focuses on
different image regions and tags for different sen-
tences. The next finding is that visual attention
can guide our model to concentrate on relevant re-
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gions of the image. For example, the third sen-
tence of the first example is about “cardio”, and
the visual attention concentrates on regions near
the heart. Similar behavior can also be found for
semantic attention: for the last sentence in the first
example, our model correctly concentrates on “de-
generative change” which is the topic of the sen-
tence. Finally, the first sentence of the last exam-
ple presents a mis-description caused by incorrect
semantic attention over tags. Such incorrect atten-
tion can be reduced by building a better tag pre-
diction module.

5 Conclusion

In this paper, we study how to automatically gen-
erate textual reports for medical images, with the
goal to help medical professionals produce reports
more accurately and efficiently. Our proposed
methods address three major challenges: (1) how
to generate multiple heterogeneous forms of in-
formation within a unified framework, (2) how to
localize abnormal regions and produce accurate
descriptions for them, (3) how to generate long
texts that contain multiple sentences or even para-
graphs. To cope with these challenges, we propose
a multi-task learning framework which jointly pre-
dicts tags and generates descriptions. We intro-
duce a co-attention mechanism that can simultane-
ously explore visual and semantic information to
accurately localize and describe abnormal regions.
We develop a hierarchical LSTM network that can
more effectively capture long-range semantics and
produce high quality long texts. On two medical
datasets containing radiology and pathology im-
ages, we demonstrate the effectiveness of the pro-
posed methods through quantitative and qualita-
tive studies.
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Abstract
Visual language grounding is widely stud-
ied in modern neural image caption-
ing systems, which typically adopts an
encoder-decoder framework consisting of
two principal components: a convolu-
tional neural network (CNN) for image
feature extraction and a recurrent neural
network (RNN) for language caption gen-
eration. To study the robustness of lan-
guage grounding to adversarial perturba-
tions in machine vision and perception,
we propose Show-and-Fool, a novel al-
gorithm for crafting adversarial examples
in neural image captioning. The pro-
posed algorithm provides two evaluation
approaches, which check whether neural
image captioning systems can be mislead
to output some randomly chosen captions
or keywords. Our extensive experiments
show that our algorithm can successfully
craft visually-similar adversarial examples
with randomly targeted captions or key-
words, and the adversarial examples can
be made highly transferable to other image
captioning systems. Consequently, our ap-
proach leads to new robustness implica-
tions of neural image captioning and novel
insights in visual language grounding.

1 Introduction

In recent years, language understanding grounded
in machine vision and perception has made re-
markable progress in natural language processing
(NLP) and artificial intelligence (AI), such as im-
age captioning and visual question answering. Im-
age captioning is a multimodal learning task and
has been used to study the interaction between lan-
guage and vision models (Shekhar et al., 2017). It

takes an image as an input and generates a lan-
guage caption that best describes its visual con-
tents, and has many important applications such
as developing image search engines with complex
natural language queries, building AI agents that
can see and talk, and promoting equal web ac-
cess for people who are blind or visually impaired.
Modern image captioning systems typically adopt
an encoder-decoder framework composed of two
principal modules: a convolutional neural network
(CNN) as an encoder for image feature extraction
and a recurrent neural network (RNN) as a decoder
for caption generation. This CNN+RNN archi-
tecture includes popular image captioning mod-
els such as Show-and-Tell (Vinyals et al., 2015),
Show-Attend-and-Tell (Xu et al., 2015) and Neu-
ralTalk (Karpathy and Li, 2015).

Recent studies have highlighted the vulnerabil-
ity of CNN-based image classifiers to adversarial
examples: adversarial perturbations to benign im-
ages can be easily crafted to mislead a well-trained
classifier, leading to visually indistinguishable ad-
versarial examples to human (Szegedy et al., 2014;
Goodfellow et al., 2015). In this study, we in-
vestigate a more challenging problem in visual
language grounding domain that evaluates the ro-
bustness of multimodal RNN in the form of a
CNN+RNN architecture, and use neural image
captioning as a case study. Note that crafting ad-
versarial examples in image captioning tasks is
strictly harder than in well-studied image classifi-
cation tasks, due to the following reasons: (i) class
attack v.s. caption attack: unlike classification
tasks where the class labels are well defined, the
output of image captioning is a set of top-ranked
captions. Simply treating different captions as dis-
tinct classes will result in an enormous number
of classes that can even precede the number of
training images. In addition, semantically similar
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Figure 1: Adversarial examples crafted by Show-
and-Fool using the targeted caption method. The
target captioning model is Show-and-Tell (Vinyals
et al., 2015), the original images are selected from
the MSCOCO validation set, and the targeted cap-
tions are randomly selected from the top-1 inferred
caption of other validation images.

captions can be expressed in different ways and
hence should not be viewed as different classes;
and (ii) CNN v.s. CNN+RNN: attacking RNN
models is significantly less well-studied than at-
tacking CNN models. The CNN+RNN architec-
ture is unique and beyond the scope of adversarial
examples in CNN-based image classifiers.

In this paper, we tackle the aforementioned
challenges by proposing a novel algorithm called
Show-and-Fool. We formulate the process of
crafting adversarial examples in neural image cap-
tioning systems as optimization problems with
novel objective functions designed to adopt the
CNN+RNN architecture. Specifically, our objec-
tive function is a linear combination of the dis-
tortion between benign and adversarial examples
as well as some carefully designed loss functions.
The proposed Show-and-Fool algorithm provides
two approaches to craft adversarial examples in
neural image captioning under different scenarios:

1. Targeted caption method: Given a targeted
caption, craft adversarial perturbations to any
image such that its generated caption matches
the targeted caption.

2. Targeted keyword method: Given a set of
keywords, craft adversarial perturbations to
any image such that its generated caption
contains the specified keywords. The cap-
tioning model has the freedom to make sen-
tences with target keywords in any order.

As an illustration, Figure 1 shows an adversarial
example crafted by Show-and-Fool using the tar-
geted caption method. The adversarial perturba-
tions are visually imperceptible while can success-
fully mislead Show-and-Tell to generate the tar-
geted captions. Interestingly and perhaps surpris-
ingly, our results pinpoint the Achilles heel of the
language and vision models used in the tested im-
age captioning systems. Moreover, the adversar-
ial examples in neural image captioning highlight
the inconsistency in visual language grounding be-
tween humans and machines, suggesting a possi-
ble weakness of current machine vision and per-
ception machinery. Below we highlight our major
contributions:

• We propose Show-and-Fool, a novel optimiza-
tion based approach to crafting adversarial ex-
amples in image captioning. We provide two
types of adversarial examples, targeted caption
and targeted keyword, to analyze the robustness
of neural image captioners. To the best of our
knowledge, this is the very first work on craft-
ing adversarial examples for image captioning.
• We propose powerful and generic loss functions

that can craft adversarial examples and evaluate
the robustness of the encoder-decoder pipelines
in the form of a CNN+RNN architecture. In par-
ticular, our loss designed for targeted keyword
attack only requires the adversarial caption to
contain a few specified keywords; and we al-
low the neural network to make meaningful sen-
tences with these keywords on its own.
• We conduct extensive experiments on the

MSCOCO dataset. Experimental results show
that our targeted caption method attains a 95.8%
attack success rate when crafting adversarial ex-
amples with randomly assigned captions. In ad-
dition, our targeted keyword attack yields an
even higher success rate. We also show that
attacking CNN+RNN models is inherently dif-
ferent and more challenging than only attacking
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CNN models.
• We also show that Show-and-Fool can produce

highly transferable adversarial examples: an
adversarial image generated for fooling Show-
and-Tell can also fool other image captioning
models, leading to new robustness implications
of neural image captioning systems.

2 Related Work

In this section, we review the existing work on vi-
sual language grounding, with a focus on neural
image captioning. We also review related work
on adversarial attacks on CNN-based image clas-
sifiers. Due to space limitations, we defer the sec-
ond part to the supplementary material.

Visual language grounding represents a fam-
ily of multimodal tasks that bridge visual and
natural language understanding. Typical exam-
ples include image and video captioning (Karpa-
thy and Li, 2015; Vinyals et al., 2015; Donahue
et al., 2015b; Pasunuru and Bansal, 2017; Venu-
gopalan et al., 2015), visual dialog (Das et al.,
2017; De Vries et al., 2017), visual question an-
swering (Antol et al., 2015; Fukui et al., 2016;
Lu et al., 2016; Zhu et al., 2017), visual story-
telling (Huang et al., 2016), natural question gen-
eration (Mostafazadeh et al., 2017, 2016), and im-
age generation from captions (Mansimov et al.,
2016; Reed et al., 2016). In this paper, we focus on
studying the robustness of neural image captioning
models, and believe that the proposed method also
sheds lights on robustness evaluation for other vi-
sual language grounding tasks using a similar mul-
timodal RNN architecture.

Many image captioning methods based on deep
neural networks (DNNs) adopt a multimodal RNN
framework that first uses a CNN model as the
encoder to extract a visual feature vector, fol-
lowed by a RNN model as the decoder for cap-
tion generation. Representative works under this
framework include (Chen and Zitnick, 2015; De-
vlin et al., 2015; Donahue et al., 2015a; Karpa-
thy and Li, 2015; Mao et al., 2015; Vinyals et al.,
2015; Xu et al., 2015; Yang et al., 2016; Liu et al.,
2017a,b), which are mainly differed by the under-
lying CNN and RNN architectures, and whether
or not the attention mechanisms are considered.
Other lines of research generate image captions
using semantic information or via a compositional
approach (Fang et al., 2015; Gan et al., 2017; Tran
et al., 2016; Jia et al., 2015; Wu et al., 2016; You

et al., 2016).
The recent work in (Shekhar et al., 2017)

touched upon the robustness of neural image cap-
tioning for language grounding by showing its in-
sensitivity to one-word (foil word) changes in the
language caption, which corresponds to the untar-
geted attack category in adversarial examples. In
this paper, we focus on the more challenging tar-
geted attack setting that requires to fool the cap-
tioning models and enforce them to generate pre-
specified captions or keywords.

3 Methodology of Show-and-Fool

3.1 Overview of the Objective Functions

We now formally introduce our approaches to
crafting adversarial examples for neural image
captioning. The problem of finding an adversar-
ial example for a given image I can be cast as the
following optimization problem:

min
δ

c · loss(I + δ) + ‖δ‖22
s.t. I + δ ∈ [−1, 1]n. (1)

Here δ denotes the adversarial perturbation to I .
‖δ‖22 = ‖(I + δ) − I‖22 is an `2 distance metric
between the original image and the adversarial im-
age. loss(·) is an attack loss function which takes
different forms in different attacking settings. We
will provide the explicit expressions in Sections
3.2 and 3.3. The term c > 0 is a pre-specified reg-
ularization constant. Intuitively, with larger c, the
attack is more likely to succeed but at the price of
higher distortion on δ. In our algorithm, we use
a binary search strategy to select c. The box con-
straint on the image I ∈ [−1, 1]n ensures that the
adversarial example I + δ ∈ [−1, 1]n lies within a
valid image space.

For the purpose of efficient optimization, we
convert the constrained minimization problem in
(1) into an unconstrained minimization problem
by introducing two new variables y ∈ Rn and
w ∈ Rn such that

y = arctanh(I) and w = arctanh(I + δ)− y,

where arctanh denotes the inverse hyperbolic tan-
gent function and is applied element-wisely. Since
tanh(yi + wi) ∈ [−1, 1], the transformation will
automatically satisfy the box constraint. Conse-
quently, the constrained optimization problem in
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(1) is equivalent to

minw∈Rn c · loss(tanh(w + y)) (2)

+‖ tanh(w + y)− tanh(y)‖22.

In the following sections, we present our designed
loss functions for different attack settings.

3.2 Targeted Caption Method
Note that a targeted caption is denoted by

S = (S1, S2, ..., St, ..., SN ),

where St indicates the index of the t-th word in
the vocabulary list V , S1 is a start symbol and SN
indicates the end symbol. N is the length of cap-
tion S, which is not fixed but does not exceed a
predefined maximum caption length. To encour-
age the neural image captioning system to output
the targeted caption S, one needs to ensure the log
probability of the caption S conditioned on the im-
age I + δ attains the maximum value among all
possible captions, that is,

logP (S|I + δ) = max
S′∈Ω

logP (S′|I + δ), (3)

where Ω is the set of all possible captions. It is
also common to apply the chain rule to the joint
probability and we have

logP (S′|I+δ) =

N∑

t=2

logP (S′t|I+δ, S′1, ..., S
′
t−1).

In neural image captioning networks,
p(S′t|I + δ, S′1, ..., S

′
t−1) is usually computed

by a RNN/LSTM cell f , with its hidden state ht−1

and input S′t−1:

zt = f(ht−1, S
′
t−1) and pt = softmax(zt), (4)

where zt := [z
(1)
t , z

(2)
t , ..., z

(|V|)
t ] ∈ R|V| is a vec-

tor of the logits (unnormalized probabilities) for
each possible word in the vocabulary. The vector
pt represents a probability distribution on V with
each coordinate p(i)

t defined as:

p
(i)
t := P (S′t = i|I + δ, S′1, ..., S

′
t−1).

Following the definition of softmax function:

P (S′t|I+δ, S′1, ..., S
′
t−1) = exp(z

(S′t)
t )/

∑

i∈V
exp(z

(i)
t ).

Intuitively, to maximize the targeted caption’s
probability, we can directly use its negative log

probability (5) as a loss function. The inputs of
the RNN are the first N − 1 words of the targeted
caption (S1, S2, ..., SN−1).

lossS,log-prob(I + δ) = − logP (S|I + δ)

= −
N∑

t=2

logP (St|I + δ, S1, ..., St−1).
(5)

Applying (5) to (2), the formulation of targeted
caption method given a targeted caption S is:

min
w∈Rn

c · lossS,log prob(tanh(w + y))

+ ‖ tanh(w + y)− tanh(y)‖22.

Alternatively, using the definition of the soft-
max function,

logP (S′|I + δ) =
N∑

t=2

[z
(S′t)
t − log(

∑

i∈V
exp(z

(i)
t ))]

=
N∑

t=2

z
(S′t)
t − constant, (6)

(3) can be simplified as

logP (S|I + δ) ∝
N∑

t=2

z
(St)
t = max

S′∈Ω

N∑

t=2

z
(S′t)
t .

Instead of making each z(St)
t as large as possi-

ble, it is sufficient to require the target word St
to attain the largest (top-1) logit (or probability)
among all the words in the vocabulary at position
t. In other words, we aim to minimize the differ-
ence between the maximum logit except St, de-
noted by maxk∈V,k 6=St{z

(k)
t }, and the logit of St,

denoted by z(St)
t . We also propose a ramp function

on top of this difference as the final loss function:

lossS,logits(I+δ) =

N−1∑

t=2

max{−ε,max
k 6=St

{z(k)
t }−z

(St)
t },

(7)
where ε > 0 is a confidence level accounting for
the gap between maxk 6=St{z

(k)
t } and z(St)

t . When
z

(St)
t > maxk 6=St{z

(k)
t } + ε, the corresponding

term in the summation will be kept at−ε and does
not contribute to the gradient of the loss function,
encouraging the optimizer to focus on minimizing
other terms where z(St)

t is not large enough.
Applying the loss (7) to (1), the final formula-

tion of targeted caption method given a targeted
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caption S is

min
w∈Rn

c ·
N−1∑

t=2

max{−ε,max
k 6=St

{z(k)
t } − z

(St)
t }

+ ‖ tanh(w + y)− tanh(y)‖22.

We note that (Carlini and Wagner, 2017) has re-
ported that in CNN-based image classification, us-
ing logits in the attack loss function can produce
better adversarial examples than using probabili-
ties, especially when the target network deploys
some gradient masking schemes such as defensive
distillation (Papernot et al., 2016b). Therefore, we
provide both logit-based and probability-based at-
tack loss functions for neural image captioning.

3.3 Targeted Keyword Method

In addition to generating an exact targeted cap-
tion by perturbing the input image, we offer an
intermediate option that aims at generating cap-
tions with specific keywords, denoted by K :=
{K1, · · · ,KM} ⊂ V . Intuitively, finding an ad-
versarial image generating a caption with specific
keywords might be easier than generating an exact
caption, as we allow more degree of freedom in
caption generation. However, as we need to ensure
a valid and meaningful inferred caption, finding an
adversarial example with specific keywords in its
caption is difficult in an optimization perspective.
Our target keyword method can be used to investi-
gate the generalization capability of a neural cap-
tioning system given only a few keywords.

In our method, we do not require a target key-
word Kj , j ∈ [M ] to appear at a particular po-
sition. Instead, we want a loss function that al-
lows Kj to become the top-1 prediction (plus a
confidence margin ε) at any position. Therefore,
we propose to use the minimum of the hinge-like
loss terms over all t ∈ [N ] as an indication of Kj

appearing at any position as the top-1 prediction,
leading to the following loss function:

lossK,logits =

M∑

j=1

min
t∈[N ]
{max{−ε,max

k 6=Kj

{z(k)
t }−z

(Kj)
t }}.

(8)
We note that the loss functions in (4) and (5)

require an input S′t−1 to predict zt for each t ∈
{2, . . . , N}. For the targeted caption method, we
use the targeted caption S as the input of RNN.
In contrast, for the targeted keyword method we
no longer know the exact targeted sentence, but

only require the presence of specified keywords in
the final caption. To bridge the gap, we use the
originally inferred caption S0 = (S0

1 , · · · , S0
N )

from the benign image as the initial input to RNN.
Specifically, after minimizing (8) for T iterations,
we run inference on I + δ and set the RNN’s input
S1 as its current top-1 prediction, and continue this
process. With this iterative optimization process,
the desired keywords are expected to gradually ap-
pear in top-1 prediction.

Another challenge arises in targeted keyword
method is the problem of “keyword collision”.
When the number of keywords M ≥ 2, more
than one keywords may have large values of
maxk 6=Kj

{z(k)
t } − z

(Kj)
t at a same position t. For

example, if dog and cat are top-2 predictions for
the second word in a caption, the caption can ei-
ther start with “A dog ...” or “A cat ...”. In this
case, despite the loss (8) being very small, a cap-
tion with both dog and cat can hardly be gener-
ated, since only one word is allowed to appear at
the same position. To alleviate this problem, we
define a gate function gt,j(x) which masks off all
the other keywords when a keyword becomes top-
1 at position t:

gt,j(x) =

{
A, if arg maxi∈V z

(i)
t ∈ K \ {Kj}

x, otherwise,

where A is a predefined value that is significantly
larger than common logits values. Then (8) be-
comes:

M∑

j=1

min
t∈[N ]
{gt,j(max{−ε, max

k 6=Kj

{z(k)
t } − z

(Kj)
t })}.

(9)

The log-prob loss for targeted keyword method is
discussed in the Supplementary Material.

4 Experiments

4.1 Experimental Setup and Algorithms
We performed extensive experiments to test the ef-
fectiveness of our Show-and-Fool algorithm and
study the robustness of image captioning systems
under different problem settings. In our experi-
ments1, we use the pre-trained TensorFlow imple-
mentation2 of Show-and-Tell (Vinyals et al., 2015)

1Our source code is available at: https://github.com/
huanzhang12/ImageCaptioningAttack

2https://github.com/tensorflow/models/tree/master/
research/im2txt
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with Inception-v3 as the CNN for visual feature
extraction. Our testbed is Microsoft COCO (Lin
et al., 2014) (MSCOCO) data set. Although some
more recent neural image captioning systems can
achieve better performance than Show-and-Tell,
they share a similar framework that uses CNN
for feature extraction and RNN for caption gen-
eration, and Show-and-Tell is the vanilla version
of this CNN+RNN architecture. Indeed, we find
that the adversarial examples on Show-and-Tell
are transferable to other image captioning mod-
els such as Show-Attend-and-Tell (Xu et al., 2015)
and NeuralTalk23, suggesting that the attention
mechanism and the choice of CNN and RNN ar-
chitectures do not significantly affect the robust-
ness. We also note that since Show-and-Fool is
the first work on crafting adversarial examples for
neural image captioning, to the best of our knowl-
edge, there is no other method for comparison.

We use ADAM to minimize our loss functions
and set the learning rate to 0.005. The number of
iterations is set to 1, 000. All the experiments are
performed on a single Nvidia GTX 1080 Ti GPU.
For targeted caption and targeted keyword meth-
ods, we perform a binary search for 5 times to find
the best c: initially c = 1, and c will be increased
by 10 times until a successful adversarial example
is found. Then, we choose a new c to be the aver-
age of the largest c where an adversarial example
can be found and the smallest cwhere an adversar-
ial example cannot be found. We fix ε = 1 except
for transferability experiments. For each experi-
ment, we randomly select 1,000 images from the
MSCOCO validation set. We use BLEU-1 (Pa-
pineni et al., 2002), BLEU-2, BLEU-3, BLEU-
4, ROUGE (Lin, 2004) and METEOR (Lavie and
Agarwal, 2005) scores to evaluate the correlations
between the inferred captions and the targeted cap-
tions. These scores are widely used in NLP com-
munity and are adopted by image captioning sys-
tems for quality assessment. Throughout this sec-
tion, we use the logits loss (7)(9). The results of
using the log-prob loss (5) are similar and are re-
ported in the supplementary material.

4.2 Targeted Caption Results

Unlike the image classification task where all pos-
sible labels are predefined, the space of possible
captions in a captioning system is almost infinite.
However, the captioning system is only able to

3https://github.com/karpathy/neuraltalk2

Table 1: Summary of targeted caption method
(Section 3.2) and targeted keyword method (Sec-
tion 3.3) using logits loss. The `2 distortion of
adversarial noise ‖δ‖2 is averaged over success-
ful adversarial examples. For comparison, we also
include CNN based attack methods (Section 4.5).

Experiments Success Rate Avg. ‖δ‖2
targeted caption 95.8% 2.213

1-keyword 97.1% 1.589
2-keyword 97.5% 2.363
3-keyword 96.0% 2.626

C&W on CNN 22.4% 2.870
I-FGSM on CNN 34.5% 15.596

Table 2: Statistics of the 4.2% failed adversarial
examples using the targeted caption method and
logits loss (7). All correlation scores are computed
using the top-5 inferred captions of an adversar-
ial image and the targeted caption (higher score
means better targeted attack performance).

c 1 10 102 103 104

`2 Distortion 1.726 3.400 7.690 16.03 23.31
BLEU-1 .567 .725 .679 .701 .723
BLEU-2 .420 .614 .559 .585 .616
BLEU-3 .320 .509 .445 .484 .514
BLEU-4 .252 .415 .361 .402 .417
ROUGE .502 .664 .629 .638 .672

METEOR .258 .407 .375 .403 .399

output relevant captions learned from the train-
ing set. For instance, the captioning model can-
not generate a passive-voice sentence if the model
was never trained on such sentences. Therefore,
we need to ensure that the targeted caption lies in
the space where the captioning system can pos-
sibly generate. To address this issue, we use the
generated caption of a randomly selected image
(other than the image under investigation) from
MSCOCO validation set as the targeted caption S.
The use of a generated caption as the targeted cap-
tion excludes the effect of out-of-domain caption-
ing, and ensures that the target caption is within
the output space of the captioning network.

Here we use the logits loss (7) plus a `2 distor-
tion term (as in (2)) as our objective function. A
successful adversarial example is found if the in-
ferred caption after adding the adversarial pertur-
bation δ is exactly the same as the targeted caption.
In our setting, 1,000 ADAM iterations take about
38 seconds for one image. The overall success
rate and average distortion of adversarial perturba-
tion δ are shown in Table 1. Among all the tested
images, our method attains 95.8% attack success
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rate. Moreover, our adversarial examples have
small `2 distortions and are visually identical to
the original images, as displayed in Figure 1. We
also examine the failed adversarial examples and
summarize their statistics in Table 2. We find that
their generated captions, albeit not entirely identi-
cal to the targeted caption, are in fact highly corre-
lated to the desired one. Overall, the high success
rate and low `2 distortion of adversarial examples
clearly show that Show-and-Tell is not robust to
targeted adversarial perturbations.

4.3 Targeted Keyword Results
In this task, we use (9) as our loss function, and
choose the number of keywords M = {1, 2, 3}.
We run an inference step on I + δ every T = 5
iterations, and use the top-1 caption as the input
of RNN/LSTMs. Similar to Section 4.2, for each
image the targeted keywords are selected from the
caption generated by a randomly selected valida-
tion set image. To exclude common words like
“a”, “the”, “and”, we look up each word in the
targeted sentence and only select nouns, verbs, ad-
jectives or adverbs. We say an adversarial image is
successful when its caption contains all specified
keywords. The overall success rate and average
distortion are shown in Table 1. When compared
to the targeted caption method, targeted keyword
method achieves an even higher success rate (at
least 96% for 3-keyword case and at least 97%
for 1-keyword and 2-keyword cases). Figure 2
shows an adversarial example crafted from our
targeted keyword method with three keywords -
“dog”, “cat” and “frisbee”. Using Show-and-Fool,
the top-1 caption of a cake image becomes “A dog
and a cat are playing with a frisbee” while the ad-
versarial image remains visually indistinguishable
to the original one. WhenM = 2 and 3, even if we
cannot find an adversarial image yielding all spec-
ified keywords, we might end up with a caption
that contains some of the keywords (partial suc-
cess). For example, when M = 3, Table 3 shows
the number of keywords appeared in the captions
(M ′) for those failed examples (not all 3 targeted
keywords are found). These results clearly show
that the 4% failed examples are still partially suc-
cessful: the generated captions contain about 1.5
targeted keywords on average.

4.4 Transferability of Adversarial Examples
It has been shown that in image classification
tasks, adversarial examples found for one machine

Figure 2: An adversarial example (‖δ‖2 = 1.284)
of an cake image crafted by the Show-and-Fool
targeted keyword method with three keywords -
“dog”, “cat” and “frisbee”.

Table 3: Percentage of partial success with differ-
ent c in the 4.0% failed images that do not contain
all the 3 targeted keywords.

c Avg. ‖δ‖2 M ′ ≥ 1 M ′ = 2 Avg. M ′

1 2.49 72.4% 34.5% 1.07
10 5.40 82.7% 37.9% 1.21
102 12.95 93.1% 58.6% 1.52
103 24.77 96.5% 51.7% 1.48
104 29.37 100.0% 58.6% 1.59

learning model may also be effective against an-
other model, even if the two models have dif-
ferent architectures (Papernot et al., 2016a; Liu
et al., 2017c). However, unlike image classifica-
tion where correct labels are made explicit, two
different image captioning systems may generate
quite different, yet semantically similar, captions
for the same benign image. In image caption-
ing, we say an adversarial example is transfer-
able when the adversarial image found on model
A with a target sentence SA can generate a similar
(rather than exact) sentence SB on model B.

In our setting, model A is Show-and-Tell, and
we choose Show-Attend-and-Tell (Xu et al., 2015)
as model B. The major differences between
Show-and-Tell and Show-Attend-and-Tell are the
addition of attention units in LSTM network for
caption generation, and the use of last convolu-
tional layer (rather than the last fully-connected
layer) feature maps for feature extraction. We
use Inception-v3 as the CNN architecture for both
models and train them on the MSCOCO 2014 data
set. However, their CNN parameters are different
due to the fine-tuning process.
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Table 4: Transferability of adversarial examples from Show-and-Tell to Show-Attend-and-Tell, using
different ε and c. ori indicates the scores between the generated captions of the original images and the
transferred adversarial images on Show-Attend-and-Tell. tgt indicates the scores between the targeted
captions on Show-and-Tell and the generated captions of transferred adversarial images on Show-Attend-
and-Tell. A smaller ori or a larger tgt value indicates better transferability. mis measures the differences
between captions generated by the two models given the same benign image (model mismatch). When
C = 1000, ε = 10, tgt is close to mis, indicating the discrepancy between adversarial captions on the two
models is mostly bounded by model mismatch, and the adversarial perturbation is highly transferable.

ε = 1 ε = 5 ε = 10
C=10 C=100 C=1000 C=10 C=100 C=1000 C=10 C=100 C=1000

ori tgt ori tgt ori tgt ori tgt ori tgt ori tgt ori tgt ori tgt ori tgt mis
BLEU-1 .474 .395 .384 .462 .347 .484 .441 .429 .368 .488 .337 .527 .431 .421 .360 .485 .339 .534 .649
BLEU-2 .337 .236 .230 .331 .186 .342 .300 .271 .212 .343 .175 .389 .287 .266 .204 .342 .174 .398 .521
BLEU-3 .256 .154 .151 .224 .114 .254 .220 .184 .135 .254 .103 .299 .210 .185 .131 .254 .102 .307 .424
BLEU-4 .203 .109 .107 .172 .077 .198 .170 .134 .093 .197 .068 .240 .162 .138 .094 .197 .066 .245 .352
ROUGE .463 .371 .374 .438 .336 .465 .429 .402 .359 .464 .329 .502 .421 .398 .351 .463 .328 .507 .604
METEOR .201 .138 .139 .180 .118 .201 .177 .157 .131 .199 .110 .228 .172 .157 .127 .202 .110 .232 .300
‖δ‖2 3.268 4.299 4.474 7.756 10.487 10.952 15.757 21.696 21.778

Figure 3: A highly transferable adversarial exam-
ple (‖δ‖2 = 15.226) crafted by Show-and-Tell tar-
geted caption method, transfers to Show-Attend-
and-Tell, yielding similar adversarial captions.

To investigate the transferability of adversarial
examples in image captioning, we first use the tar-
geted caption method to find adversarial examples
for 1,000 images in modelAwith different c and ε,
and then transfer successful adversarial examples
(which generate the exact target captions on model
A) to model B. The generated captions by model
B are recorded for transferability analysis. The
transferability of adversarial examples depends on
two factors: the intrinsic difference between two
models even when the same benign image is used
as the input, i.e., model mismatch, and the trans-
ferability of adversarial perturbations.

To measure the mismatch between Show-and-
Tell and Show-Attend-and-Tell, we generate cap-
tions of the same set of 1,000 original images
from both models, and report their mutual BLEU,

ROUGE and METEOR scores in Table 4 under
the mis column. To evaluate the effectiveness of
transferred adversarial examples, we measure the
scores for two set of captions: (i) the captions of
original images and the captions of transferred ad-
versarial images, both generated by Show-Attend-
and-Tell (shown under column ori in Table 4); and
(ii) the targeted captions for generating adversarial
examples on Show-and-Tell, and the captions of
the transferred adversarial image on Show-Attend-
and-Tell (shown under column tgt in Table 4).
Small values of ori suggest that the adversarial
images on Show-Attend-and-Tell generate signif-
icantly different captions from original images’
captions. Large values of tgt suggest that the ad-
versarial images on Show-Attend-and-Tell gener-
ate similar adversarial captions as on the Show-
and-Tell model. We find that increasing c or ε
helps to enhance transferability at the cost of larger
(but still acceptable) distortion. When C = 1, 000
and ε = 10, Show-and-Fool achieves the best
transferability results: tgt is close to mis, indicat-
ing that the discrepancy between adversarial cap-
tions on the two models is mostly bounded by the
intrinsic model mismatch rather than the transfer-
ability of adversarial perturbations, and implying
that the adversarial perturbations are easily trans-
ferable. In addition, the adversarial examples gen-
erated by our method can also fool NeuralTalk2.
When c = 104, ε = 10, the average `2 distortion,
BLEU-4 and METEOR scores between the origi-
nal and transferred adversarial captions are 38.01,
0.440 and 0.473, respectively. The high transfer-
ability of adversarial examples crafted by Show-
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and-Fool also indicates the problem of common
robustness leakage between different neural image
captioning models.

4.5 Attacking Image Captioning v.s.
Attacking Image Classification

In this section we show that attacking image cap-
tioning models is inherently more challenging
than attacking image classification models. In the
classification task, a targeted attack usually be-
comes harder when the number of labels increases,
since an attack method needs to change the classi-
fication prediction to a specific label over all the
possible labels. In the targeted attack on image
captioning, if we treat each caption as a label,
we need to change the original label to a specific
one over an almost infinite number of possible la-
bels, corresponding to a nearly zero volume in the
search space. This constraint forces us to develop
non-trivial methods that are significantly different
from the ones designed for attacking image classi-
fication models.

To verify that the two tasks are inherently dif-
ferent, we conducted additional experiments on
attacking only the CNN module using two state-
of-the-art image classification attacks on Ima-
geNet dataset. Our experiment setup is as fol-
lows. Each selected ImageNet image has a la-
bel corresponding to a WordNet synset ID. We
randomly selected 800 images from ImageNet
dataset such that their synsets have at least one
word in common with Show-and-Tell’s vocabu-
lary, while ensuring the Inception-v3 CNN (Show-
and-Tell’s CNN) classify them correctly. Then,
we perform Iterative Fast Gradient Sign Method
(I-FGSM) (Kurakin et al., 2017) and Carlini and
Wagner’s (C&W) attack (Carlini and Wagner,
2017) on these images. The attack target la-
bels are randomly chosen and their synsets also
have at least one word in common with Show-
and-Tell’s vocabulary. Both I-FGSM and C&W
achieve 100% targeted attack success rate on the
Inception-v3 CNN. These adversarial examples
were further employed to attack Show-and-Tell
model. An attack is considered successful if any
word in the targeted label’s synset or its hyper-
nyms up to 5 levels is presented in the resulting
caption. For example, for the chain of hypernyms
‘broccoli’⇒‘cruciferous vegetable’⇒‘vegetable,
veggie, veg’⇒‘produce, green goods, green gro-
ceries, garden truck’⇒‘food, solid food’, we in-

clude ‘broccoli’,‘cruciferous’,‘vegetable’,‘veggie’
and all other following words. Note that this cri-
terion of success is much weaker than the crite-
rion we use in the targeted caption method, since a
caption with the targeted image’s hypernyms does
not necessarily leads to similar meaning of the tar-
geted image’s captions. To achieve higher attack
success rates, we allow relatively larger distortions
and set ε∞ = 0.3 (maximum `∞ distortion) in I-
FGSM and κ = 10, C = 100 in C&W. How-
ever, as shown in Table 1, the attack success rates
are only 34.5% for I-FGSM and 22.4% for C&W,
respectively, which are much lower than the suc-
cess rates of our methods despite larger distor-
tions. This result further confirms that perform-
ing targeted attacks on neural image captioning re-
quires a careful design (as proposed in this paper),
and attacking image captioning systems is not a
trivial extension to attacking image classifiers.

5 Conclusion

In this paper, we proposed a novel algorithm,
Show-and-Fool, for crafting adversarial examples
and providing robustness evaluation of neural im-
age captioning. Our extensive experiments show
that the proposed targeted caption and keyword
methods yield high attack success rates while the
adversarial perturbations are still imperceptible to
human eyes. We further demonstrate that Show-
and-Fool can generate highly transferable adver-
sarial examples. The high-quality and transferable
adversarial examples in neural image captioning
crafted by Show-and-Fool highlight the inconsis-
tency in visual language grounding between hu-
mans and machines, suggesting a possible weak-
ness of current machine vision and perception ma-
chinery. We also show that attacking neural image
captioning systems are inherently different from
attacking CNN-based image classifiers.

Our method stands out from the well-studied
adversarial learning on image classifiers and CNN
models. To the best of our knowledge, this is the
very first work on crafting adversarial examples
for neural image captioning systems. Indeed, our
Show-and-Fool algorithm1 can be easily extended
to other applications with RNN or CNN+RNN ar-
chitectures. We believe this paper provides poten-
tial means to evaluate and possibly improve the ro-
bustness (for example, by adversarial training or
data augmentation) of a wide range of visual lan-
guage grounding and other NLP models.
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Abstract

In this paper, we study the problem of
geometric reasoning in the context of
question-answering. We introduce Dy-
namic Spatial Memory Network (DSMN),
a new deep network architecture designed
for answering questions that admit latent
visual representations. DSMN learns to
generate and reason over such representa-
tions. Further, we propose two synthetic
benchmarks, FloorPlanQA and ShapeIn-
tersection, to evaluate the geometric rea-
soning capability of QA systems. Experi-
mental results validate the effectiveness of
our proposed DSMN for visual thinking
tasks1.

1 Introduction

The ability to reason is a hallmark of intelligence
and a requirement for building question-answering
(QA) systems. In AI research, reasoning has been
strongly associated with logic and symbol manip-
ulation, as epitomized by work in automated theo-
rem proving (Fitting, 2012). But for humans, rea-
soning involves not only symbols and logic, but
also images and shapes. Einstein famously wrote:
“The psychical entities which seem to serve as el-
ements in thought are certain signs and more or
less clear images which can be ‘voluntarily’ re-
produced and combined... Conventional words or
other signs have to be sought for laboriously only
in a secondary state...” And the history of sci-
ence abounds with discoveries from visual think-
ing, from the Benzene ring to the structure of
DNA (Pinker, 2003).

There are also plenty of ordinary examples of
human visual thinking. Consider a square room

1 Code and datasets: https://github.com/
umich-vl/think_visually

with a door in the middle of its southern wall. Sup-
pose you are standing in the room such that the
eastern wall of the room is behind you. Where is
the door with respect to you? The answer is ‘to
your left.’ Note that in this case both the question
and answer are just text. But in order to answer the
question, it is natural to construct a mental picture
of the room and use it in the process of reasoning.
Similar to humans, the ability to ‘think visually’ is
desirable for AI agents like household robots. An
example could be to construct a rough map and
navigation plan for an unknown environment from
verbal descriptions and instructions.

In this paper, we investigate how to model geo-
metric reasoning (a form of visual reasoning) us-
ing deep neural networks (DNN). Specifically, we
address the task of answering questions through
geometric reasoning—both the question and an-
swer are expressed in symbols or words, but a ge-
ometric representation is created and used as part
of the reasoning process.

In order to focus on geometric reasoning, we do
away with natural language by designing two syn-
thetic QA datasets, FloorPlanQA and ShapeInter-
section. In FloorPlanQA, we provide the blueprint
of a house in words and ask questions about loca-
tion and orientation of objects in it. For ShapeIn-
tersection, we give a symbolic representation of
various shapes and ask how many places they in-
tersect. In both datasets, a reference visual repre-
sentation is provided for each sample.

Further, we propose Dynamic Spatial Memory
Network (DSMN), a novel DNN that uses vir-
tual imagery for QA. DSMN is similar to existing
memory networks (Kumar et al., 2016; Sukhbaatar
et al., 2015; Henaff et al., 2016) in that it uses vec-
tor embeddings of questions and memory modules
to perform reasoning. The main novelty of DSMN
is that it creates virtual images for the input ques-
tion and uses a spatial memory to aid the reasoning
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process.
We show through experiments that with the aid

of an internal visual representation and a spa-
tial memory, DSMN outperforms strong baselines
on both FloorPlanQA and ShapeIntersection. We
also demonstrate that explicitly learning to cre-
ate visual representations further improves perfor-
mance. Finally, we show that DSMN is substan-
tially better than the baselines even when visual
supervision is provided for only a small propor-
tion of the samples.

It’s important to note that our proposed datasets
consist of synthetic questions as opposed to natu-
ral texts. Such a setup allows us to sidestep diffi-
culties in parsing natural language and instead fo-
cus on geometric reasoning. However, synthetic
data lacks the complexity and diversity of natu-
ral text. For example, spatial terms used in nat-
ural language have various ambiguities that need
to resolved by context (e.g. how far is ”far” and
whether ”to the left” is relative to the speaker or
the listener) (Shariff, 1998; Landau and Jackend-
off, 1993), but our synthetic data lacks such com-
plexities. Therefore, our method and results do
not automatically generalize to real-life tasks in-
volving natural language. Additional research is
needed to extend and validate our approach on nat-
ural data.

Our contributions are three-fold: First, we
present Dynamic Spatial Memory Network
(DSMN), a novel DNN that performs geometric
reasoning for QA. Second, we introduce two
synthetic datasets that evaluate a system’s visual
thinking ability. Third, we demonstrate that on
synthetic data, DSMN achieves superior perfor-
mance for answering questions that require visual
thinking.

2 Related Work

Natural language datasets for QA: Several nat-
ural language QA datasets have been proposed
to test AI systems on various reasoning abili-
ties (Levesque et al., 2011; Richardson et al.,
2013). Our work differs from them in two key as-
pects: first, we use synthetic data instead of natural
data; and second, we specialize in geometrical rea-
soning instead of general language understanding.
Using synthetic data helps us simplify language
parsing and thereby focus on geometric reasoning.
However, additional research is necessary to gen-
eralize our work to natural data.

Synthetic datasets for QA: Recently, synthetic
datasets for QA are also becoming crucial in AI.
In particular, bAbI (Weston et al., 2015) has driven
the development of several recent DNN-based QA
systems (Kumar et al., 2016; Sukhbaatar et al.,
2015; Henaff et al., 2016). bAbI consists of 20
tasks to evaluate different reasoning abilities. Two
tasks, Positional Reasoning (PR) and Path Finding
(PF), are related to geometric reasoning. However,
each Positional Reasoning question contains only
two sentences, and can be solved through simple
logical deduction such as ‘A is left of B implies
B is right of A’. Similarly, Path Finding involves
a search problem that requires simple spatial de-
ductions such as ‘A is east of B implies B is west
of A’. In contrast, the questions in our datasets in-
volve longer descriptions, more entities, and more
relations; they are thus harder to answer with sim-
ple deductions. We also provide reference visual
representation for each sample, which is not avail-
able in bAbI.

Mental Imagery and Visual Reasoning: The im-
portance of visual reasoning has been long rec-
ognized in AI (Forbus et al., 1991; Lathrop and
Laird, 2007). Prior works in NLP (Seo et al., 2015;
Lin and Parikh, 2015) have also studied visual rea-
soning. Our work is different from them as we
use synthetic language instead of natural language.
Our synthetic language is easier to parse, allowing
our evaluation to mainly reflect the performance
of geometric reasoning. On the other hand, while
our method and conclusions can potentially ap-
ply to natural text, this remains to be validated
and involves nontrivial future work. There are
other differences to prior works as well. Specif-
ically, (Seo et al., 2015) combined information
from textual questions and diagrams to build a
model for solving SAT geometry questions. How-
ever, our task is different as diagrams are not pro-
vided as part of the input, but are generated from
the words/symbols themselves. Also, (Lin and
Parikh, 2015) take advantage of synthetic images
to gather semantic common sense knowledge (vi-
sual common sense) and use it to perform fill-in-
the-blank (FITB) and visual paraphrasing tasks.
Similar to us, they also form ‘mental images’.
However, there are two differences (apart from
natural vs synthetic language): first, their bench-
mark tests higher level semantic knowledge (like
“Mike is having lunch when he sees a bear.” =⇒
“Mike tries to hide.”), while ours is more focused
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on geometric reasoning. Second, their model is
based on hand-crafted features while we use a
DNN.

Spatial language for Human-Robot Interac-
tion: Our work is also related to prior work on
making robots understand spatial commands (e.g.
“put that box here”, “move closer to the box”)
and complete tasks such as navigation and as-
sembly. Earlier work (Müller et al., 2000; Grib-
ble et al., 1998; Zelek, 1997) in this domain used
template-based commands, whereas more recent
work (Skubic et al., 2004) tried to make the com-
mands more natural. This line of work differs from
ours in that the robot has visual perception of its
environment that allows grounding of the textual
commands, whereas in our case the agent has no
visual perception, and an environment needs to be
imagined.

Image Generation: Our work is related to image
generation using DNNs which has a large body
of literature, with diverse approaches (Reed et al.,
2016; Gregor et al., 2015). We also generate an
image from the input. But in our task, image gen-
eration is in the service of reasoning rather than
an end goal in itself—as a result, photorealism or
artistic style of generated images is irrelevant and
not considered.

Visual Question Answering: Our work is also re-
lated to visual QA (VQA) (Johnson et al., 2016;
Antol et al., 2015; Lu et al., 2016). Our task
is different from VQA because our questions are
in terms of words/symbols whereas in VQA the
questions are visual, consisting of both text de-
scriptions and images. The images involved in our
task are internal and virtual, and are not part of the
input or output.

Memory and Attention: Memory and attention
have been increasingly incorporated into DNNs,
especially for tasks involving algorithmic infer-
ence and/or natural language (Graves et al., 2014;
Vaswani et al., 2017). For QA tasks, memory
and attention play an important role in state-of-
the-art (SOTA) approaches. (Sukhbaatar et al.,
2015) introduced End-To-End Memory Network
(MemN2N), a DNN with memory and recurrent
attention mechanism, which can be trained end-to-
end for diverse tasks like textual QA and language
modeling. Concurrently, (Kumar et al., 2016)
introduced Dynamic Memory Network (DMN),
which also uses attention and memory. (Xiong
et al., 2016) proposed DMN+, with several im-

[3, 8.00, 7.46,
 1.80, 1.83]

[3, 0.61, 5.40,
 8.94, 2.79]

[1, 0.66, 9.70,
 8.14, 3.59]

[2, 3.67, 5.51,
 0.80, 0.00]

Description and visual representation

1: line
2: circle
3: rectangle

Question: How many 
places do the shapes 
intersect? 

Figure 1: An example in the ShapeIntersection
dataset.

provements over the previous version of DMN
and achieved SOTA results on VQA (Antol et al.,
2015) and bAbI (Weston et al., 2015). Our pro-
posed DSMN is a strict generalization of DMN+
(see Sec. 4.1). On removing the images and spatial
memory from DSMN, it reduces to DMN+. Re-
cently (Gupta et al., 2017) also used spatial mem-
ory in their deep learning system, but for visual
navigation. We are using spatial memory for QA.

3 Datasets

We introduce two synthetically-generated QA
datasets to evaluate a system’s goemetrical rea-
soning ability: FloorPlanQA and ShapeIntersec-
tion. These datasets are not meant to test natural
language understanding, but instead focus on ge-
ometrical reasoning. Owing to their synthetic na-
ture, they are easy to parse, but nevertheless they
are still challenging for DNNs like DMN+ (Xiong
et al., 2016) and MemN2N (Sukhbaatar et al.,
2015) that achieved SOTA results on existing QA
datasets (see Table 2a).

The proposed datasets are similar in spirit to
bAbI (Weston et al., 2015), which is also synthetic.
In spite of its synthetic nature, bAbI has proved
to be a crucial benchmark for the development
of new models like MemN2N, DMN+, variants
of which have proved successful in various nat-
ural domains (Kumar et al., 2016; Perez and Liu,
2016). Our proposed dataset is first to explicitly
test ‘visual thinking’, and its synthetic nature helps
us avoid the expensive and tedious task of collect-
ing human annotations. Meanwhile, it is important
to note that conclusions drawn from synthetic data
do not automatically translate to natural data, and
methods developed on synthetic benchmarks need
additional validation on natural domains.

The proposed datasets also contain visual rep-
resentations of the questions. Each of them has
38,400 questions, evenly split into a training set, a
validation set and a test set (12,800 each).
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Component Template
House
door

The house door is in the middle of the {nr, sr, er, wr} wall of the house.
The house door is located in the {n-er, s-er, n-wr, s-wr, n-er, s-er, n-wr, s-wr} side of the house, such that it
opens towards {n, s, e, w}.

Room
door

The door for this room is in the middle of its {nr, sr, er, wr} wall.
This room’s door is in the middle of its {nr, sr, er, wr} wall.
The door for this room is located in its {n-er, s-er, n-wr, s-wr, n-er, s-er, n-wr, s-wr} side, such that it opens
towards {n, s, e, w}.
This room’s door is located in its {n-er, s-er, n-wr, s-wr, n-er, s-er, n-wr, s-wr} side, such that it opens towards
{n, s, e, w}.

Small
room

Room {1, 2, 3} is small in size and it is located in the {n, s, e, w, c, n-e, s-e, n-w, s-w} of the house.
Room {1, 2, 3} is located in the {n, s, e, w, c, n-e, s-e, n-w, s-w} of the house and is small in size.

Medium
room

Room {1, 2, 3} is medium in size and it extends from the {n, s, e, w, c, n-e, s-e, n-w, s-w} to the {n, s, e, w,
c, n-e, s-e, n-w, s-w} of the house.
Room {1, 2, 3} extends from the {n, s, e, w, c, n-e, s-e, n-w, s-w} to the {n, s, e, w, c, n-e, s-e, n-w, s-w} of
the house and is medium in size.

Large
room

Room {1, 2, 3} is large in size and it stretches along the {n-s, e-w}direction in the {n, s, e, w, c} of the house.
Room {1, 2, 3} stretches along the {n-s, e-w} direction in the {n, s, e, w, c} of the house and is large in size.

Object

A {cu, cd, sp, co} is located in the middle of the {nr, sr, er, wr} part of the house.
A {cu, cd, sp, co} is located in the {n-er, s-er, n-wr, s-wr, n-er, s-er, n-wr, s-wr, cr} part of the house.
A {cu, cd, sp, co} is located in the middle of the {nr, sr, er, wr} part of this room.
A {cu, cd, sp, co} is located in the {n-er, s-er, n-wr, s-wr, n-er, s-er, n-wr, s-wr, cr} part of this room.

Table 1: Templates used by the description generator for FloorPlanQA. For compactness we used the
following notations, n - north, s - south, e - east, w - west, c - center, nr - northern, sr - southern, er -
eastern, wr - western, cr - central, cu - cube, cd - cuboid, sp - sphere and co - cone.

FloorPlanQA: Each sample in FloorPlanQA in-
volves the layout of a house that has multiple
rooms (max 3). The rooms are either small,
medium or large. All the rooms and the house have
a door. Additionally, each room and empty-space
in the house (i.e. the space in the house that is
not part of any room) might also contain an object
(either a cube, cuboid, sphere, or cone).

Each sample has four components, a descrip-
tion, a question, an answer, and a visual represen-
tation. Each sentence in the description describes
either a room, a door or an object. A question is
of the following template: Suppose you are enter-
ing the {house, room 1, room 2, room 3}, where is
the {house door, room 1 door, room 2 door, room
3 door, cube, cuboid, sphere, cone} with respect
to you?. The answer is either of left, right, front,
or back. Other characteristics of FloorPlanQA are
summarized in Fig. 2.

The visual representation of a sample consists
of an ordered set of image channels, one per sen-
tence in the description. An image channel picto-
rially represents the location and/or orientation of
the described item (room, door, object) w.r.t. the
house. An example is shown in Fig. 2.

To generate samples for FloorPlanQA, we
define a probabilistic generative process which
produces tree structures representing layouts of
houses, similar to scene graphs used in computer
graphics. The root node of a tree represents an en-

tire house, and the leaf nodes represent rooms. We
use a description and visual generator to produce
respectively the description and visual representa-
tion from the tree structure. The templates used by
the description generator are described in Table 1.
Furthermore, the order of sentences in a descrip-
tion is randomized while making sure that the de-
scription still makes sense. For example, in some
sample, the description of room 1 can appear be-
fore that of the house-door, while in another sam-
ple, it could be reversed. Similarly, for a room, the
sentence describing the room’s door could appear
before or after the sentence describing the object
in the room (if the room contains one). We per-
form rejection sampling to ensure that all the an-
swers are equally likely, and thus removing bias.

ShapeIntersection: As the name suggests,
ShapeIntersection is concerned with counting the
number of intersection points between shapes. In
this dataset, the description consists of symbols
representing various shapes, and the question is al-
ways “how many points of intersection are there
among these shapes?”

There are three types of shapes in ShapeInter-
section: rectangles, circles, and lines. The de-
scription of shapes is provided in the form of a
sequence of 1D vectors, each vector represent-
ing one shape. A vector in ShapeIntersection is
analogous to a sentence in FloorPlanQA. Hence,
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A cube is located in 
the south-eastern 
part of the house.

Room 1 is located in the 
north-west of the house 
and is small in size. 

The door for this room 
is in the middle of its 
southern wall.

The house door is located in the 
north-eastern side of the house, 
such that it opens towards east. 

Question: If you 
are entering the 
house through its 
door, where is the 
cube with respect 
to you?  
Answer: Left 

Description and visual representation
vocabulary size 66
# unique sentences 264
# unique descriptions 38093
# unique questions 32
# unique question-description pairs 38228
Avg. # words per sentence 15
Avg. # sentences per description 6.61

Figure 2: An example and characteristics of FloorPlanQA (when considering all the 38,400 samples i.e.
training, validation and test sets combined).

for ShapeIntersection, the term ‘sentence’ actu-
ally refers to a vector. Each sentence describing a
shape consists of 5 real numbers. The first number
stands for the type of shape: 1 - line, 2 - circle, and
3 - rectangle. The subsequent four numbers spec-
ify the size and location of the shape. For example,
in case of a rectangle, they represent its height, its
width, and coordinates of its bottom-left corner.
Note that one can also describe the shapes using a
sentence, e.g. “there is a rectangle at (5, 5), with
a height of 2 cm and width of 8 cm.” However, as
our focus is to evaluate ‘visual thinking’, we work
directly with the symbolic encoding.

In a given description, there are 6.5 shapes on
average, and at most 6 lines, 3 rectangles and 3
circles. All the shapes in the dataset are unique
and lie on a 10 × 10 canvas. While generating
the dataset, we do rejection sampling to ensure
that the number of intersections is uniformly dis-
tributed from 0 to the maximum possible number
of intersections, regardless of the number of lines,
rectangles, and circles. This ensures that the num-
ber of intersections cannot be estimated from the
number of lines, circles or rectangles.

Similar to FloorPlanQA, the visual representa-
tion for a sample in this dataset is an ordered set of
image channels. Each channel is associated with
a sentence, and it plots the described shape. An
example is shown in Figure 1.

4 Dynamic Spatial Memory Network

We propose Dynamic Spatial Memory Network
(DSMN), a novel DNN designed for QA with geo-
metric reasoning. What differentiates DSMN from
other QA DNNs is that it forms an internal visual
representation of the input. It then uses a spatial
memory to reason over this visual representation.

A DSMN can be divided into five modules: the
input module, visual representation module, ques-
tion module, spatial memory module, and answer
module. The input module generates an embed-
ding for each sentence in the description. The vi-

sual representation module uses these embeddings
to produce an intermediate visual representation
for each sentence. In parallel, the question mod-
ule produces an embedding for the question. The
spatial memory module then goes over the ques-
tion embedding, the sentence embeddings, and the
visual representation multiple times to update the
spatial memory. Finally, the answer module uses
the spatial memory to output the answer. Fig. 3
illustrates the overall architecture of DSMN.
Input Module: This module produces an embed-
ding for each sentence in the description. It is
therefore customized based on how the descrip-
tions are provided in a dataset. Since the descrip-
tions are in words for FloorPlanQA, a position en-
coding (PE) layer is used to produce the initial sen-
tence embeddings. This is done to ensure a fair
comparison with DMN+ (Xiong et al., 2016) and
MemN2N (Sukhbaatar et al., 2015), which also
use a PE layer. A PE layer combines the word-
embeddings to encode the position of words in a
sentence (Please see (Sukhbaatar et al., 2015) for
more information). For ShapeIntersection, the de-
scription is given as a sequence of vectors. There-
fore, two FC layers (with ReLU in between) are
used to obtain the initial sentence embeddings.

These initial sentence embeddings are then
fed into a bidirectional Gated Recurrent Unit
(GRU) (Cho et al., 2014) to propagate the infor-
mation across sentences. Let −→si and←−si be the re-
spective output of the forward and backward GRU
at ith step. Then, the final sentence embedding for
the ith sentence is given by si = −→si +←−si .
Question Module: This module produces an em-
bedding for the question. It is also customized to
the dataset. For FloorPlanQA, the embeddings of
the words in the question are fed to a GRU, and the
final hidden state of the GRU is used as the ques-
tion embedding. For ShapeIntersection, the ques-
tion is always fixed, so we use an all-zero vector
as the question embedding.
Visual Representation Module: This module
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generates a visual representation for each sen-
tence in the description. It consists of two sub-
components: an attention network and an encoder-
decoder network. The attention network gathers
information from previous sentences that is impor-
tant to produce the visual representation for the
current sentence. For example, suppose the cur-
rent sentence describes the location of an object
with respect to a room. Then in order to infer the
location of the object with respect to the house,
one needs the location of the room with respect
to the house, which is described in some previous
sentence.

The encoder-decoder network encodes the vi-
sual information gathered by the attention net-
work, combines it with the current sentence em-
bedding, and decodes the visual representation of
the current sentence. An encoder (En(.)) takes an
image as input and produces an embedding, while
a decoder (De(.)) takes an embedding as input and
produces an image. An encoder is composed of
series of convolution layers and a decoder is com-
posed of series of deconvolution layers.

Suppose we are currently processing the sen-
tence st. This means we have already pro-
cessed the sentences s1, s2, . . . , st−1 and pro-
duced the corresponding visual representations
S1,S2, . . . ,St−1. We also add s0 and S0, which
are all-zero vectors to represent the null sentence.
The attention network produces a scalar attention
weight ai for the ith sentence which is given by
ai = Softmax(ws

tzi + bs) where zi = [|si −
st|; si ◦ st]. Here, ws is a vector, bs is a scalar,
◦ represents element-wise multiplication, |.| rep-
resents element-wise absolute value, and [v1;v2]
represents the concatenation of vectors v1 and v2.

The gathered visual information is S̄t =∑t−1
i=0 aiSi. It is fed into the encoder-decoder net-

work. The visual representation for st is given by
St = Des

([
st;Ens(S̄t)

])
. The parameters of

Ens(.), Des(), ws, and bs are shared across mul-
tiple iterations.

In the proposed model, we make the simplify-
ing assumption that the visual representation of the
current sentence does not depend on future sen-
tences. In other words, it can be completely de-
termined from the previous sentences in the de-
scription. Both FloorPlanQA and ShapeIntersec-
tion satisfy this assumption.
Spatial Memory Module: This module gathers
relevant information from the description and up-

dates memory accordingly. Similar to DMN+
and MemN2N, it collects information and updates
memory multiple times to perform transitive rea-
soning. One iteration of information collection
and memory update is referred as a ‘hop’.

The memory consists of two components: a 2D
spatial memory and a tag vector. The 2D spatial
memory can be thought of as a visual scratch pad
on which the network ‘sketches’ out the visual in-
formation. The tag vector is meant to represent
what is ‘sketched’ on the 2D spatial memory. For
example, the network can sketch the location of
room 1 on its 2D spatial memory, and store the
fact that it has sketched room 1 in the tag vector.

As mentioned earlier, each step of the spatial
memory module involves gathering of relevant in-
formation and updating of memory. Suppose we
are in step t. Let M (t−1) represent the 2D spa-
tial memory and m(t−1) represent the tag vector
after step t − 1. The network gathers the relevant
information by calculating the attention value for
each sentence based on the question and the cur-
rent memory. For sentence si, the scalar attention
value g(t)i equal to Softmax(wt

yp
(t)
i + by), where

p
(t)
i is given as

p
(t)
i =

[
|m(t−1) − si|; m(t−1) ◦ si; |q − si|;

q ◦ si; En(t)p1 (|M (t−1) − Si|);
En(t)p2 (M (t−1) ◦ Si)

]
(1)

M (0) and m(0) represent initial blank memory,
and their elements are all zero. Then, gathered in-
formation is represented as a context tag vector,
c(t) = AttGRU(gi

(t)si) and 2D context, C(t) =∑n
i=0 gi

(t)Si. Please refer to (Xiong et al., 2016)
for information about AttGRU(.). Finally, we use
the 2D context and context tag vector to update the
memory as follows:

m(t) = ReLU
(
Wm

(t)
[
m(t−1); q; c(t);

Enc(C
(t))
]

+ bm
(t)
)

(2)

M (t) = De(t)m

([
m(t); En(t)m (M (t−1))

])
(3)

Answer Module: This module uses the final
memory and question embedding to generate the
output. The feature vector used for predicting the
answer is given by f , whereM (T ) andm(T ) rep-
resent the final memory.

f =
[
Enf (M (T )); m(T ); q

]
(4)
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Figure 3: The architecture of the proposed Dynamic Spatial Memory Network (DSMN).

To obtain the output, an FC layer is applied to f
in case of regression, while the FC layer is fol-
lowed by softmax in case of classification. To
keep DSMN similar to DMN+, we apply a dropout
layer on sentence encodings (si) and f .

4.1 DSMN as a strict generalization of DMN

DSMN is a strict generalization of a DMN+. If we
remove the visual representation of the input along
with the 2D spatial memory, and just use vector
representations with memory tags, then a DSMN
reduces to DMN+. This ensures that comparison
with DMN+ is fair.

4.2 DSMN with or without intermediate
visual supervision

As described in previous sections, a DSMN forms
an intermediate visual representation of the input.
Therefore, if we have a ‘ground-truth’ visual rep-
resentation for the training data, we could use it to
train our network better. This leads to two differ-
ent ways for training a DSMN, one with interme-
diate visual supervision and one without it. With-
out intermediate visual supervision, we train the
network in an end-to-end fashion by using a loss
(Lw/o vi) that compares the predicted answer with
the ground truth. With intermediate visual super-
vision, we train our network using an additional
visual representation loss (Lvi) that measures how
close the generated visual representation is to the
ground-truth representation. Thus, the loss used
for training with intermediate supervision is given
by Lw vi = λviLvi + (1− λvi)Lw/o vi, where λvi
is a hyperparameter which can be tuned for each
dataset. Note that in neither case do we need any
visual input once the network is trained. During
testing, the only input to the network is the de-
scription and question.

Also note that we can provide intermediate vi-

sual supervision to DSMN even when the visual
representations for only a portion of samples in
the training data are available. This can be useful
when obtaining visual representation is expensive
and time-consuming.

5 Experiments

Baselines: LSTM (Hochreiter and Schmidhu-
ber, 1997) is a popular neural network for se-
quence processing tasks. We use two versions
of LSTM-based baselines. LSTM-1 is a com-
mon version that is used as a baseline for tex-
tual QA (Sukhbaatar et al., 2015; Graves et al.,
2016). In LSTM-1, we concatenate all the sen-
tences and the question to a single string. For
FloorPlanQA, we do word embedding look-up,
while for ShapeIntersection, we project each real
number into higher dimension via a series of FC
layers. The sequence of vectors is fed into an
LSTM. The final output vector of the LSTM is
then used for prediction.

We develop another version of LSTM that we
call LSTM-2, in which the question is concate-
nated to the description. We use a two-level hier-
archy to embed the description. We first extract an
embedding for each sentence. For FloorPlanQA,
we use an LSTM to get the sentence embeddings,
and for ShapeIntersection, we use a series of FC
layers. We then feed the sentence embeddings into
an LSTM, whose output is used for prediction.

Further, we compare our model
to DMN+ (Xiong et al., 2016) and
MemN2N (Sukhbaatar et al., 2015), which
achieved state-of-the-art results on bAbI (Weston
et al., 2015). In particular, we compare the 3-hop
versions of DSMN, DMN+, and MemN2N.
Training Details: We used ADAM (Kingma and
Ba, 2014) to train all models, and the learning rate
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FloorPlanQA ShapeIntersection
MODEL (accuracy in %) (rmse)
LSTM-1 41.36 3.28
LSTM-2 50.69 2.99
MemN2N 45.92 3.51
DMN+ 60.29 2.98
DSMN 68.01 2.84
DSMN* 97.73 2.14

(a) The test set performance of different models on Floor-
PlanQA and ShapeIntersection. DSMN* refers to the model
with intermediate supervision.

FloorPlanQA
MODEL f in Eqn. 4 (accuracy in %)

DSMN
[
m(T ); q

]
67.65

DSMN
[
Enf (M

(T )); q
]

43.90
DSMN

[
Enf (M

(T )); m(T ); q
]

68.12
DSMN*

[
m(T ); q

]
97.24

DSMN*
[
Enf (M

(T )); q
]

95.17
DSMN*

[
Enf (M

(T )); m(T ); q
]

98.08

(b) The validation set performances for the ablation study on
the usefulness of tag (m(T )) and 2D spatial memory (M (T ))
in the answer feature vector for f .

FloorPlanQA
MODEL (accuracy in %)
1-Hop DSMN 63.32
2-Hop DSMN 65.59
3-Hop DSMN 68.12
1-Hop DSMN* 90.09
2-Hop DSMN* 97.45
3-Hop DSMN* 98.08

(c) The validation set performance for the ablation study on
variation in performance with hops.

Table 2: Experimental results showing compari-
son with baselines, and ablation study of DSMN

for each model is tuned for each dataset. We tune
the embedding size and l2 regularization weight
for each model and dataset pair separately. For re-
producibility, the value of the best-tuned hyperpa-
rameters is mentioned in the supplementary ma-
terial. As reported by (Sukhbaatar et al., 2015;
Kumar et al., 2016; Henaff et al., 2016), we also
observe that the results of memory networks are
unstable across multiple runs. Therefore for each
hyperparameter choice, we run all the models 10
times and select the run with the best performance
on the validation set. For FloorPlanQA, all models
are trained up to a maximum of 1600 epochs, with
early stopping after 80 epochs if the validation ac-
curacy did not increase. The maximum number of
epochs for ShapeIntersection is 800 epochs, with
early stopping after 80 epochs. Additionally, we
modify the input module and question module of
DMN+ and MemN2N to be same as ours for the
ShapeIntersection dataset.

For MemN2N, we use the publicly available im-

(a) Test set rmse on ShapeIntersection.

(b) Test set accuracy on FloorPlanQA.

Figure 4: Performance of DSMN* with varying
percentage of intermediate visual supervision.

plementation2 and train it exactly as all other mod-
els (same optimizer, total epochs, and early stop-
ping criteria) for fairness. While the reported best
result for MemN2N is on the version with posi-
tion encoding, linear start training, and random-
injection of time index noise (Sukhbaatar et al.,
2015), the version we use has only position encod-
ing. Note that the comparison is still meaningful
because linear start training and time index noise
are not used in DMN+ (and as a result, neither in
our proposed DSMN).
Results: The results for FloorPlanQA and
ShapeIntersection are summarized in Table 2a.
For brevity, we will refer to the DSMN model
trained without intermediate visual supervision as
DSMN, and the one with intermediate visual su-
pervision as DSMN*. We see that DSMN (i.e
the one without intermediate supervision) outper-
forms DMN+, MemN2N and the LSTM baselines
on both datasets. However, we consider DSMN to
be only slightly better than DMN+ because both
are observed to be unstable across multiple runs
and so the gap between the two has a large vari-
ance. Finally, DSMN* outperforms all other ap-
proaches by a large margin on both datasets, which
demonstrates the utility of visual supervision in
proposed tasks. While the variation can be signif-
icant across runs, if we run each model 10 times
and choose the best run, we observe consistent re-
sults. We visualized the intermediate visual repre-
sentations, but when no visual supervision is pro-

2https://github.com/domluna/memn2n
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Figure 5: Attention values on each sentence during different memory ‘hops’ for a sample from Floor-
PlanQA. Darker color indicates more attention. To answer, one needs the location of room 1’s door and
the house door. To infer the location of room 1’s door, DSMN* directly jumps to sent. 3. Since DMN+
does not form a visual representation, it tries to infer the location of room 1’s door w.r.t the house by
finding the location of the room’s door w.r.t the room (sent. 3) and the location of the room w.r.t the
house (sent. 2). Both DSMN* and DMN+ use one hop to infer the location of the house door (sent. 1).

vided, they were not interpretable (sometimes they
looked like random noise, sometimes blank). In
the case when visual supervision is provided, the
intermediate visual representation is well-formed
and similar to the ground-truth.

We further investigate how DSMN* performs
when intermediate visual supervision is available
for only a portion of training samples. As shown
in Fig. 4, DSMN* outperforms DMN+ by a large
margin, even when intermediate visual supervi-
sion is provided for only 1% of the training sam-
ples. This can be useful when obtaining visual
representations is expensive and time-consuming.
One possible justification for why visual supervi-
sion (even in a small amount) helps a lot is that
it constrains the high-dimensional space of possi-
ble intermediate visual representations. With lim-
ited data and no explicit supervision, automati-
cally learning these high-dimensional representa-
tions can be difficult.

Additonally, we performed ablation study (see
Table 2b) on the usefulness of final memory tag
vector (m(T )) and 2D spatial memory (M (T ))
in the answer feature vector f (see Eqn. 4). We
removed each of them one at a time, and re-
trained (with hyperparameter tuning) the DSMN
and DSMN* models. Note that they are re-
moved only from the final feature vector f , and
both of them are still coupled. The model
with both tag and 2D spatial memory (f =[
Enf (M (T ));m(T ); q

]
) performs slightly better

than the only tag vector model (f =
[
m(T ); q

]
).

Also, as expected the only 2D spatial memory
model (f =

[
Enf (M (T )); q

]
) performs much

better for DSMN* than DSMN becuase of the in-
termdiate supervision.

Further, Table 2c shows the effect of varying the
number of memory ‘hops’ for DSMN and DSMN*

on FloorPlanQA. The performance of both DSMN
and DSMN* increases with the number of ‘hops’.
Note that even the 1-hop DSMN* performs well
(better than baselines). Also, note that the differ-
ence in performance between 2-hop DSMN* and
3-hop DSMN* is not much. A possible justifi-
cation for why DSMN* performs well even with
fewer memory ‘hops’ is that DSMN* completes
some ‘hops of reasoning’ in the visual representa-
tion module itself. Suppose one needs to find the
location of an object placed in a room, w.r.t. the
house. To do so, one first needs to find the location
of the room w.r.t. the house, and then the location
of the object w.r.t. the room. However, if one has
already ‘sketched’ out the location of the object in
the house, one can directly fetch it. It is during
sketching the object’s location that one has com-
pleted a ‘hop of reasoning’. For a sample from
FloorPlanQA, we visualize the attention maps in
the memory module of 3-hop DMN+ and 3-hop
DSMN* in Fig. 5. To infer the location of room 1’s
door, DSMN* directly fetches sentence 3, while
DMN+ tries to do so by fetching two sentences
(one for the room’s door location w.r.t the room
and one for the room’s location w.r.t the house).
Conclusion: We have investigated how to use
DNNs for modeling visual thinking. We have in-
troduced two synthetic QA datasets, FloorPlanQA
and ShapeIntersection, that test a system’s ability
to think visually. We have developed DSMN, a
novel DNN that reasons in the visual space for
answering questions. Experimental results have
demonstrated the effectiveness of DSMN for ge-
ometric reasoning on synthetic data.
Acknowledgements: This work is partially sup-
ported by the National Science Foundation under
Grant No. 1633157.
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Abstract

Building intelligent agents that can com-
municate with and learn from humans in
natural language is of great value. Su-
pervised language learning is limited by
the ability of capturing mainly the statis-
tics of training data, and is hardly adaptive
to new scenarios or flexible for acquiring
new knowledge without inefficient retrain-
ing or catastrophic forgetting. We high-
light the perspective that conversational
interaction serves as a natural interface
both for language learning and for novel
knowledge acquisition and propose a joint
imitation and reinforcement approach for
grounded language learning through an in-
teractive conversational game. The agent
trained with this approach is able to ac-
tively acquire information by asking ques-
tions about novel objects and use the just-
learned knowledge in subsequent conver-
sations in a one-shot fashion. Results com-
pared with other methods verified the ef-
fectiveness of the proposed approach.

1 Introduction

Language is one of the most natural forms of com-
munication for human and is typically viewed as
fundamental to human intelligence; therefore it is
crucial for an intelligent agent to be able to use lan-
guage to communicate with human as well. While
supervised training with deep neural networks has
led to encouraging progress in language learning,
it suffers from the problem of capturing mainly
the statistics of training data, and from a lack of
adaptiveness to new scenarios and being flexible
for acquiring new knowledge without inefficient
retraining or catastrophic forgetting. Moreover,
supervised training of deep neural network mod-

els needs a large number of training samples while
many interesting applications require rapid learn-
ing from a small amount of data, which poses an
even greater challenge to the supervised setting.

In contrast, humans learn in a way very different
from the supervised setting (Skinner, 1957; Kuhl,
2004). First, humans act upon the world and learn
from the consequences of their actions (Skinner,
1957; Kuhl, 2004; Petursdottir and Mellor, 2016).
While for mechanical actions such as movement,
the consequences mainly follow geometrical and
mechanical principles, for language, humans act
by speaking, and the consequence is typically a
response in the form of verbal and other behav-
ioral feedback (e.g., nodding) from the conversa-
tion partner (i.e., teacher). These types of feed-
back typically contain informative signals on how
to improve language skills in subsequent conver-
sations and play an important role in humans’
language acquisition process (Kuhl, 2004; Peturs-
dottir and Mellor, 2016). Second, humans have
shown a celebrated ability to learn new concepts
from small amount of data (Borovsky et al., 2003).
From even just one example, children seem to be
able to make inferences and draw plausible bound-
aries between concepts, demonstrating the ability
of one-shot learning (Lake et al., 2011).

The language acquisition process and the one-
shot learning ability of human beings are both
impressive as a manifestation of human intelli-
gence, and are inspiring for designing novel set-
tings and algorithms for computational language
learning. In this paper, we leverage conversation
as both an interactive environment for language
learning (Skinner, 1957) and a natural interface
for acquiring new knowledge (Baker et al., 2002).
We propose an approach for interactive language
acquisition with one-shot concept learning ability.
The proposed approach allows an agent to learn
grounded language from scratch, acquire the trans-
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ferable skill of actively seeking and memorizing
information about novel objects, and develop the
one-shot learning ability, purely through conver-
sational interaction with a teacher.

2 Related Work

Supervised Language Learning. Deep neural
network-based language learning has seen great
success on many applications, including machine
translation (Cho et al., 2014b), dialogue genera-
tion (Wen et al., 2015; Serban et al., 2016), image
captioning and visual question answering (?Antol
et al., 2015). For training, a large amount of la-
beled data is needed, requiring significant efforts
to collect. Moreover, this setting essentially cap-
tures the statistics of training data and does not re-
spect the interactive nature of language learning,
rendering it less flexible for acquiring new knowl-
edge without retraining or forgetting (Stent and
Bangalore, 2014).

Reinforcement Learning for Sequences. Some
recent studies used reinforcement learning (RL)
to tune the performance of a pre-trained language
model according to certain metrics (Ranzato et al.,
2016; Bahdanau et al., 2017; Li et al., 2016; Yu
et al., 2017). Our work is also related to RL in
natural language action space (He et al., 2016) and
shares a similar motivation with Weston (2016)
and Li et al. (2017), which explored language
learning through pure textual dialogues. However,
in these works (He et al., 2016; Weston, 2016;
Li et al., 2017), a set of candidate sequences is
provided and the action is to select one from the
set. Our main focus is rather on learning language
from scratch: the agent has to learn to generate a
sequence action rather than to simply select one
from a provided candidate set.
Communication and Emergence of Language.
Recent studies have examined learning to com-
municate (Foerster et al., 2016; Sukhbaatar et al.,
2016) and invent language (Lazaridou et al., 2017;
Mordatch and Abbeel, 2018). The emerged lan-
guage needs to be interpreted by humans via post-
processing (Mordatch and Abbeel, 2018). We,
however, aim to achieve language learning from
the dual perspectives of understanding and gener-
ation, and the speaking action of the agent is read-
ily understandable without any post-processing.
Some studies on language learning have used a
guesser-responder setting in which the guesser
tries to achieve the final goal (e.g., classification)

by collecting additional information through ask-
ing the responder questions (Strub et al., 2017;
Das et al., 2017). These works try to optimize the
question being asked to help the guesser achieve
the final goal, while we focus on transferable
speaking and one-shot ability.

One-shot Learning and Active Learning. One-
shot learning has been investigated in some re-
cent works (Lake et al., 2011; Santoro et al.,
2016; Woodward and Finn, 2016). The memory-
augmented network (Santoro et al., 2016) stores
visual representations mixed with ground truth
class labels in an external memory for one-shot
learning. A class label is always provided follow-
ing the presentation of an image; thus the agent
receives information from the teacher in a passive
way. Woodward and Finn (2016) present efforts
toward active learning, using a vanilla recurrent
neural network (RNN) without an external mem-
ory. Both lines of study focus on image classi-
fication only, meaning the class label is directly
provided for memorization. In contrast, we tar-
get language and one-shot learning via conversa-
tional interaction, and the learner has to learn to
extract important information from the teacher’s
sentences for memorization.

3 The Conversational Game

We construct a conversational game inspired by
experiments on language development in infants
from cognitive science (Waxman, 2004). The
game is implemented with the XWORLD simula-
tor (Yu et al., 2018; Zhang et al., 2017) and is pub-
licly available online.1 It provides an environment
for the agent2 to learn language and develop the
one-shot learning ability. One-shot learning here
means that during test sessions, no further training
happens to the agent and it has to answer teacher’s
questions correctly about novel images of never-
before-seen classes after being taught only once
by the teacher, as illustrated in Figure 1. To suc-
ceed in this game, the agent has to learn to 1) speak
by generating sentences, 2) extract and memo-
rize useful information with only one exposure
and use it in subsequent conversations, and 3) be-
have adaptively according to context and its own
knowledge (e.g., asking questions about unknown
objects and answering questions about something
known), all achieved through interacting with the

1https://github.com/PaddlePaddle/XWorld
2We use the term agent interchangeably with learner.
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Figure 1: Interactive language and one-shot concept learning. Within a session Sl, the teacher may
ask questions, answer learner’s questions, make statements, or say nothing. The teacher also provides
reward feedback based on learner’s responses as (dis-)encouragement. The learner alternates between in-
terpreting teacher’s sentences and generating a response through interpreter and speaker. Left: Initially,
the learner can barely say anything meaningful. Middle: Later it can produce meaningful responses for
interaction. Right: After training, when confronted with an image of cherry, which is a novel class that
the learner never saw before during training, the learner can ask a question about it (“what is it”) and
generate a correct statement (“this is cherry”) for another instance of cherry after only being taught once.

teacher. This makes our game distinct from other
seemingly relevant games, in which the agent can-
not speak (Wang et al., 2016) or “speaks” by se-
lecting a candidate from a provided set (He et al.,
2016; Weston, 2016; Li et al., 2017) rather than
generating sentences by itself, or games mainly
focus on slow learning (Das et al., 2017; Strub
et al., 2017) and falls short on one-shot learning.

In this game, sessions (Sl) are randomly in-
stantiated during interaction. Testing sessions are
constructed with a separate dataset with concepts
that never appear before during training to eval-
uate the language and one-shot learning ability.
Within a session, the teacher randomly selects an
object and interacts with the learner about the ob-
ject by randomly 1) posing a question (e.g., “what
is this”), 2) saying nothing (i.e., “”) or 3) mak-
ing a statement (e.g., “this is monkey”). When
the teacher asks a question or says nothing, i) if
the learner raises a question, the teacher will pro-
vide a statement about the object asked (e.g., “it is
frog”) with a question-asking reward (+0.1); ii) if
the learner says nothing, the teacher will still pro-
vide an answer (e.g., “this is elephant”) but with
an incorrect-reply reward (−1) to discourage the
learner from remaining silent; iii) for all other in-
correct responses from the learner, the teacher will
provide an incorrect-reply reward and move on to
the next random object for interaction. When the
teacher generates a statement, the learner will re-
ceive no reward if a correct statement is gener-
ated otherwise an incorrect-reply reward will be
given. The session ends if the learner answers
the teacher’s question correctly, generates a cor-
rect statement when the teacher says nothing (re-
ceiving a correct-answer reward +1), or when the

maximum number of steps is reached. The sen-
tence from teacher at each time step is generated
using a context-free grammar as shown in Table 1.

A success is reached if the learner behaves cor-
rectly during the whole session: asking questions
about novel objects, generating answers when
asked, and making statements when the teacher
says nothing about objects that have been taught
within the session. Otherwise it is a failure.

Table 1: Grammar for the teacher’s sentences.
start → question | silence | statement
question → Q1 | Q2 | Q3
silence → “ ”
statement→ A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8
Q1 → “what”
Q2 → “what” M
Q3 → “tell what” N
M → “is it” | “is this” | “is there” | “do you see” |

“can you see” | “do you observe” | “can you
observe”

N → “it is” | “this is” | “there is” | “you see” |
“you can see” | “you observe” | “you can
observe”

A1 → G
A2 → “it is” G
A3 → “this is” G
A4 → “there is” G
A5 → “i see” G
A6 → “i observe” G
A7 → “i can see” G
A8 → “i can observe” G
G → object name

4 Interactive Language Acquisition via
Joint Imitation and Reinforcement

Motivation. The goal is to learn to converse and
develop the one-shot learning ability by convers-
ing with a teacher and improving from teacher’s
feedback. We propose to use a joint imitation and
reinforce approach to achieve this goal. Imitation
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helps the agent to develop the basic ability to
generate sensible sentences. As learning is done
by observing the teacher’s behaviors during con-
version, the agent essentially imitates the teacher
from a third-person perspective (Stadie et al.,
2017) rather than imitating an expert agent who
is conversing with the teacher (Das et al., 2017;
Strub et al., 2017). During conversations, the
agent perceives sentences and images without any
explicit labeling of ground truth answers, and it
has to learn to make sense of raw perceptions,
extract useful information, and save it for later
use when generating an answer to teacher’s ques-
tion. While it is tempting to purely imitate the
teacher, the agent trained this way only devel-
ops echoic behavior (Skinner, 1957), i.e., mimicry.
Reinforce leverages confirmative feedback from
the teacher for learning to converse adaptively be-
yond mimicry by adjusting the action policy. It
enables the learner to use the acquired speaking
ability and adapt it according to reward feedback.
This is analogous to some views on the babies’
language-learning process that babies use the ac-
quired speaking skills by trial and error with par-
ents and improve according to the consequences of
speaking actions (Skinner, 1957; Petursdottir and
Mellor, 2016). The fact that babies don’t fully de-
velop the speaking capabilities without the ability
to hear (Houston and Miyamoto, 2011), and that it
is hard to make a meaningful conversation with a
trained parrot signifies the importance of both im-
itation and reinforcement in language learning.

Formulation. The agent’s response can be mod-
eled as a sample from a probability distribu-
tion over the possible sequences. Specifically,
for one session, given the visual input vt and
conversation history Ht={w1,a1, · · · ,wt}, the
agent’s response at can be generated by sampling
from a distribution of the speaking action at∼
pSθ(a|Ht,vt). The agent interacts with the teacher
by outputting the utterance at and receives feed-
back from the teacher in the next step, with wt+1 a
sentence as verbal feedback and rt+1 reward feed-
back (with positive values as encouragement while
negative values as discouragement, according to
at, as described in Section 3). Central to the goal
is learning pSθ(·). We formulate the problem as the
minimization of a cost function as:

Lθ=EW
[
−∑t log pIθ(w

t|·)
]

︸ ︷︷ ︸
Imitation LIθ

+EpSθ
[
−∑t[γ]t−1 · rt

]
︸ ︷︷ ︸

Reinforce LRθ

where EW(·) is the expectation over all the sen-
tences W from teacher, γ is a reward discount
factor, and [γ]t denotes the exponentiation over γ.
While the imitation term learns directly the predic-
tive distribution pIθ(w

t|Ht−1,at), it contributes to
pSθ(·) through parameter sharing between them.

Architecture. The learner comprises four ma-
jor components: external memory, interpreter,
speaker, and controller, as shown in Figure 2. Ex-
ternal memory is flexible for storing and retriev-
ing information (Graves et al., 2014; Santoro et al.,
2016), making it a natural component of our net-
work for one-shot learning. The interpreter is re-
sponsible for interpreting the teacher’s sentences,
extracting information from the perceived signals,
and saving it to the external memory. The speaker
is in charge of generating sentence responses with
reading access to the external memory. The re-
sponse could be a question asking for informa-
tion or a statement answering a teacher’s question,
leveraging the information stored in the external
memory. The controller modulates the behavior
of the speaker to generate responses according to
context (e.g., the learner’s knowledge status).

At time step t, the interpreter uses an
interpreter-RNN to encode the input sentence wt

from the teacher as well as historical conversa-
tional information into a state vector htI. htI is
then passed through a residue-structured network,
which is an identity mapping augmented with a
learnable controller f(·) implemented with fully
connected layers for producing ct. Finally, ct is
used as the initial state of the speaker-RNN for
generating the response at. The final state htlast of
the speaker-RNN will be used as the initial state of
the interpreter-RNN at the next time step.

4.1 Imitation with Memory Augmented
Neural Network for Echoic Behavior

The teacher’s way of speaking provides a source
for the agent to imitate. For example, the syn-
tax for composing a sentence is a useful skill
the agent can learn from the teacher’s sentences,
which could benefit both interpreter and speaker.
Imitation is achieved by predicting teacher’s future
sentences with interpreter and parameter sharing
between interpreter and speaker. For prediction,
we can represent the probability of the next sen-
tence wt conditioned on the image vt as well as
previous sentences from both the teacher and the
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Figure 2: Network structure. (a) Illustration of the overall architecture. At each time step, the learner
uses the interpreter module to encode the teacher’s sentence. The visual perception is also encoded and
used as a key to retrieve information from the external memory. The last state of the interpreter-RNN will
be passed through a controller. The controller’s output will be added to the input and used as the initial
state of the speaker-RNN. The interpreter-RNN will update the external memory with an importance
(illustrated with transparency) weighted information extracted from the perception input. ‘Mix’ denotes
a mixture of word embedding vectors. (b) The structures of the interpreter-RNN (top) and the speaker-
RNN (bottom). The interpreter-RNN and speaker-RNN share parameters.

learner {w1,a1, · · · ,wt−1,at−1} as

pIθ(w
t|Ht−1,at−1,vt)

=
∏
i p

I
θ(w

t
i |wt1:i−1,ht−1last ,v

t),
(1)

where ht−1last is the last state of the RNN at time step
t−1 as the summarization of {Ht−1,at−1} (c.f.,
Figure 2), and i indexes words within a sentence.

It is natural to model the probability of the i-th
word in the t-th sentence with an RNN, where the
sentences up to t and words up to i within the t-th
sentence are captured by a fixed-length state vec-
tor hti = RNN(hti−1, w

t
i). To incorporate knowl-

edge learned and stored in the external memory,
the generation of the next word is adaptively based
on i) the predictive distribution of the next word
from the state of the RNN to capture the syntac-
tic structure of sentences, and ii) the information
from the external memory to represent the previ-
ously learned knowledge, via a fusion gate g:

pIθ(w
t
i |hti,vt) = (1− g) · ph + g · pr, (2)

where ph = softmax
(
ETfMLP(hti)

)
and pr =

softmax
(
ETr

)
. E∈Rd×k is the word embedding

table, with d the embedding dimension and k the
vocabulary size. r is a vector read out from the
external memory using a visual key as detailed in
the next section. fMLP(·) is a multi-layer Multi-
Layer Perceptron (MLP) for bridging the seman-
tic gap between the RNN state space and the word

embedding space. The fusion gate g is computed
as g = f(hti, c), where c is the confidence score
c=max(ETr), and a well-learned concept should
have a large score by design (Appendix A.2).

Multimodal Associative Memory. We use a mul-
timodal memory for storing visual (v) and sen-
tence (s) features with each modality while pre-
serving the correspondence between them (Badde-
ley, 1992). Information organization is more struc-
tured than the single modality memory as used
in Santoro et al. (2016) and cross modality re-
trieval is straightforward under this design. A vi-
sual encoder implemented as a convolutional neu-
ral network followed by fully connected layers is
used to encode the visual image v into a visual
key kv, and then the corresponding sentence fea-
ture can be retrieved from the memory as:

r← READ(kv,Mv,Ms). (3)

Mv and Ms are memories for visual and sen-
tence modalities with the same number of slots
(columns). Memory read is implemented as r=
Msα with α a soft reading weight obtained
through the visual modality by calculating the co-
sine similarities between kv and slots of Mv.

Memory write is similar to Neural Turing Ma-
chine (Graves et al., 2014), but with a content im-
portance gate gmem to adaptively control whether
the content c should be written into memory:

Mm ← WRITE(Mm, cm, gmem), m∈{v, s}.
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For the visual modality cv,kv. For the sentence
modality, cs has to be selectively extracted from
the sentence generated by the teacher. We use an
attention mechanism to achieve this by cs=Wη,
where W denotes the matrix with columns be-
ing the embedding vectors of all the words in
the sentence. η is a normalized attention vector
representing the relative importance of each word
in the sentence as measured by the cosine sim-
ilarity between the sentence representation vec-
tor and each word’s context vector, computed us-
ing a bidirectional-RNN. The scalar-valued con-
tent importance gate gmem is computed as a func-
tion of the sentence from the teacher, meaning that
the importance of the content to be written into
memory depends on the content itself (c.f., Ap-
pendix A.3 for more details). The memory write
is achieved with an erase and an add operation:

M̃m = Mm −Mm � (gmem · 1 · βT),

Mm = M̃m + gmem · cm · βT, m∈{v, s}.

� denotes Hadamard product and the write loca-
tion β is determined with a Least Recently Used
Access mechanism (Santoro et al., 2016).

4.2 Context-adaptive Behavior Shaping
through Reinforcement Learning

Imitation fosters the basic language ability for
generating echoic behavior (Skinner, 1957), but
it is not enough for conversing adaptively with
the teacher according to context and the knowl-
edge state of the learner. Thus we leverage re-
ward feedback to shape the behavior of the agent
by optimizing the policy using RL. The agent’s re-
sponse at is generated by the speaker, which can
be modeled as a sample from a distribution over all
possible sequences, given the conversation history
Ht={w1,a1, · · · ,wt} and visual input vt:

at ∼ pSθ(a|Ht,vt). (4)

As Ht can be encoded by the interpreter-RNN
as htI, the action policy can be represented as
pSθ(a|htI,vt). To leverage the language skill that
is learned via imitation through the interpreter,
we can generate the sentence by implementing the
speaker with an RNN, sharing parameters with
the interpreter-RNN, but with a conditional signal
modulated by a controller network (Figure 2):

pSθ(at|htI,vt) = pIθ(a
t|htI + f(htI, c),v

t). (5)

The reason for using a controller f(·) for modula-
tion is that the basic language model only offers
the learner the echoic ability to generate a sen-
tence, but not necessarily the adaptive behavior
according to context (e.g. asking questions when
facing novel objects and providing an answer for
a previously learned object according to its own
knowledge state). Without any additional module
or learning signals, the agent’s behaviors would be
the same as those of the teacher because of param-
eter sharing; thus, it is difficult for the agent to
learn to speak in an adaptive manner.

To learn from consequences of speaking ac-
tions, the policy pSθ(·) is adjusted by maximizing
expected future reward as represented by LRθ . As a
non-differentiable sampling operation is involved
in Eqn.(4), policy gradient theorem (Sutton and
Barto, 1998) is used to derive the gradient for up-
dating pSθ(·) in the reinforce module:

∇θLRθ = EpSθ
[∑

tA
t · ∇θ log pSθ(at|ct)

]
, (6)

where At =V (htI, c
t)− rt+1−γV (ht+1

I , ct+1) is
the advantage (Sutton and Barto, 1998) estimated
using a value network V (·). The imitation mod-
ule contributes by implementing LIθ with a cross-
entropy loss (Ranzato et al., 2016) and minimizing
it with respect to the parameters in pIθ(·), which are
shared with pSθ(·). The training signal from imita-
tion takes the shortcut connection without going
through the controller. More details on f(·), V (·)
are provided in Appendix A.2.

5 Experiments

We conduct experiments with comparison to base-
line approaches. We first experiment with a word-
level task in which the teacher and the learner
communicate a single word each time. We then
investigate the impact of image variations on con-
cept learning. We further perform evaluation on
the more challenging sentence-level task in which
the teacher and the agent communicate in the form
of sentences with varying lengths.

Setup. To evaluate the performance in learning a
transferable ability, rather than the ability of fit-
ting a particular dataset, we use an Animal dataset
for training and test the trained models on a Fruit
dataset (Figure 1). More details on the datasets are
provided in Appendix A.1. Each session consists
of two randomly sampled classes, and the maxi-
mum number of interaction steps is six.
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Figure 3: Evolution of reward during training for
the word-level task without image variations.

Baselines. The following methods are compared:

• Reinforce: a baseline model with the same
network structure as the proposed model and
trained using RL only, i.e. minimizing LRθ ;
• Imitation: a recurrent encoder decoder (Serban

et al., 2016) model with the same structure as
ours and trained via imitation (minimizing LIθ);
• Imitation+Gaussian-RL: a joint imitation and

reinforcement method using a Gaussian pol-
icy (Duan et al., 2016) in the latent space of the
control vector ct (Zhang et al., 2017). The pol-
icy is changed by modifying the control vector
ct the action policy depends upon.

Training Details. The training algorithm is imple-
mented with the deep learning platform PaddlePad-

dle.3 The whole network is trained from scratch in
an end-to-end fashion. The network is randomly
initialized without any pre-training and is trained
with decayed Adagrad (Duchi et al., 2011). We
use a batch size of 16, a learning rate of 1×10−5

and a weight decay rate of 1.6×10−3. We also
exploit experience replay (Wang et al., 2017; Yu
et al., 2018). The reward discount factor γ is
0.99, the word embedding dimension d is 1024
and the dictionary size k is 80. The visual im-
age size is 32×32, the maximum length of gen-
erated sentence is 6 and the memory size is 10.
Word embedding vectors are initialized as random
vectors and remain fixed during training. A sam-
pling operation is used for sentence generation
during training for exploration while a max op-
eration is used during testing both for Proposed
and for Reinforce baseline. The max operation is

3https://github.com/PaddlePaddle/Paddle

0

20

40

60

80

100

S
u

c
c
e
s
s
 R

a
te

 (
%

)

  Reinforce
  Imitation
  Imitation+Gaussian-RL
  Proposed

-6

-5

-4

-3

-2

-1

0

1

R
e
w

a
r
d

  Reinforce
  Imitation
  Imitation+Gaussian-RL
  Proposed
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Figure 5: Test success rate and reward for the
word-level task on the Fruit dataset under differ-
ent test image variation ratios for models trained
on the Animal dataset with a variation ratio of 0.5
(solid lines) and without variation (dashed lines).

used in both training and testing for Imitation and
Imitation+Gaussian-RL baselines.

5.1 Word-Level Task

In this experiment, we focus on a word-level task,
which offers an opportunity to analyze and under-
stand the underlying behavior of different algo-
rithms while being free from distracting factors.
Note that although the teacher speaks a word each
time, the learner still has to learn to generate a full-
sentence ended with an end-of-sentence symbol.

Figure 3 shows the evolution curves of the re-
wards during training for different approaches.
It is observed that Reinforce makes very little
progress, mainly due to the difficulty of explo-
ration in the large space of sequence actions.
Imitation obtains higher rewards than Reinforce
during training, as it can avoid some penalty
by generating sensible sentences such as ques-
tions. Imitation+Gaussian-RL gets higher re-
wards than both Imitation and Reinforce, indi-
cating that the RL component reshapes the action
policy toward higher rewards. However, as the
Gaussian policy optimizes the action policy indi-
rectly in a latent feature space, it is less efficient
for exploration and learning. Proposed achieves
the highest final reward during training.

We train the models using the Animal dataset and
evaluate them on the Fruit dataset; Figure 4 sum-
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(a) (b) (c) (d)

Figure 6: Visualization of the CNN features with t-SNE. Ten classes randomly sampled from (a-b) the
Animal dataset and (c-d) the Fruit dataset, with features extracted using the visual encoder trained without
(a, c) and with (b, d) image variations on the the Animal dataset.
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Figure 7: Example results of the proposed approach on novel classes. The learner can ask about the
new class and use the interpreter to extract useful information from the teacher’s sentence via word-level
attention η and content importance gmem jointly. The speaker uses the fusion gate g to adaptively switch
between signals from RNN (small g) and external memory (large g) to generate sentence responses.

marizes the success rate and average reward over
1K testing sessions. As can be observed, Rein-
force achieves the lowest success rate (0.0%) and
reward (−6.0) due to its inherent inefficiency in
learning. Imitation performs better than Rein-
force in terms of both its success rate (28.6%)
and reward value (−2.7). Imitation+Gaussian-
RL achieves a higher reward (−1.2) during test-
ing, but its success rate (32.1%) is similar to that
of Imitation, mainly due to the rigorous criteria
for success. Proposed reaches the highest success
rate (97.4%) and average reward (+1.1)4, outper-
forming all baseline methods by a large margin.
From this experiment, it is clear that imitation
with a proper usage of reinforcement is crucial for
achieving adaptive behaviors (e.g., asking ques-
tions about novel objects and generating answers
or statements about learned objects proactively).

5.2 Learning with Image Variations
To evaluate the impact of within-class image vari-
ations on one-shot concept learning, we train mod-
els with and without image variations, and during
testing compare their performance under different
image variation ratios (the chance of a novel image
instance being present within a session) as shown
in Figure 5. It is observed that the performance of

4The testing reward is higher than the training reward
mainly due to the action sampling in training for exploration.

the model trained without image variations drops
significantly as the variation ratio increases. We
also evaluate the performance of models trained
under a variation ratio of 0.5. Figure 5 clearly
shows that although there is also a performance
drop, which is expected, the performance degrades
more gradually, indicating the importance of im-
age variation for learning one-shot concepts. Fig-
ure 6 visualizes sampled training and testing im-
ages represented by their corresponding features
extracted using the visual encoder trained with-
out and with image variations. Clusters of visu-
ally similar concepts emerge in the feature space
when trained with image variations, indicating that
a more discriminative visual encoder was obtained
for learning generalizable concepts.

5.3 Sentence-Level Task

We further evaluate the model on sentence-level
tasks. Teacher’s sentences are generated using the
grammar as shown in Table 1 and have a number
of variations with sentence lengths ranging from
one to five. Example sentences from the teacher
are presented in Appendix A.1. This task is more
challenging than the word-level task in two ways:
i) information processing is more difficult as the
learner has to learn to extract useful information
which could appear at different locations of the
sentence; ii) the sentence generation is also more
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difficult than the word-level task and the learner
has to adaptively fuse information from RNN and
external memory to generate a complete sentence.
Comparison of different approaches in terms of
their success rates and average rewards on the
novel test set are shown in Figure 8. As can be
observed from the figure, Proposed again outper-
forms all other compared methods in terms of both
success rate (82.8%) and average reward (+0.8),
demonstrating its effectiveness even for the more
complex sentence-level task.

We also visualize the information extraction and
the adaptive sentence composing process of the
proposed approach when applied to a test set. As
shown in Figure 7, the agent learns to extract use-
ful information from the teacher’s sentence and
use the content importance gate to control what
content is written into the external memory. Con-
cretely, sentences containing object names have a
larger gmem value, and the word corresponding to
object name has a larger value in the attention vec-
tor η compared to other words in the sentence.
The combined effect of η and gmem suggests that
words corresponding to object names have higher
likelihoods of being written into the external mem-
ory. The agent also successfully learns to use
the external memory for storing the information
extracted from the teacher’s sentence, to fuse it
adaptively with the signal from the RNN (captur-
ing the syntactic structure) and to generate a com-
plete sentence with the new concept included. The
value of the fusion gate g is small when gener-
ating words like “what,”, “i,” “can,” and “see,”
meaning it mainly relies on the signal from the
RNN for generation (c.f., Eqn.(2) and Figure 7).
In contrast, when generating object names (e.g.,
“banana,” and “cucumber”), the fusion gate g has
a large value, meaning that there is more emphasis
on the signal from the external memory. This ex-
periment showed that the proposed approach is ap-
plicable to the more complex sentence-level task
for language learning and one-shot learning. More
interestingly, it learns an interpretable operational
process, which can be easily understood. More re-
sults including example dialogues from different
approaches are presented in Appendix A.4.

6 Discussion

We have presented an approach for grounded lan-
guage acquisition with one-shot visual concept
learning in this work. This is achieved by purely
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Figure 8: Test performance for sentence-level
task with image variations (variation ratio=0.5).

interacting with a teacher and learning from feed-
back arising naturally during interaction through
joint imitation and reinforcement learning, with a
memory augmented neural network. Experimental
results show that the proposed approach is effec-
tive for language acquisition with one-shot visual
concept learning across several different settings
compared with several baseline approaches.

In the current work, we have designed and used
a computer game (synthetic task with synthetic
language) for training the agent. This is mainly
due to the fact that there is no existing dataset to
the best of our knowledge that is adequate for de-
veloping our addressed interactive language learn-
ing and one-shot learning problem. For our cur-
rent design, although it is an artificial game, there
is a reasonable amount of variations both within
and across sessions, e.g., the object classes to be
learned within a session, the presentation order of
the selected classes, the sentence patterns and im-
age instances to be used etc. All these factors con-
tribute to the increased complexity of the learning
task, making it non-trivial and already very chal-
lenging to existing approaches as shown by the
experimental results. While offering flexibility in
training, one downside of using a synthetic task
is its limited amount of variation compared with
real-world scenarios with natural languages. Al-
though it might be non-trivial to extend the pro-
posed approach to real natural language directly,
we regard this work as an initial step towards this
ultimate ambitious goal and our game might shed
some light on designing more advanced games or
performing real-world data collection. We plan to
investigate the generalization and application of
the proposed approach to more realistic environ-
ments with more diverse tasks in future work.
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Abstract

Recently, there has been growing inter-
est in multi-speaker speech recognition,
where the utterances of multiple speak-
ers are recognized from their mixture.
Promising techniques have been proposed
for this task, but earlier works have re-
quired additional training data such as
isolated source signals or senone align-
ments for effective learning. In this paper,
we propose a new sequence-to-sequence
framework to directly decode multiple la-
bel sequences from a single speech se-
quence by unifying source separation and
speech recognition functions in an end-to-
end manner. We further propose a new ob-
jective function to improve the contrast be-
tween the hidden vectors to avoid generat-
ing similar hypotheses. Experimental re-
sults show that the model is directly able
to learn a mapping from a speech mix-
ture to multiple label sequences, achieving
83.1% relative improvement compared to
a model trained without the proposed ob-
jective. Interestingly, the results are com-
parable to those produced by previous end-
to-end works featuring explicit separation
and recognition modules.

1 Introduction

Conventional automatic speech recognition (ASR)
systems recognize a single utterance given a
speech signal, in a one-to-one transformation.
However, restricting the use of ASR systems to sit-
uations with only a single speaker limits their ap-
plicability. Recently, there has been growing inter-

∗This work was done while H. Seki, Ph.D. candidate at
Toyohashi University of Technology, Japan, was an intern at
MERL.

est in single-channel multi-speaker speech recog-
nition, which aims at generating multiple tran-
scriptions from a single-channel mixture of mul-
tiple speakers’ speech (Cooke et al., 2009).

To achieve this goal, several previous works
have considered a two-step procedure in which the
mixed speech is first separated, and recognition
is then performed on each separated speech sig-
nal (Hershey et al., 2016; Isik et al., 2016; Yu et al.,
2017; Chen et al., 2017). Dramatic advances have
recently been made in speech separation, via the
deep clustering framework (Hershey et al., 2016;
Isik et al., 2016), hereafter referred to as DPCL.
DPCL trains a deep neural network to map each
time-frequency (T-F) unit to a high-dimensional
embedding vector such that the embeddings for
the T-F unit pairs dominated by the same speaker
are close to each other, while those for pairs dom-
inated by different speakers are farther away. The
speaker assignment of each T-F unit can thus be
inferred from the embeddings by simple cluster-
ing algorithms, to produce masks that isolate each
speaker. The original method using k-means clus-
tering (Hershey et al., 2016) was extended to al-
low end-to-end training by unfolding the cluster-
ing steps using a permutation-free mask inference
objective (Isik et al., 2016). An alternative ap-
proach is to perform direct mask inference using
the permutation-free objective function with net-
works that directly estimate the labels for a fixed
number of sources. Direct mask inference was first
used in Hershey et al. (2016) as a baseline method,
but without showing good performance. This ap-
proach was revisited in Yu et al. (2017) and Kol-
baek et al. (2017) under the name permutation-
invariant training (PIT). Combination of such
single-channel speaker-independent multi-speaker
speech separation systems with ASR was first con-
sidered in Isik et al. (2016) using a conventional
Gaussian Mixture Model/Hidden Markov Model
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(GMM/HMM) system. Combination with an end-
to-end ASR system was recently proposed in (Set-
tle et al., 2018). Both these approaches either
trained or pre-trained the source separation and
ASR networks separately, making use of mixtures
and their corresponding isolated clean source ref-
erences. While the latter approach could in princi-
ple be trained without references for the isolated
speech signals, the authors found it difficult to
train from scratch in that case. This ability can
nonetheless be used when adapting a pre-trained
network to new data without such references.

In contrast with this two-stage approach, Qian
et al. (2017) considered direct optimization of a
deep-learning-based ASR recognizer without an
explicit separation module. The network is opti-
mized based on a permutation-free objective de-
fined using the cross-entropy between the system’s
hypotheses and reference labels. The best per-
mutation between hypotheses and reference labels
in terms of cross-entropy is selected and used for
backpropagation. However, this method still re-
quires reference labels in the form of senone align-
ments, which have to be obtained on the clean iso-
lated sources using a single-speaker ASR system.
As a result, this approach still requires the original
separated sources. As a general caveat, generation
of multiple hypotheses in such a system requires
the number of speakers handled by the neural net-
work architecture to be determined before train-
ing. However, Qian et al. (2017) reported that the
recognition of two-speaker mixtures using a model
trained for three-speaker mixtures showed almost
identical performance with that of a model trained
on two-speaker mixtures. Therefore, it may be
possible in practice to determine an upper bound
on the number of speakers.

Chen et al. (2018) proposed a progressive
training procedure for a hybrid system with ex-
plicit separation motivated by curriculum learn-
ing. They also proposed self-transfer learning
and multi-output sequence discriminative training
methods for fully exploiting pairwise speech and
preventing competing hypotheses, respectively.

In this paper, we propose to circumvent the
need for the corresponding isolated speech sources
when training on a set of mixtures, by using an
end-to-end multi-speaker speech recognition with-
out an explicit speech separation stage. In sep-
aration based systems, the spectrogram is seg-
mented into complementary regions according to

sources, which generally ensures that different ut-
terances are recognized for each speaker. Without
this complementarity constraint, our direct multi-
speaker recognition system could be susceptible to
redundant recognition of the same utterance. In
order to prevent degenerate solutions in which the
generated hypotheses are similar to each other, we
introduce a new objective function that enhances
contrast between the network’s representations of
each source. We also propose a training procedure
to provide permutation invariance with low com-
putational cost, by taking advantage of the joint
CTC/attention-based encoder-decoder network ar-
chitecture proposed in (Hori et al., 2017a). Ex-
perimental results show that the proposed model
is able to directly convert an input speech mix-
ture into multiple label sequences without requir-
ing any explicit intermediate representations. In
particular no frame-level training labels, such as
phonetic alignments or corresponding unmixed
speech, are required. We evaluate our model on
spontaneous English and Japanese tasks and ob-
tain comparable results to the DPCL based method
with explicit separation (Settle et al., 2018).

2 Single-speaker end-to-end ASR

2.1 Attention-based encoder-decoder
network

An attention-based encoder-decoder net-
work (Bahdanau et al., 2016) predicts a target
label sequence Y = (y1, . . . , yN ) without requir-
ing intermediate representation from a T -frame
sequence of D-dimensional input feature vectors,
O = (ot ∈ RD|t = 1, . . . , T ), and the past label
history. The probability of the n-th label yn is
computed by conditioning on the past history
y1:n−1:

patt(Y |O) =

N∏

n=1

patt(yn|O, y1:n−1). (1)

The model is composed of two main sub-modules,
an encoder network and a decoder network. The
encoder network transforms the input feature vec-
tor sequence into a high-level representation H =
(hl ∈ RC |l = 1, . . . , L). The decoder net-
work emits labels based on the label history y
and a context vector c calculated using an atten-
tion mechanism which weights and sums the C-
dimensional sequence of representationH with at-
tention weight a. A hidden state e of the decoder is
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updated based on the previous state, the previous
context vector, and the emitted label. This mecha-
nism is summarized as follows:

H = Encoder(O), (2)

yn ∼ Decoder(cn, yn−1), (3)

cn, an = Attention(an−1, en, H), (4)

en = Update(en−1, cn−1, yn−1). (5)

At inference time, the previously emitted labels
are used. At training time, they are replaced by
the reference label sequence R = (r1, . . . , rN ) in
a teacher-forcing fashion, leading to conditional
probability patt(YR|O), where YR denotes the out-
put label sequence variable in this condition. The
detailed definitions of Attention and Update are
described in Section A of the supplementary mate-
rial. The encoder and decoder networks are trained
to maximize the conditional probability of the ref-
erence label sequence R using backpropagation:

Latt = Lossatt(YR, R) , − log patt(YR = R|O),
(6)

where Lossatt is the cross-entropy loss function.

2.2 Joint CTC/attention-based
encoder-decoder network

The joint CTC/attention approach (Kim et al.,
2017; Hori et al., 2017a), uses the connection-
ist temporal classification (CTC) objective func-
tion (Graves et al., 2006) as an auxiliary task to
train the network. CTC formulates the condi-
tional probability by introducing a framewise la-
bel sequence Z consisting of a label set U and an
additional blank symbol defined as Z = {zl ∈
U ∪ {’blank’}|l = 1, · · · , L}:

pctc(Y |O) =
∑

Z

L∏

l=1

p(zl|zl−1, Y )p(zl|O), (7)

where p(zl|zl−1, Y ) represents monotonic align-
ment constraints in CTC and p(zl|O) is the frame-
level label probability computed by

p(zl|O) = Softmax(Linear(hl)), (8)

where hl is the hidden representation generated
by an encoder network, here taken to be the en-
coder of the attention-based encoder-decoder net-
work defined in Eq. (2), and Linear(·) is the final
linear layer of the CTC to match the number of

labels. Unlike the attention model, the forward-
backward algorithm of CTC enforces monotonic
alignment between the input speech and the out-
put label sequences during training and decod-
ing. We adopt the joint CTC/attention-based
encoder-decoder network as the monotonic align-
ment helps the separation and extraction of high-
level representation. The CTC loss is calculated
as:

Lctc = Lossctc(Y,R) , − log pctc(Y = R|O).
(9)

The CTC loss and the attention-based encoder-
decoder loss are combined with an interpolation
weight λ ∈ [0, 1]:

Lmtl = λLctc + (1− λ)Latt. (10)

Both CTC and encoder-decoder networks are
also used in the inference step. The final hypothe-
sis is a sequence that maximizes a weighted condi-
tional probability of CTC in Eq. ( 7) and attention-
based encoder decoder network in Eq. (1):

Ŷ = arg max
Y

{
γ log pctc(Y |O)

+ (1− γ) log patt(Y |O)
}
, (11)

where γ ∈ [0, 1] is an interpolation weight.

3 Multi-speaker end-to-end ASR

3.1 Permutation-free training
In situations where the correspondence between
the outputs of an algorithm and the references is
an arbitrary permutation, neural network training
faces a permutation problem. This problem was
first addressed by deep clustering (Hershey et al.,
2016), which circumvented it in the case of source
separation by comparing the relationships between
pairs of network outputs to those between pairs of
labels. As a baseline for deep clustering, Hershey
et al. (2016) also proposed another approach to ad-
dress the permutation problem, based on an ob-
jective which considers all permutations of refer-
ences when computing the error with the network
estimates. This objective was later used in Isik et
al. (2016) and Yu et al. (2017). In the latter, it was
referred to as permutation-invariant training.

This permutation-free training scheme extends
the usual one-to-one mapping of outputs and la-
bels for backpropagation to one-to-many by se-
lecting the proper permutation of hypotheses and
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references, thus allowing the network to generate
multiple independent hypotheses from a single-
channel speech mixture. When a speech mixture
contains speech uttered by S speakers simulta-
neously, the network generates S label sequence
variables Y s = (ys1, . . . , y

s
Ns

) with Ns labels from
the T -frame sequence ofD-dimensional input fea-
ture vectors, O = (ot ∈ RD|t = 1, . . . , T ):

Y s ∼ gs(O), s = 1, . . . , S, (12)

where the transformations gs are implemented as
neural networks which typically share some com-
ponents with each other. In the training stage, all
possible permutations of the S sequences Rs =
(rs1, . . . , r

s
N ′s

) of N ′s reference labels are consid-
ered (considering permutations on the hypotheses
would be equivalent), and the one leading to min-
imum loss is adopted for backpropagation. Let P
denote the set of permutations on {1, . . . , S}. The
final loss L is defined as

L = min
π∈P

S∑

s=1

Loss(Y s, Rπ(s)), (13)

where π(s) is the s-th element of a permutation
π. For example, for two speakers, P includes two
permutations (1, 2) and (2, 1), and the loss is de-
fined as:

L = min(Loss(Y 1, R1) + Loss(Y 2, R2),

Loss(Y 1, R2) + Loss(Y 2, R1)). (14)

Figure 1 shows an overview of the proposed
end-to-end multi-speaker ASR system. In the fol-
lowing Section 3.2, we describe an extension of
encoder network for the generation of multiple
hidden representations. We further introduce a
permutation assignment mechanism for reducing
the computation cost in Section 3.3, and an ad-
ditional loss function LKL for promoting the dif-
ference between hidden representations in Sec-
tion 3.4.

3.2 End-to-end permutation-free training

To make the network output multiple hypotheses,
we consider a stacked architecture that combines
both shared and unshared (or specific) neural net-
work modules. The particular architecture we con-
sider in this paper splits the encoder network into
three stages: the first stage, also referred to as
mixture encoder, processes the input mixture and

Figure 1: End-to-end multi-speaker speech recog-
nition. We propose to use the permutation-free
training for CTC and attention loss functions
Lossctc and Lossatt, respectively.

outputs an intermediate feature sequence H; that
sequence is then processed by S independent en-
coder sub-networks which do not share param-
eters, also referred to as speaker-differentiating
(SD) encoders, leading to S feature sequencesHs;
at the last stage, each feature sequence Hs is inde-
pendently processed by the same network, also re-
ferred to as recognition encoder, leading to S final
high-level representations Gs.

Let u ∈ {1 . . . , S} denote an output index (cor-
responding to the transcription of the speech by
one of the speakers), and v ∈ {1 . . . , S} de-
note a reference index. Denoting by EncoderMix

the mixture encoder, EncoderuSD the u-th speaker-
differentiating encoder, and EncoderRec the
recognition encoder, an input sequence O corre-
sponding to an input mixture can be processed by
the encoder network as follows:

H = EncoderMix(O), (15)

Hu = EncoderuSD(H), (16)

Gu = EncoderRec(H
u). (17)

The motivation for designing such an architecture
can be explained as follows, following analogies
with the architectures in (Isik et al., 2016) and
(Settle et al., 2018) where separation and recog-
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nition are performed explicitly in separate steps:
the first stage in Eq. (15) corresponds to a speech
separation module which creates embedding vec-
tors that can be used to distinguish between the
multiple sources; the speaker-differentiating sec-
ond stage in Eq. (16) uses the first stage’s output
to disentangle each speaker’s speech content from
the mixture, and prepare it for recognition; the fi-
nal stage in Eq. (17) corresponds to an acoustic
model that encodes the single-speaker speech for
final decoding.

The decoder network computes the conditional
probabilities for each speaker from the S outputs
of the encoder network. In general, the decoder
network uses the reference label R as a history to
generate the attention weights during training, in
a teacher-forcing fashion. However, in the above
permutation-free training scheme, the reference
label to be attributed to a particular output is not
determined until the loss function is computed, so
we here need to run the attention decoder for all
reference labels. We thus need to consider the con-
ditional probability of the decoder output variable
Y u,v for each output Gu of the encoder network
under the assumption that the reference label for
that output is Rv:

patt(Y
u,v|O) =

∏

n

patt(y
u,v
n |O, yu,v1:n−1), (18)

cu,vn , au,vn = Attention(au,vn−1, e
u,v
n , Gu), (19)

eu,vn = Update(eu,vn−1, c
u,v
n−1, r

v
n−1), (20)

yu,vn ∼ Decoder(cu,vn , rvn−1). (21)

The final loss is then calculated by considering all
permutations of the reference labels as follows:

Latt = min
π∈P

∑

s

Lossatt(Y
s,π(s), Rπ(s)). (22)

3.3 Reduction of permutation cost
In order to reduce the computational cost, we fixed
the permutation of the reference labels based on
the minimization of the CTC loss alone, and used
the same permutation for the attention mechanism
as well. This is an advantage of using a joint
CTC/attention based end-to-end speech recogni-
tion. Permutation is performed only for the CTC
loss by assuming synchronous output where the
permutation is decided by the output of CTC:

π̂ = arg min
π∈P

∑

s

Lossctc(Y
s, Rπ(s)), (23)

where Y u is the output sequence variable corre-
sponding to encoder output Gu. Attention-based
decoding is then performed on the same hidden
representations Gu, using teacher forcing with the
labels determined by the permutation π̂ that mini-
mizes the CTC loss:

patt(Y
u,π̂(u)|O) =

∏

n

patt(y
u,π̂(u)
n |O, yu,π̂(u)1:n−1 ),

cu,π̂(u)n , au,π̂(u)n =Attention(a
u,π̂(u)
n−1 , e

u,π̂(u)
n , Gu),

eu,π̂(u)n = Update(e
u,π̂(u)
n−1 , c

u,π̂(u)
n−1 , r

π̂(u)
n−1 ),

yu,π̂(u)n ∼ Decoder(cu,π̂(u)n , r
π̂(u)
n−1 ).

This corresponds to the “permutation assignment”
in Fig. 1. In contrast with Eq. (18), we only need
to run the attention-based decoding once for each
output Gu of the encoder network. The final loss
is defined as the sum of two objective functions
with interpolation λ:

Lmtl = λLctc + (1− λ)Latt, (24)

Lctc =
∑

s

Lossctc(Y
s, Rπ̂(s)), (25)

Latt =
∑

s

Lossatt(Y
s,π̂(s), Rπ̂(s)). (26)

At inference time, because both CTC and
attention-based decoding are performed on the
same encoder output Gu and should thus pertain
to the same speaker, their scores can be incorpo-
rated as follows:

Ŷ u = arg max
Y u

{
γ log pctc(Y

u|Gu)

+ (1− γ) log patt(Y
u|Gu)

}
, (27)

where pctc(Y
u|Gu) and patt(Y

u|Gu) are obtained
with the same encoder output Gu.

3.4 Promoting separation of hidden vectors

A single decoder network is used to output mul-
tiple label sequences by independently decoding
the multiple hidden vectors generated by the en-
coder network. In order for the decoder to gener-
ate multiple different label sequences the encoder
needs to generate sufficiently differentiated hidden
vector sequences for each speaker. We propose to
encourage this contrast among hidden vectors by
introducing in the objective function a new term
based on the negative symmetric Kullback-Leibler
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(KL) divergence. In the particular case of two-
speaker mixtures, we consider the following ad-
ditional loss function:

LKL = −η
∑

l

{
KL(Ḡ1(l) || Ḡ2(l))

+ KL(Ḡ2(l) || Ḡ1(l))
}
, (28)

where η is a small constant value, and
Ḡu = (softmax(Gu(l)) | l = 1, . . . , L) is ob-
tained from the hidden vector sequence Gu at the
output of the recognition encoder EncoderRec as
in Fig. 1 by applying an additional frame-wise
softmax operation in order to obtain a quantity
amenable to a probability distribution.

3.5 Split of hidden vector for multiple
hypotheses

Since the network maps acoustic features to la-
bel sequences directly, we consider various archi-
tectures to perform implicit separation and recog-
nition effectively. As a baseline system, we use
the concatenation of a VGG-motivated CNN net-
work (Simonyan and Zisserman, 2014) (referred
to as VGG) and a bi-directional long short-term
memory (BLSTM) network as the encoder net-
work. For the splitting point in the hidden vector
computation, we consider two architectural varia-
tions as follows:

• Split by BLSTM: The hidden vector is split at
the level of the BLSTM network. 1) the VGG
network generates a single hidden vector H; 2)
H is fed into S independent BLSTMs whose
parameters are not shared with each other;
3) the output of each independent BLSTM
Hu, u=1, . . . , S, is further separately fed into a
unique BLSTM, the same for all outputs. Each
step corresponds to Eqs. (15), (16), and (17).

• Split by VGG: The hidden vector is split at the
level of the VGG network. The number of filters
at the last convolution layer is multiplied by the
number of mixtures S in order to split the out-
put into S hidden vectors (as in Eq. (16)). The
layers prior to the last VGG layer correspond to
the network in Eq. (15), while the subsequent
BLSTM layers implement the network in (17).

4 Experiments

4.1 Experimental setup
We used English and Japanese speech corpora,
WSJ (Wall street journal) (Consortium, 1994;

Table 1: Duration (hours) of unmixed and mixed
corpora. The mixed corpora are generated by Al-
gorithm 1 in Section B of the supplementary ma-
terial, using the training, development, and evalu-
ation set respectively.

TRAIN DEV. EVAL
WSJ (UNMIXED) 81.5 1.1 0.7
WSJ (MIXED) 98.5 1.3 0.8
CSJ (UNMIXED) 583.8 6.6 5.2
CSJ (MIXED) 826.9 9.1 7.5

Garofalo et al., 2007) and CSJ (Corpus of spon-
taneous Japanese) (Maekawa, 2003). To show the
effectiveness of the proposed models, we gener-
ated mixed speech signals from these corpora to
simulate single-channel overlapped multi-speaker
recording, and evaluated the recognition perfor-
mance using the mixed speech data. For WSJ, we
used WSJ1 SI284 for training, Dev93 for develop-
ment, and Eval92 for evaluation. For CSJ, we fol-
lowed the Kaldi recipe (Moriya et al., 2015) and
used the full set of academic and simulated pre-
sentations for training, and the standard test sets 1,
2, and 3 for evaluation.

We created new corpora by mixing two utter-
ances with different speakers sampled from exist-
ing corpora. The detailed algorithm is presented
in Section B of the supplementary material. The
sampled pairs of two utterances are mixed at vari-
ous signal-to-noise ratios (SNR) between 0 dB and
5 dB with a random starting point for the overlap.
Duration of original unmixed and generated mixed
corpora are summarized in Table 1.

4.1.1 Network architecture
As input feature, we used 80-dimensional log Mel
filterbank coefficients with pitch features and their
delta and delta delta features (83 × 3 = 249-
dimension) extracted using Kaldi tools (Povey
et al., 2011). The input feature is normalized to
zero mean and unit variance. As a baseline sys-
tem, we used a stack of a 6-layer VGG network
and a 7-layer BLSTM as the encoder network.
Each BLSTM layer has 320 cells in each direc-
tion, and is followed by a linear projection layer
with 320 units to combine the forward and back-
ward LSTM outputs. The decoder network has
an 1-layer LSTM with 320 cells. As described in
Section 3.5, we adopted two types of encoder ar-
chitectures for multi-speaker speech recognition.
The network architectures are summarized in Ta-
ble 2. The split-by-VGG network had speaker
differentiating encoders with a convolution layer
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Table 2: Network architectures for the en-
coder network. The number of layers is indi-
cated in parentheses. EncoderMix, EncoderuSD,
and EncoderRec correspond to Eqs. (15), (16),
and (17).

SPLIT BY EncoderMix EncoderuSD EncoderRec

NO VGG (6) — BLSTM (7)
VGG VGG (4) VGG (2) BLSTM (7)
BLSTM VGG (6) BLSTM (2) BLSTM (5)

(and the following maxpooling layer). The split-
by-BLSTM network had speaker differentiating
encoders with two BLSTM layers. The architec-
tures were adjusted to have the same number of
layers. We used characters as output labels. The
number of characters for WSJ was set to 49 includ-
ing alphabets and special tokens (e.g., characters
for space and unknown). The number of charac-
ters for CSJ was set to 3,315 including Japanese
Kanji/Hiragana/Katakana characters and special
tokens.

4.1.2 Optimization
The network was initialized randomly from uni-
form distribution in the range -0.1 to 0.1. We
used the AdaDelta algorithm (Zeiler, 2012) with
gradient clipping (Pascanu et al., 2013) for opti-
mization. We initialized the AdaDelta hyperpa-
rameters as ρ = 0.95 and ε = 1−8. ε is de-
cayed by half when the loss on the development set
degrades. The networks were implemented with
Chainer (Tokui et al., 2015) and ChainerMN (Ak-
iba et al., 2017). The optimization of the networks
was done by synchronous data parallelism with 4
GPUs for WSJ and 8 GPUs for CSJ.

The networks were first trained on single-
speaker speech, and then retrained with mixed
speech. When training on unmixed speech, only
one side of the network only (with a single speaker
differentiating encoder) is optimized to output the
label sequence of the single speaker. Note that
only character labels are used, and there is no
need for clean source reference corresponding to
the mixed speech. When moving to mixed speech,
the other speaker-differentiating encoders are ini-
tialized using the already trained one by copying
the parameters with random perturbation, w′ =
w × (1 + Uniform(−0.1, 0.1)) for each param-
eter w. The interpolation value λ for the multiple
objectives in Eqs. (10) and (24) was set to 0.1 for
WSJ and to 0.5 for CSJ. Lastly, the model is re-
trained with the additional negative KL divergence
loss in Eq. (28) with η = 0.1.

Table 3: Evaluation of unmixed speech without
multi-speaker training.

TASK AVG.
WSJ 2.6
CSJ 7.8

4.1.3 Decoding
In the inference stage, we combined a pre-
trained RNNLM (recurrent neural network lan-
guage model) in parallel with the CTC and de-
coder network. Their label probabilities were lin-
early combined in the log domain during beam
search to find the most likely hypothesis. For the
WSJ task, we used both character and word level
RNNLMs (Hori et al., 2017b), where the charac-
ter model had a 1-layer LSTM with 800 cells and
an output layer for 49 characters. The word model
had a 1-layer LSTM with 1000 cells and an output
layer for 20,000 words, i.e., the vocabulary size
was 20,000. Both models were trained with the
WSJ text corpus. For the CSJ task, we used a char-
acter level RNNLM (Hori et al., 2017c), which
had a 1-layer LSTM with 1000 cells and an out-
put layer for 3,315 characters. The model parame-
ters were trained with the transcript of the training
set in CSJ. We added language model probabilities
with an interpolation factor of 0.6 for character-
level RNNLM and 1.2 for word-level RNNLM.

The beam width for decoding was set to 20 in
all the experiments. Interpolation γ in Eqs. (11)
and (27) was set to 0.4 for WSJ and 0.5 for CSJ.

4.2 Results
4.2.1 Evaluation of unmixed speech
First, we examined the performance of the base-
line joint CTC/attention-based encoder-decoder
network with the original unmixed speech data.
Table 3 shows the character error rates (CERs),
where the baseline model showed 2.6% on WSJ
and 7.8% on CSJ. Since the model was trained and
evaluated with unmixed speech data, these CERs
are considered lower bounds for the CERs in the
succeeding experiments with mixed speech data.

4.2.2 Evaluation of mixed speech
Table 4 shows the CERs of the generated mixed
speech from the WSJ corpus. The first col-
umn indicates the position of split as mentioned
in Section 3.5. The second, third and forth
columns indicate CERs of the high energy speaker
(HIGH E. SPK.), the low energy speaker (LOW

E. SPK.), and the average (AVG.), respectively.
The baseline model has very high CERs because
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Table 4: CER (%) of mixed speech for WSJ.
SPLIT HIGH E. SPK. LOW E. SPK. AVG.
NO (BASELINE) 86.4 79.5 83.0
VGG 17.4 15.6 16.5
BLSTM 14.6 13.3 14.0
+ KL LOSS 14.0 13.3 13.7

Table 5: CER (%) of mixed speech for CSJ.
SPLIT HIGH E. SPK. LOW E. SPK. AVG.
NO (BASELINE) 93.3 92.1 92.7
BLSTM 11.0 18.8 14.9

it was trained as a single-speaker speech recog-
nizer without permutation-free training, and it can
only output one hypothesis for each mixed speech.
In this case, the CERs were calculated by du-
plicating the generated hypothesis and comparing
the duplicated hypotheses with the correspond-
ing references. The proposed models, i.e., split-
by-VGG and split-by-BLSTM networks, obtained
significantly lower CERs than the baseline CERs,
the split-by-BLSTM model in particular achieving
14.0% CER. This is an 83.1% relative reduction
from the baseline model. The CER was further re-
duced to 13.7% by retraining the split-by-BLSTM
model with the negative KL loss, a 2.1% rela-
tive reduction from the network without retrain-
ing. This result implies that the proposed negative
KL loss provides better separation by actively im-
proving the contrast between the hidden vectors
of each speaker. Examples of recognition results
are shown in Section C of the supplementary ma-
terial. Finally, we profiled the computation time
for the permutations based on the decoder network
and on CTC. Permutation based on CTC was 16.3
times faster than that based on the decoder net-
work, in terms of the time required to determine
the best match permutation given the encoder net-
work’s output in Eq. (17).

Table 5 shows the CERs for the mixed speech
from the CSJ corpus. Similarly to the WSJ ex-
periments, our proposed model significantly re-
duced the CER from the baseline, where the aver-
age CER was 14.9% and the reduction ratio from
the baseline was 83.9%.

4.2.3 Visualization of hidden vectors

We show a visualization of the encoder networks
outputs in Fig. 2 to illustrate the effect of the neg-
ative KL loss function. Principal component anal-
ysis (PCA) was applied to the hidden vectors on
the vertical axis. Figures 2(a) and 2(b) show the
hidden vectors generated by the split-by-BLSTM
model without the negative KL divergence loss

for an example mixture of two speakers. We can
observe different activation patterns showing that
the hidden vectors were successfully separated to
the individual utterances in the mixed speech, al-
though some activity from one speaker can be seen
as leaking into the other. Figures 2(c) and 2(d)
show the hidden vectors generated after retrain-
ing with the negative KL divergence loss. We
can more clearly observe the different patterns and
boundaries of activation and deactivation of hid-
den vectors. The negative KL loss appears to reg-
ularize the separation process, and even seems to
help in finding the end-points of the speech.

4.2.4 Comparison with earlier work

We first compared the recognition performance
with a hybrid (non end-to-end) system including
DPCL-based speech separation and a Kaldi-based
ASR system. It was evaluated under the same
evaluation data and metric as in (Isik et al., 2016)
based on the WSJ corpus. However, there are dif-
ferences in the size of training data and the op-
tions in decoding step. Therefore, it is not a fully
matched condition. Results are shown in Table 6.
The word error rate (WER) reported in (Isik et al.,
2016) is 30.8%, which was obtained with jointly
trained DPCL and second-stage speech enhance-
ment networks. The proposed end-to-end ASR
gives an 8.4% relative reduction in WER even
though our model does not require any explicit
frame-level labels such as phonetic alignment, or
clean signal reference, and does not use a phonetic
lexicon for training. Although this is an unfair
comparison, our purely end-to-end system outper-
formed a hybrid system for multi-speaker speech
recognition.

Next, we compared our method with an end-
to-end explicit separation and recognition net-
work (Settle et al., 2018). We retrained our model
previously trained on our WSJ-based corpus using
the training data generated by Settle et al. (2018),
because the direct optimization from scratch on
their data caused poor recognition performance
due to data size. Other experimental conditions
are shared with the earlier work. Interestingly,
our method showed comparable performance to
the end-to-end explicit separation and recognition
network, without having to pre-train using clean
signal training references. It remains to be seen if
this parity of performance holds in other tasks and
conditions.
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Figure 2: Visualization of the two hidden vector sequences at the output of the split-by-BLSTM encoder
on a two-speaker mixture. (a,b): Generated by the model without the negative KL loss. (c,d): Generated
by the model with the negative KL loss.

Table 6: Comparison with conventional ap-
proaches

METHOD WER (%)
DPCL + ASR (ISIK ET AL., 2016) 30.8
Proposed end-to-end ASR 28.2
METHOD CER (%)
END-TO-END DPCL + ASR (CHAR LM)

(SETTLE ET AL., 2018) 13.2
Proposed end-to-end ASR (char LM) 14.0

5 Related work

Several previous works have considered an ex-
plicit two-step procedure (Hershey et al., 2016;
Isik et al., 2016; Yu et al., 2017; Chen et al., 2017,
2018). In contrast with our work which uses a sin-
gle objective function for ASR, they introduced an
objective function to guide the separation of mixed
speech.

Qian et al. (2017) trained a multi-speaker
speech recognizer using permutation-free training
without explicit objective function for separation.
In contrast with our work which uses an end-to-
end architecture, their objective function relies on
a senone posterior probability obtained by align-
ing unmixed speech and text using a model trained
as a recognizer for single-speaker speech. Com-
pared with (Qian et al., 2017), our method di-
rectly maps a speech mixture to multiple character
sequences and eliminates the need for the corre-
sponding isolated speech sources for training.

6 Conclusions

In this paper, we proposed an end-to-end multi-
speaker speech recognizer based on permutation-

free training and a new objective function pro-
moting the separation of hidden vectors in order
to generate multiple hypotheses. In an encoder-
decoder network framework, teacher forcing
at the decoder network under multiple refer-
ences increases computational cost if implemented
naively. We avoided this problem by employing
a joint CTC/attention-based encoder-decoder net-
work.

Experimental results showed that the model is
able to directly convert an input speech mixture
into multiple label sequences under the end-to-end
framework without the need for any explicit inter-
mediate representation including phonetic align-
ment information or pairwise unmixed speech. We
also compared our model with a method based
on explicit separation using deep clustering, and
showed comparable result. Future work includes
data collection and evaluation in a real world
scenario since the data used in our experiments
are simulated mixed speech, which is already ex-
tremely challenging but still leaves some acous-
tic aspects, such as Lombard effects and real room
impulse responses, that need to be alleviated for
further performance improvement. In addition,
further study is required in terms of increasing
the number of speakers that can be simultane-
ously recognized, and further comparison with the
separation-based approach.
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Abstract

Statistical morphological inflectors are typi-
cally trained on fully supervised, type-level
data. One remaining open research ques-
tion is the following: How can we effec-
tively exploit raw, token-level data to im-
prove their performance? To this end, we
introduce a novel generative latent-variable
model for the semi-supervised learning of
inflection generation. To enable posterior
inference over the latent variables, we de-
rive an efficient variational inference pro-
cedure based on the wake-sleep algorithm.
We experiment on 23 languages, using the
Universal Dependencies corpora in a sim-
ulated low-resource setting, and find im-
provements of over 10% absolute accuracy
in some cases.

1 Introduction

The majority of the world’s languages overtly en-
codes syntactic information on the word form it-
self, a phenomenon termed inflectional morphology
(Dryer et al., 2005). In English, for example, the
verbal lexeme with lemma talk has the four forms:
talk, talks, talked and talking. Other languages, such
as Archi (Kibrik, 1998), distinguish more than a
thousand verbal forms. Despite the cornucopia of
unique variants a single lexeme may mutate into,
native speakers can flawlessly predict the correct
variant that the lexeme’s syntactic context dictates.
Thus, in computational linguistics, a natural ques-
tion is the following: Can we estimate a probability
model that can do the same?

The topic of inflection generation has been the
focus of a flurry of individual attention of late and,
moreover, has been the subject of two shared tasks

∗All authors contributed equally.

m1 m2 m3 m4

`1 `2 `3 `4

f1 f2 f3 f4

POS/morph.POS/morph.
tag LMtag LM

lemmalemma
generatorgenerator

morphologicalmorphological
inflectorinflector

POS=PRN

CASE=GEN
POS=N

NUM=PL
POS=ADV POS=V

TNS=PAST

I wug gently weep

my wugs gently wept

Figure 1: A length-4 example of our generative model fac-
torized as in Eq. (1) and overlayed with example values of
the random variables in the sequence. We highlight that all
the conditionals in the Bayesian network are recurrent neural
networks, e.g., we note that mi depends on m<i because we
employ a recurrent neural network to model the morphological
tag sequence.

(Cotterell et al., 2016, 2017). Most work, however,
has focused on the fully supervised case—a source
lemma and the morpho-syntactic properties are fed
into a model, which is asked to produce the desired
inflection. In contrast, our work focuses on the
semi-supervised case, where we wish to make use
of unannotated raw text, i.e., a sequence of inflected
tokens.

Concretely, we develop a generative directed
graphical model of inflected forms in context.
A contextual inflection model works as follows:
Rather than just generating the proper inflection for
a single given word form out of context (for exam-
ple walking as the gerund of walk), our generative
model is actually a fully-fledged language model.
In other words, it generates sequences of inflected
words. The graphical model is displayed in Fig. 1
and examples of words it may generate are pasted
on top of the graphical model notation. That our
model is a language model enables it to exploit both
inflected lexicons and unlabeled raw text in a prin-
cipled semi-supervised way. In order to train using
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SG PL SG PL

NOM Wort Wörter Herr Herren
GEN Wortes Wörter Herrn Herren
ACC Wort Wörter Herrn Herren
DAT Worte Wörtern Herrn Herren

Table 1: As an exhibit of morphological inflection, full
paradigms (two numbers and four cases, 8 slots total) for the
German nouns Wort (“word”) and Herr (“gentleman”), with
abbreviated and tabularized UniMorph annotation.

raw-text corpora (which is useful when we have
less annotated data), we marginalize out the unob-
served lemmata and morpho-syntactic annotation
from unlabeled data. In terms of Fig. 1, this refers
to marginalizing out m1, . . . ,m4 and `1, . . . , `4.
As this marginalization is intractable, we derive
a variational inference procedure that allows for
efficient approximate inference. Specifically, we
modify the wake-sleep procedure of Hinton et al.
(1995). It is the inclusion of raw text in this fashion
that makes our model token level, a novelty in the
camp of inflection generation, as much recent work
in inflection generation (Dreyer et al., 2008; Durrett
and DeNero, 2013; Nicolai et al., 2015; Ahlberg
et al., 2015; Faruqui et al., 2016), trains a model on
type-level lexicons.

We offer empirical validation of our model’s
utility with experiments on 23 languages from the
Universal Dependencies corpus in a simulated low-
resource setting.1 Our semi-supervised scheme im-
proves inflection generation by over 10% absolute
accuracy in some cases.

2 Background: Morphological Inflection

2.1 Inflectional Morphology

To properly discuss models of inflectional morphol-
ogy, we require a formalization. We adopt the
framework of word-based morphology (Aronoff,
1976; Spencer, 1991). Note in the present paper,
we omit derivational morphology.

We define an inflected lexicon as a set of 4-
tuples consisting of a part-of-speech tag, a lexeme,
an inflectional slot, and a surface form. A lexeme
is a discrete object that indexes the word’s core
meaning and part of speech. In place of such an
abstract lexeme, lexicographers will often use a
lemma, denoted by `, which is a designated2 sur-

1We make our code and data available at: https://
github.com/lwolfsonkin/morph-svae.

2A specific slot of the paradigm is chosen, depending on

face form of the lexeme (such as the infinitive). For
the remainder of this paper, we will use the lemma
as a proxy for the lexeme, wherever convenient,
although we note that lemmata may be ambiguous:
bank is the lemma for at least two distinct nouns
and two distinct verbs. For inflection, this ambigu-
ity will rarely3 play a role—for instance, all senses
of bank inflect in the same fashion.

A part-of-speech (POS) tag, denoted t, is a
coarse syntactic category such as VERB. Each
POS tag allows some set of lexemes, and also al-
lows some set of inflectional slots, denoted as σ,
such as

[
TNS=PAST, PERSON=3

]
. Each allowed

〈tag, lexeme, slot〉 triple is realized—in only one
way—as an inflected surface form, a string over
a fixed phonological or orthographic alphabet Σ.
(In this work, we take Σ to be an orthographic
alphabet.) Additionally, we will define the term
morphological tag, denoted by m, which we take
to be the POS-slot pair m = 〈t, σ〉. We will further
define T as the set of all POS tags andM as the
set of all morphological tags.

A paradigm π(t, `) is the mapping from tag
t’s slots to the surface forms that “fill” those slots
for lexeme/lemma `. For example, in the English
paradigm π(VERB, talk), the past-tense slot is said
to be filled by talked, meaning that the lexicon con-
tains the tuple 〈VERB, talk, PAST, talked〉.

A cheat sheet for the notation is provided in
Tab. 2.

We will specifically work with the UniMorph
annotation scheme (Sylak-Glassman, 2016). Here,
each slot specifies a morpho-syntactic bundle of
inflectional features such as tense, mood, person,
number, and gender. For example, the German
surface form Wörtern is listed in the lexicon with
tag NOUN, lemma Wort, and a slot specifying the
feature bundle

[
NUM=PL, CASE=DAT

]
. The full

paradigms π(NOUN,Wort) and π(NOUN,Herr) are
found in Tab. 1.

2.2 Morphological Inflection
Now, we formulate the task of context-free mor-
phological inflection using the notation developed
in §2. Given a set of N form-tag-lemma triples
{〈fi,mi, `i〉}Ni=1, the goal of morphological inflec-
tion is to map the pair 〈mi, `i〉 to the form fi. As

the part-of-speech tag – all these terms are defined next.
3One example of a paradigm where the lexeme, rather than

the lemma, may influence inflection is hang. If one chooses
the lexeme that licenses animate objects, the proper past tense
is hanged, whereas it is hung for the lexeme that licenses
inanimate objects.
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object symbol example

form f talking
lemma ` talk
POS t VERB

slot σ
[

TNS=GERUND
]

morph. tag m
[

POS=V, TNS=GERUND
]

Table 2: Notational cheat sheet for the paper.

the definition above indicates, the task is tradition-
ally performed at the type level. In this work, how-
ever, we focus on a generalization of the task to
the token level—we seek to map a bisequence of
lemma-tag pairs to the sequence of inflected forms
in context. Formally, we will denote the lemma-
morphological tag bisequence as 〈`,m〉 and the
form sequence as f . Foreshadowing, the primary
motivation for this generalization is to enable the
use of raw-text in a semi-supervised setting.

3 Generating Sequences of Inflections

The primary contribution of this paper is a novel
generative model over sequences of inflected words
in their sentential context. Following the nota-
tion laid out in §2.2, we seek to jointly learn a
distribution over sequences of forms f , lemmata
`, and morphological tags m. The generative
procedure is as follows: First, we sample a se-
quence of tags m, each morphological tag com-
ing from a language model over morphological
tags: mi ∼ pθ(· |m<i). Next, we sample the se-
quence of lemmata ` given the previously sampled
sequence of tags m— these are sampled condi-
tioned only on the corresponding morphological
tag: `i ∼ pθ(· | mi). Finally, we sample the se-
quence of inflected words f , where, again, each
word is chosen conditionally independent of other
elements of the sequence: fi ∼ pθ(· | `i,mi).4

This yields the factorized joint distribution:

pθ(f , `,m) = (1)
( |f |∏

i=1

pθ(fi | `i,mi)︸ ︷︷ ︸
morphological inflector

3

· pθ(`i | mi)︸ ︷︷ ︸
lemma generator

2

)
· pθ(m)︸ ︷︷ ︸

m-tag LM
1

We depict the corresponding directed graphical
model in Fig. 1.

4Note that we denote all three distributions as pθ to sim-
plify notation and emphasize the joint modeling aspect; con-
text will always resolve the ambiguity in this paper. We will
discuss their parameterization in §4.

Relation to Other Models in NLP. As the
graphical model drawn in Fig. 1 shows, our model
is quite similar to a Hidden Markov Model (HMM)
(Rabiner, 1989). There are two primary differences.
First, we remark that an HMM directly emits a
form fi conditioned on the tag mi. Our model,
in contrast, emits a lemma `i conditioned on the
morphological tag mi and, then, conditioned on
both the lemma `i and the tag mi, we emit the in-
flected form fi. In this sense, our model resembles
the hierarchical HMM of Fine et al. (1998) with
the difference that we do not have interdependence
between the lemmata `i. The second difference
is that our model is non-Markovian: we sample
the ith morphological tag mi from a distribution
that depends on all previous tags, using an LSTM
language model (§4.1). This yields richer interac-
tions among the tags, which may be necessary for
modeling long-distance agreement phenomena.

Why a Generative Model? What is our interest
in a generative model of inflected forms? Eq. (1)
is a syntax-only language model in that it only
allows for interdependencies between the morpho-
syntactic tags in pθ(m). However, given a tag
sequencem, the individual lemmata and forms are
conditionally independent. This prevents the model
from learning notions such as semantic frames and
topicality. So what is this model good for? Our
chief interest is the ability to train a morphological
inflector on unlabeled data, which is a boon in a
low-resource setting. As the model is generative,
we may consider the latent-variable model:

pθ(f) =
∑

〈`,m〉
pθ(f , `,m), (2)

where we marginalize out the latent lemmata and
morphological tags from raw text. The sum in
Eq. (2) is unabashedly intractable—given a se-
quence f , it involves consideration of an exponen-
tial (in |f |) number of tag sequences and an infinite
number of lemmata sequences. Thus, we will fall
back on an approximation scheme (see §5).

4 Recurrent Neural Parameterization

The graphical model from §3 specifies a family
of models that obey the conditional independence
assumptions dictated by the graph in Fig. 1. In this
section we define a specific parameterization using
long short-term memory (LSTM) recurrent neu-
ral network (Hochreiter and Schmidhuber, 1997)
language models (Sundermeyer et al., 2012).

2633



4.1 LSTM Language Models
Before proceeding, we review the modeling of
sequences with LSTM language models. Given
some alphabet ∆, the distribution over sequences
x ∈ ∆∗ can be defined as follows:

p(x) =

|x|∏

j=1

p(xj | x<j), (3)

where x<j = x1, . . . , xj−1. The prediction at time
step j of a single element xj is then parametrized
by a neural network:

p(xj | x<j) = softmax (W · hj + b) , (4)

where W ∈ R|∆|×d and b ∈ R|∆| are learned pa-
rameters (for some number of hidden units d) and
the hidden state hj ∈ Rd is defined through the
recurrence given by Hochreiter and Schmidhuber
(1997) from the previous hidden state and an em-
bedding of the previous character (assuming some
learned embedding function e : ∆→ Rc for some
number of dimensions c):

hj = LSTM
(
hj−1, e(xj−1)

)
(5)

4.2 Our Conditional Distributions
We discuss each of the factors in Eq. (1) in turn.

1 Morphological Tag Language Model: pθ(m).
We define pθ(m) as an LSTM language model, as
defined in §4.1, where we take ∆ = M, i.e., the
elements of the sequence that are to be predicted are
tags like

[
POS=V, TNS=GERUND

]
. Note that the

embedding function e does not treat them as atomic
units, but breaks them up into individual attribute-
value pairs that are embedded individually and then
summed to yield the final vector representation. To
be precise, each tag is first encoded by a multi-hot
vector, where each component corresponds to a
attribute-value pair in the slot, and then this multi-
hot vector is multiplied with an embedding matrix.

2 Lemma Generator: pθ(`i | mi). The next
distribution in our model is a lemma generator
which we define to be a conditional LSTM lan-
guage model over characters (we take ∆ = Σ), i.e.,
each xi is a single (orthographic) character. The
language model is conditioned on ti (the part-of-
speech information contained in the morphological
tag mi = 〈ti, σi〉), which we embed into a low-
dimensional space and feed to the LSTM by con-
catenating its embedding with that of the current

character. Thusly, we obtain the new recurrence
relation for the hidden state:

hj = LSTM
(
hj−1,

[
e
(
[`i]j−1

)
; e′
(
ti
) ])

, (6)

where [`i]j denotes the jth character of the gener-
ated lemma `i and e′ : T → Rc′ for some c′ is a
learned embedding function for POS tags. Note
that we embed only the POS tag, rather than the
entire morphological tag, as we assume the lemma
depends on the part of speech exclusively.

3 Morphological Inflector: pθ(fi | `i,mi).
The final conditional in our model is a morpho-
logical inflector, which we parameterize as a neural
recurrent sequence-to-sequence model (Sutskever
et al., 2014) with Luong dot-style attention (Luong
et al., 2015). Our particular model uses a single
encoder-decoder architecture (Kann and Schütze,
2016) for all tag pairs within a language and we
refer to reader to that paper for further details. Con-
cretely, the encoder runs over a string consisting of
the desired slot and all characters of the lemma that
is to be inflected (e.g. <w> V PST t a l k
</w>), one LSTM running left-to-right, the other
right-to-left. Concatenating the hidden states of
both RNNs at each time step results in hidden states
h

(enc)
j . The decoder, again, takes the form of an

LSTM language model (we take ∆ = Σ), pro-
ducing the inflected form character by character,
but at each time step not only the previous hidden
state and the previously generated token are consid-
ered, but attention (a convex combination) over all
encoder hidden states h

(enc)
j , with the distribution

given by another neural network; see Luong et al.
(2015).

5 Semi-Supervised Wake-Sleep

We train the model with the wake-sleep procedure,
which requires us to perform posterior inference
over the latent variables. However, the exact com-
putation in the model is intractable—it involves
a sum over all possible lemmatizations and tag-
gings of the sentence, as shown in Eq. (2). Thus,
we fall back on a variational approximation (Jor-
dan et al., 1999). We train an inference network
qφ(`,m | f) that approximates the true poste-
rior over the latent variables pθ(`,m | f).5 The
variational family we choose in this work will be

5Inference networks are also known as stochastic inverses
(Stuhlmüller et al., 2013) or recognition models (Dayan et al.,
1995).
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detailed in §5.5. We fit the distribution qφ using
a semi-supervised extension of the wake-sleep al-
gorithm (Hinton et al., 1995; Dayan et al., 1995;
Bornschein and Bengio, 2014). We derive the al-
gorithm in the following subsections and provide
pseudo-code in Alg. 1.

Note that the wake-sleep algorithm shows struc-
tural similarities to the expectation-maximization
(EM) algorithm (Dempster et al., 1977), and, pre-
saging the exposition, we note that the wake-sleep
procedure is a type of variational EM (Beal, 2003).
The key difference is that the E-step minimizes an
inclusive KL divergence, rather than the exclusive
one typically found in variational EM.

5.1 Data Requirements of Wake-Sleep
We emphasize again that we will train our model in
a semi-supervised fashion. Thus, we will assume
a set of labeled sentences, Dlabeled, represented as
a set of triples 〈f , `,m〉, and a set of unlabeled
sentences,Dunlabeled, represented as a set of surface
form sequences f .

5.2 The Sleep Phase
Wake-sleep first dictates that we find an approxi-
mate posterior distribution qφ that minimizes the
KL divergences for all form sequences:

DKL

(
pθ(·, ·, ·)︸ ︷︷ ︸

full joint: Eq. (1)

|| qφ(·, · | ·)︸ ︷︷ ︸
variational approximation

)
(7)

with respect to the parameters φ, which control
the variational approximation qφ. Because qφ is
trained to be a variational approximation for any
input f , it is called an inference network. In
other words, it will return an approximate pos-
terior over the latent variables for any observed
sequence. Importantly, note that computation of
Eq. (7) is still hard—it requires us to normalize
the distribution pθ, which, in turn, involves a sum
over all lemmatizations and taggings. However,
it does lend itself to an efficient Monte Carlo ap-
proximation. As our model is fully generative and
directed, we may easily take samples from the com-
plete joint. Specifically, we will take K samples
〈f̃ , ˜̀, m̃〉 ∼ pθ(·, ·, ·) by forward sampling and de-
fine them as D̃sleep. We remark that we use a tilde
to indicate that a form, lemmata or tag is sampled,
rather than human annotated. Using K samples,
we obtain the objective

Sunsup = 1/K ·
∑

〈f̃ ,˜̀,m̃〉∈D̃sleep

log qφ(˜̀, m̃ | f̃), (8)

which we could maximize by fitting the model qφ
through backpropagation (Rumelhart et al., 1986),
as one would during maximum likelihood estima-
tion.

5.3 The Wake Phase
Now, given our approximate posterior qφ(`,m |
f), we are in a position to re-estimate the param-
eters of the generative model pθ(f , `,m). Given
a set of unannotated sentences Dunlabeled, we again
first consider the objective

Wunsup = 1/M ·
∑

〈f ,˜̀,m̃〉∈D̃wake

log pθ(f , ˜̀, m̃) (9)

where D̃wake is a set of triples 〈f , ˜̀, m̃〉 with
f ∈ Dunlabeled and 〈˜̀, m̃〉 ∼ qφ(·, · | f), maxi-
mizing with respect to the parameters θ (we may
stochastically backprop through the expectation
simply by backpropagating through this sum). Note
that Eq. (9) is a Monte Carlo approximation of
the inclusive divergence of the data distribution of
Dunlabeled times qφ with pθ.

5.4 Adding Supervision to Wake-Sleep
So far we presented a purely unsupervised training
method that makes no assumptions about the la-
tent lemmata and morphological tags. In our case,
however, we have a very clear idea what the latent
variables should look like. For instance, we are
quite certain that the lemma of talking is talk and
that it is in fact a GERUND. And, indeed, we have
access to annotated examplesDlabeled in the form of
an annotated corpus. In the presence of these data,
we optimize the supervised sleep phase objective,

Ssup = 1/N ·
∑

〈f ,`,m〉∈Dlabeled

log qφ(`,m | f). (10)

which is a Monte Carlo approximation of
DKL(Dlabeled || qφ). Thus, when fitting our varia-
tional approximation qφ, we will optimize a joint
objective S = Ssup + γsleep · Sunsup, where Ssup,
to repeat, uses actual annotated lemmata and mor-
phological tags; we balance the two parts of the
objective with a scaling parameter γsleep. Note that
on the first sleep phase iteration, we set γsleep = 0
since taking samples from an untrained pθ(·, ·, ·)
when we have available labeled data is of little util-
ity. We will discuss the provenance of our data in
§7.2.

Likewise, in the wake phase we can neglect the
approximation qφ in favor of the annotated latent
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Algorithm 1 semi-supervised wake-sleep
1: input Dlabeled . labeled training data
2: input Dunlabeled . unlabeled training data
3: for i = 1 to I do
4: D̃sleep ← ∅
5: if i > 1 then
6: for k = 1 to K do
7: 〈f̃ , ˜̀, m̃〉 ∼ pθ(·, ·, ·)
8: D̃sleep ← D̃sleep ∪ {〈f̃ , ˜̀, m̃〉}
9: maximize log qφ on Dlabeled ∪ D̃sleep

. this corresponds to Eq. (10) + Eq. (8)

10: D̃wake ← ∅
11: for f ∈ Dunlabeled do
12: 〈˜̀, m̃〉 ∼ qφ (·, · | f)

13: D̃wake ← D̃wake ∪ {〈f , ˜̀, m̃〉}
14: maximize log pθ on Dlabeled ∪ D̃wake

. this corresponds to Eq. (11) + Eq. (9)

variables found in Dlabeled; this leads to the follow-
ing supervised objective

Wsup = 1/N ·
∑

〈f ,`,m〉∈Dlabeled

log pθ(f , `,m), (11)

which is a Monte Carlo approximation of
DKL(Dlabeled || pθ). As in the sleep phase, we
will maximizeW =Wsup + γwake · Wunsup, where
γwake is, again, a scaling parameter.

5.5 Our Variational Family
How do we choose the variational family qφ? In
terms of NLP nomenclature, qφ represents a joint
morphological tagger and lemmatizer. The open-
source tool LEMMING (Müller et al., 2015) repre-
sents such an object. LEMMING is a higher-order
linear-chain conditional random field (CRF; Laf-
ferty et al., 2001), that is an extension of the mor-
phological tagger of Müller et al. (2013). Interest-
ingly, LEMMING is a linear model that makes use
of simple character n-gram feature templates. On
both the tasks of morphological tagging and lemma-
tization, neural models have supplanted linear mod-
els in terms of performance in the high-resource
case (Heigold et al., 2017). However, we are inter-
ested in producing an accurate approximation to
the posterior in the presence of minimal annotated
examples and potentially noisy samples produced
during the sleep phase, where linear models still
outperform non-linear approaches (Cotterell and
Heigold, 2017). We note that our variational ap-
proximation is compatible with any family.

5.6 Interpretation as an Autoencoder

We may also view our model as an autoencoder,
following Kingma and Welling (2013), who saw
that a variational approximation to any generative
model naturally has this interpretation. The crucial
difference between Kingma and Welling (2013)
and this work is that our model is a structured
variational autoencoder in the sense that the space
of our latent code is structured: the inference net-
work encodes a sentence into a pair of lemmata
and morphological tags 〈`,m〉. This bisequence
is then decoded back into the sequence of forms f
through a morphological inflector. The reason the
model is called an autoencoder is that we arrive at
an auto-encoding-like objective if we combine the
pθ and qφ as so:

p(f | f̂)=
∑

〈`,m〉
pθ(f |`,m) · qφ(`,m | f̂) (12)

where f̂ is a copy of the original sentence f .
Note that this choice of latent space sadly pre-

cludes us from making use of the reparametrization
trick that makes inference in VAEs particularly ef-
ficient. In fact, our whole inference procedure is
quite different as we do not perform gradient de-
scent on both qφ and pθ jointly but alternatingly
optimize both (using wake-sleep). We nevertheless
call our model a VAE to uphold the distinction be-
tween the VAE as a model (essentially a specific
Helmholtz machine (Dayan et al., 1995), justified
by variational inference) and the end-to-end infer-
ence procedure that is commonly used.

Another way of viewing this model is that it tries
to force the words in the corpus through a syntactic
bottleneck. Spiritually, our work is close to the
conditional random field autoencoder of Ammar
et al. (2014).

We remark that many other structured NLP tasks
can be “autoencoded” in this way and, thus, trained
by a similar wake-sleep procedure. For instance,
any two tasks that effectively function as inverses,
e.g., translation and backtranslation, or language
generation and parsing, can be treated with a simi-
lar variational autoencoder. While this work only
focuses on the creation of an improved morpho-
logical inflector pθ(f | `,m), one could imagine
a situation where the encoder was also a task of
interest. That is, the goal would be to improve both
the decoder (the generation model) and the encoder
(the variational approximation).
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6 Related Work

Closest to our work is Zhou and Neubig (2017),
who describe an unstructured variational autoen-
coder. However, the exact use case of our re-
spective models is distinct. Our method models
the syntactic dynamics with an LSTM language
model over morphological tags. Thus, in the semi-
supervised setting, we require token-level anno-
tation. Additionally, our latent variables are in-
terpretable as they correspond to well-understood
linguistic quantities. In contrast, Zhou and Neubig
(2017) infer latent lemmata as real vectors. To the
best of our knowledge, we are only the second at-
tempt, after Zhou and Neubig (2017), to attempt
to perform semi-supervised learning for a neural
inflection generator. Other non-neural attempts at
semi-supervised learning of morphological inflec-
tors include Hulden et al. (2014). Models in this
vein are non-neural and often focus on exploiting
corpus statistics, e.g., token frequency, rather than
explicitly modeling the forms in context. All of
these approaches are designed to learn from a type-
level lexicon, rendering direct comparison difficult.

7 Experiments

While we estimate all the parameters in the gen-
erative model, the purpose of this work is to im-
prove the performance of morphological inflectors
through semi-supervised learning with the incorpo-
ration of unlabeled data.

7.1 Low-Resource Inflection Generation

The development of our method was primarily
aimed at the low-resource scenario, where we ob-
serve a limited number of annotated data points.
Why low-resource? When we have access to a
preponderance of data, morphological inflection
is close to being a solved problem, as evinced in
SIGMORPHON’s 2016 shared task. However, the
CoNLL-SIGMORPHON 2017 shared task showed
there is much progress to be made in the low-
resource case. Semi-supervision is a clear avenue.

7.2 Data

As our model requires token-level morphological
annotation, we perform our experiments on the
Universal Dependencies (UD) dataset (Nivre et al.,
2017). As this stands in contrast to most work
on morphological inflection (which has used the

UniMorph (Sylak-Glassman et al., 2015)6 datasets),
we use a converted version of UD data, in which the
UD morphological tags have been deterministically
converted into UniMorph tags.

For each of the treebanks in the UD dataset, we
divide the training portion into three chunks consist-
ing of the first 500, 1000 and 5000 tokens, respec-
tively. These labeled chunks will constitute three
unique sets Dlabeled. The remaining sentences in
the training portion will be used as unlabeled data
Dunlabeled for each language, i.e., we will discard
those labels. The development and test portions
will be left untouched.

Languages. We explore a typologically diverse
set of languages of various stocks: Indo-European,
Afro-Asiatic, Turkic and Finno-Ugric, as well as
the language isolate Basque. We have organized
our experimental languages in Tab. 3 by genetic
grouping, highlighting sub-families where possi-
ble. The Indo-European languages mostly exhibit
fusional morphologies of varying degrees of com-
plexity. The Basque, Turkic, and Finno-Ugric lan-
guages are agglutinative. Both of the Afro-Asiatic
languages, Arabic and Hebrew, are Semitic and
have templatic morphology with fusional affixes.

7.3 Evaluation

The end product of our procedure is a morphologi-
cal inflector, whose performance is to be improved
through the incorporation of unlabeled data. Thus,
we evaluate using the standard metric accuracy. We
will evaluate at the type level, as is traditional in the
morphological inflection literature, even though the
UD treebanks on which we evaluate are token-level
resources. Concretely, we compile an incomplete
type-level morphological lexicon from the token-
level resource. To create this resource, we gather
all unique form-lemma-tag triples 〈f, `,m〉 present
in the UD test data.7

7.4 Baselines

As mentioned before, most work on morphological
inflection has considered the task of estimating sta-
tistical inflectors from type-level lexicons. Here, in

6The two annotation schemes are similar.
For a discussion, we refer the reader to http:
//universaldependencies.org/v2/features.
html; sadly there are differences that render all numbers
reported in this work incomparable with previous work, see
§7.4.

7Some of these form-lemma-tag triples will overlap with
those seen in the training data.
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Figure 2: Violin plots showing the distribution over accuracies. The structured variational autoencoder (SVAE) always
outperforms the neural network (NN), but only outperformed the FST-based approach when trained on 5000 annotated tokens.
Thus, while semi-supervised training helps neural models reduce their sample complexity, roughly 5000 annotated tokens are
still required to boost their performance above more symbolic baselines.

contrast, we require token-level annotation to esti-
mate our model. For this reason, there is neither a
competing approach whose numbers we can make
a fair comparison to nor is there an open-source
system we could easily run in the token-level set-
ting. This is why we treat our token-level data as a
list of “types”8 and then use two simple type-based
baselines.

First, we consider the probabilistic finite-state
transducer used as the baseline for the CoNLL-
SIGMORPHON 2017 shared task.9 We consider
this a relatively strong baseline, as we seek to gener-
alize from a minimal amount of data. As described
by Cotterell et al. (2017), the baseline performed
quite competitively in the task’s low-resource set-
ting. Note that the finite-state machine is created by
heuristically extracting prefixes and suffixes from
the word forms, based on an unsupervised align-
ment step. The second baseline is our neural in-
flector p(f | `,m) given in §4 without the semi-
supervision; this model is state-of-the-art on the
high-resource version of the task.

We will refer to our baselines as follows: FST
is the probabilistic transducer, NN is the neu-
ral sequence-to-sequence model without semi-
supervision, and SVAE is the structured variational
autoencoder, which is equivalent to NN but also
trained using wake-sleep and unlabeled data.

8Typical type-based inflection lexicons are likely not i.i.d.
samples from natural utterances, but we have no other choice
if we want to make use of only our token-level data and not
additional resources like frequency and regularity of forms.

9https://sites.google.com/view/
conll-sigmorphon2017/

7.5 Results

We ran the three models on 23 languages with
the hyperparameters and experimental details de-
scribed in App. A. We present our results in Fig. 2
and in Tab. 3. We also provide sample output of the
generative model created using the dream step in
App. B. The high-level take-away is that on almost
all languages we are able to exploit the unlabeled
data to improve the sequence-to-sequence model
using unlabeled data, i.e., SVAE outperforms the
NN model on all languages across all training sce-
narios. However, in many cases, the FST model is
a better choice—the FST can sometimes generalize
better from a handful of supervised examples than
the neural network, even with semi-supervision
(SVAE). We highlight three finer-grained observa-
tions below.

Observation 1: FST Good in Low-Resource.
As clearly evinced in Fig. 2, the baseline FST is still
competitive with the NN, or even our SVAE when
data is extremely scarce. Our neural architecture is
quite general, and lacks the prior knowledge and
inductive biases of the rule-based system, which
become more pertinent in low-resource scenarios.
Even though our semi-supervised strategy clearly
improves the performance of NN, we cannot al-
ways recommend SVAE for the case when we only
have 500 annotated tokens, but on average it does
slightly better. The SVAE surpasses the FST when
moving up to 1000 annotated tokens, becoming
even more pronounced at 5000 annotated tokens.
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500 tokens 1000 tokens 5000 tokens

lang FST NN SVAE ∆FST ∆NN FST NN SVAE ∆FST ∆NN FST NN SVAE ∆FST ∆NN

ca 81.0 28.11 71.76 -9.24 43.65 85.0 42.58 78.46 -6.54 35.88 84.0 74.22 85.77 1.77 11.55
fr 84.0 36.25 74.75 -9.25 38.5 85.0 47.04 79.97 -5.03 32.93 85.0 79.21 83.96 -1.04 4.75
it 81.0 31.30 67.48 -13.52 36.18 81.0 43.58 77.37 -3.63 33.79 82.0 71.09 73.11 -8.89 2.02
la 21.0 14.02 29.12 8.12 15.10 26.0 19.62 27.06 1.06 7.44 30.0 41.00 47.32 17.32 6.32

R
om

an
ce

pt 81.0 31.58 72.54 -8.46 40.96 83.0 47.27 73.24 -9.76 25.97 82.0 74.17 86.13 4.13 11.96
ro 56.0 22.56 52.48 -3.52 29.92 62.0 34.68 58.30 -3.70 23.62 68.0 51.77 75.49 7.49 23.72
es 57.0 34.34 75.32 18.32 40.98 60.0 46.14 80.97 20.97 34.83 72.0 71.99 84.44 12.44 12.45

nl 63.0 19.22 49.14 -13.86 29.92 65.0 26.05 53.12 -11.88 27.07 70.0 53.70 65.97 -4.03 12.27
da 68.0 31.25 65.58 -2.42 34.33 73.0 44.51 72.82 -0.18 28.31 79.0 67.92 80.12 1.12 12.20
no 69.0 32.51 65.46 -3.54 32.95 71.0 46.26 74.49 3.49 28.23 79.0 71.31 81.25 2.25 9.94

G
er

m
an

ic

nn 64.0 20.29 54.62 -9.38 34.33 65.0 24.32 60.97 -4.03 36.65 72.0 50.40 73.35 1.35 22.95
sv 63.0 19.02 58.15 -4.85 39.13 66.0 36.35 67.18 1.18 30.83 74.0 59.82 78.23 4.23 18.41

bg 44.0 15.51 47.22 3.22 31.71 51.0 21.00 57.18 6.18 36.18 59.0 49.06 71.15 12.15 22.09
pl 50.0 12.75 48.62 -1.38 35.87 57.0 19.88 55.90 -1.10 36.02 64.0 54.44 67.15 3.15 12.71

Sl
av

ic

si 52.0 15.60 55.69 3.69 40.09 61.0 26.39 61.22 0.22 34.83 68.0 66.65 75.40 7.40 8.75

ar 14.0 31.47 63.53 49.53 32.06 17.0 48.53 71.52 54.52 22.99 34.0 68.16 80.72 46.72 12.56

Se
m

it.

he 60.0 37.61 71.11 11.11 33.50 66.0 50.28 76.32 10.32 26.04 72.0 64.37 86.60 14.6 22.23

hu 53.0 22.56 48.64 -4.36 26.08 56.0 28.62 60.74 4.74 32.12 61.0 66.45 72.84 11.84 6.39
et 39.0 21.81 42.16 3.16 20.35 45.0 29.66 51.75 6.75 22.09 49.0 46.82 58.91 9.91 12.09

Fi
nn

.-U
rg

.

fi 37.0 12.97 35.78 -1.22 22.81 42.0 19.03 47.65 5.65 28.62 49.0 46.75 62.76 13.76 16.01

lv 57.0 17.16 48.29 -8.71 31.13 63.0 18.30 53.58 -9.42 35.28 66.0 51.84 66.12 0.12 14.28
eu 50.0 24.46 48.72 -1.28 24.26 54.0 35.14 53.39 -0.61 18.25 56.0 56.29 62.33 6.33 6.04ot

he
r

tr 34.0 20.67 37.92 3.92 17.25 37.0 24.33 49.67 12.67 25.34 48.0 63.26 69.35 21.35 6.09
avg 55.57 24.04 55.83 0.26 31.79 59.61 33.89 62.73 3.12 6.90 65.35 60.90 73.41 8.06 12.51

Table 3: Type-level morphological inflection accuracy across different models, training scenarios, and languages

Observation 2: Agglutinative Languages. The
next trend we remark upon is that languages of
an agglutinating nature tend to benefit more from
the semi-supervised learning. Why should this
be? Since in our experimental set-up, every lan-
guage sees the same number of tokens, it is natu-
rally harder to generalize on languages that have
more distinct morphological variants. Also, by the
nature of agglutinative languages, relevant mor-
phemes could be arbitrarily far from the edges of
the string, making the (NN and) SVAE’s ability to
learn more generic rules even more valuable.

Observation 3: Non-concatenative Morphology.
One interesting advantage that the neural models
have over the FSTs is the ability to learn non-
concatenative phenomena. The FST model is based
on prefix and suffix rewrite rules and, naturally,
struggles when the correctly reinflected form is
more than the concatenation of these parts. Thus
we see that for the two semitic language, the SVAE
is the best method across all resource settings.

8 Conclusion

We have presented a novel generative model for
morphological inflection generation in context.
The model allows us to exploit unlabeled data in
the training of morphological inflectors. As the
model’s rich parameterization prevents tractable in-

ference, we craft a variational inference procedure,
based on the wake-sleep algorithm, to marginal-
ize out the latent variables. Experimentally, we
provide empirical validation on 23 languages. We
find that, especially in the lower-resource condi-
tions, our model improves by large margins over
the baselines.
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Abstract

The rise of neural networks, and par-
ticularly recurrent neural networks, has
produced significant advances in part-of-
speech tagging accuracy (Zeman et al.,
2017). One characteristic common among
these models is the presence of rich
initial word encodings. These encod-
ings typically are composed of a recur-
rent character-based representation with
learned and pre-trained word embeddings.
However, these encodings do not consider
a context wider than a single word and it
is only through subsequent recurrent lay-
ers that word or sub-word information in-
teracts. In this paper, we investigate mod-
els that use recurrent neural networks with
sentence-level context for initial character
and word-based representations. In partic-
ular we show that optimal results are ob-
tained by integrating these context sensi-
tive representations through synchronized
training with a meta-model that learns to
combine their states. We present results
on part-of-speech and morphological tag-
ging with state-of-the-art performance on
a number of languages.

1 Introduction

Morphosyntactic tagging accuracy has seen dra-
matic improvements through the adoption of re-
current neural networks—specifically BiLSTMs
(Schuster and Paliwal, 1997; Graves and Schmid-
huber, 2005) to create sentence-level context sen-
sitive encodings of words. A successful recipe is
to first create an initial context insensitive word
representation, which usually has three main parts:
1) A dynamically trained word embedding; 2) a
fixed pre-trained word-embedding, induced from

a large corpus; and 3) a sub-word character model,
which itself is usually the final state of a recurrent
model that ingests one character at a time. Such
word/sub-word models originated with Plank et al.
(2016). Recently, Dozat et al. (2017) used pre-
cisely such a context insensitive word representa-
tion as input to a BiLSTM in order to obtain con-
text sensitive word encodings used to predict part-
of-speech tags. The Dozat et al. model had the
highest accuracy of all participating systems in the
CoNLL 2017 shared task (Zeman et al., 2017).

In such a model, sub-word character-based rep-
resentations only interact indirectly via subsequent
recurrent layers. For example, consider the sen-
tence I had shingles, which is a painful disease.
Context insensitive character and word representa-
tions may have learned that for unknown or infre-
quent words like ‘shingles’, ‘s’ and more so ‘es’ is
a common way to end a plural noun. It is up to the
subsequent BiLSTM layer to override this once it
sees the singular verb is to the right. Note that this
differs from traditional linear models where word
and sub-word representations are directly concate-
nated with similar features in the surrounding con-
text (Giménez and Marquez, 2004).

In this paper we aim to investigate to what ex-
tent having initial sub-word and word context in-
sensitive representations affects performance. We
propose a novel model where we learn context
sensitive initial character and word representa-
tions through two separate sentence-level recur-
rent models. These are then combined via a meta-
BiLSTM model that builds a unified representa-
tion of each word that is then used for syntac-
tic tagging. Critically, while each of these three
models—character, word and meta—are trained
synchronously, they are ultimately separate mod-
els using different network configurations, train-
ing hyperparameters and loss functions. Empiri-
cally, we found this optimal as it allowed control
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over the fact that each representation has a differ-
ent learning capacity.

We tested the system on the 2017 CoNLL
shared task data sets and gain improvements com-
pared to the top performing systems for the major-
ity of languages for part-of-speech and morpho-
logical tagging. As we will see, a pattern emerged
where gains were largest for morphologically rich
languages, especially those in the Slavic family
group. We also applied the approach to the bench-
mark English PTB data, where our model achieved
97.9 using the standard train/dev/test split, which
constitutes a relative reduction in error of 12%
over the previous best system.

2 Related Work

While sub-word representations are often at-
tributed to the advent of deep learning in NLP,
it was, in fact, commonplace for linear featurized
machine learning methods to incorporate such rep-
resentations. While the literature is too large to
enumerate, Giménez and Marquez (2004) is a
good example of an accurate linear model that
uses both word and sub-word features. Specifi-
cally, like most systems of the time, they use n-
gram affix features, which were made context sen-
sitive via manually constructed conjunctions with
features from other words in a fixed window.

Collobert and Weston (2008) was perhaps the
first modern neural network for tagging. While
this first study used only word embeddings, a sub-
sequent model extended the representation to in-
clude suffix embeddings (Collobert et al., 2011).

The seminal dependency parsing paper of Chen
and Manning (2014) led to a number of tagging
papers that used their basic architecture of highly
featurized (and embedded) feed-forward neural
networks. Botha et al. (2017), for example, stud-
ied this architecture in a low resource setting using
word, sub-word (prefix/suffix) and induced cluster
features to obtain competitive accuracy with the
state-of-the-art. Zhou et al. (2015), Alberti et al.
(2015) and Andor et al. (2016) extended the work
of Chen et al. to a structured prediction setting, the
later two use again a mix of word and sub-word
features.

The idea of using a recurrent layer over char-
acters to induce a complementary view of a word
has occurred in numerous papers. Perhaps the
earliest is Santos and Zadrozny (2014) who com-
pare character-based LSTM encodings to tradi-

tional word-based embeddings. Ling et al. (2015)
take this a step further and combine the word em-
beddings with a recurrent character encoding of
the word—instead of just relying on one or the
other. Alberti et al. (2017) use characters encod-
ings for parsing. Peters et al. (2018) show that con-
textual embeddings using character convolutions
improve accuracy for number of NLP tasks. Plank
et al. (2016) is probably the jumping-off point for
most current architectures for tagging models with
recurrent neural networks. Specifically, they used
a combined word embedding and recurrent char-
acter encoding as the initial input to a BiLSTM
that generated context sensitive word encodings.
Though, like most previous studies, these initial
encodings were context insensitive and relied on
subsequent layers to encode sentence-level inter-
actions.

Finally, Dozat et al. (2017) showed that sub-
word/word combination representations lead to
state-of-the-art morphosyntactic tagging accuracy
across a number of languages in the CoNLL 2017
shared task (Zeman et al., 2017). Their word rep-
resentation consisted of three parts: 1) A dynam-
ically trained word embedding; 2) a fixed pre-
trained word embedding; 3) a character LSTM en-
coding that summed the final state of the recurrent
model with vector constructed using an attention
mechanism over all character states. Again, the
initial representations are all context insensitive.
As this model is currently the state-of-the-art in
morphosyntactic tagging, it will serve as a base-
line during our discussion and experiments.

3 Models

In this section, we introduce models that we inves-
tigate and experiment with in §4.

3.1 Sentence-based Character Model

The feature that distinguishes our model most
from previous work is that we apply a bidirectional
recurrent layer (LSTM) on all characters of a sen-
tence to induce fully context sensitive initial word
encodings. That is, we do not restrict the context
of this layer to the words themselves (as in Figure
1b). Figure 1a shows the sentence-based character
model applied to an example token in context.

The character model uses, as input, sentences
split into UTF8 characters. We include the spaces
between the tokens1 in the input and map each

1As input, we assume the sentence has been tok-
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(a) Sentence-based Character Model. The representation for
the token shingles is the concatenation of the four shaded
boxes. Note the surrounding sentence context affects the
representation.

(b) Token-based Character Modela. The token is repre-
sented by the concatenation of attention over the lightly
shaded boxes with the final cell (dark shaded box). The rest
of the sentence has no impact on the representation.

aThis is specifically the model of Dozat et al. (2017).

Figure 1: Token representations are sensitive to the context in the sentence-based character model (§3.1)
and are context-independent in the token-based character model (§3.2).

character to a dynamically learned embedding.
Next, a forward LSTM reads the characters

from left to right and a backward LSTM reads sen-
tences from right to left, in standard BiLSTM fash-
ion.

More formally, for an n-character sen-
tence, we apply for each character embedding
(echar1 , ..., echarn ) a BiLSTM:

f0c,i, b
0
c,i = BiLSTM(r0, (e

char
1 , ..., echarn ))i

As is also typical, we can have multiple such
layers (l) that feed into each other through the con-
catenation of previous layer encodings. The last
layer l has both forward (f lc,1, ..., f

l
c,n) and back-

ward (blc,1, ..., b
l
c,n) output vectors for each char-

acter.
To create word encodings, we need to combine

a relevant subset of these context sensitive charac-
ter encodings. These word encodings can then be
used in a model that assigns morphosyntactic tags
to each word directly or via subsequent layers. To
accomplish this, the model concatenates up to four
character output vectors: the {forward, backward}
output of the {first, last} character in the token
(F1st(w), Flast(w), B1st(w), Blast(w)). In Fig-
ure 1a, the four shaded boxes indicate these four
outputs for the example token. Thus, the proposed
model concatenates all four of these and passes it
as input to an multilayer perceptron (MLP):

gi = concat(F1st(w),Flast(w),

B1st(w),Blast(w)) (1)

mchars
i = MLP(gi)

A tag can then be predicted with a linear clas-
sifier that takes as input the output of the MLP

enized/segmented.

mchars
i , applies a softmax function and chooses

for each word the tag with highest probability. Ta-
ble 8 investigates the empirical impact of alterna-
tive definitions of gi that concatenate only subsets
of {F1st(w),Flast(w),B1st(w),Blast(w)}.

3.2 Word-based Character Model
To investigate whether a sentence sensitive char-
acter model is better than a character model where
the context is restricted to the characters of a
word, we reimplemented the word-based charac-
ter model of Dozat et al. (2017) as shown in Fig-
ure 1a. This model uses the final state of a unidi-
rectional LSTM over the characters of the word,
combined with the attention mechanism of Cao
and Rei (2016) over all characters. We refer the
reader to those works for more details. Critically,
however, all the information fed to this represen-
tation comes from the word itself, and not a wider
sentence-level context.

3.3 Sentence-based Word Model
We used a similar setup for our context sensitive
word encodings as the character encodings. There
are a few differences. Obviously, the inputs are the
words of the sentence. For each of the words, we
use pretrained word embeddings (pword1 , ..., pwordn )
summed with a dynamically learned word embed-
ding for each word in the corpus (eword1 , ..., ewordn ):

inwordi = ewordi + pwordi

The summed embeddings ini are passed as in-
put to one or more BiLSTM layers whose output
f lw,i, b

l
w,i is concatenated and used as the final en-

coding, which is then passed to an MLP

owordi = concat(f lw,i, b
l
w,i)

mword
i = MLP(owordi )
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It should be noted, that the output of this BiL-
STM is essentially the Dozat et al. model before
tag prediction, with the exception that the word-
based character encodings are excluded.

3.4 Meta-BiLSTM: Model Combination

Given initial word encodings, both character and
word-based, a common strategy is to pass these
through a sentence-level BiLSTM to create con-
text sensitive encodings, e.g., this is precisely what
Plank et al. (2016) and Dozat et al. (2017) do.
However, we found that if we trained each of the
character-based and word-based encodings with
their own loss, and combined them using an ad-
ditional meta-BiLSTM model, we obtained opti-
mal performance. In the meta-BiLSTM model, we
concatenate the output, for each word, of its con-
text sensitive character and word-based encodings,
and put this through another BiLSTM to create an
additional combined context sensitive encoding.
This is followed by a final MLP whose output is
passed to a linear layer for tag prediction.

cwi = concat(mchar
i ,mword

i )

f lm,i, b
l
m,i = BiLSTM(r0, (cw0, ..., cwn))i

mcomb
i = MLP(concat(f lm,i, b

l
m,i))

With this setup, each of the models can be opti-
mized independently which we describe in more
detail in §3.5. Figure 2b depicts the architecture of
the combined system and contrasts it with that of
the Dozat et al. model (Figure 2a).

3.5 Training Schema

As mentioned in the previous section, the char-
acter and word-based encoding models have their
own tagging loss functions, which are trained in-
dependently and joined via the meta-BiLSTM.
I.e., the loss of each model is minimized indepen-
dently by separate optimizers with their own hy-
perparameters. Thus, it is in some sense a multi-
task learning model and we must define a schedule
in which individual models are updated. We opted
for a simple synchronous schedule outline in Al-
gorithm 1. Here, during each epoch, we update
each of the models in sequence—character, word
and meta—using the entire training data.

In terms of model selection, after each epoch,
the algorithm evaluates the tagging accuracy of
the development set and keeps the parameters of
the best model. Accuracy is measured using the

Data: train-corpus, dev-corpus
/* The following models are defined

in §3. */
Input: char-model, word-model, meta-model
/* Model optimizers */
Input: char-opt, word-opt, meta-opt
/* Results are parameter sets for

each model. */
Result: best-char, best-word, best-meta
/* Initialize parameter sets (cf.

Table 1) */
Initialize(pac, paw, pam)
/* Iteration on over training

corpus. */
for epoch = 1 to MAX do

/* Update character model. */
char-logits, char-preds =

char-model(train-corpus, pac)
pac = char-opt.update(char-preds, train-data)
/* Update word model. */
word-logits, word-preds =

word-model(train-corpus, paw)
paw = word-opt.update(char-preds, train-data)
/* Update Meta-BiLSTM model. */
meta-preds = meta-model(train-corpus,
pac, paw, pam)
pam = meta-opt.update(train-corpus,

meta-preds)
/* Evaluate model due to dev set

accuracy. */
F1 = DevEval(parc, parw, parm)
/* Keep the best model. */
if F1 > best-F1 then

best-char = pac; best-word = paw
best-meta = pam; best-F1 = F1

end
end

Algorithm 1: Training procedure for learn-
ing initial character and word-based context
sensitive encodings synchronously with meta-
BiLSTM.

meta-BiLSTM tagging layer, which requires a for-
ward pass through all three models. Though we
use all three losses to update the models, only the
meta-BiLSTM layer is used for model selection
and test-time prediction.

While each of the three models—character,
word and meta—are trained with their own loss
functions, it should be emphasized that training is
synchronous in the sense that the meta-BiLSTM
model is trained in tandem with the two encod-
ing models, and not after those models have con-
verged. Since accuracy from the meta-BiLSTM
model on the development set determines the best
parameters, training is not completely indepen-
dent. We found this to improve accuracy overall.
Crucially, when we allowed the meta-BiLSTM to
back-propagate through the whole network, per-
formance degraded regardless of whether one or
multiple loss functions were used.
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(b) The overall architecture of the system. The data flows along
the arrows. The optimizers minimizes the loss of the classifiers
independently and backpropagates along the bold arrows.

Figure 2: Tagging architectures. (a) Dozat et al. (2017); (b) Meta-BiLSTM architecture of this work.

Each language could in theory use separate
hyperparameters, optimized for highest accuracy.
However, for our main experiments we use identi-
cal settings for each language which worked well
for large corpora and simplified things. We pro-
vide an overview of the selected hyperparameters
in §4.1. We explored more settings for selected in-
dividual languages with a grid search and ablation
experiments and present the results in §5.

4 Experiments and Results

In this section, we present the experimental setup
and the selected hyperparameter for the main ex-
periments where we use the CoNLL Shared Task
2017 treebanks and compare with the best systems
of the shared task.

4.1 Experimental Setup
For our main results, we selected one network con-
figuration and set of the hyperparameters. These
settings are not optimal for all languages. How-
ever, since hyperparameter exploration is compu-
tationally demanding due to the number of lan-
guages we optimized these hyperparameters on
initial development data experiments over a few
languages. Table 1 shows an overview of the ar-
chitecture, hyperparameters and the initialization
settings of the network. The word embeddings
are initialized with zero values and the pre-trained
embeddings are not updated during training. The
dropout used on the embeddings is achieved by a
single dropout mask and we use dropout on the in-
put and the states of the LSTM.

Architecture
Model Parameter Value
Chr, Wrd BiLSTM layers 3
Mt BiLSTM layers 1
Chr, Wrd, Mt BiLSTM size 400
Chr, Wrd, Mt Dropout LSTMs 0.33
Chr, Wrd, Mt Dropout MLP 0.33
Wrd Dropout embeddings 0.33
Chr Dropout embeddings 0.05
Chr, Wrd, Mt Nonlinear act. (MLP) ELU

Initialization
Model Parameter Value
Wrd embeddings Zero
Chr embeddings Gaussian
Chr, Wrd, Mt MLP Gaussian

Training
Model Parameter Value
Chr, Wrd, Mt Optimizer Adam
Chr, Wrd, Mt Loss Cross entropy
Chr, Wrd, Mt Learning rate 0.002
Chr, Wrd, Mt Decay 0.999994
Chr, Wrd, Mt Adam epsilon 1e-08
Chr, Wrd, Mt beta1 0.9
Chr, Wrd, Mt beta2 0.999

Table 1: Selected hyperparameters and initializa-
tion of parameters for our models. Chr, Wrd, and
Mt are used to indicate the character, word, and
meta models respectively. The Gaussian distribu-
tion is used with a mean of 0 and variance of 1 to
generate the random values.

As is standard, model selection was done mea-
suring development accuracy/F1 score after each
epoch and taking the model with maximum value
on the development set.
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4.2 Data Sets

For the experiments, we use the data sets as pro-
vided by the CoNLL Shared Task 2017 (Zeman
et al., 2017). For training, we use the training sets
which were denoted as big treebanks 2.

We followed the same methodology used in the
CoNLL Shared Task. We use the training tree-
bank for training only and the development sets
for hyperparameter tuning and early stopping. To
keep our results comparable with the Shared Task,
we use the provided precomputed word embed-
dings. We excluded Gothic from our experiments
as the available downloadable content did not in-
clude embeddings for this language.

As input to our system—for both part-of-
speech tagging and morphological tagging—we
use the output of the UDPipe-base baseline system
(Straka and Straková, 2017) which provides seg-
mentation. The segmentation differs from the gold
segmentation and impacts accuracy negatively for
a number of languages. Most of the top perform-
ing systems for part-of-speech tagging used as in-
put UDPipe to obtain the segmentation for the
input data. For morphology, the top system for
most languages (IMS) used its own segmentation
(Björkelund et al., 2017). For the evaluation, we
used the official evaluation script (Zeman et al.,
2017).

4.3 Part-of-Speech Tagging Results

In this section, we present the results of the appli-
cation of our model to part-of-speech tagging. In
our first experiment, we used our model in the set-
ting of the CoNLL 2017 Shared Task to annotate
words with XPOS3 tags (Zeman et al., 2017). We
compare our results against the top systems of the
CoNLL 2017 Shared Task. Table 2 contains the
results of this task for the large treebanks.

Because Dozat et al. (2017) won the challenge
for the majority of the languages, we first com-
pare our results with the performance of their sys-
tem. Our model outperforms Dozat et al. (2017)
in 32 of the 54 treebanks with 13 ties. These ties
correspond mostly to languages where XPOS tag-
ging anyhow obtains accuracies above 99%. Our
model tends to produce better results, especially
for morphologically rich languages (e.g. Slavic

2In the CONLL 2017 Shared Task, a big treebank is one
that contains a development set. In total, there are 55 out of
the 64 UD treebanks which are considered big treebanks.

3These are the language specific fine-grained part-of-
speech tags from the Universal Dependency Treebanks.

CONLL DQM ours RRIE
lang. Winner
cs cac 95.16 95.16 96.91 36.2
cs 95.86 95.86 97.28 35.5
fi 97.37 97.37 97.81 16.7
sl 94.74 94.74 95.54 15.2
la ittb 94.79 94.79 95.56 14.8
grc 84.47 84.47 86.51 13.1
bg 96.71 96.71 97.05 10.3
ca 98.58 98.58 98.72 9.9
grc proiel 97.51 97.51 97.72 8.4
pt 83.04 83.04 84.39 8.0
cu 96.20 96.20 96.49 7.6
it 97.93 97.93 98.08 7.2
fa 97.12 97.12 97.32 6.9
ru 96.73 96.73 96.95 6.7
sv 96.40 96.40 96.64 6.7
ko 93.02 93.02 93.45 6.2
sk 85.00 85.00 85.88 5.9
nl 90.61 90.61 91.10 5.4
fi ftb 95.31 95.31 95.56 5.3
de 97.29 97.29 97.39 4.7
tr 93.11 93.11 93.43 4.6
hi 97.01 97.01 97.13 4.0
es ancora 98.73 98.73 98.78 3.9
ro 96.98 96.98 97.08 3.6
la proiel 96.93 96.93 97.00 2.3
pl 91.97 91.97 92.12 1.9
ar 87.66 87.66 87.82 1.3
gl 97.50 97.50 97.53 1.2
sv lines 94.84 94.84 94.90 1.2
cs clt 89.98 89.98 90.09 1.1
lv 80.05 80.05 80.20 0.8
zh 88.40 85.07 85.10 0.2
da 100.00 99.96 99.96 0.0
es 99.81 99.69 99.69 0.0
eu 99.98 99.96 99.96 0.0
fr sequoia 99.49 99.06 99.06 0.0
fr 99.50 98.87 98.87 0.0
hr 99.93 99.93 99.93 0.0
hu 99.85 99.82 99.82 0.0
id 100.00 99.99 99.99 0.0
ja 98.59 89.68 89.68 0.0
nl lassy 99.99 99.93 99.93 0.0
no bok. 99.88 99.75 99.75 0.0
no nyn. 99.93 99.85 99.85 0.0
ru syn. 99.58 99.57 99.57 0.0
en lines 95.41 95.41 95.39 -0.4
ur 92.30 92.30 92.21 -1.2
he 83.24 82.45 82.16 -1.7
vi 75.42 73.56 73.12 -1.7
gl treegal 91.65 91.65 91.40 -3.0
en 94.82 94.82 94.66 -3.1
en partut 95.08 95.08 94.81 -5.5
pt br 98.22 98.22 98.11 -6.2
et 95.05 95.05 94.72 -6.7
el 97.76 97.76 97.53 -10.3
macro-avg 93.18 93.11 93.40 -

Table 2: Results for XPOS tags. The first column
shows the language acronym, the column named
DQM shows the results of Dozat et al. (2017). Our
system outperforms Dozat et al. (2017) on 32 out
of 54 treebanks and Dozat et al. outperforms our
model on 10 of 54 treebanks, with 13 ties. RRIE
is the relative reduction in error. We excluded ties
in the calculation of macro-avg since these tree-
banks do not contain meaningful xpos tags.
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System Accuracy
Søgaard (2011) 97.50
Huang et al. (2015) 97.55
Choi (2016) 97.64
Andor et al. (2016). 97.44
Dozat et al. (2017) 97.41
ours 97.96

Table 3: Results on WSJ test set.

languages), whereas Dozat et al. (2017) showed
higher performance in 10 languages in particular
English, Greek, Brazilian Portuguese and Esto-
nian.

4.4 Part-of-Speech Tagging on WSJ

We also performed experiments on the Penn Tree-
bank with the usual split in train, development and
test set. Table 3 shows the results of our model
in comparison to the results reported in state-of-
the-art literature. Our model significantly out-
performs these systems, with an absolute differ-
ence of 0.32% in accuracy, which corresponds to
a RRIE of 12%.

4.5 Morphological Tagging Results

In addition to the XPOS tagging experiments, we
performed experiments with morphological tag-
ging. This annotation was part of the CONLL
2017 Shared Task and the objective was to predict
a bundle of morphological features for each token
in the text. Our model treats the morphological
bundle as one tag making the problem equivalent
to a sequential tagging problem. Table 4 shows the
results.

Our models tend to produce significantly bet-
ter results than the winners of the CoNLL 2017
Shared Task (i.e., 1.8% absolute improvement on
average, corresponding to a RRIE of 21.20%).
The only cases for which this is not true are
again languages that require significant segmen-
tation efforts (i.e., Hebrew, Chinese, Vietnamese
and Japanese) or when the task was trivial.

Given the fact that Dozat et al. (2017) obtained
the best results in part-of-speech tagging by a sig-
nificant margin in the CoNLL 2017 Shared Task,
it would be expected that their model would also
perform significantly well in morphological tag-
ging since the tasks are very similar. Since they
did not participate in this particular challenge,
we decided to reimplement their system to serve

CONLL DQM ours RRIE
lang. Winner Reimpl.
cs cac 90.72 94.66 96.41 27.9
ru syn. 94.55 96.70 97.53 23.1
cs 93.14 96.32 97.14 22.3
la ittb 94.28 96.45 97.12 18.9
sl 90.08 95.26 96.03 16.2
ca 97.23 97.85 98.13 13.0
fi ftb 93.43 95.96 96.42 11.4
no bok. 95.56 96.95 97.26 10.2
grc proiel 90.24 91.35 92.22 10.1
fr sequoia 96.10 96.62 97.62 10.1
la proiel 89.22 91.52 92.35 9.8
es ancora 97.72 98.15 98.32 9.7
da 94.83 96.62 96.94 9.5
fi 92.43 94.29 94.83 9.5
sv 95.15 96.52 96.84 9.2
pt 94.62 95.89 96.27 9.2
grc 88.00 90.39 91.13 9.0
no nyn. 95.25 96.79 97.08 9.0
de 83.11 89.78 90.70 9.0
ru 87.27 91.99 92.69 8.7
hi 91.03 90.72 91.78 8.1
cu 88.90 88.93 89.82 8.0
fa 96.34 97.23 97.45 7.9
tr 87.03 89.39 90.21 7.7
en partut 92.69 93.93 94.40 7.7
sk 81.23 87.54 88.48 7.5
eu 89.57 92.48 93.04 7.4
pt br 99.73 99.73 99.75 7.4
es 96.34 96.42 96.68 7.3
ko 99.41 99.44 99.48 7.1
ar 87.15 85.45 88.29 6.7
it 97.37 97.72 97.86 6.1
nl lassy 97.55 98.04 98.15 5.2
nl 90.04 92.06 92.47 5.2
pl 86.53 91.71 92.14 5.2
ur 81.03 83.16 84.02 5.1
bg 96.47 97.71 97.82 4.8
hr 85.82 90.64 91.50 3.8
he 85.06 79.34 79.76 2.0
et 84.62 88.18 88.25 0.6
zh 92.90 87.67 87.74 0.6
vi 86.92 82.23 82.30 0.4
ja 96.84 89.65 89.66 0.1
en lines 99.96 99.99 99.99 0.0
fr 96.12 95.98 95.98 0.0
gl 99.78 99.72 99.72 0.0
id 99.55 99.50 99.50 0.0
ro 96.24 97.26 97.26 0.0
sv lines 99.98 99.98 99.98 0.0
cs cltt 87.88 90.41 90.36 -0.5
lv 84.14 87.00 86.92 -0.6
el 91.37 94.00 93.92 -1.3
hu 72.61 82.67 82.44 -1.3
en 94.49 95.93 95.71 -5.4
macro-avg 91.51 92.89 93.31 -

Table 4: Results for morphological features. The
column CoNLL Winner shows the top system of
the ST 17, the DQM Reimpl. shows our reimple-
mentation of Dozat et al. (2017), the column ours
shows our system with a sentence-based charac-
ter model; RRIE gives the relative reduction in
error between the Reimpl. DQM and sentence-
based character system. Our system outperforms
the CoNLL Winner by 48 out of 54 treebanks and
the reimplementation of DQM, by 43 of 54 tree-
banks, with 6 ties.
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as a strong baseline. As expected, our reimple-
mentation of Dozat et al. (2017) tends to signif-
icantly outperform the winners of the CONLL
2017 Shared Task. However, in general, our mod-
els still obtain better results, outperforming Dozat
et al. on 43 of the 54 treebanks, with an absolute
difference of 0.42% on average.

5 Ablation Study

The model proposed in this paper of a Meta-
BiLSTM with a sentence-based character model
differs from prior work in multiple aspects. In this
section, we perform ablations to determine the rel-
ative impact of each modeling decision.

For the experimental setup of the ablation ex-
periments, we report accuracy scores for the de-
velopment sets. We split off 5% of the sentences
from each training corpus and we use this part for
early stopping. Ablation experiments are either
performed on a few selected treebanks to show
individual language results or averaged across all
treebanks for which tagging is non-trivial.

Impact of the Training Schema We first com-
pare jointly training the three model components
(Meta-BiLSTM, character model, word model) to
training each separately. Table 5 shows that sep-
arately optimized models are significantly more
accurate on average than jointly optimized mod-
els. Separate optimization leads to better accu-
racy for 34 out of 40 treebanks for the morpho-
logical features task and for 30 out of 39 tree-
banks for xpos tagging. Separate optimization out-
performed joint optimization by up to 2.1 percent
absolute, while joint never out-performed separate
by more than 0.5% absolute. We hypothesize that
separately training the models forces each sub-
model (word and character) to be strong enough
to make high accuracy predictions and in some
sense serves as a regularizer in the same way that
dropout does for individual neurons.

Impact of the Sentence-based Character Model
We compared the setup with sentence-based char-
acter context (Figure 1a) to word-based character
context (Figure 1b). We selected for these experi-
ments a number of morphological rich languages.
The results are shown in Table 6. The accuracy
of the word-based character model joint with a
word-based model were significantly lower than
a sentence-based character model. We conclude
also from these results and comparing with results

Optimization Avg. F1 Score Avg. F1 Score
morphology xpos

separate 94.57 94.85
jointly 94.15 94.48

Table 5: Comparison of optimization methods:
Separate optimization of the word, character and
meta model is more accurate on average than full
back-propagation using a single loss function.The
results are statistically significant with two-tailed
paired t-test for xpos with p<0.001 and for mor-
phology with p <0.0001.

dev. set word char model sentence char model
el 89.05 93.41
la ittb 93.22 95.69
ru 88.94 92.31
tr 87.78 90.77

Table 6: F1 score for selected languages on sen-
tence vs. word level character models for the pre-
diction of morphology using late integration.

dev. set num. mean mean mean stdev stdev stdev
lang. exp. char word joint char word joint
el 10 96.43 95.36 97.01 0.13 0.11 0.09
grc 10 88.28 73.52 88.85 0.21 0.29 0.22
la ittb 10 91.45 87.98 91.94 0.14 0.30 0.05
ru 10 95.98 93.50 96.61 0.06 0.17 0.07
tr 10 93.77 90.48 94.67 0.11 0.33 0.14

Table 7: F1 score for the character, word and
joint models. The standard deviation of 10 ran-
dom restarts of each model is show in the last three
columns. The differences in means are all statisti-
cally significant at p < 0.001 (paired t-test).

of the reimplementation of DQM that early inte-
gration of the word-based character model per-
forms much better as late integration via Meta-
BiLSTM for a word-based character model.

Impact of the Meta-BiLSTM Model Combina-
tion The proposed model trains word and char-
acter models independently while training a joint
model on top. Here we investigate the part-of-
speech tagging performance of the joint model
compared with the word and character models on
their own (using hyperparameters from in 4.1).

Table 5 shows, for selected languages, the re-
sults averaged over 10 runs in order to measure
standard deviation. The examples show that the
combined model has significantly higher accuracy
compared with either the character and word mod-
els individually.
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dev. set. Flast F1st Flast F1st

lang. B1st Blast Blast B1st DQM |xpos|
el 96.6 96.6 96.2 96.1 95.9 16
grc 87.3 87.1 87.1 86.8 86.7 3130
la ittb 91.1 91.5 91.9 91.3 91.0 811
ru 95.6 95.4 95.6 95.3 95.8 49
tr 93.5 93.3 93.2 92.5 93.9 37

Table 8: F1 score of char models and their per-
formance on the dev. set for selected languages
with different gather strategies, concatenate to gi
(Equation 1). DQM shows results for our reimple-
mentation of Dozat et al. (2017) (cf. §3.2), where
we feed in only the characters. The final column
shows the number of xpos tags in the training set.

Concatenation Strategies for the Context-
Sensitive Character Encodings The proposed
model bases a token encoding on both the for-
ward and the backward character representations
of both the first and last character in the token
(see Equation 1). Table 8 reports, for a few mor-
phological rich languages, the part-of-speech tag-
ging performance of different strategies to gather
the characters when creating initial word encod-
ings. The strategies were defined in §3.1. The
Table also contains a column with results for our
reimplementation of Dozat et al. (2017). We re-
moved, for all systems, the word model in order to
assess each strategy in isolation. The performance
is quite different per language. E.g., for Latin, the
outputs of the forward and backward LSTMs of
the last character scored highest.

Sensitivity to Hyperparameter Search We
picked Vietnamese for a more in-depth analysis
since it did not perform well and investigated the
influence of the sizes of LSTMs for the word and
character model on the accuracy of development
set. With larger network sizes, the capacity of the
network increases, however, on the other hand it
is prune to overfitting. We fixed all the hyperpa-
rameters except those for the network size of the
character model and the word model, and ran a
grid search over dimension sizes from 200 to 500
in steps of 50. The surface plot in 3 shows that
the grid peaks with more moderate settings around
350 LSTM cells which might lead to a higher ac-
curacy. For all of the network sizes in the grid
search, we still observed during training that the
accuracy reach a high value and degrades with
more iterations for the character and word model.
This suggests that future variants of this model
might benefit from higher regularization.

Figure 3: 3D surface plot for development set ac-
curacy for XPOS (y-axis) depending on LSTM
size of the character and word model for the
Vietnamese treebank. The snapshot is take after
195 training epochs and we average the values of
neighboring epochs.

Discussion Generally, the fact that different
techniques for creating word encodings from char-
acter encodings and different network sizes can
lead to different accuracies per language suggests
that it should be possible to increase the accuracy
of our model on a per language basis via a grid
search over all possibilities. In fact, there are many
variations on the models we presented in this work
(e.g., how the character and word models are com-
bined with the meta-BiLSTM). Since we are using
separate losses, we could also change our train-
ing schema. For example, one could use methods
like stack-propagation (Zhang and Weiss, 2016)
where we burn-in the character and word models
and then train the meta-BiLSTM backpropagating
throughout the entire network.

6 Conclusions

We presented an approach to morphosyntactic tag-
ging that combines context-sensitive initial char-
acter and word encodings with a meta-BiLSTM
layer to obtain state-of-the art accuracies for a
wide variety of languages.
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Abstract

Morphological analysis involves predict-
ing the syntactic traits of a word (e.g.
{POS: Noun, Case: Acc, Gender: Fem}).
Previous work in morphological tagging
improves performance for low-resource
languages (LRLs) through cross-lingual
training with a high-resource language
(HRL) from the same family, but is limited
by the strict—often false—assumption
that tag sets exactly overlap between the
HRL and LRL. In this paper we pro-
pose a method for cross-lingual morpho-
logical tagging that aims to improve in-
formation sharing between languages by
relaxing this assumption. The proposed
model uses factorial conditional random
fields with neural network potentials, mak-
ing it possible to (1) utilize the expres-
sive power of neural network represen-
tations to smooth over superficial differ-
ences in the surface forms, (2) model pair-
wise and transitive relationships between
tags, and (3) accurately generate tag sets
that are unseen or rare in the training data.
Experiments on four languages from the
Universal Dependencies Treebank (Nivre
et al., 2017) demonstrate superior tagging
accuracies over existing cross-lingual ap-
proaches.1

1 Introduction

Morphological analysis (Hajič and Hladká (1998),
Oflazer and Kuruöz (1994), inter alia) is the task
of predicting fine-grained annotations about the
syntactic properties of tokens in a language such

1Our code and data is publicly available at
www.github.com/chaitanyamalaviya/
NeuralFactorGraph.

Figure 1: Morphological tags for a UD sentence
in Portuguese and a translation in Spanish

as part-of-speech, case, or tense. For instance,
in Figure 1, the given Portuguese sentence is la-
beled with the respective morphological tags such
as Gender and its label value Masculine.

The accuracy of morphological analyzers is
paramount, because their results are often a first
step in the NLP pipeline for tasks such as transla-
tion (Vylomova et al., 2017; Tsarfaty et al., 2010)
and parsing (Tsarfaty et al., 2013), and errors in
the upstream analysis may cascade to the down-
stream tasks. One difficulty, however, in creating
these taggers is that only a limited amount of anno-
tated data is available for a majority of the world’s
languages to learn these morphological taggers.
Fortunately, recent efforts in morphological an-
notation follow a standard annotation schema for
these morphological tags across languages, and
now the Universal Dependencies Treebank (Nivre
et al., 2017) has tags according to this schema in
60 languages.

Cotterell and Heigold (2017) have recently
shown that combining this shared schema with
cross-lingual training on a related high-resource
language (HRL) gives improved performance
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Figure 2: FCRF-LSTM Model for morphological
tagging

on tagging accuracy for low-resource languages
(LRLs). The output space of this model consists of
tag sets such as {POS: Adj, Gender: Masc, Num-
ber: Sing}, which are predicted for a token at each
time step. However, this model relies heavily on
the fact that the entire space of tag sets for the
LRL must match those of the HRL, which is of-
ten not the case, either due to linguistic divergence
or small differences in the annotation schemes be-
tween the two languages.2 For instance, in Fig-
ure 1 “refrescante” is assigned a gender in the Por-
tuguese UD treebank, but not in the Spanish UD
treebank.

In this paper, we propose a method that in-
stead of predicting full tag sets, makes predictions
over single tags separately but ties together each
decision by modeling variable dependencies be-
tween tags over time steps (e.g. capturing the fact
that nouns frequently occur after determiners) and
pairwise dependencies between all tags at a sin-
gle time step (e.g. capturing the fact that infini-
tive verb forms don’t have tense). The specific
model is shown in Figure 2, consisting of a facto-
rial conditional random field (FCRF; Sutton et al.
(2007)) with neural network potentials calculated
by long short-term memory (LSTM; (Hochreiter
and Schmidhuber, 1997)) at every variable node
(§3). Learning and inference in the model is made

2In particular, the latter is common because many UD re-
sources were created by full or semi-automatic conversion
from treebanks with less comprehensive annotation schemes
than UD. Our model can generate label values for these tags
too, which could possibly aid the enhancement of UD anno-
tations, although we do not examine this directly in our work.

tractable through belief propagation over the pos-
sible tag combinations, allowing the model to con-
sider an exponential label space in polynomial
time (§3.5).

This model has several advantages:

• The model is able to generate tag sets un-
seen in training data, and share information
between similar tag sets, alleviating the main
disadvantage of previous work cited above.

• Our model is empirically strong, as vali-
dated in our main experimental results: it
consistently outperforms previous work in
cross-lingual low-resource scenarios in ex-
periments.

• Our model is more interpretable, as we can
probe the model parameters to understand
which variable dependencies are more likely
to occur in a language, as we demonstrate in
our analysis.

In the following sections, we describe the model
and these results in more detail.

2 Problem Formulation and Baselines

2.1 Problem Formulation
Formally, we define the problem of morpholog-
ical analysis as the task of mapping a length-T
string of tokens x = x1, . . . , xT into the tar-
get morphological tag sets for each token y =
y1, . . . ,yT . For the tth token, the target label
yt = yt,1, . . . , yt,m defines a set of tags (e.g.
{Gender: Masc, Number: Sing, POS: Verb}). An
annotation schema defines a set S of M possi-
ble tag types and with the mth type (e.g. Gen-
der) defining its set of possible labels Ym (e.g.
{Masc, Fem, Neu}) such that yt,m ∈ Ym. We
must note that not all tags or attributes need to
be specified for a token; usually, a subset of S is
specified for a token and the remaining tags can
be treated as mapping to a NULL ∈ Ym value. Let
Y = {(y1, . . . , yM ) : y1 ∈ Y1, . . . , yM ∈ YM}
denote the set of all possible tag sets.

2.2 Baseline: Tag Set Prediction
Data-driven models for morphological analy-
sis are constructed using training data D =
{(x(i),y(i))}Ni=1 consisting of N training exam-
ples. The baseline model (Cotterell and Heigold,
2017) we compare with regards the output space
of the model as a subset Ỹ ⊂ Y where Ỹ is the
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set of all tag sets seen in this training data. Specif-
ically, they solve the task as a multi-class classi-
fication problem where the classes are individual
tag sets. In low-resource scenarios, this indicates
that |Ỹ| << |Y| and even for those tag sets exist-
ing in Ỹ we may have seen very few training ex-
amples. The conditional probability of a sequence
of tag sets given the sentence is formulated as a
0th order CRF.

p(y|x) =
T∏

t=1

p(yt|x) (1)

Instead, we would like to be able to generate
any combination of tags from the set Y , and share
statistical strength among similar tag sets.

2.3 A Relaxation: Tag-wise Prediction
As an alternative, we could consider a model that
performs prediction for each tag’s label yt,m inde-
pendently.

p(y|x) =
T∏

t=1

M∏

m=1

p(yt,m|x) (2)

This formulation has an advantage: the tag-
predictions within a single time step are now in-
dependent, it is now easy to generate any combi-
nation of tags from Y . On the other hand, now
it is difficult to model the interdependencies be-
tween tags in the same tag set yi, a major dis-
advantage over the previous model. In the next
section, we describe our proposed neural factor
graph model, which can model not only dependen-
cies within tags for a single token, but also depen-
dencies across time steps while still maintaining
the flexibility to generate any combination of tags
from Y .

3 Neural Factor Graph Model

Due to the correlations between the syntactic prop-
erties that are represented by morphological tags,
we can imagine that capturing the relationships
between these tags through pairwise dependen-
cies can inform the predictions of our model.
These dependencies exist both among tags for the
same token (intra-token pairwise dependencies),
and across tokens in the sentence (inter-token tran-
sition dependencies). For instance, knowing that a
token’s POS tag is a Noun, would strongly suggest
that this token would have a NULL label for the tag
Tense, with very few exceptions (Nordlinger and

Sadler, 2004). In a language where nouns follow
adjectives, a tag set prediction {POS: Adj, Gen-
der: Fem} might inform the model that the next
token is likely to be a noun and have the same gen-
der. The baseline model can not explicitly model
such interactions given their factorization in equa-
tion 1.

To incorporate the dependencies discussed
above, we define a factorial CRF (Sutton et al.,
2007), with pairwise links between cotemporal
variables and transition links between the same
types of tags. This model defines a distribution
over the tag-set sequence y given the input sen-
tence x as,

p(y|x) = 1

Z(x)

T∏

t=1

∏

α∈C
ψα(yα,x, t) (3)

where C is the set of factors in the factor graph (as
shown in Figure 2), α is one such factor, and yα
is the assignment to the subset of variables neigh-
boring factor α. We define three types of potential
functions: neural ψNN , pairwise ψP , and transi-
tion ψT , described in detail below.

Figure 3: Factors in the Neural Factor Graph
model (red: Pairwise, grey: Transition, green:
Neural Network)

3.1 Neural Factors
The flexibility of our formulation allows us to in-
clude any form of custom-designed potentials in
our model. Those for the neural factors have a
fairly standard log-linear form,

ψNN,i(yt,m) = exp

{∑

k

λnn,kfnn,k(x, t)

}
(4)

except that the features fnn,k are themselves given
by a neural network. There is one such factor per
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variable. We obtain our neural factors using a biL-
STM over the input sequence x, where the input
word embedding for each token is obtained from
a character-level biLSTM embedder. This compo-
nent of our model is similar to the model proposed
by Cotterell and Heigold (2017). Given an input
token xt = c1...cn, we compute an input embed-
ding vt as,

vt = [cLSTM(c1...cn); cLSTM(cn...c1)] (5)

Here, cLSTM is a character-level LSTM function
that returns the last hidden state. This input em-
bedding vt is then used in the biLSTM tagger to
compute an output representation et. Finally, the
scores fnn(x, t) are obtained as,

fnn(x, t) =Wlet + bl (6)

We use a language-specific linear layer with
weights Wl and bias bl.

3.2 Pairwise Factors

As discussed previously, the pairwise factors are
crucial for modeling correlations between tags.
The pairwise factor potential for a tag i and tag
j at timestep t is given in equation 7. Here, the
dimension of fp is (|Yi|, |Yj |). These scores are
used to define the neural factors as,

ψPi,j (yt,i, yt,j) = exp

{∑

k

λp,kfp,k(yt,i, yt,j)

}

(7)

3.3 Transition Factors

Previous work has experimented with the use of a
linear chain CRF with factors from a neural net-
work (Huang et al., 2015) for sequence tagging
tasks. We hypothesize that modeling transition
factors in a similar manner can allow the model
to utilize information about neighboring tags and
capture word order features of the language. The
transition factor for tag i and timestep t is given
below for variables yt,i and yt+1,i. The dimension
of fT is (|Yi|, |Yi|).

ψTi,t(yt,i, yt+1,i) = exp

{∑

k

λT,kfT,k(yt,i, yt+1,i)

}

(8)

In our experiments, fp,k and fT,k are simple indi-
cator features for the values of tag variables with
no dependence on x.

3.4 Language-Specific Weights
As an enhancement to the information encoded
in the transition and pairwise factors, we experi-
ment with training general and language-specific
parameters for the transition and the pairwise
weights. We define the weight matrix λgen to learn
the general trends that hold across both languages,
and the weights λlang to learn the exceptions to
these trends. In our model, we sum both these pa-
rameter matrices before calculating the transition
and pairwise factors. For instance, the transition
weights λT are calculated as λT = λT, gen+λT, lang.

3.5 Loopy Belief Propagation
Since the graph from Figure 2 is a loopy graph,
performing exact inference can be expensive.
Hence, we use loopy belief propagation (Murphy
et al., 1999; Ihler et al., 2005) for computation of
approximate variable and factor marginals. Loopy
BP is an iterative message passing algorithm that
sends messages between variables and factors in a
factor graph. The message updates from variable
vi, with neighboring factors N(i), to factor α is

µi→α(vi) =
∏

α∈N(i)\α
µα→i(vi) (9)

The message from factor α to variable vi is

µα→i(vi) =
∑

vα:vα[i]=vi

ψα(vα)
∏

j∈N(α)\i
µj→α(vα[i])

(10)

where vα denote an assignment to the subset of
variables adjacent to factor α, and vα[i] is the as-
signment for variable vi. Message updates are
performed asynchronously in our model. Our
message passing schedule was similar to that of
foward-backward: the forward pass sends all mes-
sages from the first time step in the direction of
the last. Messages to/from pairwise factors are in-
cluded in this forward pass. The backward pass
sends messages in the direction from the last time
step back to the first. This process is repeated un-
til convergence. We say that BP has converged
when the maximum residual error (Sutton and Mc-
Callum, 2007) over all messages is below some
threshold. Upon convergence, we obtain the belief
values of variables and factors as,

bi(vi) =
1

κi

∏

α∈N(i)

µα→i(vi) (11)

bα(vα) =
1

κα
ψα(vα)

∏

i∈N(α)

µi→α(vα[i]) (12)
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where κi and κα are normalization constants en-
suring that the beliefs for a variable i and factor α
sum-to-one. In this way, we can use the beliefs as
approximate marginal probabilities.

3.6 Learning and Decoding

We perform end-to-end training of the neural fac-
tor graph by following the (approximate) gradient
of the log-likelihood

∑N
i=1 log p(y

(i)|x(i)). The
true gradient requires access to the marginal prob-
abilities for each factor, e.g. p(yα|x) where yα
denotes the subset of variables in factor α. For
example, if α is a transition factor for tag m at
timestep t, then yα would be yt,m and yt+1,m.
Following (Sutton et al., 2007), we replace these
marginals with the beliefs bα(yα) from loopy be-
lief propagation.3 Consider the log-likelihood of
a single example `(i) = log p(y(i)|x(i)). The par-
tial derivative with respect to parameter λg,k for
each type of factor g ∈ {NN,T, P} is the dif-
ference of the observed features with the expected
features under the model’s (approximate) distribu-
tion as represented by the beliefs:

∂`(i)

∂λg,k
=
∑

α∈Cg

(
fg,k(y

(i)
α )−

∑

yα

bα(yα)fg,k(yα)

)

where Cg denotes all the factors of type g, and we
have omitted any dependence on x(i) and t for
brevity—t is accessible through the factor index
α. For the neural network factors, the features are
given by a biLSTM. We backpropagate through to
the biLSTM parameters using the partial deriva-
tive below,

∂`(i)

∂fNN,k(y
(i)
t,m, t)

= λNN,k −
∑

yt,m

bt,m(yt,m)λNN,k

where bt,m(·) is the variable belief corresponding
to variable yt,m.

To predict a sequence of tag sets ŷ at test time,
we use minimum Bayes risk (MBR) decoding
(Bickel and Doksum, 1977; Goodman, 1996) for
Hamming loss over tags. For a variable yt,m rep-
resenting tag m at timestep t, we take

ŷt,m = arg max
l∈Ym

bt,m(l). (13)

where l ranges over the possible labels for tag m.

Language Pair HRL Train Dev Test
DA/SV 4,383 504 1219
RU/BG 3,850 1115 1116
FI/HU 12,217 441 449
ES/PT 14,187 560 477

Table 1: Dataset sizes. tgt size = 100 or 1,000
LRL sentences are added to HRL Train

Language Pair Unique Tags Tag Sets
DA/SV 23 224
RU/BG 19 798
FI/HU 27 2195
ES/PT 19 451

Table 2: Tag Set Sizes with tgt size=100

4 Experimental Setup

4.1 Dataset

We used the Universal Dependencies Treebank
UD v2.1 (Nivre et al., 2017) for our experiments.
We picked four low-resource/high-resource
language pairs, each from a different family:
Danish/Swedish (DA/SV), Russian/Bulgarian
(RU/BG), Finnish/Hungarian (FI/HU), Span-
ish/Portuguese (ES/PT). Picking languages from
different families would ensure that we obtain
results that are on average consistent across
languages.

The sizes of the training and evaluation sets are
specified in Table 1. In order to simulate low-
resource settings, we follow the experimental pro-
cedure from Cotterell and Heigold (2017). We re-
strict the number of sentences of the target lan-
guage (tgt size) in the training set to 100 or 1000
sentences. We also augment the tag sets in our
training data by adding a NULL label for all tags
that are not seen for a token. It is expected that
our model will learn which tags are unlikely to oc-
cur given the variable dependencies in the factor
graph. The dev set and test set are only in the tar-
get language. From Table 2, we can see there is
also considerable variance in the number of unique
tags and tag sets found in each of these language
pairs.

3Using this approximate gradient is akin to the surrogate
likelihood training of (Wainwright, 2006).
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Language Model
tgt size = 100 tgt size=1000

Accuracy F1-Micro F1-Macro Accuracy F1-Macro F1-Micro

SV
Baseline 15.11 8.36 10.37 68.64 76.36 76.50

Ours 29.47 54.09 54.36 71.32 84.42 84.46

BG
Baseline 29.05 14.32 29.62 59.20 67.22 67.12

Ours 27.81 40.97 42.43 39.25 60.23 60.84

HU
Baseline 21.97 13.30 16.67 50.75 58.68 62.79

Ours 33.32 54.88 54.69 45.90 74.05 73.38

PT
Baseline 18.91 7.10 10.33 74.22 81.62 81.87

Ours 58.82 73.67 74.07 76.26 87.13 87.22

Table 3: Token-wise accuracy and F1 scores on mono-lingual experiments

4.2 Baseline Tagger

As the baseline tagger model, we re-implement
the SPECIFIC model from Cotterell and Heigold
(2017) that uses a language-specific softmax layer.
Their model architecture uses a character biLSTM
embedder to obtain a vector representation for
each token, which is used as input in a word-level
biLSTM. The output space of their model is all
the tag sets seen in the training data. This work
achieves strong performance on several languages
from UD on the task of morphological tagging and
is a strong baseline.

4.3 Training Regimen

We followed the parameter settings from Cotterell
and Heigold (2017) for the baseline tagger and
the neural component of the FCRF-LSTM model.
For both models, we set the input embedding and
linear layer dimension to 128. We used 2 hidden
layers for the LSTM where the hidden layer di-
mension was set to 256 and a dropout (Srivastava
et al., 2014) of 0.2 was enforced during training.
All our models were implemented in the PyTorch
toolkit (Paszke et al., 2017). The parameters of the
character biLSTM and the word biLSTM were ini-
tialized randomly. We trained the baseline models
and the neural factor graph model with SGD and
Adam respectively for 10 epochs each, in batches
of 64 sentences. These optimizers gave the best
performances for the respective models.

For the FCRF, we initialized transition and pair-
wise parameters with zero weights, which was im-
portant to ensure stable training. We considered
BP to have reached convergence when the maxi-
mum residual error was below 0.05 or if the max-
imum number of iterations was reached (set to
40 in our experiments). We found that in cross-

lingual experiments, when tgt size = 100, the
relatively large amount of data in the HRL was
causing our model to overfit on the HRL and not
generalize well to the LRL. As a solution to this,
we upsampled the LRL data by a factor of 10 when
tgt size = 100 for both the baseline and the pro-
posed model.

Evaluation: Previous work on morphological
analysis (Cotterell and Heigold, 2017; Buys and
Botha, 2016) has reported scores on average
token-level accuracy and F1 measure. The av-
erage token level accuracy counts a tag set pre-
diction as correct only it is an exact match with
the gold tag set. On the other hand, F1 mea-
sure is measured on a tag-by-tag basis, which al-
lows it to give partial credit to partially correct tag
sets. Based on the characteristics of each eval-
uation measure, Accuracy will favor tag-set pre-
diction models (like the baseline), and F1 mea-
sure will favor tag-wise prediction models (like
our proposed method). Given the nature of the
task, it seems reasonable to prefer getting some of
the tags correct (e.g. Noun+Masc+Sing becomes
Noun+Fem+Sing), instead of missing all of them
(e.g. Noun+Masc+Sing becomes Adj+Fem+Plur).
F-score gives partial credit for getting some of the
tags correct, while tagset-level accuracy will treat
these two mistakes equally. Based on this, we
believe that F-score is intuitively a better metric.
However, we report both scores for completeness.

5 Results and Analysis

5.1 Main Results
First, we report the results in the case of mono-
lingual training in Table 3. The first row for each
language pair reports the results for our reimple-
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Language Model
tgt size = 100 tgt size=1000

Accuracy F1-Micro F1-Macro Accuracy F1-Macro F1-Micro

DA/SV
Baseline 66.06 73.95 74.37 82.26 87.88 87.91

Ours 63.22 78.75 78.72 77.43 87.56 87.52

RU/BG
Baseline 52.76 58.41 58.23 71.90 77.89 77.97

Ours 46.89 64.46 64.75 67.56 82.06 82.11

FI/HU
Baseline 51.74 68.15 66.82 61.80 75.96 76.16

Ours 45.41 68.63 68.07 63.93 85.06 84.12

ES/PT
Baseline 79.40 86.03 86.14 85.85 91.91 91.93

Ours 77.75 88.42 88.44 85.02 92.35 92.37

Table 4: Token-wise accuracy and F1 scores on cross-lingual experiments

mentation of Cotterell and Heigold (2017), and
the second for our full model. From these results,
we can see that we obtain improvements on the F-
measure over the baseline method in most experi-
mental settings except BG with tgt size = 1000.
In a few more cases, the baseline model sometimes
obtains higher accuracy scores for the reason de-
scribed in 4.3.

In our cross-lingual experiments shown in Ta-
ble 4, we also note F-measure improvements
over the baseline model with the exception of
DA/SV when tgt size = 1000. We observe that
the improvements are on average stronger when
tgt size = 100. This suggests that our model
performs well with very little data due to its flex-
ibility to generate any tag set, including those not
observed in the training data. The strongest im-
provements are observed for FI/HU. This is likely
because the number of unique tags is the highest in
this language pair and our method scales well with
the number of tags due to its ability to make use of
correlations between the tags in different tag sets.

Language Transition Pairwise F1-Macro

HU

× × 69.87
X × 73.21
× X 73.68
X X 74.05

FI/HU

× × 79.57
X × 84.41
× X 84.73
X X 85.06

Table 5: Ablation Experiments (tgt size=1000)

To examine the utility of our transition and pair-
wise factors, we also report results on ablation
experiments by removing transition and pairwise

factors completely from the model in Table 5.
Ablation experiments for each factor showed de-
creases in scores relative to the model where both
factors are present, but the decrease attributed to
the pairwise factors is larger, in both the mono-
lingual and cross-lingual cases. Removing both
factors from our proposed model results in a fur-
ther decrease in the scores. These differences were
found to be more significant in the case when
tgt size = 100.

Upon looking at the tag set predictions made
by our model, we found instances where our
model utilizes variable dependencies to predict
correct labels. For instance, for a specific phrase
in Portuguese (um estado), the baseline model
predicted {POS: Det, Gender: Masc, Number:
Sing}t, {POS: Noun, Gender: Fem (X), Number:
Sing}t+1, whereas our model was able to get the
gender correct because of the transition factors in
our model.

5.2 What is the Model Learning?

Figure 4: Generic transition weights for POS
from the RU/BG model

One of the major advantages of our model is
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Figure 5: Generic pairwise weights between
Verbform and Tense from the RU/BG model

the ability to interpret what the model has learned
by looking at the trained parameter weights. We
investigated both language-generic and language-
specific patterns learned by our parameters:

• Language-Generic: We found evidence for
several syntactic properties learned by the
model parameters. For instance, in Figure 4,
we visualize the generic (λT, gen) transition
weights of the POS tags in RU/BG. Several
universal trends such as determiners and ad-
jectives followed by nouns can be seen. In
Figure 5, we also observed that infinitive has
a strong correlation for NULL tense, which
follows the universal phenomena that infini-
tives don’t have tense.

Figure 6: Language-specific pairwise weights
for RU between Gender and Tense from the
RU/BG model

• Language Specific Trends: We visual-
ized the learnt language-specific weights and
looked for evidence of patterns correspond-
ing to linguistic phenomenas observed in a
language of interest. For instance, in Rus-
sian, verbs are gender-specific in past tense
but not in other tenses. To analyze this, we
plotted pairwise weights for Gender/Tense in

Figure 6 and verified strong correlations be-
tween the past tense and all gender labels.

6 Related Work

There exist several variations of the task of pre-
diction of morphological information from an-
notated data: paradigm completion (Durrett and
DeNero, 2013; Cotterell et al., 2017b), morpho-
logical reinflection (Cotterell et al., 2017a), seg-
mentation (Creutz et al., 2005; Cotterell et al.,
2016) and tagging. Work on morphological tag-
ging has broadly focused on structured prediction
models such as CRFs, and neural network models.
Amongst structured prediction approaches, Müller
et al. (2013); Müller and Schütze (2015) proposed
the use of a higher-order CRF that is approx-
imated using coarse-to-fine decoding. (Müller
et al., 2015) proposed joint lemmatization and tag-
ging using this framework. (Hajič, 2000) was the
first work that performed experiments on multilin-
gual morphological tagging. They proposed an ex-
ponential model and the use of a morphological
dictionary. Buys and Botha (2016); Kirov et al.
(2017) proposed a model that used tag projection
of type and token constraints from a resource-rich
language to a low-resource language for tagging.

Most recent work has focused on character-
based neural models (Heigold et al., 2017), that
can handle rare words and are hence more use-
ful to model morphology than word-based mod-
els. These models first obtain a character-level
representation of a token from a biLSTM or CNN,
which is provided to a word-level biLSTM tagger.
Heigold et al. (2017, 2016) compared several neu-
ral architectures to obtain these character-based
representations and found the effect of the neu-
ral network architecture to be minimal given the
networks are carefully tuned. Cross-lingual trans-
fer learning has previously boosted performance
on tasks such as translation (Johnson et al., 2016)
and POS tagging (Snyder et al., 2008; Plank et al.,
2016). Cotterell and Heigold (2017) proposed a
cross-lingual character-level neural morphological
tagger. They experimented with different strate-
gies to facilitate cross-lingual training: a language
ID for each token, a language-specific softmax and
a joint language identification and tagging model.
We have used this work as a baseline model for
comparing with our proposed method.

In contrast to earlier work on morphological
tagging, we use a hybrid of neural and graphical
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model approaches. This combination has several
advantages: we can make use of expressive fea-
ture representations from neural models while en-
suring that our model is interpretable. Our work
is similar in spirit to Huang et al. (2015) and Ma
and Hovy (2016), who proposed models that use
a CRF with features from neural models. For our
graphical model component, we used a factorial
CRF (Sutton et al., 2007), which is a generaliza-
tion of a linear chain CRF with additional pairwise
factors between cotemporal variables.

7 Conclusion and Future Work

In this work, we proposed a novel framework for
sequence tagging that combines neural networks
and graphical models, and showed its effective-
ness on the task of morphological tagging. We
believe this framework can be extended to other
sequence labeling tasks in NLP such as seman-
tic role labeling. Due to the robustness of the
model across languages, we believe it can also be
scaled to perform morphological tagging for mul-
tiple languages together.
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Abstract

Shi, Huang, and Lee (2017a) obtained
state-of-the-art results for English and
Chinese dependency parsing by com-
bining dynamic-programming implemen-
tations of transition-based dependency
parsers with a minimal set of bidirec-
tional LSTM features. However, their re-
sults were limited to projective parsing.
In this paper, we extend their approach
to support non-projectivity by providing
the first practical implementation of the
MH 4 algorithm, an Opn4q mildly non-
projective dynamic-programming parser
with very high coverage on non-projective
treebanks. To make MH 4 compatible with
minimal transition-based feature sets, we
introduce a transition-based interpretation
of it in which parser items are mapped
to sequences of transitions. We thus ob-
tain the first implementation of global de-
coding for non-projective transition-based
parsing, and demonstrate empirically that
it is more effective than its projective
counterpart in parsing a number of highly
non-projective languages.

1 Introduction

Transition-based dependency parsers are a popu-
lar approach to natural language parsing, as they
achieve good results in terms of accuracy and ef-
ficiency (Yamada and Matsumoto, 2003; Nivre
and Scholz, 2004; Zhang and Nivre, 2011; Chen
and Manning, 2014; Dyer et al., 2015; Andor
et al., 2016; Kiperwasser and Goldberg, 2016).
Until very recently, practical implementations of
transition-based parsing were limited to approx-
imate inference, mainly in the form of greedy
search or beam search. While cubic-time exact in-

ference algorithms for several well-known projec-
tive transition systems had been known since the
work of Huang and Sagae (2010) and Kuhlmann
et al. (2011), they had been considered of theoret-
ical interest only due to their incompatibility with
rich feature models: incorporation of complex fea-
tures resulted in jumps in asymptotic runtime com-
plexity to impractical levels.

However, the recent popularization of bi-
directional long-short term memory networks (bi-
LSTMs; Hochreiter and Schmidhuber, 1997) to
derive feature representations for parsing, given
their capacity to capture long-range information,
has demonstrated that one may not need to use
complex feature models to obtain good accu-
racy (Kiperwasser and Goldberg, 2016; Cross and
Huang, 2016). In this context, Shi et al. (2017a)
presented an implementation of the exact infer-
ence algorithms of Kuhlmann et al. (2011) with
a minimal set of only two bi-LSTM-based feature
vectors. This not only kept the complexity cubic,
but also obtained state-of-the-art results in English
and Chinese parsing.

While their approach provides both accurate
parsing and the flexibility to use any of greedy,
beam, or exact decoding with the same underly-
ing transition systems, it does not support non-
projectivity. Trees with crossing dependencies
make up a significant portion of many treebanks,
going as high as 63% for the Ancient Greek tree-
bank in the Universal Dependencies1 (UD) dataset
version 2.0 and averaging around 12% over all
languages in UD 2.0. In this paper, we ex-
tend Shi et al.’s (2017a) approach to mildly non-
projective parsing in what, to our knowledge, is
the first implementation of exact decoding for a
non-projective transition-based parser.

As in the projective case, a mildly non-

1http://universaldependencies.org/
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projective decoder has been known for several
years (Cohen et al., 2011), corresponding to
a variant of the transition-based parser of At-
tardi (2006). However, its Opn7q runtime —
or the Opn6q of a recently introduced improved-
coverage variant (Shi et al., 2018) — is still pro-
hibitively costly in practice. Instead, we seek a
more efficient algorithm to adapt, and thus de-
velop a transition-based interpretation of Gómez-
Rodríguez et al.’s (2011) MH 4 dynamic pro-
gramming parser, which has been shown to pro-
vide very good non-projective coverage in Opn4q
time (Gómez-Rodríguez, 2016). While the MH 4

parser was originally presented as a non-projective
generalization of the dynamic program that later
led to the arc-hybrid transition system (Gómez-
Rodríguez et al., 2008; Kuhlmann et al., 2011), its
own relation to transition-based parsing was not
known. Here, we show that MH 4 can be inter-
preted as exploring a subset of the search space
of a transition-based parser that generalizes the
arc-hybrid system, under a mapping that differs
from the “push computation” paradigm used by
the previously-known dynamic-programming de-
coders for transition systems. This allows us to
extend Shi et al. (2017a)’s work to non-projective
parsing, by implementing MH 4 with a minimal set
of transition-based features.

Experimental results show that our approach
outperforms the projective approach of Shi
et al. (2017a) and maximum-spanning-tree non-
projective parsing on the most highly non-
projective languages in the CoNLL 2017 shared-
task data that have a single treebank. We also
compare with the third-order 1-Endpoint-Crossing
(1EC) parser of Pitler (2014), the only other
practical implementation of an exact mildly non-
projective decoder that we know of, which also
runs in Opn4q but without a transition-based in-
terpretation. We obtain comparable results for
these two algorithms, in spite of the fact that
the MH 4 algorithm is notably simpler than 1EC.
The MH 4 parser remains effective in parsing pro-
jective treebanks, while our baseline parser, the
fully non-projective maximum spanning tree al-
gorithm, falls behind due to its unnecessarily
large search space in parsing these languages.
Our code, including our re-implementation of the
third-order 1EC parser with neural scoring, is
available at https://github.com/tzshi/
mh4-parser-acl18.

....Jack ..Dempseys ..are ..not ..an ..easy ..cichlid ..to ..breed.

compound

.

nsubj

.

cop

.

advmod

.

det

.

amod

.

root

.
mark

.

advcl

Figure 1: A non-projective dependency parse from
the UD 2.0 English treebank.

2 Non-projective Dependency Parsing

In dependency grammar, syntactic structures are
modeled as word-word asymmetrical subordinate
relations among lexical entries (Kübler et al.,
2009). These relations can be represented in a
graph. For a sentence w “ w1, ..., wn, we first de-
fine a corresponding set of nodes t0, 1, 2, ..., nu,
where 0 is an artificial node denoting the root of
the sentence. Dependency relations are encoded
by edges of the form ph,mq, where h is the head
and m the modifier of the bilexical subordinate re-
lation.2

As is conventional, we assume two more prop-
erties on dependency structures. First, each word
has exactly one syntactic head, and second, the
structure is acyclic. As a consequence, the edges
form a directed tree rooted at node 0.

We say that a dependency structure is projec-
tive if it has no crossing edges. While in the
CoNLL and Stanford conversions of the English
Penn Treebank, over 99% of the sentences are pro-
jective (Chen and Manning, 2014) — see Fig. 1 for
a non-projective English example — for other lan-
guages’ treebanks, non-projectivity is a common
occurrence (see Table 3 for some statistics). This
paper is targeted at learning parsers that can han-
dle non-projective dependency trees.

3 MH 4 Deduction System and Its
Underlying Transition System

3.1 The MH 4 Deduction System
The MH 4 parser is the instantiation for k “ 4
of Gómez-Rodríguez et al.’s (2011) more general
MH k parser. MH k stands for “multi-headed with
at most k heads per item”: items in its deduc-
tion system take the form rh1, . . . , hps for p ď k,
indicating the existence of a forest of p depen-
dency subtrees headed by h1, . . . , hp such that
their yields are disjoint and the union of their

2To simplify exposition here, we only consider the unla-
beled case. We use a separately-trained labeling module to
obtain labeled parsing results in §5.
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Axiom:

r0, 1s
SHIFT:

rh1, . . . , hms
rhm, hm ` 1s phm ď nq COMBINE:

rh1, . . . , hms rhm, hm`1, . . . , hps
rh1, . . . , hps pp ď kq

Goal:

r0, n ` 1s
LINK:

rh1, . . . , hms
rh1, . . . , hj´1, hj`1, . . . , hms hi Ñ hjp1 ď i ď m ^ 1 ă j ă m ^ j ‰ iq

Figure 2: MH k’s deduction steps.

yields is the contiguous substring h1 . . . hp of the
input. Deduction steps, shown in Figure 2, can be
used to join two such forests that have an endpoint
in common via graph union (COMBINE); or to add
a dependency arc to a forest that attaches an inte-
rior head as a dependent of any of the other heads
(LINK).

In the original formulation by Gómez-
Rodríguez et al. (2011), all valid items of the form
ri, i ` 1s are considered to be axioms. In contrast,
we follow Kuhlmann et al.’s (2011) treatment
of MH 3: we consider r0, 1s as the only axiom
and include an extra SHIFT step to generate the
rest of the items of that form. Both formulations
are equivalent, but including this SHIFT rule
facilitates giving the parser a transition-based
interpretation.

Higher values of k provide wider coverage of
non-projective structures at an asymptotic runtime
complexity of Opnkq. When k is at its minimum
value of 3, the parser covers exactly the set of pro-
jective trees, and in fact, it can be seen as a trans-
formation3 of the deduction system described in
Gómez-Rodríguez et al. (2008) that gave rise to
the projective arc-hybrid parser (Kuhlmann et al.,
2011). For k ě 4, the parser covers an increas-
ingly larger set of non-projective structures. While
a simple characterization of these sets has been
lacking4, empirical evaluation on a large number
of treebanks (Gómez-Rodríguez, 2016) has shown
MH k to provide the best known tradeoff between
asymptotic complexity and efficiency for k ą 4.
When k “ 4, its coverage is second only to the
1-Endpoint-Crossing parser of Pitler et al. (2013).
Both parsers fully cover well over 80% of the non-
projective trees observed in the studied treebanks.

3Formally, it is a step refinement; see Gómez-Rodríguez
et al. (2011).

4This is a common issue with parsers based on the general
idea of arcs between non-contiguous heads, such as those de-
riving from Attardi (2006).

3.2 The MH 4 Transition System

Kuhlmann et al. (2011) show how the items of a
variant of MH 3 can be given a transition-based in-
terpretation under the “push computation” frame-
work, yielding the arc-hybrid projective transi-
tion system. However, such a derivation has not
been made for the non-projective case (k ą 3),
and the known techniques used to derive previous
associations between tabular and transition-based
parsers do not seem to be applicable in this case.
The specific issue is that the deduction systems of
Kuhlmann et al. (2011) and Cohen et al. (2011)
have in common that the structure of their deriva-
tions is similar to that of a Dyck (or balanced-
brackets) language, where steps corresponding to
shift transitions are balanced with those corre-
sponding to reduce transitions. This makes it pos-
sible to group derivation subtrees, and the transi-
tion sequences that they yield, into “push compu-
tations” that increase the length of the stack by
a constant amount. However, this does not seem
possible in MH 4.

Instead, we derive a transition-based interpreta-
tion of MH 4 by a generalization of that of MH 3

that departs from push computations.
To do so, we start with the MH 3 interpretation

of an item ri, js given by Kuhlmann et al. (2011).
This item represents a set of computations (tran-
sition sequences) that start from a configuration
of the form pσ, i|β, Aq (where σ is the stack and
i|β is the buffer, with i being the first buffer node)
and take the parser to a configuration of the form
pσ|i, j|β1, Aq. That is, the computation has the net
effect of placing node i on top of the previous con-
tents of the stack, and it ends in a state where the
first buffer element is j.

Under this item semantics, the COMBINE de-
duction step of the MH 3 parser (i.e., the instantia-
tion of the one in Fig. 2 for k “ 3) simply con-
catenates transition sequences. The SHIFT step
generates a sequence with a single arc-hybrid sh
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transition:

sh : pσ, hm|β, Aq $ pσ|hm, β, Aq
and the two possible instantiations of the COM-
BINE step when k “ 3 take the antecedent tran-
sition sequence and add a transition to it, namely,
one of the two arc-hybrid reduce transitions. Writ-
ten in the context of the node indexes used in Fig-
ure 2, these are the following:

pσ|h1|h2, h3|β, Aq $ pσ|h1, h3|β, A Y th3 Ñ h2uq
pσ|h1|h2, h3|β, Aq $ pσ|h1, h3|β, A Y th1 Ñ h2uq
where h1 and h3 respectively can be simplified out
to obtain the well-known arc-hybrid transitions:

la : pσ|h2, h3|β, Aq $ pσ, h3|β, A Y th3 Ñ h2uq
ra : pσ|h1|h2, β, Aq $ pσ|h1, β, A Y th1 Ñ h2uq
Now, we assume the following generalization
of the item semantics: an item rh1, . . . , hms
represents a set of computations that start
from a configuration of the form pσ, h1|β, Aq
and lead to a configuration of the form
pσ|h1| . . . |hm´1, hm|β1, Aq. Note that this
generalization no longer follows the “push com-
putation” paradigm of Kuhlmann et al. (2011) and
Cohen et al. (2011) because the number of nodes
pushed onto the stack depends on the value of m.

Under this item semantics, the SHIFT and COM-
BINE steps have the same interpretation as for
MH 3. In the case of the LINK step, following the
same reasoning as for the MH 3 case, we obtain
the following transitions:

la : pσ|h3, h4|β, Aq $ pσ, h4|β, A Y th4 Ñ h3uq
ra : pσ|h2|h3, β, Aq $ pσ|h2, β, A Y th2 Ñ h3uq
la1 : pσ|h2|h3, h4|β,Aq $

pσ|h3, h4|β, A Y th3 Ñ h2uq
ra1 : pσ|h1|h2|h3, β, Aq $

pσ|h1|h3, β, A Y th1 Ñ h2uq
la2 : pσ|h2|h3, h4|β, Aq $

pσ|h3, h4|β, A Y th4 Ñ h2uq
ra2 : pσ|h1|h2|h3, β, Aq $

pσ|h1|h2, β, A Y th1 Ñ h3uq
These transitions give us the MH 4 transition sys-
tem: a parser with four projective reduce tran-
sitions (la,ra,la1,ra1) and two Attardi-like, non-
adjacent-arc reduce transitions (la2 and ra2).

It is worth mentioning that this MH 4 transition
system we have obtained is the same as one of
the variants of Attardi’s algorithm introduced by
Shi et al. (2018), there called ALLs0s1. However,
in that paper they show that it can be tabularized
in Opn6q using the push computation framework.
Here, we have derived it as an interpretation of the
Opn4q MH 4 parser.

However, in this case the dynamic program-
ming algorithm does not cover the full search
space of the transition system: while each item in
the MH 4 parser can be mapped into a computation
of this MH 4 transition-based parser, the opposite
is not true. This tree:

....0 ..1 ..2 ..3 ..4 ..5.....

can be parsed by the transition system using the
computation

shp0q; shp1q; shp2q; la2p3Ñ1q; shp3q; shp4q;
la2p5Ñ3q; shp5q; rap4Ñ5q; rap2Ñ4q; rap0Ñ2q

but it is not covered by the dynamic programming
algorithm, as no deduction sequence will yield an
item representing this transition sequence. As we
will see, this issue will not prevent us from im-
plementing a dynamic-programming parser with
transition-based scoring functions, or from achiev-
ing good practical accuracy.

4 Model

Given the transition-based interpretation of the
MH 4 system, the learning objective becomes to
find a computation that gives the gold-standard
parse. For each sentence w1, . . . , wn, we train
parsers to produce the transition sequence t˚ that
corresponds to the annotated dependency struc-
ture. Thus, the model consists of two components:
a parameterized scorer Sptq, and a decoder that
finds a sequence t̂ as prediction based on the scor-
ing.

As discussed by Shi et al. (2017a), there exists
some tension between rich-feature scoring mod-
els and choices of decoders. Ideally, a globally-
optimal decoder finds the maximum-scoring tran-
sition sequence t̂ without brute-force searching
the exponentially-large output space. To keep the
runtime of our exact decoder at a practical low-
order polynomial, we want its feature set to be
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Features ts0,b0u ts1, s0,b0u ts2, s1, s0,b0u
UAS 49.83 85.17 85.27

Table 1: Performance of local parsing models with
varying number of features. We report average
UAS over 10 languages on UD 2.0.

minimal, consulting as few stack and buffer po-
sitions as possible. In what follows, we use s0 and
s1 to denote the top two stack items and b0 and b1

to denote the first two buffer items.

4.1 Scoring and Minimal Features
This section empirically explores the lower limit
on the number of necessary positional features.
We experiment with both local and global de-
coding strategies. The parsers take features ex-
tracted from parser configuration c, and score each
valid transition t with Spt; cq. The local parsers
greedily take transitions with the highest score un-
til termination, while the global parsers use the
scores to find the globally-optimal solutions t̂ “
arg maxt Sptq, where Sptq is the sum of scores
for the component transitions.

Following prior work, we employ bi-LSTMs for
compact feature representation. A bi-LSTM runs
in both directions on the input sentence, and as-
signs a context-sensitive vector encoding to each
token in the sentence: w1, . . . ,wn. When we need
to extract features, say, s0, from a particular stack
or buffer position, say s0, we directly use the bi-
LSTM vector wis0

, where is0 gives the index of
the subroot of s0 into the sentence.

Shi et al. (2017a) showed that feature vectors
ts0,b0u suffice for MH 3. Table 1 and Table 2
show the use of small feature sets for MH 4, for
local and global parsing models, respectively. For
a local parser to exhibit decent performance, we
need at least ts1, s0,b0u, but adding s2 on top of
that does not show any significant impact on the
performance. Interestingly, in the case of global
models, the two-vector feature set ts0,b0u already
suffices. Adding s1 to the global setting (column
“Hybrid” in Table 2) seems attractive, but entails
resolving a technical challenge that we discuss in
the following section.

4.2 Global Decoder
In our transition-system interpretation of MH k, sh
transitions correspond to SHIFT and reduce tran-
sitions reflect the LINK steps. Since the SHIFT

Features ts0,b0u Hybrid

UAS 86.79 87.27

Table 2: Performance of global parsing models
with varying number of features.

conclusions lose the contexts needed to score the
transitions, we set the scores for all SHIFT rules to
zero and delegate the scoring of the sh transitions
to the COMBINE steps, as as in Shi et al. (2017a);
for example,

rh1, h2s : v1 rh2, h3, h4s : v2

rh1, h2, h3, h4s : v1 ` v2 ` Spsh; th1,h2uq
Here the transition sequence denoted by
rh2, h3, h4s starts from a sh, with h1 and
h2 taking the s0 and b0 positions. If we further
wish to access s1, such information is not readily
available in the deduction step, apparently re-
quiring extra bookkeeping that pushes the space
and time complexity to an impractical Opn4q and
Opn5q, respectively. But, consider the scoring for
the reduce transitions in the LINK steps:

rh1, h2, h3, h4s : v

rh1, h2, h4s : v ` Spla; th2,h3,h4uq

rh1, h2, h3s : v

rh1, h3s : v ` Spla; th1,h2,h3uq
The deduction steps already keep indices for s1

(h2 in the first rule, h1 in the second) and thus pro-
vide direct access without any modification. To re-
solve the conflict between including s1 for richer
representations and the unavailability of s1 in scor-
ing the sh transitions in the COMBINE steps, we
propose a hybrid scoring approach — we use fea-
tures ts0,b0u when scoring a sh transition, and
features ts1, s0,b0u for consideration of reduce
transitions. We call this method MH 4-hybrid,
in contrast to MH 4-two, where we simply take
ts0,b0u for scoring all transitions.

4.3 Large-Margin Training

We train the greedy parsers with hinge loss,
and the global parsers with its structured version
(Taskar et al., 2005). The loss function for each
sentence is formally defined as:

max
t̂

`
Sp̂tq ` costpt˚, t̂q ´ Spt˚q˘
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where the margin costpt˚, t̂q counts the number of
mis-attached nodes for taking sequence t̂ instead
of t˚. Minimizing this loss can be thought of as
optimizing for the attachment scores.

The calculation of the above loss function can
be solved as efficiently as the deduction system
if the cost function decomposes into the dynamic
program. We achieve this by replacing the scoring
of each reduce step by its cost-augmented version:

rh1, h2, h3, h4s : v

rh1, h2, h4s : v ` Spla2; th2,h3,h4uq ` ∆

where ∆ “ 1pheadpwh3q ‰ wh4q. This loss
function encourages the model to give higher con-
trast between gold-standard and wrong predic-
tions, yielding better generalization results.

5 Experiments

Data and Evaluation We experiment with the
Universal Dependencies (UD) 2.0 dataset used for
the CoNLL 2017 shared task (Zeman et al., 2017).
We restrict our choice of languages to be those
with only one training treebank, for a better com-
parison with the shared task results.5 Among these
languages, we pick the top 10 most non-projective
languages. Their basic statistics are listed in Ta-
ble 3. For all development-set results, we assume
gold-standard tokenization and sentence delimita-
tion. When comparing to the shared task results
on test sets, we use the provided baseline UDPipe
(Straka et al., 2016) segmentation. Our models do
not use part-of-speech tags or morphological tags
as features, but rather leverage such information
via stack propagation (Zhang and Weiss, 2016),
i.e., we learn to predict them as a secondary train-
ing objective. We report unlabeled attachment F1-
scores (UAS) on the development sets for better
focus on comparing our (unlabeled) parsing mod-
ules. We report its labeled variant (LAS), the main
metric of the shared task, on the test sets. For each
experiment setting, we ran the model with 5 dif-
ferent random initializations, and report the mean
and standard deviation. We detail the implementa-
tion details in the supplementary material.

Baseline Systems For comparison, we include
three baseline systems with the same underlying
feature representations and scoring paradigm. All

5When multiple treebanks are available, one can develop
domain transfer strategies, which is not the focus of this work.

the following baseline systems are trained with the
cost-augmented large-margin loss function.

The MH 3 parser is the projective instantiation
of the MH k parser family. This corresponds to
the global version of the arc-hybrid transition sys-
tem (Kuhlmann et al., 2011). We adopt the mini-
mal feature representation ts0,b0u, following Shi
et al. (2017a). For this model, we also implement
a greedy incremental version.

The edge-factored non-projective maximal
spanning tree (MST) parser allows arbitrary
non-projective structures. This decoding approach
has been shown to be very competitive in parsing
non-projective treebanks (McDonald et al., 2005),
and was deployed in the top-performing system at
the CoNLL 2017 shared task (Dozat et al., 2017).
We score each edge individually, with the features
being the bi-LSTM vectors th,mu, where h is
the head, and m the modifier of the edge.

The crossing-sensitive third-order 1EC parser
provides a hybrid dynamic program for parsing
1-Endpoint-Crossing non-projective dependency
trees with higher-order factorization (Pitler, 2014).
Depending on whether an edge is crossed, we can
access the modifier’s grandparent g, head h, and
sibling si. We take their corresponding bi-LSTM
features tg,h,m, siu for scoring each edge. This
is a re-implementation of Pitler (2014) with neural
scoring functions.

Main Results Table 4 shows the development-
set performance of our models as compared with
baseline systems. MST considers non-projective
structures, and thus enjoys a theoretical advan-
tage over projective MH 3, especially for the
most non-projective languages. However, it has
a vastly larger output space, making the selection
of correct structures difficult. Further, the scoring
is edge-factored, and does not take any structural
contexts into consideration. This tradeoff leads
to the similar performance of MST comparing to
MH 3. In comparison, both 1EC and MH 4 are
mildly non-projective parsing algorithms, limiting
the size of the output space. 1EC includes higher-
order features that look at tree-structural contexts;
MH 4 derives its features from parsing configura-
tions of a transition system, hence leveraging con-
texts within transition sequences. These consider-
ations explain their significant improvements over
MST. We also observe that MH 4 recovers more
short dependencies than 1EC, while 1EC is better
at longer-distance ones.
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Language Code # Sent. # Words Sentence Coverage (%) Edge Coverage (%)
Proj. Ó MH 4 1EC Proj. MH 4 1EC

Basque eu 5,396 72,974 66.48 91.48 93.29 95.98 99.27 99.42
Urdu ur 4,043 108,690 76.97 95.89 95.77 98.89 99.83 99.81

Gothic got 3,387 35,024 78.42 97.25 97.58 97.04 99.73 99.75
Hungarian hu 910 20,166 79.01 98.35 97.69 98.51 99.92 99.89

Old Church Slavonic cu 4,123 37,432 80.16 98.33 98.74 97.22 99.80 99.85
Danish da 4,383 80,378 80.56 97.70 98.97 98.60 99.87 99.94
Greek el 1,662 41,212 85.98 99.52 99.40 99.32 99.98 99.98
Hindi hi 13,304 281,057 86.16 98.38 98.95 99.26 99.92 99.94

German de 14,118 269,626 87.07 99.19 99.27 99.15 99.95 99.96
Romanian ro 8,043 185,113 88.61 99.42 99.52 99.42 99.97 99.98

Table 3: Statistics of selected training treebanks from Universal Dependencies 2.0 for the CoNLL 2017
shared task (Zeman et al., 2017), sorted by per-sentence projective ratio.

Global Models Greedy Models
Lan. MH 3 MST MH 4-two MH 4-hybrid 1EC MH 3 MH 4

eu 82.07˘0.17 83.61˘0.16 82.94˘0.24 84.13˘0.13 84.09˘0.19 81.27˘0.20 81.71˘0.33

ur 86.89˘0.18 86.78˘0.13 86.84˘0.26 87.06˘0.24 87.11˘0.11 86.40˘0.16 86.05˘0.18

got 83.72˘0.19 84.74˘0.28 83.85˘0.19 84.59˘0.38 84.77˘0.27 82.28˘0.18 81.40˘0.45

hu 83.05˘0.17 82.81˘0.49 83.69˘0.20 84.59˘0.50 83.48˘0.27 81.75˘0.47 80.75˘0.54

cu 86.70˘0.30 88.02˘0.25 87.57˘0.14 88.09˘0.28 88.27˘0.32 86.05˘0.23 86.01˘0.11

da 85.09˘0.16 84.68˘0.36 85.45˘0.43 85.77˘0.39 85.77˘0.16 83.90˘0.24 83.59˘0.06

el 87.82˘0.24 87.27˘0.22 87.77˘0.20 87.83˘0.36 87.95˘0.23 87.14˘0.25 86.95˘0.25

hi 93.75˘0.14 93.91˘0.26 93.99˘0.15 94.27˘0.08 94.24˘0.04 93.44˘0.09 93.02˘0.10

de 86.46˘0.13 86.34˘0.24 86.53˘0.22 86.89˘0.17 86.95˘0.32 84.99˘0.26 85.27˘0.32

ro 89.34˘0.27 88.79˘0.43 89.25˘0.15 89.53˘0.20 89.52˘0.25 88.76˘0.30 87.97˘0.31

Avg. 86.49 86.69 86.79 87.27 87.21 85.60 85.27

Table 4: Experiment results (UAS, %) on the UD 2.0 development set. Bold: best result per language.

In comparison to MH 4-two, the richer feature
representation of MH 4-hybrid helps in all our lan-
guages.

Interestingly, MH 4 and MH 3 react differently
to switching from global to greedy models. MH 4

covers more structures than MH 3, and is naturally
more capable in the global case, even when the
feature functions are the same (MH 4-two). How-
ever, its greedy version is outperformed by MH 3.
We conjecture that this is because MH 4 explores
only the same number of configurations as MH 3,
despite the fact that introducing non-projectivity
expands the search space dramatically.

Comparison with CoNLL Shared Task Results
(Table 5) We compare our models on the test
sets, along with the best single model (#1; Dozat
et al., 2017) and the best ensemble model (#2; Shi
et al., 2017b) from the CoNLL 2017 shared task.
MH 4 outperforms 1EC in 7 out of the 10 lan-
guages. Additionally, we take our non-projective
parsing models (MST, MH 4-hybrid, 1EC) and
combine them into an ensemble. The average re-
sult is competitive with the best CoNLL submis-

sions. Interestingly, Dozat et al. (2017) uses fully
non-projective parsing algorithms (MST), and our
ensemble system sees larger gains in the more
non-projective languages, confirming the potential
benefit of global mildly non-projective parsing.

Results on Projective Languages (Table 6) For
completeness, we also test our models on the
10 most projective languages that have a single
treebank. MH 4 remains the most effective, but
by a much smaller margin. Interestingly, MH 3,
which is strictly projective, matches the perfor-
mance of 1EC; both outperform the fully non-
projective MST by half a point.

6 Related Work

Exact inference for dependency parsing can be
achieved in cubic time if the model is restricted
to projective trees (Eisner, 1996). However, non-
projectivity is needed for natural language parsers
to satisfactorily deal with linguistic phenomena
like topicalization, scrambling and extraposition,
which cause crossing dependencies. In UD 2.0,
68 out of 70 treebanks were reported to contain
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Same Model Architecture For Reference
Lan. MH 3 MST MH 4-hybrid 1EC Ensemble CoNLL #1 CoNLL #2

eu 78.17˘0.33 79.90˘0.08 80.22˘0.48 ą 80.17˘0.32 81.55 81.44 79.61
ur 80.91˘0.10 80.05˘0.13 80.69˘0.19 ą 80.59˘0.19 81.37 82.28 81.06

got 67.10˘0.10 67.26˘0.45 67.92˘0.29 ą 67.66˘0.20 69.83 66.82 68.34
hu 76.09˘0.25 75.79˘0.36 76.90˘0.31 ą 76.07˘0.20 79.35 77.56 76.55
cu 71.28˘0.29 72.18˘0.20 72.51˘0.23 ă 72.53˘0.27 74.38 71.84 72.35
da 80.00˘0.15 79.69˘0.24 80.89˘0.17 ą 80.83˘0.27 82.09 82.97 81.55
el 85.89˘0.29 85.48˘0.25 86.28˘0.44 ą 86.07˘0.37 87.06 87.38 86.90
hi 89.88˘0.18 89.93˘0.12 90.22˘0.12 ă 90.28˘0.21 90.78 91.59 90.40
de 76.23˘0.21 75.99˘0.23 76.46˘0.20 ą 76.42˘0.35 77.38 80.71 77.17
ro 83.53˘0.35 82.73˘0.36 83.67˘0.21 ă 83.83˘0.18 84.51 85.92 84.40

Avg. 78.91 78.90 79.57 ą 79.44 80.83 80.85 79.83

Table 5: Evaluation results (LAS, %) on the test set using the CoNLL 2017 shared task setup. The best
results for each language within each block are highlighted in bold.

Same Model Architecture For Reference
Lan. MH 3 MST MH 4-hybrid 1EC Ensemble CoNLL #1 CoNLL #2

ja 74.29˘0.10 73.93˘0.16 74.23˘0.11 74.12˘0.12 74.51 74.72 74.51
zh 63.54˘0.13 62.71˘0.17 63.48˘0.33 63.54˘0.26 64.65 65.88 64.14
pl 86.49˘0.19 85.76˘0.31 86.60˘0.26 86.36˘0.28 87.38 90.32 87.15
he 61.47˘0.24 61.28˘0.24 61.93˘0.22 61.75˘0.22 62.40 63.94 62.33
vi 41.26˘0.39 41.04˘0.19 41.33˘0.32 40.96˘0.36 42.95 42.13 41.68
bg 87.50˘0.20 87.03˘0.17 87.63˘0.17 87.56˘0.14 88.22 89.81 88.39
sk 80.48˘0.22 80.25˘0.32 81.27˘0.14 80.94˘0.25 82.38 86.04 81.75
it 87.90˘0.07 87.26˘0.23 88.06˘0.27 87.98˘0.19 88.74 90.68 89.08
id 77.66˘0.13 76.95˘0.32 77.64˘0.17 77.60˘0.18 78.27 79.19 78.55
lv 69.62˘0.55 69.33˘0.51 70.54˘0.51 69.52˘0.29 72.34 74.01 71.35

Avg. 73.02 72.55 73.27 73.03 74.18 75.67 73.89

Table 6: CoNLL 2017 test set results (LAS, %) on the most projective languages (sorted by projective
ratio; ja (Japanese) is fully projective).

non-projectivity (Wang et al., 2017).

However, exact inference has been shown to be
intractable for models that support arbitrary non-
projectivity, except under strong independence as-
sumptions (McDonald and Satta, 2007). Thus,
exact inference parsers that support unrestricted
non-projectivity are limited to edge-factored mod-
els (McDonald et al., 2005; Dozat et al., 2017).
Alternatives include treebank transformation and
pseudo-projective parsing (Kahane et al., 1998;
Nivre and Nilsson, 2005), approximate infer-
ence (e.g. McDonald and Pereira (2006); At-
tardi (2006); Nivre (2009); Fernández-González
and Gómez-Rodríguez (2017)) or focusing on sets
of dependency trees that allow only restricted
forms of non-projectivity. A number of such
sets, called mildly non-projective classes of trees,
have been identified that both exhibit good em-
pirical coverage of the non-projective phenom-
ena found in natural languages and are known to
have polynomial-time exact parsing algorithms;
see Gómez-Rodríguez (2016) for a survey.

However, most of these algorithms have not
been implemented in practice due to their pro-
hibitive complexity. For example, Corro et al.
(2016) report an implementation of the WG1

parser, a Opn7q mildly non-projective parser in-
troduced in Gómez-Rodríguez et al. (2009), but
it could not be run for real sentences of length
greater than 20. On the other hand, Pitler et al.
(2012) provide an implementation of an Opn5q
parser for a mildly non-projective class of struc-
tures called gap-minding trees, but they need to
resort to aggressive pruning to make it practical,
exploring only a part of the search space in Opn4q
time.

To the best of our knowledge, the only practi-
cal system that actually implements exact infer-
ence for mildly non-projective parsing is the 1-
Endpoint-Crossing (1EC) parser of Pitler (2013;
2014), which runs in Opn4q worst-case time like
the MH 4 algorithm used in this paper. Thus, the
system presented here is the second practical im-
plementation of exact mildly non-projective pars-
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ing that has successfully been executed on real
corpora.6

Comparing with Pitler (2014)’s 1EC, our parser
has the following disadvantages: (´1) It has
slightly lower coverage, at least on the treebanks
considered by Gómez-Rodríguez (2016). (´2)
The set of trees covered by MH 4 has not been
characterized with a non-operational definition,
while the set of 1-Endpoint-Crossing trees can be
simply defined.

However, it also has the following advantages:
(+1) It can be given a transition-based interpre-
tation, allowing us to use transition-based scor-
ing functions and to implement the analogous al-
gorithm with greedy or beam search apart from
exact inference. No transition-based interpreta-
tion is known for 1EC. While a transition-based
algorithm has been defined for a strict subset of
1-Endpoint-Crossing trees, called 2-Crossing In-
terval trees (Pitler and McDonald, 2015), this is
a separate algorithm with no known mapping or
relation to 1EC or any other dynamic program-
ming model. Thus, we provide the first exact in-
ference algorithm for a non-projective transition-
based parser with practical complexity. (+2) It is
conceptually much simpler, with one kind of item
and two deduction steps, while the 1-Endpoint-
Crossing parser has five classes of items and sev-
eral dozen distinct deduction steps. It is also a
purely bottom-up parser, whereas the 1-Endpoint-
Crossing parser does not have the bottom-up prop-
erty. This property is necessary for models that
involve compositional representations of subtrees
(Dyer et al., 2015), and facilitates parallelization
and partial parsing. (+3) It can be easily gener-
alized to MH k for k ą 4, providing higher cov-
erage, with time complexity Opnkq. Out of the
mildly non-projective parsers studied in Gómez-
Rodríguez (2016), MH 4 provides the maximum
coverage with respect to its complexity for k ą 4.
(+4) As shown in §5, MH 4 obtains slightly higher
accuracy than 1EC on average, albeit not by a con-
clusive margin.

It is worth noting that 1EC has recently been ex-

6Corro et al. (2016) describe a parser that enforces mildly
non-projective constraints (bounded block degree and well-
nestedness), but it is an arc-factored model, so it is subject
to the same strong independence assumptions as maximum-
spanning-tree parsers like McDonald et al. (2005) and does
not support the greater flexibility in scoring that is the main
advantage of mildly non-projective parsers over these. In-
stead, mild non-projectivity is exclusively used as a criterion
to discard nonconforming trees.

tended to graph parsing by Kurtz and Kuhlmann
(2017), Kummerfeld and Klein (2017), and Cao
et al. (2017a,b), with the latter providing a prac-
tical implementation of a parser for 1-Endpoint-
Crossing, pagenumber-2 graphs.

7 Conclusion

We have extended the parsing architecture of Shi
et al. (2017a) to non-projective dependency pars-
ing by implementing the MH 4 parser, a mildly
non-projective Opn4q chart parsing algorithm, us-
ing a minimal set of transition-based bi-LSTM
features. For this purpose, we have estab-
lished a mapping between MH 4 items and tran-
sition sequences of an underlying non-projective
transition-based parser.

To our knowledge, this is the first practical im-
plementation of exact inference for non-projective
transition-based parsing. Empirical results on a
collection of highly non-projective datasets from
Universal Dependencies show improvements in
accuracy over the projective approach of Shi
et al. (2017a), as well as edge-factored maximum-
spanning-tree parsing. The results are on par with
the 1-Endpoint-Crossing parser of Pitler (2014)
(re-implemented under the same neural frame-
work), but our algorithm is notably simpler and
has additional desirable properties: it is purely
bottom-up, generalizable to higher coverage, and
compatible with transition-based semantics.
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Abstract

We demonstrate that replacing an LSTM
encoder with a self-attentive architecture
can lead to improvements to a state-of-
the-art discriminative constituency parser.
The use of attention makes explicit the
manner in which information is propa-
gated between different locations in the
sentence, which we use to both analyze
our model and propose potential improve-
ments. For example, we find that sepa-
rating positional and content information
in the encoder can lead to improved pars-
ing accuracy. Additionally, we evaluate
different approaches for lexical represen-
tation. Our parser achieves new state-of-
the-art results for single models trained on
the Penn Treebank: 93.55 F1 without the
use of any external data, and 95.13 F1
when using pre-trained word representa-
tions. Our parser also outperforms the pre-
vious best-published accuracy figures on 8
of the 9 languages in the SPMRL dataset.

1 Introduction

In recent years, neural network approaches have
led to improvements in constituency parsing (Dyer
et al., 2016; Cross and Huang, 2016; Choe and
Charniak, 2016; Stern et al., 2017a; Fried et al.,
2017). Many of these parsers can broadly be char-
acterized as following an encoder-decoder design:
an encoder reads the input sentence and summa-
rizes it into a vector or set of vectors (e.g. one
for each word or span in the sentence), and then
a decoder uses these vector summaries to incre-
mentally build up a labeled parse tree. In con-
trast to the large variety of decoder architectures
investigated in recent work, the encoders in re-
cent parsers have predominantly been built using
recurrent neural networks (RNNs), and in particu-
lar Long Short-Term Memory networks (LSTMs).

Output

Input

Encoder

Decoder

market
NN

in
IN

the
DT

fled
VBD

and
CC

…(VP(VBD fled)(NP(DT the)(NN market))…

Figure 1: Our parser combines a chart decoder
with a sentence encoder based on self-attention.

RNNs have largely replaced approaches such as
the fixed-window-size feed-forward networks of
Durrett and Klein (2015) in part due to their ability
to capture global context. However, RNNs are not
the only architecture capable of summarizing large
global contexts: recent work by Vaswani et al.
(2017) presented a new state-of-the-art approach
to machine translation with an architecture that en-
tirely eliminates recurrent connections and relies
instead on a repeated neural attention mechanism.
In this paper, we introduce a parser that combines
an encoder built using this kind of self-attentive
architecture with a decoder customized for pars-
ing (Figure 1). In Section 2 of this paper, we de-
scribe the architecture and present our finding that
self-attention can outperform an LSTM-based ap-
proach.

A neural attention mechanism makes explicit
the manner in which information is transferred be-
tween different locations in the sentence, which
we can use to study the relative importance of dif-
ferent kinds of context to the parsing task. Dif-
ferent locations in the sentence can attend to each
other based on their positions, but also based on
their contents (i.e. based on the words at or around
those positions). In Section 3 we present our find-
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ing that when our parser learns to make an implicit
trade-off between these two types of attention, it
predominantly makes use of position-based atten-
tion, and show that explicitly factoring the two
types of attention can noticeably improve parsing
accuracy. In Section 4, we study our model’s use
of attention and reaffirm the conventional wisdom
that sentence-wide global context is important for
parsing decisions.

Like in most neural parsers, we find morpholog-
ical (or at least sub-word) features to be important
to achieving good results, particularly on unseen
words or inflections. In Section 5.1, we demon-
strate that a simple scheme based on concatenating
character embeddings of word prefixes/suffixes
can outperform using part-of-speech tags from an
external system. We also present a version of our
model that uses a character LSTM, which per-
forms better than other lexical representations –
even if word embeddings are removed from the
model. In Section 5.2, we explore an alternative
approach for lexical representations that makes
use of pre-training on a large unsupervised corpus.
We find that using the deep contextualized rep-
resentations proposed by Peters et al. (2018) can
boost parsing accuracy.

Our parser achieves 93.55 F1 on the Penn Tree-
bank WSJ test set when not using external word
representations, outperforming all previous single-
system constituency parsers trained only on the
WSJ training set. The addition of pre-trained word
representations following Peters et al. (2018) in-
creases parsing accuracy to 95.13 F1, a new state-
of-the-art for this dataset. Our model also out-
performs previous best published results on 8 of
the 9 languages in the SPMRL 2013/2014 shared
tasks. Code and trained English models are pub-
licly available.1

2 Base Model

Our parser follows an encoder-decoder architec-
ture, as shown in Figure 1. The decoder, described
in Section 2.1, is borrowed from the chart parser
of Stern et al. (2017a) with additional modifica-
tions from Gaddy et al. (2018). Their parser is ar-
chitecturally streamlined yet achieves the highest
performance among discriminative single-system
parsers trained on WSJ data only, which is why we
selected it as the starting point for our experiments
with encoder variations. Sections 2.2 and 2.3 de-

1https://github.com/nikitakit/self-attentive-parser

scribe the base version of our encoder, where the
self-attentive architecture described in Section 2.2
is adapted from Vaswani et al. (2017).

2.1 Tree Scores and Chart Decoder
Our parser assigns a real-valued score s(T ) to
each tree T , which decomposes as

s(T ) =
X

(i,j,l)2T

s(i, j, l) (1)

Here s(i, j, l) is a real-valued score for a con-
stituent that is located between fencepost positions
i and j in a sentence and has label l. To han-
dle unary chains, the set of labels includes a col-
lapsed entry for each unary chain in the training
set. The model handles n-ary trees by binarizing
them and introducing a dummy label ? to nodes
created during binarization, with the property that
8i, j : s(i, j,?) = 0. Enforcing that scores as-
sociated with the dummy labels are always zero
ensures that (1) continues to hold for all possible
binarizations of an n-ary tree.

At test time, the model-optimal tree

T̂ = arg max
T

s(T )

can be found efficiently using a CKY-style infer-
ence algorithm. Given the correct tree T ?, the
model is trained to satisfy the margin constraints

s(T ?) � s(T ) + �(T, T ?)

for all trees T by minimizing the hinge loss

max
⇣
0, max

T 6=T ?
[s(T ) + �(T, T ?)]� s(T ?)

⌘

Here � is the Hamming loss on labeled spans, and
the tree corresponding to the most-violated con-
straint can be found using a slight modification of
the inference algorithm used at test time.

For further details, see Gaddy et al. (2018). The
remainder of this paper concerns itself with the
functional form of s(i, j, l), which is calculated
using a neural network for all l 6= ?.

2.2 Context-Aware Word Representations
The encoder portion of our model is split into two
parts: a word-based portion that assigns a context-
aware vector representation yt to each position t
in the sentence (described in this section), and a
chart portion that combines the vectors yt to gen-
erate span scores s(i, j, l) (Section 2.3). The ar-
chitecture for generating the vectors yt is adapted
from Vaswani et al. (2017).
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Multi-Head
Attention

Feed
Forward

LayerNorm

LayerNorm

tag positionword

8
layers

Figure 2: An overview of our encoder, which pro-
duces a context-aware summary vector for each
word in the sentence. The multi-headed attention
mechanism is the only means by which informa-
tion may propagate between different positions in
the sentence.

The encoder takes as input a sequence of word
embeddings [w1, w2, . . . , wT ], where the first and
last embeddings are of special start and stop to-
kens. All word embeddings are learned jointly
with other parts of the model. To better general-
ize to words that are not seen during training, the
encoder also receives a sequence of part-of-speech
tag embeddings [m1, m2, . . . , mT ] based on the
output of an external tagger (alternative lexical
representations are discussed in Section 5). Addi-
tionally, the encoder stores a learned table of posi-
tion embeddings, where every number i 2 1, 2, . . .
(up to some maximum sentence length) is associ-
ated with a vector pi. All embeddings have the
same dimensionality, which we call dmodel, and
are added together at the input of the encoder:
zt = wt + mt + pt.

The vectors [z1, z2, . . . , zT ] are transformed by
a stack of 8 identical layers, as shown in Figure 2.
Each layer consists of two stacked sublayers: a
multi-headed attention mechanism and a position-
wise feed-forward sublayer. The output of each
sublayer given an input x is LayerNorm(x +
SubLayer(x)), i.e. each sublayer is followed by
a residual connection and a Layer Normalization
(Ba et al., 2016) step. As a result, all sublayer out-
puts, including final outputs yt, are of size dmodel.

2.2.1 Self-Attention
The first sublayer in each of our 8 layers is a
multi-headed self-attention mechanism, which is
the only means by which information may propa-
gate between positions in the sentence. The input

k1

kt

kT

v1

vt

vT

kt vtqt

vt
_

p(t→1)

query            key            value

p(t→T)

xt

Figure 3: A single attention head. An input xt is
split into three vectors that participate in the atten-
tion mechanism: a query qt, a key kt, and a value
vt. The query qt is compared with all keys to form
a probability distribution p(t ! ·), which is then
used to retrieve an average value v̄t.

to the attention mechanism is a T ⇥ dmodel matrix
X , where each row vector xt corresponds to word
t in the sentence.

We first consider a single attention head, as il-
lustrated in Figure 3. Learned parameter matri-
ces WQ, WK , and WV are used to map an input
xt to three vectors: a query qt = W>

Q xt, a key
kt = W>

Kxt, and a value vt = W>
V xt. Query and

key vectors have the same number of dimensions,
which we call dk. The probability that word i at-
tends to word j is then calculated as p(i ! j) /
exp(

qi·kjp
dk

). The values vj for all words that have
been attended to are aggregated to form an aver-
age value v̄i =

P
j p(i! j)vj , which is projected

back to size dmodel using a learned matrix WO.
In matrix form, the behavior of a single attention
head is:

SingleHead(X) =


Softmax

✓
QK>p

dk

◆
V

�
WO

where Q = XWQ; K = XWK ; V = XWV

Rather than using a single head, our model sums
together the outputs from multiple heads:

MultiHead(X) =
8X

n=1

SingleHead(n)(X)

Each of the 8 heads has its own trainable parame-
ters W

(n)
Q , W

(n)
K , W

(n)
V , and W

(n)
O . This allows a

word to gather information from up to 8 remote lo-
cations in the sentence at each attention sublayer.
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2.2.2 Position-Wise Feed-Forward Sublayer
We use the same form as Vaswani et al. (2017):

FeedForward(x) = W2relu(W1x + b1) + b2

Here relu denotes the Rectified Linear Unit non-
linearity, and distinct sets of learned parameters
are used at each of the 8 instances of the feed-
forward sublayer in our model.

The input and output dimensions are the
same because of the use of residual connections
throughout the model, but we can vary the number
of parameters by adjusting the size of the interme-
diate vector that the nonlinearity is applied to.

2.3 Span Scores
The outputs yt from the word-based encoder por-
tion described in the previous section are com-
bined to form span scores s(i, j, ·) following the
method of Stern et al. (2017a). Concretely,

s(i, j, ·) = M2relu(LayerNorm(M1v + c1)) + c2

where LayerNorm denotes Layer Normalization,
relu is the Rectified Linear Unit nonlinearity, and
v = [

!
y j �

!
y i;
 
y j+1 �

 
y i+1] combines summary

vectors for relevant positions in the sentence. A
span endpoint to the right of the word potentially
requires different information from the endpoint to
the left, so a word at a position k is associated with
two annotation vectors (

!
y k and

 
y k).

Stern et al. (2017a) define
!
y k and

 
y k in terms

of the output of the forward and backward por-
tions, respectively, of their BiLSTM encoder; we
instead construct each of

!
y k and

 
y k by splitting

in half2 the outputs yk from Section 2.2. We also
introduce a Layer Normalization step to match the
use of Layer Normalization throughout our model.

2.4 Results
The model presented above achieves a score of
92.67 F1 on the Penn Treebank WSJ development
set. Details regarding hyperparameter choice and
optimizer settings are presented in the supplemen-
tary material. For comparison, a model that uses
the same decode procedure with an LSTM-based
encoder achieves a development set score of 92.24
(Gaddy et al., 2018). These results demonstrate
that an RNN-based encoder is not required for

2To avoid an adverse interaction with material described
in Section 3, when a vector yk is split in half the even coordi-
nates contribute to

!
y k and the odd coordinates contribute to

 
y k.

building a good parser; in fact, self-attention can
achieve better results.

3 Content vs. Position Attention

The primary mechanism for information transfer
throughout our encoder is self-attention, where
words can attend to each other using both con-
tent features and position information. In Sec-
tion 2, we described an encoder that takes as in-
put a component-wise addition between a word,
tag, and position embedding for each word in the
sentence. Content and position information are in-
termingled throughout the network. While ideally
the network would learn to balance the different
types of information, in practice it does not. In
this section we show that factoring the model to
explicitly separate content and position informa-
tion results in increased parsing accuracy.

To help gauge the relative importance of the
two types of attention, we trained a modified ver-
sion of our model that was only allowed to use
position attention. This constraint was enforced
by making the query and key vectors used for
the attention mechanism be linear transformations
of the corresponding word’s position embedding:
Q(n) = PW

(n)
Q and K(n) = PW

(n)
K . The per-

head weight matrices now multiply a matrix P
containing the same position embeddings that are
used at the input to the encoder, rather than the
layer input X (as in Section 2.2.1). However,
value vectors V (n) = XW

(n)
V remain unchanged

and continue to carry content-related information.
We expected our parser to still achieve rea-

sonable performance when restricted to only use
positional attention because the resulting archi-
tecture can be viewed as a generalization of a
multi-layer convolutional neural network. The 8
attention heads at each layer of our model can
mimic the behavior of a size-8 convolutional fil-
ter, but can also determine their attention targets
dynamically and need not respect any translation-
invariance properties. Disabling content-based at-
tention throughout all 8 layers of the network re-
sults in a development-set accuracy decrease of
only 0.27 F1. While we expected reasonable pars-
ing performance in this setting, it seems strange
that content-based attention benefits our model to
such a small degree.

We next investigate the possibility that inter-
mingling content and position information in a sin-
gle vector can cause one type of attention to domi-
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nate over the other and compromise the network’s
ability to find the optimal balance of the two. To
do this we propose a factored version of our model
that explicitly separates content and position infor-
mation.

A first step is to replace the component-wise ad-
dition zt = wt+mt+pt (where wt, mt, and pt rep-
resent word, tag, and position embeddings, respec-
tively) with a concatenation zt = [wt + mt; pt].
We preserve the size of the vector zt by cutting
the dimensionality of embeddings in half for the
concatenative scheme. However, simply isolating
the position-related components of the input vec-
tors in this manner does not improve the perfor-
mance of our network: the concatenative network
achieves a development-set F1 of 92.60 (not much
different from 92.67 F1 using the model in Sec-
tion 2).

The issue with intermingling information is not
the component-wise addition per se. In fact, con-
catenation and addition often perform similarly
in high dimensions (especially when the resulting
vector is immediately multiplied by a matrix that
intermingles the two sources of information). On
that note, we can examine how the mixed vectors
are used later in the network, and in particular in
the query-key dot products for the attention mech-
anism. If we have a query-key dot product q · k
(see Section 2.2.1) where we imagine q decom-
posing into content and positional information as
q = q(c) + q(p) (and likewise for k), we have
q · k = (q(c) + q(p)) · (k(c) + k(p)). This for-
mulation includes cross-terms such as q(c) · k(p);
for example it is possible to learn a network where
the word the always attends to the 5th position in
the sentence. Such cross-attention seems of lim-
ited use compared to the potential for overfitting
that it introduces.

To complete our factored model, we find all
cases where a vector x = [x(c); x(p)] is multi-
plied by a parameter matrix, and replace the ma-
trix multiplication c = Wx with a split form
c = [c(c); c(p)] = [W (c)x(c); W (p)x(p)]. This
causes a number of intermediate quantities in our
model to be factored, including all query and key
vectors. Query-key dot products now decompose
as q ·k = q(c) ·k(c)+q(p) ·k(p). The result of factor-
ing a single attention head, shown in Figure 4, can
also be viewed as separately applying attention to
x(c) and x(p), except that the log-probabilities in
the two halves are added together prior to value

k1(p)

kt(p)

kT(p)

v1(p)

vt(p)

vT(p)

qt(p) kt(p) vt(p)
query            key            value

k1(c)

kt(c)

kT(c)

v1(c)

vt(c)

vT(c)

vt(c) kt(c) qt(c)
value            key            query

vt(p)
_

vt(c)
_

positionword tag

Figure 4: A single attention head, after factoring
content and position information. Attention prob-
abilities are calculated separately for the two types
of information, and a combined probability distri-
bution is then applied to both types of input infor-
mation.

lookup. The feed-forward sublayers in our model
(Section 2.2.2) are likewise split into two indepen-
dent portions that operate on position and content
information.

Alternatively, factoring can be seen as enforcing
the block-sparsity constraint

W =


W (c) 0

0 W (p)

�

on parameter matrices throughout our model. We
maintain the same vector sizes as in Section 2,
which means that factoring strictly reduces the
number of trainable parameters. For simplicity, we
split each vector into equal halves that contain po-
sition and content information, cutting the number
of model parameters roughly in half. This factored
scheme is able to achieve 93.15 development-set
F1, an improvement of almost 0.5 F1 over the un-
factored model.

These results suggest that factoring different
types of information leads to a better parser, but
there is in principle a confound: perhaps by
making all matrices block-sparse we’ve stumbled
across a better hyperparameter configuration. For
example, these gains could be due to a differ-
ence in the number of trainable parameters alone.
To control for this confound we also evaluated a
version of our model that enforces block-sparsity
throughout, but retains the use of component-
wise addition at the inputs. This model achieves
92.63 F1 (not much different from the unfactored
model), which supports our hypothesis that true
factoring of information is important.
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Attention

Content Position F1

All 8 layers All 8 layers 93.15
All 8 layers Disabled 72.45
Disabled All 8 layers 90.84
First 4 layers only All 8 layers 91.77
Last 4 layers only All 8 layers 92.82
First 6 layers only All 8 layers 92.42
Last 6 layers only All 8 layers 92.90

Table 1: Development-set F1 scores when content
and/or position attention is selectively disabled at
test-time only for a subset of the layers in our
model. Position attention is the most important
contributor to our model, but content attention is
also helpful (especially at the final layers of the
encoder).

4 Analysis of our Model

The defining feature of our encoder is the use of
self-attention, which is the only mechanism for
transfer of information between different locations
throughout a sentence. The attention is further
factored into types: content-based attention and
position-based attention. In this section, we an-
alyze the manner in which our model uses this at-
tention mechanism to make its predictions.

4.1 Content vs. Position Attention
To examine the relative utilization of content-
based vs. position-based attention in our architec-
ture, we perturb a trained model at test-time by
selectively zeroing out the contribution of either
the content or the position component to any atten-
tion mechanism. This can be done independently
at different layers; the results of this experiment
are shown in Table 1.

We can see that our model learns to use a com-
bination of the two attention types, with position-
based attention being the most important. We also
see that content-based attention is more useful at
later layers in the network, which is consistent
with the idea that the initial layers of our model act
similarly to a dilated convolutional network while
the upper layers have a greater balance between
the two attention types.

4.2 Windowed Attention
We can also examine our model’s use of long-
distance context information by applying window-

Distance F1 (strict) F1 (relaxed)

5 81.65 89.82
10 89.83 92.20
15 91.72 92.78
20 92.48 92.91
30 93.01 93.09
40 93.04 93.12
1 93.15

Table 2: Development-set F1 scores when atten-
tion is constrained to not exceed a particular dis-
tance in the sentence at test time only. In the re-
laxed setting, the first and last two tokens of the
sentence can attend to any word and be attended
to by any word, to allow for sentence-wide pool-
ing of information.

ing to the attention mechanism. We begin by tak-
ing our trained model and windowing the atten-
tion mechanism at test-time only. As shown in Ta-
ble 2, strict windowing yields poor results: even
a window of size 40 causes a loss in parsing ac-
curacy compared to the original model. When
we began to investigate how the model makes use
of long-distance attention, we immediately found
that there are particular attention heads at some
layers in our model that almost always attend to
the start token. This suggests that the start token is
being used as the location for some sentence-wide
pooling/processing, or perhaps as a dummy target
location when a head fails to find the particular
phenomenon that it’s learned to search for. In light
of this observation, we introduce a relaxed varia-
tion on the windowing scheme, where the start to-
ken, first word, last word, and stop token can par-
ticipate in all possible uses of attention, but pairs
of other words in the sentence can only attend to
each other if they are within a given window. We
include three other positions in addition to the start
token to do our best to cover possible locations
for global pooling by our model. Results for re-
laxed windowing at test-time only are also shown
in Table 2. Even when we allow global process-
ing to take place at designated locations such as
the start token, our model is able to make use of
long-distance dependencies at up to length 40.

Next, we examine whether the parser’s use of
long-distance dependencies is actually essential to
performing the task by retraining our model sub-
ject to windowing. To evaluate the role of global
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Distance F1 (strict) F1 (relaxed)

5 92.74 92.94
10 92.92 93.00
20 93.06 93.17
1 93.15

Table 3: Development-set F1 scores when atten-
tion is constrained to not exceed a particular dis-
tance in the sentence during training and at test
time. In the relaxed setting, the first and last two
tokens of the sentence can attend to any word and
be attended to by any word, to allow for sentence-
wide pooling of information.

computation, we consider both strict and relaxed
windowing. In principle we could have replaced
relaxed windowing at training time with explicit
provisions for global computation, but for analysis
purposes we choose to minimize departures from
our original architecture.

The results, shown in Table 3, demonstrate that
long-distance dependencies continue to be essen-
tial for achieving maximum parsing accuracy us-
ing our model. Note that when a window of size 10
was imposed at training time, this was per-layer
and the series of 8 layers actually had an effective
context size of around 80 – which was still insuffi-
cient to recover the performance of our full parser
(with either approach to windowing). The side-
by-side comparison of strict and relaxed window-
ing shows that the ability to pool global informa-
tion, using the designated locations that are always
available in the relaxed scheme, consistently trans-
lates to accuracy gains but is insufficient to com-
pensate for small window sizes. This suggests that
not only must the information signal from long-
distance tokens be available in principle, but that
it also helps to have this information be directly
accessible without an intermediate bottleneck.

5 Lexical Models

The models described in previous sections all
rely on pretagged input sentences, where the tags
are predicted using the Stanford tagger. We use
the same pretagged dataset as Cross and Huang
(2016). In this section we explore two alterna-
tive classes of lexical models: those that use no
external systems or data of any kind, as well as
word vectors that are pretrained in an unsuper-
vised manner.

Word embeddings

3 7

None 92.20 –
Tags 93.15 –
CharLSTM 93.40 93.61
CharConcat 93.32 93.35

Table 4: Development-set F1 scores for differ-
ent approaches to handling morphology, with and
without the addition of learned word embeddings.

5.1 Models with Subword Features

If tag embeddings are removed from our model
and only word embeddings remain (where word
embeddings are learned jointly with other model
parameters), performance suffers by around 1 F1.
To restore performance without introducing any
dependencies on an external system, we explore
incorporating lexical features directly into our
model. The results for different approaches we de-
scribe in this section are shown in Table 4.

We first evaluate an approach (CHARLSTM)
that independently runs a bidirectional LSTM over
the characters in each word and uses the LSTM
outputs in place of part-of-speech tag embeddings.
We find that this approach performs better than us-
ing predicted part-of-speech tags. We can further
remove the word embeddings (leaving the charac-
ter LSTMs only), which does not seem to hurt and
can actually help increase parsing accuracy.

Next we examine the importance of recurrent
connections by constructing and evaluating a sim-
pler alternative. Our approach (CHARCONCAT)
is inspired by Hall et al. (2014), who found it ef-
fective to replace words with frequently-occurring
suffixes, and the observation that our original tag
embeddings are rather high-dimensional. To rep-
resent a word, we extract its first 8 letters and last
8 letters, embed each letter, and concatenate the
results. If we use 32-dimensional embeddings, the
16 letters can be packed into a 512-dimensional
vector – the same size as the inputs to our model.
This size for the inputs in our model was cho-
sen to simplify the use of residual connections
(by matching vector dimensions), even though the
inputs themselves could have been encoded in a
smaller vector. This allows us to directly replace
tag embeddings with the 16-letter prefix/suffix
concatenation. For short words, embeddings of
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a padding token are inserted as needed. Words
longer than 16 letters are represented in a lossy
manner by this concatenative approach, but we hy-
pothesize that prefix/suffix information is enough
for our task. We find this simple scheme remark-
ably effective: it is able to outperform pretagging
and can operate even in the absence of word em-
beddings. However, its performance is ultimately
not quite as good as using a character LSTM.

Given the effectiveness of the self-attentive en-
coder at the sentence level, it is aesthetically ap-
pealing to consider it as a sub-word architecture
as well. However, it was empirically much slower,
did not parallelize better than a character-level
LSTM (because words tend to be short), and ini-
tial results underperformed the LSTM. One expla-
nation is that in a lexical model, one only wants
to compute a single vector per word, whereas the
self-attentive architecture is better adapted for pro-
ducing context-aware summaries at multiple posi-
tions in a sequence.

5.2 External Embeddings

Next, we consider a version of our model that uses
external embeddings. Recent work by Peters et al.
(2018) has achieved state-of-the-art performance
across a range of NLP tasks by augmenting ex-
isting models with a new technique for word rep-
resentation called ELMo (Embeddings from Lan-
guage Models). Their approach is able to capture
both subword information and contextual clues:
the embeddings are produced by a network that
takes characters as input and then uses an LSTM to
capture contextual information when producing a
vector representation for each word in a sentence.

We evaluate a version of our model that
uses ELMo as the sole lexical representa-
tion, using publicly available ELMo weights.
These pre-trained word representations are 1024-
dimensional, whereas all of our factored models
thus far have 512-dimensional content represen-
tations; we found that the most effective way to
address this mismatch is to project the ELMo vec-
tors to the required dimensionality using a learned
weight matrix. With the addition of contextual-
ized word representations, we hypothesized that a
full 8 layers of self-attention would no longer be
necessary. This proved true in practice: our best
development set result of 95.21 F1 was obtained
with a 4-layer encoder.

Encoder Architecture F1 (dev) �

LSTM (Gaddy et al., 2018) 92.24 -0.43
Self-attentive (Section 2) 92.67 0.00
+ Factored (Section 3) 93.15 0.48
+ CharLSTM (Section 5.1) 93.61 0.94
+ ELMo (Section 5.2) 95.21 2.54

Table 5: A comparison of different encoder ar-
chitectures and their development-set performance
relative to our base self-attentive model.

LR LP F1

Single model, WSJ only

Vinyals et al. (2015) – – 88.3
Cross and Huang (2016) 90.5 92.1 91.3
Gaddy et al. (2018) 91.76 92.41 92.08
Stern et al. (2017b) 92.57 92.56 92.56
Ours (CharLSTM) 93.20 93.90 93.55

Multi-model/External

Durrett and Klein (2015) – – 91.1
Vinyals et al. (2015) – – 92.8
Dyer et al. (2016) – – 93.3
Choe and Charniak (2016) – – 93.8
Liu and Zhang (2017) – – 94.2
Fried et al. (2017) – – 94.66
Ours (ELMo) 94.85 95.40 95.13

Table 6: Comparison of F1 scores on the WSJ test
set.

6 Results

6.1 English (WSJ)

The development set scores of the parser varia-
tions presented in previous sections are summa-
rized in Table 5. Our best-performing parser used
a factored self-attentive encoder over ELMo word
representations.

The results of evaluating our model on the test
set are shown in Table 6. The test score of 93.55
F1 for our CharLSTM parser exceeds the previous
best numbers for single-system parsers trained on
the Penn Treebank (without the use of any exter-
nal data, such as pre-trained word embeddings).
When our parser is augmented with ELMo word
representations, it achieves a new state-of-the-art
score of 95.13 F1 on the WSJ test set.

Our WSJ-only parser took 18 hours to train us-
ing a single Tesla K80 GPU and can parse the
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Arabic Basque French German Hebrew Hungarian Korean Polish Swedish Avg

Dev (all lengths)

Coavoux and Crabbé (2017) 83.07 88.35 82.35 88.75 90.34 91.22 86.78b 94.0 79.64 87.16
Ours (CharLSTM only) 85.94 90.05 84.27 91.26 90.50 92.23 87.90 93.94 79.34 88.38
Ours (CharLSTM + word embeddings) 85.59 89.31 84.42 91.39 90.78 92.32 87.62 93.76 79.71 88.32

Test (all lengths)

Björkelund et al. (2014), ensemble 81.32a 88.24 82.53 81.66 89.80 91.72 83.81 90.50 85.50 86.12
Cross and Huang (2016) – – 83.31 – – – – – – –
Coavoux and Crabbé (2017) 82.92b 88.81 82.49 85.34 89.87 92.34 86.04 93.64 84.0 87.27
Ours (model selected on dev) 85.61 89.71 84.06 87.69 90.35 92.69 86.59 93.69 84.45 88.32

�: Ours - Best Previous +2.69 +0.90 +0.75 +2.35 +0.48 +0.35 +0.55 +0.05 -1.05

Table 7: Results on the SPMRL dataset. All values are F1 scores calculated using the version of evalb
distributed with the shared task. aBjörkelund et al. (2013) bUses character LSTM, whereas other results
from Coavoux and Crabbé (2017) use predicted part-of-speech tags.

1,700-sentence WSJ development set in 8 seconds.
When using ELMo embeddings, training time was
13 hours (not including the time needed to pre-
train the word embeddings) and parsing the devel-
opment set takes 24 seconds. Training and infer-
ence times are dominated by neural network com-
putations; our single-threaded Cython implemen-
tation of the chart decoder (Section 2.1) consumes
a negligible fraction of total running time.

6.2 Multilingual (SPMRL)

We tested our model’s ability to generalize across
languages by training it on the nine languages rep-
resented in the SPMRL 2013/2014 shared tasks
(Seddah et al., 2013). To verify that our lexical
representations can function for morphologically-
rich languages and smaller treebanks, we re-
stricted ourselves to running a subset of the exact
models that we evaluated on English. In particular,
we evaluated the model that uses a character-level
LSTM, with and without the addition of learned
word embeddings. We did not evaluate ELMo in
the multilingual setting because pre-trained ELMo
weights were only available for English. Hyper-
parameters were unchanged compared to the En-
glish model with the exception of the learning rate,
which we adjusted for some of the smaller datasets
in the SPMRL task (see Table 9 in the supplemen-
tary material). Results are shown in Table 7.

Development set results show that the addition
of word embeddings to a model that uses a char-
acter LSTM has a mixed effect: it improves per-
formance for some languages, but hurts for oth-
ers. For each language, we selected the trained
model that performed better on the development
set and evaluated it on the test set. On 8 of
the 9 languages, our test set result exceeds the

previous best-published numbers from any sys-
tem we are aware of. The exception is Swedish,
where the model of Björkelund et al. (2014) con-
tinues to be state-of-the-art despite a number of
approaches proposed in the intervening years that
have achieved better performance on other lan-
guages. We note that their model uses ensem-
bling (via product grammars) and a reranking step,
whereas our model was only evaluated in the
single-system condition.

7 Conclusion

In this paper, we show that the choice of encoder
can have a substantial effect on parser perfor-
mance. In particular, we demonstrate state-of-the-
art parsing results with a novel encoder based on
factored self-attention. The gains we see come not
only from incorporating more information (such as
subword features or externally-trained word rep-
resentations), but also from structuring the archi-
tecture to separate different kinds of information
from each other. Our results suggest that fur-
ther research into different ways of encoding ut-
terances can lead to additional improvements in
both parsing and other natural language process-
ing tasks.
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Abstract

Motivated by the positive impact of empty
categories on syntactic parsing, we study
neural models for pre- and in-parsing de-
tection of empty categories, which has not
previously been investigated. We find sev-
eral non-obvious facts: (a) BiLSTM can
capture non-local contextual information
which is essential for detecting empty cat-
egories, (b) even with a BiLSTM, syntac-
tic information is still able to enhance the
detection, and (c) automatic detection of
empty categories improves parsing quality
for overt words. Our neural ECD mod-
els outperform the prior state-of-the-art by
significant margins.

1 Introduction

Encoding unpronounced nominal elements, such
as dropped pronouns and traces of dislocated ele-
ments, the empty category is an important piece
of machinery in representing the (deep) syntac-
tic structure of a sentence (Carnie, 2012). Fig-
ure 1 shows an example. In linguistic theory,
e.g. Government and Binding (GB; Chomsky,
1981), empty category is a key concept bridging
S-Structure and D-Structure, due to its possible
contribution to trace movements. In practical tree-
banking, empty categories have been used to in-
dicate long-distance dependencies, discontinuous
constituents, and certain dropped elements (Mar-
cus et al., 1993; Xue et al., 2005). Recently, there
has been an increasing interest in automatic empty
category detection (ECD; Johnson, 2002; Seeker
et al., 2012; Xue and Yang, 2013; Wang et al.,
2015). And it has been shown that ECD is able to
improve the linear model-based dependency pars-
ing (Zhang et al., 2017b).

There are two key dimensions of approaches

Pre-Parsing In-Parsing Post-Parsing
Linear ✔ ✔ ✔

Neural ✘ ✘ ✔

Table 1: ECD approaches that have been investi-
gated.

for ECD: the relationship with parsing and sta-
tistical disambiguation. Considering the relation-
ship with parsing, we can divide ECD models into
three types: (1) Pre-parsing approach (e.g. Di-
enes and Dubey (2003)) where empty categories
are identified without using syntactic analysis, (2)
In-parsing approach (e.g. Cai et al. (2011); Zhang
et al. (2017b)) where detection is integrated into a
parsing model, and (3) Post-parsing approach (e.g.
Johnson (2002); Wang et al. (2015)) where parser
outputs are utilized as clues to determine the ex-
istence of empty categories. For disambiguation,
while early work on dependency parsing focused
on linear models, recent work started exploring
deep learning techniques for the post-parsing ap-
proach (Wang et al., 2015). From the above two
dimensions, we show all existing systems for ECD
in Table 1. Neural models for pre- and in-parsing
ECD have not been studied yet. In this paper, we
fill this gap in the literature.

It is obvious that empty categories are highly
related to surface syntactic analysis. To deter-
mine the existence of empty elements between two
overt words relies on not only the sequential con-
texts but also the hierarchical contexts. Traditional
linear structured prediction models, e.g. condi-
tional random fields (CRF), for sequence struc-
tures are rather weak to capture hierarchical con-
textual information which is essentially non-local
for their architectures. Accordingly, pre-parsing
models based on linear disambiguation techniques
fail to produce comparable accuracy to the other
two models. In striking contrast, RNN based se-
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上海 浦东 最近 颁布 了 ∅1 ∅2 涉及 经济 领域 的 七十一 件 法规性 文件
Shanghai Pudong recently issue AS involve economic field DE 71 M regulatory document

root

Figure 1: An example from CTB: Shanghai Pudong recently enacted 71 regulatory documents involving
the economic fields. The dependency structure is according to Xue (2007). “∅1” indicates a null operator
that represents empty relative pronouns. “∅2” indicates a trace left by relativization.

quence labeling models have been shown very
powerful to capture non-local information, and
therefore have great potential to advance the pre-
parsing approach for ECD. In this paper, we pro-
pose a new bidirectional LSTM (BiLSTM) model
for pre-parsing ECD using information about con-
textual words.

Previous studies highlight the usefulness of syn-
tactic analysis for ECD. Furthermore, syntactic
parsing of overt words can benefit from detection
of empty elements and vice versa (Zhang et al.,
2017b). In this paper, we follow Zhang et al.’s en-
couraging results obtained with linear models and
study first- and second-order neural models for in-
parsing ECD. The main challenge for neural in-
parsing ECD is to encode empty element candi-
dates and integrate the corresponding embeddings
into a parsing model. We focus on the state-of-
the-art parsing architecture developed by Kiper-
wasser and Goldberg (2016) and Dozat and Man-
ning (2016), which use BiLSTMs to extract fea-
tures from contexts followed by a nonlinear trans-
formation to perform local scoring.

To evaluate the effectiveness of deep learning
techniques for ECD, we conduct experiments on
a pro-drop language, i.e. Chinese. The empirical
evaluation indicates some non-obvious facts:

1. Neural ECD models outperform the prior
state-of-the-art by significant margins. Even
a pre-parsing model without any syntactic in-
formation outperforms the best existing lin-
ear in-parsing and post-parsing ECD models.

2. Incorporating empty elements can help neu-
ral dependency parsing. This parallels Zhang
et al.’s investigation on linear models.

3. Our in-parsing neural models obtain better
predictions than the pre-parsing model.

The implementation of all models is available

at https://github.com/draplater/
empty-parser.

2 Pre-Parsing Detection

2.1 Context of Empty Categories

Sequential Context Perhaps, it is the most intu-
itive idea to view a natural language sentence as a
word-by-word sequence. Analyzing contextual in-
formation by modeling neighboring words accord-
ing to this sequential structure is a very basic view
for dealing with a large number of NLP tasks, e.g.
POS tagging and syntactic parsing. It is also im-
portant to consider sequential contexts for ECD to
derive the horizontal features that exploit the lexi-
cal context of the current pending point, presented
as one or more preceding and following word to-
kens, as well as their part-of-speech tags (POS).

Hierarchical Context The detection of ECs re-
quires broad contextual knowledge. Besides one-
dimensional representation, vertical features are
equally essential to express the empty element.
The hierarchical structure is a compact reflection
of the syntactic content. By integrating the hierar-
chical context, we can analyze the regular distri-
butional pattern of ECs in a syntactic tree. More
specifically, it means considering the head infor-
mation of the EC and relevant dependencies to
augment the prediction.

Both sequential and hierarchical contexts are
essential to determine the existence of empty ele-
ments between two overt words. Even words close
to each other in a hierarchical structure may ap-
pear far apart in sequential representations, which
makes it hard for linear sequential tagging models
to catch the hierarchical contextual information.
RNN based sequence models have been proven
very powerful to capture non-local features. In this
paper, we show that LSTM is able to advance the
pre-parsing ECD significantly.
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Interspace: @@ 颁布(issue) @@ 了(AS) @@ 涉及(involve) @@ 经济(economic)
O VV O AS *OP**T* VV O NN

Pre2 and Pre3: 颁布(issue) 了(AS) 涉及(involve) 经济(economic)
VV AS VV#pre1=*T*#pre2=*OP* NN

Prepost: 颁布(issue) 了(AS) 涉及(involve) 经济(economic)
VV AS#post=*OP* VV#pre1=*T* NN

Figure 2: An example of four kinds of annotations. The phrase is cut out from the sentence in Figure 1.
”@@” means interspaces between words.

2.2 A Sequence-Oriented Model
In the sequence-oriented model, we formulate
ECD as a sequence labeling problem. In general,
we attach ECs to surrounding overt tokens to rep-
resent their identifications, i.e. their locations and
types. We explore four sets of annotation spec-
ifications, denoted as Interspace, Pre2, Pre3 and
Prepost, respectively. Following is the detailed de-
scriptions.

Interspace We convert ECs’ information into
different tags of the interspaces between words.
The assigned tag is the concatenation of ECs be-
tween the two words. If there is no EC, we just
tag the interspace as O. Specially, according to our
observation that only one EC occurs at the end of
the sentence in our data set, we simply count on
the heading space of sentences instead of the one
standing at the end. Assume that there are n words
in a given sentence, then there will be 2 ∗ n items
(n words and n interspaces) to tag.

Pre2 and Pre3 We stick ECs to words following
them. In experiments using POS information, ECs
are attached to the POS of the next word, while
the normal words are just tagged with their POS.
In experiments without POS information, ECs are
straightly regarded as the label of the following
words. Words without ECs ahead are consistently
tagged using an empty marker. Similar to Inter-
space, linearly consecutive ECs are concatenated
as a whole. Pre2 means that at most two preceding
consecutive ECs are considered while Pre3 limits
the considered continuous length to three. The de-
termination of window lengths are grounded in the
distribution of ECs’ continuous lengths as shown
in Table 2.

Prepost Considering that it may be a challenge
to capture long-distance features, we introduce an-
other labeling rule called Prepost. Different from
Pre2 and Pre3, the responsibility for presenting
ECs will be shared by both the preceding and the

1 2 3 4
Train 7499 3702 142 5
Dev 530 233 10 0
Test 900 433 19 0

Table 2: The distribution of ECs’ continuous
lengths in training, development and test data.

following words. Whereas, tags heading sentences
will remain unchanged. Particularly, if the amount
of consecutive ECs in the current position is an
odd number, we choose to attach the extra EC to
the following word for consistency and clarity.

Take part of the sentence in Figure 1 as an ex-
ample. As described above, the four kinds of rep-
resentations are depicted in Figure 2. To investi-
gate the effect of POS in the tagging process, we
also conduct experiments by integrating POS to
the tagging process. For Interspace, POS tags are
individual output labels, while for other represen-
tations, the POS information is used to divide an
empty category integrated tag into subtypes.

2.3 Tagging Based on LSTM-CRF

In order to capture long-range syntactic informa-
tion for accurate disambiguation in pre-parsing
phase, we build a LSTM-CRF model inspired by
the neural network proposed in Ma and Hovy
(2016). A BiLSTM layer is set up on charac-
ter embeddings for extracting character-level rep-
resentations of each word, which is concatenated
with the pre-trained word embedding before feed-
ing into another BiLSTM layer to capture contex-
tual information. Thus we have obtained dense
and continuous representations of the words in
given sentences. The last part is to decode with
linear chain CRF which can optimize the out-
put sequence by factoring in local characteristics.
Dropout layers both before and after the sentence-
level network serve to prevent over-fitting.
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3 In-Parsing Detection

Zhang et al. (2017b) designs novel algorithms to
produce dependency trees in which empty ele-
ments are allowed. Their results show that inte-
grating empty categories can augment the pars-
ing of overt tokens when structured perceptron, a
global linear model, is applied for disambiguation.
From a different perspective, by jointing ECD and
dependency parsing, we can utilize full syntactic
information in the process of detecting ECs. Paral-
lel to their work, we explore the effect of ECD on
the neural dependency based parsing in this sec-
tion.

3.1 Joint ECD and Dependency Parsing
To perform ECD and dependency parsing in a uni-
fied framework, we formulate the issue as an op-
timization problem. Assume that we are given a
sentence s with n normal words. We use an in-
dex set Io = {(i, j)|i, j ∈ {1, · · · , n}} to de-
note all possible overt dependency edges, and use
Ic = {(i, φj)|i, j ∈ {1, · · · , n}} to denote all
possible covert dependency edges. φj denotes an
empty node that precede the jth word. Then a de-
pendency parse with empty nodes can be repre-
sented as a vector:

z = {z(i, j) : (i, j) ∈ Io ∪ Ic}.

Let Z denote the set of all possible z, and
PART(z) denote the factors in the dependency
tree, including edges (and edge siblings in the
second-order model). Then parsing with ECD can
be defined as a search for the highest-scored z∗(s)
in all compatible analyses, just like parsing with-
out empty elements:

z∗(s) = arg max
z∈Z(s)

SCORE(s, z)

= arg max
z∈Z(s)

∑

p∈PART(z)

SCOREPART(s, p)

The graph-based parsing algorithms proposed
by Zhang et al. are based on two properties: ECs
can only serve as dependents and the number of
successive ECs is limited. The latter trait makes
it reasonable to treat consecutive ECs governed by
the same head as one word. We also follow this
set-up.

3.2 Scoring Based on BiLSTM
Kiperwasser and Goldberg (2016) proposed a sim-
ple yet effective architecture to implement neural

Bi-LSTMs

Embedding

i

It PRP

. . .

. . .

Bi-LSTMs

Embedding

j

Black NNP

Bi-LSTMs

Embedding

j + 1

Monday NNP

. . .

. . .

MLPovert edge

SCOREDEP(i, j)

MLPcovert edge

SCOREEMPTY(i, φj+1)

MLPovert both sibling

SCOREOVERTBOTH(i, j, j + 1)

Figure 3: The neural network structure when pars-
ing sentence ”It wasn’t Black Monday.” 5 MLPs
is used for overt edges (i, j), covert edges (i, φj),
overt-both siblings (i, j, k), covert-inside siblings
(i, φj , k) and covert-outside siblings (i, j, φk) re-
spectively, and 3 of them are shown in the graph.

dependency parsers. In particular, a BiLSTM is
utilized as a powerful feature extractor to assist
a dependency parser. Mainstream data-driven de-
pendency parsers, including both transition- and
graph-based ones, can apply useful word vec-
tors provided by a BiLSTM to conduct the dis-
ambiguation. Following Kiperwasser and Gold-
berg (2016)’s experience on graph-based depen-
dency parser, we implement such a parser to re-
cover empty categories and to evaluate the impact
of empty categories on surface parsing.

Here we present details of the design of our
parser. A vector is associated with each word or
POS-tag to transform them into continuous and
dense representations. We use pre-trained word
embeddings and random initialized POS-tag em-
beddings.

The concatenation of the word embedding and
the POS-tag embedding of each word in a specific
sentence is used as the input of BiLSTMs to ex-
tract context related feature vectors ri.

r1:n = BiLSTM(s; 1 : n)

The context related feature vectors are fed into
a non-linear transformation to perform scoring.

3.3 A First-Order Model
In the first-order model, we only consider the head
and the dependent of the possible dependency arc.
The two feature vectors of each word pair is scored
with a non-linear transformation g as the first-
order score. When words i and j are overt words,
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we define the score function in sentence s as fol-
lows,

SCOREDEP(s, i, j)
= W2 · g(W1,1 · ri + W1,2 · rj + b)

W2, W1,1 and W1,2 denote the weight matrices in
linear transformations. The score of covert edge
from word i to word φj is calculated in a similar
way with different parameters:

SCOREEMPTY(s, i, φj)
= W ′

2 · g(W ′
1,1 · ri + W ′

1,2 · rj + b′)

These non-linear transformations are also
known as Multiple Layer Perceptrons(MLPs). The
total score in our first-order model is defined as
follows,

SCORE(s, z) =
∑

(i,j)∈DEP(z)

SCOREDEP(s, i, j)

+
∑

(i,φj)∈DEPEMPTY(z)

SCOREEMPTY(s, i, φj)

DEP(z) and DEPEMPTY(z) denote all overt
and covert edges in z respectively. Because each
overt and covert edge is selected independently
of the others, the decoding process can be seen
as calculating the maximum subtree from overt
edges(we use Eisner Algorithm in our experi-
ments) and appending each covert edge (i, φj)
when SCOREEMPTY(i, φj) > 0.

3.4 A Second-Order Model
In the second-order model, we also consider sib-
ling arcs. We extend the neural network in sec-
tion 3.3 to perform the second-order parsing. We
calculate second-order scores(scores defined over
sibling arcs) in a similar way. Each pair of overt
sibling arcs, for example, (i, j) and (i, k) (j < k),
is denoted as (i, j, k) and scored with a non-linear
transformation.

SCOREOVERTBOTH(s, i, j, k) =

W ′′
2 · g(W ′′

1,1 · ri + W ′′
1,2 · rj + W ′′

1,3 · rk + b′′)

Zhang et al. (2017b) defines two kinds of
second-order scores to describe the interaction be-
tween concrete nodes and empty categories: the
covert-inside sibling (i, φj , k) and covert-outside
sibling (i, j, φk). Their scores can be calculated in
a similar way with different parameters.

And finally, the score function over the whole
syntactic analysis is defined as:

SCORE(s, z) =
∑

(i,j)∈DEP(z)

SCOREDEP(s, i, j)

+
∑

(i,φj)∈DEPEMPTY(z)

SCOREEMPTY(s, i, φj)

+
∑

(i,j,k)∈OVERTBOTH(z)

SCOREOVERTBOTH(s, i, j, k)

+
∑

(i,φj ,k)∈COVERTIN(z)

SCORECOVERTIN(s, i, φj , k)

+
∑

(i,j,φk)∈COVERTOUT(z)

SCORECOVERTOUT(s, i, j, φk)

OVERTBOTH(z), COVERTIN(z) and
COVERTOUT(z) denotes overt-both, covert-
inside and covert-outside siblings of z respec-
tively. Totally 5 MLPs are used to calculate the 5
types of scores. The network structure is shown in
Figure 3.

Labeled Parsing Similar to Kiperwasser and
Goldberg (2016) and Zhang et al. (2017a), we
use a two-step process to perform labeled parsing:
conduct an unlabeled parsing and assign labels to
each dependency edge. The labels are determined
with the nonlinear classification. We use different
nonlinear classifiers for edges between concrete
nodes and empty categories.

Training In order to update graphs which have
high model scores but are very wrong, we use a
margin-based approach to compute loss from the
gold tree T ∗ and the best prediction T̂ under the
current model.

We define the loss term as:

max(0, ∆(T ∗, T̂ ) − SCORE(T ∗) + SCORE(T̂ ))

The margin objective ∆ measures the similarity
between the gold tree T ∗ and the prediction T̂ .
Following Kiperwasser and Goldberg (2016)’s ex-
perience of loss augmented inference, we define
∆ as the count of dependency edges in prediction
results but not belonging to the gold tree.

3.5 Structure Regularization
ECD significantly increases the search space for
parsing. This results in a side effect for practi-
cal parsing. Given the limit of available anno-
tations for training, searching for more complex
structures in a larger space is harmful to the gen-
eralization ability in structured prediction (Sun,
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2014). To control structure-based overfitting, we
train a normal dependency parser, namely parser
for overt words only, and use its first- and second-
order scores to augment the corresponding score
functions in the joint parsing and ECD model. At
the training phase, the two parsers are trained sep-
arately, while at the test phase, the scores are cal-
culated by individual models and added for decod-
ing.

4 Experiments

4.1 Experimental Setup

4.1.1 Data
We conduct experiments on a subset of Penn Chi-
nese Treebank (CTB; Xue et al., 2005) 9.0. As a
pro-drop language, the empty category is a very
useful method for representing the (deep) syntac-
tic analysis in Chinese language. Empty cate-
gories in CTB is divided into six classes: pro,
PRO, OP, T, RNR and *, which were described in
detail in Xue and Yang (2013); Wang et al. (2015).
For comparability with the state-of-the-art, the di-
vision of training, development and testing data is
coincident with the previous work (Xue and Yang,
2013).

Our experiments can be divided into two
groups. The first group is conducted on the linear
conditional random field (Linear-CRF) model and
LSTM-CRF tagging model to evaluate gains from
the introduction of neural structures. The second
group is designed for the dependency-based in-
parsing models.

4.1.2 Evaluation Metrics
We adopt two kinds of metrics for the evaluation
of our experiments. The first one focuses on EC’s
position and type, in accordance with the labeled
empty elements measure proposed by Cai et al.
(2011), which can be implemented on all models
in our experiments. The second one is stricter. Be-
sides position and type, it also checks EC’s head
information. An EC is considered to be correct,
only when all the three parts are the same as the
corresponding gold standard. Thus only models
involved in dependency structures can be evalu-
ated according to the latter metric. Based on above
measures of the two degrees, we evaluate our neu-
ral pre- and in-parsing models regarding each type
of EC as well as overall performance.

Besides, to compare different models’ abili-
ties to capture non-local information, we design

Dependency Distance to indicate the number of
words from one EC to its head, not counting other
ECs on the path. Taking the two ECs in Figure
1 as an example, ∅2 has a Dependency Distance
of 0 while ∅1 ’s Dependency Distance is 3. We
calculate labeled recall scores for enumerated De-
pendency Distance. A higher score means greater
capability to catch and to represent long-distance
details.

4.2 Results of Pre-Parsing Models
Table 3 shows overall performances of the two se-
quential models on development data. From the
results, we can clearly see that the introduction of
neural structure pushes up the scores exception-
ally. The reason is that our LSTM-CRF model
not only benefits from the linear weighted com-
bination of local characteristics like ordinary CRF
models, but also has the ability to integrate more
contextual information, especially long-distance
information. It confirms LSTM-based models’
great superiority in sequence labeling problems.

Further more, we find that the difference among
the four kinds of representations is not so obvi-
ous. The most performing one with LSTM-CRF
model is Interspace, but the advantage is narrow.
Pre3 uses a larger window length to incorporate
richer contextual tokens, but at the same time, the
searching space for decoding grows larger. It ex-
plains that the performance drops slightly with in-
creasing window length. In general, experiments
with POS tags show higher scores as more syntac-
tic clues are incorporated.

We compare LSTM-CRF with other state-of-
the-art systems in Table 41. We can see that a sim-
ple neural pre-parsing model outperforms state-of-
the-art linear in-parsing systems. Analysis about
results on different EC types as displayed in Ta-
ble 5 shows that the sequence-oriented pre-parsing
model is good at detecting pro compared with pre-
vious systems, which is used widely in pro-drop
languages. Additionally, the model succeeds in
detecting seven * EC tokens in evaluating process.
* indicates trace left by passivization as well as
raising, and is very rare in training data. Previous
models usually cannot identify any *. This detail
reflects that the LSTM-CRF model can make the
most of limited training data compared with exist-
ing systems.

1 Wang et al. (2015) reported an overall F-score of 71.7.
But their result is based on the gold standard syntactic analy-
sis.
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Linear CRF LSTM-CRF
Without POS With POS Without POS With POS

P R F1 P R F1 P R F1 P R F1

Interspace 74.6 20.6 32.2 71.2 30.3 42.5 67.9 59.8 63.6 73.0 61.6 66.8
Pre2 72.4 30.1 42.5 72.8 32.4 44.8 71.1 58.3 64.1 74.8 57.4 65.0
Pre3 73.1 30.2 42.8 73.0 32.5 44.9 71.1 58.5 64.2 73.8 57.0 64.3
Prepost 70.9 32.9 45.0 74.4 30.3 43.1 71.0 57.6 63.6 72.9 58.6 65.0

Table 3: The overall performance of the two sequential models on development data.

P R F1

Pre-parsing 67.3 54.7 60.4
In-parsing 72.6 55.5 62.9
In-parsing* 70.9 54.1 61.4
(Xue and Yang, 2013)* 65.3 51.2 57.4
(Cai et al., 2011) 66.0 54.5 58.6

Table 4: The overall performance on test data. ”*”
indicates more stringent evaluation metrics.

EC Type Total Correct P R F1

pro 315 85 52.5 27.0 35.6
PRO 300 183 58.8 61.0 59.9
OP 575 338 73.0 58.8 65.1
T 580 355 73.3 61.2 66.7

RNR 34 30 62.5 88.2 73.2
* 19 7 46.7 36.8 41.2

Overall 1823 998 67.3 54.7 60.4

Table 5: Occurrences of different ECs in test data
and detailed results of Interspace with POS infor-
mation.

4.3 Results of In-Parsing Models

Table 6 presents detailed results of the in-parsing
models on test data. Compared with the state-
of-the-art, the first-order model performs a little
worse while the second-order model achieves a
remarkable score. The first-order parsing model
only constrains the dependencies of both the
covert and overt tokens to make up a tree. Due
to the loose scoring constraint of the first-order
model, the prediction of empty nodes is affected
little from the prediction of dependencies of overt
words. The four bold numbers in the table in-
tuitively elicits the conclusion that integrating an
empty edge and its sibling overt edges is neces-
sary to boost the performance. It makes sense be-
cause empty categories are highly related to syn-
tactic analysis. When we conduct ECD and de-
pendency parsing simultaneously, we can leverage

First-order Second-order
Type P R F1 P R F1

pro 52.5 16.8 25.5 54.4 19.7 28.9
PRO 59.7 47.3 52.8 60.6 58.0 59.3
OP 74.5 55.8 63.8 79.6 67.8 73.2
T 70.6 51.7 59.7 77.3 62.8 69.3

RNR 70.8 50.0 58.6 77.8 61.8 68.9
* 0.0 0.0 0.0 0.0 0.0 0.0

Overall 68.2 45.7 54.7 72.6 55.5 62.9
Evaluation with Head

pro 50.5 16.2 24.5 52.6 19.1 28.0
PRO 58.4 46.3 51.7 57.8 55.3 56.6
OP 72.2 54.1 61.8 78.6 67.0 72.3
T 68.5 50.2 57.9 75.4 61.2 67.6

RNR 70.8 50.0 58.6 77.8 61.8 68.9
* 0.0 0.0 0.0 0.0 0.0 0.0

Overall 66.3 44.4 53.2 70.9 54.1 61.4

Table 6: The performances of the first- and
second-order in-parsing models on test data.

more hierarchical contextual information. Com-
paring results regarding EC types, we can find that
OP and T benefit most from the parsing informa-
tion, the F1 score increasing by about ten points,
more markedly than other types.

4.4 Results on Dependency Parsing

Table 7 shows the impact of automatic detection
of empty categories on parsing overt words. We
compare the results of both steps in labeled pars-
ing. We can clearly see that integrating empty el-
ements into dependency parsing can improve the
neural parsing accuracy of overt words. Besides,
when jointing parsing models both without and
with ECs together, we can push up the perfor-
mance further. These results confirm the conclu-
sion in Zhang et al. (2017b) that empty elements
help parse the overt words. The main reason lies
in that the existence of ECs provides extra struc-
tural information which can reduce approximation
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-EC +EC -+EC
Unlabeled 87.6 88.9 89.6
Labeled 84.6 85.9 86.6

Table 7: Accuracies of both unlabeled and labeled
parsing on development data. -EC indicates pars-
ing without empty categories. +EC indicates the
second-order in-parsing models. -+EC indicates
jointing parsing models both without and with ECs
together.

errors in a structured prediction problem.
According to above analysis, we can draw a

conclusion that ECD and syntactic parsing can
promote each other mutually. That partially ex-
plains why in-parsing models can outperform pre-
parsing models. Meanwhile, it provides a new ap-
proach to improving the dependency parsing qual-
ity in a unified framework.

4.5 Impact of Dependency Distance
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Figure 4: Recall scores of different models regard-
ing Dependency Distance. ”Pre-parsing” and ”In-
parsing” refer to the LSTM-CRF model and the
dependency-based in-parsing model respectively.

We compare pre- and in-parsing models re-
garding Dependency Distance. The former refers
to the LSTM-CRF model while the latter means
the dependency-based in-parsing model. Figure 4
shows the results. The abscissa value ranges from
0 to 26, with the longest dependency arc spanning
26 non-EC word tokens. We can see that long-
distance disambiguation is a challenge shared by
both models. When the value of Dependency Dis-
tance exceeds four, the recall score drops gradu-
ally with abscissa increasing. Based on the com-
parison of two sets of data, we can find that in-
parsing model performs better on ECs which are

close to their heads. However, as for ECs which
are far apart from their heads, two models have
performed almost exactly alike. It demonstrates
that LSTM structure is capable of capturing non-
local features, making up for no exposure to pars-
ing information.

4.6 Challenges

On the whole, the most challenging EC type is
pro. We assume that it is because that pro-drop
situations are complicated and diverse in Chinese
language. According to Chinese linguistic the-
ory, pronouns are dropped as a result of continu-
ing from the preceding discourse or just idiomatic
rules, such as the ellipsis of the first person pro-
noun “我/I” in the subject position. To fill this gap,
we may need to extract more deep structural fea-
tures.

Another difficulty is the detection of consecu-
tive ECs. In the result of our experiments, in-
parsing dependency-based model can only accu-
rately detect up to two consecutive ECs. Too many
empty elements in the same sentence conceal too
much syntactic information, making it hard to dis-
close the original structure.

Moreover, in view of the fact that ECs play an
essential role in syntactic analysis, the current de-
tection accuracy of ECs is far from enough. We
still have a long way to go.

5 Related Work

The detection of empty categories is an essen-
tial ground for many downstream tasks. For ex-
ample, Chung and Gildea (2010) has proved that
automatic empty category detection has a posi-
tive impact on machine translation. Zhang et al.
(2017b) shows that ECD can benefit linear syn-
tactic parsing of overt words. To accurately dis-
tinguish empty elements in sentences, there are
generally three approaches. The first method is to
build pre-processors before syntactic parsing. Di-
enes and Dubey (2003) proposed a shallow trace
tagger which can detect discontinuities. And it
can be combined with unlexicalized PCFG parsers
to implement deep syntactic processing. Due to
the lack of phrase structure information, it did not
acquire remarkable results. The second method
is to integrate ECD into parsing, as shown in
Schmid (2006) and Cai et al. (2011), which in-
volved empty elements in the process of generat-
ing parse trees. Another in-parsing system is pro-
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posed in Zhang et al. (2017b). Zhang et al. (2017b)
designed algorithms to produce dependency trees
in which empty elements are allowed. To add
empty elements into dependency structures, they
extend Eisner’s first-order DP algorithm for pars-
ing to second- and third-order algorithms. The
last approach to recognizing empty elements is
post-parsing methods. Johnson (2002) proposed a
simple pattern-matching algorithm for recovering
empty nodes in phrase structure trees while Camp-
bell (2004) presented a rule-based algorithm. Xue
and Yang (2013) conducted ECD based on depen-
dency trees. Their methods can leverage richer
syntactic information, thus have achieved more
satisfying scores.

As neural networks have been demonstrated to
have a great ability to capture complex features,
it has been applied in multiple NLP tasks (Bengio
and Schwenk, 2006; Collobert et al., 2011). Neu-
ral methods have also explored in distinguishing
empty elements. For example, Wang et al. (2015)
described a novel ECD solution using distributed
word representations and achieved the state-of-
the-art performance. Based on above work, we ex-
plore neural pre- and in-parsing models for ECD.

6 Conclusion

Neural networks have played a big role in multiple
NLP tasks recently owing to its nonlinear mapping
ability and the avoidance of human-engineered
features. It should be a well-justified solution to
identify empty categories as well as to integrate
empty categories into syntactic analysis. In this
paper, we study neural models to detect empty
categories. We observe three facts: (1) BiLSTM
significantly advances the pre-parsing ECD. (2)
Automatic ECD improves the neural dependency
parsing quality for overt words. (3) Even with a
BiLSTM, syntactic information can enhance the
detection further. Experiments on Chinese lan-
guage show that our neural model for ECD excep-
tionally boosts the state-of-the-art detection accu-
racy.

Acknowledgement

This work was supported by the National Nat-
ural Science Foundation of China (61772036,
61331011) and the Key Laboratory of Science,
Technology and Standard in Press Industry (Key
Laboratory of Intelligent Press Media Technol-
ogy). We thank the anonymous reviewers for their

helpful comments. Weiwei Sun is the correspond-
ing author.

References
Yoshua Bengio and Holger Schwenk. 2006. Neural

probabilistic language models. In Innovations in
Machine Learning. Springer, page 137186.

Shu Cai, David Chiang, and Yoav Goldberg.
2011. Language-independent parsing with empty
elements. In Proceedings of the 49th An-
nual Meeting of the Association for Compu-
tational Linguistics: Human Language Tech-
nologies. Association for Computational Linguis-
tics, Portland, Oregon, USA, pages 212–216.
http://www.aclweb.org/anthology/P11-2037.

Richard Campbell. 2004. Using linguistic prin-
ciples to recover empty categories. In Pro-
ceedings of the 42nd Meeting of the Associ-
ation for Computational Linguistics (ACL’04),
Main Volume. Barcelona, Spain, pages 645–652.
https://doi.org/10.3115/1218955.1219037.

A. Carnie. 2012. Syntax: A Generative Intro-
duction 3rd Edition and The Syntax Work-
book Set. Introducing Linguistics. Wiley.
https://books.google.com/books?id=jhGKMAEACAAJ.

Noam Chomsky. 1981. Lectures on Government and
Binding. Foris Publications, Dordecht.

Tagyoung Chung and Daniel Gildea. 2010. Ef-
fects of empty categories on machine transla-
tion. In Proceedings of the 2010 Confer-
ence on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Cambridge, MA, pages 636–645.
http://www.aclweb.org/anthology/D10-1062.

Ronan Collobert, Jason Weston, Michael Karlen, Ko-
ray Kavukcuoglu, and Pavel Kuksa. 2011. Natural
language processing (almost) from scratch. Journal
of Machine Learning Research 12(1):2493–2537.

Pétr Dienes and Amit Dubey. 2003. Deep syn-
tactic processing by combining shallow meth-
ods. In Proceedings of the 41st Annual
Meeting of the Association for Computational
Linguistics. Association for Computational
Linguistics, Sapporo, Japan, pages 431–438.
https://doi.org/10.3115/1075096.1075151.

Timothy Dozat and Christopher D. Manning.
2016. Deep biaffine attention for neural de-
pendency parsing. CoRR abs/1611.01734.
http://arxiv.org/abs/1611.01734.

Mark Johnson. 2002. A simple pattern-matching al-
gorithm for recovering empty nodes and their an-
tecedents. In Proceedings of 40th Annual Meet-
ing of the Association for Computational Linguis-
tics. Association for Computational Linguistics,

2695



Philadelphia, Pennsylvania, USA, pages 136–143.
https://doi.org/10.3115/1073083.1073107.

Eliyahu Kiperwasser and Yoav Goldberg. 2016.
Simple and accurate dependency parsing
using bidirectional lstm feature represen-
tations. Transactions of the Association
for Computational Linguistics 4:313–327.
https://transacl.org/ojs/index.php/tacl/article/view/885.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional lstm-cnns-crf.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, pages 1064–1074.
http://www.aclweb.org/anthology/P16-1101.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large
annotated corpus of english: the penn tree-
bank. Computational Linguistics 19(2):313–330.
http://dl.acm.org/citation.cfm?id=972470.972475.

Helmut Schmid. 2006. Trace prediction and recov-
ery with unlexicalized pcfgs and slash features.
In Proceedings of the 21st International Confer-
ence on Computational Linguistics and 44th An-
nual Meeting of the Association for Computa-
tional Linguistics. Association for Computational
Linguistics, Sydney, Australia, pages 177–184.
https://doi.org/10.3115/1220175.1220198.
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Abstract

Weighted finite state transducers (FSTs)
are frequently used in language process-
ing to handle tasks such as part-of-speech
tagging and speech recognition. There has
been previous work using multiple CPU
cores to accelerate finite state algorithms,
but limited attention has been given to par-
allel graphics processing unit (GPU) im-
plementations. In this paper, we introduce
the first (to our knowledge) GPU imple-
mentation of the FST composition oper-
ation, and we also discuss the optimiza-
tions used to achieve the best performance
on this architecture. We show that our ap-
proach obtains speedups of up to 6× over
our serial implementation and 4.5× over
OpenFST.

1 Introduction

Finite-state transducers (FSTs) and their algo-
rithms (Mohri, 2009) are widely used in speech
and language processing for problems such as
grapheme-to-phoneme conversion, morphological
analysis, part-of-speech tagging, chunking, named
entity recognition, and others (Mohri et al., 2002;
Mohri, 1997). Hidden Markov models (Baum
et al., 1970), conditional random fields (Lafferty
et al., 2001) and connectionist temporal classifica-
tion (Graves et al., 2006) can also be thought of as
finite-state transducers.

Composition is one of the most important oper-
ations on FSTs, because it allows complex FSTs to
be built up from many simpler building blocks, but
it is also one of the most expensive. Much work
has been done on speeding up composition on a
single CPU processor (Pereira and Riley, 1997;
Hori and Nakamura, 2005; Dixon et al., 2007; Al-
lauzen and Mohri, 2008; Allauzen et al., 2009;

Ladner and Fischer, 1980; Cheng et al., 2007).
Methods such as on-the-fly composition, shared
data structures, and composition filters have been
used to improve time and space efficiency.

There has also been some successful work
on speeding up composition using multiple CPU
cores (Jurish and Würzner, 2013; Mytkowicz
et al., 2014; Jung et al., 2017). This is a chal-
lenge because many of the algorithms used in
NLP do not parallelize in a straightforward way
and previous work using multi-core implementa-
tions do not handle the reduction of identical edges
generated during the composition. The problem
becomes more acute on the graphics processing
units (GPUs) architecture, which have thousands
of cores but limited memory available. Another
problem with the composition algorithm is that
techniques used on previous work (such as com-
position filters and methods to expand or gather
transitions using dictionaries or hash tables) do
not translate well to the GPU architecture given
the hardware limitations and communication over-
heads.

In this paper, we parallelize the FST compo-
sition task across multiple GPU cores. To our
knowledge, this is the first successful attempt to
do so. Our approach treats the composed FST as
a sparse graph and uses some techniques from the
work of Merrill et al. (2012); Jung et al. (2017)
to explore the graph and generate the composed
edges during the search. We obtain a speedup of
4.5× against OpenFST’s implementation and 6×
against our own serial implementation.

2 Finite State Transducers

In this section, we introduce the notation that
will be used throughout the paper for the com-
position task. A weighted FST is a tuple M =

(Q,Σ,Γ, s, F, δ), where
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• Q is a finite set of states.

• Σ is a finite input alphabet.

• Γ is a finite output alphabet.

• s ∈ Q is the start state.

• F ⊆ Q are the accept states.

• δ : Q × Σ × Γ × Q → R is the transition
function. If δ(q, a, b, r) = p, we write

q
a:b/p−−−−→ r.

Note that we don’t currently allow epsilon transi-
tions; this would require implementation of com-
position filters (Allauzen et al., 2009), which is not
a trivial task on the GPU architecture given the
data structures and memory needed. Hence, we
leave this for future work.

For the composition task, we are given two
weighted FSTs:

M1 = (Q1,Σ,Γ, s1, F1, δ1)

M2 = (Q2,Γ,∆, s2, F2, δ2).

Call Γ, the alphabet shared between the two trans-
ducers, the inner alphabet, and let m = |Γ|. Call
Σ and ∆, the input alphabet of M1 and the output
alphabet of M2, the outer alphabets.

The composition of M1 and M2 is the weighted
FST

M1 ◦ M2 = (Q1 × Q2,Σ,∆, s1s2, F1 × F2, δ)

where

δ(q1q2, a, b, r1r2) =∑

b∈Γ
δ1(q1, a, c, r1) · δ2(q2, c, b, r2).

That is, for each pair of transitions with the same
inner symbol,

q1
a:b/p1−−−−−→ r1

q2
b:c/p2−−−−−→ r2,

the composed transducer has a transition

q1q2
a:c/p1 p2−−−−−−→ r1r2.

Transitions with the same source, target, input, and
output symbols are merged, adding their weights.
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Figure 1: Example composition of two finite state
transducers: M1 translates English to Spanish, M2
translates Spanish to German. The center of the
image contains the composition of the two input
transducers. This new transducer translates En-
glish to German. The dotted states and transitions
are those that cannot be reached from the start
state.

3 Method

In this section, we describe our composition
method and its implementation.

3.1 Motivation
If implemented naı̈vely, the above operation is
inefficient. Even if M1 and M2 are trim (have
no states that are unreachable from the start state
or cannot reach the accept state), their composi-
tion may have many unreachable states. Figure 1
shows a clear example where the transducers used
for composition are trim, yet several states (drawn
as dotted circles) on the output transducers cannot
be reached from the start state. The example also
shows composed transitions that originate from
unreachable states. As a result, a large amount of
time and memory may be spent creating states and
composing transitions that will not be reachable
nor needed in practice. One solution to avoid the
problem is to compose only the edges and states
that are reachable from the start state on the out-
put transducer to avoid unnecessary computations
and reduce the overall memory footprint.

We expect this problem to be more serious when
the FSTs to be composed are sparse, that is, when
there are many pairs of states without a transition
between them. And we expect that FSTs used in
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Data Transitions Nonzero % Nonzero
1k

de-en 21.7M 16.5k 0.076%
en-de 12.3M 15.4k 0.125%
en-es 12.5M 15.5k 0.124%
en-it 13.1M 16.3k 0.124%

10
k

de-en 394M 114k 0.029%
en-de 138M 93.9k 0.067%
en-es 135M 93.3k 0.068%
en-it 143M 97.2k 0.067%

15
k

de-en 634M 158k 0.025%
en-de 201M 126k 0.062%
en-es 195M 125k 0.064%
en-it 209M 131k 0.062%

Table 1: FSTs used in our experiments. Key: Data
= language pair used to generate the transduc-
ers; Transitions = maximum possible number of
transitions; Nonzero = number of transitions with
nonzero weight; % Nonzero = percent of possible
transitions with nonzero weight. The left column
indicates the number of parallel sentences used to
generate the transducers used for testing.

natural language processing, whether they are con-
structed by hand or induced from data, will often
be sparse.

For example, below (Section 4.1), we will de-
scribe some FSTs induced from parallel text that
we will use in our experiments. We measured the
sparsity of these FSTs, shown in Table 1. These
FSTs contain very few non-zero connections be-
tween their states, suggesting that the output of
the composition will have a large number of un-
reachable states and transitions. The percentage
of non-zero transitions found in the transducers
used for testing decreases as the transducer gets
larger. Therefore, when composing FSTs, we want
to construct only reachable states, using a traversal
scheme similar to breadth-first search to avoid the
storage and computation of irrelevant elements.

3.2 Serial composition

We first present a serial composition algorithm
(Algorithm 2). This algorithm performs a breadth-
first search (BFS) of the composed FST beginning
from the start state, so as to avoid creating inac-
cessible states. As is standard, the BFS uses two
data structures, a frontier queue (A) and a visited
set (Q), which is always a superset of A. For each
state q1q2 popped from A, the algorithm composes

Algorithm 1 Serial composition algorithm.
Input Transducers: M1 = (Q1,Σ,Γ, s1, F1, δ1)

M2 = (Q2,Γ,∆, s2, F2, δ2)

Output Transducer: M1 ◦ M2

1: A← {s1s2} . Queue of states to process
2: Q← {s1s2} . Set of states created so far
3: δ← ∅ . Transition function
4: while |A| > 0 do
5: q1q2 ← pop(A)

6: for q1
a:b/p1−−−−−→ r1 ∈ δ1 do

7: for q2
b:c/p2−−−−−→ r2 ∈ δ2 do

8: δ(q1q2, a, c, r1r2) += p1 p2
9: if r1r2 < Q then

10: Q← Q ∪ {r1r2}
11: push(A, r1r2)
12: return (Q,Σ,∆, s1s2, F1 × F2, δ)

la gata una

R 0 1 1 2

T 1 2

O the one

P 0.3 0.7

la gata una

R 0 1 1 2

T 1 2

O die eine

P 0.6 0.4

M1 M2

Figure 2: Example CSR-like representation of
state 0 for transducers M1 and M2 from Figure 1.

all transitions from q1 with all transitions from q2
that have the same inner symbol. The composed
edges are added to the final transducer, and the
corresponding target states q1q2 are pushed into A
for future expansion. The search finishes once A
runs out of states to expand.

3.3 Transducer representation

Our GPU implementation stores FST transition
functions in a format similar to compressed sparse
row (CSR) format, as introduced by our previous
work Argueta and Chiang (2017). For the com-
position task we use a slightly different represen-
tation. An example of the adaptation is shown in
Figure 2. The transition function δ for the result is
stored in a similar fashion. The storage method is
defined as follows:
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• z is the number of transitions with nonzero
weight.

• R is an array of length |Q|m + 1 containing
offsets into the arrays T , O, and P. If the
states are numbered 0, . . . , |Q| − 1 and the in-
ner symbols are numbered 0, . . .m − 1, then
state q’s outgoing transitions on inner symbol
b can be found starting at the offset stored in
R[qm + b]. The last offset index, R[|Q|m + 1],
must equal z.

• T [k] is the target state of the kth transition.

• O[k] is the outer symbol of the kth transition.

• P[k] is the weight of the kth transition.

Similarly to several toolkits (such as OpenFST),
we require the edges in T,O, P to be sorted by
their inner symbols before executing the algo-
rithm, which allows faster indexing and simpler
parallelization.

3.4 Parallel composition
Our parallel composition implementation has the
same overall structure as the serial algorithm, and
is shown in Algorithm 2. The two transducers
to be composed are stored on the GPU in global
memory, in the format described in Section 3.3.
Both transducers are sorted according to their in-
ner symbol on the CPU and copied to the device.
The memory requirements for a large transducer
complicates the storage of the result on the GPU
global memory. If the memory of states and edges
generated by both inputs does not fit on the GPU,
then the composition cannot be computed using
only device memory. The execution time will also
be affected if the result lives on the device and
there is a limited amount of memory available for
temporary variables created during the execution.
Therefore, the output transducer must be stored on
the host using page-locked memory, with the edge
transitions unsorted.

Page-locked, or pinned, memory is memory
that will not get paged out by the operating sys-
tem. Since this memory cannot be paged out, the
amount of RAM available to other applications
will be reduced. This enables the GPU to access
the host memory quickly. Pinned memory pro-
vides better transfer speeds since the GPU creates
different mappings to speed up cudaMemcpy oper-
ations on host memory. Allocating pinned mem-
ory consumes more time than a regular malloc,

Algorithm 2 Parallel composition algorithm.
Input Transducers: M1 = (Q1,Σ,Γ, s1, F1, δ1)

M2 = (Q2,Γ,∆, s2, F2, δ2)

Output Transducer: M1 ◦ M2

1: A← {s1s2} . Queue of states to process
2: Q← {s1s2} . Set of states visited
3: δ← [] . List of transitions
4: while |A| > 0 do
5: q1q2 ← pop(A)
6: δd ← []
7: Ad ← ∅
8: H ← ∅
9: red ← false

10: parfor b ∈ Γ do . kernels

11: parfor q1
a:b/p1−−−−−→ r1 do . threads

12: parfor q2
b:c/p2−−−−−→ r2 do . threads

13: append q1q2
a:c/p1 p2−−−−−−→ r1r2 to δd

14: if h(a, c, r1r2) ∈ H then
15: red ← true
16: else
17: add h(a, c, r1r2) to H
18: if r1r2 < Q then
19: Ad ← Ad ∪ {r1r2}
20: Q← Q ∪ {r1r2}
21: concatenate δd to δ
22: for q ∈ Ad do push(A, q)
23: if red then
24: sort δ[q1q2]
25: reduce δ[q1q2]
26: return (Q,Σ,∆, s1s2, F1 × F2, δ)

therefore it should be done sporadically. In this
work, pinned memory is allocated only once at
start time and released once the composition has
been completed. Using page-locked memory on
the host side as well as pre-allocating memory on
the device decreases the time to both copy the re-
sults back from the GPU, and the time to reuse de-
vice structures used on different kernel methods.

Generating transitions The frontier queue A is
stored on the host. For each state q1q2 popped
from A, we need to compose all outgoing tran-
sitions of q1 and q2 obtained from M1 and M2
respectively. Following previous work (Merrill
et al., 2012; Jurish and Würzner, 2013), we cre-
ate these in parallel, using the three parfor loops
in lines 10–12. Although these three loops are
written the same way in pseudocode for simplic-
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ity, in actuality they use two different paralleliza-
tion schemes in the actual implementation of the
algorithm.

The outer loop launches a CUDA kernel for
each inner symbol b ∈ Γ. For example, to com-
pose the start states in Figure 1, three kernels will
be launched (one for la, gata, and una). Each of
these kernels composes all outgoing transitions of
q1 with output b with all outgoing transitions of q2
with input b. Each of these kernels is executed in a
unique stream, so that a higher parallelization can
be achieved. Streams are used in CUDA program-
ming to minimize the number of idle cores dur-
ing execution. A stream is a group of commands
that execute in-order on the GPU. What makes
streams useful in CUDA is the ability to execute
several asynchronously. If more than one kernel
can run asynchronously without any interdepen-
dence, the assignment of kernel calls to different
streams will allow a higher speedup by minimiz-
ing the amount of idling cores during execution.
All kernel calls using streams are asynchronous to
the host making synchronization between several
different streams necessary if there exist data de-
pendencies between different parts of the execu-
tion pipeline. Asynchronous memory transactions
can also benefit from streams, if these operations
do not have any data dependencies.

We choose a kernel block size of 32 for the ker-
nel calls since this is the amount of threads that
run in parallel on all GPU streaming multiproces-
sors at any given time. If the number of threads re-
quired to compose a tuple of states is not divisible
by 32, the number of threads is rounded up to the
closest multiple. When several input tuples gener-
ate less than 32 edges, multiple cores will remain
idle during execution. Our approach obtains bet-
ter speedups when the input transducers are able
to generate a large amount of edges for each sym-
bol b and each state tuple on the result. In gen-
eral, the kernels may take widely varying lengths
of time based on the amount of composed edges;
using streams enables the scheduler to minimize
the number of idle cores.

The two inner loops represent the threads of
the kernel; each composes a pair of transitions
sharing an inner symbol b. Because these transi-
tions are stored contiguously (Figure 2), the reads
can be coalesced, meaning that the memory reads
from the parallel threads can be combined into one
transaction for greater efficiency. Figure 2 shows

how the edges for a transducer are stored in global
memory to achieve coalesced memory operations
each time the edges of a symbol b associated with
a state tuple q1,q2 need to be composed.

Figure 2 shows how the edges leaving the
start state tuple for transducers M1 and M2 are
stored. As mentioned above, three kernels will
be launched to compose the transitions leaving the
start states, but only two will be executed (be-
cause there are no transitions on gata for both
start states). For R[la] on machine M1, only one
edge can output la given R[la + 1] − R[la] =

1, and machine M2 has one edge that reads la
given R[la + 1] − R[la] = 1. For this example,
R[la] points to index 0 on T,O, P for both states.
This means that only one edge will be generated

from the composition (0, 0
the:die/0.18−−−−−−−−−−→ 1, 1). For

symbol gata, no edges can be composed given
R[gata + 1] − R[gata] = 0 on both machines,
meaning that no edges read or output that sym-
bol. Finally, for R[una] on machine M1 and M2,

one edge can be generated (0, 0
one:eine/0.28−−−−−−−−−−−→ 2, 2)

given the offsets in R for both input FSTs. If n1
edges can be composed for a symbol b on one ma-
chine and n2 from the other one, the kernel will
generate n1n2 edges.

The composed transitions are first appended to
a pre-allocated buffer δd on the GPU. After pro-
cessing the valid compositions leaving q1q2, all
the transitions added in δd are appended in bulk
to δ on the host.

Updating frontier and visited set Each desti-
nation state r1r2, if previously unvisited, needs to
be added to both A and Q. Instead of adding it di-
rectly to A (which is stored on the host), we add
it to a buffer Ad stored on the device to minimize
the communication overhead between the host and
the device. After processing q1q2 and synchroniz-
ing all streams, Ad is appended in bulk to A using
a single cudaMemcpy operation.

The visited set Q is stored on the GPU device
as a lookup table of length |Q1||Q2|. Merrill et al.
(2012) perform BFS using two stages to obtain the
states and edges needed for future expansion. Sim-
ilarly, our method performs the edge expansion us-
ing two steps by using the lookup table Q. The
first step of the kernel updates Q and all visited
states that need to be added to Ad. The second step
appends all the composed edges to δ in parallel.
Since several threads check the table in parallel,
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an atomic operation (atomicOr) is used to check
and update each value on the table in a consistent
fashion. Q also functions as a map to convert the
state tuple q1q2 into a single integer. Each time a
tuple is not in Q, the structure gets updated with
the total number of states generated plus one for a
specific pair of states.

Reduction Composed edges with the same
source, target, input, and output labels must be
merged, summing their probabilities. This is done
in lines 23–25, which first sort the transitions and
then merge and sum them. To do this, we pack the
transitions into an array of keys and an array of
values. Each key is a tuple (a, c, r1r2) packed into
a 64-bit integer. We then use the sort-by-key and
reduce-by-key operations provided by the Thrust
library. The mapping of tuples to integers is re-
quired for the sort operation since the comparisons
required for the sorting can be made faster than us-
ing custom data structures with a custom compar-
ison operator. 1

Because the above reduction step is rather ex-
pensive, lines 14–17 use a heuristic to avoid it if
possible. H is a set of transitions represented as
a hash table without collision resolution, so that
lookups can yield false positives. If red is false,
then there were no collisions, so the reduction
step can be skipped. The hash function is sim-
ply h(a, c, r1r2) = a + c|Σ|. In more detail, H ac-
tually maps from hashes to integers. Clearing H
(line 8) actually just increments a counter i; stor-
ing a hash k is implemented as H[k] ← i, so we
can test whether k is a member by testing whether
H[k] = i. An atomic operation (atomicExch) is
used to consistently check H since several threads
update this variable asynchronously.

4 Experiments

We tested the performance of our implementation
by constructing several FSTs of varying sizes and
comparing our implementation against other base-
lines.

4.1 Setup

In our previous work (Argueta and Chiang, 2017),
we created transducers for a toy translation task.
We trained a bigram language model (as in Fig-
ure 3a) and a one-state translation model (as
in Figure 3) with probabilities estimated from

1https://thrust.github.io/
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/0.8

una/0.2

gata/1.0

ga
ta

/1.0
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:th
e/0

.6 una:the/0.4

gata:cat/1

(a) (b)

Figure 3: The transducers used for testing were
obtained by pre-composing: (a) a language model
and (b) a translation model. These two composed
together form a transducer that can translate an in-
put sequence from one language (here, Spanish)
into another language (here, English).

GIZA++ Viterbi word alignments. Both were
trained on the Europarl corpus. We then pre-
composed them using the Carmel toolkit (Graehl,
1997).

We used the resulting FSTs to test our parallel
composition algorithm, composing a German-to-
English transducer with a English-to-t transducer
to translate German to language t, where t is Ger-
man, Spanish, or Italian.

Our experiments were tested using two different
architectures. The serial code was measured using
a 16-core Intel Xeon CPU E5-2650 v2, and the
parallel implementation was executed on a system
with a GeForce GTX 1080 Ti GPU connected to a
24-core Intel Xeon E5-2650 v4 processor.

4.2 Baselines

In this work, OpenFST (Allauzen et al., 2007)
and our serial implementation (Algorithm 1) were
used as a baseline for comparison. OpenFST is a
toolkit developed by Google as a successor of the
AT&T Finite State Machine library. For consis-
tency, all implementations use the OpenFST text
file format to read and process the transducers.

4.3 Results

OpenFST’s composition operation can potentially
create multiple transitions (that is, two or more
transitions with the same source state, destina-
tion state, input label, and output label); a sepa-
rate function (ArcSumMapper) must be applied to
merge multiple transitions and sum their weights.
Previous work also requires an additional step if
identical edges need to be merged. For this reason,
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Training size (lines)
1000 10000 15000

Method Hardware Target Time Ratio Time Ratio Time Ratio

OpenFST Xeon E5 DE 0.52 0.78 69.51 3.56 157.16 4.38
our serial Xeon E5 DE 0.21 0.31 28.47 1.45 72.33 2.02
our parallel GeForce GTX 1080 DE 0.67 1.00 19.54 1.00 35.89 1.00

OpenFST Xeon E5 ES 0.46 0.72 55.62 2.97 137.16 4.07
our serial Xeon E5 ES 0.19 0.30 23.30 1.24 62.42 1.85
our parallel GeForce GTX 1080 ES 0.64 1.00 18.72 1.00 33.71 1.00

OpenFST Xeon E5 IT 0.54 0.79 60.66 3.05 136.06 3.91
our serial Xeon E5 IT 0.21 0.31 25.58 1.28 119.84 3.45
our parallel GeForce GTX 1080 IT 0.68 1.00 19.88 1.00 34.76 1.00

Table 2: This table shows how the total running time of our GPU implementation compares against
all other methods. Times (in seconds) are for composing two transducers using English as the shared
input/output vocabulary and German as the source language of the first transducer (de-en,en-*). Ratios
are relative to our parallel algorithm on the GeForce GTX 1080 Ti.

we compare our implementation against Open-
FST both with and without the reduction of transi-
tions with an identical source,target,input, and out-
put. We analyzed the time to compose all possible
edges without performing any reductions (Algo-
rithm 1, line 8). The second setup analyzes the
time it takes to compute the composition and the
arc summing of identical edges generated during
the process.

Table 2 shows the performance of the paral-
lel implementation and the baselines without re-
ducing identical edges. For the smallest trans-
ducers, our parallel implementation is slower than
the baselines (0.72× compared to OpenFST and
0.30× compared to our serial version). With larger
transducers, the speedups increase up to 4.38×
against OpenFST and 2.02× against our serial im-
plementation. Larger speedups are obtained for
larger transducers because the GPU can utilize
the streaming multiprocessors more fully. On the
other hand, the overhead created by CUDA calls,
device synchronization, and memory transfers be-
tween the host CPU and the device might be too
expensive when the inputs are too small.

Table 3 shows the performance of all implemen-
tations with the reduction operation. Again, for the
smallest transducers we can see a similar behav-
ior, our parallel implementation is slower (0.30×
against OpenFST and 0.39× against our serial ver-
sion). Speedups improve with the larger trans-
ducers, eventually achieving a 4.52× speedup over
OpenFST and a 6.26× speedup over our serial im-

plementation of the composition algorithm.

4.4 Discussion

One comparison missing above is a comparison
against a multicore processor. We attempted to
compare against a parallel implementation using
OpenMP on a single 16-core processor, but it did
not yield any meaningful speedup, and even slow-
downs of up to 10%. We think the reason for this
is that because the BFS-like traversal of the FST
makes it impractical to process states in parallel,
the best strategy is to process and compose tran-
sitions in parallel. This very fine-grained paral-
lelism does not seem suitable for OpenMP, as the
overhead due to thread initialization and synchro-
nization is higher than the time to execute the par-
allel sections of the code where the actual com-
position is calculated. According to our measure-
ments, the average time to compose two transi-
tions is 7.4 nanoseconds, while the average time to
create an OpenMP thread is 10.2 nanoseconds. By
contrast, the overhead for creating a CUDA thread
seems to be around 0.4 nanoseconds. While a dif-
ferent parallelization strategy may exist for mul-
ticore architectures, at present, our finding is that
GPUs, or other architectures with a low cost to cre-
ate and destroy threads, are much more suitable for
the fine grained operations used for the composi-
tion task.
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Training size (lines)
1000 10000 15000

Method Hardware Target Time Ratio Time Ratio Time Ratio

OpenFST Xeon E5 DE 0.87 0.41 148.11 3.19 374.72 4.52
our serial Xeon E5 DE 0.96 0.45 213.27 4.59 518.97 6.26
our parallel GeForce GTX 1080 DE 2.11 1.00 47.70 1.00 82.88 1.00

OpenFST Xeon E5 ES 0.60 0.30 116.45 2.66 279.85 3.57
our serial Xeon E5 ES 0.77 0.39 202.15 4.61 390.29 4.97
our parallel GeForce GTX 1080 ES 2.00 1.00 45.30 1.00 78.38 1.00

OpenFST Xeon E5 IT 0.76 0.36 130.61 2.87 309.28 3.79
our serial Xeon E5 IT 1.06 0.50 158.57 3.48 427.51 5.24
our parallel GeForce GTX 1080 IT 2.12 1.00 47.04 1.00 81.54 1.00

Table 3: This table shows how the total running time of our GPU implementation compares against all
other methods. Times (in seconds) are for composing two transducers and performing edge reduction
using English as the shared input/output vocabulary and German as the source language of the first
transducer (de-en,en-*). Ratios are relative to our parallel algorithm on the GeForce GTX 1080 Ti.

5 Future Work

For future work, other potential bottlenecks could
be addressed. The largest bottleneck is the queue
used on the host to keep track of the edges to ex-
pand on the GPU. Using a similar data structure
on the GPU to keep track of the states to expand
would yield higher speedups. The only challenge
of using such a data structure is the memory con-
sumption on the GPU. If the two input transducers
contain a large number of states and transitions,
the amount of memory needed to track all the
states and edges generated will grow significantly.
Previous work (Harish and Narayanan, 2007) has
shown that state queues on the GPU cause a large
memory overhead. Therefore, if state expansion
is moved to the GPU, the structures used to keep
track of the states must be compressed or occupy
the least amount of memory possible on the de-
vice in order to allocate all structures required on
the device. The queue will also require a mech-
anism to avoid inserting duplicate tuples into the
queue.

For the reduction step, speedups can be
achieved if the sort and reduce operations can
be merged with the edge expansion part of the
method. The challenge of merging identical edges
during expansion is the auxiliary memory that
will be required to store and index intermediate
probabilities. It can be doable if the transducers
used for the composition are small. In that case,
the reduce operation might not yield significant

speedups given the fact that the overhead to com-
pose small transducers is too high when using a
GPU architecture.

6 Conclusion

This is the first work, to our knowledge, to de-
liver a parallel GPU implementation of the FST
composition algorithm. We were able to obtain
speedups of up to 4.5× over a serial OpenFST
baseline and 6× over the serial implementation of
our method. This parallel method considers sev-
eral factors, such as host to device communication
using page-locked memory, storage formats on the
device, thread configuration, duplicate edge detec-
tion, and duplicate edge reduction. Our implemen-
tation is available as open-source software.2
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Abstract

Treebank conversion is a straightfor-
ward and effective way to exploit vari-
ous heterogeneous treebanks for boost-
ing parsing accuracy. However, previ-
ous work mainly focuses on unsuper-
vised treebank conversion and makes
little progress due to the lack of man-
ually labeled data where each sentence
has two syntactic trees complying with
two different guidelines at the same
time, referred as bi-tree aligned data.
In this work, we for the first time
propose the task of supervised treebank
conversion. First, we manually con-
struct a bi-tree aligned dataset contain-
ing over ten thousand sentences. Then,
we propose two simple yet effective
treebank conversion approaches (pat-
tern embedding and treeLSTM) based
on the state-of-the-art deep biaffine
parser. Experimental results show that
1) the two approaches achieve com-
parable conversion accuracy, and 2)
treebank conversion is superior to the
widely used multi-task learning frame-
work in multiple treebank exploitation
and leads to significantly higher pars-
ing accuracy.

1 Introduction
During the past few years, neural network
based dependency parsing has achieved sig-
nificant progress and outperformed the tra-
ditional discrete-feature based parsing (Chen
and Manning, 2014; Dyer et al., 2015; Zhou

∗ The first two (student) authors make equal
contributions to this work. Zhenghua is the
correspondence author.

Treebanks #Tok Grammar
Sinica (Chen et al., 2003) 0.36M Case grammar
CTB (Xue et al., 2005) 1.62M Phrase structure

TCT (Zhou, 2004) 1.00M Phrase structure
PCT (Zhan, 2012) 0.90M Phrase structure

HIT-CDT (Che et al., 2012) 0.90M Dependency structure
PKU-CDT (Qiu et al., 2014) 1.40M Dependency structure

Table 1: Large-scale Chinese treebanks (token
number in million).

et al., 2015; Andor et al., 2016). Most re-
markably, Dozat and Manning (2017) propose
a simple yet effective deep biaffine parser that
further advances the state-of-the-art accuracy
by large margin. As reported, their parser out-
performs the state-of-the-art discrete-feature
based parser of Bohnet and Nivre (2012)
by 0.97 (93.76% − 92.79%) on the English
WSJ data and 6.87 (85.38% − 78.51%) on
the Chinese CoNLL-2009 data, respectively.
Kindly note that all these results are obtained
by training parsers on a single treebank.

Meanwhile, motivated by different syntactic
theories and practices, major languages in the
world often possess multiple large-scale hetero-
geneous treebanks, e.g., Tiger (Brants et al.,
2002) and TüBa-D/Z (Telljohann et al., 2004)
treebanks for German, Talbanken (Einarsson,
1976) and Syntag (Järborg, 1986) treebanks
for Swedish, ISST (Montemagni et al., 2003)
and TUT1 treebanks for Italian, etc. Ta-
ble 1 lists several large-scale Chinese tree-
banks. In this work, we take HIT-CDT
as a case study. Our next-step plan is to
annotate bi-tree aligned data for PKU-CDT
and then convert PKU-CDT to our guideline.
For non-dependency treebanks, the straight-

1http://www.di.unito.it/~tutreeb/
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forward choice is to convert such treebanks
to dependency treebanks based on heuris-
tic head-finding rules. The second choice is
to directly extend our proposed approaches
by adapting the patterns and treeLSTMs for
non-dependency structures, which should be
straightforward as well.

Considering the high cost of treebank con-
struction, it has always been an interesting
and attractive research direction to exploit
various heterogeneous treebanks for boosting
parsing performance. Though under different
linguistic theories or annotation guidelines,
the treebanks are painstakingly developed to
capture the syntactic structures of the same
language, thereby having a great deal of com-
mon grounds.

Previous researchers have proposed two ap-
proaches for multi-treebank exploitation. On
the one hand, the guiding-feature method
projects the knowledge of the source-side tree-
bank into the target-side treebank, and uti-
lizes extra pattern-based features as guid-
ance for the target-side parsing, mainly for
the traditional discrete-feature based pars-
ing (Li et al., 2012). On the other hand,
the multi-task learning method simultaneously
trains two parsers on two treebanks and uses
shared neural network parameters for repre-
senting common-ground syntactic knowledge
(Guo et al., 2016).2 Regardless of their ef-
fectiveness, while the guiding-feature method
fails to directly use the source-side treebank
as extra training data, the multi-task learning
method is incapable of explicitly capturing
the structural correspondences between two
guidelines. In this sense, we consider both of
them as indirect exploitation approaches.

Compared with the indirect approaches,
treebank conversion aims to directly convert
a source-side treebank into the target-side
guideline, and uses the converted treebank
as extra labeled data for training the target-
side model. Taking the example in Figure 1,
the goal of this work is to convert the under
tree that follows the HIT-CDT guideline (Che
et al., 2012) into the upper one that follows
our new guideline. However, due to the lack

2 Johansson (2013) applies the feature-sharing
approach of Daumé III (2007) for multiple treebank
exploitation, which can be regarded as a simple
discrete-feature variant of multi-task learning.

$ 奶奶 叫 我 快 上学

Grandma asks me quickly go to school

subj
root

adv
obj

pred

HED
SBV ADV

VOB

DBL

Figure 1: Example of treebank conversion
from the source-side HIT-CDT tree (under) to
the target-side our-CDT tree (upper).

of bi-tree aligned data, in which each sentence
has two syntactic trees following the source-
side and target-side guidelines respectively,
most previous studies are based on unsuper-
vised treebank conversion (Niu et al., 2009) or
pseudo bi-tree aligned data (Zhu et al., 2011;
Li et al., 2013), making very limited progress.

In this work, we for the first time propose
the task of supervised treebank conversion.
The key motivation is to better utilize a large-
scale source-side treebank by constructing a
small-scale bi-tree aligned data. In summary,
we make the following contributions.

(1) We have manually annotated a high-
quality bi-tree aligned data containing
over ten thousand sentences, by re-
annotating the HIT-CDT treebank
according to a new guideline.

(2) We propose a pattern embedding conver-
sion approach by retrofitting the indirect
guiding-feature method of Li et al. (2012)
to the direct conversion scenario, with
several substantial extensions.

(3) We propose a treeLSTM conversion ap-
proach that encodes the source-side tree
at a deeper level than the shallow pattern
embedding approach.

Experimental results show that 1) the two
conversion approaches achieve nearly the same
conversion accuracy, and 2) direct treebank
conversion is superior to indirect multi-task
learning in exploiting multiple treebanks in
methodology simplicity and performance, yet
with the cost of manual annotation. We
release the annotation guideline and the newly

2707



annotated data in http://hlt.suda.edu.cn/
index.php/SUCDT.

2 Annotation of Bi-tree Aligned Data

The key issue for treebank conversion is that
sentences in the source-side and target-side
treebanks are non-overlapping. In other
words, there lacks a bi-tree aligned data in
which each sentence has two syntactic trees
complying with two guidelines as shown in
Figure 1. Consequently, we cannot train a
supervised conversion model to directly learn
the structural correspondences between the
two guidelines. To overcome this obstacle,
we construct a bi-tree aligned data of over
ten thousand sentences by re-annotating the
publicly available dependency-structure HIT-
CDT treebank according to a new annotation
guideline.

2.1 Data Annotation
Annotation guideline. Unlike phrase-
structure treebank construction with very
detailed and systematic guidelines (Xue
et al., 2005; Zhou, 2004), previous works on
Chinese dependency-structure annotation
only briefly describe each relation label with
a few concrete examples. For example, the
HIT-CDT guideline contains 14 relation labels
and illustrates them in a 14-page document.

The UD (universal dependencies) project3

releases a more detailed language-generic
guideline to facilitate cross-linguistically
consistent annotation, containing 37
relation labels. However, after in-depth
study, we find that the UD guideline is
very useful and comprehensive, but may
not be completely compact for realistic
annotation of Chinese-specific syntax. After
many months’ investigation and trial, we
have developed a systematic and detailed
annotation guideline for Chinese dependency
treebank construction. Our 60-page guideline
employs 20 relation labels and gives detailed
illustrations for annotation, in order to
improve consistency and quality.

Please refer to Guo et al. (2018) for the
details of our guideline, including detailed
discussions on the correspondences and differ-
ences between the UD guideline and ours.

3http://universaldependencies.org

Partial annotation. To save annotation
effort, we adopt the idea of Li et al. (2016) and
only annotate the most uncertain (difficult)
words in a sentence. For simplicity, we directly
use their released parser and produce the un-
certainty results of all HLT-CDT sentences via
two-fold jack-knifing. First, we select 2, 000
most difficult sentences of lengths [5, 10] for
full annotation4. Then, we select 3, 000 most
difficult sentences of lengths [10, 20] from the
remaining data for 50% annotation. Finally,
we select 6, 000 most difficult sentences of
lengths [5, 25] for 20% annotation from the
remaining data. The difficulty of a sentence
is computed as the averaged difficulty of its
selected words.

Annotation platform. To guarantee an-
notation consistency and data quality, we
build an online annotation platform to sup-
port strict double annotation and subsequent
inconsistency handling. Each sentence is dis-
tributed to two random annotators. If the
two submissions are not the same (inconsistent
dependency or relation label), a third expert
annotator will compare them and decide a
single answer.

Annotation process. We employ about
20 students in our university as part-time
annotators. Before real annotation, we first
give a detailed talk on the guideline for about
two hours. Then, the annotators spend several
days on systematically studying our guideline.
Finally, they are required to annotate 50 test-
ing sentences on the platform. If the submis-
sion is different from the correct answer, the
annotator receives an instant feedback for self-
improvement. Based on their performance,
about 10 capable annotators are chosen as
experts to deal with inconsistent submissions.

2.2 Statistics and Analysis
Consistency statistics. Compared with
the final answers, the overall accuracy of all
annotators is 87.6%. Although the overall
inter-annotator dependency-wise consistency
rate is 76.5%, the sentence-wise consistency
rate is only 43.7%. In other words, 56.3%
(100 − 43.7) sentences are further checked by
a third expert annotator. This shows how

4 Punctuation marks are ruled out and un-
annotated.
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difficult it is to annotate syntactic structures
and how important it is to employ strict
double annotation to guarantee data quality.

Annotation time analysis. As shown in
Table 2, the averaged sentence length is 15.4
words in our annotated data, among which
4.7 words (30%) are partially annotated with
their heads. According to the records of our
annotation platform, each sentence requires
about 3 minutes in average, including the
annotation time spent by two annotators and
a possible expert. The total cost of our data
annotation is about 550 person-hours, which
can be completed by 20 full-time annotators
within 4 days. The most cost is spent on
quality control via two-independent annota-
tion and inconsistency handling by experts.
This is in order to obtain very high-quality
data. The cost is reduced to about 150 person-
hours without such strict quality control.

Heterogeneity analysis. In order to un-
derstand the heterogeneity between our guide-
line and the HIT-CDT guideline, we analyze
the 36, 348 words with both-side heads in the
train data, as shown in Table 2. The con-
sistency ratio of the two guidelines is 81.69%
(UAS), without considering relation labels.
By mapping each relation label in HIT-CDT
(14 in total) to a single label of our guideline
(20 in total), the maximum consistency ratio
is 73.79% (LAS). The statistics are similar for
the dev/test data.

3 Indirect Multi-task Learning

Basic parser. In this work, we build all the
approaches over the state-of-the-art deep bi-
affine parser proposed by Dozat and Manning
(2017). As a graph-based dependency parser,
it employs a deep biaffine neural network
to compute the scores of all dependencies,
and uses viterbi decoding to find the highest-
scoring tree. Figure 2 shows how to score a
dependency i← j.5

First, the biaffine parser applies multi-layer
bidirectional sequential LSTMs (biSeqLSTM)
to encode the input sentence. The word/tag
embeddings ewk and etk are concatenated as
the input vector at wk.

5 The score computation of the relation labels is
analogous, but due to space limitation, we refer readers
to Dozat and Manning (2017) for more details.

Then, the output vector of the top-layer
biSeqLSTM at wk, denoted as hseq

k , is fed
into two separate MLPs to get two lower-
dimensional representation vectors.

rH
k = MLPH (

hseq
k

)

rD
k = MLPD (

hseq
k

) (1)

where rH
k is the representation vector of wk as

a head word, and rD
k as a dependent.

Finally, the score of the dependency i ← j
is computed via a biaffine operation.

score(i← j) =

[
rD
i

1

]T

WbrH
j (2)

During training, the original biaffine
parser uses the local softmax loss. For each
wi and its head wj , its loss is defined as
− log escore(i←j)∑

k escore(i←k) . Since our training data is
partially annotated, we follow Li et al. (2016)
and employ the global CRF loss (Ma and
Hovy, 2017) for better utilization of the data,
leading to consistent accuracy gain.

Multi-task learning aims to incorporate
labeled data of multiple related tasks for im-
proving performance (Collobert and Weston,
2008). Guo et al. (2016) apply multi-task
learning to multi-treebank exploitation based
on the neural transition-based parser of Dyer
et al. (2015), and achieve higher improvement
than the guiding-feature approach of Li et al.
(2012).

Based on the state-of-the-art biaffine parser,
this work makes a straightforward extension
to realize multi-task learning. We treat the
source-side and target-side parsing as two
individual tasks. The two tasks use shared pa-
rameters for word/tag embeddings and multi-
layer biSeqLSTMs to learn common-ground
syntactic knowledge, use separate parameters
for the MLP and biaffine layers to learn task-
specific information.

4 Direct Treebank Conversion
Task definition. As shown in Figure 1, given
an input sentence x, treebank conversion aims
to convert the under source-side tree dsrc to
the upper target-side tree dtgt. Therefore,
the main challenge is how to make full use
of the given dsrc to guide the construction
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of dtgt. Specifically, under the biaffine parser
framework, the key is to utilize dsrc as guid-
ance for better scoring an arbitrary target-side
dependency i←− j.

In this paper, we try to encode the struc-
tural information of i and j in dsrc as a dense
vector from two representation levels, thus
leading to two approaches, i.e., the shallow
pattern embedding approach and the deep
treeLSTM approach. The dense vectors are
then used as extra inputs of the MLP layer to
obtain better word representations, as shown
in Figure 2.

4.1 The Pattern Embedding Approach
In this subsection, we propose the pattern em-
bedding conversion approach by retrofitting
the indirect guiding-feature method of Li et al.
(2012) to the direct conversion scenario, with
several substantial extensions.

The basic idea of Li et al. (2012) is to use
extra guiding features produced by the source-
side parser. First, they train the source parser
Parsersrc on the source-side treebank. Then,
they use Parsersrc to parse the target-side
treebank, leading to pseudo bi-tree aligned
data. Finally, they use the predictions of
Parsersrc as extra pattern-based guiding fea-
tures and build a better target-side parser
Parsertgt.

The original method of Li et al. (2012) is
proposed for traditional discrete-feature based
parsing, and does not consider the relation
labels in dsrc. In this work, we make a few
useful extensions for more effective utilization
of dsrc.

• We further subdivide their “else” pattern
into four cases according to the length of
the path from wi to wj in dsrc. The left
part of Figure 2 shows all 9 patterns.

• We use the labels of wi and wj in dsrc,
denoted as li and lj .

• Inspired by the treeLSTM approach, we
also consider the label of wa, the lowest
common ancestor (LCA) of wi and wj ,
denoted as la.

Our pattern embedding approach works as
follows. Given i ← j, we first decide its
pattern type according to the structural re-
lationship between wi and wj in dsrc, denoted

as pi←j . For example, if wi and wj are both
the children of a third word wk in dsrc, then
pi←j = “sibling”. Figure 2 shows all 9 patterns.

Then, we embed pi←j into a dense vector
epi←j through a lookup operation in order to
fit into the biaffine parser. Similarly, the
three labels are also embedded into three dense
vectors, i.e., eli , elj , ela .

The four embeddings are combined as rpat
i←j

to represent the structural information of wi

and wj in dsrc.

rpat
i←j = epi←j ⊕ eli ⊕ elj ⊕ ela (3)

Finally, the representation vector rpat
i←j and

the top-layer biSeqLSTM outputs are concate-
nated as the inputs of the MLP layer.

rD
i,i←j = MLPD(

rseq
i ⊕ rpat

i←j

)

rH
j,i←j = MLPH(

rseq
j ⊕ rpat

i←j

) (4)

Through rpat
i←j , the extended word representa-

tions, i.e., rD
i,i←j and rH

j,i←j , now contain the
structural information of wi and wj in dsrc.

The remaining parts of the biaffine parser is
unchanged. The extended rD

i,i←j and rH
j,i←j are

fed into the biaffine layer to compute a more
reliable score of the dependency i ← j, with
the help of the guidance of dsrc.

4.2 The TreeLSTM Approach
Compared with the pattern embedding ap-
proach, our second conversion approach em-
ploys treeLSTM to obtain a deeper represen-
tation of i ← j in the source-side tree dsrc.
Tai et al. (2015) first propose treeLSTM as a
generalization of seqLSTM for encoding tree-
structured inputs, and show that treeLSTM is
more effective than seqLSTM on the semantic
relatedness and sentiment classification tasks.
Miwa and Bansal (2016) compare three treeL-
STM variants on the relation extraction task
and show that the SP-tree (shortest path)
treeLSTM is superior to the full-tree and
subtree treeLSTMs.

In this work, we employ the SP-tree treeL-
STM of Miwa and Bansal (2016) for our
treebank conversion task. Our preliminary
experiments also show the SP-tree treeLSTM
outperforms the full-tree treeLSTM, which is
consistent with Miwa and Bansal. We did not
implement the in-between subtree treeLSTM.
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BiSeqLSTM
(two layers)

MLPD MLPH

hseq
jhseq

i

rD
i,i←j rH

j,i←j

Biaffine

score(i← j)
consistent: i← j

grand: i← k ← j

sibling: i← k → j

reverse: i→ j

reverse grand: i→ k → j

else: {3; 4− 5; 6;≥ 7}

epi←j

rpat
i←j

eli ⊕ elj ⊕ ela

wa

wi

wj

rtree
i←j

h↓i

h↓j

h↑a

Figure 2: Computation of score(i ← j) in our proposed conversion approaches. Without the
source-side tree dsrc, the baseline uses the basic rD

i and rH
j (instead of rD

i,i←j and rH
j,i←j).

Given wi and wj and their LCA wa, the SP-
tree is composed of two paths, i.e., the path
from wa to wi and the path from wa to wj , as
shown in the right part of Figure 2.

Different from the shallow pattern embed-
ding approach, the treeLSTM approach runs
a bidirectional treeLSTM through the SP-tree,
in order to encode the structural information
of wi and wj in dsrc at a deeper level. The top-
down treeLSTM starts from wa and accumu-
lates information until wi and wj , whereas the
bottom-up treeLSTM propagates information
in the opposite direction.

Following Miwa and Bansal (2016), we stack
our treeLSTM on top of the biSeqLSTM layer
of the basic biaffine parser, instead of directly
using word/tag embeddings as inputs. For
example, the input vector for wk in the treeL-
STM is xk = hseq

k ⊕ elk , where hseq
k is the top-

level biSeqLSTM output vector at wk, and lk
is the label between wk and its head word in
dsrc, and elk is the label embedding.

In the bottom-up treeLSTM, an LSTM node
computes a hidden vector based on the com-
bination of the input vector and the hidden
vectors of its children in the SP-tree. The
right part of Figure 2 and Eq. (5) illustrate

the computation at wa.

h̃a =
∑

k∈C(a)

hk

ia = σ
(

U(i)xa + V(i)h̃a + b(i)
)

fa,k = σ
(

U(f)xa + V(f)hk + b(f)
)

oa = σ
(

U(o)xa + V(o)h̃a + b(o)
)

ua = tanh
(

U(u)xa + V(u)h̃a + b(u)
)

ca = ia ⊙ ua +
∑

k∈C(a)

fa,k ⊙ ck

ha = oa ⊙ tanh
(
ca

)

(5)

where C(a) means the children of wa in the
SP-tree, and fa,k is the forget vector for wa’s
child wk.

The top-down treeLSTM sends information
from the root wa to the leaves wi and wj . An
LSTM node computes a hidden vector based
on the combination of its input vector and the
hidden vector of its single preceding (father)
node in the SP-tree.

After performing the biTreeLSTM, we fol-
low Miwa and Bansal (2016) and use the com-
bination of three output vectors to represent
the structural information of wi and wj in dsrc,
i.e., the output vectors of wi and wj in the top-
down treeLSTM, and the output vector of wa
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#Sent #Tok (HIT) #Tok (our)
train 7,768 119,707 36,348
dev 998 14,863 4,839
test 1,995 29,975 9,679

train-HIT 52,450 980,791 36,348

Table 2: Data statistics. Kindly note that
sentences in train are also in train-HIT.

in the bottom-up treeLSTM.

rtree
i←j = h↓i ⊕ h↓j ⊕ h↑a (6)

Similar to Eq. (4) for the pattern embed-
ding approach, we concatenate rtree

i←j with the
output vectors of the top-layer biSeqLSTM,
and feed them into MLPH/D.

5 Experiments
5.1 Experiment Settings
Data. We randomly select 1, 000/2, 000 sen-
tences from our newly annotated data as
the dev/test datasets, and the remaining as
train. Table 2 shows the data statistics after
removing some broken sentences (ungrammat-
ical or wrongly segmented) discovered during
annotation. The “#tok (our)” column shows
the number of tokens annotated according to
our guideline. Train-HIT contains all sen-
tences in HIT-CDT except those in dev/test,
among which most sentences only have the
HIT-CDT annotations.

Evaluation. We use the standard labeled
attachment score (LAS, UAS for unlabeled) to
measure the parsing and conversion accuracy.

Implementation. In order to more flexibly
realize our ideas, we re-implement the baseline
biaffine parser in C++ based on the lightweight
neural network library of Zhang et al. (2016).
On the Chinese CoNLL-2009 data, our parser
achieves 85.80% in LAS, whereas the origi-
nal tensorflow-based parser6 achieves 85.54%
(85.38% reported in their paper) under the
same parameter settings and external word
embedding.

Hyper-parameters. We follow most pa-
rameter settings of Dozat and Manning (2017).
The external word embedding dictionary is
trained on Chinese Gigaword (LDC2003T09)
with GloVe (Pennington et al., 2014). For

6https://github.com/tdozat/Parser-v1

Training data UAS LAS
Multi-task train & train-HIT 79.29 74.51

Pattern train 86.66 82.03
TreeLSTM train 86.69 82.09
Combined train 86.66 81.82

Table 3: Conversion accuracy on test data.

efficiency, we use two biSeqLSTM layers in-
stead of three, and reduce the biSeqLSTM
output dimension (300) and the MLP output
dimension (200).

For the conversion approaches, the source-
side pattern/label embedding dimensions are
50 (thus |rpat

i←j | = 200), and the treeLSTM
output dimension is 100 (thus |rtree

i←j | = 300).
During training, we use 200 sentences as a

data batch, and evaluate the model on the dev
data every 50 batches (as an epoch). Training
stops after the peak LAS on dev does not
increase in 50 consecutive epochs.

For the multi-task learning approach, we
randomly sample 100 train sentences and 100
train-HIT sentences to compose a data batch,
for the purpose of corpus weighting.

To fully utilize train-HIT for the conversion
task, the conversion models are built upon
multi-task learning, and directly reuse the
embeddings and biSeqLSTMs of the multi-
task trained model without fine-tuning.

5.2 Results: Treebank Conversion
Table 3 shows the conversion accuracy on
the test data. As a strong baseline for
the conversion task, the multi-task trained
target-side parser (“multi-task”) does not use
dsrc during both training and evaluation. In
contrast, the conversion approaches use both
the sentence x and dsrc as inputs.

Compared with “multi-task”, the two pro-
posed conversion approaches achieve nearly
the same accuracy, and are able to dramat-
ically improve the accuracy with the extra
guidance of dsrc. The gain is 7.58 (82.09 −
74.51) in LAS for the treeLSTM approach.

It is straightforward to combine the two
conversion approaches. We simply concate-
nate hseq

i/j with both rpat
i←j and rtree

i←j before feed-
ing into MLPH/D. However, the “combined”
model leads to no further improvement. This
indicates that although the two approaches try
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on dev on test
UAS LAS UAS LAS

Pattern (full) 86.73 81.93 86.66 82.03
w/o distance 86.73 81.75 86.57 81.94

w/o li 86.47 80.55 86.47 81.15
w/o lj 86.55 81.69 86.45 81.76
w/o la 86.24 81.66 86.17 81.51

w/o labels 86.05 79.78 85.93 80.08
TreeLSTM (full) 86.73 81.95 86.69 82.09

w/o labels 86.55 80.32 86.20 80.56

Table 4: Feature ablation for the conversion
approaches.

to encode the structural information of wi and
wj in dsrc from different perspectives, the re-
sulted representations are actually overlapping
instead of complementary, which is contrary
to our intuition that the treeLSTM approach
should give better and deeper representations
than the shallow pattern embedding approach.
We have also tried several straightforward
modifications to the standard treeLSTM in
Eq. (5), but found no further improvement.
We leave further exploration of better treeL-
STMs and model combination approaches as
future work.

Feature ablation results are presented in
Table 4 to gain more insights on the two
proposed conversion approaches. In each
experiment, we remove a single component
from the full model to learn its individual
contribution.

For the pattern embedding approach, all
proposed extensions to the basic pattern-based
approach of Li et al. (2012) are useful. Among
the three labels, the embedding of li is the
most useful and its removal leads to the
highest LAS drop of 0.88 (82.03 − 81.15).
This is reasonable considering that 81.69%
dependencies are consistent in the two guide-
lines, as discussed in the heterogeneity analysis
of Section 2.2. Removing all three labels
decreases UAS by 0.73 (86.66−85.93) and LAS
by 1.95 (82.03 − 80.08), demonstrating that
the source-side labels are highly correlative
with the target-side labels, and therefore very
helpful for improving LAS.

For the treeLSTM approach, the source-side
labels in dsrc are also very useful, improving
UAS by 0.49 (86.69− 86.20) and LAS by 1.53

(82.09− 80.56).

5.3 Results: Utilizing Converted Data
Another important question to be answered
is whether treebank conversion can lead to
higher parsing accuracy than multi-task learn-
ing. In terms of model simplicity, treebank
conversion is better because eventually the
target-side parser is trained directly on an
enlarged homogeneous treebank unlike the
multi-task learning approach that needs to
simultaneously train two parsers on two het-
erogeneous treebanks.

Table 5 shows the empirical results. Please
kindly note that the parsing accuracy looks
very low, because the test data is partially
annotated and only about 30% most uncertain
(difficult) words are manually labeled with
their heads according to our guideline, as
discussed in Section 2.1.

The first-row, “single” is the baseline target-
side parser trained on the train data.

The second-row “single (hetero)” refers to
the source-side heterogeneous parser trained
on train-HIT and evaluated on the target-side
test data. Since the similarity between the
two guidelines is high, as discussed in Section
2.2, the source-side parser achieves even higher
UAS by 0.21 (76.20− 75.99) than the baseline
target-side parser trained on the small-scale
train data. The LAS is obtained by mapping
the HIT-CDT labels to ours (Section 2.2).

In the third row, “multi-task” is the target-
side parser trained on train & train-HIT
with the multi-task learning approach. It
significantly outperforms the baseline parser
by 4.30 (74.51 − 70.21) in LAS. This shows
that the multi-task learning approach can
effectively utilize the large-scale train-HIT to
help the target-side parsing.

In the fourth row, “single (large)” is the ba-
sic parser trained on the large-scale converted
train-HIT (homogeneous). We employ the
treeLSTM approach to convert all sentences in
train-HIT into our guideline.7 We can see that

7 For each sentence in train, which is already
partially annotated, the conversion model actually
completes the partial target-side tree into a full tree
via constrained decoding. As shown by the results in Li
et al. (2016), since the most difficult dependencies are
known and given to the model, the parsing accuracy
will be much higher than the traditional parsing
without constraints.
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Training data UAS LAS
Single train 75.99 70.95

Single (hetero) train-HIT 76.20 68.43
Multi-task train & train-HIT 79.29 74.51

Single (large) converted train-HIT 80.45 75.83

Table 5: Parsing accuracy on test data.
LAS difference between any two systems is
statistically significant (p < 0.005) according
to Dan Bikel’s randomized parsing evaluation
comparer for significance test Noreen (1989).

Task Training data UAS LAS
Conversion train 93.42 90.49

Parsing (baseline) train 89.66 86.41
Parsing (ours) converted train-HIT 91.16 88.07

Table 6: Results on the fully annotated 372
sentences of the test data.

the single parser trained on the converted data
significantly outperforms the parser in the
multi-task learning approach by 1.32 (75.83−
74.51) in LAS.

In summary, we can conclude that treebank
conversion is superior to multi-task learning
in multi-treebank exploitation for its simplicity
and better performance.

5.4 Results on fully annotated data

We randomly divided the newly annotated
data into train/dev/test, so the test set has
a mix of 100%, 50% and 20% annotated
sentences. To gain a rough estimation of the
performance of different approaches on fully
annotated data, we give the results in Table
6. We can see that all the models achieve
much higher accuracy on the portion of fully
annotated data than on the whole test data as
shown in Table 3 and 5, since the dependencies
to be evaluated are the most difficult ones in a
sentence for the portion of partially annotated
data. Moreover, the conversion model can
achieve over 90% LAS thanks to the guidance
of the source-side HIT-CDT tree. Please also
note that there would still be a slight bias,
because those fully annotated sentences are
chosen as the most difficult ones according
to the parsing model but are also very short
([5, 10]).

6 Conclusions and Future Work
In this work, we for the first time propose
the task of supervised treebank conversion by
constructing a bi-tree aligned data of over ten
thousand sentences. We design two simple
yet effective conversion approaches based
on the state-of-the-art deep biaffine parser.
Results show that 1) the two approaches
achieves nearly the same conversion accuracy;
2) relation labels in the source-side tree are
very helpful for both approaches; 3) treebank
conversion is more effective in multi-treebank
exploitation than multi-task learning, and
achieves significantly higher parsing accuracy.

In future, we would like to advance this work
in two directions: 1) proposing more effective
conversion approaches, especially by exploring
the potential of treeLSTMs; 2) constructing
bi-tree aligned data for other treebanks and
exploiting all available single-tree and bi-tree
labeled data for better conversion.
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Abstract

We propose Object-oriented Neural Program-
ming (OONP), a framework for semanti-
cally parsing documents in specific do-
mains. Basically, OONP reads a doc-
ument and parses it into a predesigned
object-oriented data structure that reflects
the domain-specific semantics of the doc-
ument. An OONP parser models semantic
parsing as a decision process: a neural net-
based Reader sequentially goes through
the document, and builds and updates an
intermediate ontology during the process
to summarize its partial understanding of
the text. OONP supports a big variety of
forms (both symbolic and differentiable)
for representing the state and the docu-
ment, and a rich family of operations to
compose the representation. An OONP
parser can be trained with supervision
of different forms and strength, includ-
ing supervised learning (SL) , reinforce-
ment learning (RL) and hybrid of the two.
Our experiments on both synthetic and
real-world document parsing tasks have
shown that OONP can learn to handle fairly
complicated ontology with training data of
modest sizes.

1 Introduction
Mapping a document into a structured “machine
readable” form is a canonical and probably the
most effective way for document understanding.
There are quite some recent efforts on designing
neural net-based learning machines for this pur-
pose, which can be roughly categorized into two
groups: 1) sequence-to-sequence model with the

* The work was done when these authors worked as in-
terns at DeeplyCurious.ai.

Figure 1: Illustration of OONP on a parsing task.

neural net as the black box (Liang et al., 2017), and
2) neural net as a component in a pre-designed sta-
tistical model (Zeng et al., 2014). Both categories
are hindered in tackling document with compli-
cated structures, by either the lack of effective rep-
resentation of knowledge or the flexibility in fus-
ing them in the model.

Towards solving this problem, we proposed
Object-oriented Neural Programming (OONP), a
framework for semantically parsing in-domain
documents (illustrated in Figure 1). OONP main-
tains an object-oriented data structure, where ob-
jects from different classes are to represent entities
(people, events, items etc) which are connected
through links with varying types. Each object en-
capsulates internal properties (both symbolic and
differentiable), allowing both neural and symbolic
reasoning over complex structures and hence mak-
ing it possible to represent rich semantics of docu-
ments. An OONP parser is neural net-based, but
it has sophisticated architecture and mechanism
designed for taking and yielding discrete struc-
tures, hence nicely combining symbolism (for in-
terpretability and formal reasoning) and connec-
tionism (for flexibility and learnability).

For parsing, OONP reads a document and parses
it into this object-oriented data structure through a
series of discrete actions along reading the doc-
ument sequentially. OONP supports a rich fam-
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ily of operations for composing the ontology, and
flexible hybrid forms for knowledge representa-
tion. An OONP parser can be trained with super-
vised learning (SL), reinforcement learning (RL)
and hybrid of the two.

OONP in a nutshell The key properties of OONP
can be summarized as follows

1. OONP models parsing as a decision process:
as the “reading and comprehension” agent
goes through the text it gradually forms the
ontology as the representation of the text
through its action;

2. OONP uses a symbolic memory with graph
structure as part of the state of the parsing
process. This memory will be created and
updated through the sequential actions of the
decision process, and will be used as the se-
mantic representation of the text at the end

3. OONP can blend supervised learning (SL) and
reinforcement learning (RL) in tuning its pa-
rameters to suit the supervision signal in dif-
ferent forms and strength.

2 Related Works

2.1 Semantic Parsing
Semantic parsing is concerned with translating
language utterances into executable logical forms
and plays a key role in building conversational
interfaces (Jonathan and Percy, 2014). Dif-
ferent from common tasks of semantic pars-
ings, such as parsing the sentence to dependency
structure (Buys and Blunsom, 2017) and exe-
cutable commands (Herzig and Berant, 2017),
OONP parses documents into a predesigned object-
oriented data structure which is easily readable for
both human and machine. It is related to seman-
tic web (Berners-Lee et al., 2001) as well as frame
semantics (Charles J, 1982) in the way semantics
is represented, so in a sense, OONP can be viewed
as a neural-symbolic implementation of semantic
parsing with similar semantic representation.

2.2 State Tracking
OONP is inspired by Daumé III et al. (2009)
on modeling parsing as a decision process, and
the work on state-tracking models in dialogue
system (Henderson et al., 2014) for the mix-
ture of symbolic and probabilistic representa-
tions of dialogue state. For modeling a docu-
ment with entities, Yang et al. (2017) use coref-
erence links to recover entity clusters, though they

Figure 2: The overall diagram of OONP, where
S stands for symbolic representation, D for dis-
tributed representation, and S+D for a hybrid of
symbolic and distributed parts.

only model entity mentions as containing a sin-
gle word. However, entities whose names consist
of multiple words are not considered. Entity Net-
works (Henaff et al., 2017) and EntityNLM (Ji et al.,
2017) have addressed above problem and are the
pioneers to model on tracking entities, but they
have not considered the properties of the entities.
In fact, explicitly modeling the entities both with
their properties and contents is important to under-
stand a document, especially a complex document.
For example, if there are two persons named ‘Av-
ery’, it is vital to know their genders or last names
to avoid confusion. Therefore, we propose OONP
to sketch objects and their relationships by build-
ing a structured graph for document parsing.

3 OONP: Overview
An OONP parser ( illustrated in Figure 2) consists
of a Reader equipped with read/write heads, Inline
Memory that represents the document, and Carry-on
Memory that summarizes the current understanding
of the document at each time step. For each docu-
ment to parse, OONP first preprocesses it and puts
it into the Inline Memory, and then Reader controls
the read-heads to sequentially go through the Inline
Memory and at the same time update the Carry-on
Memory. We will give a more detailed description
of the major components below.

3.1 Memory
we have two types of memory, Carry-on Memory
and Inline Memory. Carry-on Memory is designed to
save the state in the decision process and summa-
rize current understanding of the document based
on the text that has been “read”, while Inline Mem-
ory is designed to save location-specific informa-
tion about the document. In a sense, the informa-
tion in Inline Memory is low-level and unstructured,
waiting for Reader to fuse and integrate into more
structured representation.

Carry-on Memory has three compartments:
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• Object Memory: denoted Mobj, the object-
oriented data structure constructed during the
parsing process;

• Matrix Memory: denoted Mmat, a matrix-
type memory with fixed size, for differen-
tiable read/write by the controlling neural
net (Graves et al., 2014). In the simplest case,
it could be just a vector as the hidden state of
conventional RNN;

• Action History: symbolic memory to save the
entire history of actions made during the
parsing process.

Intuitively, Object Memory stores the extracted
knowledge of the document with defined structure
and strong evidence, while Matrix Memory keeps the
knowledge that is fuzzy, uncertain or incomplete,
waiting for further information to confirm, com-
plete or clarify.

Object Memory

Object Memory stores an object-oriented represen-
tation of document, as illustrated in Figure 3. Each
object is an instance of a particular class∗, which
specifies the innate structure of the object, includ-
ing internal properties, operations, and how this
object can be connected with others. The inter-
nal properties can be of different types, for exam-
ple string or category, which usually correspond
to different actions in specifying them: the string-
type property is usually “copied” from the original
text in Inline Memory, while the category properties
need to be rendered by a classifier. The links are
in general directional and typed, resembling a spe-
cial property viewing from the “source object”. In
Figure 3, there are six “linked” objects of three
classes (namely, PERSON, EVENT, and ITEM) .
Taking ITEM-object I02 for example, it has five
internal properties (Type, Model, Color, Value,
Status), and is linked with two EVENT-objects
through stolen and disposed link respectively.

In addition to the symbolic properties and links,
each object had also its object-embedding as the
distributed interface with Reader. For description
simplicity, we will refer to the symbolic part of
this hybrid representation of objects as the Ontol-
ogy, with some slight abuse of this word. Object-
embedding is complementary to the symbolic part

∗We only consider flat structure of classes, but it is pos-
sible to have a hierarchy of classes with different levels of
abstractness, and to allow an object to go from abstract class
to its child during parsing with more information obtained.

Figure 3: An example of objects of three classes.

of the object, recording all the relevant informa-
tion associated with it but not represented in the
Ontology, e.g., the contextual information when the
object is created. Both Ontology and the object
embeddings will be updated in time by the class-
dependent operations driven by the actions issued
by the Policy-net in Reader.

According to the way the Ontology evolves with
time, the parsing task can be roughly classified
into two categories: 1) Stationary: there is a fi-
nal ground truth that does not change with time,
and 2) Dynamical: the truth changes with time.
For stationary Ontology, see Section 5.2 and 5.3 for
example, and for dynamical Ontology, please see
Section 5.1.

Inline Memory
Inline Memory stores the relatively raw represen-
tation of the document with the sequential struc-
ture. Basically, Inline Memory is an array of mem-
ory cells, each corresponding to a pre-defined lan-
guage unit (e.g., word) in the same order as they
are in the original text. Each cell can have dis-
tributed part and symbolic part, designed to save
the result of preprocessing of text, e.g., plain word
embedding, hidden states of RNN, or some sym-
bolic processing.

Inline Memory provides a way to represent locally
encoded “low level” knowledge of the text, which
will be read, evaluated and combined with the
global semantic representation in Carry-on Memory
by Reader. One particular advantage of this setting
is that it allows us to incorporate the local deci-
sions of some other models, including “higher or-
der” ones like local relations across multiple lan-
guage units, as illustrated in Figure 4.

3.2 Reader
Reader is the control center of OONP, coordinating
and managing all the operations of OONP. More
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Figure 4: Inline Memory with symbolic knowledge.

Figure 5: The overall digram of OONP

specifically, it takes the input of different forms
(reading), processes it (thinking), and updates the
memory (writing). As shown in Figure 5, Reader
contains Neural Net Controller (NNC) and multiple
symbolic processors, and NNC also has Policy-net
as its sub-component. Similar to the controller
in Neural Turing Machine (Graves et al., 2014),
NNC is equipped with multiple read-heads and
write-heads for differentiable read/write over Ma-
trix Memory and (the distributed part of) Inline Mem-
ory, with a variety of addressing strategies (Graves
et al., 2014). Policy-net however issues discrete
outputs (i.e., actions), which gradually builds and
updates the Object Memory in time. The symbolic
processors are designed to handle information in
symbolic form from Object Memory, Inline Memory,
Action History, and Policy-net, while that from Inline
Memory and Action History is eventually generated
by Policy-net. In Appendix.A†, we give a particular
implementation of Reader with more details.

4 OONP: Actions
The actions issued by Policy-net can be generally
categorized as the following
• New-Assign : determine whether to create an

new object for the information at hand or as-
sign it to a certain existed object;
• Update.X : determine which internal prop-

erty or link of the selected object to update;
• Update2what : determine the content of the

updating, which could be about string, cate-
gory or links;

The typical order of actions is New-Assign →
Update.X → Update2what, but it is common
to have New-Assign action followed by nothing,
when, for example, an object is mentioned but no
†The appendix is also available at

https://arxiv.org/abs/1709.08853

substantial information is provided. As shown in
Figure 6, we give an example of the entire episode
of OONP parsing on the short text given in Fig-
ure 1, to show that a sequence of actions gradu-
ally forms the complete representation of the doc-
ument.

5 An examples of actions

5.1 New-Assign

With any information at hand (denoted as St) at
time t, the choices of New-Assign include the
following three categories of actions: 1) creating
(New) an object of a certain type, 2) assigning St
to an existed object, and 3) doing nothing for St
and moving on. For Policy-net, the stochastic pol-
icy is to determine the following probabilities:

prob(c, new|St), c = 1, 2, · · · , |C|
prob(c, k|St), for Oc,kt ∈ Mt

obj

prob(none|St)

where |C| stands for the number of classes, Oc,kt
stands for the kth object of class c at time t. Deter-
mining whether to new an object always relies on
the following two signals

1. The information at hand cannot be contained
by any existed objects;

2. Linguistic hints that suggest whether a new
object is introduced.

Based on those intuitions, we take a score-based
approach to determine the above-mentioned prob-
ability. More specifically, for a given St, Reader
forms a “temporary” object with its own struc-
ture (denoted Ôt) with both symbolic and dis-
tributed sections. We also have a virtual object for
the New action for each class c, denoted Oc,new

t ,
which is typically a time-dependent vector formed
by Reader based on information in Matrix Memory.
For a given Ôt, we can then define the following
|C|+ |Mt

obj|+ 1 types of score functions:

New: score(c)
new(O

c,new
t , Ôt; θ(c)new), c = 1, 2, · · · , |C|

Assign: score(c)
assign(O

c,k
t , Ôt; θ(c)assign), forOc,kt ∈ Mtobj

Do nothing: scorenone(Ôt; θnone).

to measure the level of matching between the in-
formation at hand and existed objects, as well as
the likeliness for creating an object or doing noth-
ing. This process is pictorially illustrated in Fig-
ure 7. We therefore can define the following prob-
ability for the stochastic policy
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Figure 6: A pictorial illustration of a full episode of OONP parsing, where we assume the description of
cars (highlighted with shadow) are segmented in preprocessing.

prob(c, new|St) =
escore(c)new(Oc,new

t ,Ôt;θ(c)new)

Z(t)
(1)

prob(c, k|St) =
e

score(c)assign(Oc,kt ,Ôt;θ(c)assign)

Z(t)
(2)

prob(none|St) =
escorenone(Ôt;θnone)

Z(t)
(3)

where Z(t) =
∑
c′∈C e

score(c
′)

new (Oc
′,new
t ,Ôt;θ

(c′)
new ) +

∑
(c′′,k′)∈idx(Mtobj)

e
score(c

′′)
assign(O

c′′,k
t ,Ôt;θ

(c′′)
assign) + escorenone(Ôt;θnone)

is the normalizing factor.

5.2 Updating Objects

In Update.X step, Policy-net needs to choose the
property or external link (or none) to update for the
selected object determined by New-Assign step.
If Update.X chooses to update an external link,
Policy-net needs to further determine which object
it links to. After that, Update2what updates the
chosen property or links. In task with static On-
tology, most internal properties and links will be
“locked” after they are updated for the first time,
with some exception on a few semi-structured

Figure 7: A pictorial illustration of what the
Reader sees in determining whether to New an ob-
ject and the relevant object when the read-head on
Inline Memory reaches the last word in the text in
Figure 2. The color of the arrow line stands for dif-
ferent matching functions for object classes, where
the dashed lines are for the new object.

properties (e.g., the Description property in the
experiment in Section 7.2). For dynamical Ontol-
ogy, on the contrary, some properties and links are
always subject to changes.
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6 Learning
The parameters of OONP models (denoted Θ) in-
clude that for all operations and that for compos-
ing the distributed sections in Inline Memory. They
can be trained with supervised learning (SL) , re-
inforcement learning (RL), and a hybrid of the two
in different ways. With pure SL, the oracle gives
the ground truth about the “right action” at each
time step during the entire decision process, with
which the parameter can be tuned to maximize the
likelihood of the truth, with the following objec-
tive function

JSL(Θ) = − 1

N

N∑

i

Ti∑

t=1

log(π
(i)
t [a?t ]) (4)

where N stands for the number of instances, Ti
stands for the number of steps in decision process
for the ith instance, π(i)t [·] stands for the probabil-
ities of the actions at t from the stochastic policy,
and a?t stands for the ground truth action in step t.

With RL, the supervision is given as rewards
during the decision process, for which an extreme
case is to give the final reward at the end of the
decision process by comparing the generated On-
tology and the ground truth, e.g.,

r
(i)
t =

{
0, if t 6= Ti

match(MTi
obj,Gi), if t = Ti

(5)

where the match(MTi
obj,Gi) measures the consistency

between the Ontology of in the Object Memory MTi
obj

and the ground truth G?. We can use policy search
algorithm to maximize the expected total reward,
e.g. the commonly used REINFORCE (Williams,
1992) for training, with the gradient

∇ΘJRL(Θ) = −Eπθ
[
∇Θ log πΘ

(
ait|sit

)
r

(i)
t:T

]
(6)

≈ − 1

NTi

N∑

i

T∑

t=1

∇Θ log πΘ

(
ait|sit

)
r

(i)
t:Ti

. (7)

When OONP is applied to real-world tasks, there
is often quite natural supervision signals for both
SL and RL. More specifically, for static Ontology
one can infer some actions from the final ontology
based on some basic assumption, e.g.,
• the system should New an object the first time

it is mentioned;
• the system should put an extracted string (say,

that for Name ) into the right property of right
object at the end of the string.

For those that can not be fully inferred, say the
categorical properties of an object (e.g., Type for
event objects), we have to resort to RL to deter-
mine the time of decision, while we also need SL

to train Policy-net on the content of the decision.
Fortunately it is quite straightforward to combine
the two learning paradigms in optimization. More
specifically, we maximize this combined objective

J (Θ) = JSL(Θ) + λJRL(Θ), (8)

whereJSL andJRL are over the parameters within
their own supervision mode and λ coordinates the
weight of the two learning mode on the parameters
they share. Equation (8) actually indicates a deep
coupling of supervised learning and reinforcement
learning, since for any episode the samples of ac-
tions related to RL might affect the inputs to the
models under supervised learning.

For dynamical Ontology (see Section 7.1 for ex-
ample), it is impossible to derive most of the de-
cisions from the final Ontology since they may
change over time. For those we have to rely mostly
on the supervision at the time step to train the
action (supervised mode) or count on OONP to
learn the dynamics of the ontology evolution by
fitting the final ground truth. Both scenarios are
discussed in Section 7.1 on a synthetic task.

7 Experiments

We applied OONP on three document parsing
tasks, to verify its efficacy on parsing documents
with different characteristics and investigate dif-
ferent components of OONP.

7.1 Task-I: bAbI Task
Data and Task
We implemented OONP on enriched version of
bAbI tasks (Johnson, 2017) with intermediate rep-
resentation for history of arbitrary length. In this
experiment, we considered only the original bAbi
task-2 (Weston et al., 2015), with an instance
shown in the left panel Figure 8. The ontology
has three types of objects: PERSON-object, ITEM-
object, and LOCATION-object, and three types of
links specifying relations between them (see Fig-
ure 8 for an illustration). All three types of objects
have Name as the only internal property.

The task for OONP is to read an episode of story
and recover the trajectory of the evolving ontol-
ogy. We choose bAbI for its dynamical ontol-
ogy that evolves with time and ground truth given
for each snapshot. Comparing with the real-world
tasks we will present later, bAbi has almost trivial
internal properties but relatively rich opportunities
for links, considering that any two objects of dif-
ferent types could potentially have a link.
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Figure 8: One instance of bAbI (6-sentence
episode) and the ontology of two snapshots.

Action Description
NewObject(c) New an object of class-c.
AssignObject(c, k) Assign the current information to existed object (c, k)
Update(c, k).AddLink(c′, k′, `) Add an link of type-` from object-(c, k) to object-(c′, k′)
Update(c, k).DelLink(c′, k′, `) Delete the link of type-` from object-(c, k) to object-(c′, k′)

Table 1: Actions for bAbI.

Implementation Details
For preprocessing, we have a trivial NER to find
the names of people, items and locations (saved
in the symbolic part of Inline Memory) and word-
level bi-directional GRU for the distributed rep-
resentations of Inline Memory. In the parsing pro-
cess, Reader goes through the inline word-by-
word in the temporal order of the original text,
makes New-Assign action at every word, leaving
Update.X and Update2what actions to the time
steps when the read-head on Inline Memory reaches
a punctuation (see more details of actions in Ta-
ble 1). For this simple task, we use an almost
fully neural Reader (with MLPs for Policy-net) and
a vector for Matrix Memory, with however a Sym-
bolic Reasoner to maintain the logical consistency
after updating the relations with the actions (see
Appendx.B for more details).

Results and Analysis
For training, we use 1,000 episodes with length
evenly distributed from one to six. We use just
REINFORCE with only the final reward defined
as the overlap between the generated ontology and
the ground truth, while step-by-step supervision
on actions yields almost perfect result (result omit-
ted). For evaluation, we use the F1 (Rijsbergen,
1979) between the generated links and the ground
truth averaged over all snapshots of all test in-
stances, since the links are sparse compared with
all the possible pairwise relations between objects,
with which we get F1= 94.80% without Symbolic
Reasoner and F1= 95.30% with it.

Clearly OONP can learn fairly well on recover-
ing the evolving ontology with such a small train-
ing set and weak supervision (RL with the final
reward), showing that the credit assignment over

Figure 9: Example of police report & its ontology.

to earlier snapshots does not cause much difficulty
in the learning of OONP even with a generic pol-
icy search algorithm. It is not so surprising to ob-
serve that Symbolic Reasoner helps to improve the
results on discovering the links, while it does not
improve the performance on identifying the ob-
jects although it is taken within the learning.

7.2 Task-II: Parsing Police Report

Data & Task
We implement OONP for parsing Chinese police
report (brief description of criminal cases written
by policeman), as illustrated in the left panel of
Figure 9. We consider a corpus of 5,500 cases
with a variety of crime categories, including theft,
robbery, drug dealing and others. Although the
language is reasonably formal, the corpus cov-
ers a big variety of topics and language styles,
and has a high proportion of typos. The ontol-
ogy we designed for this task mainly consists of
a number of PERSON-objects and ITEM-objects
connected through an EVENT-object with several
types of relations, as illustrated in the right panel
of Figure 9. A PERSON-object has three inter-
nal properties: Name (string), Gender (categori-
cal) and Age (number), and two types of exter-
nal links (suspect and victim) to an EVENT-
object. An ITEM-object has three internal prop-
erties: Name (string), Quantity (string) and Value

(string), and six types of external links (stolen,

drug, robbed, swindled, damaged, and other) to
an EVENT-object. On average, a sample has 95.24
Chinese words and the ontology has 3.35 objects,
3.47 mentions and 5.02 relationships. Compared
with bAbI in Section 7.1, the police report ontol-
ogy has less pairwise links but much richer inter-
nal properties for objects of all three objects.

Implementation Details
The OONP model is to generate the ontology as il-
lustrated in Figure 9 through a decision process
with actions in Table 2. As pre-processing, we
performed third party NER algorithm to find peo-
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ple names, locations, item etc. For the distributed
part of Inline Memory, we used dilated CNN with
different choices of depth and kernel size (Yu and
Koltun, 2016), all of which will be jointly learned
during training. In updating objects with its string-
type properties (e.g., Name for a PERSON-object
), we use Copy-Paste strategy for extracted string
(whose NER tag already specifies which property
in an object it goes to) as Reader sees it. For un-
determined category properties in existed objects,
Policy-net will determine the object to update (a
New-Assign action without New option), its prop-
erty to update (an Update.X action), and the up-
dating operation (an Update2what action) at mile-
stones of the decision process , e.g., when reaching
an punctuation. For this task, since all the relations
are between the single by-default EVENT-object
and other objects, the relations can be reduced to
category-type properties of the corresponding ob-
jects in practice. For category-type properties, we
cannot recover New-Assign and Update.X actions
from the label (the final ontology), so we resort RL
for learning to determine that part, which is mixed
with the supervised learning for Update2what and
other actions for string-type properties.

Action Description
NewObject(c) New an object of class-c.
AssignObject(c, k) Assign the current information to existed object (c, k)
UpdateObject(c, k).Name Set the name of object-(c, k) with the extracted string.
UpdateObject(PERSON, k).Gender Set the name of a PERSON-object indexed k with the extracted string.
UpdateObject(ITEM, k).Quantity Set the quantity of an ITEM-object indexed k with the extracted string.
UpdateObject(ITEM, k).Value Set the value of an ITEM-object indexed k with the extracted string.
UpdateObject(EVENT, 1).Items.x Set the link between the EVENT-object and an ITEM-object, where

x ∈{stolen, drug, robbed, swindled, damaged, other}
UpdateObject(EVENT, 1).Persons.x Set the link between the EVENT-object and an PERSON-object,

and x ∈{victim, suspect}

Table 2: Actions for parsing police report.

Results & Discussion
We use 4,250 cases for training, 750 for validation
an held-out 750 for test. We consider the follow-
ing four metrics in comparing the performance of
different models:

Assignment Accuracy the accuracy on New-Assign actions made by the model
Category Accuracy the accuracy of predicting the category properties of all

the objects
Ontology Accuracy the proportion of instances for which the generated Objects

is exactly the same as the ground truth
Ontology Accuracy-95 the proportion of instances for which the generated Objects

achieves 95% consistency with the ground truth

which measures the accuracy of the model in mak-
ing discrete decisions as well as generating the fi-
nal ontology.

Model Assign Acc. (%) Type Acc. (%) Ont. Acc. (%) Ont. Acc-95 (%)
Bi-LSTM (baseline) 73.2 ± 0.58 - 36.4± 1.56 59.8 ± 0.83
ENTITYNLM (baseline) 87.6 ± 0.50 84.3 ± 0.80 59.6 ± 0.85 72.3 ± 1.37
OONP (neural) 88.5 ± 0.44 84.3 ± 0.58 61.4 ± 1.26 75.2 ± 1.35
OONP (structured) 91.2 ± 0.62 87.0 ± 0.40 65.4 ± 1.42 79.9 ± 1.28
OONP (RL) 91.4 ± 0.38 87.8 ± 0.75 66.7 ± 0.95 80.7 ± 0.82

Table 3: OONP on parsing police reports.

We empirically investigated two competing
models, Bi-LSTM and EntityNLM , as baselines. Both

models can be viewed as simplified versions of
OONP. Bi-LSTM consists of a bi-directional LSTM
as Inline Memory encoder and a two-layer MLP on
top of that as Policy-net. Bi-LSTM does not sup-
port categorical prediction for objects due to the
lack of explicit object representation, which will
only be trained to perform New-Assign actions
and evaluated on them (with the relevant metrics
modified for it). EntityNLM, on the other hand,
has some modest capability for modeling entities
with the original purpose of predicting entity men-
tions (Ji et al., 2017) which has been adapted and
re-implemented for this scenario. For OONP , we
consider three variants:
• OONP (neural): simple version of OONP with

only distributed representation in Reader;
• OONP (structured): OONP that considers the

matching between two structured objects in
New-Assign actions;
• OONP (RL): another version of OONP (struc-

tured) that uses RL‡ to determine the time
for predicting the category properties, while
OONP (neural) and OONP (structured) use a
rule-based approach to determine the time.

The experimental results are given in Table 3.
As shown in Table 3, Bi-LSTM struggles to achieve
around 73% Assignment Accuracy on test set,
while OONP (neural) can boost the performance to
88.5%. Arguably, this difference in performance
is due to the fact that Bi-LSTM lacks Object Mem-
ory, so all relevant information has to be stored in
the Bi-LSTM hidden states along the reading pro-
cess. When we start putting symbolic representa-
tion and operation into Reader, as shown in the re-
sult of OONP (structure), the performance is again
significantly improved on all four metrics.

From the result of OONP (RL), RL improves
not only the prediction of categorical property
(and hence the overall ontology accuracy) but also
tasks trained with purely SL (i.e., learning the
New-Assign actions). This indicates there might
be some deep entanglement between SL and RL
through the obvious interaction between features
in parsing and/or sharing of parameters.

7.3 Task-III: Parsing court judgment docs
Data and Task
Comparing with Task-II, court judgements are
typically much longer, containing multiple events
‡ A more detailed exposition of this idea can be found in

(Liu et al., 2018), where RL is used for training a multi-label
classifier of text
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Figure 10: Left: the judgement document with
highlighted part being the description the facts of
crime; right: the corresponding ontology

of different types and large amount of irrelevant
text. The dataset contains 4056 Chinese judge-
ment documents, divided into training/dev/testing
set 3256/400/400 respectively. The ontology for
this task mainly consists of a number of PER-
SON-objects and ITEM-objects connected through
a number EVENT-object with several types of
links. An EVENT-object has three internal prop-
erties: Time (string), Location (string), and Type

(category, ∈{theft, restitution, disposal}),
four types of external links to PERSON-objects
(namely, principal, companion, buyer, victim)
and four types of external links to ITEM-objects
(stolen, damaged, restituted, disposed ). In
addition to the external links to EVENT-objects ,
a PERSON-object has only the Name (string) as the
internal property. An ITEM-object has three in-
ternal properties: Description (array of strings),
Value (string) and Returned(binary) in addition
to its external links to EVENT-objects , where
Description consists of the words describing the
corresponding item, which could come from mul-
tiple segments across the document. An object
could be linked to more than one EVENT-object,
for example a person could be the principal sus-
pect in event A and also a companion in event B.
An illustration of the judgement document and the
corresponding ontology can be found in Figure 10.

Implementation Details
We use a model configuration similar to that in
Section 7.2, with event-based segmentation of
text given by third-party extraction algorithm (Yan
et al., 2017) in Inline Memory, which enables
OONP to trivially New EVENT-objectwith rules.
OONP reads the Inline Memory, fills the EVENT-
objects, creates and fills PERSON-objects and
ITEM-objects, and specifies the links between

them, with the actions summarized in Table 4.
When an object is created during a certain event,
it will be given an extra feature (not an internal
property) indicating this connection, which will
be used in deciding links between this object and
event object, as well as in determining the future
New-Assign actions.

Action for 2nd-round Description
NewObject(c) New an object of class-c.
AssignObject(c, k) Assign the current information to existed object (c, k)
UpdateObject(PERSON, k).Name Set the name of the kth PERSON-object with the extracted string.
UpdateObject(ITEM, k).Description Add to the description of an kth ITEM-object with the extracted

string.
UpdateObject(ITEM, k).Value Set the value of an kth ITEM-object with the extracted string.
UpdateObject(EVENT, k).Time Set the time of an kth EVENT-object with the extracted string.
UpdateObject(EVENT, k).Location Set the location of an kth EVENT-object with the extracted string.
UpdateObject(EVENT, k).Type Set the type of the kth EVENT-object among {theft, disposal,

restitution}
UpdateObject(EVENT, k).Items.x Set the link between the kth EVENT-object and an ITEM-object,

where x ∈ {stolen, damaged, restituted, disposed }
UpdateObject(EVENT, k).Persons.x Set the link between the kth EVENT-object and an PERSON-object,

and x ∈ {principal, companion, buyer, victim}

Table 4: Actions for parsing court judgements.

Results and Analysis
We use the same metric as in Section 7.2, and com-
pare two OONP variants, OONP (neural) and OONP
(structured), with two baselines EntityNLM and Bi-
LSTM. The two baselines will be tested only on the
second-round reading, while both OONP variants
are tested on a two-round reading. The results are
shown in Table 5. OONP parsers attain accuracy
significantly higher than Bi-LSTM. Among, OONP
(structure) achieves over 71% accuracy on getting
the entire ontology right and over 77% accuracy
on getting 95% consistency with the ground truth.
We omitted the RL results since the model RL
model chooses to predict the type properties same
as the simple rules.

Model Assign Acc. (%) Type Acc. (%) Ont. Acc. (%) Ont. Acc-95 (%)
Bi-LSTM (baseline) 84.66 ± 0.20 - 18.20 ± 0.74 36.88 ± 1.01
ENTITYNLM (baseline) 90.50 ± 0.21 96.33 ± 0.39 39.85 ± 0.20 48.29 ± 1.96
OONP (neural) 94.50 ± 0.24 97.73 ± 0.12 53.29 ± 0.26 72.22 ± 1.01
OONP (structured) 96.90 ± 0.22 98.80 ± 0.08 71.11 ± 0.54 77.27 ± 1.05

Table 5: OONP on judgement documents.

8 Conclusion

We proposed Object-oriented Neural Program-
ming (OONP), a framework for semantically pars-
ing in-domain documents. OONP is neural net-
based, but equipped with sophisticated architec-
ture and mechanism for document understanding,
therefore nicely combining interpretability and
learnability. Experiments on both synthetic and
real-world datasets have shown that OONP outper-
forms several strong baselines by a large margin
on parsing fairly complicated ontology.
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Abstract

Recurrent neural network grammars
(RNNGs) are generative models of
(tree, string) pairs that rely on neural net-
works to evaluate derivational choices.
Parsing with them using beam search
yields a variety of incremental com-
plexity metrics such as word surprisal
and parser action count. When used as
regressors against human electrophys-
iological responses to naturalistic text,
they derive two amplitude effects:
an early peak and a P600-like later
peak. By contrast, a non-syntactic
neural language model yields no reli-
able effects. Model comparisons attribute
the early peak to syntactic composition
within the RNNG. This pattern of results
recommends the RNNG+beam search
combination as a mechanistic model of
the syntactic processing that occurs during
normal human language comprehension.

1 Introduction

Computational psycholinguistics has “always
been...the thing that computational linguistics
stood the greatest chance of providing to hu-
manity” (Kay, 2005). Within this broad area,
cognitively-plausible parsing models are of par-
ticular interest. They are mechanistic computa-
tional models that, at some level, do the same task
people do in the course of ordinary language com-
prehension. As such, they offer a way to gain in-
sight into the operation of the human sentence pro-
cessing mechanism (for a review see Hale, 2017).

As Keller (2010) suggests, a promising place
to look for such insights is at the intersection of
(a) incremental processing, (b) broad coverage,
and (c) neural signals from the human brain.

The contribution of the present paper is situ-
ated precisely at this intersection. It combines a
probabilistic generative grammar (RNNG; Dyer
et al., 2016) with a parsing procedure that uses
this grammar to manage a collection of syntac-
tic derivations as it advances from one word to
the next (Stern et al., 2017, cf. Roark, 2004).
Via well-known complexity metrics, the interme-
diate states of this procedure yield quantitative
predictions about language comprehension diffi-
culty. Juxtaposing these predictions against data
from human encephalography (EEG), we find that
they reliably derive several amplitude effects in-
cluding the P600, which is known to be associated
with syntactic processing (e.g. Osterhout and Hol-
comb, 1992).

Comparison with language models based on
long short term memory networks (LSTM, e.g.
Hochreiter and Schmidhuber, 1997; Mikolov,
2012; Graves, 2012) shows that these effects are
specific to the RNNG. A further analysis pinpoints
one of these effects to RNNGs’ syntactic com-
position mechanism. These positive findings re-
frame earlier null results regarding the syntax-
sensitivity of human processing (Frank et al.,
2015). They extend work with eyetracking (e.g.
Roark et al., 2009; Demberg et al., 2013) and neu-
roimaging (Brennan et al., 2016; Bachrach, 2008)
to higher temporal resolution.1 Perhaps most sig-
nificantly, they establish a general correspondence
between a computational model and electrophysi-
ological responses to naturalistic language.

Following this Introduction, section 2 presents
recurrent neural network grammars, emphasiz-
ing their suitability for incremental parsing.
Sections 3 then reviews a previously-proposed

1Magnetoencephalography also offers high temporal res-
olution and as such this work fits into a tradition that includes
Wehbe et al. (2014), van Schijndel et al. (2015), Wingfield
et al. (2017) and Brennan and Pylkkänen (2017).
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Figure 1: Recurrent neural network grammar con-
figuration used in this paper. The absence of a
lookahead buffer is significant, because it forces
parsing to be incremental. Completed constituents
such as [NP the hungry cat ] are represented on the
stack by numerical vectors that are the output
of the syntactic composition function depicted in
Figure 2.

beam search procedure for them. Section 4
goes on to introduce the novel application of this
procedure to human data via incremental com-
plexity metrics. Section 5 explains how these the-
oretical predictions are specifically brought to bear
on EEG data using regression. Sections 6
and 7 elaborate on the model comparison men-
tioned above and report the results in a way that
isolates the operative element. Section 8 discusses
these results in relation to established computa-
tional models. The conclusion, to anticipate sec-
tion 9, is that syntactic processing can be found in
naturalistic speech stimuli if ambiguity resolution
is modeled as beam search.

2 Recurrent neural network grammars
for incremental processing

Recurrent neural network grammars (henceforth:
RNNGs Kuncoro et al., 2017; Dyer et al.,

NP

u v w

NP u v w NP

x
x

Figure 2: RNNG composition function traverses
daughter embeddings u, v and w, representing the
entire tree with a single vector x. This Figure is
reproduced from (Dyer et al., 2016).

2016) are probabilistic models that generate trees.
The probability of a tree is decomposed via
the chain rule in terms of derivational action-
probabilities that are conditioned upon previ-
ous actions i.e. they are history-based gram-
mars (Black et al., 1993). In the vanilla version of
RNNG, these steps follow a depth-first traversal
of the developing phrase structure tree. This en-
tails that daughters are announced bottom-up one
by one as they are completed, rather than being
predicted at the same time as the mother.

Each step of this generative story depends on
the state of a stack, depicted inside the gray box
in Figure 1. This stack is “neuralized” such that
each stack entry corresponds to a numerical vec-
tor. At each stage of derivation, a single vector
summarizing the entire stack is available in the
form of the final state of a neural sequence model.
This is implemented using the stack LSTMs of
Dyer et al. (2015). These stack-summary vec-
tors (central rectangle in Figure 1) allow RNNGs
to be sensitive to aspects of the left context that
would be masked by independence assumptions
in a probabilistic context-free grammar. In the
present paper, these stack-summaries serve as in-
put to a multi-layer perceptron whose output is
converted via softmax into a categorical distribu-
tion over three possible parser actions: open a
new constituent, close off the latest constituent, or
generate a word. A hard decision is made, and if
the first or last option is selected, then the same
vector-valued stack–summary is again used, via
multilayer perceptrons, to decide which specific
nonterminal to open, or which specific word to
generate.

Phrase-closing actions trigger a syntactic com-
position function (depicted in Figure 2) which
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squeezes a sequence of subtree vectors into one
single vector. This happens by applying a bidi-
rectional LSTM to the list of daughter vectors,
prepended with the vector for the mother category
following §4.1 of Dyer et al. (2016).

The parameters of all these components are
adaptively adjusted using backpropagation at
training time, minimizing the cross entropy rela-
tive to a corpus of trees. At testing time, we parse
incrementally using beam search as described be-
low in section 3.

3 Word-synchronous beam search

Beam search is one way of addressing the
search problem that arises with generative gram-
mars — constructive accounts of language that are
sometimes said to “strongly generate” sentences.
Strong generation in this sense simply means that
they derive both an observable word-string as well
as a hidden tree structure. Probabilistic grammars
are joint models of these two aspects. By contrast,
parsers are programs intended to infer a good tree
from a given word-string. In incremental pars-
ing with history-based models this inference task
is particularly challenging, because a decision that
looks wise at one point may end up looking foolish
in light of future words. Beam search addresses
this challenge by retaining a collection called the
“beam” of parser states at each word. These states
are rated by a score that is related to the probabil-
ity of a partial derivation, allowing an incremen-
tal parser to hedge its bets against temporary am-
biguity. If the score of one analysis suddenly
plummets after seeing some word, there may still
be others within the beam that are not so drasti-
cally affected. This idea of ranked parallelism has
become central in psycholinguistic modeling (see
e.g. Gibson, 1991; Narayanan and Jurafsky, 1998;
Boston et al., 2011).

As Stern et al. (2017) observe, the most
straightforward application of beam search to
generative models like RNNG does not perform
well. This is because lexical actions, which ad-
vance the analysis onwards to successive words,
are assigned such low probabilities compared to
structural actions which do not advance to the
next word. This imbalance is inevitable in a
probability model that strongly generates sen-
tences, and it causes naive beam-searchers to
get bogged down, proposing more and more
phrase structure rather than moving on through the

sentence. To address it, Stern et al. (2017) pro-
pose a word-synchronous variant of beam search.
This variant keeps searching through structural ac-
tions until “enough” high-scoring parser states fi-
nally take a lexical action, arriving in synchrony at
the next word of the sentence. Their procedure is
written out as Algorithm 1.

Algorithm 1 Word-synchronous beam search with
fast-tracking. After Stern et al. (2017)

1: thisword← input beam
2: nextword← ∅
3: while |nextword| < k do
4: fringe← successors of all states

s ∈ thisword via any
parsing action

5: prune fringe to top k
6: thisword← ∅
7: for each parser state s ∈ fringe do
8: if s came via a lexical action then
9: add s to nextword

10: else . must have been structural
11: add s to thisword
12: end if
13: end for
14: end while
15: return nextword pruned to top kword � k

In Algorithm 1 the beam is held in a set-valued
variable called nextword. Beam search continues
until this set’s cardinality exceeds the designated
action beam size, k. If the beam still isn’t large
enough (line 3) then the search process explores
one more action by going around the while-loop
again. Each time through the loop, lexical ac-
tions compete against structural actions for a place
among the top k (line 5). The imbalance men-
tioned above makes this competition fierce, and
on many loop iterations nextword may not grow
by much. Once there are enough parser states,
another threshold called the word beam kword
kicks in (line 15). This other threshold sets
the number of analyses that are handed off to
the next invocation of the algorithm. In the
study reported here the word beam remains at
the default setting suggested by Stern and col-
leagues, k/10.

Stern et al. (2017) go on to offer a modifica-
tion of the basic procedure called “fast tracking”
which improves performance, particularly when
the action beam k is small. Under fast tracking, an
additional step is added between lines 4 and 5 of
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k=100 k=200 k=400 k=600 k=800 k=1000 k=2000
Fried et al. (2017) RNNG
ppl unknown, −fast track

74.1 80.1 85.3 87.5 88.7 89.6 not reported

this paper ppl=141, −fast track 71.5 78.81 84.15 86.42 87.34 88.16 89.81
this paper ppl=141, kft = k/100 87.1 88.96 90.48 90.64 90.84 90.96 91.25

Table 1: Penn Treebank development section bracketing accuracies (F1) under Word-Synchronous
beam search. These figures show that an incremental parser for RNNG can perform well on a stan-
dard benchmark. “ppl” indicates the perplexity of over both trees and strings for the trained model on
the development set, averaged over words In all cases the word beam is set to a tenth of the action beam,
i.e. kword = k/10.

Algorithm 1 such that some small number kft of
parser states are promoted directly into nextword.
These states are required to come via a lexical ac-
tion, but in the absence of fast tracking they quite
possibly would have failed the thresholding step in
line 5.

Table 1 shows Penn Treebank accuracies for
this word-synchronous beam search procedure, as
applied to RNNG. As expected, accuracy goes up
as the parser considers more and more analyses.
Above k = 200, the RNNG+beam search combi-
nation outperforms a conditional model based on
greedy decoding (88.9). This demonstration re-
emphasizes the point, made by Brants and Crocker
(2000) among others, that cognitively-plausible
incremental processing can be achieved without
loss of parsing performance.

4 Complexity metrics

In order to relate computational models to mea-
sured human responses, some sort of auxiliary hy-
pothesis or linking rule is required. In the domain
of language, these are traditionally referred to as
complexity metrics because of the way they quan-
tify the “processing complexity” of particular sen-
tences. When a metric offers a prediction on each
successive word, it is an incremental complex-
ity metric.

Table 2 characterizes four incremental com-
plexity metrics that are all obtained from inter-
mediate states of Algorithm 1. The metric de-
noted DISTANCE is the most classic; it is inspired
by the count of “transitions made or attempted”
in Kaplan (1972). It quantifies syntactic work by
counting the number of parser actions explored by
Algorithm 1 between each word i.e. the number
of times around the while-loop on line 3. The
information theoretical quantities SURPRISAL and
ENTROPY came into more widespread use later.

They quantify unexpectedness and uncertainty, re-
spectively, about alternative syntactic analyses at
a given point within a sentence. Hale (2016) re-
views their applicability across many different lan-
guages, psycholinguistic measurement techniques
and grammatical models. Recent work proposes
possible relationships between these two metrics,
at the empirical as well as theoretical level (van
Schijndel and Schuler, 2017; Cho et al., 2018).

metric characterization
DISTANCE count of actions required to

synchronize k analyses at the
next word

SURPRISAL log-ratio of summed for-
ward probabilities for analyses
in the beam

ENTROPY average uncertainty of analyses
in the beam

ENTROPY ∆ difference between previous
and current entropy value

Table 2: Complexity Metrics

The SURPRISAL metric was computed over the
word beam i.e. the kword highest-scoring partial
syntactic analyses at each successive word. In an
attempt to obtain a more faithful estimate, EN-
TROPY and its first-difference are computed over
nextword itself, whose size varies but is typically
much larger than kword.

5 Regression models of naturalistic EEG

Electroencephalography (EEG) is an experimen-
tal technique that measures very small volt-
age fluctuations on the scalp. For a review
emphasizing its implications vis-á-vis computa-
tional models, see Murphy et al. (2018).

We analyzed EEG recordings from 33 par-
ticipants as they passively listened to a
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spoken recitation of the first chapter of
Alice’s Adventures in Wonderland.2 This au-
ditory stimulus was delivered via earphones
in an isolated booth. All participants scored
significantly better than chance on a post-session
8-question comprehension quiz. An additional
ten datasets were excluded for not meeting this
behavioral criterion, six due to excessive noise,
and three due to experimenter error. All partic-
ipants provided written informed consent under
the oversight of the University of Michigan HSBS
Institutional Review Board (#HUM00081060)
and were compensated $15/h.3

Data were recorded at 500 Hz from 61 ac-
tive electrodes (impedences < 25 kΩ) and divided
into 2129 epochs, spanning -0.3–1 s around the
onset of each word in the story. Ocular artifacts
were removed using ICA, and remaining epochs
with excessive noise were excluded. The data
were filtered from 0.5–40 Hz, baseline corrected
against a 100 ms pre-word interval, and separated
into epochs for content words and epochs for func-
tion words because of interactions between pars-
ing variables of interest and word-class (Roark
et al., 2009).

Linear regression was used per-participant,
at each time-point and electrode, to iden-
tify content-word EEG amplitudes that corre-
late with complexity metrics derived from the
RNNG+beam search combination via the com-
plexity metrics in Table 2. We refer to these
time series as Target predictors.

Each Target predictor was included in its own
model, along with several Control predictors that
are known to influence sentence processing: sen-
tence order, word-order in sentence, log word fre-
quency (Lund and Burgess, 1996), frequency of
the previous and subsequent word, and acoustic
sound power averaged over the first 50 ms of the
epoch.

All predictors were mean-centered. We also
constructed null regression models in which the
rows of the design matrix were randomly per-
muted.4 β coefficients for each effect were tested
against these null models at the group level across

2https://tinyurl.com/alicedata
3A separate analysis of these data appears in Brennan and

Hale (2018); datasets are available from JRB.
4Temporal auto-correlation across epochs could impact

model fits. Content-words are spaced 1 s apart on average and
a spot-check of the residuals from these linear models indi-
cates that they do not show temporal auto-correlation: AR(1)
< 0.1 across subjects, time-points, and electrodes.

all electrodes from 0–1 seconds post-onset, using
a non-parametric cluster-based permutation test to
correct for multiple comparisons across electrodes
and time-points (Maris and Oostenveld, 2007).

6 Language models for literary stimuli

We compare the fit against EEG data for models
that are trained on the same amount of textual data
but differ in the explicitness of their syntactic rep-
resentations.

At the low end of this scale is the LSTM lan-
guage model. Models of this type treat sentences
as a sequence of words, leaving it up to backprop-
agation to decide whether or not to encode syntac-
tic properties in a learned history vector (Linzen
et al., 2016). We use SURPRISAL from the LSTM
as a baseline.

RNNGs are higher on this scale because they
explicitly build a phrase structure tree using a sym-
bolic stack. We consider as well a degraded ver-
sion, RNNG−comp which lacks the composi-
tion mechanism shown in Figure 2. This de-
graded version replaces the stack with initial sub-
strings of bracket expressions, following Choe and
Charniak (2016); Vinyals et al. (2015). An exam-
ple would be the length 7 string shown below

(S (NP the hungry cat )NP (VP

Here, vertical lines separate symbols whose vec-
tor encoding would be considered separately by
RNNG−comp. In this degraded representation, the
noun phrase is not composed explicitly. It takes up
five symbols rather than one. The balanced paren-
theses (NP and )NP are rather like instructions for
some subsequent agent who might later perform
the kind of syntactic composition that occurs on-
line in RNNGs, albeit in an implicit manner.

In all cases, these language mod-
els were trained on chapters 2–12 of
Alice’s Adventures in Wonderland. This com-
prises 24941 words. The stimulus that participants
saw during EEG data collection, for which the
metrics in Table 2 are calculated, was chapter 1 of
the same book, comprising 2169 words.

RNNGs were trained to match the output trees
provided by the Stanford parser (Klein and
Manning, 2003). These trees conform to the
Penn Treebank annotation standard but do not
explicitly mark long-distance dependency or in-
clude any empty categories. They seem to ade-
quately represent basic syntactic properties such
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as clausal embedding and direct objecthood; nev-
ertheless we did not undertake any manual correc-
tion.

During RNNG training, the first chapter was
used as a development set, proceeding until the
per-word perplexity over all parser actions on this
set reached a minimum, 180. This performance
was obtained with a RNNG whose state vector
was 170 units wide. The corresponding LSTM
language model state vector had 256 units; it
reached a per-word perplexity of 90.2. Of course
the RNNG estimates the joint probability of both
trees and words, so these two perplexity levels are
not directly comparable. Hyperparameter settings
were determined by grid search in a region near
the one which yielded good performance on the
Penn Treebank benchmark reported on Table 1.

7 Results

To explore the suitability of the RNNG +
beam search combination as a cognitive model of
language processing difficulty, we fitted regres-
sion models as described above in section 5 for
each of the metrics in Table 2. We considered six
beam sizes k = {100, 200, 400, 600, 800, 1000}.
Table 3 summarizes statistical significance levels
reached by these Target predictors; no other com-
binations reached statistical significance.

LSTM not significant
SURPRISAL k = 100 pcluster = 0.027
DISTANCE k = 200 pcluster = 0.012
SURPRISAL k = 200 pcluster = 0.003
DISTANCE k = 400 pcluster = 0.002
SURPRISAL k = 400 pcluster = 0.049
ENTROPY ∆ k = 400 pcluster = 0.026
DISTANCE k = 600 pcluster = 0.012
ENTROPY k = 600 pcluster = 0.014

Table 3: Statistical significance of fitted Target
predictors in Whole-Head analysis. pcluster val-
ues are minima for each Target with respect to a
Monte Carlo cluster-based permutation test (Maris
and Oostenveld, 2007).

7.1 Whole-Head analysis
Surprisal from the LSTM sequence model did not
reliably predict EEG amplitude at any timepoint
or electrode. The DISTANCE predictor did derive a
central positivity around 600 ms post-word onset
as shown in Figure 3a. SURPRISAL predicted an

early frontal positivity around 250 ms, shown in
Figure 3b. ENTROPY and ENTROPY ∆ seemed to
drive effects that were similarly early and frontal,
although negative-going (not depicted); the effect
for ENTROPY ∆ localized to just the left side.

7.2 Region of Interest analysis

We compared RNNG to its degraded cousin,
RNNG−comp, in three regions of interest shown
in Figure 4. These regions are defined by a se-
lection of electrodes and a time window whose
zero-point corresponds to the onset of the spo-
ken word in the naturalistic speech stimulus. Re-
gions “N400” and “P600” are well-known in
EEG research, while “ANT” is motivated by find-
ings with a PCFG baseline reported by Brennan
and Hale (2018).

Single-trial data were averaged across elec-
trodes and time-points within each region and fit
with a linear mixed-effects model with fixed ef-
fects as described below and random intercepts
by-subjects (Alday et al., 2017). We used a step-
wise likelihood-ratio test to evaluate whether indi-
vidual Target predictors from the RNNG signifi-
cantly improved over RNNG−comp, and whether a
RNNG−comp model significantly improve a base-
line regression model. The baseline regression
model, denoted ∅, contains the Control predictors
described in section 5 and SURPRISAL from the
LSTM sequence model. Targets represent each
of the eight reliable whole-head effects detailed
in Table 3. These 24 tests (eight effects by three
regions) motivate a Bonferroni correction of α =
0.002 = 0.05/24.

Statistically significant results obtained for DIS-
TANCE from RNNG−comp in the P600 region and
for SURPRISAL for RNNG in the ANT region. No
significant results were observed in the N400 re-
gion. These results are detailed in Table 4.

8 Discussion

Since beam search explores analyses in descend-
ing order of probability, DISTANCE and SUR-
PRISAL ought to be yoked, and indeed they are
correlated at r = 0.33 or greater across all of
the beam sizes k that we considered in this study.
However they are reliably associated with differ-
ent EEG effects. SURPRISAL manifests at ante-
rior electrodes relatively early. This seems to be a
different effect from that observed by Frank et al.
(2015). Frank and colleagues relate N400 ampli-
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(a) DISTANCE derives a P600 at k = 200. (b) SURPRISAL derives an early response at k = 200.

Figure 3: Plotted values are fitted regression coefficients and 95% confidence intervals, statistically sig-
nificant in the dark-shaded region with respect to a permutation test following Maris and Oostenveld
(2007). The zero point represents the onset of a spoken word. Insets show electrodes with significant
effects along with grand-averaged coefficient values across the significant time intervals. The diagram
averages over all content words in the first chapter of Alice’s Adventures in Wonderland.

N400
300–500 ms

P600
600–700 ms

ANT
200–400 ms

Figure 4: Regions of interest. The first region
on the left, named “N400”, comprises central-
posterior electrodes during a time window 300–
500 ms post-onset. The middle region, “P600”
includes posterior electrodes 600–700 ms post-
onset. The rightmost region “ANT” consists of
just anterior electrodes 200-400 ms post-onset.

tude to word surprisals from an Elman-net, anal-
ogous to the LSTM sequence model evaluated
in this work. Their study found no effects of
syntax-based predictors over and above sequen-
tial ones. In particular, no effects emerged in the
500–700 ms window, where one might have ex-
pected a P600. The present results, by contrast,
show that an explicitly syntactic model can derive
the P600 quite generally via DISTANCE. The ab-
sence of an N400 effect in this analysis could be
attributable to the choice of electrodes, or perhaps
the modality of the stimulus narrative, i.e. spoken
versus read.

The model comparisons in Table 4 indicate that
the early peak, but not the later one, is attributable

to the RNNG’s composition function. Choe and
Charniak’s (2016) “parsing as language model-
ing” scheme potentially could explain the P600-
like wave, but it would not account for the ear-
lier peak. This earlier peak is the one derived by
the RNNG under SURPRISAL, but only when the
RNNG includes the composition mechanism de-
picted in Figure 2.

This pattern of results suggests an approach to
the overall modeling task. In this approach, both
grammar and processing strategy remain the same,
and alternative complexity metrics, such as SUR-
PRISAL and DISTANCE, serve to interpret the uni-
fied model at different times or places within the
brain. This inverts the approach of Brouwer et al.
(2017) and Wehbe et al. (2014) who interpret dif-
ferent layers of the same neural net using the same
complexity metric.

9 Conclusion

Recurrent neural net grammars indeed learn some-
thing about natural language syntax, and what
they learn corresponds to indices of human lan-
guage processing difficulty that are manifested
in electroencephalography. This correspondence,
between computational model and human elec-
trophysiological response, follows from a sys-
tem that lacks an initial stage of purely string-
based processing. Previous work was “two-stage”
in the sense that the generative model served to
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RNNG−comp > ∅ RNNG > RNNG−comp

χ2 df p χ2 df p

DISTANCE, “P600” region
k = 200 13.409 1 0.00025 4.198 1 0.04047
k = 400 15.842 1 <0.0001 3.853 1 0.04966
k = 600 13.955 1 0.00019 3.371 1 0.06635

SURPRISAL, “ANT” region
k = 100 3.671 1 0.05537 13.167 1 0.00028
k = 200 3.993 1 0.04570 10.860 1 0.00098
k = 400 3.902 1 0.04824 10.189 1 0.00141

ENTROPY ∆, “ANT” region
k = 400 10.141 1 0.00145 5.273 1 0.02165

Table 4: Likelihood-ratio tests indicate that regression models with predictors derived from RNNGs with
syntactic composition (see Figure 2) do a better job than their degraded counterparts in accounting for the
early peak in region “ANT” (right-hand columns). Similar comparisons in the “P600” region show that
the model improves, but the improvement does not reach the α = 0.002 significance threshold imposed
by our Bonferroni correction (bold-faced text). RNNGs lacking syntactic composition do improve over
a baseline model (∅) containing lexical predictors and an LSTM baseline (left-hand columns).

rerank proposals from a conditional model (Dyer
et al., 2016). If this one-stage model is cog-
nitively plausible, then its simplicity undercuts
arguments for string-based perceptual strategies
such as the Noun-Verb-Noun heuristic (for a text-
book presentation see Townsend and Bever, 2001).
Perhaps, as Phillips (2013) suggests, these are un-
necessary in an adequate cognitive model. Cer-
tainly, the road is now open for more fine-grained
investigations of the order and timing of individ-
ual parsing operations within the human sentence
processing mechanism.
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Abstract

Inquiry is fundamental to communication,
and machines cannot effectively collabo-
rate with humans unless they can ask ques-
tions. In this work, we build a neural net-
work model for the task of ranking clarifi-
cation questions. Our model is inspired by
the idea of expected value of perfect infor-
mation: a good question is one whose ex-
pected answer will be useful. We study this
problem using data from StackExchange,
a plentiful online resource in which people
routinely ask clarifying questions to posts
so that they can better offer assistance to
the original poster. We create a dataset of
clarification questions consisting of ∼77K
posts paired with a clarification ques-
tion (and answer) from three domains
of StackExchange: askubuntu, unix and
superuser. We evaluate our model on 500
samples of this dataset against expert hu-
man judgments and demonstrate signifi-
cant improvements over controlled base-
lines.

1 Introduction

A principle goal of asking questions is to fill infor-
mation gaps, typically through clarification ques-
tions.1 We take the perspective that a good ques-
tion is the one whose likely answer will be use-
ful. Consider the exchange in Figure 1, in which
an initial poster (who we call “Terry”) asks for
help configuring environment variables. This post
is underspecified and a responder (“Parker”) asks
a clarifying question (a) below, but could alterna-
tively have asked (b) or (c):

(a) What version of Ubuntu do you have?

1We define ‘clarification question’ as a question that asks
for some information that is currently missing from the given
context.

Figure 1: A post on an online Q & A forum
“askubuntu.com” is updated to fill the missing in-
formation pointed out by the question comment.

(b) What is the make of your wifi card?
(c) Are you running Ubuntu 14.10 kernel 4.4.0-59-

generic on an x86 64 architecture?
Parker should not ask (b) because an answer is un-
likely to be useful; they should not ask (c) because
it is too specific and an answer like “No” or “I do
not know” gives little help. Parker’s question (a) is
much better: it is both likely to be useful, and is
plausibly answerable by Terry.

In this work, we design a model to rank a can-
didate set of clarification questions by their use-
fulness to the given post. We imagine a use case
(more discussion in §7) in which, while Terry is
writing their post, a system suggests a shortlist of
questions asking for information that it thinks peo-
ple like Parker might need to provide a solution,
thus enabling Terry to immediately clarify their
post, potentially leading to a much quicker reso-
lution. Our model is based on the decision theo-
retic framework of the Expected Value of Perfect
Information (EVPI) (Avriel and Williams, 1970),
a measure of the value of gathering additional in-
formation. In our setting, we use EVPI to calculate
which questions are most likely to elicit an answer
that would make the post more informative.
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Figure 2: The behavior of our model during test time: Given a post p, we retrieve 10 posts similar to
post p using Lucene. The questions asked to those 10 posts are our question candidates Q and the edits
made to the posts in response to the questions are our answer candidates A. For each question candidate
qi, we generate an answer representation F (p, qi) and calculate how close is the answer candidate aj to
our answer representation F (p, qi). We then calculate the utility of the post p if it were updated with the
answer aj . Finally, we rank the candidate questions Q by their expected utility given the post p (Eq 1).

Our work has two main contributions:
1. A novel neural-network model for address-

ing the task of ranking clarification question
built on the framework of expected value of
perfect information (§2).

2. A novel dataset, derived from StackEx-
change2, that enables us to learn a model
to ask clarifying questions by looking at the
types of questions people ask (§3).

We formulate this task as a ranking problem
on a set of potential clarification questions. We
evaluate models both on the task of returning the
original clarification question and also on the task
of picking any of the candidate clarification ques-
tions marked as good by experts (§4). We find that
our EVPI model outperforms the baseline mod-
els when evaluated against expert human annota-
tions. We include a few examples of human anno-
tations along with our model performance on them
in the supplementary material. We have released
our dataset of∼77K (p, q, a) triples and the expert
annotations on 500 triples to help facilitate further
research in this task.3

2 Model description

We build a neural network model inspired by the
theory of expected value of perfect information
(EVPI). EVPI is a measurement of: if I were to ac-
quire information X, how useful would that be to

2We use data from StackExchange; per license cc-by-sa
3.0, the data is “intended to be shared and remixed” (with
attribution).

3https://github.com/raosudha89/
ranking_clarification_questions

me? However, because we haven’t acquired X yet,
we have to take this quantity in expectation over
all possible X, weighted by each X’s likelihood.
In our setting, for any given question qi that we
can ask, there is a set A of possible answers that
could be given. For each possible answer aj ∈ A,
there is some probability of getting that answer,
and some utility if that were the answer we got.
The value of this question qi is the expected util-
ity, over all possible answers:

EVPI(qi|p) =
∑

aj∈A
P[aj |p, qi]U(p+ aj) (1)

In Eq 1, p is the post, qi is a potential question
from a set of candidate questionsQ and aj is a po-
tential answer from a set of candidate answers A.
Here, P[aj |p, qi] measures the probability of get-
ting an answer aj given an initial post p and a
clarifying question qi, and U(p + aj) is a utility
function that measures how much more complete
p would be if it were augmented with answer aj .
The modeling question then is how to model:

1. The probability distribution P[aj |p, qi] and
2. The utility function U(p+ aj).

In our work, we represent both using neural net-
works over the appropriate inputs. We train the pa-
rameters of the two models jointly to minimize a
joint loss defined such that an answer that has a
higher potential of increasing the utility of a post
gets a higher probability.

Figure 2 describes the behavior of our model
during test time. Given a post p, we generate a
set of candidate questions and a set of candidate
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Figure 3: Training of our answer generator. Given a post pi and its question qi, we generate an answer
representation that is not only close to its original answer ai, but also close to one of its candidate answers
aj if the candidate question qj is close to the original question qi.

answers (§2.1). Given a post p and a question can-
didate qi, we calculate how likely is this question
to be answered using one of our answer candidates
aj (§2.2). Given a post p and an answer candidate
aj , we calculate the utility of the updated post i.e.
U(p+ aj) (§2.3). We compose these modules into
a joint neural network that we optimize end-to-end
over our data (§2.4).

2.1 Question & answer candidate generator

Given a post p, our first step is to generate a set
of question and answer candidates. One way that
humans learn to ask questions is by looking at
how others ask questions in a similar situation.
Using this intuition we generate question candi-
dates for a given post by identifying posts simi-
lar to the given post and then looking at the ques-
tions asked to those posts. For identifying simi-
lar posts, we use Lucene4, a software extensively
used in information retrieval for extracting docu-
ments relevant to a given query from a pool of doc-
uments. Lucene implements a variant of the term
frequency-inverse document frequency (TF-IDF)
model to score the extracted documents according
to their relevance to the query. We use Lucene to
find the top 10 posts most similar to a given post
from our dataset (§3). We consider the questions
asked to these 10 posts as our set of question can-
didates Q and the edits made to the posts in re-
sponse to the questions as our set of answer candi-
dates A. Since the top-most similar candidate ex-
tracted by Lucene is always the original post itself,
the original question and answer paired with the
post is always one of the candidates in Q and A.
§3 describes in detail the process of extracting the

4https://lucene.apache.org/

(post, question, answer) triples from the StackEx-
change datadump.

2.2 Answer modeling

Given a post p and a question candidate qi, our sec-
ond step is to calculate how likely is this question
to be answered using one of our answer candidates
aj . We first generate an answer representation by
combining the neural representations of the post
and the question using a function Fans(p̄, q̄i) (de-
tails in §2.4). Given such a representation, we mea-
sure the distance between this answer representa-
tion and one of the answer candidates aj using the
function below:

dist(Fans(p̄, q̄i), âj) = 1− cos sim(Fans(p̄, q̄i), âj)

The likelihood of an answer candidate aj being
the answer to a question qi on post p is finally cal-
culated by combining this distance with the cosine
similarity between the question qi and the question
qj paired with the answer candidate aj :

P[aj |p, qi] = exp−dist(Fans(p̄, q̄i), âj) ∗cos sim(q̂i, q̂j)
(2)

where âj , q̂i and q̂j are the average word vector
of aj , qi and qj respectively (details in §2.4) and
cos sim is the cosine similarity between the two
input vectors.

We model our answer generator using the fol-
lowing intuition: a question can be asked in several
different ways. For e.g. in Figure 1, the question
“What version of Ubuntu do you have?” can be asked
in other ways like “What version of operating sys-
tem are you using?”, “Version of OS?”, etc. Addition-
ally, for a given post and a question, there can be
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several different answers to that question. For in-
stance, “Ubuntu 14.04 LTS”, “Ubuntu 12.0”, “Ubuntu
9.0”, are all valid answers. To generate an answer
representation capturing these generalizations, we
train our answer generator on our triples dataset
(§3) using the loss function below:

lossans(pi, qi, ai, Qi) = dist(Fans(p̄i, q̄i), âi) (3)

+
∑

j∈Q

(
dist(Fans(p̄i, q̄i), âj) ∗ cos sim(q̂i, q̂j)

)

where, â and q̂ is the average word vectors of a
and q respectively (details in §2.4), cos sim is the
cosine similarity between the two input vectors.

This loss function can be explained using the
example in Figure 3. Question qi is the question
paired with the given post pi. In Eq 3, the first term
forces the function Fans(p̄i, q̄i) to generate an an-
swer representation as close as possible to the cor-
rect answer ai. Now, a question can be asked in
several different ways. Let Qi be the set of can-
didate questions for post pi, retrieved from the
dataset using Lucene (§ 2.1). Suppose a question
candidate qj is very similar to the correct ques-
tion qi ( i.e. cos sim(q̂i, q̂j) is near zero). Then
the second term forces the answer representation
Fans(p̄i, q̄i) to be close to the answer aj corre-
sponding to the question qj as well. Thus in Fig-
ure 3, the answer representation will be close to aj
(since qj is similar to qi), but may not be necessar-
ily close to ak (since qk is dissimilar to qi).

2.3 Utility calculator
Given a post p and an answer candidate aj , the
third step is to calculate the utility of the updated
post i.e. U(p+aj). As expressed in Eq 1, this util-
ity function measures how useful it would be if a
given post p were augmented with an answer aj
paired with a different question qj in the candidate
set. Although theoretically, the utility of the up-
dated post can be calculated only using the given
post (p) and the candidate answer (aj), empirically
we find that our neural EVPI model performs bet-
ter when the candidate question (qj) paired with
the candidate answer is a part of the utility func-
tion. We attribute this to the fact that much infor-
mation about whether an answer increases the util-
ity of a post is also contained in the question asked
to the post. We train our utility calculator using
our dataset of (p, q, a) triples (§3). We label all the
(pi, qi, ai) pairs from our triples dataset with label
y = 1. To get negative samples, we make use of

the answer candidates generated using Lucene as
described in §2.1. For each aj ∈ Ai, where Ai is
the set of answer candidates for post pi, we label
the pair (pi, qj , aj) with label y = 0, except for
when aj = ai. Thus, for each post pi in our triples
dataset, we have one positive sample and nine neg-
ative samples. It should be noted that this is a noisy
labelling scheme since a question not paired with
the original question in our dataset can often times
be a good question to ask to the post (§4). How-
ever, since we do not have annotations for such
other good questions at train time, we assume such
a labelling.

Given a post pi and an answer aj paired with
the question qj , we combine their neural represen-
tations using a function Futil(p̄i, q̄j , āj) (details in
§2.4). The utility of the updated post is then de-
fined as U(pi + aj) = σ(Futil(p̄i, q̄j , āj))

5. We
want this utility to be close to 1 for all the posi-
tively labelled (p, q, a) triples and close to 0 for all
the negatively labelled (p, q, a) triples. We there-
fore define our loss using the binary cross-entropy
formulation below:

lossutil(yi, p̄i, q̄j , āj) = yi log(σ(Futil(p̄i, q̄j , āj)))
(4)

2.4 Our joint neural network model
Our fundamental representation is based on re-
current neural networks over word embeddings.
We obtain the word embeddings using the GloVe
(Pennington et al., 2014) model trained on the en-
tire datadump of StackExchange.6. In Eq 2 and
Eq 3, the average word vector representations q̂
and â are obtained by averaging the GloVe word
embeddings for all words in the question and the
answer respectively. Given an initial post p, we
generate a post neural representation p̄ using a
post LSTM (long short-term memory architecture)
(Hochreiter and Schmidhuber, 1997). The input
layer consists of word embeddings of the words
in the post which is fed into a single hidden layer.
The output of each of the hidden states is aver-
aged together to get our neural representation p̄.
Similarly, given a question q and an answer a, we
generate the neural representations q̄ and ā using
a question LSTM and an answer LSTM respec-
tively. We define the function Fans in our answer
model as a feedforward neural network with five
hidden layers on the inputs p̄ and q̄. Likewise, we

5σ is the sigmoid function.
6Details in the supplementary material.
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define the function Futil in our utility calculator
as a feedforward neural network with five hidden
layers on the inputs p̄, q̄ and ā. We train the pa-
rameters of the three LSTMs corresponding to p,
q and a, and the parameters of the two feedforward
neural networks jointly to minimize the sum of the
loss of our answer model (Eq 3) and our utility cal-
culator (Eq 4) over our entire dataset:

∑

i

∑

j

lossans(p̄i, q̄i, āi, Qi) + lossutil(yi, p̄i, q̄j , āj)

(5)

Given such an estimate P[aj |p, qi] of an answer
and a utility U(p + aj) of the updated post, we
rank the candidate questions by their value as cal-
culated using Eq 1. The remaining question, then,
is how to get data that enables us to train our an-
swer model and our utility calculator. Given data,
the training becomes a multitask learning problem,
where we learn simultaneously to predict utility
and to estimate the probability of answers.

3 Dataset creation

StackExchange is a network of online ques-
tion answering websites about varied topics like
academia, ubuntu operating system, latex, etc.
The data dump of StackExchange contains times-
tamped information about the posts, comments on
the post and the history of the revisions made to
the post. We use this data dump to create our
dataset of (post, question, answer) triples: where
the post is the initial unedited post, the question
is the comment containing a question and the an-
swer is either the edit made to the post after the
question or the author’s response to the question
in the comments section.

Extract posts: We use the post histories to iden-
tify posts that have been updated by its author. We
use the timestamp information to retrieve the ini-
tial unedited version of the post.

Extract questions: For each such initial version
of the post, we use the timestamp information of
its comments to identify the first question com-
ment made to the post. We truncate the comment
till its question mark ’?’ to retrieve the question
part of the comment. We find that about 7% of
these are rhetoric questions that indirectly suggest
a solution to the post. For e.g. “have you consid-
ered installing X?”. We do a manual analysis of

Train Tune Test

askubuntu 19,944 2493 2493
unix 10,882 1360 1360
superuser 30,852 3857 3856

Table 1: Table above shows the sizes of the train,
tune and test split of our dataset for three domains.

these non-clarification questions and hand-crafted
a few rules to remove them. 7

Extract answers: We extract the answer to a
clarification question in the following two ways:
(a) Edited post: Authors tend to respond to a clari-
fication question by editing their original post and
adding the missing information. In order to ac-
count for edits made for other reasons like stylis-
tic updates and grammatical corrections, we con-
sider only those edits that are longer than four
words. Authors can make multiple edits to a post
in response to multiple clarification questions.8 To
identify the edit made corresponding to the given
question comment, we choose the edit closest in
time following the question.
(b) Response to the question: Authors also respond
to clarification questions as subsequent comments
in the comment section. We extract the first com-
ment by the author following the clarification
question as the answer to the question.

In cases where both the methods above yield an
answer, we pick the one that is the most semanti-
cally similar to the question, where the measure of
similarity is the cosine distance between the aver-
age word embeddings of the question and the an-
swer.

We extract a total of 77,097 (post, question,
answer) triples across three domains in Stack-
Exchange (Table 1). We will release this dataset
along with the the nine question and answer can-
didates per triple that we generate using lucene
(§ 2.1). We include an analysis of our dataset in
the supplementary material.

4 Evaluation design

We define our task as given a post p, and a set
of candidate clarification questions Q, rank the
questions according to their usefulness to the post.

7Details in the supplementary material.
8On analysis, we find that 35%-40% of the posts get asked

multiple clarification questions. We include only the first clar-
ification question to a post in our dataset since identifying if
the following questions are clarifications or a part of a dia-
logue is non-trivial.
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Since the candidate set includes the original ques-
tion q that was asked to the post p, one possible
approach to evaluation would be to look at how of-
ten the original question is ranked higher up in the
ranking predicted by a model. However, there are
two problems to this approach: 1) Our dataset cre-
ation process is noisy. The original question paired
with the post may not be a useful question. For
e.g. “are you seriously asking this question?”, “do
you mind making that an answer?”9. 2) The nine
other questions in the candidate set are obtained by
looking at questions asked to posts that are simi-
lar to the given post.10 This greatly increases the
possibility of some other question(s) being more
useful than the original question paired with the
post. This motivates an evaluation design that does
not rely solely on the original question but also
uses human judgments. We randomly choose a
total of 500 examples from the test sets of the
three domains proportional to their train set sizes
(askubuntu:160, unix:90 and superuser:250)
to construct our evaluation set.

4.1 Annotation scheme

Due to the technical nature of the posts in our
dataset, identifying useful questions requires tech-
nical experts. We recruit 10 such experts on Up-
work11 who have prior experience in unix based
operating system administration.12 We provide the
annotators with a post and a randomized list of
the ten question candidates obtained using Lucene
(§2.1) and ask them to select a single “best” (B)
question to ask, and additionally mark as “valid”
(V ) other questions that they thought would be
okay to ask in the context of the original post. We
enforce that the “best” question be always marked
as a “valid” question. We group the 10 annotators
into 5 pairs and assign the same 100 examples to
the two annotators in a pair.

4.2 Annotation analysis

We calculate the inter-annotator agreement on the
“best” and the “valid” annotations using Cohen’s
Kappa measurement. When calculating the agree-
ment on the “best” in the strict sense, we get a low

9Data analysis included in the supplementary material
suggests 9% of the questions are not useful.

10Note that this setting is different from the distractor-
based setting popularly used in dialogue (Lowe et al., 2015)
where the distractor candidates are chosen randomly from the
corpus.

11https://upwork.com
12Details in the supplementary material.

Figure 4: Distribution of the count of questions in the inter-
section of the “valid” annotations.

agreement of 0.15. However, when we relax this
to a case where the question marked as“best” by
one annotator is marked as “valid” by another, we
get an agreement of 0.87. The agreement on the
“valid” annotations, on the other hand, was higher:
0.58. We calculate this agreement on the binary
judgment of whether a question was marked as
valid by the annotator.

Given these annotations, we calculate how of-
ten is the original question marked as “best” or
“valid” by the two annotators. We find that 72%
of the time one of the annotators mark the origi-
nal as the “best”, whereas only 20% of the time
both annotators mark it as the “best” suggesting
against an evaluation solely based on the original
question. On the other hand, 88% of the time one
of the two annotators mark it as a “valid” question
confirming the noise in our training data.13

Figure 4 shows the distribution of the counts
of questions in the intersection of “valid” annota-
tions (blue legend). We see that about 85% of the
posts have more than 2 valid questions and 50%
have more than 3 valid questions. The figure also
shows the distribution of the counts when the orig-
inal question is removed from the intersection (red
legend). Even in this set, we find that about 60%
of the posts have more than two valid questions.
These numbers suggests that the candidate set of
questions retrieved using Lucene (§2.1) very often
contains useful clarification questions.

5 Experimental results

Our primary research questions that we evaluate
experimentally are:

1. Does a neural network architecture improve
upon non-neural baselines?

1376% of the time both the annotators mark it as a “valid”.
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B1 ∪B2 V 1 ∩ V 2 Original
Model p@1 p@3 p@5 MAP p@1 p@3 p@5 MAP p@1

Random 17.5 17.5 17.5 35.2 26.4 26.4 26.4 42.1 10.0
Bag-of-ngrams 19.4 19.4 18.7 34.4 25.6 27.6 27.5 42.7 10.7
Community QA 23.1 21.2 20.0 40.2 33.6 30.8 29.1 47.0 18.5

Neural (p, q) 21.9 20.9 19.5 39.2 31.6 30.0 28.9 45.5 15.4
Neural (p, a) 24.1 23.5 20.6 41.4 32.3 31.5 29.0 46.5 18.8
Neural (p, q, a) 25.2 22.7 21.3 42.5 34.4 31.8 30.1 47.7 20.5

EVPI 27.7 23.4 21.5 43.6 36.1 32.2 30.5 49.2 21.4

Table 2: Model performances on 500 samples when evaluated against the union of the “best” annotations
(B1 ∪ B2), intersection of the “valid” annotations (V 1 ∩ V 2) and the original question paired with the
post in the dataset. The difference between the bold and the non-bold numbers is statistically significant
with p < 0.05 as calculated using bootstrap test. p@k is the precision of the k questions ranked highest
by the model and MAP is the mean average precision of the ranking predicted by the model.

2. Does the EVPI formalism provide leverage
over a similarly expressive feedforward net-
work?

3. Are answers useful in identifying the right
question?

4. How do the models perform when evalu-
ated on the candidate questions excluding the
original?

5.1 Baseline methods

We compare our model with following baselines:

Random: Given a post, we randomly permute
its set of 10 candidate questions uniformly.14

Bag-of-ngrams: Given a post and a set of 10
question and answer candidates, we construct a
bag-of-ngrams representation for the post, ques-
tion and answer. We train the baseline on all the
positive and negative candidate triples (same as
in our utility calculator (§2.3)) to minimize hinge
loss on misclassification error using cross-product
features between each of (p, q), (q, a) and (p, a).
We tune the ngram length and choose n=3 which
performs best on the tune set. The question candi-
dates are finally ranked according to their predic-
tions for the positive label.

Community QA: The recent SemEval2017
Community Question-Answering (CQA) (Nakov
et al., 2017) included a subtask for ranking a set of
comments according to their relevance to a given
post in the Qatar Living15 forum. Nandi et al.
(2017), winners of this subtask, developed a lo-
gistic regression model using features based on

14We take the average over 1000 random permutations.
15http://www.qatarliving.com/forum

string similarity, word embeddings, etc. We train
this model on all the positively and negatively la-
belled (p, q) pairs in our dataset (same as in our
utility calculator (§2.3), but without a). We use a
subset of their features relevant to our task.16

Neural baselines: We construct the following
neural baselines based on the LSTM representa-
tion of their inputs (as described in §2.4):
1. Neural(p, q): Input is concatenation of p̄ and q̄.
2. Neural(p, a): Input is concatenation of p̄ and ā.
3. Neural(p, q, a): Input is concatenation of p̄, q̄
and ā.

Given these inputs, we construct a fully con-
nected feedforward neural network with 10 hid-
den layers and train it to minimize the binary cross
entropy across all positive and negative candidate
triples (same as in our utility calculator (§ 2.3)).
The major difference between the neural baselines
and our EVPI model is in the loss function: the
EVPI model is trained to minimize the joint loss
between the answer model (defined on Fans(p, q)
in Eq 3) and the utility calculator (defined on
Futil(p, q, a) in Eq 4) whereas the neural base-
lines are trained to minimize the loss directly on
F (p, q), F (p, a) or F (p, q, a). We include the im-
plementation details of all our neural models in the
supplementary material.

5.2 Results

5.2.1 Evaluating against expert annotations
We first describe the results of the different models
when evaluated against the expert annotations we
collect on 500 samples (§4). Since the annotators

16Details in the supplementary material.
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had a low agreement on a single best, we evaluate
against the union of the “best” annotations (B1 ∪
B2 in Table 2) and against the intersection of the
“valid” annotations (V 1 ∩ V 2 in Table 2).

Among non-neural baselines, we find that the
bag-of-ngrams baseline performs slightly better
than random but worse than all the other models.
The Community QA baseline, on the other hand,
performs better than the neural baseline (Neural
(p, q)), both of which are trained without using
the answers. The neural baselines with answers
(Neural(p, q, a) and Neural(p, a)) outperform the
neural baseline without answers (Neural(p, q)),
showing that answer helps in selecting the right
question.

More importantly, EVPI outperforms the Neu-
ral (p, q, a) baseline across most metrics. Both
models use the same information regarding the
true question and answer and are trained using
the same number of model parameters.17 How-
ever, the EVPI model, unlike the neural baseline,
additionally makes use of alternate question and
answer candidates to compute its loss function.
This shows that when the candidate set consists
of questions similar to the original question, sum-
ming over their utilities gives us a boost.

5.2.2 Evaluating against the original question
The last column in Table 2 shows the results when
evaluated against the original question paired with
the post. The bag-of-ngrams baseline performs
similar to random, unlike when evaluated against
human judgments. The Community QA baseline
again outperforms Neural(p, q) model and comes
very close to the Neural (p, a) model.

As before, the neural baselines that make use of
the answer outperform the one that does not use
the answer and the EVPI model performs signifi-
cantly better than Neural(p, q, a).

5.2.3 Excluding the original question
In the preceding analysis, we considered a set-
ting in which the “ground truth” original question
was in the candidate set Q. While this is a com-
mon evaluation framework in dialog response se-
lection (Lowe et al., 2015), it is overly optimistic.
We, therefore, evaluate against the “best” and the
“valid” annotations on the nine other question can-
didates. We find that the neural models beat the

17We use 10 hidden layers in the feedforward network of
the neural baseline and five hidden layers each in the two
feedforward networks Fans and Futil of the EVPI model.

non-neural baselines. However, the differences be-
tween all the neural models are statistically in-
significant.18

6 Related work

Most prior work on question generation has fo-
cused on generating reading comprehension ques-
tions: given text, write questions that one might
find on a standardized test (Vanderwende, 2008;
Heilman, 2011; Rus et al., 2011; Olney et al.,
2012). Comprehension questions, by definition,
are answerable from the provided text. Clarifica-
tion questions–our interest–are not.

Outside reading comprehension questions, Lab-
utov et al. (2015) generate high-level question
templates by crowdsourcing which leads to signif-
icantly less data than we collect using our method.
Liu et al. (2010) use template question genera-
tion to help authors write better related work sec-
tions. Mostafazadeh et al. (2016) introduce a Vi-
sual Question Generation task where the goal is
to generate natural questions that are not about
what is present in the image rather about what can
be inferred given the image, somewhat analogous
to clarification questions. Penas and Hovy (2010)
identify the notion of missing information similar
to us, but they fill the knowledge gaps in a text with
the help of external knowledge bases, whereas
we instead ask clarification questions. Artzi and
Zettlemoyer (2011) use human-generated clarifi-
cation questions to drive a semantic parser where
the clarification questions are aimed towards sim-
plifying a user query; whereas we generate clari-
fication questions aimed at identifying missing in-
formation in a text.

Among works that use community question an-
swer forums, the keywords to questions (K2Q)
system (Zheng et al., 2011) generates a list of can-
didate questions and refinement words, given a set
of input keywords, to help a user ask a better ques-
tion. Figueroa and Neumann (2013) rank different
paraphrases of query for effective search on fo-
rums. (Romeo et al., 2016) develop a neural net-
work based model for ranking questions on forums
with the intent of retrieving similar other question.
The recent SemEval-2017 Community Question-
Answering (CQA) (Nakov et al., 2017) task in-
cluded a subtask to rank the comments according
to their relevance to the post. Our task primarily
differs from this task in that we want to identify a

18Results included in the supplementary material.
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question comment which is not only relevant to the
post but will also elicit useful information missing
from the post. Hoogeveen et al. (2015) created the
CQADupStack dataset using StackExchange fo-
rums for the task of duplicate question retrieval.
Our dataset, on the other hand, is designed for
the task of ranking clarification questions asked as
comments to a post.

7 Conclusion

We have constructed a new dataset for learning to
rank clarification questions, and proposed a novel
model for solving this task. Our model integrates
well-known deep network architectures with the
classic notion of expected value of perfect in-
formation, which effectively models a pragmatic
choice on the part of the questioner: how do I
imagine the other party would answer if I were to
ask this question. Such pragmatic principles have
recently been shown to be useful in other tasks as
well (Golland et al., 2010; Smith et al., 2013; Orita
et al., 2015; Andreas and Klein, 2016). One can
naturally extend our EVPI approach to a full rein-
forcement learning approach to handle multi-turn
conversations.

Our results shows that the EVPI model is a
promising formalism for the question generation
task. In order to move to a full system that can help
users like Terry write better posts, there are three
interesting lines of future work. First, we need it to
be able to generalize: for instance by constructing
templates of the form “What version of are you
running?” into which the system would need to fill
a variable. Second, in order to move from question
ranking to question generation, one could consider
sequence-to-sequence based neural network mod-
els that have recently proven to be effective for
several language generation tasks (Sutskever et al.,
2014; Serban et al., 2016; Yin et al., 2016). Third
is in evaluation: given that this task requires ex-
pert human annotations and also given that there
are multiple possible good questions to ask, how
can we automatically measure performance at this
task?, a question faced in dialog and generation
more broadly (Paek, 2001; Lowe et al., 2015; Liu
et al., 2016).
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Abstract

We introduce the task of predicting adver-
bial presupposition triggers such as also
and again. Solving such a task requires
detecting recurring or similar events in the
discourse context, and has applications in
natural language generation tasks such as
summarization and dialogue systems. We
create two new datasets for the task, de-
rived from the Penn Treebank and the An-
notated English Gigaword corpora, as well
as a novel attention mechanism tailored to
this task. Our attention mechanism aug-
ments a baseline recurrent neural network
without the need for additional trainable
parameters, minimizing the added com-
putational cost of our mechanism. We
demonstrate that our model statistically
outperforms a number of baselines, in-
cluding an LSTM-based language model.

1 Introduction

In pragmatics, presuppositions are assumptions or
beliefs in the common ground between discourse
participants when an utterance is made (Frege,
1892; Strawson, 1950; Stalnaker, 1973, 1998), and
are ubiquitous in naturally occurring discourses
(Beaver and Geurts, 2014). Presuppositions un-
derly spoken statements and written sentences and
understanding them facilitates smooth commu-
nication. We refer to expressions that indicate
the presence of presuppositions as presupposition
triggers. These include definite descriptions, fac-
tive verbs and certain adverbs, among others. For
example, consider the following statements:

(1) John is going to the restaurant again.
∗Authors (listed in alphabetical order) contributed

equally.

(2) John has been to the restaurant.

(1) is only appropriate in the context where (2)
is held to be true because of the presence of the
presupposition trigger again. One distinguishing
characteristic of presupposition is that it is unaf-
fected by negation of the presupposing context,
unlike other semantic phenomena such as entail-
ment and implicature. The negation of (1), John
is not going to the restaurant again., also presup-
poses (2).

Our focus in this paper is on adverbial presup-
position triggers such as again, also and still. Ad-
verbial presupposition triggers indicate the recur-
rence, continuation, or termination of an event in
the discourse context, or the presence of a similar
event. In one study of presuppositional triggers in
English journalistic texts (Khaleel, 2010), adver-
bial triggers were found to be the most commonly
occurring presupposition triggers after existential
triggers.1 Despite their frequency, there has been
little work on these triggers in the computational
literature from a statistical, corpus-driven perspec-
tive.

As a first step towards language technology sys-
tems capable of understanding and using presup-
positions, we propose to investigate the detec-
tion of contexts in which these triggers can be
used. This task constitutes an interesting test-
ing ground for pragmatic reasoning, because the
cues that are indicative of contexts containing re-
curring or similar events are complex and often
span more than one sentence, as illustrated in Sen-
tences (1) and (2). Moreover, such a task has im-
mediate practical consequences. For example, in
language generation applications such as summa-
rization and dialogue systems, adding presuppo-
sitional triggers in contextually appropriate loca-

1Presupposition of existence are triggered by possessive
constructions, names or definite noun phrases.
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tions can improve the readability and coherence of
the generated output.

We create two datasets based on the Penn Tree-
bank corpus (Marcus et al., 1993) and the En-
glish Gigaword corpus (Graff et al., 2007), extract-
ing contexts that include presupposition triggers as
well as other similar contexts that do not, in or-
der to form a binary classification task. In creat-
ing our datasets, we consider a set of five target
adverbs: too, again, also, still, and yet. We fo-
cus on these adverbs in our investigation because
these triggers are well known in the existing lin-
guistic literature and commonly triggering presup-
positions. We control for a number of potential
confounding factors, such as class balance, and
the syntactic governor of the triggering adverb, so
that models cannot exploit these correlating fac-
tors without any actual understanding of the pre-
suppositional properties of the context.

We test a number of standard baseline classifiers
on these datasets, including a logistic regression
model and deep learning methods based on re-
current neural networks (RNN) and convolutional
neural networks (CNN).

In addition, we investigate the potential of
attention-based deep learning models for detect-
ing adverbial triggers. Attention is a promising
approach to this task because it allows a model
to weigh information from multiple points in the
previous context and infer long-range dependen-
cies in the data (Bahdanau et al., 2015). For ex-
ample, the model could learn to detect multiple
instances involving John and restaurants, which
would be a good indication that again is appropri-
ate in that context. Also, an attention-based RNN
has achieved success in predicting article definite-
ness, which involves another class of presupposi-
tion triggers (Kabbara et al., 2016).

As another contribution, we introduce a new
weighted pooling attention mechanism designed
for predicting adverbial presupposition triggers.
Our attention mechanism allows for a weighted
averaging of our RNN hidden states where the
weights are informed by the inputs, as opposed to
a simple unweighted averaging. Our model uses a
form of self-attention (Paulus et al., 2018; Vaswani
et al., 2017), where the input sequence acts as both
the attention mechanism’s query and key/value.
Unlike other attention models, instead of simply
averaging the scores to be weighted, our approach
aggregates (learned) attention scores by learning

a reweighting scheme of those scores through an-
other level (dimension) of attention. Additionally,
our mechanism does not introduce any new pa-
rameters when compared to our LSTM baseline,
reducing its computational impact.

We compare our model using the novel attention
mechanism against the baseline classifiers in terms
of prediction accuracy. Our model outperforms
these baselines for most of the triggers on the two
datasets, achieving 82.42% accuracy on predicting
the adverb “also” on the Gigaword dataset.

The contributions of this work are as follows:

1. We introduce the task of predicting adverbial
presupposition triggers.

2. We present new datasets for the task of
detecting adverbial presupposition triggers,
with a data extraction method that can be ap-
plied to other similar pre-processing tasks.

3. We develop a new attention mechanism in an
RNN architecture that is appropriate for the
prediction of adverbial presupposition trig-
gers, and show that its use results in bet-
ter prediction performance over a number of
baselines without introducing additional pa-
rameters.

2 Related Work

2.1 Presupposition and pragmatic reasoning

The discussion of presupposition can be traced
back to Frege’s work on the philosophy of lan-
guage (Frege, 1892), which later leads to the most
commonly accepted view of presupposition called
the Frege-Strawson theory (Kaplan, 1970; Straw-
son, 1950). In this view, presuppositions are pre-
conditions for sentences/statements to be true or
false. To the best of our knowledge, there is no
previous computational work that directly inves-
tigates adverbial presupposition. However in the
fields of semantics and pragmatics, there exist lin-
guistic studies on presupposition that involve ad-
verbs such as “too” and “again” (e.g., (Blutner
et al., 2003), (Kang, 2012)) as a pragmatic pre-
supposition trigger. Also relevant to our work
is (Kabbara et al., 2016), which proposes using
an attention-based LSTM network to predict noun
phrase definiteness in English. Their work demon-
strates the ability of these attention-based models
to pick up on contextual cues for pragmatic rea-
soning.
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Many different classes of construction can trig-
ger presupposition in an utterance, this includes
but is not limited to stressed constituents, factive
verbs, and implicative verbs (Zare et al., 2012). In
this work, we focus on the class of adverbial pre-
supposition triggers.

Our task setup resembles the Cloze test used in
psychology (Taylor, 1953; E. B. Coleman, 1968;
Earl F. Rankin, 1969) and machine comprehen-
sion (Riloff and Thelen, 2000), which tests text
comprehension via a fill-in-the-blanks task. We
similarly pre-process our samples such that they
are roughly the same length, and have equal num-
bers of negative samples as positive ones. How-
ever, we avoid replacing the deleted words with
a blank, so that our model has no clue regard-
ing the exact position of the possibly missing trig-
ger. Another related work on the Children’s Book
Test (Hill et al., 2015) notes that memories that
encode sub-sentential chunks (windows) of infor-
mative text seem to be most useful to neural net-
works when interpreting and modelling language.
Their finding inspires us to run initial experiments
with different context windows and tune the size
of chunks according to the Logistic Regression re-
sults on the development set.

2.2 Attention

In the context of encoder-decoder models, atten-
tion weights are usually based on an energy mea-
sure of the previous decoder hidden state and en-
coder hidden states. Many variations on atten-
tion computation exist. Sukhbaatar et al. (2015)
propose an attention mechanism conditioned on
a query and applied to a document. To generate
summaries, Paulus et al. (2018) add an attention
mechanism in the prediction layer, as opposed to
the hidden states. Vaswani et al. (2017) suggest
a model which learns an input representation by
self-attending over inputs. While these methods
are all tailored to their specific tasks, they all in-
spire our choice of a self-attending mechanism.

3 Datasets

3.1 Corpora

We extract datasets from two corpora, namely the
Penn Treebank (PTB) corpus (Marcus et al., 1993)
and a subset (sections 000-760) of the third edi-
tion of the English Gigaword corpus (Graff et al.,
2007). For the PTB dataset, we use sections 22
and 23 for testing. For the Gigaword corpus, we

(’still’,
[’The’, ’Old’, ’Granary’, ... / * 46

t o k e n s o m i t t e d * /...,’has’, ’@@@@’,
’included’, ’Bertrand’, ’Russell’,
... / * 6 t o k e n s o m i t t e d * /... ’Morris
’],

[’DT’, ’NNP’, ’NNP’, ... / * 46 t o k e n s
o m i t t e d * /..., ’VBZ’, ’@@@@’, ’VBN’,
’NNP’, ’NNP’, ... / * 6 t o k e n s

o m i t t e d * /... ’NNP’])

Figure 1: An example of an instance containing a
presuppositional trigger from our dataset.

use sections 700-760 for testing. For the remain-
ing data, we randomly chose 10% of them for de-
velopment, and the other 90% for training.

For each dataset, we consider a set of five tar-
get adverbs: too, again, also, still, and yet. We
choose these five because they are commonly used
adverbs that trigger presupposition. Since we are
concerned with investigating the capacity of at-
tentional deep neural networks in predicting the
presuppositional effects in general, we frame the
learning problem as a binary classification for pre-
dicting the presence of an adverbial presupposi-
tion (as opposed to the identity of the adverb).

On the Gigaword corpus, we consider each ad-
verb separately, resulting in five binary classifica-
tion tasks. This was not feasible for PTB because
of its small size.

Finally, because of the commonalities between
the adverbs in presupposing similar events, we
create a dataset that unifies all instances of the five
adverbs found in the Gigaword corpus, with a la-
bel “1” indicating the presence of any of these ad-
verbs.

3.2 Data extraction process

We define a sample in our dataset as a 3-tuple,
consisting of a label (representing the target ad-
verb, or ‘none’ for a negative sample), a list of
tokens we extract (before/after the adverb), and a
list of corresponding POS tags (Klein and Man-
ning, 2002). In each sample, we also add a special
token “@@@@” right before the head word and
the corresponding POS tag of the head word, both
in positive and negative cases. We add such spe-
cial tokens to identify the candidate context in the
passage to the model. Figure 1 shows a single pos-
itive sample in our dataset.

We first extract positive contexts that contain a
triggering adverb, then extract negative contexts
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that do not, controlling for a number of poten-
tial confounds. Our positive data consist of cases
where the target adverb triggers presupposition by
modifying a certain head word which, in most
cases, is a verb. We define such head word as a
governor of the target adverb.

When extracting positive data, we scan through
all the documents, searching for target adverbs.
For each occurrence of a target adverb, we store
the location and the governor of the adverb. Tak-
ing each occurrence of a governor as a pivot, we
extract the 50 unlemmatized tokens preceding it,
together with the tokens right after it up to the end
of the sentence (where the adverb is)–with the ad-
verb itself being removed. If there are less than
50 tokens before the adverb, we simply extract all
of these tokens. In preliminary testing using a lo-
gistic regression classifier, we found that limiting
the size to 50 tokens had higher accuracy than 25
or 100 tokens. As some head words themselves
are stopwords, in the list of tokens, we do not re-
move any stopwords from the sample; otherwise,
we would lose many important samples.

We filter out the governors of “too" that have
POS tags “JJ” and “RB” (adjectives and adverbs),
because such cases corresponds to a different
sense of “too” which indicates excess quantity
and does not trigger presupposition (e.g., “rely too
heavily on”, “it’s too far from”).

After extracting the positive cases, we then use
the governor information of positive cases to ex-
tract negative data. In particular, we extract sen-
tences containing the same governors but not any
of the target adverbs as negatives. In this way,
models cannot rely on the identity of the gover-
nor alone to predict the class. This procedure also
roughly balances the number of samples in the
positive and negative classes.

For each governor in a positive sample, we lo-
cate a corresponding context in the corpus where
the governor occurs without being modified by
any of the target adverbs. We then extract
the surrounding tokens in the same fashion as
above. Moreover, we try to control position-
related confounding factors by two randomization
approaches: 1) randomize the order of documents
to be scanned, and 2) within each document, start
scanning from a random location in the document.
Note that the number of negative cases might not
be exactly equal to the number of negative cases
in all datasets because some governors appearing

in positive cases are rare words, and we’re unable
to find any (or only few) occurrences that match
them for the negative cases.

4 Learning Model

In this section, we introduce our attention-based
model. At a high level, our model extends a bidi-
rectional LSTM model by computing correlations
between the hidden states at each timestep, then
applying an attention mechanism over these cor-
relations. Our proposed weighted-pooling (WP)
neural network architecture is shown in Figure 2.

The input sequence u = {u1, u2, . . . , uT } con-
sists of a sequence, of time length T , of one-
hot encoded word tokens, where the original to-
kens are those such as in Listing 1. Each token
ut is embedded with pretrained embedding ma-
trix We ∈ R|V |×d, where |V | corresponds to the
number of tokens in vocabulary V , and d defines
the size of the word embeddings. The embed-
ded token vector xt ∈ Rd is retrieved simply with
xt = utWe. Optionally, xt may also include the
token’s POS tag. In such instances, the embedded
token at time step t is concatenated with the POS
tag’s one-hot encoding pt: xt = utWe||pt, where
|| denotes the vector concatenation operator.

At each input time step t, a bi-directional
LSTM (Hochreiter and Schmidhuber, 1997) en-
codes xt into hidden state ht ∈ Rs:

ht =
[−→
ht ||
←−
ht

]
(1)

where
−→
ht = f(xt, ht−1) is computed by the for-

ward LSTM, and
←−
ht = f(xt, ht+1) is computed

by the backward LSTM. Concatenated vector ht is
of size 2s, where s is a hyperparameter determin-
ing the size of the LSTM hidden states. Let matrix
H ∈ R2s×T correspond to the concatenation of all
hidden state vectors:

H = [h1||h2|| . . . ||hT ]. (2)

Our model uses a form of self-attention (Paulus
et al., 2018; Vaswani et al., 2017), where the input
sequence acts as both the attention mechanism’s
query and key/value. Since the location of a pre-
supposition trigger can greatly vary from one sam-
ple to another, and because dependencies can be
long range or short range, we model all possible
word-pair interactions within a sequence. We cal-
culate the energy between all input tokens with a
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Training set Test set
Corpus Positive Negative Total Positive Negative Total
PTB 2,596 2,579 5,175 249 233 482
Gigaword yet 32,024 31,819 63,843 7950 7890 15840
Gigaword too 55,827 29,918 85,745 13987 7514 21501
Gigaword again 43,120 42,824 85,944 10935 10827 21762
Gigaword still 97,670 96,991 194,661 24509 24232 48741
Gigaword also 269,778 267,851 537,626 66878 66050 132928
Gigaword all 498,415 491,173 989,588 124255 123078 247333

Table 1: Number of training samples in each dataset.

Figure 2: Our weighted-pooling neural network architecture (WP). The tokenized input is embedded with
pretrained word embeddings and possibly concatenated with one-hot encoded POS tags. The input is
then encoded with a bi-directional LSTM, followed by our attention mechanism. The computed attention
scores are then used as weights to average the encoded states, in turn connected to a fully connected layer
to predict presupposition triggering.

pair-wise matching matrix:

M = H>H (3)

where M is a square matrix ∈ RT×T . To get a
single attention weight per time step, we adopt the
attention-over-attention method (Cui et al., 2017).
With matrix M , we first compute row-wise atten-
tion score M r

ij over M :

M r
ij =

exp(eij)∑T
t=1 exp(eit)

(4)

where eij = Mij . M r can be interpreted as
a word-level attention distribution over all other
words. Since we would like a single weight per

word, we need an additional step to aggregate
these attention scores. Instead of simply averag-
ing the scores, we follow (Cui et al., 2017)’s ap-
proach which learns the aggregation by an addi-
tional attention mechanism. We compute column-
wise softmax M c

ij over M :

M c
ij =

exp(eij)∑T
t=1 exp(etj)

(5)

The columns of M r are then averaged, forming
vector β ∈ RT . Finally, β is multiplied with the
column-wise softmax matrix M c to get attention
vector α:

α =M r>β. (6)
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Note Equations (2) to (6) have described how
we derived an attention score over our input with-
out the introduction of any new parameters, poten-
tially minimizing the computational effect of our
attention mechanism.

As a last layer to their neural network, Cui et
al. (2017) sum over α to extract the most relevant
input. However, we use α as weights to combine
all of our hidden states ht:

c =
T∑

t=1

αtht (7)

where c ∈ Rs. We follow the pooling with a dense
layer z = σ(Wzc + bz), where σ is a non-linear
function, matrix Wz ∈ R64×s and vector bz ∈ R64

are learned parameters. The presupposition trigger
probability is computed with an affine transform
followed by a softmax:

ŷ = softmax(Woz + bo) (8)

where matrix Wo ∈ R2×64 and vector bo ∈ R2 are
learned parameters. The training objective mini-
mizes:

J(θ) =
1

m

m∑

t=1

E(ŷ, y) (9)

where E(· , ·) is the standard cross-entropy.

5 Experiments

We compare the performance of our WP model
against several models which we describe in this
section. We carry out the experiments on both
datasets described in Section 3. We also investi-
gate the impact of POS tags and attention mecha-
nism on the models’ prediction accuracy.

5.1 Baselines

We compare our learning model against the fol-
lowing systems. The first is the most-frequent-
class baseline (MFC) which simply labels all sam-
ples with the most frequent class of 1. The sec-
ond is a logistic regression classifier (LogReg),
in which the probabilities describing the possible
outcomes of a single input x is modeled using a lo-
gistic function. We implement this baseline classi-
fier with the scikit-learn package (Pedregosa et al.,
2011), with a CountVectorizer including bi-gram
features. All of the other hyperparameters are set
to default weights.

The third is a variant LSTM recurrent neural
network as introduced in (Graves, 2013). The in-
put is encoded by a bidirectional LSTM like the
WP model detailed in Section 4. Instead of a
self-attention mechanism, we simply mean-pool
matrix H , the concatenation of all LSTM hid-
den states, across all time steps. This is fol-
lowed by a fully connected layer and softmax
function for the binary classification. Our WP
model uses the same bidirectional LSTM as this
baseline LSTM, and has the same number of pa-
rameters, allowing for a fair comparison of the
two models. Such a standard LSTM model repre-
sents a state-of-the-art language model, as it out-
performs more recent models on language model-
ing tasks when the number of model parameters is
controlled for (Melis et al., 2017).

For the last model, we use a slight variant of the
CNN sentence classification model of (Kim, 2014)
based on the Britz tensorflow implementation2.

5.2 Hyperparameters & Additional Features

After tuning, we found the following hyperparam-
eters to work best: 64 units in fully connected lay-
ers and 40 units for POS embeddings. We used
dropout with probability 0.5 and mini-batch size
of 64.

For all models, we initialize word embeddings
with word2vec (Mikolov et al., 2013) pretrained
embeddings of size 300. Unknown words are ran-
domly initialized to the same size as the word2vec
embeddings. In early tests on the development
datasets, we found that our neural networks would
consistently perform better when fixing the word
embeddings. All neural network performance re-
ported in this paper use fixed embeddings.

Fully connected layers in the LSTM, CNN and
WP model are regularized with dropout (Srivas-
tava et al., 2014). The model parameters for these
neural networks are fine-tuned with the Adam al-
gorithm (Kingma and Ba, 2015). To stabilize
the RNN training gradients (Pascanu et al., 2013),
we perform gradient clipping for gradients below
threshold value -1, or above 1. To reduce overfit-
ting, we stop training if the development set does
not improve in accuracy for 10 epochs. All per-
formance on the test set is reported using the best
trained model as measured on the development set.

In addition, we use the CoreNLP Part-of-

2http://www.wildml.com/2015/12/implementing-a-cnn-
for-text-classification-in-tensorflow/
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Accuracy

WSJ Gigaword

Models Variants All adverbs All adverbs Also Still Again Too Yet

MFC - 51.66 50.24 50.32 50.29 50.25 65.06 50.19

LogReg
+ POS 52.81 53.65 52.00 56.36 59.49 69.77 61.05
- POS 54.47 52.86 56.07 55.29 58.60 67.60 58.60

CNN
+ POS 58.84 59.12 61.53 59.54 60.26 67.53 59.69
- POS 62.16 57.21 59.76 56.95 57.28 67.84 56.53

LSTM
+ POS 74.23 60.58 81.48 60.72 61.81 69.70 59.13
- POS 73.18 58.86 81.16 58.97 59.93 68.32 55.71

WP
+ POS 76.09 60.62 82.42 61.00 61.59 69.38 57.68
- POS 74.84 58.87 81.64 59.03 58.49 68.37 56.68

Table 2: Performance of various models, including our weighted-pooled LSTM (WP). MFC refers to the
most-frequent-class baseline, LogReg is the logistic regression baseline. LSTM and CNN correspond
to strong neural network baselines. Note that we bold the performance numbers for the best performing
model for each of the “+ POS” case and the “- POS” case.

Speech (POS) tagger (Manning et al., 2014) to get
corresponding POS features for extracted tokens.
In all of our models, we limit the maximum length
of samples and POS tags to 60 tokens. For the
CNN, sequences shorter than 60 tokens are zero-
padded.

6 Results

Table 2 shows the performance obtained by the
different models with and without POS tags. Over-
all, our attention model WP outperforms all other
models in 10 out of 14 scenarios (combinations of
datasets and whether or not POS tags are used).
Importantly, our model outperforms the regular
LSTM model without introducing additional pa-
rameters to the model, which highlights the ad-
vantage of WP’s attention-based pooling method.
For all models listed in Table 2, we find that in-
cluding POS tags benefits the detection of adver-
bial presupposition triggers in Gigaword and PTB
datasets. Note that, in Table 2, we bolded ac-
curacy figures that were within 0.1% of the best
performing WP model as McNemar’s test did not
show that WP significantly outperformed the other
model in these cases (p value > 0.05).

Table 3 shows the confusion matrix for the best
performing model (WP,+POS). The small differ-
ences in the off-diagonal entries inform us that
the model misclassifications are not particularly
skewed towards the presence or absence of pre-

supposition triggers.

Predicted

A
ct

ua
l Absence Presence

Absence 54,658 11,961
Presence 11,776 55,006

Table 3: Confusion matrix for the best performing
model, predicting the presence of a presupposition
trigger or the absence of such as trigger.

WP Cor. WP Inc.
LSTM Cor. 101,443 6,819
LSTM Inc. 8,016 17,123

Table 4: Contingency table for correct (cor.) and
incorrect (inc.) predictions between the LSTM
baseline and the attention model (WP) on the
Giga_also dataset.

The contingency table, shown in Table 4, shows
the distribution of agreed and disagreed classifica-
tion.

7 Analysis

Consider the following pair of samples that we
randomly choose from the PTB dataset (shortened
for readability):

1. ...Taped just as the market closed yesterday
, it offers Ms. Farrell advising , " We view
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the market here as going through a relatively
normal cycle ... . We continue to feel that the
stock market is the @@@@ place to be for
long-term appreciation

2. ...More people are remaining independent
longer presumably because they are better off
physically and financially . Careers count
most for the well-to-do many affluent people
@@@@ place personal success and money
above family

In both cases, the head word is place. In Exam-
ple 1, the word continue (emphasized in the above
text) suggests that adverb still could be used to
modify head word place (i.e., ... the stock mar-
ket is still the place ...). Further, it is also easy
to see that place refers to stock market, which has
occurred in the previous context. Our model cor-
rectly predicts this sample as containing a presup-
position, this despite the complexity of the coref-
erence across the text.

In the second case of the usage of the same
main head word place in Example 2, our model
falsely predicts the presence of a presupposition.
However, even a human could read the sentence
as “many people still place personal success and
money above family”. This underlies the sub-
tlety and difficulty of the task at hand. The long-
range dependencies and interactions within sen-
tences seen in these examples are what motivate
the use of the various deep non-linear models pre-
sented in this work, which are useful in detecting
these coreferences, particularly in the case of at-
tention mechanisms.

8 Conclusion

In this work, we have investigated the task of pre-
dicting adverbial presupposition triggers and in-
troduced several datasets for the task. Addition-
ally, we have presented a novel weighted-pooling
attention mechanism which is incorporated into a
recurrent neural network model for predicting the
presence of an adverbial presuppositional trigger.
Our results show that the model outperforms the
CNN and LSTM, and does not add any additional
parameters over the standard LSTM model. This
shows its promise in classification tasks involv-
ing capturing and combining relevant information
from multiple points in the previous context.

In future work, we would like to focus more
on designing models that can deal with and be

optimized for scenarios with severe data imbal-
ance. We would like to also explore various ap-
plications of presupposition trigger prediction in
language generation applications, as well as ad-
ditional attention-based neural network architec-
tures.
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