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Message from the General Chair

It is an honor to write the initial words of this proceedings as General Chair of the 56th Annual Meeting
of the Association for Computational Linguistics! This is only the second time that an ACL conference
has been held in Australia — the first time was for the joint COLING/ACL conference in June of 2006
in Sydney, and I was one of its Program Chairs. For ACL 2018 we have tried to maintain the welcoming
and intimate spirit and the relaxed and genial character of the much smaller ACL conferences of the past
in spite of the ever-growing number of researchers in the field and participants in our conferences.

It is my pleasure here to express gratitude to all those without whom this conference would not exist.
My biggest thanks go to the Program Chairs Iryna Gurevych and Yusuke Miyao, as well as to Local
Chairs Tim Baldwin, Trevor Cohn and Karin Verspoor. They have done a tremendous job to manage the
submission and review process, and the local arrangement details, respectively.

I also want to thank all of the other chairs for their very hard work: Workshops Chairs Brendan O’ Connor
and Eva Maria Vecchi; Tutorials Chairs Yoav Artzi and Jacob Eisenstein; Demo Chairs Fei Liu and
Thamar Solorio; Student Research Workshop Organizers Vered Shwartz, Jeniya Tabassum and Rob
Voigt; Faculty Advisors to the Student Research Workshop Marie-Catherine de Marneffe, Wanxiang Che
and Malvina Nissim; Publications Chairs Shay Cohen, Kevin Gimpel and Wei Lu; Exhibits Coordinator
Karin Vespoor; Student Volunteer Coordinator Karin Vespoor; Conference Handbook Chairs Jey Han
Lau and Trevor Cohn; Publicity Chair Sarvnaz Karimi; Local Sponsorship Chair Cecile Paris; Webmaster
Andrew MacKinlay; and Priscilla Rasmussen, giver of advice and wisdom to all of us as ACL Business
Manager.

I also warmly thank the ACL Executive Committee for its guidance and advice on many important issues
and concerns as they arose.

I am also extremely grateful to all the sponsors for their great support to the conference.

Many thanks to the area chairs, the reviewers, the invited speakers, the authors of the various papers,
posters and presentations.

And, finally, many many thanks to all the participants who will put the final touches on making ACL
2018 an exciting, stimulating and inspiring event!

Claire Cardie
ACL 2018 General Chair
July 2018



Message from the Program Committee Co-Chairs

Welcome to the 56th Annual Meeting of the Association for Computational Linguistics 2018 — or ACL
2018 for short.

In September 2017, Program Committee Co-Chairs (PCs) posted the call for nominations of Area Chairs
(AC), Reviewers and Invited Speakers. We received 752 responses in total. Overall, out of 388 valid
nominations for area chairs, 299 unique persons were suggested; 110 persons were self-nominations.
About 70% of the 56 selected area chairs (later expanded to 61 area chairs due to the high number of
submissions) were nominated by the community. For the reviewers, we collected 936 valid nominations.
At the PhD level, 139 persons were self-nominations and 129 were nominated by others. At the
Postdoc/Ass.Prof. level, 160 were self-nominated, 112 nominated by others. At the Prof. level, 221
persons were self-nominated, 175 nominated by others.

We received 138 unique nominations for invited speakers, from which two invited speakers of the
conference were selected:

e Carolyn Penstein Rosé, Language Technologies Institute at Carnegie Mellon University, USA

e Anton van den Hengel, Australian Centre for Visual Technologies at University of Adelaide,
Australia

Our community is steadily growing: in total, 1621 submissions were received right after the submission
deadline: 1045 long, 576 short papers. 13 erroneous submissions were deleted or withdrawn in the
preliminary checks by PCs. 25 papers were rejected without review (16 long, 9 short); the reasons are
the violation of the ACL 2018 style and dual submission guidelines. 32 papers were withdrawn before
the review period started; the main reason was that the papers have been accepted as the short papers at
NAACL HLT 2018. In total, 1551 papers went into the reviewing phase: 1021 long, 530 short papers.
1610 reviewers (1473 primary and 137 secondary reviewers) were involved in the reviewing process;
each reviewer has reviewed about 3 papers on average. 3 long and 4 short papers were withdrawn during
the reviewing period, and finally 1018 long and 526 short papers were considered during the acceptance
decision phase.

The assignment of papers to areas and reviewers has been done in multiple rounds. First round: Initial
assignments of papers to areas were determined automatically with the help of the authors’ input, while
PCs went through all submissions and moved papers to other areas, considering COI and the topical
fit. PCs assigned one AC as a meta-reviewer to each paper using Toronto Paper Matching System
(TPMS) scores. Second round: ACs looked into the papers in their area, and adjusted meta-reviewer
assignments. ACs sent a report to PCs if they found any problems. Third round: PCs made the final
decision, considering the workload balance, possible COIs and the topical fit. Fourth round: ACs decided
which reviewers would review each paper, based on AC’s knowledge about the reviewers, TPMS scores,
reviewers’ bids, and COI.

We have introduced several innovations to the reviewing process. One of them is an argument-based
review form. The reviewers were asked to provide arguments for and against the paper. This has been
tremendously helpful for ACs and PCs to analyze the reviews and come up with final recommendations.
The authors were asked to respond to the con arguments during the rebuttal. In coordination with the
NAACL HLT 2018 PCs, we plan to do some analytics on anonymized reviews and rebuttal statements,
with the consent of the reviewers and authors. Our purpose is to improve the quality of the review
process. The data will be compiled into a unique corpus for NLP, and will be made available to the
research community after appropriate anonymization checks, at the earliest in 2 years after ACL 2018.
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We hope to provide data on how to review to younger researchers, and to improve the transparency of the
reviewing process in general.

The ACL 2018 conference is super-competitive: We accepted 256 out of 1018 submitted long papers and
125 out of 526 short papers, with an overall acceptance rate of 24.7%. The details of the review process
are available at the conference homepage. Criteria of acceptance were mainly:

e strengths/weaknesses raised by reviewers and their significance;
o the result of discussions and author responses;

e contribution to CL as the science of language: whether the paper advances (or contributes to) our
understanding of language in any way;

e diversity: we do not want to fill ACL with similar papers like achieving 1% improvement on a
well-known task.

We also considered the balance of paper types, topics and contributions and re-considered the acceptance
when reviewers reported any problem in preliminary checks (Appropriateness to Handling of Human
Farticipants).

Continuing the tradition, ACL 2018 will feature 20 papers which were accepted for publication in the
Transactions of the Association for Computational Linguistics (TACL). The TACL papers were split into
10 oral presentations and 10 poster presentations.

There are many people to thank for who have worked diligently to make ACL 2018 possible. All names
are listed in the Program Committee section of the Front Matter.

Since the conference size continues to grow and the organizational complexity increases, we have
introduced the role of Program Committee Co-Chair Assistants. In total, 5 senior researchers have
supported the PCs during most intensive work phases to handle the communication in a timely manner,
draft various documents and effectively prepare decisions.

Thanks to our area chairs for their hard work on recruiting reviewers, managing reviews, leading
discussions, and making recommendations.

This program certainly would not be possible without the help of the 1610 reviewers. In particular, 192
reviewers from this list were recognized by the area chairs as outstanding reviewers who have turned
in exceptionally well-written and constructive reviews and who have actively engaged themselves in the
post-rebuttal discussions.

We are also deeply indebted to the best paper selection committee which consists of 22 members. They
had to additionally review 6-8 papers according to the best paper criteria on short notice. Their time and
effort in recommending the best paper awards is much appreciated.

We also would like to thank many colleagues for generously sharing their experience in organizing
prior ACL conferences and for their advice. We are grateful for the guidance and the support of the
ACL presidents Joakim Nivre and Marti Hearst, and the ACL board. We also would like to thank the
publication co-chairs Shay Cohen, Kevin Gimpel and Wei Lu (Advisory) and the handbook chair Jey Han
Lau for putting together the proceedings and the conference handbook; and Rich Gerber from Softconf
for always being responsive to our requests. We would like to thank the ACL Business Manager Priscilla
Rasmussen for helping us to sort important things out. Finally, this conference could not have happened
without the efforts of the general chair, Claire Cardie. We thank her for the leadership and advice,
especially when matters got complicated.
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We hope you will enjoy ACL 2018 and contribute to the future success of our community!

ACL 2018 Program Committee Co-Chairs
Iryna Gurevych, TU Darmstadt, Germany
Yusuke Miyao, National Institute of Informatics, Japan
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The process for selecting best papers and honourable mentions

The Program Committee Co-Chairs (PCs) have defined a multi-step process. Area Chairs (ACs) were
asked to select a number of top papers in their areas satisfying as many as possible of the following
criteria:

e high quality
e nominated for the award by at least one primary reviewer

e bringing disruptive ground-breaking innovation as compared to the current mainstream

ACs re-read their finalists and discussed among themselves the merits of the nominee’s work with the
help of the primary reviews. ACs then submitted the papers to the PCs along with their selection
decisions. PCs balanced ACs’ nominations for diversity and representativeness among areas and the
review consistency. They prepared the papers in Softconf for best-paper reviewing and selection. There
were 52 best paper candidates.

In parallel, PCs formed the best paper selection committee (BPC) from 22 experts in the field with a
mix of expertise and backgrounds and at a good seniority level. In case of COIs, the BPC member was
excluded from the further evaluation process. BPC members reviewed 6-8 papers each and provided a
short review with respect to the best paper criteria.

Based on BPC recommendations, there were about 20 papers left in the pool. PCs then re-read those
papers and discussed their particular merits. Finally, 6 long papers and 2 short papers were selected as
honourable mentions. For the best papers, 3 long papers and 2 short papers were selected for presentation
in the closing conference session.

The selected honourable mentions and best papers emphasize the diversity of the ACL in terms of
research questions, methods, and interdisciplinarity.

Best Long Papers
o Finding syntax in human encephalography with beam search. John Hale, Chris Dyer, Adhiguna
Kuncoro and Jonathan Brennan.

e Learning to Ask Good Questions: Ranking Clarification Questions using Neural Expected Value
of Perfect Information. Sudha Rao and Hal Daumé III.

e Let’s do it “again”: A First Computational Approach to Detecting Adverbial Presupposition
Triggers. Andre Cianflone, Yulan Feng, Jad Kabbara and Jackie Chi Kit Cheung.

Best Short Papers

o Know What You Don’t Know: Unanswerable Questions for SQuAD. Pranav Rajpurkar, Robin Jia
and Percy Liang.
e ‘Lighter’ Can Still Be Dark: Modeling Comparative Color Descriptions. Olivia Winn and

Smaranda Muresan.
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Invited Talk: Deep Neural Networks, and what they’re not very good at
Anton van den Hengel
Professor, School of Computer Science, University of Adelaide

Abstract: Deep Neural Networks have had an incredible impact in a variety of areas within machine
learning, including computer vision and natural language processing. Deep Neural Networks use implicit
representations that are very high-dimensional, however, and are thus particularly well suited to problems
that can be solved by associative recall of previous solutions. They are ill-suited to problems that require
human-interpretable representations, explicit manipulation of symbols, or reasoning. The dependency
of Deep Neural Networks on large volumes of training data, also means that they are typically only
applicable when the problem itself, and the nature of the test data, are predictable long in advance.

The application of Deep Neural Networks to Visual Question Answering has achieved results that would
have been thought impossible only a few years ago. It has also thrown a spotlight on the shortcomings
of current Deep Nets in solving problems that require explicit reasoning, the use of a knowledge base, or
the ability to learn on the fly. In this talk I will illustrate some of the steps being taken to address these
problems, and a new learning-to-learn approach that we hope will combine the power of Deep Learning
with the significant benefits of explicit-reasoning-based methods.

Bio: Anton van den Hengel is a Professor in the School of Computer Science at the University of
Adelaide, the Director of the Australian Institute for Machine Learning, and a Chief Investigator of the
Australian Centre for Robotic Vision. Prof. van den Hengel has been a CI on over $60m in external
research funding from sources including Google, Canon, BHP Billiton and the ARC, and has won a
number of awards, including the Pearcey Foundation Entrepreneur Award, the SA Science Excellence
Award for Research Collaboration, and the CVPR Best Paper prize in 2010. He has authored over
300 publications, had 8 patents commercialised, formed 2 start-ups, and has recently had a medical
technology achieve first-in-class FDA approval. Current research interests include Deep Learning, vison
and language problems, interactive image-based modelling, large-scale video surveillance, and learning
from large image databases.



Invited Talk: Who is the Bridge Between the What and the How

Carolyn Penstein Rosé
Professor, School of Computer Science, Carnegie Mellon University

Abstract: This talk reports on over a decade of research where theoretical foundations motivate
computational models that produce real world impact in online spaces. Both the earliest philosophers of
language and the most recent researchers in computational approaches to social media analysis have
acknowledged the distinction between the what of language, namely its propositional content, and
the how of language, or its form, style, or framing. What bridges between these realms are social
processes that motivate the linguistic choices that result in specific realizations of propositional content
situated within social interactions, designed to achieve social goals. These insights allow researchers
to make sense of the connection between discussion processes and outcomes from those discussions.
These findings motivate on the one hand design of computational approaches to real time monitoring of
discussion processes and on the other hand the design of interventions that support interactions in online
spaces with the goal of increasing desired outcomes, including learning, health, and wellbeing.

As an example, in this talk we probe into a specific quality of discussion referred to as Transactivity.
Transactivity is the extent to which a contribution articulates the reasoning of the speaker, that of an
interlocutor, and the relation between them. In different contexts, and within very distinct theoretical
frameworks, this construct has been associated with solidarity, influence, expertise transfer, and learning.
Within the construct of Transactivity, the cognitive and social underpinnings are inextricably linked such
that modeling the who enables prediction of the connection between the what and the how.

Bio: Dr. Carolyn Rosé is a Professor of Language Technologies and Human-Computer Interaction in the
School of Computer Science at Carnegie Mellon University. Her research program is focused on better
understanding the social and pragmatic nature of conversation, and using this understanding to build
computational systems that can improve the efficacy of conversation between people, and between people
and computers. In order to pursue these goals, she invokes approaches from computational discourse
analysis and text mining, conversational agents, and computer supported collaborative learning.
Her research group’s highly interdisciplinary work, published in 200 peer reviewed publications, is
represented in the top venues in 5 fields: namely, Language Technologies, Learning Sciences, Cognitive
Science, Educational Technology, and Human-Computer Interaction, with awards in 3 of these fields.
She serves as Past President and Inaugural Fellow of the International Society of the Learning Sciences,
Chair of the International Alliance to Advance Learning in the Digital Era, and Executive Editor of the
International Journal of Computer-Supported Collaborative Learning.
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Yang Li, Bo Zhao, Ariel Fuxman and Fangbo Tao

A Multi-Axis Annotation Scheme for Event Temporal Relations
Qiang Ning, Hao Wu and Dan Roth
Session 4D: Dialog System 2

Exemplar Encoder-Decoder for Neural Conversation Generation
Gaurav Pandey, Danish Contractor, Vineet Kumar and Sachindra Joshi

DialSQL: Dialogue Based Structured Query Generation
Izzeddin Gur, Semih Yavuz, Yu Su and Xifeng Yan

Conversations Gone Awry: Detecting Early Signs of Conversational Failure

Justine Zhang, Jonathan Chang, Cristian Danescu-Niculescu-Mizil, Lucas Dixon,
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Iv



Tuesday, July 17, 2018 (continued)

10:30-10:55

10:55-11:20

11:20-11:45

10:30-10:55

10:55-11:20

11:20-11:45

11:45-12:10

12:10-12:30

12:30-14:00

12:30-14:00

Session 4E: Evaluation
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Rotem Dror, Gili Baumer, Segev Shlomov and Roi Reichart

Session 4F: Parsing 2

Distilling Knowledge for Search-based Structured Prediction
Yijia Liu, Wanxiang Che, Huaipeng Zhao, Bing Qin and Ting Liu

Stack-Pointer Networks for Dependency Parsing
Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng, Graham Neubig and Eduard
Hovy

Twitter Universal Dependency Parsing for African-American and Mainstream
American English
Su Lin Blodgett, Johnny Wei and Brendan O’Connor
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Adhiguna Kuncoro, Chris Dyer, John Hale, Dani Yogatama, Stephen Clark and Phil
Blunsom
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Wengiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun Ren, Xiangnan He and Dawei
Yin
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Global-Locally Self-Attentive Encoder for Dialogue State Tracking
Victor Zhong, Caiming Xiong and Richard Socher

Mem2Seq: Effectively Incorporating Knowledge Bases into End-to-End Task-
Oriented Dialog Systems
Andrea Madotto, Chien-Sheng Wu and Pascale Fung

Tailored Sequence to Sequence Models to Different Conversation Scenarios
Hainan Zhang, Yanyan Lan, Jiafeng Guo, Jun Xu and Xueqi Cheng

Knowledge Diffusion for Neural Dialogue Generation
Shuman Liu, Hongshen Chen, Zhaochun Ren, Yang Feng, Qun Liu and Dawei Yin

Generating Informative Responses with Controlled Sentence Function
Pei Ke, Jian Guan, Minlie Huang and xiaoyan zhu

Sentiment Adaptive End-to-End Dialog Systems
Weiyan Shi and Zhou Yu

Embedding Learning Through Multilingual Concept Induction
Philipp Dufter, Mengjie Zhao, Martin Schmitt, Alexander Fraser and Hinrich
Schiitze

Isomorphic Transfer of Syntactic Structures in Cross-Lingual NLP
Edoardo Maria Ponti, Roi Reichart, Anna Korhonen and Ivan Vuli¢

Language Modeling for Code-Mixing: The Role of Linguistic Theory based Syn-
thetic Data

Adithya Pratapa, Gayatri Bhat, Monojit Choudhury, Sunayana Sitaram, Sandipan
Dandapat and Kalika Bali

Poster Session 2C: Information Extraction, Text Mining

Chinese NER Using Lattice LSTM
Yue Zhang and Jie Yang
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Discovering Implicit Knowledge with Unary Relations
Michael Glass and Alfio Gliozzo

Improving Entity Linking by Modeling Latent Relations between Mentions
Phong Le and Ivan Titov

Dating Documents using Graph Convolution Networks
Shikhar Vashishth, Shib Sankar Dasgupta, Swayambhu Nath Ray and Partha Taluk-
dar

Poster Session 2D: Generation

A Graph-to-Sequence Model for AMR-to-Text Generation
Linfeng Song, Yue Zhang, Zhiguo Wang and Daniel Gildea

GTR-LSTM: A Triple Encoder for Sentence Generation from RDF Data
Bayu Distiawan Trisedya, Jianzhong Qi, Rui Zhang and Wei Wang

Learning to Write with Cooperative Discriminators
Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine Bosselut, David Golub and Yejin
Choi

A Neural Approach to Pun Generation
Zhiwei Yu, Jiwei Tan and Xiaojun Wan

Learning to Generate Move-by-Move Commentary for Chess Games from Large-
Scale Social Forum Data

Harsh Jhamtani, Varun Gangal, Eduard Hovy, Graham Neubig and Taylor Berg-
Kirkpatrick

From Credit Assignment to Entropy Regularization: Two New Algorithms for Neural
Sequence Prediction
Zihang Dai, Qizhe Xie and Eduard Hovy
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DuoRC: Towards Complex Language Understanding with Paraphrased Reading
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Stochastic Answer Networks for Machine Reading Comprehension
Xiaodong Liu, Yelong Shen, Kevin Duh and Jianfeng Gao

Multi-Granularity Hierarchical Attention Fusion Networks for Reading Compre-
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Wei Wang, Ming Yan and Chen Wu

Joint Training of Candidate Extraction and Answer Selection for Reading Compre-
hension
Zhen Wang, Jiachen Liu, Xinyan Xiao, Yajuan Lyu and Tian Wu

Efficient and Robust Question Answering from Minimal Context over Documents
Sewon Min, Victor Zhong, Richard Socher and Caiming Xiong

Denoising Distantly Supervised Open-Domain Question Answering
Yankai Lin, Haozhe Ji, Zhiyuan Liu and Maosong Sun

Question Condensing Networks for Answer Selection in Community Question An-

swering
Wei Wu, Xu SUN and Houfeng WANG

Poster Session 2F: Machine Translation

Towards Robust Neural Machine Translation
Yong Cheng, Zhaopeng Tu, Fandong Meng, Junjie Zhai and Yang Liu

Attention Focusing for Neural Machine Translation by Bridging Source and Target
Embeddings
Shaohui Kuang, Junhui Li, Anténio Branco, Weihua Luo and Deyi Xiong

Reliability and Learnability of Human Bandit Feedback for Sequence-to-Sequence

Reinforcement Learning
Julia Kreutzer, Joshua Uyheng and Stefan Riezler
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Accelerating Neural Transformer via an Average Attention Network
Biao Zhang, Deyi Xiong and jinsong su

How Much Attention Do You Need? A Granular Analysis of Neural Machine Trans-
lation Architectures
Tobias Domhan

Session 6A: Semantic Parsing 2

Weakly Supervised Semantic Parsing with Abstract Examples
Omer Goldman, Veronica Latcinnik, Ehud Nave, Amir Globerson and Jonathan
Berant

Improving a Neural Semantic Parser by Counterfactual Learning from Human Ban-
dit Feedback
Carolin Lawrence and Stefan Riezler

AMR dependency parsing with a typed semantic algebra

Jonas Groschwitz, Matthias Lindemann, Meaghan Fowlie, Mark Johnson and
Alexander Koller

Sequence-to-sequence Models for Cache Transition Systems

Xiaochang Peng, Linfeng Song, Daniel Gildea and Giorgio Satta

Session 6B: Machine Learning 2

Batch IS NOT Heavy: Learning Word Representations From All Samples
Xin Xin, Fajie Yuan, Xiangnan He and Joemon M Jose

Backpropagating through Structured Argmax using a SPIGOT
Hao Peng, Sam Thomson and Noah A. Smith

Learning How to Actively Learn: A Deep Imitation Learning Approach
Ming Liu, Wray Buntine and Gholamreza Haffari

Training Classifiers with Natural Language Explanations

Braden Hancock, Paroma Varma, Stephanie Wang, Martin Bringmann, Percy Liang
and Christopher Ré
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Did the Model Understand the Question?
Pramod Kaushik Mudrakarta, Ankur Taly, Mukund Sundararajan and Kedar
Dhamdhere

Harvesting Paragraph-level Question-Answer Pairs from Wikipedia
Xinya Du and Claire Cardie

Multi-Passage Machine Reading Comprehension with Cross-Passage Answer Veri-
fication

Yizhong Wang, Kai Liu, Jing Liu, Wei He, Yajuan Lyu, Hua Wu, Sujian Li and
Haifeng Wang

Session 6D: Generation 2

Language Generation via DAG Transduction
Yajie Ye, Weiwei Sun and Xiaojun Wan

A Distributional and Orthographic Aggregation Model for English Derivational
Morphology
Daniel Deutsch, John Hewitt and Dan Roth

Deep-speare: A joint neural model of poetic language, meter and rhyme
Jey Han Lau, Trevor Cohn, Timothy Baldwin, Julian Brooke and Adam Hammond

NeuralREG: An end-to-end approach to referring expression generation

Thiago Castro Ferreira, Diego Moussallem, Akos Kédar, Sander Wubben and Emiel
Krahmer
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Session 6E: Social Media

Stock Movement Prediction from Tweets and Historical Prices
Yumo Xu and Shay B. Cohen

Rumor Detection on Twitter with Tree-structured Recursive Neural Networks
Jing Ma, Wei Gao and Kam-Fai Wong

Visual Attention Model for Name Tagging in Multimodal Social Media
Di Lu, Leonardo Neves, Vitor Carvalho, Ning Zhang and Heng Ji

Multimodal Named Entity Disambiguation for Noisy Social Media Posts
Seungwhan Moon, Leonardo Neves and Vitor Carvalho
Session 6F: Information Retrieval

Semi-supervised User Geolocation via Graph Convolutional Networks
Afshin Rahimi, Trevor Cohn and Timothy Baldwin

Document Modeling with External Attention for Sentence Extraction
Shashi Narayan, Ronald Cardenas, Nikos Papasarantopoulos, Shay B. Cohen,
Mirella Lapata, Jiangsheng Yu and Yi Chang

Neural Models for Documents with Metadata
Dallas Card, Chenhao Tan and Noah A. Smith

NASH: Toward End-to-End Neural Architecture for Generative Semantic Hashing
Dinghan Shen, Qinliang Su, Paidamoyo Chapfuwa, Wenlin Wang, Guoyin Wang,
Ricardo Henao and Lawrence Carin

Short Break

ACL Business Meeting
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Invited Talk 2: Anton van den Hengel

Coffee Break

Session 7A: Semantic Parsing 3

Large-Scale QA-SRL Parsing
Nicholas FitzGerald, Julian Michael, Luheng He and Luke Zettlemoyer

Syntax for Semantic Role Labeling, To Be, Or Not To Be
Shexia He, Zuchao Li, Hai Zhao and Hongxiao Bai

Situated Mapping of Sequential Instructions to Actions with Single-step Reward
Observation
Alane Suhr and Yoav Artzi

Marrying Up Regular Expressions with Neural Networks: A Case Study for Spoken
Language Understanding

Bingfeng Luo, Yansong Feng, Zheng Wang, Songfang Huang, Rui Yan and
Dongyan Zhao
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Numbers
Georgios Spithourakis and Sebastian Riedel
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Amulya Gupta and Zhu Zhang
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Alexis Conneau, German Kruszewski, Guillaume Lample, Loic Barrault and Marco
Baroni

Session 7C: Information Extraction 3

Robust Distant Supervision Relation Extraction via Deep Reinforcement Learning
Pengda Qin, Weiran XU and William Yang Wang

Interpretable and Compositional Relation Learning by Joint Training with an Au-
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Ryo Takahashi, Ran Tian and Kentaro Inui

Zero-Shot Transfer Learning for Event Extraction
Lifu Huang, Heng Ji, Kyunghyun Cho, Ido Dagan, Sebastian Riedel and Clare Voss

Recursive Neural Structural Correspondence Network for Cross-domain Aspect and

Opinion Co-Extraction
Wenya Wang and Sinno Jialin Pan
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Young-Bum Kim, Dongchan Kim, Anjishnu Kumar and Ruhi Sarikaya
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Multimodal Affective Analysis Using Hierarchical Attention Strategy with Word-
Level Alignment
Yue Gu, Kangning Yang, Shiyu Fu, Shuhong Chen, Xinyu Li and Ivan Marsic
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Discourse Coherence: Concurrent Explicit and Implicit Relations
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A Spatial Model for Extracting and Visualizing Latent Discourse Structure in Text
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A Deep Relevance Model for Zero-Shot Document Filtering
Chenliang Li, Wei Zhou, Feng Ji, Yu Duan and Haiging Chen

Disconnected Recurrent Neural Networks for Text Categorization
Baoxin Wang

Joint Embedding of Words and Labels for Text Classification
Guoyin Wang, Chunyuan Li, Wenlin Wang, Yizhe Zhang, Dinghan Shen, Xinyuan
Zhang, Ricardo Henao and Lawrence Carin

Neural Sparse Topical Coding

Min Peng, Qiangian Xie, Yanchun Zhang, Hua Wang, Xiuzhen Zhang, Jimin Huang
and Gang Tian
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Hongyu Gong, Tarek Sakakini, Suma Bhat and JinJun Xiong

Eyes are the Windows to the Soul: Predicting the Rating of Text Quality Using Gaze
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Sandeep Mathias, Diptesh Kanojia, Kevin Patel, Samarth Agrawal, Abhijit Mishra
and Pushpak Bhattacharyya

Multi-Input Attention for Unsupervised OCR Correction
Rui Dong and David Smith

Building Language Models for Text with Named Entities
Md Rizwan Parvez, Saikat Chakraborty, Baishakhi Ray and Kai-Wei Chang

hyperdoc2vec: Distributed Representations of Hypertext Documents
Jialong Han, Yan Song, Wayne Xin Zhao, Shuming Shi and Haisong Zhang

Entity-Duet Neural Ranking: Understanding the Role of Knowledge Graph Seman-
tics in Neural Information Retrieval
Zhenghao Liu, Chenyan Xiong, Maosong Sun and Zhiyuan Liu
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Neural Natural Language Inference Models Enhanced with External Knowledge
Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Diana Inkpen and Si Wei

AdvEntuRe: Adversarial Training for Textual Entailment with Knowledge-Guided
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Dongyeop Kang, Tushar Khot, Ashish Sabharwal and Eduard Hovy

Subword-level Word Vector Representations for Korean
Sungjoon Park, Jeongmin Byun, Sion Baek, Yongseok Cho and Alice Oh
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Huiming Jin, Hao Zhu, Zhiyuan Liu, Ruobing Xie, Maosong Sun, Fen Lin and Leyu
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Jisun An, Haewoon Kwak and Yong-Yeol Ahn
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Piyush Sharma, Nan Ding, Sebastian Goodman and Radu Soricut

Ixviii



Wednesday, July 18, 2018 (continued)

12:30-14:00

Learning Translations via Images with a Massively Multilingual Image Dataset
John Hewitt, Daphne Ippolito, Brendan Callahan, Reno Kriz, Derry Tanti Wijaya
and Chris Callison-Burch

On the Automatic Generation of Medical Imaging Reports
Baoyu Jing, Pengtao Xie and Eric Xing

Attacking Visual Language Grounding with Adversarial Examples: A Case Study
on Neural Image Captioning
Hongge Chen, Huan Zhang, Pin-Yu Chen, Jinfeng Yi and Cho-Jui Hsieh

Think Visually: Question Answering through Virtual Imagery
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Probabilistic FastText for Multi-Sense Word Embeddings
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Cornell University
pa338@cornell.edu

Abstract

We introduce Probabilistic FastText, a new
model for word embeddings that can cap-
ture multiple word senses, sub-word struc-
ture, and uncertainty information. In
particular, we represent each word with
a Gaussian mixture density, where the
mean of a mixture component is given
by the sum of n-grams. This represen-
tation allows the model to share statis-
tical strength across sub-word structures
(e.g. Latin roots), producing accurate rep-
resentations of rare, misspelt, or even un-
seen words. Moreover, each component
of the mixture can capture a different
word sense. Probabilistic FastText out-
performs both FASTTEXT, which has no
probabilistic model, and dictionary-level
probabilistic embeddings, which do not
incorporate subword structures, on sev-
eral word-similarity benchmarks, includ-
ing English RareWord and foreign lan-
guage datasets. We also achieve state-of-
art performance on benchmarks that mea-
sure ability to discern different meanings.
Thus, the proposed model is the first to
achieve multi-sense representations while
having enriched semantics on rare words.

1 Introduction

Word embeddings are foundational to natural
language processing. In order to model lan-
guage, we need word representations to contain as
much semantic information as possible. Most re-
search has focused on vector word embeddings,
such as WORD2VEC (Mikolov et al., 2013a),
where words with similar meanings are mapped
to nearby points in a vector space. Following the

* Work done partly during internship at Amazon.

Andrew Gordon Wilson
Cornell University
andrew@cornell.edu

1

Anima Anandkumar
AWS & Caltech

anima@amazon.com

seminal work of Mikolov et al. (2013a), there have
been numerous works looking to learn efficient
word embeddings.

One shortcoming with the above approaches
to word embedding that are based on a prede-
fined dictionary (termed as dictionary-based em-
beddings) is their inability to learn representa-
tions of rare words. To overcome this limitation,
character-level word embeddings have been pro-
posed. FASTTEXT (Bojanowski et al., 2016) is
the state-of-the-art character-level approach to em-
beddings. In FASTTEXT, each word is modeled
by a sum of vectors, with each vector represent-
ing an n-gram. The benefit of this approach is that
the training process can then share strength across
words composed of common roots. For exam-
ple, with individual representations for “circum”
and “navigation”, we can construct an informa-
tive representation for “circumnavigation”, which
would otherwise appear too infrequently to learn a
dictionary-level embedding. In addition to effec-
tively modelling rare words, character-level em-
beddings can also represent slang or misspelled
words, such as “dogz”, and can share strength
across different languages that share roots, e.g.
Romance languages share latent roots.

A different promising direction involves repre-
senting words with probability distributions, in-
stead of point vectors. For example, Vilnis and
McCallum (2014) represents words with Gaussian
distributions, which can capture uncertainty infor-
mation. Athiwaratkun and Wilson (2017) gen-
eralizes this approach to multimodal probability
distributions, which can naturally represent words
with different meanings. For example, the distri-
bution for “rock” could have mass near the word
“jazz” and “pop”, but also “stone” and “basalt”.
Athiwaratkun and Wilson (2018) further devel-
oped this approach to learn hierarchical word rep-
resentations: for example, the word “music” can
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be learned to have a broad distribution, which en-
capsulates the distributions for “jazz” and “rock”.

In this paper, we propose Probabilistic Fast-
Text (PFT), which provides probabilistic character-
level representations of words. The resulting word
embeddings are highly expressive, yet straightfor-
ward and interpretable, with simple, efficient, and
intuitive training procedures. PFT can model rare
words, uncertainty information, hierarchical rep-
resentations, and multiple word senses. In partic-
ular, we represent each word with a Gaussian or a
Gaussian mixture density, which we name PFT-G
and PFT-GM respectively. Each component of the
mixture can represent different word senses, and
the mean vectors of each component decompose
into vectors of n-grams, to capture character-level
information. We also derive an efficient energy-
based max-margin training procedure for PFT.

We perform comparison with FASTTEXT as
well as existing density word embeddings W2G
(Gaussian) and W2GM (Gaussian mixture). Our
models extract high-quality semantics based on
multiple word-similarity benchmarks, including
the rare word dataset. We obtain an average
weighted improvement of 3.7% over FASTTEXT
(Bojanowski et al., 2016) and 3.1% over the
dictionary-level density-based models. We also
observe meaningful nearest neighbors, particu-
larly in the multimodal density case, where each
mode captures a distinct meaning. Our models are
also directly portable to foreign languages with-
out any hyperparameter modification, where we
observe strong performance, outperforming FAST-
TEXT on many foreign word similarity datasets.
Our multimodal word representation can also dis-
entangle meanings, and is able to separate differ-
ent senses in foreign polysemies. In particular,
our models attain state-of-the-art performance on
SCWS, a benchmark to measure the ability to sep-
arate different word meanings, achieving 1.0% im-
provement over a recent density embedding model
W2GM (Athiwaratkun and Wilson, 2017).

To the best of our knowledge, we are the first
to develop multi-sense embeddings with high se-
mantic quality for rare words. Our code and em-
beddings are publicly available. !

2 Related Work

Early word embeddings which capture semantic
information include Bengio et al. (2003), Col-

lhttps ://github.com/benathi/multisense-prob-fasttext

lobert and Weston (2008), and Mikolov et al.
(2011). Later, Mikolov et al. (2013a) developed
the popular WORD2 VEC method, which proposes
a log-linear model and negative sampling ap-
proach that efficiently extracts rich semantics from
text. Another popular approach GLOVE learns
word embeddings by factorizing co-occurrence
matrices (Pennington et al., 2014).

Recently there has been a surge of interest in
making dictionary-based word embeddings more
flexible. This flexibility has valuable applica-
tions in many end-tasks such as language mod-
eling (Kim et al., 2016), named entity recogni-
tion (Kuru et al., 2016), and machine translation
(Zhao and Zhang, 2016; Lee et al., 2017), where
unseen words are frequent and proper handling of
these words can greatly improve the performance.
These works focus on modeling subword informa-
tion in neural networks for tasks such as language
modeling.

Besides vector embeddings, there is recent work
on multi-prototype embeddings where each word
is represented by multiple vectors. The learn-
ing approach involves using a cluster centroid of
context vectors (Huang et al., 2012), or adapt-
ing the skip-gram model to learn multiple latent
representations (Tian et al., 2014). Neelakan-
tan et al. (2014) furthers adapts skip-gram with
a non-parametric approach to learn the embed-
dings with an arbitrary number of senses per word.
Chen et al. (2014) incorporates an external dataset
WORDNET to learn sense vectors. We compare
these models with our multimodal embeddings in
Section 4.

3 Probabilistic FastText

We introduce Probabilistic FastText, which com-
bines a probabilistic word representation with the
ability to capture subword structure. We describe
the probabilistic subword representation in Sec-
tion 3.1. We then describe the similarity measure
and the loss function used to train the embeddings
in Sections 3.2 and 3.3. We conclude by briefly
presenting a simplified version of the energy func-
tion for isotropic Gaussian representations (Sec-
tion 3.4), and the negative sampling scheme we
use in training (Section 3.5).

3.1 Probabilistic Subword Representation

We represent each word with a Gaussian mixture
with K Gaussian components. That is, a word
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Figure 1: (1a) a Gaussian component and its sub-
word structure. The bold arrow represents the final
mean vector, estimated from averaging the grey
n-gram vectors. (1b) PFT-G model: Each Gaus-
sian component’s mean vector is a subword vector.
(1c) PFT-GM model: For each Gaussian mixture
distribution, one component’s mean vector is esti-
mated by a subword structure whereas other com-
ponents are dictionary-based vectors.

w is associated with a density function f(z) =
Zﬁlpw7i/\f(x;ﬁw7i,2w,i) where {p,,i}5 | are
the mean vectors and {X,, ;} are the covariance
matrices, and {p,, ;}2_| are the component prob-
abilities which sum to 1.

The mean vectors of Gaussian components hold
much of the semantic information in density em-
beddings. While these models are successful
based on word similarity and entailment bench-
marks (Vilnis and McCallum, 2014; Athiwaratkun
and Wilson, 2017), the mean vectors are often
dictionary-level, which can lead to poor semantic
estimates for rare words, or the inability to handle
words outside the training corpus. We propose us-
ing subword structures to estimate the mean vec-
tors. We outline the formulation below.

For word w, we estimate the mean vector (i,
with the average over n-gram vectors and its
dictionary-level vector. That is,

vt Y, oz (D

where z, is a vector associated with an n-gram g,
vy, 18 the dictionary representation of word w, and
NG, is a set of n-grams of word w. Examples
of 3,4-grams for a word “beautiful”, including the

beginning-of-word character ‘(’ and end-of-word
character ‘), are:

e 3-grams: (be, bea, eau, aut, uti, tif, ful, ul)
e 4-grams: (bea, beau .., iful ,ful)

This structure is similar to that of FASTTEXT
(Bojanowski et al., 2016); however, we note
that FASTTEXT uses single-prototype determinis-
tic embeddings as well as a training approach that
maximizes the negative log-likelihood, whereas
we use a multi-prototype probabilistic embedding
and for training we maximize the similarity be-
tween the words’ probability densities, as de-
scribed in Sections 3.2 and 3.3

Figure la depicts the subword structure for
the mean vector. Figure 1b and 1c depict our
models, Gaussian probabilistic FASTTEXT (PFT-
G) and Gaussian mixture probabilistic FASTTEXT
(PFT-GM). In the Gaussian case, we represent each
mean vector with a subword estimation. For the
Gaussian mixture case, we represent one Gaus-
sian component’s mean vector with the subword
structure whereas other components’ mean vec-
tors are dictionary-based. This model choice to
use dictionary-based mean vectors for other com-
ponents is to reduce to constraint imposed by the
subword structure and promote independence for
meaning discovery.

3.2 Similarity Measure between Words

Traditionally, if words are represented by vec-
tors, a common similarity metric is a dot prod-
uct. In the case where words are represented
by distribution functions, we use the general-
ized dot product in Hilbert space (-,-)r,, which
is called the expected likelihood kernel (Jebara
et al., 2004). We define the energy E(f,g)
between two words f and g to be E(f,g) =
log(f,9)r, = log [ f(x)g(z) dz. With Gaussian
mixtures f(z) = Y1, piN(x; fifi, Sp,) and
9(x) = Sy aiN (@3 figi Bo)s itapi = 1.
and Zfi 1 ¢i = 1, the energy has a closed form:

K K
E(f,g) =logy > pigie" ()
j=1 i=1

where §; ; is the partial energy which corresponds
to the similarity between component ¢ of the first



word f and component j of the second word ¢.?
§ij =1og N(0; figi — figj, X+ Xg.j)
1 D
= 5 logdet(Sy, + £g,) — 5 log(2m)

1, . 1o .
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Figure 2 demonstrates the partial energies among
the Gaussian components of two words.

funk, _ : bang,
pop-rock, " crack, snap
band 13
$0,1
basalt, : : jazz, punk,
boulder, sand o o indie

Figure 2: The interactions among Gaussian com-
ponents of word rock and word pop. The par-
tial energy is the highest for the pair rock:0
(the zeroth component of rock) and pop:1 (the
first component of pop), reflecting the similarity
in meanings.

3.3 Loss Function

The model parameters that we seek to learn are v,
for each word w and z, for each n-gram g. We
train the model by pushing the energy of a true
context pair w and c to be higher than the nega-
tive context pair w and n by a margin m. We use
Adagrad (Duchi et al., 2011) to minimize the fol-
lowing loss to achieve this outcome:

L(f,9) = max[0,m — E(f,g) + E(f,n)]. (4)

We describe how to sample words as well as its
positive and negative contexts in Section 3.5.

This loss function together with the Gaussian
mixture model with K > 1 has the ability to
extract multiple senses of words. That is, for
a word with multiple meanings, we can observe
each mode to represent a distinct meaning. For in-
stance, one density mode of “star” is close to the
densities of “celebrity” and “hollywood” whereas
another mode of “star” is near the densities of
“constellation” and “galaxy”.

2The orderings of indices of the components for each word are arbitrary.

3.4 Energy Simplification

In theory, it can be beneficial to have covari-
ance matrices as learnable parameters. In prac-
tice, Athiwaratkun and Wilson (2017) observe that
spherical covariances often perform on par with
diagonal covariances with much less computa-
tional resources. Using spherical covariances for
each component, we can further simplify the en-
ergy function as follows:

(0%
Gig =5 llnpi— tig 4117, (5)

where the hyperparameter « is the scale of the in-
verse covariance term in Equation 3. We note that
Equation 5 is equivalent to Equation 3 up to an ad-
ditive constant given that the covariance matrices
are spherical and the same for all components.

3.5 Word Sampling

To generate a context word c of a given word w,
we pick a nearby word within a context window
of a fixed length ¢. We also use a word sampling
technique similar to Mikolov et al. (2013b). This
subsampling procedure selects words for training
with lower probabilities if they appear frequently.
This technique has an effect of reducing the impor-
tance of words such as ‘the’, ‘a’, ‘to’ which can be
predominant in a text corpus but are not as mean-
ingful as other less frequent words such as ‘city’,
‘capital’, ‘animal’, etc. In particular, word w has
probability P(w) = 1 — +/t/f(w) where f(w) is
the frequency of word w in the corpus and ¢ is the
frequency threshold.

A negative context word is selected using a dis-
tribution Py, (w) o< U(w)3* where U(w) is a un-
igram probability of word w. The exponent 3/4
also diminishes the importance of frequent words
and shifts the training focus to other less frequent
words.

4 [Experiments

We have proposed a probabilistic FASTTEXT
model which combines the flexibility of subword
structure with the density embedding approach.
In this section, we show that our probabilistic
representation with subword mean vectors with
the simplified energy function outperforms many
word similarity baselines and provides disentan-
gled meanings for polysemies.

First, we describe the training details in Section
4.1. We provide qualitative evaluation in Section



4.2, showing meaningful nearest neighbors for the
Gaussian embeddings, as well as the ability to
capture multiple meanings by Gaussian mixtures.
Our quantitative evaluation in Section 4.3 demon-
strates strong performance against the baseline
models FASTTEXT (Bojanowski et al., 2016) and
the dictionary-level Gaussian (W2G) (Vilnis and
McCallum, 2014) and Gaussian mixture embed-
dings (Athiwaratkun and Wilson, 2017) (W2GM).
We train our models on foreign language corpuses
and show competitive results on foreign word sim-
ilarity benchmarks in Section 4.4. Finally, we ex-
plain the importance of the n-gram structures for
semantic sharing in Section 4.5.

4.1 Training Details

We train our models on both English and for-
eign language datasets. For English, we use the
concatenation of UKWAC and WACKYPEDIA (Ba-
roni et al., 2009) which consists of 3.376 billion
words. We filter out word types that occur fewer
than 5 times which results in a vocabulary size of
2,677,466.

For foreign languages, we demonstrate the
training of our model on French, German, and Ital-
ian text corpuses. We note that our model should
be applicable for other languages as well. We
use FRWAC (French), DEWAC (German), ITWAC
(Italian) datasets (Baroni et al., 2009) for text cor-
puses, consisting of 1.634, 1.716 and 1.955 billion
words respectively. We use the same threshold,
filtering out words that occur less than 5 times in
each corpus. We have dictionary sizes of 1.3, 2.7,
and 1.4 million words for FRWAC, DEWAC, and
ITWAC.

We adjust the hyperparameters on the English
corpus and use them for foreign languages. Note
that the adjustable parameters for our models are
the loss margin m in Equation 4 and the scale «
in Equation 5. We search for the optimal hyperpa-
rameters in a grid m € {0.01,0.1,1,10,100} and
@ € {5595=5+ 105 23107 Tx0=1) On our Bn-
glish corpus. The hyperpameter « affects the scale
of the loss function; therefore, we adjust the learn-
ing rate appropriately for each «. In particular, the
learning rates used are v = {1074,1075,1076}
for the respective o values.

Other fixed hyperparameters include the num-
ber of Gaussian components K = 2, the con-
text window length ¢ = 10 and the subsampling
threshold ¢ = 107°. Similar to the setup in FAST-

TEXT, we use n-grams where n = 3,4, 5,6 to es-
timate the mean vectors.

4.2 Qualitative Evaluation - Nearest
neighbors

We show that our embeddings learn the word se-
mantics well by demonstrating meaningful nearest
neighbors. Table 1 shows examples of polysemous
words such as rock, star, and cell.

Table 1 shows the nearest neighbors of polyse-
mous words. We note that subword embeddings
prefer words with overlapping characters as near-
est neighbors. For instance, “rock-y”, “rockn”,
and “rock” are both close to the word “rock”. For
the purpose of demonstration, we only show words
with meaningful variations and omit words with
small character-based variations previously men-
tioned. However, all words shown are in the top-
100 nearest words.

We observe the separation in meanings for the
multi-component case; for instance, one compo-
nent of the word “bank” corresponds to a financial
bank whereas the other component corresponds to
a river bank. The single-component case also has
interesting behavior. We observe that the subword
embeddings of polysemous words can represent
both meanings. For instance, both “lava-rock™ and
“rock-pop” are among the closest words to “rock”.

4.3 Word Similarity Evaluation

We evaluate our embeddings on several standard
word similarity datasets, namely, SL-999 (Hill
et al., 2014), WS-353 (Finkelstein et al., 2002),
MEN-3k (Bruni et al., 2014), MC-30 (Miller and
Charles, 1991), RG-65 (Rubenstein and Goode-
nough, 1965), YP-130 (Yang and Powers, 2006),
MTurk(-287,-771) (Radinsky et al., 2011; Halawi
et al., 2012), and RW-2k (Luong et al., 2013).
Each dataset contains a list of word pairs with a
human score of how related or similar the two
words are. We use the notation DATASET-NUM
to denote the number of word pairs NUM in each
evaluation set. We note that the dataset RW fo-
cuses more on infrequent words and SimLex-999
focuses on the similarity of words rather than re-
latedness. We also compare PFT-GM with other
multi-prototype embeddings in the literature us-
ing SCWS (Huang et al., 2012), a word similar-
ity dataset that is aimed to measure the ability of
embeddings to discern multiple meanings.

We calculate the Spearman correlation (Spear-
man, 1904) between the labels and our scores gen-



Word  Co. Nearest Neighbors
rock 0 rock:0, rocks:0, rocky:0, mudrock:0, rockscape:0, boulders:0 , coutcrops:0,
rock 1 rock:1, punk:0, punk-rock:0, indie:0, pop-rock:0, pop-punk:0, indie-rock:0, band:1
bank 0 bank:0, banks:0, banker:0, bankers:0, bankcard:0, Citibank:0, debits:0
bank 1 bank:1, banks:1, river:0, riverbank:0, embanking:0, banks:0, confluence:1
star 0 stars:0, stellar:0, nebula:0, starspot:0, stars.:0, stellas:0, constellation: 1
star 1 star:1, stars:1, star-star:0, 5-stars:0, movie-star:0, mega-star:0, super-star:0
cell 0 cell:0, cellular:0, acellular:0, lymphocytes:0, T-cells:0, cytes:0, leukocytes:0
cell 1 cell:1, cells:1, cellular:0, cellular-phone:0, cellphone:0, transcellular:0
left 0 left:0, right:1, left-hand:0, right-left:0, left-right-left:0, right-hand:0, leftwards:0
left 1 left:1, leaving:0, leavings:0, remained:0, leave:1, enmained:0, leaving-age:0, sadly-departed:0
Word Nearest Neighbors
rock rock, rock-y, rockn, rock-, rock-funk, rock/, lava-rock, nu-rock, rock-pop, rock/ice, coral-rock
bank bank-, bank/, bank-account, bank., banky, bank-to-bank, banking, Bank, bank/cash, banks.**
star ~ movie-stars, star-planet, G-star, star-dust, big-star, starsailor, 31-star, star-lit, Star, starsign, pop-stars
cell cellular, tumour-cell, in-cell, cell/tumour, 11-cell, T-cell, sperm-cell, 2-cells, Cell-to-cell
left left, left/joined, leaving, left,right, right, left)and, leftsided, lefted, leftside

Table 1: Nearest neighbors of PFT-GM (top) and PFT-G (bottom). The notation w: i denotes the ith

mixture component of the word w.

D 50 300

W2G W2GM PFT-G PFT-GM | FASTTEXT W2G W2GM PFT-G PFT-GM

SL-999 | 29.35 29.31 27.34 34.13 38.03 38.84 39.62 3585 39.60
WS-353 | 71.53 73.47 67.17 71.10 73.88 78.25 79.38 73.75 76.11
MEN-3K | 72.58 73.55 70.61 73.90 76.37 78.40 78.76 77.78 79.65
MC-30 | 76.48 79.08 73.54 79.75 81.20 82.42 84.58 81.90 80.93
RG-65 | 73.30 74.51 70.43 78.19 79.98 80.34 80.95 77.57 79.81
YP-130 | 41.96 45.07 37.10 40.91 53.33 46.40 47.12 48.52 54.93
MT-287 | 64.79 66.60 63.96 67.65 67.93 67.74 69.65 66.41 69.44
MT-771 | 60.86 60.82 60.40 63.86 66.89 70.10 70.36 67.18 69.68
RW-2Kk | 28.78 28.62 44.05 42.78 48.09 35.49 42,73 50.37 49.36
AVG. 42.32 42776 4435 46.47 49.28 47.71 49.54 49.86 51.10

Table 2: Spearman’s Correlation p x 100 on Word Similarity Datasets.

erated by the embeddings. The Spearman corre-
lation is a rank-based correlation measure that as-
sesses how well the scores describe the true labels.
The scores we use are cosine-similarity scores be-
tween the mean vectors. In the case of Gaussian
mixtures, we use the pairwise maximum score:

Hfi Hg,j
‘max  max ———
5 gl Mg

s(f,9) = (6)

The pair (7, j) that achieves the maximum cosine
similarity corresponds to the Gaussian component
pair that is the closest in meanings. Therefore, this
similarity score yields the most related senses of a
given word pair. This score reduces to a cosine
similarity in the Gaussian case (K = 1).

4.3.1 Comparison Against Dictionary-Level
Density Embeddings and FASTTEXT

We compare our models against the dictionary-
level Gaussian and Gaussian mixture embed-
dings in Table 2, with 50-dimensional and 300-
dimensional mean vectors. The 50-dimensional
results for W2G and W2GM are obtained directly
from Athiwaratkun and Wilson (2017). For com-
parison, we use the public code? to train the 300-
dimensional W2G and W2GM models and the pub-
licly available FASTTEXT model®.

We calculate Spearman’s correlations for each
of the word similarity datasets. These datasets
vary greatly in the number of word pairs; there-
fore, we mark each dataset with its size for visibil-

3https://github.com/benathi/word2gm

4https://s3—us—west—l.amazonaws4com/fasttext—vectors/wiki.
en.zip



ity. For a fair and objective comparison, we cal-
culate a weighted average of the correlation scores
for each model.

Our PFT-GM achieves the highest average score
among all competing models, outperforming both
FASTTEXT and the dictionary-level embeddings
W2G and W2GM. Our unimodal model PFT-G also
outperforms the dictionary-level counterpart W2G
and FASTTEXT. We note that the model W2GM
appears quite strong according to Table 2, beating
PFT-GM on many word similarity datasets. How-
ever, the datasets that W2GM performs better than
PFT-GM often have small sizes such as MC-30
or RG-65, where the Spearman’s correlations are
more subject to noise. Overall, PFT-GM outper-
forms W2GM by 3.1% and 8.7% in 300 and 50 di-
mensional models. In addition, PFT-G and PFT-GM
also outperform FASTTEXT by 1.2% and 3.7% re-
spectively.

4.3.2 Comparison Against Multi-Prototype
Models

In Table 3, we compare 50 and 300 dimensional
PFT-GM models against the multi-prototype em-
beddings described in Section 2 and the existing
multimodal density embeddings W2GM. We use
the word similarity dataset SCWS (Huang et al.,
2012) which contains words with potentially many
meanings, and is a benchmark for distinguishing
senses. We use the maximum similarity score
(Equation 6), denoted as MAXSIM. AVESIM de-
notes the average of the similarity scores, rather
than the maximum.

We outperform the dictionary-based density
embeddings W2GM in both 50 and 300 dimen-
sions, demonstrating the benefits of subword in-
formation. Our model achieves state-of-the-art re-
sults, similar to that of Neelakantan et al. (2014).

4.4 Evaluation on Foreign Language
Embeddings

We evaluate the foreign-language embeddings
on word similarity datasets in respective lan-
guages. We use Italian WORDSIM353 and Ital-
ian SIMLEX-999 (Leviant and Reichart, 2015) for
Italian models, GUR350 and GURG65 (Gurevych,
2005) for German models, and French WORD-
S1M353 (Finkelstein et al., 2002) for French mod-
els. For datasets GUR350 and GURG65, we use
the results reported in the FASTTEXT publication
(Bojanowski et al., 2016). For other datasets, we
train FASTTEXT models for comparison using the

Model | Dim | p x 100
HUANG AVGSIM 50 62.8
TIAN MAXSIM 50 63.6
W2GM MAXSIM 50 62.7
NEELAKANTAN AVGSIM | 50 64.2
PFT-GM MAXSIM 50 63.7
CHEN-M AVGSIM 200 66.2
W2GM MAXSIM 200 65.5
NEELAKANTAN AVGSIM | 300 67.2
W2GM MAXSIM 300 66.5
PFT-GM MAXSIM 300 67.2

Table 3: Spearman’s Correlation p x 100 on word
similarity dataset SCWS.

public code’ on our text corpuses. We also train
dictionary-level models W2G, and W2GM for com-
parison.

Table 4 shows the Spearman’s correlation re-
sults of our models. We outperform FASTTEXT on
many word similarity benchmarks. Our results are
also significantly better than the dictionary-based
models, W2G and W2GM. We hypothesize that
W2G and W2GM can perform better than the cur-
rent reported results given proper pre-processing
of words due to special characters such as accents.

We investigate the nearest neighbors of poly-
semies in foreign languages and also observe clear
sense separation. For example, piano in Italian
can mean “floor” or “slow”. These two meanings
are reflected in the nearest neighbors where one
component is close to piano-piano, pianod which
mean “slowly” whereas the other component is
close to piani (floors), istrutturazione (renovation)
or infrastruttre (infrastructure). Table 5 shows ad-
ditional results, demonstrating that the disentan-
gled semantics can be observed in multiple lan-
guages.

4.5 Qualitative Evaluation - Subword
Decomposition

One of the motivations for using subword infor-
mation is the ability to handle out-of-vocabulary
words. Another benefit is the ability to help im-
prove the semantics of rare words via subword
sharing. Due to an observation that text corpuses
follow Zipf’s power law (Zipf, 1949), words at the
tail of the occurrence distribution appears much

5https://github.com/facebookresearch/fastTextAgit



Lang. | Evaluation | FASTTEXT w2g w2gm pft-g pft-gm
FR WS353 38.2 16.73 20.09 41.0 41.3
DE GUR350 70 65.01 6926 776 78.2

GURG65 81 7494 7689 81.8 85.2
- WS353 57.1 56.02 61.09 602 625
SL-999 29.3 2944 3491 293 337

Table 4: Word similarity evaluation on foreign languages.

Word Meaning Nearest Neighbors

(IT) secondo 2nd Secondo (2nd), terzo (3rd) , quinto (5th), primo (first), quarto (4th), ultimo (last)

(IT) secondo  according to  conformit (compliance), attenendosi (following), cui (which), conformemente (accordance with)
(IT) porta lead, bring  portano (lead), conduce (leads), portano, porter, portando (bring), costringe (forces)

(IT) porta door porte (doors), finestrella (window), finestra (window), portone (doorway), serratura (door lock)
(FR) voile veil voiles (veil), voiler (veil), voilent (veil), voilement, foulard (scarf), voils (veils), voilant (veiling)
(FR) voile sail catamaran (catamaran), driveur (driver), nautiques (water), Voile (sail), driveurs (drivers)

(FR) temps weather brouillard (fog), orageuses (stormy), nuageux (cloudy)

(FR) temps time mi-temps (half-time), partiel (partial), Temps (time), annualis (annualized), horaires (schedule)
(FR) voler steal envoler (fly), voleuse (thief), cambrioler (burgle), voleur (thief), violer (violate), picoler (tipple)
(FR) voler fly airs (air), vol (flight), volent (fly), envoler (flying), atterrir (land)

Table 5: Nearest neighbors of polysemies based on our foreign language PFT-GM models.

less frequently. Training these words to have
a good semantic representation is challenging if
done at the word level alone. However, an n-
gram such as ‘abnorm’ is trained during both oc-
currences of “abnormal” and “abnormality” in the
corpus, hence further augments both words’s se-
mantics.

Figure 3 shows the contribution of n-grams to
the final representation. We filter out to show only
the n-grams with the top-5 and bottom-5 similarity
scores. We observe that the final representations
of both words align with n-grams “abno”, “bnor”,
“abnorm”, “anbnor”, “<abn”. In fact, both “ab-
normal” and ‘“abnormality” share the same top-5
n-grams. Due to the fact that many rare words
such as “autobiographer”, “circumnavigations”, or
“hypersensitivity” are composed from many com-
mon sub-words, the n-gram structure can help im-
prove the representation quality.

5 Numbers of Components

It is possible to train our approach with K > 2
mixture components; however, Athiwaratkun and
Wilson (2017) observe that dictionary-level Gaus-
sian mixtures with K = 3 do not overall im-
prove word similarity results, even though these
mixtures can discover 3 distinct senses for certain
words. Indeed, while K > 2 in principle allows
for greater flexibility than K = 2, most words can
be very flexibly modelled with a mixture of two
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Figure 3: Contribution of each n-gram vector to
the final representation for word “abnormal” (top)
and “abnormality” (bottom). The x-axis is the co-
sine similarity between each n-gram vector zéw)

and the final vector fi,,.

Gaussians, leading to K = 2 representing a good
balance between flexibility and Occam’s razor.

Even for words with single meanings, our
PFT model with K = 2 often learns richer repre-
sentations than a K = 1 model. For example, the
two mixture components can learn to cluster to-



gether to form a more heavy tailed unimodal distri-
bution which captures a word with one dominant
meaning but with close relationships to a wide
range of other words.

In addition, we observe that our model with K
components can capture more than K meanings.
For instance, in K = 1 model, the word pairs
(“cell”, “jail”) and (“cell”, “biology”) and (“cell”,
“phone”) will all have positive similarity scores
based on K = 1 model. In general, if a word
has multiple meanings, these meanings are usually
compressed into the linear substructure of the em-
beddings (Arora et al., 2016). However, the pairs
of non-dominant words often have lower similar-
ity scores, which might not accurately reflect their
true similarities.

6 Conclusion and Future Work

We have proposed models for probabilistic word
representations equipped with flexible sub-word
structures, suitable for rare and out-of-vocabulary
words. The proposed probabilistic formulation in-
corporates uncertainty information and naturally
allows one to uncover multiple meanings with
multimodal density representations. Our models
offer better semantic quality, outperforming com-
peting models on word similarity benchmarks.
Moreover, our multimodal density models can
provide interpretable and disentangled representa-
tions, and are the first multi-prototype embeddings
that can handle rare words.

Future work includes an investigation into the
trade-off between learning full covariance ma-
trices for each word distribution, computational
complexity, and performance. This direction can
potentially have a great impact on tasks where
the variance information is crucial, such as for hi-
erarchical modeling with probability distributions
(Athiwaratkun and Wilson, 2018).

Other future work involves co-training PFT on
many languages. Currently, existing work on
multi-lingual embeddings align the word seman-
tics on pre-trained vectors (Smith et al., 2017),
which can be suboptimal due to polysemies. We
envision that the multi-prototype nature can help
disambiguate words with multiple meanings and
facilitate semantic alignment.

References

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu
Ma, and Andrej Risteski. 2016. Linear al-

gebraic structure of word senses, with appli-
cations to polysemy. CoRR abs/1601.03764.
http://arxiv.org/abs/1601.03764.

Ben Athiwaratkun and Andrew Gordon Wilson.
2017. Multimodal word distributions. In ACL.
https://arxiv.org/abs/1704.08424.

Ben Athiwaratkun and Andrew Gordon Wilson. 2018.
On modeling hierarchical data via probabilistic or-
der embeddings. ICLR .

Marco Baroni, Silvia Bernardini, Adriano Fer-
raresi, and Eros Zanchetta. 2009. The wacky
wide web: a collection of very large linguis-
tically processed web-crawled corpora. Lan-
guage Resources and Evaluation 43(3):209-226.
https://doi.org/10.1007/s10579-009-9081-4.

Yoshua Bengio, Réjean Ducharme, Pascal Vin-
cent, and Christian Janvin. 2003. A neu-
ral probabilistic language model. Journal
of Machine Learning Research 3:1137-1155.
http://www.jmlr.org/papers/v3/bengio03a.html.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vectors
with subword information. CoRR abs/1607.04606.
http://arxiv.org/abs/1607.04606.

Elia Bruni, Nam Khanh Tran, and Marco Ba-
roni. 2014. Multimodal distributional se-
mantics. J. Artif. Int. Res. 49(1):1-47.

http://dl.acm.org/citation.cfm?id=2655713.2655714.

Xinxiong Chen, Zhiyuan Liu, and Maosong Sun.
2014. A unified model for word sense represen-
tation and disambiguation. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-
29, 2014, Doha, Qatar, A meeting of SIGDAT, a Spe-
cial Interest Group of the ACL. pages 1025-1035.
http://aclweb.org/anthology/D/D14/D14-1110.pdf.

Ronan Collobert and Jason Weston. 2008. A uni-
fied architecture for natural language processing:
deep neural networks with multitask learning. In
Machine Learning, Proceedings of the Twenty-
Fifth International Conference (ICML 2008),
Helsinki, Finland, June 5-9, 2008. pages 160-167.
http://doi.acm.org/10.1145/1390156.1390177.

John C. Duchi, Elad Hazan, and Yoram Singer.
2011. Adaptive subgradient methods for on-
line learning and stochastic optimization. Jour-
nal of Machine Learning Research 12:2121-2159.
http://dl.acm.org/citation.cfm?id=2021068.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan
Ruppin. 2002. Placing search in context: the con-
cept revisited. ACM Trans. Inf. Syst. 20(1):116—131.
http://doi.acm.org/10.1145/503104.503110.



Iryna Gurevych. 2005. Using the structure of a concep-
tual network in computing semantic relatedness. In
Natural Language Processing - IICNLP 2005, Sec-
ond International Joint Conference, Jeju Island, Ko-
rea, October 11-13, 2005, Proceedings. pages 767—
778.

Guy Halawi, Gideon Dror, Evgeniy Gabrilovich, and
Yehuda Koren. 2012.  Large-scale learning of
word relatedness with constraints. In The 18th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD 12, Bei-
jing, China, August 12-16, 2012. pages 1406-1414.
http://doi.acm.org/10.1145/2339530.2339751.

Felix Hill, Roi Reichart, and Anna Korhonen. 2014.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. CoRR abs/1408.3456.
http://arxiv.org/abs/1408.3456.

Eric H. Huang, Richard Socher, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In The 50th Annual Meeting of the As-
sociation for Computational Linguistics, Proceed-
ings of the Conference, July 8-14, 2012, Jeju Island,
Korea - Volume 1: Long Papers. pages 873-882.
http://www.aclweb.org/anthology/P12-1092.

Tony Jebara, Risi Kondor, and Andrew Howard. 2004.
Probability product kernels. Journal of Machine
Learning Research 5:819-844.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2016. Character-aware neural lan-
guage models. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, February 12-
17, 2016, Phoenix, Arizona, USA.. pages 2741-
2749.

Onur Kuru, Ozan Arkan Can, and Deniz Yuret. 2016.
Charner: Character-level named entity recogni-
tion. In COLING 2016, 26th International Con-
ference on Computational Linguistics, Proceed-
ings of the Conference: Technical Papers, Decem-
ber 11-16, 2016, Osaka, Japan. pages 911-921.
http://aclweb.org/anthology/C/C16/C16-1087.pdf.

Jason Lee, Kyunghyun Cho, and Thomas
Hofmann. 2017. Fully  character-level
neural  machine translation  without  ex-
plicit  segmentation. TACL 5:365-378.

https://transacl.org/ojs/index.php/tacl/article/view/1051.

Ira Leviant and Roi Reichart. 2015. Judgment lan-
guage matters: Multilingual vector space models for
judgment language aware lexical semantics. CoRR
abs/1508.00106. http://arxiv.org/abs/1508.00106.

Minh-Thang Luong, Richard Socher, and Christo-
pher D. Manning. 2013. Better word representations
with recursive neural networks for morphology. In
CoNLL. Sofia, Bulgaria.

10

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word repre-
sentations in vector space. CoRR abs/1301.3781.
http://arxiv.org/abs/1301.3781.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013b. Efficient estimation of word repre-
sentations in vector space. CoRR abs/1301.3781.
http://arxiv.org/abs/1301.3781.

Tomas Mikolov, Stefan Kombrink, Lukas Burget, Jan
Cernocky, and Sanjeev Khudanpur. 2011. Exten-
sions of recurrent neural network language model.
In Proceedings of the IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing,
ICASSP 2011, May 22-27, 2011, Prague Congress
Center, Prague, Czech Republic. pages 5528-5531.
https://doi.org/10.1109/ICASSP.2011.5947611.

George A. Miller and Walter G. Charles. 1991.
Contextual Correlates of Semantic Similarity.
Language & Cognitive Processes 6(1):1-28.
https://doi.org/10.1080/01690969108406936.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2014. Efficient non-
parametric estimation of multiple embeddings per
word in vector space. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Spe-
cial Interest Group of the ACL. pages 1059-1069.
http://aclweb.org/anthology/D/D14/D14-1113.pdf.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Spe-
cial Interest Group of the ACL. pages 1532—-1543.
http://aclweb.org/anthology/D/D14/D14-1162.pdf.

Kira Radinsky, FEugene Agichtein, Evgeniy
Gabrilovich, and Shaul Markovitch. 2011. A
word at a time: Computing word relatedness
using temporal semantic analysis. In Proceed-
ings of the 20th International Conference on
World Wide Web. WWW °11, pages 337-346.
http://doi.acm.org/10.1145/1963405.1963455.

Herbert Rubenstein and John B. Goode-
nough. 1965. Contextual correlates of syn-
onymy. Commun. ACM  8(10):627-633.
http://doi.acm.org/10.1145/365628.365657.

Samuel L. Smith, David H. P. Turban, Steven Ham-
blin, and Nils Y. Hammerla. 2017. Offline bilin-
gual word vectors, orthogonal transformations and
the inverted softmax. CoRR abs/1702.03859.
http://arxiv.org/abs/1702.03859.

C. Spearman. 1904. The proof and measurement of
association between two things. American Journal
of Psychology 15:88-103.



Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang,
Enhong Chen, and Tie-Yan Liu. 2014. A prob-
abilistic model for learning multi-prototype word
embeddings. In COLING 2014, 25th International
Conference on Computational Linguistics, Proceed-
ings of the Conference: Technical Papers, Au-
gust 23-29, 2014, Dublin, Ireland. pages 151-160.
http://aclweb.org/anthology/C/C14/C14-1016.pdf.

Luke Vilnis and Andrew McCallum. 2014. Word
representations via gaussian embedding. CoRR
abs/1412.6623. http://arxiv.org/abs/1412.6623.

Donggiang Yang and David M. W. Powers. 2006. Verb
similarity on the taxonomy of wordnet. In In the 3rd
International WordNet Conference (GWC-06), Jeju
Island, Korea.

Shenjian Zhao and Zhihua Zhang. 2016. An efficient
character-level neural machine translation. CoRR
abs/1608.04738. http://arxiv.org/abs/1608.04738.

G.K. Zipf. 1949. Human behavior and the
principle of least effort: an introduction
to human ecology. Addison-Wesley Press.

https://books.google.com/books?id=1tx9AAAAIAAJ.

11



A La Carte Embedding:
Cheap but Effective Induction of Semantic Feature Vectors

Mikhail Khodak*, Nikunj Saunshi*
Princeton University

{mkhodak, nsaunshi}@princeton.edu

Tengyu Ma
Facebook Al Research
tengyuma@stanford.edu

Abstract

Motivations like domain adaptation, trans-
fer learning, and feature learning have fu-
eled interest in inducing embeddings for
rare or unseen words, n-grams, synsets,
and other textual features. This paper
introduces a la carte embedding, a sim-
ple and general alternative to the usual
word2vec-based approaches for building
such representations that is based upon re-
cent theoretical results for GloVe-like em-
beddings. Our method relies mainly on
a linear transformation that is efficiently
learnable using pretrained word vectors
and linear regression. This transform is
applicable “on the fly” in the future when
a new text feature or rare word is en-
countered, even if only a single usage
example is available. We introduce a
new dataset showing how the a la carte
method requires fewer examples of words
in context to learn high-quality embed-
dings and we obtain state-of-the-art results
on a nonce task and some unsupervised
document classification tasks.

1 Introduction

Distributional word embeddings, which represent
the “meaning” of a word via a low-dimensional
vector, have been widely applied by many natu-
ral language processing (NLP) pipelines and algo-
rithms (Goldberg, 2016). Following the success of
recent neural (Mikolov et al., 2013) and matrix-
factorization (Pennington et al., 2014) methods,
researchers have sought to extend the approach
to other text features, from subword elements to
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n-grams to sentences (Bojanowski et al., 2016;
Poliak et al., 2017; Kiros et al., 2015). How-
ever, the performance of both word embeddings
and their extensions is known to degrade in small
corpus settings (Adams et al., 2017) or when em-
bedding sparse, low-frequency features (Lazari-
dou et al., 2017). Attempts to address these is-
sues often involve task-specific approaches (Rothe
and Schiitze, 2015; Iacobacci et al., 2015; Pagliar-
dini et al., 2018) or extensively tuning existing ar-
chitectures such as skip-gram (Poliak et al., 2017;
Herbelot and Baroni, 2017).

For computational efficiency it is desirable that
methods be able to induce embeddings for only
those features (e.g. bigrams or synsets) needed
by the downstream task, rather than having to pay
a computational prix fixe to learn embeddings for
all features occurring frequently-enough in a cor-
pus. We propose an alternative, novel solution via
a la carte embedding, a method which bootstraps
existing high-quality word vectors to learn a fea-
ture representation in the same semantic space via
a linear transformation of the average word em-
beddings in the feature’s available contexts. This
can be seen as a shallow extension of the distribu-
tional hypothesis (Harris, 1954), “a feature is char-
acterized by the words in its context,” rather than
the computationally more-expensive “a feature is
characterized by the features in its context” that
has been used implicitly by past work (Rothe and
Schiitze, 2015; Logeswaran and Lee, 2018).

Despite its elementary formulation, we demon-
strate that the a la carte method can learn faithful
word embeddings from single examples and fea-
ture vectors improving performance on important
downstream tasks. Furthermore, the approach is
resource-efficient, needing only pretrained embed-
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dings of common words and the text corpus used
to train them, and easy to implement and compute
via vector addition and linear regression. After
motivating and specifying the method, we illus-
trate these benefits through several applications:

e Embeddings of rare words: we introduce a
dataset! for few-shot learning of word vectors
and achieve state-of-the-art results on the task
of representing unseen words using only the
definition (Herbelot and Baroni, 2017).

Synset embeddings: we show how the
method can be applied to learn more fine-
grained lexico-semantic representations and
give evidence of its usefulness for stan-
dard word-sense disambiguation tasks (Nav-
igli et al., 2013; Moro and Navigli, 2015).

n-gram embeddings: we build seven mil-
lion n-gram embeddings from large text cor-
pora and use them to construct document em-
beddings that are competitive with unsuper-
vised deep learning approaches when evalu-
ated on linear text classification.

Our experimental results® clearly demonstrate the
advantages of a la carte embedding. For word
embeddings, the approach is an easy way to get
a good vector for a new word from its definition
or a few examples in context. For feature embed-
dings, the method can embed anything that does
not need labeling (such as a bigram) or occurs in
an annotated corpus (such as a word-sense). Our
document embeddings, constructed directly using
a la carte n-gram vectors, compete well with re-
cent deep neural representations; this provides fur-
ther evidence that simple methods can outperform
modern deep learning on many NLP benchmarks
(Arora et al.,, 2017; Mu and Viswanath, 2018;
Arora et al., 2018a,b; Pagliardini et al., 2018).

2 Related Work

Many methods have been proposed for extend-
ing word embeddings to semantic feature vectors,
with the aim of using them as interpretable and
structure-aware building blocks of NLP pipelines
(Kiros et al., 2015; Yamada et al., 2016). Many
exploit the structure and resources available for
specific feature types, such as methods for sense,
synsets, and lexemes (Rothe and Schiitze, 2015;

'Dataset: nlp.cs.princeton.edu/CRW
2Code: www.github.com/NLPrinceton/ALaCarte
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Iacobacci et al., 2015) that make heavy use of the
graph structure of the Princeton WordNet (PWN)
and similar resources (Fellbaum, 1998). By con-
trast, our work is more general, with incorporation
of structure left as an open problem. Embeddings
of n-grams are of special interest because they
do not need annotation or expert knowledge and
can often be effective on downstream tasks. Their
computation has been studied both explicitly (Yin
and Schutze, 2014; Poliak et al., 2017) and as an
implicit part of models for document embeddings
(Hill et al., 2016; Pagliardini et al., 2018), which
we use for comparison. Supervised and multi-
task learning of text embeddings has also been at-
tempted (Wang et al., 2017; Wu et al., 2017).

A main motivation of our work is to learn good
embeddings, of both words and features, from
only one or a few examples. Efforts in this area
can in many cases be split into contextual ap-
proaches (Lazaridou et al., 2017; Herbelot and Ba-
roni, 2017) and morphological methods (Luong
et al., 2013; Bojanowski et al., 2016; Pado et al.,
2016). The current paper provides a more ef-
fective formulation for context-based embeddings,
which are often simpler to implement, can im-
prove with more context information, and do not
require morphological annotation. Subword ap-
proaches, on the other hand, are often more com-
positional and flexible, and we leave the extension
of our method to handle subword information to
future work. Our work is also related to some
methods in domain adaptation and multi-lingual
correlation, such as that of Bollegala et al. (2014).

Mathematically, this work builds upon the lin-
ear algebraic understanding of modern word em-
beddings developed by Arora et al. (2018b) via an
extension to the latent-variable embedding model
of Arora et al. (2016). Although there have been
several other applications of this model for natu-
ral language representation (Arora et al., 2017; Mu
and Viswanath, 2018), ours is the first to provide
a general approach for learning semantic features
using corpus context.

3 Method Specification

We begin by assuming a large text corpus Cy con-
sisting of contexts c of words w in a vocabulary V,
with the contexts themselves being sequences of
words in V (e.g. a fixed-size window around the
word or feature). We further assume that we have
trained word embeddings v,, € R? on this collo-



cation information using a standard algorithm (e.g.
word2vec / GloVe). Our goal is to construct a good
embedding vy € R? of a text feature f given a set
Cy of contexts it occurs in. Both f and its contexts
are assumed to arise via the same process that gen-
erates the large corpus Cy. In many settings below,
the number |Cy| of contexts available for a feature
f of interest is much smaller than the number |C,,|
of contexts that the typical word w € V occurs
in. This could be because the feature is rare (e.g.
unseen words, n-grams) or due to limited human
annotation (e.g. word senses, named entities).

3.1 A Linear Approach

A naive first approach to construct feature embed-
dings using context is additive, i.e. taking the av-
erage over all contexts of a feature f of the average
word vector in each context:

additive __ 1

N ®

1
EPIAL

ceCy weEce

This formulation reflects the training of commonly
used embeddings, which employs additive com-
position to represent the context (Mikolov et al.,
2013; Pennington et al., 2014). It has proved suc-
cessful in the bag-of-embeddings approach to sen-
tence representation (Wieting et al., 2016; Arora
et al., 2017), which can compete with LSTM rep-
resentations, and has also been given theoretical
justification as the maximum a posteriori (MAP)
context vector under a generative model related to
popular embedding objectives (Arora et al., 2016).
Lazaridou et al. (2017) use this approach to learn
embeddings of unknown word amalgamations, or
chimeras, given a few context examples.

The additive approach has some limitations be-
cause the set of all word vectors is seen to share
a few common directions. Simple addition ampli-
fies the component in these directions, at the ex-
pense of less common directions that presumably
carry more “signal.” Stop-word removal can help
to ameliorate this (Lazaridou et al., 2017; Herbelot
and Baroni, 2017), but does not deal with the fact
that content-words also have significant compo-
nents in the same direction as these deleted words.
Another mathematical framework to address this
lacuna is to remove the top one or top few prin-
cipal components, either from the word embed-
dings themselves (Mu and Viswanath, 2018) or
from their summations (Arora et al., 2017). How-
ever, this approach is liable to either not remove
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Change in Embedding Norm under Transform
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Figure 1: Plot of the ratio of embedding norms

after transformation as a function of word count.
While All-but-the-Top tends to affect only very
frequent words, a la carte learns to remove com-
ponents even from less common words.

enough noise or cause too much information loss
without careful tuning (c.f. Figure 1).

We now note that removing the component
along the top few principal directions is tanta-
mount to multiplying the additive composition by
a fixed (but data-dependent) matrix. Thus a natu-
ral extension is to use an arbitrary linear transfor-
mation which will be learned from the data, and
hence guaranteed to do at least as well as any of
the above ideas. Specifically, we find the trans-
form that can best recover existing word vectors
vy —which are presumed to be of high quality—
from their additive context embeddings vadditive,
This can be posed as the following linear regres-
sion problem

1

Vo A Avi?ditive — A
Cu

> Yo

c€Cy w'Ec

where A € R%*? is learned and we assume for
simplicity that |—i| is constant (e.g. if ¢ has a fixed
window size) and is thus subsumed by the trans-
form. After learning the matrix, we can embed
any text feature in the same semantic space as the
word embeddings via the following expression:

PINE

ceCy wece

vp= AV?dditive — A (3)

Note that A is fixed for a given corpus and set of
pretrained word embeddings and so does not need
to be re-computed to embed different features or
feature types.



Algorithm 1: The basic a la carte feature embedding induction method. All contexts ¢ consist
of sequences of words drawn from the vocabulary V.

Data: vocabulary V, corpus Cy, vectors v, € R ¥V w € V, feature [, corpus Cy of contexts of f

Result: feature embedding vy € R¢
1 forw €V do

2 let C,, C Cy be the subcorpus of contexts of w

3 Uy ﬁ YD Vi
ceCy w'ec

// compute each word’s context embedding uy

4 A+ argmin Y ||V — Auy||3 // compute context-to-feature transform A

AcRdxd wey
1
5 Uf — W Z Z Vuw

ceCy wee
6 Vy < AUf

// compute feature’s context embedding uy

// transform feature’s context embedding

Theoretical Justification: As shown by Arora
et al. (2018b, Theorem 1), the approximation (2)
holds exactly in expectation for some matrix A
when contexts ¢ € C are generated by sampling
a context vector v, € R? from a zero-mean Gaus-
sian with fixed covariance and drawing |c| words
using P(w|v,) o exp(ve, vy). The correctness
(again in expectation) of (3) under this model is a
direct extension. Arora et al. (2018b) use large text
corpora to verify their model assumptions, provid-
ing theoretical justification for our approach. We
observe that the best linear transform A can re-
cover vectors with mean cosine similarity as high
as 0.9 or more with the embeddings used to learn
it, thus also justifying the method empirically.

3.2 Practical Details

The basic a la carte method, as motivated in Sec-
tion 3.1 and specified in Algorithm 1, is straight-
forward and parameter-free (the dimension d is as-
sumed to have been chosen beforehand, along with
the other parameters of the original word embed-
dings). In practice we may wish to modify the re-
gression step in an attempt to learn a better trans-
formation matrix A. However, the standard first
approach of using ¢;-regularized (Ridge) regres-
sion instead of simple linear regression gives little
benefit, even when we have more parameters than
word embeddings (i.e. when d? > [V)).

A more useful modification is to weight each
point by some non-decreasing function « of each
word’s corpus count ¢, i.e. to solve
“4)

A = argmin Z o) ||V — Aty |3

AcRdxd weyY

where u,, is the additive context embedding. This
reflects the fact that more frequent words likely
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have better pretrained embeddings. In settings
where |V| is large we find that a hard threshold
(a(c) = 1., for some 7 > 1) is often useful.
When we do not have many embeddings we can
still give more importance to words with better
embeddings via a function such as a(c) = loge,
which we use in Section 5.1.

4 One-Shot and Few-Shot Learning of
Word Embeddings

While we can use our method to embed any type
of text feature, its simplicity and effectiveness is
rooted in word-level semantics: the approach as-
sumes pre-existing high quality word embeddings
and only considers collocations of features with
words rather than with other features. Thus to ver-
ify that our approach is reasonable we first check
how it performs on word representation tasks,
specifically those where word embeddings need to
be learned from very few examples. In this sec-
tion we first investigate how representation quality
varies with number of occurrences, as measured
by performance on a similarity task that we intro-
duce. We then apply the a la carte method to two
tasks measuring the ability to learn new or syn-
thetic words from context, achieving strong results
on the nonce task of Herbelot and Baroni (2017).

4.1 Similarity Correlation vs. Sample Size

Performance on pairwise word similarity tasks is
a standard way to evaluate word embeddings, with
success measured via the Spearman correlation
between a human score and the cosine similarity
between word vectors. An overview of widely
used datasets is given by Faruqui and Dyer (2014).
However, none of these datasets can be used di-
rectly to measure the effect of word frequency on



embedding quality, which would help us under-
stand the data requirements of our approach. We
address this issue by introducing the Contextual
Rare Words (CRW) dataset, a subset of 562 pairs
from the Rare Word (RW) dataset (Luong et al.,
2013) supplemented by 255 sentences (contexts)
for each rare word sampled from the Westbury
Wikipedia Corpus (WWC) (Shaoul and Westbury,
2010). In addition we provide a subset of the
WWC from which all sentences containing these
rare words have been removed. The task is to use
embeddings trained on this subcorpus to induce
rare word embeddings from the sampled contexts.
More specifically, the CRW dataset is con-
structed using all pairs from the RW dataset where
the rarer word occurs between 512 and 10000
times in WWQC; this yields a set of 455 distinct
rare words. The lower bound ensures that we have
a sufficient number of rare word contexts, while
the upper bound ensures that a significant fraction
of the sentences from the original WWC remain in
the subcorpus we provide. In CRW, the first word
in every pair is the more frequent word and occurs
in the subcorpus, while the second word occurs in
the 255 sampled contexts but not in the subcorpus.
We provide word2vec embeddings trained on all
words occurring at least 100 times in the WWC
subcorpus; these vectors include those assigned to
the first (non-rare) words in the evaluation pairs.

Evaluation: For every rare word the method un-
der consideration is given eight disjoint subsets
containing 1,2, 4, ...,128 example contexts. The
method induces an embedding of the rare word for
each subset, letting us track how the quality of rare
word vectors changes with more examples. We re-
port the Spearman p (as described above) at each
sample size, averaged over 100 trials obtained by
shuffling each rare word’s 255 contexts.

The results in Figure 2 show that our a la
carte method significantly outperforms the addi-
tive baseline (1) and its variants, including stop-
word removal, SIF-weighting (Arora et al., 2017),
and top principal component removal (Mu and
Viswanath, 2018). We find that combining SIF-
weighting and top component removal also beats
these baselines, but still does worse than our
method. These experiments consolidate our in-
tuitions from Section 3 that removing common
components and frequent words is important and
that learning a data-dependent transformation is
an effective way to do this. However, if we train
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CRW Similarity Task
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Figure 2: Spearman correlation between cosine
similarity and human scores for pairs of words in
the CRW dataset given an increasing number of
contexts per rare word. Our a la carte method out-
performs all previous approaches, even when re-
stricted to only eight example contexts.

word2vec embeddings from scratch on the subcor-
pus together with the sampled contexts we achieve
a Spearman correlation of 0.45; this gap between
word2vec and our method shows that there re-
mains room for even better approaches for few-
shot learning of word embeddings.

4.2 Learning Embeddings of New Concepts:
Nonces and Chimeras

We now evaluate our work directly on the tasks
posed by Herbelot and Baroni (2017), who devel-
oped simple datasets and methods to “simulate the
process by which a competent speaker encounters
a new word in known contexts.” The general goal
will be to construct embeddings of new concepts
in the same semantic space as a known embedding
vocabulary using contextual information consist-
ing of definitions or example sentences.

Nonces: We first discuss the definitional nonce
dataset made by the authors themselves, which has
a test-set consisting of 300 single-word concepts
and their definitions. The task of learning each
concept’s embedding is simulated by removing or
randomly re-initializing its vector and requiring
the system to use the remaining embeddings and
the definition to make a new vector that is close to
the original. Because the embeddings were con-
structed using data that includes these concepts,
an implicit assumption is made that including or
excluding one word does not greatly affect the se-



Nonce (Herbelot and Baroni, 2017)

Chimera (Lazaridou et al., 2017)

Method Mean Recip. Rank  Med. Rank 2 Sent. 4 Sent. 6 Sent.
word2vec 0.00007 111012 0.1459 0.2457 0.2498
additive 0.00945 3381 0.3627 0.3701 0.3595
additive, no stop words 0.03686 861 0.3376 0.3624 0.4080
nonce2vec 0.04907 623 0.3320 0.3668 0.3890
a la carte 0.07058 165.5 0.3634 0.3844 0.3941

Table 1: Comparison with baselines and nonce2vec (Herbelot and Baroni, 2017) on few-shot embedding
tasks. Performance on the chimeras task is measured using the Spearman correlation with human ratings.
Note that the additive baseline requires removing stop-words in order to improve with more data.

mantic space; this assumption is necessary in or-
der to have a good target vector for the system to
be evaluated against.

Using 259,376 word2vec embeddings trained
on Wikipedia as the base vectors, Herbelot and
Baroni (2017) heavily modify the skip-gram algo-
rithm to successfully learn on one definition, cre-
ating the nonce2vec system. The original skip-
gram algorithm and v394ie are used as baselines,
with performance measured as the mean recipro-
cal rank and median rank of the concept’s original

vector among the nearest neighbors of the output.

To compare directly to their approach, we use
their word2vec embeddings along with contexts
from the Wikipedia corpus to construct context
vectors u,, for all words w apart from the 300
nonces. We then learn the a la carte transform A,
weighting the data points in the regression (4) us-
ing a hard threshold of at least 1000 occurrences in
Wikipedia. An embedding for each nonce can then
be constructed by multiplying A by the sum over
all word embeddings in the nonce’s definition. As
can be seen in Table 1, this approach significantly
improves over both baselines and nonce2vec; the
median rank of 165.5 of the original embedding
among the nearest neighbors of the nonce vector is
very low considering the vocabulary size is more
than 250,000, and is also significantly lower than
that of all previous methods.

Chimeras: The second dataset Herbelot and Ba-
roni (2017) consider is that of Lazaridou et al.
(2017), who construct unseen concepts by com-
bining two related words into a fake nonce word
(the “chimera”) and provide two, four, or six
example sentences for this nonce drawn from
sentences containing one of the two component
words. The desired nonce embeddings is then
evaluated via the correlation of its cosine similar-
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ity with the embeddings of several other words,
with ratings provided by human judges.

We use the same approach as in the nonce task,
except that the chimera embedding is the result of
summing over multiple sentences. From Table 1
we see that, while our method is consistently bet-
ter than both the additive baseline and nonce2vec,
removing stop-words from the additive baseline
leads to stronger performance for more sentences.
Since the a la carte algorithm explicitly trains
the transform to match the true word embedding
rather than human similarity measures, it is per-
haps not surprising that our approach is much
more dominant on the definitional nonce task.

5 Building Feature Embeddings using
Large Corpora

Having witnessed its success at representing un-
seen words, we now apply the a la carte method
to two types of feature embeddings: synset em-
beddings and n-gram embeddings. Using these
two examples we demonstrate the flexibility and
adaptability of our approach when handling dif-
ferent corpora, base word embeddings, and down-
stream applications.

5.1 Supervised Synset Embeddings for
Word-Sense Disambiguation

Embeddings of synsets, or sets of cognitive syn-
onyms, and related entities such as senses and
lexemes have been widely studied, often due to
the desire to account for polysemy (Rothe and
Schiitze, 2015; lacobacci et al., 2015). Such rep-
resentations can be evaluated in several ways, in-
cluding via their use for word-sense disambigua-
tion (WSD), the task of determining a word’s
sense from context. While current state-of-the-
art methods often use powerful recurrent models
(Raganato et al., 2017), we will instead use a sim-



SemEval-2013 Task 12

SemEval-2015 Task 13

Method nouns adj. nouns adv. verbs comb.
a la carte (SemCor) 60.0 722 6777 852 60.6 68.1
a la carte (glosses) 51.8 753 625 79.0 558 642
a la carte (combined) 60.5 74.1 703 864 594  69.6
MES (SemCor) 58.8 79.5 60.0 87.6 66.7 66.8
Raganato et al. (2017) 66.9 72.4

Table 2: Application of a la carte synset embeddings to two standard WSD tasks. As all systems always
return exactly one answer, performance is measured in terms of accuracy. Results due to Raganato et al.
(2017), who use a bi-LSTM for this task, are given as the recent state-of-the-art result.

ple similarity-based approach that heavily depends
on the synset embedding itself and thus serves as
a more useful indicator of representation quality.
A major target for our simple systems is to beat
the most-frequent sense (MFS) method, which re-
turns for each word the sense that occurs most fre-
quently in a corpus such as SemCor. This base-
line is “notoriously hard-to-beat,” routinely best-
ing many systems in SemEval WSD competitions
(Navigli et al., 2013).

Synset Embeddings: We use SemCor (Langone
et al., 2004), a subset of the Brown Corpus (BC)
(Francis and Kucera, 1979) annotated using PWN
synsets. However, because the corpus is quite
small we use GloVe trained on Wikipedia instead
of on BC itself. The transform A is learned using
context embeddings u,, computed with windows
of size ten around occurrences of w in BC and
weighting each word by the log of its count during
the regression stage (4). Then we set the context
embedding u; of each synset s to be the average
sum of word embeddings representation over all
sentences in SemCor containing s. Finally, we ap-
ply the a la carte transform to get the synset em-
bedding vy = Au,.

Sense Disambiguation: To determine the sense
of a word w given its context ¢, we convert ¢ into
a vector using the a la carte transform A on the
sum of its word embeddings and return the synset
s of w whose embedding v is most similar to this
vector. We try two different synset embeddings:
those induced from SemCor as above and those
obtained by embedding a synset using its gloss,
or PWN-provided definition, in the same way as a
nonce in Section 4.2. We also consider a combined
approach in which we fall back on the gloss vector
if the synset does not appear in SemCor and thus
has no induced embedding.
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As shown in Table 2, synset embeddings in-
duced from SemCor alone beat MFS overall,
largely due to good noun results. The method im-
proves further when combined with the gloss ap-
proach. While we do not match the state-of-the-
art, our success in besting a difficult baseline using
very little fine-tuning and exploiting none of the
underlying graph structure suggests that the a la
carte method can learn useful synset embeddings,
even from relatively small data.

5.2 N-Gram Embeddings for Classification

As some of the simplest and most useful linguistic
features, n-grams have long been a focus of em-
bedding studies. Compositional approaches, such
as sums and products of unigram vectors, are often
used and work well on some evaluations, but are
often order-insensitive or very high-dimensional
(Mitchell and Lapata, 2010). Recent work by Po-
liak et al. (2017) works around this while staying
compositional; however, as we will see their ap-
proach does not seem to capture a bigram’s mean-
ing much better than the sum of its word vec-
tors. m-grams embeddings have also gained in-
terest for low-dimensional document representa-
tion schemes (Hill et al., 2016; Pagliardini et al.,
2018; Arora et al., 2018a), largely due to the suc-
cess of their sparse high-dimensional Bag-of-n-
Grams (BonG) counterparts (Wang and Manning,
2012). This setting of document embeddings de-
rived from n-gram features will be used for quan-
titative evaluation in this section.

We build n-gram embeddings using two cor-
pora: 300-dimensional Wikipedia embeddings,
which we evaluate qualitatively, and 1600-
dimensional embeddings on the Amazon Product
Corpus (McAuley et al., 2015), which we use for
document classification. For both we use as source
embeddings GloVe vectors trained on the respec-



Method beef up cutting edge harry potter tight lipped
Vu, + Vs, meat, out cut, edges deathly, azkaban loose, fitting
‘(afudlifzz) but, however which, both which, but but, however
ECO meats, meat weft, edges robards, keach scaly, bristly
Sent2Vec add, reallocate science, multidisciplinary naruto, pokemon wintel, codebase
ala carte need, improve innovative, technology deathly, hallows worried, very

Table 3: Closest word embeddings (measured via cosine similarity) to the embeddings of four idiomatic
or entity-associated bigrams. From these examples we see that purely compositional methods may strug-
gle to construct context-aware bigram embeddings, even when the features are present in the corpus.
On the other hand, adding up corpus contexts (1) is dominated by stop-word information. Sent2Vec is
successful on half the examples, reflecting its focus on good sentence, not bigram, embeddings.

tive corpora over words occurring at least a hun-
dred times. Context embeddings are constructed
using a window of size ten and a hard threshold
at 1000 occurrences is used as the word-weighting
function in the regression (4). Unlike Poliak et al.
(2017), who can construct arbitrary embeddings
but need to train at least two sets of vectors of di-
mension at least 2d to do so, and Yin and Schutze
(2014), who determine which n-grams to repre-
sent via corpus counts, our a la carte approach
allows us to train exactly those embeddings that
we need for downstream tasks. This, combined
with our method’s efficiency, allows us to con-
struct more than two million bigram embeddings
and more than five million trigram embeddings,
constrained only by their presence in the large
source corpus.

Qualitative Evaluation: We first compare bi-
gram embedding methods by picking some id-
iomatic and entity-related bigrams and examining
the closest word vectors to their representations.
These word-pairs are picked because we expect
sophisticated feature embedding methods to en-
code a better vector than the sum of the two em-
beddings, which we use as a baseline. From Ta-
ble 3 we see that embeddings based on corpora
rather than composition are better able to embed
these bigrams to be close to concepts that are se-
mantically similar. On the other hand, as discussed
in Section 3 and evident from these results, the
additive context approach is liable to emphasize
stop-word directions due to their high frequency.

Document Embedding: Our main application
and quantitative evaluation of n-gram vectors is
to use them to construct document embeddings.
Given a length L document D = {wy,...,wr},
we define its embedding vp as a weighted con-
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catenation over sums of our induced n-gram em-
beddings, i.e.

T L T 1 L—n+1 T
VD = t; Vwe *77 n t; V(Wi 4n1)
where vy, . w,,_,) 1S the embedding of the n-
gram (wy, ..., Wipn—1). Following Arora et al.

(2018a), we weight each n-gram component by %
to reflect the fact that higher-order n-grams have
lower quality embeddings because they occur less
often in the source corpus. While we concatenate
across unigram, bigram, and trigram embeddings
to construct our text representations, separate ex-
periments show that simply adding up the vec-
tors of all features also yields a smaller but still
substantial improvement over the unigram perfor-
mance. The higher embedding dimension due to
concatenation is in line with previous methods and
can also be theoretically supported as yielding a
less lossy compression of the n-gram information
(Arora et al., 2018a).

In Table 4 we display the result of running
cross-validated, ¢2-regularized logistic regression
on documents from MR movie reviews (Pang and
Lee, 2005), CR customer reviews (Hu and Liu,
2004), SUBJ subjectivity dataset (Pang and Lee,
2004), MPQA opinion polarity subtask (Wiebe
et al., 2005), TREC question classification (Li and
Roth, 2002), SST sentiment classification (binary
and fine-grained) (Socher et al., 2013), and IMDB
movie reviews (Maas et al., 2011). The first four
are evaluated using tenfold cross-validation, while
the others have train-test splits.

Despite the simplicity of our embeddings (a
concatenation over sums of a la carte n-gram vec-
tors), we find that our results are very competitive
with many recent unsupervised methods, achiev-
ing the best word-level results on two of the tested



Representation n dr MR CR SUBJ MPQA TREC SST(£1) SST IMDB
1 1% 711 77.0  91.0 85.1 86.8 80.7 36.8 88.3

BonG 2 i+ Vs 77.8 781 918 85.8 90.0 80.9 39.0  90.0
3 Vi+Vo+ Vs 7718 783 914 85.6 89.8 80.1 423 89.8
1 1600 798 813 926 87.4 85.6 84.1 46.7 89.0

a la carte 2 3200 81.3 837 935 87.6 89.0 85.8 478 903
3 4800 81.8 843 938 87.6 89.0 86.7 481 909

Sent2Vec' 1-2 700 763 79.1 912 87.2 85.8 80.2 31.0 855

DisC? 2-3 3200-4800 80.1 815 926 87.9 90.0 85.5 46.7 89.6

skip-thoughts® 4800 80.3 83.8 942 88.9 93.0 85.1 45.8

SDAE* 2400 74.6  78.0  90.8 86.9 78.4

CNN-LSTM?® 4800 718 82.0 93.6 894 92.6

MC-QT® 4800 824 860 948 90.2 92.4 87.6

byte mLSTM" 4096 86.8 90.6 94.7 88.8 90.4 91.7 546 922

* Vocabulary sizes (i.e. BonG dimensions) vary by task; usually 10K-100K.

1,37

(Pagliardini et al., 2018; Kiros et al., 2015; Radford et al., 2017) Evaluation conducted using latest pretrained models.

Note that the latest available skip-thoughts implementation returns an error on the IMDB task.
2456 (Arora et al., 2018a; Hill et al., 2016; Gan et al., 2017; Logeswaran and Lee, 2018) Best results from publication.

Table 4: Performance of document embeddings built using a la carte n-gram vectors and recent unsu-
pervised word-level approaches on classification tasks, with the character LSTM of (Radford et al., 2017)
shown for comparison. Top three results are bolded and the best word-level performance is underlined.

datasets. The fact that we do especially well on
the sentiment tasks indicates strong exploitation of
the Amazon review corpus, which was also used
by DisC, CNN-LSTM, and byte mLSTM. At the
same time, the fact that our results are compara-
ble to neural approaches indicates that local word-
order may contain much of the information needed
to do well on these tasks. On the other hand, sep-
arate experiments do not show a substantial im-
provement from our approach over unigram meth-
ods such as SIF (Arora et al., 2017) on sentence
similarity tasks such as STS (Cer et al., 2017).
This could reflect either noise in the n-gram em-
beddings themselves or the comparative lower im-
portance of local word-order for textual similarity
compared to classification.

6 Conclusion

We have introduced a la carte embedding, a sim-
ple method for representing semantic features us-
ing unsupervised context information. A natu-
ral and principled integration of recent ideas for
composing word vectors, the approach achieves
strong performance on several tasks and promises
to be useful in many linguistic settings and to
yield many further research directions. Of partic-
ular interest is the replacement of simple window
contexts by other structures, such as dependency
parses, that could yield results in domains such as
question answering or semantic role labeling. Ex-
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tensions of the mathematical formulation, such as
the use of word weighting when building context
vectors as in Arora et al. (2018b) or of spectral
information along the lines of Mu and Viswanath
(2018), are also worthy of further study.

More practically, the Contextual Rare Words
(CRW) dataset we provide will support research
on few-shot learning of word embeddings. Both
in this area and for n-grams there is great scope
for combining our approach with compositional
approaches (Bojanowski et al., 2016; Poliak et al.,
2017) that can handle settings such as zero-shot
learning. More work is needed to understand the
usefulness of our method for representing (po-
tentially cross-lingual) entities such as synsets,
whose embeddings have found use in enhancing
WordNet and related knowledge bases (Camacho-
Collados et al., 2016; Khodak et al., 2017). Fi-
nally, there remain many language features, such
as named entities and morphological forms, whose
representation by our method remains unexplored.
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Abstract

Word embedding models such as GloVe
rely on co-occurrence statistics to learn
vector representations of word meaning.
While we may similarly expect that co-
occurrence statistics can be used to cap-
ture rich information about the relation-
ships between different words, existing ap-
proaches for modeling such relationships
are based on manipulating pre-trained
word vectors. In this paper, we introduce
a novel method which directly learns re-
lation vectors from co-occurrence statis-
tics. To this end, we first introduce a vari-
ant of GloVe, in which there is an explicit
connection between word vectors and PMI
weighted co-occurrence vectors. We then
show how relation vectors can be naturally
embedded into the resulting vector space.

1 Introduction

Word embeddings are vector space representations
of word meaning (Mikolov et al., 2013b; Penning-
ton et al., 2014). A remarkable property of these
models is that they capture various lexical rela-
tionships, beyond mere similarity. For example,
(Mikolov et al., 2013b) found that analogy ques-
tions of the form “a is to b what ¢ is to ?” can
often be answered by finding the word d that max-
imizes cos(wp — wq +w,, wq), where we write w,,
for the vector representation of a word x.
Intuitively, the word vector w, represents a in
terms of its most salient features. For example,
Wparis implicitly encodes that Paris is located in
France and that it is a capital city, which is intu-
itively why the ‘capital of” relation can be mod-
eled in terms of a vector difference. Other rela-
tionships, however, such as the fact that Macron
succeeded Hollande as president of France, are un-
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likely to be captured by word embeddings. Rela-
tion extraction methods can discover such infor-
mation by analyzing sentences that contain both of
the words or entities involved (Mintz et al., 2009;
Riedel et al., 2010; dos Santos et al., 2015), but
they typically need a large number of training ex-
amples to be effective.

A third alternative, which we consider in this
paper, is to characterize the relatedness between
two words s and ¢ by learning a relation vector
rs¢ in an unsupervised way from corpus statistics.
Among others, such vectors can be used to find
word pairs that are similar to a given word pair
(i.e. finding analogies), or to find the most pro-
totypical examples among a given set of relation
instances. They can also be used as an alternative
to the aforementioned relation extraction methods,
by subsequently training a classifier that uses the
relation vectors as input, which might be particu-
larly effective in cases where only limited amounts
of training data are available (with the case of anal-
ogy finding from a single instance being an ex-
treme example).

The most common unsupervised approach for
learning relation vectors consists of averaging the
embeddings of the words that occur in between s
and t, in sentences that contain both (Weston et al.,
2013; Fan et al., 2015; Hashimoto et al., 2015).
While this strategy is often surprisingly effective
(Hill et al., 2016), it is sub-optimal for two rea-
sons. First, many of the words co-occurring with
s and ¢t will be semantically related to s or to ¢, but
will not actually be descriptive for the relationship
between s and ¢; e.g. the vector describing the re-
lation between Paris and France should not be af-
fected by words such as eiffel (which only relates
to Paris). Second, it gives too much weight to stop-
words, which cannot be addressed in a straightfor-
ward way as some stop-words are actually crucial
for modeling relationships (e.g. prepositions such
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as ‘in” or ‘of” or Hearst patterns (Indurkhya and
Damerau, 2010)).

In this paper, we propose a method for learn-
ing relation vectors directly from co-occurrence
statistics. We first introduce a variant of GloVe, in
which word vectors can be directly interpreted as
smoothed PMI-weighted bag-of-words represen-
tations. We then represent relationships between
words as weighted bag-of-words representations,
using generalizations of PMI to three arguments,
and learn vectors that correspond to smoothed ver-
sions of these representations.

As far as the possible applications of our
methodology is concerned, we imagine that rela-
tion vectors can be used in various ways to enrich
the input to neural network models. As a sim-
ple example, in a question answering system, we
could “annotate” mentions of entities with relation
vectors encoding their relationship to the differ-
ent words from the question. As another exam-
ple, we could consider a recommendation system
which takes advantage of vectors expressing the
relationship between items that have been bought
(or viewed) by a customer and other items from
the catalogue. Finally, relation vectors should also
be useful for knowledge completion, especially
in cases where few training examples per relation
type are given (meaning that neural network mod-
els could not be used) and where relations cannot
be predicted from the already available knowledge
(meaning that knowledge graph embedding meth-
ods could not be used, or are at least not sufficient).

2 Related Work

The problem of characterizing the relationship be-
tween two words has been studied in various set-
tings. From a learning point of view, the most
straightforward setting is where we are given la-
beled training sentences, with each label explic-
itly indicating what relationship is expressed in
the sentence. This fully supervised setting has
been the focus of several evaluation campaigns, in-
cluding as part of ACE (Doddington et al., 2004)
and at SemEval 2010 (Hendrickx et al., 2010). A
key problem with this setting, however, is that la-
beled training data is hard to obtain. A popular
alternative is to use known instances of the rela-
tions of interest as a form of distant supervision
(Mintz et al., 2009; Riedel et al., 2010). Some au-
thors have also considered unsupervised relation
extraction methods (Shinyama and Sekine, 2006;
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Banko et al., 2007), in which case the aim is es-
sentially to find clusters of patterns that express
similar relationships, although these relationships
may not correspond to the ones that are needed for
the considered application. Finally, several sys-
tems have also used bootstrapping strategies (Brin,
1998; Agichtein and Gravano, 2000; Carlson et al.,
2010), where a small set of instances are used to
find extraction patterns, which are used to find
more instances, which can in turn be used to find
better extraction patterns, etc.

Traditionally, relation extraction systems have
relied on a variety of linguistic features, such as
lexical patterns, part-of-speech tags and depen-
dency parsers. More recently, several neural net-
work architectures have been proposed for the re-
lation extraction problem. These architectures rely
on word embeddings to represent the words in the
input sentence, and manipulate these word vectors
to construct a relation vector. Some approaches
simply represent the sentence (or the phrase con-
necting the entities whose relationship we want to
determine) as a sequence of words, and use e.g.
convolutional networks to aggregate the vectors of
the words in this sequence (Zeng et al., 2014; dos
Santos et al., 2015). Another possibility, explored
in (Socher et al., 2012), is to use parse trees to cap-
ture the structure of the sentence, and to use re-
cursive neural networks (RNNs) to aggregate the
word vectors in a way which respects this struc-
ture. A similar approach is taken in (Xu et al.,
2015), where LSTMs are applied to the shortest
path between the two target words in a depen-
dency parser. A straightforward baseline method
is to simply take the average of the word vec-
tors (Mitchell and Lapata, 2010). While conceptu-
ally much simpler, variants of this approach have
obtained state-of-the-art performance for relation
classification (Hashimoto et al., 2015) and a va-
riety of tasks that require sentences to be repre-
sented as a vector (Hill et al., 2016).

Given the effectiveness of word vector averag-
ing, in (Kenter et al., 2016) a model was proposed
that explicitly tries to learn word vectors that gen-
eralize well when being averaged. Similarly, the
model proposed in (Hashimoto et al., 2015) aims
to produce word vectors that perform well for the
specific task of relation classification. The Para-
graphVector method from (Le and Mikolov, 2014)
is related to the aformentioned approaches, but it
explicitly learns a vector representation for each



paragraph along with the word embeddings. How-
ever, this method is computationally expensive,
and often fails to outperform simpler approaches
(Hill et al., 2016).

To the best of our knowledge, existing methods
for learning relation vectors are all based on ma-
nipulating pre-trained word vectors. In contrast,
we will directly learn relation vectors from cor-
pus statistics, which will have the important ad-
vantage that we can focus on words that describe
the interaction between the two words s and ¢, i.e.
words that commonly occur in sentences that con-
tain both s and ¢, but are comparatively rare in sen-
tences that only contain s or only contain .

Finally, note that our work is fundamentally dif-
ferent from Knowledge Graph Embedding (KGE)
(Wang et al., 2014b), (Wang et al., 2014a), (Bor-
des et al., 2011) in at least two ways: (i) KGE
models start from a structured knowledge graph
whereas we only take a text corpus as input, and
(i) KGE models represent relations as geometric
objects in the “entity embedding” itself (e.g. as
translations, linear maps, combinations of projec-
tions and translations, etc), whereas we represent
words and relations in different vector spaces.

3  Word Vectors as PMI Encodings

Our approach to relation embedding is based on
a variant of the GloVe word embedding model
(Pennington et al., 2014). In this section, we first
briefly recall the GloVe model itself, after which
we discuss our proposed variant. A key advantage
of this variant is that it allows us to directly inter-
pret word vectors in terms of the Pointwise Mu-
tual Information (PMI), which will be central to
the way in which we learn relation vectors.

3.1 Background

The GloVe model (Pennington et al., 2014) learns
a vector w; for each word ¢ in the vocabulary,
based on a matrix of co-occurrence counts, en-
coding how often two words appear within a given
window. Let us write x;; for the number of times
word j appears in the context of word ¢ in some
text corpus. More precisely, assume that there are
m sentences in the corpus, and let P! C {1,...,n;}
be the set of positions from the I sentence where
the word 7 can be found (with n; the length of the
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sentence). Then x;; is defined as follows:

Z Z Z weight(p, q)

=1 pePl qeP}

where weight(p, q) = ‘p 710 < p—q| < W,
and weight(p,q) = 0 otherwise, where the win-
dow size W is usually set to 5 or 10.

The GloVe model learns for each word ¢ two
vectors w; and w; by optimizing the following ob-
jective:

Z Z f.%'z] ’IUz'LUJ‘i‘b +b

i g 70

—log xw)

where f is a weighting function, aimed at re-
ducing the impact of rare terms, and b; and bNJ
are bias terms. The GloVe model is closely re-
lated to the notion of pointwise mutual informa-
tion (PMI), which is defined for two words 7 and j
as PMI.(z:, j) = log (PZ()Z;J&.) ) where P(z, ) is the
probability of seeing the words ¢ and j if we ran-
domly pick a word position from the corpus and a
second word position within distance W from the
first position. The PMI between ¢ and j is usually
estimated as follows:

where Tix = Ej l‘ij, w*j = ZZ a:ij and Tyx —
>_i 2_j Tij. In particular, it is straightforward to
see that after the reparameterization given by b; —
b; + log ;. — log x4« and b; — b; + log x,;, the
GloVe model is equivalent to

> Z f (i) (widiy + by + by — PMIx (i, j))°

i

PMIx (i, j) = log (x” Do
TijxTxj

J
i #0

(D
3.2 A Variant of GloVe

In this paper, we will use the following variant of
the formulation in (1):

DI

i ]EJ

wi-u?j +b; — PMIs(i,5))?  (2)
Despite its similarity, this formulation differs from
the GloVe model in a number of important ways.
First, we use smoothed frequency counts instead
of the observed frequency counts x;;. In particu-
lar, the PMI between words ¢ and j is given as:

P, j) >

PMIs (i, j) = log (P(Z)P(j)



where the probabilities are estimated as follows:

P(Z): :nl + no P(]) - x j—i—na
.. Tij + «
P =2

where o > 0 is a parameter controlling the amount
of smoothing and n is the size of the vocabulary.
This ensures that the estimation of PMI(i,j) is
well-defined even in cases where x;; = 0, mean-
ing that we no longer have to restrict the inner
summation to those j for which x;; > 0. For
efficiency reasons, in practice, we only consider
a small subset of all context words 5 for which
x;; = 0, which is similar in spirit to the use of
negative sampling in Skip-gram (Mikolov et al.,
2013b). In particular, the set J; contains each j
such that z;; > 0 as well as M uniformly' sam-
pled context words j for which z;; = 0, where we
choose M =2-|{j : z;; > 0}|.

Second, following (Jameel and Schockaert,
2016), the weighting function f(x;;) has been re-
placed by 0—12 where 0'J2- is the residual variance of
the regressi]on problem for context word j, esti-
mated follows:

1 ~
J

1
zGJj

with Jj_1 = {i : j € J;}. Since we need the word
vectors to estimate this residual variance, we re-
estimate 0]2- after every five iterations of the SGD
optimization. For the first 5 iterations, where no
estimation for UJZ is available, we use the GloVe
weighting function.

The use of smoothed frequency counts and
residual variance based weighting make the word
embedding model more robust for rare words. For
instance, if w only co-occurs with a handful of
other terms, it is important to prioritize the most
informative context words, which is exactly what
the use of the residual variance achieves, i.e. 032-
is small for informative terms and large for stop
words; see (Jameel and Schockaert, 2016). This
will be important for modeling relations, as the re-
lation vectors will often have to be estimated from
Very sparse co-occurrence counts.

'While the negative sampling method used in Skip-gram
favors more frequent words, initial experiments suggested
that deviating from a uniform distribution almost had no im-
pact in our setting.
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Finally, the bias term b; has been omitted from
the model in (2). We have empirically found that
omitting this bias term does not affect the perfor-
mance of the model, while it allows us to have a
more direct connection between the vector w; and
the corresponding PMI scores.

3.3 Word Vectors and PMI
Let us define PMIyy as follows:

PMlyy (i, 7) = w1 + b

Clearly, when the word vectors are trained accord-
ing to (2), it holds that PMTIyy, (i, j) ~ PMIs(i, 7).
In other words, we can think of the word vector
w; as a low-dimensional encoding of the vector
(PMIs(i,1),...,PMIg(i,n)), with n the number
of words in the vocabulary. This view allows us to
assign a natural interpretation to some word vec-
tor operations. In particular, the vector difference
w; —wyg, is commonly used as a model for the rela-
tionship between words ¢ and k. For a given con-
text word j, we have

The latter is an estimation of log (%) —

log (%) = log (58“%) In other words,
the vector translation w; — wj, encodes for each
context word j the (log) ratio of the probability of
seeing j in the context of ¢ and in the context of &,
which is in line with the original motivation under-
lying the GloVe model (Pennington et al., 2014).
In the following section, we will propose a num-
ber of alternative vector representations for the re-
lationship between two words, based on general-
izations of PMI to three arguments.

4 Learning Global Relation Vectors

We now turn to the problem of learning a vector
r;1 that encodes how the source word ¢ and tar-
get word k are related. The main underlying idea
is that r;; will capture which context words j are
most closely associated with the word pair (i, k).
Whereas the GloVe model is based on statistics
about (main word, context word) pairs, here we
will need statistics on (source word, context word,
target word) triples. First, we discuss how co-
occurrence statistics among three words can be ex-
pressed using generalizations of PMI to three ar-
guments. Then we explain how this can be used to
learn relation vectors in natural way.



4.1 Co-occurrence Statistics for Triples

Let P! C {1,...,m} again be the set of positions
from the I"" sentence corresponding to word i. We
define:

Yijk = Z Z Z Z weight(p, q, )

= ! j 1
=1 pePl qePlreP},

1 1

where weight(p, q,r) max(q_p, —)ifp <
g <randr—p < W, and weight(p, q, 7"3 = 0 oth-
erwise. In other words, y; . reflects the (weighted)
number of times word j appears between words ¢
and £ in a sentence in which ¢ and & occur suffi-
ciently close to each other, in that order. Note that
by taking word order into account in this way, we
will be able to model asymmetric relationships.
To model how strongly a context word j is asso-
ciated with the word pair (i, k), we will consider
the following two well-known generalizations of
PMI to three arguments (Van de Cruys, 2011):
P(i)P(5)P(k)P(i, j, k))
P(i, j, k) )

P(i)P(5)P(k)
where P(i,j, k) is the probability of seeing the
word triple (7,7, k) when randomly choosing a
sentence and three (ordered) word positions in that
sentence within a window size of . In addition
we will also consider two ways in which PMI can
P(i, k)P(j)

be used more directly:
- P, k|j)
SI*(i, j, k) = log (’
380 =108 { Bl PGkl

Note that SI(i, j, k) corresponds to the PMI be-
tween (4, k) and j, whereas SI*(4, 7, k) is the PMI
between ¢ and k conditioned on the fact that j oc-
curs. The measures SI° and SI* are closely related
to SI' and SI? respectively?. In particular, the fol-
lowing identities are easy to show:

P, 7)P(i, k) P(j, k)

SI' (i, j, k) = log <

SP(i, j. k) = log (

P(i, j, k
513(z',j,k)zlog< GFIL)

PMI(i, j) + PMI(j, k) — SI' (i, j, k) = SP(i, j, k)

“Note that probabilities of the form P(i, j) or P(3) here
refer to marginal probabilities over ordered triples. In con-
trast, the PMI scores from the word embedding model are
based on probabilities over unordered word pairs, as is com-
mon for word embeddings.
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Using smoothed versions of the counts y;;x, we
can use the following probability estimates for
Sll(ia.ja k)_SI4(i7j7 k)

Pli.j k) = YT P ) = Mo
Y + N30 Ysrre + N2
Yssx + NoQL Ysrx T N7QL
Yixxe T NQ Ysxx + NQ
Ysrx T N

where y;j. = > Yijk» and similar for the other
counts. For efficiency reasons, the counts of the
form y;j«, Yi«x and y. i are pre-computed for all
word pairs, which can be done efficiently due to
the sparsity of co-occurrence counts (i.e. these
counts will be 0 for most pairs of words), sim-
ilarly to how to the counts x;; are computed in
GloVe. From these counts, we can also efficiently
pre-compute the counts Yiwx, Ysjx Yssk aNd Yiss
On the other hand, the counts y;;; cannot be pre-
computed, since the total number of triples for
which y;;, # 0 is prohibitively high in a typi-
cal corpus. However, using an inverted index, we
can efficiently retrieve the sentences that contain
the words 7 and &, and since this number of sen-
tences is typically small, we can efficiently obtain
the counts y;;;, corresponding to a given pair (i, k)
whenever they are needed.

4.2 Relation Vectors

Our aim is to learn a vector r;; that models the
relationship between ¢ and k. Computing such a
vector for each pair of words (which co-occur at
least once) is not feasible, given the number of
triples (i, j, k) that would need to be considered.
Instead, we first learn a word embedding, by op-
timizing (2). Then, fixing the context vectors w;
and bias terms b;, we learn a vector representation
for a given pair (i, k) of interest by solving the fol-
lowing objective:

JE€Jik

3)

where SI refers to one of SIk, SIZ, SI3,, SI%. Note
that (3) is essentially the counterpart of (1), where
we have replaced the role of the PMI measure by
SI. In this way, we can exploit the representations
of the context words from the word embedding
model for learning relation vectors. Note that the



factor ﬁ has been omitted. This is because words

7 that a;e normally relatively uninformative (e.g.
stop words), for which 032. would be high, can actu-
ally be very important for characterizing the rela-
tionship between ¢ and k. For instance, the phrase
“X such as Y clearly suggests a hyponomy re-
lationship between X and Y, but both ‘such’ and
‘as’ would be associated with a high residual vari-
ance o2. The set J; . contains every j for which
Yijk > 0 as well as a random sample of m words
for which y;;, = 0, where m = 2+ |{j : ;1 > 0].
Note that because w; is now fixed, (3) is a lin-
ear least squares regression problem, which can be
solved exactly and efficiently.

The vector r;; is based on words that appear
between ¢ and k. In the same way, we can learn
a vector s;, based on the words that appear be-
fore ¢ and a vector ¢;. based on the words that
appear after k, in sentences where ¢ occurs be-
fore k. Furthermore, we also learn vectors 7;, Sk;
and tj; from the sentences where k occurs before
1. As the final representation R, of the relation-
ship between ¢ and k, we concatenate the vectors
Tik> Tkis Siks> Ski, tik, ti; as well as the word vectors
w; and wy. We write Ré i to denote the vector that
results from using measure SI' (I € {1,2, 3, 4}).

5 Experimental Results

In our experiments, we have used the Wikipedia
dump from November 2nd, 2015, which consists
of 1,335,766,618 tokens. We have removed punc-
tuations and HTML/XML tags, and we have low-
ercased all tokens. Words with fewer than 10
occurrences have been removed from the corpus.
To detect sentence boundaries, we have used the
Apache sentence segmentation tool. In all our
experiments, we have set the number of dimen-
sions to 300, which was found to be a good choice
in previous work, e.g. (Pennington et al., 2014).
We use a context window size W of 10 words.
The number of iterations for SGD was set to
50. For our model, we have tuned the smooth-
ing parameter o based on held-out tuning data,
considering values from {0.1,0.01,0.001, 0.0001,
0.00001, 0.000001}. We have noticed that in most
of the cases the value of a was automatically se-
lected as 0.00001. To efficiently compute the
triples, we have used the Zettair® retrieval engine.

As our main baselines, we use three popular un-
supervised methods for constructing relation vec-

Shttp://www.seg.rmit.edu.au/zettair/
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Table 1: Results for the relation induction task.
Google Analogy
Diff Conc Avg R}, R, Ry, R
Acc | 90.0 89.0 89.9 90.0 92.3 90.9 904
Pre | 81.6 78.7 80.8 799 87.1 832 8l1.1
Rec | 82.6 839 839 86.0 84.8 84.8 85.5
F1 82.1 81.2 823 828 859 84.0 833
DiffVec
Diff Conc Avg Ry, RZ. R, R
Acc | 29.5 289 297 29.7 313 304 30.1
Pre | 19.6 18.7 204 215 229 219 223
Rec | 23.8 229 237 245 257 253 229
F1 21.5 206 219 224 242 235 226

tors. First, Diff uses the vector difference wi — w;,
following the common strategy of modeling rela-
tions as vector differences, as e.g. in (Vylomova
et al., 2016). Second, Conc uses the concatenation
of w; and wy. This model is more general than Diff
but it uses twice as many dimensions, which may
make it harder to learn a good classifier from few
examples. The use of concatenations is popular
e.g. in the context of hypernym detection (Baroni
et al., 2012). Finally, Avg averages the vector rep-
resentations of the words occurring in sentences
that Diff, contain ¢ and k. In particular, let r;* be
obtained by averaging the word vectors of the con-
text words appearing between ¢ and k for each sen-
tence containing ¢ and k (in that order), and then
averaging the vectors obtained from each of these
sentences. Let s, and ¢}, be similarly obtained
from the words occurring before ¢ and the words
occurring after k respectively. The considered re-
lation vector is then defined as the concatenation
Of P08 U8 g v 4 40 v and . The
Avg will allow us to directly compare how much
we can improve relation vectors by deviating from
the common strategy of averaging word vectors.

5.1 Relation Induction

In the relation induction task, we are given word
pairs (s1,%1), ..., (Sk, tx) that are related in some
way, and the task is to decide for a number of test
examples (s,t) whether they also have this rela-
tionship. Among others, this task was considered
in (Vylomova et al., 2016), and a ranking version
of this task was studied in (Drozd et al., 2016).
As test sets we use the Google Analogy Test Set
(Mikolov et al., 2013a), which contains instances
of 14 different types of relations, and the DiffVec
dataset, which was introduced in (Vylomova et al.,
2016). This dataset contains instances of 36 dif-



Table 2: Results for the relation induction task using alternative word embedding models.

GloVe SkipGram CBOW

Google DiffVec Google DiffVec Google DiffVec

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Diff | 90.0 819 212 139|898 819 217 145|899 821 174 97
Conc | 889 804 202 119|892 81.6 205 120 | 89.1 8.1 164 7.7
Avg | 89.8 821 214 139|902 824 218 144|898 822 175 10.0
R}, | 897 81.7 209 125|894 812 21.1 123|898 819 172 92
R, | 900 828 212 134|891 813 21.1 129|902 824 177 100
R 900 823 200 112|895 8.1 205 123|895 811 172 96
R}, | 900 825 200 114|889 808 206 121|905 822 171 84

ferent types of relations*. Note that both datasets ~ Table 3: Relation induction without position

contain a mix of semantic and syntactic relations.

In our evaluation, we have used 10-fold cross-
validation (or leave-one-out for relations with
fewer than 10 instances). In the experiments, we
consider for each relation in the test set a separate
binary classification task, which was found to be
considerably more challenging than a multi-class
classification setting in (Vylomova et al., 2016).
To generate negative examples in the training data
(resp. test data), we have used three strategies, fol-
lowing (Vylomova et al., 2016). First, for a given
positive example (s, ) of the considered relation,
we add (¢, s) as a negative example. Second, for
each positive example (s, t), we generate two neg-
ative examples (s,¢1) and (s, t2) by randomly se-
lecting two tail words 1, to from the other training
(resp. test) examples of the same relation. Finally,
for each positive example, we also generate a neg-
ative example by randomly selecting two words
from the vocabulary. For each relation, we then
train a linear SVM classifier. To set the parameters
of the SVM, we initially use 25% of the training
data for tuning, and then retrain the SVM with the
optimal parameters on the full training data.

The results are summarized in Table 1 in terms
of accuracy and (macro-averaged) precision, recall
and F1 score. As can be observed, our model out-
performs the baselines on both datasets, with the
R?k variant outperforming the others.

To analyze the benefit of our proposed word
embedding variant, Table 2 shows the results that
were obtained when we use standard word embed-
ding models. In particular, we show results for the
standard GloVe model, SkipGram and the Contin-
uous Bag of Words (CBOW) model. As can be
observed, our variant leads to better results than
the original GloVe model, even for the baselines.

“Note that in contrast to (Vylomova et al., 2016) we use
all 36 relations from this dataset, including those with very
few instances.
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weighting (left) and without the relation vectors
s; and t;y, (right).

Google DiffVec
Acc F1 Acc F1
RL 897 8241302 222
R? | 910 834|308 24.1
R3 | 904 832|301 223
Ry | 902 829|291 212
Google DiffVec
Acc F1 Acc F1
R, [ 900 825299 223
R, | 923 858 | 312 242
R} | 905 832|302 230
R} | 903 831|298 223

The difference is particularly noticeable for Diff-
Vec. The difference is also larger for our relation
vectors than for the baselines, which is expected as
our method is based on the assumption that con-
text word vectors can be interpreted in terms of
PMI scores, which is only true for our variant.
Similar as in the GloVe model, the context
words in our model are weighted based on their
distance to the nearest target word. Table 3 shows
the results of our model without this weighting, for
the relation induction task. Comparing these re-
sults with those in Table 1 shows that the weight-
ing scheme indeed leads to a small improvement
(except for the accuracy of R}k for DiffVec). Sim-
ilarly, in Table 3, we show what happens if the re-
lation vectors S;, Sk, t;r and ti; are omitted. In
other words, for the results in Table 3, we only
use context words that appear between the two
target words. Again, the results are worse than
those in Table 1 (with the accuracy of R}, for Diff-
Vec again being an exception), although the dif-
ferences are very small in this case. While includ-
ing the vectors s;, Sk, tik, tk; Should be helpful,
it also significantly increases the dimensionality
of the vectors Rﬁ - Given that the number of in-
stances per relation is typically quite small for this



Table 4: Results for measuring degrees of proto-
typicality (Spearman p x 100).

Diff Conc
173 16.7

Rij
2.7

Rij
239

Ri
21.8

Riy
2.2

Avg
21.1

task, this can also make it harder to learn a suitable
classifier.

5.2 Measuring Degrees of Prototypicality

Instances of relations can often have different de-
grees of prototypicality. For example, for the rela-
tion “X characteristically makes the sound Y, the
pair (dog,bark) should be considered more proto-
typical than the pair (floor,squeak), even though
both pairs might be considered to be instances
of the relation (Jurgens et al.,, 2012). A suit-
able relation vector should allow us to rank word
pairs according to how prototypical they are as
instances of that relation. We evaluate this abil-
ity using a dataset that was produced in the after-
math of SemEval 2012 Task 2. In particular, we
have used the “Phase2AnswerScaled” data from
the platinum rankings dataset, which is available
from the SemEval 2012 Task 2 website’. In this
dataset, 79 ranked list of word pairs are provided,
each of which corresponds to a particular relation.
For each relation, we first split the associated rank-
ing into 60% training, 20% tuning, and 20% test-
ing (i.e. we randomly select 60% of the word pairs
and use their ranking as training data, and similar
for tuning and test data). We then train a linear
SVM regression model on the ranked word pairs.
Note that this task slightly differs from the task
that was considered at SemEval 2012, to allow us
to use an SVM based model for consistency with
the rest of the paper.

We report results using Spearman’s p in Table
4. Our model again outperforms the baselines,
with R?k again being the best variant. Interest-
ingly, in this case, the Avg baseline is consider-
ably stronger than Diff and Conc. Intuitively, we
might indeed expect that this ranking problem re-
quires a more fine-grained representation than the
relation induction setting. Note that the Diff repre-
sentations were found to achieve near state-of-the-
art performance on a closely related task in (Zhila
et al., 2013). The only model that was found to
perform (slightly) better was a hybrid model, com-
bining Diff representations with linguistic patterns

>https://sites.google.com/site/semeval2012task2/download
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Figure 1: Results for the relation extraction from

the NYT corpus: comparison with the main base-
lines.

(inspired by (Rink and Harabagiu, 2012)) and lex-
ical databases, among others.

5.3 Relation Extraction

Finally, we consider the problem of relation ex-
traction from a text corpus. Specifically, we con-
sider the task proposed in (Riedel et al., 2010),
which is to extract (subject,predicate,object)
triples from the New York Times (NYT) corpus.
Rather than having labelled sentences as training
data, the task requires using the existing triples
from Freebase as a form of distant supervision, i.e.
for some pairs of entities we know some of the
relations that hold between them, but not which
sentences assert these relationships (if any). To be
consistent with published results for this task, we
have used a word embedding that was trained from
the NYT corpus®, rather than Wikipedia (using the
same preprocessing and set-up). We have used the
training and test data that was shared publicly for
this task’, which consist of sentences from arti-
cles published in 2005-2006 and in 2007, respec-
tively. Each of these sentences contains two en-
tities, which are already linked to Freebase. We
learn relation vectors from the sentences in the
training and test sets, and learn a linear SVM clas-
sifier based on the Freebase triples that are avail-
able in the training set. Initially, we split the train-
ing data into 75% training and 25% tuning to find
the optimal parameters of the linear SVM model.
We tuned the parameters for each test fold sepa-

Shttps://catalog.1dc.upenn.edu/LDC2008T19
"http://iesl.cs.umass.edu/riedel/ecml/
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the NYT corpus: comparison with state-of-the-art
neural network models.

rately. For each test fold, we used 25% of the 9
training folds as tuning data. After the optimal
parameters have been determined, we retrain the
model on the full training data, and apply it on
the test fold. We used this approach (rather than
e.g. fixing a train/tune/test split) because the to-
tal number of examples for some of the relations
is very small. After tuning, we re-train the SVM
models on the full training data. As the number
of training examples is larger for this task, we also
consider SVMs with a quadratic kernel.
Following earlier work on this task, we re-
port our results on the test set as a precision-
recall graph in Figure 1. This shows that the
best performance is again achieved by Ri?k, espe-
cially for larger recall values. Furthermore, us-
ing a quadratic kernel (only shown for R?k) out-
performs the linear SVM models. Note that the
differences between the baselines are more pro-
nounced in this task, with Avg being clearly bet-
ter than Diff, which is in turn better than Conc.
For this relation extraction task, a large number
of methods have already been proposed in the lit-
erature, with variants of convolutional neural net-
work models with attention mechanisms achiev-
ing state-of-the-art performance®. A comparison
with these models’ is shown in Figure 2. The per-
formance of Rfk is comparable with the state-of-

8Note that such models would not be suitable for the eval-
uation tasks in Sections 5.1 and 5.2, due to the very limited
number of training examples.

“Results for the neural network models have been
obtained from  https://github.com/thunlp/
TensorFlow—-NRE/tree/master/data.
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the-art PCNN+ATT model (Lin et al., 2016), out-
performing it for larger recall values. This is re-
markable, as our model is conceptually much sim-
pler, and has not been specifically tuned for this
task. For instance, it could easily be improved by
incorporating the attention mechanism from the
PCNN+ATT model to focus the relation vectors
on the considered task. Similarly, we could con-
sider a supervised variant of (3), in which a learned
relation-specific weight is added to each term.

6 Conclusions

We have proposed an unsupervised method which
uses co-occurrences statistics to represent the re-
lationship between a given pair of words as a vec-
tor. In contrast to neural network models for rela-
tion extraction, our model learns relation vectors
in an unsupervised way, which means that it can
be used for measuring relational similarities and
related tasks. Moreover, even in (distantly) super-
vised tasks (where we need to learn a classifier
on top of the unsupervised relation vectors), our
model has proven competitive with state-of-the-art
neural network models. Compared to approaches
that rely on averaging word vectors, our method is
able to learn more faithful representations by fo-
cusing on the words that are most strongly related
to the considered relationship.
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Abstract

Semantic specialization of distributional
word vectors, referred to as retrofitting, is
a process of fine-tuning word vectors us-
ing external lexical knowledge in order to
better embed some semantic relation. Ex-
isting retrofitting models integrate linguis-
tic constraints directly into learning objec-
tives and, consequently, specialize only the
vectors of words from the constraints. In
this work, in contrast, we transform ex-
ternal lexico-semantic relations into train-
ing examples which we use to learn an
explicit retrofitting model (ER). The ER
model allows us to learn a global special-
ization function and specialize the vectors
of words unobserved in the training data as
well. We report large gains over original
distributional vector spaces in (1) intrin-
sic word similarity evaluation and on (2)
two downstream tasks — lexical simplifica-
tion and dialog state tracking. Finally, we
also successfully specialize vector spaces
of new languages (i.e., unseen in the train-
ing data) by coupling ER with shared mul-
tilingual distributional vector spaces.

1 Introduction

Algebraic modeling of word vector spaces is one
of the core research areas in modern Natural Lan-
guage Processing (NLP) and its usefulness has been
shown across a wide variety of NLP tasks (Col-
lobert et al., 2011; Chen and Manning, 2014; Mela-
mud et al., 2016). Commonly employed distribu-
tional models for word vector induction are based
on the distributional hypothesis (Harris, 1954), i.e.,
they rely on word co-occurrences obtained from
large text corpora (Mikolov et al., 2013b; Penning-
ton et al., 2014; Levy and Goldberg, 2014a; Levy
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et al., 2015; Bojanowski et al., 2017).

The dependence on purely distributional knowl-
edge results in a well-known tendency of fusing
semantic similarity with other types of semantic
relatedness (Hill et al., 2015; Schwartz et al., 2015)
in the induced vector spaces. Consequently, the
similarity between distributional vectors indicates
just an abstract semantic association and not a pre-
cise semantic relation (Yih et al., 2012; Mohammad
et al., 2013). For example, it is difficult to discern
synonyms from antonyms in distributional spaces.
This property has a particularly negative effect on
NLP applications like text simplification and statis-
tical dialog modeling, in which discerning semantic
similarity from other types of semantic relatedness
is pivotal to the system performance (Glavas and
gtajner, 2015; Faruqui et al., 2015; Mrksi€ et al.,
2016; Kim et al., 2016b).

A standard solution is to move beyond purely
unsupervised learning of word representations, in
a process referred to as word vector space spe-
cialization or retrofitting. Specialization models
leverage external lexical knowledge from lexical
resources, such as WordNet (Fellbaum, 1998), the
Paraphrase Database (Ganitkevitch et al., 2013), or
BabelNet (Navigli and Ponzetto, 2012), to special-
ize distributional spaces for a particular lexical rela-
tion, e.g., synonymy (Faruqui et al., 2015; Mrksi¢
et al., 2017) or hypernymy (Glavas and Ponzetto,
2017). External constraints are commonly pairs of
words between which a particular relation holds.

Existing specialization methods exploit the ex-
ternal linguistic constraints in two prominent ways:
(1) joint specialization models modify the learning
objective of the original distributional model by
integrating the constraints into it (Yu and Dredze,
2014; Kiela et al., 2015; Nguyen et al., 2016, inter
alia); (2) post-processing models fine-tune distri-
butional vectors retroactively after training to sat-
isfy the external constraints (Faruqui et al., 2015;
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Mrksié et al., 2017, inter alia). The latter, in gen-
eral, outperform the former (Mrksi¢ et al., 2016).
Retrofitting models can be applied to arbitrary dis-
tributional spaces but they suffer from a major lim-
itation — they locally update only vectors of words
present in the external constraints, whereas vec-
tors of all other (unseen) words remain intact. In
contrast, joint specialization models propagate the
external signal to all words via the joint objective.

In this paper, we propose a new approach for
specializing word vectors that unifies the strengths
of both prior strategies, while mitigating their lim-
itations. Same as retrofitting models, our novel
framework, termed explicit retrofitting (ER), is ap-
plicable to arbitrary distributional spaces. At the
same time, the method learns an explicit global
specialization function that can specialize vectors
for all vocabulary words, similar as in joint models.
Yet, unlike the joint models, ER does not require
expensive re-training on large text corpora, but is
directly applied on top of any pre-trained vector
space. The key idea of ER is to directly learn a spe-
cialization function in a supervised setting, using
lexical constraints as training instances. In other
words, our model, implemented as a deep feed-
forward neural architecture, learns a (non-linear)
function which “translates” word vectors from the
distributional space into the specialized space.

We show that the proposed ER approach yields
considerable gains over distributional spaces in
word similarity evaluation on standard benchmarks
(Hill et al., 2015; Gerz et al., 2016), as well as in
two downstream tasks — lexical simplification and
dialog state tracking. Furthermore, we show that,
by coupling the ER model with shared multilingual
embedding spaces (Mikolov et al., 2013a; Smith
et al., 2017), we can also specialize distributional
spaces for languages unseen in the training data in
a zero-shot language transfer setup. In other words,
we show that an explicit retrofitting model trained
with external constraints from one language can
be successfully used to specialize the distributional
space of another language.

2 Related Work

The importance of vector space specialization for
downstream tasks has been observed, inter alia,
for dialog state tracking (MrkSi¢ et al., 2017; Vuli¢
etal.,2017b), spoken language understanding (Kim
etal., 2016b,a), judging lexical entailment (Nguyen
et al., 2017; Glavas and Ponzetto, 2017; Vuli¢ and
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Mrksic, 2017), lexical contrast modeling (Nguyen
et al., 2016), and cross-lingual transfer of lexical
resources (Vuli¢ et al., 2017a). A common goal
pertaining to all retrofitting models is to pull the
vectors of similar words (e.g., synonyms) closer
together, while some models also push the vec-
tors of dissimilar words (e.g., antonyms) further
apart. The specialization methods fall into two cat-
egories: (1) joint specialization methods, and (2)
post-processing (i.e., retrofitting) methods. Meth-
ods from both categories make use of similar lex-
ical resources — they typically leverage WordNet
(Fellbaum, 1998), FrameNet (Baker et al., 1998),
the Paraphrase Database (PPDB) (Ganitkevitch
et al., 2013; Pavlick et al., 2015), morphological
lexicons (Cotterell et al., 2016), or simple hand-
crafted linguistic rules (Vuli¢ et al., 2017b). In
what follows, we discuss the two model categories.

Joint Specialization Models. These models in-
tegrate external constraints into the distributional
training procedure of general word embedding al-
gorithms such as CBOW, Skip-Gram (Mikolov
et al., 2013b), or Canonical Correlation Analysis
(Dhillon et al., 2015). They modify the prior or
the regularization of the original objective (Yu and
Dredze, 2014; Xu et al., 2014; Bian et al., 2014;
Kiela et al., 2015) or integrate the constraints di-
rectly into the, e.g., an SGNS- or CBOW-style ob-
jective (Liu et al., 2015; Ono et al., 2015; Bolle-
gala et al., 2016; Osborne et al., 2016; Nguyen
et al., 2016, 2017). Besides generally displaying
lower performance compared to retrofitting meth-
ods (Mrksi¢ et al., 2016), these models are also
tied to the distributional objective and any change
of the underlying distributional model induces a
change of the entire joint model. This makes them
less versatile than the retrofitting methods.

Post-Processing Models. Models from the popu-
larly termed retrofitting family inject lexical knowl-
edge from external resources into arbitrary pre-
trained word vectors (Faruqui et al., 2015; Jauhar
et al., 2015; Rothe and Schiitze, 2015; Wieting
et al., 2015; Nguyen et al., 2016; MrkSsic¢ et al.,
2016). These models fine-tune the vectors of words
present in the linguistic constraints to reflect the
ground-truth lexical knowledge. While the large
majority of specialization models from both classes
operate only with similarity constraints, a line of re-
cent work (Mrksic et al., 2016; Mrksi¢ et al., 2017,
Vuli€ et al., 2017b) demonstrates that knowledge
about both similar and dissimilar words leads to



improved performance in downstream tasks. The
main shortcoming of the existing retrofitting mod-
els is their inability to specialize vectors of words
unseen in external lexical resources.

Our explicit retrofitting framework brings to-
gether desirable properties of both model classes:
(1) unlike joint models, it does not require adap-
tation to the underlying distributional model and
expensive re-training, i.e., it is applicable to any
pre-trained distributional space; (2) it allows for
easy integration of both similarity and dissimilarity
constraints into the specialization process; and (3)
unlike post-processors, it specializes the full vocab-
ulary of the original distributional space and not
only vectors of words from external constraints.

3 Explicit Retrofitting

Our explicit retrofitting (ER) approach, illustrated
by Figure 1a, consists of two major components:
(1) an algorithm for preparing training instances
from external lexical constraints, and (2) a super-
vised specialization model, based on a deep feed-
forward neural network. This network, shown in
Figure 1b learns a non-linear global specialization
function from the training instances.

3.1 From Constraints to Training Instances

Let X = {x;}Y,, x; € R? be the d-dimensional
distributional vector space that we want to spe-
cialize (with V' = {w;}}¥, referring to the as-
sociated vocabulary) and let X' = {x;}}¥, be
the corresponding specialized vector space that we
seek to obtain through explicit retrofitting. Let
C = {(wi,wj, ) }E | be the set of L linguistic
constraints from an external lexical resource, each
consisting of a pair of vocabulary words w; and
w; and a semantic relation 7 that holds between
them. The most recent state-of-the-art retrofitting
work (Mrksic et al., 2017; Vuli¢ et al., 2017b) sug-
gests that using both similarity and dissimilarity
constraints leads to better performance compared
to using only similarity constraints. Therefore, we
use synonymy and antonymy relations from exter-
nal resources, i.e., r; € {ant, syn}. Let g be the
function measuring the distance between words w;
and w; based on their vector representations. The
algorithm for preparing training instances from con-
straints is guided by the following assumptions:

1. All synonymy pairs (w;, w;, syn) should have
a minimal possible distance score in the spe-
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cialized space, i.e., (x';, X';) = Gmin;

All antonymy pairs (w;, w;, ant) should have
a maximal distance in the specialized space,
Le., g(X/i, X,j) = gmax;z

. The distances g(x’;,x'x) in the specialized
space between some word w; and all other
words wy, that are not synonyms or antonyms
of w; should be in the interval (gmin, Imaz)-

Our goal is to discern semantic similarity from
semantic relatedness by comparing, in the spe-
cialized space, the distances between word pairs
(ws,wj,r) € C with distances that words w; and
w; from those pairs have with other vocabulary
words wy,. It is intuitive to enforce that the syn-
onyms are as close as possible and antonyms as
far as possible. However, we do not know what
the distances between non-synonymous and non-
antonymous words g(x’;, X,,) in the specialized
space should look like. This is why, for all other
words, similar to (Faruqui et al., 2016; Mrksi¢ et al.,
2017), we assume that the distances in the spe-
cialized space for all word pairs not found in C
should stay the same as in the distributional space:
9(x'i,x'1m) = g(xi,%xy,). This way we preserve
the useful semantic content available in the original
distributional space.

In downstream tasks most errors stem from
vectors of semantically related words (e.g., car
— driver) being as similar as vectors of seman-
tically similar words (e.g., car — automobile).
To anticipate this, we compare the distances of
pairs (w;, w;,r) € C with the distances for pairs
(ws, wp,) and (wj, wy, ), where wy, and w,, are neg-
ative examples: the vocabulary words that are most
similar to w; and wj, respectively, in the original
distributional space X. Concretely, for each con-
straint (w;, w;,r) € C we retrieve (1) K vocabu-
lary words {w¥ }/  that are closest in the input
distributional space (according to the distance func-
tion g) to the word w; and (2) K vocabulary words
{wk}E | that are closest to the word w;. We then
create, for each constraint (w;,w;,r) € C, a cor-
responding set M (termed micro-batch) of 2K + 1
embedding pairs coupled with a corresponding dis-
tance in the input distributional space:

!"The minimal distance value is g, = 0 for, e.g., cosine
distance or Euclidean distance.

2While some distance functions do have a theoretical max-
imum (e.g., gmaez = 2 for cosine distance), others (e.g., Eu-
clidean distance) may be theoretically unbounded. For un-
bounded distance measures, we propose using the maximal
distance between any two words from the vocabulary as g,qz.-
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Figure 1: (a) High-level illustration of the explicit retrofitting approach: lexical constraints, i.e., pairs of
synonyms and antonyms, are transformed into respective micro-batches, which are then used to train the
supervised specialization model. (b) The low-level implementation of the specialization model, combining
the non-linear embedding specialization function f, defined as the deep fully-connected feed-forward
network, with the distance metric g, measuring the distance between word vectors after their specialization.
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ey
with g, = gmin if ¥ = SYN; g = Gmag if 7 = ant.

3.2 Non-Linear Specialization Function

Our retrofitting framework learns a global explicit
specialization function which, when applied on
a distributional vector space, transforms it into a
space that better captures semantic similarity, i.e.,
discerns similarity from all other types of semantic
relatedness. We seek the optimal parameters 6
of the parametrized function f(x;6) : R* — R
(where d is the dimensionality of the input space).
The specialized embedding x’; of the word w; is
then obtained as x’; = f(x;;6). The specialized
space X’ is obtained by transforming distributional
vectors of all vocabulary words, X' = f(X;6).

We define the specialization function f to be a
multi-layer fully-connected feed-forward network
with H hidden layers and non-linear activations
¢. The illustration of this network is given in Fig-
ure 1b. The ¢-th hidden layer is defined with a
weight matrix W and a bias vector b':

hi(x;0:) = ¢ (hi_l(x; 01 )W' + bi) 2)

where 0; is the subset of network’s parameters
up to the i-th layer. Note that in this notation,
x = h%(x;0) and X’ = f(x,0) = h'(x;0). Let
dy, be the size of the hidden layers. The network’s
parameters are then as follows: W' ¢ Rxdn;
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Wi € Rwxdn ¢ {2,....H — 1}; WH ¢
R4 bt e R, i€ {1,...,H —1}; b e R™.

3.3 Optimization Objectives

We feed the micro-batches consisting of 2K + 1
training instances to the specialization model (see
Section 3.1). Each training instance consists of a
pair of distributional (i.e., unspecialized) embed-
ding vectors x; and x; and a score g denoting the
desired distance between the specialized vectors
x’; and x’; of corresponding words w; and w;.

Mean Square Distance Objective (ER-MSD).
Let our training batch consist of N training in-
stances, {(x},x%, g*)} . The simplest objective
function is then the difference between the desired
and obtained distances of specialized vectors:

N

Juso = 3" (g(FG<), F6)) — o)

i=1

3

By minimizing the MSD objective we simply force
the specialization model to produce a specialized
embedding space X’ in which distances between all
synonyms amount to g, distances between all
antonyms amount to g,,4,; and distances between
all other word pairs remain the same as in the orig-
inal space. The MSD objective does not lever-
age negative examples: it only indirectly enforces
that synonym (or antonym) pairs (w;,w;) have
smaller (or larger) distances than corresponding
non-constraint word pairs (w;, wy) and (w;, wg,).

Contrastive Objective (ER-CNT). An alterna-
tive to MSD is to directly contrast the distances
of constraint pairs (i.e., antonyms and synonyms)



with the distances of their corresponding negative
examples, i.e., the pairs from their respective micro-
batch (cf. Eq. (1) in Section 3.1). Such an ob-
jective should directly enforce that the similarity
scores for synonyms (antonyms) (w;, w;) are larger
(or smaller, for antonyms) than for pairs (w;, wy)
and (wj, wy,) involving the same words w; and wj,
respectively. Let S and A be the sets of micro-
batches created from synonymy and antonymy con-
straints. Let Ms, = {(x},x3,¢")}2"! be one
micro-batch created from one synonymy constraint
and let M, be the analogous micro-batch created
from one antonymy constraint. Let us then assume
that the first triple (i.e., for ¢ = 1) in every micro-
batch corresponds to the constraint pair and the re-
maining 2K triples (i.e., fori € {2,...,2K +1})
to respective non-constraint word pairs. We then
define the contrastive objective as follows:

2K +1 _ , N2
Jent = Z Z ((gl—gmm)— ¢ -4 ))
M,€S i=2
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+ Z Z ((gmaz - gi) - (9/1 - gli))

Mg€A i=2

2

where ¢’ is a short-hand notation for the dis-
tance between vectors in the specialized space, i.e.,

9 (x1,%2) = g(x1,%3) = g(f (x1), f (x2))-

Topological Regularization. Because the distri-
butional space X already contains useful semantic
information, we want our specialized space X’ to
move similar words closer together and dissimi-
lar words further apart, but without disrupting the
overall topology of X. To this end, we define an
additional regularization objective that measures
the distance between the original vectors x; and xo
and their specialized counterparts x; = f(x1) and
x5 = f(x2), for all examples in the training set:

N
Jrec =y g(x1, f(x1) + 905, f(x2)) @)
i=1
We minimize the final objective function J' = J +

AN RrEq. J is either Jysp or Joyr and A is the
regularization factor which determines how strictly
we retain the topology of the original space.

4 Experimental Setup

Distributional Vectors. In order to estimate the
robustness of the proposed explicit retrofitting pro-
cedure, we experiment with three different publicly
available and widely used collections of pre-trained
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distributional vectors for English: (1) SGNS-W2
— vectors trained on the Wikipedia dump from
the Polyglot project (Al-Rfou et al., 2013) using
the Skip-Gram algorithm with Negative Sampling
(SGNS) (Mikolov et al., 2013b) by Levy and Gold-
berg (2014b), using the context windows of size 2;
(2) GLOVE-CC - vectors trained with the GloVe
(Pennington et al., 2014) model on the Common
Crawl; and (3) FASTTEXT — vectors trained on
Wikipedia with a variant of SGNS that builds word
vectors by summing the vectors of their constituent
character n-grams (Bojanowski et al., 2017).

Linguistic Constraints. We experiment with the
sets of linguistic constraints used in prior work
(Zhang et al., 2014; Ono et al., 2015). These
constraints, extracted from WordNet (Fellbaum,
1998) and Roget’s Thesaurus (Kipfer, 2009), com-
prise a total of 1,023,082 synonymy word pairs and
380,873 antonymy word pairs.

Although this seems like a large number of lin-
guistic constraints, there is only 57,320 unique
words in all synonymy and antonymy constraints
combined, and not all of these words are found in
the dictionary of the pre-trained distributional vec-
tor space. For example, only 15.3% of the words
from constraints are found in the whole vocabu-
lary of SGNS-W2 embeddings. Similarly, we find
only 13.3% and 14.6% constraint words among the
200K most frequent words from the GLOVE-CC
and FASTTEXT vocabularies, respectively. This
low coverage emphasizes the core limitation of cur-
rent retrofitting methods, being able to specialize
only the vectors of words seen in the external con-
straints, and the need for our global ER method
which can specialize all word vectors from the dis-
tributional space.

ER Model Configuration. In all experiments,
we set the distance function g to cosine distance:
g(x1,%2) = 1= (x1-x2/(||x1]|[|x2])) and use the
hyperbolic tangent as activation, ¢ = tanh. For
each constraint (w;,w;), we create ' = 4 corre-
sponding negative examples for both w; and wj,
resulting in micro-batches with 2K + 1 = 9 train-
ing instances.’ We separate 10% of the created
micro-batches as the validation set. We then tune
the hyper-parameter values, the number of hidden
layers H = 5 and their size d;, = 1000, and the

3For K < 4 we observed significant performance drop.
Setting K > 4 resulted in negligible performance gains but
significantly increased the model training time.



topological regularization factor A = 0.3 by mini-
mizing the model’s objective J' on the validation
set. We train the model in mini-batches, each con-
taining NV, = 100 constraints (i.e., 900 training
instances, see above), using the Adam optimizer
(Kingma and Ba, 2015) with initial learning rate
set to 10~%. We use the loss on the validation set
as the early stopping criteria.

5 Results and Discussion

5.1 Word Similarity

Evaluation Setup. We first evaluate the quality
of the explicitly retrofitted embedding spaces in-
trinsically, on two word similarity benchmarks:
SimLex-999 dataset (Hill et al., 2015) and SimVerb-
3500 (Gerz et al., 2016), a recent dataset contain-
ing human similarity ratings for 3,500 verb pairs.*
We use Spearman’s p rank correlation between
gold and predicted word pair scores as the eval-
uation metric. We evaluate the specialized embed-
ding spaces in two settings. In the first setting,
termed lexically disjoint, we remove from our train-
ing set all linguistic constraints that contain any
of the words found in SimLex or SimVerb. This
way, we effectively evaluate the model’s ability
to generalize the specialization function to unseen
words. In the second setting (lexical overlap) we re-
tain the constraints containing SimLex or SimVerb
words in the training set. For comparison, we
also report performance of the state-of-the-art local
retrofitting model ATTRACT-REPEL (MrkSic et al.,
2017), which is able to specialize only the words
from the linguistic constraints.

Results. The results with our ER model applied
to three distributional spaces are shown in Table 1.
The scores suggest that the proposed ER model is
universally useful and robust. The ER-specialized
spaces outperform original distributional spaces
across the board, for both objective functions. The
results in the lexically disjoint setting are especially
indicative of the improvements achieved by the ER.
For example, we achieve a correlation gain of 18%
for the GLOVE-CC vectors on SimLex using a
specialization function learned without seeing a
single constraint with any SimLex word.

*Other word similarity datasets such as MEN (Bruni et al.,
2014) or WordSim-353 (Finkelstein et al., 2002) conflate the
concepts of true semantic similarity and semantic relatedness
in a broader sense. In contrast, SimLex and SimVerb explicitly
discern between the two, with pairs of semantically related
but not similar words (e.g. car and wheel) having low ratings.

39

In the lexical overlap setting, we observe sub-
stantial gains only for GLOVE-CC. The modest
gains in this setting with FASTTEXT and SGNS-
W2 in fact strengthen the impression that the ER
model learns a general specialization function, i.e.,
it does not “overfit” to words from linguistic con-
straints. The ER model with the contrastive ob-
jective (ER-CNT) yields better performance on
average than the one using the simpler square dis-
tance objective (ER-MSD). This is expected, given
that the contrastive objective enforces the model to
distinguish pairs of semantically (dis)similar words
from pairs of semantically related words.

Finally, the post-processing ATTRACT-REPEL
model based on local vector updates seems to sub-
stantially outperform the ER method in this task.
The gap is especially visible for FASTTEXT and
SGNS-W2 vectors. However, since ATTRACT-
REPEL specializes only words seen in linguistic
constraints,’ its performance crucially depends on
the coverage of test set words in the constraints.
ATTRACT-REPEL excels on the intrinsic evaluation
as the constraints cover 99.2% of SimLex words
and 99.9% of SimVerb words. However, its use-
fulness is less pronounced in real-life downstream
scenarios in which such high coverage cannot be
guaranteed, as demonstrated in Section 5.3.

Analysis. We examine in more detail the perfor-
mance of the ER model with respect to (1) the
type of constraints used for training the model:
synonyms and antonyms, only synonyms, or only
antonyms and (2) the extent to which we retain
the topology of the original distributional space
(i.e., with respect to the value of the topological
regularization factor A). All reported results were
obtained by specializing the GLOVE-CC distribu-
tional space in the lexically disjoint setting (i.e.,
employed constraints did not contain any of the
SimLex or SimVerb words).

In Table 2 we show the specialization perfor-
mance of the ER-CNT models (H = 5, A = 0.3),
using different types of constraints on SimLex-
999 (SL) and SimVerb-3500 (SV). We compare
the standard model, which exploits both synonym
and antonym pairs for creating training instances,
with the models employing only synonym and only
antonym constraints, respectively. Clearly, we
obtain the best specialization when combining syn-
onyms and antonyms. Note, however, that using

5This is why ATTRACT-REPEL cannot be applied in the
lexically disjoint setting: the scores simply stay the same.



Setting: lexically disjoint

Setting: lexical overlap

GLOVE-CC FASTTEXT SGNS-W2 GLOVE-CC FASTTEXT SGNS-W2

SL SV SL N SL N SL N SL SV SL N

Distributional (X) 407 280 383 247 414 272 407 280 383 247 414 272

ATTRACT-REPEL 407 280 383 247 414 272 690 578 .629 .502 .658 .544
ER-Specialized (X' = f(X))

ER-MSD 483 345 429 275 445 302 500 358 445 284 469 323

ER-CNT 582 439 433 272 435 329 623 519 419 335 449 355

Table 1: Spearman’s p correlation scores for three standard English distributional vectors spaces on
English SimLex-999 (SL) and SimVerb-3500 (SV), using explicit retrofitting models with two different
objective functions (ER-MSD and ER-CNT, cf. Section 3.3).

Constraints (ER-CNT model) SL SV Model German Italian  Croatian

Synonyms only 465 .339 Distributional (X) 407 .360 .249

Antonyms only 451 317 ER-Specialized (X')

Synonyms + Antonyms 582 439 ER-MSD 415 406 287
ER-CNT 533 .448 315

Table 2: Performance (p) on SL and SV for ER-
CNT models trained with different constraints.

Figure 2: Specialization performance on SimLex-
999 (blue line) and SimVerb-3500 (red line) for
ER models with different topology regularization
factors A. Dashed lines indicate performance levels
of the distributional (i.e., unspecialized) space.

only synonyms or only antonyms also improves
over the original distributional space.

Next, in Figure 2 we depict the specialization
performance (on SimLex and SimVerb) of the ER
models with different values of the topology reg-
ularization factor A (H fixed to 5). The best per-
formance for is obtained for A = 0.3. Smaller
lambda values overly distort the original distribu-
tional space, whereas larger lambda values dampen
the specialization effects of linguistic constraints.

5.2 Language Transfer

Readily available large collections of synonymy
and antonymy word pairs do not exist for many
languages. This is why we also investigate zero-
shot specialization: we test if it is possible, with the
help of cross-lingual word embeddings, to transfer
the specialization knowledge learned from English
constraints to languages without any training data.

Evaluation Setup. We use the mapping model
of Smith et al. (2017) to induce a multilingual vec-
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Table 3: Spearman’s p correlation scores for Ger-
man, Italian, and Croatian embeddings in the trans-
fer setup: the vectors are specialized using the mod-
els trained on English constraints and evaluated on
respective language-specific SimLex-999 variants.

tor space® containing word vectors of three other

languages — German, Italian, and Croatian — along
with the English vectors.” Concretely, we map the
Italian CBOW vectors (Dinu et al., 2015), German
FastText vectors trained on German Wikipedia (Bo-
janowski et al., 2017), and Croatian Skip-Gram
vectors trained on HrWaC corpus (Ljubesi¢ and
Erjavec, 2011) to the GLOVE-CC English space.
We create the translation pairs needed to learn the
projections by automatically translating 4,000 most
frequent English words to all three other languages
with Google Translate. We then employ the ER
model trained to specialize the GLOVE-CC space
using the full set of English constraints, to special-
ize the distributional spaces of other languages. We
evaluate the quality of the specialized spaces on the
respective SimLex-999 dataset for each language
(Leviant and Reichart, 2015; Mrksié et al., 2017).

Results. The results are provided in Table 3.
They indicate that the ER models can substan-
tially improve (e.g., by 13% for German vector
space) over distributional spaces also in the lan-
guage transfer setup without seeing a single con-
straint in the target language. These transfer results
hold promise to support vector space specialization

®This model was chosen for its ease of use, readily avail-
able implementation, and strong comparative results (see
(Ruder et al., 2017)). For more details we refer the reader
to the original paper and the survey.

"The choice of languages was determined by the availabil-
ity of the language-specific SimLex-999 variants.



even for resource-lean languages. The more sophis-
ticated contrastive ER-CNT model variant again
outperforms the simpler ER-MSD variant, and it
does so for all three languages, which is consistent
with the findings from the monolingual English
experiments (see Table 1).

5.3 Downstream Tasks

We now evaluate the impact of our global ER
method on two downstream tasks in which differ-
entiating semantic similarity from semantic relat-
edness is particularly important: lexical text sim-
plification (LS) and dialog state tracking (DST).

5.3.1 Lexical Text Simplification

Lexical simplification aims to replace complex
words — used less frequently and known to fewer
speakers — with their simpler synonyms that fit into
the context, that is, without changing the meaning
of the original text. Because retaining the meaning
of the original text is a strict requirement, complex
words need to be replaced with semantically similar
words, whereas replacements with semantically re-
lated words (e.g., replacing “pilot” with “airplane”
in “Ferrari’s pilot won the race”) produce incor-
rect text which is more difficult to comprehend.

Simplification Using Distributional Vectors.
We use the LIGHT-LS lexical simplification algo-
rithm of Glavas and gtajner (2015) which makes
the word replacement decisions primarily based on
semantic similarities between words in a distribu-
tional vector space.® For each word in the input
text LIGHT-LS retrieves most similar replacement
candidates from the vector space. The candidates
are then ranked according to several measures of
simplicity and fitness for the context. Finally, the
replacement is made if the top-ranked candidate is
estimated to be simpler than the original word. By
plugging-in vector spaces specialized by the ER
model into LIGHT-LS, we hope to generate true
synonymous candidates more frequently than with
the unspecialized distributional space.

Evaluation Setup. We evaluate LIGHT-LS on
the LS dataset crowdsourced by Horn et al. (2014).
For each indicated complex word Horn et al. (2014)
collected 50 manual simplifications. We use two
evaluation metrics from prior work (Horn et al.,
2014; Glava§ and Stajner, 2015) to quantify the
quality and frequency of word replacements: (1)

8The Light-LS implementation is available at:
https://bitbucket.org/gg42554/embesimp
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GLOVE-CC FASTTEXT SGNS-W2
Emb. space A C A C A C
Distributional 66.0 940 57.8 84.0 56.0 79.1
Specialized
ATTRACT-REPEL 67.6 870 69.8 894 644 86.7
ER-CNT 73.8 930 712 932 684 923

Table 4: Lexical simplification performance with
explicit retrofitting applied on three input spaces.

accurracy (A) is the number of correct simplifica-
tions made (i.e., when the replacement made by
the system is found in the list of manual replace-
ments) divided by the total number of indicated
complex words; and (2) change (C) is the percent-
age of indicated complex words that were replaced
by the system (regardless of whether the replace-
ment was correct). We plug into LIGHT-LS both
unspecialized and specialized variants of three pre-
viously used English embedding spaces: GLOVE-
CC, FASTTEXT, and SGNS-W2. Additionally, we
again evaluate specializations of the same spaces
produced by the state-of-the-art local retrofitting
model ATTRACT-REPEL (MrkSic et al., 2017).

Results and Analysis. The results with LIGHT-
LS are summarized in Table 4. ER-CNT
model yields considerable gains over unspecial-
ized spaces for both metrics. This suggests that the
ER-specialized embedding spaces allow LIGHT-
LS to generate true synonymous candidate replace-
ments more often than with unspecialized spaces,
and also verifies the importance of specialization
for the LS task. Our ER-CNT model now also
yields better results than ATTRACT-REPEL in a
real-world downstream task. Only 59.6 % of all
indicated complex words and manual replacement
candidates from the LS dataset are now covered by
the linguistic constraints. This accentuates the need
to specialize the full distributional space in down-
stream applications as done by the ER model, while
ATTRACT-REPEL is limited to local vector updates
only of words seen in the constraints. By learning
a global specialization function the proposed ER
models seem more resilient to the observed drop
in coverage of test words by linguistic constraints.
Table 5 shows example substitutions of LIGHT-LS
when using different embedding spaces: original
GLOVE-CC space and its specializations obtained
with ER-CNT and ATTRACT-REPEL.

5.3.2 Dialog State Tracking

Finally, we also evaluate the importance of explicit
retrofitting in a downstream language understand-



Text GLOVE-CC ATTRACT-REPEL ER-CNT
Wrestlers portrayed a villain or a hero as they followed a series of events  character protagonist demon
that built tension

This large version number jump was due to a feeling that a version 1.0 with ones songs parts
no major missing pieces was imminent.

The storm continued, crossing North Carolina , and retained its strength until lost preserved preserved
June 20 when it became extratropical near Newfoundland

Tibooburra has an arid, desert climate with temperatures soaring above 40  subtropical humid dry

Celsius in summer, often reaching as high as 47 degrees Celsius.

Table 5: Examples of lexical simplifications performed with the Light-LS tool when using different
embedding spaces. The target word to be simplified is in bold.

GLOVE-CC embedding vectors JGA
Distributional (X) 797
Specialized (X' = f(X))

ATTRACT-REPEL 817
ER-CNT .816

Table 6: DST performance of GLOVE-CC embed-
dings specialized using explicit retrofitting.

ing task, namely dialog state tracking (DST) (Hen-
derson et al., 2014; Williams et al., 2016). A DST
model is typically the first component of a dialog
system pipeline (Young, 2010), tasked with cap-
turing user’s goals and updating the dialog state
at each dialog turn. Similarly as in lexical simpli-
fication, discerning similarity from relatedness is
crucial in DST (e.g., a dialog system should not
recommend an “expensive pub in the south” when
asked for a “cheap bar in the east”).

Evaluation Setup. To evaluate the impact of spe-
cialized word vectors on DST, we employ the Neu-
ral Belief Tracker (NBT), a DST model that makes
inferences purely based on pre-trained word vec-
tors (Mrksi¢ et al., 2017).> NBT composes word
embeddings into intermediate utterance and context
representations. For full model details, we refer the
reader to the original paper. Following prior work,
our DST evaluation is based on the Wizard-of-Oz
(WOZ) v2.0 dataset (Wen et al., 2017; MrkSsi¢ et al.,
2017) which contains 1,200 dialogs (600 training,
200 validation, and 400 test dialogs). We evaluate
performance of the distributional and specialized
GLOVE-CC embeddings and report it in terms of
Jjoint goal accuracy (JGA), a standard DST evalua-
tion metric. All reported results are averages over
5 runs of the NBT model.

Results. We show DST performance in Table 6.
The DST results tell a similar story like word simi-
larity and lexical simplification results — the ER

*https://github.com/nmrksic/neural-belief-tracker
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model substantially improves over the distribu-
tional space. With linguistic specialization con-
straints covering 57% of words from the WOZ
dataset, ER model’s performance is on a par with
the ATTRACT-REPEL specialization. This further
confirms our hypothesis that the importance of
learning a global specialization for the full vocabu-
lary in downstream tasks grows with the drop of the
test word coverage by specialization constraints.

6 Conclusion

We presented a novel method for specializing word
embeddings to better discern similarity from other
types of semantic relatedness. Unlike existing
retrofitting models, which directly update vectors
of words from external constraints, we use the con-
straints as training examples to learn an explicit spe-
cialization function, implemented as a deep feed-
forward neural network. Our global specializa-
tion approach resolves the well-known inability of
retrofitting models to specialize vectors of words
unseen in the constraints. We demonstrated the
effectiveness of the proposed model on word sim-
ilarity benchmarks, and in two downstream tasks:
lexical simplification and dialog state tracking. We
also showed that it is possible to transfer the special-
ization to languages without linguistic constraints.
In future work, we will investigate explicit
retrofitting methods for asymmetric relations like
hypernymy and meronymy. We also intend to ap-
ply the method to other downstream tasks and to
investigate the zero-shot language transfer of the
specialization function for more language pairs.
ER code is publicly available at: https://
github.com/codogogo/explirefit.
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Abstract

Unsupervised neural machine translation
(NMT) is a recently proposed approach for
machine translation which aims to train
the model without using any labeled da-
ta. The models proposed for unsuper-
vised NMT often use only one shared en-
coder to map the pairs of sentences from
different languages to a shared-latent s-
pace, which is weak in keeping the u-
nique and internal characteristics of each
language, such as the style, terminology,
and sentence structure. To address this
issue, we introduce an extension by uti-
lizing two independent encoders but shar-
ing some partial weights which are re-
sponsible for extracting high-level repre-
sentations of the input sentences. Be-
sides, two different generative adversarial
networks (GANSs), namely the local GAN
and global GAN, are proposed to enhance
the cross-language translation. With this
new approach, we achieve significant im-
provements on English-German, English-
French and Chinese-to-English translation
tasks.

1 Introduction

Neural machine translation (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014; Cho et al.,
2014; Bahdanau et al., 2014), directly applying a
single neural network to transform the source sen-
tence into the target sentence, has now reached im-
pressive performance (Shen et al., 2015; Wu et al.,
2016; Johnson et al., 2016; Gehring et al., 2017;
Vaswani et al., 2017). The NMT typically consist-
s of two sub neural networks. The encoder net-
work reads and encodes the source sentence into a

"Feng Wang is the corresponding author of this paper
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context vector, and the decoder network generates
the target sentence iteratively based on the contex-
t vector. NMT can be studied in supervised and
unsupervised learning settings. In the supervised
setting, bilingual corpora is available for training
the NMT model. In the unsupervised setting, we
only have two independent monolingual corpora
with one for each language and there is no bilin-
gual training example to provide alignment infor-
mation for the two languages. Due to lack of align-
ment information, the unsupervised NMT is con-
sidered more challenging. However, this task is
very promising, since the monolingual corpora is
usually easy to be collected.

Motivated by recent success in unsupervised
cross-lingual embeddings (Artetxe et al., 2016;
Zhang et al., 2017b; Conneau et al., 2017), the
models proposed for unsupervised NMT often as-
sume that a pair of sentences from two different
languages can be mapped to a same latent repre-
sentation in a shared-latent space (Lample et al.,
2017; Artetxe et al., 2017b). Following this as-
sumption, Lample et al. (2017) use a single en-
coder and a single decoder for both the source and
target languages. The encoder and decoder, act-
ing as a standard auto-encoder (AE), are trained to
reconstruct the inputs. And Artetxe et al. (2017b)
utilize a shared encoder but two independent de-
coders. With some good performance, they share
a glaring defect, i.e., only one encoder is shared
by the source and target languages. Although
the shared encoder is vital for mapping sentences
from different languages into the shared-latent s-
pace, it is weak in keeping the uniqueness and
internal characteristics of each language, such as
the style, terminology and sentence structure. S-
ince each language has its own characteristics, the
source and target languages should be encoded
and learned independently. Therefore, we conjec-
ture that the shared encoder may be a factor limit-
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ing the potential translation performance.

In order to address this issue, we extend the
encoder-shared model, i.e., the model with one
shared encoder, by leveraging two independent en-
coders with each for one language. Similarly, t-
wo independent decoders are utilized. For each
language, the encoder and its corresponding de-
coder perform an AE, where the encoder gener-
ates the latent representations from the perturbed
input sentences and the decoder reconstructs the
sentences from the latent representations. To map
the latent representations from different languages
to a shared-latent space, we propose the weight-
sharing constraint to the two AEs. Specifically,
we share the weights of the last few layers of two
encoders that are responsible for extracting high-
level representations of input sentences. Similar-
ly, we share the weights of the first few layer-
s of two decoders. To enforce the shared-latent
space, the word embeddings are used as a rein-
forced encoding component in our encoders. For
cross-language translation, we utilize the back-
translation following (Lample et al., 2017). Ad-
ditionally, two different generative adversarial net-
works (GAN) (Yang et al., 2017), namely the local
and global GAN, are proposed to further improve
the cross-language translation. We utilize the local
GAN to constrain the source and target latent rep-
resentations to have the same distribution, where-
by the encoder tries to fool a local discriminator
which is simultaneously trained to distinguish the
language of a given latent representation. We ap-
ply the global GAN to finetune the corresponding
generator, i.e., the composition of the encoder and
decoder of the other language, where a global dis-
criminator is leveraged to guide the training of the
generator by assessing how far the generated sen-
tence is from the true data distribution !. In sum-
mary, we mainly make the following contribution-
s:

e We propose the weight-sharing constraint to
unsupervised NMT, enabling the model to u-
tilize an independent encoder for each lan-
guage. To enforce the shared-latent space, we
also propose the embedding-reinforced en-
coders and two different GANs for our mod-

el.

e We conduct extensive experiments on

"The code that we utilized to train
and evaluate our models can be found at

https://github.com/ZhenYangIACAS/unsupervised-NMT
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English-German, English-French  and
Chinese-to-English translation tasks. Ex-
perimental results show that the proposed
approach consistently achieves great success.

Last but not least, we introduce the direction-
al self-attention to model temporal order in-
formation for the proposed model. Exper-
imental results reveal that it deserves more
efforts for researchers to investigate the tem-
poral order information within self-attention
layers of NMT.

2 Related Work

Several approaches have been proposed to train N-
MT models without direct parallel corpora. The
scenario that has been widely investigated is one
where two languages have little parallel data be-
tween them but are well connected by one pivot
language. The most typical approach in this sce-
nario is to independently translate from the source
language to the pivot language and from the piv-
ot language to the target language (Saha et al.,
2016; Cheng et al., 2017). To improve the transla-
tion performance, Johnson et al. (2016) propose a
multilingual extension of a standard NMT model
and they achieve substantial improvement for lan-
guage pairs without direct parallel training data.

Recently, motivated by the success of cross-
lingual embeddings, researchers begin to show in-
terests in exploring the more ambitious scenario
where an NMT model is trained from monolingual
corpora only. Lample et al. (2017) and Artetxe
et al. (2017b) simultaneously propose an approach
for this scenario, which is based on pre-trained
cross lingual embeddings. Lample et al. (2017)
utilizes a single encoder and a single decoder for
both languages. The entire system is trained to
reconstruct its perturbed input. For cross-lingual
translation, they incorporate back-translation into
the training procedure. Different from (Lample
et al., 2017), Artetxe et al. (2017b) use two in-
dependent decoders with each for one language.
The two works mentioned above both use a sin-
gle shared encoder to guarantee the shared latent
space. However, a concomitant defect is that the
shared encoder is weak in keeping the uniqueness
of each language. Our work also belongs to this
more ambitious scenario, and to the best of our
knowledge, we are one among the first endeav-
ors to investigate how to train an NMT model with
monolingual corpora only.
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Figure 1: The architecture of the proposed model. We implement the shared-latent space assumption
using a weight sharing constraint where the connection of the last few layers in Encgs and Enc; are
tied (illustrated with dashed lines) and the connection of the first few layers in Decs and Dec; are
tied. zPnes—Decs and zEner=Dect are self-reconstructed sentences in each language. ZF7es—Dect g
the translated sentence from source to target and 7"~ is the translation in reversed direction.
Dy is utilized to assess whether the hidden representation of the encoder is from the source or target
language. Dy and D o are used to evaluate whether the translated sentences are realistic for each
language respectively. Z represents the shared-latent space.

3 The Approach pervised manner or for improving the translation

fi .
3.1 Model Architecture pertormance

The model architecture, as illustrated in figure 1,

is based on the AE and GAN. It consists of sev- Networks \ Roles
en sub networks: including two encoders Enc {Encs, Dec,} AE for source language
and Enc;, two decoders Decg and Decy, the lo- {Enct, Dect} AE for target language
cal discriminator Dy, and the global discriminators {Encs, Deci} | translation source — target
Dy and Dgy. For the encoder and decoder, we {Enc, Decs} translation target — source
. {Encs, D} 1st local GAN (GAN;;)

follow the newly emerged Transformer (Vaswani

L. 201 Specifically. th der i {Enc, Dy} 2nd local GAN (GAN;5)
et al., 7). Specifica .y, t .e encoder ;s com- {Enct, Decs, Dg1} | st global GAN (GANy1)
posed of a stack of four identical layers “. Each {Encs, Dec;, Dgo} | 2nd global GAN (GAN )

layer consists of a multi-head self-attention and a
simple position-wise fully connected feed-forward ~ Table 1: Interpretation of the roles for the subnet-
network. The decoder is also composed of four i-  works in the proposed system.

dentical layers. In addition to the two sub-layers in

each encoder layer, the decoder inserts a third sub-

layer, which performs multi-head attention over Directional self-attention Compared to recur-
the output of the encoder stack. For more details  rent neural network, a disadvantage of the simple
about the multi-head self-attention layer, we refer  gelf-attention mechanism is that the temporal or-
the reader to (Vaswani et al., 2017). We implement  der information is lost. Although the Transformer
the local discriminator as a multi-layer perceptron  applies the positional encoding to the sequence be-
and implement the global discriminator based on  fgore processed by the self-attention, how to mod-
the convolutional neural network (CNN). Several  ¢] temporal order information within an attention
ways exist to interpret the roles of the sub network-  js still an open question. Following (Shen et al.,
s are summarised in table 1. The proposed system 2017), we build the encoders in our model on the
has several striking components , which are criti-  djrectional self-attention which utilizes the posi-
cal either for the system to be trained in an unsu-  tjonal masks to encode temporal order information

The layer number is selected according to our prelimi- lFltO attention output. More concretely, two posi-
nary experiment, which is presented in appendix ??. tional masks, namely the forward mask M f and
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backward mask M?, are calculated as:

o 0 1< ]
M;; = { —00 otherwise M

0 1> 7

b _ J
My = { —00 otherwise 2

With the forward mask M7, the later token on-
ly makes attention connections to the early token-
s in the sequence, and vice versa with the back-
ward mask. Similar to (Zhou et al., 2016; Wang
et al., 2017), we utilize a self-attention network
to process the input sequence in forward direc-
tion. The output of this layer is taken by an upper
self-attention network as input, processed in the
reverse direction.

Weight sharing Based on the shared-latent s-
pace assumption, we apply the weight sharing
constraint to relate the two AEs. Specifically, we
share the weights of the last few layers of the E'nc;
and Enc;, which are responsible for extracting
high-level representations of the input sentences.
Similarly, we also share the first few layers of
the Dec, and Dec;, which are expected to decode
high-level representations that are vital for recon-
structing the input sentences. Compared to (Cheng
et al., 2016; Saha et al., 2016) which use the fully
shared encoder, we only share partial weights for
the encoders and decoders. In the proposed mod-
el, the independent weights of the two encoders
are expected to learn and encode the hidden fea-
tures about the internal characteristics of each lan-
guage, such as the terminology, style, and sentence
structure. The shared weights are utilized to map
the hidden features extracted by the independent
weights to the shared-latent space.

Embedding reinforced encoder We use pre-
trained cross-lingual embeddings in the encoder-
s that are kept fixed during training. And the
fixed embeddings are used as a reinforced encod-
ing component in our encoder. Formally, giv-
en the input sequence embedding vectors E
{e1,...,e:} and the initial output sequence of the
encoder stack H = {hy, ..., h;}, we compute H,
as:

H =9g0H+(1-9g)0F 3)

where H, is the final output sequence of the en-
coder which will be attended by the decoder (In
Transformer, H is the final output of the encoder),
g is a gate unit and computed as:

g = O‘(WlE + WoH + b) )
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where Wi, W5 and b are trainable parameters
and they are shared by the two encoders. The
motivation behind is twofold. Firstly, taking the
fixed cross-lingual embedding as the other encod-
ing component is helpful to reinforce the shared-
latent space. Additionally, from the point of multi-
channel encoders (Xiong et al., 2017), provid-
ing encoding components with different levels of
composition enables the decoder to take pieces of
source sentence at varying composition levels suit-
ing its own linguistic structure.

3.2 Unsupervised Training

Based on the architecture proposed above, we train
the NMT model with the monolingual corpora on-
ly using the following four strategies:

Denoising auto-encoding Firstly, we train the
two AEs to reconstruct their inputs respective-
ly. In this form, each encoder should learn to
compose the embeddings of its corresponding lan-
guage and each decoder is expected to learn to de-
compose this representation into its corresponding
language. Nevertheless, without any constraint,
the AE quickly learns to merely copy every word
one by one, without capturing any internal struc-
ture of the language involved. To address this
problem, we utilize the same strategy of denois-
ing AE (Vincent et al., 2008) and add some noise
to the input sentences (Hill et al., 2016; Artetxe
et al., 2017b). To this end, we shuffle the input
sentences randomly. Specifically, we apply a ran-
dom permutation ¢ to the input sentence, verifying
the condition:

steps

le(?) — 4] < min(k([ |4+ 1),n),Vie {1,n}

)
where n is the length of the input sentence, steps
is the global steps the model has been updated, k
and s are the tunable parameters which can be set
by users beforehand. This way, the system needs
to learn some useful structure of the involved lan-
guages to be able to recover the correct word order.
In practice, we set &k = 2 and s = 100000.

Back-translation In spite of denoising auto-
encoding, the training procedure still involves a s-
ingle language at each time, without considering
our final goal of mapping an input sentence from
the source/target language to the target/source lan-
guage. For the cross language training, we uti-
lize the back-translation approach for our unsu-
pervised training procedure. Back-translation has
shown its great effectiveness on improving NMT



model with monolingual data and has been wide-
ly investigated by (Sennrich et al., 2015a; Zhang
and Zong, 2016). In our approach, given an input
sentence in a given language, we apply the cor-
responding encoder and the decoder of the other
language to translate it to the other language °.
By combining the translation with its original sen-
tence, we get a pseudo-parallel corpus which is u-
tilized to train the model to reconstruct the original
sentence from its translation.

Local GAN Although the weight sharing con-
straint is vital for the shared-latent space assump-
tion, it alone does not guarantee that the corre-
sponding sentences in two languages will have the
same or similar latent code. To further enforce
the shared-latent space, we train a discriminative
neural network, referred to as the local discrimi-
nator, to classify between the encoding of source
sentences and the encoding of target sentences.
The local discriminator, implemented as a multi-
layer perceptron with two hidden layers of size
256, takes the output of the encoder, i.e., H,. calcu-
lated as equation 3, as input, and produces a bina-
ry prediction about the language of the input sen-
tence. The local discriminator is trained to predict
the language by minimizing the following cross-
entropy loss:

LDz(QDz)
— Eqea, [log p(f = s|Encs())]
- E:cEa:z [10gp<f - t‘EnCt(x))]
where p, represents the parameters of the local

discriminator and f € {s,t}. The encoders are
trained to fool the local discriminator:

(6)

LEncS (HEncS ) = (7
— Esea, [log p(f = t|Encs(z))]
LEnct (HEnct ) = (8)

— Ever, [logp(f = s|Ency(z))]

where Opy., and Og,., are the parameters of the
two encoders.

Global GAN We apply the global GANs to fine
tune the whole model so that the model is able to
generate sentences undistinguishable from the true
data, i.e., sentences in the training corpus. Differ-
ent from the local GANs which updates the param-
eters of the encoders locally, the global GANs are

3Since the quality of the translation shows little effect on

the performance of the model (Sennrich et al., 2015a), we
simply use greedy decoding for speed.
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utilized to update the whole parameters of the pro-
posed model, including the parameters of encoder-
s and decoders. The proposed model has two glob-
al GANs: GANy and GANg. In GANy, the
Enc; and Decg act as the generator, which gener-
ates the sentence #; * from x;. The D1, imple-
mented based on CNN, assesses whether the gen-
erated sentence Z; is the true target-language sen-
tence or the generated sentence. The global dis-
criminator aims to distinguish among the true sen-
tences and generated sentences, and it is trained
to minimize its classification error rate. During
training, the D, feeds back its assessment to fine-
tune the encoder Enc; and decoder Decs. S-
ince the machine translation is a sequence gener-
ation problem, following (Yang et al., 2017), we
leverage policy gradient reinforcement training to
back-propagate the assessment. We apply a simi-
lar processing to G ANy (The details about the ar-
chitecture of the global discriminator and the train-
ing procedure of the global GANs can be seen in
appendix ?? and ?7?).

There are two stages in the proposed unsuper-
vised training. In the first stage, we train the pro-
posed model with denoising auto-encoding, back-
translation and the local GANs, until no improve-
ment is achieved on the development set. Specif-
ically, we perform one batch of denoising auto-
encoding for the source and target languages, one
batch of back-translation for the two languages,
and another batch of local GAN for the two lan-
guages. In the second stage, we fine tune the pro-
posed model with the global GANS.

4 Experiments and Results

We evaluate the proposed approach on English-
German, English-French and Chinese-to-English
translation tasks . We firstly describe the dataset-
s, pre-processing and model hyper-parameters we
used, then we introduce the baseline systems, and
finally we present our experimental results.

4.1 Data Sets and Preprocessing

In English-German and English-French transla-
tion, we make our experiments comparable with
previous work by using the datasets from the

- . -Enc,—Dec.
*The & is &, "t~ Pecs

script for simplicity.

>The reason that we do not conduct experiments on
English-to-Chinese translation is that we do not get public
test sets for English-to-Chinese.

in figure 1. We omit the super-



WMT 2014 and WMT 2016 shared tasks respec-
tively. For Chinese-to-English translation, we use
the datasets from LDC, which has been widely u-
tilized by previous works (Tu et al., 2017; Zhang
et al., 2017a).

WMT14 English-French Similar to (Lample
et al., 2017), we use the full training set of 36M
sentence pairs and we lower-case them and re-
move sentences longer than 50 words, resulting
in a parallel corpus of about 30M pairs of sen-
tences. To guarantee no exact correspondence be-
tween the source and target monolingual sets, we
build monolingual corpora by selecting English
sentences from 15M random pairs, and selecting
the French sentences from the complementary set.
Sentences are encoded with byte-pair encoding
(Sennrich et al., 2015b), which has an English vo-
cabulary of about 32000 tokens, and French vo-
cabulary of about 33000 tokens. We report results
on newstest2014.

WMT16 English-German We follow the same
procedure mentioned above to create monolingual
training corpora for English-German translation,
and we get two monolingual training data of 1.8M
sentences each. The two languages share a vocab-
ulary of about 32000 tokens. We report results on
newstest2016.

LDC Chinese-English For Chinese-to-English
translation, our training data consists of 1.6M sen-
tence pairs randomly extracted from LDC corpora
6. Since the data set is not big enough, we just
build the monolingual data set by randomly shuf-
fling the Chinese and English sentences respec-
tively. In spite of the fact that some correspon-
dence between examples in these two monolingual
sets may exist, we never utilize this alignment in-
formation in our training procedure (see Section
3.2). Both the Chinese and English sentences are
encoded with byte-pair encoding. We get an En-
glish vocabulary of about 34000 tokens, and Chi-
nese vocabulary of about 38000 tokens. The re-
sults are reported on N1S5T02.

Since the proposed system relies on the pre-
trained cross-lingual embeddings, we utilize the
monolingual corpora described above to train the
embeddings for each language independently by
using word2vec (Mikolov et al., 2013). We then
apply the public implementation  of the method
proposed by (Artetxe et al., 2017a) to map these

SLDC2002L27, LDC2002T01, LDC2002E18,

C2003E07, LDC2004T08, LDC2004E12, LDC2005T10
"https://github.com/artetxem/vecmap

LD-
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embeddings to a shared-latent space 3.

4.2 Model Hyper-parameters and Evaluation

Following the base model in (Vaswani et al.,
2017), we set the dimension of word embedding
as 512, dropout rate as 0.1 and the head number
as 8. We use beam search with a beam size of 4
and length penalty @ = 0.6. The model is im-
plemented in TensorFlow (Abadi et al., 2015) and
trained on up to four K80 GPUs synchronously in
a multi-GPU setup on a single machine.

For model selection, we stop training when the
model achieves no improvement for the tenth e-
valuation on the development set, which is com-
prised of 3000 source and target sentences extract-
ed randomly from the monolingual training cor-
pora. Following (Lample et al., 2017), we trans-
late the source sentences to the target language,
and then translate the resulting sentences back to
the source language. The quality of the model
is then evaluated by computing the BLEU score
over the original inputs and their reconstruction-
s via this two-step translation process. The per-
formance is finally averaged over two direction-
s, i.e., from source to target and from target to
source. BLEU (Papineni et al., 2002) is utilized
as the evaluation metric. For Chinese-to-English,
we apply the script mreval-v11b.pl to evaluate the
translation performance. For English-German and
English-French, we evaluate the translation per-
formance with the script multi-belu.pl °.

4.3 Baseline Systems

Word-by-word translation (WBW) The first
baseline we consider is a system that perform-
s word-by-word translations using the inferred
bilingual dictionary. Specifically, it translates a
sentence word-by-word, replacing each word with
its nearest neighbor in the other language.
Lample et al. (2017) The second baseline is a
previous work that uses the same training and test-
ing sets with this paper. Their model belongs to the
standard attention-based encoder-decoder frame-
work, which implements the encoder using a bidi-
rectional long short term memory network (LST-
M) and implements the decoder using a simple for-
ward LSTM. They apply one single encoder and

8The configuration we used to run these open-source
toolkits can be found in appendix ??

“https://github.com/moses-
smt/mosesdecoder/blob/617e8c8/scripts/generic/multi-
bleu.perl;mteval-v11b.pl



‘ en-de de-en en-fr fr-en zh-en

Supervised 24.07 26.99 30.50 30.21 40.02

Word-by-word 585 934 360 6.80 5.09
Lample et al. (2017) 9.64 13.33 15.05 14.31 -

The proposed approach ‘ 10.86 14.62 16.97 15.58 14.52

Table 2: The translation performance on English-German, English-French and Chinese-to-English test
sets. The results of (Lample et al., 2017) are copied directly from their paper. We do not present the
results of (Artetxe et al., 2017b) since we use different training sets.

decoder for the source and target languages.
Supervised training We finally consider exact-
ly the same model as ours, but trained using the
standard cross-entropy loss on the original parallel
sentences. This model can be viewed as an upper
bound for the proposed unsupervised model.

4.4 Results and Analysis
4.4.1 Number of weight-sharing layers

We firstly investigate how the number of weight-
sharing layers affects the translation performance.
In this experiment, we vary the number of weight-
sharing layers in the AEs from O to 4. Shar-
ing one layer in AEs means sharing one lay-
er for the encoders and in the meanwhile, shar-
ing one layer for the decoders. The BLEU s-
cores of English-to-German, English-to-French
and Chinese-to-English translation tasks are re-
ported in figure 2. Each curve corresponds to a
different translation task and the x-axis denotes
the number of weight-sharing layers for the AEs.
We find that the number of weight-sharing layers
shows much effect on the translation performance.
And the best translation performance is achieved
when only one layer is shared in our system. When
all of the four layers are shared, i.e., only one
shared encoder is utilized, we get poor translation
performance in all of the three translation tasks.
This verifies our conjecture that the shared en-
coder is detrimental to the performance of unsu-
pervised NMT especially for the translation tasks
on distant language pairs. More concretely, for the
related language pair translation, i.e., English-to-
French, the encoder-shared model achieves -0.53
BLEU points decline than the best model where
only one layer is shared. For the more distant lan-
guage pair English-to-German, the encoder-shared
model achieves more significant decline, i.e., -0.85
BLEU points decline. And for the most distan-
t language pair Chinese-to-English, the decline is
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as large as -1.66 BLEU points. We explain this as
that the more distant the language pair is, the more
different characteristics they have. And the shared
encoder is weak in keeping the unique characteris-
tic of each language. Additionally, we also notice
that using two completely independent encoders,
i.e., setting the number of weight-sharing layers
as 0, results in poor translation performance too.
This confirms our intuition that the shared layers
are vital to map the source and target latent rep-
resentations to a shared-latent space. In the rest
of our experiments, we set the number of weight-
sharing layer as 1.

k-

A—A En2De
@@ En2Fr
8| #—& Zh2En

0 1 2 3 4 5

Figure 2: The effects of the weight-sharing layer
number on English-to-German, English-to-French
and Chinese-to-English translation tasks.

4.4.2 Translation results

Table 2 shows the BLEU scores on English-
German, English-French and English-to-Chinese
test sets. As it can be seen, the proposed ap-
proach obtains significant improvements than the
word-by-word baseline system, with at least +5.01
BLEU points in English-to-German translation
and up to +13.37 BLEU points in English-to-
French translation. This shows that the proposed
model only trained with monolingual data effec-



en-de de-en en-fr fr-en zh-en

Without weight sharing 10.23  13.84 16.02 14.82 13.75
Without embedding-reinforced encoder | 10.45 14.17 16.55 15.27 14.10
Without directional self-attention 10.60 1421 16.82 1530 14.29
Without local GANs 10.51 14.35 1640 15.07 14.12

Without Global GANs 10.34 14.05 16.19 1521 14.09

Full model 10.86 14.62 16.97 15.58 14.52

Table 3: Ablation study on English-German, English-French and Chinese-to-English translation tasks.
Without weight sharing means no layers are shared in the two AEs.

tively learns to use the context information and
the internal structure of each language. Compared
to the work of (Lample et al., 2017), our mod-
el also achieves up to +1.92 BLEU points im-
provement on English-to-French translation task.
We believe that the unsupervised NMT is very
promising. However, there is still a large room
for improvement compared to the supervised up-
per bound. The gap between the supervised and
unsupervised model is as large as 12.3-25.5 BLEU
points depending on the language pair and transla-
tion direction.

4.4.3 Ablation study

To understand the importance of different com-
ponents of the proposed system, we perform an
ablation study by training multiple versions of
our model with some missing components: the
local GANs, the global GANSs, the directional
self-attention, the weight-sharing, the embedding-
reinforced encoders, etc. Results are reported in
table 3. We do not test the the importance of
the auto-encoding, back-translation and the pre-
trained embeddings because they have been wide-
ly tested in (Lample et al., 2017; Artetxe et al.,
2017b). Table 3 shows that the best performance is
obtained with the simultaneous use of all the test-
ed elements. The most critical component is the
weight-sharing constraint, which is vital to map
sentences of different languages to the shared-
latent space. The embedding-reinforced encoder
also brings some improvement on all of the trans-
lation tasks. When we remove the directional self-
attention, we get up to -0.3 BLEU points decline.
This indicates that it deserves more efforts to in-
vestigate the temporal order information in self-
attention mechanism. The GANSs also significant-
ly improve the translation performance of our sys-
tem. Specifically, the global GANs achieve im-
provement up to +0.78 BLEU points on English-
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to-French translation and the local GANs also ob-
tain improvement up to +0.57 BLEU points on
English-to-French translation. This reveals that
the proposed model benefits a lot from the cross-
domain loss defined by GANS.

5 Conclusion and Future work

The models proposed recently for unsupervised N-
MT use a single encoder to map sentences from
different languages to a shared-latent space. We
conjecture that the shared encoder is problem-
atic for keeping the unique and inherent char-
acteristic of each language. In this paper, we
propose the weight-sharing constraint in unsuper-
vised NMT to address this issue. To enhance the
cross-language translation performance, we also
propose the embedding-reinforced encoders, local
GAN and global GAN into the proposed system.
Additionally, the directional self-attention is intro-
duced to model the temporal order information for
our system.

We test the proposed model on English-
German, English-French and Chinese-to-English
translation tasks. The experimental results reveal
that our approach achieves significant improve-
ment and verify our conjecture that the shared en-
coder is really a bottleneck for improving the un-
supervised NMT. The ablation study shows that
each component of our system achieves some im-
provement for the final translation performance.

Unsupervised NMT opens exciting opportuni-
ties for the future research. However, there is
still a large room for improvement compared to
the supervised NMT. In the future, we would like
to investigate how to utilize the monolingual da-
ta more effectively, such as incorporating the lan-
guage model and syntactic information into unsu-
pervised NMT. Besides, we decide to make more
efforts to explore how to reinforce the temporal or-



der information for the proposed model.
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Abstract

Neural Machine Translation (NMT) per-
forms poor on the low-resource language
pair (X, Z), especially when Z is a rare
language. By introducing another rich
language Y, we propose a novel trian-
gular training architecture (TA-NMT) to
leverage bilingual data (Y,Z) (may be
small) and (X,Y) (can be rich) to im-
prove the translation performance of low-
resource pairs. In this triangular archi-
tecture, Z is taken as the intermediate la-
tent variable, and translation models of Z
are jointly optimized with a unified bidi-
rectional EM algorithm under the goal of
maximizing the translation likelihood of
(X,Y). Empirical results demonstrate
that our method significantly improves the
translation quality of rare languages on
MultiUN and IWSLT2012 datasets, and
achieves even better performance combin-
ing back-translation methods.

1 Introduction

In recent years, Neural Machine Translation
(NMT) (Kalchbrenner and Blunsom, 2013;
Sutskever et al., 2014; Bahdanau et al., 2014)
has achieved remarkable performance on many
translation tasks (Jean et al., 2015; Sennrich
et al.,, 2016; Wu et al., 2016; Sennrich et al.,
2017). Being an end-to-end architecture, an NMT
system first encodes the input sentence into a
sequence of real vectors, based on which the
decoder generates the target sequence word by
word with the attention mechanism (Bahdanau
et al., 2014; Luong et al., 2015). During training,
NMT systems are optimized to maximize the
translation probability of a given language pair

*Contribution during internship at MSRA.
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with the Maximum Likelihood Estimation (MLE)
method, which requires large bilingual data to
fit the large parameter space. Without adequate
data, which is common especially when it comes
to a rare language, NMT usually falls short on
low-resource language pairs (Zoph et al., 2016).
In order to deal with the data sparsity problem
for NMT, exploiting monolingual data (Sennrich
et al., 2015; Zhang and Zong, 2016; Cheng et al.,
2016; Zhang et al., 2018; He et al., 2016) is the
most common method. With monolingual data,
the back-translation method (Sennrich et al., 2015)
generates pseudo bilingual sentences with a target-
to-source translation model to train the source-to-
target one. By extending back-translation, source-
to-target and target-to-source translation models
can be jointly trained and boost each other (Cheng
et al., 2016; Zhang et al., 2018). Similar to joint
training (Cheng et al., 2016; Zhang et al., 2018),
dual learning (He et al., 2016) designs a reinforce-
ment learning framework to better capitalize on
monolingual data and jointly train two models.
Instead of leveraging monolingual data (X
or Z) to enrich the low-resource bilingual pair
(X, Z), in this paper, we are motivated to intro-
duce another rich language Y, by which addi-
tionally acquired bilingual data (Y, Z) and (X,Y")
can be exploited to improve the translation per-
formance of (X, 7). This requirement is easy to
satisfy, especially when Z is a rare language but
X is not. Under this scenario, (X,Y) can be
a rich-resource pair and provide much bilingual
data, while (Y, Z) would also be a low-resource
pair mostly because Z is rare. For example, in the
dataset IWSLT2012, there are only 112.6K bilin-
gual sentence pairs of English-Hebrew, since He-
brew is a rare language. If French is introduced
as the third language, we can have another low-
resource bilingual data of French-Hebrew (116.3K
sentence pairs), and easily-acquired bilingual data
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Melbourne, Australia, July 15 - 20, 2018. (©)2018 Association for Computational Linguistics



of the rich-resource pair English-French.

Figure 1: Triangular architecture for rare language
translation. The solid lines mean rich-resource and
the dash lines mean low-resource. X, Y and Z are
three different languages.

With the introduced rich language Y, in this
paper, we propose a novel triangular architec-
ture (TA-NMT) to exploit the additional bilingual
data of (Y, Z) and (X,Y), in order to get better
translation performance on the low-resource pair
(X, Z), as shown in Figure 1. In this architec-
ture, (Y, Z) is used for training another translation
model to score the translation model of (X, Z),
while (X,Y") is used to provide large bilingual
data with favorable alignment information.

Under the motivation to exploit the rich-
resource pair (X,Y"), instead of modeling X =
Z directly, our method starts from modeling the
translation task X = Y while taking Z as a la-
tent variable. Then, we decompose X = Y
into two phases for training two translation mod-
els of low-resource pairs ((X, Z) and (Y, Z)) re-
spectively. The first translation model generates a
sequence in the hidden space of Z from X, based
on which the second one generates the translation
in Y. These two models can be optimized jointly
with an Expectation Maximization (EM) frame-
work with the goal of maximizing the translation
probability p(y|z). In this framework, the two
models can boost each other by generating pseudo
bilingual data for model training with the weights
scored from the other. By reversing the transla-
tion direction of X = Y, our method can be
used to train another two translation models p(z|y)
and p(z|z). Therefore, the four translation mod-
els (p(z|x), p(z|z), p(z]y) and p(y|z)) of the rare
language Z can be optimized jointly with our pro-
posed unified bidirectional EM algorithm.

Experimental results on the MultiUN and
IWSLT2012 datasets demonstrate that our method
can achieve significant improvements for rare
languages translation. By incorporating back-
translation (a method leveraging more monolin-
gual data) into our method, TA-NMT can achieve
even further improvements.

Our contributions are listed as follows:

e We propose a novel triangular training archi-
tecture (TA-NMT) to effectively tackle the
data sparsity problem for rare languages in
NMT with an EM framework.

e Our method can exploit two additional bilin-
gual datasets at both the model and data lev-
els by introducing another rich language.

o Our method is a unified bidirectional EM al-
gorithm, in which four translation models on
two low-resource pairs are trained jointly and
boost each other.

2 Method

As shown in Figure 1, our method tries to lever-
age (X, Y) (arich-resource pair) and (Y, Z) to im-
prove the translation performance of low-resource
pair (X, Z), during which translation models of
(X, Z) and (Y, Z) can be improved jointly.

Instead of directly modeling the translation
probabilities of low-resource pairs, we model the
rich-resource pair translation X = Y, with the
language Z acting as a bridge to connect X and
Y. We decompose X = Y into two phases for
training two translation models. The first model
p(z|z) generates the latent translation in Z from
the input sentence in X, based on which the sec-
ond one p(y|z) generate the final translation in lan-
guage Y. Following the standard EM procedure
(Borman, 2004) and Jensen’s inequality, we derive
the lower bound of p(y|x) over the whole training
data D as follows:

L(©;D)

= Y logp(ylx)
(z,y)eD

= Y log ) p(zlz)p(yl2)
R pClopl) D

> Z ZQ(z)logp(z|x)p(y|Z)
vl Q(z)

= L(Q)

where © is the model parameters set of p(z|x) and
p(y|z), and Q(z) is an arbitrary posterior distri-
bution of z. We denote the lower-bound in the last



but one line as £(()). Note that we use an approxi-
mation that p(y|z, z) ~ p(y|z) due to the semantic
equivalence of parallel sentences = and .

In the following subsections, we will first pro-
pose our EM method in subsection 2.1 based on
the lower-bound derived above. Next, we will
extend our method to two directions and give
our unified bidirectional EM training in subsec-
tion 2.2. Then, in subsection 2.3, we will discuss
more training details of our method and present
our algorithm in the form of pseudo codes.

2.1 EM Training

To maximize L(©; D), the EM algorithm can be
leveraged to maximize its lower bound £(Q). In
the E-step, we calculate the expectation of the
variable z using current estimate for the model,
namely find the posterior distribution Q(z). In
the M-step, with the expectation (Q(z), we max-
imize the lower bound £(Q). Note that condi-
tioned on the observed data and current model, the
calculation of ()(z) is intractable, so we choose
Q(z) = p(z|x) approximately.

M-step: In the M-step, we maximize the lower
bound £(Q) w.r.t model parameters given Q(z).
By substituting Q(z) = p(z|z) into £(Q), we can
get the M-step as follows:

0, = argmax L(Q)
ylz

_argmax Z ZP z|x) log p(y|2)

ylz (z,y)ED =

= ar%max Z E.p(zlz) log p(y|2)
vl= (zy)eD )
(2)

E-step: The approximate choice of Q)(z) brings
in a gap between £(Q) and L(O; D), which can
be minimized in the E-step with Generalized EM
method (McLachlan and Krishnan, 2007). Ac-
cording to Bishop (2006), we can write this gap
explicitly as follows:

L(©; D) —

=Y Qe 07

!y)

_ KL( Z)\Ip(Z\y))
= KL(p(z|z)||p(z|y))

where K L(-) is the KullbackLeibler divergence,
and the approximation that p(z|z,y) ~ p(z|y) is
also used above.

In the E-step, we minimize the gap between
L(Q) and L(O; D) as follows:

0.y = arg min K L(p(z|2)llp(z]y)) (4
z|x

To sum it up, the E-step optimizes the model
p(z|z) by minimizing the gap between £(Q) and
L(©; D) to get a better lower bound £((Q). This
lower bound is then maximized in the M-step to
optimize the model p(y|z). Given the new model
p(y|z), the E-step tries to optimize p(z|z) again
to find a new lower bound, with which the M-step
is re-performed. This iteration process continues
until the models converge, which is guaranteed by

the convergence of the EM algorithm.

2.2 Unified Bidirectional Training

The model p(z|y) is used as an approximation of
p(z|x,y) in the E-step optimization (Equation 3).
Due to the low resource property of the language
pair (Y, Z), p(z|y) cannot be well trained. To
solve this problem, we can jointly optimize p(z|z)
and p(z|y) similarly by maximizing the reverse
translation probability p(x|y).

We now give our unified bidirectional general-
ized EM procedures as follows:

e Directionof X = Y
E: Optimize ©,,.

argmin K L(p(z|z)[|p(z[y)) )

z|x

M: Optimize ©,..

arg max Z B plz) logp(ylz)  (6)
Oyl= (z,y)eD

e Directionof Y = X

E: Optimize ©,.

arg min KL(p(=|y)|[p(2la)) (D)

zly

M: Optimize ..

arg max Z E. p(zjy) logp(x]z)  (8)
ex\z
(z,y)eD

Based on the above derivation, the whole archi-
tecture of our method can be illustrated in Fig-
ure 2, where the dash arrows denote the direction
of p(y|x), in which p(z|x) and p(y|z) are trained
jointly with the help of p(z|y), while the solid ones
denote the direction of p(z|y), in which p(z|y) and
p(z|z) are trained jointly with the help of p(z|z).



Figure 2: Triangular Learning Architecture for
Low-Resource NMT

2.3 Training Details

A major difficulty in our unified bidirectional
training is the exponential search space of the
translation candidates, which could be addressed
by either sampling (Shen et al., 2015; Cheng et al.,
2016) or mode approximation (Kim and Rush,
2016). In our experiments, we leverage the sam-
pling method and simply generate the top target
sentence for approximation.

In order to perform gradient descend training,
the parameter gradients for Equations 5 and 7 are
formulated as follows:

Ve, KL(p(z|z)|[p(z]y))

p(z|z
:Ezwp(z\:p) log ( | )v®z|1 Ing(Z|x)
p(ly) o
Ve, KL(p(z[y)llp(z]x))
p(zly)
=F, 10 Vo, logp(z
p(2ly) gp(z]a:) 2|y 108 (zly)
Similar to reinforcement learning, models

p(z|z) and p(z|y) are trained using samples gen-
erated by the models themselves. According to
our observation, some samples are noisy and detri-
mental to the training process. One way to tackle
this is to filter out the bad ones using some addi-
tional metrics (BLEU, etc.). Nevertheless, in our
settings, BLEU scores cannot be calculated dur-
ing training due to the absence of the golden tar-
gets (z is generated based on x or y from the rich-
resource pair (z,y)). Therefore we choose IBM
modell scores to weight the generated translation
candidates, with the word translation probabilities
calculated based on the given bilingual data (the
low-resource pair (x, z) or (y, z)). Additionally, to
stabilize the training process, the pseudo samples
generated by model p(z|x) or p(z|y) are mixed
with true bilingual samples in the same mini-batch
with the ratio of 1-1. The whole training procedure
is described in the following Algorithm 1, where
the 5th and 9th steps are generating pseudo data.
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Algorithm 1 Training low-resource translation
models with the triangular architecture

Input: Rich-resource bilingual data (x,y); low-
resource bilingual data (z, z) and (y, z)
Output: Parameters ©,, ©,., ©_, and O,
1: Pre-train p(z|x), p(z]y), p(z|2), p(y|2)
2: while not convergence do
3: Sample (z,y), (z*, 2*), (y*,2*) € D
4 > X = Y: Optimize O, and O,
5: Generate 2’ from p(2’|z) and build the
training batches By = (z, 2")U(z*, 2*), By =
(y,2") U (y*, 2%)
E-step: update O, with By (Equation 5)
M-step: update © . with By (Equation 6)
>Y = X: Optimize O, and O,
Generate 2’ from p(z’|y) and build the
training batches Bs = (y, 2’)U(y*, 2*), B4 =
(x,2") U (z*, 2*)
E-step: update ©, with B (Equation 7)
M-step: update O, with B4 (Equation 8)
end while
return O, ©

L R

10:
11:
12:

13: O,y and O,

ylz> Pzly

3 Experiments

3.1 Datasets

In order to verify our method, we conduct exper-
iments on two multilingual datasets. The one is
MultiUN (Eisele and Chen, 2010), which is a col-
lection of translated documents from the United
Nations, and the other is IWSLT2012 (Cettolo
et al., 2012), which is a set of multilingual tran-
scriptions of TED talks. As is mentioned in sec-
tion 1, our method is compatible with methods ex-
ploiting monolingual data. So we also find some
extra monolingual data of rare languages in both
datasets and conduct experiments incorporating
back-translation into our method.

MultiUN: English-French (EN-FR) bilingual
data are used as the rich-resource pair (X,Y).
Arabic (AR) and Spanish (ES) are used as two
simulated rare languages Z. We randomly choose
subsets of bilingual data of (X, Z) and (Y, Z) in
the original dataset to simulate low-resource sit-
uations, and make sure there is no overlap in Z
between chosen data of (X, Z) and (Y, Z).

IWSLT2012!: English-French is used as the
rich-resource pair (X, Y"), and two rare languages
7/ are Hebrew (HE) and Romanian (RO) in our

"https://wit3.fbk.eu/mt.php?release=2012-02-plain



, MultiUN IWSLT2012 Method | Resources
Pair : -
Lang ‘ Size Lang ‘ Size PBSMT (X, 2), (Y, 2)
(X,Y) | EN-FR [ 99M || EN-FR® | 79M RNNSearch | (X, Z), (Y, 2)
(X,Z) | EN-AR | 116K || EN-HE | 112.6 K T-S (X,2),(Y,2),(X,Y)
(Y,Z) | FR-AR | 116K || FR-HE | 116.3K BackTrans (X,2),(Y,2),(X,Y), mono Z
mono Z AR 3M HE ; 512.5K TA-NMT ()(7 Z), (K Z), (X, Y)
(Y,Z) | FR-ES | 116 K | FR-RO | 111.6K
mono Z | ES 3M RO 885.0 K Table 2: Resources that different methods use
Table 1: training data size of each language pair.
the translation of (X, Z) if we regard (X, Z) as
. o the zero-resource pair and p(x|y) as the teacher
choice. Note that in this dataset, low-resource

pairs (X, Z) and (Y, Z) are severely overlapped
in Z. In addition, English-French bilingual data
from WMT2014 dataset are also used to enrich the
rich-resource pair. We also use additional English-
Romanian bilingual data from Europarlv7 dataset
(Koehn, 2005). The monolingual data of Z (HE
and RO) are taken from the web?.

In both datasets, all sentences are filtered within
the length of 5 to 50 after tokenization. Both the
validation and the test sets are 2,000 parallel sen-
tences sampled from the bilingual data, with the
left as training data. The size of training data of
all language pairs are shown in Table 1.

3.2 Baselines

We compare our method with four baseline sys-
tems. The first baseline is the RNNSearch model
(Bahdanau et al., 2014), which is a sequence-to-
sequence model with attention mechanism trained
with given small-scale bilingual data. The trained
translation models are also used as pre-trained
models for our subsequent training processes.

The second baseline is PBSMT (Koehn et al.,
2003), which is a phrase-based statistical machine
translation system. PBSMT is known to perform
well on low-resource language pairs, so we want
to compare it with our proposed method. And we
use the public available implementation of Moses>
for training and test in our experiments.

The third baseline is a teacher-student alike
method (Chen et al., 2017). For the sake of brevity,
we will denote it as T-S. The process is illus-
trated in Figure 3. We treat this method as a sec-
ond baseline because it can also be regarded as a
method exploiting (Y, Z) and (X,Y’) to improve

2https://github.com/ajinkyakulkarni14/TED—
Multilingual-Parallel-Corpus

3together with WMT2014

*together with Europarlv7
>http://www.statmt.org/moses/
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model when training p(z|x) and p(z|z).

The fourth baseline is back-translation (Sen-
nrich et al., 2015). We will denote it as Back-
Trans. More concretely, to train the model p(z|x),
we use extra monolingual Z described in Table 1
to do back-translation; to train the model p(z|z),
we use monolingual X taken from (X,Y). Pro-
cedures for training p(z|y) and p(y|z) are simi-
lar. This method use extra monolingual data of Z
compared with our TA-NMT method. But we can
incorporate it into our method.

Figure 3: A teacher-student alike method for
low-resource translation. For training p(z|x) and

p(z|z), we mix the true pair (y*, z*) € D with the

pseudo pair (z/,z*) generated by teacher model

p (2'|y*) in the same mini-batch. The training pro-

cedure of p(z|y) and p(y|z) is similar.

3.3 Overall Results

Experimental results on both datasets are shown in
Table 3 and 4 respectively, in which RNNSearch,
PBSMT, T-S and BackTrans are four base-
lines. TA-NMT is our proposed method, and
TA-NMT(GI) is our method incorporating back-
translation as good initialization. For the purpose
of clarity and a fair comparison, we list the re-
sources that different methods exploit in Table 2.
From Table 3 on MultiUN, the performance
of RNNSearch is relatively poor. As is expected,
PBSMT performs better than RNNSearch on low-
resource pairs by the average of 1.78 BLEU. The
T-S method which can doubling the training data



EN2AR | AR2EN | FR2AR | AR2FR EN2ES | ES2EN | FR2ES | ES2FR
Method Ave Ave

X=2Z) | @=X) | (Y=2) | @=Y) X=7) | @Z=X) | (Y=2) | (Z=Y)
RNNSearch 18.03 31.40 13.42 22.04 21.22 38.77 36.51 32.92 33.05 35.31
PBSMT 19.44 30.81 15.27 23.65 22.29 38.47 36.64 34.99 33.98 36.02
T-S 19.02 32.47 14.59 23.53 22.40 39.75 38.02 33.67 34.04 36.57
BackTrans 22.19 32.02 15.85 23.57 23.73 42.27 38.42 35.81 34.25 37.76
TA-NMT 20.59 33.22 14.64 24.45 23.23 40.85 39.06 34.52 34.39 37.21
TA-NMT(GI) 23.16 33.64 16.50 25.07 24.59 42.63 39.53 35.87 35.21 38.31

Table 3: Test BLEU on MultiUN Dataset.

EN2HE | HE2EN | FR2HE | HE2FR EN2RO | RO2EN | FR2RO | RO2FR
Method Ave Ave

X=72) | Z=X) | (Y=2) | (Z=Y) X=2) Z=X) | (Y=2) | (Z=Y)
RNNSearch 1794 | 2832 | 1186 | 21.67 [ 1995 [[ 3144 [ 40.63 1734 | 2520 | 28.65
PBSMT 1739 | 28.05 1277 | 21.87 | 2002 || 3151 39.98 18.13 | 2547 | 28.77
TS 17.97 28.42 1204 | 2199 | 20.11 || 31.80 40.86 1794 | 2569 | 29.07
BackTrans 18.69 28.55 12.31 21.63 | 2020 || 32.18 41.03 1819 | 2530 | 29.18
TA-NMT 19.19 | 2928 | 1276 | 22.62 | 2096 || 33.65 | 4193 | 1853 | 2635 | 30.12
TA-NMT(GI) 19.90 29.94 13.54 23.25 21.66 34.41 42.61 19.30 26.53 30.71

Table 4: Test BLEU on IWSLT Dataset.

for both (X, Z) and (Y, Z) by generating pseudo
data from each other, leads up to 1.1 BLEU points
improvement on average over RNNSearch. Com-
pared with T-S, our method gains a further im-
provement of about 0.9 BLEU on average, because
our method can better leverage the rich-resource
pair (X,Y). With extra large monolingual Z in-
troduced, BackTrans can improve the performance
of p(z|z) and p(z|y) significantly compared with
all the methods without monolingual Z. How-
ever TA-NMT is comparable with or even bet-
ter than BackTrans for p(z|z) and p(y|z) because
both of the methods leverage resources from rich-
resource pair (X,Y"), but BackTrans does not use
the alignment information it provides. Moreover,
with back-translation as good initialization, fur-
ther improvement is achieved by TA-NMT(GI) of
about 0.7 BLEU on average over BackTrans.

In Table 4, we can draw the similar conclu-
sion. However, different from MultiUN, in the
EN-FR-HE group of IWSLT, (X, Z) and (Y, 2)
are severely overlapped in Z. Therefore, T-S
cannot improve the performance obviously (only
about 0.2 BLEU) on RNNSearch because it fails
to essentially double training data via the teacher
model. As for EN-FR-RO, with the additionally
introduced EN-RO data from Europarlv7, which
has no overlap in RO with FR-RO, T-S can im-
prove the average performance more than the EN-
FR-HE group. TA-NMT outperforms T-S by 0.93
BLEU on average. Note that even though Back-

Trans uses extra monolingual Z, the improve-
ments are not so obvious as the former dataset,
the reason for which we will delve into in the next
subsection. Again, with back-translation as good
initialization, TA-NMT(GI) can get the best result.

Note that BLEU scores of TA-NMT are lower
than BackTrans in the directions of X=7 and
Y=-Z. The reason is that the resources used by
these two methods are different, as shown in Table
2. To do back translation in two directions (e.g.,
X=-Z and Z=-X), we need monolingual data from
both sides (e.g., X and Z), however, in TA-NMT,
the monolingual data of Z is not necessary. There-
fore, in the translation of X=Z7 or Y=Z7, Back-
Trans uses additional monolingual data of Z while
TA-NMT does not, that is why BackTrans outper-
forms TA-NMT in these directions. Our method
can leverage back translation as a good initializa-
tion, aka TA-NMT(GI) , and outperforms Back-
Trans on all translation directions.

The average test BLEU scores of different
methods in each data group (EN-FR-AR, EN-FR-
ES, EN-FR-HE, and EN-FR-RO) are listed in the
column Ave of the tables for clear comparison.

3.4 The Effect of Extra Monolingual Data

Comparing the results of BackTrans and TA-
NMT(GI) on both datasets, we notice the improve-
ments of both methods on IWSLT are not as signif-
icant as MultiUN. We speculate the reason is the
relatively less amount of monolingual Z we use in
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the experiments on IWSLT as shown in Table 1.
So we conduct the following experiment to verify
the conjecture by changing the scale of monolin-
gual Arabic data in the MultiUN dataset, of which
the data utilization rates are set to 0%, 10%, 30%,
60% and 100% respectively. Then we compare
the performance of BackTrans and TA-NMT(GI)
in the EN-FR-AR group. As Figure 4 shows, the
amount of monolingual Z actually has a big effect
on the results, which can also verify our conjec-
ture above upon the less significant improvement
of BackTrans and TA-NMT(GI) on IWSLT. In ad-
dition, even with poor “good-initialization”, TA-
NMT(GI) still get the best results.

245 L BackTrans
@225 |

240 L lTA-NMT(GI)///,/""""'
215

25.0

235
D 23.0 -
w

220

21.0 -

20.5

0% 10% 30% 60% 100%

Monolingual Data Amount

\

Figure 4: Test BLEU of the EN-FR-AR group per-
formed by BackTrans and TA-NMT(GI) with dif-
ferent amount of monolingual Arabic data.

3.5 EM Training Curves

To better illustrate the behavior of our method, we
print the training curves in both the M-steps and E-
steps of TA-NMT and TA-NMT(GI) in Figure 5
above. The chosen models printed in this figure
are EN2AR and AR2FR on MultiUN, and EN2RO
and RO2FR on IWLST.

From Figure 5, we can see that the two low-
resource translation models are improved nearly
simultaneously along with the training process,
which verifies our point that two weak models
could boost each other in our EM framework. No-
tice that at the early stage, the performance of all
models stagnates for several iterations, especially
of TA-NMT. The reason could be that the pseudo
bilingual data and the true training data are hetero-
geneous, and it may take some time for the mod-
els to adapt to a new distribution which both mod-
els agree. Compared with TA-NMT, TA-NMT(GI)
are more stable, because the models may have
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Figure 5: BLEU curves on validation sets dur-
ing the training processes of TA-NMT and TA-
NMT(GI). (Top: EN2AR (the E-step) and AR2FR
(the M-step); Bottom: EN2RO (the E-step) and
RO2FR (the M-step))

adapted to a mixed distribution of heterogeneous
data in the preceding back-translation phase.

3.6 Reinforcement Learning Mechanism in
Our Method

As shown in Equation 9, the E-step actually
works as a reinforcement learning (RL) mecha-
nism. Models p(z|z) and p(z|y) generate samples
by themselves and receive rewards to update their
parameters. Note that the reward here is described
by the log terms in Equation 9, which is derived
from our EM algorithm rather than defined arti-
ficially. In Table 5, we do a case study of the
EN2ES translation sampled by p(z|z) as well as
its time-step rewards during the E-step.

In the first case, the best translation of politi-
cal” is ”politicos”. When the model p(z|z) gen-
erates an inaccurate one “’politicas”, it receives a
negative reward (-0.01), with which the model pa-
rameters will be updated accordingly. In the sec-



Source in concluding , poverty eradication requires political will and commitment .
Output en (0.66) conclusién (0.80) , (0.14) la (0.00) erradicacién (1.00) de (0.40) 1a (0.00) pobreza
(0.90) requiere (0.10) voluntad (1.00) y (0.46) compromiso (0.90) politicas (-0.01) . (1.00)
Reference | en conclusion, la erradicacién de la pobreza necesita la voluntad y compromiso politicos .
Source visit us and get to know and love berlin !
Output visita (0.00) y (0.05) se (0.00) a (0.17) saber (0.00) y (0.04) a (0.01) berlin (0.00) ! (0.00)
Reference | visitanos y llegar a saber y amar a berlin .
Source legislation also provides an important means of recognizing economic , social and cultural
rights at the domestic level .
la (1.00) legislaci6n (0.34) tambin (1.00) constituye (0.60) un (1.00) medio (0.22) importante
Output (0.74) de (0.63) reconocer (0.21) los (0.01) derechos (0.01) econmicos (0.03) , (0.01) sociales
(0.02) y (0.01) culturales (1.00) a (0.00) nivel (0.40) nacional (1.00) . (0.03)
Reference la legislacion también constituye un medio importante de reconocer los derechos econémicos ,
iales y culturales a nivel nacional .

Table 5: English to Spanish translation sampled in the E-step as well as its time-step rewards.

ond case, the output misses important words and is
not fluent. Rewards received by the model p(z|z)
are zero for nearly all tokens in the output, leading
to an invalid updating. In the last case, the output
sentence is identical to the human reference. The
rewards received are nearly all positive and mean-
ingful, thus the RL rule will update the parameters
to encourage this translation candidate.

4 Related Work

NMT systems, relying heavily on the availabil-
ity of large bilingual data, result in poor transla-
tion quality for low-resource pairs (Zoph et al.,
2016). This low-resource phenomenon has been
observed in much preceding work. A very com-
mon approach is exploiting monolingual data of
both source and target languages (Sennrich et al.,
2015; Zhang and Zong, 2016; Cheng et al., 2016;
Zhang et al., 2018; He et al., 2016).

As a kind of data augmentation technique, ex-
ploiting monolingual data can enrich the training
data for low-resource pairs. Sennrich et al. (2015)
propose back-translation, exploits the monolin-
gual data of the target side, which is then used
to generate pseudo bilingual data via an additional
target-to-source translation model. Different from
back-translation, Zhang and Zong (2016) propose
two approaches to use source-side monolingual
data, of which the first is employing a self-learning
algorithm to generate pseudo data, while the sec-
ond is using two NMT models to predict the trans-
lation and to reorder the source-side monolingual
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sentences. As an extension to these two meth-
ods, Cheng et al. (2016) and Zhang et al. (2018)
combine two translation directions and propose a
training framework to jointly optimize the source-
to-target and target-to-source translation models.
Similar to joint training, He et al. (2016) propose
a dual learning framework with a reinforcement
learning mechanism to better leverage monolin-
gual data and make two translation models pro-
mote each other. All of these methods are concen-
trated on exploiting either the monolingual data of
the source and target language or both of them.

Our method takes a different angle but is com-
patible with existing approaches, we propose a
novel triangular architecture to leverage two ad-
ditional language pairs by introducing a third rich
language. By combining our method with existing
approaches such as back-translation, we can make
a further improvement.

Another approach for tackling the low-resource
translation problem is multilingual neural machine
translation (Firat et al., 2016), where different
encoders and decoders for all languages with a
shared attention mechanism are trained. This
method tends to exploit the network architecture
to relate low-resource pairs. Our method is differ-
ent from it, which is more like a training method
rather than network modification.

5 Conclusion

In this paper, we propose a triangular architec-
ture (TA-NMT) to effectively tackle the problem



of low-resource pairs translation with a unified
bidirectional EM framework. By introducing an-
other rich language, our method can better ex-
ploit the additional language pairs to enrich the
original low-resource pair. Compared with the
RNNSearch (Bahdanau et al., 2014), a teacher-
student alike method (Chen et al., 2017) and the
back-translation (Sennrich et al., 2015) on the
same data level, our method achieves significant
improvement on the MutiUN and IWSLT2012
datasets. Note that our method can be com-
bined with methods exploiting monolingual data
for NMT low-resource problem such as back-
translation and make further improvements.

In the future, we may extend our architecture to
other scenarios, such as totally unsupervised train-
ing with no bilingual data for the rare language.
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Abstract

Subword units are an effective way to
alleviate the open vocabulary problems
in neural machine translation (NMT).
While sentences are usually converted into
unique subword sequences, subword seg-
mentation is potentially ambiguous and
multiple segmentations are possible even
with the same vocabulary. The question
addressed in this paper is whether it is
possible to harness the segmentation am-
biguity as a noise to improve the robust-
ness of NMT. We present a simple regu-
larization method, subword regularization,
which trains the model with multiple sub-
word segmentations probabilistically sam-
pled during training. In addition, for better
subword sampling, we propose a new sub-
word segmentation algorithm based on a
unigram language model. We experiment
with multiple corpora and report consis-
tent improvements especially on low re-
source and out-of-domain settings.

1

Neural Machine Translation (NMT) models
(Bahdanau et al., 2014; Luongetal., 2015;
Wu et al., 2016; Vaswani et al., 2017) often oper-
ate with fixed word vocabularies, as their training
and inference depend heavily on the vocabulary
size. However, limiting vocabulary size increases
the amount of unknown words, which makes
the translation inaccurate especially in an open
vocabulary setting.

A common approach for dealing with the
open vocabulary issue is to break up rare
words into subword units (Schuster and Nakajima,
2012; Chitnis and DeNero, 2015; Sennrich et al.,
2016; Wuetal., 2016). Byte-Pair-Encoding
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Subwords (. means spaces)
_Hell/o/_world
_H/ello/_world
_He/llo/_world

Vocabulary id sequence
13586 137 255
320 7363 255
579 10115 255
/He/l/l/o/ world | 7 18085 356 356 137 255
_H/el/l/o/ /world | 320 585 356 137 7 12295
Table 1: Multiple subword sequences encoding
the same sentence “Hello World”

(BPE) (Sennrichetal., 2016) is a de facto
standard subword segmentation algorithm ap-
plied to many NMT systems and achieving
top translation quality in several shared tasks
(Denkowski and Neubig, 2017; Nakazawa et al.,
2017). BPE segmentation gives a good balance
between the vocabulary size and the decoding ef-
ficiency, and also sidesteps the need for a special
treatment of unknown words.

BPE encodes a sentence into a unique subword
sequence. However, a sentence can be repre-
sented in multiple subword sequences even with
the same vocabulary. Table 1 illustrates an exam-
ple. While these sequences encode the same input
“Hello World”, NMT handles them as completely
different inputs. This observation becomes more
apparent when converting subword sequences into
id sequences (right column in Table 1). These vari-
ants can be viewed as a spurious ambiguity, which
might not always be resolved in decoding process.
At training time of NMT, multiple segmentation
candidates will make the model robust to noise and
segmentation errors, as they can indirectly help the
model to learn the compositionality of words, e.g.,
“books” can be decomposed into “book™ + “s”.

In this study, we propose a new regulariza-
tion method for open-vocabulary NMT, called
subword regularization, which employs multiple
subword segmentations to make the NMT model
accurate and robust. Subword regularization con-
sists of the following two sub-contributions:
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e We propose a simple NMT training algo-
rithm to integrate multiple segmentation can-
didates. Our approach is implemented as an
on-the-fly data sampling, which is not spe-
cific to NMT architecture. Subword regular-
ization can be applied to any NMT system
without changing the model structure.

We also propose a new subword segmenta-
tion algorithm based on a language model,
which provides multiple segmentations with
probabilities. The language model allows to
emulate the noise generated during the seg-
mentation of actual data.

Empirical experiments using multiple corpora
with different sizes and languages show that
subword regularization achieves significant im-
provements over the method using a single sub-
word sequence. In addition, through experiments
with out-of-domain corpora, we show that sub-
word regularization improves the robustness of the
NMT model.

2 Neural Machine Translation with
multiple subword segmentations

2.1 NMT training with on-the-fly subword
sampling

Given a source sentence X and a target sentence
Y,letx = (z1,...,zp) and y = (y1,...,YN)
be the corresponding subword sequences seg-
mented with an underlying subword segmenter,
e.g., BPE. NMT models the translation probability
P(Y|X) = P(y|x) as a target language sequence
model that generates target subword y,, condition-
ing on the target history y.,, and source input se-
quence X:

N
P(ylx;0) = H (Yn|%, y<n3 0), (1)
where 6 is a set of model parameters. A com-

mon choice to predict the subword ,, is to use
a recurrent neural network (RNN) architecture.
However, note that subword regularization is not
specific to this architecture and can be applica-
ble to other NMT architectures without RNN, e.g.,
(Vaswani et al., 2017; Gehring et al., 2017).

NMT is trained using the standard maximum
likelihood estimation, i.e., maximizing the log-
likelihood £(6) of a given parallel corpus D =
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(XYL = {(x,yO) 2,
QMLE = argmaxﬁ(@)
(%
|D|
where, L(0) = (#):0).(2)

> log P(y®)
s=1

We here assume that the source and target sen-
tences X and Y can be segmented into multiple
subword sequences with the segmentation proba-
bilities P(x|X) and P(y|Y") respectively. In sub-
word regularization, we optimize the parameter set
0 with the marginalized likelihood as (3).

|D|

0) = ZEXNP(X|X(s))[IOgP(y,X§ )] 3
s=1  y~P(y[Y(®))

£mar‘ginal (

Exact optimization of (3) is not feasible as the
number of possible segmentations increases expo-
nentially with respect to the sentence length. We
approximate (3) with finite k& sequences sampled
from P(x|X) and P(y|Y) respectively.

ID| &

EES D BTN

s=1 i=1 j=1
xi ~ P(x|X®), y; ~ P(y[Y'®).

‘C'marginal

For the sake of simplicity, we use £ = 1. Train-
ing of NMT usually uses an online training for
efficiency, in which the parameter 0 is iteratively
optimized with respect to the smaller subset of D
(mini-batch). When we have a sufficient number
of iterations, subword sampling is executed via the
data sampling of online training, which yields a
good approximation of (3) even if £ = 1. It should
be noted, however, that the subword sequence is
sampled on-the-fly for each parameter update.

2.2 Decoding

In the decoding of NMT, we only have a raw
source sentence X. A straightforward approach
for decoding is to translate from the best segmen-
tation x* that maximizes the probability P(x|X),
ie, x* = argmazxP(x|X). Additionally,
we can use the n-best segmentations of P(x|X)
to incorporate multiple segmentation candidates.
More specifically, given n-best segmentations
(x1,...,Xp), we choose the best translation y*
that maximizes the following score.

score(x,y) = log P(y[x)/|y|",

(&)



where |y| is the number of subwords in y and \ €
R is the parameter to penalize shorter sentences.
A is optimized with the development data.

In this paper, we call these two algorithms one-
best decoding and n-best decoding respectively.

3 Subword segmentations with language
model

3.1 Byte-Pair-Encoding (BPE)

Byte-Pair-Encoding (BPE) (Sennrich et al., 2016;
Schuster and Nakajima, 2012) is a subword seg-
mentation algorithm widely used in many NMT
systems'. BPE first splits the whole sentence into
individual characters. The most frequent® adjacent
pairs of characters are then consecutively merged
until reaching a desired vocabulary size. Subword
segmentation is performed by applying the same
merge operations to the test sentence.

An advantage of BPE segmentation is that it
can effectively balance the vocabulary size and the
step size (the number of tokens required to encode
the sentence). BPE trains the merged operations
only with a frequency